
May 22, 1959

Here is a revised and amplified version of the

STRAP I write-up. Thi s Will be followed (soon?)

by appendices c, D, E, listing

error marks, system symbols, . . . and an Index.

Y 4

1

1 c

TABLE OF CONTENTS

General

1. Strap Coding Form 1

2. Instruction Formats 2

2.0General 2

2.1 Machine Instructions 3

2.2 Data Entry Instmctions 3

2.3 Instructions to Compiler 4

2.4 Format Symbols Defined 4

3. Data Description 5

4. Strap 1 Location Counter 8

5 . Symbols . 8

6 . General Parenthetical. Integer Entry 9

7. Multidimensional Arrays 10

8. Bit Addresses and Integers 11

8.0 Definition 11

8.1 Addition of Integers and B i t Addresses 12

8.2 Rules for Conibining Integers and Bit Addresses 14

cf . Radix Specification 17

10. Synonym . 18

11. Other Restrictions on Address Arithmetic 20

11.0 DR (Data Reservation) 20

11.1 FXT (Extract) 21

11.2 SLC (Set Location Counter) 21

1.2 . Notes on Special Operation Formats 22

13. Miscellaneous Notes 26

i

J

TABLE OF CONTENTS (cont.)

Pa9

l l t . System Symbols 27

l t j . General Data Entry 30

15.1 	 DD (Data Description) Jl

15.2 	 EntryMode 32

15.3 	 The Form of Decimal Nwnbers 33

15.4 	 Insertion of Specific Fields 34

15.5 	 Rules for Entering Data 35

Summary of Rules for DD Statements 45

15.6 	DDI (Data Description, Immediate) Ec6

Appendix A. Restrictions on Addresses in SYN. DR. and SLC. . L.9

CodingExemple 4 2

Appendix B. Strap Mnemonics 53

Notation f o r symbolizing Floating Point operations . 54

Floating Point operations

Notation f o r symbolizing the Variable Field Length

ope rations . 60

Integer operations61

Logicd Connectives

Convert Instructions (VFL operations) . . .

Notation f o r symbolizing the Indexing operations

Direct Index Arithmetic

Irmnediate Index Arithmetic . . . e
 . .

Count 	and Branch Operations

Unconditional Branch Operations

Branch on Bit Operations

Branch on Indicator Operations

Transmit Operations

Miscellaneous Operations

Input-Output Instructions

Control Pseudo-ops

1/0 Coding Example

Example of a Control Word

Appendix C. (Index for Appendix B) 83

Index . 1

4

Revised January 8, 1960
GENERAL

Strap 1is a program f o r assembling symbolic programs for

Stretch, u t i l i z i n g a 32K 704. It i s a predecessor t o Strap 2, which

w i l l u t i l i z e the Stretch machine Itself for assembly. A l l programs

which can be assembled by Strap 1can also be assembled by Strap 2.

Appendix A contains such a program.

1. 	 STRAP CODING FORM

The coding form and the card form are divided into 4 f i e l d s .

These f ie lds and their posit ions are shown below.

I-7---t------

Col. Class

The 	purpose of each f i e ld is:

1. 	 Class (1column) - t o ident i fy the card format (binary, decimal,

symbolic, e tc .)

2. 	 Name (8 columns) - t o ident i fy the statement by a symbol (optional)

3. 	 Statement (63 columns) - t o express a machine o r pseudo-instruction,

Information punched i n column 72 w i l l not appear on the listing, but

i s assembled as part of the statement,

4. 	 Identification (8 columns) - t o ident i fy the card or program (does

not a f f ec t assembly)

1

2 . INSTRUCTION FORMATS

L O e General

Machine instruct ions are written and punched symbolically in

the statement f i e ld of the form described above. A card may contain

several instruct ions separated by ; . (The keypunchers will be instructed

t o punch t h i s symbol as 11-0 double punch.) The number of instructions

Frhich may be punched on a card i s limited by the number of columns ava.il-

&le i n the statement f i e l d . The symbol in the name field of a card

having more than one instruction in the statement f i e l d is associated

with the f irst instruction. The remaining inst ruct ions are t rea ted as if

they appeared on separate cards having blank. name f i e l d s , (I t i s not

necessary t o name an instruct ion unless it i s referred t o i n the program.)

4, single inst ruct ion cannot be continued from one card t o another. A

comment may follow any instruction. A comment is i n i t i a t ed by the symbol

" (an 8-4 double punch) and terminated e i the r by the end of the card o r

EL ; . A " i n the name f i e l d causes the whole card t o be treated as comment;

It w i l l be pr inted on the l is tFng but will not otherwise a f f ec t assembly.

Symbolic instruct ions are divided in to subfields (e .g., operation,

address, of fse t , e tc .) by commas. These subfields may in t u r n be s u b

divided o r modified by expressions contained i n parentheses, such as index

r eg i s t e r specifications, secondary operations i n progressive indexing,

ctc. Three general c lasses of operations can be defined in Strap 1:

1.egal. machine operat ions, datagentry psuedo-operat ions, and instructions-

t;o-the-compiler pseudo-operations . See Appendix A f o r examples.

Appendix B and C contain a l i s t of the legal machine operations.

.

2.1 Machine Instructions

Format

1.

2.

3 .

4.

5 .

6 .

7 .

8.

9.

10.
11.'

12.
2.2 Data E n t r y Instructions

Format

1. (EM)DD(dds), D, D',D", * ' * a

2 . CW(OP2), FWA, C, R

3. xw, v, c, 0-7R9

4. w v
5 . m, c

6 . m, R

7 . EXT(L, L') any legal instruction

operation

Floating point

Miscellaneous, unconditional. branch, SIC

Direct index etrithmetic

Smmedlate index arithmetic

Count and branch

mdicator branch

W L arithmetic, connect, convert

Progressive inclexing

Swap, t r a n s m i t f u l l words

Branch on bit

Input-output seLec t

Load value with sum

()Deration
-

h t a definit ion

Input-output control word

Index word

Value field

Count f i e l d

R e f 111 f i e ld

Extract

3

1 J

I

2 .3 Instructions t o Compiler

Format -	 Operation -
1. E;YN(dds) , AZ4 	 Synonym

2. U D I (d d s) , D 	 Data def ini t ion f o r immediate op

3. SLC, A,24 	 Set location counter

4. E:ND, B19 	 End of program

5 . I)R(dds), (L, 	L ' , L1',***) Data reservation

6. CNOP, A19(I) 	 Conditional no-op

7 . l!m, B19 	 Terminate loading and branch

2.4 Fomat Symbols Defined

1. 	 OP or OP1 A f ixed symbolic (hopefully mnemonic) representation

of a machine operation

2. 	 0P2 A secondary operation 2n progressive indexing or

input-output .
3. An 	 A data address of length n b i t s .

4. B 	 A 19-bit branch address.19
5 . 	 1 A 4-bit index address i n which 0 s igni f ies no

indexing and 1t o 15 s igni f ies indexing by the

corresponding index reg is te r .

60 	 K A single b i t index address i n which the choice

is 0-no indexing, o r 10-index w i t h register 1.

7. 	 J A 4 b i t index address which refers t o an index

register as an operand. In t h i s case 0 refers t o

index 0, word 16.

4

8. OF Offset .7

'3. I O Input-output un i t address.

10, cwl-j 	 Control word address.

11. EM 	 Entry mode,

12. D 	 Numerical data.

13. 	 FWA F i r s t word address of words t o be transferred i n

input-output operation.

14. C 	 Count f i e l d (18 bi ts , unsigped) .~

13. R Refill f i e ld (18 b i t s , unsigned) .

16, v Value f i e ld (2 5 b i t s , s i p e d)

17. L 	 Symbolic o r numeric integer.

18. dds 	 Data description .
19. 	 primes Used t o distinguish otherwise ident ica l f ields

i n a format. In transmit the data is transmitted

from A t o A ' .

3. Data Description

In the format specifications above, the symbol dds is added as

a modifier t o cer ta in operations and stands for the data description f i e l d .

It is specified by:

1. M the use mode,

2. FL the f i e l d length,

3. BS the byte size.

These three en t r i e s appear within parentheses i n the above order, thus;

(My FLY BS). A data description given with my of the four pseudo-ops,

5

1
I

DD, DDI, SYN, o r DR, applies t o the symbol i n the name f ie ld of the card

and, is automatically assumed whenever that name appears i n an address

f i e l d of an instruction. This data description may be overruled by writ ing

a d i f fe ren t data description exp l i c i t l y as a modifier in the two machine

instruct ion formats where it applies. There are seven f ixed mode desig-

nators as follows:

1. N Normalized f loa t ing point,

2. u Unnormalized f loa t ing point,

3 . B Binary signed VFL,

4. BU Binary unsigned VFL,

5. D Decimal signed WL,

6. DU Decimal unsigned VFL,

7. p A special character designating "data propert ies of."

W i t h i n a data description f i e l d the bybe s i ze o r field length may be

omitted, but never the mode. If' byte s ize o r f i e ld length, o r both, are

omitted, the mode w i l l imply the missing p a r t of the data detscription as

f 0 l : l o W s :

" I fixed format of 64 bi ts ; f i e ld length and byte s i ze

U not appropriate

B FL = 64 BS = 1,

BU FL = 64 BS = 8,

1 FL = 64 BS = 4.
DU

Note: 	 Some pseudo-ops (e . g . DDI) imply FL # 64. See description of

individual pseudo-op f o r details.

6

A data description using P is writ ten as follows: (P, Symbol) a

It means t h a t the data properties associated w i t h the given symbol are t o

apply t o the inskruction with which it is written. P can be used only

with legal, machine instructions, never with a pseudo-op.

In straightforward coding it i s unnecessary t o write a data

description on machine operations. The data description associated w i t h

the def ini t ion of a symbol (i n a data-entry o r data-reservation pseudo-op)

I s automatically applied t o the machine operation in whose address the

symbol appears. If a data description is given on a machine operation,

it overrules any data description derived from the symbolic address.

Cases can arise from programmer e r ro r s i n which a data descrip-

t ion and operation are not mutually consistent. In t h i s case the opera-

t ion w i l l overrule. E there is no way t o obtain a data description

from the symbolic address o r from an exp l i c i t data description f i e ld ,

three cases arise.

1. The operation symbol can stand f o r either f loa t ing point or

variable f i e ld length operations (e.g. +, -, *, /) The operation is

assembled as VFL with data description (BU, 64, 8).
2
 The operation symbol can stand for VFL only (e * g o, MI-1) It

is assigned a data description (BUY 64, 8).
3. The operation symbol can stand f o r f loa t ing polnt only

(e+ , +A, -A). The operation is assembled as normalized f loa t ing

point, except E+I and i t s modified forms, which are unnormalized unless

overruled.

7

A n e r ro r mark w i l l be pr inted i n any of these cases.

4. Strap 1 Location Counter

Cards are read i n sequence, and the number of b i t s needed f o r

each instruct ion or piece O f data is added t o an assembly loca t ion counter

i n order that each instruct ion or data entry may be assigned an address.

A principle of rounding upwards is followed, guaranteeing t h a t an in-

struction, value, count, o r r e f i l l w i l l begin exactly on a half-word

address and t h a t index words, control words, and f loa t ing point data

w i l l begin only on full-word addresses. The SLC pseudo-operation pro-

vides a means of se t t ing the assembly location counter t o any value a t

any point i n a code, and thus gives the programmer complete control of the

location of h i s code. Following an SLC, the location counter is advanced

i n noma1 fashion u n t i l another SLC card resets it.

3. Symbols

A programmer symbol is any sequence of six or fewer alphabetic

and numeric chaxacters, the f irst of which must be spec i f ica l ly alphabetic.

Such a symbol is defined by the programmer and may represent a machine

address of not more than 24 b i t s plus a sign, or a signed integer of not

more than 24 b i t s . A symbol i s defined when it appears i n the name

f i e l d of a card. Hence a given symbol may appear i n the name f i e l d only

once. The name of an ordinmy machine instruct ion o r data entry pseudo-

operation is set equal t o the value of the assembly program location counter

at the point of i ts appearance i n a code. There exist special pseudo-

operations capable of defining a symbol as an address o r an i n t ege r

independently of the location counter.

8

i

A system symbol consists of a dol la r sign followed by f i v e or

fewer alphabetic and numeric characters. System symbols represent various

special reg is te rs , indicators and input-output uni ts . Their meaning is

f ixed by the assembly program and i s not subject t o programmer control.

A programmer symbolized f i e l d is a f i e l d which m a y contain

programmer symbols and/or system symbols. O f the f i e l d s shown i n the

instruct ion formats above all may contain programmer symbols except OP,

OP1, OP2, EM, D, and the mode f i e l d o f a data description. A11 others

may be symbolized by the programmer subject t o the rules and r e s t r i c t ions

given below.

6 . General Paxenthetical Integer Entry

By means of the general integer en t ry any integer or a rb i t r a ry

pat tern of b i t s may be stored i n any posit ion of an instruct ion o r data

en t ry f i e l d . This type of entry may not be used with the pseudo-ops

c l a s s i f i ed as instruct ions t o the compiler. The format for general integer

en t ry is: (.n)An+l. It is a modification which may be appended t o a D

f i e l d or t o m y programmer symbolized f i e l d (o r i n place of such a f i e l d)

--- (Thus, f o r example, FL and BSwhich i s not enclosed b~ parentheses.

f i e l d s cannot contain a (.n) entry.) n i s the nmber of the

rightmost b i t of the parenthetical f i e ld , The integer An+l is formed as

an unsigned n+l--bit f i e l d and added t o the instruct ion o r data f i e l d by

means of a log ica l "or" in the leftmost n+l--bits. Subfield boundaries

are ignored by general integer entry. The posit ion of the en t ry is de-

termined by counting the b i t s of the whole instruct ion f i e l d no matter

-
 9

which subfield the integer entry m a y happen t o be appended to . Thus,

f o r example, i n a VFL instruction so modified, OP, A24(I)(.n)A,+1, OF7

is exactly equivalent t o OP, AZ4(I), OF (In the case of a DD7
pseudo-op the posit ion of the parenthetical f i e ld is determined by

counting the b i t s of the f ield, D, with which it is writ ten, In m y

caae the general integer entry must follow all other information i n the

f i e ld o r subfield i n which it appears, except f o r another general inte-

gel- entry. Although one entry could be made t o serve i n any single

instruction, it is more convenient t o write several different integer

en t ry specifications when one wishes t o place numbers 5n various places

i n a field. Therefore no l i m i t i s set on the number of consecutive

en t r i e s which can be w r i t t e n together, except as imposed by the length

of the statement f i e ld of the card. E An+l is negative, an n+l--bit

2'13 complement is taken. me max- size of n is r e s t r i c t ed by the

total lengbh of the instruction or data f ie ld , m. O<n<m. For example,

i n a half-word instruction 06 n,<31; i n a full-word Imtruc t ion 0s n 6 63.

The radix of An+l may be specified as mentioned below under " R a d i x

Specification." Ex. : E -I- I, (.8)41. The integer 41 w i l l be entered i n

the l e f t most 9 b i t s (8 f 1)of the E + I instruction.

7. Multidimensional Arrays

Strap 1provides a convenient method of defining multidimensional

arrays of data and of addressing individual elements of an array. All

indexing, of course, must be handled expl ic i t ly by the programmer. A

synbol i s defined as the first element of an array of nl-1 dimensions by

v i r tue of i t s appearance i n the nme f i e l d of a data reservation statement

10

1

W

of the following sor t : DR(dds), (L, L', L",..., Lr). This statement

i s interpreted as reserving space for an L x L' x L" x x Lr array0 . 0

of data fields. A number 0;f b i t s equal t o t h e f ie ld length of each

element multiplied by the product of the dimensions i s set aside f o r

t h i s array and the location counter advanced accordingly. (If the data

description specif ies f loa t ing point words, the correct number of full

mrds is reserved, beginning at a full-word boundary.) In addition the

number and value of the dimensions i s pemanently associated with the

symbol so defined. Then i n any address f ie ld a specif ic member of t h i s

array may be addressed by writing: Symbol (q, q', q", .*.,q r) . The

f i rs t element of the array is Symbol (0, 0, O,..., 0) = Symbol, and

the last element of the reserved space i s Symbol (L-1, L'4, L"-l,.*-,Lr-l).

The address of an arb i t ra ry element is computed by means of the formula:

Address of [Symbol (9,q', q",.-, q
r)] = Address of [Symbol (0, 0, O,**=,O)]

+ FL x (q+qlIrf.q"LL'-tq"'LL'L"+ *-) , where FL is the f i e l d length of an

element i n the array. Strap 1 will handle a maximum of f i f t e e n dimen-

sions i n t h i s fashion. Such an array address may be used i n any program-

mer spnbolized f i e l d not i n pmentheses, except a general parenthetical

integer entry.

8. B i t Addresses and Integers

8 0 Definition

Two kinds of numbers have been defined f o r use i n the program-

mer symbolized f i e l d s of Strap statements. A b i t address is a s ty le of

wri t ing a machine address by specifying nw, a number of f u l l &bit words,

11

and I+, a number of bi ts . The format i s nw. %. The period separating

the two integers distinguishes the b i t address from an ordinary integer

ni' which is the second kind of number allowed t o appear i n address fields.

As the name "bit address" implies, these numbers are converted t o and

carried as 24-bit binmy integers such as are appropriate t o the address

f ie lds of VFL instructions. When used i n the address f i e l d of instructions

f o r which a shorter address is appropriate a b i t address is truncated t o

the correct length and inserted. The location counter contains a b i t

address. There i s no l i m i t on the s ize of the numbers nw and % except

that 6 h w + % must be less than 224.
Example: 505.17 = 500.33'7 = 0.32337

Integers in programmer symbolized f i e l d s we always converted

t o binary. They are l imited i n length t o the length of the f i e l d in to

which they are t o be inserted, with the additional r e s t r i c t ion t h a t an

integer larger than 24 b i t s cannot be symbolized.

B i t addresses and symbols f o r b i t addresses are intended p r i -

marily f o r use i n address fields of machine instructions. Integers and

symbols f o r integers are intended p r b a r i l y f o r use in fields for which

they seem more appropriate, counts, shifts, f i e ld length, byte size, e tc .

8.1 Addition of Lntegers and B i t Addresses

Although it is expected tha t integers and b i t addresses w i l l

generally be used i n different fields, addition of the two types of'

numbers is defined, the r e su l t being a function of the type of instruction

f i e ld f o r which the number is intended. Algebraic addition is permitted i n

d l f i e l d s which may be symbolized by the programmer. Symbols for both

b i t addresses and integers are signed numbers. The number of terms which

may appear in a f i e l d i s Limited only by the space available on the card,

except f o r the case of SYN and DR, noted below in sections 10.0 and 11.0.

Example: SAM - JOE + FRED - 72.386 + 5 ,

where SAM and JOE axe defined as b i t addresses and FRED is an integer,

w i l l i n general be a lega l address. The data description of the f i n a l

symbol, FRED, w i l l apply t o the whole combination. In computing such an

address, the sum of the b i t addresses is obtained sepaxately from the

sum of the integers; the integer sum is then shifted left

if necessary and the result added algebraically t o the b i t &dress. If'

the f i e l d for which the address is intended i s signed, the s i p w i l l be

placed i n the correct b i t . If the f i n a l r e su l t is negative and the n-bft

f i e l d for which it i s intended is unsigned, a 2% complement i s

formed and inserted, except i n the case EXT (L, L') where IL I and I L'l

are used. A posit ive f i n a l result, of course, is inserted as a t rue

figure. The programmer is reminded tha t a 2 ' s complement must be used

with care on Stretch in order not t o get an "address invalid" indication.

Either a b i t address o r an integer or a combination of the two

may appear i n any programmer symbolized f i e l d with only four res t r ic t ions :

1. 	 The "I" o r "K" index f i e l d s must contain at

least -one b i t address term.

2. 	 The en t r ies in an array specification must

not contain any b i t address termc. (In

EXT (L, L ') , (L , L ') i s not considered an

array specification .)

3. 	 A period may not appear in the f i e l d of a

general integer entry. A symbolic b i t

address appearing i n such a f i e l d is treated

as a 24-bit integer. Ex: Vt-I, (.18)4.32 is not allowed,

but: V+I , (.18)g is.

4. 	No arithmetic clan appear i n the name field.

8.2 Rules f o r Combining Integers and B i t Addresses

The following rules describe the method by which b i t addresses
and integers are truncated and added. The nmbers are assumed t o be signed
24-b.it integers before t h e operation. Addition is algebraic. An e r ror
indication w i l l be given i f non-zero bits are discarded, except for t h e

"16"b i t of an index field. I n the diagrams below integers and b i t addresses

are drawn shifted w i t h respect t o each other by t h e proper amount. Vie
numbers are algebraically added wi th t h e of f set shown, complemented (i f

necessary), truncated (i f necessary) t o the correct f i n a l length, and
inserted into the correct position i n the operation word. Although the
diagrams show t h e f i n a l sum f i e l d truncated t o t h e appropriate length, t h e

b i t s are not actual ly discarded unless they would fall outside t h e addrees
f i e l d of t h e instruction. Some aperations do not use a l l the space available
i n their address f i e lds (e.g. transmit, input-output select), and i n these
cases b i t s may be placed i n the unused portions by t h i s means.

1. B i t address:

Integer:

B.A.

I.

I
I

24 b i t s

24 b i t s

I

I

Note:

SUm

Integer counts b i t s .

1 24 b i t s I
I

14

i

Half-word address: B.A.

I.

piG----[SUm

Note: Integer counts haLf words.

I 18 b i t s I 6 b i t s I
3* A18 Full-word address: B.A.
I

I. 	 124bits-[
I

sum I 18 b i t s I

Note: Integer counts full words.

4. %u Signed 11 b i t address: B.A. 1 24 b i t s I

I

I
I

I.

W

5. 	 OF7 Off se t : B . A . I 24 b i t s I

1 --1

I. 	 24 b i t s 4

sum 	 b i t s .--i

I

Note: Bit address 1.2 = .96 = integer 96

6. FL6 Field length:

I.

Note: 1.0 = .64 = 64 = 0 not error marked

7. BS3 B y t e s ize : B.A.
I
1

I. I 24 b i t s I
-

SUm 3 b i t s

Note: .8 = 8 = 0 not e r ro r marked

8. I, J 4 b i t index f i e l d s : B.A.

I.

1
I

SWn I t s [-
I
I

Note: A "1" i n the b i t position m e d i a t e l y t o the l e f t of the

f i n a l sum f i e ld i s discarded with no e r ror indication.

I
I

I I 1
9. K s i n g l e b i t index f ie ld: B.A.

I. I 24 b i t s I
I

sum 1b i t -1
I

Note: A i n the "1" i n the b i t position which corresponds to 111611

sum is discarded w i t h no e r ror indication.
I

10. I O input-output address: B . A . -
1

I. ---I I

I
I

I 7 b i t s I

Note: Integers count tape uni ts , channels, e t c .

9. Radix Specification

In any programmer symbolized f i e l d not enclosed by parentheses,

numerical integers and b i t addresses may be written i n any radix from

2 t o 10. The radix is specified by simply enclosing the appropriate inte-

ger (writ ten in decimal) i n parentheses at some appropriate point i n the

subfield. The radix applies t o the en t i re subfield unless rese t before

reaching the end. IT no radix base is specified, base 10 is assumed.

Some examples :

a. (8)573 - 34 + 50 (a l l numbers are oc ta l)

b . (2)11011011100011.11110 (b i t address written in binary)

c I (5)SAM - 342 (The symbol SAM is not affected by the radix, having

been previously converted t o binary. The integer 342 is

W written i n the number system of base 5 .)

d. 	 (8)7436.(10)60 + 9 (The fu l l word portion of t h i s b i t address is

written i n octal , whereas the b i t portion and the integer 9

are written in decimal.)

When writing a general parenthetical integer entry, the radix

base may be specified within the same parentheses as the .n and in any

order, thus, (.n, R) o r (R, .n).

Examples :

a. (.?Or 8)17 - JOE + (10)4203(4, .22) - 33303(.60)1030

b* (7)(*30)1265(*20)(10)138 - (6)43(*10)533

Note t h a t the radix does not have 5 be specified with .n, If'

no radix is specified, the current operative one is continued; it is not

I

reseit t o LO. It w i l l be understood t o be 10 if no radix has been pre-

viously specified in the f i e l d t o which the general parenthetical integer

entry is appended. The radices which apply in the above examples are:

Example 	 Number Radlix

1 8

1 does not apply

1 10

1 4

1 4

2 7

2 10

2 6

2 553 6

All the control integers (within parentheses) are interpreted as decimal

numbers

10. 	 Synonym

Format: Name I SYN(dds), %4

The pseudo-operation SYN is used t o define a symbol in terms of

a b i t address, an integer, o r a combination of the two. The address %4

i s evaluated and i t s value is attached t o the symbol i n the nme f i e ld ,

The dds is attached t o the name. If' no data description i s given, the

data properties of the f i n a l symbol not i n parentheses are t rmsfe red t o

the name. IT t h i s symbol has multidimensional properties, they are

18

4 k

transferred to the name symbol. Specifically, one may use a SYN t o define

a symbol as an in t e r io r element of a multidimensional a r ray and have the

dimensional addressing propert ies carr ied along.

Example :

A DR(N), (10, 20)

B sm, A (5 , 5)

W

be produced if i t s components were e x p l i c i t l y writ ten i n the instruct ion

f i e l d .

The d i f f i c u l t y of evaluating addresses on SYN cards imposes

cer ta in r e s t r i c t ions on the forms of addresses whlch can be allowed. In

t h e general case (where SYX cards may be i n any order) the address of a

SYN may contain only one programmer symbol outside of parentheses. The

integer portion of any symbol must be completely defined by ti chain of

SY"s o r D D I t s . The b i t address portion may be completely defined by a

chain of SY"s, or by a chain leading t o a symbol which i s defined by t h e

location counter as a name of an instruct ion or of data. For a fuller

discussion of SYN cards see Appendix A.

W
19

N€UIle Statement
___..

SAM SYN(N), 1000.O

F U G SYN(BU, 3, 81, .61

I L, + FLAG
The "bad" instruction loads only the flag from the f loa t ing point word

''SAM" prepmatory to Borne VFL withmetic or t e s t s on the flag,

11. Other Reetrlctions on A&&ess Mithetic

11.0

I

Format: Name I DR(dde), (L, L', L ' ' , - O)

A Mi reserve8 space for data and epecifies the climensisns of

multidimensionaL array8 (see section on multidimensional, arrays)a The

amount of space re6erved is equal t o the f i e l d length, as specified or

Implied in the data description, multiplied by the product of the integers,

L, L', L", e t c . , t ha t is , FL x L x L' x L" x b i t s . DR is error-marked. . e

i f it has no data description, and normalized f loa t ing point is assumed..

Each of the p r o g r m e r symbolized fields, L, L', e tc . may contain a t most

-- If evakmtion of the complete field. L produces ~kone programmer symbol.

mgative resu l t , the absolute value win be taken.

20

1

Example:

-Name Statement

legal SAM I DR(B, 20) , (12, ~ + 4 ,L-6)

i l legal. JOE I DR, (12-K, K+L, -14) "K+L is not allowed,

but 12-K an& -14are. -14 i s the Esme as 14 i n a DR.

11.1 	 EXT

Format: Name I EXT(L, L')OP, A

The instruct ion which follows the pwentheses after EXT is

completely formed. Then b i t s L t o L' inclusive are extracted from it

and compiled i n the posit ion i n the code where the EXT occurs. The re-

mainder of the subject instruct ion i s discarded. The name symbol is

assigned a data description of (BU, L'-Ltl, 8). The fields L and L' may

contain any number of symbolic integers but any b i t addresses they contain

either must not depend on the location counter o r else must be defined by

a preceding card.

Example: m~(18,47) + (B, 18, 7),73.16

F i r s t the full-word instruct ion + (B, 18, 7) , 73.16 is formed,

Then b i t s 18 t o 47 inclusive (the first b i t is numbered "0" according t o

Stretch custom) are extracted and stored i n the program being compiled.

dds = (BU, 30, 8) , The location counter is advanced 30 bits .

11*2 SLC

Format: SLC, pC2&

The assembly location counter is set t o the value of the address

of t h i s pseudo-op. The next instruct ion compiled wtll be at t h i s address,

W 21

k

subJect t o the various rounding upwards conventions. E %4 contains

symb0.16 which depend on the location counter f o r t h e i r value, they must

be defined by preceding cards. A symbol i n the name f i e l d of SLC is

Ignored.

12. 	 Notes on Special Operation Formats

:L LVS: "Load value with sum" Name I LW, J, A, A t , A", @

J represents the index r eg i s t e r whose value f ie ld

w i l l be f i l l e d . A, A ' , A", e tc . me index-type addressee

each of which causes a one t o be placed i n the correct

posit ion i n the machine address.

:2 CW: 	 "Control word" Name CW(OP2), FWA, C, R

Intended f o r the entry of input-output control

words. The location counter w i l l be rounded t o guaran-

tee tha t the control word will begin on a full-word

address. dds = (BU, 64, 8). The secondary operation,

OP2, provides for eight possible variations of the input-

output function as follows:

22

I

Multiple Chain skip
B i t B i t Flag

a. CR: 	 "Count within record" 0 0 0

b o CCR: 	 "Chain counts within record" 0 I, 0

C . CD: 	 "Count, disregarding record" 1 0 0

do 	 CDSC: "Count, disregarding record,

skip, and chain" 1 1 0

e . SCR: 	 "Skip, count within record" 0 0 1

f. 	 SCCR: "Skip, chain counts within

r e cord" 0 1 1

SCD: 	 "Skip, count, disregarding

record" 1 0 1

SCDSC: 	 "Skip, count, disregarding

record, skip, and chain" 1 1 1

3. XW: 	 "Index word" Name I XW, V, C, R, 0-7

The index word will begin at a full-word address.

dds = (BU, 64, 8). The integer 0-7 loads b i t s 25-27.

4. VF: 	 %J.ue f i e l d " Name I VF, V

The value f i e l d w i l l begin a t a half-word address.

dds = (B, 25, 1)

5. CJ?: 	 "Count f i e l d " Name ICF, C

The count field w i l l begin at a half-word address.

dds = (BUY 18, 8)

23

6. 	 FU?: "Refil l-field" Name IRF, R

The r e f i l l f i e ld w i l l begin a t a half-word address.

dds = (BU, 18, 8)

'7. CNOP: "Conditional no-op" Name I CNOP, A.,9

CNOP may o r may not enter a NOP, depending on the value

of the assembly location counter. This pseudo-op guarantees

t h a t the instruction following CNOP will begin at a f u l l -

word address. If a half-word NOP is required t o advance the

location counter t o the next full word, it w i l l be inserted.

8. Progressive indexing. OP(OP2)(dds) I %&(I), OF7(I')

The six operations which can appear i n $he OPz f ie ld

i n t h i s instruction are:

1. V+I, "Add immediate t o value"

2. V-I, "Subtract immediate from valuet1

3. V+IC, "Add 	 immediate t o v a u e , and count"

4. V-IC, " S a t r a c t immediate from vdue ana count"

5 . V+IcR, "Add immediate t o value3 cow%, and ref i l l"

6. V-ICR, "Stibtraet immediate from vaLue, count, md refill. I '

51. END: "End" END, B19
An END card signif'ies the end of the program. Its

location gives the s t a r t i ng point f o r assigning locations

t o undefined symbols. If it has an address, I3 a t rans i -19'
t ion card t o B w i l l be punched. A symbol in the name1-9
field is ignored on t h i s pseudo-op.

24

4

10. TLB: "Terminate loading and branch" ITD, B19
When t h i s pseudo-op i s encountered a t rans i t ion card

i s punched immediately t o t ransfer control of the machine
t o the location B19. Tkte e f f ec t is the same as w i t h an END
card except tha t the assembly continues uninterrupted and
the remainder of the program i s loaded under program control.
A symbol i n the name f i e l d is ignored on t h i s pseudo-op.

11. PRNS: "Print single-spaced" IPN?S

This pseudo-op causes the assembly l i s t i n g t o be
printed single-spaced, The l i s t i n g is always double-spaced
unless t h i s is given.

12. PRND: "Print double-spaced" IPRM)

This pseudo-op causes the assembly l i s t i n g t o be
pr inted do&le-spaced. It restores p r i n t conditions t o
normal a f t e r a PRNS.

13. PUNFUL: "Punch full cards'' IpuNFuL

F u l l cards (80 columns) are punched, without check
sm, FWA, I D , e tc .

14. P W O R : "Punch normally" IPiJNNOR

This pseudo-op restores punching t o normal after a
PUNFUL.

15. SKIP: "Skip paper" ISKIP, i

If i = 0 o r blank, t h i s causes the assembly l i s t i n g
t o res tore the paper immediately. If i # 0, a half-page
skip w i l l r e su l t . Note that i n STRAP-2, SKIP,i, w i l l mean
"skip t o l i n e nmber i," as opposed t o "channel i" on the 704.

16. PUNID: "Punch ID"

The f irst 8 characters & t e r the comma are picked
up and punched i n columns 73-80 of the binary deck. This
ca rd should be used t o ident i fy each assembly.

25

A

13. Miscellaneous Notes

1. Instruction data description.

Reference t o a machine instruction by anokher instruction

requiring a data description will give a dds of (BU, 64, 8) or

(BU, 32, 8) depending on whether the operation referred t o occup:les

a f u l l or a half word. This dds can, of course, be overruled.

2. B l a n k s .

B l a n k s are ignored in all f ie lds except i n entering

alphabetic information. mey have no meaning whatever i n any

other f i e l d . B l a n k cards are ignored. An END card must be used

t o signify the end of the program.

3. Parentheses within Parentheses.

In Strap 1 it is a general ru le t ha t parentheses may not

appear within parentheses. Programmer symbolized f ie lds appearing

within parentheses are therefore res t r ic ted somewhat in t h a t they

must always have radix 10, may not contain array specifications, nor

may they have general. parenthetical integer en t r ies appended t o

them .
4. Null f i e l d s .

Certain subfields in any operation format may be omitted, and they

are then said t o be null f i e lds . A right t o l e f t drop-out feature

operates i n assembly. If the rightmost subfield for a format i s

omitted it i s compiled as a zero f i e l d . E the two rightmost

f ie lds are omitted they are both compiled as zero, e tc . A sub-

f i e ld i n the in te r ior of a format i s made nul l by writing only

26

the comma which ends the f i e ld thus: OP, , A. Index modifiers

I and K are made n u l l by simple omission.

5 . Supression of error marks.

Error marks, except f o r mispunch indications, can be

suppressed f o r any statement by prefixing the op symbol w i t h a

dol la r sign. Thus $OP, A(I) w i l l suppress e r ror marks which would

otherwise be printed i n connection with compiling tha t operation,

but only t h a t one.

6. Name with blank statement f i e l d .

IT a card contains only a name, the statement f i e l d being

l e f t completely blank o r containing comments only, it is t reated

as a data reservation for one normalized f loa t ing point word.

That is, the statement DR(N), (1)is assumed i n t h i s event by

Strap 1.

7. Undefined symbols.
I% a symbol appears i n a programmer symbolized f i e l d , but

never appears i n the name f i e ld of any card, it is undefined. Un-

defined symbols are assumed t o represent nomalized f loa t ing point

words and are assigned succeeding full-word locations beginning

with the f irst one after the END instruction.

14. System Symbols

System symbols are symbols whose values are fixed in the compiler.

They are ident i f ied i n programmer symbolized fields by the f a c t t h a t the

f irst character of a system symbol is a dollar sign, which i s a character

I

rL c

t h a t can never appear i n a programmer symbol. Note tha t a dol lar sign

pref ix i n the operation f i e l d i s a signal. t o suppress error marks and

t h a t the indicator symbols, when inserted into the "branch on indicator"

instructions, do no t have the dol lar sign prefix. System symbols which

represent special reg is te rs i n memory o r special b i t s are b i t addresses;

al:L others are integers. System symbols may appear in arithmetic ex-

pressions i n programmer symbolized f i e lds , where in cases t o which

res t r ic t ions apply, they can be considered i n the same c lass as numeric

en t r ies since t h e i r values are immediately available whenever needed.

The system symbols are :

1. $0 t o $15, ident ical t o $XO t o $Xl5, are index registers 0 t o 15,

addresses 16*0t o 31.0. For example, $5 (or $X5) w - i l l produce the

correct index f i e l d of 5 in m I-or J - f ie ld or the ad&ess 21.0 in an

A-field.

2. 	 Other special regis ters .

Location Word No. Mnemonic-
0 	 $z Word rrumber zero

1.0 	 $IT Interval timer

1.28 	 Time clock

2.0 Interruption address

3 *o Upper boundary

3.32 	 $m Lower boundary

3.57 	 $BC Eoundary control

14. 32 	 Maintenance b i t s

5.12 	 $CA Channel address

28

Revised

13/16/59

2. Other special reg is te rs (continued) .
Location Word No. Mnemonic Mame-

6.0 $CPU Other C R J

7.17 $LZC Left zeros count

7e 4 4 $AN A l l ones count

8.0 $L Left half of accumulator

9.0 $R Right h d f of accumulator

10.0 $SB Sign byte

11.0 $J-m Indicator r eg i s t e r

12.21 $MASK Mask

13.0 $m Remainder reg is te r

14.0 $FT Factor reg is te r

15.0 3;m Transit r eg i s t e r

3. Indicator bi ts . The symbol for any indicator b i t may be prefixed

w i t h a dol la r sign and placed i n a programmer symbolized f i e ld , where

it w i l l represent the correct b i t address i n word 11.

4. Location counter. Whenever the do l l a r sign by i t s e l f appears i n a

programmer symbolized f i e ld , it represents the value of the location

counter a t the beginning of tha t instruction. In e f f ec t t h i s is the

location of the instruct ion i n which it appears i f tha t instruct ion

actually compiles space i n the program. Example: the instruction,

B, $2. means branch t o the instruct ion which begins two full words

before. Note that B, $+.32 means branch t o the next instruction,

effect ively no operation.

Note: A l l of the system symbols i n classes 1, 2 , 3, and 4

are b i t addresses and are aseigned standard data descriptions w i t h mode

29

a

binaxy unsigned, byte s ize eight, and f i e l d length depending on the

length of the regis ter .

5 . Input-output addresses. Some of the system symbols f o r input-output

addresses may have different values at different instal la t ions, since

the channel t o which a par t icular piece of equlpment is connected is

arbit;rary. The symbols may represent e i the r channel addresses o r un i t

addresses, depending on the configuration of the input-output system.

System Symbol Meaning

$PCH Punch

$PRT Printer

$RDR Reader

$DISK Disk uni t

$co, $c1, .,$ck Channel 0, Channel 1, ..,Channel k

$TO, $ T L * - - , $ T k Tape 0, Tape 1,***,Tape k

$Ias Inquiry s ta t ion

$CNSL Console

IT more than one punch, pr inter , console or m y other inpuboutput

un i t is attached t o the machine, the same numbering convention used i n

chamel and tape addresses is adopted, where $CNSL = $CNSLO, and SO on.

For example one may have $PRTO, $PRTl, $PRT2, e t c .

15. General Data Entry

The use of the pseudo-operation -DD (Data Ikf ini t ion) enables

the programmer t o enter data in to a program i n a variety of forms.

Revised
12/16/59

Among the poss ib i l i t i e s which ex i s t are decimal t o f loa t ing binary

conversion, e i the r normalized o r unnormalized, conversion of decimal

f rac t ion t o binary f rac t ion i n f ixed point, integer t o integer conversion

from any radix from 2 -t o 10 16 $0 a radix of e i the r 2 or 10 and conversion

of alphabetic information t o binary-coded forms. The pseudo-operation

DDI (Data Definition Lmmediate) is intended f o r defining data t o be

used i n the address of immediate operations. A l l the features l i s t ed

above, w i t h the obvious exception of the f loa t ing point conversion,

are also available with DDI. The method of use of the DD w i l l be

described first, and then the minor differences between DD and DDI w i l l

be l i s t e d *

15.1. -DD

Format: Name I (EM)DD(dds), D, D', D ' t , e * o .

other.

The address f i e l d s D, D ' , D", e tc . are all equivalent t o each

They are compiled sequentially as separate pieces of data, each

having the data description specif'ied, but only the first having a name.

The e f fec t produced i s exactly the same as if the en t ry mode, op, and

data description were repeated on separate cards with only one D-field

per instruction and blank name fields. If one wishes t o name the separate

en t r i e s D, D', D", e tc . , indeed it i s necesswy t o write each one on a

separate card since the name of a DD is given the address value of the

f irst b i t of the f irst D-field. Programmer symbols may not appear i n

the main body of a D-field, but only i n general parenthetical integer

en t ry f ie lds which are attached t o the ends of D-fields. (Note: Since

I

1 c

each D-f i e l d is essent ia l ly a separate major f i e ld , the parenthetical

entry counts b i t s from the beginning of the D with which it is written.)

In the main portion of a D-field varlous le t ters and symbols have f ixed

meanings no t subject t o programmer control.

lfi .2 Entry Mode

The entry mode gives infomation about the fomn i n which the

data appears on the card; it may also have some implications about the

form t o which it is converted and stored. An entry mode may appear before

the DD as shown in the format. Those not concerned with entry of alpha-

betic: information may a lso be used a t the beginning of individual D-fields.

It i s not always necessary t o specify the entry mode expl ic i t ly .

There are four different entry modes:

1. 	 (R) Radix. The radix has already been explained for the case of

a.ddress arithmetic. In the case of data entry it can be used with

-integers only; a decimal point o r a f loa t ing point notation implies

a, radix of 10. The entry mode radix specifies the radix in which an

integer i s written on the card, but says nothing about the one t o

which it is converted.

2. 	 (Fn) (Fn) h p l i e s t ha t the data i s written with a decimal radix and

is t o be converted t o binary, and may include a decimal f ract ion

portion t o be converted t o a binary f ract ion of length n b i t s .

The (decimal) integer n following F specifies the number of

f ract ional b i t s t o be l e f t t o the r igh t of the binary point when the

number, or numbers, which follow are converted.

I '

32

4 4

9evised January 8, 1960

.w 3. 	 (Az) Alphabetic conversion. This e n t r y mode must-precede t h e DD,

and cmly m e address fi.eld I'D" is allowed per s ta tement . "lie H o l l e r i t h

c h a r a c t e r s begiming with t h e one after t h e cormza which ends t h e op

ffcld m c converted t o IBIJI tape ECD u n t i l the cSp,racter "z" is
__LI

reached. N D ~ L ?that t a p e 33CD i s salewhat d i f f e r e n t from i n t e r n a l 702,

BCD. The byte s i z e of converted. characters may range from 1through 12

in a DD, 14 through 1 2 i n n DDI, and is specified by t he dds, Leading

zerges are inserted i n each byte f o r BS > 6, and leading bits are truncated

f r m eack b-yte f o r BS a 6 . The byte s i z e ccmpiled i n an operation

referring t o the data is set t o the specified byte size modulo 8.

The t e rmina t ing cha rac t e r "z" itself is not in-

cluded. It may be any l e g a l H c U e r i t h c h a r a c t e r except blank, ;,) 9

3r . Blanks occurr ing w i t h i n t h e field t o be converted are r e t a i n e d

and correctly stored. The c h a r a c t e r s are counted by Strap 1 and t h e

l o c a t i o n counter properby advanced.

4. 	 (IQSz) Inqu i ry s t a t i o n conversion. This e n t r y mode o p e r a t e s exactly

as (A) except t h a t t h e H o l l e r i t h c h a r a c t e r s are converted t o t h e Tobit

inquiry s t a t i o n code, and t h e r e f o r e 7 is t h e magic number separating

truncation from addition of leading zeroes. Although t h e 162s code

includes a large number of special characters, Strap 1 is limited t o

-the ones which can be entered by means af I B M off- l ine card and tape

equipment .
l5.3. 	 The Form of Decimal Numbers

Decimal numbers may be w r i t t e n i n fixed or f l o a t i n g point form,

with or without a d e c h a l point. The general form is

33

Revised January 8, 3.960

JGrl t h i s fom E means tha t the number which precedes it i s multiplied

10 ra ised t o the power which follows it. That is , 372.343-57 means
I

05?572.34 x 10 Parts of the general form which are not necessary f o r

writing a number may be omitted, thus:

integer

decimal f ract ion

integer times power of 10

A plus sign fs understood if omitted. The decimal point can be

i n any position i n the number. The portion of the number symbolized above

by x 's is limited t o 20*digits; t h a t symbolized by y ' s t o 3 d i g i t s (but

recall that f loa t ing point numbers i n Stretch are Linited t o a range of
-616
lo616 t o 10 .

15.4. Insertion of Specific Fields

1,. Exponent E n t q : X f n

The letter "X" may be used t o enter any arb i t ra ry exponent

in to a f loa t ing point word. n is a decimal integer which is

converted t o binary and which replaces my exponent previously calculated.

2. Sign Bybe Entry: Sn
I 1- -

The letter "S" is used t o en ter a sign byte i n t o data. n is an

octa l integer which is evaluated and which is "0R"ed i n with any sign byte

previously calculated. The ~ i g nbyte generated depends an the byte s ize

according to the following table :

3t Number of d i g i t s >2O is permitted only when the radix is (10.

34

Byte Size S i 5 Byte

1 S

2 ST

3 STU

4 STUV

5 ZSm

6 Z Z S W

7 ZZZSTUV

8 ZZZZSTUV

where Z is a zone b i t ,

S is the sign bi t ,

T, U, V are the f lag b i t s ,

13.5. Rules for Entering Data

The lega l formats for entering data can be c lass i f ied according

t o the use mode writ ten i n the data description field of the DD state-

ment. In general an element l i s t e d i n the general. format may be omitted

Le it i s not needed t o specify the data.

1. 	Normalized Floating Point

Format: Name I DD(N), kxx***xxoxo*oxxEfyyySn

The decimal number is converted t o a normalized f loa t ing binary

number consisting of 831 11 b i t signed exponent, a 48 b i t f ract ion, and a

4 b i t sign byte. If no sign byte has been entered by means of an "S",

the sign preceding the nmber is used w i t h the flag b i t s set t o zero. If

a d i f fe ren t binary exponent i s desired, it can be entered following an

'%", as shown below.

35

Examples :

a. DD(N), 54.73 E 4

54.73 x 104 i s converted t o f loa t ing binary. The sign b i t i s

zero (= plus) , and the f l a g b i t s are zero (L e . e n t i r e sign byte is

zero).

b. DD(N), -54.73 E 4, or DD(N), 54.73 E 4 S 10

In t h i s case the sign b i t is set t o one (negative) and the

f l a g b i t s are zero.

C . DD(N), -54.73 E 4 S 5

The sign b i t i s one, since the number is negative, and flag

b i t s T and V are one. U is zero.

d. DD(N), 1, 9 - 5 , -45.7, 12 S 17

This example i l l u s t r a t e s the multiple en t ry f ea tu re , This

s ingle DD statement compiles four &bi t f l oa t ing point words and

advances the locat ion counter accordingly.

In normalized f loa t ing point a special feature is avai lable

f o r use i n any D f ield, making the en t ry of r a t iona l f r ac t ions and cer ta in

i r r a t i o n a l numbers much easier. Arithmetic involving several numbers may

be written using the standard Fortran symbols. Strap 1w i l l perform the

ari thmetic and compile a s ingle nomalized constant. The operations

avai lable we addition(+>, subtraction (-) ,mult ipl icat ion (*), and

divis ion (/), only r e l a t ive ly simple expressions are dlowed-that is,

t h e y must contain no parentheses. Multiplications and divisfons are per-

formed f irst (and i n a series of mult ipl icat ions and divis ions they are

1

c c

Revised 11/10/'59

done i n order from l e f t t o right) and then the additions and subtractions.
The arithmetic i s done among absolute constants, and a sign byte may be

used a t the end. It w i l l be "0R"ed i n w i t h the f inal resul'L

Examples:
a, DD(N), 1/33 472*351, 4-7*5/21 S 4

Note sign byte entered i n las t D f ie ld .

b. DD(N), 27.9/31.4/12/14 E 5, 4+3*7/5%

The nmiber produced i n the first case is 27.9
31.4 x 12 x 14 x lo5

i n the second 4 + 3 X 7 X 6 .
5

C. DD(N), 1/7 - 3/11 + 1.4321 E - 2, .12 + 1/144

As an extra convenience cer ta in system syrdbols a re defined by which con-
s tan ts involving i r r a t iona l nunibers can be entered. They are:

1. $PI Tc

2. $E e

3. $M log10e

4. $N loge2

5. $R
2JX,where X is the f ie ld containing the $R synibol*

Thus one can enter a number such as 4x x log7 by writ ing

DD(N), 4 * $PI * 1~ - 7.

It i s t o be especially noted tha t i n Strap 1this arithmetic feature is
available with the normalized f loa t ing point mode only.

* The $R synibol may be repeated i n a DD f i e l d t o indicate the nth root,

where n i s a posi t ive in tegra l power of 2. If the $R synibol appears m times

in a f ie ld , X, STRAP-1 will calculate
2mJX as the f i n a l value of the field.

If arithmetic synibols are included i n the field, a l l arithmetic w i l l be done
first, then the root of the arithmetic r e su l t w i l l be extracted as the

final step i n assemling the data field.

37

9

2. 	 -Unnormdized Floating Point

Format: Name I (Fn)DD(U), f x x . ox.x* *xEkyyySnX+n

OIP DD(U), (Fn) 5 xx=-x%.x~-1CI3+yyySnEn, (Fn)+xx-..etc.

The number is converted t o binary w i t h the correct number of

binar;y f rac t iona l places as specified by the (Fn) en t ry mode, and a correct

exponent is computed and entered. This exponent is overruled and re-

placed by that following the "X" if "X" is used. (It is necestxuy only

if f o r some reason, the programmer desires an incorrect exponent.) The

entry mode (Fn) can come before the DD, i n which case it applies t o a l l

D-fields of the statement, o r it may form the first element of a D-field,

i n which case it overrules one given before the DD. Either the X o r the

S o r 'both may be omitted o r t h e i r order may be interchanged. Omitting

S has the sme e f fec t here as i n the normalized case. Omitting X simply

allows the correct exponent t o remain as computed. Leaving out the sign,

decimal point o r E is permitted as 3n normalized numbers.

Example13 :

a. DD(V), (F21) - 343.7, (F10) 432

Two numbers a m compiled. In the first 343 is converted as an

integer and .7 is converted t o a 21-bit f rac t ion . They are joined

and placed i n the rightmost bits of the fract ion portion of the f loa t ing

point word, and the correct exponent (i n th i s case 27) and sign we

supplied. In the second D field, 432 is converted t o a binary integer.

Since ten f r ac t iona l b i t s are specified, but no decimal f rac t ion is

wr i t t en , the ten rightmost b i t s of the f rac t ion f i e l d are set t o zero

38

Revised January 8, 196Q

and the number i s entered w i t h i ts rightmost b i t i n posit ion 90.

b. (FlS)DD(U), 767.52, 767.52 X-12 S U

The (F15) applies t o both D fields. In the second the computed

exponent i s overruled by the specified one and the number is made

negative by means of the specified sign byte.

C . (Fl?)DD(U), 767.52, (F20)767.52 SH. X-12, 398

This example i s ident ical wlth example b except t h a t i n the

second f i e l d the op entry mode (F13) is overruled by a f i e l d entry

mode (F20), and the order of S and X is interchanged, which. makes

no difference. (Fl5) s t i l l applies t o 398, however.

If the entry mode is omitted, two cases arise.

w a. If the number is entered as an integer, (FO) is understood

b. E the number entered is a decimal f ract ion, it is converted t o a

normalized f loa t ing point number, but w i l l be used as though unnomnalized.

Examples:

a- D W , 17, 17x-35

Ln the first case 17 is converted to binary, placed i n the

f rac t ion with i t s rightmost bit i n posit ion 593tand an exponent of 4-8

supplied. In the second f i e l d the same thing is done except t ha t

the exponent i s set t o -35.

b. 	 DD(U), 17.0

In this example 17.O is converted t o normalized f loat ing, binary

and stored as such. However, instructions whose normalization b i t s

Qd depend on the symbol i n the name f i e ld of t h i s pseudo-op w i l l have
' Y

* B i t positions are numbered 0-63 in any one word of memory
39

L

c

Revised January 8, 1960

them set t o l lmormal ized

Note: 17 E 5 i s an integer and w i l l be recognized as such.

17 E-5 is a decimal f r ac t ion and w i l l be normalized,

17.5 E 5 is an integer but will be t rea ted as a f r ac t ion and
-%

normalized. Hence a normalized integer can be

assigned use mode "unnomalized. I'

A n integer greater than 24-8 is stored as a normalized number.

3 . Binary Signed WL

Formats: (Fn)DD(B, FL, BS), Sn4 xx***x.x***xE+yy

DD(B, FL, BS), (n t j * x x ~ - x . x - x ~ + y y Sn

(R)DD(B, FL, BS), +xx-.xx Sn

DD(B, FL, BS), (R) fxx xx Sn a

A data def in i t ion of binary signed data may have e i t h e r (F'n)

or (R) en t ry modes, but not both a t the same time. (Fn) implies t h a t

the data following are writ ten i n a decimal radix, whereas (R) imp:llesi t a

t h a t the number following it is an integer. An integer subject t o a radix

entry mode must be w r i t t e n without the a id of E since E i s not defined f o r

a radix other than 10. A decimal f r ac t ion must have a control l ing (Fri)-
entry mode-. There is no obvious way t o convert t o a f ixed point number

without specifying the binary scaling. In the data description e i t h e r

the f i e l d length or byte s i ze or both may be omitted. The implied f i e l d

length i n t h i s case i s 64; the implied byte s i ze is 1. As usual the sign

'byte need not be specified unless the programmer desires t o have f l a g o r

zone b i t s d i f f e ren t from zero. Note t h a t the sign b i t posi t ion changes

?t Because of the decimal potnt without an (Fn) entry.
40

P

f o r byte s ize less than 4. To make a number negative specify the sign

byte as:

BS = 1, S1,

BS = 2 E,

BS = 3, S4,

BS = 4, S10.

If' a number has no entry mode at all, it must be a decimal i n t e e r but

may i n t h i s case be writ ten with the a i d of the "E" notation.

Examples:

a. 	 (F7)DD(B, ,4) , .005E3=3, 4 7 , 143.2SlL (8177760, 777

Implied f i e l d length is 64. Octal specification i n the fourth D

f i e l d overniLes (F7) written before DD, but (F7) s t i l l applies t o 777.

b (2)DD(B, 16, 8) 1101018377, (10) -972, 11101110S201

Binary entry, overruled i n only the second D field.

c . (FU]DD(B, 24), 1.324E3, -72.13-4, 3.4E-4S1

linplied byte s ize is 1.

d . 	 DD(B), 1489, -1272, 1491, (~ 1 3)-972.16, 13948~1,1 2 ~ 5

Decimal integers except where a f i e l d entry mode is written.

4. Binary Unsigned VFL

Formats: 	 (Fn)DD(BU FL, BS), xx*-x.x-*xEfyy

DD(BU, FL, BS), (Fn) xx~-x.x..~xEAyy

(R)DD(BU, FL, BS) , XX...XX

DD(BU, FL, BS), (R) x x * *xx

41

http:-972.16

(Az)DD(BUY FL, BS) , alphabetic information to "z''

(IQSz)DD(BU, FL, BS), alphabetic information t o "z"

Numerical en t ry is exactly the same as i n binary si@;ned data

except t h a t no sign byte is formed and if' the byte s ize is l e f t out of

the dds, it i s set to 8. Any sign o r sign byte (with "SI') written with

mode BU i s ignored. The two alphabetic modes are permitted here; they

are explained i n the section under "Entry Modes." Note tha t the alpha-

be t ic entry mode must precede the DD, t h a t there can be only one D f i e l d

per statement and that if the field length is omitted it is set equal t o

the byte size.

Examples :

a. (F13)DD(BU, 301, 17.2, 183, (8) 70707
P

b. (A*)DD(BU, 48, 6) , GLORIOUS FRIDAY, THE 13TH.u

The mode and f i e l d length have no e f f ec t on the conversion and

storage; they are used in compiling instructions which refer t o the nme

of t h i s statement. Field length 48 indicates that the programmer wants

t o process these characters i n groups of 8.

c. (IQSS)DD(BU, 32, 8) DOG EAT DOG S

2. Decimal. Signed VFL

Fomats: (R)DD(D, FL, BS), f XX. Sn

DD(D, FL, BS), *(R) xx...xx Sn

DD(D, FL, BS), f xx*.-mByy Sn

(Fn) has no meaning for mode = D or BU.

The t w o decimal modes i n DD and DDI statements represent the

42

E

only cases i n which Strap 1 converts numbers t o an in te rna l decimal radix.

This conversion is limited a b i t more i n being available only from integers

t o integers. The radix entry mode indicates the radix in which the numbers

are written on the card. Thus it is possible t o write an integer i n binary

o r oc t a l and have it converted t o decimal. f o r machine use. E no en t ry mode

is given, decimal t o decimal is implied and the E notation can be used t o

multiply an integer by posi t ive powers of 10. E either the f i e l d length

o r byte s i z e is omitted, the implied values are FL = 64, and BS = 4.

Examples :

a. 	 DD(D), -9534-812,+l73E3, 18~10~13
Fie ld length = 64; byte s ize = 4. A four-bi t sign byte i s

fomed. Decimal t o decimal conversion.

W b . (2)DD(D, 20), l l l O l O O O l l O l S 7

Binary t o decimal conversion. BS = 4.

c * D D b , , 81, 43233

Decimal t o decimal conversion. FL = 64. Four binary zeros are

inserted i n the zone posit ions of each byte.

6. Decimal Unsigned VFL

Formats: 	 (R)DD(DU, FL, BS), xx***xx

DD(DU, FL, BS), (R) XX*.*XX

DD(DU, FL, BS), XX-TUCXE~YY

(Az)DD(DU, FL, BS), alphabetic infomation t o "zll

(IQSz)DD(DU, FL, BS), alphabetic information t o "z"

43

4

The numerical conversion i s j u s t as i n decimal signed mode

except f o r t he omission of the ai- byte. Alphabetic conversion is

exact ly as i n the binary unsigned mode except that ins t ruc t ions refer-

rine: t o t h i s data w i l l be compiled as decimal operations. For alphabetic

en t ry implied f i e l d length is equal t o byte size .

Examples :

a. DD(DTJ), 8430051, (8)n241,82~10

FL = 64, BS = 4. An o c t a l t o decimal conversion is inser ted

betmen two decimal t o decimal conversions

b (IQSg)DD(DU, 8) PUSH PANIC BUTTON 3

FL = 8.

44

1

SUMMARY OF RTJLES FOR DD STATEMENTS

Entry mode Appropriate use modes

Fn U, B, BU

R B, BU, D, DU

A BU, DU

IQS BU, DU

Note: Use mode N should have no entry mode.

Special f ie ld entry Appropriate use modes

S N, u, B,
X N, u

The f loa t ing decimal notation, using E t o designate multipli-

cation by powers of 10 is appropriate t o a l l modes although it is always

res t r ic ted t o a decimal radix and i n the decimal use modes, is res t r ic ted

t o increasing the magnitude of decimal integers.

If the f i e ld length is omitted from the dds, it will be assigned

a value of 64, except in the case of alphabetic entry where it is set

equal t o the byte s ize. The m a x i m u m permissible f ie ld length f o r a DD

statement is 64.

The following examples i l l u s t r a t e the use of general parenthe-

t i c a l integer entry w i t h DD.

a. DD(N), 572(.39)1, 347.89312(.63, 2)1011

In the second case the sign byte is specified by means of (.n)

entry.

45

b DD(B), (~ g)-35.7(.24) SAM + 4e

The address SAM + 4 is placed in the f irst p a r t of the 64-bit

f i e ld , followed by the converted number -35.7

e . 	 (8)DD(BU) , 4762(.l0)707(10, .20) 34

707 is wri t ten i n oc ta l , 34 i n decimal.

Format: 	 Name 1 (EM)DDI(dds), D

DDI is used t o define a symbol which i s used at some other

point i n the program as the address of an immediate operation. It com-

piles no space at i t s locat ion i n the program, and i n fact its posi t ion

i n the program i s of no importance whatever. It may have only -one D

f ie ld , as shown i n the format. The rules f o r wri t ing the data f i e ld are

the same as f o r DD with some obvious and r e l a t i v e l y minor changes. Neither

of the f loa t ing point modes can be used with DDI. The upper l i m i t on

f i e l d length i s 24 instead of 64, and i n every case where a f i e ld length

of 64 i s implied f o r a DD, a f i e ld length of 24 i s implied for a DDI. A

general parenthetical. in teger en t ry may not -be appended t o the end of the

data f i e ld as it can i n DD statements.

U a DDI has a f i e l d length of less than 24, the number which

it defines w i l l appear i n the leftmost portion of the address of the oper-

a t ion when it i s compiled i n an immediate operation. Unused b i t s i n the

righ.t end of the address w i l l be zero, bu t they may be loaded by means of

a general parenthet ical integer en t ry i n t he operation i t se l f . Z' t he

46

t *
4

Revised
12/16/59

address f i e ld of an immediate operation contains arithmetic among symbols

or symbols and integers, the arithmetic w i l l be done i n binary regardless

of how the symbols were defined or what the mode of the operation i t se l f

is. All numeric entries i n such an address f i e ld are handled exactly as

other addresses and converted t o binary, never to decimal. Therefore,

the only way to get a decimal number into the address f i e ld of an immediate

op, without wri t ing it in the Stretch BCD code explicitly, is t o symbolize

it and use a DDI. Care should be exercised in address arithmetic among

signed numbers, since the sign byte 2s compiled as such and does not

participate i n the arithmetic as a sign.

Examples:

-
JOE DDI(DU), 9478

SAM DDI(DU, 12), 342

BILL, I DDI(DU, 241, 12

I LI, JOE

I +I, SAM

-I, SAM + BILL

The sequence above is an example of sl ightly tricky coding t o

show what i s possible. JOE has f i e ld length of 24 implied. All three

symbols have a byte size of 4. The address SAM + BILL i s added i n binary,

but since the addresses do not overlap they produce a legal decimal. number,

342012. The result is 9478 + 342 - 342012 = -332192.

47

Revised

12/16/59

Statement

DDI(B), -14.2

S m B , 241, 389

SYN(B, 24), -210

LI, ALF

+I, JIM

+I, JIM + RIP

In th i s sequence the sum -14-2+ 9 9 + 389 - 210 = k 6 is obtained.

Since JIM and RIP are defined by SYN cards the address arithmetic JIM + RTP

i s done correctly, yielding an answer of 179. If they had been defined by

DDI, the address arithmetic JIM + R I P would have produced a result of -399.

When compiling addresses f o r immediate operations, STRAP4

assmies tha t a symbol defined by DDI has a sign byte i f one is needed.

It assumes t ha t a symbol defined i n any other ww does not have one and

compiles a sign byte having flag and zone b i t s equal t o zero and byte

s ize as specified i n the dds. Address arithmetic between a. symbol

defined by D D I and anything e l se i s marked as a possible error, although

it i s perfomed as shown above.

48

4

APPENDIX A

Restrictions on Addresses i n SYN, DR,and SLC

In order t o f in i sh assembling a program i n a f i n i t e length of

time using a f i n i t e storage, some generality has been sacrificed i n the

address arithmetic which can be allowed w i t h the three pseudo-ops, SYN,

DR and SLC. The underlying reason f o r t h e i r different treatment i s t h a t

t h e i r addresses must be evaluated sooner i n the program than those of

other operations. Strap 1 is a three pass assembly i n which the f i r s t

two passes are concerned primarily w i t h assigning values o r addresses t o

symbols and the last with forming the machine code and revealing it t o

the outside world i n some form of a listing and s t re tch column binary

cards.

During pass 1any SYN address containing only numerical

entries, o r nmerical en t r ies plus system symbols, can be evaluated

immediately. System sym33ols can always be considered i n the same class

as integers and b i t addresses since Strap1 can evaluate them immediately.

A SYN address which contains smbolic information cannot be. Strap-1

can, however, s tore the symbol from the name f i e l d and one syrribol from

the address (a l w a y s the one on which the mode of the nme symbol- w i l l

depend if not overruled) f o r future reference. The sane res t r ic t ion

applies t o each of the elements of the address of a DR (each "L" i n the

notation of t h i s paper). The res t r ic t ion on DR addresses i s real ly

the crucial one a t t h i s point, because the DR address is carrrpletely

evaluated a t the end of pass 1. Therefore, each element o f the DR

49

1

address md the SYN o r chain of SYN's defining the symbolic portion of

such an address m u s t be evduable from a numeric part -@.us a single-
symbol. Since all of t h i s information is stored i n tables permanently

aid i s always available t o the asserribly program, the order of the c a d s

i:; of no importance. At the end of pass 1 an evaluation i s m a d e of d 1

spibols defined i n t h i s simple manner, and as s ta ted above a DR m u s t be

completely defined a t t h i s point.

During pass 2 locations are assigned t o all symbols which

depend on the location counter f o r t h e i r value, and a new attempt i s made

t o evaluate SYN addresses not evduated i n the f irst pass. A t t h i s point

the order of the c a d s can play an important role. If all of the symbols

appearing i n an address have appeared previously i n the name f ie ld and i f

they i n t u r n are defined by symbols which have appeared previously (o r

by the location counter) then the address can be evaluated no matter

how many programmer symbols it contains or what signs they may be preceded

by. If' there are two o r more spbols i n a SYN address s t i l l not evaluated

when the card i s encountered i n pass 2, the name symbol may never be

completely evaluated and w i l l e l i c i t an e r ro r i nd ica t iw whenever it is

used. If only one symbol remains not evaluated a t t h i s point then

eventual success i n evaluating the nme synibol depends on

posit ion i n the address and l a te r evaluation. A t the end of pass 2 an

attempt is made t o t i e up all the loose ends s t i l l dangl.ing from t h i s

per t icu lar rats' nest. If any syrabols remain not eval-uated after t h i s

procedure, a last try w i l l be m a d e when the SYN card is encountered i n

,

50

C

pass 3 . But this ma;y be too la te , depending on the order of the caxds.

From the preceding discussion it i s clear that the address of

an SLC c a d must be evduable when it is encountered i n paas 2. !The

sane rules apply t o it as t o the address of a SYN card which can be

completely evaluated at t h a t point. However, if the address of an SLC

cannot be evaluated, all is l o s t an no attempt is made t o t idy up a t the

end of the pass. This last point also applies t o the L and L' of

EXT(L, Lt)- Since they are used t o compute the amount t o advance the

location counter, they m u s t be available when the card is encountered

i n pass 2.

The program on the following page i s given here t o give more

examples of what can be assembled by STRAP-1. Each l ine of type

represents one c a d of input t o STRAP4 and the comments associated

w i t h the instructions explain more what STRAP-1 does than explain what

Stretch does.

w STA-NT
_I__

ABE L, ZEP ''Normalizedfl. pt. operation since ZEP is undefined.

+, ZEKE 4- 1 "Add 2nd no.; ST, TOBY; LX, $10, SAM "Many ops. per card.

BILL LV, I, SAM = .32 "127.0To Value field of $X9 OX $9

CHICK LVS, $5, I, I + 1.0;L(BU,3,8), TOBY 1- .61,20 l lOverrule dds of TOBY

DUD SYN(N), ISH(L=12,L,20) "Array properties of I S H go to DUD

CTIOlOl, MAC "MAC is EUI immediate address defined by a DDI

MAC DDI(BU,3,8), (2)110 "MAC is a 3 bit number = 1102

BRZZ, CHICK + .32(1.0) "Index (CHICK +.32) with $a
N SYN, 120-M; B, ABE .32 "ABE .32 is the sane as P E $. .32

L(V+I)(D,24,6), SAM + 13.121(1-3), L-lO($x3) "Progressive Indexing.

I SYN, $x9 "I is index word $x9 with dds = (~~,64,8)

JOE ST(V-IC)(B), ZEKE + M-4 "Progressive indexing and address arithmetic.

LWF, EGBERT (1) "EGBERT (1)= EGBERT+ .25

WT, PAT(20) + 12.34(1-6.0)"An exercise f o r the reader.

I S H DR(U), (L,M-k,lTT-N) "Reserve L x (M-4)x (177-N)unnomalized words.

PAT DR(B,25,4), (27) "PAT is a block of 25 x 27 = 675 b i t s .-
M SYN, L + 10

EGE3ERT (F5)DD(B925,4), 1253, -14.6,(8)7634, 15-3

VF, 127.0 "The location of this VF is SAM - .32

SAM XW, 900.0, WM-N:, $ "The refill address = SAM

L SYN, 50 "The base of the SYN chain, M = 60, N = 60

ZJBY "Blank instruction reserves one normalized word.

ZEKE DD(N), 13, -14.57323-10187,1/13 + 7/9+ $PI@; END

1
I

52

APPENDIX B

STRAP MNIEMONICS

The following l i s t of mnemonics may be used with STRAP = 1 (and 2).

A symbolic desc r ip t ion of t h e mnemonic i s a l s o given t o assist t h e

programmer. The symbols used t o symbolize t h e operations are defined f o r

each sec t ion . h e should note t h a t t h e same l e t te r ("a" and "m" f o r

example) has a d i f f e r e n t d e f i n i t i o n f o r f l o a t i n g po in t and f o r WL. The

d e f i n i t i o n f o r each set should be read ca re fu l ly . A more detailed

desc r ip t ion of t h e operation may be obtained from t h e IBM St re t ch Manual

of Operations .
A s p e c i f i c t i t l e t o each mnemonic i s not given i n cases where t h e

mnemonic is derived from t h e b a s i c operation b y changing t h e sign and

absolu te modifiers. I n some cases no t i t l e s are given.

In t h e case of VFL operations t h e unsigned modifier must be implied

by t h e data referred t o or be e x p l i c i t l y s t a t e d i n a dds as explained

earlier.

53

-Notation f o r symbolizing t h e Floating Point operations OP(dds), (1)

Accumulator operands

a = b i t s (0 - 59) of t h e accumulator, and t h e accumulator sign,
b i t 4 of t h e sign byte r eg i s t e r ,

b = b i t s (60 = 107) of t h e accumulator, and the accumulator sign.

ab = b i t s (0 - 107) of t h e accumulator, and the accumulator si@.

e(a) = b i t s (0 - 11)of a.

f (a) = b i t s (12 - 59) of a, and s(a).

s(a) = b i t 4 of the s ign byte reg is te r .

SB(a) = b i t s 4-7 of t h e sign byte reg is te r .

Fl(a) = b i t s 5-7 of t h e sign byte reg is te r .

Memory operands

m = b i t s (0 - 59) of t h e memory word, and i t a sign, b i t 60.

M = L(m) = t h e effect ive address.

e(m) = b i t s (0 - 11)of m.

f(m) = b i t s (12 - 59) of m, and s(m).

s (m) = b i t 60 of the memory word,

SB(m) = b i t s (60 - 63) of the memory word.

Fl(m) = b i t s (61 - 63) of the memory word,

$FT = Factor operand; SB($FT) = b i t s (60 - 63) of $FT.

$RM = Remainder operand.

54

b

W

Revised January 5 , 1960

F1oat;ing Point operations

ADD
+
0

+A
-A

a+m - a
a-m m a
a + l m l -a
a - l m l -a

1.
2.

b is unchanged
F1(a) is unchanged

TO MEMORY ADD
M+ m+a
M- m-a
M+A I m l + a
M-A Iml-a

*In
m m
- m
~m

1.
2.

Fl(m) remain unchanged.
The e n t i r e acc. and SB(a) remain
unchanged.

ADD TO FRACTION
F+ f (ab)+f(m) -f (ab)
F-
F+A f (ab)+l f (m)t- f (ab)
F-A

f(ab)-f(m) -f (ab) '

f (ab)- If (m)l- f (ab)

ADD TO EXPONENT

E+ e(ab)+e(m) -e(ab)
E- e(ab)-e(m) -e (ab)
E+A e(ab)+le(m)l- e (ab)
E-A e(ab)-le(m)l- e(ab)

* ADD IMMEDIATE TO EXPONENT

E+I e(ab)+e(M) - e (ab)
E-I e(ab)-e(M) -e (ab)
E+AI e(ab)+le(M)I-e(ab)
E-AI e(ab)=le(M)}- e(ab)

1.

2.

1.
2.

1.

e (m) i s ignored; t h e add is per-
formed with e(a) on both operands.
The normalized mode opera tes i n
t h e same way as i n D+.

f (m) is ignored.
STRAP-1 w i l l assemble as un-
normalized unless t h e normalized
mode is requested by r e f e r r i n g t o
normalized data o r by using the
dds = (N).

The unnormalized mode is given
unless over-rule8 by dde = (N).

*SHIFT FRACTION

SHF f (ab).2M-f (ab)
SHFN f (a b b) 0 2 - ~-f(ab)

SHFA f (a b) 0 2 ' ~ '-f (a b)
SHFNA f (ab)*2-IM'_ f (a b)
SHFL f (ab)*PJM'-f (a b)
SHFR f (a b) * d M '-f (ab)

1.
2.
3.

4*
5.

LRft s h i f t i f b i t 11of M = 0.
Right s h i f t if b i t 11 Of b$ = 1.
The operation is not affected by
t h e normalized m m i e r .
The exponent i e not ad jus ted f o r
t h e s h i f t . e(a) is unchanged.
On a r i g h t s h i f t , zeroes are
introduced i n bit 12.

* These operations have the format:

55

Revised January 5 , 1960
1

e

DOUBU ADD

D+ ab+m -ab 1. PSH ind ica to r gpee on if t h e

D- ab-m -ab exponent d i f f e rence exceeds 48.

D+A ab+)rnI -ab

D-A ab-(mI -ab

ADD TO MAGNITUDE

+MG R = l a l -tm 1. R-a i f R 2 0.

-MG R = l a l -m 2. 0 -f(a) if R e 0. e (a) 2-

+MGA R=lal+lml unchanged whether R 0 or not.

-MGA R = l a l - C m l 3. $ (a) is unchanged i n e i t h e r case.

DOUBU ADD TO MAGNITUDE

D+MG R=labltm 1. R -ab if R 2 0.

D-MG R=labl -m 2. 0 -f (a b) i f R < 0, e (a) is

D+MGA R=labl+Im 1 unchanged whether R < 0 or not.

D-MGA R=labl-I m I 3. a (a) is unchanged i n e i t h e r case,,

TO MEMORY ADD MAGNITUDE
M+MG R=m+Jal 1. R -m if' s(R)=le(m).
M-MG R=m- \a l 2. o -f(m) i f s(R)#s(m). mb
M+MGA R = l m (+ l a l 3. s (m) is unchanged i n e i t h e r casee
M-MGA R-lm 1- la1

MULTIPLY
a 1. b is unchanged.
a
a
a

DOUBLE MULTIPLY
ab 1. (108 - 12'") of ~ C C .are unchanged.
ab
ab

ab

MULTIPLY FACTOR AND ADD
*+ ol@,(@T)+&b- ab 1. The contents of $FT remain

*N+ -m.($FT)Wb- ab unchanged.

A+ ImI($FT)+&b- ab

*HA+ =Iml~(@T)+tib- ab

I

Revised 	January 5, 1960

D I V I D E

/ 	 d m - a 1. No remainder i s generated,

a/-m -a 2. Quotient rounded t o 48 b i t s ,
/N

/A a/ tml- a 3. We-normalization of t h e operands
/NA a/-lmI- a is independent of t h e normalization

modifier .
4. b is 	unchanged.

RECIPROCAL DIVIDE

R/ 	 d a a 1. Performed similar t o d iv ide ,

-m/a -a 2, b 3.8 UnahaIiged.
R/N

R/A Imil/a -a

R/NA =lmj/a- a

DOUBLE DIVIDE

D/ a b / m -a+1 1, Remainder i n

D/N ab/-m -a+l 2. O-b(61-107

D/A ab/lml -a+l 3. No rounding.

D/NA ab/- im(- a+l 4. SB(a) dSB($R.M).

STORE ROOT
SRT JT -m 1, ab and SB(a) are unchanged.

-m

SNRT -m
SRTA

SNRTA

>I$ -m

LOAD
L m ,a 1. O-Fl(a).

LN -m -a 2. b is

LA ImI- a

L1\EA - t m l i) a

DOuBrn LOAD
DL M - a 10 0 -be

DLN -m m a 2. 0 -Fl(a) ,

DLA Id = . a

DLNA -1m1 -a

57

LOAD WITH FLAG BITS
LWF m e a
LWFN -m - a
LWFA I m l - a
LWFNA -1ml s a

DOUBLE LOAD WITH FLAG BITS
DLWF m
DLWFN -m m a
DLWFA I m l m a

DLWFNA -.IrnI m a

STORE

ST
STN
STA
STNA

a
-a
la1

-la1

- m
- m
- m
D m

STORE R O W E D

Revised January 5 , 1960

1. 	 Fl(m) -F1(a).

1. 	 0-b.
2. 	 Fl(m)-Fl(a). .

1. 	 eb and =(a) are not changed.
2. 	 s (m) -(60)$FT
3- 	 0-(61 - 6 3) $ ~ ~

1. 	 FL(a)-Fl (m)!!
2. 	 a is unchanged.

1. 	 A one is added i n bjlt (60b
prior t o the store: a and
(60)b are unchanged.

2. 	 Fl(a)-Fl(m).

1. 	 e(a) - 48-e(m).
2. F1(a)-Fl (m).
3- e(a) is unchanged.

COMPARE

K a :m

KN a:-m

KA a: Iml

KNA a:- Iml

COMPAFE FOR RANGE

KR a : m

KRN a:-m

KRA a: Iml

KRNA a: - 1 ml

COMPARE MAGNITUDE

COMPARE MAGNITUDE FOR RANGE

1, 	 Indicators AL, AE, and AH are s e t
as follows:
AL is s e t t o one if a<rn
AE i s set t o one if a =; m
AH is set t o one if a > m

2. 	 Zero exponents of d19ferent sign
are considered equal.

3. 	 If the exponent difference i s 48
the larger of the nmbers is per
sign and exponents regaxdless of
f ract ions.

1. 	 If AH is off prior t o t h i s op,
no indicators w i l l be changed.

2. 	 If AH is on:
AL is unchanged.
AE i s set t o dne if‘ a < m.
AH is set t o one if a 2 rn.

1. 	 Same as COWARE, except f o r
accumulator c omparad

1. 	 Same as COMPARE FOR RANGE,
except f o r accumulator comparand.

59

-Notation for symbolizing t h e Variable F i e l d Length opera t ions

W d d s) , A&), OF7(I' 1

Accumulator operands

a = t h e accumulator operand whose:

1. 	 low order b i t i s def ined by t h e o f f s e t ;

2, 	 b y t e s i z e is f o u r f o r decimal a r i t hme t i c , e i g h t f o r binary
a r i thme t i c ;

3. 	 l eng th inc ludes a l l b i t s i n t h e accumulator t o t h e l e f t
of t h e o f f s e t ;

4. 	 s ign i s i n d i c a t e d by b i t four of t h e s ign byte r e g i s t e r .

a
I

= t h e accumulator operand, a, but without sign.

= t h e accumulator operand, a, with o f f s e t = 20.

Memory operands

m = t h e memory operand whose:

1. 	 high-order b i t i s def ined by t h e b i t address;
2. 	 byte s i z e may be any number from one t o e i g h t , but is

assumed t o be fou r i n t h e i n s t r u c t i o n lIsts below;

3. 	 l eng th is def ined by t h e f i e l d l eng th i n t h e dds;

4. 	 s ign i s b i t s i n t h e sign by te .
-
m = t h e memory operand i n which a l l bytes are processed as data;

a p o s i t i v e sign i s assumed.

The 	unsigned memory operand is des igna ted by t h e dds.

B i t s 7.17 and 7.18 are t h e l e f tmos t two b i t s of $LZC.

$FT = FACTOR OPERAND; s($FT) = b i t 60; FL($FT) = bits (61 - 6 3)

$TR = 64 b i t Transit Reg i s t e r ,

-i

In teger o p e r a t i m s

Operations which can have an immediate operand are followed by (I)

except f o r *+.
ADD

+ a m > a
0 a-rn - a

TO MEMORY ADD
M+ m+a 2 m
M- m-a - - m

ADD TO MAGNITUDE

+MG R G + m
-MG R G - m

TO MEMORY 	ADD MAGNITUDE

M+MG R=m+E
M-MG R q - Z

MULTIPLY

* a*m a20
N a-m-a20

MULTIPLY FACTOR AND ADD
+ rn(@T)*- a
N -~n(gjFT)+a- a

(I) 1. 	 If t h e sign changes ,b i t s t o
t h e r i g h t of t h e o f f s e t are
complemented.

(I) 1. 	 R -c if R 2 9 .
2. 	 0 -entire aec. i f R < 0 .
3. 	 s(a) i s not changed by these

operations

1. 	 R -m i f s(R) = s(m).
2. 	 o -m if S(R) f s(m>.
3. 	 s(m) is not changed.

(I) 	1. Mul t ip l ica t ion takes p lace
only i f mode = B or BU.

2. 	 The decimal m o d e gives LTRS
and 002 t o b i t s 7.17 and 7.18.

3. 	 The l eng th of a or m must be
I 48 b i t s i n b inary multiply.

4. 	 The por t ion of t h e accumulator
no t containing t h e product i s
set t o zero.

(I) 	1, Write: *I+
and *NI+ f o r an immediate
operand,

2, 	 Mult ip l ica t ion takes place only
i f mode = B o r Bu.

3 . 	 Decimal mode gives LTRS and
lo2 t o b i t s 7.17 and 7.18.

61

c

DIVIDE

a ,h m a 1. Divide takes place on ly i n the
a/-m - a b i n a r y mode.

3 . 	 P c i m a l d i v i d e gives LTRS and
012 in bits 7.17 and 7.18.

3. 	 The? remainder is placed in $EM.
The remaj-nder sign, (60)$RM,
i s t h e same as t h e roriginal
s(a). F~($RM)= 0 .

4. B i t s t o t h e right of t h e offset
are cleared,

LOAD

L m - a 1. o-Fl(a) .

PIN -a ,a 2. The entire acc. is c l e a r e d

before the load.

LOAD W I T H FLAG BITS

LW rn 9 a (I) 1, Fl(m) - F l (a) .

LWFN -m - a

LOAD FACTOR

LFT m * $FT (I) 1. O - - - c (6 1 - 63)$FTe

LFTN -m * @?T 2. The offset field is ignored,

LOAD TRANSIT AND SET

LTRS m - $TR (I) 1. Offset -$AW.

L!TXSN -m - $TR 2. 112 - b i t s 7.17 and 7.18.

3 . 	 I n d i c a t o r $BTR = 1 and $DTR = 0
i f m o d e i s B o r BU .
I n d i c a t o r $DTR = 1 and $BTR = 0
if mode is D o r DU.

A

62

STORE

ST
sm

a
-a

=-m
m m

1. SB(a)-SB(m).
2. If t h e byte s i z e i s g rea t e r

than four:
binary: zone b i t s of t h e sign

byte r e g i s t e r a r e
s to red i n Sl3(m) .
byte r e g i s t e r are
s to red i n each-byte

decimal: zone b i t s of t h e sign

of m.

STORE ROUNDED

SRD These operations are t h e same as t h e corresponding s t o r e s ,
SIiDN except f o r :

a. 	 binary: a one i s added one b i t t o t h e r i g h t of t h e
o f f s e t , p r i o r t o t h e s to re .

b. 	 decina l : 0101 is added one byte t o t h e r i g h t of t h e
o f f s e t , prior t o the s t o r e .

c . 	 t h e accumulator is unchanged, even i f rounding occurs.

ADD 	 ONE TO MEMORY

M+l m + l - m 1. The one is added t o t h e low order
M-1 m-1 - m byte.

2. 	 The o f f s e t f ie ld i s ignored,

K a : m
KN a:-m

COMPARE FOR RANGE

KR a m
K R M a:-m

COMPARE IF EQUAL

KE a:m
KEN a:-m

COMPARE FrELD

KF a :m
KFN ii:-m

(I

(I) I.. Tha CO!PAKE operations set t h e
AL, AE, and AH ind ica to r s .

AL is set t o one i f : a < m
AE is set to one i f : a = m
AH i s set t o one If: a > m

2. A l l b i t s t o t h e l e f t of t h e o f f -
set i n the accumulator p a r t i c i p a t e
i n the compare,

(I) 1. E t h e AH i nd ica to r i s of f p r io r
t o t h e op, it i s executed as a MOP.

2. If AH is on:
AL is unchanged.
AE i s set t o one i f a < m
AH i s set t o me if' a L m I 1

(I) 1. If' t h e AE indicator i s o f f , no

2. IT t h e AE ind ica to r is on, t h e
changes w i l l occur.

i nd ica to r s are set as i n COWAlTE, K.

3.

COMPARE FIELD FOR RANGE

KFR ii :m (1) 1.
KFRN E:-m

2.

COMPARE FIELD IF EQUAL

m G :In
KFEN E:-m

The i n d i c a t o r s are set as i n
coMf?m
The length of t h e accumulator
coxrrparand i s t h e same as t h e
length of t h e m e m o r y comparand.
I ke matching bits OS both operands
are compared,

The accumulator comparand i s t h e
same as i n COMPARE FIELD, KF.
The i nd ica to r s are set as i n
COMPARE RANGE, KR.

The accumulator comparand i s t h e
same as i n COp4pARE FIELI), KF.
rPhe i nd ica to r s are set as i n
COMPARE IJ? EQUAL, KE.

64

Note: If' t h e operand f r o m memory h a s by te s i z e (BS) less t h a n 8
then (843s) l ead zeroes are added t o each byte f r o m memory before

t h e connect takes place. However, t h e memory operand i s not

changed i n C xxxx o r CT xxxx.

CONNECT TO ACCUMULATOR
Result -acx1x2x3x4

CONNECT TO MEMORY
Result -mcm1x2x3x4

CONNEXT FOR TEST

Result is not s tored . cm1x2x3x4

x x x 	x i s a f o u r b i t b inary configuration t o descr ibe t h e 1 2 3 4
type of connective and is summarized below:

L e t : m = a b i t from memory (may be an in se r t ed lead zero if
t h e byte s i z e i s less than 8).

a = a b i t f r o m t h e accumulator corresponding t o m. The
accumulator byte s i z e always = 8.

x1 = desired r e s u l t if m = 0 and a = 0

x = 11 11
'I m = O and a = 1

2
x2 = 11 11 m = l and a = 0

J

x4
-
-

11 11 '' m = l and a = 1

-	 0 will complement t he
e n t i r e 128 b i t accumulator.

Pseudo Connectives
LJ? (Load f i e l d) LF = COO11

SF (Store f i e l d) SF = CMOlOl

L

Imed.iate Connects

To ind ica t e immediate addressing one writes C I X ~ X ~ X ~ X ~ ~

CTIxlx2xjxq and WI.

$AOC = A l l ones count register.

~ L Z C= Left zeroes count register.

After a connective operation t h e two r e g i s t e r s $AOC and

$LZC contain t h e ind ica ted counts of t h e r e s u l t , Since t h e

r e s u l t may not clccupy t h e ent i re accumulator, $AOC and

$LZC may not give t h e t o t a l count of ones and l e f t zeroes

of t h e accumulator. However, these counts always give t h e

correct count in CM or SF.

66

,: Definitions

Convert Instructions (VFL operations)

aD = accumulator i n decimal, I C b i t bytes with specified o f f se t ,

% = accumulator I n binary w i t h specified o f f se t ,
= accumulator in binary with of f se t = 2 0 .

9320

a"B68 = accumulator i n b i n a r y wi th o f fse t = 68.

% = memory operand i n binary with specified byte size and f i e l d length.

% = m e m o r y operand i n decimal w i t h specified byte s ize and f i e l d

length .

$"R = 64 b i t t ransi t r eg i s t e r with a sign byte i n t h e rightmost 4 b i t s ,

Note: The conversion goes from decimal t o b i n a r y i f t h e mode given
-..I-.-.I

i s decimal; from binary t o decimal i f t h e given mode is binary,

CONVERT
cv

or
8D -"B68
%@-" D

i f mode
i f mode

= D o r DU

= B o r BU
1. I n binary a f i e l d

of 48 b f t s i s used.

2, The en t i r e accumulator
t o t h e left of the
o f f se t is used,

DOUBLE COIWRT
DCV "D -%20 	 1. In b i n a r y a f ie ld of

96; bits i s used.
Or %2fJ - D 2, 	 The en t i r e accumulator

t o the l e f t of t h e
offset i s used.

1. 	 s (m) -cs (a)
2. 	 0 -Fl(a)
3. 	 The entire accumulator

is cleared before t h e load.

LOAD TRANSIT CONVERTED
LTRCV %-$Tqj (I) 1. The acc. and offset are

i-gnored..
Or "-$TR, 2. o-l?1($m)

3. 	 s(m) --s($TR)
4.. 	 The entire $I'R is cleared

before the load.

I-Progressive Indcxiw

WL o r Connective operation (when not immediate) liav e

second operation enclosed i n parentheses. 1.e second operation ma,y be:

V k I, V 5 IC, or V 2 ICR.

Famat: 0P(OP2)(dds), Aqk (J),OF7 (1')
c-

Note: 1. The or ig ina l value f i e l d of J is the effective address of op.

2 . 	 A,4 is the immediate operand specified by J in V 3. I, e t c . ,

and the value f i e l d of J is incremented by 2 AZk according

t o k I. The incrcrnenting takes place sribsequent to note 1

above.

3. 	 J m q y be 8x0.

68

Notation f o r symbolizing the Indexing operat ionS

Index word operands

J = b i t s (0 - 63) of t h e index word.

V = b i t s (0 - 2 4) of J.

C = b i t s (28 - 45) of J.

R = b i t s (46 - 63) of J.

Memory word operands
m = b i t s (0 - 63) of a memory word.
V(m) = b i t s (0 - 24) of m if the second operand is V.

(sign of v IS in b i t 24)
V(m) = b i t s (0 - 17) of m i f t h e second operand i s C or R.

Immediate operands

m = b i t s (0 - 18) of t he effective address if t h e second
operand is V.

m = b i t s (0 - 17) of the effective address if t h e second
operand is C o r R.

Note: 	 For c l a r i t y t h e t i t l e s t o t h e indexing and t h e branch
operations have been omitted.

Note: 	 The indicators: H?, XCZ, XVLZ, XVZ, and XVGZ are set by
a l l of the di rec t and immediate index operations excep-t; fo r :
KV, KC, KVI, KVNI, and KCI. These indicators are set
before t h e re f i l l (i f any) takes place.

KV, KC,...,KCI set t he index compare indicators
XL, XE, and X H .

-Direct ImIex Arithmetic
*LX

LV
LC
LR

* sx

sv
sc
S R

V+

V+C

V+CR

SVA

LVE

Kv

KC

J
V
C
R

Revised

12/16/59

2. 	 m = (M)
3. 	 C2 - The count f ie ld of J after

modification

1. 	 0 -(18 - 24) of XU.

1. 	 0 -(18 - 24) of m.

1. 	 There is no V - e tc .

= 0

1, 	 V is truncated t o 18, 19, or 24
b i t s , 8 s is appropriate f o r t h e
instruction containing v(m) .

1. 	 (M) means contents of M
I t(M)l 	 00
It y t

1. 	 Indicators: XI,, X E , XH are set
by KV and KC. This set t ing i s
t h e only output o f KV and KC.

1. 	 used for saving and restoring
index regis ters .

J b

i
V -
C *
R rn

V+V(m) -V
v+v(m) -V
c-1 -
v+v(m)-V

c2

e-1 -c2
(R) 	-(J) if c*

V m

(M)n- V

V:V(m)

c:v(m),

* (R(#XO))
*"x - J

* R($XO)

LVS (special format) : LVS, J, A'-, A*, ...,
1. !Phe sum may include any subset

i=1 of t h e index words.
2. 	 No indexing of t h e address f ie ld

i s allowed.

Jt For LX, SX, and RNX, the format is:

B L

-.
Revised

12/16/59

op, J 9 A'19 Or OP, J, A18*

Notes: 1, None of t h e immediate index instructions allow f o r

indexing of t h e address. %9 i s t h e effect ive
address and i s represented by A below.

2. The output of: KYI, M I , and KCI i s t h e se t t ing of

indicators XL9 XE, and XH.

LVNI -A -V 1. 	 (19 - 24) of V are set t o 0 .
LVI A-V 1. 	 (19 - 24) of V are set t o 0.* LCI A-C

4f LRI A-R

*V+I V+A -V 1. (19 - 24) of V are unchanged.
v-I V-A -V 1. (19 - 24) of V are unchanged.

V+A -V
-c

V-A- V
v-IC { c-1- c

V+A- V 1. I t 	 11 11 11 tt

V+ICR c-1- c

c;(R) -(Jf if' %= 0

-v 1, (19 - 24) of V are unchanged.
V-ICR c-1- c

* C+I C+A -c2*c-I C-A- C2

KVI (0 - 18) of V:A 1, 	 (19 - 24) of V are compared
wi th zeroes.

KVNI (0 - 18) of V:A 1, 	 (19 - 23) of V are compared
with zeroes. and (24)of V is
compared wi th l(minus).

*KCI C :A

* For LCI, IRI, C+I, CUI, and KCI, the format is: OP, J, AI*

I d

Count and Branch Operations OP, J, B19 (K)

CB C1-1 -	 1. K may be only 0 o r 1.c2 2. M = t h e 	effective addressIC1+ O . 3 2 - I C if C2 = 0 	 of B (K).19M -IC if c2 # o 3. IC1 i s the value of t h e

CBR C1 - 1 -C2 instruction counter where t h e CB
instruction is located.I C L + 0.32- IC and (R) - (J) 4. C1 and C are the count f i e l d if C2 = 0 	 2

M * IC i f C2 # 0 	
of J before and after the
count portion of the instruction,
respectively.

CBZ cl- 1- c2
I C ~ +0.32-	 IC if c2 f o
M -IC if C2 = 0

CBRZ C1- 1- c2

IC1+ 0.32 IC if' C2 # 0

M 	 IC and (R) -(J)

if C2 = 0

Note: In addition t o the above functions t h e value f i e l d of J
m y be modified by placing + , - , or H after
the above mnemonics. The modification of V takes place
regardless of' C2 and before the r e f i l l (if any) e

Example: I n addition t o the above functions of CB w e have:
CB leave V alone

CB+ v + 1.0 -v

CB- v - 1.0 -v

CBH v + 0.32 -v

,

4

Unconditional Branch Operations:

IC 1. The unconditional branch orders
' BR { k c , are the only branch orders whichl3 + 0 . 3 2 r I c

allow a 4 b i t index field, I.- I C The conditional branch. orders
may have only a 1bit index field,
K.

4 IC 2. IC1 i s the value of the instruction
counter where the instruction isEnable located (i . e . the leftmost b i t

BIN {Wait * I CM 	 of the instruction).
NOP 	 IC,- -+ 0.32- IC

Branch on B i t Operations: OP, A2Lk (I) , Blg (K)

BB I C ~-I- 0.32-IC if y=o 1. %= (A24(I)) , the b i t being tested.

,IC if y=1 2. %= Blg(K), the branch address.M2

3. K = 0 o r 1; I = 0 - 15.

BZB IC1 -+ O.32-IC i f y=1

. 'IC if y=0M2

Note: 	 The BB and BZB may have a suffix, Z , 1 , o r N, which w i l l .

set r41_ t o zero, t o one, o r negate it, respectively. This function

is independent of the success of the branch. For example, the

following branch on b i t instructions are permissible and perform

the above functions as w e l l as those below.

BB and BZB leave y alone

BBZ BZl3Z
 O-?L
BB1 BZB1 l-5

BBN BZBN -ml-5

73

Branch on Indicator he ra t ions : BIND, B19(K)

BIND I C ~ + 0.32 -IC if ind.= 0 1. The indicators may not

be set t o 1, or negated
M 9 IC If ind.= 1 w i t h a BIND operation.

BZINI;, IC,+ 0.32 -IC i f ind.= 1

M 	 9 I C if ind.= 0

-Note: (1) The le t ters "IND" i n BIND are replaced by the appropriate
indicator mnemonics as shown i n note (2) below.

(2) 	"he above operations can have a suffix, 2, which will
cause the indicator being tested t o be set t o zero
independently of the success of the branch. For example,
BWSOZ w i l l set indicator XPO t o zero a rb i t ra r i ly . We
ma;y have: BXPO; BZXPO; BXPOZ; and BWQ?OZ. The following-
l i s t includes dL1 of the indicator mnemonics which may
be used i n BIND, B19(K), and the i r b i t addresses.

MNEMONIC NAME 	 BIT ADDRESS

EQUIPMENT CHECK
MK Machine Check 11.0
IK Instruction Check 11.1 Y

IJ Instruction Reject 11.2
EIC &change Control Check 11.3

A'ITENTION REQUEST

TS Time Signal 11.4

CPU Other CPU 11.5

INPUT-OUTPUT REJECTS

EKJ Exchange Check Reject 11.6

UNRJ Unit Not Ready Reject 11.7

CBJ Channel Busy Reject 11.8

INPUT-OUTPUT STATUS

EPGK Exchange Program Check 11.9

UK Unit Check 11.10

m End Exception 11.11

EOP End of Operation 11.12

cs Channel Signal 11.13

(Not 	availalble) 11.14

74

c #

I m f O N I C

OP
AD
USA

Em
DS

DF

IF

LC
PF

ZD

I R
LS
PSH

XPO

XPH

XPM

XPL

XPN

XPU

RU

TF
UF
VF
XF

BTR
DTR

INSTRUCTION EXCEPTION
Operation Invalid
Address Invalid
Unended Sequence of

Addresses
Execute Exception
Data Store
Data Fetch
Instruction Fetch

RESULT EXCEPTION
L o s t Cwry
Partial Field
Zero Divisor

BIT ADDRESS

110 15

11.16

11.17

11.18

11.19

11.20

110 21

11.22

11.23

11.24

RESULT EXCEPTION-FLOATING POINT

Imaginary Root
L o s t Significance
Preparatory Shi f t

Greater Than 48

Exponent Overflow

(ExP12")

Exponent High

(210,ExP< 2")
Exponent Medi urn

(2$Im < ,lo)
Exponent Low

(2 5 I r n < 28)
Exponent High Negative

(-2"<ExP5-2 10)
Exponent Underflow
(EXP ID219

Remainder Undexflow

FLAGGING
T Flag
U Flag
V Flag
Index Flag

TRANSIT OPERATIONS
Binary T r a n s i t
Decimal Trmsit

11.25

11.26

11.27

11.28

11.29

11.30

11.31

11.32

13.35

11.36

11.37
11.38

11 39

11.40

75

I

c 4

MNEMONIC

xcz
XVLZ

xvz
XVGZ

XL

XE
XH

MOP

RLZ

RZ

RGZ

RN
AL

AE
AH

NM

-NAME

PROGRAMMER INDICATORS

INDEX RESULT
Index Count Zero
Index Value Less Than
Zero

Index Value Zero
Index Value Greater

Than Zero
Index Low

Index Equal

Index High

ARITHMETIC RESULT
To-Memory Operation
Result Less Than Zero
Result Zero

Result Greater Than
Zero

Result Negative
Accumulator Low
Accumulator Equal
Accumulator High

MODE
Noisy Mode

BIT ADDRESS

11.41

11.42

11.43

11.44.

11.45

11 46

11.47

11.48
11.49

11.50
11.51

11.52
11.53
11.54

11 55

11.56

11 57

11.58

11 59

11.60

11.61

11.62

11 63

A

-Note: (1) F u l l words are transmitted i n all t r a n s m i t and Swap
instructions.

(2) In the immediate operations, J i s the count of the
nmber of full words transmitted. J must be <, 16.
If J = 0, 16 words are transmitted.

(3) In the others (the d i r ec t transmission) the count f ie ld
of J has the nmber of f u l l words t o be transmitted.

1. % i s the effective address of %8(1)

2. M2 is the effective address of A;s(I')

1. Both-blocks are referred t o i n
a backwards direction.

SWAP FORWARD IMMEDIATE
SWAP1 (1%) -

(!L+l)xT

SWAP BACKWARDS
SWAPB (5)-

(%-1)-

77

t

-Miscellaneous Operations: OP, Al8(I) or OP, Ax9(I)*

STORE INSTRUCTION COUNTER 	IF
S I C I C l + l . 0 .-c(0-18)	of A 1 (I) if the following half w o r d

brancR instruction i s executed.
1.{iig w i l l not stox-e the I C .-

1. % = r e f i l l f i e ld of word 	M

if C f ie ld of M = 0

Execute 1. 	 The instruction located a t M is
executed.

2. 	 Control then goes t o the instruc-
t ion following EX.

EXECUTE INDIRECT AND COUNT

EXIC Execute (M) l 1. The instruction whose address
(M) + 1-(M) is located i n M i s executed.

1. 	 Ful l word of zeros.

* NOTE: If the OP is SIC or EX, the format is OP, A
these two Operations have a 19 b i t address f i e l d . 19(I).

%.e.

t

Input-Output Instructions: OP,* AT(I), A18(1')

LOCATE

LOC

SELECT UNIT 1
SU I

I?RIrm
W

RELEASE

REL

COPY CONTROL WORD

ccw

LOCSEOP

RDSEOP

IJSEOP

RELSEOP

CTLSEOP

SUSEOP

AT(I) represents a channel address; A l a (I t) represents
(1)the address of one of several units attached t o
charinel A7(1); i n t h i s case LOC or SU m u s t be given
before a. IiD or TrT addressing t h i s channel;
(2) an address on the disc specified by +(I). LOC=SU

represents a channel address; a reading
operation is in i t i a t ed for t h i s channel (o r f o r a
uni t attached t o t h i s channel, if more then one,
which has been readied by a LOC instruction).
Ais(It)i s the address of a control word (see below).

In i t i a t e s a writing operation. Analogous -to RD
except t ha t the skip flag of' the control word is
ignored.

Immediately terminates any operation i n progress a t
the uni t specified i n A7(I), the channel address,
o r i n the last unit a t A7(I) selected by a LOC

I ' -

instruction, i f A ~ (I) consists of more than one
unit .

The current control word corresDondirw t o the
addressed channel A (I) is sent-to A1i(I t) .7
Same as LOC, SU, RD, W, REL, CTL except the SEOP
b i t i n control word is s e t t o 1; thus program
interruption on completion of' an operation is
suppressed, provided no exceptional conditions
are encountered (viz. un i t check and end
exception)

STHAP 1

Revised 1/22/60

-Bqmt-Output Instructions: OP, A,+ I), I')

LOCATE
LOC
OR

SELECT UNIT
su

READ
RD

WRITE
w

COPY CQrnROL WORD
ccw

LOC(SEOP)

SU(SEOP)

RD(SEOP)

w(SEOP)

REL(mop)
CTL(SEOP)

3(I)represents a channel ad&ess; A&')
presents (1)the address of one of several

units attached to channel aa(r); i n t h i s case
LOC or SU must be gLven bef re a RD or W using
Wnis channel; o r (2) an arc on -the disc specified
by AI7(1).

represents a channel address; a reading
i s in i t i a t ed for this channel (or ?or a

un i t attached -to t h i s channel, i f more than one9 which
has been selected by a LOC instruction). AL8(I')
i s the address of a control word

In i t i a t e s a writing operation. Analogous to
RD except the skip flag of the control word
is ignored,

liamediately terminates any operation i n progress
a t the unit specified in (I), *the charnel
address, or i n the Last at A7(I) selected
by a L O G instruction, if A 7 (I) consists of mare
than one mito

The current control word correapondhg t o the
addressed charnel (I) i s sent -to A1 (1'). In
the case of high-s%ed disc units, *$I) must be
0 or laccording t o whether the control word is
associated w i t h read- or wri t ing, If the disc
is actually engaged in reading or writing, however,
CCW i s ineffective md the Channel Busy ReJect in-
dicator is turned on.

Same as LOC, SU, RD? W, REL9 CTL except t ha t SEOP
b i t i n the control word is s e t 1; thus program
interruption on completion of an operation is
suppressed, provided no exceptional conditions
(viz, unit check and end exception) are encountered,

Revised 1/22/60
STMP 1

CONTROL k i t i a t e s performance of certain functions a t
CTL the channel indicated by A (I), o r a t the Last

un i t there selected by a LaC instructiono These
f'unctions depend on the value of A l 8 (If), in-
dicated i n the following tables:

UNIT A&'

General r/$
unit (standard
f o r A&')

Card Reader

Card Punch

Printer

Console

Disc

Tapes

1 (0 C - w

016

017

057
116

157

056

1-77

016

034
037
056
057
076
077
3-37
136
137
156
157
176
171

FUNCTION

R3SERKED LL&% Off
RFSERVED light on
ECC mode
CHECK light on
No-ECC mode

~ _ _-~

Standard (see above)

Standard, plus

Card run-out (feeds one card)

Standard, except that 057 and
157 are not allowed

-~

Standard, except that 057 and
3.57 are not allowed; plus
Sound gong

No contml f'unctions allowed,

Non-stanard ftmctions.
Off TAPE INDICATOR l i g h t

(Erase endat? tape condition)
High density mde (556 b i t s inch)
Low density mae (200 b i t s/inch)
E r a s e long gap (three inches)
Odd parity, ECC mode
Space block (record)
Space f i l e
Write t a p mrk (EOF Mark)
Rewind
Rewind and unload
Even parity, no-ECC mode
Odd parity, no-EW mode
Backspace block (record)
Backspace file

Since the above control codes are d i f f icu l t t o remeniber, STRAP-l.
provides the following CONTROL pseudo-ops:

Reserved l ight off
Reserved l ight on
ECC mode
CKECK li&ton
NO-ECC mode
Card run-out
Sound gong

81

S T W 1
Revisad 1/22/60

ERETC
or

TIIJ?
HD
LD
ERG
@DEW
@DDNEC
SP

SPFL
WEF

z m

EXEN
BS

BSFL

*

Erase end of .tape condition
or
Tape indieator light off
H i g h density mode
Low density mode
Erase long gap
Odd parity, ECC mode
Odd parity, no ECC mode
Space block
Space f i l e
Write end-of -fi l e mark
Rewind
Rewind and unload
Wen parity, no-ECC mde
Backspace
Backspace f i l e

By us- these CONTROL psuedo-ops, only the channel address9 %(I)
need be specified, thus:

IECC, $PCH

In the case of a tape unit, the pseudo-op w i l l always apply t o the

last un i t referred t o in a LOC instruction:

This code MU.m i n d tape 4 on tape channel 1, a

System Syndb~Lsfor Channel Assignments:

lh order that a coder need not knm the specific numeric addresses
of .hishl;.taUtion, ehe following system synibols may be used:

$DISC* or $DISK* 	 w e 1 containing a disc unit.

If an i n s t a m t i o n has mre than

one disc unit, these w i l l be

designated $DISC, $DISC 1,

$DISC 2, etc.

Tape channels la 2, and 3. More
may be added a t the option of a
particular instal la t ion, On
each channel, tapes may have
addresses 0 through y e

Card reader

Card punch

$cNSL 	 Console (including console typewriter)
~n 8 multi-unit i n s t a U t i o n , these system symboZs MU.be expanded. to

-inc~jude$PRT~, $PRE, o r $RDRL, $HIE!, etc,
-

%"e instruction u) C or SU ms-tbe used before reading or'writing on th i s channel.

82

44

APPENDIX C

(Index t o Mnemonics in Agpendix B)

Note: + i s alphabetically l i s t e d as ''add"
- i s alphabetically l i s t e h as "s&tract"
* i s dphabeticaLly l i s ted as "multiply"
/ is alphabetically l isted as "divide"
1 is alphabeticaLly l i s t e d as "one"

A

M n e m o n i c

AD

+

+A
AE

AH
AL
+MG

+MGA

-pwe

75

55

61

55

76

76

76

56

61

56

73

73

73

73

73

73

73

73

74

73

75

73

73

73

73

74

65

71

72

74

72

72

72

79

66

65

74

74

7.1

65

66

84

Mnemonic Page

56
67
67
57
57
62
57
57
62
57
75
57
58
5 6
75
56

75

55
55
55
55
74
74
74
74
74
81

55
55

35
55
81

78
75

78

85

4

Mnemonics

HD

IF

IJ

IK

m
K

KA
KC
K C I
KE
KEN
KF
KFE
WEN
KFN
KFR
KFRN
KLN
KMG
KMGA
KMGN

55

55

55

55

81

81

75

74

74

75

59

64

59

70

71

64

64

64

64

64

64

64

64

81

59

59

59

59

59

59

59

59

59

64

59

59

64

59

59

64

59

86

Mnemonics

57
62
57
75
70
71
67
67
81
65
58
62
58
58
62
58
57
62
57
79
70
71
68
68
62
62
70
70
71
70
58
62
58
58

55
61

55

*
*A
*A+
*

*N

*N+
*NA
*NA+

m
ODD

OP

PF

Page

63

56

61

56

74

76

55

61

55

63

56

61

56

56

61

56

56

56

61

56

61

56

56

56

76

81

75

75

76

75

78

78

79

57

79

76

76

76

70

75

76

88

Mnemonics

u

70

65

55

78

58

57

57

70

58

57

57

57

57

58

58

63

58

63

79

55

61

55

56

61

56

70

70

77

77

77

77

70

77

77

77

75

77

74

--

Y *- db

4 4

Mnenionics

t

xcz

m

xl?

XH

XL

XPH

XPL

XPM
XPN

XPO

XPU

76

76

75

76

76

75

75

75

75

7s

7?

W

INDEX TO GENERAL STRAP 1 WRITEUP

I

U

I1

J 0

Q &

GeneraL parenthetical integer entry 9-10l ~ o - o o - ~ o - - - o - o o - ~ o o o o o o D o o - - -

W

V

31

VI

V I 1

	Table of Contents
	2 Instruction Formats
	2.0General
	2.1 Machine Instructions
	2.2 Data Entry Instmctions
	2.3 Instructions to Compiler
	2.4 Format Symbols Defined

	3 Data Description
	4 Strap 1 Location Counter
	5 Symbols
	6 General Parenthetical Integer Entry
	7 Multidimensional Arrays
	8 Bit Addresses and Integers
	8.0 Definition
	8.1 Addition of Integers and Bit Addresses
	8.2 Rules for Conibining Integers and Bit Addresses

	9 Radix Specification
	10 Synonym
	11 Other Restrictions on Address Arithmetic
	11.0 DR (Data Reservation)
	11.1 FXT (Extract)
	11.2 SLC (Set Location Counter)

	12 Notes on Special Operation Formats
	13 Miscellaneous Notes
	14 System Symbols
	15 General Data Entry
	15.2 EntryMode
	15.3 The Form of Decimal Nwnbers
	15.4 Insertion of Specific Fields
	15.5 Rules for Entering Data

	Appendix A
	Appendix B Strap Mnemonics
	Notation for symbolizing Floating Point operations
	Floating Point operations
	Integer operations

	Appendix C
	Index

