

July 1 , 1959

1 . 2 Expression of Machine Instructions

Machine instructions a r e writ ten symbolically on the coding f o r m
described above. Normally they a r e entered one per l ine accord-
ing to a prescr ibed format which var ies with the type of instruc-
tion operation. The instructions a r e writ ten with fixed mnemonic
operation codes.

A Hollerith 11-0 double punch combination will be used to imply
the end of a s ta tement , so that multiple statements may be writ ten
pe r l ine . However, this character a l so implies the end of a comment,
so that it may not be included in a comment. The 8-4 double punch (1)

implies the beginning of a comment. If the character appears in
the name field, the entire card is t reated as a comment and will be
printed on the output l ist ing without affecting the assembly process
in any manner .

Other fields in the instruction format - -addresses , modif iers , e tc . - -
may be stated within the general symbolic fo rms of the sys t em,
and, when so s ta ted, a r e said to constitute symbolic expressions.
The order and manner in which such symbolic expressions a r e writ ten
down in specifying the elements of any par t icular instruction are
dictated by a symbolic instruction format , that i s , a general type
which provides for the expression of a whole c lass of par t icular
machine instruct ions.

1-3

h .
i

July 1 , 1959

'iiep= 1 2.1 Symbolic Instruction Forma t s

Symbolic instructions a r e entered in the s ta tement f ie ld . Within this
field var iable length operation codes and address expressions a r e
separated by commas and f o r m sub-fields. A variable length modifier
t o either an operation or an addres s is enclosed in parentheses and
attached to the modified sub-field. Bla.nks have no meaning in any field
except t o indicate the spacing des i red on the printed output l i s t i sg . The
twelve symbolic instruction formats for STRAP- 1 a r e :

FORMAT TYPE 	 OPERATION

1. 	 Floating point
2 . 	 Miscellaneous , unconditional branch, SIC
a . 	 Direct index ar i thmetic
4 . 	 Immediate index ar i thmetic
5 . 	 Count and branch
6 . Indicator branch
7 , V F L ar i thmetic , connect , convert
8. 	 Pr o gr es s ive indexing
9 . 	 Swap, transmit full words

10. O P , A (I),B, (K) 	 Branch on bit
-V 11. op,10th, cw {&It) 	 Input-output se lec t

1 2 . LVS, J , A , A ' , AIr, AI", . . . Load value with s u m

;Definitions of the above fo rma t symbols a r e :

1. O F a:nd OP1 	 pr imary instruction operation.
2. 	0Pz a secondary operation permit ted only in progress ive

indexing and input-output.
3 . A:n an Itnrr-bit data a d d r e s s .

4*B19 a 19-bit branch a d d r e s s .

5 . 	I a 4=bit index addres s where (0)signifies no

indexing and (1 .) t o (15 .) signifies indexing
by the corresponding index r e g i s t e r .

6 . 	K a 1-bit index addres s where no modification (0)
or modification by index r eg i s t e r 1 (1 .) a r e the
only pos silxilitie s .

7 . OF7 	 A 7-bit off s e t field .
8 . dds 	 data description (see Section 1 .2 . 2) .
9 . 	J a 4-bit index address which r e f e r s to a n index

reg is te r a13 an operand. Here (0) r e f e r s to index
r eg i s t e r 0 , word 16.

10. IO 	 input -output unit addr es s .
11. CW18 	 An 18-bit control word a d d r e s s .
12. LVS 	 R e f e r s to one specific operation-Load Value with Sum.
1 3 . pr imes 	 used to distinguish otherwise identical f ields in a fo rma t .

1-4

July 1 . 1959

'There is a general r ight t o left Itdrop-outlt o rder for all the
fields separated by commas . F o r example, a V F L instruction
(Forma t 7 above) for which the offset and its index modifier a r e
ze ro is written:

The comma is the major separa tor for the symbolic instruction types e

I f t he re a r e less than the maximum number of major symbolic fields
in a given instruction expression (as indicated by the comma count),
then the instruction is compiled as though the missing f ie lds had been
added at the end of the s ta tement and a s though they contained z e r o s .
Such f ie lds , whose contents a r e implied in a s tandard way by the
omission of any explicit specification, a r e called null f ields A null-
field is always compiled as a z e r o , with the exceptions, indicated
below in Section 1 . 2 . 2 , of those sub-fields of a data description which
express mode and byte s i z e . Within a major *field, a parenthesized
sub-field may be made null by omission. Thus in the V F L example
cited above, i f the main index designation were to be ze ro but the
offset and its index modifier (which in the hardware a l so modifies
field length and byte s i ze) were both to be one, the instruct ion could
be writ ten:

O P , A , l (1 .)

A major field may be null , even though other non-null f ields follow it.
Such is the case i f nothing but the comma denoting the field terminat ion
is writ ten. Thus in the example jus t shown if the offset and its modifier
were both to be one but the principal addres s and its modifier were
both to be z e r o , the instruction could be written:

1-5

2ul.y 1 , 1959

1.2.2: Data Description (dds) -
The small l e t t e r s Irddstt enclosed in parentheses i n the above formats
stand for the data des,cription field. It is established by specifying:

1 . M use mode,
2 . L field length, and
3 . BS byte s i z e ,

These three entr ies appear in the above order within parentheses and
a r e separated with commas thus (M, L, BS), When the data description
is specified in a machine instruction, it over-rules any other implied
or indirectly specified data description. When it is not specified, the
description is assumed to be that associated with the symbol in the
principal address field of the machine instruction. If this symbol has
no data description associated with i t , an e r r o r condition a r i s e s .

When a s t r ing of symbols a r e added in an address field, the last symbol-
written down is the one whose data propert ies control those of the
instruction.

A complete description of the method by which a data description may
be attached to the symbol which names a piece of data is given in

V' Section 1 .3 .1 under the explanation of the Data Description pseudo-
0geratio.n.

The mode I'Mttis always specified in a data description en t ry . This
is to say that t t M t tmay never be a null field, so tha t , for example,
if the first character i n a data description were a comma, an e r r o r
would be indicated. The seven modes a re :

]I, B b ina ry

2, B U binary unsigned

3 . D de c imal
4. D U decimal unsigned

5 , N normalized floating point

6 . U unnormalized floating point

7 , P Proper t ies mode

The mnemonic 'lPttin the mode field of a data description has the
following meaning:

(P, RIVER)

--	 implies in an instruction that the data description associated with the
symbol RIVER is to be invoked jurst as though it had been writ ten out
explicitly. Thus, i n an instruction, the dds of RIVER would over - ru le
anything implied by the symbol i n the major address f ie ld .

I -6

h

July 1, 1959

Within a data description field the usual r ight to left drop-out
order and null field conventions hold (except, as indicated, that
the mode iield may not be null), so that a data descr ipt ion may
appear in any of the following four forms:

(M) Field length and byte s ize a r e null

(M , L) Byte s ize is null

(M, 2 BS) Field length is null

If the field length is null, a field length of 0 (effectively 64, except i n
the case of immediate V F L operations, where it is 24) is compiled.
If the byte s ize is null, the compiled byte size is a function of the mode:

__I(

Mode Standard Byte Size

D or DU 4

B 1

B U 8

1 - 7

_ _

July 1, 1959

1 . 2 . 3 Mnemonics

A complete list of all machine mnemonics is included
in Appendix A . Both operation codes and sys t em symbols
a r e included in the l i s t .

A complete l i s t of STRAP4 pseudo operation mrlemonics
is presented in Appendix €3.

1 - 8

July 1, 1959

1 . 2 . 4 Numbers and Svmbols

There a r e two different number sys tems which in general
run through the STRAP-1 language, the ordinary sys tem of
r e a l numbers and a bi t -address numbering sys t em. The
ordinary r e a l numbers a r e res t r ic ted in all non-data fields
to be in tegers . Real numbers which a r e not integers may ,
of course be entered as da ta , but they may not take pa r t in
ar i thmetic expressions nor may they be symbolized, s o that
the general fo rms of the language are real ly l imited to integers
and bit a d d r e s s e s .

Bit Addresses consist of a pair of integers separated by a
period. The integer to the left of the period specifies a word
address while the integer to the right specifies a bit a d d r e s s .
Thus , 6 . 3 2 is the decimal equivalent of either a 19 or 24-bit
binary address specifying bit 3 2 of memory location 6- the
bit preceeded by exactly 6 and one-half memory words .
(Note that only the presence of a period distinguishes a bit
address f r o m an integer .)

Symbols which identify memory elements in the object pro-
g r a m a r e automatically ass ignedbi t add res ses which locate
these memory e lements . A symbol may , however, be given
the value of an integer through the use of a rlsynonym't pseudo-
operation. Thus in general both bit addresses and integers
may be symbolized. The t e r m "integer" will be used to denote
either an integral number or a symbol which takes on an
integral value, and s imilar ly s o with respec t to the t e r m
Itbit addr ess .

Thus, the address designation A(1) has two possible meanings:

i) 11:I is a bit a d d r e s s , then it designates an index word and
is cornpiled i n the so-called I-field.

ii) If I is an in teger , then a.n address equal t o A plus I t imes
the field length of A is compiled.

W

July 1 , 1959

A symbol is any seque.nce of eight or fewer alphabetic and
numeric charac te rs conforming to the following conditions:

1 . 	 It contai:ns only alphanumeric cha rac t e r s .

2 . 	 Its first character is specifically alphabetic.

3 . 	 It appears in the name field of a p rogram instruction
by virtue of which it is "defined" a.nd i s assigned a
value which is either a 24-bit binary addres s or an
integer .

1-10

1 2.6#. System Symbols

System symbols a r e symbols whose values have been defined by the
Compiler and a r e therefore fixed. In all other r e spec t s , for example
in relation to the conventions for legal ar i thmetic expressions and
bit address- integer conventions, sys t em symbols a r e exactly l ike
ordinary programmer -defined symbols with the one exception that they
a r e immediately evaluable by STRAP- 1

System symbols a r e identified as a special c lass by the prefix character 1 ' $ 1 1

(which as one of the non-alphanumeric charac te rs can never appear as
par t of a programmer symbol) . All sys t em symbols which stand for the
addres ses of special r eg i s t e r s in memory (e.gb L , the left half of the
accumulator) a r e bit add res ses , and all others a r e integers or r e a l
numbers .
The appearance of the character alone makes for a special sys t em
symbol which provides a standardized substitute in place of a name
for the current s ta tement . This is to say that the character is a
bit add res s which i n any particular statement wherein it appears functions
as though it had been defined by being writ ten i n the NAME field of
that s ta tement .

A special use of the character is to pref ix any operation code in this
manner- -$OP-- . This directs the compiler to suppress any e r r o r in-
dications which a r i s e in connection with the compilation of this s ta tement #

Since the actual numerical addres ses which a r e to identify par t icular

1/0units and cha.nnels 4 a y be chosen arb i t ra r i ly , sys t em symbols

which represent integers a r e provided fo r use in addressing I / O equip-

ment. The numerical values of members of this s e t of sys t em symbols ,

d i k e the values of all the o the r s , may vary f r o m one installation to

another, i n order that RDR-for example-may represent the card

reader channel address independently of what that addres s , in any par t icular

installation, may be

1/0System Symbols a r e :

Symbol Meaning

PCH Punch (Channel Address)

PRT Pr in te r (Channel Addr es 9) I

RDR Fkader (Channel Address)

DISK Disk Unit (Channel Address)

11-13

July 1 , 1959

Note: The a r c s of a disc may be addressed
by any legal symbolic integer expressiori,
evaluated modulo 212 to a s s u r e a valid a r c
address

CO, C1 . . .C.k General channel a d d r e s s e s ,
_I

TO, T1Tk- Tape Units (U n i t Addresses) for a
cha.nne1 which includes k t 1 u.nits.

I

IQS Inquiry Station (Channel or Unit Addr e s 8) .
This symbol may have d z e r e n t values
depending on whether it appears in a
channel address or unit add res s field
of a symbolic se lec t o r d e r .

CNSL Co.nsole (Channel o r Unit Address) -

The system symbol mnemonics for tapes and channels a r e numbered
i n the expectation that m o r e than one of each kind will be typical.

All of the other units named however, a r e a l so capable of plural
attachment to a machine configuration, in which case numerical
suffixes a r e added to expand the single-unit sys t em symbol in a
standard way. F o r example, if there a r e k punches for a given machine,
their Bystem symbols a r e : PCHO, PCH1 , PCH2 .. .PCHk - 1 where-
PCHO is synonomous with PCH.

At each installation's option some sys t em symbols- - represent ing
equipment not included in the par t icular sys tem at hand- -may elicit
e r r o r flags on the l is t ing.

1 - 14

July 1 , 1959

1.2.7 Variable-in-Number Field Forma t

The Load Value with Sum (LVS)instruction may be writ ten
with a variable number of address f ie lds , each of which
actually picks out a single bit position within the LVS addres s
field i tself . F o r an LVS o r d e r , each address field may
specify one of index r eg i s t e r s 0 through 15. These fields
a r e evaluated exactly as i f they were regular index designator
f ie lds , s o that index addres ses may be specified i n t e r m s
of either bit add res ses or integers in the normal manner .

1 - 15

1 . 3

July 1 , 1959

Pseudo Operations

In this section will. be found itemized a number of operation
codes provided for purposes of defining data and of controlling
and directing the assembly process i t s e l f . Since these codes
do 	not directly produce machine instructions in the object
p rog ram, the functions which they do t r igger a r e r e fe r r ed to
as 	"pseudo operations".

The pseudo operations a r e grouped according t o type. There
a r e two main c lasses of pseudo operations:

1 . Those which c rea te memory e lements .

2 . Those which control the assembly process e

a . 	Those which define symbols by assigning
values which appear in the variable field.

b . 	Those which give directions to the compiler .

The NAME field of all pseudo operations which neither c rea te
memory elements nor define symbols is ignored , with the
exception of CNOP (see Section 1 . 3 . 3) .

1 - 16

July 1 , 1959

1 . 3 . 1 Pseudo Operations That Create Memory Elements

The following provide the basic means for defining and entering
generalized data in the STRAP- 1 language:

M.nemo.nic Name Usage

. 1 , DD '#DATA DEFINITIONtt DD (dds) , N 1, N2 ' ...Nk

where the bracketed t t dds t t is a data
description prescr ibing the meaning
of all succeeding numbers (N) . The
numbers N a r e compiled in consecutive
fields and any symbol appearing in the
NAME field of the DD statement applies
to the first such f ie ld .

The data description (dds) is identical in f o r m and content to that descr ibed
in Section 1 . 2 . 2 , that is to the data description which may be used when
writing an individual instruction except the P mode is not omitted in this o r
any other pseudo operation. Thus a description may be given with a number
at the point of definition of the number i t se l f , o r may be given at the point
of re ference as par t of an instruction r e fe r r ing to the number. The relation
between these two different points of possible definition is as follows:

When the data description is given by a DD statement (or other data defining
operation), the description is invoked whenever the symbol appearing in the
NAME field of the DD statement is used in the principal addres s field of an
instruct ion, The instruction mode, and-in the case of a V F L order - - the
field length and byte s i ze a r e supplied by this data description which is logically
affixed to the name of the DD statement .

Such a description se t down at the point of symbol definition is over -
ruled by a description appearing i n an instruction re fer r ing to the symbol.
Whenever an over-ruling description appears in the data description field
of an instruction, the ent i re description which was given at the point of
definition of the address symbol i t ; over-ruled. Thus the statement:

O P (BU),tJOE

causes the binary and unsigned modifiers t o be compiled alo.ng with a.n

1 - 17

-- Ju1.y 1 , 1959

implicitly defined field length of 64 and a byte s ize of 8 , regard less
of the description occurring in the statement in which JOE appeared
in the NAME field. Over-ruling is s t r ic t ly local and applies only t o
the instruction at hand.

If symbols a r e used in defining either the field length o r byte s ize
sub-fields of a DD statement% data description, the symbols must be
fully defined when the compiler encounters the DD statement on the
second pass . This requirement is not imposed on the data description
of an instruction since in that instance, no assignment of memory
space is dependent on the contents of the sub-fields.

Symbols which name instructions themselves a r e automatically imbued
with data descriptions . Specifically, instruction-naming symbols a r e
given field lengths equal to the lengths of the particular instructions
named (L e . either 32 or 64), and a r e defined as unsigned binary with
byte s ize 8 .

System symbols whose values a r e the bit addresses of special r eg i s t e r s
in memory also have data descriptions which have been fixed by the
compiler (although, as with ordinary symbols these descriptions may
be over -ruled by the data description fields of instructions) , Specifically,
sys tem symbols representing memory r eg i s t e r s a r e binary unsigned, have
field lengths equal to the lengths of their represented r e g i s t e r s , a.nd have
byte s ize 8 .

2 . xw I'INDEX WORDt' XW ,VALUE COUNT REFILL,FLAG

The location counter is rounded to the next full word , The contents of tlm
four symbolic fields following the operation a r e converted and compiled
in an index word format . FLAG denotes the machine field comprised of
bits 2 5 , 26 a.nd 27 . An expression i n the FLAG field of a4nXW statement
is therefore evaluated modulo z 3 a

Note: Bit 24 of the word format is taken to be the VALUE
sign position. A negative sign is interpreted in two's comple-
ment form in the usual way for all other fields ,

1 - 18

July 1, 1959

-ru 3 . V F 	 "VALUE FIELD'' V F , VALUE

The location counter is rounded to the next half word , The contents -
of VALUE a r e compiled as a 24-bit plus sign quantity in po~sitions
0-24 of the next half word . The location counter stands at bit 25
at the end of the operation.

4. C F "COUNT FIELD" 	 C F , COUNT

The location counter is rounded to the next half word , The contents
of the COUNT field a r e compiled as an 18-bit integer in positions
0-17. The location counter stands at bit 18 at the end of the operation.

5 . R F "REFILL FIELD" 	 R F , REFILL

This pseudo operation is the s a m e as CF,

NOTE: The last four operations (the index word pseudo operations)
defined above a r e given data descriptions by the compiler , just as
though they had been defined by DD statements . Specifically, the index
elements created by these o rde r s have had the following data descriptions
affixed automatically, and cannot be over-ruled in the pseudo-op statement:

OPERATION DATA DESCRIPTION

xw
V F
CF or RF

6 . 	 c w "CONTROL WORD" CW (OP),ADDRESS ,COUNT
CHAIN ADDRESS

The pseudo operation CW employs a special symbolic format as
i l lustrated above and defined initially in Section 1 . 2 . 1 . A se t of
secondary operations is provided--whose members a r e expressed
as parenthesized secondary operations in the manner of It(0P)"above-
with the purpose of providing mnemonics for control word functions:

Multiple Bit Chain Bit
CR I'COUNT' WITHIN RECORD'' 0 0
CCR "CHAIN COUNTS W I T H - I N 0 1

RECORD"
CD "COUNT DI[SRECAR.DINGRE- 1 0

CORD"
CDSCtrCOUNTDISREGARDING 1 1

RECORD, SKIP AND CHAIN'!

1 - 19

All data fa lh undci* tlic catogouy of o.rre of the B J X modee of the data
description fic1.d: N , I J , 13, UU, D, and DU. Thc numbers N 1 . . ,NK
a r e exprefjecjcl in the form:

f xxx,xx
and m a y optionally have othcr quantitiee following them which a r e
identified and separated f r o m the main number by dcclo.nHion clmracterrr:

E 2 i The i,ntcgc.r r l i l litj taken a B a decimal exponent of the prcccding
number a

lrEilla re provided innthc sense that the dccimal paint i n tho number
itself also indicates a decimal. exponent.
plicitly, the number is takon to bc an integer .

Over -Lapping facil i t ies for spscifying an exponent;

If no point occurc3 ox-

Si The positive octal integer
precocling numbcr e If ei ther the sign of the main number or i
impliee a negative sign bi t , tho sig-nbyte sign position. is macle
negative .

is compiled as tho sign byte of the

X c.I) i The decimal integer Vtis compiled aa a machine exponmt of a
floating point number It over-rules arid replaces the computed
exponent, which I s completely eradicated by the replacement
procese .

NOTE: The data entr ies i n a DD statement are res t r ic ted to r e a l numbere
only. Bit addresses are not permit ted. In tegcrs arc of C O U F B ~allowed as
a special c a s e of real numbers but they may not be symbolized

Floating point1 data i a always compiled in addressable full worde; the
location counter is rounded up, if necessary , to the next full word addrsacr
in order to meet thle end. This is an instance of a general STRAP 1
,principal: a machine format which ordinarily dcpcnds in ufjtc on tha fact
that the 24-bit a d d r e m of the lead bit ends i n a e t d n g of zeroee of Borne
definite length causes the compiler to round the location counter appropriately,
Thus:

1) 	 Instructions always start at either half or full word bit
addresme

1-20

July 1 , 1959

‘crr*l’ 1 . 3 . 1 . 2 The Entrv Mode

The data description field repreaents a kind of generalized use mode
for the da ta , in that propert ies specified in this field a r e t ranslated
into bits and numbers which are compiled into machine instructions
re fer r ing to the da ta . A Corresponding field called the entry mode
is available to specify propert ies which descr ibe the source language
information and its f o r m , but which proper t ies a r e not themselves
compiled into the 	object p r o g r a m ,

The 	entry mode may be employed in one of two ways:

a) 	 An entry m o d e may be used to specify the proper t ies of
any symbolic field (except the l l f ie ldt l occupied solely by -
the operation mnemonics) by being placed, enclosed in
parenthesee , 9 s the first i tem in the f ie ld .

b) 	 An entry mode may a l so be used to specify the proper t ies
of all the data in a DD or DDI etatement. When used in
this fashion, i t i s enclosed in parentheses and appears
before the DD or DDI op code in the operation f ie ld . The
mode is more general in f o r m in i t s usage in connection
with the data of a DD or DDI statement , as it may in this
instance-but only in this instance-designate that alphabetic
information is to be compiled:

ENTRY MODE 	 MEANING

“All signifies that the following information is
704-9 alphabetic (BCD as i t appears on t ape) ,
and the le t te r X i e a special end-of-statement
mark for this statement only. The end of
statement charac te r i s not itself compiled ,

The special end-character may not be:

)‘ (8-4)
11-0
blank

(IQSX) 	 The code IQS implies the IQS alphabetic code,
and this entry mode designation is otherwise
the s a m e a8 the preceding. When IQS is
specified in an entry mode, only those IQS
charac te rs which also exist in Hollerith may
be en tered .

1 - 2 2

July 1, 1959

(Fi) 	 In DE) and DDI binary-mode s ta tements ,
the number of binary fractional bits is
specified i n the entry mode by means of
the le t te r F followed by a decimal integer i
which is the number of fractional b i t s .

(F6) XX.XXX

Entry modes may not appear in a manner that would cause parentheses
with:lm parentheses . An entry mode may appear as the first element of any
field in the DD or DDI statement , in which case it functions as a normal
field entry mode. When contradictory propert ies (for instance , two differing
radixes) a r e implied by the statement and field entry modes, the field mode
over - ru les for the case of the par t icular field an hand.

NOTE: Both the statement entry mode and the field entry modes in a
DD or DDI statement apply only to the pure number pa r t of the data .
All ather quantities which may be joined to the data by special declensions
(e . g , S for sign byte) a r e regarded as separa te fields with r e spec t to the
entry mode, and these fields will have no provision €or a separa te entry
mode in STRAP- 1. Moreover i f the entry mode indicates a radix different
f r o m 10, o,dy integers may be entered a s data .

W
There a r e two ki.nds of designators which may appear in any entry mode

111

expr e 8 sion:

a) 	 Any of the digits 2 through 10 may be used to indicate a rad ix ,
All numerical quantities governed by the entry mode-whether
r e a l numbers , i n t ege r s , o r bit addresses-are then interpreted
in the specified rad ix . The source language rad ix is 10 throughout
the eystem unless otherwise specified (and af ter the declension
charac te r S where the base 8 is used) ,

b) 	 An integer preceded by a point not exceeding 63 (or 31 i,n a half word
instruction) hae the following meaning in the entry mode: that the
field following the entry mode i s parenthetical in nature and i s to
be evaluated and compiled with the specified bit address serving as
the bit address of the rightmost position of the field. The field is
added by a logical OR so that it may be combined with other fields of
the statement or other parenthetical OR f ie lds . The first bit of the
statement is counted as bit 0 . Although the parenthetical ;field may
c r o s s field-lines within a s ta tement , it may not c r o s s s ta tement- l ines .
That i s , i f the bit add res s i s specified as t t . n t l ,the parenthetical ex-
press ion has a field length of n 4 1 and is evaluated modulo 2n+l

"%iw 	 All parenthetical fields are regarded as unsigned, so that a negative number is
compiled as the complement, r e 2n + 1 of the magnitude of the number ,

1 - 2 3

0

July 1 , 1959

The field following a n entry mode containing a bit address is
terminated either by the end-of -field charac te r of the statement
field innwhich the parenthetical OR field falls (i.e . , within the source
language--the parenthetical field m a y cross field l ines within the
object language but by its very nature i s always specified within
the bounds of ~ o m eother field in the source language) or by the
beginning-field charac te r for s o m e other f ie ld .

Radix designators a r e permit ted in parenthetical OR f ie lds , a r e
separated by commas f r o m the bit designation, and the two may be
in any order : (. 3 2 , 8) sigmifiee a n octal field to be terminated at
bit 3 2 .

Parenthet ical expressions a r e permit ted within a DD statement , a.nd
the bit addrese is measured from the previous comma forward ,
Parenthet ical express’ions may contain anything that goes in a
normal address field (except per iods) , but may not have other infor-
mation-like r e a l numbers or alphabetic characters-which a r e
permit ted in a DD or DDI statement . Parenthet ical expressions are
not permitted in any statement which does not compile memory
space , nor in a DR statement .
The parenthetical field ignores both the field s t ruc ture and any data
description associated wit$ the statement in which it appears Similar i ly ,
any data description associated with a symbol appearing in a parenthetical
field has no effect in this usage of the symbol. A l l numbers-including
r e a l numbers --which appear in a parenthetical field a r e converted to
an internal binary format , never to decimal or floating point.

1 - 24

July 1, 1959

" I 3 2 Pseudo Operations Which Define Symbols

It can be said that a lmost all pseudo operations (excluding SLC,
CNOP, e tc .) define symbols in the standard manner - - any symbol
appearing in the name field will be assigned the cur ren t value
of the location counter . Grouped under the present category of
pseudo operations a r e those which define symbols in other than the
usual manner

I . . DDI I'DATA DEFINITION IMMEDIATE"

This pseudo operation is identical t o DD except with respec t to
the following points:

(1)
(2)

Like SYN (see below), it is purely definitive in cha rac t e r .
Only one .major field follows the operation field of the
statement

(3)
(4)

If no field length is specif ied, a field length of 24 is implied.
pf the length of a s t r ing of alphabetic cha rac t e r s exceedsl
the field length , the excessive low-order cha rac t e r s
a r e los t and an e r r o r indication is given.

(5) The compiled field - - l e s s than o r equal to 24 bits in
length--is inser ted within a 24-bit field within the
symbol table and left justif ied.

2 . SYN O'SYNQNYMfV ASYN, Y

The operation trSynonymtr (SYN) may define a new symbol in t e r m s of
a symbolic expression represent ing either a bit add res s o r an in t ege rB
with the res t r ic t ion- -as with SLC -- that the expression be fully defined
although this may possibly mean as la te as pass 3 of STRAP- 1 , When
one wri tes :

A SYN, Y

the meaning of the newly defined symbol fsA1ris that whenever A is
wri t ten in the program the effect is the same as if Y had been wri t ten.
The meaning of SYN is always one of exact substitution. Thus data
propert ies associated with Y and its bit address-or- integer classification
a r e t r ans fe r r ed to A. S Y N statements a r e permit ted to have their own
data description field, as wel l .

1 - 25

July 1 , 1959

1 . 3 . 3 Pseudo Operations Which Give Directions To The Compiler -W

Mnemonic Name Usage

1) SLC "SET LOCATION COUNTER." A SLC, Y

This operation r e s e t s the location counter to the value (bit add res s)
taken on by Y , where Y is any legal symbolic expression. The name
A applies to the subsequently defined memory element whose first
bit is located at Y. Y must be evaluable by the t ime it is encountered
in pass 2 of STRAP-1. Although Y may be an absolute number, its
absolute meaning may not be preserved f r o m STRAP-1 to STRAP-2.
Iln STRAP-1 an absolute origin will be positioned relat ive to a p rogram
a r e a beginning with machine location 0. In STRAP-2 the beginning of
the program a r e a will normally be supplied independently of the
assembly deck and may differ f r o m 0.

The pseudo operation Wet Location Countertf must contain a bit add res s
expression whose value is posit ive. An integer which appears in the
variable field of an SLC instruction is added in as in a 24-bit add res s
f ie ld , i . e . as an integral number of b i t s , and a.n e r r o r warning i s-
given >e

2) END "ENDft A E N D , Y

A ca rd with the operation code E N D signals the end'of a n assembly
and must be ivlcluded a s the last card of each symbolic p rogram deck.
If the END card is miss ing , one is supplied by STRAP-I. A branch
card is then punched with the output deck with an address 16, so that
the instruction located at Y will be the first p rogram order executed,

The END statement a l so functions as an origin-setting statement for
the memory assignments given to all symbols which a r e undefined.
A symbol is undefined if it appears somewhere in the p rogram but
never appears in the NAME field of any s ta tement . All occurrences
of such a symbol a r e flagged a s possible e r r o r s . The symbol is
assigned a fu l l memory word i.n the block whose origin is equal to the
value of the 1ocation.counter when the END statement is encountered
(possibly rounded up to obtain an integral f u l l word addres s) and the
symbol i s given a normalized floating point data descr ipt ion.

3) CNOP "CONDITIONAL NO OPERATION"

The pseudo operation CNOP is used to insure that the instruction
immediately following the CNOP will be assigned a f u l l word address
by the compiler .

l - 26

G N O P examines the location counter . If the counter is already se t to a
-,i 	 full word addres s , the compiler ignores the CNQP. I f , however the instruction

counter is s e t to a half word a d d r e s s , the CNOP instruction d i rec ts the compiler
t o advance the counter 32 bits (one half word) to the next full word a d d r e s s .
This is accomplished by compiling the machine instruction N O P , which is a
half word instruct ion. Any symbol appearing in the name field is assigned
a full word addres s when the CNOP is ignored, or a half word a d d r e m whan
a NOP is compiled.

4) T L B ' !'TERMINATE LOADING AND BRANCH"

The pseudo operation "Terminate Loading and Branch" is similar to an IrENDts
statement with one major distinction--TLB does not stop the assembly p r o c e s s .
Therefore , TLB may be used at any point in a symbolic deck where a branch ca rd
is des i r ed . The branch ca rd thus produced will interrupt the loader when encountered
in i3 binary deck and t ransfer control t o the instruction at location Y e

5) EXT 'IEXTRA@Ttf A EXT (1,J)STATEMENT

The g tExt rac t t f pseudo operation has the following meaning:
I and J a r e integers or integer express ions . STATEMENT is assernbled by the
processor as though i t were to be compiled. The field beginning at bit I and ending
at bit J within the assembled s ta tement is then extracted, and compiled. Any symbol
A in the NAME field of the EXT order is attached t o this compiled quantity, A data
descr ipt ion is attached to the symbol as though it had been writ ten:

(BU, S -	 I + P , 8)

I and J can a l so be bit add res ses .

If ECXT is used to specify the extraction c)f anything beyond the range of the single
s ta tement which follows i t , zeroes a r e added up to 64.

6) DR "RATA RESERVATIONIs A DR (dds) , (N)

The DR operation causes N fields of the kind descr ibed in the data descr ipt ion--(dds)--
fie1.d to be r e s e r v e d , i . e the instruction location counter is skipped forward ae

quantity in bits equal to the product of N and the field length specified in (dds) . The
symbol A i f any, appearing in the NAME field of the DR statement is attached to the
first such field. The descriptip.n specified in (dds) is in tu rn attached to the symbol
and is invoked -- in the same fashion as with a DD or DDI statement--whenever the
symbol appears as a principal addres s .I

1 - 27

July 1, 1959

An a r r a y is specified in the form:

where I , J and K must be integers in symbolic or numeric f o r m .
-Infac t , a31 a r r a y parameter may be specified by any integer-(valued
expression .
Although a fifteen dimensional a r r a y i s the l a rges t which can be
specified in STRAP- 1, a r r a y s involving fewer pa rame te r s can
also be descr ibed.

Thus, as seen f r o m the discussion in Section 1 .2 .4 , to apply
index word I to the second element of a one dimensional a r r a y A,
one wri tes :

where I must be a bit add res s .

7) PRNS "PRINT SINGLE -SPACED' * PRNS

This pseudo operation causes the assembly listing to be printed
with single spacing. Double spacing is the normal mode unless
PRNS is writ ten.

8) PRND "PRINT DOUBLE -SPACED" PRND

This pseudo-op r e s to re s printing to the normal double spacing
condition after the use of a PRNS.

9) P U N F U L "PUNCH F U L L CARDSt1 P U N F U L

Full cards (80 columns) a r e punched, without checksum, FWA,

ID, e t c ,

1 - 28

July 1 , 1959

IO) PUNNOR "PUNCH NORMALLY'' PUNNOR

This pseudo-op r e s t o r e s normal punching after the use of a
PUNFUL.

11) SKIP "SKIP PAPER'' SKIP, i

If i l= 0 , the assembly l ist ing will r e s t o r e the paper immediately. If
i +O, one half page will be skipped.

12) PUNID "PUNCH ID" PUNID, XXXXXXXX

The first eight charac te rs following the comma a r e punched in columns
73-80 of the binary deck produced by the assembly p rogram. This ca rd
is used to identify the assembly .

13) PRNID ''PRINT ID'' PRNID, COMMENT

When PRNID is encountered anything wri t ten after the comma is immediately
printed on line a.nd on the output tape as wel l . PRNID provides a means
of heading the assembly l ist ing with such information as problem name e
programmer , e tc .

P - 29

V $

$

AD
AE
AH
ALA
AOC

B (S
BTR
CA4
CBJ
CNSL
CPUS
CPU
CS

CX

DF
DISK
DS
DTR
E
El3
EK

EKJ
EOP
EPGK
EXE

F7:

IA
IF
IK
IJ
IND

IQS
IR
IT
L
LES
LC
LS
EZC
M

2

2

2

2

1

1

2

1

2

1

1

2

2

li

2

It
2

2

12

2

2

2

2

2

2

1

I

2

2

2

I

X

2

1

I

1

2

2

I

12

ALPHABZTIC LIST OF SYSTEM SYMBOLS

ADDRESS INVALID
ACCUMULATOR EQUAL
ACCUMULATOR HIGH
ACCUMULATOR LOW
ALL ONES COUNT
BQUNDARY CONTROL
BINARY TRANSIT
CHANNZL ADDRESS
CHANNEL BUSY REJECT
CONSOLE
CPU SIGNAL
OTHER CPU
CHANNEL SIGNAL
CHANNZL X (X IS A NUMERICAL DESIG-

NATION)
DATA FETCH
DISK

DATA STORE
DECIMAL TRANSIT
e
END EXCEPTION
EXCHANGE CONTROL CHECK
EXCHANGE CHECK REJECT
END OF OPERATION
EXCHANGE PROGRAM CHECK
EXECUTE EXCEPTION
FACTOR
INTERRUPTION ADDRESS
INSTRUCTION FETCH
INSTRUCTION CHECK
INSTRUCTION REJECT
INDICATORs
INQUIRY STATION
IMAGINARY ROOT
INTERVAL TIMER
LEFTHALFOFACCUMULATOR
LOWER BOUNDARY
LOST CARRY
LOST SIGNIFICANCE
LEFTZEROSCOUNT
loglQe

WORD
NO.

11

I1
1 1

11

a
3

1.1

5

I 1

11

6

I 1

I 1

1 1

1 1

I f
I 1

1 1

X I

I 1
14

2

11

I 1
11

I I

XI

I

8

3

I 1

XI

a

BIT
ADDRESS

I6
6 1

62

60

44-50

57

39

12-18

8

5

0-18

13

20

19

40

1 1

3

6

12

9

1B

0 - 6 3

0-17

21

I

2

0 - 6 3

25

0-18

0 - 6 3

32-49

22

26

17-23

A - 2

July 1, 1959

ALPHABETIC LIST O F SYSTEM SYMBOLS

MASK
ME!
MK
MOP
N
NM
QP
PCH
PF
PGO. . P G 6
PI
P R T
PSH

R
RDR
RGZ
R L Z
RM
R N
RU
R Z
SB
T C
T F
TR
TS
TX

UB
U F
UK
UNRJ
USA

VF
xo
XI.
x2

X3
x4
X5
X6

1 MASK
1 MAINTENANCE BITS
2 MACHINE CHECK
2 TO-MEMORY QPERATION
12
2

log, 2
NOISY MODE

2 QPERATION INVALID
1 PUNCH
2 PARTIAL FIELD
2 PROGRAM INDICATORS
12 r
lh PRINTER
2 PREPARATORY SHIFT GREATER

THAN 48
B RIGHT HALF QF ACCUMULATOR
B READER
2 RESULT GREXTER THAN ZERO
2 RESULT LESS THAN ZERO
a REMAINDER
2 RESULT NEGATIVE
2 REMAINDER UNDERFLOW
2 RESULT ZERO
B SIGN BYTE
1 TIME CLOCK
2 T FLAG
1 TRANSIT
2 TIME SIGNAL
B TAPE X (X IS A NUMcERICAL

DESIGNATION)
1 UPPERBOUNDARY
2 U FLAG
2 UNIT CHECK
2 UNIT NOT READY REJECT
2 UNENDED SEQUENCE QF AD-

DRESSES
2 , V FLAG
B INDEX ZERO
B INDEX ONE
P INDEX T W O
I. INDEX THREE
P INDEX FOUR
P INDEX F I V E
1 INDEX SIX

WORD
NO.

12

4
1 1

I11

1 1

1 1

1 1

11. a

111

9

B. a
1 1
13
1 1
1 1
1 1
18
1
1 1
I5
a a

3
I11
111

1 1
1 1

18
16
17

18

19
20
21

22

BIT
ADDRESS

21-49
0 - 6 3
0

55

6 3
15

23
41-47

27

0 - 6 3

58
56
0 - 6 3
59
34

57
0-7

28-63

' 35
0 - 6 3
4

0-17

' 36
10

7
17

37

0 - 6 3
0 - 6 3
09-63

0 - 6 3
0-63

0 - 6 3

0 - 6 3

A-3

W'

I ? V 4-
F +
V aMG
F +MG
V
F -
V -MG
F -MG
V :#

F >g

V >$ +
F 4c +
F :$A .c
v 4 q .)

V *N 6
F :$N +
F *NA +
V 4<NI+

-V

V
F
M

/
/
B

B BB
B BEI 1
B BBN
B BBZ
M BD
M BE
M BEW
M BR
E BS
E BSFL
B BZB.
B BZBl
Ea BZBN
B BZBZ
V c
I C + I
I C - P
C CB
C CBR
C CBZ
C CBZR
E ccw
v CM

D-

July 1, I959

I. OVER-ALL LIST OF MNEMONICS

B . OPERATIONS

3 ADD
6 ADD
3 ADD TO MAGNITUDE
6 ADD TO MAGNITUDE
3 SUBTRACT
6 SUBTRACT
3 SUBTRACT FROM MAGNITUDE
6 SUBTRACT FROM MAGNITUDE
4 MULTIPLY
7 MULTIPLY

MULTIPLY AND ADD
MULTIPLY AND ADD
MULTIPLY ABSOLUTE AND ADD
MULTIPLY IMMEDIATE AND ADD
MULTIPLY NEGATIVE AND ADD
MULTIPLY NEGATIVE AND ADD
MULTIPLY NEGATIVE ABSOLUTE AND ADD
MULTIPLY NEGATIVE IMMEDIATE AND ADD

4 DIVIDE
a DIVIDE

BRANCH
BRANCH ON BIT
BRANCH ON BIT AND SET TQ ONE
BRANCH ON BIT AND NEGATE
BRANCH ON BIT AND ZERO
BRANCH DISABLED
BRANCH ENABLED
BRANCH ENABLED AND WAIT
BRANCH RELATIVE
BACKSPACE
BACKSPACE FILE
BRANCH ON ZERO BIT
BRANCH ON ZERO BIT AND SET TO ONE
BRANCH ON ZERO BIT AND NEGATE
BRANCH ON ZERO BIT AND ZERO

10 CONNECT
ADD IMMEDIATE TO COUNT
SUBTRACT IMMEDIATE FROM COUNT
COUNT AND BRANCH
COUNT, BRANCH AND REFILL
COUNTANDBRANCHONZEROCOUNT
COUNT, BRANCH ON ZERO COUNT AND REFILL
COPY CONTROL WORD

I10 CONNECT TO MEMORY

A - 5

I

July 1 , 1959

V CT 10 CONNECT FOR TEST
E CTL CONTROL
V cv 5 CONVERT
F D e 6 ADD DOUBLE
'17 D 3 MG 6 ADD DOUBLE TO MAGNITUDE
F D - 6 SUBTRACT DOUBLE
F D - MG 6 SUBTRACT DOUBLE FROM MAGNITUDE
V DCV 5 CONVERT DOUBLE
I-' DL 7 LOAD DOUBLE
F DLWF 7 LOAD DOUBLE WITH FLAG
F D:;: 7 MULTIPLY DOUBLE
I? D/ 7 DIVIDE DOUBLE
F E + 6 ADDTOEXPONENT
F E +- AI ADD ABSOLUTE IMMEDIATE TO E2 P C E JT
I;' E t 1 ADD IMMEDIATE TO EXPONENT
F E - 6 SUBTRACTFROMEXPONENT
F E - AI SUBTRACT ABSOLUTE IMMEDIATE FROM EXPONENT
F E - I SUBTRACT IMMEDIATE FROM EXPONENT
E ERG ERASE GAP
E EVEN EVEN PARITY
M EX EXECUTE
M EXIC EXECUTE INDIRECT AND COUNT

w F F t 6 ADD TO FRACTION
F F - 6 SUBTRACT FROM FRACTION
E GONG GONG
E HD HIGH DENSITY
V K 4 COMPARE
F K 7 COMPARE
I KC COMPARE COUNT
I KCI COMPARE COUNT IMMEDIATE
V KE 4 COMPARE IF EQUAL
V K F 4 COMPARE FIELD
V KFE 4 COMPARE FIELD IF EQUAL
V KFR 4 COMPARE FIELD FOR RANGE
E KLN CHECK LIGHT ON
F KMG 7 COMPARE MAGNITUDE
F KMGR 7 COMPARE FIELD FOR RANGE
V KR 4 COMPARE FOR RANGE
F KR 7 COMPARE FOR RANGE
I KV COMPARE VALUE
1 KVI COMPARE VALUE IMMEDIATE
I KVNI COMPARE VALUE NEGATIVE IMMEDIATE
V L 4 LOAD

A - 6

July 1 , 1959

F

I

1
V
E
V
V
F

, E
I
1

I
I
I

1

I

I

V
Y
v
F
V
F

W V
F
V
F
V
F
V
F
V
F
M
E
M
M
E
E
E
E
E
I
F
I

L
L C
LCI
LCV
LD
LF
L F T
L F T
LOC
LR
LRI
LV
LVE
LVI
LVNI
LVS
LX
LTRCV
LTRS
L W F
L W F
M+
Ma
M+1
M+A
M+MG
M + M G
M-
M-
M- 1
M-A
M-MG
M-MG
NOP
ODD
R
RCZ
RD
R E L
R E W
R L F
RLN
RNX
R /
sc

7

4

4
a

4
4
4
a
‘3
6

3
6

3
6

a

LOAD
LOAD COUNT
LOAD COUNT IMMEDIATE
LOAD CONVERTED
LOW DENSITY
LOAD FIELD
LOADFACTOR
LOADFACTOR
LOCATE (SAME AS SELECT UNIT)
LOAD REFILL
LOAD REFILL IMMEDIATE
LOAD VALUE
LOAD VALUE EFFECTIVE
LOAD VALUE IMMEDIATE
LOAD VALUE NEGATIVE IMMEDIATE
LOAD VALUE WITH SUM
LOAD INDEX
LOAD TRANSIT CONVERTED
LOAD TRANSIT AND SET
LOAD WITH FLAG
LOAD WITH FLAG
ADD TO MEMORY
ADD TO MEMORY
ADD ONE TO MEMORY
ADD TO ABSOLUTE MEMORY
ADD MAGNITUDE TO MEMORY
ADD MAGNITUDE TO MEMORY
SUBTRACT FROM MEMORY
SUBTRACT FROM MEMORY
SUBTKACT ONE FROM MEMORY
SUBTRACT FROM ABSOLUTE MEMORY
SUBTRACT MAGNITUDE FROM MEMORY
SUBTRACT MAGNITUDE FROM hrlE:MORY
NO OPERATION
ODD PARITY
REFILL
REFILL ON COUNT ZERO
READ
RELEASE
REWIND
RESERVED LIGHT O F F
RESERVED LIGHT ON
RENAME
RECIPROCAL DIVIDE
STORE COUNT

A - 7

E

F

I

V

F

F

v
F

E

E

I

T

T

T

T

I

T

T

T

T

1
I
I

I

I
I
I
I
I

E
E
M

SEOP
SF

SHF
SHFL
SHFR
SIC
SLO
SP

SPFL

SNRT
SR
SRD
SRD
SRT

ST
ST
SU

sv
SVA
SWAP
SWAP1
SWAPB
SWAPBX
SX
T
T I
TB
TBI
V +
Y + I
v + c
V 9 CR
v * IC
V t ICR
V - P
v - IC
V - ICR

W
W E F
z

July 1 , 195'9

111 SUPPRESS E N D O F OPERATION
STORE FIELD

a SHIFT FRACTION
SHIFT FRACTION L E F T (SAME AS SHFA)
SHIFT FRACTION RIGHT (SAME AS SHFNA)
STORE INSTRUCTION COUNTER IF

a STORE LOW ORDER
SPACE
SPACE FILE
STORE NEGATIVE ROOT
STORE REFILL
STORE ROUNDED
STORE ROUNDED
STORE ROOT
STORE
STORE
SELECT UNIT (SAME AS LOCATE)
STORE VALUE
STORE VALUE IN ADDRESS
SWAP
SWAP IMMEDIATE
SWAP BACKWARD
S W A P BACKWARD IMMEDIATE
STORE INDEX
TRANSMIT
TRANSMIT IMMEDIATE
TRANSMIT B'ACKWARD
TRANSMIT BACKWARD IMMEDIATE
ADDTQVALUE

9 ADD IMMEDIATE TO VALUE
ADDTOVALUE ANDCOUNT
ADDTOVALUE, COUNT ANDREFILL

9 ADD IMMEDIATE TO VALUE AND COUNT
9 ADD IMMEDIATE TO VALUE, COUNT AND REFILL
9 SUBTRACT IMMEDIATE FROM VALUE
9 SUBTRACT IMMEDIATE FROM VALUE AND COUNT
9 SUBTRACT IMMEDIATE FROM VALUE, COUNT

AND REFILL
WRITE
WRITE END-OF-FTLE
STORE ZERQ

A - 8

--

July 1, 1959

F +
F .p- MG
F
F -MG
F
 >;:

11. LIST OF MNEMONICS BY TYPE

A. FLOATING POINT

ADD
ADD TO MAGNITUDE
SUBTRACT
SUBTRACT FROM MAGNITUDE
MULTIPLY

F

F
F
F
F
M
M
M
M
M
F
F
F
F

' r * w i F
F
F
F
F
F
F
F
F
F
M
M
F
F
F
F
F
F
F
F
F

4c

+
'8N t
TNA +
I a
B
BD
BE
BEW
BR
D +
I)+MG
D -
D -MG
DL
DLWF
D:%
D l
E +
E +AI
E +I
E - 6
E -AI
E -I
EX
EXIC
F t
F -
K
KMG
KMGR
KR
L
LFT
L W F

MULTIPLY AND ADD
MULTIPLY ABSOLUTE AND ADD
MULTIPLY NEGATIVE AND ADD
MULTIPLY NEGATIVE ABSOLUTE AND ADD
DIVIDE
BRANCH
BRANCH DISABLED
BRANCH ENABLED
BRANCH ENABLED AND WAIT
BRANCH RELATIVE
ADD DOUBLE
ADD DOUBLE TO MAGNITUDE
SUBTRACT DOUBLE
SUBTRACT DOUBLE FROM MAGNITUDE
LOADDOUBLE
LOAD DOUBLE WITH FLAG
MULTIPLY DOUBLE
DIVIDE DOUBLE
ADDTOEXPONENT
ADD ABSOLUTE IMMEDIATE TO EXPONENT
ADD IMMEDIATE TO EXPONENT
SUBTRACT FROM EXPONENT
SUBTRACT ABSOLUTE IMMEDIATE FROM EXPONENT
SUBTRACT IMMEDIATE FROM EXPONENT
EXECUTE
EXECUTE INDIRECT AND COUNT
ADD TO FRACTION
SUBTRACT FROM FRACTION
COMPARE
COMPARE MAGNITUDE
COMPARE MAGNITUDE FOR RANGE
COMPARE FOR RANGE
LOAD
LOADFACTOR
LOAD WITH FLAG

A - 9

July 1, 1959

F
F
F
F
F
F
M
M
M
F
F
F
F
M
F

F
F

F
F
M

M t
MtA
MtMG
M-
M-A
M-MG
N O P
R
RCZ
R /
SHF
SHFE
SHFR
SIC
SLO
SNRT
SRD
SRT
ST
z

ADD TO MEMORY
ADD TO ABSOLUTE MEMORY
ADD MAGNITUDE TO MEMORY
SUBTRACT FROM MEMORY
SUBTRACT FROM ABSOLUTE MEMORY

6 	 SUBTRACT MAGNITUDE FROM MEMORY
NO OPERATION
REFILL
REFILL ON COUNT ZERO

7 	 RECIPROCAL DIVIDE
7 	 SHIFT FRACTION

SHIFT FRACTION LEFT (SAME AS GHFA)
SHIFT FRACTION RIGHT (SAME AS SHFNA)
STORE INSTRUCTION COUNTER IF
STORE LOW ORDER
STORE NEGATIVE ROOT
STORE ROUNDED
STORE ROOT
STORE
STORE ZERO

A - 10

E

E

E

E
E
E
E
E
E
E
E
E
E
E
E
E

Iri 	 E
E
E
E
E
E
E

July 1, 1959

I1 LIST O F MNEMONICS B Y TYPE

B. 1/0SELECTS

BS BACKSPACE
BSFL BACKSPACE FILE
c c w COPY CONTROL WORD
CTL CONTROL
ERG ERASE CAP
EVEN EVEN PAR.ITY
GONG GONG
HD HIGH DENSITY
KLN CHECK LIGHT ON
LD LOW DENSITY
LOC LOCATE (SAME AS SELECT UNIT)
ODD ODD PARITY
RD READ
R E L RELEASE CHANNEL
REW REWIND
RLF RESERVED.LIGHT O F F
RLN RESERVED LIGHT ON
SEOP 11 SUPPRESS E N D O F OPERATION
SP SPACE
SPFL SPACE FILE
su SELECT UNIT (SAME AS LOCATE)
W WRITE
WEF WRITE END OF FILE

A - 11

,

-bf

V
V
Y
v
V
v
V
V
V
V
V
V
V
Y
v
V
V
V
V
V
V
v
V
V
v
V
V
V
V
v
V
v
v
v
V
V

v

July 1, 1959

14: LIST O F MNEMONICS BY TYPE

6 . VFL

+. 3 ADD
4- MG 3 ADD TO MAGNITUDE
- 3 SUBTRA CT
- MG 3 SUBTRACT FROM MAGNITUDE

*< *
>$ 4 MULTIPLY

MULTIPLY AND ADD
>:<I.t MULTIPLY IMMEDIATE AND ADD
%N9 MULTIPLY NEGATIVE AND ADD
+N1[+ MULTIPLY NEGATIVE IMMEDIATE AND ADD
1 4 DIVIDE
c 10 CONNECT
&3M 10 CONNECT TO MEMORY
CT 10 CONNECT FOR TEST
CV 5 CONVERT
DCV 5 CONVERT DOUBLE
K 4 COMPARE
KE 4 COMPARE IF EQUAL
K F 4 COMPARE FIELD
K F E 4 COMPARE FIELD IF EQUAL
KFR 4 COMPARE FIELD FOR RAN(iE
MR 4 COMPARE FOR RANGE
L 4 LOAD
LCV 4 LOAD CONVERTED
LF LOAD FIELD
L F T 4 LOAD FACTOR
LTRCV 4 LOAD TRANSIT CONVERTED
LTRS 4 LOAD TRANSIT AND SET
L W F 4 LOAD WITH FLAG
M + 3 ADD TO MEMORY
M + 1 ADD ONE TO MEMORY
MtMG 3 ADD MAGNITUDE TO MEMORY
M - SUBTRACT FROM MEMORY
M - 1 SUBTRACT ONE FROM MEMORY
M -MG 3 SUBTRACT MANGITUDE FROM MEMORY
SF STORE FIELD
SRD 5 STORE ROUNDED
ST 5 STORE

A - 12

July 1, 1959

H , SYSTEM SYMBOLS THAT ARE BIT ADDRESSES

"' LOACTION
WORD BIT

-NO. ADDRESS MNEMONIC

SY.STEM SYMBOL

NAME

1 1
1 1
1 1
1 1
1 1
1 1
1 1

15
16
17
18
19
20
21

$
$
$
$
$
$
$

INSTRUCTION EXCEPTION
O P OPERATION INVALID
AD ADDRESS INVALID
USA UNENDED SEQUENCE OF ADDRESSES
EXE EXECUTE EXCEPTION
DS DATA STORE
DF DATA FETCH
IF INSTRUCTION FETCH

1 1
1 1
1 1

22
23
24

$
$
$

RESULT EXCEPTION
L C LOST CARRY
PF PARTIAL FIELD
ZD ZERO DIVISOR

P E
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

25
26
27
28
29
30
31
32
33
34

RESULT EXCEPTION-FLOATING POINT
IR IMAGINARY ROOT
LS LOST SIGNIFICANCE
PSH PREPARATORY SHIFT GREATER THAN 48
XPO EXPONENT OVERFLOW (E X P > 211)
XPH EXPONENT HIGH (2''4EXPd.2' ')
X P M EXPONENT MEDIUM (28,< EXP<21°)
X P L EXPONENT LOW (Z 5 5 EXP<28)
XPN EXPONENT HIGH NEGATIVE (-2lk33XP42!?')
XPU EXPONENT UNDERFLOW (EXP4c<-211)
R U REMAINDER UNDERFLOW

1 1
1 1
1 1
1 1

35
36
37
38

$
$
$
$

FLAGGING
T F
U F
VF
X F

T FLAG
U FLAG
V FLAG
INDEX FLAG

111
1 1

39
40

$
$

TRANSIT OPERATIONS
BTR BINARY TRANSIT
DTR DECIMAL TRANSIT

1 1 41-47 $ PGO. .PG6 PROGRAM INDICATORS

A - 18

. 	 July 1, 1959

*w 7 . 	 This floating point operation code may have the following
suff ixe s :

N Negative

A Abs olut e

NA 	 Negative Absolute

8 . 	 Count and Branch operation may have the following suffixes:

+ 	 Add one to value

-	 Subtract one f r o m value

H 	 Add half to value

9 . 	 This operation code may be used to indicate either an
immediate indexing operation or the secondary operation
of any V F L instruction.

10 	 This operation mnemonic specifies potentially 16 connect e

o r d e r s . Four binary digits a r e wri t ten directly af ter the
op code to se lec t a par t icular one at the 16 o r d e r s .
This op code is a l so subject to footnote 3 .

111. 	 This code may be as a secondary operation in connection
with those 1/0select o rde r s which a r e subject to end-of-
operation interrupts e

112. 	 These mnemonics a r e mathematical constants e

A-24

h

Y

July 1, 1959

11. LIST O F MNEMONICS B Y TYPE

G. INDEX TRANSMISSION AND AFUTHMETIC

G + I ADD IMMEDIATE TO COUNT
& : - a SUBTRACT IMMEDIATE FROM COUNT
KC COMPARE COUNT
KCI COMPARE COUNT IMMEDIATE
KV COMPARE VALUE

I KVI COMPARE VALUE IMMEDIATE
I KVNI COMPARE VALUE NEGATIVE IMMEDIATE
I LC LOAD COUNT
1 LCI LOAD COUNT IMMEDIATE
H LR LOAD REFILL
1 LRI LOAD REFILL IMMEDIATE
1 LV LOAD VALUE
I LVE LOAD VALUE EFFECTIVE
I LVI LOAD VALUE IMMEDIATE
1 LVNP LOAD VALUE NEGATIVE IMMEDIATE
I LVS LOAD VALUE WITH SUM
I LX LOAD INDEX
I RNX RENAME

- 1 sc STORE COUNT
1 , SR STORE REFILL
I SV STORE VALUE
I SVA STORE V L U E IN ADDRESS
I SX STORE INDEX

V-e ADDTOVALUE
V + C ADD TO VALUE AND COUNT
V + CR ADDTOVALUE, COUNTANDREFILL
V t I 9 ADD IMMEDIATE TO VALUE
V+IC 9 ADD IMMEDIATE TO VALUE AND COUNT
V+ICR 9 ADD IMMEDIATE TO VALUE, COUNT AND REFILL
v -I 9 SUBTRACT IMMEDIATE FROM VALUE
v -IC 9 SUBTRACT IMMEDIATE FROM VALUE AND COUNT
V -1CR 9 SUBTRACT IMMEDIATE FROM VALUE, COUNT AND REFILL

A - 16

July 1, 1959

H. SYSTEM SYM3OLS THAT ARE BIT ADDRESSES

LOCATION SYSTEM SYMBOL
WORD BIT
NO.- ADDRESS

0 0 - 6 3

1 0-18
1 28-63
2 0-17
3 0-17
3 32-49
3 57
4 0 - 6 3
5 12-18
6 0-18
7 17-23
7 44-50
8 0-63
9 0 -63
10 0 - 7

11 0-63
11 0
11 1
11 2
11 3

11 4
11 5

11 6
11 7
11 8

11 9
11 10
11 11
11 12
11 13
11 14

MNEMONIC NAME

z

IT
T C
IA
UB
L B
BC
MB
CA
C P U
L Z C
AUC
L
R
SB

IND
MK
IK
IJ
EK

TS
CPUS

EKJ
UNRJ
CBJ

E P G K
UK
EE
E O P
cs

.--

WORD NUMBER ZERO

INTERVAL TIMER
TIME CLOCK
INTERRUPTION ADDRESS
UPPER BOUNDARY
LOWER BOUNDARY
BOUNDAlRY CONTROL
MAINTENANCE BITS
CHANNEL ADDRESS
OTHER CPU
L E F T ZEROS COUNT
ALL ONES COUNT
LEFTHALFOFACCUMULATOR
RIGHT HALF O F ACCUMULATOR
SIGN BYTE

INDICATORS

INDICATORS

MACHINE CHECK
INSTRUCTION CHECK
INSTRUCTION REJECT
EXCHANGE CONTROLCHECK

ATTENTION REQUEST
TIME SIGNAL
CPU SIGNAL

INPUT-OUTPUT REJECTS
EXCHANGE CHECK REJECT
UNIT NOT READY REJECT
CHANNEL BUSY REJECT

INPUT-OUTPUT STATUS
EXCHANGE PROGRAM CHECK
UNIT CHECK
END EXCEPTION
END O F OPERATION
CHANNEL SIGNAL
RESERVED

A - 17

