
TABLE O F CONTENTS

1 . General

1. 11 Strap Coding Form

1. i! Expression of Machine Instructions

1 2 . 1 Symbolic Instruction Format s

1.2!.2 Data Description (dds)

1 . 2 : , 3 Mnemonics

11.2.4 Numbers and Symbols

1 . 2 3 Arithmetic Expressions

1.2,.6 System Symbols

W 1 . 2 . 7 Variable -in-Number Field F o r m a t

1 . 3 Pseudo Operations

1 . 3 . 1 Pseudo Operations That Create Memory Elements

1 , 3 . 1 . 1 The Form of N in a Data Definition Statement

1 . 3 . 1 . 2 The Entry Mode

1 . 3 . 2 Pseudo Operations Which Define Symbols

1 . 3 . 3 Pseudo Operations Which Give Directions To The Compiler

2 . 1 Pr imi t ive Super vis or

2 . 1 ' 1 Binary Loader

2 . 1 . 1 . 1 Origin Card
(

2 . 1 . 1 . 2 Flow Card

LV
2 . 1 . 1 . 3 Branch Card

2 . 1 . 1 . 4 Dump Card

2 . 1 . 2 Interrupt Table

pp.

1 - 1

1 - 2

1 - 3

1 - 4

1 - 6

1 - 8

1 - 9

1 - 11

1 - 13

1 - 15

1 - 16

1 - 17

1 - 20

1 - 22

1 - 25

1 - 26

2 - 1

2 - 2

2 - 3

2 - 4

2 - 5

2 - 6

2 - 7

i

p g
&is* 2.1 .3 Debugging Aids 2 - 8

2.1 .3 .1 Memory Dump 2 - 9

2.1 .3 .2 Debugging Macroops 2 - 10

Appendix A-STRAP- 1 Mnemonics A - 1

I OVER-ALL LIST O F MNEMONICS- - -

A. SYSTEM SYMBOLS A - 2

B. OPERATIONS A - 5

I1 LIST O F MNEMONICS BY TYPE---

A . FLOATING POINT A - 9

B . 1/0 SELECTS A - 11

C . VFL A - 1 2

D. TRANSMITS A - 13

E . COUNT AND BRANCH A - 14

F. BRANCH ON BIT A - 15

G . INDEX TRANSMISSION AND ARITHMETIC A - 16

H . SYSTEM SYMBOLS THAT ARE BIT ADDKESSES A - 17

I . SYSTEM SYMBOLS THAT M E INTEGERS A - 20

J . SYSTEM SYMBOLS THAT ARE REAL NUMBERS A - 21

LEGEND O F INSTRUCETON TYPE DESIGNATIONS A - 22

N01TES A - 23

Appendix B - STRAP -1 PSEUDO OPERATIONS B - 1

ii

1 . General

STRAP-1 is a symbolic programming sys tem for STRETCH
which utilizes a 32K 704 for assembly . It is a planned p r e -
decessor of STRAP-2, a m o r e elaborate programming sys tem
for STRETCH which is to utilize STRETCH instead of the
704 for assembly , Since S T R A P 4 is a planned subset of
STRAP-2, the specifications defined he re under section 1 a r e
applicable to both STRAP- 1 and STRAP-2

STRAP- 1 specifications a r e divided into three main categories .
Category 1 pertains to the STRAP coding f o r m . In this category
a f o r m is defined which conveniently allowa for the expression
of both machine instructions and pseudo-instructions which
direct the assembler i tself . Category 2 per ta ins to the expressian
of symbolic machine instructions . In this category definitions
a r e made covering symbolic instruction formats the fields
which make them up, and the various mnemonics and c lasses
of symbols and numbers which may be used in f ie lds . Category 3
pertains to the expression of the compiler ' s pseudo-instructions ,
In this category pseudo-instruction mnemonics, fo rma t s , and
addresses a r e defined.

1 - 1

1 . 1 STRAP Coding F o r m

The coding f o r m is directly re la ted to the instruction ca rd fo rm.
They both have 80 columns and a r e divided into 4 f ie lds . These
four fields and their respect ive positions a r e :

1 2 9 10 7 2 7 3 80
CLASS NAME STATEMENT IDENTI-

FICATION

STRAP CODING FORM

' The purpose of each field is:

1. 	CLASS (1 column) - to identify the card format (binary, decimal ,
symbolic, e tc .) .

2 . 	NAME (8 columns) - to identify the s ta tement .
3 . 	STATEMENT- (63 columns) - to express a machine instruction or

a pseudo-instruction.
4. 	IDENTIFICATION (8 columns) - identify the c a r d .

Card identification (columns 73-80) is reproduced on the l is t ing, but does
not contribute any information to the assembly program €or translating
instruct ions.

1 - 2

1 . 2 Expression of Machine Instructions

Machine instructions a r e wri t ten symbolically on the coding f o r m
descr ibed above. Normally they a r e entered one per line according
to a prescr ibed format which va r i e s with the type of instruction
operation. The instructions a r e wri t ten with fixed mnemonic opera-
tion codes ,

A Hollerith 11-0 double punch combination will be used to imply the
end of a s ta tement , s o that multiple s ta tements may be writ ten per
l ine . However, this charac te r a l so imp1ie.s the end of a comment ,
s o that it may not be included in a comment .

Other fields in the instruction fo rma t - - addres ses , modif iers , e t c . - -
may be s ta ted within the general symbolic fo rms of the sys t em, and,
when s o s ta ted , a r e sa id to constitute symbolic express ions . The
order and manner in which such symbolic expressions a r e wri t ten
down in specifying the elements of any par t icular instruction a r e
dictated by a symbolic instruction f o r m a t , that i s , a general type
which provides for the expression of a whole c lass of par t icular
machine instruct ions.

1..2.1 Symbolic Instruction F o r m a t s

Symbolic instructions a r e entered in the statement field. Within
this field variable length operation codes and address expressions
a r e separated by commas and f o r m sub-fields. A variable length
modifier to either an operation o r an address is enclosed in paren-
theses and attached to the modified sub-field. Blanks have no mean-
ing in any field except to indicate the spacing des i red on the printed
output l is t ing. The nine symolic instruction formats for STRAP
a r e :

FORMAT TYPE 	 OPERATION TYPE

1 . OP(dds),A(1) 	 Floating Poin ty Miscellaneous
2 . OP,A(K) 	 Indi cat or Br anch
3 . O P , J , A (I) 	 Direct and Immediate Index
4 . O P , J , A (K) 	 Count and Branch
5 . OP,B(I) ,A(K) 	 Branch on Bit
6 . op,J,A1(11),A2(1 1 	 Transmit
7 . OP1(OPZ)(dds) Ar i l) , OFFSET (I2) Integer and Logical Functions
8 9 OP1(0P2)> C(IJ ,A(IZ) Input-Output Select
9 . 	OP1(OP2), A yCOUNT?Chain Address Input-Output Transmission

Gontr ol Word

Definitions f o r the above format symbols a re :

1 . 0P1 	 pr imary instruction operation
2 . 0P2 	 subs idiar y instruction op e r ation
3 . dds 	 operation modifier designating a data description
4 . J 	 index reg is te r used as an operand reg is te r
5 . B 	 bit add res s
6 . A , A l , A 	 pr imary and secondary addres ses
7 . c 2 	 I / O control unit
8 . 	1,11?12 p r imary and secondary index r eg i s t e r s used as

addres s modifiers
9 . 	K index r eg i s t e r used as an addres s modifier where

no modification (0) o r modification by index reg is te r 1
(1) a r e the only possibi l i t ies .

1 - 4

There is a general right to left "drop-out" order for all
the fields separated by commas . F o r example, a V F L
instruction (Format Type 7 above) for which the offset and
its index modifier a r e ze ro is written:

The comma i s the major separa tor for the symbolic instruction
types. If there a r e l e s s than the maximum number of major
symbolic fields in a given instruction expression (as indicated
by the comma count), then the instruction is compiled as though
the missing fields had been added a t the end of the statement and
a s though they contained z e r o s . Such f ie lds , whose contents a r e
implied in a standard way by the omission of any explicit specifica-
t ion, a r e called null f ie lds . A null field is always compiled as

.II

z e r o , with the exceptions, indicated below in Section 1 . 2 . 2 , of
those sub-fields of a data description which express mode and
byte s ize; and with the fur ther exception of the operation code
pa r t of the operation field, which must always contain a legitimate
operation code, and hence may never be null . Within a major
f ie ld , a parenthesized sub-field may be made null by omission.
Thus in the V F L example cited above, i f the main index designation
were to be ze ro but the offset and its index modifier (which in the
hardware a l so modifies field length and byte s ize) were both to
be 1 , the instruction could be writ ten:

A major field may be null, even though other non-null fields
follow i t . Such is the case i f nothing but the comma denoting
the field termination i s wri t ten. Thus in the example just shown
if the offset and its modifier were both to be 1 but the principal
address and its modifier were both to be z e r o , the instruction
could be writ ten:

1 - 5

V

1 . 2 . 2 Data Description (dds)

The smal l l e t t e r s trddsll enclosed in parentheses in the above
formats stand for the data description field. It is established
by specifying:

1 . M use mode,
2 . L field length, and
3 . BS byte s i z e .

These three en t r ies appear in the above order within parentheses
and a r e separted with commas thus , (M, L , BS). When the data
description i s specified in a machine instruct ion, it over - ru les
any other implied or indirectly specified data descr ipt ion. When
it is not specified, the description is assumed to be that associated
with the symbol in the principal addres s field of the machine in-
s t ruct ion. If this symbol has no data description associated with
i t , an e r r o r condition a r i s e s .

When a s t r ing of symbols a r e added in an addres s f ie ld , the l a s t
c

symbol writ ten down is the one whose data propert ies control
those of the instruct ion.

A complete description of the method by which a data description
may be attached to the symbol which names a piece of data is
given in Section 1 . 3 . 1 under the explantion of the Data Definition
pseudo operation.

The mode "MI' i s always specified in a data description en t ry .

This is to say that "MI' may never be a null f ie ld , so that , for

example, if the f i r s t charac te r in a data description were a comma,

an error would be indicated. The seven modes are:

1 . B binary
2 . B U binary unsigned
3 , D decimal
4 . DU decimal unsigned
5 . N normalized floating point
6 . U unnormalized, floating point
7 . P Prope r t i e s mode

The mnemonic in the mode field of a data description has the lrPtt

following meaning:
(P, RIVER)

implies in either an instruction or a data pseudo-op that the data
description associated with the symbol RIVER i s to be invoked just a s
though i t had been wri t ten out explicitly. Thus, in an instruction, the
dds of RIVER would over - ru le anything implied by the symbol in the
major address f ie ld .

1 - 6

- V I

Within a data descripti.on f ie ld , the usual r ight to left
drop-out order and null field conventions hold (except, as
indicated, that the mode field may not be null) so that a
data description may appear in any of the following four
forms:

(MI

(M, J4

(M, 3s)

If the field length is null , a field length of 0 (effectively, 64)
is compiled. If the byte s ize is null , the compiled byte s ize
is a function of the mode:

Mode Standard Byte Size

D or DU 4

B 1

B U 8

Field length. and byte s ize a r e null

Byte s i ze is null

Field length is null

1 - 7

=W 1 . 2 . 3 Mnemonics

A complete list of all machine mnemonics i s included
in Appendix A . Both operation codes and sys t em symbols
are included in the l i s t .

A complete l i s t of STRAP-I pseudo operation mnemonics
is presented in Appemdix B .

1 - 8

1 . 2 . 4 Numbers and Symbols

There a r e two different number sys tems which in general
run through the STRAP- 1 language, the ordinary sys tem of
r e a l numbers and a bit -address numbering s y s t e m . The
ordinary r e a l numbers axe r e s t r i c t ed in all non-data fields
to be integers e Real numbers which a r e not integers may ,
of course be entered as da ta , but they may not take pa r t in
a r i thmet ic expressions nor may they be symbolized, S O that
the general forms of the language are real ly l imited to integers
and bit a d d r e s s e s .

Bit Addresses consis t of a pair of integers separated by a
per iod . The integer t o the left of the period specifies a word
addres s while the integer to the right specifies a bit a d d r e s s .
Thus , 6 . 3 2 is the decimal equivalent of either a 19 o r 24-bit
binary addres s specifying bit 32 of memory location 6- the
bit preceeded by exactly 6 and one-half memory words .
(Note that only the presence of a period distinguishes a bit
add res s f r o m an integer .)

Symbols which identify memory elements i n the object pro-
gram a r e automatically ass ignedbi t add res ses which locate
these memory e lements . A symbol may , however, be given u

the value of an integer through the use of a t 'synonymtl pseudo-
operation. Thus in general both bit add res ses and integers
may be symbolized. The t e r m "integer" will be used to denote
e i ther an integral number or a symbol which takes on an
integral value, and s imi la r ly s o with r e spec t to the t e r m
"bit addr e ss ''

A symbol is any sequence of eight or fewer alphabetic and
numeric cha rac t e r s conforming to the following conditions:

1 . 	 It contains only alphanumeric cha rac t e r s .

2 , 	 Its f i r s t charac te r is specifically alphabetic.

3 . 	 It appears i n the name field of a program instruction
by vir tue of which i t is "defined" and is assigned a
value which i s either a 24-bit binary addres s or an
in t ege r .

Thus , the addres s designation A(1) has two possible meanings:

i) 	 If I is a bit a d d r e s s , then it designates an index word
and is compiled in the so-called I-field.

ii) 	 If I is an in teger , then an addres s equal to A plus I t imes
the field length of A is compiled.

1 - 1 0
V

1 . 2 . 5 Arithmetic Expressions

Arithmetic expressions in STRAP-1 may be composed of
addition and/or subtraction of any combination of symbols ,
integers and bit a d d r e s s e s .

Integers add into all fields as in tegers , i .e . the units digit
adds into the low order position of the f ie ld . The number of
additive operands in an ar i thmetic expression is l imited by
neither number nor type.

When the value of a symbolic expression is negative, and the
field i s unsigned, the two's complement of the number (i.e . ,
in an n-bit field the difference between 2n and the number) i s
used . In the case of the 7-bit OFFSET field of a symbolic
instruct ion, negative numbers may be used to descr ibe the
low order position of the data field in relafion to the left
r a the r than the r ight end of the accumulator . Thus, the 128
bi ts of the accumulator bear the offset a d d r e s s e s , proceeding
f r o m the left to the r igh t , of l'127 I 126. . . . l ,0" o r , a l ternat ively,
Qf "-1, - 2 -127, -128".

When the value of a symbolic expression is negative and the
W 	 field in which the expression is to be evaluated is a signed

field (for example, the immediate field of any signed instruct ion,
o r the value field of XW or V F) , then the sign i t 3 compiled as
such in the appropriate position and the t rue value r a the r than
the two's complement of the number is used .

Bit add res s a r i thmet ic is executed in the following manner:
a conversion is performed in order t o t rans la te the pa i r of
integers comprising the bit add res s into a single 24-bit in teger .
In dealing with an expression involving the addition of bit
a d d r e s s e s , each addres s is converted separately and the
resul tant 24-bit integers a r e then added. If the length of the
field in which the expression is to be inser ted is l e s s than 24,
bits may be t runcated in high o rde r posit ions, in low order
posit ions, or in both,

Example: When a bit address is to be inser ted in
a 4-bit index word I o r J 	f ie ld , its rightmost 6 and
leftmost 14 bits a r e shorn . In a I-bit K f ie ld , the
r ightmost 6 and the lef tmost 17 bi ts a r e dropped.

1 - I I

Bit addres ses a r e permit ted in all fields where p rogrammer
symbols a r e permi t ted . A bit address expression is always
evaluated, then truncated according to the par t icular field in

W 	 which it is to be compiled, and then--if the resu l t is negative--
complemented if the field is unsigned. The truncation on the
right occurs for par t icular f ields in the following manner:

FIELD 	 TRUNCATION

I-bi t o r 4-bit index field All s ix fractional bits a r e dropped.

18-bit add res s All s ix fractional bits a r e dropped.

19-bit add res s Rightmost 5 fractional bits a r e dropped.

24-bit add res s Nothing dropped .

Field length (6-bit f ield) All integral bits a r e dropped on the le f t ,

nothing on the r igh t .
Byte s i ze (3-bit f ield) All but r ightmost 3 fractional bits dropped
Offset field (7-bit field) All but one integral bit los t on the lef t ,

nothing i s dropped on the r ight .
Refill f ie ld , Count f ie ld , I / O All six fractional bits a r e dropped.
Channel f ie ld , 1/0 Unit field
Address field of shift and add The rightmost 11 bits of the 24-bit
exponent immediate instructions address a r e inser ted in the f i r s t 11 bits

of the address field and all other bits
t o the left a r e l o s t . Bit 11 of the address
field (the 12th bit) takes the s ign.

F o r an integer ar i thmetic expression being evaluated for an n-bit
f ie ld , ar i thmetic is simply performed modulo 2n (achieved through
truncation of lef tmost b i t s) , and when the subject field is unsigned
the final resu l t is complemented i f negative. In this c a s e , however,
the order in which truncation and complementation occur , ei ther
in relation to each other or to ar i thmetic operat ions, is not significant
s ince only high order positions a r e involved.

Ari thmetic expressions may not appear in the NAME field, which is
r e se rved entirely for the definition of symbols, and of a t most one
per s ta tement . Otherwise, subject only to the bit add res s and integer
res t r ic t ions stipulated in Section 1 . 2 . 4 , an ar i thmetic expression
may occur in any field with three exceptions:

1) The operation code pa r t of the operation field.
2) The mode sub-field of a data description field.
3) Any entry mode field (defined under Section 1 3 . 5) .

These exceptions a r e r e s e r v e d entire1.y f o r designations whose
meanings to the compiler a r e absolute and may not be symbolized.

1 - 12

1 . 2 . 6 System Symbols

System symbols a r e symbols whose values have been defined by the
Compiler and a r e therefore fixed. In all other r e spec t s , for example
in relation to the conventions for legal ar i thmetic expressions and
bit address- integer conventions, sys tem symbols a r e exactly like
ordinary programmer -defined symbols .

System symbols a r e identified a8 a special c lass by the prefix
charac te r (which as one of the non-alphanumeric charactes can
never appear as pa r t of a programmer symbol). All sys tem symbols
which stand for the addres ses of special r eg i s t e r s in memory (e . g .
L, the left half of the accumulator) a r e bit add res ses , and all others
a r e integers or r e a l numbers .

The appearance of the character alone makes for a special
sys t em symbol which provides a standardized substitute i n place of
a name for the cur ren t s ta tement . This is to say that the character
t f $ l r is a bit address which in any par t icular statement wherein it appears
functions as though it had been defined by being wri t ten in the NAME
field of that s ta tement .

A special u se of the lf$lfcharac te r is to prefix any operation code in
this manner- -$OP-- . This d i rec ts the compiler to suppress any
e r r o r indications which a r i s e in connection with the compilation of
this s ta tement .

Since the actual numerical addresses which a r e to identify par t icular
1/0 units and channels may be chosen a rb i t r a r i l y , sys tem symbols
which represent integers a r e provided for use in addressing 1/0
equipment. The numerical values of members of this s e t of sys tem
symbols , unlike the values of all the o thers , may vary f r o m one in-
stallation to another , in order that RDR--for example--may represent
the ca rd reader channel address independently of what that addres s , in
any par t icular installation, may be

1/0 System Symbols a re :

Symbol Meaning

PCH Punch (Channel Address)
PRT Pr in t e r (Channel Address)
RDR Reader (Channel Address)
DISK Disk Unit (Channel Address)

1 - 1 3

Note: The a r c s of a disc may be addressed
by any legal symbolic integer expression,
evaluated modulo 212 to a s s u r e a valid
a r c a d d r e s s .

Ico, c1 . e Ck 	 General channel a d d r e s s e s . These-
symbols a r e provided for multi-unit
channels only. (i .e . , they exclude the
channels named RDR, PRT etc .)

TO,T1Tk 	 Tape Units (Unit Addresses) for a-
channel which includes k 	+ 1 uni ts .-

IQS 	 Inquiry Station (Channel or Uni t Addres s) .
This symbol may have different values
depending on whether it appears in a
channel addres s o r unit add res s field
of a symbolic se lec t o r d e r .

CNSL 	 Console (Channel or Unit Address)
-I

w- The sys t em symbol mnemonics for tapes and channels a r e numbered
in the expectation that m o r e than one of each kind will be typical.

All of the other units named however, a r e a l so capable of plural
attachement to a machine configuration, in which case numerical
suffixes a r e added to expand the single-unit sys t em symbol in a
s tandard way. F o r example, i f t he re a re k punches for a given machine,
the i r sys t em symbols a r e : PCHO, PCHI ,-PCH2. . .PCHk..-- I , where
PCHO i s synonomous withPCH.

At each instal la t ionss option some sys t em symbols--represent ing
equipment not included in the par t icular sys t em at hand- -may elicit
e r r o r flags on the l is t ing.

P -14

-w'
1 . 2 . 7 Variable -in- Numbe r Field F o r mat

The Load Value with Sum (LVS)instruction may be writ ten
with a var iable number of address f ie lds , each of which
actually picks out a single bi t position within the LVS address
field i t s e l f . For an LVS o r d e r , each address field may
specify one of index r eg i s t e r s 0 through 15. These fields
a r e evaluated exactly as if they were regular index designator
f ie lds , so that index addresses may be specified in t e r m s
of either bit addresses or integers in the normal manner .
The I - field may be specified in parentheses after any one
of the f ie lds . If m o r e than one I-field is specified, a warning
indication will be made and the I-field of the instruction will
be filled with the logical OR union of the multiple designationa.

P - 15

"V-

1 . 3 Pseudo Cberations

In this section will be found itemized a number of operation
codes provided for purposes of defining data and of controlling
and directing the assembly process i t se l f . Since these codes
do not directly produce machine instructions in the object
p rog ram, the functions which they do t r igger a re r e fe r r ed to
as 	"pseudo operations".

The pseudo operations a r e grouped according to type. There
a r e two main c lasses of pseudo operations:

1 . Those which c rea te memory elements .

2 . Those which control the assembly p rocess .
a . 	Those which define symbols by assigning

values which appear in the variable f ie ld .

b . 	Those which give directions to the compiler .

The NAME field of all pseudo operations which neither c rea te
memory elements nor define symbols is ignored.

1 - 16

1 . 3 . 1 Pseudo Operations That Create Memory Elements

The following provide the basic means for defining and entering
generalized data in the STKAP- 1 language:

Mne moni c Name Usage

1, DD "DATA DEFINITION'' DD (dds) , N1, N2 ' ' 9 'Nk

where the bracketed Isddsft is a
data des cription prescr ibing the
meaning of all succeeding numbers
(N) . The numbers N a r e compiled
in consecutive fields and any symbol
appearing in the NAME field of the
DD statement applies to the first
such f ie ld .

The data description (dds) is identical in f o r m and content to that de-
sc r ibed in Section l .2 . 2 , that i s ? to the data description which may
be used when writ ing an individual instruct ion. Thus a description
may be given with a number at the point of definition of the number
i t se l f , o r may be given a t the point of re ference as pa r t of an ins t ruc-
tion re fer r ing to the number . The relation between these two different
points of possible definition is as follows:

When the data description is given by a DD statement (or other data
defining operation) ? the description is invoked whenever the symbol
appearing in the NAME field of the DD statement is used in the
principal address field of an instruct ion. The instruction mode, and--
in the case of a V F L order - - the field length, byte s ize and offset a r e
the supplied by this data description which is logically affixed to the
name of the DD statement .

Such a description se t down at the point of symbol definition is over-
ruled by an description appearing in an instruction re fer r ing to the
symbol . Whenever an over-rul ing description appears in the data
description field of a n instruct ion, the ent i re description which was
given at the point of definition of the address symbol is over - ru led .
Thus the statement:

O P (BU) JOE

causes the binary and unsigned modifiers to be compiled along

1 - 17

with an implicitly defined field length of 64 and a byte s ize of 8 ,
regard less of the description occurring in the statement in which
JOE appeared in the NAME field. Over-ruling is s t r ic t ly local
and applies only to the instruction a t hand.

If symbols a r e used in defining either the field length o r byte
s ize sub-fields of a DD statement 's data description, the symbols
must be fully defined when the compiler encounters the DD state-
ment . This requirement is not imposed on the data description
of an instruction s ince , i n that instance, no assignment of memory
space is dependent on the contents of the sub-fields.

Symbols which name instructions themselves a r e automatically
imbued with data descriptions . Specifically, instruction-naming
symbols a r e given field lengths equal to the lengths of the par t icular
instructions named (i .e . ei ther 32 or 64) , and a r e defined as unsigned
binary with byte s ize 8 .

System symbols whose values a r e the bit addresses of special
r eg i s t e r s in memory a l so have data descriptions which have been
fixed by the compiler (although, as with ordinary symbols , these
descriptions may be over-ruled by the data description fields of
instruct ions) . Specifically, sys tem symbols representing memory
r eg i s t e r s a r e binary unsigned, have field lengths equal to the lengths
of their represented r e g i s t e r s , and have byte s ize 8 .

Use of the tlP1tmode (see Section 1 . 2 . 2) in the data descriptipn (dds)
of a DD statement as in:

NAME DD(P,RIVER) N l , N 2Nk

will cause the data propert ies of RIVER to be invoked just a s i f these
propert ies had been writ ten in the data description field of the DD state-
ment .

2 . xw 'INDEX WORD' ' XW ,VALUE COUNT, REFILL, FLAG

The location counter is rounded to the next full word . The contents of the
four symbolic fields following the operation a r e converted and compiled
in an index word fo rma t . FLAG denotes the machine field comprised
of bits 25,26 and 27, An expression in the FLAG field of an XW
statement is cherefore evaluated modulo 2 3 .

Note: Bit 24 of the word format is taken to be the VALUE
sign position. A negative sign is interpreted in two's com-
plement f o r m in the usual way for all other f ie lds .

1 - 18

3 . V F 	 "VALUE FIELD" V F , VALUE

The location counter i s rounded to the next half word . The contents -
of VALUE a r e compiled a s a 24-bit plus sign quantity in positions
0-24 of the next half word . The location counter stands a t bit 25
a t the end of the operation.

4 . C F "COUNT FIELD' ' 	 C F , COUNT

The location counter i s rounded to the next half word . The contents
of the COUNT field a r e compiled as an n 18 bit integer in positions
0 - 1 7 , The location counter stands at bit 18 a t the end of the operation.

5 . R F "REFILL FIELD" 	 R F , REFILL

This pseudo operation is the same as C F , except that bit add res ses
ra ther than integers must be used .

NOTE: The l a s t four operations (the index word pseudo operations)
defined above a r e given data descriptions by the compi le r , jus t as
though they had been defined by DD statements Specifically, the index
elements created by these o r d e r s have had the following data descriptions
affixed automatically :

OPERATION DATA DESCRIPTION

xw
VF
C F or R F

6 . 	 c w "CONTROL WORD" CW(O P),ADDRESS, COUNT,
CHAIN ADDRESS

The pseudo operation CW employs a special symbolic format a s
i l lustrated above and defined initially in Section 1 . 2 . 1 . A se t of
secondary operations is provided--whose members a r e expressed
a s parenthesized secondary operations in the manner of l l (O P) l labove--
with the purpose of providing mnemonics for control word functions:

Multiple Bit Chain Bit
CR "COUNT WITHIN RECORD" 0 0
CCR "CHAIN COUNTS WITH-IN 0 1

RECORD"
CD "COUNT DISREGARDING R E - I 0

CORD"
CDSCt COUNT DISREGARDING 1 1

RECORD, SKIP AND C€IAIN"

1 - 19

1 3 . I . . 1 The F o r m of N in a Data Definition Statement

All data falls under the category of one of the six modes of the data
description field: N , U , B , B U , D, and DU. The numbers N1.. .NK
a r e expressed in the form:

and may optionally have other quantities following them which a r e
identified and separated f r o m the main number by declension
charac te rs :

E 2 i 	 The integer " i l l is taken as a decimal exponent of the preceding
number . Over -lapping facil i t ies for specifying an exponent
l 'E i l f a r e provided in the sense that the decimal point in the number
itself a l so indicates a decimal exponent. If no point occurs ex-
plicit ly, the number is taken to be an in teger .

Si 	 The positive integer l r i t t is compiled as the byte of the preceding
number . If ei ther the sign of the main number of i implies
a negative sign b i t , the sign byte sign position is made negative.

X 2 i 	 The integer is compiled as a machine exponent of a n un-
normalized floating point number . It over - ru les and replaces
the computed exponent, which is completely eradicated by the
replacement p r o c e s s .

NOTE: The data entr ies in a DD statement a r e res t r ic ted to r e a l numbers
only. Bit add res ses a r e not permi t ted . Integers a r e of course allowed
as a special ca se of r e a l numbers , but they may not be symbolized.

Floating point data is always compiled in addressable full words;
the location counter is rounded up , i f necessa ry , to the next full
word addres s in o rde r to meet this end. This is an instance of a
general STRAP I principal: a machine format which ordinarily
depends in use on the fact that the 24-bit address of the lead bit
ends in a s t r ing of zeroes of some definite length causes the compiler
to round the location counter appropriately.
Thus:

I) 	 Instructions always start at either half o r ful1wor.d
bit a d d r e s s e s .

I - 20

2) 	 Indexing full word and half w o r d memory formats a r e
forced to begin at full and half w o r d a d d r e s s e s , r e -
spectively.

3) 	 A floating point data black being r e se rved through uee
of a DR op code (defined in Section 1 . 3 . 3) is forced to
begin a t a full word a d d r e s s . Moreover , when a field
f r o m an instruction format requi res the truncation of
the r ightmost bi ts before compilation, a warning indication
is given if significant bi ts are truncated (which can occur
i f a n instruct ion addres ses a format other than i t s
natural one, e . g . i f a floating point instruction addres ses
a V F L data e lement) .

1 . 3 	1 .2 The Entry Mode

The data description field r ep resen t s a kind of generaiized use mode
for the da t a , in that p roper t ies specified in this field a r e t ranslated
into bi ts and numbers which a r e compiled into machine instructions
r e fe r r ing to the da t a . A corresponding field called the entry mode
is available to specify proper t ies which descr ibe the source language
information and its f o r m , but which propert ies a r e not themselves
compiled into the object p r o g r a m .

The entry mode may be employed in one of two ways:

a) 	 An entry mode may be used to specify the propert ies of
any symbolic field (except the "fieldt' occupied solely by
the operation mnemonics) by being placed, enclosed in
parentheses , as the first i t em in the field.

b) 	 An entry mode may a l so be used to specify the proper t ies
of all the data in a DD o r DDI s ta tement . When used in
this fashion, i t is enclosed on parentheses and appears
before the DD o r DDI op code in the operation f ie ld . The
mode is m o r e general in f o r m in i t s usage in connection
with the data of a DD or DDI s ta tement , as it may in this
instance- -but only in this instance- -designate that alphabetic
information is to be compiled:

ENTRY MODE 	 MEANING

lsAt'signifies that the following information is
704-9 alphabetic (BCD a s it appears on t ape) ,
and the le t te r X is a special end-of-statement
m a r k for this statement only. The end of
s ta tement charac te r is not itself compiled.

The special end-character may not be:

11-0
blank

(IQSX) 	 The code IQS implies the IQS alphabetic code,
and this entry mode designation is otherwise
the s a m e as the preceding. When IQS is
specified in an entry mode, only those IQS
cha rac t e r s which a l so exist in Hollerith may
be en tered .

1 - 2 2

--

In 	DD and DDI binary-mode s ta tements , w 	 the number of binary fractional bits is
specified in the entry mode by means of
the le t te r F followed by an integer i which
is the number of fractional. b i t s .

(F6) XX.XXX

Entry modes may not appear in a manner that would cause parentheses
within parentheses . An entry mode may appear a s the f i r s t element of any
field in the DD or DDI Statement, in which case it functions a s a normal
field entry mode. When contradictory propert ies (for instance two differing
radixes) a r e implied by the statement and field entry modes , the field mode
over - ru les for the case of the par t icular field on hand.

NOTE: Both the staement entry mode and the field entry modes in a
DD o r DDI statement apply only to the pure number part of the data .
All. other quantities which may be joined to the data by special declensions
(e . g . S for sign byte) a r e regarded as separa te fields with respec t to
the entry mode, and these fields will have no provision for a separate
entry mode in STRAP-1. Moreover , i f the entry mode indicates a radix
different than 1 0 , only integers may be entered as da ta .

There a r e two kinds of designators which may appear in any entry mode
expr ession:

a) Any of the digits 2 through 10 may be used to indicate a
rad ix . All numerical quantities governed by the entry mode--
whether r ea l numbers # in tegers , o r bit add res ses - - a re then
interpreted in the specified rad ix . The source language radix
i s 10 throughout the sys tem unless otherwise specified.

b) 	An integer preceded by a point not exceeding 6 3 has the following
meaning in the entry mode: that the field following the entry mode
is parenthetical in nature and is to be evaluated and compiled with
the specified bit add res s serving as the bit address of the rightmost
position of the field. The field is added by a logical OR so that it
may be combined with other fields of the statement or other
parenthetical OR f ie lds , The f i r s t bit of the statement is counted
as bit 0 . Although the parenthetical field may c r o s s field-lines
within a s ta temant , i t may not c r o s s s ta tement- l ines . That i s ,
i f the bit address is specified as " . n t t , the parenthetical expression
has a field length of n t 1 and is evaluated modulo 2" ' ' .

All parenthetical fields a r e regarded as unsigned, so that a negative number
is compiled as the complement r e 2n ' , of the magnitude of the number.

J. - 2 3

The field following an entry mode containing a bit add res s i s
terminated by either the end-of-field charac te r of the statement
field in which the parenthetical OR field falls (i .e , within the source
language--the parenthetical field may c r o s s field l ines within the
object language but by i t s ve ry nature is always specified within
the bounds of some other field in the source language) o r by the
beginning-field charac te r for some other f ie ld .

Multiple fields in an entry mode expression a r e permi t ted , a r e
separated by commas , and may come in any o rde r : t . 3 2 , 8) signifies
an octal field to be terminated at bit 3 2 .

Parenthet ical expressions a r e permit ted within a DD s ta tement ,
and the bit add res s is measu red f r o m the last comma fo rward .

111-

Parenthet ical expressions may have anything that goes in a normal
addres s f ie ld , but may not have other information--like r ea l numbers
o r alphabetic characters--which a r e permit ted in a DD or DDI
s ta tement , Parenthet ical expressions a r e not permit ted in any
s ta tement which does not compile memory space , nor in a DR
s ta tement .

The parenthetical field ignores both the field s t ruc ture and any
data descr ipt ion associated with the btatement in which it appea r s .
S imi la r ly , any data descr ipt ion associated with a symbol appearing
in a parenthetical field has 110 effect in this usage of the symbol .
All numbers - -including r e a l numbers- -which appear in a parenthetical
field a r e converted to an internal binary fo rma t , never to decimal
or floating point.

1724

L 3 . 2 Pseudo Operations Which Define Symbols

It can be said that a lmost all pseudo operations (excluding SLC,
CNOP, e t c ,) define symbols in the standard manner - - any symbol
appearing in the name field will be assigned the cur ren t value
of the location counter . Grouped under the pyesent category of
pseudo operations a r e those which define symbols in other than
the usual manner .

1 .DDI "DATA DEFINITION IMMEDIATE''

This pseudo operation is identical to DD except with respec t
to the following points:

(1) 	 Like SYN (see below), it is purely definitive in charac te r .
(2) 	 Only one major field follows the operation field of the

s ta tement .
(3) 	 If no field length is specified, a field length of 24 is implied.
(4) 	 If the length of a s t r ing of alphabetic charac te rs exceeds

the field length, the excessive low-order charac te rs
a r e lost and an e r r o r indication is given.

(5) 	 The compiled f ie ld-- less than or equal to 24 bits in
length--is inser ted within a 24-bit field within the
symbol table and left justified.

2. SYN 'SYNONYM '' A S Y N , Y

The operation "Synonym'' (SYN)may define a new symbol in t e r m s
of a symbolic expression representing either a bit address o r an
in teger , with the rest r ic t ion- as with SLC - - that the expression
be fully defined when encountered. When one wr i tes :

A S Y N , Y

the meaning of the newly defined symbol "Atris that whenever A is
wri t ten in the p rogram the effect is the same as if Y had been wri t ten.
The meaning of SYN is always one of exact substitution. Thus data
propert ies associated with Y its bit address -or -integer classification
are t r ans fe r r ed to A . SYN statements a r e permitted to have their
own data description field, as wel l .

1 - 25

I . 3 * 3

L-

Pseudo Operations Which Give Directions To The Compiler -.-

Mnemonic Name Usage

1) SLC "SET LOCATION COUNTER" A ORG, Y

This operation r e s e t s the location counter to the value (bit add res s)
taken on by Y , where Y i s any legal symbolic expression. The name
A applies to the subsequently defined memory element whose f i r e t
bit i s located at Y e Y must be defined at the point a t which the
SLC ca rd is encountered, i . e . any symbols in the expression Y must
have previously appeared in the NAME field. Although Y may be an
absolute number , i t s absolute meaning may not be p re se rved f r o m
STRAP-1 to STRAP-2 e In STRAP- 1 an absolute origin will be posi-
tioned relat ive to a p rogram area beginning with machine location 0,
In STRAP-2 the beginning of the p rogram a r e a will normally be
supplied independently of the assembly deck and may differ from 0

The pseudo operation "Set Location Counter1t must contain a bit address
expression whose value is posit ive. An integer which appears in the
var iable field of an SLC instruction is added in as in a 24-bit address
f ie ld , i . e . as an integral number of b i t s , and an e r r o r warning i s -
given.

, 2) END "END" A ENDBY

A c a r d with the operation code END signal s the end of an assembly
and must be included as the last ca rd of each symolic p rogram deck,
A branch ca rd i s then punched with the output deck with an addres s Y ,
s o that the instruction located a t Y will be the first p rogram order
executed.

The END statement a l so functions as an origin-sett ing statement for
the memory assignments given to all symbols which a r e undefined.
A symbol is undefined i f it appears somewhere in the p rogram but
never appears in the NAME field of any s ta tement . All occurrences
of such a symbol a r e flagged as possible e r r o r s , The symbol is
assigned a full memory word in the block whose origin is equal to the
value of the location counter when the END statement is encountered
(possibly rounded up to obtain an integral full word addres s) and the
symbol i s given a normalized floating point data descr ipt ion,

3) CNOP l'CONDITIONAL NO OPERATION''

The pseudo operation CNOP is used to insure that the instruction
immediately following the CNOP will be assigned a full word addres s
by the compi le r .

1-26

CNOP examines the location counter . If the counter is a l ready s e t to
a fhll word addres s , the compiler ignores the CNOP, If, however the
instruct ion counter is se t to a half word a d d r e s s , the CNOP instruction
d i r ec t s the compiler t o advance the counter 32 bits (one half word) to the
next f u l l word addres s This is accomplished by compiling the machine
instruct ion N O P , which is a half word instruction.

4) TLB ''TERMINATE LOADING AND BRANCH"

Th.e pseudo operation ' 'Terminate Loading and Branch" is similar to
a n "END" s ta tement with one major distinction--TLB does not stop
the assembly p r o c e s s . The re fo re , TLB may be used a t any point i n
a symbolic deck where a branch ca rd is des i r ed , The branch ca rd thus
produced will in te r rupt the loader when encountered in a binary deck and
t r ans fe r control to the instruct ion at loc&tion Y .

5) EXT "EXTRACTff A EXT (1,J)STATEMENT

Th.e t rExt rac t t r pseudo operation has the following meaning:
I and J a r e in tegers or integer expres s ions , STATEMENT is assembled
by the p rocesso r as though it w e r e to be compiled. The field beginning
a t bit I and ending a t bit J within the assembleds ta tement is then extracted,
and compiled. Any symbol A in the NAME field of the EXT orde r is attached
to this compiled quantity. A data descr ipt ion is attached to the symbol as
though it had been writ ten:

(B U , J - I t 1 , 8)

I amd J can a l so be bit a d d r e s s e s .

EXT is not permi t ted to specify the extraction of anything beyond the
range of the single s ta tement which follows it

6) DR gtDATARESERVATION" A DR (dds) , N

Thle DR operation causes N fields of the kind descr ibed in the data
descr ipt ion--(dds)-- f ield to be r e s e r v e d , i . e . the instruction location
counter is skipped forward a quantity in bits equal to the product of N
and the field length specified in (dds) . The symbol A i f any, appearing

'

in the NAME field of the DR statement is attached to the first such f ie ld .
The descr ipt ion specified in (dds) is in tu rn attached to the symbol and
is invoked--in the s a m e fashion as with a DD o r DDI statement--whenever
the symbol appears a s a principal a d d r e s s .

Refer r ing again to the proper t ies mode example in Section 1 . 2 . 2 , if one wr i tes :

A DR (P,RIVER) N
the field length of RIVER would govern the actual amount of space r e se rved
s ince the data proper t ie@ of RIVER would be invoked.

1-27

An a r r a y is specified in the form:

where I , J and K must be integers in symbolf c or numeric f o r m .
In fac t , an a r r a y pa rame te r may be specified by any integer-valued
expression .
Although a three dimensional a r r a y i s the l a rges t which can be
specified in STRAP-1 a r r a y s involving fewer p a r a m e t e r s can
also be descr ibed.

Thus, as seen f r o m the discussion in Section 1.2.4, to apply
index word I to the second element of a one dimensional a r r a y A ,
one wri tes :

1 - 28

2 . 1 . Primit ive Supervis or

The primitive supervisor is intended for those u s e r s
who des i r e to use the machine a t an ear ly date and
can debug with a minimal sys t em. The primitive is
not a superv isor , according to our use of the word,
but is 	merely a s e t of programs to assist in the
debugging of unisupervisor and other t lf irst t lprograms

It consists of:

1. 	 a binary loader which r e se t s the machine, loads
problem p rogram (P a p .)binary cards (output of
STRAP 1) and branches to the P .P.

2 . 	 a fail-safe interrupt table which causes the
indicator number (mnemonic) to be printed
on the I . Q .S ., a final dump to be taken, and
r e tu rn made to the binary loader .

3 . 	 a mnemonic or floating decimal dump, break
point or f inal .

2 - 1

W'

2 . 1 . 1 Binary Loader

The binary loader will load absolute binary cards only.
Bit address loading is des i red to most efficiently utilize
the binary ca rd and to provide the most flexible sys tem.
The first word of each ca rd is not a control word; but
contains information to the loader . A maximum of 800
bits (25 half words) per card m a y be loaded.

Three formats a r e prescr ibed; an Itorigint1 card to r e -
s t a r t progressive loading, a l'flowtl ca rd which will
continue loading behind the previous card (s) and a
I1brancht1ca rd which will branch out of the loader into
the P .P.

Column 1 is a code column used to designate to the loader
the type or c lass of ca rd being r ead . Columns 2 and 3
contain a binary identification number and sequence number
used for checking purposes during sequential loading.
Column 4 contains a 12 bit logical end-around-carried
checksum; and columns 72-80 a r e available for Hollerith
identification and sequencing .

2 - 2

2.1 .1 .1 Origin Card

The "origin" card: 	 r e s e t s the location counter within
the loader , allows any number of bits
to be skipped or set to ze ro , allows
loading of l e s s than a full ca rd .

The ca rd format is as 	follows:

Bits As signed 	 Use

1 .0 - 1.11 	 Code column (origin card - 1.9 , 1 .10,
1.11 punches)

2 .0 " 2 . 1 1 	 Identification column (binary)

3 . 0 - 3.11 	 Sequence number (binary)

4 .0 - 4.11 	 Check sum

5.0 	 A 1 bit control, 0 i f skipping, a 1
if setting to zero

5 . 1 	 A 1 bit control, 0 i f skip or zeroing is
done before card contents a r e loaded,
a 1 i f a f t e r .

5 .2 . 	- 5.11 A 10 bit count of the number of bits
to be loaded f r o m the ca rd .

6 . 0 	- 7.11 A 24 bit address designating a new
origin

8 . 0 	- 9.11 A 24 bit address designating the
number of bits to be skipped or s e t
to ze ro .

10.0 - 10.7 	 Not presently used

10.8 	- 71.11 Up to 7 3 6 information bits (23 half
words)

72.0 	- 80.11 A 9 column field ignored by the loader
which may be used for Hollerith
identification and sequencing

2 - 3

2 . 1 1 2 Flow Card

The tlflow'f c a r d loads its contents sequential to the
previous c a r d loaded according to the loade r ' s location
counter.

The c a r d format is as follows:

Bits Assigned 	 Use

1.0 	- 1.11 Code column (flow ca rd -
1 .9 , 1.11 punches)

2 . 0 - 2.11 	 Identification number (binary)

3 .0 3.11 	 Sequence number (binary)

4.0 - 4.11 	 Check sum

5 .0 - 5.3 	 Not presently used

5.4 * 71.11 	 25 half words of binary information

72.0 	- 80.11 A 9 column field ignored by the
loader which m a y be used for
Hollerith indentification and
sequencing .

2 - 4

2.1 .1 .3 Branch Card

The t lbranchft card r e s e t s the machine location counter to
the addres s specified in the card o r , i f no addresus. is specified,
to the addres s of the first "origintt ca rd .

The format of the "brancht t ca rd is as follows:

Bits Assigned use

1.0 - 1.11 Code column (branch card-1 .8 , 1.9,
1.11 punches)

2.0 - 5.11 Not p r e s ently in use

6.0 - 7.11 24-bit t ransfer address

2 - 5

2 .1 .1 .4 Dump Card

The t tdump't ca rd will provide the mnemonic dump with
limits in case a fail-safe interrupt is encountered

The ca rd format is as follows:

Bits Assigned

1.0 - 1.11

2 . 0 - 2 .11

3 .0 - 3.11

4.0 - 4.11

5 .0 - 5 . 3

5.4 - 71.11

72.0 - 80.11

U s e

Code c ~ l u m n (dump card - 1.8)

Identification numb er (binary)

Sequence number (binary)

Check sum

Not presently uaed

Dump information

A 9 column field ignored by the
loader which may be used for
Hollerith identification and
sequencing.

2 - 6

2 . 1 . 2 . Inter rupt Tab1e

All en t r ies of the interrupt table will be filled with
branches to the fail-safe routine. If an in te r rupt is taken,
the number (mnemonic) of the indicator will be printed
on the I.Q .S ., a final dump will be taken using the
l imi t s prescr ibed on the Ildurnp" card and r e tu rn will be
made to the binary loader for resett ing the machineand
loading the next P.P.

If the P.P. des i r e s any other action to be taken for an
indicator then it must provide its own routine to replace
the fai l -safe entry in the interrupt tab le . The most pro-
bable candidates for replacement a r e TE and 1/0i n t e r -
rup t s . If the I.Q.S. indicator print routine is des i r ed ,
it will probably be available as a macroop and defined
l a t e r .

W

2 - 7

2 . 1 . 3 Debugging Aids

Cer t a in debugging aids such as a dump, correction
cards , etc will be included in the primitive package.
Since the exact f o r m a t and specifications for these
aids a r e not necessa ry until the machine is available,
only a tentative format has been descr ibed for the
dump and none a t all for other devices In specifjring
and writ ing Unisupervisor , a debugging subset , one
that is relatively easy to debug, should naturally
develop and at that t ime can be descr ibed and included
in the primitive package.

2 - 8

2 . 1 3 . 1 . Memory Dump

The memory dump i s the only debugging p rogram p re -
sently planned for primitive but it will be available in
two f o r m s , a STRETCH dump and a limited 704 dump
using binary tape (IB STD4). Very likely the la t te r will
be r ea re ly used so it will not be descr ibed he re ; however
it is available.

The dump will provide either a breakpoint or a final
pr int of c o r e , disk, o r tape in floating decimal or
mnemonic f o r m . To achieve minimum interference with
the 1/0and indicator r eg i s t e r , all P.P. 1 / 0 action will
be normally completed before the dump conversion begins.
This problem of I / O completion may require that a pro-
g r a m step be added to the P.P. interrupt routines (L e .
tu rn a bit off).

Upon completion of the breakpoint dump, the first 32
r eg i s t e r s a r e r e s to red to their entry value and re turn
is made to the P.P. Upon completion of the final- dump,
r e tu rn is made to the binary loader .

The output, at present , is intended for the online p r in t e r .
The mnemonic format will resemble that of STRAP 1 .
The decimal format will probably be four words to the
l ine.

2 - 9

2 . 1 . 3 . 2 . Debugging Macroops

Two macroops a r e provided to control the dump and they
a r e of the following format .

N BKPT K A . B . C . D . E . F , n . m

1. Modifier to designate type of conversion

a . N for normalized floating decimal

b . M for mnemonic instructions

2. Opcode

a.

b.

BKPT indicates breakpoint print and re turn t o P.P.

F N L indicates final print and r e tu rn to loader

3 . Modifier to designate m o r e pa rame te r s follow

a . K indichtes another control word follows.

b . Blank indicates this was the last control word

4 . Beginning addres s (a decimal point before A indicates
rewind the. tape)

a . A indicates file number with 0 indicating f i r s t f i l e

b. B indicates block number with 0 indicating first
block of f i le .

C . C indicates word number with 0 indicating f i r s t
word of block.

5 . Final addres s plus one word

a . D similar to A

b. E similar to B

’$ c . , F similar to C

2 - 10

6 . 	 The control unit number followed by the unit 's number .
Blank i f co re is des i red .

Example: F o r final print (1) 	 decimal of tape 2 on
unit 3 , all of first file
plus the first word of
the first block of fi le 2 .

(2) 	 mnemonic of core 2500
(decimal) to 3500 (de-
c imal)

N 	 F N L K O . , 1 . . 1 , 3 . 2

M 	 F N L 2500, 3500

Only those portions tagged with an as t e r i sk a r e
necessary for a core dump. Dumping of tape is
present ly intended only under the FNL code.

2 - 11

APPENDIX A

STRAP - 1 MNEMONICS

Listed on the following pages a r e all the assigned STRAP-1
mnemonics , including both operation codes and sys t em symbols .
The total s e t i s l is ted twice, f i r s t grouped according to symbolic
f o r m a t , and second all in a heap ar ranged alpha-numerically, with
operation codes and sys t em symbols shown separately in even the
second l is t ing, however .

In both l ist ings footnotes a r e referenced (through the use of numbers
in the column between mnemonic and name) . These footnotes follow
the second l is t ing, and in general a r e used to identify a par t icular
c l a s s of operations which may be expanded in a standard way to pro-
duce other operat ions. Where the footnotes specify how part icular
modified operation mnemonics may be constructed, these la t te r do
not appear explicitly in the l i s t ings .

Also following the tabular mnemonic l ist ings is a legend of one
charac te r abbreviations which a r e used in the first l ist ing column
on the left to identify the symbolic instruction type--V for VFL,
F for floating point, e t c . . .

A - 1

AD
AE
AH
A L
AOC
BC
BTR
CA
CBJ
CNSL
CPUS
CPU
cs
cx

D F
DISK
DS
DTR
E
El3
E K
EKJ
E O P
E P K
E X E
F T
IA
IF
IK
IJ
IND
IQS
IR
IT
L
L B
L C
LS
L Z c
M

2
2
2
2
1
1
2
1

2
1
1
2
2
1

2
1
2
2
12
2
2
2
2
2
2
1
1
2
2
2
1
1
2
1
1
I
2
2
1
12

ALPHABETIC LIST OF SYSTEM SYMBOLS

WORD BIT
NO. ADDRESS

ADDRESS INVALID 11 16
ACCUMULATOR EQUAL 11 61
ACCUMULATOR HIGH 11 62
ACCUMULATOR LOW 11 60
ALL ONES COUNT 7 44-50
BOUNDARY CONTROL 3 57
BINARY TRANSIT I 1 39
CHANNEL ADDRESS 5 12-18
CHANNEL BUSY RXJECT 11 8
CONSOLE
CPU SIGNAL 11 5
OTHER CPU 6 0-18
CHANNEL SIGNAL 11 13
CHANNEL X (X IS A NUMERICAL DESIG-

NATION)
DATA FETCH I 1 20
DISK
DATA STORE 11 19
DECIMAL TRANSIT I1 40
e
END EXCEPTION 11 11
EXCHANGE CONTROL CHECK 11 3
EXCHANGE CHXCK REJECT I1 6
END OF OPERATION I1 12
EXCHANGE PROGRAM CHECK I 1 9
EXECUTE EXCZPTION 11 18
FACTOR 14 0 -63
INTERRUPTION ADDRESS 2 0-17
INSTRUCTION FETCH 11 2 1
INSTRUCTION CHECK 11 1
INSTRUCTION REJECT 11 2
INDICATORS 11 0-63
INQUIRY STATION
IMAGINARY ROOT 11 25
INTERVAL TIMER 1 0 - 1.8
LEFT HALF O F ACCUMULATOR 8 0 - 6 3
LOWER BOUNDARY 3 32-49
LOST CARRY 11 22
LOST SIGNIFICANCE I 1 26
L E F T ZEROS COUNT 7 17-23
logl()e

A - 2

ALPHABETIC LIST OF SYSTEM SYMBOLS

WORD BIT
NO. ADDRESS

Mi4SK I MASK 12 21-49
MK 2 MACHINE CHECK I I 0
M6SP 2 TO-MEMORY OPERATION 11 55
N
NM

I 2
2

log, 2
NOISY MODE I 1 63

OI’ 2 OPERATION INVALID I 1 15
PCIH I PUNCH
PE’ 2 PARTIAL FIELD I I 23
PCiO. . P G 6 PROGRAM INDICATORS I 1 41-47
PI I 2 77-
PELT 1 PRINTER
PSlH 2 PREPARATORY SHIFT GREATER THAN 48 I 1 27
R I RIGHT HALF OF ACCUMULATOR 9 0-63
R DR I READER
RGZ 2 RESULTGREATERTHANZERO I f 58
RLZ 2 RESULT LESS THAN ZERO I 1 56
RM I REMAINDER 13 0-63
RDJ 2 RESULT NEGATIVE I I 59
R ‘IT 2 REMAINDER UNDERFLOW I I 3 4
R2: 2 RESULT ZERO I 1 57
SB I SIGN BYTE 10 0-7
T C1 I TIME= CLOCK I 28-63
TI? 2 T FLAG I I 35
TEt I TRANSIT 15 0-63
TSI 2 TIMIC SIGNAL I 1 4
TE: I TAPE X (X IS A NUMERICAL DESIGNATION)
UE5 I UPPER BOUNDARY a 0-17
UE’ 2 U FLAG I 1 36
UP; 2 UNIT CHECK I 1 10
UNRJ 2 UNIT NOT READY REJECT I 1 7
USA 2 UNENDED SEQUENCE OF ADDRESSES I I 17
VI? 2 V FLAG. I 1 37
xC) 1 INDEX ZERO 16 0-63
X I I INDEX ONE 17 0-63
x2 I INDEX T W O 18 0-63
x3 I INDEX THREE 19 0-63
x4 1 INDEX FOUR 20 0-63
x 5 I INDEX F I V E 21 0-63
X6 I INDEX SIX 22 0-63

A - 3

X’7
X8

x‘9
XI0
X I 1
XI2
XI3
X I 4
XI5
XCZ
XE
X:F
XI3
x:L

XPH
X P L
XPM
XPN
XPQ

XIPU
X‘VGZ
X’VLZ
X’VZ
z
Z ID

1

1

1

I

I

1

I

1

I

2

2

2

2

2

2

2

2

2

2

2

2

2

2

1

2

ALPHABETIC LIST O F SYSTEM SYMBOLS

INDEX SEVEN
INDEX EIGHT
INDEX NINE
INDEX TEN
INDEX ELEVEN
INDEX TWELVE
INDEX THIRTEEN
INDEX FOURTEEN
INDEX FIFTEEN
INDEX COUNT ZERO
INDEX EQUAL
INDEX FLAG
INDEX HIGH
INDEX LOW
EXPONENT HIGH
EXPONENT LOW
EXPONENT MEDIUM
EXPONENT HIGH NEGATIVE
EXPONENT OVERFLOW
EXPONENT UNDERFLOW
INDEX VALUE GREATER THAN ZERO
INDEX VALUE LESS THAN ZERO
INDEX VALUE ZERO
WORD NUMBER ZERO
ZERO DIVISOR

WORD BIT

NO. ADDRESS

23

24

25

26

27

28

29

30

3 1

I 1
I 1
XI

I1

11

11

I 1
I 1
I 1

I1

I I

11

I1

X I

0
I 1

0-63

0-63

0-63

0-63

0-63

0-63

0-63

0-63

0-63

48

53

38

5 4

5 2

29

3 1

30

32

28

33

5 1

49

50

0-63

24

A - 4

W

V
F
V
F

V
F
V
F
V
F

F
V
V
F
F
V
V
F
M
B
B
B
B
M
M
M
M
E
B
B
B
B
V
I
I
C
C
C
C
E
V

+
t

+MG
t MG

-
#c

>:<
>:< +
J> +

#<A+
:#I+
#cN+
4cNt

'~NAI-
>>NI+
I
I
B
BB
BB1
BBN
BBZ
BD
BE
BEW
BR
BS
BZB
BZB1
BZBN
BZBZ
C
ctl1
C - I
CB
CBR
CBZ
CBZR
c c w
CM

I . OVER-ALL LIST O F MNEMONICS

B OPERATIONS

3 ADD
6 ADD
4 ADD TO MAGNITUDE
7 ADD TO MAGNITUDE
3 SUBTRACT
6 SUBTRACT
4 MULTIPLY
7 MULTIPLY

MULTIPLY AND ADD
MULTIPLY AND ADD
MULTIPLY ABSOLUTE AND ADD
MULTIPLY IMMEDIATE AND ADD
MULTIPLY NEGATIVE AND ADD

~ MULTIPLY NEGATIVE AND ADD
MULTIPLY NEGATIVE ABSOLUTE AND ADD
MULTIPLY NEGATIVE IMMEDIATE AND ADD

4 DIVIDE
7 DIVIDE

BRANCH
BRANCH ON BIT
BRANCH ON BIT AND SET TO ONE
BRANCH ON BIT AND NEGATE
BRANCH ON BIT AND ZERO
BRANCH DISABLED
BRANCH ENABLED
BRANCH ENABLED AND WAIT
BRANCH RELATIVE
BACKSPACE
BRANCH ON ZERO BIT
BRANCH ON ZERO BIT AND SET TO ONE
BRANCH ON ZERO BIT AND NEGATE
BRANCH ON ZERO BIT AND ZERO

10 CONNECT
ADD IMMEDIATE TO COUNT
SUBTRACT IMMEDIATE FROM COUNT

8 COUNTANDBRANCH
8 COUNT, BRANCH AND REFILL
8 COUNTANDBRANCHONZEROCOUNT
8 COUNT, BRANCH ON ZERO COUNT AND REFILL

COPY CONTROL WORD
10 CONNECT TO MEMORY

A - 5

V

W
V
E
V
F
F
F
F
V
F
F
F
F
F
F
F
F
F

F
E
E
M
M
F
F
E
E
V
F
I
I
V
V
V
V
F
E
E
V
F
I
I
I
V

CT
CTL
cv
Dt-
DAU
D-
DAUN
DCV
DL
DLWI?
D2::

D/
E +
E t AI
E 9 1
E -
E - AI

E - I
ERG
EVEN
EX
EXIC
F t
F -
GONG
HD
K
K
KC
KCI
KE
K F
KFE
K F R
KFR
KLN
KMG
KR
KR.
KV
KVI
KVNI
L

10

5
6
6
6
6
5
7
7
7
7
6

6

6
6

4
7

'7
4

7

4

CONNECT FOR TEST
CONTROL
CONVERT
ADD DOUBLE
AUGMENT DOUBLE
SUBTRACT DOUBLE
AUGMENT NEGATIVE DOUBLE
CONVERT DOUBLE
LOADDOUBLE
LOADDOUBLEWITHFLAG
MULTIPLY DOUBLE
DIVIDE DOUBLE
ADD TO EXPONENT
ADD ABSOLUTE IMMEDIATE TO EXPONENT
ADD IMMEDIATE TO EXPONENT
SUBTRACT FROM EXPONENT
SUBTRACT ABSOLUTE IMMEDIATE FROM

EXPONENT
SUBTRACT IMMEDIATE FROM EXPONENT
ERASE GAP
EVEN PARITY
EXECUTE
EXECUTE INDIRECT AND COUNT
ADD TO FRACTION
SUBTRACT FROM FRACTION
GONG
HIGH DENSITY
COMPARE
COMPARE
COMPARE COUNT
COMPARE COUNT IMMEDIATE
COMPARE IF EQUAL
COMPARE FIELD
COMPARE FIELD IF EQUAL
COMPARE FIELD FOR RANGE
COMPARE FIELD FOR RANGE
CHECK LIGHT ON
COMPARE MAGNITUDE
COMPARE FOR RANGE
COMPARE FOR RANGE
COMPARE VALUE
COMPARE VALUE IMMEDIATE
COMPARE VALUE NEGATIVE IMMEDIATE
LOAD

A - 6

F
I
I
V
E
V
V
F
E
I
I
I
I
I
I
I
I
V
V
V
F
V
F
V
F
V
F
V
F
V
P

V
F
M
E
M
M
E
E
E
E
E
I
F
I

L
L C
LCI
LCV
ED
LF
L F T
L F T
LOC
LR
LRI
LV
LVE
LVI
LVNI
LVS
LX
LTRCV
LTRS
L W F
L W F
M+
M*
M i 1
M+A
M+MG
M+MG
M-
M-
M-1
M-A
M-MG
M-MG
NOP
ODD
R
RCZ
RD
R E L
REW
R L F
RLN
RNX
R/

sc

7

4

4
7

4

4
4
7

3
6

3
6

7

LOAD
LOAD COUNT
LOAD COUNT IMMEDIATE
LOADCONVERTED
LOW DENSITY
LOAD FIELD
LOAD FACTOR
LOADFACTOR
LOCATE (SAME AS SELECT UNIT)
LOAD REFILL
LOAD REFILL IMMEDIATE
LOAD VALUE
LOAD VALUE EFFECTIVE
LOAD VALUE IMMEDIATE
LOAD VALUE NEGATIVE IMMEDIATE
LOAD VALUE WITH SUM
LOAD INDEX
LOAD TRANSIT CONVERTED
LOAD TRANSIT AND SET
LOAD WITH FLAG
LOAD WITH FLAG
ADD TO MEMORY
ADD TO MEMORY
ADD ONE TO MEMORY
ADD TO ABSOLUTE MEMORY
ADD MEMORY TO MAGNITUDE
ADD MEMORY TO MAGNITUDE
SUBTRACT FROM MEMORY
SUBTRACT FROM MEMORY
SUBTRACT ONE FROM MEMORY
SUBTRACT FROM ABSOLUTE MEMORY
SUBTRACT MAGNITUDE FROM MEMORY
SUBTRACT MAGNITUDE FROM MEMORY
N O OPERATION
ODD PARITY
REFILL
REFILL ON COUNT ZERO
READ
RELEASE
REWIND
RESERVED LIGHT O F F
RESERVED LIGHT ON
RENAME
RECIPROCAL DIVIDE
STORE COUNT

A - 7

E
V
F
F
F
M
F
E
E
F
I
F
F
V
F
E
I
I
T
T
T
T
.I
T
T
T
T
.I
:I
:I
:I
:I
:I
:I
:[
:[

:E
:E
:M

SEOP
SF
SHF
SHFL
SHFR
SIC
SLO
SP

SPFL
SNRT
SR
SRD
SRT
ST
ST
s u
sv
SVA
SWAP
SWAPI
SWAPB
SWAPBI
sx
T
T I
TB
TBI
V+
v +I
V+c
V G R
V+IC
V+ICR
V-I
v - I C
V-ICR

w

W E F
Z

1 1 	 SUPPRESS END O F OPERATION
STORE FIELD

a 	 SHIFT FRACTION
SHIFT FRACTION L E F T (SAME AS SHFA)
SHIFT FRACTION RIGHT (6AME AS SHFNA)
STORE INSTRUCTION COUNTER IF

7 	 STORE LOW ORDER
SPACE
SPACE FILE

6 	 STORE NEGATIVE ROOT
STORE REFILL
STORE ROUNDED
STORE ROOT
STORE
STORE
SELECT UNIT (SAME AS LOCATE)
STORE VALUE
STORE VALUE IN ADDRESS
SWAP
SWAP IMMEDIATE
SWAP BACKWARD
SWAP BACKWARD IMMEDIATE
STORE INDEX
TRANSMIT
TRANSMIT IMMEDIATE
TRANSMIT BACKWARD
TRANSMIT BACKWARD IMMEDIATE
ADDTOVALUE

9 	 ADD IMMEDIATE TO VALUE
ADDTOVALUEANDCOUNT
ADDTOVALUE, COUNTANDREFILL
ADD IMMEDIATE TO VALUE AND COUNT
ADD IMMEDIATE TO VALUE, COUNT AND REFILL
SUBTRACT IMMEDIATE FROM VALUE
SUBTRACT IMMEDIATE FROM VALUE AND COUNT
SUBTRACT IMMEDIATE FROM VALUE, COUNT

AND REFILL

WRITE

WRITE END-OF-FILE

STORE ZERO

A - 8

F

F

F

F

F

F

F

F

F

M

M

M

M

M

F

F

F

F

F

F

F

F

F

F

F

F

F

F

M

M

F

F

F

F

F
F
F
F
F

4-
+MG
-
::c

:k .#

*A+
xqq 4
:::NA +
I
B
BD
BE
BEW
BR
D+
DAU
D-
DAUN
DL
DLWF
D:$

D/
E +
E+AI
E+I
E -
E-AI
E -I
E X
EXIC
F+
F-
K
KFR
KMG
KR
L
L F T
L W F

11. LIST O F MNEMONICS BY TYPE

A. FLOATING POINT

6 ADD
7 ADD TO MAGNITUDE
6 SUBTRACT
7 MULTIPLY

MULTIPLY AND ADD
MULTIPLY ABSOLUTE AND ADD
MULTIPLY NEGATIVE AND ADD
MULTIPLY NEGATIVE ABSOLUTE AND ADD

7 DIVIDE
BRANCH
BRANCH DISABLED
BRANCH ENABLED
BRANCH ENABLED AND WAIT
BRANCH RELATIVE

6 ADD DOUBLE
6 AUGMENT DOUBLE
6 SUBTRACT DOUBLE
6 AUGMENT NEGATIVE DOUBLE
7 LOADDOUBLE
7 LOAD DOUBLE WITH FLAG
7 MULTIPLY DOUBLE
7 DIVIDE DOUBLE
6 ADD TO EXPONENT

ADD ABSOLUTE IMMEDIATE TO EXPONENT
ADD IMMEDIATE TO EXPONENT

6 SUBTRACTFROMEXPONENT
SUBTRACT ABSOLUTE IMMEDIATE FROM EXPONENT
SUBTRACT IMMEDIATE FROM EXPONENT
EXECUTE
EXECUTE INDIRECT AND COUNT

6 ADD TO FRACTION
6 SUBTRACT FROM FRACTION
7 COMPARE
7 COMPARE FIELD FOR RANGE
7 COMPARE MAGNITUDE
7 COMPARE FOR RANGE
7 LOAD
7 LOADFACTOR
7 LOAD WITH FLAG

A - 9

F

F
F
F
F
F
M
M
M
F
F
F
F
M
F
F
F
F
F
M

M+
M + A
MtMG
M-
M-A
M-MG
NOP
R
RCZ
R /
SHF
SHFL
SHFR
SIC
SLO
SNRT
SRD
SRT
ST

Z

ADD TO MEMORY

ADD TO ABSOLUTE MEMORY

6 	 ADD MEMORY TO MAGNITUDE
SUBTRACT FROM MEMORY
SUBTRACT FROM ABSOLUTE MEMORY

6 	 SUBTRACT MAGNITUDE FROM MEMORY
NO OPERATION
REFILL
REFILL ON COUNT ZERO

7 	 RECIPROCAL DIVIDE
7 	 SHIFT FRACTION

SHIFT FRACTION L E F T (SAME AS SHFA)
SHIFT FRACTION RIGHT (SAME AS SHFNA)
STORE INSTRUCTION COUNTER IF
STORE LOW ORDER
STORE NEGATIVE ROOT
STORE ROUNDED
STORE ROOT
STORE
STORE ZERO

A - 18

\

:E

:E
.E

:E

:E

:E
.E

.E

:E
:E

:E

:E

:E
E

.E
.E

:E

E

.E

E

E

.E

I1

BS
ccw
CTL
ERG
EVEN
GONG
HD
KLN
LD
LOG
ODD
RD
R E L
REW
R L F
RLN
SEOP
SP

SPFL
S U
W.
W E F

LIST OF MNEMONICS B Y TYPE

B , 1/0 SELECTS

BACKSPACE
COPY CONTROL WORD
CONTROL
ERASE GAP
EVEN PARITY
GONG
HIGH DENSITY
CHECK LIGHT ON
LOW DENSITY
LOCATE(SAME AS SELECT UNIT)
ODD PARITY
READ
RELEASE CHANNEL
REWINQ)
RESERVED LIGHT O F F
RESERVED LIGHT ON
SUPPRESS END OF OPERATION
SPACE
SPACE FILE
SELECT UNIT (SAME AS LOCATE)
WRITE
WRITE END O F FILE

A - 11

11 LIST OF MNEMONICS B Y TYPE

v
'f
'ir
'ir
'ir
1i'

1f
'i'
'i'
'V
'V

'V
v
'V
'V

'V

'V
'V

'V
'V
'V
'V
'V
'V

'V
'V
'V
'V
'V
'V
'V
"V
'V
'V
'V

t

+MG
-
>:C

>;c +

$:I+
4CN +

'kN1.t
I
C
CM
CT
cv
DCV
K
KE
K F
KFE
KFR
KR
L
LCV
LF
L F T

3
4

4

4
10
10
10
5
5
4
4
4
4
4
4
4

4

4
LTRCV4

LTRS 4
L W F 4
M t
M t 1
M+MG 3
M-
M- 1
M-MG 3
S F
S T 4

C . VFL

ADD
ADD TO MAGNITUDE
SUBTRACT
MULTIPLY
MULTIPLY AND ADD
MULTIPLY IMMEDIATE AND ADD
MULTIPLY NEGATIVE AND ADD
MULTIPLY NEGATIVE IMMEDIATE AIND ADD
DIVIDE
CONNECT
CONNECT TO MEMORY
CONNECT FOR TEST
CONVERT
CONVERT DOUBLE
COMPARE
COMPARE IF EQUAL
COMPARE FIELD
COMPARE FIELD IF EQUAL
COMPARE FIELD FOR RANGE
COMPARE FOR RANGE
LOAD
LOADCONVERTED
LOAD FIELD
LOADFACTOR
LOAD TRANSIT CONVERTED
LOAD TRANSIT AND SET
LOAD WITH FLAG
ADD TO MEMORY
ADD ONE TO MEMORY
ADD MEMORY TO MAGNITUDE
SUBTRACT FROM MEMORY
SUBTRACT ONE FROM MEMORY
SUBTRACT MAGNITUDE FROM MEMORY
STORE FIELD
STORE

A - 1 2

I1 LIST OF MNEMONICS B Y TYPE

D. TRANSMITS

T SWAP
T SWAP1
T SWAPB
T SWAPBI
T T
T TI
T TB
T TBI

SWAP
SWAP IMMEDIATE
SWAP BACKWAEED
SWAP BACKWARD IMMEDIATE
TRANSMIT
TRANSMIT IMMEDIATE
TRANSMIT BACKWARD
TRANSMIT BACKWARD IMMEDIATE

A-13

11. LIST OF MNEMONICS B Y TYPE

E. COUNT AND BRANCH

C
C
C
C

CB
CBR
CBZ
CBZR

8
8
8
8

COUNT AND BRANCH
COUNT, BRANCH AND REFILL
COUNT AND BRANCH ON ZERO COUNT
COUNT, BRANCH ON ZERO COUNT' AND REFILL

A - 14

11. LIST OF MNEMONICS B Y TYPE

E3

€3
€3
€3
€3
€3
€2
€3

BB
BB1
BBN
BBZ
BZB
BZB1
BZBN
BZBZ

F. BRANCH ON BIT

BRANCH ON BIT
BRANCH ON BIT AND SET TO ONE
BRANCH ON BIT AND NEGATE
BRANCH ON BIT AND ZERO
BRANCH ON ZERO BIT
BRANCH ON ZERO BIT AND SET TO ONE
BRANCH ON ZERO BIT AND NEGATE
BRANCH ON ZERO BIT AND ZERO

A - 15

I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
1 ,
I
I -- I
I
I
I
I
I
I
I:
1:
I:
I:
1:
I:
I:

11. LIST OF MNEMONICS BY TYPE

G . INDEX TRANSMISSION AND ARITHEMTIC

C t I
c-I

ADD IMMEDIATE TO COUNT
SUBTRACT IMMEDIATE FROM COUNT

KC COMPARE COUNT
KCI COMPARE COUNT IMMEDIATE
KV COMPARE VALUE
KVI COMPARE VALUE IMMEDIATE
KVNI COMPARE VALUE NEGATIVE IMMEDIATE
L C LOAD COUNT
LCI LOAD COUNT IMMEDIATE
LR LOAD REFILL
LRI LOAD REFILL IMMEDIATE
LV LOAD VALUE
LVE LOAD VALUE EFFECTIVE
LVI LOAD VALUE IMMEDIATE
LVNI LOAD VALUE NEGATIVE IMMEDIATE
LVS LOAD VALUE WITH SUM
LX LOAD INDEX
RNX RENAME
sc STORE COUNT
SR STORE REFILL
SV STORE VALUE
SVA STORE VALUE IN ADDRESS
sx STORE INDEX
V+ ADDTO VALUE
V+1 9 ADD IMMEDIATE TO VALUE
V+IC 9 ADD IMMEDIATE TO VALUE AND COUNT
V+ICR 9 ADD IMMEDIATE TO VALUE, COUNT AND REFILL
vt c ADDTOVALUEANDCOUNT
VtCR
v-I 9

ADD TO VALUE, COUNT AND REFILL
SUBTRACT IMMEDIATE FROM VALUE

v - I C 9 SUBTRACT IMMEDIATE FROM VALUE AND COUNT
V-ICR 9 SUBTRACT IMMEDIATE FROM VALUE COUNT

AND REFILL

A - 16

-W

W

w

H . SYSTEM SYMBOLS THAT ARE BIT ADDRESSES

LQCAT ION SYSTEM SYMBOL
WORD BIT
NO. -- ADDRESS MNE MONI C NAME

0 0 - 6 3 $ Z WORD NUMBER ZERO

1
1
2
3
3
3
4
5
6
7
7
8
9
10

0-18
28-63
0 - 17
0-17
32-49
57
32-63
12-18
0-18
17-23
44-50
0-63
0 - 6 3
0-7

IT
T C
IA
UB
L B
BC

CA
CPU
LZC
AUC
L
R
SB

INTERVAL TIMER
TIME CLOCK
INTERRUPTION ADDRESS
UPPERBOUNDARY
LOWER BOUNDARY
BOUNDARY CONTROL
MAINTENANCE BITS
CHANNEL ADDRESS
OTHER CPU
L E F T ZEROS COUNT
ALL ONES COUNT
L E F T HALF O F ACCUMULATOR
RIGHT HALF O F ACCUMULATOR
SIGN BYTE

11
11
11
11
11

0-63
0
1
2
3

$
$
$
$
$

IND
MK
IK
IJ
E X

INDICATORS
INDICATORS
MACHINE CHECK
INSTRUCTION CHECK
INSTRUCTION REJECT
EXCHANGE CONTROLCHECK

11
11

4
5

$
$

TS
CPUS

ATTENTION REQUEST
TIME SIGNAL
CPU SIGNAL

11
11
11

6
7
8

$
$
$

E K J
UNRJ
CBJ

INPUT-OUTPUT REJECTS
EXCHANGE CHECK REJECT
UNIT NOT READY REJECT
CHANNEL BUSY REJECT

11
11
11
11
11
1.1

9
10
11
12
13
14

$
$
$
$
$
$

EPK
UK
EE
EOP
cs

INPUT-OUTPUT STATUS
EXCHANGE PROGRAM CHECK
UNIT CHECK
END EXCEPTION
END O F OPERATION
CHANNEL SIGNAL
RESERVED

A - 17

13. SYSTEM SYMBOLS THAT ARE BIT ADDRESSES

=WLQCATION SYSTEM SYMBOL
WORD BIT
N O . ADDRESS MNEMONIC NAME

INSTRUCTION EXCEPTION
11 15 QP OPERATION INVALID
11 16 AD ADDRESS INVALID
11 17 USA UNENDED SEQUENCE O F ADDRESSES
11 18 EXE EXECUTE EXCEPTION
11 19 DS DATA STORE
11 20 D F DATA FETCH
11 21 IF INSTRUCTION FETCH

RESULT EXCEPTION
11 22 L C LOST CARRY
11 23 PF PARTIAL FIELD
11 24 ZD ZERO DIVISOR

RESULT EXCEPTION - FLOATING POINT
11 25 IR IMAGINARY ROOT
11 26 LS LOST SIGNIFICANCE
11 -* 27 PSH PREPARATORY SHIFT GREATER THAN 48
11 28 XPO EXPONENT OVERFLOW (EXP), 2")
11
11 30

29 XPH
XPM

EXPONENT HIGH (2 ogEXP< 2")
EXPONENT MEDIUM (28< EXPS 2 lo)

11 3 1 XPL EXPONENT LOW (Z 5 & EXP< 2)
11
11

32
33

XPN
XPU

EXPONENT HIGH NEGATIVE(-2"(EXPS -2
I t '

EXPONENT UNDERFLOW(EXP< - 2)
11 3 4 RU REMAINDER UNDERFLOW

FLAGGING
11 35 T F T FLAG
11 36 U F U FLAG
11 37 VF V FLAG
11 38 X F INDEX FLAG

TRANSIT OPERATIONS
11 39 BTR BINARY TRANSIT
11 40 DTR DECIMAL TRANSIT

11 41 -47 PGO. . .PG6 PROGRAM INDICATORS

A-18

H . SYSTEM SYMBOLS THAT' ARE BIT ADDRESSEES

'-tru? LOCATION SYSTEM SYMBOL
WORD
N O .

11
11
11
11
11
11
11

11
11
11
11
11
11
11
11

'W

11

12
13
14
15
16
17
18
19
20
21
2 2
23
24
25
26

, 	 27

28

29
w 	30

31

BIT
ADDRESS MNEMONIC NAME

INDEX RESULT
48 xcz INDEX COUNT ZERO
49 XVLZ INDEX VALUE LESS THAN ZERO
50 xvz INDEX VALUE ZERO
51 XVGZ INDEXVALUEGREATERTHANZERC
52 XL INDEX L O W
53 X E INDEX EQUAL
54 XH INDEX HIGH

ARITHMETIC RESULT
55 MOP TO-MEMORY OPERATION
56 R L Z RESULT LESS THAN ZERO
57 R Z RESULT ZERO
58 RGZ RESULTGREATERTHAN ZERO
59 RN RESULT NEGATIVE
60 AL ACCUMULATOR L O W
61 AE ACCUMULATOR EQUAL
62 AH ACCUMULATOR HIGH

MODE
63 $ NM NOISY MODE

21-49 MASK MASK
0-63 R M REMAINDER
0-63 F T FACTOR
0-63 TR TRANSIT
0-63 xo INDEX ZERO
0-63 x1 INDEX ONE
0-63 x 2 INDEX TWO
0-63 x 3 INDEX THREE
0-63 x 4 INDEX FOUR
0-63 x5 INDEX FIVE
0-63 X6 INDEX SIX
0-63 x 7 INDEX SZVEN
0-63 X8 INDEX EIGHT
0-63 x 9 INDEX NINE
0-63 x10 INDEX TEN
0-63 x 1 1 INDEX ELEVEN
0-63 x 1 2 INDEX TWELVE
0-63 X13 INDEX TIE-IIRT EEN
0-63 X14 INDEX FOURTEEN
0-63 X15 INDEX FIFTEEN

A - 19

I . SYSTEM SYMBOLS THAT ARE INTEGERS

CNSL 1 CONSOLE
cx 1 CHANNEL X (X IS A NUMERIGAL DESIGNATION)
DISK 1 DISK
IQS 1 INQUIRY STATION
PCH 1 PUNCH
PRT 1 PRINTER
.RDR 1 READER
TX 1 TAPE X (X IS A NUMERICAL DESIGNATION)

A - 20

5 , SYSTEM SYMBOLS THAT A€ZE REAL NUMBERS

$ E 12 e

$ M 12

$ PI 12 'IT"

$ N 12

A - 21

LEGEND OF INSTRUCTION TYPE DESIGNATIONS

V V F L

F Floating Point

$ System Symbol

I Index

C Count and Branch

M Branches and Miscellaneous

B Branch on Bit

T Transmi t s

E 1/0 selec t o r control word

A- 22

NOTES

1 . 	 This mnemonic is a sys tem symbol. It mus t be prefixed by
the character whenever used .

2. 	 This mnemonic is both an indicator mnemonic and a sys tem
symbol. It mus t be prefixed by the whenever used asl l $ l t

a sys tem symbol in a symbolic field of some instruction.
It a l so may be used directly to express a Branch on. Indicator
instruction by being substituted f o r the le t te r ItIttin any of
the following four formats :

BI Branch on Indicator

BIZ Branch on Indicator and Zero

BZI Branch on Ze ro Indicator

B ZIZ Branch on Zero Indicator and Zero

The mnemonics BI, BIZ, B Z I , and BZIZ a r e not in themselves
legal operation codes. Any of the integers 0 through 63 may also
be substituted for I i f it is des i red to designate an indicator
numerical ly .

3 . 	 This operation code may be suffixed by the le t te r r r I ' tto
invoke immediate address ing .

4. 	 This V F L operation code may have the following suffixes:

I 	 Immediate

N 	 Negative

N I 	 Negative Immediate

5 . 	 This operation code may be suffixed by the le t ter ItNttto
invoke the negative sign modif ier .

6 . 	 This floating point operation code may be suffixed by the
le t te r l lA1r to invoke the absolute sign modif ier .

A-23

7 , 	 This floating point operation code may have the following
suf f ixe s :

N Negative

A Absolute

NA 	 Negative Absolute

8 . 	 Count and Branch operation may have the following suffixes:

+ 	 Add one to value

-	 Subtract one f r o m value

H 	 Add half to value

9 . 	 This operation code may be used to indicate either an
immediate indexing operation or the secondary operation
of any V F L instruct ion.

10. 	 This operation mnemonic specifies potentially 16 connect

o r d e r s . Four binary digits a r e wri t ten directly after the

op code to se lec t a par t icular one at the 16 o r d e r s .

This op code is a l so subject to footnote 4 .

11. 	 This code may be a s a secondary operation in connection

with those 1/0 se lec t o rde r s which are subject to end-of-

operation in te r rupts .

12. 	 These mnemonics a r e mathematical constants.

A-24

Mnemonic

CCR
CD
CDS C

C F
CNOP
CR
CW
DD
DDI
DR
END
EXT
R F
SLC
SYN
TLB
VF
xw

APPENDIX B

STRAP- 1 PSEUDO OPERATIONS

Name

CHAIN COUNTS WITHIN RECORD
COUNT DISREGARDING RECORD
COUNT DISREGARDING RECORD, SKIP
AND CHAIN
COUNT FIELD
CONDITIONAL NO OPERATION
COUNT WITHIN RECORD
CONTROL WORD
DATA DEFINITION
DATA DEFINITION IMMEDIATE
DATA RESERVATION
END
EXTRACT
REFILL FIELD
SET LOCATION COUNTER
SYNONYM
TERMINATE LOADING AND BRANCH
VALUE FIELD
INDEX WORD

B-1
W

