TABLE OF CONTENTS

General

Strap Coding Form

Expression of Machine Instructions

Symbolic Instruction Formats

Data Description (dds)

Mnemonics

Numbers and Syrhbols

Arithmetic Expressions

System .Symbols

Variable—in-Nﬁmber Field Format

Pseudo Operations

Pseudo Operations That Create Memory Elements
The Form of N in a Data Definition Statement
The Entry Mode

Pseudo Operations Which Define Symbols
Pseudo Operations Which Give Directions To The Compiler
Primitive Supervisor

Binary Lioader

Origin Card

Flow Card

Branch Card

Dump Card

Interrupt Table

11

13

15

16

17

20

22

25

26

Pg

2.1.3 Debugging Aids
2.1.3.1 Memory Dump
2.1.3.2 Debugging Macroops

Appendix A-STRAP-1 Mnemonics

I OVER-ALL LIST OF MNEMONICS- -~
A, SYSTEM SYMBOLS
B. OPERATIONS
II LIST OF MNEMONICS BY TYPE---
A. FLOATING POINT
B. I/O0 SELECTS
C. VFL
D. TRANSMITS
E. COUNT AND BRANCH
F. BRANCH ON BIT
G. INDEX TRANSMISSION AND ARITHMETIC
H. SYSTEM SYMBOLS THAT ARE BIT ADDRESSES

I.

J.

SYSTEM SYMBOLS THAT ARE INTEGERS

SYSTEM SYMBOLS THAT ARE REAL NUMBERS

LEGEND OF INSTRUCIION TYPE DESIGNATIONS

NOTES

Appendix B - STRAP -1 PSEUDO OPERATIONS

ii

A - - - >

vl
1

11

12

13

14

15

16

17

20

21

22

23

General

STRAP-1 is a symbolic programming system for STRETCH
which utilizes a 32K 704 for assembly. It is a planned pre-
decessor of STRAP-2, a more elaborate programming system
for STRETCH which is to utilize STRETCH instead of the

704 for assembly. Since STRAP-1 is a planned subset of
STRAP-2, the specifications defined here under section 1 are
applicable to both STRAP-1 and STRAP-2,

STRAP-1 specifications are divided into three main categories,
Category 1 pertains to the STRAP coding form. In this category
a form is defined which conveniently allows for the expression

of both machine instructions and pseudo-instructions which
direct the assembler itself. Category 2 pertains to the expression
of symbolic machine instructions. In this category definitions
are made covering symbolic instruction formats, the fields
which make them up, and the various mnemonics and classes

of symbols and numbers which may be used in fields. Category 3
pertains to the expression of the compiler's pseudo-instructions.
In this category pseudo-instruction mnemonics, formats, and
addresses are defined.

STRAP Coding Form

The coding form is directly related to the instruction card form.
They both have 80 columns and are divided into 4 fields. These
four fields and their respective positions are:

1 2 9110 72173 80
CLASS NAME STATEMENT IDENTI-
FICATION

STRAP CODING FORM

The purpose of each field is:

1.

2.
3.

4.

CLASS (1 column) - to identify the card format (binary, decimal,
symbolic, etc.).

NAME (8 columns) - to identify the statement.

STATEMENT- (63 columns) - to express a machine instruction or
a pseudo-instruction.

IDENTIFICATION (8 columns) - identify the card.

Card identification (columns 73-80) is reproduced on the listing, but does
not contribute any information to the assembly program for translating
ingtructions.

1.

Expression of Machine Instructions

Machine instructions are written symbolically on the coding form
described above. Normally they are entered one per line according
to a prescribed format which varies with the type of instruction
operation. The instructions are written with fixed mnemonic opera-
tion codes.

A Hollerith 11-0 double punch combination will be used to imply the
end of a statement, so that multiple statements may be written per

line. However, this character also implies the end of a comment,

so that it may not be included in a comment.

Other fields in the instruction format--addresses, modifiers, etc.--
may be stated within the general symbolic forms of the system, and,
when so stated, are said to constitute symbolic expressions. The
order and manner in which such symbolic expressions are written
down in specifying the elements of any particular instruction are
dictated by a symbolic instruction format, that is, a general type
which provides for the expression of a whole class of particular
machine instructions.

Symbolic Instruction Formats

Symbolic instructions are entered in the statement field. Within
this field variable length operation codes and address expressions
are separated by commas and form sub-fields. A variable length
modifier to either an operation or an address is enclosed in paren-
theses and attached to the modified sub-field. Blanks have no mean-
ing in any field except to indicate the spacing desired on the printed
output listing. The nine symolic instruction formats for STRAP
are:

FORMAT TYPE OPERATION TYPE
1. OP(dds), A(I) Floating Point, Miscellaneous
2. OP, A(K) Indicator Branch
3. OP,J,A(D) Direct and Immediate Index
4. OP,J, A(K) Count and Branch
5. OP, B(I), A(K) Branch on Bit
6. OP,J,A (1), Ap(1) Transmit
7. OPl'(OPZ)(dds) ,A(711) » OFFSET (I,) Integer and Logical Functions
8. OP(OP,), C’(Il)’A(IZ) Input-Output Select
9. OPl(OPZ) »A,COUNT, Chain Address Input-Output Transmission

Control Word

Definitions for the above format symbols are:

1. OP1 primary instruction operation

2. OP2 subsidiary instruction operation

3. dds operation modifier designating a data description

4. J index register used as an operand register

5. B bit address

6. A’AI’AZ primary and secondary addresses

7. C I/O control unit

8. I,Il ,I2 primary and secondary index registers used as
address modifiers

9. K index register used as an address modifier where

no modification (0) or modification by index register 1
(1) are the only possibilities.

There is a general right to left '""drop-out' order for all
the fields separated by commas. For example, a VFL
instruction (Format Type 7 above) for which the offset and
its index modifier are zero is written:

OP, A(I)

The comma is the major separator for the symbolic instruction
types. If there are less than the maximum number of major
symbolic fields in a given instruction expression (as indicated

by the comma count), then the instruction is compiled as though
the missing fields had been added at the end of the statement and

as though they contained zeros. Such fields, whose contents are
implied in a standard way by the omission of any explicit specifica-
tion, are called null fields. A null field is always compiled as
zero, with the ex—(?gf)tions , indicated below in Section 1.2.2, of
those sub-fields of a data description which express mode and

byte size; and with the further exception of the operation code

part of the operation field, which must always contain a legitimate
operation code, and hence may never be null. Within a major
field, a parenthesized sub-field may be made null by omission.
Thus in the VFL example cited above, if the main index designation
were to be zero but the offset and its index modifier (which in the
hardware also modifies field length and byte size) were both to

be 1, the instruction could be written:

OP, A, 1(1)

A major field may be null, even though other non-null fields
follow it. Such is the case if nothing but the comma denoting
the field termination is written. Thus in the example just shown
if the offset and its modifier were both to be 1 but the principal
address and its modifier were both to be zero, the instruction
could be written:

oP, , I(1)

Data Description (dds)

The small letters '"dds' enclosed in parentheses in the above
formats stand for the data description field., It is established
by specifying:

1. M use mode,
2. L field length, and
3. BS byte size.

These three entries appear in the above order within parentheses
and are separted with commas thus, (M, L, BS). When the data
description is specified in a machine instruction, it over-rules

any other implied or indirectly specified data description. When
it is not specified, the description is assumed to be that associated
with the symbol in the principal address field of the machine in-
struction. If this symbol has no data description associated with
it, an error condition arises.

When a string of symbols are added in an address field, the last
symbol written down is the one whose data properties control
those of the instruction.

A complete description of the method by which a data description
may be attached to the symbol which names a piece of data is
given in Section 1.3.1 under the explantion of the Data Definition
pseudo operation.

The mode ""M' ig always specified in a data description entry.

This is to say that '""M'" may never be a null field, so that, for
example, if the first character in a data description were a comma,
an error would be indicated. The seven modes are:

binary
BU binary unsigned
decimal
U decimal unsigned
normalized floating point
unnormalized floating point
Properties mode

NV A W N
WaocZyouo

The mnemonic ""P'' in the mode field of a data description has the
following meaning:
(P, RIVER)

implies in either an instruction or a data pseudo-op that the data
description associated with the symbol RIVER is to be invoked just as
though it had been written out explicitly. Thus, in an instruction, the
dds of RIVER would over-rule anything implied by the symbol in the
major address field.

1 -6

Within a data description field, the usual right to left
drop-out order and null field conventions hold (except, as
indicated, that the mode field may not be null), so that a
data description may appear in any of the following four
forms: '

(M) Field length and byte size are null

(M, L) Byte size is null

(M, ,BS) Field length is null

(M, L, BS)

If the field length is null, a field length of 0 (effectively, 64)

is compiled. If the byte size is null, the compiled byte size
is a function of the mode:

Mode Standard Byte Size

D or DU 4
B 1
BU 8

2.

Mnemonics

A complete list of all machine mnemonics is included
in Appendix A. Both operation codes and system symbols
are included in the list.

A complete list of STRAP-1 pseudo operation mnemonics
is presented in Appemdix B.

1

2.

Numbers and Symbols

There are two different number systems which in general

run through the STRAP-1 language, the ordinary system of
real numbers and a bit-address numbering system. The .
ordinary real numbers are restricted in all non-data fields

to be integers. Real numbers which are not integers may,

of course be entered as data, but they may not take part in
arithmetic expressions nor may they be symbolized, so that
the general forms of the language are really limited to integers
and bit addresses.

Bit Addresses consist of a pair of integers separated by a
period. The integer to the left of the period specifies a word
address while the integer to the right specifies a bit address.
Thus, 6.32 is the decimal equivalent of either a 19 or 24-bit
binary address specifying bit 32 of memory location 6- the
bit preceeded by exactly 6 and one-half memory words.

(Note that only the presence of a period distinguishes a bit
address from an integer.)

Symbols which identify memory elements in the object pro-
gram are automatically assignedbit addresses which locate
these memory elements. A symbol may, however, be given
the value of an integer through the use of a '""'synonym!'' pseudo-
operation. Thus in general both bit addresses and integers
may be symbolized. The term ''integer' will be used to denote
either an integral number or a symbol which takes on an
integral value, and similarly so with respect to the term

""bit address''.

A symbol is any sequence of eight or fewer alphabetic and
numeric characters conforming to the following conditions:

1. It contains only alphanumeric characters.
2. Its first character is specifically alphabetic.
3. It appears in the name field of a program instruction

by virtue of which it is '""defined' and is assigned a
value which is either a 24-bit binary address or an
integer .

Thus, the address designation A(I) has two possible meanings:

i) If Iis a bit address, then it designates an index word
and is compiled in the so-called I-field.

ii) If I is an integer, then an address equal to A plus I times
the field length of A is compiled.

1-10

Arithmetic Expressions

Arithmetic expressions in STRAP-1 may be composed of
addition and/or subtraction of any combination of symbols,
integers and bit addresses.

Integers add into all fields as integers, i.e. the units digit
adds into the low order position of the field. The number of
additive operands in an arithmetic expression is limited by
neither number nor type.

When the value of a symbolic expression is negative, and the
field is unsigned, the two's complement of the number (i.e.,

in an n-bit field the difference between 2" and the number) is
used. In the case of the 7-bit OFFSET field of a symbolic
instruction, negative numbers may be used to describe the

low order position of the data field in relation to the left

rather than the right end of the accumulator. Thus, the 128

bits of the accumulator bear the offset addresses, proceeding
from the left to the right, of '""127, 126....1,0" or, alternatively,
of '"-1, -2....-127, -128".

When the value of a symbolic expression is negative and the
field in which the expression is to be evaluated is a signed

field (for example, the immediate field of any signed instruction,
or the value field of XW or VF), then the sign is compiled as
such in the appropriate position and the true value rather than
the two's complement of the number is used.

Bit address arithmetic is executed in the following manner:

a conversion is performed in order to translate the pair of
integers comprising the bit address into a single 24-bit integer.
In dealing with an expression involving the addition of bit
addresses, each address is converted separately and the
resultant 24-bit integers are then added. If the length of the
field in which the expression is to be inserted is less than 24,
bits may be truncated in high order positions, in low order
positions, or in both.

Example: When a bit address is to be inserted in
a 4-bit index word I or J field, its rightmost 6 and
leftmost 14 bits are shorn. In a l-bit K field, the
rightmost 6 and the leftmost 17 bits are dropped.

1-11

Bit addresses are permitted in all fields where programmer
symbols are permitted. A bit address expression is always
evaluated, then truncated according to the particular field in
which it is to be compiled, and then--if the result is negative--
complemented if the field is unsigned. The truncation on the
right occurs for particular fields in the following manner:

FIELD

1-bit or 4-bit index field
18 -bit address
19-bit address
24-bit address
Field length (6-bit field)

Byte size (3-bit field)
Offset field (7-bit field)

Refill field, Count field, I/0O
Channel field, I/O Unit field
Address field of shift and add
exponent immediate instructions

TRUNCATION

All six fractional bits are dropped.

All six fractional bits are dropped.
Rightmost 5 fractional bits are dropped.
Nothing dropped.

All integral bits are dropped on the left,
nothing on the right.

All but rightmost 3 fractional bits dropped
All but one integral bit lost on the left,
nothing is dropped on the right.

All six fractional bits are dropped.

The rightmost 11 bits of the 24-bit
address are inserted in the first 11 bits
of the address field and all other bits

to the left are lost. Bit 11 of the address
field (the 12th bit) takes the sign.

For an integer arithmetic expression being evaluated for an n-bit
field, arithmetic is simply performed modulo 2" (achieved th_rough
truncation of leftmost bits), and when the subject field is unsigned

the final result is complemented if negative. In this case, however,
the order in which truncation and complementation occur, either

in relation to each other or to arithmetic operations, is not significant
since only high order positions are involved.

Arithmetic expressions may not appear in the NAME field, which is
reserved entirely for the definition of symbols, and of at most one
per statement. Otherwise, subject only to the bit address and integer
restrictions stipulated in Section 1.2.4, an arithmetic expression
may occur in any field with three exceptions:

1) The operation code part of the operation field.
2) The mode sub-field of a data description field.
3) Any entry mode field (defined under Section 1.3.5).

These exceptions are reserved entirely for designations whose
meanings to the compiler are absolute and may not be symbolized.

1-12

1

.2.6

System Symbols

System symbols are symbols whose values have been defined by the
Compiler and are therefore fixed. In all other respects, for example
in relation to the conventions for legal arithmetic expressions and

bit address-integer conventions, system symbols are exactly l1ke
ordinary programmer-defined symbols.

System symbols are identified as a special class by the prefix
character '"$'" (which as one of the non-alphanumeric charactes can
never appear as part of a programmer symbol). All system symbols
which stand for the addresses of special registers in memory (e.g.
L, the left half of the accumulator) are bit addresses, and all others
are integers or real numbers.

The appearance of the "$'' character alone makes for a special
system symbol which provides a standardized substitute in place of
a name for the current statement. This is to say that the character
""$§' is a bit address which in any particular statement wherein it appears
functions as though it had been defined by being written in the NAME
field of that statement.

A special use of the '"$" character is to prefix any operation code in
this manner--$OP--. This directs the compiler to suppress any
error indications which arise in connection with the compilation of
this statement.

Since the actual numerical addresses which are to identify particular
I/0 units and channels may be chosen arbitrarily, system symbols
which represent integers are provided for use in addressing I/O
equipment. The numerical values of members of this set of system
symbols, unlike the values of all the others, may vary from one in-
stallation to another, in order that RDR--for example--may represent
the card reader channel address independently of what that address, in
any particular installation, may be

I/O System Symbols are:

Symbol ' Meaning

PCH Punch (Channel Address)
PRT Printer (Channel Address)
RDR . Reader (Channel Address)
DISK . Disk Unit (Channel Address)

Note: The arcs of a disc may be addressed
by any legal symbolic integer expression,
evaluated modulo 212 to assure a valid

arc address.

co, C1 .. . Ck General channel addresses. These
symbols are provided for multi-unit
channels only. (i.e., they exclude the
channels named RDR, PRT, etc.)

TO, TlTk Tape Units (Unit Addresses) for a
channel which includes_}_c + 1 units.

IQS Inquiry Station (Channel or Unit Address).
This symbol may have different values
depending on whether it appears in a
channel address or unit address field
of a symbolic select order.

CNSL Console (Channel or Unit Address)

The system symbol mnemonics for tapes and channels are numbered
in the expectation that more than one of each kind will be typical.

All of the other units named however, are also capable of plural
attachement to a machine configuration, in which case numerical
suffixes are added to expand the single-unit system symbol in a

standard way. For example, if there are k punches for a given machine,
their system symbols are: PCHO0, PCHI , PCH2.. .PCHk - 1, where
PCHO is synonomous withPCH.

At each installation's option some system symbols--representing

equipment not included in the particular system at hand--may elicit
error flags on the listing.

1-14

1

2.

Variable-in-Number Field Format

The Load Value with Sum (LVS) instruction may be written
with a variable number of address fields, each of which
actually picks out a single bit position within the LLVS address
field itself. For an LVS order, each address field may
specify one of index registers 0 through 15. These fields

are evaluated exactly as if they were regular index designator
fields, so that index addresses may be specified in terms

of either bit addresses or integers in the normal manner.
The I - field may be specified in parentheses after any one -
of the fields. If more than one I-field is specified, a warning
indication will be made and the I-field of the instruction will
be filled with the logical OR union of the multiple designations.

1-15

1

.3

Pseudo Operations

In this section will be found itemized a number of operation
codes provided for purposes of defining data and of controlling
and directing the assembly process itself. Since these codes
do not directly produce machine instructions in the object
program, the functions which they do trigger are referred to
as '"pseudo operations'.

The pseudo operations are grouped according to type. There
are two main classes of pseudo operations:

1. Those which create memory elements.

2. Those which control the assembly process.
a. Those which define symbols by assigning
values which appear in the variable field.

b. Those which give directions to the compiler.

The NAME field of all pseudo operations which neither create
memory elements nor define symbols is ignored.

1-16

3.

Pseudo Operations That Create Memory Elements

The following provide the basic means for defining and entering
generalized data in the STRAP-1 language:

Mnemonic Name ' Usage

1. DD "DATA DEFINITION' DD (dds), N,,N N

27Tk

where the bracketed '"dds'" is a
data description prescribing the
meaning of all succeeding numbers
(N). The numbers N are compiled
in consecutive fields and any symbol
appearing in the NAME field of the
DD statement applies to the first
such field.

The data description (dds) is identical in form and content to that de-
scribed in Section 1.2.2, that is, to the data description which may

be used when writing an individual instruction. Thus a description
may be given with a number at the point of definition of the number
itself, or may be given at the point of reference as part of an instruc-
tion referring to the number. The relation between these two differe nt
points of possible definition is as follows:

When the data description is given by a DD statement (or other data
defining operation), the description is invoked whenever the symbol
appearing in the NAME field of the DD statement is used in the
principal address field of an instruction. The instruction mode, and--
in the case of a VFL order--the field length, byte size and offset are
the supplied by this data description which is logically affixed to the
name of the DD statement.

Such a description set down at the point of symbol definition is over-
ruled by an description appearing in an instruction referring to the
symbol. Whenever an over-ruling description appears in the data
description field of an instruction, the entire description which was
given at the point of definition of the address symbol is over-ruled.
Thus the statement: '

OP (BU), JOE

causes the binary and unsigned modifiers to be compiled along

1-17

with an implicitly defined field length of 64 and a byte size of 8,
regardless of the description occurring in the statement in which
JOE appeared in the NAME field. Over-ruling is strictly local
and applies only to the instruction at hand.

If symbols are used in defining either the field length or byte

size sub-fields of a DD statement's data description, the symbols
must be fully defined when the compiler encounters the DD state-
ment. This requirement is not imposed on the data description

of an instruction since, in that instance, no assignment of memory
space is dependent on the contents of the sub-fields.

Symbols which name instructions themselves are automatically
imbued with data descriptions. Specifically, instruction-naming
symbols are given field lengths equal to the lengths of the particular
instructions named (i.e. either 32 or 64), and are defined as unsigned
binary with byte size 8.

System symbols whose values are the bit addresses of special
registers in memory also have data descriptions which have been
fixed by the compiler (although, as with ordinary symbols, these
descriptions may be over-ruled by the data description fields of
instructions). Specifically, system symbols representing memory
registers are binary unsigned, have field lengths equal to the lengths
- of their represented registers, and have byte size 8.

Use of the "P'" mode (see Section 1.2.2) in the data description (dds)
of a DD statement as in:

NAME DD(P,RIVER), Nl’ NZ' v Ny

will cause the data properties of RIVER to be invoked just as if these
properties had been written in the data description field of the DD state-
ment.

2. XwW "INDEX WORD!" XW,VALUE, COUNT,REFILL,FLAG

The location counter is rounded to the next full word. The contents of the
four symbolic fields following the operation are converted and compiled
in an index word format. FLAG denotes the machine field comprised

of bits 25,26 and 27. An expression in the FLAG field of an XW
statement is cherefore evaluated modulo 23.

Note: Bit 24 of the word format is taken to be the VALUE
sign position. A negative sign is interpreted in two's com-
plement form in the usual way for all other fields.

1-18

3. VF "VALUE FIELD" VF, VALUE

The location counter is rounded to the next half word. The contents
of VALUE are compiled as a 24-bit plus sig;{uantity in positions
0-24 of the next half word. The location counter stands at bit 25

at the end of the operation.

4. CF “"COUNT FIELD" CF, COUNT

The location counter is rounded to the next half word. The contents
of the COUNT field are compiled as an n 18 bit integer in positions
0-17. The location counter stands at bit 18 at the end of the operation.

5. RF "REFILL FIELD" RF, REFILL

This pseudo operation is the same as CF, except that bit addresses
rather than integers must be used.

NOTE: The last four operations (the index word pseudo operations)
defined above are given data descriptions by the compiler, just as

though they had been defined by DD statements. Specifically, the index
elements created by these orders have had the following data descriptions
affixed automatically:

OPERATION DATA DESCRIPTION

XW (BU)

VF (B, 25)

CF or RF (BU, 18)

6. CWwW "CONTROL WORD" Cw(OP), ADDRESS, COUNT,

CHAIN ADDRESS

The pseudo operation CW employs a special symbolic format as
illustrated above and defined initially in Section 1.2.1. A set of
secondary operations is provided--whose members are expressed

as parenthesized secondary operations in the manner of '""(OP)" above--
with the purpose of providing mnemonics for control word functions:

Multiple Bit Chain Bit

CR ""COUNT WITHIN R ECORD" 0 0

CCR '""CHAIN COUNTS WITH-IN 0 1
RECORD"

CD '"COUNT DISREGARDING RE- 1 0
CORD"

CDSC'"COUNT DISREGARDING 1 1

RECORD, SKIP AND CHAIN"

1-19

1.3.1.1

The Form of N in a Data Definition Statement

All data falls under the category of one of the six modes of the data
description field: N, U, B, BU, D, and DU. The numbers Nl' . ’NK
are expressed in the form:

} XXX.XX

and may optionally have other quantities following them which are
identified and separated from the main number by declension
characters:

E +i The integer '"i' is taken as a decimal exponent of the preceding
number. Over-lapping facilities for specifying an exponent
"Ei' are provided in the sense that the decimal point in the number
itself also indicates a decimal exponent. If no point occurs ex-
plicitly, the number is taken to be an integer.

Si The positive integer 'i' is compiled as the byte of the preceding
number. If either the sign of the main number of i implies
a negative sign bit, the sign byte sign position is made negative.

X + i The integer "'i'' is compiled as a machine exponent of an un-
normalized floating point number. It over-rules and replaces
the computed exponent, which is completely eradicated by the
replacement process.

NOTE: The data entries in a DD statement are restricted to real numbers
only. Bit addresses are not permitted. Integers are of course allowed
as a special case of real numbers, but they may not be symbolized.

Floating point data is always compiled in addressable full words;
the location counter is rounded up, if necessary, to the next full
word address in order to meet this end. This is an instance of a
general STRAP 1 principal: a machine format which ordinarily °
depends in use on the fact that the 24-bit address of the lead bit
ends in a string of zeroes of some definite length causes the compiler
to round the location counter appropriately.
Thus:

1) Instructions always start at either half or full word

bit addresses.

1-20

2)

Indexing full word and half word memory formats are
forced to begin at full and half word addresses, re-
spectively.

A floating point data block being reserved through use

of a DR op code (defined in Section 1.3.3) is forced to
begin at a full word address. Moreover, when a field
from an instruction format requires the truncation of

the rightmost bits before compilation, a warning indication
is given if significant bits are truncated (which can occur
if an instruction addresses a format other than its

natural one, e.g. if a floating point instruction addresses
a VFL, data element).

1-21

1.3.1.2

The Entry Mode

The data description field represents a kind of generalized use mode
for the data, in that properties specified in this field are translated
into bits and numbers which are compiled into machine instructions
referring to the data. A corresponding field called the entry mode
is available to specify properties which describe the source language
information and its form, but which properties are not themselves
compiled into the object program.

The entry mode may be employed in one of two ways:

a) An entry mode may be used to specify the properties of
any symbolic field (except the 'field" occupied solely by
the operation mnemonics) by being placed, enclosed in
parentheses, as the first item in the field.

b) An entry mode may also be used to specify the properties
of all the data in a DD or DDI statement. When used in
this fashion, it is enclosed on parentheses and appears
before the DD or DDI op code in the operation field. The
mode is more general in form in its usage in connection
with the data of a DD or DDI statement, as it may in this
instance--but only in this instance--designate that alphabetic
information is to be compiled:

ENTRY MODE MEANING

(AX) "A' signifies that the following information is
704-9 alphabetic (BCD as it appears on tape),
and the letter X is a special end-of-statement
mark for this statement only. The end of
statement character is not itself compiled.

The special end-character may not be:

)

11-0
blank

(IQSX) The code IQS implies the IQS alphabetic code,
and this entry mode designation is otherwise
the same as the preceding. When IQS is
specified in an entry mode, only those IQS
characters which also exist in Hollerith may
be entered.

(F1i) In DD and DDI binary-mode statements,
the number of binary fractional bits is
specified in the entry mode by means of
the letter F followed by an integer i which
is the number of fractional bits .

(F6) XX.XXX

Entry modes may not appear in a manner that would cause parentheses
within parentheses. An entry mode may appear as the first element of any
field in the DD or DDI statement, in which case it functions as a normal
field entry mode. When contradictory properties (for instance, two differing
radixes) are implied by the statement and field entry modes, the field mode
over-rules for the case of the particular field on hand.

NOTE: Both the staement entry mode and the field entry modes in a

DD or DDI statement apply only to the pure number part of the data .

All other quantities which may be joined to the data by special declensions
(e.g. S for sign byte) are regarded as separate fields with respect to

the entry mode, and these fields will have no provision for a separate
entry mode in STRAP-1. Moreover, if the entry mode indicates a radix
different than 10, only integers may be entered as data.

There are two kinds of designators which may appear in any entry mode
expression:

a) Any of the digits 2 through 10 may be used to indicate a
radix. All numerical quantities governed by the entry mode--
whether real numbers, integers, or bit addresses--are then
interpreted in the specified radix. The source language radix
is 10 throughout the system unless otherwise specified.

b) An integer preceded by a point not exceeding 63 has the following
meaning in the entry mode: that the field following the entry mode
is parenthetical in nature and is to be evaluated and compiled with
the specified bit address serving as the bit address of the rightmost
position of the field. The field is added by a logical OR so that it
may be combined with other fields of the statement or other
parenthetical OR fields. The first bit of the statement is counted
as bit 0. Although the parenthetical field may cross field-lines
within a statemsant, it may not cross statement-lines. That is,
if the bit address is specified as ".n'", the parenthetical expression
has a field length of n + 1 and is evaluated modulo 20 * 1.

All parenthetical fields are regarded as unsigned, so that a negative number
is compiled as the complement, re 2" + 1, of the magnitude of the number.

1-23

The field following an entry mode containing a bit address is
terminated by either the end-of-field character of the statement

field in which the parenthetical OR field falls (i.e., within the source
language~-the parenthetical field may cross field lines within the
object language but by its very nature is always specified within

the bounds of some other field in the source language) or by the
beginning-field character for some other field.

Multiple fields in an entry mode expression are permitted, are
separated by commas, and may come in any order: (.32, 8) signifies
an octal field to be terminated at bit 32.

Parenthetical expressions are permitted within a DD statement,

and the bit address is measured from the last comma forward.
Parenthetical expressions may have anything that goes in a normal
address field, but may not have other information--like real numbers
or alphabetic characters--which are permitted in a DD or DDI
statement. Parenthetical expressions are not permitted in any
statement which does not compile memory space, nor in a DR
statement.

The parenthetical field ignores both the field structure and any

data description associated with the statement in which it appears.
Similarly, any data description associated with a symbol appearing

in a parenthetical field has no effect in this usage of the symbol.

All numbers--including real numbers--which appear in a parenthetical
field are converted to an internal binary format, never to decimal

or floating point.

1

.3,

Pseudo Operations Which Define Symbols

It can be said that almost all pseudo operations (excluding SLC,
CNOP, etc.) define symbols in the standard manner -- any symbol
appearing in the name field will be assigned the current value

of the location counter. Grouped under the present category of
pseudo operations are those which define symbols in other than
the usual manner.

1.DDI . “"DATA DEFINITION IMMEDIATE"

This pseudo operation is identical to DD except with respect
to the following points:

(1) Like SYN (see below), it is purely definitive in character.

(2) Only one major field follows the operation field of the
statement.

(3) If no field length is specified, a field length of 24 is implied.

(4) If the length of a string of alphabetic characters exceeds

the field length, the excessive low-order characters
are lost and an error indication is given.

(5) The compiled field--less than or equal to 24 bits in
length--is inserted within a 24-bit field within the
symbol table and left justified.

2. SYN "SYNONYM" A SYN, Y

The operation '""Synonym!'f’ (SYN) may define a new symbol in terms
of a symbolic expression representing either a bit address or an
integer, with the restriction-- as with SL.C ~-- that the expression
be fully defined when encountered. When one writes:

A SYN,Y

the meaning of the newly defined symbol "A'" is that whenever A is
written in the program the effect is the same as if Y had been written.
The meaning of SYN is always one of exact substitution. Thus data
properties associated with Y its bit address-or-integer classification
are transferred to A. SYN statements are permitted to have their
own data description field, as well.

1-25

1

3.

Pseudo Operations Which Give Directions To The Compiler

Mnemonic Name Usage
1) SLC "SET LOCATION COUNTER" A ORG, Y

This operation resets the location counter to the value (bit address)
taken on by Y, where Y is any legal symbolic expression. The name
A applies to the subsequently defined memory element whose first
bit is located at Y. Y must be defined at the point at which the

SLC card is encountered, i.e. any symbols in the expression Y must
have previously appeared in the NAME field. Although Y may be an
absolute number, its absolute meaning may not be preserved from
STRAP-1 to STRAP-2. In STRAP-1 an absolute origin will be posi-
tioned relative to a program area beginning with machine location 0.
In STRAP-2 the beginning of the program area will normally be
supplied independently of the assembly deck and may differ from 0.

The pseudo operation '"Set Liocation Counter'' must contain a bit address
expression whose value is positive. An integer which appears in the
variable field of an SLC instruction is added in as in a 24-bit address
field, i.e. as an integral number of bits, and an error warning is
given.

2) END "END" A END,Y

A card with the operation code END signal s the end of an assembly
and must be included as the last card of each symolic program deck.
A branch card is then punched with the output deck with an address Y,
so that the instruction located at Y will be the first program order
executed.

The END statement also functions as an origin-setting statement for
the memory assignments given to all symbols which are undefined.

A symbol is undefined if it appears somewhere in the program but
never appears in the NAME field of any statement. All occurrences
of such a symbol are flagged as possible errors. The symbol is
assigned a full memory word in the block whose origin is equal to the
value of the location counter when the END statement is encountered
(possibly rounded up to obtain an integral full word address) and the
symbol is given a normalized floating point data description.

3) CNOP "CONDITIONAL NO OPERATION"
The pseudo operation CNOP is used to insure that the instruction

immediately following the CNOP will be assigned a full word address
by the compiler.,

1-26

CNOP examines the location counter. If the counter is already set to

a full word address, the compiler ignores the CNOP, If, however, the
instruction counter is set to a half word address, the CNOP instruction
directs the compiler to advance the counter 32 bits (one half word) to the
next full word address. This is accomplished by compiling the machine
instruction NOP, which is a half word instrucion.

4) TLB "TERMINATE LOADING AND BRANCH"

The pseudo operation '""Terminate Lioading and Branch' is similar to

an "END'" statement with one major distinction--TLB does not stop

the assembly process. Therefore, TLB may be used at any point in

a symbolic deck where a branch card is desired. The branch card thus
produced will interrupt the loader when encountered in a binary deck and
transfer control to the instruction at locaition Y.

5) EXT "EXTRACT" A EXT (I,J) STATEMENT

The '""Extract'' pseudo operation has the following meaning:

I and J are integers or integer expressions. STATEMENT is assembled

by the processor as though it were to be compiled. The field beginning

at bit I and ending at bit J within the aseembled statement is then extracted,
and compiled. Any symbol A in the NAME field of the EXT order is attached
to this compiled quantity. A data description is attached to the symbol as
though it had been written:

(BU, J-1+1, 8)
I and J can also be bit addresses.

EXT is not permitted to specify the extraction of anything beyond the
range of the single statement which follows it.

6) DR "DATA RESERVATION" A DR (dds), N

The DR operation causes N fields of the kind described in the data
description--(dds)-- field to be reserved, i.e. the instruction location
counter is skipped forward a quantity in bits equal to the product of N

and the field length specified in (dds). The symbol A if any, appearing

in the NAME field of the DR statement is attached to the first such field.
The description specified in (dds) is in turn attached to the symbol and

is invoked--in the same fashion as with a DD or DDI statement--whenever
the symbol appears as a principal address.

Referring again to the properties mode example in Section 1.2.2, if one writes:

A DR (P,RIVER), N
the field length of RIVER would govern the actual amount of space reserved

since the data properties of RIVER would be invoked.

1-27

An array is specified in the form:
NAME DR (dds), (I, J, K)

where I, J and K must be integers in symboli c or numeric form.
In fact, an array parameter may be specified by any integer-valued
expression.

Although a three dimensional array is the largest which can be
specified in STRAP-1, arrays involving fewer parameters can
also be described.

Thus, as seen from the discussion in Section 1.2.4, to apply

index word I to the second element of a one dimensional array A,
one writes:

A (1) (T)

1-28

1.

Primitive Supervisor

The primitive supervisor is intended for those users
who desire to use the machine at an early date and

can debug with a minimal system. The primitive is
not a supervisor, according to our use of the word,

but is merely a set of programs to assist in the
debugging of unisupervisor and other '"first' programs.

It consists of:

1. a binary loader which resets the machine, loads
problem program (P.P.) binary cards (output of
STRAP 1) and branches to the P.P.

2. a fail-safe interrupt table which causes the
indicator number (mnemonic) to be printed
on the I.Q.S., a final dump to be taken, and
return made to the binary loader.

3. a mnemonic or floating decimal dump, break
point or final.

1.

1

Binary Loader

The binary loader will load absolute binary cards only.
Bit address loading is desired to most efficiently utilize
the binary card and to provide the most flexible system.
The first word of each card is not a control word; but
contains information to the loader. A maximum of 800
bits (25 half words) per card may be loaded.

Three formats are prescribed; an "origin'' card to re-
start progressive loading, a '"flow'" card which will
continue loading behind the previous card (s), and a
"branch'' card which will branch out of the loader into
the P.P.

Column 1 is a code column used to designate to the loader
the type or class of card being read. Columns 2 and 3
contain a binary identification number and sequence number
used for checking purposes during sequential loading.
Column 4 contains a 12 bit logical end-around-carried
checksum; and columns 72-80 are available for Hollerith
identification and sequencing.

2.1.1.1

The

Origin Card

The "origin' card:

card format is as follows:

Bits Assigned

1.0 -1.11
2.0 -2.11
3.0 -3.11
4.0 - 4.11
5.0

5.1

5.2. -5.11
6.0 -7.11
8.0 -9.11
10.0 - 10.7
10.8 - 71.11

72.0 - 80.11

resets the location counter within

the loader, allows any number of bits
to be skipped or set to zero, allows
loading of less than a full card.

Use

Code column (origin card - 1.9, 1.10,
1.11 punches)

Identification column (binary)
Sequence number (binary)
Check sum

A 1 bit control, 0 if skipping, a 1
if setting to zero

A 1 bit control, 0 if skip or zeroing is
done before card contents are loaded,
a 1 if after.

A 10 bit count of the number of bits
to be loaded from the card.

A 24 bit address designating a new
origin

A 24 bit address designating the
number of bits to be skipped or set
to zero.

Not presently used

Up to 736 information bits (23 half
words)

A 9 column field ignored by the loader
which may be used for Hollerith
identification and sequencing

2.1.1.2

Flow Card

The '"flow' card loads its contents sequential to the
previous card loaded according to the loader's location

counter.

The card format is as follows:

Bits Assigned

1.0

2.0

3.0

4.0

5.4

72.0

1

1.11

2.11

3.11

4.11

71.11

80.11

Use

Code column (flow card -
1.9, 1.11 punches)

Identification numbe;' (binary)
Sequence number (binary)

Check sum

Not presently used

25 half words of binary information
A 9 column field ignored by the
loader which may be used for

Hollerith indentification and
sequencing.

~2.1.1.3 Branch Card

The ""branch' card resets the machine location counter to
the address specified in the card or, if no addreas is specified,
to the address of the first "origin' card.

The format of the '""branch! card is as follows:

Bits Assigned Use

1.0 -1.11 Code column (branch card-1.8, 1.9,
1.11 punches) .

2.0 -5.11 Not presently in use

6.0 -7.11 24-bit transfer address

2.1.1.4 Dump Card

The "dump'" card will provide the mnemonic dump with
limits in case a fail-safe interrupt is encountered .

The card format is as follows:

Bits Assigned Use
1.0 -1.11 Code column (dump card - 1.8)
2.0 - 2.11 Identification number (binary)
3.0 - 3.11 Sequence number (binary)
4.0 - 4.11 Check sum
5.0 - 5.3 Not presently used
5.4 -71.11 Dump information
72.0 - 80.11 A 9 column field ignored by the

loader which may be used for
Hollerith identification and
sequencing.

.1

2.

Interrupt Table

All entries of the interrupt table will be filled with
branches to the fail-safe routine. If an interrupt is taken,
the number (mnemonic) of the indicator will be printed

on the I.Q.S., a final dump will be taken using the

limits prescribed on the '""dump' card and return will be
made to the binary loader for resetting the machine and
loading the next P.P.

If the P.P. desires any other action to be taken for an
indicator then it must provide its own routine to replace
the fail-safe entry in the interrupt table. The most pro-
bable candidates for replacement are TE and I/O inter-
rupts. If the I.Q.S. indicator print routine is desired,
it will probably be available as a macroop and defined
later.

2.

1

.3

Debugging Aids

Certain debugging aids such as a dump, correction
cards, etc. will be included in the primitive package.
Since the exact format and specifications for these
aids are not necessary until the machine is available,
only a tentative format has been described for the
dump and none at all for other devices. In specitying
and writing Unisupervisor, a debugging subset, one
that is relatively easy to debug, should naturally
develop and at that time can be described and included
in the primitive package.

2.1.3.1. Memory Dump

The memory dump is the only debugging program pre-
sently planned for primitive but it will be available in
two forms, a STRETCH dump and a limited 704 dump
using binary tape (IB STD4). Very likely the latter will
be rearely used so it will not be described here; however
it is available.

The dump will provide either a breakpoint or a final
print of core, disk, or tape in floating decimal or
mnemonic form. To achieve minimum interference with
the I/O and indicator register, all P.P. I/O action will
be normally completed before the dump conversion begins.
This problem of I/O completion may require that a pro-
gram step be added to the P.P. interrupt routines (i.e.
turn a bit off).

Upon completion of the breakpoint dump, the first 32
registers are restored to their entry value and return
is made to the P.P. Upon completion of the final dump,
return is made to the binary loader.

The output, at present, is intended for the online printer.
The mnemonic format will resemble that of STRAP 1.
The decimal format will probably be four words to the
line.

2.1.3.2. Debugging Macroops

Two macroops are provided to control the dump and they
are of the following format.

N BKPT K A.B.C.D.E.F, n.m

1. Modifier to designate type of conversion
a. N for normalized floating decimal
b. M for mnemonic instructions

a. BKPT indicates breakpoint print and return to P.P.
b. FNL indicates final print and return to loader.
3. Modifier to designate more parameters follow
a. K indicates another control word follows.
b. Blank indicates this was the last control word
4. Beginning address (a decimallpoint before A indicates

‘rewind the.tape)
a. A indicates file number with 0 indicating firstfile

b. B indicates block number with 0 indicating first
block of file.

c. C indicates word number with 0 indicating first
word of block.

5. Final address plus one word
a. D similar to A
b. E similar to B
* c.. F similar to C

2 -10

6.

The control unit number followed by the unit's number.
Blank if core is desired.

Example: For final print (1) decimal of tape 2 on
unit 3, all of first file
plus the first word of
the first block of file 2.

(2) mnemonic of core 2500
(decimal) to 3500 (de-
cimal)

N FNL K.., 1..1,3.2

M FNL 2500, 3500

Only those portions tagged with an asterisk are
necessary for a core dump. Dumping of tape is
presently intended only under the FNL code.

2 -11

APPENDIX A

STRAP - 1 MNEMONICS

Listed on the following pages are all the assigned STRAP-1
mnemonics, including both operation codes and system symbols.
The total set is listed twice, first grouped according to symbolic
format, and second all in a heap arranged alpha-numerically, with
operation codes and system symbols shown separately in even the
second listing, however.

In both listings footnotes are referenced (through the use of numbers
in the column between mnemonic and name). These footnotes follow
the second listing, and in general are used to identify a particular
class of operations which may be expanded in a standard way to pro-
duce other operations. Where the footnotes specify how particular
modified operation mnemonics may be constructed, these latter do
not appear explicitly in the listings.

Also following the tabular mnemonic listings is a legend of one
character abbreviations which are used in the first listing column
on the left to identify the symbolic instruction type--V for VFL,
F for floating point, etc... '

e amrrtremrHaerenerearoaeereeeasse T RS Ae

ALPHABETIC LIST OF SYSTEM SYMBOLS

WORD BIT

NO. ADDRESS
AD 2 ADDRESS INVALID 11 16
AE 2 ACCUMULATOR EQUAL 11 61
AH 2 ACCUMULATOR HIGH 11 62
AL 2 ACCUMULATOR LOW 11 60
AQC 1 ALL ONES COUNT 7 44-50
BC 1 BOUNDARY CONTROL 3 57
BTR 2 BINARY TRANSIT 11 39
CA 1 CHANNEL ADDRESS .5 12-18
CBJ 2 CHANNEL BUSY REJECT 11 8
CNSL 1 CONSOLE
CPUS 1 CPU SIGNAL 11 5
CPU 2 OTHER CPU 6 0-18
Cs 2 CHANNEL SIGNAL 11 13
CX 1 CHANNEL X (X IS A NUMERICAL DESIG-

NATION)

DF 2 DATA FETCH 11 20
DISK 1 DISK
DS 2 DATA STORE 11 19
DTR 2 DECIMAL TRANSIT 11 40
E 12 e
EE 2 END EXCEPTION 11 11
EK 2 EXCHANGE CONTROL CHECK 11 3
EKJ 2 EXCHANGE CHECK REJECT 11 6
EOP 2 END OF OPERATION 11 12
EPK 2 EXCHANGE PROGRAM CHECK 11 9
EXE 2 EXECUTE EXCEPTION 11 18
FT 1 FACTOR 14 0-63
IA 1 INTERRUPTION ADDRESS 2 0-17
IF 2 INSTRUCTION FETCH 11 21
IK 2 INSTRUCTION CHECK 11 1
17 2 INSTRUCTION REJECT 11 2
IND 1 INDICATQORS 11 0-63
1QS 1 INQUIRY STATION
IR 2 IMAGINARY ROQOT 11 25
IT 1 INTERVAL TIMER 1 0-18
L 1 LEFT HALF OF ACCUMULATOR 8 0-63
LB 1 LOWER BOUNDARY 3 32-49
LC 2 LLOST CARRY 11 22
LS 2 LOST SIGNIFICANCE 11 26
LZC 1 LEFT ZEROS COUNT 7 17-23
M 12 log 10¢

HremearraaararrerrmraEaLEEERARAESREA SRR S

ALPHABETIC LIST OF SYSTEM SYMBOLS

WORD BIT
NO. ADDRESS

MASK 1 MASK 12 21-49
MK 2 MACHINE CHECK 11 0
MOP 2 TO-MEMORY OPERATION 11 55

N 12 log,_ 2

NM 2 NOISY MODE 11 63
oP 2 OPERATION INVALID 11 15
PCH 1 PUNCH

PF 2 PARTIAL FIELD 11 23
PGO..PG 6 PROGRAM INDICATORS 11 41-47
PI 12 7

PRT 1 PRINTER

PSH 2 PREPARATORY SHIFT GREATER THAN 48 11 27

R 1 RIGHT HALF OF ACCUMULATOR 9 0-63
RDR 1 READER

RGZ 2 RESULT GREATER THAN ZERO 11 58
RLZ 2 RESULT LESS THAN ZERO 11 56
RM 1 REMAINDER 13 0-63
RN 2 RESULT NEGATIVE 11 59
RU 2 REMAINDER UNDERFLOW 11 34
RZ 2 RESULT ZERO 11 57
SB 1 SIGN BYTE 10 0-7
TC 1 TIME CLOCK | 1 28-63
TF 2 T FLAG 11 35
TR 1 TRANSIT 15 0-63
TS 2 TIME SIGNAL 11 4
TX 1 TAPE X (X IS A NUMERICAL DESIGNATION)

UB 1 UPPER BOUNDARY 3 0-17
UF 2 U FLAG 11 36
UK 2 UNIT CHECK 11 10
UNRJ 2 UNIT NOT READY REJECT 11 7
USA 2 UNENDED SEQUENCE OF ADDRESSES 11 17
VF 2 V FLAG 11 37
X0 1 INDEX ZERO 16 0-63
X1 1 INDEX ONE 17 0-63
X2 1 INDEX TWO 18 0-63
X3 1 INDEX THREE | 19 0-63
X4 1 INDEX FOUR 20 0-63
X5 1 INDEX FIVE 21 0-63
X6 1 INDEX SIX : 22 0-63

R s R R R R e R R R R R e e e o Y

X7
X8
X9
X10
X11
X12
X13

X14

X15
XCz
XE
XF
XH
XL
XPH
XPL
XPM
XPN
XPO
XPU
XVGz
XVLZ
XVZ

ZD

N = NI DNNNDNNNDNIDNDNDNDNDININ P e e e b e bt e

ALPHABETIC LIST OF SYSTEM SYMBOLS

INDEX SEVEN

INDEX EIGHT

INDEX NINE

INDEX TEN

INDEX ELEVEN

INDEX TWELVE

INDEX THIRTEEN

INDEX FOURTEEN

INDEX FIFTEEN

INDEX COUNT ZERO

INDEX EQUAL

INDEX FLAG

INDEX HIGH

INDEX LOW

EXPONENT HIGH
EXPONENT LOW

EXPONENT MEDIUM
EXPONENT HIGH NEGATIVE
EXPONENT OVERFLOW
EXPONENT UNDERFLOW .
INDEX VALUE GREATER THAN ZERO
INDEX VALUE LESS THAN ZERO
INDEX VALUE ZERO

WORD NUMBER ZERO

ZERO DIVISOR

WORD

BIT

NO. ADDRESS

23
24
25
26
27
28
29
30
31
11
11
11
11
11
11
11
11
11
11
11
11
11
11
0

11

0-63
0-63
0-63
0-63
0-63
0-63
0-63
0-63
0-63
48
53
38
54
52
29
31
30
32
28
33
51
49
50
0-63
24

<EHQOQOQ " <D UUNHZZZZUNWE << << <<t <<

-

OVER-ALL LIST OF MNEMONICS

B. OPERATIONS

+ 3 ADD

+ 6 ADD

+ MG 4 ADD TO MAGNITUDE

+MG 7 ADD TO MAGNITUDE

- 3 SUBTRACT

- 6 SUBTRACT

e 4 MULTIPLY

* 7 MULTIPLY

* ¢ MULTIPLY AND ADD

4 MULTIPLY AND ADD

®A + MULTIPLY ABSOLUTE AND ADD

*] + MULTIPLY IMMEDIATE AND ADD

#N + MULTIPLY NEGATIVE AND ADD

#N + . MULTIPLY NEGATIVE AND ADD

*NA+ MULTIPLY NEGATIVE ABSOLUTE AND ADD
#*NI+ MULTIPLY NEGATIVE IMMEDIATE AND ADD
/ 4 DIVIDE

/ 7 DIVIDE

B BRANCH

BB BRANCH ON BIT

BBl BRANCH ON BIT AND SET TO ONE
BBN BRANCH ON BIT AND NEGATE

BBZ BRANCH ON BIT AND ZERO

BD BRANCH DISABLED

BE BRANCH ENABLED

BEW BRANCH ENABLED AND WAIT

BR BRANCH RELATIVE

BS BACKSPACE

BZB BRANCH ON ZERO BIT

BZB1 BRANCH ON ZERO BIT AND SET TO ONE
BZBN BRANCH ON ZERO BIT AND NEGATE
BZBZ BRANCH ON ZERO BIT AND ZERO

C 10 CONNECT

C+1 ADD IMMEDIATE TO COUNT _
C-1 SUBTRACT IMMEDIATE FROM COUNT
CB 8 COUNT AND BRANCH ,

CBR 8 COUNT, BRANCH AND REFILL ,
CBZ 8 COUNT AND BRANCH ON ZERO COUNT
CBZR 8 COUNT, BRANCH ON ZERO COUNT AND REFILL
CCW COPY CONTROL WORD

CM 10 CONNECT TO MEMORY

M e < <<

<HPHRHIgER<S<<S<STN NS Z 2 EE A

CT
CTL
Cv

DAU
D-
DAUN
DCV
DL
DLWEF

D/
E+
E + Al
E
E
E

KCI
KE
KF
KFE
KFR
KFR
KLN
KMG

KV
KVI
KVNI

s
[=]

oNN~NNNNNOTOoo~SO N

o

NN ~

ENIPN

CONNECT FOR TEST

CONTROL

CONVERT

ADD DOUBLE

AUGMENT DOUBLE

SUBTRACT DOUBLE

AUGMENT NEGATIVE DOUBLE

CONVERT DOUBLE

LOAD DOUBLE

LOAD DOUBLE WITH FLAG

MULTIPLY DOUBLE

DIVIDE DOUBLE

ADD TO EXPONENT

ADD ABSOLUTE IMMEDIATE TO EXPONENT

ADD IMMEDIATE TO EXPONENT

SUBTRACT FROM EXPONENT

SUBTRACT ABSOLUTE IMMEDIATE FROM
EXPONENT

SUBTRACT IMMEDIATE FROM EXPONENT

ERASE GAP

EVEN PARITY

EXECUTE

EXECUTE INDIRECT AND COUNT

ADD TO FRACTION

SUBTRACT FROM FRACTION

GONG

HIGH DENSITY

COMPARE

COMPARE

COMPARE COUNT

COMPARE COUNT IMMEDIATE

COMPARE IF EQUAL

COMPARE FIELD

COMPARE FIELD IF EQUAL

COMPARE FIELD FOR RANGE

COMPARE FIELD FOR RANGE

CHECK LIGHT ON

COMPARE MAGNITUDE

COMPARE FOR RANGE

COMPARE FOR RANGE

COMPARE VALUE

COMPARE VALUE IMMEDIATE

COMPARE VALUE NEGATIVE IMMEDIATE

LOAD

Rl ol R RN -4 - I IS IS ISR IS I IR ISR S R o R S A

LC
LCI
LCV
LD

LF
LFT
LFT
LOC
LR
LRI
LV
LVE
LVI
L'VNI
LVS
LX
LTRCV
LTRS
LWF
LWF
M+

M3
M+l
M+A
M+MG
M+MG
M-

M-
M-1
M-A
M-MG
M-MG
NOP
ODD

RCZ
RD

REL
REW
RLF
RLN
RNX

SC

[S§]

w

LOAD

LOAD COUNT

LOAD COUNT IMMEDIATE

LOAD CONVERTED

LOW DENSITY

LOAD FIELD

LOAD FACTOR

LOAD FACTOR

LOCATE (SAME AS SELECT UNIT)
LOAD REFILL

LOAD REFILL IMMEDIATE

LOAD VALUE

LOAD VALUE EFFECTIVE

LOAD VALUE IMMEDIATE

LOAD VALUE NEGATIVE IMMEDIATE
LOAD VALUE WITH SUM

LOAD INDEX

LOAD TRANSIT CONVERTED
LOAD TRANSIT AND SET

LOAD WITH FLAG

LOAD WITH FLAG

ADD TO MEMORY

ADD TO MEMORY

ADD ONE TO MEMORY

ADD TO ABSOLUTE MEMORY
ADD MEMORY TO MAGNITUDE
ADD MEMORY TO MAGNITUDE
SUBTRACT FROM MEMORY
SUBTRACT FROM MEMORY
SUBTRACT ONE FROM MEMORY
SUBTRACT FROM ABSOLUTE MEMORY
SUBTRACT MAGNITUDE FROM MEMORY
SUBTRACT MAGNITUDE FROM MEMORY
NO OPERATION

ODD PARITY

REFILL

REFILL ON COUNT ZERO

READ

RELEASE

REWIND

RESERVED LIGHT OFF
RESERVED LIGHT ON

RENAME

RECIPROCAL DIVIDE

STORE COUNT

e e R e R R R el R N R R A R R R s

Z2@Hd

SEOP 11 SUPPRESS END OF OPERATION

SF STORE FIELD

SHF 7 SHIFT FRACTION

SHFL SHIFT FRACTION LEFT (SAME AS SHFA)

SHFR SHIFT FRACTION RIGHT (BAME AS SHFNA)

SIC STORE INSTRUCTION COUNTER IF

SLO 7 STORE LOW ORDER

SP SPACE

SPFL SPACE FILE

SNRT 6 STORE NEGATIVE ROOT

SR STORE REFILL

SRD 7 STORE ROUNDED

SRT 6 STORE ROOT

ST 4 STORE

ST 7 STORE

SU SELECT UNIT (SAME AS LOCATE)

SV STORE VALUE

SVA STORE VALUE IN ADDRESS

SWAP SWAP

SWAPI SWAP IMMEDIATE

SWAPB SWAP BACKWARD

SWAPBI SWAP BACKWARD IMMEDIATE

SX STORE INDEX

T TRANSMIT

TI TRANSMIT IMMEDIATE

B TRANSMIT BACKWARD

TBI TRANSMIT BACKWARD IMMEDIATE

V+ ADD TO VALUE

Vil 9 ADD IMMEDIATE TO VALUE

V+C ADD TO VALUE AND COUNT

V+CR ADD TO VALUE, COUNT AND REFILL

V+I1C 9 ADD IMMEDIATE TO VALUE AND COUNT

V+ICR 9 ADD IMMEDIATE TO VALUE, COUNT AND REFILL

V-1 9 SUBTRACT IMMEDIATE FROM VALUE

V-IC 9 SUBTRACT IMMEDIATE FROM VALUE AND COUNT

V-ICR 9 SUBTRACT IMMEDIATE FROM VALUE, COUNT
AND REFILL

w WRITE

WEF WRITE END-OF-FILE

V4 STORE ZERO

e S e AL L R

BEW
BR

D+
DAU
D-
DAUN
DL
DLWF
D

E+
E+AI
E+4I
E-
E-AI
E-I
EX
EXIC
F+
F-

KFR
KMG

LFT
LWF

II.

oO~NNNNN~NNOTOC 0O NoNa o

N NANN g

LIST OF MNEMONICS BY TYPE

A. FLOATING POINT

ADD

ADD TO MAGNITUDE

SUBTRACT

MULTIPLY

MULTIPLY AND ADD

MULTIPLY ABSOLUTE AND ADD
MULTIPLY NEGATIVE AND ADD
MULTIPLY NEGATIVE ABSOLUTE AND ADD
DIVIDE

BRANCH

BRANCH DISABLED

BRANCH ENABLED

BRANCH ENABLED AND WAIT

BRANCH RELATIVE

ADD DOUBLE

AUGMENT DOUBLE

SUBTRACT DOUBLE

AUGMENT NEGATIVE DOUBLE

LOAD DOUBLE

LOAD DOUBLE WITH FLAG

MULTIPLY DOUBLE

DIVIDE DOUBLE

ADD TO EXPONENT

ADD ABSOLUTE IMMEDIATE TO EXPONENT
ADD IMMEDIATE TO EXPONENT
SUBTRACT FROM EXPONENT
SUBTRACT ABSOLUTE IMMEDIATE FROM EXPONENT
SUBTRACT IMMEDIATE FROM EXPONENT
EXECUTE

EXECUTE INDIRECT AND COUNT

ADD TO FRACTION

SUBTRACT FROM FRACTION

COMPARE

COMPARE FIELD FOR RANGE

COMPARE MAGNITUDE

COMPARE FOR RANGE

LOAD

LOAD FACTOR

LOAD WITH FLAG

LT L LTSS R

M«
M+A
M+MG

M-A
M-MG
NOP

RCZ
R/
SHF
SHF L
SHFR
SIC
SLO
SNRT
SRD
SRT
ST

SN NP e NN |

ADD TO MEMORY : -

ADD TO ABSOLUTE MEMORY

ADD MEMORY TO MAGNITUDE
SUBTRACT FROM MEMORY

SUBTRACT FROM ABSOLUTE MEMORY
SUBTRACT MAGNITUDE FROM MEMORY
NO OPERATION

REFILL

REFILL ON COUNT ZERO
RECIPROCAL DIVIDE

SHIFT FRACTION

SHIFT FRACTION LEFT (SAME AS SHFA)
SHIFT FRACTION RIGHT (SAME AS SHFNA)
STORE INSTRUCTION COUNTER IF
STORE LOW ORDER

STORE NEGATIVE ROOT

STORE ROUNDED

STORE ROOT

STORE _

STORE ZERO

A - 10

DEHnDOHDNEH O E O EREEE

II LIST OF MNEMONICS BY TYPE

B. I/O SELECTS

BS BACKSPACE

CCw COPY CONTROL WORD

CTL CONTROL

ERG ERASE GAP

EVEN EVEN PARITY

GONG GONG

HD HIGH DENSITY

KLN CHECK LIGHT ON

LD LOW DENSITY

LOC LOCATE(SAME AS SELECT UNIT)
OoDD ODD PARITY

RD READ

REL RELEASE CHANNEL

REW REWIND

RLF RESERVED LIGHT OFF

RLN RESERVED LIGHT ON

SEOP SUPPRESS END OF OPERATION
SP SPACE

SPFL SPACE FILE

SU SELECT UNIT (SAME AS LLOCATE)
W, WRITE

WEF WRITE END OF FILE

A -11

< <<<<S<<<<S<SSS<SSS<sSS<S

4

< <<<<<S<SS<S<SS<S<SS<SSsSS

+MG

e

e +
T+
*N +
*NI+

CM
CT
cv
DCV

KE
KF
KFE
KFR
KR
L
LCV
LF
LFT

= = N
O O O

P S S Lk

4

LTRCV4
LTRS 4

LWF

Mt
M+l

4

M+MG 3

M-
M-1

M-MG 3

SF
ST

4

II

LIST OF MNEMONICS BY TYPE

C. VFL

ADD

ADD TO MAGNITUDE

SUBTRACT

MULTIPLY

MULTIPLY AND ADD

MULTIPLY IMMEDIATE AND ADD
MULTIPLY NEGATIVE AND ADD

MULTIPLY NEGATIVE IMMEDIATE AND ADD

DIVIDE

CONNECT

CONNECT TO MEMORY
CONNECT FOR TEST
CONVERT

CONVERT DOUBLE

COMPARE

COMPARE IF EQUAL
COMPARE FIELD

COMPARE FIELD IF EQUAL
COMPARE FIELD FOR RANGE
COMPARE FOR RANGE

LOAD -

LOAD CONVERTED

LOAD FIELD

LOAD FACTOR

LOAD TRANSIT CONVERTED
LLOAD TRANSIT AND SET
LLOAD WITH FLAG

ADD TO MEMORY

ADD ONE TO MEMORY

ADD MEMORY TO MAGNITUDE
SUBTRACT FROM MEMORY
SUBTRACT ONE FROM MEMORY
SUBTRACT MAGNITUDE FROM MEMORY
STORE FIELD

STORE

A - 12

HaHaaa34d4

SWAP
SWAPI
SWAPB
SWAPBI

TI
TB
TBI

II LIST OF MNEMONICS BY TYPE

D. TRANSMITS

SWAP

SWAP IMMEDIATE

SWAP BACKWARD

SWAP BACKWARD IMMEDIATE
TRANSMIT

TRANSMIT IMMEDIATE

TRANSMIT BACKWARD

TRANSMIT BACKWARD IMMEDIATE

A-13

aaa

Q

CB
CBR
CBzZ
CBZR

II. LIST OF MNEMONICS BY TYPE

E. COUNT AND BRANCH

COUNT AND BRANCH

COUNT, BRANCH AND REFILL

COUNT AND BRANCH ON ZERO COUNT

COUNT, BRANCH ON ZERO COUNT AND REFILL

o 0 0 ®

A - 14

B

B

ovlte: e

B
B

II.

BB
BBl
BBN
BBZ
BZB
BZBIl1
BZBN
BzZBZ

LIST OF MNEMONICS BY TYPE

F. BRANCH ON BIT

BRANCH ON BIT

BRANCH ON BIT AND SET TO ONE
BRANCH ON BIT AND NEGATE

BRANCH ON BIT AND ZERO

BRANCH ON ZERO BIT

BRANCH ON ZERO BIT AND SET TO ONE
BRANCH ON ZERO BIT AND NEGATE
BRANCH ON ZERO BIT AND ZERO

A - 15

Ctl
C-1
KC
KCI
KV
KVI
KvNI
LC
LCI
LR
LRI
LV
LVE
LVi
L'VNI
LVS
LX
RNX
sC
SR
SV
SVA
SX
V+
V+I
V+IC
V+ICR
V+C
V4+CR
V-1
V-IC
V-ICR

O O

O O O

LIST OF MNEMONICS BY TYPE

G. INDEX TRANSMISSION AND ARITHEMTIC

ADD IMMEDIATE TO COUNT

SUBTRACT IMMEDIATE FROM COUNT

COMPARE COUNT

COMPARE COUNT IMMEDIATE

COMPARE VALUE

COMPARE VALUE IMMEDIATE

COMPARE VALUE NEGATIVE IMMEDIATE

LOAD COUNT

LOAD COUNT IMMEDIATE

LOAD REFILL

LOAD REFILL IMMEDIATE

LOAD VALUE

LOAD VALUE EFFECTIVE

LOAD VALUE IMMEDIATE

LOAD VALUE NEGATIVE IMMEDIATE

LOAD VALUE WITH SUM

LOAD INDEX :

RENAME

STORE COUNT

STORE REFILL

STORE VALUE

STORE VALUE IN ADDRESS

STORE INDEX

ADD TO VALUE

ADD IMMEDIATE TO VALUE

ADD IMMEDIATE TO VALUE AND COUNT

ADD IMMEDIATE TO VALUE, COUNT AND REFILL

ADD TO VALUE AND COUNT

ADD TO VALUE, COUNT AND REFILL

SUBTRACT IMMEDIATE FROM VALUE

SUBTRACT IMMEDIATE FROM VALUE AND COUNT

SUBTRACT IMMEDIATE FROM VALUE, COUNT
AND REFILL

A - 16

H. SYSTEM SYMBOLS 'THAT ARE BIT ADDRESSES

LOCATION SYSTEM SYMBOL
WORD BIT
NO. ADDRESS MNEMONIC NAME
0 0-63 $ Z WORD NUMBER ZERO
1 0-18 $ 1T INTERVAL TIMER
1 28-63 $ TC TIME CLOCK
2 0-17 $ IA INTERRUPTION ADDRESS
3 0-17 $ UB UPPER BOUNDARY
3 32-49 $ LB LOWER BOUNDARY
3 57 $ BC BOUNDARY CONTROL
4 32-63 MAINTENANCE BITS
5 12-18 $ CA CHANNEL ADDRESS
6 0-18 $ CPU OTHER CPU
7 17-23 $ LZzZC LEFT ZEROS COUNT
7 44-50 $ AQGC ALL ONES COUNT
8 0-63 $ L LEFT HALF OF ACCUMULATOR
9 0-63 $ R RIGHT HALF OF ACCUMULATOR
10 0-7 $ SB SIGN BYTE
INDICATORS
11 0-63 $ IND INDICATORS
11 0 $ MK -~ MACHINE CHECK
11 1 $ IK INSTRUCTION CHECK
11 2 $ 1J INSTRUCTION REJECT
11 3 $ EX EXCHANGE CONTROL CHECK

ATTENTION REQUEST

11 4 $ TS TIME SIGNAL

11 5 $ CPUS CPU SIGNAL
INPUT-OUTPUT REJECTS

11 6 $ EKJ EXCHANGE CHECK REJECT

11 7 $ UNRJ UNIT NOT READY REJECT

11 8 $ CBJ CHANNEL BUSY REJECT
INPUT-OUTPUT STATUS

11 9 $ EPK EXCHANGE PROGRAM CHECK

11 10 $ UK UNIT CHECK

11 11 $ EE END EXCEPTION

11 12 $ EOP END OF OPERATION

11 13 $ CS CHANNEL SIGNAL

11 14 $ RESERVED

A - 17

' LOCATION
WORD BIT

NO.

ADDRESS

11
11
11
11
11
11
11

11
11
11

11
11

117

- 11
11

11
11
11
11
11

11
11
11
11

11
11

11

15
16
17
18
19
20
21

22
23
24

25
26
27
28
29
30
31
32
33
34

35
36
37
38

39
40

41-47

H.

w2 e

R R R s R R o

©“r o 0

w5

SYSTEM SYMBOLS THAT ARE BIT ADDRESSES

SYSTEM SYMBOL

MNEMONIC

NAME

INSTRUCTION EXCEPTION

oP
AD
USA
EXE
DS
DF
IF

OPERATION INVALID

ADDRESS INVALID

UNENDED SEQUENCE OF ADDRESSES
EXECUTE EXCEPTION

DATA STORE

DATA FETCH

INSTRUCTION FETCH

RESULT EXCEPTION

LC
PF
ZD

LOST CARRY
PARTIAL FIELD
ZERO DIVISOR

RESULT EXCEPTION - FLOATING POINT

IR
LS
PSH
XPO
XPH
XPM
XPL
XPN
XPU
RU

FLAGGING
TF
UF
VF
XF

IMAGINARY ROOT

LOST SIGNIFICANCE

PREPARATORY SHIFT GREATER THAN 48
EXPONENT OVERFLOW (EXP> 2')
EXPONENT HIGH (210<EXP< 21
EXPONENT MEDIUM (28 < EXPS 2 10y
EXPONENT LOW (224 EXP< 28)
EXPONENT HIGH NEGATIVE(-2"¢ EXP< -210
EXPONENT UNDERFLOW(EXPE -2'"")
REMAINDER UNDERFLOW

T FLAG
U FLAG
V FLAG
INDEX FLAG

TRANSIT OPERATIONS

BTR
DTR

PGO...PG6

A-18

BINARY TRANSIT
DECIMAL TRANSIT

PROGRAM INDICATORS

H. SYSTEM SYMBOLS THAT ARE BIT ADDRESSES

o],0CATION SYSTEM SYMBOL
WORD BIT
NO. ADDRESS MNEMONIC NAME

INDEX RESULT

11 48 $ XCZ INDEX COUNT ZERO
11 49 $ XVLZ INDEX VALUE LESS THAN ZERO
11 50 $ XVZ INDEX VALUE ZERO
11 51 $ XVGZ INDEX VALUE GREATER THAN ZERC(
11 52 $ XL INDEX LOW
11 53 $ XE INDEX EQUAL
11 54 $ XH INDEX HIGH

ARITHMETIC RESULT
11 55 $ MOP TO-MEMORY OPERATION
11 56 $ RLZ RESULT LESS THAN ZERO
11 57 $ RZ RESULT ZERO
11 58 $ RGZ RESULT GREATER THAN ZERO
11 59 $ RN RESULT NEGATIVE
11 60 $ AL ACCUMULATOR LOW
11 61 $ AE ACCUMULATOR EQUAL
11 62 $ AH ACCUMULATOR HIGH

o

MODE
11 63 $ NM NOISY MODE
12 21-49 $ MASK MASK
13 0-63 $ RM REMAINDER
14 0-63 $ FT FACTOR
15 0-63 $ TR TRANSIT
16 0-63 $ X0 INDEX ZERO
17 0-63 $ X1 INDEX ONE
18 0-63 $ X2 INDEX TWO
19 0-63 $ X3 INDEX THREE
20 0-63 $ X4 INDEX FOUR
21 0-63 $ X5 : INDEX FIVE
22 0-63 $ X6 INDEX SIX
23 0-63 $ X7 INDEX SEVEN
24 0-63 $ X8 INDEX EIGHT
25 0-63 $ X9 INDEX NINE
26 0-63 $ X10 INDEX TEN
27 0-63 $ X11 INDEX ELEVEN
28 0-63 $ X12 INDEX TWELVE
29 0-63 $ X13 INDEX THIRTEEN

~ 30 0-63 $ X14 INDEX FOURTEEN

31 0-63 $ X15 INDEX FIFTEEN

A - 19

+r o A e

CNSL
CX
DISK
IQS
PCH
PRT
RDR
X

SYSTEM SYMBOLS THAT ARE INTEGERS

Pk et el el ek et et fd

CONSOLE

CHANNEL X (X IS A NUMERICAL DESIGNATION)
DISK

INQUIRY STATION

PUNCH

PRINTER

READER

TAPE X (X IS A NUMERICAL DESIGNATION)

A - 20

©®r ¥ & @

PI

J.

12

12

12

12

SYSTEM SYMBOLS THAT ARE REAL NUMBERS

1
°€10

log 2

A - 21

» mo<

—

LEGEND OF INSTRUCTION TYPE DESIGNATIONS

VFL

Floating Point

System Symbol

Index

Count and Branch

Branches and Miscellaneous
Branch on Bit

Transmits

I1/O select or control word

A-22

NOTES

This mnemonic is a system symbol. It must be prefixed by
the character "$'' whenever used.

This mnemonic is both an indicator mnemonic and a system
symbol. It must be prefixed by the ""$'' whenever used as

a system symbol in a symbolic field of some instruction.

It also may be used directly to express a Branch on Indicator
instruction by being substituted for the letter "I'" in any of
the following four formats:

BI Branch on Indicator

BIZ Branch on Indicator and Zero

BZI Branch on Zero Indicator

BZ1Z Branch on Zero Indicator and Zero

The mnemonics BI, BIZ, BZI, and BZIZ are not in themselves
legal operation codes. Any of the integers 0 through 63 may also
be substituted for I if it is desired to designate an indicator
numerically.

This operation code may be suffixed by the letter "I" to
invoke immediate addressing.

This VFL operation code may have the following suffixes:

I Immediate
N Negative
NI Negative Immediate

This operation code may be suffixed by the letter ""N" to
invoke the negative sign modifier.

This floating point operation code may be suffixed by the
letter '""A'" to invoke the absolute sign modifier.

10.

11.

12.

This floating point operation code may have the following
suffixes:

N Negative

A Absolute

NA Negative Absolute

Count and Branch operation may have the following suffixes:
+ Add one to value

- Subtract one from value

H Add half to value

This operation code may be used to indicate either an
immediate indexing operation or the secondary operation
of any VFL instruction.

This operation mnemonic specifies potentially 16 connect
orders. Four binary digits are written directly after the
op code to select a particular one at the 16 orders.

This op code is also subject to footnote 4.

This code may be as a secondary operation in connection
with those I/0O select orders which are subject to end~-of-

operation interrupts.

These mnemonics are mathematical constants.

Mnemonic

CCR
Cbh
CDSC

CF
CNOP
CR
Cw
DD
DDI
DR
END
EXT
RF
SLC
SYN
TLB
VF
Xw

APPENDIX B

STRAP-1 PSEUDO OPERATIONS

Name

CHAIN COUNTS WITHIN RECORD
COUNT DISREGARDING RECORD

COUNT DISREGARDING RECORD, SKIP

AND CHAIN

COUNT FIELD

CONDITIONAL NO OPERATION
COUNT WITHIN RECORD
CONTROL WORD

DATA DEFINITION

DATA DEFINITION IMMEDIATE
DATA RESERVATION

END

EXTRACT

REFILL FIELD

SET LOCATION COUNTER
SYNONYM

TERMINATE LOADING AND BRANCH
VALUE FIELD

INDEX WORD

