
PLANNING A C O M P U T E R S Y S T E M

B R O J E C T S T R E T C H

PLANNING A

C O N T R I B U T O R S

Richard S. Ballance
Robert W. Bemer

Gerrit A. Blaauw
Erich Bloch

Frederick P. Brooks, Jr.
FITermer Buchholz

Sullivan G. Campbell
John Cocke

Edgar F. Codd
Paul S. Heiwitz

Harwood G. IColsky
Edward S. Lowry

Elizabeth McDonough

James H. Pornerene

Casper A. Scalzi

COMPUTER SYSTEM

P R O J E C T S T R E T C H

Edited by

WERNER BUCHHOLZ
SYSTEMS CONSULTAKT

CORPORATE STAFF, BESEARCW ASD ENGIXEERIXG

INTERXATIONAL BUSINESS MACHIKES CORPORATIOX

New York Toronto London 1962

McGRAW-HILL BOOK COMPANY, INC.

PLANNING A COMPUTER SYSTEM

Copyright @ 1962 by the McGraw-Hill Book Company, Inc. Printed in
the United Sta.tes of America. Al1 rights reserved. This book, or
parts thereof, may not be reproduced in any form without permission
of the piiblishers. Library of Congress Catalog Card Xumber 61-10466

THE MAPLE PRESS COMPASY, YORK, PA. 08720

FOREWORD

The electronic computer has greatly contributed to scientific research;
it has reduced costs, shortened time scales, and opened new areas of
investigation. Increased use of computers, in turn, has crea,ted a need
for better computers. What is desired most often is a general-purpose
design with the best achievable memory capacity, speed, and reliability.

User experience has shown the need for considering more t,han these
fundamental properties in the design of a new computer. Unlike earlier
machines, whose capabilities were mainly functions of the properties of
individua1 components and units and not to any marked extent of their
organization or the user's requirements, the Stretch computer is based
on a comprehensive joint planning effort involving both users and
designers. Their combined experience brought in many new considera-
tions. The term genera1 purpose was given a broader definition in
Stretch. Areas of special concern included the vocabulary of the com-
puter, parallel operation for greater speed and efficiency, error detection
and correction, and recovery from errors and other exceptional events.

The design phase for a new-generation computer is always a difficult
one. The potential user cannot predict accurately how the new t001
will be used or what new areas of research will open up. The designers
have to work with components for which such important data as how
these components behave en masse are lacking. The Stretch project,
in design as well as construction, has been successfully concluded. The
degree of success, however, can only be ascertained as experience in using
Stretch is accumulated.

This book forms a record of what is probably the first really comprehen-
sive design effort for a new computer. I t was written and edited by a
very competent group from the technical staff of the IBM Corporation,
including most of the principal designers of Stretch.

There is no doubt that still better computers will be needed. Although
v

the Stretch computer is now solving problems that could not be solved a
few months ago, many problems are known to exist for which even
Stretch is inadequate. This book will be invaluable as a guide and
reference source for computer development in the future.

Bengt Carlson
Los Alamos Scientific Laboratory

September 1961

PREFACE

Planning a computer system ideally consists of a continuous spectrum
of activity, ranging from theoretically analyzing the problems to be
solved to evaluating the technology to be used for the components.
When dealing with an electronic digital computer of more than modest
size that is intended to be used for fairly complex applications, one is
forced to split the planning spectrum into arbitrary segments, each seg-
ment being developed with due regard for its neighbors. This book is
mainly concerned wit,h that segment that has to do with the selection of
an instruction set and related functional characteristics of a computer.
Except for cost and speed, these are the characteristics that do most to
distinguish one computer from the next.

This book is about the planning of a specific computer. Being specific
has both advantages and drawbacks. On one hand, the book reflects
the thoughts of one group, not the entire state of the art. It cannot be a
compendium of al1 the ideas, features, and approaches that have proved
interesting and useful in various computers. On the other hand, con-
centration on one design serves to crystallize the concepts in a way that
would be difficult to do with a hypothetical computer designed for the
sake of exposition. Moreover, a specific computer represents compro-
mises in bringing diverse and complex considerations together into a
coherent working entity, and these practical compromises are instructive
in themselves.

Although the discussion is in terms of a specific computer, the concepts
discussed are quite general. The computer chosen is the IBM 7030.
It is a recently developed computer incorporating many of the latest
advances in machine organization, and a number of these advances are
origina1 or greatly improved over earlier versions. It is also a very large
and very fast computer. There is an advantage in choosing such a large
computer for examination, for it is practical to include quite a rich
vocabulary in large computers, and this affords an opportunity to exam-
ine features which may not al1 be so readily incorporated in a single com-

vi i

puter of smaller size. The 7030, in particular, combines computing and
data-processing facilities that were previously available only in separate
computers. Thus a large computer may serve as a mode1 from which to
select or adapt features for use in a smaller computer.

The 7030 computer was the outcome of Project Stretch, an IBM
research and development project aimed a t a major advance in computer
technology and organization. To achieve a substantially improved com-
puter organization required more than a mere compilation of the best
features in existing machines and of new features already known. In
the hope of stimulating ideas for substantial improvements i t was
decided to explore very thoroughly the basic structure of computers.
Severa1 of the participants in these studies published papers, from time to
time, on computer organization in genera1 and on particular conclusions
drawn for Project Stretch. This book consists partly of such material,
updated and edited for c~nt~inuity. Much previously unpublished
material has been added to fill in major gaps.

The book is intended to complement the reference manual for the
7030,l although enough of the details of t'he 7030 are summarized in the
text or in the Appendix that the 7030 Reference 'Iaiiual is not required for
understanding the material in this book. Where the manual recites in as
much detail as possible what the system does, this book is aimed a t shed-
ding light on how i t is done and why the system was designed the way i t
is, as well as describing some alternative courses that were examined and
rejected.

The book does not attempt to dea1 adequately 114th details of the design
and construction of the computer a.nd its coniponents, since these rnight
well fill another volume. Nor does it cover the programming techniques
used in the extensive compiling and supervisory programs written for the
system.

The book is aimed a t a reader who already has a reasonably good
knowledge of how a stored-program computer is organized and pro-
grammed. It may also serve as an advanced text to follow an elementary
course on digital computers.

Contents oF Book

Chapter 1 is a short history of Project Stretch. Chapter 2 outlines the
philosophy that guided the design of the system. I t emphasizes the need
for a consistent point of view among those responsible for the basic plan
of as complex a system as this computer.

A summary of the system in narrative form is given in Chap. 3. This
is intended to give the reader a fairly complete picture of the forest before

l "Reference Manual, 7030 Data Processing System," IBM Data Proceseing Divis-
ion, White Plains, N.Y.

he looks a t the trees. Most of the materia1 in this chapter is covered
again in detail in later chapters.

Chapter 4 discusses different classes of data and the need for different
ways of specifying each class. Chapter 5 gives the reasons for designing
what is basically a binary strutture, alihough there are provisions for both
binary and decimal arithmetic.

Chapter 6 considers the choice of a new character set and code for the
7030, which provides 120 characters, including many not available before,
such as those of the lower-case alphabet. I t may be noted that the 7030
system is quite flexible with regard to character sets and is not tied to
the set described here. One reason for writing this chapter is that the
reasoning is pertinent to current industry-wide code standardization
efforts, and it may be found useful as input to these important
deliberations.

Chapter 7 covers the extensive variable-field-length features of the
7030, which are used for fixed-point binary and decimal arithmetic, for
alphanumeric processing, and for Boolean logic. Chapter 8 describes
the floating-point-arithmetic operations, which deserve much more than
the routine treatment they so often receive if numerous pitfalls areJ-to be
avoided. Between them, Chaps. 7 and 8bridge the traditionally separate
domains of the "business" and "scientific" computers.

In Chap. 9, the reason for the rather complex instruction formats used
in the 7030 is explained. Chapter 10 deals with various methods
available to the programmer for specifying the logica1 sequence of instruc-
tions. (This should be distinguished from the interna1 rearrangement of
this sequence to achieve overlapped operation, as described in Chaps.
14 and 15.) Included in Chap. 10 are origina1 techniques for program
interruption and for executing instructions outside the current instruction
sequence. This execute feature, incidentally, is one of several examples
where a new technique developed originally on Project Stretch carne to
light first in another IBM computer (here the 709) that happened to be
built on an earlier schedule.

Chapter I l covers a thorough investigation of indexing, which resulted
in the development of the control-word technique for processing records
and for controlling program loops. A genera1 method for controlling
input-output units that is independent of the precise nature of the device
is discussed in Chap. 12.

Chapter 13 gives an introduction to the fairly recent subject of multi-
programming, which is the simultaneous execution of several problem
programs. I t shows how the design of the 7030 was heavily influenced
by the desire to exploit multiprogramming for more efficient utilization of
the computer and for better man-machine communication.

The next three chapters give a brief survey of the construction of major

parts of the system to round out the picture. Chapter 14 deals with the
various parts of the centra1 processing unit, the circuits, and the method of
construction. One part of the centra1 processing unit, which has been
called the loolc-ahead, receives more detailed treatment in Chap. 15, since
it represents a major departure from the design of earlier computers.
Chapter 16 explains the input-output exchange which controls the inde-
pendent operation of a number of input-output channels.

Chapt'er 17 describes the IBM 7951 Processing Unit, which extends
but is not a part of the Stretch system, having been developed under a
separate contract. The 7951 introduces a completely nelv concept of
nonarithmetical processing, which is a much more powerful t001 for oper-
ating on norinumerical data than previous techniques. The complete
system includes an entire 7030 computer, al1 of whose facilities are availa-
ble for more conventional procedures. I t seemed appropriate to include
in this book a t least a brief account of a contemporary project related to
Stretch.

Acknowledgments

As part of a contractual agreement with the Los Alamos Scientific
Laboratory, the first recipient of a Stretch computer, a joint Los Alamos-
IBM mathematical planning group was set up to coordinate, advise,
and assist in the planning stage. Project Stret'ch owes a great deal t'o
the many invaluable contributiona of the Los Alamos members, a group
which collectively represents as great a wealth of practical experience
in al1 phases of the application of large computers to large mathematical
problems as ca11 be found anywhere. The Los Alamos group, ably led
by B. G. Carlson, included R. M. Frank, M. Goldst,ein, H. G. Kolsky
(now with IBM), R. B. Lazarus, E. A. T'oorhees, M. B. Wells, D. F.
Woods, and W. J. Worlton. A second group was formed later to work
with IBM Xpplied Programming personnel on creating programming
systems for Stretch.

It is impossible to scknowledge individually the work of al1 the IBM
personnel who have made significant contributions to the materia1 in this
book. Al1 except one of the fifteen coauthors of the chapters partici-
pated directly in Project Stretch.

Some other individuals should be mentioned in connection with specific
chapters. The character set reported in Chap. 6 was developed jointly
by a group including E. G. Law, H. ,T. Smith, and F. A. Williams. W.
Wolensky contributed substantially to the variable-field-length system
oiit,lined in Cha,p. 7. A great deal of the credit for the flortting-point
system of Chap. 8 should go to D. W. Sweeney. Much of the early
development of the control-word concept covered in Chap. 11 was stimu-
lated by discussion with G. M. Amdahl, E. li. Boehm, ,T. E. Griffith, and

R. A. Rahenkamp. J. D. Calvert was in charge of the design of the
input-output contro1 system described in Chap. 12. Engineering
responsibility for major units described in Chap. 14 rested with R. T.
Blosk (instruction unit), J. F. Dirac (look-ahead unit), 5. ,4.Hipp and
O. L. MacSorley (arithmetic units), and L. O. Ulfsparre (memory bus
unit), while R. E. Merwin and E. Bloch (the author of the chapter) had
over-ci3 engineeriag direction for Project Stretch. The descriptior, of
the input-output exchange in Chap. 16 was based in part on an oral paper
by H. K. Wild,' who was in charge of the design of this unit and is
responsible for much of its logic. T. C. Chen contributed materia1 for
programming examples shown in the Appendix.

Important work was contributed during the early stages of the project
by severa1 whose names have iiot been mentioned so far, including J. W.
Backus, h'. P. Edwards, P. E. Fox, L. P. Hunter, J. C. Logue, and B. L.
Sarahan.

The editor wishes to acknowledge particularly the encouragement and
advice he received from S. W. Dunwell, who headed Project Stretch
from beginning to end.

Werner Buchholz

H. K. Wild, The Organization of the Input-Output System of the Stretch Com-
puter, presented a t the Auto-Math Sessions, Paris, June, 1959.

CONTENTS

Foreword

Preface

1. Project Stretch

2. Architectural Philosophy

2.1. The Two Objectives of Project Stretch
2.2. Resources

2.3. Guiding Principles

2.4. Contemporary Trends in Computer Architetture .
2.5. Hindsight

3. System Summary of IBM 7030

System Organization

Memory Units
Index Memory

Specia.l Registers

Input and Output Facilities

High-speed Disk Units

Centra1 Processing Unit

Instruction Controls

Index-arithmetic Unit

Instruction Look-ahead

Arithmetic Unit

Instruction Set

Data Arithmetic

Radix-conversion Operations

Connective Operations

Index-arithmetic Operations

Branching Operations

xiii

3.18. Transmission Operations

3.19. Input-Output Operations

3.20. New Features

3.21. Performance

4. Natural Data Units

4.1. Lengths and Structures of Natural Data Units
4.2. Procedures for Specifying Natural Data Units .
4.3. Data Hierarchies

4.4. ClassesofOperations

5. Choosing a Number Base

Introduction

Information Content

Arithmetic Speed

Numerica1 Data

Nonnumerical Data

Addresses

Transformation

Partitioning of Memory

Program Interpretation

Other Num ber Bases

Conclusion

6. Character Set

Introduction
SizeofSet
Subsets
Expansion of Set . . .
Code
Parity Bit
Sequence
Blank
Decima1 Digits . . .
Typewriter Keyboard .

Adjacency
Uniqueness . . .

Signs
Tape-recording Convention
Card-punching Convention
List of 7030 Character Set

7.1. Introduction

7.2. Addressing of Variable-field-length Data . .

Field Length
Byte Size
Universal Accumulator
Accumulator Operand
Binary and Decima1 Arithmetic
IntegerArithmetic
Numerica1 Signs

Indicators
Arithmetical Operations
Radix-conversion Operations
Logica1 Connectives of Two Variables

Connective Operations

General Discussion
Problems of Fixed-point Arithmetic
Floating-point Arithmetic . . .

liormalization
Floating-point Singularities . . .

Range and Precisiori
Round-offError

Significance Checks
Forms of Floating-point Arithmetic
Structure of Floating-point Data .

Floating-point Features of fhe 7030
Floating-point Instruction Format
Floating-point Data Formats
Singular Floating-point Sumbers
Indicators
Cniversal A~cumul~ to r . .
Fraction Arithmetic . . .

Floating-point-arithn~eticOperations
Fixed-point Arithmetic Using Unnormalized

Floating-point Operations
Special Functions and Forms of Arithmetic . . .

Multiple-precision Arithmetic

General Remarks

9. Instruction Formats

9.1. Introduction

9.2. Earlier Instruction Languages . . .

9.3. Evolution of the Single-address Instruction . . .

9.4. Implied Addresses

9.5. Basic 7030 Instruction Formats

9.6. Instruction Efficiency

9.7. The Simplicity of Complexity

9.8. Relationship to Automatic Programming Languages .

10. Instruction Sequencing

Modesof Instruction Sequencing
Instruction Counter

Unconditional Branching

Conditional Branching

Program-interrupt System

Components of the Program-interrupt System . .
Examples of Program-interrupt Techniques . . .
Execute Instructions

Ezecute Operations in the i030

11. Indexing

Introduction

Indexing Functions

Instruction Format for Indexing

Incrementing

Counting

-4dvancing by One

Progressive Indexing

Data Transmission

Data Ordering

Refilling

Indirect Addressing and Indirect Indexing

Indexing Applications

Record-handling Applications

File Xaintenance

Subroutine Contro1

Conclusion

12. lnput-Output Contro1

h Generaliaed *4pproach to Connecting Input-Output

and External Storage

Input-Output Instructions

Defining the Memory Area

Writing and Reading

Controlling and Locating

An Alternative Apprortch

Program Interruptions

Buffering

Interface

Operator Control of Input-Output Vnits

13.1. Introduction
. 13.2. Multiprogramming Requirements

13.3. 7030 Features that Assist Multiprogramming . .
. 13.4. Programmed Logic

. . . 13.5. Concluding Remarks

. . . 13.6. References

. 14 . The Centra1 Processing Unit

. ConcurrentSj-stemoperation
Concurrency within the Central Processing Unit .

. Data Flow
. . . . Arithmetic Unit

Checking
Component Count

. Performance . .

. Circuits

. Packaging

. 15 . The Look-ahead Unit

. 15.1. General Description
. 15.2. Timing-simulation Program

. . . . 15.3. Description of the Look-ahead Unit
. 15.4. Forwarding

. 15.5. Counter Sequences
. 15.6. Recovery after Interrupt

15.7. A Look-back a. t the Look-ahead

. 16 . The Exchange

Genera1 Description
Starting a WRITE or READ Operation

. Data Transfer during Writing
Data Transfer during Reading
Terminating a WRITE or READ Operation . . .
Xultiple Operations

. . . CONTROL and LOCATE Operations . .
. InterrogatingtheControlWord

Forced Termination

. 1 7 . A Nonarithmetical System Extension

17.1. Nonarithmetical Processing
17.2. The Set-up Mode
17.3. Byte-sequence Formation

xvi i

192

192
193
195
197
200
201

202

202
204
204
208
216
216
217
218
223

228

228
230
238
240
241
246
247

248

248
250
250
251
252
252
252
253
253

254

254
258
259

Pattern Selection

Transformation Facilities

Statistica1 Aids

The BYTE-BY-BYTE Instruction

Monitoring for Special Conditions

Instruction Set

Collating Operations

Table Look-up Operations

Example

Appendix A. Summary Data

,4.1. List of the Larger IBM Stored-program Computers .
A.2. Instruction Formats
A.3. List of Registers and Special Addresses
A.4. Summnry of Operations and Modifiers
A.5. Summary of Indicators

Xotation

B.1. Polynomial Evaluation

B.2. Cube-root Extraction
B.3. Matrix Multiplication

B.4. 	 Conversion of Decima1 Xumbers to a Floating-point
Sormalized Vector

B.5. Editing a Typed Message

B.6. Transposition of a Large Bit 3Iatrix

Index

PLANNING A COMPUTER S Y S T E M

P R O J E C T S T R E T C H

Chapter 1

PROJECT STRETCH
by W. Buchholz

The computer that is discussed in this book was developed by the
International Business Machines Corporation a t Poughkeepsie, N.Y.,
under Project Stretch. The project started toward the end of 1954.
By then IBM was producing severa1 stored-program digital computers:
the IBM 650, a medium-sized computer; the IBM 704, a large-scale
computer primarily for scientific applications; and the IBM 705, a large-
scale computer primarily for business data processing. The 704 and 705
had already superseded the 701 and 702, which were IBM's first com-
mercial entries into the large-computer field. Since the entire field was
still new, there had been little experience on which to base the design of
these machines, but by 1954 such experience was building up rapidly.
This experience showed that the early computers were basically sound
and eminently usable, but it was also obvious that many of the early
decisions would have been made quite differently in 1954 and that many
improvements had become possible.

At the same time, solid-state components were rapidly being developed
to the point where it appeared practical to produce computers entirely
out of transistors and diodes, together with magnetic core memories. A
computer made only of solid-state components promised to surpass its
vacuum-tube predecessors with higher reliability, lower power consump-
tion, smaller size, lower cost made possible by automatic assembly, and
eventually greater speed. The irnminence of new technology, together
with the knowledge of shortcomings in existing designs, gave impetus to
a new computer project.

In 1955 the project was directed more specifically toward achieving,
on very large mathematical computing problems, the highest perform-
ance possible within certain limits of time and resources. If mostly
on-the-shelf components were used, a factor-of-l0 improvement over the
IBM 704, the fastest computer then in production, appeared feasible.
Although this leve1 of improvement would have been a respectable

1

achievement, it was rejected as not being a large enough step. Instead,
an over-al1 performance of 100 times that of the 704 was set as the target.

The purpose of setting so ambitious a, goal was to stimulate innovation
in al1 aspects of computer design. The technology available in 1955 was
clearly not adequate for the task. Xew transistors, new cores, new logi-
cal features, and new manufacturing techniques were needed, which,
although they did not yet exist', were known to be a t least physically
possible. Even though the goal might not be reached in al1 respects, the
resultant machine would set a new standard of performance and make
available t'he best technology that could be achieved by straining the
technical resources of the laboratory. IIence the name Project Stretch.

The need for a computer of the power envisioned was clear. ,4 num-
ber of organizations in the country had many important computing prob-
lems for which the fastest existing computers were completely inadequate,
and some had other problems for which even the projected computer of
100 t,imes the speed of the existing ones would not be enough. Segoti-
ations with such orgaiiizations resulted in a contract with the U.S. Atomic
Energy Commission in late 1956 to build a Stretch system for the Los
Alamos Scientific Laboratory.

The early design objectives were described in 1956' in terms of certain
technological and organizational goals:

Performance

An over-al1 performance leve1 of 100 times that of the fastest machines
then in existence was the genera1 objective. (I t has since become evi-
dent that speed comparisons of widely different machines are very diffi-
cult to make, so that it is hard to ascertain how well this target has been
achieved. Lsing the IBM 704 as the reference point, and assuming
problems that can easily be fitted to the shorter word size, the srnaller
memory, and the more limited repertoire of the 704, the speed ratio for
the computer actually built falls below the target of 100. On the other
hand, for large problems which strain the facilities of the 704 in one or
more ways, the ratio may exceed 100.)

Reliability

Solid-state components promised t'he much higher reliability needed
for satisfactory operation of a necessarily complex machine.

Checking

Extensive automatic checking facilities were intended to detect any
errors that occurred and to locate faults within narrow limits. Storage
devices were also to be equipped with error-correction facilities to ensure

S. W. Dunwell, Design Objectives for the IBM Stretch Computer, Proc. Eastern
Joint Computer Conf., December, 1956, pp. 20-22.

that data could be recovered in spite of an occasiona1 error. The pur-
pose was again to increase performance by reducing the rerun time often
needed in unchecked computers.

Generality

To broaden the area of application of the system and to increase the
effectiveness of the system on secondary but time-consuming portions
of any single job, it was felt desirable to include in one system the best
features of scientific, data-processing, and real-time contro1 computers.
Furthermore, the input-output controls were to be sufficiently genera1 to
permit considerable future expansion and attachment of new input-output
devices.

High-speed Arithmetic

A high-speed parallel arithmetic unit was to execute floating-point
additions in 0.8 microsecond and multiplications in 1.4 microseconds.
(The actual speeds are not as high, see Chap. 14.) This unit would not
be responsible for instruction preparation, indexing, and operand fetch-
ing, which were to be carried out by other sections of the system whose
operation would overlap the arithmetic.

Edit ing

A separate seria1 computer unit with independent instruction sequen-
cing was visualized to edit input and output data of variable length in a
highly flexible manner. (It was later found desirable to combine the
seria1 and parallel units to a greater degree, so that they are no longer
independent, but the functional capability of both units was retained.)

The main memory was to have a cycle time of only 2 microseconds.
(Al1 but the early product'ion memories will indeed be capable of work-
ing a t 2.0 psec, but computer timing dictates a slightly longer cycle of
2.1 psec.) The capacity was to be 8,192 (later raised to 16,384) words
per unit,.

Input-Output Ezchange

A unit resembling somewhat a telephone exchange was to provide
simu1taneous operation of al1 kinds of input-output, storage, and data-
transmission devices.

l A second set of faster, though smaller, memory units was also postulated, but it
was later omitted because the larger units were found to give about the same over-al1
performance with a greater capacity per unit cost. These units are still used, however,
to satisfy more specialized requirements of the T951 Processing Unit described in
Chap. 17.

High-speed Magnetic Disks

Magnetic disk units were to be used for external storage to supplement
the interna1 memory. The target was a capacity of 1 (later raised to 2)
million words with a transfer rate of 250,000 (later lowered to 125,000)
words per second. These disk units permit a very high data flow rate
(even a t the lower figure) on problems for which data cannot be con-
tained in memory.

As the understanding of the task deepened, this tentative plan was
modified in many ways. The functional characteristics of the actual
computer were developed in the years 1956 to 1958. This planning
phase, which is likened in Chap. 2 to the work of an architect planning
a building, culminated in a detailed programmer's manual late in 1958.
During the same period the basic technology nTas also established. A
number of changes were subsequently made as design and construction
progressed, but the basic plan remained as in 1958.

The Stretch computer is now called the IBM 7030. I t was delivered to
Los Alamos in April, 1961. Severa1 other i030 systems were under con-
st'ruction in 1961 for delivery to other organizations with a need for very
large computers. We shall leave it to others to judge, on the basis of
subsequent operating esperience, how closc the computer comes to satis-
fying tihe origina1 ob jectives of Project Stretch.

ARCHITECTURAL PHILOSOPHY
by F. P. Brooks, Jr.

Computer architecture, like other architecture, is the art of determin-
ing the needs of the user of a structure and then designing to meet those
needs as effectively as possible within economic and technological con-
straints. Architecture must include engineering considerations, so that
the design will be economica1 and feasible; but the emphasis in architec-
ture is upon the needs of the user, whereas in engineering the emphasis is
upon the needs of the fabricator. This chapter describes the principles
that guided the architectural phase of Project Stretch and the rationale
of some of the features of the IBM 7030 computer which emerged.

2.1. The Two Objectives of Project Stretch

High Perfornzance

The objective of obtaining a major increase in over-al1 performance
over previous computers had a triple motivation.

l. There were some real-tinie tasks with deadlines so short that they
demanded very high performance.

2. There were a number of very important problems too large to be
tackled on existing computers. In principle, any general-purpose com-
puter can do any programmable problem, given enough time. In prac-
tice, however, a problem can require so much time for solution that the
program may never be "debugged" because of machine malfunctions and
limited human patience. Moreover, problem parameters may change,
or a problem may cease to be of interest while i t is running.

3. Cost considerations formed another motivation for high perform-
ance. It has been observed that, for any given technology, performance
generally increases faster than cost. A very important corollary is that,
for a fully utilized computer, the cost per unit of computation declines
with increasing performance. I t appeared that the Stretch computer
would show accordingly an improved performance-to-cost ratio over

5

earlier comput'ers. It appeared, further, that some computer users did
indeed have sufficient work to occupy fully an instrument of the pro-
posed power and could, therefore, obtain economic advantage by using
a Stretch computer. l

I n addition to being fast, the Stretch computer was to be truly a
general-purpose computer, readily applicahle to scientific computing,
business data processing, and various large information-processing tasks
encountered by the military. In 1955and 1956, when the genera1 objec-
tives of Project Stretch were set, it was apparent that there existed a few
applications for a very-high-performance computer in each of these areas.
There is no question that the new computer could have been made a t
least twice as fast, with perhaps no more hardware, if it had been special-
ized for performing a very few specific computing algorithms. This
possibility was rejected in favor of a general-purpose computer for four
reasons, each of which would have sufficed:

1. Xo prospect'ive user had al1 his work confined to so few programs,
nor could any user be sure that his needs would not change significantly
during the life of the machine.

2. If a computer were designed to perform well o11 the entire class of
problems encountered by any one user, the shift in balance required to
make it readily applicable to other users would be quite small.

3. Since there existed only a few applications in each specialized area
and since the development costs of a computer of very high performance
are several tlimes the fabrication costs, each user would in fact be acquir-
ing a general-purpose computer (containing some hardware he did not
especially need) more cheaply than he could have acquired a machine
more precisely specialized for his needs.

4. Since there are rea1 limitations on the skillcd manpower and other
facilities available for development efforts, it would not have been possi-
ble to develop several substantially different n~achines of this performance
class a t once, whereas it was possible to meet a variety of needs for very-
high-performance computers with a single machine.

In sum, t'hen, Project Stretch $17as to result in a very-high-performance,
general-purpose information-processing system.

2.2. Resources

A sharp increase in computer performance does not spring solely from
a strong j~stificat~ion I t appeared for it ;new technology is indispensable.
that expected technological advances would permit the design to be based

W. C. Sangren, Role of Digital Computers in Kuclear Design, Nzicleonics, vol. 15,
no. 5, pp. 56-60, hlay, 1957.

upon new core memories with a 2-microsecond cycle time, new transistor
circuits with delays of 10 to 20 nanoseconds (billionths of a second) per
stage, and corresponding new packaging techniques. The new transistor
technology offered not only high speeds but a new standard of reliability,
which made it nst unreasonable to contemplate a machine with hundreds
of thousands of components.

In order to complete the computer within the desired time span, it was
decided to accept the risks that would be involved in (1) developing the
technology and (2) designing the machine simultaneously.

The new circuits would be only ten to twenty times as fast as those of
the 704, and the new memories would be only six times as fast. Obvi-
ously, a new system organization was required if there was to be a major
increase in performance. I t was clear that the slow memory speed would
be the principal concern in system design and the principal limitation on
performance. This fact influenced many decisions, among them the
selection of a long memory word, and prompted the devotion of con-
siderable effort to maximizing the use of each instruction bit.

Proj ect Stretch benefited greatly from practical experience gained with
the first generation of large-scale electronic computers, such as the IBM
700 series. Decisions made in the design of these earlier computers had
necessarily been made without experience in the use of such machines.
At the beginning of Project Stretch the design features of earlier macll' l ines
were reviewed in the light of subsequent experience. It should not be
surprising that a number of features were found inadequate: some con-
siderations had increased in significance, others had diminished. Thus
it was decided not to constrain Stretch to be program-compatible with
earlier computers or to follow any existing plan. A completely fresh
start meant extra architectural effort, but this freedom permitted many
improvements in system organization.

A wealth of intensive experience in the application of existing com-
p u t e r ~was made available by the initial customers for Stretch computers.
From these groups came ideas, insight, counsel, and often, because the
groups had quite diverse applications, conflicting pressures. The diver-
sity of these pressures was itself no small boon, for it helped ensure adher-
ence to the objective of genera1 applicability.

2.3 . Guiding Principles

The universal adoption of severa1 guiding principles helped ensure the
conceptual integrity of a plan whose many detailed decisions were made
by many contributors.

The objective of economic efficiency was understood to imply mini-
mizing the cost of answers, not just the cost of hardware. This meant

repeated consideration of the costs associated with programming, compi-
lation, debugging, and maintenance, as well as the obvious cost of machine
time for production computation. A consequent objective was to make
programming easier-not necessarily for trivial problems, but for prob-
lems worthy of the computer, problems whose coding in machine language
would usually be generated automatically by a compiier from statements
in the user7s language.

A corollary of this principle was the recognition that complex tasks
always entail a price in information (and therefore money) and that this
price is minimized by selecting tahe proper form of payment-sometimes
extra hardware, sometimes extra instruction executions, and sometimes
harder thought in developing programming systems. For example, the
price of processing data with naturally diverse lengths and structures is
easily recognized (see Chap. 4). This price appeared to be paid most
economically in hardware; so very flexible hardware for this purpose was
provided. Similarly, protection of memory locations from unwanted
alteration was accomplished much more economically with equipment
than it would have been wit,h programming. A fina1 minor example is
the STORE VALUE IN ADDRESS~operation, which inserts index values into
addresses of different lengths; by using a,ddress-length-determining hard-
ware already provided for other reasons, this instruction performs a task
that would be rather painful t'o program. For other tasks, such as pro-
gram relocation, exception-condition fix-up, and supervisory contro1 of
input-output, hardware was considered, but programming techniques
were selected as more economicsl.

Power instead of Simplicity

The user was given power rather than simplicity whenever an equal-
cost choice had to be made. I t was recognized in the first place that
the new computer would have many highly sophisti~at~ed and experienced
users. I t would have been presumptuous as well as unwise for the com-
puter designers to "protect" such users from equipment complexities that
might be useful for solving complex problems. In the second place, the
choice is asymmetric. Powerful features can be ignored by a user who
wishes to confine himself to simple techniques. But if powerful features
were not provided, the skillful and motivat#ed user could not wring their
power from the computer.

For these reasons, the user is given programmed access to the hardware
l Names of actual 7030 operations are printed in S M A L L C A P S in this book. When

a name is used to denote a class of operations of which this operation is a member, it
is printed in italics;also italicized are operations that exist in some computers but not
in this one. For example, operations of the add type built into the 7030 include ADD,

ADD TO MEMORY, ADD TO M A C N I T U D E , etc., but not add absolute, which is provided in a
different manner by modifier bits.

wherever possible. He is given, for example, an interruption and address-
protection system whose use can be simple or very complex. He is given
an indexing system that can be used simply or in some rather complex
ways. If he chooses and if his problems are simple, he can write pro-
grams using floating-point arithmetic without regard for precision, over-
flow, or underflow; but if he needs to concern himself with these often
complex matters, he is given fu11 facilities for doing so.

Generalixed Features

Wherever specific programming problems were considered worthy of
hardware, ad hoc solutions were avoided and general solutions sought.
This principle came from a strong faith that important variants of the
same problem would surely arise and that generality and flexibility would
amply repay any extra cost. There was also certainty that the architects
could hardly imagine, much less predict, the many unexpected uses for
general operations and facilities. This principle, for example, explains
the absence of special operations to edit output: the problem is solved
by the general and powerful logical-connective operations. Similarly, a
single uniform interruption technique is used for input-output communi-
cation, malfunction warning, program-fault indication, and routine detec-
tion of expected but rare exceptional conditions.

Specialized Equipment for Frequent Taslcs

There is also an antithetical principle. For tasks of great frequency
in important applications, specialized equipment and operations are pro-
vided in addition to general techniques. This, of course, accounts for
the provision of floating-point arithmetic and automatic index modifi-
cation of addresses.

To maximize instruction density, however, specialized operations of
less than the highest frequency are specified by extra instructions for
such operations rather than by extra bits in al1 instructions. In short,
the information price of specifying a less usual operation is paid when i t
is used rather than al1 the time. For example, indirect addressing,
multiple indexing, and instruction-cqunter storing on branching each
require half-word instructions when they are used, but no bits in the
basic instructions are used for such purposes. As a result of such detailed
optimization, the 7030 executes a typical scientific program with about
20 per cent fewer instructions of 32 bits than does the 704 with 36-bit
instructions on a corresponding program.

Systematic Instruction Set

Because the machine would be memory-limited, it was important to
provide a very rich instruction set so that the memory accesses for an

instruction and its operand would accomplish as much as possible. As i t
has developed, the instruction set contains several thousand distinguish-
able operations. Such a wealth of function could be made conceptually
manageable only by strong systematization. For example, there is only
one conditional branch instruction for testing the machine indicators, but
this is accompanied by a 6-bit code to select any one of the 64 machine
indicators, a bit to specify testing for either the on or the o$ condition,
and another bit to permit resetting of the indicator. Thus there are only
a few baeic operations and a few modifiers. In all, the number of oper-
ations and modifiers is less than half the number of operations in the
IBM 709 (or 7090), although the number of different instruction actions
is over five times that of the 709.

Such systematization, of course, implies symmetry in the operation
code set-each modifier can be validly used with al1 the operations for
which it can be indicated in the in~truct~iori, and, for most operations, the
logica1 converses or counterparts are also provided. Thus the floating-
point-arithmetic set includes not only the customary DIVIDE where the
addressed operand constitutes the divisor, but also a RECIPROCAL DIVIDE

which addresses the dividend.

Provision for New Operating Techniques

Experience with the IBM 650 and 704 computers had demonstrated
that two computers whose speeds differ by more than one order of magni-
tude are different in kind as well as in degree. This confirmed the sus-
picion that the 7030 would be more than a super-704 and would be
operated in a different way. An early effort was made, therefore, to
anticipate some of the operating techniques appropriate for such an
instrument, so that suitable hardware could be provided.

The most significant conclusion from these investigations was that an
important operating technique would be multiprogramming, or time-
sharing of the centra1 computer among several independent problem
programs. This now familiar (but yet unexploited) concept was new in
1956 and viewed midely with suspicion.

A second conclusion was that the proposed high-capacity, high-data-
rate disk storage would contribute substantially to system performance
and would permit the 7030 to be operated as a scientific computer with-
out very-high-speed magnetic tapes.

2.4. Contemporary Trends in Computer Architecture

Over the years computer designs have gone through a constant and
gradua1 evolution shaped largely by experience gained in many active
computing centers. This experience has heavily influenced the architec-
ture of Stretch. In several instances the attack on a problem exposed

by experience with existing computers differs in Stretch from the solution
presently adopted in most computer installations. For example, with
existing large computers the only way to meet the high cost of human
intervention is to minimize such intervention; in the Stretch design the
attempt has been, instead, to make human intervention much cheaper.

The effect of severa1 of these contemporary design trends on the Stretch
architect,ure will be examined here.

Concurrency

Most new computer designs achieve higher performance by oper-
ating various parts of the computer system concurrently. Concurrent
operation of input-output and the central computer has been available
for some years, but some contemporary designs go considerably beyond
this and allo^ various elements of the central computer to operate
concurrently. l

A distinction may be made (see Chap. 13) between local concurrency,
providing overlapped execution of instructions that are immediate neigh-
bors in the instruction stream of a single program, and nonlocal con-
currency, where the overlap is between nonadjacent instructions that
may belong to different programs. The usual input-output concurrency
is of the nonlocal tppe; since the instructions undergoing simultaneous
execution are not closely related to one another, the need for interlocks
and safeguards is not severe and may, to a large extent, be accomplished
by supervisory programming.

Local concurrency is used extensively in the central processing unit of
the 7030 to achieve a high rate of instruction flow within a single instruc-
tion sequence. Unlike another chem me,^ in which each specialized unit
performs its task and returns its result to memory to await call by the
next unit, the 7030 uses registers; this is because memory speed is the
main limitation on 7030 computer speed. Severa1 of these registers form
a high-speed virtual memory (the loolc-ahead unit of Chap. 151, which
receives instructions and operands from the rea1 memory in advance of
execution by the arithmetic unit and receives the results for storing while
the arithmetic unit proceeds with the next operation. Up to eleven sue-
cessive instructions may be in the registers of the central processing unit
a t various stages of execution: undergoing address modification, awaiting
access to operands in memory, waiting for and being executed by the
arithmetic units, or waiting for a result to be returned to memory.

Considerable effort was expended on automatic interlocks and safe-
guards, so that the programmer would not have to concern himself with

P. Dreyfus, Programming Design Features of the GAMMA 60 Computer, Proc.
Eastern Joint Computer Conf ., December, 1958, pp. 174-181.

* Ibid.

the intricate logic of local concurrency. The programmer writes his pro-
gram as if it were to be executed sequentially, one instruction a t a time.

To make a computer with automatic program-interruption facilities
behave this way was not an easy matter, because the number of instruc-
tions in various stages of processing when an interrupting signal occurs
may be large. The signal may have been the result of one of these
instructions, requiring interruption before the next instruction is exe-
cuted. Since the next several instructions may already be under way,
it must be possible to go back and cancel their effects. The amount of
overlap varies dynamically and may even be different for two executions
of t8he identica1 instruction sequence; so it would be almost impossible
for the programmer to do the backtracking. Therefore, the elaborate
safeguards provided to ensure sequential results from nonsequential oper-
ation do more than satisfy a desire to simplify programming; the pro-
grammer would be lost without them.

Time-sharing (as of a computer by multiprogramming) and concur-
rency are two sides of one coin: to overcome imbalance in a computer
system, faster elements are time-shared and slower elements are made to
operate concurrently. In the 7030, for example, the single centra1 conl-
puter uses several concurrently operating memory boxes, and the single
computer-memory system may contro1 in turn many concurrently oper-
stting input -outpiit devices.

Even though per-operation cost tends to decrease as system perform-
ance increases, per-second cost increases, m d it, therefore becomes more
important to avoid delaying t he calculator for input-output . To
take fu11 advantage of concurrent input-output operation for a computer
of very high performance demands that input data for one program be
entered while a preceding program is in contro1 of calculation and that
output take place after calciilatioii is complete. For this reason alone,
it was apparent from the beginning that multiprogramming facilities
would be needed for Project Stretch.

A second motivation for multiprogramming is the need for a closer man-
machine relationship. As computers have hecome faster, the increasing
cost of wasted seconds has dictated increasing separation between the
problem sponsor and the solution process. This has reduced the over-al1
efficiency of the problem-solving process; for, in fact, the more complex
problems solved on faster calculators are harder, not easier, for the spon-
sor to comprehend and therefore need more, not less, dynamic intersction
between solution process and sponsor. There can be no doubt that much
computer time and more printer time has been wasted because the prob-
lem sponsor cannot ohserve and react as his program ia being run on large

computers like the IBM 704. This difficulty promised t o become more
acute with the even more complex problems for which Stretch was needed.

With multiprogramming it becomes economically practical for a person
seated a t a console to observe his program during execution and interrupt
it while considering the next step. Since the computer can immediateiy
be switched to another waiting program, the user is not charged with the
cost of an idle computer. Thus the extension of multiprogramming to
manual operation offers, once the technique has been mastered, a tre-
mendous economic breakthrough: it provides a genera1 technique for
solving the problem of loss of contact between sponsor and solution. A
sponsor can now interact with his problem a t his own speed, paying only
the cost of delaying the problem, not that of delaying the machine. This
should materially accelerate that large proportion of scientific compu-
tation which is expended on continua1 and perpetua1 refinement and
debugging of mathematical models and the programs that embody them.
The solution of most such problems is characterized more closely by a
fixed number of interactions between computer and sponsor than by a
fixed amount of computer time.

Multiprogramming also makes it economically practical to enter new
data and to print or display results on iine, that is, via directly connected
input and output devices; whereas the economics of previous computers
forced card-to-tape and tape-to-printer conversion o$ line, that is, with
physically separate devices, so that only the fastest possible medium,
magnetic tape, would be used on the computer. On-line operation of
input and output is emphasized in the Stretch philosophy, because it
removes much of the routine operator interventi011 and reduces the over-
al1 elapsed time for each run of a problem.

Multiprogramming makes severa1 demands upon system organization.
Most obvious is the requirement of ample and fast storage, both interna1
and external. Of equa1 importance is an adequate and flexible inter-
ruption system. Also, in the rea1 world, time-sharing of a computer
among users with ordinary human failings requires memory protection,
so that each user can feel secure within his assigned share of the machine.
Debugging is difficult enough a t best, and most users would sacrifice
efficiency rather than tolerate difficulties caused by the errors in other
programs. It proved possible in the 7030 to provide a rudimentary but
sufficient form of memory protection without affecting speed and with a
modest amount of hardware.

The equipment for multiprogramming was, however, limited to two
essential features: program interruption and address monitoring, and
these were designed to be as flexible as possible. Other multiprogramming
functions are left to the supervisory program, partly because that arrange-
ment appeared to be efficient, but primarily because no one could be sure

which further facilities would prove useful and which would prove merely
expensive and overly rigid inconveniences. Severa1 years of actual multi-
programming experience will undoubtedly demonstrate the value of other
built-in features.

If multiprogramming is to be an operating technique, a radically differ-
ent design is needed for the operator's console. If several independent
programs are to be run, each with active operator intervention, there
must be provision for multiple independent consoles. Each console must
be incapable of altering any program other than the associated problem
program. For active intervention by the problem sponsor (rather than
by a special machine operator), the console miist be especially convenient
to use. Finally, if a supervisory program is to exercise complete contro1
in scheduling programs automatically, it must be able to ignore unused
console facilities. Although intelligent hiiman intervention is prized
highly, routine human intervention is to be minimized, so as to reduce
delays and opportunities for error.

The operating console was designed to be simply another input-output
device wit'h a convenient assortment of switches, keys, lights, digital dis-
plays, and a typewriter. A console interpretive program assigns mean-
ing to the bits generated by each switch and displayed by each light,
There are no maintenance facilities on tJhe operator's console, and com-
pletely separate maintenance consoles are provided.

Automtztic Programming

Undoubtedly the most important change in computer application tech-
nique in the past several years has been the appearance of symbolic
assemblers and problem-langiiage compilers. Stiidies sho\ved that for
Stretch a t least half of al1 computer time would be used hy compiler-
produced programs; al1 programs would be a t least initially translated
by ai1 assemlrder.

A most important inlplication of symbolic-langiiage programming is
that the addressing radix and structure need not be determined for coder
convenience. Fairly complex instruction formnts c m he iised without
causing coding crrors, and operation sets with hundrcds of diverse oper-
ations can be used effectively.

Many proposals for amending system architectiire to simplify com-
pilers were considered. The most far-reaching of these concerned the
number of index registers, mhich should be infinity or unity for greatest
ease of assignment during compilation. The alternatives were investi-
gated in considerable detail, and both t~irned out to reduce computer
performance rather sharply. Indeed, reduced performance was implied
by most such proposals. These studies resulted in a belief which is not
shared by al1 who construct compilers; this is that total cost to the user is

minimized not by restricting system power to keep compilers simple but
by enhancing facilities for the task of compilation itself, so that com-
pilers can operate more rapidly and efficiently.

Injorrnation Processing

The arithmetic power of a computer is often only ancillary to its power
of assembling, rearranging, testing, and otherwise manipulating infor-
mation. To an increasing extent, bits in even a scientific computer
represent t,hings other than numerica1 quantities: elements of a pro-
gram metalanguage, alphabetic material, representations of graphs, bits
scanned from a pattern, etc. In the light of this trend, it was therefore
important to match powerful arithmetical with powerful manipulative
facilities. These are provided in the variable-field-length arithmetic
and, in unique form, in the variable-field-length connective operations,
which operate upon bits as entities rather than components of numbers.
Good variable-field-length facilities are, of course, particularly important
for business and military data processing.

2.5.Hindsight

As the actual shape of the 7030 began to emerge from the initial
planning and design stages, it became apparent that some of the earlier
thoughts had to be revised. (Some of these changes have already been
noted parenthetically in Chap. 1.) The bus unit for linking and schedul-
ing traffic between many memory boxes and many memory-using units
turned out to be a key part of the design. The origina1 algorithms for
multiplication and division proved inadequate with available circuits,
and new approaches were devised. I t became clear that division, especi-
ally, could not be improved by the same factor as multiplication. Seria1
(variable-field-length) operation turned out to be considerably slower
than expected; so seria1 multiplication and division were abandoned, and
the variable-field-length multiplication and division operations were rede-
signed to use t'he faster parallel unit.

The two separate computer sections that were postulated originally
were later combined (see Chap. l),and both sets of facilities were placed
under the contro1 of one instruction counter. Although the concept of
multiple computing units, closely coupled into one system, was not found
practical for the 7030 system, this concept still seems pr0mising.l In
fact, the input-output exchange coupled to the main computer in the
7030 is a simplified example, since the exchange is really another com-
puter, albeit a highly specialized one with an ext,remely limited instruc-
tion vocabulary.

A. L. Leiner, W. A. Nota, J. L. Smith, and A. Weinberger, PILOT: A Kew Multi-
ple Computer System, J. ACM, vol. 6, no. 3, pp. 313-335, July, 1959.

Some architectural features proved unworkable. Rather late in the
design period, for example, it became clear that the met'hod of handling
zero quantities in floating-point arithmetic was ill-conceived; so this
method was abandoned, and a better concept was devised.

Two excellent features, each of which contributes markedly to system
performance, were found to have inherently conflicting requirements;
their interaction prevents either feature from realizing its fu11 potential.
The program-interrupt system is intended to permit unpredicted changes
in instruction sequencing. The instruction look-ahead unit, on the other
hand, depends for its effectiveness on the predictability of instruction
sequences; each interruption drains the look-ahead and takes time to
recover. This destroyed the usefulness of the interrupt system for fre-
quent one-instruction fix-ups and required the addition of built-in excep-
tion handling in such cases as floating-point underflow.

On the other hand, some improvements became possible as the design
progressed. It turned out, for example, that the equipment for perform-
ing variable-field-length binary multiplication with the parallel arithmetic
unit could easily be made to do binary-decima1 and format conversions;
so this facility was added.

There are in the 7030 architectural features whose usefulness is still
unmeasured. A few are probably mistakes. Others seem to be innova-
tions that will find redefinition and refinement in future computers, large
and small. Still other features appear now to be wise for very-high-
performance computers, but must be considerably scaled down for more
modest machines. Experience has, however, reinforced the system archi-
tects' belief in the guiding principles of the design and in the genera1
applicability of these principles to other computer-planning projects.

Chapter 3

SYSTEM SUMMARY OF IBM 7030

by W. Buchholz

The IBM 7030 is composed of a central processing unit, one or more
memory units, a memory bus unit, an input-output exchange, and input-
output devices. Optionally, high-speed magnetic disk storage units and
a disk control unit may be added for external storage. A typical system
configuration is shown in Fig. 3.1.

Information moves between the input-output devices and the memo-
r i e ~under control of the exchange. The central processing unit (CPU)
actually consists of several units that may operate concurrently: an
instruction unit, which controls the fetching and indexing of instructions
and executes the instructions concerned with indexing arithmetic ;a look-
ahead unit, which controls fetching and storing of data for several instruc-
tions ahead of the one being executed, so as to minimize memory traffic
delays; a parallel arithmetic unit, for performing binary arithmetic on
floating-point numbers a t very high speed; and a seria1 arithmetic unit,
for performing binary and decima1 arithmetic, alphanumeric operations,
and logical-connective operations on fields of varying lengths.

Logically the CPU operates as one coordinated unit upon a succession
of instructions under the control of a single instruction counter. Care is
taken in the design so that the user need not concern himself with the
intricacies of overlapped operations within the CPU.

The memory bus unit coordinates al1 traffic between the various
memory units on the one side and, on the other side, the exchange, the
disk control, and the various parts of the CPU.

3.2. Memory Units
The main magnetic core memory units have a read-write cycle time of

2.1 microseconds. A memory word consists of 64 information bits and
8 check bits for automatic single-error correction and double-error
detection.

17

-------- ------

The address part of every instruction provides for addressing directly
any of 262,144 (2'7 word locations. Addresses are numbered from O
up to the amount of memory provided in a particular system, but
addresses O to 31 refer to index words and special registers instead of
general-purpose memory locations.

Each unit of memory consists of 16,384 @l4)words. A system may
contain one, tmo, or a multiple of two such units, up to a maximum of

Memory uni ts

Memory out bus

Memory in bus

Data

1
V C2nEo~- InstructionExchange - contro1

Disk

arithmetic unit - memory11111111 synchronizer
unit

Index --W Index

Channels for
input-output

units
Look-ahead

(Magnetic tapes
Magnetic disks
Printers

Arithmetic
registers
Parallel

arithrnetic unit Readers
Consoles
Displays High-speed
Inquiry stations disk units
Data transmission Central

etc3 processingunit

FIG.3.1. 7030 system.

sixteen units. Each memory unit operates independently. In systems
with two units or more, severa1 memory references may be in process
a t the same time. In order to take better advantage of this simultaneity,
successive addresses are distributed anlong different boxes. When a sys-
tem comprises two units, successive addresses alternate between the two.
When a system comprises four or more unite, the units are arranged in
groups of four, and successive addresses rotate to each of the four units
in one group, except for the last group mhich may consist of only two
units with alternating addresses.

3.3. Index Memory

A separate fast magnetic core memory is used for index registers.
Since index words are normally read out much more often than they are
altered, this memory has a short, nondestructive read cycle of 0.6 psec.
The longer clear-and-write cycle of 1.2 psec is taken only when needed.

The index nemory is directly associated tvith the instruction rinit of
the computer. It cannot be used to furnish instructions, nor can it be
used directly with input or output.

The sixteen index registers have regular addresses 16 to 31, which
correspond to abbreviated 4-bit index addresses O to 15. The first
register cannot participate in automatic address modification since an
index address of O is used to indicate no indexing.

3.4. Special Registers

Many of the registers of the machine are directly addressable. Some
of these are composed of transistor flip-flops; others are in the fast index
memory or in main memory. The addressable registers are assigned
addresses O t'o 15. These locations cannot be used for instructions or for
input or output data.

Address O always contains zero. I t is a bottomless pit; regardless of
what is put in, nothing comes out. The program may at)tempt to store
data a t address 0, but any word fetched from there %-il1 contain only O
data bits.l

The remaining fifteen addresses correspond to machine registers, time
clocks, and contro1 bits. They are listed in the Appendix.

3.5. Input and Output Facilities

Input to the system passes from the input devices to memory through
the exchange. The exchange assembles successive 64-bit words from the
flow of input information and stores the assembled words in successive
memory loeations without tying up the centra1 processing unit. The
CPC specifies only the number of input words to be read and their loca-
tion in memory; the exchange then completes the operation by itself.

The exchange operates in a similar manner for output, fetching suc-
cessive memory words and disassembling them for the output devices
independently of the CPL. External storage devices, such as tapes and
disks, are operated via the exchaiige as if they were iiiput and output.

The exchange has the basic capability of operating eight independent
input-output units. This eight-channel exchange can be enlarged by

A distinctive type (0, 1)is used in the text for the bits of binary numbers or codes,
and regular type (0, 1, 2, . . .) for decimal digits. For example, 10 is a binary
number (two)and 10 a decimal number (ten).

20 SYSTEM SUMMARY IBM 7030 [CHAP.3OF

adding more eight-channel groups. Each of these channels can handle
inf~rmat~ion The exchange as a a t a rate of over 500,000 bit s per second.
whole can reach a peak data rate of 6 million information bits per second.

A wide variety of input-output units can be operated by the exchange.
These include card readers and punches, printers, magnetic tapes, oper-
ator's consoles, and typewrit'er inquiry stations. Severa1 of some kinds
of units can be attached to a single exchange channel; of the severa1 units
on a single channel, only one can be operated a t a time.

Provisions have been made in the design of the exchange for adding up
to 64 more channels operat'ing simultaneously but a t a much lower data
rate per channel. This extension is intended for tying the computer eco-
nomically into a large network of low-speed units, such as manually
operated inquiry stations.

3.6. High-speed Disk Units
For many large problems, the amount of core storage that it is practical

to provide is not nearly large enough t'o hold al1 the data needed during
computation. Earlier systems have been severely limited by the rela-
tively low data rates of magnetic tapes or the relatively low capacities of
magnetic drums available for back-up storage. To avoid having the
over-al1 T030 performance limited by the same devices, it was essential
to develop an external storage medium with high capacity and high data-
transfer rates. A magnetic disk storage unit was designed for this
purpose.

The disk units read or write a t a rate of 125,000 words per second, or
8 million bits per second over a single channel (a rate 90 times that of the
IBM 727 tape available with the 704). One or more units, each with a
capacity of 2 million words, may be attached. *4ccess to any location of
any disk unit requires of the order of 150 milliseconds. Once data trans-
mission has started it continues a t top speed for as many consecutive
words as desired, without further delays for access to successive tracks.

The control unit, or disk synchronixer, functions like the input-output
exchange except that it is a single-channel device designed specifically to
handle the high data rate of the disks. The exchange and the disk syn-
chronizer can operate independently and simultaneously a t fu11 speed.
An error-correcting code is used on the disks, and any single errors in data
read from the disks are corrected automatically by the control unit before
transfer to memory.

The centra1 processing unit performs arithmetical and logica1 oper-
ations upon operands taken from memory. The results are generally
left in ac~umulat~or registers to be further operated on or to be stored in

memory subsequently. Operations are specified one a t a time by instruc-
tions, which are also taken from memory. Each instruction usually
specifies an operation and an operand or result. The operand specifi-
cation is made up of an address and an indez address. Part of the index
word contents are added to the address in the instruction to obtain an
eflectiue address. The effective address designates the actual location of
the operand or result. The additions needed to derive the effective
address and to modify index words are performed in an index-arithmetic
unit which is separate from the main arithmetic unit.

3.8. fnstruction Controls

An instruction may be one word or one half word in length. Full-
and half-length instructions can be intermixed without regard to word
boundaries in memory.

Instructions are taken in succession under control of an instruction
counter. The sequence of instructions may be altered by branching oper-
ations, which can be made to depend on a wide variety of conditions.
Automatic interruption of the norma1 sequence can also be caused by
many conditions. The conditions for interruption and control of branch-
ing are represented by bits in an indicator register. The interrupt sys-
tem also includes a mask register for controlling interruption and an
interrupt address register for selecting the desired set of alternate pro-
grams. When it is needed, the address of the input or output unit
causing an interruption can be read from a channel address register which
can be set up only by the exchange.

The interpretation and execution of instructions is monitored to make
sure that the effective addresses are within boundaries defined by two
boundary registers.

3.9. lndex-arithmetic Unit

The index-arithmetic unit, which is part of the instruction-contro1 unit,
contains registers for holding the instructions to be modified and the index
words used in the modification. When index words themselves are oper-
ated on, some of these registers also hold the operand data. The index-
ing operations include loading, storing, adding, and comparing. The
index-arithmetic unit has gates for selecting the necessary fields in index
and instruction words and a 24-bit algebraic adder.

3.1O. Instruction Look-ahead

After initiating a reference to memory for a data word, the instruction
unit passes the modified instruction on to the look-ahead unit. This unit
holds the relevant parts of the instruction unti1 the data arrive, so that

both the operation and its operand can be sent to the arithmetic unit
together. Since access to the desired memory unit takes a relatively long
time, the look-ahead will accept several instructions a t a time and
initiate their memory references, so as to smooth out the memory traffic
and obtain a high degree of overlap between memory units. Thus
the unit " l o ~ k s) ~ the instruction several instructions ahead of being
executed 2nd anticipates the memory references needed. This reduces
delays and keeps the arithmetic unit in as nearly continuous operation
as possible.

Indexing and branching instructions are completed by the instruction
unit without involving the main arithmetic unit. The instruction unit
receives its own operands, whereas the look-ahead receives operands for
the main arithmetic unit. The look-ahead, however, is responsible for
storing al1 results for both units, so that permanent modification of stored
information is done in the proper logical sequence. Interlocks in the
look-ahead unit ensure that nothing is altered permanently unti1 al1 pre-
ceding instructions have been executed successfully.

3.1 I.Arithmetic Unit
The arithmetic unit consists of a parallel and a seria1 section. The

parallel section essentially performs floating-point arithmetic a t high
speed, and the seria1 section performs fixed-point arithmetic and logical
operations on fields of variable length. Both sections share the same
basic registers and much of tJhe contro1 equipment; so they may be treated
as one unit.

For simplicity, the arithmetic unit may be considered to be composed
of 4 one-word registers and a short register. This conceptual ~t~ructure is
shown in Fig. 3.2, where the full-length registers are labeled A, B, C, and
D, and the short register is labeled S. The registers marked A and B
constitute the left and right halves of the accumulator. The registers
marked C and D serve only as temporary-storage registers, receiving
words from memory and (in seria1 operations only) assernbling results to
be stored in memory. The short register S stores the accumulator sign
bit and certain other indicative bits.

In floating-point addition the operand from memory is sent to register
C. (Since floating-point operands will fit into register C, register D is not
needed here.) This operand is then added to the contents of register A
or of both registers A and B, depending on whether single- or double-
length addition has been specified. The result is placed in A or in A
and B. As an alternative (adding to memory), the result may be
returned to the location of the memory operand instead.

In floating-point multiplication one factor is the number in accumu-
lator register A. The other factor comes from memory and is trans-

From memory

Accumulator
sign

PARALLEL OPERATION

From memory From rnernory

Left half Right half Accumulator
accumulator accumulator sign

SERIAL OPERATION

FIG.3.2. Simplified register structure of arithmetic unit.

ferred to register C. The factors are now multiplied together, and the
product is returned to the accumulator register, replacing the previous
contents. In cumulative multiplication one factor must have been previ-
ously loaded into a separate factor register (not shown). The other fac-
tor again comes from memory and goes to C. The factors are multiplied
as in ordinary multiplication, but the product is added to the contents of
the accumulator register.

In floating-point division the dividend is in the accumulator, and the
divisor is brought from memory to register C. The quotient is returnèd

24 SYSTEMSUMMIRYOF IBM 7030 [CHAP.3

to the accumulator, and the remainder, if any, goes to a remainder register
(not shown).

In seria1 variable-field-length operations the operand field rnay occupy
parts of two adjacent memory words, and both words if necessary are
fetched and placed in registers C and D. The other operand field comes
from A and B. The operands are selected a few bits at a time and
processed in serial fashion. The result field rnay replace A and B, or it,
rnay replace selected bits of C and D whose contents are then returned to
memory. Binary multiplication and division operands are stepped into
the parallel mechanism a few bits at a time, but the actusl operation is
performed in parallel.

Other registers are the transit register, a full-word location, which rnay
be used for automatic subroutine entry; and two 7-bit registers, the all-
ones counter and the left-xeros counter, which are used in connective oper-
ations to hold bit counts developed from the results.

Al1 registers mentioned above, except memory registers C and D, are
also addressable as explicit operands.

3.1 2. Instruction Set
The operations available rnay be divided into these categories:

Data arithmetic
1. Floating-point arithmetic
2. Variable-field-length arithmetic

Radix conversion
Connectives
Index arithmetic
Branching
Transmission
Input-Output

The categories are briefly described in the next few sections.

3.1 3. Data Arithmetic
The arithmetical instruction set includes the conventional operations

LOAD, ADD, STORE, MULTIPLY, and DIVIDE. Modifier bits are available to
change the operand sign. The operations subtract and add absolute are
obtained by use of sign modifiers to the ADD instruction and are not pro-
vided as separate operations. The same modifiers make it possible to
change the sign of a number that is to be loaded, stored, multiplied, or
divided.

A convenient feature of the MULTIPLY operation is that one of the fac-
tors is taken from the accumulator rather than from a separate register,
and this factor rnay be the result of previous computation. Similarly,

DIVIDE places the quotient in the accumulator, and so the quotient is
available directly for further arithmetical steps.

Extensions of the basic set of arithmetical operations permit adding
and counting in memory, rounding, cumulative multiplication, compari-
son, and further variations of the standard ADD operation.

One of these variations is called ADD TO MAGNITUDE. This operation
differs from ADD in that, when the signs and modifiers are set for sub-
traction, it does not allow the result sign to change. When the result
sign would change, the result is set instead to zero. This operation is
useful in dealing with nonnegative numbers or in computing with dis-
continuous rates.

The important arithmetical operations are available in the floating-
point mode as well as in the (fixed-point) variable-field-length mode.

Floating-point-arithmetic Operations

Floating-point (FLP) arithmetic uses a 64-bit floating-point word con-
sisting of a signed 48-bit binary fraction, a signed 10-bit binary exponent,
and an exponent flag to indicate numbers that have exceeded the avail-
able exponent range. Arithmetic can be performed in either normalized
or unnormalized form.

The 48-bit fraction (mantissa) is longer than those available in earlier
computers, so t'hat many problems can be computed in single precision,
which would previously have required much slower double precision.
When multiple-precision computation is required, however, it is greatly
facilitated by operations that produce double-length results.

To aid in significance studies, a noisy mode is provided in which the
low-order bits of results are modified. Running the same problem twice,
first in the norma1 mode and then in the noisy mode, gives an estimate
of the significance of the results.

Variabie-JieEd-length-arithmeticOperations

The class of variable-field-length (VFL) arithmetic is used for data
arithmetic on other than the specialized floating-point numbers. The
emphasis here is on versatility and on economy of storage. Arithmetic
may be performed directly in either decima1 or binary radix. Individua1
numbers, or jìelds, may be of any length, from 1 to 64 bits. Fields of
different lengths may be assigned to adjacent locations in memory, even
if this means that a field lies partly in one memory word and partly in
the next. Each field may be addressed directly by specifying its position
and length in the instruction; the computer takes care of selecting the
memory words required and altering only the desired information.

Numerica1 data may be signed or unsigned. For unsigned data the
sign is simply omitted in memory; this saves space and avoids the task of

26 SYSTEM OF IBM 7030SUMMARY

assigning signs where there are none to begin with. Unsigned numbers
are treated arithmetically as if they were positive.

VFL arithmetic is sometimes called integer arithmetic, because in multi-
plication and division the results are normally aligned as if the operands
were integers. I t is possible, though, to specify that operands be oflset
so as to obtain any desired alignment of the radix point. An offset can
be specified in every instruction, arid there is no need for separate instruc-
tions to shift the contents of the accumulator.

A significant feature of the VFL DIVIDE operation is that it will pro-
duce meaningful results regardless of the magnitude of the dividend or
the divisor (provided these fa11 within the bounds of numbers generally
acceptable to the arithmetic unit). The only and obvious exception is a
zero divisor. This greater freedom eliminates much of the scaling previ-
ously required before a DIVIDE instruction could be accepted.

Al1 VFL-arithmetic operations are available in either decimal or binary
form, and the choice can be n~ade by setting 1 modifier bit. Decima1
m~lt~iplicationand division, however, are not built into the computer
directly; instead their operation codes are used to cause an automatic
entry to a standard subroutine which can take advantage of high-speed
radix conversion and binary multiplication or division. Thus decimal
multiplication and division are faster but just as convenient to program
as if they had been built in for execution by the seria1 decimal circuits.

An operati011 is provided that causes an automatic entry to a sub-
routine. A field of this instruction may be used to distinguish up to
128 pseudo operations.

One use of the VFL-arithmetic operations is to perform genera1 arith-
metic on portions of floating-point words, instruction words, or index
words. The floating-point and index-arithmetic instruction classes do
contain special addition and comparison instructions for the most fre-
quent operations on partial words of this kind, but the VFL operations
provide a complete set for al1 purposes.

Alphabetic and alphanumeric fields of various lengths are handled by
VFL-arithmetic operations as if they were unsigned binary numbers,
regardless of the character code. There is actually no fixed character
code built into the computer, although a certain code with many desira-
ble features is recommended. Alphanumeric high-low comparisons are
made by a simple binary subtraction of tmo fields. The only require-
ment is that the binary numbers representing each character fa11 into the
comparing sequence desired for the application. If the code used for
input or output does iiot conform to this comparing requirement, special
provisions facilitate the translating of the code to any other form by
programming a table look-up.

The number of bits used to encode individua1 characters may be varied.
Thus a decimal digit may be compactly representec! by a biilary code of

4 bits, or it may be expanded to 6 or more bits when intermixed with
alphabetic information.

A group of radix-conversion operations is provided to convert integers
between decima1 and binary form in either direction. These operations
are also used in implementing the decima1 Kultiplication and division
pseudo operations mentioned in the preceding section.

3.1 5. Connective operations

Instructions that combine bits by logical and, or, and exclusive or func-
tions have been available in earlier computers. These and many other
nonarithmetical data-handling operations are here replaced in simple and
orderly fashion by connective operations that provide many logical facili-
ties not previously available. These operations are called COXKECT,

COXXECT TO MEMORY, and COXSECT FOR TEST.

Each connective operation specifies a memory field of any length from
1 to 64 bits, as in integer arithmetic. Each bit in the memory field is
logically combined with a corresponding bit in the accumulator; the
resulting bit replaces the accumulator bit in COXXECT, the memory bit in
CONXECT TO MEMORY, FOR Al1 three oper- or neither in COR'SECT TEST.

ations make available certain tests and count's of O and 1 bits.
There are sixteen possible ways in which to combine, or connect, two

bits. Each of these logical connectives can be specified along with each
of the three connective operations. Besides the connectives and, or, and
exclusive or, there are connectives to match bits, to replace bits, and to
set bits to O or l . Either or both of the operands may be inverted.

Although the term logical connectives suggests evaluation of elaborate
expressions in Boolean algebra, the connective instructions have impor-
tant everyday applications, such as the assembling and converting of
input-output data. Their power lies in their ability to specify fields of
any length and in any position in memory, either single test bits or strings
of adjacent bits.

3.16. Index-arithmetic Operations

The address part of any instruction may be modified by adding a num-
ber in a specified index register before the address is used. Normally both
the instruction and the index register remain unchanged. To alter the
index registers is the function of the index arithmetic operations.

These operations include loading, storing, incrementing, and comparing
of index values. The index value is a signed number, and additions are
algebraic. One of the instructions allom-s up to sixteen index values to be
added together for use in further indexing. Another indexing instruction
provides the function of indirect addressing.

28 SYSTEM OF IBM 7030 [CHAP.3SUMMARY

Each index word contains a count to keep track of the number of times
a program loop has been traversed. Counting rnay be coupled with
incrementing of the index value. A third field in each index word
specifies a reJill address from which another index word rnay be loaded
automatically.

Instructions generally specify one of a set of fifteen index registers for
address rnodification, but the number of available registers nlay be readily
supplemented by other index locations in memory through the operation
RENAME. This operation identifies one designated index register with
one of these memory locations and does the bookkeeping necessary to
cause this memory location to refiect changes in the index register.

Although indexing instructions are provided to change index values
and counts explicitly, it is possible to use another mode, called progressive
indexing, in which the index quantities rnay be advanced each time they
are used.

3.1 7. Branching Operations

The branching operations either conditionally or unconditionally alter
the instruction counter so as to change the course of a program. The
number of these operations is not large, but modifiers are available to
provide a great dea1 of flexibility.

Al1 machine-state indicators, such as sign, overflow, error, and input-
output conditions, are collected in one 64-bit indicator register. The
BRANCH ON INDICATOR instruction rnay specify any one of these 64 indi-
cators as the condition to be tested. -4 modifier specifies whether branch-
ing is to occur when the indicator is on or o$. Another modifier rnay
cause the indicator tested to be reset.

A second operation, BRANCH ON BIT, permits the testing of a single bit
anywhere in memory with one instruction. The tested bit rnay also be
modified. This instruction places a virtually unlimited number of indi-
cators under the direct contro1 of the program.

A hybrid operation combines advancing of an index word with testing i

and branching. Thus the most common program loops rnay be closed
with one half-length instruction, although fu11 indexing flexibility requires
two half-length instructions to specify the necessary quantities.

Branch instructions rnay be coupled with another operation to store
the instruction-counter contents a t any desired location before branching.
This simplifies reentry to a program from a subprogram.

3.18. Transmission Operations

The operation TRANSMIT provides the facilities to move a block of data
from one memory area to another. A second operation, SWAP, inter-
changes the contents of two memory areas.

There are basically two operations for controlling input-output and
external storage units: READ and WRITE. Each instruction specifies the
unit desired and a memory area for the data to be read or written.

The memory area is specified by giving the address of a control word
which contains the first data address In memory and a count of the num-
ber of words to be transferred. The contro1 word also contains a refi11
address which can specify the address of another contro1 word. Control
words can thus be chained together to define memory areas that are not
adjacent.

Control words have the same format as index words and can be used
for indexing. This important feature means that the same word can be
used first for reading new data, then for indexing while those data are
being processed, and finally for writing the data from the same memory
area.

Various modifications of READ and WRITE are provided to fit different
circumstances. Other instructions perform various control functions.

Al1 instructions for operating external units are issued by the computer
program but are executed independently of the program. Severa1 data
transfers can thus take place simultaneously, al1 sharing access to
memory. Signaling functions inform the program when each external
process is completed.

Al1 external units, regardless of their characteristics, are controlled by
the same set of instruct'ions. They are distinguished only by a number
assigned to each unit.

3.20. N e w Features

New programming features not identified with specific instructions are
summarized in this section.

Addressing

In instructions where this is meaningful, the position of a single bit in
any word of memory can be addressed directly. A complete word-and-
bit address forms a 24-bit number. The word address (18 bits) is on the
left and the bit address (6 bits) on the right of that number. For the
purpose of bit addressing, the entire memory may be regarded as a set
of consecutively numbered bits. Since the number of bits in a memory
word (64) is a power of 2 and al1 addressing is binary, the address of the
rightmost bit (bit 63) of one memory word is followed immediately by the
address of the leftmost bit (bit O) of the word with the next higher word
address. Memory-word boundaries may be ignored by the program.

Other instructions use only fu11 memory words as data, and these pro-

30 SYSTEM SUMMARY OF IBM 7030 [CHAP. 3

vide space for only 18 bits of address. The bit address is assumed to be O.
Still other instructions refer to half words and use 19 bits of address. The
extra bit is immediately to the right of the word address, and the remain-
ing 5 bits of the bit address are treated as 0s.

Index words provide space for a sign and 24 bits in the value field,
so that al1 addresses may be fully indexed to the bit level. The entire
24-bit instruction address, with 0s inserted where instructions have fewer
address bit#s, participates in the algebraic addition during address modi-
fication. When less than 24 bits are needed in the effective address, the
low-order bits are dropped.

Many interna1 machine registers are directly addressable as if they
were memory. The accumulator may, for example, be added to itself;
this is accomplishcd by addressing the accumulator as the operand of an
ADD instruction. One importaiit use of this facility is in preserving and
restoring the contents of interna1 registers by transmitting them as a
block to or from memory with one TRAXSMIT instruction.

Instead of selecting a location from which to fetch data, the address
itself may serve as data in many operations. I t is then called an immedi-
ate address. Such data are limited to a t most 24 bits. This feature is
very convenient for defining short constants wit hout having to provide
the space and time for separate access to memory. Immediate address-
ing is not available for sending data to memory, because the address
space is needed to select memory.

The term direct address is used to distinguish the usual type of address
which gives the location of an operand or of ari instruction.

The term indirect address refers to an address that gives the location of
another address. An indirect address may select ali immediate address,
a direct address, or yet another indirect address. Iiidirect addresses are
obtained in the 7030 by the instruction LOAD VALUE EFFECTIVE, which
places the effective address found a t the specified memory location into
ai1 indes register for indexing a subseqiient instruction. Multiple-
level indirect addressing is obtained whcn LOAD V A L ~ E EFFECTIVE finds
a t the selected location another iiistruction LOAD VALUE EFFECTIVE which
causes the indirect addressing process to be repeated.

Program Interruption

A single program-interrupt system serves for responding to asynchro-
nously occurring external signals and for monitoring exceptional condi-
tions generated by the program itself. When one of the indicators in the
previously mentioned indicator register comes on, the comput'er selects
an instruction from a corresponding position in a table of fix-up instruc-
tions. This instruction is sandwiched into the program currently being
executed a t whatever time the interruption occurs. The extra instruc-

tion is usually one which first stores the current instruction-counter set-
ting, to preserve the point at which the current program was interrupted,
and then branches to the desired fix-up routine. The table of fix-up
instructions rnay be placed anywhere in memory.

Means are provided to select which indicators rnay cause interruption
and when interruption will be permitted. Priorities can thus be estab-
lished. If more than one interrupt condition should occur a t a time, the
system will take them in order. Special provisions are made to permit
interruptions to any leve1 to occur without causing program confusion.

Address Monitoring

Address-monitoring facilities are provided to assist in the debugging of
new programs and to protect already debugged programs against errone-
ous use of their memory locations by other programs being run simulta-
neously in multiprogrammed fashion. The two address-boundary registers
are used to define the desired memory area. One register specifies the
lower boundary and one the upper boundary. Al1 effective operand
addresses and al1 instruction addresses are compared against the two
addresses in the registers to see whether the address in question falls
inside or outside the boundaries. By setting a contro1 bit, it is possible
to define either the area inside the boundaries or the area outside the
boundaries as the protected area. Whichever it is, any attempt to fetch
an instruction or data word from the protected area or to store new infor-
mation in the protected area rnay be suppressed, and the program rnay
be interrupted immediately. Thus it is possible to use the address-
monitoring system to make sure either that a given program does not
stray outside its assigned area or that no program will interfere with
whatever is stored inside the area.

The built-in monitoring system is much more effective than the alterna-
tive of screening each program in advance to make sure that al1 addresses
are proper. I t is very difficult to predict by inspection al1 the eflective
addresses that rnay be generated during execution by indexing, indirect
addressing, or other procedures, especially in a program that rnay contain
errors.

Clocks

An interval timer is built in to measure elapsed time over relatively
short intervals. It can be set to any value a t any time, and an indicator
shows when t'he time period has ended. This indicator will cause auto-
matic program interruption.

To provide a continuous indication of time, a t ime clock is also fur-
nished. This clock runs continuously while the machine is in operation;
its setting cannot be altered by the programmer. I t rnay be used to time

longer int'ervals for logging purposes or, in conjunction mith an external
calibrating signal, to provide a time-of-day indication.

3.21. Performance

Since high performance is so important an objective of the 7030, a sum-
mary of the system should give some examples of its internal speed. Such
speeds cannot be quoted with any accuracy, however.

In earlier computers it has been a relatively simple matter to compile
a list of exact times or time formulas for the execution of each operation.
To determine the time taken to execute a program it was necessary only
to add the times required for each instruction of the program. Describ-
ing the internal speed of the 7030 with any accuracy is a much more diffi-
cult task because of the high degree of overlap among the independently
and asynchronously operating parts of the centra1 processing unit.

A few raw arithmetic speeds are listed in Chap. 14. The list is not
complete and includes only t,he time spent by the arithmetic unit oper-
ating on data already available. There would be little point in extend-
ing the list; instruction and data fetlches, address modification, and the
execution of indexing and branching instructions al1 overlap the arith-
metic-execution times to varying degrees; so the figures could not be
meaningfully added together.

Rules of thumb and approximation formulas may be developed in time,
but their accuracy would depend considerably on the type of program.
The degree of overlap varies widely between problems requiring a pre-
dominante of floating-point arithmetic or variable-field-length arit'hmetic
or branching or input-output activity. A zero-order approximation,
which could be off by a factor of 2 or more, might be to count 2.5 micro-
seconds for each instruction writ'ten. To arrive a t a more accurate figure
i t is necessary to take into account the complex timing relationships of a
succession of specific instructions in considerable detail. Even then i t
would be difficult to measure the effect on performance of the long float-
ing-point word, the large core memory, the very large capacity of the
high-speed disk units, the overlapped input-output data transfer, or the
interrupt system. The best approach is still to program a complete
problem and then time the actual execution on the 7030 itself.

Chapter 4

NATURAL DATA UNITS
by G. A. Blaauw, F. P. Brooks, Jr., and W. Buchholz

4.1. Lengths and Structures of Natural Data Units

In considering automatic data-processing tasks generally, we identify
five common types of operations: floating-point operations, fixed-point
arithmetic, address arithmetic, logica1 manipulations, and editing oper-
ations. Each of these has a natural data unit distinct from those of the
other types in length, variability of length, or internal structure. An
idea1 computer would permit each operation to address its natural data
unit directly, and this addressing would be simplified by utilizing al1
properties of the natural data unit that are constant.

It should be observed that the natural data unit is associated with an
individua1 manipulative operation, not with a whole program. In any
program there will be different kinds of operations and, therefore, differ-
ent natural data units. Furthermore, the same datum is generally the
object of different kinds of operations. For example, a floating-point
datum may be developed as a unit in a computation, its components
then used in radix-conversion arithmetic, and the characters of the result
finally used as units in editing for printing. The format of a datum is
usually made to agree as closely as possible with the natural data unit
of the operations most often performed on that datum.

The natural data unit for most technical computation has come to be
the floating-point nurnber, because the use of jioating-point arithmetic
frees the mathematician from many details of magnitude analysis. This
unit has considerable internal structure: the representation of a single

Note: Sections 4.1 and 4.2 of this chapter are taken from a previously published
paper by the same authors: Processing Data in Bits and Pieces, I R E Trans. on Elec-
tronic Computers, vol. EC-8, no. 2, pp. 118-124, June, 1959; also "Information Process-
ing," UNESCO (Paris), R. Oldenbourg (Munich), and Butterworths (London), 1960,
pp. 375-382.

33

number includes a number sign, a fraction, an exponent, an exponent
sign, and bit's for flagging numbers (Fig. 4.1). The fraction part of this
unit might be made to vary widely in length, depending upon precision
requirements, but the precision analysis that such variation would imply
would often be as burdensome as the detailed magnit'ude analysis that
floating-point operation eliminates. Moreover, these operations must
proceed with the utmost speed, and a fixed format facilitates parallel
arithmetic. For t,hese reasons, floating-point numbers follow a rigid for-

J Word boundary

3 flag bits

FIG.4.1. Data unit for floating-point arithmetic.

mat. The datum is usually long-in this machine it uses 64 bits, with
the fraction occupying 48 of these.

Fixed-point arithmetic is used on problem data when magiiitude analy-
sis is trivial, such as that encountered in business or st,at,istical calcu-
1at.ions. Figure 4.2 shows some examples. Kumbers may or may not
be signed. If the arithmetic is binary, the data unit has a simple struc-

Word boundary

Unsigned Signed Unsigned
binary binary decimaiI I 1 1 i

FIG.4.2. Data units for fixed-point arithmetic.

ture. If the arithmetic is decimal, the number has an inner structure
of digits individually encoded in binary form. Whether the unit is simple
or complex in structure, its natural length is quite variable, with typical
numbers varyiiig from 4 to 40 bits in length.

Address arithmetic operates upon a natural data unit whose structure is
similar to that of unsigned fixed-point data, whether decimal or binary
(Fig. 4.3). The unit has, however, one or a few standard lengths because
of the fixed size of memory, and the length of the unit is relatively short.

Pure logical man,ipulations-whether used as the main part of a pro-

manipulations, such as comparison or transmission, the natural data unit
is a field of many characters or a complete record.

Besides these five kinds of natural data units that can be identified for
operations commonly built into computers, other natural data units are
suitable for operations usually encoded with subroutines, such as matrix
arithmetic, complex arithmetic, and multiple-precision arithmetic. As
these larger unita are necessarily composed of components that themselves
are the data units of some built-in operation, they rieed not be considered
separately.

JWord boundary

Y

Employee Name

number t s e x

status

FIG.4.5. Data units for editing operations.

4.2. Procedures for Specifying Natural Data Units

The previous section has shown how natura1 data units for different
operations differ in structure, length, and variability of length. These
diversities imply t hat more informat ion is required for the specification
of the natural data units than would be required if they were alike. The
computer designer can choose the manner in which the user will pay this
information price, but the price must be paid.

The data and instriictions for any given problem may be considered
to consist of a single stream of natura1 data units, without computer-
prescribed spacers, groupings, etc. The computer designer must furnish
a memory structure and an addressing system with which the individua1
components of a stream of natural data units are to be manipulated.
The programmer nlust map the data-unit stream of his problem into a
spaced and grouped stream suitable for the memory organization that
the computer designer provides. This mapping requires some of the
computer's power and necessarily introduces some inefficiencies. The
more complex and difficult the mapping, the lower is the performance of
the whole system.

The classica1 approach to this problem was to ignore it. For sim-
plicity, early computer designers assumed (1) that provisions for han-
dling the objec t data of fixed-point-arithmetic operations would suffice
and (2) that the natural data unit for these operations was the single
number of constant length. These two assumptions led to a simple,

homogeneous, fixed-word-length memory organization. Since neither
assumption was completely true, the information price of diversity was
paid by the user in reduced performance and more complex programming.

When performing operations other than fixed-point arithmetic, such as
editing and address arithmetic, the programmer shifted, extracted, and
packed in order to get at the natural data unit of the operation. When
faced with data of varyirig lengths, the prograamer had twa uptions as
to the method of paying the information price. He could (1) place each
unit in a different machine word or (2) pack several shorter units into a
single word. (Since the machine word was usually picked to be a reason-
able upper bound on natural data lengths, he was less often faced with
the problem of manipulating units that required several words.) The
price of using a different word for each data unit is reduced memory
capacity and increased operating times for input-output and arithmetic
units. The price of packing memory cells is paid in memory capacity
for the packing instructions, in execution time, and in programrning time.

Clearly, one way to improve the performance of a computer by chang-
ing its organization is to pay the price of diverse data units in the form
of more complex hardware. This implies a memory structure that can
be composed of variable-length cells. Severa1 computers have been so
organized. These computers have been intended primarily for business
data processing, where editing operations are of great importance and
where the assumption of constant-length data units is particularly poor.
As the importance of nonarithmetical operations in al1 kinds of calcu-
lations became more apparent, a variable-cell-length memory organiza-
tion became more desirable for any high-performance general-purpose
computer.

There are several methods of achieving variable ce11 size. If the
memory is to be addressed rather than scanned, the ce11 lengths may
vary from ce11 to ce11 and from problem to problem, but the positions
(and therefore the lengths) of cells must remain constant within a single
computation. That is, cells at different addresses may have different
lengths, but a change in the contents of a ce11 must not change its length.
On tape, where scanning is used instead of addressing, this constraint
does not hold, and some computers allow item lengths on tape to vary
by deleting either leading numerica1 zeros or trailing alphabetie blanks.

A simple way of organizing a memory of different ce11 sizes is to pro-
vide a fixed complem'ent of assorted sizes; this is done, for example, in the
IBM 604 calculator. This rather inflexible arrangement was discarded
for the IBM 7030 in favor of a second method, where the smallest data
component is made addressable; a celì is defined by specifying both the
position of one component in memory and the extent of the cell, Because
of the requirements of pure logica1 operations and of editing operations,

addressing resolution was provided al1 t,he way down to the individua1
bit level. Each bit in the memory has a uiiique address.

There are several techniques for specifying ce11 extent. The first is to
use a unique con~bination of data bits as a partition between cells. This
method is used to separate numerica1 fields in the IBAI 705. The use of
partition symbols implies reduced memory capacity due to the symbols
themselves and, more seriously, exclusion of the partition-bit combination
from the set of permissible data symbols. This dificulty alone would
have precluded use of partitions between memory cellsIin the 7030.
Arbitrary bit combinations arise in assembling instructions, reading data
from external devices, and performing binary computations, and such
activities could not be excluded. Furthermore, in any comput,er where
memory speed is the limitiiig factor on performance, it is highly desirable
that each bit fetchedfrom memory contain 1 bit of information. Use of
extra symbols and restrictions on bit combinations both reduce iiifor-
mation content.

A variation of the partition-bit approach is to provide space for
marker bits outside the data storage space. Iii the snlaller IBM 1401
computer, for example, the ce11 size is variable to the character level, aiid
the high-order end of a ce11 is indicated by a separate bit available in
each character position. This is a simple technique to implement, aiid
it avoids restrictions oli the data symbols permissible. The obvious infor-
mation price of this scheme is 1 extra bit per character. An additional
price must be paid in instructions to set up and alter the positions of
these marks, which, being extraterritorial in nature, are awkward to
bring in from the inpirt. Moreover, t,his approach becomes relatively
more costly as data storage space increases in comparison to program
storage space.

h third method of specifying ce11 ext,eiit is to use a Procrustean-bed
technique in which data are transferred from memory to a register unti1
the register is full. Transfers to memory likewise proeeed unti1 the
register is completely copied. This technique is used for alphabetic
fields in the 705. The disadvantage is that the techiiique requires extra

-
Pro.crusttes (~rij-kriis'tSz) n CL fr Gr Prokroustes
f r prokrouein to beat out i o streirh, ir. &-o forward $1
kiouein to ctrike l Gr ~ k t i q A celebrateci legendary
highmauman of ~ h c a &ho tied his victims upon a n iron
bed and as the case iequired either stretched or cut off
theh le& to adapt them to itk lennth. Hence the bed
o f Procrus[es or Procrustean bed, an idea: theow, or
systern (o whlch facts, human nature, or the Iike, would be
arbi t r~r i ly fitted.
(By permission from Webster's " N e w Inlernational
Dietionary," 2d ed., copyright 1959 by G. & C . Merr iam
Company , Springfield, Mass., publishers of the Mer-

instructions for changing the
leiigt,li of the receiviiig register
or the use of several receiving
registers of diff erent lengths.

A fourt'h t'echnique, and
that adopted, is to provide
the inforrnat,ion on ce11 extent
in the iii~t~ructions that use
that cell. This can be done

by specifying one of severa1 masks, by specifying beginning and end, or
by specifying beginning and length. In order to simplify indexing, the
last method was selected. Each instruction that can refer to variable-
length cells contains t,he complete address of the leftmost (high-order) bit
of the ce11 and the length of the cell; however, instructions that do not
need to refer to cells of varying length do not contain al1 this information.

4.3. Data Hierarchies

Most data-processing tasks involve a hierarchy of data units which,
in ascending order of size, are frequently called character, jìeld, record,
and $le. Each structxral unit coiisist,~ of one or more of the preceding
units. The reason for the existence of this structure is that an associ-
ation of meaningful data units may have a meaning of its own. To use
a well-worn example, a payroll record consists of an employee identifica-
tion number and related data, such as name, pay rat'e, and amounts, each
of which is a field which, in turn, is made up of alphabetic or numerica1
characters. This record as a whole may be sorted into identification
number sequence with other employees' records, if the fields remain
associated with the identification; if the fields were al1 sorted individually,
their meaning would be destroyed. Again, a file of last week's payroll
records can be distinguished from a file of this week's records if they
remain together.

I t has been found useful to define a similar hierarchical structure for
the machines that process the data, but often for different reasons. The
number of bits transmitted in parallel a t one time between the computer
and input-output units is one such data unit; that transmitted in parallel
between computer and memory is another, often different. Efficient
operation of input-output units usually requires the definition of still
larger groupings of data.

The distinction between the natura1 requirements of the data and those
or" the machine has often been obscured by the fact, already referred to,
that the user may be forced to adapt his data to the characteristics of the
maehine. Thus the same terms are frequently used for both purposes.
We prefer to use two sets of terms and to point out similarities by listing,
side by side, terms that have a corresponding ranking:

Natura1 data hierarchy Machine data hierarchy

Bit Bit
Character Byte
Field MTord
Record Block
File Ree1 of tape, tray of cards,

web of paper, etc.

Bit is widely used in both contexts and, since it causes no confusion,
the term will be retained for both.

Character is usually identified with a graphic symbol, such as a numeri-
cal digit, alphabetic letter, punctuation mark, or mathematical symbol.

Fieid denotes a group of characters processed together in a single
numerica1 or logica1 operation. Examples are a number, a name, an
address. A field is identified by its location in storage or in a record.
(The term goes back to punched-card usage. Item has also been used.)

A record is a group of fields that are processed together. Correspond-
ing fields in successive records normally occupy the same relative position
within the record. A record is identified by one or more identifier fields
or by its location in storage or in a file.

A $le is a group of records, which are usually processed one record at a
time. A file rnay be identified by an identifier record.

The actual usage of the above terms depends largely on the application,
and many applications require additional steps in the hierarchy which
rnay not have generic names.

Terms used here to describe the struct'ure imposed by the machine
design, in addition to bit, are listed below.

Byte denotes a group of bits used to encode a character, or the number
of bits transmitted in parallel to and from input-output units. A term
other than character is used here because a given character rnay be repre-
sented in different applications by more than one code, and different codes
rnay use diff erent numbers of bits (i.e., different byte sizes). In input-
output transmission the grouping of bits rnay be completely arbitrary
and have no relation to actual characters. (The term is coined from bite,
but respelled to avoid accidental mutation to bit.)

A word consists of the number of data bits transmitted in parallel from
or to memory in one memory cycle. Word size is thus defined as a
structural property of the memory. (The term catena was coined for
this purpose by the designers of the Bull GASIAIA 60 computer.)

Block refers to the number of words transmitted to or from an input-
output unit in response to a single input-output instruction. Block size
is a structural property of an input-output unit; it rnay have been fixed
by the design or left to be varied by the program.

4.4. Classes of Operations

Severa1 classes of operations are provided in the 7030 to dea1 directly
with different natura1 data units. In particular, the variable-field-length
system to be described in Chap. 7 has been designed to overcome the
limitgations of the rigid word structure of the memory and permit the
program to specify fields of any length, up to the rather high limit of

64 bits. This system is used for fixed-point-arithmetic, alphanumeric,
and logica1 operations, since the data units for these classes of operations
can be specified in the same way.

The floating-point operations (see Chap. 8) dea1 specifically with
floating-point numbers. As has been mentioned, it is advantageous here
to make the length of the floating-point number the same as that of the
memory word.

Address arithmetic is performed primarily by indexing operations,
which are discussed in Chap. 11, and these operations are designed to
handle the various address lengths encountered in the 7030.

Editing operations require a combination of these classes of operations
and others, like data transmission, that are not so readily classified.
Data transmission and input-output operations (see Chap. 12) have the
restriction that only full64-bit words can be transmitted. Thus a record
of a given natura1 length must be approximated by a block that is a
multiple of 64 bits long. To save the few extra bits in the last word of a
block would have greatly increased the amount of equipment and was not
considered worth while.

Chapter 5

CHOOSING A NUMBER BASE
by W. Buchholz

Introduction

One of the basic choices the designers of a digital conlputer must make
is whether to represent numbers in decimal or binary form. Many fac-
tors enter int,o this choice. IVhere high performance is a major goal, as
in the IBM 7030, high arithmetical speed is of the essence and a proper
choice of number system can contribute to arithmetical speed. But the
over-al1 performance of a computer cannot be measured by its arith-
metical speed alone; it is significantly affected by the ease with which
nonarithmetical operat ions are performed. Equally important is the
human factor. Cnless the computer is programmed to assist in the
preparati011 of a problem and in the presentati011 of results, false starts
and waiting time can greatly dilute the effective performance of a high-
speed computer. Regardless of the number system chosen for interna1
arithmetic, decimal numbers must be used in communicating between
man and the computer.

Civilized man settled on 10 as the preferred number base for his own
arithmetic a long time ago. l The ten digits of the decimal system had
their origin when man learned to count on his ten fingers. The word
digit is derived from the Latin word digitus for finger and remains to
testify to the history of decimal numbers. Historically, severa1 other
number bases have been employed by various peoples,at different times.
The smaller number bases are clearly more awkward for humaii beings

Note: The material in Chap. 5 is taken from VCT. Buchholz, Fingers or Fists? (The
Choice of Decimai or Binary Representation), Communs. ACIW, vol. 2, no. 12, pp. 3-
I l , December, 1959.

1 Although in most languages numbers are expressed by decimal symbols, i t is a
curious fact that there has been so far no standardization on multiples of 10 for units
of money, length, weight, a.nd time. We are still content. to do much of our everyday
arithmetic in what is really a mixed-radix system which includes sueh number bases
as 3, 4, 7, 12, 24, 32, 60, 144, 1,760, etc.

42

to use because more symbols are needed to express a given number.
Kevertheless, there is evidence of the use of the base 2, presumably by
men who observed that they had two ears, eyes, feet, or fists.

With the decimal symbolism in universal use, it was natura1 that
the earliest automatic digiial computers, like the desk calculators and
punched-card equipment that preceded them, should have been decimal.
In 1946 John von Keumann and his colleagues a t t'he 1nst)itat.e for
Advanced Study, in their classica1 report describing the new concept of
a stored-program computer, proposed to depart from that practice.l
They chose t,he base 2 for their system of arithmetic because of its greater
economy, simplicity, and speed.

Many designers have followed this lead and built binary computers
patterned after the machine then proposed. Others have disagreed and
pointed out techniques for obtaining satisfactory speeds with decimal
arithmetic without unduly increasing the over-al1 cost of the computer.
Since decimal numbers are easier to use, the conclusion has been drawn
that decimal computers are easier to use. There have been two schools
of thought ever since, each supported by the fact that both decimal and
binary computers have been eminently successful.

As the Institute for Advanced Study report has long been out of print,
it seems appropriate to quote at some length the reasons then given for
choosing binary arithmetic :

In spite of the longstanding tradition of building digital machines in the
decimal system, we feel strongly in favor of the binary system for our device.
Our fundamental unit of memory is naturally adapted to the binary system
since we do not attempt to measure gradations of charge a t a particular point in
the Selectron [the memory device then proposed] but are content to distinguish
turo states. The flip-flop again is truly a binary device. On magnetic wires or
tapes and in acoustic delay line memories one is also content to recognize the
presence or absence of a pulse or (if a carrier frequency is used) of a pulse train,
or of the sign of a pulse. (We will not discuss here the ternary possibilities of a
positive-or-negative-or-no pulse system and their relationship to questions of
reliability and checking, nor the very interesting possibilities of carrier frequency
modulation.) Hence if one contemplates using a decimal system . . . one is
forced into a binary coding of the decimal system-each decimal digit being
represented by a t least a tetrad of binary digits. Thus an accuracy of ten deci-
mal digits requires a t least 40 binary digits. In a true binary representation of
numbers, however, about 33 digits suffice to achieve a precision of 10lO. The
use of the binary system is therefore somewhat more economica1 of equipment
than is the decimal.

A. W. Burks, H. H. Goldstine, and J. von Xeumann, "Preliminary Discussion of
the Logica1 Design of an Electronic Computing Instrument," Institute for Advanced
Study, Princeton, N.J., 1st ed. June, 1946, 2d ed., 1947, sec. 5.2; also subsequent
reports by H. H. Goldstine and J. von Neumann.

The main virtue of the binary system as against the decimal is, however, the
greater simplicity and speed with which the elementary operations can be per-
formed. To illustrate, consider multiplication by repeated addition. In binary
multiplication the product of a particular digit of the multiplier by the multi-
plicand is either the multiplicand or null according as the multiplier digit is 1 or O.
In the decimal system, however, this product has ten possible values between
null and nine times the multiplicand, inclusive. Of course, a decimal number has
only logio 2 = 0.3 times as many digits as a binary number of the same accuracy,
but even so multiplication in the decimal system is considerably longer than in
the binary system. One can accelerate decimal multiplication by complicating
the circuits, but this fact is irrelevant to the point just made since binary multi-
plication can likewise be accelerated by adding to the equipment. Similar
remarks may be made about the other operations.

An additional point that deserves emphasis is this: An important part of the
machine is not arithmetical but logica1 in nature. Xow logic, being a yes-no
system, is fundan~entally binary. Therefore a binary arrangement of the
arithmetical organs contributes very significantly towards producing a more
homogeneous machine, which can be better integrated and is more efficient.

The one disadvantage of the binary system from the human point of view is
the conversion problem. Since, hoivever, it is completely known how to convert
numbers from one base to another and since this conversion c m be effected solely
by the use of the usual arithmetic processes, there is no resson why the computer
itself cannot carry out this conversion. I t might be argued that this is a time-
consuming operation. This, however, is not the case. . . . Indeed a general-
purpose computer, used as a scientific research tool, is called upon to do a very
great number of multiplications upon a relatively small amount of input data,
and hence the time consumed in the decimal-to-binary conversion is only a trivial
per cent of the total computing time. ,4 similar remark is applicable to the
output data.

The computer field and, along with it, the technical literature on com-
p u t e r ~ have grown tremendously since this pioneering report appeared.
It seems desirable, therefore, to bring these early comments iip to date
in the light of experience. The present discussion is also intended to
widen t'he scope of the examination so as to reflect knowledge gained from
increasing areas of application of the large computers. Mathematical
comput'ations are still important, but the processing of large files of busi-
ness data has since become a major field. Computers are beginning to
be applied to t3he contro1 of planes in actual flight, to the collection and
display of data on demand, and to language translation and systems
simulation. Regardless of the application, a great dea1 of the time of
any large computer is spent on preparing programs before they can be
run on that computer. Much of this work is nonnumerica1 data process-
ing. The point of view has thus shifted considerably since the dnys of
the von Neumann report, and a reevaluation seems to be in order.

5.2. Information Content

Informati011 theory1v2 allows us to measure the information content of
a number in a specific sense. Assume a set of N possible numbers, each
of which is equally likely to occur during a computing process. The
information H contained in the selection of a number is then

Suppose, now, that a set of b binary digits (bits) represents a set of 2b con-
secutive integers, extending from O to 2b - 1, each of these integers being
equally probable. Then

H = log, 2b
= b bits

(Because in this example the amount of information is equal to the num-
ber of bits needed to represent the integer in binary form, the bit is often
chosen as the unit of information. The two uses of the term bit should
not be confused, however. h'umbers are defined independently of their
representation, and the information content of a number is measured in
bits regardless of whether the number is in binary, decimal, or any other
form.)

Similarly, assume a set of lod consecutive integers from O to lod - 1
expressed by d decimal digits. Here

H = log, lod
d

= d log2 10 = -
log10 2

= 3.322d bits (approx.)

Thus a decimal digit is approximately equivalent in information content
to 3.322 binary digits.

In the actual representation of a number N, both b and d must, of
course, be integers. The ranges lodand 2b cannot be compared exactly.
For such pairs as d = 3 and b = 10, the values lo3 = 1,000 and
21° = 1,024 come very dose to being equal. Here b/d = 196 = 3.333
(approx.), which agrees well with the above value 3.322. This shows,
a t least, that the measure of information is a plausible one.

Conversely, to express a binary number requires approximately 3.322
times as many binary symbols (O and l) as decimal symbols (O to 9).

1 C. E. Shannon and W. Weaver, "The Mathematical Theory of Communication,"
The University of Illinois Press, Urbana, Ill., 1949.

L. Brillouin, "Science and Information Theory," Academic Press, Inc., Sew York,
1956, pp. 3-4.

Few truly decimal switching and storage devices have found application
in high-speed electronic computers; otherwise a decimal computer might
be a great dea1 more compact than a corresponding binary computer.
Generally, only binary (or on-off) devices are used; hence decimal digits
must be encoded in binary form even in decimal computers.l Since bits
cannot be split to make up the 3.322 bits theoretically required, a t least
4 bits are needed to represent a decimal digit. Therefore, instead
of being more compact, a decimal computer in fact requires a t least,
4/3.322 = 1.204 times as many storage and switching elements in a large
portion of its system. The reciproca1 ratio, 3.322/4 or 83 per cent, might
be considered to be the maximum storage efficiency of a decimal computer.

Four-bit coding of decimal digits is called binary-coded decimal (BCD)
notation. Codes with more than 4 bits for each decimal digit are often
used to take advantage of certain self-checking and other properties; the
efficiency of such codes is correspondingly lower than 83 per cent.

The 83 per cent efficiency is only a theoretical value for even a 4-bit
code. A basic assumption made in arriving a t this value was that al1 the
N possible numbers in the expression log2 N were equally likely to occur.
Koniiniform distributions are quite frequent, however. A common situ-
ation is that a set of b bits (in the binary case) is chosen to represent
N integers from O to N - 1, N < 2" and the integers N to 2* - 1 are
never encountered. The information content log2 N may then be con-
siderably less than b bits. Both binary and decimal computers suffer a
loss of efficiency when the number range N is not a power of the number
base.

For example, assume N = 150; that is, the numbers range from O to
149. Then

H = log2 150 = 7.23 bits

Since 8 is the next largest integer, a binary computer requires a t least
8 bits to represent t,hese numbers, giving an efficiency of 7.23/8 or 90 per

l The universal use of binary elements is based on practical engineering consider-
ations, but under certain crude assumptions it can be shown that 2 is also a near-
optimum radix theoretically. Let a given number A' be represented in radix r by n
radix positions; that is, N = rn. Assume the cost of each radix position to be
proportional to the radix, so that the cost C of representing N is

log, iv
C = krn = kr -

log, r

Assume further that r and n could be continuously variable; then setting dC/dr = O
gives a minimum cost for r = e . The nearest integra1 radixes are 2 and 3, and their
value of C is not much greater than the minimum. Although ternary arithmetic is
an interesting possibility, there has been little incentive to develop ternary devices
in practice.

cent. A decimal computer requires a t least three decimal digits or
12 bits, with an efficiency of 7.23/12 or 60 per cent. Relative to the
binary number base, the efficiency of decimal representation is only
60/90 or 67 per cent.

The loss in efficiency is greatest for the smaller integers. With binary
integers the lowest efficiency of 78 per cent occurs for N = 5. Decima1
representat,ion has its lowest efficiency sf 25 per cent a t M = 2. Decina1
representation is never more efficient than binary representation, and
only for N = 9 and ili = 10 are they equally efficient.

Figure 5.1 shows the storage efficiency curves for binary and decimal
systems, and Fig. 5.2 shows the efficiency of the decimal representation
relative to the binary system.

FIG.5.1. Absolute efficiency of decimal and binary number systems. E = (log2N) / b ,
where b is the least number of bits to represent N.

For the above analysis a variable-field-length operation was assumed
where the least possible number of bits or decimal digits can be assigned
to represent the maximum value of ili. A great many computers are
designed around a fixed word length, and even more space will then be
wasted unless time is taken to program closer packing of data. It was
also assumed that the N integers considered were distributed uniformly
throughout the interval; a nonuniform distribution with numbers miss-
ing throughout the interval resiilts in a further lowering of storage
efficiency, which affects binary and decimal computers alike.

Although only integers have been considered so far, the same reasoning
obviously applies to fractions truncated to a given precision, since these
are treated in storage in the same manner as integers. Similarly, the
sign of a number may be regarded as an integer with AT = 2. Instruc-

tions are always made up of a number of short, independent pieces. For
example, ai1 operation code for 45 different operations inay be encoded
as a set of integers with N = 45, for which the binary efficiency is 92 per
cent and the decimal efficiency only 69 per cent.

The lower information-handling eficiency of the decimal representa-
tion may reflect itself in higher cost, in lower performance, or both. If
performance is to be maintained, the cost will go up, but it would be
wrong to assume that the extra bitls required for decimal representation
mean a proportional increase in cost. The rat'io of the cost of storage,
registers, and associated switching circuits to the total cost of a com-

FIG.5.2. Relat,ive efficiency of decimal and binary number systems. Er = b2/b10,
where 62 (bio) is the least number of bits in the binary (decimal) representation of N.

putler depends greatly on the design. Factors other than hardware cost
need to be considered in estimating the over-al1 cost of using a computer
on a given job.

When the cost is to be the same, a lower storage efficiency may result
in lower performance. Thus the performance of many storage devices,
such as magnetic tape, is limited by the bit transmission rate, so that
the greater storage space occupied by decimal numbers, as compared to
equivalent binary numbers, is reflected in a corresponding loss of speed.
This may be important for applications in which the transmission rate to
and from tape, or other external storage, is the limiting time factor: a
binary computer is clearly a t least 20 per cent faster than a correspond-
ing decimal computer on a tape-limited job of processing numerica1 data.

Similarly, in many other applications the rate of information (data and
instruction) flow out of and into the interna1 memory will be a major
limiting factor, particularly for a computer designed to achieve the high-
est practicable performance with given types of components. Although

it can be very misleading to compare two dissimilar computers on the
basis of memory speed only, the comparison is appropriate for two com-
p u t e r ~using similar components and organization but differing mainly in
their number representation.

A memory in active use may be looked on as an information channel
with a capacity of

C = nw bits per second

where n is the number of bits in the memory word and W is the maximum
number of words per second that the memory can handle.

This channel capacity is fully utilized only if the words represent num-
bers from O to 2" - 1, each of which is equally probable. If the infor-
mation content is less than that, the actual performance is limited to Hw,
where H is defined as before. More specifically, if a memory word is
divided into k fields, of range N i , No, ATs, . . . , N k , then

H = 2 logo N ,

The maximum performance is lowered by the factor

For k = 1,this is the same factor as the storage efficiency described above.
Other organizational factors may reduce performance further, and

memory multiplexing can be used to increase over-al1 performance.
These matters are independent of the number representation. The fact
remains that a decimal organization implies a decided lowering of the
maximum performance available. By increasing the number of com-
ponents this loss can be overcome only in part, because of physical and
cost limitations.

In summary, to approach the highest theoretical performance inherent
in a given complement of components of a given type, it is necessary to
make each bit do 1 bit's worth of work.

5.3. Arithmetical Speed
A binary arithmetic unit is inherently faster than a decimal unit of

similar hardware complexity operating on numbers of equivalent length.
Whereas the gain in speed of binary over decimal arithmetic may not be
significant in relatively simple computers, it is substantial when the
design is aimed a t maximum speed with a given set of components.
There are severa1 reasons why binary arithmetic is faster.

1. The cumulative delay in successive switching stages of an adder
places a limit on the attainable speed, and the more complex decimal

adder requires more levels of switching than a binary adder for numbers
of similar precision. Carry propagation, if any, also takes longer in a
decimal adder because decimal numbers are longer.

2. With a base of 2, certain measures can be taken to speed up multi-
plication and division. An example is the skipping of successive 0s or I s
in the multiplier. When corresponding measures are taken with base 10
arithmetic, they are found to give a smaller ratio of impro~ement~. Thus
the average number of additions or subtractions needed during multi-
plication or division is greater, and this difference is compounded by the
extra time needed for each addition or subtraction.

3. Scaling of numbers, which is required to keep numbers within the
bounds of the registers during computation, results in a greater round-off
error when the base is 10. The finest step of adjustment is 3.3 times as
coarse in shifting by powers of 10 as it is with powers of 2. In large
problems the greater error will require more frequent use of multiple-
precision arithmetic, a t a substantial loss of speed. This effect is partly
offset by the fact that scaling will occur more often in binary arithmetic,
and the extra shifting takes more time.

4. Multiplying or dividing by powers of the number base is accom-
plished by the fast process of shifting. The coefficients 2 and >$ are
found much more frequently in mathematical formulas t)han other coeffi-
cients, including 10 and /.io,and a binary computer has the advantage
here.

To overcome the lower speed inherent in decimal arithmetic, it is, of
course, possible to construct a more complex arithmetic unit a t a greater
cost in components. If top speed is desired, however, the designer of a
binary arithmetic unit will have taken similar steps. There is a decided
limit on this acceleration process. Not only does the bag of tricks run
low after a while, but complexity eventually becomes self-defeating.
Greater complexity means greater bulk, longer wires to connect the com-
ponents, and more components to drive the longer wires. The longer
wires and additional drivers both mean more delays in transmitting sig-
nals, which cannot be overcome by adding even more components.
When the limit is reached there remains the substantial speed differ-
ential between binary and decimal arithmetic, as predicted by theoretical
considerations in Sec. 5.1.

5.4.Numerica1 Data
Xumerical data entering or leaving a computer system are of two kinds:

(l)those which must be interpreted by humans and (2) those which come
from or actuate other machines. The first are naturally in decimal form.
Tlie second class, which occurs when a computer is part of an automatic
contro1 system, could also be decimal, since machines, unlike human

beings, can readily be designed either way; but binary coding is generally
simpler and more efficient.

The previously cited von Xeumann report considered only the impor-
tant applications where the volume of incoming and outgoing data is
small compared with the volume of intermediate results produced dur-
ing a computation. In a fast computer any conversion of input and out-
put data may take a negligible time, whereas the format ef intermediate
results has a major effect on the over-al1 speed. The von Neumann
report did not consider the equally important data-processing applica-
tions in which but few arithmetical steps are taken on large volumes of
input-output data. If these data are expressed in a form different from
that used in the arithmetic unit, the conversion time can be a major
burden. Any conversion time must be taken into account as reducing
the effective speed of the arithmetic unit.

The choice would appear simple if different computers could be applied
to different jobs, using decimal arithmetic when the data were predomi-
nantly decimal and binary arithmetic elsewhere. Experience has shown,
however, that a single large computer is often used on a great variety of
jobs that cannot be classified al1 one way or the other. Moreover, as
will be shown in subsequent sections, there are strong reasons for choos-
ing a binary addressing system even where the applications indicate the
use of decimal data arithmetic. Some kind of binary arithmetic unit
must then be provided anyway, if only to manipulate addresses.

A high-speed binary arithmetic unit is thus clearly desirable for al1
applications. To handle decimal data, the designer may choose to pro-
vide a separate decimal arithmetic unit in the same computer, or he may
prefer to take advantage of the speed of his binary arithmetic unit by
adding special instructions to facilitate binary-decima1 conversion.

The decimal arithmetic and conversion facilities must take into account
not only the different number base of decimal data but also the different
format. Binary numbers usually consist of a simple string of numerica1
bits and a sign bit. Decima1 numbers are frequently interspersed with
alphabetic data, and extra zone bits (sometimes a separate digit) are then
provided to distinguish decimal-digit codes from the codes for alphabetic
and other characters. The separate treatment of numerical and zone por-
tions of coded digits greatly adds to the difficulty of doing conversion by
ordinary arithmetical instructions. Hence the decimal arithmetic and
conversion instructions should be designed to process decimal data
directly in a suitable alphanumeric code.

5.5. Nonnumerical Data

A computer may have to process a large variety of nonnumerical
information :

1. Character codes representing alphabetic, numerical, or other sym-
bols for recording data in human-readable form

2. Codes used to perform specified functions, such as terminating dat'a
transmission

3. Yes-no data ("married," "out of stock," etc.)
4. Data for logica1 and decision operations
5. Instructioiis (other than numerical addresses)
6. Machine-status information, such as error indications
7. Status of switches and lights

Becauae the storage and switching elements normally used in com-
p u t e r ~are binary in nature, al1 information, numerical or nonnumerical,
is encoded in a binary form. This binary coding has no direct relation
to the number base being used for arithmetic. The number base deter-
mines the rules of arithmetic, such as how carries are propagated in addi-
tion, but it has no meaning in dealing with nonnumerical information.
Thus the binary-decima1 distinction does not apply directly to the non-
arithmetical parts of a computer, such as the input-output system.

Even where mathematical computation on numerical data is the major
job, a great dea1 of computer time is usually spent on nonnumerical oper-
ations in preparing programs and reports. I t is import'ant, therefore,
that t'he designer avoid constraints on the coding of input and output
data, such as are found in many existing decimal computers. Many of
these constraints are unnecessary and place extra burdens of data con-
version and editing a t greater cost on peripheral equipment.

5.6.Addresses
Memory addresses are subject to counting and adding and are thus

proper numbers mhich can be expressed with any number base. Base 10
has the same advantage for addresses as for data: conversion is not
required, and actual addresses can be contiiiuously displayed oli a con-
sole in easily readable form.

The compactness of binary numbers is found particularly advantageous
in fitting addresses into the usually cramped instruction formats (see
Chap. 9). Tight instruction formats c~ntr ibut~e to performance by reduc-
ing the number of accesses to memory during the execution of a program
as well as by making more memory space available for data. The low
efficiency of decimal coding for addresses has already led designers of
nominally decimal computers to introduce a certain amount of binary
coding into their instruction formats. Such a compromise lends to pro-
gramming complications, which can be avoided when the coding is purely
binary.

A1t)hough the compactness of the binary notation is important,, the

most significant advantage of binary addressing is probably the ease of
performing data transformation by address selection (table look-up).
This is discussed in the next section.

5.7. Transformation

A single data-processing operation may be regarded as transforming
one or more pieces of data into a result according to certain rules. The
most genera1 way of specifying the rules of transformation is to use a
set of tables. The common transformations, such as addition, multi-
plication, and comparison, are mechanized inside the computer, and some
others, such as code conversion, are often built into peripheral equipment;
tables (sometimes called matrixes) may or may not be employed in the
mechanization. Al1 transformations not built into the computer must be
programmed.

In a computer with a large rapid-access interna1 memory, the best
transformation procedure, and often the only practical one, is table
look-up. Each piece of data to be transformed is converted to an address
which is used to select an entry in a table stored in memory. (This
method of table look-up is to be distinguished from table searching, where
al1 entries are scanned sequentially unti1 a matching entry is found.)
Table 5.1 serves to illustrate the process by a code-translation example.

Two methods of encoding the digits O to 9, both in current me, are
shown in Table 5.1. One is a 2-out-of-5 code which requires 5 bits for
every digit. Two and only two l bits are contained in each digit code,
with al1 other 5-bit combinations declared invalid. This property per-
mit's checking for single errors and for common multiple errors. The
second code is a 4-bit representation using codes 0001 to 1001 for the
digits 1 to 9 and 1010 for the digit 0. Codes 0000 and 101 1 to l l11
are not used.

For translation from the 5-bit code to the 4-bit code, a table of 32 (25)
entries is stored in successive memory locations. Each entry contains a
4-bit code. Where the 5-bit combination is a valid code, the correspond-
ing 4-bit code is shown. Al1 invalid 5-bit combinations are indicated in
the example by an ent'ry of 1111, which is not a valid 4-bit code.

The example in Table 5.1 consists in adding a given 5-bit code 10001
to the address of t'he first entry, the table base address. The sum is the
address in the table of the desired entry, which is seen to be 01 11. If
the entry had been 1111, the incoming code would have been known to
contain an error.

The key to this transformation process is the conversion of data to
addresses. A system capable of receiving, transforming, and transmit-
ting any bit pattern can communicate readily with any other system,
including equipment and codes over which the designer has no control.

The desire to accept any bit pattern as an address almost dictates binary
addressing. It is true that decimal addressing does not entirely preclude
transformation of arbitrary data by indirect methods, but such methods
are very wasteful of time or memory space.

Code A Code 3 Address Entry
(5 bits) (4 bits)

O001 l O001 . . .100000 1111
O01 O1 O010 . . .100001 I111
O01 1 o O01 1 . . .l o001 0 1111
o1 O01 o1 O0 . . .l O001 1 o001
O1 o1 o 01 O1 . . .l O01 O0 1111
O1 1 O0 O110 . . .l O01 O1 O010
l O001 O1 l l
1 O01 0 l O00 . . .101110 1111
1 o1 o0 1 O01 . . .101111 1111
1 1 O00 IO10 . . .l l O000 l111

. . .l 1 O001 0111

. . .110010 l O00

. . .110011 11 11
.

. . .111111 1111

Example: Tran,slation of Symbol "7"

. . .l00000 Table base address
+ 10001 Incoming 5-bit code

(Sum) . . .l 10001 Address of table entry

5.8. Partitioning of Memory

I t has already been mentioned that the binary radix makes it possible
to scale numbers in smaller steps and thus reduce loss of significance dur-
ing computation. Binary addresses also have this advantage of greater
resolution. Shifting binary addresses to the left or right makes it easy
to divide memory into different areas, or cells, whose sizes are adjustable
by powers of 2. With decimal addressing such partitioning is easily
obtained only by powers of 10.

In a core memory, for example, each address refers to a memory word
consisting of the number of parallel bits that are accessible in a single
memory cycle. Since binary addressing of these memory words had been
chosen for reasons given in previous sections, there was tJhen considerable
advantage to choosing the number of bits in each word to be a power of 2.
In the 7030 this word length was set at 2" or 64 bits. (This particular

--

--

power of 2 gave a good compromise between speed and cost of memory
and provided ample space for representing a floating-point number in
one memory word. Thirty-two bits was too short and 128 bits too long.)
Individua1 bits in a 64-bit memory word can be addressed simply by
extending the address and inserting 6 bits to the right of the word address
to operate a bit-selection mechanism. When increments are added to
these addresses in binary fosm, whether by explicit instructions or by
indexing, carries from the sixth to the seventh bit automatically advance
the word address.

The flexibility of bit addressing may be illustrated by enlarging the
example of Table 5.1. Instead of using an entire memory word to hold
one 4-bit table entry, it is possible to use for the same entry a ce11 only
4 bits long, with sixteen cells in each memory word of 64 bits. With
respect to the bit address, the incoming code is shifted 2 bits to the left
to obtain increments of 4 bits of storage in memory:

. . .10000000 Table base address
+ 1800100 Incoming 5-bit code with two 0s added

(Sum) . . .l10001 00 Address of table entry

Address Address of

of word bit in word

The example can be readily changed to translate from a 5-bit code to a
12-bit code, such as is used on punched cards. Without an actual table
being shown, it is evident that the 12-bit code can be conveniently stored
in successive 16-bit cells. The proper addresses are then obtained by
inserting four O bits a t the right, instead of two as before:

. . .1000000000 Table base address
+ 100010000 Incoming 5-bit code with four 0s added

(Sum) . . . l10001 0000 Address of table entry

Address Address of

of word bit in word

Similarly, the process can be extended to finer divisions. By using the
incoming code as the address of a single bit, it is possible to look up a
compact table of yes-no bits in memory to indicate, for example, the
single fact of whether the code is valid or not.

Kow consider these examples in terms of decimal addressing. If single
bits were to be addressed, the next higher address digits would address
every tenth bit. This is too large a ce11 size to permit the addressing of
every decimal digit in a data field. To be practical in large-scale numeri-
cal computation, the code for a decimal digit cannot occupy a ce11 of more
than 4, 5, or a t most 6 bits. When the addressing is chosen to operate on

cells of this size, direct addressing of single bits is ruled out. Table entries
requiring more t,han one ce11 cannot occupy less than ten cells.

The designer of a binary computer may or may not choose to endow it
with the powerful facility of addressing single bits (bit addressing) and
provide for automatic modification of bit addresses (bit indexing). The
point remains t'hat the flexible partitioning of memory available to him
would not have been available with decima1 addressing.

A major task in any comput'er installation is the preparation and check-
out of programs. Printing a portion of a program a t the point where an
error has been found is a common check-out t001 for the programmer.
Interpreting such a print-out is greatly simplified if the instructions are
printed in the language that the programmer used.

At first glance this seems to be a convincing argument for decimal
computers. On closer examination it becomes evident that both binary
and decimal machines would be difficult to use wit,hout the assistance of
adequate service programs. When good service programs are available
to assist the user, it is hard to see how the number base in the arithmetic
unit makes much difference during program check-out.

One reason for service programs is that in practice much programming
is done in symbolic notation, regardless of the number base used intler-
nally. The programmer's language is then neither binary nor decimal;
it is a set of alphanumeric mnemonic symbols. Conversion to or from
the symbolic notation by means of a service program is desirable for any
user of either kind of machine, with the possible exception of the pro-
gramming specialist who writes programs in machine language either by
choice or in order to develop new service programs.

Another and more basic reason for service programs is that most, com-
p u t e r ~have more than one format for data and instructions, and a service
program is needed to help interpret these formats. In binary computers
it is desirable to know whetlher a data field is an integer or a floating-point
number with its separate exponent (integer) and fraction. The instruc-
tions are normally divided different'ly from either kind of data field. A
knowledge of the divisions of each format is required in converting from
binary to decimal form.

Many decimal computers do not use purely decimal coding for the
instructions, particularly those aimed a t efficient processing of large
amounts of nonnumerical business data. Moreover, alphanumeric char-
acter coding usually employs a convention different from tlhat used in the
coding of instructions. Again, a service program is needed to interpret
the different data and instruction languages.

Table 5.2 illustrates this point with print-outs of actual computer pro-

grams. The first example is for an IBM 704, which uses binary arith-
metic. The service program lists memory locations and instructions in
octal form with the appropriat'e instruction bits also interpreted as alpha-
betic operation codes. The service program distinguishes floating-point
numbers, which are listed in a decimal format with separate exponent,
mantissa, and signs.

Print-out from I B M 704

Location Instruction or data

F S B O 3 0 2 0 0 O
T Z E O 1 0 0 0 0 O
T P L O 1 2 0 0 0 O
S T 0 O 6 0 1 0 0 O
H T R O 0 0 0 0 0 O
- 0 1 + 9 . 9 4 5
+ o 3 + 4 . 1 3 0
- 0 1 + 7 . 3 3 0
+ o 5 + 5 . 3 0 1

Print-out from I B M P05

Straight Print-out modijied
Location print-out for instructions

0 1 2 0 4 8 T L - l 8 1 3 3 0 1 1 0
0 1 2 0 9 4 / & R 1 4 1 1 8 9 1 1 0
0 1 2 1 4 L 1 0 9 4 L 1 0 9 4
0 1 2 1 9 H W 5 R 4 H 1 6 5 9 4 0 2
0 1 2 2 4 7 W 6 5 5 7 1 6 6 5 5 0 2
0 1 2 2 9 1 2 4 4 9 1 2 4 4 9

.
1 1 3 0 4 I S P A I 1 2 7 A 1 4
1 1 3 0 9 G E M T A G 3 5 6 A 1 3
1 1 3 1 4 S P R O S 3 7 9 0 1 0
1 1 3 1 9 C E S S E C 3 5 2 2 E 0 5
1 1 3 2 4 D T H R D 3 3 8 R 0 7
1 1 3 2 9 O U G H O 1 4 7 8 1 5

The second illustration shows a print-out from the IBM 705, a com-
puter with decimal arithmetic and with alphanumeric coding for data.
Each alphanumeric character has a unique 6-bit code. For reasons of
storage efficiency, instructions in the 705 use a different code where some
of the bits in a 6-bit character have independent meanings. I n the exam-
ple shown in Table 5.2, this dual representation is overcome by printing
the program and data twice, once for ease of reading data and once for

ease of interpreting instructions. A service program was needed to
accomplish this.

The objection might be raised tha,t the examples show up problems in
existing machine organizations rather than a need for service programs.
I t is actually possible for "numerical engines" aimed a t processing only
numerical data to escape the problem of dual representation for instruc-
tions and data. When 'lphanumeric data must also be processed in a
reasonably efficient manner, however, one cannot avoid t,he problem of
dual representation.

5.10. Other Number Bases
Only binary and decimal computers have been considered here.

Although it is clear t,hat other number bases could be selected, they
would al1 require translation to and from decimal formats, and they
would be no more efficient than base 2.

The binary number base has substantial advantages in performance
and versatility for addresses, for contro1 data that are naturally in binary
form, and for numerical data that are subjected to a great dea1 of arith-
metical processing. Figures of merit are difficult to assign because the
performance and cost of a given computer design depend on a great
many factors other than the number base. I t is clear, however, that
decimal representation has an inherent loss in performance of at least
20 to 40 per cent as compared with binary representation and that refined
design with increased cost can overcome this loss only in part. The
decrease in efficiency makes itself felt in a number of ways; so the com-
bined effect on over-al1 performance may be even greater than the per-
centage indicated.

It is equally clear, however, that a computer that is to find application
in the processing of large files of information and in extensive man-
machine communication must be adept a t handling data in human-
readable form; this form includes decimal numbers, alphabetic descrip-
tions, and punctuation marks. Since the volume of data may be great,
it is important that binary-decima1 and other conversions should not
become a burden greatly reducing the effective speed of the computer.

Hence it was decided to combine in the design of the IBM 7030 the
advantages of binary and decimal number systems. Binary addressing
has been adopted for its greater flexibility; each bit in memory has a
separate address, and the length of a word in memory is a power of 2
(64 bits). Binary arithmetical operations are provided for manipulating
these addresses and for performing floating-point arithmetic a t extremely
high speed. Efficient binary-decima1 conversion instructions minimize

the conversion time for input and output data intended for use in exten-
sive mathematical computation. Decima1 arithmetic is also included in
the instruction repertoire, in order to permit simple arithmetical oper-
ations to be performed directly on data in binary-coded decimal form.

Such a combination of binary and decimal arithmetic in a single com-
puter provides a high-performance t001 for many diverse applications.
It may be noted that a different conclusion might be reached for a com-
puter with a restricted range of functions or with performance goals
limited in the interest of economy; the difference between binary and
decimal operation might well be considered too small to justify incorpo-
rating both. This conclusion does appear valid for high-performance
computers, regardless of whether they are aimed primarily a t scientific
computing, business data processing, or real-time control. To recom-
mend binary addressing for a computer intended for business data proc-
essing is admittedly a departure from earlier practice, but the need for
handling and storing large quantities of nonnumerical data makes the
features of binary addressing particularly attractive. In the past, the
rea1 obstacle to binary computers in business applications has been the
difficulty of handling inherently decimal data. Binary addressing and
decimal data arithmetic, therefore, make a powerful combination.

Chapter 6

CHARACTER SET
by R. W. Bemer a n d W. Buchholz

6.1. Introduction

Among the input and output devices of a computer system, one can
distinguish between those having built-in codes and those largely insensi-
tive to code. Thus type~r i t~ers and printers necessarily have a fixed code
that represents printable symbols to be read by the human eye; a code
must be choseii for such a device in some more or less arbitrary fashion,
and the device must make the transformation between code and symbol.
Data st'orage and transmission devices, on the other hand, siich as mag-
netic tape units and telephone transmission terminals, merely repeat the
coded data given to them without interpretation, except that some code
combinations may possibly be used to contro1 the transmission process.
(Strictly speaking, storage aiid transmission devices do generally limit
the code strutture in some respect, such as maximum byte size, so that
code sensitivity is a matter of degree.)

For the inherently code-sensitive devices to be attached to a new com-
puter system, an obvious choice of character set and code would have
been one of the many sets already established. When the existing sets
were reviewed, however, none were found to have enough of the system
characteristics considered desirable. In fact, it became clear that about
the only virtue of choosing an already established set is that the set
exists. Accordingly, it was decided, instead, to devise a new character
set expressly for use throughout a modern computer system, from input
to output. The chief characteristic of this set is its extension to many
more different characters than have been available in earlier sets. The
extended set designed for the 7030 (Fig. 6.1) contains codes for 120
different characters, bue there is room for later expansion to up to 256
characters including contro1 characters. In addition, useful subsets have
been defined, which contain some but not al1 of these 120 characters and
which use t'he same codes for the select ed characters without tran~lat~ion.

60

SEC.6.11 INTRODCCTION61

It should be noted that the 7030 computer is relatively insensitive to
the specific choice of code, and any number of codes could be successfully
used in the system. For any particular application a specialized charac-
ter code might be found superior. In practice, however, a large computer

Bits 0-1-2-3

Bits

4-5-6-7
-

FIG.6.1. 120-character set.

installation must dea1 with a mixture of widely different applications, and
the designers have to choose a single character set as a compromise among
conflicting requirements.

The purpose of this chapter is to list major requirements of a character
set and code, and to point out how these requirements may or may not
be met by the specific set to be described.

Present IBM 48-character sets consist of

1. 10 decima1 digits
2. 26 capita1 letters
3. ll special characters
4. 1 blank

Other manufacturers have employed character sets of similar or some-
what larger size.

Because a single set of eleven special characters is not sufficient,, there
exist severa1 choices of special characters as "standard options."

Since this 48-character set is often represented by a 6-bit code, it is
natura1 to try to extlend it to 63 characters and a blank, so as to exploit
the fu11 capacity of a 6-bit code.' Although the extra sixteen characters
would indeed be very useful, this step was thought not to be far-reaching
enough to justify developmeiit of the new equipment that it would
require.

As a minimum, a new set should include also:

5. 26 lower-case letters
6. The more important punctua,tion symbols found on al1 office

tlypewrit8ers
7. Enough mat.hematica1 and logica1 symbols to satisfy the needs of

such programmiiig languages as ALGOL2*3

There is, of course, no definite upper limit on the number of characters.
One could go to the Greek alphabet, various type fonts and sizes, etc.,
and reach numbers well into the thousands. As set size increases, how-
ever, cost and complexity of equipment go up and speed of printing goes
down. The actual choice of 120 characters was a matter of judgment;
it was decided that this increment over existing sets would be sufficiently
large to justify a departure from present codes and would not include
many characters of only margina1 value.

6.3. Subsets

Two subsets of 89 and 49 characters were chosen for specific purposes.
The 89-character set (Fig. 6.2) is aimed a t typewriters, which, with 44

H. S. Bright, Letter to the Editor, Communs. ACM, vol. 2, no. 5, pp. 6-9, May,
1959 (a 64-character alphabet prsposal).

A. J. Perlis and K. Samelson, Preliminary Report: International Algebraic Lan-
guage, Communs. ACM, vol. 1, no. 12, December, 1958.

Peter Naur (editor), Report on the Algorithmic Language ALGOL 60, Communs.
ACM, vol. 3, no. 5, May, 1960.

character keys, a case shift, and a space bar, can readily handle 89
characters. This subset was considered important because input-output
typewriters can already print 89 characters without modification, and
44-key keyboards are familiar to many people.

The 49-character subset (Fig. 6.3) is the conventional set of "com-
mercial" characters in a code compatible with the fu11 set.l This subset
is aimed a t the chain prinier mechanism used with the 7030, which can
readily print character sets of different sizes but prints the larger sets a t
a reduced speed. The 49-character subset permits high-volume printing
a t high speed in a compatible code on jobs (such as bill printing) where
the extra characters of the fu11 set may not be needed. I t should be noted
that the 49-character set is not entirely a subset of the 89-character set.

Other subsets are easily derived and may prove useful. For example,
for purely numerica1 work, one may wish to construct a 13-character set
consisting of the ten digits and the symbols . (point) and - (minus),
together with a special blank.

6.4. Expansion of Set

Future expansion to a set larger than 120 can take place in two ways.
One is to assign additional characters to presently unassigned codes;

allowance should then be made for certain contro1 codes which will be
needed for communication and other devices and which are intended to
occupy the high end of the code sequence.

The second way is to define a shift character for '(escape" to another
character ~ e t . ~ Thus, whenever the shift character is encountered, the
next character (or group of characters) identifies a new character set, and
subsequent codes are interpreted as belonging to that set. Another shift
character in that set can be used to shift to a third set, which may again
be the first set or a different set. Such additional sets would be defined
only if and when there arose applications requiring them.

6.5.Code

In choosing a code structure, many alternatives were considered.
These varied in the basic number of bits used (i.e., the byte size) and in
the number of such bytes that might be used to represent a single (print-

l Note that this is one character larger than the previously referred-to 48-character
set. The additional special character was introduced in 1959 on the printer of the
IBM 1401 system; but its use has not become firmly established, partly because it
has no counterpart on the keypunch. Thus the 48- and 49-character sets are, in
effect, the same set.

R. W. Bemer, A Proposal for Character Code Compatibility, Communs. ACAi,
vol. 3, no. 2, February, 1960.

I Bits 0-1-2-3

FIG.6.2. 89-character set.

able) character. Among the alternatives were the following:

Single 6-bit byte with shif t codes interspersed
Double 6-bit byte = single 12-bit bytel
Single 8-bit byte
Single 12-bit byt'e for "standard" characters (punched-card code) and

t,wo 12-bit bytes for other characters

Some of these codes repsesent ed attempts to retain partial compati-
bility v i th earlier codes so as to take advantage of existing equipment.

R. W. Bemer, A Proposal for a Generalized Card Code for 256 Characters, Corn-
mzins. ACM, vol. 2, no. 9, September, 1959.

I Bits 0-1-2-3

FIG.6.3. 49-character set.

These attempts were abandoned, in spite of some rather ingenious pro-
posals, because the advantages of partial c~mpat~ibility were not enough
to offset the disadvantages.

The 8-bit byte was chosen for the following reasons:

1. Its fu11 capacity of 256 characters was considered to be sufficient
for the great majority of applications.

2. Within the limits of this capacity, a single character is represented
by a single byte, so that the length of any particular record is not depend-
ent on the coincidence of characters in that record.

- 3. 8-bit bytes are reasonably economica1 of storage space.

4. For purely numerica1 work, a decimal digit can be represented by
only 4 bitls, and two such 4-bit bytes can be packed in an 8-bit byte.
Altlhough such packing of numerica1 data is not essential, it is a commoii
practice in order to increase speed and storage efficiency. Strictly speak-
ing, 4-bit bytes belong to a different code, but the simplicity of the 4-aiid-
8-bit scheme, as compared with a combination 4-and-6-bit scheme, for
example, leads to simpler machine design and cleaner addressiiig logic.

5. Byt'e sizes of 4 and 8 bits, being powers of 2, permit the computer
designer to take advantage of powerful features of binary addressing and
indexing to the bit leve1 (see Chaps. 4 and 5) .

The eight bits of the code are here numbered for identification from
left to right as O (high-order bit) to 7 (low-order bit). "Bit 0" may be
abbreviated to Bo, "bit 1" to B1, etc.

6.6. Parity Bit
For transmitting data, a ninth bit is attached to each byte for parity

checking, and it is chosen so as to provide an odd number of 1 bits.
Assuming a l bit to correspond to the presence of a signal and assuming
also an independent source of timing signals, odd parity permits al1 256
combinations of 8 bits to be transmitted and to be positively distinguished
from t'he absence of information. The parity bit is identified here as
"bit P" or Bp.

The purpose of defining a parity bit in conjunction with a charact'er set
is to establish a standard for communicating between devices and media
using t,his set. It is not int'ended to exclude the p~ssibilit~ies errorof
correction or other checking techniques within a given device or on a
given medium mhen appropriate.

High-equal-low comparisons are an important aspect of data process-
ing. Thus, in addition to defining a standard code for each character,
one must also define a standard comparing (collating) sequence. Obvi-
ously, the decimal digits must be sequenced from O to 9 in ascending
order, and the alphabet from ,4 to Z. Rat'her more arbitrary is the
relationship between groups of characters, but the most prevalent con-
vention for the 48 IBM "commercial" characters is, in order:

(Low) Blank
Special characters .
Alphabetic characters

& $ * - / , % # @
A to Z

(High) Decima1 digits O to 9

Fundamentally, the comparing sequence of characters should conform
to the natura1 sequence of the binary integers formed by the bits of that

code. Thus 0000 01 00 should follow 0000 001 1. Few existing codes
have this property, and i t is then necessary, in effect, to translate to a
special interna1 code during alphanumeric comparisons. This takes extra
equipment, extra time, or both. An important objective of the new char-
acter set was to obt,ain directly from the code, without translation, a
usable comparing sequence.

A second objective was to preserve the existing convention for the
above 48 characters within ihe new code. This objective has not been
achieved because of conflicts with other objectives.

The 7030 set provides the following comparing sequence without any
translation :

(Low)

(High)

Blank
Special characters (see chart)
Alphabetic characters a A b B c C to z Z
h'umerical digits O o 1 ,to 9
Special characters . : - ?
Unassigned character codes

Note that the lower- and upper-case letters occur in pairs in adjacent
positions, following the convention established for directories of names.
(There appeared to be no rea1 precedent for the relative position within
the pair. The case shift is generally ignored in the sequence of names
in telephone directories, even when the same name is spelled with eit'her
upper- or lower-case letters. This convention is not usable in general,
since each character code must be considered unique.)

The difference between this comparing sequence and the earlier con-
vention lies only in the special characters. Two of the previously avail-
able characters had to be placed a t the high end, and the remaining special
characters do not fa11 in quite the same sequence with respect to one
another. I t was felt that the new sequence would be quite usable and
that it would be necessary only rarely to re-sort a file in the transition
to the 7030 code. It is always possible to translate codes to obtain any
other sequence, as one must do with most existing codes.

6.8.Blank

The code 0000 0000 is a natura1 assignment for the blank (i.e., the
nonprint symbol that represents an empty character space). Xot only
should the blank compare lower than any printable character, but also
absence of bits (other than the parity bit) corresponds to ahsence of
mechanical movement in a print mechanism.

Blanlc differs, however, from a null character, such as the all-ones code
found on paper tape. Blanlz exists as a definite character occupying a
definite position on a printed line, in a record, or in a field to be compared.

A nu,ll may be used to delete an erroneous character, and it would be
completely dropped from a record a t the earliest opportunity. Null,
therefore, occupies no definite position in a comparing sequence. A null
has not been defined here, but it could be placed when needed among the
contro1 characters.

Considering numerical work only, it would be aesthetically pleasing to
assign the all-zeros code to the digit zero, that is, to use 0000 as the
common zone bits of the numeric digits (see below). In alphanumeric
work, however, the comparing sequence for blanlc should take preference
in the assignment of codes.

6.9. Decimal Digits

The most compact coding for decimal digits is a 4-bit code, and t'he
natura1 choices for encoding O to 9 are the binary integers 0000 to 1001.
As mentioned before, two such digits can be packed int,o an 8-bit byte;
for example, the digits 28 in packed form could appear as

If decimal digitIs are t'o be represented unambiguously in conjunction
with other characters, they must have a unique 8-bit representation.
The obvious choice is to spread pairs of 4-bit bytes into separate 8-bit
bytes and to insert a 4-bit prefix, or zone. For example, the digits 28
might be encoded as

xxxx O010 xzzx IO00

where the act,ual value of each zone bit x is immat]erial so long as the
prefix is the same for al1 digits.

This requirement conflicted with requirements for the comparing
sequence and for the case shift. As a result, the 4-bit byte is offset by
1bit, and the actual code for 28 is

This compromise retains the binary integer codes 0000 to 1001 in
adjacent bit positions, but not in either of the two positions mhere they
appear in the packed format.

The upper-case counterparts of the norma1 decimal digits are assigned
to italicized decimal subscripts.

The most commonly foiind devices for key-recording input to a com-
puter system are the IBM 24 and 26 keypunches, but their keyboards
are not designed for keying both upper- and lower-case alphabetic char-
acters. The shifted positions of some of the alphabetic characters are
used to punch numerical digits. For key-recording charact'er sets wit h

much more than the basic 48 characters, it is necessary to adopt a key-
board convention different from that of the keypunch. The 89-character
subset was established to bring the most important characters of the fu11
set within the scope of the common typewriter, thus taking advantage of
the widespread familiarity with the typewriter keyboard and capitalizing
on existing touch-typing skills as much as possible.

The common typewriter keyboard consists of up to 44 keys and a sepa-
rate case-shift key. To preserve this relationship in the code, the 44 keys
are represented by 6 bits of the code (B1 to Bg) and the case shift by a
separate bit (B7). The case shift was assigned to the lowest-order bit,
so as to give the desired sequence between lower- and upper-case letters.

For ease of typing, the most commonly used characters should appear
in the lower shift (B7 = O). This includes the decimal digits and, when
both upper- and lower-case letters are used in ordinary text, the lower-
case letters. (This convention differs from the convention for single-case
typewriters present'ly used in many data-processing systems; when no
lower-case letters are available, the digits are naturally placed in the same
shift as the upper-case lett'ers.) I t is recognized that the typewriter key-
board is not the most efficient alphanumeric keyboard possible, but it
would be unrealistic t'o expect a change in the foreseeable future. For
purely numerica1 data, it is always possible to use a 10-key keyboard
either instead of the typewriter keyboard or in addition to it.

I t was not practical to retain the upper- and lower-case relationships
of punctuation and other special characters commonly found on type-
writer keyboards. There is no single convention anyway, and typists
are already accustomed to finding differences in this area.

The 52 characters of the upper- and lower-case alphabets occupy 52
consecutive code positions without gaps. For the reasons given above,
it was necessary to spread the ten decimal digits into every other one of
twenty adjacent code positions, but the remaining ten positions are filled
with logically related decimal subscripts. The alphabet and digit blocks
are also contiguous. Empty positions for additional data and contro1
characters are al1 consolidated a t the high end of the code chart.

This grouping of related characters into solid blocks of codes, without
empty slots that would sooner or later be filled with miscellaneous char-
acters, assists greatly in the analysis and classification of data for editing
purposes. Orderly expansion is provided for in advance.

A basic principle underlying the choice of this set is to have only one
code for each character and only one character for each code.

Much of the lack of st~andardization in existing character sets arises
from the need for more characters than there are code positions available
in the keying and printing equipment. Thus, in the existing 6-bit IBM
character codes, tlhe code 001100 may stand for any one of the three
characters @ (at), - (minus), and (apostrophe). The 7030 set was
required to contain a11 these characters with a unique code for each.

The opposite problem exists too. Thus, in one of the existing Ci-bit
codes, - may be represented by either l00000 or 001 700. Such an
embarrassment of riches presents a logica1 problem when the two codes
have in fact the same meaning and can be used interchangeably. No
amount of comparing and sorting will bring like items together unti1
one code is replaced by the other everywhere.

In going to a reasonably large set, it was necessary to resist a strong
temptation to duplicate some characters in different code positions so as
to provide equa1 facilities in various subsets. Instead, every character
has been chosen so as to be typographically distinguishable if it stands
by itself wit'hout context. Thus, for programming purposes, it is possi-
ble to represent aiiy code tlo which a character has been assigned by its
unique graphic syinbol, even when the bit grouping does not have the
ordinary meaning of t hat character (e.g., in operation codes).

In many instances, however, it is possible to find a substitute character
dose eilough to a desired character to represent it in a more restricted
subset or for other purposes. For example, = (equals) may stand for +-

(is replaced by) in an 89-character subset. Or again, if a hyphen is
desired that compares lower than the alphabet, the symbol + (a modi-
fied tilde) is preferred to the more conventional - (minus).

A long-standing source of confusion has been the distinction between
upper-case "oh" (0)and zero (0). Some groups have solved this problem
by writing zero as $3. Unfortunately, other groups have chosen to write
"oh" as e). Xeither solution is typographically at>tractive. Inst,ead, it is
proposed to modify tlhe upper-case "oh" by a center dot (leaving the zero
without the dot) and to write and print "oh" as O whenever a distinctiori
is desired.

Various typographic devices are used to distinguish lett'ers (I, 1, V,
etc.) from other characters [/ (stroke), 1 (one), V (or), etc.]. I t is sug-
gested that the italicized subscripts be underlined when handwritten by
themselves, for example, 5.

-

6.13 . Signs

The principle of uniqueness implies a separate 8-bit byte to represent a
plus or a minus sign. Keying and printing equipment also require sepa-
rat.e sign characters. This pract'ice is, of course, rather expensive in
storage space, but it was considered superior to the ambiguit'y of present

6-bit codes where otherwise "unused" zone bits in numerica1 fields are
used to encode signs. If the objective is to save space, one may as well
abandon the alphanumeric code quite frankly and switch to a 4-bit
decima1 coding with a 4-bit sign digit, or go to the even more compact
binary radix.

6.I 4. Tape-recording Convention

As has been remarked before, data-recording media such as magnetic
tape and punched cards are not inherently code-sensitive. I t is obvi-
ously necessary, though, to adopt a fixed convention for recording a code
on a given medium if that medium is to be used for communication
between different systems.

Magnetic tape with eight, or a multiple of eight, information tracks
permits a direct assignment of the 8 bits in the 7030 code to specific
tracks. ~Magnetic tape with six information tracks requires some form
of byte conversion to adapt the 8-bit code to the 6-bit tape format. The
convention chosen is to distribute three successive 8-bit bytes over four
successive 6-bit bytes on tape. This convention uses the tape a t fu11
efficiency, leaving no gaps except possibly in the last 6-bit byte, which
may contain 2 or 4 nonsignificant O bits, depending on the length of the
record.

Thus successive 8-bit bytes, each with bits BOto B7,are recorded as
shown in Table 6.1.

TABLE6.1. CONVENTION RECORDING 6-TRACKTAPEFOR 8-BIT CODE ON

Bits

The parity bit is not shown. The parity bits for the 6-bit tape format
are, of course, different from those of the 8-bit code; so parity conversion
must be provided also.

6.15. Card-punching Convention

Since 80-column punched cards are a common input medium, a card-
punching convei~t~ion Afterfor the 120 characters is likewise desirable.
the possibility of a separate card code for the 120 characters was con-
sidered-a code having the conventional IBM card code as a subsetl-

Ibid.

it was concluded that it would be better to punch the 8-bit code directly
on the card. This does not preclude also punching the conventional code
(limited to 48 characters) on part of the card for use with conventional
equipment. Code translation is then needed only whenever the conven-
tional card code is used; otherwise translation would be required for
every column if advantage is to be taken of the new code in the rest of
the system.

The punching convention is given in Table 6.2.
I n addition, both hole 12 and hole 11 are to be punched in column 1 of

every card containing the 7030 code, besides a regular 7030 character,
so as to distinguish a 7030 card from cards punched with the conven-
tional code. Eight-bit punching always starts in column 1 and extends
as far as desired ;a contro1 code END (O l l 1l 1110) has been defined to
terminate the 8-bit code area. Conventional casrd-code punching should

Card row

be confined to the right end of those cards identified with 12-11 punching
in column 1.

Since the parity bit is also punched, the 7030 area of a card cont'ains a
checkable code. Note that "blank" columns in this area still have a hole
in the Bp row. If only part of the card is to be punched, however, i t is
possible to leave t,he remaining columns on the right unpunched.

6.16. List of 7030 Character Set

A list of t,he 7030 character-set codes and graphic symbols is shown for
reference in Fig. 6.4, which includes the nanies of the characters.

Code
P 0123 4567 Character Name

Blank (Space)
Plus or minus
Right arrow
(Replace s)

Not equal
And
Left brace
Up arrow
(Start super-
script)

Right brace
Or (inclusive)
Exclusive Or
Down arrow
(End super-
script)

Double lines
Greater than
Greater than
o r equal

Less than
Less than or
equal

Left bracket
Implies
Right bracket
Degree
Left arrow (1s
replaced by)

Identica1
Not
Square root
(Check mark)

Percent sign
Left slant (Re-
verse divide)

Lozenge (Dia-
mond) (~o te)

Ab s olut e value
(Vertical line)

Number sign
Exclamation
point (Fac-
torial)

At sign
Tilde (Hyphen)

Code
P 0123 4567 Character Name

Ampersand
Plus sign
Dollar sign
Equals
Asterisk
(Mult iply)

Left parenthesis
R ight slant
(Divide)

Right paren-
thesis

Gomma
Semicolon
Apostrophe
(S ingle quote)

Ditto (Double
quote)

Note: The character n has also
been used.

FIG.6.4. List of 7030 codes and characters. (Cont inued o n next paye.)

Code Code
P 0123 4567 Character Name P 0123 4567 Character Name

Zero
Subscript zero
One
Sub s cr ipt one
Two
Subscript two
Three
Subscript three
Four
Subscript four
Five
Subscript five
Six

Subscript s ix
Seven
Subscript seven
Eight
Subscript eight
Nine
Subscript nine
Period (point)
Colon
Minus sign
Question mark

FIG.6.4 (Continued)

Chapter 7

VARIABLE-FIELD-LENGTH OPERATION
by G. A. Blaauw, F. P. Brooks, Jr., and W. Buchholz

7.1. Introduction

Chapter 4 dealt with the fact that natural data units for fixed-point-
arithmetic, logical, and editing operations vary considerably in length
and structure. The variable-field-length instructions of the 7030 have
been designed to make it possible to specify these natural data units
simply and directly, thus saving time, space, and programming effort.

The variable-field-length (VFL) data-handling operations may be
divided into three classes: (1) arithmetical, (2) radix-conversion, and
(3) logical-connective operations. VFL arithmetical and logical-connec-
tive operations are both used also for processing alphanumeric data.

The VFL instructions include the basic arithmetical repertoire (LOAD,
STORE, ADD, COMPARE, MULTIPLY, DIVIDE)as well as interesting new oper-
ations and features. More important, however, is the method of data
definition employed by al1 VFL instructions. Each field, regardless of
length, is treated as a separate entity independent of its neighbors. Each
numerica1 field may have its own sign, if a sign is desired. Any overflow
beyond the end of the specified field is signaled, but the next adjacent
field is protected from inadvertent carry propagation. Similarly, any
loss of significant bits caused by storing a result in a field of limited size
is signaled. A result zero indicator shows the state of only the desired
field, no more and no less.

The flexibility needed for VFL operations is achieved most economi-
cally by a seria1 data-handling mechanism. Seria1 data handling is
relatively slow, but the objective here is not high speed for individua1
instructions. (Where arithmetical speed is of the essence, the unnormal-
ized floating-point mode should be used for fixed-point arithmetic-see
Chap. 8.) The VFL instruct'ions are intended for such operations on
complex data stryctures as format conversion and arranging for printing.
Such operations can be performed by a seria1 VFL unit faster than by

75

a parallel fixed-length arithmetic and logic unit. Most of the seria1
mechanism is actually concerned with the structure of the data and
relatively little with the operation itself. Thus the choice of a seria1
mechanism was not dictated by the cost of extra adder stages but by
the complex switching that would have been needed to select an entire
field of variable position, length, and structure, in parallel fashion-
though it is granted that an elaborate parallel mechanism could have
been designed that would do VFL operations even faster than a seria1 unit.

VFL operations are particularly desirable in processing large volumes
of data. Here the most important element of high performance is reduc-
tion in storage space. With VFL operation more data can be held in
storage units of fixed capacity (core memory, drums, or disks), which
may permit a given problem to be solved more quickly or more problems
to be tackled a t one time by multiprogramming. With open-ended stor-
age media (magnetic tape), over-al1 performance is often limited by the
speed of data transmission; so the reduction in storage space obtained by
varying the field length can result in a corresponding reduction in execu-
tion time.

7.2. Addressing of Variable-field-length Data

As explained in Chap. 5 , the reason for choosing a memory word size
of 64 bits, a power of 2, is that a binary address can be assigned to each
bit in a memory word, mith continuous numbering of al1 bits in memory.
Accordingly, t,he TTFL system has heen designed so that the memory may
be looked on by the programmer as if it were one continuoiis horizontal
string of bits, extending from address O a t the left to the last memory bit
a t the right. Fields can be placed anywhere in memory rega,rdless of
their lengths, overlapping memory-word boundaries when necessnry.
The programmer merely specifies the address of the field, which is the
address of the leftmost bit (the high-order bit in a numerical field) ,' and
the length. Successive bits in the field have consecutively increasing
address numbers; but these addresses are not referred to by the program,
except when it is desired to operate explicitly on a portion of the field as
if i t were another field. The VFL system does the bookkeeping neces-
sary to select the word or pair of adjacent words in memory and to select
the desired array of bits in these words.

The left-to-right memory-addressing convention, where a byte, field,
or record is addressed by the address of its leftmost bit, is followed
throughout the system. For purposes of arithmetic it might be thought
more convenient to address numerical fields from t,he right, since seria1
arithmetic always start s with the loxest-order digit. Keyed input and
printed output data, on the ot,her hand, must follow the left-to-right
sequence to which hiimans are acoiistomed. Because nonnumerical data

rnay consist of long strings of bits, whereas numbers are relatively short,
it seemed desirable to adopt a consistent left-to-right convention and
impose the burden of temporarily reversing the sequence on the arith-
metical pr0cesses.l This convention avoids the possibility of having
different operations refer to the same field by two different addresses.

The VFL instruction format (Fig. 7.1) contains a 24-bit operand
address, of which the left 18 bits specify the memory word, and the right
6 bits specify the bit within that word a t which the field starts. The
24-bit address is a homogeneous binary number, so that addresses rnay be
computed by straightforward arithmetical processes. The operand
address rnay be modified automatically by adding an index value that is
also 24 bits long. Thus VFL instructions provide for indexing to the bit
level. Indexing is specified by the index address I in the left half of the
instruction word. (The second I field in the right half rnay be used for
modifying the length, byte size, and o$set fields described below.)

FIG. 7.1. VFL instruction format.

Indicates full-length Progressive indexing Indicates VFL
instruction Byte size instruction

The address part of a VFL instruction rnay also be used as a data field
of up to 24 bits in a mode called immediate addressing. Immediate
addressing is useful for supplying short constants to the program.

7.3. Field Length

Address
24

The length of the field is specified as a number of bits and rnay range
from 1 to 64. I t would be nicer to have an essentially unlimited field
length (as in the 256-character accumuiator of the IBM 705), but the
cost of additional flip-flop registers (as compared with the relatively slow
core storage used for the 705 accumulator) a>nd extra controls would have
outweighed their usefulness. In numerica1 work 64 bits are usually ade-
quat'e, and multiple-precision fixed-point arithmetic should only rarely be
needed. For alphanumeric comparisons, which do often dea1 with long
fields, a special comparison operation is provided to simplify the com-
paring of multiple fields, so that long fields can readily be treated as

1000
4

1 P Length
4 3 6

This is not a great burden, because a seria1 arithmetic unit must be capable of
progressing, or jumping, from one end of a number to the other in either direction, for
severa1 reasons. After a right-to-left subtraction, the unit rnay have to jump back
to the right end for a second, recomplementing pass through the number. In division,
the quotient must be developed digit by digit from left to right.

BS
3

Offset
7

Operation
code 1 I

4 -

severa1 shorter fields. In the other operations where long fields are occa-
sionally encountered, there are no carries between fields, and multiple
operations can again be programmed quite easily. Hence the limitation
to 64 bits as the maximum field size is not onerous.

Al1 bits of a field are counted in the field length, including the sign
bits of signed numbers. Thus the field lengths are additive. In assign-
ing memory space, adding the length of a field to its address gives the
address of the next available memory space. The length of a record is
the sum of the lengths of its fields.

Byte Size
Many data fields have an inner structure and are made up of a number

of bytes, such as decimal digits or alphabetic characters. In some oper-
ations, primarily decimal arithmetic, the contlrol circuits must observe
the byte boundaries, since, during decimal addition for example, the
carry between bits of one decimal digit has different properties from those
of the carry between two adjacent decimal digits. In binary arithmetic
tihe numerical part is homogeneous, al1 bits being treated alike, but the
sign may require special treatment and is considered to be a separate byte.
With alphabetic fields the byte boundaries are important for some func-
tions, such as printing; other operations, such as loztding, storing, and
(in a well-chosen code) comparing, can be performed as if the field mere a
homogeneous binary number.

The natura1 length of bytes varies. Decima1 digits are most economi-
cally represented in a 4-bit code. The commonly used 6-bit alphanumeric
codes are sufficient when decimal digits, a single-case alphabet, and a few
special characters are to be represented. If this list is extended t80 a
two-case alphabet and many more special characters, a 7- or 8-bit code
hecomes desirable (see Chap. 6). A 3-bit octal code or a 5-bit alphabetic
code is occasionally useful. There would be little use for bytes larger
than 8 bits. Even with the common 12-bit code for punched cards, the
first processing step is txanslation to a more compact code by table
look-up, and during this process each column is treated as a 12-bit
binary field. There would be no direct processing of longer fields in the
12-bit code.

It is common practice to employ throughout a computer a fixed byte
size large enough to accommodate a 6-bit alphanumeric code. Since
numerical data predominate in many applications, this simple represen-
tation is fairly inefficient,: one-third of the bits in purely numerical digits
are vacuous. The efficiency drops further as a larger alphabet is chosen.
Another common practice is to use two different byte sizes, one to repre-
sent purely numerical fields in a relatively dense code and another for
alphanumeric fields where each character is represented by tmo decimal

digits. Assuming that 4 bit's are used for a decimal digit, this 4-and-8-bit
coding scheme is superior to the 6-bit code if numerica1 data occupy more
than half the space or if a larger than 64-character alphabet is desired.
A third scheme in current use allows 4-bit decimal digits and 6-bit alpha-
numeric characters.

The 7030 is unique in that the byte size is completely variable from
1 to 8 bits, as specified with each VFL instruction. Bytes may also
overlap word boundaries.

7.5. Universal Accumulator

Al1 VFL operations refer to an implied operand in the arithmetic unit.
The principle was adopted in the design of both W L and floating-point
operations that the accumulator registers would always be the source of
the major implied operand. Likewise, if one or more results are to be
returned to the arithmetic unit, the major result is left in the accumu-
lator ready for use as an operand in the next instruction. I t should not
be necessary to write extra instructions for moving operands within the
arithmetic unit. Only in operations that require more than one implied
operand (cumulative multiplication) or produce more than one result
(division) is it necessary to load or unload an extra register; special
registers are provided for these operations, and they are not used for
any other purpose.

This principle of the universal accumulator saves housekeeping instruc-
tions, which are needed in many other computers, and simplifies excep-
tion routines, because operations follow a more uniform pattern.

7.6. Accumulator Operand

In VFL operations the implied operand in the accumulator has a
maximum length of 128 bits, not counting sign bits. The right end of
the accumulator operand is defined by the o$set part of the instruction
(Fig. 7.1). The offset specifies the number of bits between the right end
of the accumulator and the start of the operand; i.e., a zero offset means
that the operation starts at the right end of the accumulator, and an
offset of 17 that the operation starts at t'he seventeenth bit from the right.
The operation is executed in such a way that the right end of the accumu-
lator operand lines up with the right end of the memory operand. This
is done by selecting the bits from the desired register positions (not by
shifting the entire contents of the register).

The main purpose of specifying an offset is to provide a shifting oper-
ation as part of every VFL instruction. No separate shift instructions
are needed. Thus decimal points can be aligned without first reposition-
ing the accumulator field.

The offset might also be looked upon as a bit address within the

accumulator. Because of the nature of an offset, the accumulator bit
numbering goes from right tlo left], iii contrast with the left-to-right
sequence in memory.

7.7. Binary and Decimal Arithmetic
Al1 VFL-arithmetic operations are available in both binary and deci-

mal modes, depending on the setting of a binary-decima1 modijier bit, in
the operat'ion code (Fig. 7.2). Strictly speaking, decimal multiplication
and division are not executed directly. The instructions cause entry to
a standard subroutine via the program-interrupt system, to take advan-
tage of the higher speed of radix conversion and parallel binary arith-
metic; since programs using these operations are written exactly as if they
were executed directly, the distinction will not be made in this chapt'er.

In decimal arithmetic the accumulator operand is assumed to have a
byte size of 4. The byte size of the memory operand is specified by the

instruction, as mentioned before.
When the result is stored, the byte

Negative sign size in memory is again specified; with
a byte size greater than 4, zone bits

Arithmetic and are inserted in the high-order bit

operations positions of every byte, these zone bits
being obtained from the accumulator

Modifier sign register where they are set up
bits

in advance as desired. This feature
permits arithmetic to be performed Logical

connectives 3 operations cOnnective directly in any alphanumeric code
operaticm where the digits are encoded as binary

FIG. 7.2. Details of VFL operation integers in the four low-order bit po-
codes. sitions with conlmon zone bits in the

high-order positions. l
In binary arit,hmetic the byt,e-size ~pecificat~ion does not apply to the

numerical part of binary numbers, which always have a homogeneous
interna1 structure. Regardless of the byte-size specification (which is

I t should be remarked here that it was intended, a t the time this feature was
developed, to use such an alphanumeric code for the system. Subsequently other
considerations entered the picture, and the &bit code described in Chap. 6 is not this
kind of a code. In a compromise among conflicting requirements, the 4-bit portion
representing the ten binary integers in the codes for the decimal digits was offset to
the left by one bit position. Therefore, decimal arithmetic cannot be performed
directly in this code. This loss is more apparent than real, however. In practice
i t is highly desirable to edit a,ll numerical input data for consistency, and it is nlmost
essential to edit numerical output data to suppress zeros, insert commas, etc. Because
editing usually involves table look-up, conversion between the 8-bit 7030 code and
the 4-bit decimal-arithmetic code comes free and provides, moreover, the very desir-
a.bIe dat,a compression made possible by a 4-bit code.

used only to contro1 the sign byte-see below), binary arithmetic proceeds
8 bits a t a time, except that tlhe last byte is shortened a~tomat~ically if
the field length is not a multiple of 8 bits.

In both forms of arithmetic the accumulator operand is considered to
occupy t,he ent,ire accumulator, regardless of the field length specified for
the memory operand. When the accumulator is loaded, al1 bit positions
to the left or right of the new field are set to zero. When a number is
added to the accumulator contents, carries are propagated as far as neces-
sary. Overflow occurs only in the rare case where a carry goes beyond the
left end of the registers.

7.8. Integer Arithmetic

In the structure of arithmetic units, a distinction may be made between
integer and fraction arithmetic according to the apparent position of the
radix point. In integer arithmetic al1 results are lined up a t the right end
of the registers, as if there were a radix point a t the extreme right. In
fraction arithmetic al1 results regardless of length are lined up a t the left
end of the registers (except for possible overflow positions), so that the
apparent radix point is a t the left. The binary and decimal VFL
arithmetic in the 7030 is of the integer type, whereas the floating-point
arithmetic (see Chap. 8) is of the fraction type. (Among earlier compu-
t e r ~the 705, for example, uses integer arithmetic, and the 704 fraction
arithmetic; some computers have employed intermediate positions for
the radix point.)

The distinction between integer and fraction arithmetic Is rather
subtle, because a computer must in any case have shifting facilities so
as to dea1 with integers as well as with pure or mixed fractions. The
basic arithmetical operations produce the same result digits regardless of
where the point is.' The difference lies in the alignment of the result of
one operation with the operand of a subsequent operation. For example,
if the product of a multiplication is added to another number without
shifting, that number will be added to the low-order part of the product
in integer arithmetic and to the high-order part of the product in fraction
arithmetic. A similar distinction exists in the alignment of the result of
an addition for subsequent use as a dividend.

As an example of the integer approach, consider a decimal multiplica-
1 I t is assumed here that the arithmetic unit, whether of the integer or the fraction

form, is designed to retain al1 result digits from any of the basic arithmetical oper-
ations. For example, multiplication of two single-length numbers is assumed to
produce a doulnle-length product. If a designer wished to have the principal multi-
plication instruction produce only a single-length product, he would probably choose
to keep the high-order part in fraction arithmetic or the low-order part in integer
arithmetic. On the other hand, to facilitate double-precision arithmetic he would
probably include a secondary operation to produce the other half of the product.

tion followed by an addition, with a field length of 2 digits:

If the same fields are put through the same operations in fraction arith-
metic, without shif ting, the result will be

In VFL arithmetic al1 operands are aligned a t the right if the offset is
zero. The integer approach was chosen because numerica1 VFL operands
frequently have but few digits, which are subjected to relatively few
arithmetical operations, and these are mostly additions or subtractions.
There is thus little concern with loss of precision (which is discussed in
Chap. 8) and hence no need for carrying many low-order guard digits.
Aligning numbers a t the right then reduces tlhe chances for overflow, so
that rescaling is seldom needed. Moreover, in data-processing applica-
tions most of the numbers are actually integers or else have only a few
places to tlhe right of the point; the arithmetical processes for such num-
bers are more easily visiialized in the int'eger form than in the fraction
form. On the other hand, the alignment of VFL numbers is readily
changed to any other radix-point location without extra instructions, by
suitable adjustment of the offset, which is available in every VFL
instruction.

The choice of fraction arithmetic for flonting-point operations is dis-
cussed in Chap. 8.

7.9.Numerica1 Signs

Signed numbers are represented throughout the system by their abso-
lute value and a separate sign.' The sign bit is O for + and l for -.

The sign bit is contained in a sign byte (Fig. 7.3) whose format depends
on the byte size specified. In decima1 arithmetic it is convenient to have
al1 bytes, including the sign byte, of equa1 size; for uniformity the same
byte-size convention is applied in binary arithmetic, but only to the sign
byte.

When the byte size is l, the sign byt,e just consists of the sign bit (8).
When the byte size is greater than 1, the extra hit, positions becoming

l Complements may appear as intermediate results during the execution of an
instruction (see Chap. 14), but they are always converted to absoliite-value form
automatically.

available are utilized for independent functions. As the byte size is
increased, from 1 to 3 data Jlag bits (T , U , and V) are attached to the
right. These flag bits set corresponding indicators whenever an operand
is fetched; the flag bit may be set by the programmer to signal, via the
program interrupt system, exceptional conditions as desired. For byte
sizes above 4, the previously mentioned zone
bits are attached on the left of the sign bit. Byte size 1

VFL arithmetic may be performed on B
either signed numbers or unsigned numbers
from memory. For unsigned numbers the
sign byte is omitted and the numbers are

S T U V Byte size 4[113
assumed to be positive. The unsigned mod-
ifier bit in the instruction specifies the choice
and determines whether the rightmost byte S T U V Byte size 6m
of the number is to be treated as the sign
byte or as containing the low-order numer-
ical bits.

The most important reason for providing
an unsigned mode of arithmetic is the fact
that in many data-processing applicatioiis
most of the numerica1 data fields are inher- Sign
ently positive. For instance, a count of bit

physical items can only be positive; quanti- FIG.7.3. Sign byte.
ties and prices in accounting transactions
are positive, although the resulting balances may have either sign.
For inherently positive quantities signs are redundant, and significant
storage space can be saved by omitting sign bits.

When signs are redundant they are usually omitted in the source data
as well, to reduce manual recording effort. Some computers require al1
numbers to be signed before arithmetic can be performed. The pro-
gramming effort to insert signs where none are needed can be avoided by
an unsigned mode of arithmetic.

The unsigned mode is also needed in order to operate arithmetically on
parts of fields, which generally do not have signs even when the entire
field does.

The accumulator operand always has a sign attached. Thus it becomes
possible to operate with a mixture of signed and unsigned memory
operands; for example, one can add an unsigned item field to a signed
total field. When the result is stored in memory it is again possible to
specify whether to omit or include the sign of the result. The accumu-
lator sign is held in the 8-bit accumulator sign-byte register, which also
contains the three data flags of the accumulator operand and four zone
bits, according to the byte-size-8 format of Fig. 7.3.

The VFL instructions contain another modifier bit that affects the
signs, the negative sign modifier. If it is set to 1, this modifier causes an
inversion of operand sign so that ADD becomes subtract, LOAD (which in
some computers is called clear and add, or reset add) becomes clear and
subtract, etc. This sign inversi011 is available for al1 arithmetical opera-
tions by virtue of the common modifier bit.

7.10. Indieators

Every VFL operation sets cert,ain indicators to indicate important
characteristics of the operand and the result. Operations other than
comparison turn oli indicators that show whether the result is less than,
equal to, or greater than zero, or whether the result sign is negative (which
includes the possibility of a negative zero result, as well as a result less
than zero). For comparison operations there is a separate set of indica-
tors that show whether the accumulator operand was lower than, equal
to, or higher than the memory operand. Since these indicators are set
only by a compare instruction, it is possible to insert other instructions
between this instruction and the conditional branch that tests the com-
parison result ,wit hou t danger of destroying t he resul t.

A comparison may be considered to be a subtraction with the result
discarded and both operands left intact; so there is a direct correspond-
ence between the result indicators and comparison indicators:

Resutt indicators Comparison indicators

Result less than zero Accumulator low
Result zero A ccumulator equa1
Result grealer than zero Accumulator high
Result negative

The lost carrp indicator is set if there is an overflow beyond the left end
of the accumulator, but, as v-asmentioned earlier, the accumulator is long
enough so that this would be a rare occurrence. An overflow is more
likely to become apparent when the result is stored in memory. The
memory field would normally be specified just long enough to accommo-
date al1 expected results. A result overflow then means that the accum-
ulator contains more significant bits than the memory field can hold,
and the partial Jield indicator is turned on. If the partial jìeld indicator
remains off after a store operation, there is assurance that al1 higher-order
accumulator bits were 0.

There are two add to memory operations which return the result of an
addition to memory instead of to the accumulator. When the result
goes to memory there may be a carry off the left end of the specified

memory field even if there are no excess 1bits in the accumulator. The
lost carry indicator is then turned on.

The VFL mechanism thus protects fields adjacent to the specified field
from being altered if an overflow occurs, and it signals the occurrence of
overflow by the two, rather similar, result-exception indicators, lost carry
and partial field. The reason for two separate indicators is that the two
conditions indicated would normally be handled by different correction
procedures.

Another exception indicator is zero divisor, which, as the name implies,
indicates an attempt to divide by zero, the DIVIDE operation having been
suppressed.

If the operand has been flagged with one or more data flags, the corre-
sponding data Jtag indicators are set. The to-memory operation indicator
distinguishes from al1 other operations those which return a result to
memory; this is an aid in programming exception routines, since i t
obviates detailed testing of operation codes to see where the result, which
may have to be adjusted, has been sent. Finally, the indicators binary
transit and decimal transit may be used to enter subroutines after the
(binary or decimal) operand has been placed in the transit register; the
decimal transit indicator is used, for example, to enter the subroutines for
decimal multiplication and division.

The result-exception, data-flag, and transit indicators may interrupt
the program automatically. The result, comparison, and to-memory
operation indicators are available only for programmed testing.

7.1I. Arithmetical Operations

The various VFL-arithmetic operations will be discussed here only
briefly, with emphasis on nove1 operations and features. The reader is
referred to the summary list in the Appendix and to the 7030 Reference
Manual for more complete descriptions.

LOAD (or a variant), LOAD WITH FLAG) and STORE are used to transfer
operands from memory to accumulator or from accumulator to memory,
respectively, replacing the previous content,~. ADD and ADD TO MEMORY

form the sum of the memory and accumulator operands and return the
sum to the accumulator or to memory, respectively (LOAD and STORE may
be considered special cases of ADD and ADD TO MEMORY, obtained by turn-
ing off one input to the adder). ADD TO MEMORY i~ part,icularly useful in
single-address computers, in that it simplifies the process of adding an
item to, or subtracting it from, one or more totals in memory. A variant
is ADD OXE TO MEMORY, which makes it possible to develop counts in
memory without disturbing the accumulator.

Further variations of the norma1 addition operations are ADD TO MAG-

NITUDE and ADD MAGNITUDE TO MEMORE-,which are intended to be used for
positive-integer arithmetic. Addition is algebraic, but the accumulator
sign is taken to be positive and the result is not allowed to change sign;
if the result would have been negative, it is replaced by 2;ero.l

STORE ROUNDED is a nove1 instruction which stores a rounded result in
memory while leaving the unrounded result in the accumulator for any
further operations. The offset specifies the position a t which rounding,
by adding % to the absolute value, takes place, and t'he field is t8hen sent
to memory, dropping al1 positions t'o t'he right of this one.

There are severa1 variations of COMPARE. Al1 of them perform an
algebraic subtraction and t'urn on a low, equal, or high indicator according
to the result, but the numerica1 result is discarded and both operands are
preserved in their origina1 form. Comparison may be either on proper
numbers, according to algebraic sign conventions, or on nonnumerical
data, with fields t'reated as unsigned binary numbers.

One or more COMPARE IF EQUAL instructions are used following a
COMPARE to continue comparison of fields longer than 64 bits. COMPARE

FOR R ~ N G E following COMPARE can be used to determine whether a
quantity falls within a given range when exact equality is not desired.
These three instructions are paralleled by another set of three (COMPARE
FIELD, COMPARE FIELD IF EQUAL, and COMPARE FIELD FOR RANGE),which
permit a portion of the accumulator to be compared with the memory
operand.

The regular MCLTIPLY instruction uses the accumulator operand as the
multiplier and returns the product to the accumulator. Because it is
often desired to add the product to a previous result, a cumulative multi-
plication operation is also provided. Here the multiplier must first have
been loaded into a special factor register by the inst'ruction LOAD FACTOR.
Then MULTIPLI- AKD ADD forms the product of this factor with the memory
operand and adds the result to the accumulator contents. The factor
register remains undisturbed, and its eontents are still available if the
same multiplier is to be used repeatedly.

In DIVIDE, the acciimulator operand is the dividend and the memory
operand the divisor, with the quot'ient being ret<urned to the accumulator.
At the same time a signed remainder is placed in a special remainder
register, where it is available any time unti1 another division is per-
formed. A noteworthy feature of t'his DIVIDE operation is that it does not

1 This is a modification of operations independently proposed by Brooks and
Murphy :

F. P. Brooks, Jr., The Analytic Design of Automatic Data Processing Systems.
Ph.D. thesis, Harvard University, 1956, p. 6.42.

R. W. Murphy, A Positive-integer Arithmetic for Data Processing, IRA2 J.Research
and DeveZopment, vol. 1, no. 2, pp. 158-170, April, 1957.

require adjustment of the relative magnitudes of dividend and divisor to
produce a proper result. In other computers it has been necessary to make
sure that division would not be halted by a dividend too large with respect
to the divisor, with the possibility of error stops (or worse) if the numbers
exceeded the predicted range. S o scaling is needed in the 7030 for
division to proceed, although sometimes it may be desired to offset the
dividend relative to the divisor in order to obtain a specified number of
significant quotient bits. The indeterminate case of a zero divisor is
signaled by program interruption, and it is not necessary to make a test
before every division.

The WL-arithmetic instruction set may be extended by using the
instruction LOAD TRASSIT A'ID SET for interpretive programming. The
specified operand is loaded into a special register, the transit register, and
a program interruption is initiated. A 7-bit field in the instruction can
be used as a code of 128 pseudo operations by entering a table of branch
instructions which lead to corresponding subroutines. This feature
happened to be a by-product of the interpretive decimal multiplication
and division scheme, but it is expected to become a useful programming
tool.

The radix-conversion operations provide for automatic conversion,
either from decimal to binary radix and format or from binary to decimal.
The numbers are treated as integers. For numbers other t'han integers,
a multiplication by a suitable power of 10, in binary form, must be
programmed.

The basie instruction LOAD CONVERTED obtains the origina1 number
from memory and places the converted result in the accumulator. Al1
the format specifications of the VFL system are available.

Another operation, LOAD TRASSIT loads the converted CO'IVERTED,
resul t into the transit register, by-passing the accumulator. Two more
operations, COXVERT and CONVERT DOUBLE,take the operand from the
accumulator and return the result to the accumulator; these operations
are designed to convert to or from binary numbers in the floating-point
format.

It is important to note that these operations combine the functions
of format conversion, done eficiently by the seria1 arithmetic unit, and
radix conversion, performed at high speed by the parallel arithmetic unit.

7.1 3. Logical Connectives of Two Variables

The use of Boolean algebra to express logical functions is well known,
and Fig. 7.4 shows some of the commonest functions of two logical vari-
ables. The variables are called m and a, corresponding to the memory

and accumulator operands. These logical connectives have found their
way into the instruction repertoire of severa1 computers.

There are sixteen ways of combining a pair of two-valued variables.
By rearranging the notation of Fig. 7.4 and adding the rest of these func-

m a

o o
o l
l O
1 l

tions, a complet'e table can be made, as shown in Fig. 7.5. For each
connective tlhe values of the function corresponding to the four possible
c~mbinat~ions of bits m and a are shown under the heading Truth tables.
The connectives are here labeled O to 15 according to the binary integer

m A a
p-

o And
a I i r i V a

O o O (Inclusive) Or o o l 1
O 1 o l
l 1 1 l

m a

o o
o 1
l O
l l

Connective
Common
names

FIG. 7.4. Some common Boolean functions of two variables.

l m m a

-l Not 7n O O
1 O 1
O 1 o
O 1 l

And

m + + a

O Exclusive or
1
l
o

Exclusive or
Or
Nor (dagger)
Identity (match)
Not
Implication
Not

Not and (stroke)

Truth tabtes l
S ymbolic

representalion

FIG. 7.5. Complete table of logical connectives of two variables.

formed by the 4 bits in the truth tables. Thus, with the particular
arrangement chosen, the function and is connective 1and the function or
is connective 7. The column a t the right shows a representation of each
function, in terms of symbols chosen in Chap. 6.

The sixteen logical connectives include several that rnight be considered
trivial, such as O and 15, which depend on neither variable, or 3 and 5 ,
which merely reproduce one of the variables disregarding the other.
Then again, connectives 4 and 13can be obtained from 2 and 1l simply by
interchanging m and a, and the second half of the table is, of course, the
same as the first half inverted. Thus it might appear economically wise
to restrict the connective operations in a computer to a small set, such as
that of Fig. 7.4.

That al1 sixteen connectives be provided in the 7030 was originally
proposed for the sake of completeness and as a matter of principle. I t
was decided to specify connectives by placing the 4 bits of the desired
truth table (Fig. 7.5) directly in the operation code of the instruction
(Fig. 7.2). I t was then discovered that the logic unit could be imple-
mented very simply by connecting wires corresponding to bits m and a, or
their inverse, and the specifier bits to 4 three-way and circuits feeding a
four-way or circuit. Thus the Sxtra cost of furnishing al1 sixteen con-
nectives was very low indeed. Moreover, it was found during explora-
tory programming that the "trivial" connectives were used much more
often than connectives depending on both variables, since they provide
such common functions as setting, resetting, and inverting of bits.

So far we have discussed connective operations on a single pair of
binary variables with a single-bit result. To evaluate a complex logical
statement with such operations, it is necessary to apply different con-
nectives sequentially, one pair of variables at a time. In other applica-
tions, such as inverting or rnasking an array of bits, it is desirable to
apply a single connective to a group of bits. The connect'ive operations
are designed to make possible both modes of operation by means of the
VFL mechanism; the field length specifies the number of bit's, from 1 to 64.

7.14. Connective Operations

The connective operations, like the other VFL operations, specify a
memory operand by the address of the leftmost bit and by the field
length in bits; the second operand is taken from the accumulat,or, and its
right end is defined by the offset, as before. The connective specified by
the above-mentioned 4-bit code in the instruction is applied to each pair
of corresponding bits from memory (m) and accumulator (a) . Some
illustrative examples are shown in Fig. 7.6.

There are three operations: CONNECT, which returns the result to the
accumulator; COXNECT TO MEMORY,which returns the result to memory;

and CONNECT FOR TEST, which leaves both operands intact and discards
the result after recording certain tests that are always made after each
of the three operations.

One test determines whether al1 result bits are O and sets the result zero
indicator. More comprehensive tests may be made on the basis of two
bit counts which are developed from the results: the left-zeros count
indicates the number of consecutive O bits between the 1eft end of the
result field and the first 1 bit; the all-ones count gives the number of 1bits
in the result. As an example, the low-order bit of the all-ones count gives
the odd-even parity of the result field.

Operands
m 0 0 1 1 0 0 1 1
a 1 0 0 1 0 1 1 0

Left-zeros A ll-onesConnective Result
count count

O 0 0 1 (m A a)
O1 1 O (m y a)
O 1 1 1 (m V a)
1 0 l O
1 0 l 1 (m > a)
l l l l (l)

FIG.7.6. Examples of logica1 connectives. Field length and byte size are 8.

Logica1 fields have no interna1 structure, each bit being independent of
the others, and a byte size of 8 is specified as a rule. The accumulator
operand is the same length as tnhe memory operand, al1 other accumulator
bits being ignored. This is unlike the other VFL operations, which treat
the entire accumulator contents as t,he implied operand. Thus LOAD not
only places the memory operand in the accumulator, but also resets al1
other bits to O; CONKECT, on the other hand, changes only those accumu-
lator bits which directly correspond to the specified memory bits, al1
other bits being left unchanged. This very useful property of the connect
operations allomrs independent use of different parts of the accumulator.
In particular, COXNECT 0011 (see Fig. 7.5) can be used for assembly of
data in the accumulator, and COSXECT TO MEMORY 0101 for storing selected
portions of the accumulator. These functions are especially helpful in
programming table references, either by address selection or by searching.

Since the byte-size-determining mechanism is available, it has been put
to use also in connective operations. When the byte size is less than 8,
each memory byte is automatically filled with leading 0s to make
an 8-bit byte before these are combined with 8-bit bytes from the
accumulator. (The accumulator always operates with byte size 8 in

connective operations, as compared with an automatic byte size of 4 in
decima1 arithmetic.) The result bytes, also 8 bits long, are cut to the
specified size in COXSECT TO MEMORY by deleting excess bits. The byte-
size controls permit expansion or contraction of bytes, or selection, inter-
leaving, and distribution of bits.

The combined facilities of the connective operations constitute a
complete, novel, and powerful system for operatiag upon groups of
independent bits rather than numbers. They are perhaps the most
significant new feature of the 7030. It has become clear that logica1
operations are neither modifications of arithmetic nor auxiliaries to it,
but are equa1 to arithmetic in importance.

Chapter 8

FLOATING-POINT OPERATION
by S. G.Campbell

In this chapter we shall first discuss the reasons for going to floating-
point operation and cover some genera1 questioris concerning this mode
of arithmetic. Then ?ve shall describe the implementation of floating-
point arithmetic in the 7030 computer.

GENERAL DISCUSSION

8.1. Problems of Fixed-point Arithmetic

Two basic problems in large-scale scientific computation are the range
and the precision of numbers. The range of numbers is given by tlhe
extreme values that the numbers may assume; too small a range will
cause frequent overflow (or underflow) of numbers, requiring excessive
intervention by the programmer. Precision refers to the number of
digits (or bits) needed during the calculation to retain the desired number
of significant digits (or bits) in the result; when the number of digits is
insufficient, the progressive significance loss and the cumulative round-off
errors, which usually occur as the calculation proceeds, may cause the
results to be meaningless.

Most of the early computers designed for scientific computation used
$xed-point arithmetic. A number was represented by a fixed number of
digits, and the machine was designed with the decima1 point (or binary
point) in a fixed position, as in a mechanical desk calculator. This
arrangement automatically implies a rat,her restricted natural range,
which was commonly the interval from -1 to +1. Similarly the natural
precision was a function of the fixed word length of, say, n digits, so that
numbers within the natural range from -1 to +l (any number of abso-
lute valire not exceeding unity) could be represented with a maximum
error of R-"/2, where R is the radix used (most commonly 2 or 10). If

92

the natural precision of the machine was inadequate for a particular cal-
culation (and in most early machines it was about 10 to 12 decima1 digits,
or the equivalent), additional accuracy could be obtained by programming
multiple-precision arithrnetic, that is, by using more than one word to
represent a single number. Programmed multiple-precision operations
were very slow relative to the corresponding single-precision operations
performed on the natural unit of information, and they were wasteful of
both data storage and instruction storage.

The problem of range was handled by a completely different technique,
commonly called scaling. There were severa1 approaches to scaling,
depending upon the problem and upon the persuasion of those who
analyzed and programmed it. Sometimes it was possible to scale the
problem rather than the arithmetic. Obviously, numbers used in
scientific calculations do not fa11 naturally within the unit interval, but
such problems rnay be transformed into problems in the unit interval,
solved there, and the results related back to the rea1 world. For example,
if we are integrating some function f(z) between limits a and b, we may
translate and compress uniformly by some factor RP the interval (a,b)
into the unit interval (0,l) on the x axis, and compress f(x) uniformly on
the y axis by some factor I-9 greater than the maximum absolute value of
f(x) in the interval (a,b). The resulting integral is clearly less than unity
in absolute value, as are al1 tlhe quantities involved in calculating it; so
the entire calculation can be performed in fixed-point arithmetic, and the
unscaled value of the integral can be obtained by simply multiplying the
scaled result by the factor Rpfq. Even in this simple example it is neces-
sary to know the maximum value of the integrand, to perform a linear
transformation on the function, and to scale it properly.

For more complicated problems more and deeper analysis rnay be
required; it rnay become impractical to scale the problem, but it is still
possible to scale the arithmetic. Such scaling simply takes advantage of
the fact that, with n digits in radix R, we can represent any number whose
absolute value does not exceed RP with a maximurn error of Rp-"/2.
(In the special case of p = n, the quantity represented is an integer.)
The quantity p, which rnay be any integer, is sometimes called the scale
factor and rnay be either implicit or explicit-that is, it rnay exist only in
the mind of the programmer, who takes it into account in his calculat'ion,
or it rnay appear explicitly in the computer memory. If the scale factor
is explicit, scaling loops rnay be used to modify the scale factor as cir-
cumstances dictate. In either case, a common scale factor p is shared
by an entire set of numbers, the only condition being that no number in
the set can be as large as RPin magnitude.

The weaknesses of scaling the arithmetic are twofold: a considerable
amount of mathematical analysis as well as side computation is involved

in determining and keeping track of the scale factor; and the scale factor
for an entire set of numbers is determined by the maximum value that
any of them can achieve. The first difficulty has become more acute as
the number of comput'ers has increased relative to the number of analysts
and programmers. The second introduces a significance problem : given
a common scale factor p, the actual difference k between the scale factor
p and the order of magnitude of a given scaied fixed-point number causes
Ic leading zeros to occur in the fixed-point number, leaving a maximum of
n - k, instead of n, significant digits. It is thus possible for k informa-
tion digits to be permanently lost.

8 2 Floating-point Arithmetic

To avoid difficulties of limited range and scaling in fixed-point arith-
metic, G. R. Stibitz in the early 1940's proposed ari automatic scaling
procedure, called jloating-point arithmetic, which was incorporated in the
Bel1 Telephone Laboratories' Mode1 V Relay Computer.' A similar
procedure was developed, apparently independently, for the Harvard
Mark I1 c ~ m p u t e r . ~Automatic scaling was a controversia1 subject for
quite a few years. Many opposed it on the basis that the programmer
could not be relieved of the responsibility of kiiowing the size of his
numbers and that programmed scaling would give him better contro1
over significance. Yevertheless, as early as 1950, users began to incor-
porate automatic scaling oli fixed-point computers by means of sub-
routines, first on the plugboard-controlled CPC (Card Programmed Cal-
culator) and later on stored-program machines. Then, after it had thus
proved its usefulness, floating-point arithmetic was provided as a built-in
feature, starting with the IBM 704 and XORC computers, and this gave
an enormous increase in speed over the subroutines. Today floating-
point operat'ion is available, a t least as an option, on al1 computers
intended to be used full- or part-time on substantial scientific computing
applications. In view of the almost universal use of floating-point
arithmetic, it is remarkable that there is very little literature on the
subject.

In floating-point (FLP) arithmetic each number has its own exponent
(or scale factor) E, a,s well as a numerica1 part, the fraction F. The pair
(E,F) represents the floating-point number

l Engineering Research Associates, W. W. Stifler, Jr., editor, "High-speed Comput-
ing Devices," p. 188, McGraw-Hill Book Company, Inc., New York, 1950.

Ibid., p. 186.

where E is a signed integer, and F is a signed fracti0n.l The exponent is
variable and determines the true position of the decima1 or binary point
of the number; whence the name JEoating point.

The rules for combining FLP numbers follow directly from elementary
arithmetic and the law of e x p ~ n e n t s . ~

Multiplication :
(E1,Fi) * (E2$72) = (E1 + E2, Fi * F2) (8.1)

Division :
(Ei,Fi) / (E2,F2) = (E1 - E2, Fi / F2) (8.2)

Addition-S~btract~ion:

Multiplication [Eq. @.l)] and division [Eq. (8.2)] are straightforward-
the fractions are multiplied or divided, and the exponents are added or
subtracted, respectively. Fractions and exponents can be manipulated
simultaneously; so these operations take essentially the same amount of
time as corresponding operations on fixed-point numbers of the same
lengths as the fractions. (It should be noted, however, that fixed-point
multiplication and division are often accompanied by extra scaling instruc-
tions, which are avoided with floating point. Thus the built-in FLP
operations actually take less over-al1 time than fixed-point multiplication
and division.)

Additions and subtractions [Eq. (8.3)] are more complex, because t'he
radix points must be lined up first,. This is done, quite automatjcally, by
comparing the exponents and shifting the fraction with the smaller
exponent to the right by an amount equa1 to the difference in exponents.
The addition or subtraction of the fractions then proceeds, and the larger
exponent is attached to the result. These steps are essentially sequential;
so FLP addition and subtraction geiierally take more time than fixed-

l The term mantissa is often used instead of fraction, by a rather loose analogy with
the terminology of logarithms. I t is not necessary for the numerica1 part to be a
proper fraction; it could just as well be made an integer or a mixed fraction by adjust-
ing the exponent. This is largely a design choice. The exponent has been repre-
sented in many machines by an unsigned number obtained by adding an arbitrary
constant; this unsigned number has been called the characteristic. The signed-
exponent notation is more natura1 and simpler to use, especially when fixed-point
arithmetic is to be performed on the exponent separately.

Following a convention established by the FORTRAS programming system, the
symbols * and / are used here for explicitly stated multiply and divide operations, in
preference to other common symbols that are harder to tgpe and mite , such as X,
e,
 and +.

point addition and subtraction. (The speed relation, therefore, is the
reverse of that for multiplication and division.)

The basic rules of FLP arithmetic are thus stated quite easily, but they
lead to severa1 difficulties, of which some are fundamental and some can
be resolved by more or less arbitrary decisions. One difficulty arises
from the semilogarithmic nat'ure of FLP numbers. If multiplication and
division were the only arit)hmet!ical operations, t'he fraction part wouid
not be necessary and high-speed addition of the l~garit~hms (noninteger
exponents) would suffice. Addition and subtraction, however, require
the fraction parts, with the exponents restricted to integers, so as to
permit the associated shifting operation. Hence FLP numbers are a
mixture of rational numbers and logarithms, but the representation of a
given number is not unique. For example, in decima1 notation,

More important problems are presented by the singularities. Like
fixed-point arithmetic, FLP arithmetic must provide for t'he occurrence
of two quasi inj'inities (numbers whose absolute value is greater than the
largest representable number; that is, the exponent exceeds its largest
positive value) and of zero (t,he result of subtracting equa1 numbers), but
the lack of a unique FLP representation introduces subtle questions.
Thus a zero with a large exponent may represent a more significant
quantity than a zero, or even nonzero, number with a small exponent.
FLP arithmet,ic, unlike fixed-point arithmetic, must also allow for the
possibility of two ZnJinitesirnals (numbers whose absolute value is less
than the smallest representable number; that is, the exponent exceeds its
largest negative value). IVhereas in fixed-point notation tlhe infinitesimals
are indistinguishable from zero, a zero in FLP notation may have a true
value quite different from an infinitesimal. (The ambiguity of zeros and
infinitesimals does occur also in scaled fixed-point arithmet'ic, where the
individua1 programmer has had to find his own way of programming
around the difficulty. Built-in floating-point arithmetic removes the
means of detecting singularities from the programmer's direct contro1 ;
so the problem must now be faced by the designer.)

Among the situations that may be corrected by decision making, the
most glaring concerns the treatment of division. Since there is no
guarantee that F1< F2, there is no guarantee that the quotient fraction
will have a magnitude within the allowable range. This may be treated
by ruling t.hat, if F i< F2, the division will proceed as in Eq. (8.2);but if
F1 2_ Fz, assuming Fl # Fz # 0, the quotient will he

where p is an integer such that

The result will alivays be arithmetically correct; in fact, it will be as
precise as possible whenever Fl 2 F2.

A different problem can arise In the case of a true addiiion (an addiiion
involving operands of the same sign or a subtraction involving operands
of different signs) whenever the resulting fraction exceeds the allowable
range. This is a version of the familiar fixed-point-overflow problem and
may be treated in the same way- by turning on an indicator to indicate
t8hat a 1 has been lost off the high-order end of the fraction, leaving any
desired corrective action to the programmer. Another solution is to
replace the result (E,F) automatically by (E + 1, R-lF), which is done
in normalized arithmetic (below) .

Solutions to these difficulties of FLP arithmetic will be discussed in
subsequent sections.

8.3. Normalization

To improve precision it is desirable to maintain as many significant
digits as possible. To this end al1 leading zeros may be removed from the
result of an operation by shifting the fraction to the left and decreasing
the exponent accordingly. Thus the decima1 floating-point number
(2, 0.006) when adjusted becomes (4, 0.600). Such numbers are called
normalized, whereas numbers whose fractions are permitted to have lead-
ing zeros are called unnormaiized. Floating-point arithmetic is called
normalized or unnormalized depending on whether the normalization
step is performed a t the end or not. The operands of normalized opera-
tions do not as a rule have to be normalized numbers themselves.

Another function of normalization is to correct for overflow after an
addit'ion by shifting the result fraction to the right unti1 the most signifi-
cant digit is again in the high-order position and then appropriately
increasing the exponent. Such a right shift to preserve the most signifi-
cant digit may cause the loss of the least significant digit, but this is
unavoidable.

The singular quantity (E,O) cannot be normalized, since its fraction is
al1 zeros; it is useful to regard (E,O) as both a normalized and an unnor-
malized FLP number, since it may serve to indicate the order of magnitude
of a result. Except for this and any other specially defined singularity, a
normalized FLP number satisfies the inequality

First-order singularities may occur when legitimate FLP operations are
performed upon legitimate FLP operands 114th nonzero fractions.
Siiigular results fa11 into three categories :

1. Expon.ent oz~~r,fEou~.The exponent of the result exceeds the allo^-
able exponent range. This result is outside the allomable number
representation and may be likened to a positive or negattive injircity, the
sign being tlhat of the fract,ion. The symbol f will be used to represent
such a number.

2. Exponent underflow. The exponent of the result is negative and
exceeds the allowable exponent range in magnitude. This result may be
likened to a positive or negat'ive inJìnitesima.Z, since it is outaside (or
inside!) the allowable number representation, is smaller than any
legitimate quantity, and is definitely not zero (unless the fraction is zero).
It has the same sign as the fraction. The symbol +r will be used.

3. Zero fraction. This result can occur as a first-order singularity only
from a true subt,raction witlh equa1 operands:

The result is thus a,n indeterminate quantity with unknown sign, about
which al1 that is knomn is that it satisfies the inequality

where n is the number of fraction digits, and R is the radix. (E,O) may
cover a wide range of values including the true zero. The exponent E
and the n zeros of the fraction indicate the maximum order of magnitude
correctly;hence t he name order-of-magnitude zero is often used.

In dealing with first-order singularities of the FLP number system, there
are two points of primary importance: provision for unambiguous indica-
tion that a singularity has been created, and automatic tagging of the
result. The zero fraction is suitable as a tag for an order-of-magnitude
zero, but special tags are needed to distinguish exponent underflow
and overflow from legitimate operands.

Second-order singularities-those created by performing arithmetical
operations upon one or more first-order-singular floating-point quantities
-cannot in genera1 be handled automatically (and blindly) by the com-
puter without creating serious problems. Nevertheless, it is reasonable to
provide straightforward and fairly safe procedures for the standard auto-

matic treatment of such cases, provided that the operands are again
automatically tagged and that interrupt sigmls are available to permit
programming of any other corrective action to take place, either imme-
diately after the singular result is produced or later.

8.5. Range and Precision
Problems of range and problems of precision are often confuseda

Programmers sometimes go to FLP arithmetic when they actually require
multiple precision, and even to multiple precision when what they actually
need is more range.

Since the purpose of FLP arithmetic is to gain a vast increase in the
range of representable numbers, range is seldom exceeded, but even when
it is, range is not so serious a problem as precision. The exponent of a
FLP number always indicates the range exactly, as long as the number is
representable; one can, for instance, determine that a number is approach-
ing, but has not exceeded, one of the limits of representation. If the
exponent does overflow or underflow, the nature of the singularity may be
indicated, or, if necessary, the range can be extended by using a multiple-
precision exponent .

There is no corresponding mechanism to record loss of precision. The
fraction always contains the same number of digitls, and it is not imme-
diately evident which digits are no longer significant-unless an order-of-
magnitude zero is created by a single operation, so that al1 precision is lost
a t once. When serious precision loss takes place, it does not usually
occur so dramatically. Rather, precision is lost by a process of gradua1
attrition, and its departure remains unnoticed unless some sort of running
significance check is made. More of this later.

Al1 numerica1 calculation reduces ultimately to the question of pre-
cision. Precision is, so to speak, limited a t both ends of the calculation-
limited a t one end by the given precision of the input data and a t the
other end by the required precision of the result. Subject to considera-
tions of time and cost, the gap between these limits must be adequately
bridged by method and machine. If the machine is inadequate, the
method used must make up for i t ; and if the method is inadequate (as
often happens through insufficient time, insufficient analysis, or poor
definition of a problem), the machine must be designed to take up as much
slack as possible. Insufficiencies of method can be partially compensated
for by machine checks of exceptional conditions, just as programming
difficulties can be lessened by provision of a more powerful instruction set.

The two mechanisms that combine and interact to produce loss of
precision in normalized FLP calculations are significance loss and round-
off error. Volumes have been written about round-off error (perhaps
more has been written about i t than has been done about it), but only a

few papers have been written about significance lossl (though i t has
possibly caused more noise to be accepted as pure signal). Most of the
important work done on round-off error has in fact referred to fixed-point
round-off and does not apply a t al1 to the problems of normalized FLP
round-off. Furthermore, it is doubtful that a valid FLP error analysis
can be made without information on significance loss. The only pro-
cedure that limits the effect of both significance loss and round-off error is
to increase the number of fraction digits used, with considerations of cost,
size, and speed dictating how far it is practical to go in this direction.

Round-off Error

Performing any of the four basic FLP-arithmetic operations upon FLP
operands with n-digit fractions gives a result fraction of from n to 2n
digits. In multiplication the product always has 2n digits. In division
there are two results, the quotient and the remainderjdeach with an n-digit
fraction. In an addition or subtraction the result may range from n to
2n digits, depending upon the amount of preshift; preshijt refers to the
right shift of the fraction of the operand with the smaller exponent. (This
shift may vary from no shift to a shift of 2n places; if the shift is more than
2n places, we define the two qiiantities as incommensurate and take the
quantity with the larger exponent as the result, with suitable sign
manipulation.) In normalized FLY arithmetic any operation may be
followed by a normalizing left shift of less than 2n places to eliminate the
leading zeros of the result fraction or by a normalizing right shift of one
place to correct for overflow of the fraction. These shifts are referred to
as postshifis. (Binary normalized FLP operations involve always a t
least one preshift or one postshift or both.)

In the interest of speed, economy of storage, and programming direct-
ness, the result of a FLP-arithmetic operation is ordinarily reduced to the
same number of digits n as are possessed by the operands from which the
result was produced. The simplest and fastest way to accomplish t,his is
to shorten the result by merely dropping al1 except the high-order digits;
tlhis produces results that are consistently somewhat smaller in magnitude
than the true value.

To avoid the downward bias of the simplest method it is common
practice to round the result by adding R--"/2 to the magnitude of the frac-
tion before dropping the excess digits; this procedure also tends to reduce
the magnitude of the error. This form of rounding poses difficulties: it

l J. W. Carr, 111, Error Analysis in Floating Point Arithmetic, Commms. A C N ,
vol. 2, no. 5, pp. 10-15, May, 1959; R. L. Ashenhurst and N. Metropolis, Unnor-
malized Floating Point Arithmetic, J. ACM, vol. 6, no. 3, pp. 415-428, July, 1950;
W. G. Wadey, Floating-Point Arithmetics, ibid.,vol. 7, no. 2, pp. 129-139, April, 1960.

must follow normalization, is therefore postponed unti1 the operation
is otherwise complete, and requires extra time and an extra register
position to boot. A simpler but more artificial form of rounding is to
force a 1 in the remaining least significant bit of the shortened result (in
binary machiiles); although this decreases the bias, i t does not decrease
the maximum error, and it leads to logica1 problems.

Rounding is, therefore, noi necessarily the best way to reniove excess
digits. In fact, automatic rounding o11 al1 FLP operations can lead to
serious problems of error analysis, and it gives n~ultiple-precision arith-
metic a nightnlarish quality. (How do you unround a number?) The
most prudent approach is to give the user his choice of how to contro1
round-o$ error-this term being used for the error resulting from the loss
of the extra digits, whether true rounding takes place or not.

There are two important cases in which more than n digits are kept:
1. The extra digits, which are normally discarded, rnay be required for

some special purpose-e.g., the remainder rnay have to be kept and tested
for zero in order to know whether the divisor was a perfect divisor.

2. Multiple-precision arithmetic rnay be required because the natura1
precision of the machine is inadequate for the particular computation;
so al1 2n possible digits of the result must be made available.

Higher precision is actually obtainable a t little extra cost for some
important activities even in single-precision calculation. For example,
one of the most frequently occurring activities in scientific or statistica1
problems is the calculation of the inner product Eaibi. This rnay be
accomplished by cumulative multiplication, in which 2n-digit products of
n-digit factors are repeatedly added to the 2n-digit partial sum, thus
minimizing the effect of both round-off error and significance loss.

8.7. Sipificance Checks

Programmed significance checks have been used by programmers in a
number of installations for many years and have proved effective in
trappiilg many actual cases of total significance loss. When used with
built-in FLP arithmetic, however, such a programmed significance check
slows down effective arithmetic speeds by a considerable factor, for the
significance check takes much more time than the actual arithmetic.

The significance check rnay be built in. There are two possibilities:
either the check rnay be made in parallel with the operation, in which case
there is no time loss, but roughly logR n extra digits are required to keep
the significance check (and such extra digits are required in al1 positions
of data memory); or else a record of lost significance is encoded into the
area of the fraction normally occupied by nonsignificant digits, requiring
a t least one extra flag digit and a relatively long time for encoding and
decoding. Most users would rather keep any extra positions of storage

to maintain more precision and use any extra equipment to improve the
FLP instruction set itself.

Another approach involves the injection of deliberate noise into the
computation, so that results affected by significance loss will have a very
high probability of indicating the loss by differences betweeii norma1 runs
and "noisy" rum of the same problem. This approach, which requires
little extra hardware and no extra storage, was chosen for the 7030. After
an extensive search, the most effective technique turned out to be both
elegant and remarkably simple.

By definition of ordinary normalized FLP operations, numbers are
frequently extended oli the right by att,aching zeros. During addition
the n-digit operand that is not preshifted is extended with n zeros, so as to
provide the extra positions to which the preshifted operand can be added.
Any opera,nd or result that is shifted left to be normalized requires a
corresponding number of zeros to be shifted in a t the right. Both sets of
zeros tend to produce numbers smaller in absolute value than they would
have been if more digits had been carried. In the noisy mode these num-
bers are simply extended with I s instead of zeros (ls in a binary machine,
9s in a decima1 machine). Xow al1 numbers tend to be too large in
absolute value. The true value, if t'here had been no significance loss,
should lie betaeen these two ext'remes. Hence, two runs, one made with-
out and one made with the noisy mode, should show differences in result
that indicate which digits may have been affected by significance loss.

The principal weakness of the noisy-mode procedure is that it requires
two runs for the same problem. A much less important weakness is that
the loss of significance cannot be guaranteed t.0 show up-it merely has a
very high probability of showing up-whereas built-in significance checks
can be made slightly pessimistic, so that actual signifieance loss will not
be greater than indicated. On the other hand, little extra hardware and
no extra storage are required for the noisy-mode approach. Further-
more, significance loss is relatively rare, so that running a problem twice
xhen significance loss is suspected does not pose a serious problem. What
is serious is the possibility of unsuspected significance loss.

In discussions of significance two points are often overlooked. The first
of these is trivial: the best way of ensuring significant results is to use an
adequate number of fraction digits. The second is almost equally
mundane: for a given procedure, normalized FLP arithmetic will ordi-
narily produce the greatest precision possible for the number of fraction
digits used. Kormalized FLP arithmet,ic has been criticized with respect
to signifieance loss, because such loss is not indicated by the creation of
leading zeros, as i t is with fixed-point arithmetic. In other words, the
contention is not that normalized FLP arithmetic is more prone to signifi-
cance loss than equivalent fixed-point arithmetic, which would be untrue,

but that an equivalent indication of such loss is not provided. Loss of
significance, however, is also a serious problem in fixed-point arithmetic;
multiplication and division do not handle i t a t al1 correctly by means of
leading zeros. (In particular, fixed-point multiplication may lead to
serious or even total significance losa, which would not have occurred with
normalized FLP arithmetic; and although leading zeros in addition and
subtraction of fixed-point operands do give correct significance indications,
the use of other operations and of built-in scaling loops frequently
destroys entirely the leading-zeros method of counting significance.)

There are other points of common confusion between fixed- and floating-
point calculation. For example, given a set of fixed-point numbers with
a common scale factor, the most significant number is the one with the
largest absolute value; accordingly, many optimal procedures depend
upon selecting this element. Frequently, the equivalent normalized
FLP procedure would be to select the element with most significance
rather than the element of largest absolute value. In the absence of any
information about significance, however, i t is statistically best to pick
the element of largest absolute value, since loss of significance is asso-
ciated with a corresponding decrease in the exponent and so the element
of largest absolute value does have the greatest probability of being also
the most significant number. Similarly, fixed-point error analysis ordi-
narily concentrates on some statistical characterization of the absolute
error, whereas in normalized FLP operations it is the relative error that
is important. Thus a polynomial approximation should be chosen to
minimize the appropriate statistical function of the relative error, rather
than the absolute error. (The relative error in FLP calculations is analo-
gous to the noise-to-signal ratio in information theory.)

8.8. Forms of F l ~ a t i n ~ - ~ o i n t Arithmetic

It is difficult to formulate a single set of floating-point operations that
would satisfy al1 requiremcnts. Kormalized operations are required for
most of the heavy calculation, but there are uses for unnormalized oper-
ations that cannot be ignored. Cnnormalized arithmet'ic is needed, for
instance, to program multiple-precision operations; it may also be used
for fixed-point calculation in lieu of separate high-speed fixed-point-
arithmetic facilities that would otherwise be essential. (Thus the 7030
has high-speed floating-point arithmetic as basic equipment, and it was
decided to omit high-speed fixed-word-length fixed-point operations.
This is the inverse of the situation with the early scientific computers,
which had only fixed-point arithmetic unti1 a floating-point set was
grafted on.) Again, in order to permit extended precision whenever
necessary, double-length sums, products, and dividends (Le., numbers
with 2n-digit fractions) should be available, but this would slow down

al1 operations and penalize most applications, which require only single-
lengtlh numbers (with n-digit fractions for operands and results). Hence
both single- and double-length operations are desirable.

Another decision, which only the user can make, is whether to round
the results or izot. As mentioned before, true rounding tends to reduce
errors but consumes extra time. Moreover, in actual practice, it is often
desired to store the accumulator contents rounded to n digits mhile
leaving the complete 2n-digit result in the accumulator for further
calculation.

The various procedures that result from decisions about normalization,
roiinding, and the treat'ment of extra precision and of singular q~anti t~ies
in reality define various FLP "arithmetics." A primary task in large-
scale computation is determining which of these numerous "arithmetics"
is really desired.

8.9. Structure of Floating-point Data

To each form of FLP arithmetic there corresponds a particular FLP
data structure. Sometimes the same data struetiire can be used for
different forms of arithmetic; normalized and unnormalized arithmetic
are an example. In other cases different formats are required (as is
obviously true for single- and double-precisi011 arithmetic). The machine
designer must decide which arithmetics and corresponding data formats
to build into the machine and which t30 leave to programming. In a
given machine environment it is not usually practical to implement al1
forms of FLP arithmetic and al1 formats that any potential user might
possibly desire. The designer must, therefore, determine what facilities
are needed to assist in programming the others.

The FLP number itself may be regarded as composed of a t least two
partially independent parts (the exponent and the fraction) ;this becomes
four parts if we consider the signs attached t,o each and increases to five
or six parts if we flag the exponent, the fraction, or the entire number.
In many situations it is desirable to nzanipulate one or more of these
parts inclependently of the others, and such manipulation has been a
source of much added programming complexity on earlier computers.

The most fundamental question of numerica1 data structure is tjhat
of the radix. This has been considered in genera1 terms in Chap. 5.
The high storage efficiency of the binary system, as opposed to the deci-
mal, is particularly important in extending both the range and the pre-
cisioii of the &'LPniimber: a 10-bit exponent gives an exponent range of
1,023, whereas the same bits used in the 4-bit coded decima1 rcprescn-
tation will handle a maximum exponent of only 399.

FLP arithmetic really involves three radixes: the radix RE used in the
exponent r~presmtation, t,he radix RFused in the fraction representation,

and the FLP radix R used in the representation (E,F) = FRE. In princi-
ple these three radixes are independent; in practice they are not. If \ve
were doing only unnormalized multiplication aiid division, al1 three
radixes could be arbitrary integers greater than unity. But the neces-
sity of preshifting before addition and subtraction aiid of postshifting
for normalized operations implies that the FLP radix R must be some
positive, integral, nonxero power of the fraction radix Rp, since snly
shifts by integer amounts are meaningful.

The exponent radix RE is still arbitrary. As a matter of fact, it would
make perfectly good engineering sense in a decima1 floatiiig-point machine
to make the FLP radix and the fraction radix both 10 and to let the
exponent radix be 2. Thus, using the previous example of a 10-bit expo-
nent, the range would be enlarged from for RE = 10 to for
RE = 2 (a factor of and the decoding circuits for driving the pre-
shifter would be simplified. On the other hand, proponents of either
radix are likely to extend their reasoning to the exponent as well; so the
exponent radix is ordinarily chosen to be the same as the fraction
radix.

Severa1 binary floating-point machines have been designed to use the
floating-point radix R = 2k, where 7 is an integer greater than unity.
If 7 = 3, the radix is octal; if 7 = 4, it is hexadecimal. The Los Alamos
MAKIAC I1 computer uses 7 = 8, that is, a FLP radix R of 256. The
advantages of a larger FLP radix are twofold: the maximum range is
extended from, say, Rm to Rkm; and the number of times that pre- and
postshifts occur is drastically reduced, with a corresponding decrease in
the amount of equipment required for equivalent performance. There is
just one disadvantage: precision is lost through increased round-off and
significance loss, because, with FLP radix 2k, normalized fractions may
have up to 7 - 1 leading zeros. Such precision loss may partly be com-
pensated for by decreasing the number of exponent bits and using the
extra bits in the fraction instead. This reduces the gain in range in
order to limit the loss in precision, but the advantage of reduced shifting
is retained. I t should also be noted that special procedures are avail-
able to reduce the actual amount of shifting, particularly for the binary
radix; the average amount of postshifting needed with normalized FLP
arithmetic and R = 2 may be reduced, a t the cost of extra equipment,
unti1 it approximates that of R = 8.

In practice, the use of a larger FLP radix results in an operation more
nearly resembling scaled fixed-point calculation, except that it is auto-
matic. The designers of a particular FLP system must consider t,he
radix problem in the light of the machine environment and the expected
problem mix. There is no substitute for a careful statistica1 analysis of
the various available procedures to determine the specific implementation.

FLOATING-POINT FEATURES OF THE 7030

8.1O. Floating-point Instruction Format

The floating-point instructions in the 7030 use a tightly packed half-
word format (Fig. 8.1), as do the indexing and branching instructions
coinmonly associated with thein in high-speed computing loops.

Normal ized-Unnormaiized

/ /Absoiute value

1 / /Negative sign

- Codes for
Indicates FLP instruction [Index

Address Modifier
bits

FIG. 8.1. FLP instruction format. FIG. 8.2. Details of FLY operation code.

The operation code (Fig. 8.2) consists of 5 bits to encode 29 different
FLP operations and 3 modifier bits which apply uniformly to any of the
29 operations. The three modifiers are:

1. Normalization modifier. This specifies whether postnormalization
is to take place (normalized) or not (unnormalized).

2. Absolute ualue modifier. If set to 1, this specifies that the memory
operand is to be considered positive, ignoring the actual sign in memory.
(This modifier is analogous to the VFL umigned modifier, except that in
the fixed-length FLP format the sign position is always there, whether
used or not.)

3. Negative sign modifier. If set to l , this inverts the sign of the
unreplaced operand, that is, the memory operand in a from-memory
operation or the accumulator operand in a to-memory operation. It is
applied after the absoiute value modifier. Thus ADD and related oper-
ations are changed to subtract operations, etc. (This is the same as the
corresponding VFL modifier.)

8.1 1. Floating-point Data Formats

The FLP number occupies a fu11 64-bit memory word. The reasons
for choosing as the length of the memory word a number of bits that is
a power of 2 are discusseti in Chap. 5. Considerations of speed dictated
that a FLP number be located in a single memory word, so as to avoid
the time penalty of crossing word boundaries. This soon restricted the
choice to 64 bits; experience had shown that the 36-bit word of the 704

would be too tight for a much more powerful machine but that lengths in
the range of 50 to 60 bits would be adequate for most applications.

Sixty-four bits certainly seemed to be a libera1 amount. A number
longer than really necessary carries some penalty in extra equipment and
possibly lower speed. (The possibility of a variable FLP number length,
giving the user his choice of speed or storage efficiency, was discarded as
impractical for reasons of both speed and cost.) Offsetting this penalty
is the greater range and precision of single-length numbers, which reduces
the amount of exception handling and permits fast single-precision oper-
ations to be retained in many large jobs that would othermise require
much slower multiple precision.

The basic data format is shown in Fig. 8.3. It consists of a 12-bit
exponent field and a 52-bit fraction field including a 4-bit sign field. The
exponent field consists of 10 numerica1 bits, an exponent sign bit, and
an exponent flag to signal a previous overflow or underflow. The sign
field contains the fraction sign bit (the sign of the number) and three
data flags which, a t the programmer's option, may be used to mark
exceptional data, such as boundary values. It should be noted that the
Il-bit signed exponent and the 52-bit signed fraction are each compatible
with VFL data formats, so that VFL instructicns can be used directly to
execute those operations on parts bf a FLP number for which there are no
specialized FLP instructions. One example is multiplication or division
of exponents.

The format of Fig. 8.3 is used for al1 FLP numbers in memory. The
format in the accumulator is somewhat different (Fig. 8.4). For single-
length numbers, the 12-bit exponent field and the 48-bit fraction field
accupy corresponding positions in the left half of the accumulator. The
4-bit sign field, however, is stored in a separate sign-byte register (as in
VFL operations). The low-order 4 bits in the left half of the accumulator
are not used, and neither is the right half of the accumulator.

For double-length FLP numbers, that is, numbers with a 96-bit frac-
tion, an additional 48 positions of the accumulator are activated; so the
double-length fraction in the accumulator forms a homogeneous 96-bit
number. The exponent and sign remain the same. Since the accumu-
lator is 128 bits long, this leaves 20 bits unused in the right half. I t
should be noted that the unused parts of the accumulator (shown shaded
in Fig. 8.4 for the two classes of operations) are always left undisturbed
during FLP operations and may be used for temporary storage of other
kinds of data.

Symbolically me can represent a single-precision FLP number as

where Ef is the exponent flag, E the (signed) exponent, F the (unsigned)

fraction, S the fraction sign, and T, U, V the data flags. Then the single-
length format in the accumulator is given by (Ej,E,F) with S, T, U, V
in the sign-byte register. The double-precision FLP format in memory
becomes the pair (E~H,E,FH,S, TH, UH,VH), (E ~ L , E - 48, FL, S, TL, UL, VL) .
The exponent flags are usually, but not always, the same; the exponents
differ by 48, except when one part is singular and the other part is not;
the frilctions are independent, FL being a continuation of the fraction FH;
the sign bits are identical, but the data flags may be independent. The
double-length FLP number in the accumulator, however, is quite differ-
ent: it is (EfH,E,FH,FL), with the sign-byte register containing S, T, U , V.

F I G . 8.3. F L P data format.

:/h
Exponent flag

ExponenC (10 bits)
Exponent sigil 3 data flags (T, U, V)

Exponent flag Fraction sign
Exponent (LO bits) 3 data flags

Exponent sign (T, U, V)
SINGLE
LE NGTH
OPERAND

Left half accumulator register Right half accumulator register Sign b ~ t e
reg ister

I l

L I

I

Fraction (48 bits)
l

F I G . 8.4. F L P nccu~nulator forrnnt,~. Shaded areas are left undisturbed.

*

A special store instructioi~ is available to convert the low-order part of a
double-1eiigt)h number in the accumulator to a proper FLP number in
memory with correct exponent and sign.

It should be noted that a word may have a nonsingular representation
in the double-length accumulator, although the corresponding number in
memory is singular (i.e., the low-order exponent has an exponent flag).

i

8.1 2. Singular F l ~ a t i n ~ - ~ o i n t Numbers

The range of numbers representable by the above format is indicated
schematically in Fig. 8.5. Norma1 numbers (I N) are bounded by
infinities (I .r) and iiifinitesimals (i e) . Not shown is the previously
discussed order-of-magnitude zero (OMZ), which may result from sub-
tracting numbers in the N range and may thiis have a true value any-

DOUBLE
Fraction (96 bits l LENGTH

OPERAND I

I I

I I

where in this range. (An OMZ is different from the true zero, shown as
the dividing line between positive a,nd negative numbers.)

The representation of singular numbers in
the 7030 is straightforward:

Injinity (00). The exponent flag is set to 1, +I[-+2t1024

and the exponent sign is positive. Hence this
is also called an exponent JEag positive condiiion 4-N

(XFP).
Infinitesimal (E). The exponent flag is set to

l , and the exponent sign is negative. Hence True
this is also called an exponent JEag negative con-
dition (XFK).

Zero fraction, or order-of-rnagnitude zero
(OMZ). Al1 48 bits of the fraction (or al1
96 bits for results of double-length operations
in the accumulator) are 0.

-03

The rules for doing arithmetic with infin-
ities or infinitesimals as operands follow the FIG. 8.5. FLP number
notion that an infinity is larger in magnitude range. Representable

than any normal number and an infinitesimal numbers N lie in unshaded
areas.

is smaller in magnitude than any normal
number. Al1 infinitesimals behave arithmetically like zeros, but an
infinitesimal with a zero fraction (an XFN zero) is the closest to a true
zero. The sign of a singular number is the fraction sign and is manipu-
lated like the sign of a normal number.

Thus the rules for arithmetically combining a normal number N with an
infinity or infinitesimal are evident from the definitions. For addition
and subtraction these rules are

For multiplication and division the usual rule of signs determines the
fraction sign of the result, and the magnitude is given by

Some of the operations on two singular numbers likewise follow from
their definition :

0 3 + 0 0 = 0 0 0 0 * 0 0 = 0 0

Other operations have indeterminate results (since in the discrete num-
ber system of a digital computer there is no satisfactory substitute for
L7Hbpital's rule). It was thought important to propagate singularities
through the course of calculation, and, of the two possibilities, infinity
and infinitesimal, infinity was chosen arbitrarily because the programmer
~ ~ o u l d more alarming :consider it

[The purist may argue that t8he results in (8.7) should have a zero fraction
part as well as a positive flagged exponent, which would indicate that the
number is both indeterminate and outside the normal range. This
distinction may be programmed in the rare case when it is important.]

In comparing infinities and infinitesimals, the inequality relations are
self-evident,:

+ m > S N > + € > - t > - N > - m (8.8)

When infinities of like sign are compared, they are considered equal;
similarly, infinitesimals of like sign are equal:

[Definition (8.9) is consistent witjh some but not al1 of the rules (8.4) to
(8.7). For example, E - E = e implies that infinitesimals are equal, but
.o - m = m implies that infinities are different. This problem arises
because no consistent logic applies when both operands are singular.]

In the case of order-of-magnitude zero (OMZ), the operation takes its
normal course. So long as only one operand is an OMZ, this gives a
reasonable result. Since an OMZ represents a range of indeterminacy,
multiplication or division by a legitimate number simply increases or
decreases the size of the range of indeterminacy appropriately. Division
by an OMZ is suppressed and, when it would occur, the zero divisor
indicator is turned on. Addition of an OMZ to either a legitimate
operand or another ObiIZ produces either a legitimate result or an OMZ,
depending upon the relative magnitudes of the involved.q~iant~it~ies
(However, comparison operations call equal al1 OMZs whose exponents
differ by less than 48.)

The single-length product of two OMZs raises a particularly difficult
problem. We define

The double-precision product of the two zero fractions was a 96-hit zero
and correctly represented the result of the multiplication. ?Vhen the

number is cut to single-precision length, however, 48 meaningful 0s are
thrown away.

In a sense the product has been "normalized" 48 places. This rnay
be seen by considering that (E,O) rnay be approximately represented by
(E,2-48), and Eq. (8.10) may be replaced, to within a small error, by

After truncation the result will henceforth be indisthguishable within
48 bits from (E1 + E2, 2-48), a number that is too large by a factor of 248.

Thus (8.10) is the correct definition for the double-length product in
the accumulator, whereas for storing in memory the correct answer
should be (E1+ E2 - 48, 0). Since only the programmer can decide
when to store a result, the exponent adjustment can only be made by
programming. For this purpose a zero rnultiply indicator is turned on
whenever multiplication results in a zero fraction. The programmer rnay
then define any desired exponent adjustment or choose to ignore the
condition.

The zero problem in multiplication would perhaps not be so serious,
were it not for the fact that OMZs are frequently successively squared,
which can lead to an unrestricted growth of the exponent, creating a large
indeterminacy that can wipe out legitimate numbers.

For the square root we have automatically (E,O)>q = (E/2, O) if E is
even, or [(E + 1)/2, O] if E is odd. To be compatible with the foregoing,
the root should really be [(E/2) - 24, O] or [(E+ 1)/2 - 24, O]; other-
wise squaring and square-rooting are not inverse procedures. In this
case, however, the magnitude of the result is made too small. I t loses its
ability to grow without bound and hence most of its ability to damage the
calculation. For this reason no indicator is set for the square root.
(If an indication is desired, it rnay be obtained by setting the fraction
sign negative on al1 OMZs and using the imaginary root indicator.)

As both computers and computations have increased in complexity,
the amount of analysis per instruction written must decline; so automatic
treatment of FLP singularities becomes more important. The absence
of test instructions also leads to cleaner programs, making coding and
debugging much easier. In some physical problems, not only zeros and
infinitesimals but also OMZs are common: a steady-state condition rnay
prevail with everything initially at rest, and the difference equations used
to move out in time are likely to create OMZs during the early part of
the calculation. OMZs must either be handled by the system or circum-
vented at the cost of considerable extra analysis and programming. In
the 7030 these are handled automatically and rnay die out during the
course of the calculation, so that no special starting procedures are
required. A different situation, in which the automatic handling of

singular quantities is important, is that in which they are produced
unexpectedly as intermediat'e quant,it'ies in a calculation, but have no
effect on the result. The fact that such singularities may arise infre-
quently, and may not even arise a t all, does not obviate the necessitly for
dealing with them when they do occur.

8.13 . Indicators

The FLP indicators fa11 into three categories: (1)thoae which are set by
both VFL and FLP operations and have analogous meanirig for both;
(2) those which are set only by FLP operations; and (3) the noisy mode
indicator.

Indicators Common to V F L and F L P Operations

The following indicators are shared by VFL and FLP operations:

1. Arithmetic resd t indicators. They show whether the result is less
than zero, zero, or greater than zero, or whether the result sign is negative.

2. Comparison indicators. They indicate after a comparison operation
whether the accumulator operand was low, equal, or high relative t,o the
memory operand.

3. Lost carry and partial jield. These apply only to unnormalized
operations because the conditions are otherwise taken care of by
normalization.

an attempt to divide by a zero fraction. 4. Zero divisor. It indi~at~es
5 . Data Jlag indicators. They signal flagged operands.
6. To-memory operation. This indicator distinguishes between store

and fetch operations, for easier exception programming.

F L P Indicators

The indicators that are private to FLP operations are listed below :

1. Esponent range indicators. These indicators signal that the result
exponent E lies in a certain range; they are as follows:

a. Exponent overflow. E 2 +21°. The exponent flag Ef is turned on.
This indicator shows that an overflow has been generated during the cur-
rent operation.

b. Exponent range high. + Z 9 5 E < +21°.
C. Exponent range iow. +26 S E < +Z9.
d. Exponent under$ow. E 4 -21°. Ef is turned on. This indicator

shows that an underflow has been generated during the current operation.
e. Exponent JEag positice. E 2 +21° and E f was already on. This

indicator shows that an overflow has been propagated; that is, the overflow
was forced because the operand was an infinity.

The exponent overjlow and exponent underjlow indicators signal that the
number has already gone out of range. The exponent range high and
exponent range Eow indicators may be used as a warning that numbers
have entered a larger range than anticipated before the damage has been
done, since the result is still a representable number. The last indicator
warns that the operand was an inifinity, in case corrective action other
than the built-in procedure is desired. A corresponding indicator for
infinitesimals is not provided, since these are less likely to cause serious
damage; if flagging is desired, the programmer could turn on a data flag
after detecting the origina1 exponent underflow.

2. Lost signiJicance. Adding or shifting nonsingular operands has
resulted in a zero fraction, leaving no 'significant bits.

3. Zero multiply. A multiplication has resulted in a zero fraction;
so the result may not indicate the proper order of magnitude.

4. Preparatory shift greater than 48. During addition the exponent
difference is found to be greater than 48; so some or al1 of the bits of the
number with the smaller exponent have been shifted off the right end of
the double-length result and are lost. In a single-precision sense, the
operands are incommensurate.

5. Imaginary root. The operand for a square-root operation is
negative.

6. Remainder under8ow. Same as exponent underjlow, except that it
applies to the remainder produced after a double-length division, whereas
exponent underflow after division applies to the quotient.

N o i s y Mode Indicator

This indicator, when on, causes al1 normalized FLP operations to be
performed in the noisy mode, where 1s replace 0s a t the right.

The noisy mode indicator is a programmed switch, which can be
turned on and off only by the programmer. It is placed among the other
indicators in order to simplify program interruption. When interruption
occurs, the indicator register is stored in memory and subsequently
reloaded. Thus the noisy mode and other indicators are restored to the
same state they were in a t the point of interruption.

8.14. Universal Accumulator

The principle of the universal accumulator, where the accumulator is
the source of the major implied operand and the destination of the major
result of every arithmetical operation, was stated already in Chap. 7.
It deserves restating here because it is an important factor in reducing
the housekeeping burden of floating-point calculations and increasing
t heir speed.

8.15. Fraction Arithmetic

The distinction between integer and fraction arithmetic has already
been discussed in Chap. 7, where reasons are given for choosing integer
VFL arithmetic. Fraction arithmetic, on the other hand, was preferred
for floating-point operations in the 7030.

The fraction notation is a natura1 choice for numbers that approxi-
mately represent continuously variable mathematical quantities to a
given number of significant digits, the remaining low-order digits being
discarded. This is especially so when the numbers are normalized for
maximum precision. In multiplication, for example, it is desirable to
have available either a single-length or a double-length product for single-
or double-precision work. If fraction arithmet'ic is used, the high-order
part of a normalized double-length product is the same as the correspond-
ing (unrounded) single-length product. With integer arithmetic the
two have different positions and exponents, which makes this convention
a little more awkward, although one can readily formulate a consistent set
of rules for integer FLP arithmetic. In most respects the practical dif-
ferente between fraction and integer FLP niimbers is just a matter of
changing al1 exponents by an additive constant.

The FLP operations may be placed in three categories: (l) single-
length operations (which produce a result with a 48-bit fraction), (2)
double-length operations (which produce a 96-bit fraction), and (3)
special operations.

Internally, operations are actually performed in double-length form.
Thus the parallel adder for the fractions is 96 bits long, and 48-bit
operand fractions are extended with 0s (or l s in single-length noisy mode)
after shifting, to make up 96 bits a t the input of the adder. A fu11
96-bit result is produced. The difference between single- and double-
length operations is primarily whether the fraction part of the accumula-
tor operand is taken to be 48 or 96 bits long and whether the result in the
accumulator, after normalization if specified, is truncated to 48 bits or not.

The fraction arithmetic takes place in 96-bit registers which are dif-
ferent from the accumulator registers. Thus it becomes possible, in
single-length operations, to leave unmolested al1 bits to the right of the
48th fraction bit in the accumulator, even though intermediate results
may require more than 48 bits of register space.

Since the bulk of the compiiting was expected to be in single precision,
the design of the arithmetic unit was biased in favor of performing single-
length operations a t high speed, sometimes a t the sacrifice of speed for
double-length operations. Thus no time is taken to preserve the rarely

needed remainder in single-length DIVIDE, even though this remainder is
obviously generated, leaving the dressing up and storing of the remainder
in the remainder register to DIVIDE DOUBLE.

Many of the basic FLP operations are analogous to the VFL operations
of the same name (Chap. 7):

LOAD

LOAD WITH FLAG

STORE

STORE ROUNDED

ADD

ADD T 0 MAGNITUDE

ADD T 0 MEMORY

ADD MAGNITUDE T 0 MEMORY

COMPARE

COMPARE FOR RANGE

MULTIPLY

LOAD FACTOR

MULTIPLY AND ADD

DIVIDE (except that no remainder is kept in FLP)

The nature of these operations is indicated by their names and follows
from what has been said in previous sections. A summary of al1 opera-
tions is given in the Appendix. If more detail is desired, the reader is
referred to the 7030 Reference Manual. A few comments will be made
here on certain specific features that will be important in subsequent
discussion.

STORE ROUNDED provides a means of storing a rounded single-precision
number in memory while leaving the original, unrounded, double-pre-
cision number in the accumulator for any further calculation. There is
no automatic rounding in any other operation. Rounding is performed
only when and where desired. Rounding is done by adding a 1 to the
49th fraction bit of the absolute value of the accumulator operand;
rounding is followed by normalization, if specified, and storing of the
high-order 48 bits.

The unnormalized add operations are interpreted to mean that there is
no normalizing right or left shift after the addition. Consequently,
any carry out of the high-order position of the fraction is lost, and the
tost carry indicator is turned on. This feature is important in pseudo
fixed-point arithmetic. There is no lost carry in normalized addition, of
course; a right shift with exponent adjustment takes care of the matter.

MULTIPLY ASD ADD is designed for cumulative multiplication. The
product of the memory operand and of the operand in the factor register
(previously loaded with a LOAD FACTOR instruction) is formed and then

added to the accumulator contents. The sum is a double-precision
number. Thus in important calculat~ions-like forming the inner product
LAiB;, which can be done with a three-instruction loop-the double-
precision sum avoids round-off error unti1 a single STORE ROUNDED is
given a t the end. MULTIPLY AND ADD is the only double-length operation
in the above list of basic operations; al1 others are single-length.

S o t shown in the above list are two instructions, COMPARE MAGXIT'U'DE

and COMPARE MAGNITUDE FOR RANGE, which correspond to the VFL
operations COMPARE FIELD (FOR RANGE) in that the accumulator sign is
ignored in the comparison ; the difference in nomenclat ure arose because
the VFL operations may include only a partial accumulator field, whereas
the FLP operations always dea1 with the entire operand.

Two other single-length operations occur only in the FLP repertoire,
since they did not seem so important for VFL use. One is RECIPROCAL

DIVIDE, which is the same as DIVIDE but with dividend and divisor inter-
changed ; the other is STORE ROOT, which extracts the square root of the
accumulator operand and stores it in memory.

The double-length operations (\ve intentionally avoid the term double-
precision because only the accumulator operand is really of double pre-
cision, the memory operand necessarily being of single precision, and so
the operations are a t best of "one and a half precision") include the
following variations of the single-length operations:

LOAD DOUBLE

LOAD DOUBLE WITH FLAG

ADD DOUBLE

ADD DOUBLE T 0 MAGNITUDE

MULTIPLY DOUBLE

DIVIDE DOUBLE

STORE LOW ORDER

The double load operations reset al1 96 fraction bit positions in the
accumulator to O before loading the single-length memory operand,
whereas the single load operations affect only t'he high-order 48 fraction
positions. The double add operations combine a single-length memory
operand with a double-length accumulator operand and return a double-
length result to the accumulator. To store a double-length accumulator
operand in memory, i t is necessary to create a pair of single-length
operands; this is done by using STORE, for the high-order part, and STORE

LOW ORDER, which attaches the eorrect exponent (E - 48) and the sign to
the low-order part to form a proper FLP nurrìber. iL'ormalization may
be specified if desired. Loading a double-precision number pair may be
accomplished by LOAD DOUBLE followed by ADD DOUBLE, specifying the
operand in either order since the exponents take care of themselves.

Multiplica,tion, whethes single or double, operates only on single-

length factors from memory and from the accumulator. MULTIPLY and
MULTIPLY DOUBLE differ in whether a single-length or double-length
product is returned to the accumulator.

As might be expected, division is the most complex of the FLP opera-
tions to implement, because there are many exceptional conditions to be
considered if they are not to be a burden on the programmer. The
principles followed were that (1) no scaling should be required in advance,
and (2) the quotient should be developed with maximum precision.
We must distinguish here between normalized and unnormalized division.

In normalized division the first step is to normalize both the dividend
and the divisor. The quotient is then developed. Since it is still possible
for the normalized dividend fraction to be greater than the normalized
divisor fraction, the quotient may have ai1 overflow bit and require a
single right shift for normalization; otherwise the quotient will be already
normalized.

Even for unnormalized division the divisor is fully normalized, so as to
guarantee the greatest quotient precision. The dividend, however, is
normalized only to the extent that the amount of the left shift does not
exceed the left shift of the divisor. If the dividend has as many or more
leading zeros than the divisor, both will have been shifted by the same
amount; the difference between dividend and divisor exponents is then
still the correct quotient exponent, but the quotient fraction may have
leading zeros as in any other unnormalized operation. If the dividend
has fewer leading zeros than the divisor, it cannot be shifted so far. In
the fixed-point sense the division is illegitimate, since the quotient will
overflow (which also happens when the number of leading zeros in the
dividend and the divisor are the same and the dividend fraction is equa1
to or greater than the divisor fraction). So as not to require the program-
mer to test and scale his numbers beforehand to avoid this situation, the
division is carried out and the scale factor is made available for adjust-
ments only if and when overflow occurs. The procedure is as follows.

The dividend is normalized either as far as it will go or as far as the
divisor, whichever requires the lesser amount of shift. Division then
proceeds as in the normalized operation, and the quotient exponent is
adjusted for the amount of shift that occurred. The difference between
the amount of left shift of the divisor and the left shift of the dividend is
entered into a counter, the left-zeros counter, which is conveniently
available for this purpose; to this a 1 is added if the quotient had to be
shifted right once to remove the overflow. If the fina1 counter setting in
unnormalized division is greater than zero, the partial jield indicator is
turned on as a signal. The counter contains tthe proper scale factor.
If the left-zeros counter contents are zero, the dividend was shifted as
far as the divisor, the quotient did not overflow, and no scaling is required.
(The counter contents cannot be negative.)

DIVIDE DOUBLE differs from DIVIDE in severa1 respects. A double-
length dividend in the accumulator is used. A correct 48-bit remainder
corresponding to a 48-bit quotient is produced and deposited in a separate
remainder register (whereas DIVIDE produces no remainder). The
quotient is left in the accumulator; it is a 48-bit number in DIVIDE, but a
49-bit number in DIVIDE DOUBLE. The 49tfh quotient bit is intended
to be used with STORE ROUNDED to obtain a rounded 48-bit quot'ient in
memory, but it does not affect the magnitude of the remainder. Thus
the remainder has the correct value for programming extended precision.
(Strictly speaking, the remainder also has 49 bits when the normalized
dividend fraction equals or exceeds the normalized divisor fraction.
Only the high-order 48 remainder bits are preserved. If a low-order l is
thus dropped in unnormalized division, the lost carry indicator is turned
on, so that a correction may be programmed when desired.)

Four special operations on the accumulator operand, which alter the
fraction or exponent part independently except for possible normaliza-
tion after an addition, complete the FLP set:

ADD T 0 FRACTIOS

SHIBT FRACTION

ADD E X P O S E S T

-4DD IMMEDIATE T 0 EXPOXENT

The question naturally arises why these special operations are provided
in the FLP set if the same functions could be performed by VFL instruc-
tions. An important reason is that FLP instructions are fast'er and tJake
up only a half word each. More decisive is the fact that VFL operations
would not set the special FLP indicators.

8.17. Fixed-point Arithmetic Using Unnormalized
Floating-point Operations

As has been mentioned before, t8here are two ways of performing binary
fixed-point arithmetic in the 7030. One way, which is fast but relatively
wasteful of storage, is to use unnormalized FLP operations. The other
way is to perform binary VFL operations; this uses storage efficiently but
is slower.

With unnormalized FLP arithmetic a fixed-point fraction f is ordinarily
represented by the FLP number (0,f). I t is clear from definitions (8.1)
to (8.3) that addition, subtraction, and rnultiplication of such numbers
result in numbers of the same kind, so long as the fraction has enough bits
to avoid overflow. Division produces such numbers only if the divisor
fraction is greater in magnitude than the dividend fraction. Otherwise,
the quotient is (lc,f), where lc > 0; this is a correct quotient, but it is no

longer of the pseudo fixed-point form (0,f). As discussed earlier, the
quantity k is available in the left-zeros counter for use by the program in
scaling results after the partial Jield indicator signals the condition.

Treatment of singularities is indicated by Eqs. (8.4) to (8.7). It
should be noted that multiplication and divisi011 of singular quantities,
as executed automatically in the 7030, are not always inverse operations.

8.1 8. Special Functions and Forms of Arithmetic

In planning the FLP instruction set, consideration was given to the
implementation of severa1 common functions other than the basic arith-
metical operations, such as logarithmic and trigonometric functions,
complex-number arithmetic, polynomial evaluation, and the vector
inner product. It was found that the high degree of concurrent opera-
tion within the CPU reduced the time spent on housekeeping instructions
so much that built-in macro-instructions would not be appreciably faster
than programmed macro-instructions, and they would be much less
flexible.

The square-root function is an exception. It was built in because it
could be carried out economically by an algorithm quite similar to the
division algorithm chosen.

8.19. Multiple-precision Arithmetic

Built-in double-precision operations were among the special forms of
FLP arithmetic that were considered but rejected because of insufficient
speed advantage. A second reason for not providing such operations
directly was the greater fraction length of the 7030, which would minimize
the need for double-precision arithmetic. (Double-precision accuracy on
the 7030 is more than 3.5 times single-precision accuracy on the 704.)

When the occasion for extending precision arises, furthermore, double
precision is not necessarily sufficient; so triple- or higher-precision pro-
grams would have to be written anyway. The step from double to triple
or quadruple precision will be as important as the step from single to
double, and there is little justification for favoring the latter to the
detriment of the former. Accordingly, the objective in the 7030 was to
facilitate the programming of any multiple-precision arithmetic. The
facilities provided include the double-length accumulator, appropriately
defined unnormalized instructions, and exception indicators.

Tables 8.1 and 8.2 illustrate programs for double-precision addition
and multiplication, respectively. These examples assume that a double-
precision operand A is in a pseudo accumulator a t memory addresses
200.0 (high-order part) and 201.0 (low-order part). The second operand
B is at memory addresses 202.0 and 203.0. The result is to be returned
to the pseudo accumulator.

The addition program illustrated takes six instructions, and the

TABLE 8.1. DOUBLE-PRECISION ADDITION
Form C = A + B = a~ + aL + bH + b~ where the subscripts H and L indicate

high-order and low-order parts of each double-precision number.

Location Statement

LOAD DOUBLE (FU), 2 0 1 . 0
ADD DOUBLE (m), 203.0
ADD DOUBLE (FN), 200.0
-4DD DOUBLE (FN), 202.0
STORE (FU), 200.0
STORE LOW ORDER (FU), 201.0

DATA, AH

DATA, AL

DATA, BH

DATA, BL

Notes

) ~ s e u d o accumulator

Notes: (l) Add low-order parts.
(2) Add high-order parts last for greatest precision.
(3) Result in pseudo accumulator.
(FU) : unnormalized floating-point.
(m) : normalized floating-point.
100.32: bit 32 of word 100, that is, the right half mord.

TABLE 8.2. DOUBLE-PRECISION MULTIPLICATION
Form C = A * B = aHbH + a d H + aHbL (appro~im~tely) . (Omitting the
product term a ~ b ~ may cause an error of P6 in the fraction magnitude.)

Location Statement

LOAD (FU), 2 0 0 . 0
MULTIPLY DOUBLE (FU), 203.0
LOAD FACTOR (FU), 202.0
MULTIPLY AND ADD (FN), 201.0
M-ULTIPLY AND ADD (FN), 200.0
STORE (FU), 200.0
BTORE LOW ORDER (FU), 201.0

DATA, AH
DATA, AL
DATA, BH

DATA, BL

Notes

} Pseudo accumulator

Notes: (l) Form U H ~ L .
(2) Add a ~ b ~ .
(3) Add high-order term a ~ b ~ iast.

multiplication program takes seven. For double-precision addition only,
i t is possible to hold the implied operand in the rea1 accumulator, and no
more than two ADD DOUBLE instructions are needed in that case. This
compares with a t least twelve and sixteen instructions, respectively,
needed for double-precision FLP addition and multiplication in the IBM
704, which has no special facilities for multiple precision. The IBM 704
figures are a minimum; they allow for testing only once for accumulator
overflow and quotient overflow. A practical 704 program may require
more instructions for additional tests and sign adjustments, the actual
number being a matter of individua1 needs. The length and intricacy
of double-precision programming for the 704 make i t advisable to use
subroutines; whereas the 7030 programs are short enough to justify
either writing the few instructions needed into the main program or using
macro-instructions to compile them. The net result is a substantial
reduction in the ratio of execution times for double- and single-precision
arithmetic.

Triple- and higher-precision arithmetic is more complex for both
machines, but the 7030 facilities again provide an advantage.

8.20. General Remarks

The key problems in planning and implementing a normalized floating-
point instruction set in a digital computer involve, first of all, attaining
the highest performance consistent with the required precision and range,
and, second, a really adequate instruction set. By its very nature, the
FLP instruction set is highly specialized and will always be incomplete.
For this reason the accent must be o11 very high performance for special-
ized operations. Insofar as completeness and generality of the FLP
instruction set have any meaning a t all, i t is in the facilities for the impor-
tant FLP "arithmetics" and representations and for conversion among
them. Symmetry of the instruction set is important, both because the
instructions added for symmetry are likely to be important on their own
and because syrnmetry simplifies the programming system.

The goal of highest possible performance must also be viewed in the
context of the total operating system within which the computer proper
is to perform: the automatic programming system, the programmers,
the operators, and al1 the rules that they must follow. The goal is
maximum total throughput, rather than maximum performance on any
particular operation or set of operations. Kevertheless, it is obvious
that the total throughput of a large-scale scientific computer will not be
very high unless it possesses a fast, powerful FLP instruction set that
performs very well al1 those operations which we know must be performed
well by such an installation and performs adequately those operations
which are only sometimes important.

Chapter 9

INSTRUCTION FORMATS
by W. Buchholz

9.1. Introduction

The importance of devising a good instruction set for a stored-program
computer has been recognized by computer designers from the beginning.
Most designers lavish a great dea1 of care on this aspect of their job, and
so the instruction set contains the most easily distinguishable character-
istics of a computer. It is not surprising, therefore, that different schools
of thought have existed as to the best format for instructions. An
especially popular subject for debate-more in private than in print-
used to be whether it was easier to program with single-address or multi-
ple-address instructions. By now this question has become rather
academic. The importance of machine language programming is decreas-
ing rapidly with the advent of problem-oriented programming languages.
More attention is now focused on efficiency in the compiling of programs
and on speed in running the finished product.

This is just one of severa1 changes in environment which have resulted
in a trend, over the years, away from the simple instruction formats of
early computers. It may be instructive to illustrate the trend by some
examples before considering the choice of formats for the 7030.

9.2. Earlier Instruction Languages

The instruction formats of some earlier computers are reviewed in
Fig. 9.1.

The MIT Whirlwind computer represented the simplest of single-
address instruction formats. I t specified the operat>ion and the address of
one of the operands. The other operand was implied to be in a working
register.

Note: Chapter 9 is an updated version of an earlier paper: VST. Buchholz, Selection
of an Instruction Language, Proc. Western Joint Computer Conf., May, 1958, pp. 128-
130.

122

The UNIVAC 1103 scientific computer, made by Remington Rand,
uses a two-address scheme where two operands may be specified. The
result may be returned to one of the two addresses.

The IBM 650 employs a different two-address scheme. Only one
address specifies an operand, the other operand residing in an implied
working register. The second address specifies the next instruction.
This technique is advantageous in association with a revolving storage
device, for it permits instructions to be located so that access time is
minimized.

Whirlwind r Op. Address j16 bits

l
From, to From

t

650 Operation Address D ' Address I 11decima1 digits
2dd 4ddL

From Next.

Operationt
SEAC Address a Address 6 Address etc. ,44 bits

12 12 12

From From To

FIG.9.1. Some classica1 instruction formats with one, two, and three addresses.

The Kational Bureau of Standards SEAC computer had available two
instruction formats, one with three addresses and another with four.
The three-address format is shown. Two operands and a result could be
specified.

In retrospect one wonders whether, in each choice, fitting instruction
words to a desired data-word length was not just as strong a factor as the
intrinsic merit of the instruction format which gave rise to so much dis-
cussion. The distinction is mainly in whether one chooses to write
related pieces of information vertically on a sheet of paper or horizontally.
There was remarkably little difference among most of the early computers
with respect to the operations that they performed.

In the early computers, simplicity was an important engineering con-
sideration. After all, no one was quite sure in those days that the com-
plex electronie devices parading under the imposing name of large-scale
electronic data-processing machines would actually work.

The computers, however, turned out to be really usable and productive.
They provided valuable experience for the designers of later computers.
They clearly showed a need for much higher speed and much larger
storage. At t3he same time, it became evident that speed could be gained
and storage space saved by providing more built-in operations. A
larger vocabulary can mean a quite drastic reduction in the number of
instructions written and executec! to do a given job. Floating-point
arithmetic and automatic address m~dificat~ion, or indexing, are two
features that have become standard equipment on scientific computers.
Alphabetic representation and variable field lengt'h have similarly become
accepted as built-in functions for business data processors. The instruc-
tion set has been growing steadily in size and complexity.

The desire to specify more things with one instruction has left no room
in most instructions for more than one major address. The debate over
multiple addresses has thus been settled by a process of evolution.

9.3. Evolution of the Single-address Instruction

The illustrations for this evolutionary process will be taken from
experience gathered at IBM over a number of years. The experience is
not unique, and similar examples could be chosen from other designs.

f Data length (half o.; full word) Left or right half word f
l

Another instruction (36 bits

--- ------L8J--e

FIG.9.2. Instruction format for IBM 701.

Operation code Index Address 36 bitsaddress
12 3 15

FIG.9.3. Typical instruction format for IBM 704, 709, and 7090.

The IBM 70 1 followed the simple single-address pattern (Fig. 9.2).
To make efficient use of the word length selected for data representation,
two instructions are packed in each word.

The 704 and, later, the 709 and 7090 are al1 direct descendants of the
701, but they have a much bigger repertoire of instructions and features.
As a result, the instruction has grown to fill the entire word (Fig. 9.3).

Bigger computing problems were found to require much larger mem-
orie~. The address part of the instruction, therefore, was increased from
11 to 15 bits, giving sixteen times the capacity of the 701 memory.
Three bits were added to specify indexing. The port'ion of the instruc-
tion that specifies the operation was increased from 5 to about 12 bits.

Part of this increase was needed because severa1 times as many opera-
tions were made available to the user. Some bits were added to govern
the interpretation of other bits, thus permitting more than one instruc-
tion format. For instance, there is a format in which two 15-bit quan-
tities can be specified to provide a lirnited two-address repertoire in the
704.

For Project Stretch the evolution was carried a step further. More
functions and more addressing capacity were desired. For other reasons,
a much greater basic word length was chosen: 64 bits, or almost twice
that of the 704. On the other hand, it became clear that extra memory
accesses resulting from inefficient use of instruction bits would sig-
nificantly reduce performance; so the more frequent instructions were
compressed into a 32-bit format, which is short'er than the 704 instruction
format. Since it was decided not to impose the restriction of compati-
bility with earlier machines, the 7030 instruction set could be made much
more systematic and also more efficient than that of its predecessors.

9.4. Implied Addresses
We have already seen that single-address instructions differ from

multiple-address instructions not in the number of operands required for
a given operation but in that orily one of the operands is located a t an
explicitly specified address, any other operands being located a t implied
addresses. A single-address add instruction, for instance, may have one
implied operand in the accumulator, to which an explicitly specified
operand is added. The sum replaces either the implied operand or the
specified operand. Of the three addresses required by the operation,
only one is stated explicitly. This gain in efficiency is nullified when add
is preceded by Eoad and followed by store. Therefore, implied addresses
provide a gain in instructon-bit efficiency only when repeated reference
is made to the same implied operand. In arithmetical operations
repeated reference to the same implied operand occurs sufficiently often
to justify the single-address instruction format.

As will be seen in the following section, the instruction formats for the
7030 still follow primarily the single-address pattern with an implied
accumulator operand, but each format has one or more secondary
addresses, such as index addresses. Some less frequently used instruc-
tions have two complete addresses, each accompanied by its own index
address; and these do not require the accumulator.

I t may be noted here that an accumulator may be designed to hold
more than one implied operand. An interesting version of a multiple-
operand accumulator has been called a nesting store by its originators,l or

G. M. Davis, The English Electric KDF 9 Computer System, The Computer
Bullefin, vol. 4, no. 3, pp. 119-120, December, 1960.

more descriptively a push-down accumulator. I t rnay be pictured as a
(theoretically infinite) stack of operands, with the most current operand
on top. If a new operand is loaded a t the top, the remaining ones are
pushed down. If the t'opmost operand is removed and stored in main
memory, al1 others below it are pushed up automatically. By avoiding
instructions for transferring intermediate results to and from temporary
storage locations, t'nis scheme rnay show a gain in effciency when s
calculation can be arranged so that the order of using operands is: last in,
first out (or any other prespecified rule of accession). The push-down
scheme appeared too late to be evaluated for its effectiveness in the 7030.

9.5. Basic 7030 Instruction Formats

The basic pattern of instruction formats is shown in Fig. 9.4. A
simple half-word format (Fig. 9 . 4 ~) consists of an address, an index address
1 to specify the index register to be used for automatic address modifica-
tion, and a code O P that defines the operation to be executed. The 4-bit
I address specifies either one of Jifteen index registers (1 to 15) for address
modification, or no address modification (0).

A second index address, J, is added to the format for index arithmetic to
designate the index register on which the operation is to be performed
(Fig. 9.4b). The 4-bit J address rnay specify one of sixteen index regis-
ters (O to 15)) including m e register (0) that cannot participate in auto-
matic address modification.

A full-word instruction consists essentially of two half-word formats,
each half having an address, a modifier index address I, and an operation
code OP. The operation code in the left half is merely a unique code to
distinguish it from al1 the half-word instructions and to ensure proper
interpretat'ion of the right half. Full-word instructions rnay occupy a fu11
memory word ; or they rnay overlap the memory-word boundary, the left
half being in one memory word and the right half in the next higher
word. Thus full-word and half-word instructions rnay be freely
intermixed.

A good example of a full-word instruction (Fig. 9 .4~) is TRANSMIT,

which rnay be used to transmit a word (or a block of words) from the
memory area starting a t the address in the left half of the instruction to
the memory area starting a t the address in the right half. Another
instruction, SWAP, interchanges the contents of the two memory areas.
Input-output transmission instructions use a similar format, except that
the left address gives the number of an input-output channel, and the
right address is used in an indirect fashion, specifying a contro1 word
which in turn defines the memory area (see Chap. 12).

The fourth example (Fig. 9.4d) is the format of the variable-field-
length (VFL) operations. The left half contains a memory address, biit

the corresponding part of the right half is occupied by additional speci-
fications. P is a modifier to indicate different kinds of address manipu-
lation, including progressive indexing (Chap. 11). Length and byte sixe
(BS) further define the operand in memory (Chap. 7). The second
operand is implied to be in the accumulator; separate specifications are
not essential, but an offset is provided as a partial address of the second
operand for greater flexibility. I t designates the starting position within
the accumulator, thus avoiding extra shift instructions to line up the
operands. The I address in the right half is there primarily for consist-

Address Op. code
18 I 4

(a) Floating point arithrnetic

Address J Op.
19 4 I4

(b) Direct index arithmetic

Address O P .Addrèss Op. code
24 I 4 19 I4

(C) Input-output operations and data transrnission

I

Address
24

Op. I
4

P
3

Length
6

BS
3

Offset
7

Op. code I
4

(d) Variable field length operations

1 ?

Value .f Count Refill
24 ,l 18 18

(e)' I ndex word

FIG.9.4. Basic instruction formats for IBM 7030. The index-word format (e) is
shown for comparison.

ency with other formats; automatic modification of the bits in fields
length, BS, and o$set, as if they were an address, is possible and occasion-
ally useful.

A complete list of instruction formats is given in the Appendix.

9.6. Instruction Efficiency

It was pointed out in Chap. 4 that different natura1 data units require
different amounts of specification. The most complex data unit, the
floating-point number, has a rigid format. Its specification is built
into the arithmetic circuits for greatest speed. There is relatively little
left for the instruction to specify: an address, an index register, and an
operation. Hence a simple instruction format suffices (Fig. 9.4~).

The most complex instruction format (Fig. 9.4d) is provided to operate
on variable-field-length data, which are tlhe most flexible data units.
VFL data are, to the computer circuits, a mere collection of bits unti1
their structure is specified in the instruction. The intent here is to give
the programmer a very versatile t001 with which, despite relatively low
speed, certain important tasks can be performed more expeditiously
than they could be with faster but more restricted operations.

It is obvious from information theory that instructions of varying
information content can be expressed by a varying number of bits. It is
not so obvious that the saving in memory space for programs, which results
from having multiple instruction formats, would alone pay for the addi-
tional equipment cost of decoding these formats. What really prompted
the introduction of multiple instruction formats was the observation that
the speed of the 7030 was in danger of becoming severely limited by the
time taken to fetch instructions from memory during the execution of the
all-important inner loops of arithmetical programs. At that point in the
design, it was found that almost al1 the instructions usually needed in
t'he inner loops (floating-point arithmetic, indexing, and branching) could
be expressed in terms of 32-bit half words and that, if they were so
expressed, the number of accesses to memory for instructions could be cut
almost in half.

Completely variable instruction lengths, though desirable in theory,
are not practical. Either instructions would have to be scanned serially,
which would be slow, or they would have to be passed through a complex
parallel switching network with cumulative circuit delays, which would
again slow down the computer. In practice, with binary addressing,
instruction lengths must be kept to binary submultiples of the memory-
word length. Half-length, quarter-length, and even eighth-length
instruction vocabularies were actually tried. It mas found that, although
short instructions saved space, the saving could be quickly eaten up by
the extra bits needed to define each format. The greatest economy of
memory space and memory references was gained in a mixture of half-
length and full-length instructions.

The 32 bits are rather tight for some of the short instructions. Since
it was not possible to add a bit or two to an instruction mhen needed, it
was necessary to vary the length of fields within the 32-bit space in order
to provide al1 the functions that were thought desirable. These measures
resulted in multiple 32-bit formats, which required additlional decoding
equipment as well as certain compromises.

Some of the additional formats are shown in Fig. 9.5. It will be seen
that a 4-bit I address for indexing is not available in al1 formats. In
particular, the conditional branching operations have only a l-bit I
address, permitting choice between no indexing and indexing against a
single index register. It was felt that fu11 indexing facilities, though

desirable, were less important than, for example, being able to specify
any of the 64 indicators as a test for indicator branching (Fig. 9.5b).
The unconditional branching operations, however, have a complete
index address, so that indexed branch tables may be readily constructed.
Immediate indexing operations have no I address a t all, since there
seemed to be little use for automatic address modification when the
address was itself the operand.

Address Op. code
19 I4

(a) Unconditional branching and miscellaneous operations

Address Indic- I
ator 6i9

(b) Indicator branching

Address J Op. code I
19 4 l

(C) Counting and branching

Address J Op. code
19 4

(d) Immediate indexing

Address OP. Any half word branch instruction
24 I4

(e) Storing instruction counter before branching

Address OP. I Address Op. code I
24 4 19 1

(f) Bi t testing and branching

FIG.9.5. Other 7030 instruction formats.

Operand addresses also vary in length for different formats. 18-,
19-, and 24-bit addresses are used depending on whether addressjng is
to be carried to the word, half-word, or bit level. The index-word
format, shown in Fig. 9.4e for comparison with the instruction formats,
has a fu11 24-bit value field as well as a sign; no sign bit could be provided
in any of the instruction formats. To simplify indexing, al1 addresses line
up against the left boundary of the word (or half word) in such a manner
that the significant bits fa11 into corresponding positions in every format.
Missing bits, including a O (+) sign bit, are automatically supplied to
the right as the instruction is decoded, so that indexing always results in
an effective address 24 bits long (Fig. 9.6).

The operation codes of different classes of instructions, especially half-
length instructions, differ in length, position within the format, and
variability. There are 76 distinct operation codes among the half-length
instructions; a t least 7 bits are required to specify them. Up to 8 more
bits are used as modifiers common to al1 operations in the same class, so
as to make the set as systematic as possible. For example, al1 arithmetical
instructions have a n~obifier bit to indicate whether the operand sign is tu
be inverted, which eliminates the need for separate add and subtract codes.
Thus adding 7 operation bits and 8modifier bits to the 19address bits and
4 index-address bits required by many instructions gives a total of a t least
38 bits that would have been needed to encode these operations in a simple
and straightforward manner. By eliminating redundancy, it was possible

Bit
Word address address (Sign -

r i-

xxx xxx xxx xxx xxx xxx O00 O00 O 18-bit address

xxx xxx xxx xxx xxx xxx x00 O00 O 19-bit address

xxx xxx xxx xxx xxx xxx xxx xxx O 24-bi t address

xxx xxx xxx xxx xxx xxx xxx xxx x Index address

x Indicates a bit which may be O or 1

FIG.9.6. Expansion of addresses of various lengths.

to compress the format to 32 bits. The only functional sacrifice was
the reduced index address in some of the branching operations, as noted
before.

An analysis of the operation codes shuws that only 0.05 bit of informa-
tion is left unused in the 32-bit f0rmats.l The 0.05 bit actually repre-
sents, a t the time of writing, unallocated space in the formats for three
more Aoating-point operations with their modifiers and nine more miscel-
laneous operations, each with a fu11 4-bit I address, which is not a trivial
amount of space. The full-word formats are not so closely packed. The
64 bits are found to contain almost 6 bits of redundancy.

Yet another technique for increasing instruction efficiency is to use
extra half words to define important but less frequently needed functions.
This arrangement raises the instruction information content, because it
uses one out of many operation codes, instead of tying up 1 bit in every
instruction. Also, the efficiency with which a program can be stated is
improved, since the infrequent use of an extra instruction is easily offset
by the greater information content of each frequent instruction, whereas
omitting the instruction entirely from the repertoire would require use of
a subroutine each time the need arose.

l This assumes that al1 d e h e d combinations are equally probable and al1 18 bits
of memory address are fully justified from the start to permit future expansion in a
clean way.

As an example, indirect addressing is a powerful t001 when needed,
but its use is not very common; hence a separate half-word instruction is
used as a kind of prefix for the instruction to which indirect addressing is
to be applied (see Chap. 11for more details). Figure 9.5e shows another
example. A half-word prefix is attached directly to any half-word
branching instruction, to make what is actually a complete set of full-
length branching instructions ; these permit the current set ting of the
instruction counter to be stored anywhere in memory before the instruc-
tion counter is changed to its new setting. The significance of making
this a single full-length instruction is that, for conditional branching,
the instruction counter setting is stored only when the branching actually
takes place, thus saving valuable time. A fina1 example is the very
flexible full-length bit-testing instruction (Fig. 9.5f). This allows any
addressable bit in memory or in the computer registers to be tested and
set, and branching occurs if the test is satisfied. A more limited test of
only the indicator bits (such as zero and overfloa- indications) satisfies
the most frequent demands for testing, and the half-length indicator
branching operation of Fig. 9.5b was provided for this reason, even though
it is logically redundant.

These rather elaborate measures to increase instruction efficiency do
not come cheaply in terms of decoding equipment and 'program-compil-
ing time, but they do help materially to shorten the program-running
time. Compared with the 704, for instance, the typical instruction length
has gone down from 36 to 32 bits, and the power of the instruction has
been increased. As a rule, the number of 7030 instruction half words to
be executed is substantially less than the number of 704 instruction words
for an equivalent program. This gain, of course, is to be added to the
large gain in speed of corresponding individua1 instructions.

9.7. The Simplicity of Complexity

One may ask whether a more complex instruction set does not lead to
more difficult programming. One answer is that programming can be
simplified by adding instructions to complet,e a set (branch on plus, as
well as branch on minus) and arranging them systematically. Another
answer can be obtained by looking a t the other extreme.

Van der Poel has shownl that the simplest instruction set the~ret~ically
consists of just one instruction. This instruction contains no operation
code, only an address. Every instruction causes a combination of sub-
tract and sture to be executed; the difference replaces the contents of both

l W. L. van der Poel, The Essential Types of Operations in an Automatic Computer,
-Tachrichtentechn.ische Fachberichte, vol. 4, 1956, p. 144 (proceedings of a conference
on Electronic Digital Computing and Information Processing held a t Darmstadt,
Germany, October, 1955); also, "The Logica1 Principles of Some Simple Computers,"
a monograph by the same author, Excelsior, The Hague, Xetherlands, p. 100.

the accumulator and the specified memory address. Al1 other computing
operations, including conditional branching, can be built up from this one
instruction, which is a very easy instruction to learn. But the programs
needed to simulate no more than the elementary instruction set of early
computers would be enormous. It would be quite a task just to estimate
the size of the program for a rea1 job. It seems safe to say that the stor-
age reqiiired would be gigant'ic, a desk cslculstos would probahly be
faster.

A complex, but appropriate, language will in fact simplify the pro-
grammer's task as the problems to be solved become more complex.

9.8. Relationship to Automatic Programming Languages

In tracing the development of instruction sets, we have found that the
advent of more powerful computers designed to tackle larger problems is
accompanied by more elaborate and versatile instruction vocabularies.
Programs to do the same job require considerably fewer instructions and
fewer references to memory. Or, to look a t it another way, sequencing
of simpler instructions stored in a relatively s l o ~ memory is replaced by
interna1 sequencing with high-speed control circuits. This is a form of
microprogramming using the fastest available memory, one made of
transistor flip-flops.

Such an instruction set is still a long way from t,he "superlanguages"
being developed under the heading of automatic programming. These
languages are intended to simplify the task of the problem coder, not to
raise the performance of the machine. The instruction set is an inter-
mediate level between the programmer's language and t he language of the
elementary control steps inside the machine.

A two-step process of translation is thus reqiiired. One is the pro-
grammed assembly of machine instructions from the stlatements in the
superlanguage. The other is the interna1 translation of instructions to
control sequences. The two-step process is a matter of necessity a t this
stage of development to keep the complexity of the computer within
bounds. I t has the advantage that each language can be developed
independently of the other to be most effective for its own purpose.

At the level of the user, there may be a need for developing specialiaed
languages that facilitate programming of different jobs with varying
emphasis on arithmetic, logica1 operations, data manipulation, and input-
output control. At the machine level, where al1 these jobs come together,
the need is clearly for a versatile and relatively unspecialized language.
Perhaps the greatest demand on versatility is made by the process of
translating from an automatic programming language to machine
language. The performance of a computer in translating its own pro-
grams is a significant measure of how effective a t001 the instruction set
really is.

Chapter 10

INSTRUCTION SEQUENCING
by F. P. Brooks, Jr.

10.1. Modes of Instruction Sequencing

It is possible to distinguish four modes of instruction sequencing,
which define the manner in which control rnay or rnay not pass from an
origina1 instruction sequence A to a new sequence B:

1. Norma1 sequencing. A keeps control.
2. Branching. A gives control to B.
3. Interruption. B takes control from A.
4. Executing. A lends control to B.

The first two are the basic modes of instruction sequencing found in the
earliest automatically sequenced computers. Each instruction normally
has a single successor, which rnay be defined by an instruction counter
or by a next-instruction address within the instruction itself. Selection
of an alternative sequence or modification of the origina1 sequence rnay be
accomplished a t a point defined in the origina1 sequence by conditional
branching (also called jumping, or transfer of controt), by indexed branch-
ing, or by the skipping or suppressing of one or more of the operations in
the origina1 sequence. In computers in which the normal sequence is
defined principally by a counter, an unconditional branch instruction is
used to specify a normal successor that does not occupy the next address.

Some conditions that rnay demand a change in instruction sequence
arise either very rarely or a t arbitrary times with respect to the program
being executed. Testing for such conditions rnay be unduly awkward
and time-consuming. Facilities for program interruption allow sequence
changes to be set up in advance of the occurrence of the exceptional

Note: The major part of Chap. 10 has been adapted from two papers by the same
author: A Program-controlled Program Interruption System, Proc. Eastern Joint
Computer Conf., December, 1957, p. 128; The Execute Operations: A Fourth Mode of
Instruction Sequencing, Communs. ACM, vol. 3, no. 3, pp. 168-170, March, 1960.

133

condition, which is monitored continuously; when the exception occurs,
the current program is interrupted and the iiew sequence is start,ed.

A rudimentary form of interruption upon the occurrence of an exception
condition during an instruction executioii (such as overflow) was pro-
vided in as early a computer as the UKIVAC I. A more genera1 system,
which monitored external, independently timed conditions, first appeared
more recently. l

The fourth mode allows the origina1 sequence to execute instructions
from another sequence, without changing the nornial sequenciiig contro1
to specify the second sequence. Implementations of this mode of opera-
tion are found in two earlier c0mputers.~9~

The instruction-sequencing modes of the 7030 are described in the
following sections, with emphasis on the interrupt and execute features,
which go considerably beyond those found in earlier computers.

10.2. Instruction c o u n t e r

The norma1 instruction sequence in the 7030 is determined by an
instruction counter which is stepped up automatically by one or two half-
word addresses for each instruction, depending on whether the instruction
is a half word or fu11 word long. A full-length instruction may begin a t
any half-word boundary; branch instructions specify a half-word branch
address. Any instruction may alter its successor, even if both are located
in the same memory word, and the successor will be executed
correctly.

For entry to a closed subroutine it is necessary to preserve the current
setting of the instruction counter. There are severa1 known techniques.
One is a programming trick, called after its originator the Wheeler sub-
routine l i n k a ~ e , ~ where an instruction is written to load itself into some
available register (the accumulator or an index register) before branching
into the subroutine takes place. This technique always takes time and a
register, whether the branch is actually taken or not. Another solution is
to employ more than one instruction counter; but if nesting of sub-
routines to any number of levels is desired, it is still necessary for the
program to store the origina1 counter contents after the branching to the

Jules Mersel, Program Interruption on the Univac Scientific Computer, Proc.
Western Joint Computer Conf., February, 1956, p. 52.

Reference Manual, IBM 709 Data Processing System.
U. A. Machmudov, LEM-1, Small Size Genera1 Purpose Digital Computer Using

Magnetic (Ferrite) Elements, Communs. ACM, vol. 2, no. 10, pp. 3-9, October, 1959,
translated from the Soviet publication Radiotechnika, vol. 14, no. 3, March, 1959.

M. V. Wilkes, D. J. Wheeler, and S. Gill, "The Preparation of Programs for an
Electronic Computer," p. 22, Addison-Wesley Publishing Compang, Cambridgs,
Mass., 1951.

subroutine. A more economica1 method, where the instruction-counter
contents are stored in a fixed location at every branch point automatically,
was discarded because it takes time in the many cases when the contents
are not needed after branching.

The method adopted in the 7030 requires the programmer to specify
when and where the instruction-counter contents are to be stored before
branching. This is done by inserting ahead of any of the half-length
branch instructions, to be described below, a half-word prefix, called
STORE IXSTRUCTION COUXTER IF. The "if" signifies that the counter con-
tents are stored only if branching actually takes place, thus saving time.
Since the counter contents can be stored a t any memory address, it is
not necessary to tie up a register for this purpose.

The ability to use the instruction counter to index addresses, which
would make program relocation easier, is not provided in the 7030.
The main reason for the omission was the lack of index-address bits in
the tight instruction formats (see Chap. 9). Most instructions can refer
to one of fifteen index registers, but the most important conditional branch
instructions can specify only one index register. I t seemed undesirable
to restrict that one register permanently to be the instruction counter.
It was even questioned whether the instruction counter should use one
of the other fourteen index addresses; some felt that fifteen index registers
was still not a large number and would have found 31 more comfortable
for large problems. Without these format restrictions, however, the
instruction counter could have been profitably included among the index
registers. As it is, for simple unconditional branching only, a separate
instruction BRANCH RELATIVE achieves the desired effect; for other
branching operations, an extra half word is needed to store the instruc-
tion counter first in an index register for subsequent indexing of a norma1
branch instruction.

Unconditional Branching

The unconditional BRANCH instruction is accompanied by severa1
variations. BRANCH DISABLED and BRANCH ESABLED are used to turn the
program-interrupt mechanism off and on, as will be discussed later;
these functions are combined with unconditional branching because they
are frequently needed during entry to and exit from the subroutine that
takes care of the interrupting condition. BRAXCH EXABLED AND WAIT

is the nearest equivalent to a stop instruction in the 7030: program execu-
tion is suspended while waiting for an interrupt signal. This con-
ditional stop instruction allows the computer program to get back into
step with external operations when they take longer than the interna1
operations. The built-in interval timer may also restart the computer
when it is waiting. An unconditional stop instruction is neither necessary

nor desirable, since its presence would permit one program inadvertently
to kill other programs that might be sharing the machine.

BRANCH RELATIVE creates a branch address by adding the current con-
tents of the instruction counter to the specified address. NO OPERATION

is a pseudo branch instruction that does nothing. (The 7030 actually
contains severa1 ways of doing nothing-at very high speed, of course.)
As in some earlier ccimputers, t h e operation code of w c OPERATION differs
from BRAKCH by the state of a single bit. This makes possible a con-
venient remotely controlled program switch : the bit may be set to O or 1
on the basis of a test a t one point of a program, thus preselecting one of
two alternative paths to be taken a t a later point when the test condition
may no longer be avililable.

10.4. Conditional Branching

Conditional branching in the 7030 is distinguished by the functional
richness of a small number of unified instructions. This is made possible
by the technique of gathering most machine-set test conditions into a
single 64-bit indicator register. (,4 48-bit subset of these indicators is
contiilually monitored for program interruption.) A list of indicators
with a short description of each is given in the Appendix. The indicator
word has an address and thus may be used as a regular instruction
operand.

,4 single half-leilgth BRANCH ON IXDICATOR instruction is used t0 test
any one of the 64 indicators. The indicator desired is specified by a
6-bit field. A further bit specifies branching either when the indicator is
on (1)or when it is o$ (O). Yet another bit specifies whether the indica-
tor is to be reset to zero after testing.

The full-length instruction BRANCH ON BIT extends this testing facility
to al1 bits in memory. Any bits, including those in the addressable
registers and thus the indicators, can be tested for either the on or the o$
condition. There are 2 bits to specify mhether the test bit is to be (l)
left alone, (2) reset to 0, (3) set to 1,or (4) inverted. With this instruc-
tion the programmer can set up, alter, and test individua1 bits as he
wishes.

Because of their frequent occurrence, certain elementary indexing and
associated indicator-branching operations have been combined into the
two half-length instructions COUNT AND BRAKCH, and COUNT, BRANCH,

AND REFILL. These are discussed further in Chap. 11.

There are two quite distinct purposes for a program-interwpt system.
The first of these is to provide a means by which a computer can make
very rapid response to extra-program circumstances that occur atl

arbitrary times and perform a maximum amount of useful work while
waiting for such circumstances. These circumstances will most often be
signals from an input-output exchange : that some interrogation has been
received or that an input-output operation is complete. For efficiency
in real-time operation, the computer must respond to these forthwith.
This requires a system by which such signals cause a transfer of control
to a suitable special program.

The second purpose is to permit the computer to make rapid and facile
selection of alternative instructions when the execution of an instruction
causes an exceptional condition. For example, to avoid frequent and
uneconomical programmed testing or extremely costly machine stops, it is
desirable to have ai1 interrupt system for arithmetical overflow or
attempted division by zero.

These two purposes-response to asynchronously occurring external
signals and monitoring of exceptional conditions generated by the pro-
gram itself-are quite distinct, and it would be conceivable to have
systems for handling them independently. However, a single system
serves both purposes equally well, and provision of a single uniform sys-
tem permits more powerful operating techniques. Moreover, the
interrupt system has also been integrated with conditional branching,
as mentioned before.

A satisfactory program-interrupt system must obey several con-
straints. The most important is that programming must be straight-
forward, efficient, and as simple as the inherent conceptual complexities
allow. Second, the special circuits should be cheap because their use is
relatively infrequent. Third, the computer must not be retarded by
the interrupt system, except when interruptions do in fact occur. Fin-
ally, since there is still little experience in the use of interrupt techniques,
the interrupt system should be as flexible as possible.

10.6. Components of the Program-interrupt System

The first question to be answered in designing a program-int'errupt
system is: When to interrupt? What is required is (1) a signal when
there is a reason for interruption and (2) a designation whether inter-
ruptions are to be permitted.

Providing the signal is straightforward. For each condition that may
require attention, there is an indicator that can be interrogated by the
control mechanism. When the condition arises, the indicator is set on,
and it may be turned o$ when the condition disappears or when the pro-
gram has cared for it. As mentioned before, there are 64 indicators
altogether, arranged in the form of an addressable machine register whose
contents can be loaded or unloaded in one instruction.

Designation when interruption is permitted can be made in several

ways. It is possible to organize a system so that any condition arising
a t any time can cause interruption. Alternatively, one can provide a bit
in each instruction to designate whether interruptions shall be permitted
a t the end of that instruction or not. These methods make no distinction
among the interrupting conditions. It is highly desirable to permit
selective contro1 of interruptions, so that a t any given time one class of
conditions may be perniitted to cause interruptions and another class
prevented from causing interruptions.

Therefore, each of the interrupt indicators is provided with a rnaslc
bit. When the mask bit is on, the indicator in question is allowed to
cause interruption. When the mask bit is o$, interruption cannot be
caused by the condition indicated. Twenty-eight of the mask bits can
be set on or o$ by the program. Twenty other mask bits are permanently
set 01%; these correspond to conditions so urgent that they should always
cause interruption when the system is enabled. The remaining sixteen
indicators, which never interrupt and can be tested only by programming,
may be regarded as having mask bits that are permanently set to o$.
Like the indicators, the mask bits are assembled into a single register with
an address, so that they can al1 be loaded and stored as a unit, as well as
individually.

A second major question that the designer must answer is: What is to
be done when an interruption occurs? In the simplest systems the pro-
gram transfers to some fixed location, where a jix-up routine proceeds to
determine which condition caused the interruption and what is to be done.
This is rather slow. In order to save time, the 7030 provides branching
to a different location for each of the conditions that can cause interrup-
tion. The particular location is selected by a Zeftmost-one identi$er.
This device generates a number giving the position within the indicator
register of the bit that defines t'he condition causing the interruption.
This bit number is used to generate a full-word instruction address that
contains the operation to be performed next. Since it was anticipated
that the 7030 would often be operated in a multiprogrammed manner,
the bit address is not used directly as the instruction address, for this
would require the whole table of fix-up instructions to be changed each
time the computer switched to a different program. Instead, the bit
address is added to a base address held in an interrupt address register.
The sum is used as the next instruction address. One can easily select
among severa1 interrupt instruction tables by setting the base address in
the interrupt address register.

A third major question is: How shall contro1 return to the main pro-
gram when the fix-up routine is complete? One might cause t,he current
instruction-counter contents to be stored automatically in a fixed loca-

tion and then change the instruction-counter setting to the address of the
appropriate entry in the interrupt table. The solution preferred was to
execute immediately the instruction specified in the interrupt table
without disturbing the contents of the instruction counter. (Only one
such instruction, whether half- or full-length, may be placed a t each loca-
tion in the interrupt table.)

If the interrupting instruction is one that does not alter the instruction
counter, the program automatically returns to the interrupted program
and proceeds. This permits exceptionally simple treatment of the con-
ditions that can be handled with a single instruction. More complex
conditions are handled by a combination of a store instruction counter
prefix with a branch to a suitable subroutine; this subroutine is entered
just like any other.

A fourth question concerning any program-interrupt system is: How are
the contents of the accumulator, index registers, etc., to be preserved in
case of interruption? Automatic storage of these is both time-consuming
and inflexible. As with respect to the instruction counter, it appeared
better to use the standard subroutine philosophy: the fix-up routine is
responsible for preserving and restoring any of the centra1 registers, but
fu11 flexibility is left with the subroutine programmer. He needs to store
and retrieve only what he intends to corrupt.

The fifth question that must be answered is: How are priorities to be
established among interrupting conditions, and what allowance is to be
made for multiple interruptions ? Prorision of the masking facilit y
answers this problem, since any subset of the conditions may be per-
mitted to cause interruption. Each fix-up subroutine can use a mask of
its own, thereby defining the conditions that are allowed to cause inter-
ruption during that routine. There is also provided a means of disabling
the whole interrupt mechanism for those short intervals when an inter-
ruption would be awkward. One such interval is that which occurs
between the time when a subroutine restores the interrupt base address
appropriate for the main program and the time when it effects return to
the main program. The mechanism is disabled or enabled by means of
the instruction BRANCH DISABLED or BRANCH ENABLED, typically during
entry to or exit from the interrupt fix-up routine.

Simultaneous conditions are taken care of by the leftmost-one identifier,
which selects the condition with the lowest bit address in the indicator
register for first treatment. This is satisfactory because the fix-up
routines for the severa1 conditions are largely independent of one another.
The positioning of conditions within the indicator register defines a
built-in priority, but this priority can readily be overridden by suitable
masking whenever the programmer desires. In fact, it might be said

that the leftmost-one identifier solves the problem of simultaneity, while
the selectivity provided by the mask solves the problem of over-al1 and
longer-term priorities.

10.7. Examples of Program-interrupt Techniques

Figure 10.1 shows the system organization of a simplified interrupt
system with only eight interrupt conditions and 32 words of merniry,
The abbreviated addresses consist of 5 bits for numbering fu11 words and a
sixth bit for selecting the left or right half word. The numbers 001l1.l
in binary and 7.32 in decima1 notation are used to refer to the right half
(starting with bit position 32) of word 7.

The example starts with condition 6 in the indicator register on. The
mask register is set up to allow only conditions 1and 4 to cause interrup-
tion. Instruction 7.32 has just been executed, and tbhe instruction
counter has been stepped up to 8.0. There is no interruption; so the next
instruction is taken from location 8.0 in the norinal manner,

In Fig. 10.2 the execution of instruction 8.0 is accompanied by the
occurrence of condition 1. The leftmost-one identifier generates the
number 1 which is added to the 24 contained in the interrupt address
register. The result, 25, is used as the address of the next instruction
rather than the 8.32 contained in the instruction counter, which is
unchanged.

In Fig. 10.3 is shown the case when the instruction a t location 25.0
does not change the instruction counter. The interrupt nlechanism has
turned off condition l which caused the int'err~pt~ion. n'o other condition
and mask bits coincide. After the instruction a t location 25.0 is com-
pleted, the next instruction is taken from the location specified by the
instruction counter, which still contains 8.32. This one-instruction fix-up
routine might be used to reset the interval timer a t the end of an
interval.

Figure 10.4 shows a different sequence that might have followed Fig.
10.2. Suppose indicator 1 represents an end-of-file condition on a tape
and severa1 instructions are needed to take care of the ~ondit~ion. In
this case the instruction a t location 25.0 disables t,he interrupt mecha-
nism, stores the instruction-count,er coiatent,~ (8.32) as a branch address in
the instruction a t location 21.32, and then branches to location 19.0.
The fix-up routine proper consists of the instructions between 19.0
and 21.0 (it might be of any length and might include testing and sched-
uling of further input-output operations). During the routine no more
interruptions can oceur. Instriiction 21.32 is 2 BRAXCM ENABLED

instruction, the address part of which was set to 8.32. This returns con-
trol to the interriipted program a t location 8.32 and reenables the mecha-
nism so that further interruptions are possible. If another interrupt

DIAGRAM PROGRAM SEQUENCE

Instruction location Firsl IecondI / I
Enable- Interrupt Operation address address

lndicator disable address Instruction Binary I Decimai
register flip-flop register counter

00111.1 7.32 ADD X

I,
01000.0 8.0 MULTIPLY Y

C 01000.0
To ktch

next

instruction

FIG.10.1. Program-interrupt example. Condition masked o$: no interrupt.

Mask register

and

or

invert

DIAGRAM PROGRAM SEQUENCE

Indicator
register

Enable-
disable

flip-flop

Interrupt
address
register

Instruction
counter

Binary

O01 11 .l
o1 000.0

11 O01 .o

Leftrnost-one
identifier

Adder

Mask register

and

or

invert

To fetch
next

instruction

Fxc.10.2.Program-interrupt exainple. Condition masked on: interrupt occurs.

DIAGRAM PROGRAM SEQUENCE

Instruction Idcation First Second
Enable- Interrupt Operation address address

Indicator disable address Instruction
regi ster flia-floa reaister counter

ADD

01000.0 MULTIPLY

TRANSMIT

01000.1 STOKE

T o fetch
and next

instruction
or

invert

FIG.10.3. Program-interrupt example. One-instruction h-up.

--

PROGRAM SEQUENCE

Instruction counter Instruction location First Second
Enable- Interrupt 01 000.1 Operation address addressIndicator disable address q0011,o t. 2 1 - 3 2 Binary

register flip-flop register
o01 11 .l ADD X

01 000.0 MULTIPLY Y
11001.0 STORE INSTRUCTION

COUNTER IF BRANCH
DISABLED 2 1 . 3 2 19.O

b
10011.o W

m

101 01 .l BRANCII ENABLED -
o1 000.1 STORE z

FIG.10.4. Prograni-interrupt example. Interrupt subroutine with further interrupts inhibited.

Mask register

To fetch
and next

instruction
or

invert

condition is already waiting, another interruption will take place immedi-
ately, even before the instruction a t location 8.32 is executed.

The program in Fig. 10.4 assumes that it is desired to prevent further
interruptions during the fix-up routine. If further interruptions were to
be allowed during the routine and the same mask still applied, the pro-
grammer would use only a STORE INSTRUCTION COUNTER IF BRANCH

instruction at location 25.0 and a simple BRANCH instruction a t location
21.32. This procedure is appropriate when and only when the pro-
grammer is certain that condition 1cannot arise again either during the
fix-up routine or during any other routine that might interrupt it.

P

Instruction location

Binar y
Operation

First
address

Second
address

P

ADD 2

MULTIPLY Y
STORE INSTRUCTION COUNTER IF

BRANCH DISABLED 23.32 19.O
SWAP Mask Temporary

register storage
BRANCH ENABLED 20.32
LOAD W

BRANCH DISABLED 22.32
SWAP Mask Temporary

register storage-BRANCH ENABLED

STORE z

FIG. 10.5. Program-interrupt example. Interrupt subroutine permitting further
interrupts.

I n the most sophisticated use of the program-interrupt mechanism,
where it is desired to employ a long fix-up routine that is to be interrupted
under a different set of conditions, the program in Fig. 10.5is appropriate.
The mechanism is disabled a t the time of the first instruction after inter-
ruption. The new mask is loaded and the old preserved. The mecha-
nism is then enabled. At the end of the routine the mechanism is dis-
abled, the old mask restored, and the mechanism is reenabled as contro1
is transferred to the originally interrupted roiitine a t location 8.32.

This procedure is clearly suitable for any number of levels of inter-
ruptions upon interruptions, each of which may have a different set of
causing conditions. Each leve1 of routine is under only the usual sub-
routine constraint of preserving the contents of the registers it uses.

Fu11 program contro1 simplifies programming and multiprogramming,
as does the refusal to assign special functions to fixed memory locations.
The task of the programmer of fix-up routines is simplified by the pro-
vision of special operations and by the adoption of the same con-
ventions and requirements for interruption routines as for ordinary
subroutines.

,4n especially i ~ p o r t a n t feat-lire of the program-interrupt systeni just
described is that it makes almost no demands upon the writer of the
lowest-leve1 program. He need only set up the interrupt address register
and the mask register. He need not even understand what he puts there
or why, but may follow the local ground rules of his installation. Priori-
ties, preservation of data, and other programming considerations that
are inherent in program interruption concern only the author of the fix-up
routines. In open-shop installations it is important that any program-
ming burden caused by such sophisticated operation fa11 upon the full-
time utility programmer rather than upon the genera1 user.

10.8. Execute lnstructions

In an ezecute instruction the address part specifies, directly or indi-
rectly, an object instruction to be executed, but does not set the instruction
counter to the location of the object instruction, as a branch instruction
would do. The next in~t~ruction to be executed, therefore, is the suc-
cessor of the execute instruction rather than the siiccessor of the object
instruction. This is illustrated below.

L&ion / Operation i Address 1 Comments

100.0 EXECUTE 1715.0 Instruction counter steps to 100.32 / I I(1715.0) LOAD z Interpolated object instruction
100.32 / (Neut instruction) l

With the instruction counter a t location 100.0, the instruction EXECUTE
1715.0 is fetched. This instruction now causes the word nt address
1715.0, the object instruction LOAD X, to be loaded into the instruction
decoding circuits and to be executed just as if it had occurred in the pro-
gram a t address 100.0. The instruction counter meanwhile has advanced
to location 100.32, where the next instruction to be executed will be
found. (Note that EXECUTE in the 7030 is a half-length instru~t~ion.)

In effect, an execute operation calls in a one-instruction subroutine
and specifies immediate return to the main routine. This is similar to
indirect addressing (see Chap. Il), except that the whole inst'ruction, not
just the address part, is selected from the specified location.

The uses of the execute operations arise directly from the fact that the
object instruction does not imply its own successor. In the IBM 709,
for example, execute simplifies modification of nonindexable and non-
indirect-addressable operations such as those for input-output. In the
Soviet LEM-1 computer,l there are 1,024 words of erasable storage and
7,167 words of read-only storage; here the execute operations permit pro-
grams in the read-only storage to use isolated modifiable instructions in
the regular storage.

The one-instruction subroutines provided by the execute operations are
especially useful in linkages between a main program and ordinary sub-
routines. For instance, a subroutine may need severa1 parameters, such
as character size, field length, index specification, etc. The calling
sequence may include these parameters in actual machine instructions
which the subroutine treats as second-order subroutines. This ability to
lend contro1 back and forth, between calling sequence and subroutine,
should permit many new subroutine linkage techniques to be developed.

One useful special case of this form of subroutine technique occurs in
interpretive routines where machine-language instructions can be inter-
mixed with pseudo instructions in the argument program. The inter-
preter can t hen execute t he machine-language instruc tions direc tly
without transplanting them into itself.

The one-instruction subroutine techniques provided by execute opera-
tions permit counter-sequenced computers to use the efficient program-
ming tricks of the IBM 650, in which instructions are executed directly
from an accumulator.

For al1 the foregoing purposes it is preferable for the execute operation
to have any machine instruction as its object. Thus one may desire to
execute an arithmetic instruction, a branch instruction, or even another
execute instruction. Actually the occurrence of a branch instruction as
the object instruction of an execute operation would be rare in any of
these applications. This fact makes it possible to add the restriction of
not permitting execute to perform branch operations-a very useful restric-
tion for other major applications.

One of these applications is program monitoring, where the object
instruction of an execute operation should be prevented from changing
the instruction counter that controls the monitoring routine. Consider,
for example, a supervisory program A, such as a tracing routine, which is
to monitor the execution of an object program B, perhaps with testing
or printing of the instructions of B as they are executed. With an ordi-
nary set of operations, the programming to effect such monitoring is
quite clumsy. Each instruction of B must be moved from its norma1
place in memory to a place in the sequence of A. Then it must be tested

l Machmudov, op. cit .

to ensure that i t is not a branch instruction or, if it is, that the branching
condition is not met; for the execution of such an operation would transfer
contro1 of the machine from the supervisory program to some point within
the object program. Finally, after the transplanted B instruction has
been executed, A must update a pseudo instruction counter that keeps
track of the progress of B, and repeat the whole process with the next B
instructinn. If the B Instruction is a successful bramh, ,4 must appro-
priately revise the pseudo instruction counter. This programmed
machinery is common to al1 monitoring routines and must be executed
in addition to the actual monitoring desired.

10.9. Execute Operations in the 7030
The two execute operations in the 7030 are designed so that they can

be used for one-instruction subroutines and for program monitoring.
They are called EXECUTE and EXECUTE INDIRECT AND COUNT. Each
causes a single instruction to be fetched from an addressed location and
executed, except that execution may not change the instruction counter.
If the object instruction specifies a branch operation (which would cause
such a change), branching is suppressed and the execute exception indi-
cator is actuated, which may interrupt the (monitoring) program.
Moreover, the object instruction is not allowed to change the state
(enabled or disabled) of the interrupt system.

In the EXECUTE operation, the address specifies the object instruction
directly. In the EXECUTE INDIRECT AND COUNT operation the address
specifies a pseudo instruction counter in memory, whose contents are
the location of the object instruction. After the object instruction is
performed, the pseudo instruction counter is incremented according to
the length of the object instruction. This last feature is particularly
convenient in a computer that has instructions of different lengths, and
it uses equipment that the computer must have anyway. Any execute
operation may have another execute operation as its object. This useful
function makes i t possible, however, for a programmer's error to initiate
an endless loop of execute operations and thus never reach the end of the
instruction. Since the ordinary interrupt system can interrupt only
between instructions, a special signal forces an interrupt'ion after severa1
hundred repeated operations, so that the computer will not be tied up
indefinitely. (The same signal is used to terminate an endless indirect-
addressing loop.)

The 7030 execute operations, then, not only provide the ability to
execute an isolated instruction, with automatic return of contro1 to the
monitoring routine, but also provide for (1) suppression of branching,
and (2) signaling to the monitoring routine when branching is attempted.
These properties considerably simplify monitoring routines. The

automatic return obviates the need for transplanting the instructions of
the object program into the monitor. The suppression of branching
ensures that the monitor can retain control without detailed testing of
the object instruction. The notification of attempted branching permits
the monitoring program to update the pseudo instruction counter for the
object program without detailed testing. Since this detailed testing of
the object instruction for branching and skips occupies a large part of
conventional monitoring programs, the execute operations make such
programs much more efficient. The EXECUTE INDIRECT AND COUNT

operation gives further efficiency because it automatically increments the
pseudo instruction counter.

A simple monitoring loop for performing a control trace in the 7030
computer reduces to :

Location Operation Address

100.0 EXECUTE INDIRECT AND COUNT Pseudo instruction counter
100.32 BRANCH 100.0

When a branch occurs in the object program, this loop is interrupted,
and a suitable routine records the tracing data and changes the pseudo
instruction counter.

The execute operations can in theory be put into any stored-program
computer. Their mechanization is somewhat simpler and more justifia-
ble in computers that use an instruction counter for norma1 sequencing.
Provision of the safeguards that permit the operation to be used for
monitoring is greatly simplified in computers that have program-inter-
ruption systems. In other computers, attempts by the object program
to change the sequence must be signaled by setting conditions that stop
the machine or are tested by branch instructions.

An obvious extension of the execute operations would be to have the
EXECUTE INDIRECT AND COUNT operation automatically change the
pseudo instruction counter when the object instruction is a branch.
There would still need to be an alarm to the monitoring program, how-
ever, so this function was not incorporated in the 7030.

Chapter 11

INDEXING
by G.A. Blaauw

II.I.Introduction

A basic requirement for a computer is that writing a program should
take less effort than performing the desired operations without the
computer. Most computer applications, therefore, use programs that
can be repeated with different sets of data. There are severa1 possible
techniques.

In the earliest machines the technique employed was to change the
content's of a few storage locations between successive executions of the
program. A lat'er method of achieving the same result was to change not
the data a t a given address but the addresses used by the program.
This procedure permitted many more storage locations to be used and
widened the scope of computer applications considerably. Early com-
puter~ , whose programs \vere specified by pluggable wiring, paper tape,
or cards, permitted little or no address alteration. The invention of
stored-program computers provided a major advance because it allowed
programs to be treated as data, so that any instruction of a program could
be modified by the program it,self. The main application of this genera1
facility was for the modification of addresses.

Subsequently, it became apparent that programmed address computa-
tion, though sufficient in theory, was cumbersome in practice. Too much
computing time and program space were required to perform these
auxiliary operations. A remedy was provided by an address register,
also called index register or B-line,' whose contents could automatically

Note: Chapter l 1 is a reprint with minor changes of G. A. Blaauw, Indexing and
Control-word Techniques, I B M J. Research and Development, vol. 3, no. 3, pp. 288-
301, July, 1959. A condensed version was published previously under the title, Data
Handling by Contro1 M70rd Techniques, Proc. Eastern Joint Computer Coni., Decem-
ber, 1958, pp. 75-79.

T. Kilburn, The University of Manchester High-speed Digital Computing
Machine, Nature, vol. 164, no. 684, 1949.

150

be added to the specified operand address to obtain the actual address of
the operand. In recent machines severa1 index registers-up to 100-
have been made available. Thus address computation has partly taken
the place of data transmission between storage locations and has sub-
sequently been simplified by the introduction of index registers.

Providing specialized machine functions, such as indexing, for opera-
tions that could also be programmed was not new. In theory, al1 machine
instructions but one are redundant; as noted in Chap. 9, an instruction
repertoire can be replaced by a single, well-chosen instruction. In prac-
tice, a repertoire of more than one instruction is justified by the operating
time and program space that are saved. Similarly, special-purpose
registers, such as index registers, may be justified when they increase
the effective speed and capacity of t.he computer enough so that the gain
in performance offsets the expense of the added equipment and improves
the performance-to-cost ratio. This type of performance gain should be
accompanied by greater programming ease. Programming ease greatly
affects the form that an added function should take, but, because pro-
gramming ease is hard to express in a cost figure, it is rarely used as the
sole justification for added equipment.

In the design of the IBM 7030, an attempt has been made to achieve
great flexibility and generality in machine functions. The indexing func-
tions and the associated instruction set, consequently, were examined
carefully. The general principles that were considered in this examina-
tion will be discussed first. The built-in functions that were developed
for the 7030 as a result of the examination will be described subsequently
and illustrated by examples.

I 1.2. Indexing Functions

Indexing functions may be divided into four groups: (1) address
modification, (2) index arithmetic, (3) termination, and (4) initializatioii.
The first group is used in addressing operands and provides the justifica-
tion for the existence of index quantities. The other groups concern the
task of changing the index quantities, the tests for end conditions, and the
set-up procedures. These operations are often termed houselceeping.

Address Modijìcation

The common use of an index register is the addition of its contents,
the index vaiue, to the address part of an instruction, which will be called
the operand address, in order to address memory with the sum, the
e$ective address. This operation is called address modijìcatzon. The
operand address and the index value remain unchanged in storage.

Address modification is used in general to address successively the
elements of an array. L4n array may be one-dimensional or multidimen-

sional, and its elements may be single-valued or multivalued. The
address of a value that is part of an array can be subdivided into three
distinct parts. The first part, the base uddress, identifies the location of
the array within memory. The second part, the element address, identi-
fies the location within the array of the element currently being used in
computation. The element address is specified relative to the base
address and is inbependerit of the location of the array in memory. She
third part, the relative address, specifies the location of the array value
relative to the current element. The relative address is independent of
the location of the array and of the selection of the current element. The

1203 1206 , 1209
0 1 0 o o j o o 0 1 0 o

FIG.11.1. Example of addressing of nearest neighbors in two-dimensional array.
Example shows a 6 X 5 array of three-valued elements, with relative addressing of
the second value of one element and of its four nearest neighbors.

array value may be part of the current element or it may be part of
another element. A well-know-li case in technical computation is the
addressing of right, left, upper, and lower neighbors of an element in a two-
dimensional array. Figure 11.1 illustrates this case and shows how the
address of a particular array value is formed as the sum of base address,
element address, and relative address.

The base address and relative address are constant throughout the
execution of the program. The base address is determined as part of the
task of memory allocation. The relative address is determined as part
of the programming task by the characteristics of the computation to be
performed. The element address, on the other hand, is not constant.
It changes as the computation proceeds from one element to the next.

Al1 three components, base, element, and relative address, must be
available during address modification. Therefore, each of these addresses

must be found either in the operand-address part of the instruction or in
the index values of index registers. In order to make address modification
effective, the variable part of the array address, the element address,
should be part of an index value. The relative address is used to address
different values for a given element address. In order to preserve the
identity of the selected element, the index value, which contains the
element address, must remaim unchanged. Therefore, the relative
address should be part of the operand address. The base address may be
part either of the operand address or of an index value. In the first case,
it is added to the relative address; in the second case, it may be added to
the element address.

Index Arithmetic

As computation proceeds, successive elements of an array are addressed.
The element addresses are generated by the algorithm appropriate for the
use of the array in the computation. Since the element address is part
of an index value, the address computation may be accomplished by
index arithmetic. Very often the algorithm is a simple recurrent process
in which a new index value is obtained by addition of an increment to
the old index value.

There are severa1 algorithms that cannot be described as simple
incrementing processes. In particular, some algorithms make use of
variables that are data or instructions rather than known parameters of
an array. The use of data in index arithmetic occurs in tabie reference
techniques. The use of inst'ructions in index arithmetic occurs in
indirect addressing. In this mode the effective address is used not as the
address of an operand but as the address of an instruction whose effective
address is the address of the operand (see Sec. 11.11).

The conventional use of the effective address as the operand address
is called direct addressing, in contrast to the indirect addressing mode.
In a simple incrementing process another addressing mode, immediate
addressing, is often used. In this mode the effective address is used as
an operand rather than as the address of an operand.

Termination

Each time an index is altered by index arithmetic, a test may be
performed to determine when the last element of the array has been
addressed. This process is called termination. Some of the forms of the
test are (1) limit comparison, (2) length subtraction, and (3) counting.
In limit comparison, the current index value is compared with a given
constant, the limit. In length subtraction, a given variable, the length,
is reduced by the value of the increment and tested for zero. In counting,
a given variable, the count, is reduced by 1 and tested for zero.

The three methods of test are closely interrelated. When the base
address is part of the index value, the limit is the sum of the base address
and the length; the limit has the advantages that it stays fixed and that
a comparison is rather simple to implement. The length, in turn, is
the product of increment and count and so is independent of any base
address to be added to the index value. Counting permits the test for
completion to be independent of bsth base sddress aind incrernent, so that
even an "increment" of zero is possible.

Instead of a separate quantity, such as limit, length, or count, the
index value itself can be used to determine the end of the process. In
that case, the index value serves as a length, or, in other words, a limit of
zero is implied. This approach, which is followed in the IBM 704, 709,
and 7090, requires a minimum of information, but the base address
cannot be part of the index value, and address modification must be sub-
tractive rather than additive. A greater degree of freedom in specifying
index values and tests is very desirable. Therefore, independence of
index value and termination test is preferred. In the 7030, counting
has been chosen as the primary means for determining the end of an index-
modification sequence. The conclusions reached in the course of the dis-
cussion are, however, equally valid when a limit or length is used.

After the last element of the array is addressed, the index value and
count must each be changed to the initial setting for the array to be
addressed next, which may be either the same array or another. This
housekeeping operation is called initialization. Of course, initialization
also occurs prior to the entire array-scanning operation. This case is
the least frequent; it is usually part of a more genera1 loading and reset-
ting procedure, and its characteri~t~ics influence the indexing procedures
to a lesser degree.

A summary of the indexing functions that have been described is
shown in Table 11.1. The quantities that occur in the indexing pro-
cedure for a simple array are listed in the second column. The opera-
tions that make use of these quantities are listed in the third column.

Function Operation

Index use Index value Address modification
Index change Increment Incrementing
Index test Count Counting and zero testing
Index reset Next initial: Replacement of :

Index value Index value
Count Count

Of the quantities listed, the index value is, of course, in the index
register. This leaves four quantities that must reside somewhere.
Earlier approaches have relied on storing these quantities in general
memory locations. Of the four operations listed, address modification
was usually the only built-in machine operation. In most earlier
machines the other three operations were performed by separate instruc-
tions. For the 7030 it was decided to combine three of the quantities
into one 64-bit index word, consisting of the index value, a count, and the
address of another index word (Fig. 11.2). These three quantities may
be used either independently or together by means of built-in combined
indexing operations. When the three quantities in an index word belong
to the same indexing or data-transmission operation, the word is often
referred to as a control word. The terms "index word" and "control

Chain and control bits
r

I

Index value 2 Count R e f i l l
I

FIG.11.2. Index or control-word format.

word" are largely synonymous, but the latter is intended to imply a
certain mode of operation that will be discussed in subsequent sections.

II.3. Instruction Format for Indexing

A general discussion of instruction formats was given in Chap. 9.
We shall here consider instruction formats more specifically as they are
affected by indexing.

Relative addressing requires at least one field in the instruction format
for direct-operand designation, called the operand address field, and one
field for indirect-operand designation, called the index address field.
The index-address field specifies the index used in operand-address
modification. I t is, of course, desirable to have a uniform system of
operand addressing, where address modification is available for each
operand.

I t would serve no purpose to provide more than one direct designation
for each operand. More index-address fields would be used rather infre-
quently. They might find application in multiple indexing, an index-
arithmetic algorithm which forms the sum of two or more independently
computed index values. It was decided not to burden every operand
designation with added index-address fields, but to provide instead a
separate instruction, LOAD VALGE WITH SUM, to be used only when needed.
This instruction adds any selected number of index values and places the
sum in another selected index value.

With an operand-address field and an index-address field required to

specify each operand and with severa1 operands necessary for most
operations, the instruction format would become inefficient unless implied
addresses or truncated addresses were used.

When two operands are needed for the usual single-address arithmetical
instruction, one of the operands comes from an implied address, the
accumulator, and the result is returned to an implied address, often
again the acctimulator. In the index-arithrnetic operations of the 7830
the use of such implied addresses has been extended by specifying more
than one operation in one instruction, as will be described in the following
sections.

The use of a truncated address, c~nt~aining fewer bits than norma1
operand addresses contain, saves instruction space, but i t also reduces the

(a) Single-address format

Operand address Operation

Operand address

(e) Two-address format

I

FIG. 11.3. In~t~ruction formats.

(b) Index arithmetic format

Operand address

number of available address locations and consequeritly makes the
instruction set less general. A truncated address for index registers
may be justified, however, (1) because a program usually needs only a
limited number of index registers, and a complete address would therefore
be inefficient ; (2) because limiting the number of index registers permits
preferred treatment for these registers to speed up index-arithmetic
operations and address modification; (3) becauee truncation of the index
address makes it practical to include a second index address in index-
arithmetic instructions, which greatly improves the efficiency of these
instructions.

Nevertheless, some applications require complete generality for index
addresses. For these cases an instruction RENAME effectively expands an
index address to fu11 capacity; it loads an index register from any desired
memory location, retaining the address of the memory location, and the
contents are automatically stored back a t the origina1 location before the
index register is loaded by a subsequent RENAME instruction.

I J

I Op.

Op.

Operand address Operation I

It would have been possible to improve the efficiency of operand speci-
fication by truncating the operand address. This method was not used,
however, since the size of relative addresses would have been restricted
and the base address could not then be part of the operand address.

In referring to the basic single-address format of the 7030, such aux-
iliary truncated addresses as the index address I used in address modifica-
tion are not counted. The I address is considered part of the operand
specification. Index-arithmetic instructions use a single-address format
to which a second index-address field J has been added so that the second
operand can be addressed explicitly. Some operations, for which two
complete explicit operand addresses are desired, use a two-address format
consisting of two single-address formats, each with an I address. Figure

INSTRUCTION INDEX WORD

Operand Operation Index lndex Refi11
address code address value Count address

Effective address
(to mernory)

FIG.11.4. Address modification.

11.3 shows the three basic formats. Figure 11.4 shows, in schematic
form, the basic address-modification function of indexing.

Index incrementing could be performed in the accumulator by a series
of three single-address instructions, which add the increment to the index
value and return the result to the index register. Actually, only the
increment and the index register to be modified need specification, and
the short index-arithmetic format can be used to specify an entire
incrementing operation, called ADD TO VALUE. This operation makes
use of the index adder provided for address modification. The main
arithmetical process for data is thus separated from the housekeeping
process, and data registers are not altered. In the ADD TO VALUE opera-
tion the operand address specifies the address of the increment to be

added to the value part of the index register specified by the index address
J. The operand address can itself be indexed by the index value speci-
fied by the index address I, just like any other operand address. This
gives indexable index arithmetic. A schematic diagram of the incre-

ADD T0 VALUE

COUNT

Next initial --mrH

REFILL

FIG. 11.5. Incrementing, counting, and realing. Operations may be performed
separately or in combination.

menting operation is shown a t the top of Fig. 11.5. Severa1 variations of
the basic ADD TO VALUE instruction, permitting sign inversion and immedi-
ate addressing, are also available.

The quantity used in incrementing is specified explicitly in the incre-
menting instruction of the 7030. A different approach is possible. The
increment could be associated with the index value such that the address

of the increment would be known whenever the index was addressed.
As pointed out in Chap. 9, an advantage is obtained from implied
addressing only when the implied operand, here the increment, remains
unchanged during repeated references. Furthermore, the incrementing
operation could then be combined with another operation that uses the
same index address. For instance, it would be possible to specify in
one single-address instruction the use and the subsequent incrementing
of an index. This method, however, loses it,s value when several different
increments must be used to change an index value or when the increment-
ing and index use must occur in different parts of the program. In order
to achieve greater generality, the separate ADD TO VALUE instruction has
been chosen in preference to a combined instruction.

11.5. counting

In the termination of array scanning, more than one count may be used,
just as several increments may be used in index arithmetic. A single
count is most frequent, however. It is, therefore, profitable to associate
the count used in the termination with the index value to which the
process applies and to use implied addressing. Since counting normally
occurs when the index value is changed, it is logically consistent to specify
incrementing and counting in one index-arithmetic instruction, ADD TO

VALUE AND COUNT. This instruction is available in addition to ADD TO

VALUE. I t becomes equivalent to count when the increment is zero.
An implied address for the count can be obtained in various ways.

A solution, economica1 in time and space, is to place both index value and
count as separate fields into the index register. These are two of the
three quantities that make up a contro1 word. The instruction ADD

TO VALUE AND COUNT adds the addressed increment to the index value,
reduces the count by l, and provides a signal when the count becomes
zero. Counting is shown schematically in the center of Fig. 11.5. (The
rejill operation, indicated a t the bottom of the figure, will be discussed in a
later section.)

The choice of counting as a test for termination and the use of an
implied address for the count do not preclude other termination tests.
In particular, a COMPARE VALUE instruction is made available to allow
limit tests, and instructions to add to or subtract from the count can be
used for the equivalent of length subtraction. Such extra instructions
add flexibility to the instruction set, but they are less efficient than ADD TO

VALUE AND COUST.

The following example, to be expanded later, illustrates the use of
counting in a simple technical computation. I t is required to multiply
vectors A and B. Each vector has n elements. Vector A has its first

element a t ao. Vector B has its first element a t bo. The product is
to be stored a t co. A is stored in successive memory locations. B is
actually a column vector of a matrix, whose rows have p elements and are
stored in successive memory locations. Therefore, the elements of B
have locations that are p apart. The program is shown in Table 11.2.

Instructions

Initial setup -+ f Load i from i o
f + l Load j from jo
f + 2 Set accumulator to zero

Vector multiply, inner loop f + 3 Load cumulative multiplicand from a*, t-
indexed by i

Multiply cumulatively by bo, indexed by j

Housekeeping, inner loop f + 5 Increment j by p
f + 6 Increment i by 1, count,
f + 7 Branch to f + 3 if count did not reach

zero

Vector multiply, outer loop f + 8 Store cumulative product co

Contro1 words Diag~amof uector dimensions I

Contents after executing the inner loop

x times:
Address

i
Index vahe

x
Courlzl
n - x

I
a0

A

i o O n
j ZP . . .
i o o . . .

Multiplicand and multiplier are specified in instmctions f + 3 and f + 4.
Their product is added to the accumulator, which c~nt~ains the sum of
the previous products, This operation is called cumulative multiplication.
The count in control word i terminates the cumulative multiplica-
tion. The count in control word j is not used. The example shows
that the use of the cont(ro1 words i and j in two instructions requires
five added instructions in order to change, test, and initialize these control
words. Three of the latter instructions are in the inner loop. Although
the simplicity of the arithmetical process in this elementary example tends
to overemphasize the housekeeping burden, it is clear that further sim-
plification of the indexing procedure would be desirable.

11.6. Advancing by O n e

An array in which elements have consecutive addresses, such as vector
A in Table 11.2, requires an increment of 1 to be added to the index
value. The frequent occurrence of a value increment of 1, often coupled
with counting, suggests the definition of an advance and count operation,
whicki is the same as ADD TO VALUE AND COUNT with an implied increment
of 1. Because the increment is implied, the operand address is free for
other use; so the advance and count operation can be combined with still
another single-address operation. A suitable candidate for such com-
bination is the conditional branch operation that refers to the zero-count
test. The new instruction, which also has severa1 variations, is called
COCNT AND BRANCH. The variations add no new indexing concepts and
will not be discussed in detail.

In the example of Table 11.2, instructions f + 6 and f + 7 can be
replaced by a single COUNT AND BRANCH operation.

I I .7.Progressive Indexing

In discussing index use it was pointed out that a base address can be
part of either the operand address or the index value. When the base

performoperation \v , , ,
using V as effective
operand address
Increment V by A
Count and refill, i f decired
(as beforel

FIG.11.6. Progressive indexing.

address is part of the index value and the relative address is zero, the
operand address is not used a t all. The main operation can then be
combined with an ADD TO VALUE AXD COUNT operation. The index
value is first used as an effective address to address memory; subsequently
it is incremented by the operand address, which acts as an immediate
increment. This is the same order of events that occurs when two
separate instructions are used. The operation part of the instruction,

besides specifying the arithmetical operation, also specifies: Use the index
value as the efective address, and subsequently increment and count. This
type of indexing will be called progressive indexing and is shown in Fig.
11.6. Simple arrays that permit progressive indexing are frequently
encountered both in data processing and in technical computations.

In the vector-multiplication problem of Table 11.2, the base addresses
a0 aad òo could have been placed in the value field of io and j o , respectively.
If progressive indexing were used, instruction f + 5 could be combined
with f + 4 and, instead of using the COUNT AND BRANCH operation sug-
gested in the previous section, instruction f + 6 could be combined with
f + 3. As a result, the program would be shortened both in instructions
and in execution.

e Load element R, length r bits, from location specified by i, and increment i
by r .

e + l Compute with element R.
e i - 2 Load element S, length s bits, from location specified by i.
e + 3 Compute with element S.
e + 4 Store new element S, length s bits, a t location specified by i, and increment i

by s.
e + 5 Add l to element T, length t bits, in location specified by i, and increment i

by t.
e + 6 Load accumulator with a constant.
e + 7 Compare accumulator to element C, length u bits, in location specified by i,

and increment i by u.

FIG.11.7. Progressive indexing on elements of varying length.

The use of progressive indexing in a data-processing operation is illus-
trated in Fig. 11.7. A series of elements of different lengths is processed.
During the computation appropriate for each element, addressing of the
element is combined with progressive indexing. As a result, processing
can proceed from one element to the next without extra index arithmetic.
The example also shows the use of indexing words and bits within a word,
as provided in the 7030.

11.8. Data Transmission

When an increment of 1 is implied, as in the COUNT AND BRANCH

operation, the count becomes the equivalent of a length and represents
the number of adjacent words in the addressed memory area. When,

furthermore, the index value is used as an effective address, as in pro-
gressive indexing, the initial index value is the base address that refers
to the first word of the memory area. A memory area can, therefore, be
specified in position and length by the value field and count field of a
control word. This makes it convenient to specify the memory areas
involved in data transmission by means of control words and gives the
control word the characteristic of a shorthand notation for a memory
area.

Data may be transmitted between two memory areas or between input-
output units and memory. The block of data transmitted in a single
operation will be assumed to consist of one or more records (see Chap. 4).
A control word may be used for both indexing and data transmission.
This generality makes it possible to associate a control word with a
record and to use it to identify the record throughout an entire program,
including reading, processing, and writing. The use of control words in
transmitting data directly between input-output units and memory is
further described in Chap. 12.

Data Ordering

A common procedure in data-ordering operations, such as sorting,
merging, queuing, inserting, and deleting, is to move records from one
memory area to another. With control words it is possible to replace
the transmission of a record containing many data words by the trans-
mission of a single control word specifying that record.

As an example, consider n records stored in random order. I t is
desired to write the records on tape in a sequence determined by com-
paring one or more identi$er fields in successive records. After the
comparison is made, the actual sequencing is accomplished by ordering
the control words associated with the records. To make the comparison,
the identifier of each record is located by specifying its address relative to
the base address in the control word for that record. In the course of this
procedure the control words may be placed in the correct order in suc-
cessive memory locations. The sequence of the control words then
specifies indirectly the sequence of the associated records. When the
records are written on tape, the control words are used in the order of
their addresses. Consequently the records appear on tape in the desired
sequence. No record transmisson is required other than from memory
to tape.

The preceding example illustrates the case of a group of records that
are to be moved as one block. The records cannot be described by a
single control word since they are not necessarily in successive memory
locations if their sequence is to be changed. The block is then described
by a series of control words. The transmission to or from input-output

devices can, however, be mechanized as a single operation by defining a
chain of control words.

A control-word chain is started by the control word specified in the
instruction. The chain may be continued by taking control words
from successive memory locations. The chain is ended when some kind
of end condition is sensed. A convenient end condition is the presence or
absence of a bit in the control words. This bit will be called the chainJiag
or indezJlag. Thus, a single input or output instruction can, by means of
a chain of control words, initiate the transmission of a group of records.
Records that appear in memory in random order are said to be scattered.

Contro1 words were introduced in the IBM 709 in order to permit
grouped-record transmission to or from external devices. In the IBM
7070, control words can be used both for grouped-record transmission and
for indexing. Both machines establish a chain of control words by plac-
ing the words in consecutive memory locations.

Old New

An example of data ordering is t,he deletion of one record from a group
of records. Assume that the records A . . . Z are in consecutive mem-
ory locations. To delete record D from this series, the records E . . . Z
may be moved to the locations previously occupied by D . . . Y . The
use of control words greatly simplifies t,his procedure. The grouped

The chaining concept has been developed independently by Newell, Shaw, and
Simon, who have shown many interesting examples of its function on a simulated
computer. A. NewelI and J. C. Shaw, Programming the Logic Theory Machine,
Proc. Western Joint Computer Con.., February, 1957, pp. 230-240; A. Newell, J. C.
Shaw, and H. A. Simon, Ernpirieal Explorations of the Logic Theory Machine, ibid.,
pp. 218-230; A. Newell and H. A. Simon, The Logic Theory Machine, I R E Trans. on
Inform. Theory, IT-2, no. 3, pp. 61-79, September, 1956; J. C. Shaw, A. IrTearell,H. A.
Simon, and T. O. Ellis, A Command Structure for Complex Information Processing,
Proc. Western Joint Computer Conf., May, 1958, pp. 119-128.

records can be in random order in memory with their order established
by control words in consecutive memory locations. The deletion of
record D is accomplished by removing its control word from the table of
control words and moving al1 subsequent contro1 words one space, so
that they again form a continuous table. Table 11.3 illustrates this
procedure. Each letter now represents a control word rather than
the actual record. The insertion of a record in a group of records may
be handled by reversing this process.

Some conclusions may be drawn concerning the use of control words in
data transmission and data ordering.

1. Since record transmission is replaced by control-word transmission,
an advantage in storage space and transmission time is achieved. The
advantage of the procedure is dependent upon the size of the record.
When a record is only one word long, it is, of course, more advantageous
to transmit records directly.

2. The location of a record and its control word are independent, which
facilitates data ordering by control-word manipulation.

3. The use of identica1 control words for both indexing and data trans-
mission simplifies data-ordering operations.

4. The records can be scattered in memory. The contro1 words, how-
ever, have their sequence indicated by the sequence of their memory
addresses. As a result of this restriction, activity on one record may
require relocation of severa1 control words for subsequent records.

The advantage of using control words in data handling is increased
when control words as well as records can be scattered. If control words
may be located at random addresses, a means for specifying their sequence
in a chain must be provided. A straightforward solution has been found:
into the contro1 word is introduced a rejill field, which specifies the mem-
ory address of its successor. The control (or index) word then contains
three major fields: the value field, the count field, and the refi11 field, as
shown in Fig. 11.2.

This solution is particularly attractive since it also completes the
indexing requirements stated in Table 11.1. It was shown a t that point
that an indexing operation required specification of the following:
index value, increment, count, next initial index value, and next initial
count. Al1 these quantities except the last two have been specified so far,
either in instructions or in the contro1 word. The last two quantities
can now be specified by the refi11 address. This address can refer to a
second control word, whose value and count field specify the next initial
setting. In fact, the second control word is the next initial control word.

The refill field then serves the general purpose of linking a control word
with the next control word to be used.

The operations that use the quantities mentioned above were listed in
Table 11.1 as follows : address modification, incrementing, counting and
zero testing, replacement of index value and count. Al1 these operations,
except for the last, have been specified as machine functions. The last
speraticn can now be restated as: RepLace the index word by the word at Zts
reJill address location. The operation as stated makes use of an implied
address. Therefore, the operation can be part of an ADD TO VALUE,

COUNT, AND REFILL instruction. This combination of operations is
meaningful only when the refill operation is conditional. An obvious
condition is that the count reach zero. Refilling is shown a t the bottom
of Fig. 11.5. The instruction repertoire includes other related instruc-
tions, such as an unconditional operation REFILL.

The refill operation can also be incorporated in input-output data-
t ransmission control. The control words comprising a data-transmission
chain need no longer be in successive memory locations. One control
word can refer to the next through its refill address. The chain flag
indicates the termination of the chain and hence stops transmission (see
also Chap. 12).

The refill function requires that the refill address be part of the index
word. When a computer word is not large enough to contain al1 three
fields, a partial solution can be found by using two adjacent words in
memory. This procedure has been used in the input-output control of
the IBM 709. In that machine, a set of consecutive control words may
be joined to a set a t another location by in~ert~ing a word having the char-
acter of the instruction: Continue with the control word at the speci$ed
location.

An alternative use of the refill address has been considered. The refill
address could be used as a branch address rather than as a control-word
address. With this procedure, whenever the test condition is satisfied,
a branch is made to a subroutine that takes care of al1 termination and
initialization procedures. As a minimum, the control word can be
reloaded, but more elaborate programs can be performed. This pro-
cedure is more general than the refill operation defined above. The cost
of this generality, however, is loss in efficiency in the minimum reload
procedure: a branch as well as a load operation is performed, and each
control word requires an associated load instruction. In other words, the
use of an implied address in the main program is obtained a t the expense
of explicit addresses in a subroutine. The ability to permit more elabs-
rate initialization procedures is often incompatible with the use of the
control word in different parts of a program. For these and other
reasons, the refill operation in the 7030 has been preferred to the branch
procedure or to any of the many variations thereof.

SEC. 11.1 l] INDIRECT AND INDEXING167ADDRESSING IKDIRECT

I I.II. Indirect Addressing and Indirect Indexing

Indirect addressing consists in substituting another address for the
address part of an instruction before that instruction is executed, without
changing the instruction as stored in memory. A simple and effective
form of indirect addressing is found in the IBM 709 and severa1 other
machines, where, under the contro1 of an instruction bit, the operand
address Al refers to another word in memory where the actual address
A2 of the fina1 operand is located. I t is possible to extend indirect addres-
sing to more than one leve1 by having the address A2 refer to yet another
word containing address AS, which in turn refers to A*, etc., unti1 the
process is terminated either by an end mark of some kind or by previous
specification of the number of levels desired.

So that it will not be necessary in the 7030 to tie up a bit in every
instruction for indirect addressing, a separate instruction, LOAD VALUE

EFFECTIVE, is provided, which serves, in effect, as a prefix to the main
instruction. The operation is illustrated in Fig. 11.8. Basically this
instruction fetches an address from memory and places it temporarily
in an index register. If this address is to be used as an indirect address in
a subsequent instruction, a zero address part is added to the contents of
the same index register by the regular address-modification procedure.

More precisely, the effective address of the LOAD VALUE EFFECTIVE

instruction is used to fetch a second instruction word from memory.
If that instruction again has the operation code of LOAD VALUE EFFECTIVE,

the process is repeated and another instruction word is fetched. The
indirect-addressing process terminates when the operation code is any-
thing other than LOAD VALUE EFFECTIVE. The final, indexed operand
address is stored in an index register, specified by the initial LOAD VALUE

EFFECTIVE instruction. This procedure permits any number of levels of
indirec t addressing.

If the address part of the using instruction is not zero, the process may
be termed indirect indexing, which gives another degree of flexibility
over indirect addressing.

LOAD VALUE EFFECTIVE plays a second role in the 7030. Its operand is
assumed to be an instruction word, and the operation code of the instruc-
tion word is examined to determine whether its address part is 18, 19, or
24 bits long. The address is automatically transformed to a standard
24-bit length before it is placed in the value part of the index register.
Al1 other indexing instructions, such as LOAD VALUE, are assumed to
refer to index words; they do not provide format conversion, and their
operands cannot be indexed.

The particular implementation of indirect addressing in the 7030 sug-
gests the strong relationship between indirect addressing and additive
address modification. Both processes modify addresses "on the fly"

and serve to reduce the number of places where the program must alter
addresses. In smaller machines, where a separate index adder may not
be economically justified, it is possible to use indirect addressing instead

LOAD VALUE
E F F E C T I V E (LVE)

First level
(Op. again LVEI

Second level
(Op. not LVE)

A subsequent
instruction

FIG.11.8.Indirect addressing and indirect indexing. If A = 0: indirect addressing.
If A q # 0: indirect indexing. LOAD VALUE EFFECTIVE ean be repeated automatica111
any number of times; tuTo levels of indirect addressing are shown; last level is one
where operation code encountered is something other than IXE.

of addit'ive address modification and to form and increment the indirect
addresses with ordinary arithmetical instructions. Fast substitution is
simpler to implement than fast addition. The function of additive modi-
fication finds such frequent use, however, that extra equipment for fast
indexing is fully justified in the larger machines.

II .I I. Indexing Applications

The basic indexing formats and functions have been defined in the
preceding sections. In the rest of this chapter the use of the indexing
mechanism will be demonstrated; the examples used above to illustrate
its evolution will be reexamined, and some more elaborate applications
will be considered. Of the indexing applications, the simple example of
vector multiplication described earlier will be discussed, and also its
expansion to matrix multiplication.

The vector-multiplication program was listed in Table 1 1.2. The same
program using the reJil1 operation is shown in Table 11.4. Here the

Instructions

Preparation g - 2 Load i from io
q - 1 Load j from i o

Initial setup -9 Set accumulator to zero

Vector multiply, inner loop q + l Load cumulative multiplicand from a. in-+-
dexed by i

9 + 2 Multiply cumulatively by bo indexed by j

Housekeeping, inner loop g + 3 Increment j by p, count, refill when count
reaches zero

9 + 4 Advance i, count, refill when count reaches
zero, branch to g + l when count does not
reach zero

Vector multiply, outer loop q + 5 Store cumulative product a t co

Contro1 words Diagrarn o j veetor dirnensions I
Contents after executing the inner loop x l

times :

Address Index value Count Rejill ,&
A
...

i x n - x i o

i o O n i o

j ZP n - x io

contro1 words are automatically reset. When the program is executed
repeatedly, it is sufficient to start a t the initial setup instruction g.
When, however, the execution of the program is stopped prematurely
and must be restarted, the preparatory steps g - 2 and g - 1, which

load i and j, respectively, are required. Thus loading of i and j should
always be part of the program-loading procedure. The control words i
and j are specified by truncated addresses and are located in the index
registers. The control word i o has a complete address and can be located
anywhere in memory. The program illustrates the use of a COUNT,

BRANCH, AND REFILL instruction. Because the base addresses a0 and bo
are part of the operand address, the contro1 word i o can serve as a refill
word for both i and j.

The program for matrix multiplication is outlined in Table 11.5 (it
is also included in the Appendix as a programming example using actual
instructions). Again the initial setup instruction h would be sufficient
ordinarily, but preparatory instructions h - 2 and h - 1 are needed to
permit restart after premature stoppage.

Al1 three matrixes are assumed to be stored row by row. Index i
progresses across the rows of matrix A, being advanced by 1 a t the com-
bination index-and-branch instruction h + 7. Index i repeats the same
row p times, being refilled from i o each time a t the end of the row. Index
iois then advanced by n to the next row (at h + I l) ; the process is
repeated m times. Similarly, index j progresses down the columns of
matrix B. j is incremented n times by p (at h + 6), after which jo
is advanced by 1 to the next column (at h + 10) and used to reload
j (at h + 2). The incrementation of jo is counted p times and used to
determine the end of the product row. jo is then refilled from joo to
start again a t the beginning of matrix B for the next product row. Index
k is used to progress row by row through the product matrix C and to
determine the end of the entire matrix multiplication.

The program shows that a reasonably complex indexing procedure can
be described satisfactorily and compactly. The following observations
may be made:

1. Only instructions h + 6 and h + 11 contain constants that describe
the locations and dimensions of the matrixes. Both instructions could
use a direct address instead of an immediate address, however. In that
case, the program would be independent of the data. The use of a direct
address slightly increases execution time.

2. The constants describing matrix locations and dimensions appear as
single quantities in instruction and control-word fields. Note that only
control words ioo, Al1 other joo,and ko are supplied by the programmer.
control words are developed during program execution or preliminary
setup.

3. The automatic refill is used in the inner loops. The refill operation
is supplemented by load operations in the outer loops. The refill operation
is no substitute for preparatory operations required for restart procedures.

Instructions

Preparation h - 2 Load ii from ko
h - l Load jo from joo

Initial setup +h Load iofrom i 0 0

New product row procedure h + 1 Load i from iot
New vector product h f 2 Load j from jo t

procedure h + 3 Set accumulator to zero
Vector multiply, inner loop h + 4 Load cumulative multiplicand c

from location specified by i
Multiply cumulatively by operand loca-

tion specified by j
Housekeeping, inner loop h + 6 Increment j by p

h + 7 Advance i, count, r e a l when count
reaches zero, branch to h + 4 when
count does not reach zero

End of vector multiplication h + 8 Store cumulative product a t location
procedure specified by Ic

h + 9 Increment k by l
h + 10 Advance jo, count, r e a l when count reaches

zero, and branch to h + 2 when count
does not reach zero

End of product row h + l 1 Increment ioby n
procedure h + 12 Reduce count of Ic, refill when count reaches

zero, and branch to h + l when count
does not reach zero

Contro2 words Diagram of matriz dimensz'ons

Contents after executing the inner loop x

times for the product matrix element e,,:

Address Index vaiue Count Refi11

i a o + r n + x n - x i o

i o a0 + rn n i o

i o 0 ao n i o

j b o + s + x p p - s ~ O O

jo bo + s p - s j00

k c o + r p + s m - r Ico

II .I 3. Record-handling Applications

Record-handling techniques have application both in technical com-
put,ation and in data processing. The examples to be discussed are a
read-process-write cycle, ordering, and a file-maintenance procedure.

The use of control words for a simultaneous read-process-write cycle is
illustrated in Fig. 11.9. Here X-x describes a control word, which,
by its value and count fields, defines memory area X and which has the
address x in its refi11 field. Location x contains the next control word
in the chain, Y-y, defining record Y. Control word 2-x is placed a t
location y. Because control word X-x is stored a t locatlion x , a ring

Mernory

areas

Locati on Contro1 word Control words used

x y-Y Read X-x, Y-y, 2-2, X-x,
Y 2-2 Process X-x, Y-y, 2-Z,
z X-x Write X-x, Y-y,

F I G . 11.9. Read-process-write chain.

of three memory areas, X, Y, and 2, is set up in which X is followed by
Y, Y by 2,and Z again by X. Both record areas and control words may
be scattered throughout memory. n'ote that, in this notation, an upper
case letter is used to denote the location of a record area and the cor-
responding lower-case letter is used to denote the location of the control
word of the next area in sequence.

The example of Fig. 11.9 shows the sequence of operat'ions in a read-
process-write cycle. While a record is being read into area 2,as controlled
by control word Z-x, processing proceeds with control word Y-y
using data in area Y, and data from area X are written under control of
control word X-x. At the conclusion of each of these operations, the
appropriate control word is refilled, and the areas are thereby cyclically
permuted in function.

Instead of a single control word, a chain of n control words could be
used in reading, while a second chain of n control words is used in pro-
cessing, and a third chain of n control words is used in writ'ing. To
further elaborate the example, assume that processing consists of placing
the n records in s preferred sequence. This sequencing operation was

described above. Because of the refi11 field, however, the control words
do not have to be in sequential locations. The advantage of this added
degree of freedom will be shown in the following examples.

Assume that the records A . . . Z are scattered throughout memory.
The associated control words A-a . . . 2-2 establish their order,
The correct order is here indicated by the alphabetic sequence. I t is
desired to delete record H , which is out of sequence, and to set its memory
area aside. The control word H-h of this record is part of the chain
C-c . . . K-lc shown in the left half of Table 11.6. Interchanging
the contents of locations d and h establishes a new order, as shown in the
right part of Table 11.6, and H is no longer part of the sequence. A
second interchange between d and h would reinsert H. Thus the com-
plementary nature of insertion and deletion is reflected in the program-
ming procedure.

Before After

Control Contro1 Contro1
Location word Location word Location word

If it is desired to insert H in the sequence . . . G, I,J, . . . between
G and I, the second interchange would be between g and h. Table 11.7
illustrates this case.

Because the sequence . . . G, I, J, . . . is part of the sequence
A . . . Z, the example is equivalent to a sorting operation. The
sequence . . . G, I,J, . . . may equally well be part of an independent
sequence, as it is in file maintenance.

The interchange of two control words is performed conveniently by a
SWAP instruction. This instruction interchanges the contents of two
memory words. The insertion or deletion of a record involves only the
SWAP of its control word with that of its successor. The insertion and
deletion of a group of records is equally simple. Consider again the

174 INDEXING [CHAP. 11

file A . . . 2. It is required to delete the group P . . . R from the file
shown on the left in Table 11.8. A SWAP instruction is given for loca-
tions C and r, and so the new order becomes as shown on the right in
Table 11.8.

TABLE11.7 RECORDINSERTION

Before After

Contro1 Contro1 Contro2
Location word Location word Location word

Before After

Contro1 Control Contro1
Location, word Location word Location word

One SWAP instruction deletes the group of records just as one SWAP

instruction in the previous example deleted a single record. The only
differences are the addresses of the instruction. The records P . . . R
form a ring in sequence. (In the previous example, the deleted record H
could be considered to form a ring in sequence, since its contro1 word was
stored at its own refi11 location.) The reinsertion of the records P . . . R

can be performed by swapping again the contents of locations C and r.
In these examples the sequence of control words is changed by trans-

mitting entire words. A different approach is to transmit refi11 fields
only, leaving the rest of the cont,rol word unchanged in memory. This
method can also be used in many applieations.

I I .I4. File Maintenance

A simple case of the updating of a master file from a detail file will be
discussed. Four tapes are used: the old master tape, the new master
tape, the detail input tape, and the detail output tape. The detail
records are processed in a simple input-process-output operation such as
that described above. The master records are read from the old master
tape, processed, and written on the new master tape. Reading, writing,
and processing take place simultaneously. The processing of a master
record may involve :

1. S o activity
2. Lpdating
3. Deletion of obsolete records
4. Insertion of new records

Master records are read and written in blocks, each block containing a
group of m records. Memory space is set aside for a total of 4m master
records and their control words. Yormally, m records are written on
the new master file while m records are being read from the old master
file. The remaining 2m record spaces are available for processing.
These record spaces are divided into two groups: the current spaces and
the spare spaces. The current record spaces contain records that either
have been processed and are ready to be written on the new master tape
or have been read from the old master tape and are available for process-
ing. The spare record spaces contain no useful record information. The
number of current and spare spaces varies throughout the processing,
but their sum remains 2m.

The control words used in reading and writing and the control words of
the current records form a ring. The control words for the spare record
areas also form a ring. Figure 11.10 shows the control words in diagram
form and illustrates the cases discussed below for m = 8.

When a record is inactive or requires updating, the number of current
and spare records remains unchanged. The record is addressed by means
of its control word. After the processing is completed, the current con-
trol word is replaced by the next one in order by means of a REFILL

instruction. The record is ready to be written on the new master tape.
A count is kept of the records that are ready to be written. When the
count equals m, a WRITE instruction is issued which is followed by a READ

- -

MASTER PROCESSING RING SPARE RING

Updating or no activity m$ay ;?@
2l readyupdatedfor or writinginactive
k r e a d y for processing

9 current Q
7 spare

\5 ready f o i processing

9 current -9 _-i..i
I spare
1 inserted

,6 ready for writing

Excess deletion None available for processing

correction

Deletion

10 spare
8 deleted

Insertion

2 ready for writing 4 spare
1 deleted

Excess insertion
correction -----------------*

/ \

No spare
8 inserted

7 ready for writing
None available for inserting

/ Z r e a d y for processing

16 current

FIG.11.lo. Control-word diagram for fìle maintenance.

instruction. The record space of the records just written is used for the
records to be read. The records just read are available for processing.

When a record is found to be obsolete and should be deleted, its control
word is removed from the ring of current control words and inserted in the
ring of spare control words. Because the control word is deleted, its
record is not written on the new master tape. The count of records
ready to be written is not changed. The control word of the next record
is obtained, and processing continues.

When there is an excess of deletions, al1 current records may be pro-
cessed before m records are ready to be written. In that case the num-
ber of spare record areas is always larger than m, and a corrective step
can be taken. This step consists of deleting m control words from the
spare ring and inserting them in the read-process-write ring. The con-
trol words are inserted as a block preceding the control words used in
reading and following those used in writing. An extra READ instruction
is given, and processing proceeds with the records that have just been
read.

When a new record is to be inserted, a control word is removed from
the ring of spare control words and inserted in the ring of current control
words. The corresponding record area is then available for the new
record. After the new record is processed, it is ready to be written.

When there is an excess of insertions, the spare control word ring may
have been reduced to zero. A corrective step then should be taken:
m control words are deleted from the read-process-write ring and used
as a new spare ring. The m control words deleted are those last used in a
WRITE operation. Writing is checked for completion. The next time
that m records are ready to be written, the WRITE instruction is given,
but the READ instruction is omitted.

The file-maintenance procedure outlined above illustrates the use of
insertion and deletion of single records and groups of records. Al1 the
manipulations described are performed conveniently with control words
and would require a great dea1 of housekeeping without the refi11 feature.

II.I5. Subroutine Control

Another application of control words is in subroutine control. In
the preceding discussion the control word specified a memory area that
normally would contain data. The memory area might also contain
instructions, however. A subroutine may be thought of as a record.

As an illustration, consider the use of exception subroutines, which are
stored on tape, drum, or disk and are called in when the associated
exceptions arise. The control word is used in the READ instruction; it
can subsequently be used for address modification in the BRANCH inst'ruc-
tion that refers to the subroutine and in the instruction that stores the

instruction-counter contents. The subroutines, therefore, csn be inserted
conveniently in a main sequence of instructions.

11.l6. Concl usion

The preceding discussion has shown the application of control words in
address modification and in record handling. Both indexing and data-
tranumissisn techniques make it desirable to have an index zlalzle, count,
and re$lt facility. The three fields in the control word and the associated
machine functions satisfy these requirements. The control words pro-
vide substantial saving in program space and increase in machine speed.
They simplify programming of housekeeping operations.

Contro1 words do not introduce entirely new functions, since their
operation can be simulated on any stored-program computer. & m 7 the
int,roduction of count and reJiEl is only a second-order improvement as
compared with the first-order improvement of address modification
through indexing. Control-word operation is, however, so much sim-
pler than its simulation that severa1 otherwise impractical methods of
record control have now become feasible.

The indexing instructions have been described as they appear in the
IBM 7030. Though elements of the system discussed here have been
used in other machines, the 7030 control-word system as a whole is new,
for the effectiveness of these techniques depends largely on the combina-
tion of al1 the features.

Chapter I2

INPUT-OUTPUT CONTROL
by W. Buchholz

12.1. A Generalized Approach to Connecting Input-Output and
External Storage

One of the drawbacks of early computers was the primitive nature of
their input and output equipment. A small amount of data might be
entered on paper tape, computation would then proceed, and results
would finally be printed on a typewriter. Subsequent development of
input-output and external storage devices has given us not only faster
equipment but also a greater variety. Magnetic tape, drums, and disks
provide external storage to supplement the interna1 memory. Card
readers, card punches, and mechanical line printers have become com-
monplace items in most installations. Fast cathode-ray-tube printers,
displays, and plotters provide alternative output means. Phone lines
and inquiry stations allow direct communication with computers.
Analog-digital conversion equipment permits digital computers to be
used to control continuously variable processes.

The list of input-output equipment may be expected to grow, and, as
it grow-s, a cornputing installation will come to be characterized more by
the array of external units than by the nature of the centra1 computer.
It is, therefore, desirable to avoid restrictions on the number and kinds of
units that can be connected to a general-purpose computer. To achieve
sufficient generality, the design of the 7030 input-output system followed
these principles :

1. A large number of logically identica1 and independently operable
input-output channels should be provided.

2. The input-output instructions should be independent of the nature
of the units they control. They should identify a channel and the con-
nected input-output unit only by addresses.

3. As a corollary, there should be no equipment in the computer that is
179

peculiar to any kind of Pnput-output unit. Al1 control circuits peculiar
to a given unit are required to be part of the control box for that
unit .

4. The operat'ion of a channel should be independent of t'he speed of
the input-output unit connected to it up to the maximum speed for which
the channel is designed.

Because of the enormous range of speeds encountered (from O to
about 10,000,000 bits per second), i t was found desirable to provide more
than one kind of channel, so as to cover the speed range economically.
The differences lie niainly in the number of bits transmitted in parallel
and the number of channels sharing common equipment. The discussion
here will be concerned only with the basic channels, which can transmit
8 information bits in parallel a t a rate of over 500,000 bits a second.
More parallelism is needed, with present technology, to go to much higher
speeds; serial-by-bit transmission may be desired to reduce the cost per
channel when a large number of quite slow units are to be connected.
It should be noted that the variations are associated only with speed
ranges, not with functional differeiices.

The execution of input-output instructions takes place in a portion of
the computer called the exchange. The exchange accepts input-output
instructions from the instruction-preparation section of the computer and
executes them independently of the rest of the computer. The exchange
also contains common control equipment which is used in time-shared
fashion by al1 channels operating simultaneously. The exchange is
described in Chap. 16. The present chapter is concerned mostly with the
instruction logic for operating any one channel.

12.2. Input-Output Instructions

Four basic instructions make up almost the entire repertoire for per-
forming any kind of input-outlput operation: WRITE, READ,COSTROL,

LOCATE.
WRITE causes a stream of data from the computer memory to be trans-

mitted to an external unit, there to be written oli a storage or recording
medium. Conversely, READ initiates the flow to the computer memory
of data that have been read on a storage or recording medium a t an
external unit. The medium may be a physical medium such as tape,
cards, or paper; i t may also be a phone line or the memory of another
computer, which may be connected to this computer as if it were an input-
output unit. (The terms writing and reading are used here in such a way
as to describe the data flow with respect to the input-output unit. To
avoid confusion, the different terms storing and jetching are used to
describe the data flow with respect to interna1 memory.)

SEC.12.31 DEFININGTHE MEMORYAREA 181

Each WRITE or READ instruction contains two addresses (Fig. 12.1):
the channel address identifying the channel to which the desired unit
is connected, and the control-word address specifying the memory location
where additional information for executing the instruction is to be found
in the form of a control word.

CONTROL and LOCATE resemble WRITE in that bits are transmitted to the
external unit, but these bits are not data to be recorded. In CONTROL

the bits, which are obtained from the second-address part of the instruc-
tion itself, are a code to direct the unit to perform specified functions
other than writing or reading. In LOCATE the bits constitute a secondary
selection address which is needed by some kinds of external units.

Channel address Second address Operation

l l
Control word address WRITE
Control word address READ with Or w i t h o ~ t
Control code CONTROL end of operation
Selection address LOCATE interrupt
(Not used) RELEASE 1
Control word address COPY CONTROL WORD

FIG.12.1. Principal parts of input-output instructions.

There are two more instructions, COPY CONTROL WORD and RELEASE,

which perform certain auxiliary functions in the exchange. Their use is
infrequent, and they will not be considered further.

12.3. Defining the Memory Area

Basically, the control word (see Fig. 12.2, also Chap. 11) defines a
continuous area in memory, which is the source of the data stream during
writing or the sink for the data stream during reading. The location of
the area is defined by the data-word address, which specifies the address of
the first word, and the size of the area is defined by the count, mhich gives
the total number of words in the area. (For simplicity, input-output
operations ean address only fu11 memory words of 64 bits, and memory
areas can be defined only as multiples of fu11 words.) The first word is
always the word at the lowest address. Writing or reading starts a t that
address and, unless otherwise specified, steps through progressively higher
addresses to the end of the area, as defined by the count.

Each control word can define only one continuous memory area, but
severa1 control words can be chained together so that a single writing or
reading operation can proceed through more than one continuous area.
For this purpose, each control word contains a refi11 address, which gives
the location of the next control word to be used, and a chain flag, which

defines the extent of the chain. A chain flag of l permits writing or
reading to continue automatically beyond the atrea of the current control
word to the next area specified indirectly by the refill address; a chain
flag of O stops the process a t the end of the current area regardless of
what is in the refill address.

Thus, a chain of control words defines a memory area in the larger
sense in which successive words are not necessarily at consecutively
numbered addresses. Because the same chain of words can be used as
control words during reading, as index words during computing, and

FIG. 12.2. Contro1 word.

Count

again as control words during writing, powerful procedures are available
for complex record handling, as described in Chap. I l .

Refill

12.4. Writing and Readins

When a WRITE or READ instruction is given, the unit attached to the
channel specified is started and data are transferred between that unit
and the memory area defined by the specified control word (or chain of
control words). Xormally, a single block of data is t,ransferred each time
an inst'ruction is given; a block of data is defined for each type of unit as
the amount of inf~rmat~ion recorded in the interval between adjacent
starting and stopping points of the recording medium.

The length of the block depends on the type of unit used. I t rnay be
the contents of one punched card, a line of printing, or tlhe information
between two consecutive gaps on magiietic tape. In some unit4s the
length of each block rnay be fixed by the design of t he unit (card reader or
line printer), but in other units the block length rnay be left variable
(magnetic tape). Again, the length of a block rnay correspond to the
natura1 size of one unit record; it rnay be set t80 correspond to a group of
such records (e.g., for greater eficiency on magnetic tape) ; or it rnay
occasionally be neither.

Thus, the size of the memory area is defined by the control word, and
the length of the block is often, but not always, defined by the unit.
One can distinguish three cases:

l. The block length is not defined, and the operation terminates when
the end of the memory area is reached (including any chaining). For
example, in writing on magnetic tape, the tape uiiit stops and creates an
interblock gap whenever the last memory address of the last control word
in the chain is reached. (Writing tape is different from reading tape,
where the block size is defined by the previously written interblock gap.)

2. The block is shorter than or equa1 in length to the defined memory
area, and the operation stops a t the end of the block. The rest of the
memory area, if any, is ignored.

3. The block is longer than the defiiied memory area, and the data
transfer ceases when the end of the memory area is reached. Since
the unit cannot stop in the middle of a block, it continues without trans-
ferring any data until the end of the block.

What has been described so far is single-block operation. For addi-
tional flexibility, multiple-block operation is also provided in the 7030
system. It is specified by setting a multiple JLag in the control word to 1.
In the multiple mode, when the end of a block is reached, the WRITE or
READ operation is allowed to continue by starting a new block; the
operation is finally terminated when the end of the defined memory
area is reached. The multiple mode is generally equivalent to a sequence
of WRITE or READ instructions in the single mode, except that the computer
program is not iiiterrupted until the sequence is finished. (This advan-
tage is gained a t the expense of more complex exception handling.)

I t may be noted that the memory area defined by a chain of control
words cannot be exceeded regardless of the mode. A properly defined set
of control words thus provides protection against accidental erasures
outside the memory area assigned to a specific input-output operation,
such as might otherwise be caused by reading blocks longer than expected.

I 2.5. Controlling and Locating

Most input-output units require certain programmable control func-
tions in addition to writiiig and reading, such as rewinding tape, selecting
different operating modes, turiiing warning lights on and off, or sounding a
gong. Instead of numerous highly specialized instructions for each of
these functions, some of which might have to have different meanings for
different units, a single COSTROL instruction is used here for the sake of
generality. This instruction causes a code to be sent to the external
unit, which interprets the code to perform the desired operation.

Thus COKTROL has only a single meaning in the computer. The
specialized functions are defined separately for each external unit and
form part of its design specifications. They may range from an elaborate
set of control functions for some high-performance units to none a t al1
for rather primitive devices. The input-output channels remain genera1
in function and need not be altered as new devices are attached or as the
mix of units is changed.

The control code is placed in the secoiid address of the instruction,
in the manner of an immediate address, and there is no reference to a
memory location. The first address of the instruction specifies the chan-
nel, as before (Fig. 12.1).

The LOCATE instruction resembles CONTROL in al1 respects except that
the bits sent to the unit are interpreted by the unit as a secondary selec-
tion address rather than a secondary operation code. Examples of the
use of secondary addresses are: selecting the desired one of severa1 tape
units connected to a single chaiinel; directing the access mechanism of a
disk file to a desired position. The selection addresses are limited to a
rnaximulr, of eighteen bits.

12.6. An Alternative Approach

The similarity between the above CONTROL and LOCATE operations
suggests the possibility of combining them into a single control operation.
The first 8-bit byte of the control data would become the secondary
operation code; it could specify whether additional bytes containing
address inforination were to follow. The number of bytes needed would
be determined by the external unit.

The restriction on selection addresses, which are limited in length by
the instruction format, can be removed by changing from immediate
addressing to direct or eveii indirect addressing. With direct addressing,
the second address of the new control instruction would specify a 64-bit
memory word, part or al1 of mhich could be sent to the unit as desired.
An even more genera1 system is provided by indirect addressing, where the
address specifies a control word which defines the address and the amount
of information, as in WRITE. Although it would require an extra memory
word and access, indirect addressing would have the advantage of sim-
plicity, since this version of control would be executed in a manner iden-
tical with WRITE.

A second generalization would be to provide the inverse of this control
operation, which we shall call sense. This sense operation would be a
request to the external unit to send back various status indications, such
as manual switch settings and reports of termination or error conditions.
Sense would be t'reated like READ if indirect addressing were used, the
status bits being stored in a memory area defined by a control word.

This alternative set of control and sense operations has the advantage of
symmetry, simplicity, and flexibility. It was not incorporated in the
7030, but the scheme has since been adoptled in other input-output
systems.

12.7. Program hterruptions

One of the important functions of a program-interrupt system (Chap.
10) is to resynchronize the computer program with the external opera-
tions, which, having been initiated by the program, are completed inde-
pendently. An equally important function is to request program atten-
tion to a process that is initiated externally, by an operator for example.

After giving an input-output instruction, the program is not allowed
to proceed unti1 the exchange has accepted or rejected the instruction.
If the exchange finds that the desired unit is not ready to operate, or the
channel is already in use from a previous instruction, or the instruction is
incorrect, the exchange will reject the instruction by turning on an indi-
cator and interrupting the program. Otherwise the instruction is
accepted for execution by the exchange, and the program is released to
proceed with the next instruction in sequence. The program rnay at
any time initiate an input-output operation for another channel that is
not busy. Any number of such operations rnay be accepted and pro-
cessed by the exchange independently and simultaneously, up to the
maximum traffic-handling ability of the exchange.

Thus, the exchange and the computer proceed independently once an
input-output operation has been started. At the end of an input-output
operation, the program is again interrupted. The channel address of the
particular channel whose operation has been completed is supplied to the
program; indicators show whether the operation was completed success-
fully or whether some unusual condition was encountered. Thus a pro-
gram, which rnay have been waiting for the input-output operation to
finish, can be resumed at the earliest opportunity without the need for
repeated testing of the indicators. The unit that'was stopped rnay be
restarted by the program with a minimum of delay. The interrupt sys-
tem, therefore, provides an effective method for bringing the program
and the independently operable input-output units back into step at
intervals.

An alternative mode exists whereby program interruption can be pre-
vented when the operation ended normally, with interruption occurring
only for the exceptions. Another mode suppresses al1 interruptions, so
that a supervisory program, for example, rnay initiate a special input-
output sequence before having to pay attention to a unit that has just
completed its cycle. Additional flexibility is gained by writing the pro-
gram to accept interruptions but storing the indications in a queue for
later use if the interrupting unit is not to be given top priority (see Chap.
13 for a more extended discussion of these subjects).

A third type of interruption from an external source is a request to the
program to issue an input-output instruction when no such operation has
been in progress. This interruption is called channel signal. Frequently,
the source is a human operator. A channel signal rnay be issued when the
operator has loaded a unit with fresh materia1 (tape, paper, cards) and
pressed the start button. An operator rnay be ready to enter information
from a keyboard; if a READ instruction is not already waiting for the
information, the operator may, in effect, request such an instruction by
pressing a button that causes a channel signal to be issued. The channel

signal does not itself initiate any operation in the computer, and a suita-
ble program must be available in the computer; so the programmer has
fu11 freedom tlo interpret such signals in any manner, including the option
to ignore them when they are not appropriate. l

Another use of channel signal is as a second-level, end-of-operation
interrupt signal. Some common control units perrnit two or more input-
output units, attached to the same control unit and channel, to perform
simultaneous operations, so long as only one operation involves data
transmission over the channel. The secondary operations that do not
require the channel (such as rewinding tape or locating a new position for
an access arm on a disk file) are often of long duration compared with the
primary operations that do occupy the channel (such as reading or writ-
ing). Channel signal then indicat'es the completion of the secondary
operation. The two uses of channel signal are not unrelated. Even
operator interventions can be considered to be under indirect program
control, since instructions from the program to the operator are either
implied or explicitly given, if human intervention is to result in meaning-
fu1 actions by the program. The main difference lies in the less predicta-
ble waiting time and the surely erratic behavior of human beings.

In summary, channel signal is the computer's interna1 telephone bell.
It summons the program to attend to the channel whose bell has rung.
(To be quite fair, the computer, in turn, is allowed to sound a gong on the
console to summon an operator.)

12.8. Buffering

B u f e r storage external to the main memory is used in many com-
p u t e r ~ to mattch data transmission rates and to minimize delays. The
7030 system, however, makes no use of external buffers when it is pos-
sible to transmit directly between the recording medium and the memory
in ~equent~ial The card-reader- and card-punch-contro1 units do fashion.
contain buffers, because of a need to transpose bits; the reader and punch
happen to feed cards row by row, whereas it is more desirable to transmit
the data to and from memory in column-by-column form. Similarly,
the chain printer used in the 7030 system, even though seria1 in operation,
is designed so that the same bytes must be presented repeatedly and not
in the sequence in which they appear on paper. Although programs could
be written to make the necessary transformations inside the computer, it
seemed that special buffer storage devices could do these highly repetitive

l One exception occurs whm the computer is to be loaded with its initial program
and a meaningful program cannot be assumed to exist in memory already. Channel
signal is then used to start a built-in sequence to read one block from the unit that
generated the signal. The initial program-loading sequence becomes inoperative
once used.

chores more effectively. The buffers make the devices appear to the
computer as if they were seria1 in operation.

Devices that are inherently serial, such as magnetic tape units, disk
files, and typewriters, have no separate buffer storage. (We must dis-
tinguish buffer storage, which holds m e or more complete blocks of data,
from registers capable of temporarily holding oiie or more bytes in the
contro1 unit to smooth out the data flow and perform a small-scale
buffering function "on the fly." As the term is used here, a buffer
receives a complete block of data from oiie device and then transmits the
block to another device, usually a t a different speed. A buffer permits
either device to stop between blocks and delay transmission of the next
block indefinitely.) Since the introduction of buffer storage represented
significant progress a t one stage in the development of computers, its
omission in the 7030, with the exceptions mentioned above, calls for a
word of explanation.

The simplest technique, both in terms of equipment and programming,
is unbuffered, single-channel operation. When an unbuffered computer
issues an instruction to read or write, the input-output unit is started and
data are then transmitted while the computer is waiting. The computer
cannot continue until data transmission is ended. When input-out-
put activity is a t al1 high, long waiting periods greatly reduce over-al1
performance.

Buffered, single-channel operation was the next step. When trans-
mission between a unit and its buffer is much slower than transmission
between the buffer and main memory, it becomes possible to reduce the
waiting time of the computer by the difference in transmission times and by
omission of the start-up time of the unit. There is still an irreducible
m-aiting time for the computer: the time for transmitting data between
buff er and memory.

In applications where computing time is less than input-output time,
the waiting time of the input-output unit becomes important. When only
a single buffer is provided, the unit must wait until data transfer between
buffer and memory has been completed. This wait includes the
unavoidable delays after completion of the input-output cycle before the
program can initiate the transfer, as well as the transfer time. By
doubling the buffer storage area and alternating between the areas, one
can avoid such delays in the operation of the input-output unit.

The 7030 (like several earlier computers) uses buffered, multiple-
c hannel operation without requiring external buff ers. Buffering is
accomplished by transmitting data directly between the unit and memory
over one of several input-output channels at whatever rate is required by
the unit. Each channel operates independently of the computer and of
the other channels. This may be termed buffering in rnemory. The

interna1 memory acts as one large buffer for al1 channels. Its use is time-
shared automatically among the computer and the input-output channels
by allocating memory cycles to each device when needed. If more than
one device demands attention, each is served in turn, with the highest
priority assigned to the channel with the fastest input-output unit.

There are a number of advantages to this arrangement. An obvious
advantage is a considerable reduction in equipment as compased with
having a separate buffer on each channel, a saving which is partially offset
by the prorated cost of the main memory areas serving as buffers. The
size of the buffer area in main memory can be adjusted to the balance
between cost and performance desired for each application, where the
size of external buffers must be fixed in advance. Buffering in memory
takes less rea1 computer time. I t is true that external buffers could be
designed so t'hat the number of memory cycles taken to transfer data
between buffer and memory would be the same as would be required to
txansfer data dire~t~ly between unit and memory; but, with buffering
in memory, the memory cycles are sandwiched between memory cycles
taken by the computer, and, since the computer does not normally use
every cycle, a significant fraction of the data-transfer cycles is "free"
and does not delay the computation.

Perhaps the most significant gain is the more direct contro1 that the
program can exercise. When double buffering is used externally for
greater efficiency, the input-output unit runs ahead (on reading) or behind
(on writing) by one block with respect to the program. As a result, if an
error or other exception condition occurs, recovery is more difficult.
With buffering in memory, data in memory always correspond to the
block currently being read or written, and the pipeline effect is avoided.
Operator intervention can be simplified. Moreover, the programmer has
the option of any buffering scheme he would care to use, including no
buffering at all. When speed of program executioii is not important, the
simplicity of programming an unbuffered operation without overlap is
very appealing. This need not mean that the computer is used ineffi-
ciently. Since many channels are available, more than one such program
can be run concurrently so that the overlap occurs between operations
belonging to different programs, instead of between different operations
in the same program.

12.9. Interface

Input-output units, regardless of type, must be connected to their
exchange channels in the same manner, elect,rically and mechsnically, if
the channels are to be identica1 in design. This connection has been
called the interface. If a common connection technique is used, any
mixture of input-output units can be attached to a computer, the array

of units being determined by the needs of the specific installation. This
is shown schematically in Fig. 12.3.

A further requirement of the interface is that it permit the connecting
together of any two units that can logically operate together (Fig. 12.4).
A tape unit and its control unit may be connected to the computer, via an
exchange channel, or they may be connected to a card reader and its
control for off-line card-t'o-tape conversion, or to a printer and its control
for off-line tape-operated printing. The same card reader or printer
could, in turn, have been connected to exchange channels for on-line
operation.' Figure 12.4also indicates two computers connected together
via exchange channels and a phone line. There is no inherent master-
slave relationship ;either unit can initiat'e data transfer.

Memory

C M Printer

C M Reader

W

Lr

C M Console

Computer

M-lnput-output mechanism
C-lnput-output control unit
T-Line terminai
*-Common interface connection

FIG.12.3. Input-output connections to computer.

I t is not possible to connect two tape units to copy data from one to
the other; the absence of buffer storage in the tape-contro1 unit prevents
their synchronization. Kor does it make sense to connect a card punch
to a printer. Also not shown is any direct connection between two
exchange channels. Technical difficulties prevented this; i t would have
required an otherwise superfluous register in each channel. A junction
box containing a register is needed to tie together the channels of physi-
cally adjacent computers.

A somewhat similar technique was used in the IBM 702 and 705 systems to per-
mit card readers, punches, and printers to be connected either on-line or off-line.
This was done, however, by providing two different connections on the control unit,
one for the computer and another for a tape unit. Also the approach was very much
tape-oriented. The control units for the reader, punch, and printer each contained a
complete set of tape control circuits. The present approach is based on a strict
separation of functions.

The interface contains eighteen data lines (eight information-bit
lines and a parity-bit line in each direction), a timing line, and severa1
more lines corresponding to t>he instructions and indications referred to
earlier in this chapter. As mentioned in connection with the CONTROL

and LOCATE instructions, extensive use is made of addresses and codes
transmitted over the data lines, instead of providing separate lines with
more restricted meanings. Such generality provides muranee that

Erchange l-m] Computer-I/ O (on-line operatiod

M C C M I /O-I /O (off-line operatiod

-
Exchange L Exchange Computer-computerT m

I

FIG.12.4. Types of connections.

improved or newly designed units can be connected to the same channels
without changing the computer or its exchange.

To achieve high performance, i t is very desirable to require a mini-
mum of operator intervention in the computer and in input-output units
that are essentially automatic in operation. Operator intervention
implies waits and errors, both of which serve to reduce system perform-
ance. Thus printers, card readers, and tape units have as few manual
controls as possible; control is exercised entirely by the centra1 stored
program, with no plugboards or set-up switches on most of the external
units. By contrast, typewriter keyboards and consoles, which have
meaning only as they are manually operated, are equipped with a wealth
of buttons and switches, but even those do not control computer
functions, except as interpreted by a program.

Ignoring power on-off switches, al1 input-output units can be operated
with just two buttons, labeled start and stop or with some equivalent
names. Starl places the previously loaded recording medium into oper-
ating position, checks al1 interlocks, turns on ft ready eondition, and sends
a channel signal to the program. The unit is then under fu11 computer
control. Stop allows the operator to stop the device and turn off ready;
the computer can then no longer operate the unit unti1 start is pressed

again. Thus start and stop provide an interlock between the operator
and the computer by which the operator can exercise a minimum of
necessary supervision. A separate signal button may be provided where
an automatic channel signal after readying a unit is not desired.

Additional buttons are encouraged on individua1 units only when
equivalent functions cannot be provided as well or better by the stored
program. On some completely automatic units, such as disk files, even
the start-stop pair of buttons is not needed.

Operating controls are to be clearly distinguished from the multitude
of controls that may be needed by maintenance personnel. Maintenance
controls are strictly separated from operating controls, and they are
generally located where their use for norma1 operation can be discouraged.

MULTIPROGRAMMING
by E. F. Codd, E. S. Lowry, E. McDonough, and C. A. Scalzi

13.1. Introduction

In recent years there has been a trend in computer design toward
increased use of concurrent operation, with the prime aim of allowing
more of the component units of a computer systiem tio be kept in produc-
tive use more of the time. Two forms of concurrency have clearly
emerged. The first, which we shall call 2ocal concurrency, consists in
overlapping the execution of an instruction with that of one or more of
its immediate neighbors in the instruction stream.

This form of concurrency was present in a very early machine, the
IBM Selectizle Sequence Electronic Calculator (SSEC),whic h was capable
of working on three neighboring instructions simultaneously. Such con-
currency was later abandoned in the von Neumann-type machines, such
as the IBM 701. Xow tlhat we haveonceagainreachedastageinwhich
the logica1 elements are much faster than the memories, tlhe need for this
type of concurrency has returned, and, in fact, the 7030 computer is
capable of working on as many as eleven neighboring instructions
simultaneously.

The second form, which we shall call nonlocal concurrency, provides for
simultaneous execution of instructions which need not be neighbors in an
instruction stream but which may belong to entirely separate and unre-
lated programs. It is this form of coneurrency upon which we wish to
focus attention in this chapter.

A computer system, in order to exhibit nonlocal concurrency, must
possess a number of connected facilities, each capable of operating simul-
taneously (and, except for memory references, independently) on pro-
grams that need not be selated to one another. A facility rnay be an

Note: The materia1 in this chapter has previously been published by the same
authors as: Multiprogramming Stretch: Feasibility Considerations, Communs. ACM.,
vol. 2, no. 11, pp. 13-17, Sovember, 1959.

192

input-output unit, an external storage unit, an arithmetic unit, a logic
unit, or some assemblage of these units. In an extreme case each facility
is a complete computer itself.

The 7030 is a multiple-facility system. The following facilities are
capable of simultaneous operati011 on programs that need i-iot be related:

1. One (or more) cent'ral processing units
2. Each inpui-output channel of the exchange
3. Each disk-storage access mechanism
4. The read-write channel of the high-speed disk synchronizer

(The several memory units in a 7030 system are no% considered separate
facilities, even though they may work momentarily on unrelated pro-
grams, because they behave, on the average, as a single larger unit of
higher speed.)

The multiple-facility computing system bears a dose resemblance to a
job shop, although the analogy can be taken too far. Just as the jobs to
be processed in a job shop are split up intlo tasks that can be handled con-
currently by the facilities available, so programs can be subdivided into
such tasks. At any instant the tasks being executed simultaneously may
belong al1 to one program or to different programs. The procedure
of running concurrently tasks that belong to different (perhaps totally
unrelated) programs has a number of objectives: (1) to achieve a more
balanced loading of the facilities than would be possible if al1 the tasks
belonged to a single program; (2) to achieve a specified real-time response
in a situation in which messages, transactions, etc., are to be processed
on-line; (3) to expedite and simplify debugging and certain types of
problem solving by making it economically feasible for the programmer
to use a console for direct communication with and alteration of his
program.

13.2. M~ l t i~ rogrammingRequirements

Severa1 problems arise when concurrent execution is attempted of
programs sharing a common memory. For example, it is almost certain
that sooner or later, unless special measures are taken, one program will
make an unwanted modification in another as a result of a programmer's
blunder. Then again, when an unexpected event occurs, the handling of
it is not merely a matter of deciding whether i t was due to machine mal-
function, programming blunder, or operator error. It becomes necessary
to know which of the several programs may have been adversely affected
and which (if any) was responsihle.

Such problems make it desirable for a multiprogramming system,
if it is to be generally accepted and used, to satisfy the following six
conditions :

1. Independence of preparation. The multiprogramming scheme
should permit programs to be independently written and compiled. This
is particularly important if the programs are not related to one another.
The question of which programs are to be coexecuted should not be pre-
judged even a t the compiling stage.

2. M i n i m u m information from programmer. The programmer should
not be ropirod to provide any additiorial inforrnation about his program
for i t to be run successfully in the multiprogrammed mode. On the other
hand, he should be perniitted to supply extra information (such as
expected execution time if run alone) to enable the multiprogramming
system to run the program more economically than would be possible
without this information.

3. M a x i m u m control by programmer. I t may be necessary in a multi-
programming scheme to place certain of the machine's features beyond
the programmer's direct influence (for example, the time clock and the
interval timer in the 7030). This reduction in direct contro1 by the prob-
lem programmer must not only be held to an absolute minimum but must
also result in no reduction in the effettive logica1 power available to the
programmer.

4. Noninterference. S o program should be allowed to introduce
error or undue delay into any other program. Causes of undue delay
include a program that gets stuck in a loop and the fajlure of an operator
t o complete a requested nlanual operation within a reasonable time.

5 . Automatic supert~ision. The multiprogramming scheme must
assume the burden of the added operating complexity. Thus instruc-
tions for handling cards, tapes, and forms for printing shoiild be given
by the multiprogramming system. Similarly, machine malfunctions,
programming errors, and operator mistakes should be reported by the
multiprogramming system in a standard manner to the person
responsible. Again, al1 routine scheduling should be handled auto-
matically by the system in such a way that the supervisory staff can make
coarse or fine adjustments a t will. Further responsibilities of the system
include accounting for the machine time consumed by each job and
making any time studies required for purposes of operation or
maintenance.

6. Flexible allocation of space and time. Allocation of space in core
memory and disk storage, assignment of input-output units, and control
of time-sharing should be based upon the needs of the programs being
executed (and not upon some rigid subdivision of the machine).

To implement by built-in equipment al1 the logic required to satisfy
the above six conditions would be far too cumbersome and expensive.
Further, the methods used to meet certain of these requirements (par-

ticularly the automatic-scheduling requirement) must be able to be
varied from user to user because of varying objectives.

On the other hand, too extensive a use of programmed logic in a multi-
programming scheme can easily prove self-defeating, because the time
taken by the machine to execute the multiprogramming program may
offset the gain from concurrent execution of the problem programs.
However, the raw speed and logica1 dexterity of the 7030 are such that it
is practical to employ quite sophisticated programmed logic.

In the 7030, therefore, the conditions for effective multiprogramming
are met by a carefully balanced combination of built-in and programmed
logic.

I3.3. 7030 Features That Assist Multiprosramming

First, let us consider four major features, built into the 7030 equip-
ment, that facilitate multiprogramming: (1) the program-interrupt
system, (2) the interpretive console, (3) the address-monitoring scheme,
and (4) the clocks.

Program-interrupt System

This system is described in some detail in Chap. 10. Briefly, the
system permits interruption of a sequence of instructions whenever the
following four conditions are al1 satisfied :

1. The interrupt system is enabled.
2. Ko futher activity is to take place on the current instruction.
3. An indicator bit is on.
4. The corresponding mask bit is on.

The indicators reflect a wide variety of machine and program con-
ditions, which may be classified into the following six types:

1. Attention requests from input-output units, the intervab timer, or
any other centra1 processing units that may be attached to the system

2. Data exceptions, such as data flags, zero divisors, or negative
operands in square-root operations

3. Result exceptions, such as lost carries, partial fields, or floating-
point exponents beyond certain ranges

4. Instruction exceptions, such as instructions that should not or can-
not be completed or should signal when they are completed

5 . Entries to interpretive routines
6. Machine malfunctions

When severa1 problem programs are being executed concurrently,
certain of these conditions are of private concern to the particular pro-
gram that caused their occurrence. Other conditions, particularly

types 1 and 6, are of general concern. Each of the indicators for con-
ditions of private concern has a variable mask bit that allows the current
program to choose between suppressing and accepting interruption for
the respective condition. On the other hand, each of the indicators for
conditions of general concern has a fixed mask bit, permanently set in the
on position. This feature, combined with appropriate measures for
controlling the disabling of the entire interrupt system, makes it virtually
impossible for an interruption of general concern to be suppressed and
lost.

Another aspect of the interrupt system that is of importance in multi-
programming is the interrupt table. When an interruption is taken,
contro1 is passed (without any change in the contents of the instruction
counter) to one of the instructions in an interrupt table. The base
address of this table is variable; so several such tables may exist simul-
taneously in memory (for example, one table for each problem program),
but only one is active a t a time. The relative location within the active
table that supplies the interjected instruction is determined by the indi-
cator (and hence by t,he particular condition) causing interruption.

Exploitation of t4his interrupt system depends upon programmed inter-
rupt procedures. This aspect will be taken up when we dea1 with pro-
grammed logic for multiprogramming.

Interpretiw Console

It has been customary in general-purpose computers to provide a single
console a t which an operator can exercise sweeping powers over the whole
machine. For example, by merely depressing the stop button the opera-
tor has been able to bring the entire activity of the machine to a halt.
The norma1 reqiiirement in multiprogramming, on the other hand, is to
communicate with a particular program and a t the same time allow al1
other programs t,o proceed. Pursuing the same example, we now desire
to stop a program rather than stop the machine.

For this reason and also because it is required that several consoles
with different functions be concurrently operable, the operator's console
of the 7030 is not directly connected to the central processing unit.
Instead, it is treated as an input-output device. I ts switches represent
so many bits of input and its lights so many bits of outputl. Ko fixed
meaning is att]ached to either. By means of a console-defining routine
one can attach whatever meaning one pleases to these switthes and lights.

Address Monitoring

Each reference by the central processing unit to memory is checked to
see whether the effective address falls either within a certain fixed area or
within a second variable area. If the effective address falls within one of

these two areas, which are to be protected, the reference is suppressed
and an interruption occurs. The boundaries of the variable area are
specified by two addresses (the upper and lower boundaries) stored within
the fixed area. These address boundaries can be changed only if the
interrupt system is disabled.

This monitoring scheme allows any number of programs sharing
memory to be protected from one another effectively. At any instant,
the central processing unit is servicing only one program, logically
speaking. Suppose this is a problem program P. The address bound-
aries are set so that P cannot make reference outside its assigned area.
Before any other problem program Q acquires the central processing unit,
the address boundaries are changed to values that will prevent Q from
making reference outside the area assigned to Q. The task of changing
address boundaries is one of the programmed functions of the multi-
programming system.

There are two clocks in the 7030 that can be used by programs. The
first, referred to as the time clock, is a 36-bit binary counter which is
automatically incremented by unity about once every millisecond. This
clock can be read by a program under certain conditions but cannot be
changed by a program. I t is intended for measuring and identifying
purposes, particularly in accounting for machine use, logging events of
special interest, and identifying output.

The second clock, referred to as the interval timer, is a 19-bit binary
counter which is automatically decremented by unity about once every
millisecond. Lnder certain conditions the interval timer may not only
be consulted but may also be set to any desired value by a program.
Whenever the interval-timer reading reaches zero, an interruption occurs
(if the interrupt system is enabled). The main purpose of this device
is to provide a means for imposing time limits without requiring pro-
grammed clock-watchiiig, that is, without frequent inspection of the
time clock.

There are severa1 other features in the 7030 that facilitate multipro-
gramming. For example, the autonomous operation of the exchange
(Chap. 16) considerably reduces the frequency of input-output inter-
ruptions to the program.

13.4. Programmed Logic

Kow we turn our attention to the programmed logic and discuss how
the built-in logic may be exploited by programming techniques in order to
meet the six requirements for acceptable multiprogramming. Three tools

are a t our disposal: (1) the supervisory program, (2) the compiler, and
(3) the source language.

The supervisory program is assumed to be present in the machine
whenever multiprogramming is being attempted. To the supervisory
program is assigned the job of allocating space and time to problem
programs.

All~cationof space includes determining which area. of memory and
disk storage and which input-output units are to be assigned to each of
the programs. The space requirements (including the required number
of input-output units of each type) are produced by the compiler as a
vector whose components are quantities dependent in a simple way upon
one or more parameters which may change from run to run. Any space
requirements depending on parameters are evaluated a t loading time
when the particular values of tlhe run parameters are made available.

The supervisory program uses the precise knowledge i t has of the space
requirements of a problem program together with any information i t may
have regarding its expected execution time and activity pattern to deter-
mine the most opportune moment to bring that program into the execu-
tion phase. I t is not until the decision to execute is made that specific
assignments of memory space, disk space, and input-output units are put
into effect. By postponing space allocation until the last minute, the
supervisory program maintains a more flexible position and is thus able
to cope more effectively with the many eventualities and emergencies
that beset computing installations, no matter how well managed they are.

Allocation of time ineludes not only determining when a loaded program
should be put into the execution phase but also handling queues of
reqiiests for facilities from the various programs being concurrently
executed. The fact that both pre-execution queuing and in-execution
queuing are handled by programming rather than by special hardware
results in a high degree of flexibility. Thus, a t any time, the supervisory
program is able to change the queue discipline in use on any shared facility
and so cope more effectively with the various types of space and time
bottlenecks that may arise. On interruptible facilities, such as the cen-
tra1 processing unit, which allow one program to be displaced by another,
changes in queue discipline may be expected to have very considerable
effect upon the individua1 and collective progress of the programs being
coexecuted.

These allocating powers of the supervisory program have severa1
implications. Most important of these is t,hat the compiler must produce
a fully relocatable program-relocatable in memsry and in disk storage,
and with no dependence on a specific assignment of input-output units.
A further consequence is that the supervisory program is responsible for
al1 loading, dumping, restoring, and unloading activities and will supply

the operator with complete instructions regarding the handling of cards,
tapes, and forms.

In order to meet the requirements (Sec. 13.2) of independent prepara-
tion of problem programs and noninterference with one another, it is
necessary to assign the following functions to the supervisory program:

1. Direct control of the enabled-disabled status of the interrupt
system

2. Complete control of the protection system and clocks
3. Transformation of input-output requests expressed in terms of

symbolic file addresses into absolute input-output instructions (a one-to-
many transformation), followed by issuing of these instructions in accord-
ance with the queue disciplines currently in effect

4. Initial and, in some cases, complete handling of interruptions from
input-output units and other central processing units

By convention, whenever a problem program is being serviced by the
central processing unit, the interrupt system is enabled; when the super-
visory program is being serviced, either the enabled or the disabled status
may be invoked according to need. Adherence to this convention is
assisted by the compiler, which does both of the following:

1. Refrains from generating in problem programs the instruction
BRAIU'CHDISABLED (an instruction which completely disables the interrupt
system)

2. If i t encounters this instructon in the source language itself, sub-
stitutes a partial disable (a pseudo instruction) in its place, flagging it as a
possible error

So long as the interrupt system is enabled, the protection system is
effective. Problem programs are therefore readily prevented from mak-
ing reference to the areas occupied by other programs (including the
supervisory program itself). They are further prevented from gaining
direct access to the address boundaries, the interrupt-table base address,
and the clocks, al1 of which are contained in the permanently protected
area.

For the sake of efficient use of the machine, one further demand is made
of the programmer or compiler. When a point is reached in a problem
program beyond which activity on the central processing unit cannot pro-
ceed unti1 one or more input-output operations belonging to this program
(or some related program) are completed, then control must be passed to
the supervisory program so that lower-priority programs may be serviced.

I t is important to observe that the programmer is not required to desig-
nate points in his program a t which control may be taken away if some
higher-priority program should need servicing. This would be an intol-

erable requirement when unrelated programs are to be concurrently
executed, especially if al1 arithmetic and status registers a t such points
have to contain information of no further value.

It is the interrupt system (particularly as it pertains to input-output)
that makes this requirement unnecessary. The interrupt system allows
control to be snatched away a t virtually any program step, and the super-
visory prograrn is quite capable of preserving al1 infurmstion necessary
to allow the displaced program to be resumed correctly a t some later time.

In removing certain features of the machine from the direct control
of the problem programmer, we may appear to have lost sight of the
requirement that the programmer retain a maximum degree of control
(Sec. 13.2). However, for every such feature removed, a corresponding
pseudo feature is introduced. Take, for example, the pseudo disable and
pseudo enable instructions. When a problem program P issues a pseudo
disable, the supervisory program effectively suspends al1 interruptions
pertaining to P (by actually taking them and logging them internally)
unti1 P issues a pseudo enable. Meanwhile, the interruptions pertaining
to other programs not in the pseudo-disabled state are permitted to affect
the state of the queue for the centra1 processing unit.

Another example of a pseudo feature is the pseudo interztal timer; one
of these is provided for each problem program. The supervisory pro-
gram coordinates the resulting multiple uses of the built-in interval timer.

The need to det'ect the fact that a program has become stuck in a loop
or that an operator has not responded to ai1 instruction from the super-
visory program is met by allotting a reasonable time limit for the activity
in question. When this interval expires without receipt by the super-
visory program of a completion signal, a,n overdue signal is sent to an
appropriate console. The interval timer is, of course, used for this
purpose, and expiration of t'he interval is indicated by the time signal
interruption.

I 3.5. Concluding Remarks

We have attempted to show that the design of a computer may be
influenced quite strongly by the desire to facilitate multiprogramming.
Developing a complete multiprogramming system is a major undertaking
of its own, but both the computer and the programming system benefit
from coordinating the initial planning for both.

Since the purpose here is to describe the structure of the computer
rather than that of its programming systems, we have not discussed such
other considerations as the optimizing and queuing problema that arisel

E. F. Codd, Multiprogram Scheduling, Communs. ACM, vol. 3, no. 6, pp. 347-350,
June, 1960, and no. 7, pp. 413-418, July, 1960; H. Freeman, On the Information-
handling Efficiency of a Digital Computer Program, Trans. AIEE, paper no. 60-970.

or the detailed specifications of a supervisory program and operating
system. They would go beyond the scope of this book. We merely note
here that an experimental multiprogramming system has been developed
for the 7030 along the lines discussed above. A comprehensive set of
trial runs of this system has dem~nst~rat'ed successfully the feasibility of
multiprogramming of the 7030.

13.6. References

Some earlier publications relating to multiprogramming are listed
below.
S. Gill, Parallel Programming, 	 The Computer Journal, vol. 1, no. 1,

pp. 2-10, April, 1958.
C. Strachey, Time Sharing in Large Fast Computers, "~nformation Proc-

essing," UKESCO (Paris), R. Oldenbourg (Munich), and Butter-
worths (London), 1960, pp. 336-341.

W. 	F. Schmitt and A. B. Tonik, Sympathetically Programmed Com-
puter~, ibid., pp. 344-348.

J. Bosset, Sur certains aspects de la conception logique du Gamma 60,
ibid., pp. 348-353.

A. L. Leiner, W. A. Notz, J. L. Smith, and R. B. Marimont, Concurrently
Operating Computer Systems, ibid., pp. 353-361.

J. W. Forgie, The Lincoln TX-2 Input-Output System, Proc. Western
Joint Computer Conf., February, 1957, pp. 156-160.

Chapter 14

THE CENTRAL PROCESSING UNIT
by E. Bloch

14.1 . Concurrent System Operation

Early in the design of the 7030 system it appeared t>hat a factor-of-6
improvement in memory speed and a factor-of-l0 improvement in basic
circuit speed over existing technology were the best one could look for-
ward t'o during the time of the project. Since the performance leve1
desired was much higher than could be obtained from faster components
alone, the design had to provide for concurrent operation of various parts
of the syst'em wherever possible.

The need for concurrent operation affects al1 levels of the system, from
the over-al1 organization to the details of specific instructions. Major
parts of tphe syst'em (Fig. 14.1) can operate simultaneously:

1. The core memory consists of severa] units of 16,384 words, operating
on a 2.1-psec read-write cycle. Each unit is self-contained and has its
own clock, addressing circuits, da.ta registers, and checking circuits. A
typical 7030 system may have six memory units. To achieve a high
degree of overlap, addresses are interleaved. The first four units share a
block of 65,536 addresses, so that four consecutive word addresses lie in
four different memory units. The next two units share a block of
32,768 addresses with two-way interleaving. If the four-unit block is
assigned primarily to data and the two-unit block primarily to instruc-
tions, it is possible to achieve rates of up to one fu11 data word and one
half-word instruction every 44 psec. (Xote that segregating data and
instructions may help to increase speed, but it is not a necessary step,
since the memory is logically homogeneous.)

2. The simultaneously operating input-output units are linked with
the memories and the computer through the exchange, which, after receiv-

Il'ote: The materia1 in Chap. 14 has been adapted from E. Bloch, The Engineering
Design of the Stretch Computer, Proc. Eastern Joint Computer Conf.,no. 16, pp. 48-58,
December, 	1959.

202

ing an instruction from the computer, coordinates the starting of the
input-output equipment, the checking and error correction of the informa-
tion, the arrangement of the information into memory words, and the
fetching and storing of the information from and to memory. Al1 these
f~nct~ions The high-speed are executed independently of the computer.
disk units are controlled by the disk-synchronizer unit, which is similar in

Memory units

Memory out bus

Mernory in bus

I

Data

3 n

Exchange r- Disk
synchronizer I aritt%E unit

Channels for

input-output

units

(Magnetic tapes registers
Magnetic disks
Printers TReaders
Consoles High-speed
Displays aritE:;L unit1
Inquiry stations disk units
Data transmission Centra1

processingetc.) unit

FIG.14.1. 7030 system.

function to the exchange but is capable of much higher data rates.
Memory cycles needed by the exchange and disk synchronizer are inter-
leaved with those required by the computer.

3. The centra1 processing unit (CPU) processes and executes instruc-
tions with a high degree of overlap of interna1 functions.

The concurrent operation of various parts of the system was examined
in Chap. 13 from the point of view of the user and programmer. In the
present chapter we shall see how the need for effective concurrent opera-
tion has pervaded the design of the system and in particular of the cen-
tra1 processing unit.

14.2. Concurrenc~ within the Central Processing Unit

instruction.
Most earlier computers have a sequential flow of instructions, as shown

in Fig. 14.2. In turn, an instruction is fetched, the operand address is
updated (by indexing or indirect addressing),

v
r---- 1 the operand is fetched, and tlhe instruction is

i exec'ited. In some computen the instructiin
1 execution may be overlapped mith fetching of

I the next instruction. I
i Compare this mith the high degree of

updating i overlapping in the 7030 (Fig. 14.3). Two
7 I instruction words, which often represent four

i half-word instructions, and the operands for
four more instructions can be fetched simul-
taneously. At the same time two more in-

I structions can be updated and another exe-
cuted. After completing its current stage of
processing, each instruction advances to the

L,,,,A next stage as soon as register space is avail-

FIG.14.2. Sequential opera- able. Because the duration of each stage and
tion. the execution time of an instruction are vari-

able, the process is noti a cyclic one, and
the actual number of inst~ructlions in process varies continually.

Al1 the units of the computer are loosely coupled together, each one
controlled by its own clock system, which in tiirn is synchronized by a
master oscillator. As may be expected, this multiplexing of the units of

2 instruction words Instruction

(up to 4 instructions) tf e r h 4 -,,+ D

I updating [I execution I
FIG.14.3. Overlapped operation in 7030.

the computer results in a large number of registers and adders. In all,
the computer has 3,000 regist.er positions and aboilt 450 adder positions.

Despite the multiplexing and simultaneous operations of successive
instructions, the result is always made to appear as if interna1 operat$ion
were sequential. This requires extensive interlock facilities.

14.3. Data Flow
The data flow tjhroiigh the computer is shown in Fig. 14.4. I t is com-

parable to a pipeline which, once filled, has a large output rate no matter

what its length. The same is true here. Once the flow is started, the
execution rate of the instructions is high in spite of the large number of
stages through which they progress.

The memory bus unit is the communication link between the memories
on m e side and the exchange, disk synchronizer, and CPU on the other.

Memory units

Instruction and
indexing unit Operand buffer

Look-ahead

Checker in-bus

ithmetic checker out

InterruptI Isystem

FIG.14.4. Computer units and bus system.

The memory bus unit monitors the requests for storing in or fetching
from memory and sets up a priority scheme. Since input-output units
cannot hold up their requests, the exchange and disk synchronizer will
get highest priority, followed by the CPU. In the CPU the operand-fetch
mechanism, t he look-ahead unit, has priority over the instruction-fetch

mechanism. Altogether the memory bus unit receives requests from and
assigns priority to eight different channels.

Since access to a memory unit can be independently initiated from
severa1 sources, a busy condition can exist. Here again, the memory bus
tests for the busy conditions and delays the requesting unit unti1 the
desired memory unit is ready. The return address identifying the

Memory out-bus

I b

From look-ahead P 4 Index word
storage

(17words)

Index adder out bus

I I~odificationl Index
Instruction Index execution I Working / I arithmetic I

register register

Checker in # bus

f Memory address bus 4
FIG.14.5. Instruction unit.

requesting unit is remembered, and the information is forwarded when it
becomes available.

Requests for stores and fetches can be processed a t a rate of one every
0.3 psec. If no busy or priority conditions exist, the time to return the
word to the requesting unit is 1.6 psec, a direct function of the memory
read-out time.

The instruction unit (Fig. 14.5) is a computer al1 by itse1f.l It has its
own instructions to execute, its own small memory for index-word storage,

l R. T. Blosk, The Instruction Unit of the Stretch Computer, Proc. Eastern Joint
Computer Conf., no. 18, pp. 299-324, December, 1960.

and its own arithmetic unit. As many as six instructions can be a t
various stages of progress in the instruction unit.

The instruction unit fetches the instruction words from memory,
steps the instruction counter, and indexes al1 instructions. After a pre-
l iminar~ decoding of the instruction clnss, it recognizes and executes
indexing and branching instructions; for other classes of instructions i t
initiates data fetches and passes the partially decoded instructions on
to the look-ahead.

At the time the instruction unit encounters a conditional branch
instruction, the conditioii may not be in its fina1 state because other
operations currently in progress may still affect it. To keep things
moving, the assumption is made here that the branch condition will not
be met, and the next instruction in sequence is fetched. This assump-
tion and the availability of two full-word buffer registers keep the rate of
flow of instructions to the computer high most of the time. When the
assumption proves wrong, the instruction unit must backtrack to the
branch point and follow the new sequence instead. This takes time, of
course.

Two instruction words can be in the registers a t any oiie time. As
soon as the instruction unit starts processing an instruction, it is removed
from the buffer, thus making room for the next instruction.

The index-arithmetic unit and the index registers complete the instruc-
tion unit. It should be noted that the index registers have been made an
integra1 part of the instruction unit, so as to permit fast access to an index
word without long transmission lines. There are sixteen index words
available to the programmer, of which fifteen can be used for automatic
address modification. The index registers are contained in a small
memory unit made of multiaperture cores, which is operated in a non-
destructive-read fashion where reading is much faster than writing.
This permits fast operation most of the time, when an index word is
referred to without modification. Additional time is needed only when
modification is involved.

After it has been processed through the instruction unit, the updated
(indexed) instruction enters one of four levels of the look-ahead unit
(Fig. 14.4). Besides the necessary information from the instruction, the
associated instruction-counter value and certain tag information are
stored in the same level of the look-ahead. The operand, already
requested by the instruction unit, will enter this level directly and will
be checked and error-corrected while awaiting transfer to the arithmetic
unit. The look-ahead unit also performs al1 storing operations.

The operating principles of the look-ahead unit, together with the
sequencing of functions and the interlocking required to prevent out-of-
sequence execution of instructions, are covered in Chap. 15.

The two-part arithmetic unit described below is a slave to the look-
ahead, receiving from it not only operands and instruction codes but also
the signal to start execution. The arithmetic unit signals to the look-
ahead the termination of an operation and, in the case of store operations,
places into the look-ahead the result word for transfer to the proper
memory location.

14.4. Arithmetic Unit

The design of the main arithmetic unit was established along similar
lines. Every attempt was made to speed up the execution of arithmetical
operations by multiplexing techniques.

The arithmetic unit consists of a parallel unit for floating-point opera-
tions and a seria1 unit for variable-field-length operations. The two units
use the same arithmetic registers, namely a double-length accumulator
of 128 bits (the left part being called register A and the right part register
B), and a double-length operand register of 128 bits (C and D). The
same arithmetic registers are used because the program may a t any time
switch from floating-point to variable-field-length operation, or vice
versa. The result that is obtained by a floating-point operation can
serve as the starting operand for a variable-field-length operation, or
vice versa.

Operations on the floating-point fraction and also variable-field-length
binary multiply and divide operations are performed by the parallel unit.
Floating-point exponent operations, variable-field-length (binary or
decimal) add operations, and logical-connective operations are executed
by the seria1 unit. The square-root operation and the binary-decima1
conversion algorithm are executed in unison by both units. Decima1
multiplication and division are not built in because they can be done faster
-and quite conveniently-by a short subroutine using radix conversion
and the fast binary arithmetic.

Salient features of the two units will now be described.

Serial Arithmetic Uni t

The seria1 arithmetic unit (Fig. 14.6) contains two symmetrical por-
tions, one for the accumulator (AB) registers and one for the operand
(CD) registers, feeding into a common binary adder or logical-connective
unit and branching out again into two similar circuits for returning the
result to either pair of registers. A two-leve1 switch niatrix is used to
extract 8 adjacent bits from any of 128 possible register positions, together
with a by-pass for 8 bits which are to remain undisturbed. True-com-
plement (inversion) circuits, both before and after the adder, take care of
subtraction. A decimal-correction circuit is switched into the data path
when decimal addition or subtraction is specified. The result is returned

via another two-leve1 switch matrix to the selected register positions.
Al1 other register positions remain undisturbed.

A single pair of bytes is extracted, arithmetic or logic performed, and
the result returned to the registers in one clock cycle of 0.6 psec. Longer

From look-ahead

Operand
Accumulators V v registers

A B C I D

Switch
matrix matrix

(16of 1281 (16of 128)

I I

FIG.14.6. Seria1 arithmetic unit. T-C: true-complement.

fields are processed by repeatedly stepping the counters that contro1 the
switch matrixes. The operations are checked by parity checks on the
switch matrixes and by use of duplicate arithmetic and logic units.

ParaiEel Arithrnetic Unii

The parallel arithmetic unit (Fig. 14.7) is designed to execute binary
floating-point operations at very high speed.' Since both single-length

1 O. L. MacSorley, High Speed Arithmetic in Binary Computers, Proc. IRE, vol. 49,
no. 1, pp. 67-91, January, 1961.

-2

(48-bit fraction) and double-length (96-bit fraction) arithmetic are per-
formed, the shifter and adder extend to 96 bits. This makes it possible
to have almost the same speed for single- and double-length arithmetic.
The adder is of a carry-propagation type with look-ahead over 4 bits at a
time, to reduce the delay that normally results in a ripple-carry adder.
This carry look-ahead results in a delay time of 0.15 psec for 96-bit
additions. Subtractions are carried out in 1s complement form with

regi sters '2
True-

complement
switch

MCD-Multiplicand

MPR-Multiplier

CSA -Carry save adder

register regi ster

FIG.14.7. Parallel arithmetic unit.

automatic end-around carry, but the result is always converted to abso-
iute-value form with separat,e sign.

The shifter is capable of shift,ing up to four positions to the right and
up to six positions to the left a t one time. This shifter arrangement does
the most common shifting operations in one step. For longer shifts the
operation is repeated automatically.

To expedite the execution of the multiply instructions, 12 bits of the
multiplier are handled in one cycle. This is accomplished by breaking
the 12 bits into groups of 3 bits. The action is from right to left arid con-
sists in decoding each group of 3 bits. By observing the lowest-order
bit of the next higher group, a decision is made as to what multiple of the

multiplicand must be added to the partial product. Only even multiples
of the multiplicand are available, and subtraction or addition of the
multiples can result. The example of Fig. 14.8 will elaborate this point.

The four groups of multiplicand multiples and the partial product of
the previous cycle are now fed into carry save adders, which operate
according to the rules:

S = A V B V C where A, B, and C
are either input or
in-carry bits

C' = AB V AC V BC

There are four of these adders, two in parallel followed by two more in
series (Fig. 14.7). The output of carry-save adder 4 then results in a

Multiplicand (C)
addi t ions

Groups

Multiplier b i t s

Equivalent to: I

n+4 724-3 ni-2 n+l n

x x o 011 110 101 O10

Fina1 decoding I
FIG. 14.8. Multiply example.

double-rank partial product, the product sum and the product carry.
For each cycle this is fed into carry-save adder 2, and, during the last
cycle, into the carry propagate adder for accumulation of the carries.

Since no propagation of carries is required in the four cycles when multi-
plicand multiples are added, this operation is fast, and it is the main
contributor to the short mult iply time of the 7030.

The divide scheme is similar to the mult iply scheme in that severa1
multiples of the divisor, namely l, 35, and 3/4 times the divisor, are
generated to reduce the number of add or subtract cycles needed to gen-
erate the quotient. I t has a further similarity to another well-known
mult iply scheme, in that strings of consecutive 1s or 0s in the partial
remainder are skipped, requiring only one add cycle for each string.
The net effect is that the number of cycles is reduced, on the average, by a
factor of 3.5 as compared with nonrestoring divisi0n.l

l C. V. Freiman, Statistica1 Analysis of Certain Binary Division Techniques,
PTOC. IRE, vol. 49, no. 1, pp. 91-103, January, 1961.

The power of this method may be illustxated by an example done three
different ways. Let us assume the following normalized values:

Dividend 0.1 O 1 0 0 0 0 0
Divisor DR 0.1 l O 0 0 1 l O (trueform)

BR' l . O O 1 l 1 O 1 O (2s complement form)
/.iDR 0.l O O l O l O O 1 (obtained by shifting and adding DR

to itself)

The leftmost bit represents the sign (O for + and 1 for -). For division
only, subtraction in the parallel arithmetic unit is more easily accom-

Quotient Comments

Dividend
Add DR'

O 	Sign minus (i), hence q = O
Shift partial remainder left
Add DR

o 	1 Sign plus (O),hence q = 1
Shift
Add DR'

o 1 1 	q = l
Shif t
Add DR'

O1 	i 0 q = o
Shift
Add DR

o 	1 1 o o q = O
Shift
Add DR

o 	1 1 o o I q = l
Shif t
14dd DR'

0 1 1 O 0 1 1 . . 	q = l
Shift
Add DR'

0 1 1 0 0 1 1 1 	q = l
etc.

FIG.14.9. Example of nonrestoring division. DR:divisor; DR':2s complement of
divisor; q: current quotient bit. One quotient bit is generated for every shift-and-
add cycle.

plished by adding the 2s complement of the numher, whereas the 1s
complement is used for other operations, as noted before.

Nonrestoring division is demonstrated in Fig. 14.9. One quotient bit
is generated for each shift-and-add cycle, so that 48 cycles would be

needed for the 4&bit quotient of the 7030. At each step, if the partial
remainder has a sign bit 0, DR' is added; if the sign is I , DR is added.
The resultant partial remainder is shifted once to the left, and the inverse
of its sign bit becomes the new quotient bit.

Figure 14.10 shows that the division can be shortened greatly by skip-
ping over adjacent 1s or 0s in the partial remainder. Another way of
saying this is that the partial remainder is normalized by shifting out
those extra high-order bits which can be replaced directly by correspond-
ing quotient bits. If the remainder is positive (in true form), these bits

Shift-add
cycle

Quotient Comments

Dividend
Add DR'
q = O

Shift over Is, q = 1
Add D R
q = l

0.1 O1 1 l o 0 0 o 1 1 o Shift over Os, q = O
1 . 0 0 1 1 1 o 1 o Add DR'

Shift over Is, q = l 1 1
Add D R
etc.

FIG.14.10. Divide example with skipping over Is and 0s. On the average, 2.6 quotient
bits are generated for every shift-and-add cycle.

are 0s; if it is negative (in complement form), these bits are 1s. It may
be shown that the quotient bit to be inserted for each shift is the same
as the bit shifted out. This technique requires both the dividend and the
divisor to be normalized at the start, as aras already true in the numbers
chosen for the example.

The skipping technique is based on reasoning that a positive partial
remainder with leading zero bits must be smaller than any divisor that
has been normalized. Hence, subtracting the divisor is certain to result
in an overdraw, and the correct quotient bit is O. Thus the cycle can be
avoided by simply shifting and inserting the correct quotient bit. A
negative, complemented remainder with leading I s presents the converse
situation. Its absolute value is certain to be less than the divisor, so that
adding the divisor is bound to leave a positive remainder with a quotient

bit of l , and it is not necessary to do the actual addition. Once the
partial remainder is normalized, inspection of the leading bit is not
enough to te11 whether adding or subtracting the divisor is necessary or
not, and a fu11 cycle is taken a t that point.

The divide scheme actually used in t'he 7030 is an extension of the skip-
ping technique, obtained by inspecting more than 1 bit of the remainder
and divisor. One of three mult'iples of the divisor is selected for each add
cycle by looking up a table (Fig. 14.11) on the basis of 3 high-order bits

*IOO*O 101. 110. 111. - (True)
Oli-** 010. . 001 000- (Complement)

Partial remainder

FIG.14.11. Table for selecting divisor multiple. Select complement-divisor multiple
if partial remainder is true. Select true-divisor multiple if partial remainder is a
complement.

of the normalized previous remainder and 5 high-order bits of the normal-
ized divisor. The addition is carried out, the new partial remainder is
normalized, and the correct quotient bits are selected by the rules given
in Fig. 14.12. The example with this technique in Fig. 14.13 shows a
further reduction in the number of cycles.

The rules are considerably more complex than those in the previously
cited techniques, but the reasoning is roughly as follows. After the
partial remainder is normalized, the subsequent number of cycles can be
further reduced by selecting a multiple of the divisor that is as close in
magnitude to the remainder as possible, so that the magnitude of the new
partial remainder-the difference of the two values-is as close to zero as

Selected divisor
multiple

D R or DR'

S i g n bit of
new partial
remainder

Quolient bits

FIG. 14.12. Basic table for generating quotient bits. Additional rules: (1) Cse only as
many quotient bits, starting at the left, as the number of shifts needed to normalize
the new partial remainder. (2) If only two shifts are needed for 3/4DR or (S D R) ' ,
invert the first quotient bit on the next cycle. (3) If more than six shifts are needed,
take additional shift cycles and continue to generate O or l quotient bits, depending on
remainder sign.

possible. As a result,, there are more leading bits to be shifted out during
normalization than before. Ideally, the divisor multiple is picked pre-
cisely so as to leave a remainder which, to single precision, is zero, so that
the division is finished. For practical purposes, the selection was limited
to a much cruder choice of one of three multiples: 1, 4.4, and times the

Shift-add
cycle Quotient Comments

Dividend
Add DR'
q = o

0 . 1 0 0 1 0 1 0 0 1 Add % D R
1 .1 i l 1 1 1 0 0 1 0 1 1 0 0 1 1 1 q=100111
< I 1 etc.

FIG. 14.13. Example for divide met,hod used in 7030. % D R and 3.S D R (not shown)
are used, as well as skipping over 1s and 0s. On the average, 3.5 quotient bits are
genersted each cycle.

divisor; l is used when the normalized remainder is close to the divisor in
magnitude, when the remainder is much larger, and 4.iwhen it is much
smaller.

The scheme always permits at least two shifts after each add cycle.
As many as six shifts can be carried out in the same cycle as one addition;
if more shifts are needed, extra cycles rtise used without addition. The
lirnitation -o a six-way s M t is a matter rzf economy, but, it only acids 5
per cent to the number of cycles that would be needed without this
limitation.

The 7030 divide scheme is somewhat similar to a base-4 method
described in the 1iterature.l The base-4 method has a fixed shift of
2 bits per cycle, whereas the method described here allows from 2 to 6
bits of shift.

In floating-point muit iply and divide operations, the arithmetic ori the
fraetions is performed by the parallel arithmetic unit, as described above,
while the seria1 arithmetic unit is executing the exponent arithmetic.
Here, again, is a case where overlap and simultaneity of operation are
used to special advantage.

14.5.Checking

The operation of the computer is thoroughly checked. An error-
correction code is employed for transfers of data from memory. The
code is attached to al1 words on the way into memory. Every time a
word is fetched from memory, the code is checked. If a single error is
indicated, a correction is made, the error is recorded on a maintenance
output device, and computing continues.

Within the machine al1 arithmetical operations are checked either by
parity, d~plicat~ion, a These checks are or cast,ing-out-three process.
overlapped wit'h the execution of the next instruction.

14.6. Component Count

Figure 14.14gives the number of transistors used in tlhe various sections
of the machine. It becomes obvious that the floating-point unit and
the instruction unit use the highest percentage of transistors. In the
floating-point unit this is largely due to the e~t~ensive circuits for the
speeded-up mult iply and divide schemes. In the instruction unit most
of the transistors are in the controls, because of the highly multiplexed
operation.

J. E. Robertson, A Xew Class of Digital Division Methods, I R E Trans. on Elec-
tronic Computers, vol. EC-7, no. 3, pp. 218-222, September, 1958.

Number of Per cent of
Unit transistors total

Memory controls 10,500

Instruction unit :
Data path 17,700
Controls 19,500

Look-ahead unit :
Data path 17, 900
Controls 8,600

Arithmetic registers 1 10,000

Seria1 arithmetic unit :
Data path 10,000
Controls 8,700

Parallel arithmetic unit : I
Data path 32,700
Controls 3,000

Checking 24,500

Interrupt system i 6,000

Total 169,100

Double Cards 4,025
Single Cards 18,747
Power 21 kw

FIG.14.14. Component counts in the computer sections.

14.7. Performance

Figure 14.15 shows some examples of arithmetic speeds. Decima1
mul t ip ly and divide instructions call for a subroutine; the times are not
shown because they depend on the nature of the subroutine.

These figures give only a rough indication of the performance to be
expected on a specific problem. Because of the large degree of overlap,
one cannot correctly quote average times for individua1 operations that
could be added together to give the total time for a sequence of such
operations. I t is possible for indexing and branching instructions, for
example, to be completely overlapped with arithrnetical operations, so
that their effective time becomes zero. On the other hand, it is clear

ADD MULTIPLY DIVIDE

Floating point 1 . 5 2 . 7 9.9
VFL binary

(for 16-bit numbers)
VFL decima1

(for 5-digit numbers) 5 . 4 Subroutine Subrout,ine

FIG. 14.15. Examples of arithrnetic speeds.

that a sequence consisting exclusively of indexing and branching instruc-
tions would take a significant amount of time.

The only valid way to time a specific program is either by measuring
the time during actual execution or by simulating the intricate timing
conditions of the T030 dynamically on another computer.

14.8. Circuits

Having reviewed the CPU organization of the 7030, we shall briefly
discuss the components, circuits, and packaging tec hniques used in the
design.

The basic circuit component is a high-speed drift transistor with a
frequency cutoff of appro~imat~ely100 megacycles. To achieve high
speed it is kept out of saturation a t al1 times. The transistor exists in
both a PNP and an NPN version. The main reason for using two ver-
sions is to avoid the problem of leve1 translation caused by the 6-volt
difference in potential between the base and the collector.

Figure 14.16 shows the PNP circuit. The inputs A and B operate
a t a reference voltage of O volt, which is established by the preceding
circuit (not shown). If inputs A and B are both positive by 0.4 volt
with respect to the reference voltage, t heir respective transistors cut off.
This causes the emitter of transistor C to go positive wit h respect to its
base and conduct a 6-ma current, flowing from the current soiirce which is
made up of the +30-volt supply and resistor R. As a result, output F
goes positive by 0.4 volt with respect to its reference of -6 volts; a t the
same time output F' goes negative by 0.4 volt with respect to the reference.

When either of the inputs goes negative, its transistor becomes con-
ducting. The emitter of transistor C goes negative and C is cut off.
The result is that output F' goes positive and output F goes negative with
respect to the reference.

The principle of this circuit is one of switching (or steering) a constant
current either toward output F (C conducting) or toward output F'
(A or B or both conducting). The PNP circuit provides both the logica1

function and and the function not or. Minimum and maximum signal
swings are also shown in Fig. 14.16.

A dual circuit using the NPN transistor is shown in Fig. 14.17. The
principle is the same, but the logica1 functions or and not and are obtained,

Symbol

Truth table

Circuit diagram

lnput
m S 0 . 5 ~

+0.4v
Min.-max.
signal voitages Ref Ov Ref -6v

- 0.4 V - 1;;;
- 0 . 8 ~

Delay =: 20 nsec

Circuit response Output
Input

FIG. 14.16. Current-switching circuit, Ph7P. Symbols : A and, V or, 1 no£.

and the reference voltages are now - 6 volts at the input and O volt a t
the output.

The circuits described so far are versatile enough so that they could be
the only circuits used in the system. Because of the many data buses and
registers, however, it was found useful to provide also a distributor func-
tion and an overriding function. This resulted in a circuit with a third

voltage level which permitted great savings in space and transistors.
Figure 14.18 shows the PNP version of the third-leve1 circuit.

Without transistor X, transistors -4 and B in conjunction with the
reference transistor C would work normally as a current-switching circuit,
in this case an and circuit. When transistor X is added, with the stipula-
tion that the down level of X be more negative than the lowest possible
level sf -4 or B, it becsmes apparent that when X is negative the current
will flow through that branch of the circuit in preference to branch

Symbol

Truth table
F' =-(A VB)

=(1A)A(-

Circuit diagram

FIG.14.17. Current-switching circuit, N P N .

F or F', regardless of input A and B. Therefore, the output of F and F'
will be negative, provided input X is negative. OutiputG is the inverse of
input X. If, however, X is positive, then the status of A and B will deter-
mine the function of F and F' implicitly. This demonstrates the over-
riding function of input X.

Similarly, the NPN version, not shown, results in the or function a t F
if input X is negative and in a positive output at F and F', regardless of
the status of A and B, if X is positive.

The speed of the circuits described so far depends on the number of
inputs and the number of circuits driven from each output. The response
of the circuits is anywhere between 12 and 25 nsec (nanoseconds, bil-
lionths of a second) per logica1 step, with 18 to 20 nsec average. The

Circuit
(Ad

Min.-max.
signal voltages

Circuit response

X G

Syrnbol

Tnith table

Ref G nd - 6.0 v

- 1 . 2 ~
X input

- 2.0 v

- 6 . 4 ~
-6.5"

(Al1 outputs)

FIG. 14.18. Third-leve1 circuit, PNP.

222

Circuit

Truth tables

Circuit
diagrams

signal voltages Re f Gnd

D e l a y ~ 10 nsec
Circuit response

FIG. 14.19. Emitter-follower logic.

- 0.35 V

chain i41

AVB

number of inputs allowable per circuit is eight. The maximum number of
circuits driven is three. Additional circuits are needed to drive more
t,han three bases, and, where current-smitching circuits communicate over
long lines, termination networks must be added to avoid reflections.

To improve the performance of the computer in certain critica1 places,

emitter-follower logic is used, as shown in Fig. 14.19. These circuits
have a gain less than 1, and they require, after a number of stages, the
use of current-switching circuits as amplifiers and leve1 setters. Both
and and or circuits are available for both a ground-leve1 (shown) and a
- 6-volt-leve1 input (not shown). To change a ground-leve1 circuit into
a -6-volt-leve1 circuit it is necessary to change the appropriate power
supply levels. Because of variations in inputs and driven loads, the cir-
cuits must be designed to allow such variations over a wide range; this
requires the feedback capacitor shown in the circuit, to maintain stability.

Al1 functions needed in the computer can be irnplemented by the use
of the aforementioned circuits, including the flip-flop function, which is
obtained by connecting a PNP current-switch block and an N P N
current-switch block together with proper feedback.

14.9. Packaging
The circuits described in the last section are packaged in two ways,

as shown in Fig. 14.20. The smaller of the two printed circuit boards is

FIG. 14.20. Single and double circuit cards. Front and rear views.

called a single card and contains and or or circuits. The wiring is one-
sided, and besides the components and transistors, a rail may be seen
which permits the shorting or addition of certain loads depending on the
use of the circuits. This rail has the effect of reducing the different
types of circuit board needed in the machine. Twenty-four different

FIG. 14.21. The back panel.

boards are used, and, of these, two types reflect approximately 70 per cent
of the total single-card population of the machine.

Because of the large number of registers, adders, and shifters used in the
computer, where the same functions are repeated many times, a second
package was designed to be big enough to hold a complete function.
This is the larger board shown in Fig. 14.20, called a double card. It has
four times the capacity of a single card and has wiring on both sides of
the board. Components are double-stacked. Again the rail is used to

effect circuit variations for the different applications. Eighteen double-
card types are used in the system. Approximately 4,000 double cards
house 60 per cent of the transistors in the machine. The rest of the
transistors are on approximately 18,000 single cards.

The cards, both single and double, are assembled in two gates, and two
gates are assembled into a frame. Figure 14.21 shows the back-pane1

FIG. 14.22. The frame (closed).

wiring of one gate, and Figs. 14.22 and 14.23 show the frame in closed
and open position.

To achieve high performance, special emphasis had to be placed on
keeping the noise to a low level. This required the use of a ground plane
which covers the whole back pane1 underneath the intercircuit wiring.
In addition, the power-supply distribution system had to be of low
impedance to avoid noise pick-up. For this reason a bus system con-

sisting of laminated copper sheets is used to distribute the power to each
row of card sockets. Wiring rules are that single-conductor wire is used
to a maximum of 2 ft, twisted pair to a maximum of 3 ft, unterminated
coaxial cable to a maximum of 5 ft, and terminated coaxial cable to a
maximum of 100 ft. The whole back-pane1 construction, including the

FIG. 14.23. The frame (extended).

proper application of single wires, twisted pairs, or coaxial cable to
minimize the noise on each circuit node, was laid out by means of a com-
puter program.

With the high packing density made possible by the double cards, a
single frame may consume as much power as 2 kw, the average con-
sumption being around 1 kw. To reduce power distribution and regula-
tion problems, a specially designed 2-kw power supply, using 400-cycle
components for greater compactness, is mounted in each frame. The

FIG. 14.24. The central processing unit.

supplies are fed from a regulated 400-cycle motor-generator set, which
also serves the purpose of eliminating 60-cycle power-line variations.

The two gates of a frame are a sliding pair, with the power supply
mounted on the sliding portion. Al1 connecting wires between frames are
coaxial cable arranged in layers to form a drape, which can follow the
gate as it slides out of the frame.

Figure 14.24 shows eighteen of these frames tied together to form the
entire central processing unit, as well as the CPU maintenance console.

Chapter I5

THE LOOK-AHEAD UNIT
by R. S. Ballance, J. Cocke, and H. G. Kolsky

15.1. General Description

The look-ahead unit is a speed-matching device int'erposed between the
arithmetic unit and the memory. With multiple 2-psec memory units-
typically four units for data, each independently operable-it is possible to
fetch or store a data word every 0.5 psec. This rate would be high enough
to keep up wit,h tlhe fast arithmetic unit, as well as a number of input-
output units, were it not for unavoidable delays. The delay between
the initiation of an operand transfer and the arriva1 of that operand a t its
destination is made up partly of the access time of the memory itself and
partly of the time taken for tJhe operand to pass through a series of
switches and registers. More delay occiirs if the desired memory unit
happens to be busy finishing a previously initiated memory cycle or if it
still needs to service a request with higher priority. The total waiting
time may amount to several memory cycles.

The time spent by the arithmetic unit waiting for an operand may be
greatly reduced by "looking" several instructions ahead of the one
currently being executed. If the memory reference is initiated early
enough, the operand will usiially he available in a buffer register by the
time the arithmetic unit is ready for it. Similarly, the arithmetic unit
should be allowed to place a just-computed result into a buffer register for
storing in memory while it proceeds with the next operation. By per-

Note: The discussion of the results of a timing simulator study, which governed the
choice of design parameters of the look-ahead unit, is taken from an earlier paper hy
J. Cocke and H. G. Kolsky, The Virtual Memory in the Stretch Computer, Pror.
Eastem Joint Computer Conf., no. 16, pp. 82-93, Decemher, 1959. That paper
included a description of the simulator logic, which is omitted here. I t also contained
a description of the look-ahead concept on which the simulator was based; this chapter
includes instead a simplified description by R. S. Ballance of the actual look-ahead
unit as it exists in the Los Alamos system.

228

forming these collection, storage, and distribution functions, the look-
ahead unit raises the effective speed of the arithmetic unit.

The look-ahead unit may also be considered as a buffer that helps to
smooth the data flow through memory. With many parts of the system
having independent access to memory, It is natura1 for peaks and valleys
to occur in the demand for a given memory uiiit. Input-output units
cannot be kept waiting long, and so they have a higher priority on memory
than the central processing unit. If the CPG were simply stopped during
a period of peak input-output activity, the waitiilg time would be lost
completely. By having a reservoir for unexecuted instructions in the
look-ahead registers, it is possible to make up some of the lost time by
satisfying deferred CPU demand during a period of lower input-output
activity. Thus the look-ahead helps to regulate the fluctuations in
memory demand.

As has been described iil Chap. 14, there are actualiy two such buffering
devices in the central processing unit. One is the instruction unit, which
fetches the instructions, indexes and partially executes them, and initiates
memory references for operands. The other is the look-ahead unit, which
consists of several look-ahead leuels, each providing one stage of buffering.
A level comprises a series of special registers, which receive a pre-decoded
instruction from the instruction unit and wait for the operand to arrive
from memory. The arithmetic unit (both the parallel and the seria1
parts, since they do not operate independently) receives the assembled
operation and operand information as soon as everything is ready aad
proceeds with the operation. A store operation causes the result to be
returned to an available level in the look-ahead unit and then to be sent
to storage while the arithmetic unit proceeds to the next instruction.

The look-ahead unit may be described as a virtual memory for the arith-
metic unit. The arithmetic unit communicates only with the look-ahead
unit, not directly with the rea1 memory; it receives instructions and oper-
ands from the look-ahead and returns its results there. The virtual
memory, being small and fast, resembles in some respects the separate fast
memory that was originally proposed for Project Stretch. It differs
greatly, however, in that it takes care automatically of the housekeeping
involved in the data and instruction transfers and thus avoids most of the
extra time and al1 of the difficult storage-allocation problems associated
with a hierarchy of memories of different sizes and speeds.

To make the housekeeping fully automatic and keep the task of "look-
ing ahead" from being a burden on the programmer, it was necessary to
solve several fundamental logica1 problems in the design of the look-ahead
unit. One class of problems results from the ability of the machine to
treat instructions as data. This ability is a basic property of stored-
program computers, where instructions and data reside in the same

alterable memory. As an example, consider the instruction sequence:

Location Instruction

a LOAD, b
a + l STORE ADDRESS, U + 2
a - t -2 BRANCH, C

where a, b, and c are memory addresses. Unless precautions are taken,
the instruction unit may be preparing the BRANCH instruction before i t
has been modified by STORE ADDRESS. (This ability to modify instruc-
tions was a major advance resulting from the invention of the stored-
program concept. I ts importance has diminished greatly with the advent
of indexing, but it is still undesirable to prohibit instruction alteration or
make i t difficult to use.)

A similar problem may arise in the manipulation of data. Thus the
expression T:+, = (Ti+ D) 2might be formed by the sequence:

LOAD, t
ADD, d
STORE, t
MTJLTIPLY, t

where t and d are the addresses of T and D. Here STORE changes the
operand needed for the MULTIPLY instruction, which would already be
under preparatioii.

A third example occurs in condit'ional branching, when the condition
depends on the result of an operation yet tzo be completed by the arith-
metic unit. To nlaintain efficient operation, the instruction unit must
"guess" the outcome of the test and continue to prepare instructions. If
the guess proves wrong, the already prepared instructions must be dis-
carded, and any modifications of addressable registers must be rescinded
before the instruction unit starts down the correct path.

Program interruption produces a similar situation. The instruction
and look-ahead unit,s may be working on instructions which may never
recur after t'he interr~pt~ion and which, therefore, ehould leave no ttraces.

These are logica1 pitfalls that would be very difficult to avoid by pro-
gramming means. Hence the design of the look-ahead unit was required
to make the CPU, despite its complex overlapped and nonsequential
operation, appear to execute programs sequentially, one instruction a t a
time.

15.2. Timing-simulation Program

The detailed design of the look-ahead unit could not be completed unti1
severa1 system-design criteria were established. The complexity of the
proposed system made it extremely difficult to analyze. Even the exist-
ence of the look-ahead unit could not be justified on the basis of simple

calculations. At the same time, decisions were needed concerning such
basic problems as the number of memory units, the interlacing and alloca-
tion of memory addresses, and the number of look-ahead levels required.
Also of interest were trade-ofT factors for the speed of tlhe instruction unit,
the arithmetic unit, and the maglietic core memory units.

A timing-simulator program was written, for the IBM 704, to attempt a
quantitative answer to such questions. This program simulated the
timing of typical test problems on a computer system embodying the
look-ahead concept. I t should be stressed that the program was a
t i rnhg simulator and did not execute instructions in an arithmetical
sense. Also, the parameters for the study were chosen arbitrarily to
cover ranges of interest and do not represent actual operation times used
in the design. The simulator traced the progress in time of the instruc-
tions through the computer model, observing the interlocks necessary to
make the look-ahead behave correctly.

Because of the concurrent, asynchronous operation of different parts
of the computer, there are many logical steps being executed a t any
time, with each step proceeding a t its own rate. This flow of many
parallel continuous operations was simulated by breaking the time
variable into finite time steps. The basic time step in the simulator was
0.1 microsecond.

Experience indicated that more information would be gained by making
a large number of fast parameter studies, using different configurations
and test programs, than could be obtained by a very slow, detailed simu-
lation of a few runs with greater precision per run. Even so, the time
scale was too fine for serious input-output application studies. These
would have required a simpler simulator having a basic time interval a t
least ten times as coarse.

A series of studies were made, in which the main parameters describing
the system were varied one or two at a time, in order to get a measure of
the importance of various effects. After this the studies were specialized
toward answering specific questions in the 7030 design.

Five test programs were selected as typical of different classes of
problems.

1. Mesh problem. Part of a hydrodynamics problem containing a
fairly "average" mixture of instructions for the kind of scientific
problems found a t the Los Alamos Scientific Laboratory: 85 per cent
floating-point, 14 per cent index-modification, and 1 per cent variable-
field-length instructions. The execution time of such problems is usually
limited by the speed of the floating-point arithmetic unit.

2. Monte Carlo branching problem. Part of an actual Monte Carlo
neutron-diffusion code. ~ h i srepresents a chain of logical decisions with

very little arithmetic. I t contains 47 per cent floating-point instructions,
15 per cent index-modification instructions? and 36 per cent branches of the
indicator and unconditional types. I ts speed is largely instruction-
access-limited.

3. Reactor problem. The inner loop of a neutron-diffusion problem.
This consists of 90 per cent floating-point instructions (39 per cent of
which are multipby instructions) and 10 per cent index-modification
instructions. I ts speed is almost entirely limited by the arithmetic unit.

4. Computer test problem. The evaluation of a polynomial using com-
puted indices. It has 71 per cent floating-point, 10 per cent index-
modification, 6 per cent variable-field-length, and 13 per cent indicator
branch instructions. It is usually arithmetic-unit-limited, but not for al1
configurations.

5. Simultaneous equati0n.s. The inner loop of a matrix-inversion
routine, having 67 per cent floating-point and 33 per cent index-modifica-
tion instructions. Arithmetic and logic are about equally important.
It is limited both by arithmetlic and instruction-access speeds.

Some of the results of these studies are summarized below. For
simplicity, only the first two problems, the mesh ai-id Monte Carlo calcula-
tions, are illustrated ; the other problems generally gave results inter-
mediate between these two.

Nurnber of Loolc-ahead Levels

Figure 15.1 shows t.he effect on speed of varying the number of levels of
look-ahead. Curves for the Monte Carlo and mesh calculations with two
sets of arit hmetic- and instruction-unit speeds are shown. The arith-
metic-unit times given are average for al1 operations. A number of
interesting results are apparent from these curves.

l . The look-ahead organization provides a suhstantial gain in per-
formance. The point for "O levels" means that the arithmetic unit is
tied directly to the in~t~ruction unit, although simple indexing-execution
overlap is still possible.

2. The speed goes up very rapidly for the first two levels, then rises
more slowly for the rest of the range.

3. A large number of levels does less good in the Monte Carlo problem
than in the mesh problem, becaixse constant branching spoils the flow of
instmctions. Kotice that the curve for the Monte Carlo problem
avtiially decreases slightly beyond six levels. This phenomenon is a
result of memory conflicts caused by extraneous memory references
started by the computer's running ahead on the wrong-way paths of
branches.

4. The computer performance on a given problem is clearly lower for
lower arithmetic speeds. It is important to note, however, that the
sensitivity of the over-al1 speed to change in the number of levels is also
less for lower arithmetic speeds. The look-ahead improves performance
in either case, but it is not a substitute for a fast arithmetic unit.

Mesh calculation,rr,T-1
Monte Carlo calculation -I

O 2 4 6 8 O 2 4 6

Levels of look-ahead Main memory units

FIG.15.1. Computer speed vs. number of FIG.15.2. Computer speed vs. number of
levels of look-ahead. Four main mem- main memory units. Four levels of look-
orie~, 2.0 psec; two fast memories, 0.6 ahead; arithmetic-unit time 0.64 psec;
psec; for two sets of arithmetic speeds: instruction-unit time 0.6 psec. A: in-

A B struc tions in separate 0.6-psec memory ;
Arithmetic-unit time, psec 0.64 1.28 B: instructions in separate 2.0-psec mem-,
Instruction-unit time, psec 0.6 1.4 ory; C: instructions and data sharing

same 2.0-psec memory.

Number of Memory Units

Figure 15.2 shows how interna1 computer speed varies with the number
of memory units and with two different memory speeds. The entire cal-
culation is assumed to be contained in memory. The speed gain from
overlapping memories is quite apparent from the curves.

The origina1 computer design assumed the use of two kinds of memory
units, a large "main" memory unit (2.0-psec cycle) and a pair of fast but
smaller memory units (0.6-psec cycle). The intent was to place the
instructions for the inner loops in the fast memory and the necessarily
large volume of data, as well as the outer-loop instructions, in the
main memory. The graph shows the effects of changing some of the
assumptions.

The speed differential between having and not having instructions
separated from data arises from delays in iristruction fetches when mem-
ory units are busy with data. This effect varies from problem to prob-
lem, being less pronounced for problems that are arithmetic-limited and
more pronounced for logica1 problems.

The crosses in Fig. 15.2 are isolated points that show the effect of
replacing the 0.6-ysec instruction memories by a pair of the 2.0-psec
memory units used as instruction memories only. The resulting per-
formance change is small for the mesh problem, which is arithmetic-
limited, but larger for the instruction-access-limited Monte Carlo
pro blem.

Arithmetic- and Instruction-unit Speeds

Although everyone realized the effect of arithmetic speed on over-al1
computer performance, it was not unti1 the simulator results became
available that the true importance of the instruction-unit speeds was
recognized. Figures 15.3 and 15.4 show a two-parameter family of curves
giving the computer speed as a function of average arithmetic-unit and
instruction-unit times.

Figure 15.3, in which the arithmetic time is the abscissa, shows an
interesting saturation effect, where the computer performance is inde-
pendent of arithmetic time below some critica1 value. Thus it makes no
sense to strain execution speeds if the instruction unit is not improved
correspondingly. The curves in Fig. 15.4 show a similar saturation
effect as tlhe instruction-unit times decrease. Thus each unit places a
performance ceiling on t'he other unit.

A frequently quoted fallacy is that the goal of improved computer
organization is to increase the efficiency of the arithmetic unit. Actually
this is not the goal itself. Arithmet'ical efficiency depends strongly on the
mixture of arithmetic and logic in a given problem, and a general-purpose
computer cannot be equally efficient on al1 problems. Moreover, the
simplest way to increase arithmetic-unit efficiency in an asynchronous
computer is to slow down the arithmetic unit.

The rea1 goal of improved organization is to obtain maximum over-
al1 computer performance for minimum cost. As long as efficiency
remains reasonably high for a variety of problems, one t'ries to increase
arithmetic speed, stopping this process when the over-al1 performance
gain no longer matches the increase in equipment and complexity.
Arithmetic-unit efficiency is a by-product of this design process, not the
prime variable.

Concurrent Input-Output Activity

Because of the widely different time scales for input-output activity
and internal instruction execution, the simulator cannot take into
account the availability or nonavailability of specific data from input-
output units. We can, however, observe the combined effect of the
input-output devices operating a t different rates simultaneously with
computing.

The input-output exchange is designed for an over-al1 peak rate of one
word every 10 microseconds. The high-speed disk synchronizer has a

Mesh
calculation

rr
Monte Carlo
calculation

Average arithmetic tirne, p e c

FIG.15.3. Computer speed vs. arithmetic times for various instruction-unit times.
Four levels of look-ahead; four units of 2.0-,usec memory ;two units of 0.6-,usec memory.

design limit of one word every 4 microseconds. Since the mechanical
devices must take priority over the centra1 processing unit in addressing
memory, the computation slows down in memory-busy conflicts.

Figure 15.5 shows an example of how internal computing speed is
affected by input-output rates. At the theoretical choke-o$ point the
input-output devices take al1 the memory cycles available and stop the
calculation. I t may be seen that this condition can never arise for any
input-output rates presently attainable.

A 7030 system with only one or two memory units has lower per-
formance than a system with more units, for three reasons: (1) the

interna1 speed of the system is reduced by the loss of memory overlap;
(2) the input-output penalty is higher when a given amount of input-out-
put is run concurrently with the computation; and (3) the amount of
data that can be held in the memory a t one time is smaller, requiring
more input-output activity to do the job. Xote that increasing the
memory size on a conventional computer effects improvement only with
respect to the third of these factors.

I2O 0

\ ~ve rage arithmetic unit time

Mesh
calculation

IMonte Carlo
caIcuIation

Instruction unit time, psec

FIG.15.4. Computer speed vs. instruction-unit times for various arithmetic-unit times.
Same assumptions as in Fig. 15.3.

Branching on Arithmetic Resdts

Since a branch instruction spoils the smoot,h flow of instructions to the
instruction unit, any branch in a program mi11 cause some delay, but the
most serious delays occur when branching is conditional on results pro-
duced by the arithmetic unit, which cannot be determined by t'he instruc-
tion unit in advance.

There are two basic ways in which branches conditional on arithmetic
results can be handled by the computer:

1. The computer ean stop the flow of instructions unti1 the arithmetic
unit has completed the preceding operation and t'he result is known,
before fetching the next instruction. This procedure causes a delay a t
every such branch, whether taken or not.

2. As has been mentioned, the computer can "guess" which way the
branch is going to go before it is taken, and proceed with fetching and
preparing the instruction along the most likely path; but, if the guess was
wrong, these instructions must be discarded and the correct path taken
instead.

A detailed series of sirnulator runs were made to determine which was
the better approach. Some genera1 observations were:

4'
,lIJDisk synchrbnizei peak rate

I

I

l i I Choke-off I

point I

5 10 15 20

Microseconds between consecutive words of input-output

FIG.15.5. Effect of input-output rate on interna1 computing speed. For Monte
Carlo calculation.

1. For a problem with considerable arithmetic-data branching, the
performance can vary by + 15 per cent depending on the way in which
branching is handled.

2. Holding up a t every branch point seems less desirable than any of
five guessing procedures: condition will be on, condition will be o$, condi-
tion remains unchanged, branch will be taken, branch will not be taken.

3. Unless there is an unusual situation in a problem with a very high
probability that the branch will always be taken, the least time will be
lost if one assumes that branching will noi occur.

4. The theoretically highest performance would be obtained if each
branch instruction had a guess bit, which would permit the programmer to
specify his own guess of the most probable path. This would place a
considerable extra burden on the programmer for the gains promised.
(It would also use up many valuable operation codes.)

5. There is a feedback in such design decisions. Knowing the way in
whkh t he machine ('guesses" the branches, n a n y programmers will write
their codes so as to gain speed. The result is that the statistics of actual
experience will be biased in favor of the system chosen, thus "proving"
that it was the right decision.

Outcome of Simulator Studies

The results of the simulator studies led to these design choices for the
7030 system:

1. Four levels of look-ahead are provided.
2. The standard memory complement is two instruction memories and

four data memories, al1 with 2-psec cycle t,ime; fewer or more memory
units are optional. (The increase in performance possible with the faster
0.6-psec instruction memories was felt not large enough to offset the
reduction in storage capacity-1,024 words for each fast unit as compared
with 16,384 words for each slower unit.)

3. The addresses of the four data memories are interlaced (i.e., four
consecutive addresses refer to different memory units); likewise the
addresses of the two instruction memories are interlaced separately.

4. For a branch instruction conditional on the result of arithmetic-
unit operations, the instruction unit proceeds as if the branch will fail.

It should be noted here that these simulation st,udies were carried out
before the detailed design of the computer and so the simulated mode1 did
not reflect accurately al1 subsequent design decisions. The actual com-
puter performance should not be expected to follow the patterns of Figs.
15.1 to 15.5 exactly.

15.3. Description of the Look-ahead Unit

For expository reasons this description of the look-ahead unit and its
operation is much simplified. Many of the checking procedures and the
special treatment of interna1 data registers have not been included. At
severa1 places processing is described as if it were sequential, when it
actually is overlapped.

Each of the four levels of the look-ahead unit is composed of a number
of registers, tag bits, and counters (Fig. 15.6). The registers contain the

Sec. 15.31 DESCRIPTION THE UNIT 239OF LOOK-AHEAD

following information, which will be required a t the time the instruction
in this look-ahead level is to be executed:

Operation code. Contains the partially decoded operation.
Operand. Contains, in general, the data on which the operation is to

be performed.
Indicators. Contains a record of any of fifteen indicators that are to be

set a t execution time. Their setting is a result of instruction preparation
in the instruction unit or of errors detected during look-ahead operation. l

5 ring counters Op.cale VI 1 Instruction counter I
Y

LEVEL 1
64-bit operand I

Instruction counter Op.code I I
9 LEVEL 2

64-bit operand I

Op.code)J 1 instruction counter I
LEVEL 3

64-bit operand 1

L

al 64-bit operand Y
s

Look-ahead. address reg ister
I t

FIG.15.6. Look-ahead registers.

Instruction counter. Contains the location of the instruction immedi-
ately following the instruction held in this level.

The following tag bits are used for contro1 purposes:

Level Jilled bit. Indicates that the operand field has been filled.
Level checked bit. Indicates that the data have been checked and that

their check bits have been converted to the form required by the par-
ticular operation to be performed.

The fifteen indicators are: machine check, instruction reject, operation code invalid,
address invalid, data store, data fetch, instruction fetch, index Jlag, index count zero, index
value less than zero, index value zero, index value greater than zero, index low, index equal,
index high.

Internal operand bit. Indicates that the operand is to come from an
interna1 register rather than memory.

Instruction counter bit. Indicates that the instruction-counter field of
this level is valid for use during an interrupt.

Look-ahead operation code bit. Indicates that the information in the
operation-code field is to be used only by the look-ahead control.

'Cj70rd-boundary crossocer bit. Indicates that the VFL operand crossec a
word boundary.

N o operation bit. Indicates that the instruction is to be suppressed
and treated as though i t were a NO OPERATIOX instruction.

From bit. Designates the level f rom which forwarding can take place.

Five ring counters control the operati011 of the look-ahead unit, as
they advance from one level to the next:

Instruction un i t counter. De~ignat~es the next level of look-ahead to
receive an instruction from the in~t~ruction unit.

Operand check counter. Designates the next level a t which an operand
is to be checked.

Transfer bus counter. Designates the next level to be tralisferred to
the working registers of the arithmetic unit.

Arithmetic bzrs counter. Controls the functions necessary for proper
operation of tjhe interrupt system. Also designates the next level to
have its indicator field entered into the indicator register and to receive
any result from the arithmetic unit for 1at)er storing.

Store check counter. Designates the next level from which an operand
is to be sent to storage. For non-store-type operations, this counter
generally advances with the arithmetic-bus counter.

The counters advance from level to level under their own control.
For example, after the instruction-unit counter has completed the loading
of an instruction into level 1, it will advance to level 2, ready to receive
an instruction for that level. After an operand has arrived, the operand-
check counter can cause the operand in level 1 to be checked; the counter
then advances to level 2 to check the operand there. Except for inter-
locks to keep the counters in proper sequence, the counters are free to
advance as soon as their work is completed.

15.4. Forwarding

Each time a store operation is loaded into a look-ahead level, the oper-
and address is placed in the common Eook-ahead address register (Fig.
15.6), and this level is tagged by turning o n the from bit. The address
of each subsequent dàta fetch is compared with the contents of the look-
ahead address register, and, if they are equal, the data fetch is canceled

and the operand field is forwarded from the tagged level. This forward-
ing process saves memory references and prevents the use of obsolete
data.

When the look-ahead address register is not busy with a store instruc-
tion, it contains the address of the most recently loaded operand. Thus,
if severa1 successive references are made to the same address, only one
memory fetch is required, the other levels receiving their operands by
forwarding. Consider these instructions for forming A3:

LOAD, U

MCLTIPLY, U

MULTIPLY, U

The operand A is fetched from address a once for LOAD and then supplied
to the two MCLTIPLY instructions by forwarding.

Since only one look-ahead address register is provided, the look-ahead
unit can handle only one sture-type operation a t a time.

15.5. Counter sequences

Instruction-unit Counter

Figure 15.7 shows, in simplified form, the sequence of operations initi-
ated by the instruction-unit counter at a giveii look-ahead level. Three
types of instructions must be distinguished:

1. Instructions for which no data are to be fetched, such as branch
instructions, which require no operand a t all, or instructions with immedi-
ate addressing, where the operand is obtained from the instruction unit
as part of the instruction

2. Instructions requiring an operand fetch from memory and
3. Store-type instructions

As soon as the instruction is loaded, a test for the type of instruction is
made. If no more data are needed, the level is immediately tagged as
having been filled and checked, and the sequence is ended. If the instruc-
tion is of the fetch type, a comparison is made with the look-ahead address
register to see whether the data should be forwarded from another level,
and the operand request (which had already been initiated by the instruc-
tion unit to save time) is canceled; otherwise the look-ahead address
register, if available, is set to perniit forwarding of this operand to another
level.

A store-type instruction sequence must wait unti1 the look-ahead
address register is free of any earlier store operation, and the register is
then set up for possible forwarding to another level.

I

Decode type of instruction I
No data required Memory Store

fetch

I 1 m
Compare with Iook-ahead

Does look-ahead 1address register
address regi ster

contain data Wait

address of store

jC I Does look-ahead type operation? I
address register contain
data request data address of

store type operation?

Forward data Piace address
in look-ahead

Gate operand address address register
into look-ahead and tag level

Any data error? address register. with from bit
Set from bit

Is error correctable? i--i
Correct

v
Tag level with no-op

to show it should

not be executed

v v
Set level filled and leve1 checked tags

v 1 1
Has instruction unit counter reached WaitI I Istore check counter settins?

FIG.15.7. Instruction-unit counter advance sequence.

The instruction-unit counter is interlocked t'o prevent it from advancing
to a level still occupied by the store-check counter. This prevents new
information from destroying data yet to be stored.

Operand-check counter action (Fig. 15.8) is not required after for-
warding, since the operand will already have been checked by the instruc-
tion unit and the level-checked bit will be on. If the bit is o$, the

-Has level already been checked?
\l e s l

Has leve1 been filled? Wait

\o Yes

1s error correctable?

Y es No

Correct

Tag level with no-op
to show it should not
be executed, and set

instruction reject
indicator

1
Turn on level checked tag

I

Has operand check counter reached
instruction unit counter setting? Wait

l

No Yes

v
Advance

FIG.15.8. Operand-check counter advance sequence.

counter will wait unti1 the operand has arrived before proceeding with
checking and error correctioii.

This counter is interlocked so that it will not pass the instruction-unit
counter.

Transfer-bus, Arithmetic-bus, and Store-check Counters

Figures 15.9 and 15.10 illustrate some simple sequences for these three
counters as applied to floating-point instructions. Each counter is
appropriately interlocked with its predecessor.

The transfer-bus counter sends the completely assembled and checked
information held in the current look-ahead level to the arithmetic unit

I I
Decode as floatinq point

fetch operation

Send operation code and operand
to arithmetic unit

$. #
Has transfer bus counter reached I Ioperand check counter? Wait

I s interrupt waiting?

To interrupt

controls

Gate indicator field to

Has arithrnetic bus counter reached
transfer bus counter? Wait

Has store check counter reached
Waitarithmetic bus counter?

FIG.15.9. Transfer-bus, arithmetic-bus, and store-check counter advance sequences
for floating-point fetch-type operations.

Decode a s floating point store operation l
1

Send operation code to arithmetic unit
I

Was it accepted? Wait

l
I Has transfer bus counter reached operand check counter? 1 Wait
I I

Yes N O l

1 Is interrupt waiting? 1
TO interrupt I ' f e ~ No

controls
Gate indicator field to indicator register (

Wait

I Gate data from the arithrnetic unit to look-ahead I

I + I IHas arithmetic bur counter reached transfer bur countet? Waik
I

Yes

Advance

I Does look-ahead address register contain a rnain memory address? (

7

Send data to index memory

through checker

I

Will rnemory bus accept Waitoperand for storage?

Gate operand to mernory bus

FIG.15.10. T r a n s f e r - b u s , arithmetic-bus, and store-check counter a d v a n c e s e q u e n c e s
f o r f l o a t i n g - p o i n t s t o r e - t y p e o p e r a t i o n s .

245

and waits until the information is accepted. This counter must test the
no-operation bit', which, if on, would indicate that an error had occurred
and require that the operation be suppressed.

The arithmetic-bus counter first tests whether an interrupt is waiting,
which would cause the present sequence to be abandoned and control to
be turned over to the interrupt system. If there is no interrupt, the
fifteen indicator settings, previously aecurnulated during the preparatory
steps in the instruction unit, now become valid and are set into the indica-
tor register for test and possible interrupt after execution of the instruc-
tion a t this level. If the instruction is of the store type, the arithmetic-
bus counter is responsible also for transmitting the operand from the
arithmetic unit to the look-ahead level (or directly to the destination when
the address refers to an interna1 CPU register).

The store-check counter has little to do when no storing is required.
For a store-type instruction this counter handles the transfer of the
operand via appropriate checking equipment either to its destination if
the address is in the index memory or to the memory bus if the address is
in main memory.

There are numerous and more complex variations of t,hese counter
sequences, many of which involve more than one level of look-ahead. A
variable-field-length instruction may use one level to hold the various
items of operation-code information. The operand will appear in the
next level, or in the next two levels if a memory-word boundary must be
crossed. When a result is to be returned to memory, one or two addi-
tional levels are needed. Any progressive indexing requires a level to
control the return of information to index storage. At each extra level
the look-ahead unit inserts a pseudo operation code to control the action
reqiiired. An extreme case is a VFL ADD TO MEXORY instruction with
progressive indexing, which may require six successive levels (two levels
being used twice).

15.6. Recovery Aher Interrupt

Whenever there is a change in instruction sequence, either by an inter-
rupt signal or by a (successful) branch operation, the look-ahead unit
must start recovery action. We shall describe the interrupt procedure
as an illustration.

As soon as the arithmetic-bus counter senses an interrupt, the instruc-
tion unit and arithmetic unit are signaled to stop preparing and executing
more instructions. The interrupt system is disabled temporarily.
The look-ahead ho.clsecleaning mode is turned on.

The instruction-unit counter stops where it is. The operand-check
and transfer-bus count'ers are allowed to advance until they reach the
same level as the instruction-unit counter. The arithmetic-bus counter

identifies each level, for which the instruction unit has previously modi-
fied an index word in the index memory, by tagging it as a pseudo store
level. The old contents of the index word are placed in the pseudo
store level, and the store-check counter is responsible for storing this word
in the index memory.

Eventually al1 counters will be a t the same level, and the look-ahead
unit will then be empty. The proper instruction-counter setting is sent
to the instruction unit to return that unit to the point in the program a t
which interruption occurred. The housecleaning mode in the look-ahead
is turned off, and the instruction and arithmetic units are allowed to
resume operation.

At this point the instruction unit has to turi1 o$ the indicator that
caused the interrupt and fetch the extra instruction from the proper loca-
tion in the interrupt table (see Chap. 10). This extra instruction is pre-
pared and executed, after which the interrupt system is again enabled
(uiiless the extra instruction specified that the system remain disabled).
The temporary disabling of the interrupt system prevents secondary
interrupts, which might cause the extra instruction to be suppressed and
would leave no trace of the current interruption. The instruction unit
is then ready to continue with norma1 loading of the look-ahead unit.

15.7. A Look-back at the Look-ahead

The 7030 look-ahead unit is a complex device, in t'heory as well as in
practice. It contains many high-speed register positions to allow the
system to race down the road and extensive controls for recovery if i t has
missed a turn. Even so, cost and other practical engineering considera-
tions cause the look-ahead unit in the 7030 to fa11 far short of the idea1
envisaged: a virtual memory with unlimited capacity and instantaneous
recovery. Xevertheless, the unit does substantially raise performance by
overlapping waiting periods and housekeeping operations with the execu-
tion of instructions.

As mentioned a t the start, the basic reason for a look-ahead unit in a
high-speed computer is the large discrepancy between the memory-cycle
times and the instruction-execution times. If a much faster memory
unit of equa1 size could be designed, the look-ahead unit could be greatly
simplified or even eliminated. Improvements in memory technology are
to be expected, but such improvements are again likely to be equaled or
surpassed by corresponding improvements in arithmetical circuits. Thus
the mismatch may be expected to continue in the future, indicating that
many more refinements of the look-ahead principle will be applied in
future high-performance computers, perhaps to a hierarchy of memories.

Chapter 16

THE EXCHANGE
byW. Buchholz

General Description

The function of the exchange is to direct the information flow between
input-output or external storage units and interna1 memory. It transfers
data between external units and any part of the main memory inde-
pendently of the computer, and so it permits a number of external units
to function simultaneously with tlhe processing of data in the computer.
Furthermore, the exchange provides a buffering action: for it transfers
data on demand, as required by the unit, using main memory as buffer
storage.

The exchange contains the common contro1 facilities that are to be
time-shared among the external units, thus keeping these units as simple
as possible yet maintaining fully overlapped operation. The exchange
also does the necessary bookkeeping of addresses and the assembly or dis-
assembly of information without taking t'ime away from the computer or
from the interna1 memory. The only computer time involved is that
needed to start and restart the operations. The only main memory
cycles required during external operations are those needed to transfer
the data to or from the fina1 locations in main memory; these cycles are
sandwiched between computing operations without interfering with the
computer program except for the slight delays that may occur when the
exchange requires a memory cycle at, the same time as the computer.

When it encounters instructions that apply to external units, the com-
puter executes al1 address modification. It sends the addresses and the
decoded operation to the exchange, which determines from status bits
available for each channel whether the unit required is ready. The
exchange then releases the computer to continue with the program.
Whenever time periods are available from other work, the exchange pro-
ceeds to obtain the operand (the contro1 word, for instance) from memory
and start the external unit. Thereafter, i t carries out the data-trans-

248

mission functions whenever the unit gives a request for service. Service
requests are infrequent enough so that the exchange can handle the data
flow for many units in an interleaved fashion.

There are eight input-output channels in the basic exchange, with
provisions for expanding to 32 such channels by adding identica1 groups of
circuits. The design also provides for the addition of a large number of
low-speed channels by further multiplexing of one of the regular channels.

To main rnernory
A

Data Address 4L

Ad

To external units

FIG.16.1. Data-flow paths of exchange.

Regardless of speed, al1 channels are logically independent. Each
channel can transmit data simultaneously with other channels, up to
a maximum determined by the data-transmission rates. For simul-
taneous operation, only one input-output unit is connected to each chan-
nel. Where sequential operation is adequate, it may be desirable to
share input-output contro1 circuits among more than one input-output
unit and operate the units on a single channel; magnetic tape units, for
example, are provided with this equipment-sharing facility.

Each channel has an address, which becomes the address of the particu-
lar unit physically and electrically connected to that channel. When
there is switching among multiple units connected to one channel, a

second address must be given to select the unit to be connected to the
channel before the operation to be performed by that channel is specified.

In a sense, the exchange is a separate special-purpose, fixed-program
computer. It receives directions from the main program in the form of
predigested instructions and control words. In general, the exchange
performs those functions that remain unchanged from one job to the next,
and it does such iimited jobs more efficiently than the main computer
could do them. Functions that vary from one job to the next, such as
editing the data, are left to the program in the main computer. Editing,
in fact, requires some of the most sophisticated features of the computer.

A simplified diagram of the data-flow paths of the exchange is shown in
Fig. 16.1. This diagram is the basis for the brief discussion to follow.

16.2. Starting a WRITE or READ Operation
The heart of the exchange is a small, l-ysec core memory which has

space for a limited amount of data and control information for each chan-
nel. In a single l-psec cycle, a word can be read from this memory,
modified, and returned to its location.

When the exchange receives a WRITE or READ instruction from the com-
puter, i t tests certain status bits before accepting the instruction. Status
bits for each channel are stored in appropriate locations of the exchange
memory. The exchange then obtains the control word specified by the
instruction from main memory and stores i t in the exchange memory.
Each channel has a location for the current control word assigned to it.
These contro1 words are modified during data transfer to keep track of
addresses and counts.

16.3. Data Transfer during Writing
The exchange also has a data-word location for each channel. This

serves as a temporary buffer for data during transfer. (Actually, the
faster channels have a pair of these locations for extra speed, but the logic
is the same and will be explained as if only one such location existed.)

To start a WRITE operation, the exchange goes through a control-word
modification cycle. I t fetches the control word from the appropriate
location in the exchange memory, increases the data word address by 1,
decreases the count by 1, and returns the modified control word to its
exchange memory location. The modification takes place in the control-
word modification unit shown a t the right in Fig. 16.1. The unmodified
data-word address, extracted from the origina1 control word, is used to
fetch the first data word from main memory and store it in the exchange
memory a t the data-word location for this channel. The exchange then
sends a signal to the input-output unit to start writing.

Writing takes place one byte a t a time, where a byte consists always of

SEC.16.41 DATATR-~SSFERDURING READING 251

8 information bits and 1parity-check bit (odd-count parity). When the
unit is ready to write a byte, it sends a service request to the exchange.
The exchange starts a l-psec memory cycle to pull the data word out of
the appropriate location and pass it through the shift circuit shown in the
center of Fig. 16.1. The leftmost byte is sent to the unit via a multi-
plexing circuit while the remaining bytes are shifted left by 8 bits. The
shifted data word is returned to the exchange memory, still within the
same memory cycle.

Each time a new byte is needed by the unit, the data-word cycle is
repeated; the leftmost byte is extracted, and the remainder is shifted left.
After the eighth such byte cycle, the data word is exhausted and a control-
word cycle is started. The current data-word address is extracted to
fetch a new data word while the control word is modified, adding 1 to
the address and subtracting 1 from the count. Data transfer then con-
t i n u e ~with the new data word.

If the count in the control word goes to O and if chaining is indicated
(the chain flag in the control word is set to l),the refill address is used
to fetch the next control word from main memory, and data transfer
proceeds.

Thus, data transfer consists principally of l-psec data-word-shift
cycles with control-word modification and data-word-fetch cycles inter-
spersed every eighth byte, and occasionally a control-word-refi11 cycle.
Since a single channel requests service only a t intervals of many micro-
seconds, other channels can have similar service during any l-psec period.
The purpose of the multiplexer is to determine which channel has
requested service, to send the channel number to the exchange memory as
an address for selecting the appropriate data and control-word locations,
and to gate the lines of this channel to the common data-handling circuits.
If more than one channel requests service a t the same time, the requests
are handled in turn during different cycles, and no conflict arises. The
worst-case condition occurs when al1 channels that are in operation hap-
pen to request service a t the same time. The traffic-handling ability
of the exchange is determined by how many channels it can service in the
time between successive bytes or words of the fastest unit operating.

16.4. Data Transfer during Reading

Reading works much the same as writing. When a unit requests ser-
vice, the incoming byte is gat,ed through the multiplexer into the right-
most byte position of the current data word while the remaining bytes are
shifted 8 bits to the left. Thus bytes are assembled during eight succes-
sive cycles into a word, which is then sent to main memory according to
the current data-word address in the control word. Control-word modifi-
cation and refill cycles are exactly the same as before.

The same data-word shifting and control-word modification equip-
ment is used for both reading and writing. Read and write cycles from
different channels may be freely intermixed; the direction of flow during
a given l-psec cycle is deterrnined by bits in the data-word location for
each channel; these bits are set up by the instruction.

The end of a writing or reading opcration may be sensed by the unit
and signaled to the exchange; or it may be sensed by the exchange when
the count in the control word goes to O and the chain flag in the current
control word is O, so that there is no control word to follow. In either
case the exchange instructs the unit to stop.

The exchange then attempts to interrupt the computer program, to
report (1) that the operation has ended and (2) whether it ended nor-
mally or any unusual conditions arose, such as a programming error,
data error, machine malfixnctioning, or the end of tape or paper. The
address of the interrupting channel is also sent to the computer. Usually
the program interrupt occurs a t the end of the instruction currently being
executed in the computer.

Occasionally the interrupt must be delayed. The program may have
disabled the interrupt mechanism, perhaps to complete the processing of a
previous input-output interrupt . The exchange then stores the appropri-
ate status indications in the control-word location of the exchange mem-
ory and tries again later. When the interrupt finally succeeds, i t is
handled in the same way as if it had just happened.

There can be no confusion caused by simultaneous interruptions from
more than one input-output unit. The exchange automatically presents
them to the computer one a t a time.

Interruptions due to a channel signal (see Chap. 12) are handled in the
same way as end-of-operation interrupts, even if the channel signal is not
the direct result of a previous operation.

16.6. Multiple Operations

Multiple-block WRITE and READ operations (see Chap. 12) are indicate'd
by a multiple Jlag bit in the control word. When the unit signals that the
operation ended normally, the exchange immediately restarts the unit
just as if a new instruction had been given, and the program is not inter-
rupted a t this time.

16.7.CONTROL and LOCATE Operations

The operations CONTROL and LOCATE are set up in the same manner as
WRITE, except that a different instruction line is activated. The control

or address information is then transmitted to the unit as if it were data.
Termination is also handled the same way.

16.8. Interrogating the Control Word

As writing or reading proceeds, the exchange continually modifies the
appropriate control words stored in the exchange memory. The program
may interrogate the current control-word contents during the operation
by giving a COPY CONTROL WORD instruction, which transfers the current
control word to a specified location in main memory. This operation
finds use mostly in specialized supervisory programming; ordinary pro-
grams seldom require i t because i t is more convenient to wait for an
automatic interrupt a t the end of the operation.

It should be noted that the origina1 control word, which is located a t
the main memory address specified by the instruction, is not modified in
any way by the exchange. I t retains the initial settings for use in sub-
sequent operations.

16.9. Forced Termination

Occasionally it may be desirable to force an input-output operation to
come to a halt; for example, a programming error may give rise to an
endless control-word chain. To initiate the termination sequence
immediately, a RELEASE instruction may be given even while an operation
is in progress; RELEASE may also be used sometimes to reset the channel
status to normal.

The RELEASE instruction functions in the same manner as the usual
end-of-operation sequence, except that any exceptions (error conditions,
etc.) are not reported because they are presumably no longer of interest.

Chapter 17

A NONARITHMETICAL SYSTEM
EXTENSION

icy S. G. Campbell, P. S. Herwitz, and J. H. Pomerene

17.1. Nonarithmetical Processing

One of the most interesting current trends in the computer field is
tJhe development of n~narit~hmetical Xonarithmetical prob- t,echniques.
lems are being attacked with increasing success, particularly in the area of
the "soft sciences." Efforts in the fields of artificial learning, character
recognition, information retrieval, gaming, and language translation
accourit for a rapidly growing percentage of total computational activity.
During the next few years it may be expect8ed that work in such areas will
materially enhance our understanding of the nature of learning, thinking,
theorem proving, and problem solving.

Even problems considered to belong to the "hard sciences," which are
usually associated with complex mathematical computations, may involve
an enormous amount of nonarithmetical data processing. Weather fore-
casting is an excellent example. The scientist tends to view the weather
as a tremendous hydrodynamics problem on a rotating sphere, in which
the boundary conditions are very complex and the equations very difficult
to manage. From another standpoint, however, the weather system
represents a problem in information collection, transmission, storage, and
processing-with al1 the characteristics to be expected of any large-scale
file-maintenance activity. Much of the data, such as cloud type, are
not really numerical, and the processing that such data usually undergo is
not primarily arithmetical. Moreover, the data are highly perishable for
most purposes-yesterday's weather is of interest only to the statistician.
The weather system is in fact a very large real-time information-handling
system, in which the value of the data begins to decrease the minute it is

Note: Section 17.1 is an introduction by S. G. Campbell, and the rest of the chap-
ter is taken from a paper by P. S. Herwitz and J. H. Pomerene presented a t the 1960
Western Joint Computer Conference.

254

taken and has diminished markedly by the time it can be transmitted to a
potential user.

It seems characteristic of the conventional application of computers to
the hard sciences that the resulting computation is relatively regular and
that the operations are likely to consist mostly of specialized, complex
operations. This is why scientific computers have acquired very power-
fu1 floating-point-arit hmetic and indexing facilities. By contrast, con-
ditions are chaotic in the nonarithmetical area: activities are likely to be
irregular and to consist of relatively rudimentary operations, such as basic
logica1 operations, counting, table look-up, and the simple process of
hunting for some particular piece of information-looking for the pro-
verbial needle of useful information in a haystack of noise.

To characterize the weather of the world in reasonable detail requires a
rather staggering amount of data :perhaps lo9numbers. The problem of
too much data and too little information is not limited to the weather
system; as much, or more, information is required to characterize the
operation of a large business, a large government organization, or a large
social activity. h'o one person could look a t al1 this information in a
lifetime, much less during the useful life of the information itself (for
alt hough suc h information dies much more slowly than me teorological
information, it perishes none the less). What the user often requires is
some sort of characterization of some subset of the information in his
system. Usually this characterization is something statistical: What is
the net operating profit or loss from Flight 123 on Tuesdays over the
past year? Since the user cannot look a t al1 the data, he attempts to
obtain its essential meaning from a weighted statistical average or to
determine cause-and-effect relationships by correlating events that look
as though they might be related.

Another difficulty is that it is frequently impossible to te11 a t the time
the data are taken whether they are significant or not. This is particu-
larly true of a system that collects data automatically; it may be more
economica1 to let the system function at a constant data-gathering rate,
rather than to try to speed it up when the information appears to be more
important (for example, when the weather is bad) and slow it down when
the information seems less pertinent. A data-processing system usually
contains a great dea1 more data than it really needs. The main purposes
of most data-processing installations are to reduce the amount of data
stored, to make the significant data more accessible, and to provide
effective statistical characterizations. Reduction in the amount of data
stored may result from more efficient formats and encoding of informa-
tion, from storing only primary data from which the system can generate
other data, and from reducing the time lag in processing the data, so that
the system does not need to store so much of it a t any given time. Mak-

ing data more accessible is sometimes the most significant function per-
formed by the data-processing system, particularly in the routine opera-
tion of an organization. Provision of statistica1 summaries is frequently
most important in providing information for management decisions and
indicating genera1 trends, although statistical information may also be
used in the daily operation of a business.

Thus the primary prciblenl in dniost any field of knowledge is io map
a large quantity of relatively disorganized information into a much
smaller, more highly structured and organized set of information. Fre-
quently i t is not even the information that is important but its pattern.
The most rudimentary attempts to find such patterns in information
involve classification. Perhaps the first step, once the information has
been acquired, is to arrange i t in such a way that we can locate any
particular subset required without having to look a t al1 the information.
(The information forms a set, the nature of the set being determined by
whatever it was that made us take and keep the information.) The
simplest way of accessing a subset would be to look a t each piece of infor-
mation to see whether it belonged to the subset or not. If there are prop-
erties of particular value, we may order the information in terms of these
properties. For example, if the information consists of words to be put
into a dictionary, we order it in terms of the first letter of each word; this
is of great help in locating any specific known word, although it does not
help a t al1 if the object is to find al1 the words that end in x.

Sorting, that is, ordering data in terms of some property, is character-
istic of this type of activity. If the amount of information is large, the
expense of storage dictates that sorting be with respect to the most impor-
tant characteristic. It would be too wasteful of expensive storage to
store information sorted on very many different chara~t~eristics. As
new information is needed, it must be merged with the old.

Sorting, merging, matching, etc., are, of course, the basic operations of
file maintenance. In fact,, the rtct ivity of business data-processing instal-
lations is quite typical of the nonarithmetical information processing we
are discussing here. For that nlatter, so is much of the activity of
scientific computing installations (if they would only admit it), for we
must include the assembling, compiling, and editing functions that are
peculiar to the programming and operating of the computer system itself.

File maintenance consists essentially in processing sets of operand data
from two data sources to form a set of result data going to one data sink.
The data sources may be visualized concretely as two input tapes, con-
sisting of a file and trarisactions against that file, and the data sink may
be visualized as an output tape, the updated file; but the same concept
holds if the data are in core memory or stored in some other medium.
The common case of multiple outputs rnay be represented by a single

sequence of results which are switched to one of severa1 destinations as
required.

The concept of operating on two large sets of operand data to form a
set of result data appears to be fundarriental to nonarithmetical process-
ing. I t leads naturally ts the idea that a processor, with built-in facilities
for creating sources and sinks to generate and operate on long data
sequences, would be a much more effective t001 for large nonarithmetical
applications than a conventional computer, which operates one field a t a
time. In such a processor the objective is to fetch two sets of data
independently accessed from memory, to combine them in terms of certain
processes, and to produce a third set which is put back independently into
memory. The common processes of most interest are the elementary
arithmetical operations, the logica1 operations, control operations, and
comparison operations (< , 5 , > , 2 , = , #) . Table loolc-up is required
to define those operations which cannot readily be described in more
elementary terms. (For example, the inputs might represent a pair of
cities, and the output the airline fare between these cities as found in a
table of fares.) One of the two sources or the sink may be missing.

Another concept is suggested by observation of the operation of a
punched-card machine, where the same relatively simple process may be
repeated many times for successive cards as they pass through the
machine. There the process is usually defined by means of a plugboard
which opens or closes paths for the data flowing through the machine.
One is thus led to think of an electronic version of the plugboard, which is
set up before starting and remains set unti1 a change is indicated. Hence
we speak of operating our processor i11 the set-up mode. Because control
data are placed in high-speed registers, there is essentially no access time
for instructions. The speed of the process is determined entirely by the
data flow rate into or out of memory, the data being fetched or stored
according to preset, but possibly very complex, indexing patterns.

Among the things we may wish to do, while passing data through the
processor, are: (l) examine any of the three sets of data to look for a
particular piece of information; (2) count the frequency of occurrence of
various events in each set, including the occurrence of relationships
between subsets of the data as well as the occurrence of the distinguished
subsets themselves; (3) react to these occurrences by altering the process;
and (4) perform a sequence of table look-ups, with some mechanism for
determining when the look-up operation is to terminate. Having set up
and started a process, we need, of course, a mechanism for breaking out
of the set-up mode as necessary and for determining the state of affairs
a t that time.

The IBM 7951 Processing Unit, to be described in this chapter, was
designed around these concepts to achieve maximum performance in a

broad area of nonarithmetical information processing. The 7951, itself
a machine of substantial size, is not a complete datla processor; it is
attached to a regular 7030 computer which performs the more con-
ventional operations a t high speed (Fig. 17. l) . The extended system,
which is referred to as the IBNI 7950 Data Processing System, includes
also two fast 1,024-word memory units, with a read-mite cycle time of
0.7 psec, aiid a very fast magneti@tape systexn capable of sixultaneous!y

I
7 9 5 2

Main memory units I High-speed memory units
16,384 words each, 2 .1 psec 11,024 words each, 0.7 psec

Memory I
bus unit 1

>

Input-

I7
n
O

Exchange Central

I
I
I
I 7 9 5 1 ' 7 9 5 5

output processing unit Processi.ng unit High-speed tape system
units

7 0 3 0 SYSTEM EXTENSION

7 9 5 0 SYSTEM

FIG.17.1. Xonarithmetical extension of the 7030.

reading and writing a t a rate of 140,000 words of 64 bits per second. The
memory and tape units are important contributors to the over-al1 per-
formance of the system on nonarithmetical problems, but we shall be
concerned here only with the logic of the 7951.

17.2. The Set-up Mode
Data pass through the 7951 Processing Unit serially, byte by byte.

The byte, a quantity of 8 bits or less in parallel, is the basic information
unit of the system. The set-up mode is primarily a design approach
whose aim is (1) to select bytes from memory according to some pattern
set up in advance and (2) to keep a steady stream of such selected bytes

flowing through a designated process or transformation and thence back to
memory (Fig. 17.2). Emphasis is on maximum data flow rate, so that
the typicaly large volumes of information can be processed in minimum
time. Processing time per byte is held to a minimum by specifying,
in advance, byte selection rules, processing paths, and even methods for

7
Source

unit
P

'
Bytes

\

Words

f
Source

un i t Bytes

Q 9

Mernory
Transformation

process

Words Bytes
u n i t 4

. R

FIG.17.2. Simplified data flow diagram.

handling exceptional cases; hence, decision delays are suffered only once
for a long sequence of bytes instead of being compounded for each byte.

17.3. Byte-sequence Formation

The selected bytes are taken from words stored in memory according to
either simple or complicated patterns as chosen by the programmer.
For technical reasons memory is organized into 64-bit words, but this
artificial grouping is suppressed in the 7951, so that memory is treated
as if i t consisted of a long string of bits, and any one of these can be
addressed for selection. As in the 7030, up to 218 words of memory can
be directly addressed, and, since the word size is exactly 26 bits, an address
consists of 24 bits: 18 to select the word and 6 to select the bit within the
word.

Data are transferred to and from memory 64 bits in parallel; selection
to the bit leve1 is accomplished by generalized operand registers called
source or sinlc units (Fig. 17.3). There are two source units P and Q,
which feed operands to the processing area of the 7951, and one sink unit
R, which accepts results from the processing area. Each source or sink
unit contains a switch rnatrix, which allows a byte t'o be selected with
minimum delay, starting a t any bit position within the register. To
handle cases where a byte overlaps two memory words and to minimize
waiting time for the next needed word from memory, each source or sink
unit is actually two words (that is, 128 bits) long. The selection of these

bytes is controlled by the low-order 7 bits of a sequence of 24-bit addresses,
which are generated by the pattern-selection units. The byte output of a
source unit is fed into the processing area through a bit-for-bit mask,

Switch rnatrix (1 2 8 x 8) Byte
output

\ /

Diagonal selector (l 2 8 way)

Word address

Total address-24 bits

FIG.17.3. Source unit. Sink unit is similar, except for data flow reversal.

which enables the programmer to select any subset of the 8 bits, including
nonconsecutive combinations.

17.4. Pattern Selection
The data input to the system may be highly redundant to any particu-

lar problem, and so a powerful mechanism is provided for imposing selec-
tion patterns on the data in memory. I t is assumed that the very effective
input-output contro1 in the basic 7030 system will have grossly organized
the contents of memory. For example, various characteristics may have
been obtained for a population and recorded in uniform subdivisions of a
file. A particular problem may be concerned m-ith only a certain char-
acteristic drawn from each record in the file. Thus datra may be stored
in memory in matrix form, and the problem may be to transpose the
matrix.

Pattern selection in the 7951 resembles indexing in other computers,
except that here the programmer determines t he algorithm that generates
the pattern, instead of listing the pattern itself. Each source or sink
unit has its independent pattern-generating mechanism, which is actually
an arithmetic unit capable of performing addition, subtraction, and count-
ing operations on the 24-bit addresses. The programmer specifies
patterns in terms of indexing levels, each leve1 consisting of an address-
incrementing value I,which is successively added to the starting-address

value S, unti1 N such increments have been applied, after which the next
indexing level is consulted to apply a different increment. The pro-
grammer may then choose either that incrementing continue on this level
or that the previous level be resumed for another cycle of incrementing.

Many other indexing modes are provided to permit almost any pattern
of data selection. Particular attention has been given to direct imple-
mentation of triangular matrix selection and to the iterative chains of any
forma1 inductive process, however complex.

In general the pattern-selection facilities completely divorce the
function of operand designation from that of operand processsing, except
that predesignated special characteristics of the operands may be per-
rnitted to change the selection pattern in some fashion.

The pattern-selection units determine the movement of data between
the source or sink unit and memory, and, together with the source and
sink units, they determine the byte flow in the processing area. The
processing facilities aiid the selection facilities have been designed to give
a flow rate of approximately 3.3 million bytes per second.

I7.5. Transformation Facilities

TWO facilities are provided for the transformation of data (Fig. 17.4).
Extremely general operations on one or two input variables can be

FIG.17.4. Transformation facilities.

accomplished with the on-line table-look-up facility. Simpler operations
can be done directly by the logic unit without involving memory look-up.
The logic unit also provides a choice of severa1 l-bit characterizations of
the input bytes (such as byte from P > byte from Q). These l-bit signals
can be used to alter the process through an adjustment mechanism.

The table look-up facility consists of two units. The more important
logically is the table address assornbler (TA-4), which accepts byteu from
one or two sources to form the look-up addresses that are sent to memory
(Fig. 17.5). The other is the table extract unit (TEU), which permits
selection of a particular field within the looked-up word. Both units
have their own indexing mechanisms, and together they permit the pro-

Bytes from \\
source unit P 1 m H-source unit Q

I

Table address
assembler

*
To memory To extract unit

(word address) (bit address)

FIG. 17.5. Formation of look-up address.

grammer to address a table entry ranging in size from 1 bit to a fu11 word
and starting a t any bit position in memory. This freedonl is abridged
only by considerations of the table structure chosen by the programmer.

The table look-up facility also provides access to the memory features
of existence and count. Under instruction from the TAA, the main
memory can use the assembled address to or a 1 into the referenced bit
position; the referenced word, as it was just before the oring, can be sent
to the TEU. This feature may be used to indicate by a single bit the
existence (1) or nonexistence (0) of an item in a set. In the high-speed
memory a l may be either ored (as in rnain memory) or added into t,he
referenced bit position, with the same provision for sending the word
before alteration to the TEU. The ability to add 1s into high-speed
memory words permits use of these words as-individua1 counters. Severa1

SEC. 17.71 THE BYTE-BY-BPTE 263INSTRUCTIOS

counter sizes can be specified. (This counting feature is not provided in
the main memory.)

17.6. Statistica1 Aids
The table look-up facility may be used to associate statistical weights

with the occurrence of particular sets of bytes. For example, the occur-
rence of s byte Piin the P sequence together with a byte Q j in the Q
sequence may be assigned a weight W,, which would be stored in a table
and referenced by an address formed from both Pi and Qj. Alternatively,
a memory counter may be assoeiated with each pair Pi,Qjand stepped up
whenever the pair occurs.

Match
unit

Source unit P 1 ' 3 3

V> Match
E unit

.-1i)
LI

-, i
P -+ Source unit Q t

Reret o r y = ~
add 1 u

FIG.17.6. Monitoring and statistical features with typical adjustment reactions.

A statistical accumulator (SACC) is provided (Fig. 17.6), either to sum
the weights W over a succession of sets of bytes or to provide a key
statistical measure of the counting results. SACC can also be used for
many other accumulating purposes.

A statistical counter (SCTR) provides a way of counting the oecur-
rences of any of a large number of events during the process. In particu-
lar, SCTR can be designated to count the number of weights TV that have
been added into SACC.

17.7. The BYTE-BY-BYTE Instruction

The table look-up unit, the logic unit, and the statistical units can be
connected into the process in various ways by the programmer. As in a

class of analog computers, these connections reflect the structure of a
problem and are the electronic equivalents of a plugboard. The con-
nection chosen by the programmer then causes each byte or pair of bytes
sent through it to be processed in the same way; this very general process-
ing mode is set up by the BYTE-BY-BYTE instruction. The connections,
indexing patterns, and special conditions described below al1 form part
of a prespecified seitip, which can be regarded as a maero-instruction
putting the computer into a specific condition for a specific problem.

Monitoring for Special Conditions

The concept of a continuous process with preset specifications is most
meaningful when applied to a large batch of data that are al1 to be treated
the same way. Within the data entering any particular process there
may arise special conditions that call for either momentary or permanent
changes in the process. For example, the transformation being per-
formed may be undefined for certain characters, and so these must be
deleted a t the input; or a special character may be reserved to mark the
end of a related succession of bytes, after which the process or the pattern
of data selection must be altered.

Special conditions can be monitored in several ways. Special charac-
ters can be detected by match units (Fig. 17.6), to each of which can be
assigned a special 8-bit byte which is matched against al1 bytes passing
by the unit. There are four match units: W, X, Y, and 2, which can be
connected to monitor the data a t several different points. When a
match occurs, the match unit can perform directly one of several opera-
tions, and it can also emit a l-bit signal indicating the match.

A large number of l-bit signals are generated by the various facilities
to mark key points in their respective processes. These l-bit signals,
collectively called stimuli, can be monitored to accomplish specific opera-
tions, such as stepping SCTR or marking the end of an indexing pattern.
They can also be used to accomplish a much wider range of operations
through the adj ustment mechanism :

Up to 64 stimuli are generated by the various processing, indexing,
and monitoring functions in the 7951. For any particular problem those
stimuli can be chosen which represent the significant properties of the data
passing through. With each stimulus or coincident combination of
stimuli, the programmer may associate one or more of a large number of
reactions on the data, the process, or the indexing. These stimulus-
reaction pairs are called adjustments. The adjustment mechanism gives
the programmer a direct way of picking out those elernents of the data
which are different from the general run. These exceptional elements
may provide the key to the pattern being sought, either because they are
particularly relevant or distinctly irrelevant.

17.9. Instruction Set

Conventional arithmetical and scientific computational processes and
al1 input-output operations are performed in the 7030 part of the system.
When 7030 instructions are used, the system is said to operate in the
arithrnetic mode; when the instructions unique to the 7951 Processing Unit
are to be used, the system is placed in the set-up mode. The set-up-mode
instructions add a variety of extremely powerful data-processing tools to
the basic 7030 operations. The instruction formats vary in length: 7030
instructions are either 32 or 64 bits long, whereas set-up-mode instructions
have an effective length of 192 bits.

Set-up-mode instructions are very much like built-in subroutines or
macro-instructions. Just as it is necessary to initialize a programmed
subroutine, it is also necessary to initialize, or set up, the processor.
About 150 parameters and control bits may influente the process. The
processor is set up by loading values of some of these parameters and
setting the desired control bits in certain addressable set-up registers prior
to the execution of a set-up-mode instruction. Certain changes in the
parameter values or control-bit settings generate stimuli, which may be
used to terminate the data sequence, to make automatic adjustments to it,
or to switch to the arithmetic mode of operation. The adjustment opera-
tions essentially constitute a second leve1 of stored program and are used
most generally to handle exception cases.

Thus the programmer sets up the processor to execute a set-up-mode
instruction. The process is then started and automatically modified as
dictated by the setup or the data. Much routine bookkeeping is done
automatically by the several independeiit pattern-generating (indexing)
mechanisms. Changing parameter values are always available for pro-
grammed inspection, if automatic inspection is not sufficient for the
particular operation being performed.

Although most of the programming in the set-up mode of operation is
centered around the BYTE-BY-BYTE instruction, a number of other instruc-
tions derive from the unique organiaation of the processor. The arrange-
ment of the data paths and processing units facilitates one-instruction
operations for performing many of the routine collating functions, such as
merging, sorting, and file searching and maintenance, that are so common
to data processing. The table look-up unit is used extensively in these
as well as in several other instructions designed primarily for the logica1
manipulation of data.

Since such extensive use is made of parameter tables, transformation
tables, and other data arrays, al1 of which require large memory areas, a
special CLEAR MEMORY instruction is provided for clearing large blocks of
memory in minimum time and with minimum programming effort. A

single execution of this instruction will clear as few as 64 consecutive
words or as rnany as 2,048, as desired. Clearing 2,048 words, for exam-
ple, takes less than 335 psec, with only one instruction access to memory.
A fu11 memory complement of 218 words could be cleared in less than 1
millisecond. To reset each memory word separately by ordinary pro-
gramming would take very much longer.

In order to perform merging, file searching, and other such collating
operations, it is generally necessary to specify a number of parameters,
such as record length, file length, contml-field length and position, etc.
In programming for the 7951, the programmer need only tabulate these
parameters in proper order. They will then be utilized by the indexing
mechanisms to cause data to be fetched from and returned to memory
according to the patterns that naturally occur in such data.

The MERGE instruction contains eight independent control seyuences
that may be used to merge files or completely sort blocks of records.
Options to be chosen by the programmer are concerned with whether
files are to be arranged in ascending or descending order; whether the
record block can be contained in a t most half the available memory;
and whether the control field is conveniently located a t the start of the
record.

The SEARCH instruction has twelve contro1 sequences, each of which
facilitates the abstracting from a master file of al1 records whose control
fields bear one of six possible relationships to the control field of each
record of a detail file. The possible relationships are the six standard
comparison conditions < , 5 , > , 2 , = , 3 ~ . If it is not desired to remove
the records that meet the search condition, it is possible to tabulate their
addresses automatically.

The instruction SELECT is used to select from a file the record having
the least or the greatest control field.

For the purpose of facilitating file-maintenance operations, there is a
collating instruction complex called TAKE-INSERT-REPLACE. When the
operation is executed under instruction control, then a match between
contro1 fields of master and detail record causes the master record either
to be removed from the master file or to be replaced by the detail record.
Under data control, the action taken, whenever control fields match, is
indicated by the contents of a special control byte in the detail record.
The masters can be deleted or replaced; or the detail record can be
inserted in the master file; or, under certain circiimstances, the mainte-
nance procedure can be interrupted when master records with special
characteristics are located and then resumed with a minimum of pro-
gramming effort.

Instructions such as the collating operations described above lead to a
considerable reduction in the length of the generalized report generators,
file-maintenance routines, and sorting and merging programs that might
be expected to be associated with such a computer system.

17.1I.Table Look-up Operations

It is often desired to be able to obtain data from or store data a t an
address that depends indirectly on the data itself. The ISDIRECT LOAD-

STORE instruction permits wide latitude in the formation of such addresses
and in the subsequent mmipulation of the origina1 data. In this opera-
tion parameters from one of the source units are used in the formation of
an address in the table look-up unit. This primary address itself, or
one of the two addresses found in the word at the memory location
specified by the primary address, becomes either the origin of a field of
data to be entered via the other source unit or the location a t which the
data field is to be stored by the sink unit. The data are moved from
source to sink, and the entire cycle is repeated. The counting and oring
features of the table look-up unit are available to the programmer as mod-
ifications of the basic instruction-contro1 sequence.

The second instruction complex built around the table look-up unit is
SEQCEXTIAL TABLE LOOK-UP, an extremely powerful but conceptually
simple instruction for a class of data-dependent transformations. This
instruction causes a series of table references to be made; each successive
reference after the first is made to a table whose address is extracted auto-
matically from the previously referenced table entry. Also, as each refer-
ence is completed, a variable amount of data may be extracted from the
table entry. Moreover, the indexing of the input or output data may be
adjusted according to the contents of the table entry (this is similar to
the operation of a Turing machine). The applications of SEQUESTIAL

TABLE LOOK-UP &re manifold: editing for printing of numerica1 data,
transliteration of symbols from one form to another, and scanning of
computer instructions for assembly and compilation, to name a few.

1'7.12. Example

The extensive use of tables in problem solution typifies the non-
arithmetical processing approach, as will be illustrated by the translitera-
tion of Roman numerals to Arabic. Severa1 simplifying assumptions
have been made so that the flow chart may be easier to follow: (1) The
data-a set of numbers expressed in Roman numerals, each number
separated from the next by a blank (E)-are assumed to be perfect, and
only the characters I, V, X, L, C, D, and fu are used; (2) the set of num-
bers is terminated by two blanks; (3) the use of four successive identica1
characters (like Roman 1111 for Arabic 4) is forbidden. Finally, the

- -

FIRST TABLE- . . .- ---
t3(End of Problem): RO -B, Go to Arithmetic Mode

l: (l5 n 5 4 or n = 9): NRO(1) + I,Table

I (2 i n 5 3) : NRO(1)

V(n =4): RO -4BQ)

l V, Table

B(n = 5): RO -5B(l)
I (6 rns8) : NRO(1) -L-

B(n = lo): RO-lOB(1)
I (l l r i n S l 4 or n - 19): RO-l(1)
V(15SnS18): RO-l(1)
X(20sns39): NRO(1)

L(40Sn549): RO-4(1)
C(90sns 99): RO -9(1)

L (50 rna 89): NRO(1) L, Table

RO-5(1)-
V(55sns58): RO-5(1)
X(60sns89): NRO(1)

r First Table

+ First Table
r First Table

:First Table
* First Table

First Table

V, Table

FirstTable
First Table

i- First Table
----CI,Table

i Vi Table
r X2Table

First Table
RO-2(1) -1, Table

V(25 ans28): RO-2(1) r V, Table

X(305nS39): RO -3(1) :. Ones Table

+ FirstTable
IlTable - Ones Table
V, Table

Ones Table

r First Table

Il Table

r V, Table

r LX,Table

.c First Table
I(615; n 564 or n ~ 6 9) : RO -6(1) -11 Table

V (6 5 ~ns68): RO-6(1) W VI Table

X(70sn-s 89): NRO(1) LX2 Table

* First Table
RO-7(1)- IlTable

V(75SnS78): RO-7(1) r V, Table
X (8 0 ~ns89): RO -8(1) r Ones Table

-

:(100sns499 or 900sns999): NRO(1) -+Ci Table
* First Table

RO- lO(1) -Il Table

V(105iinii 108): RO- lO(1) * V1Table

XlllOSns 149 or 190snS199): RO- l (l) + X1 Table

L(150sns189). RO- l(1) * 4 Table

C(200snr399): NRO(1) W CZTable

i- First Table
RO -20(1)---L I, Table

V(205sns208): RO -20(1) r VI Table
X(210sns249 or 290 sn5299): RO -2(1)+ X1 Table
L(2501nS289): RO -2(1) L Li Table

Tens Table
+ Flrst Table

RO-O(1) ----I, Table- V, Table
X(10sns49 or 90snr99) : N R O (l) - - - - - - +
V(05a na08): RO-O(1)

XI Table
* L1Table

D(400sn ~ 4 9 9) : RO -4(1) * Tens Table

M(900s 116999): RO-9(1)
L * Tens Table

D(500 sns899): NRO(1) Di Table
First Table

RO-50(1)- 1, Table
V(505ans508): RO-50(1) * V1Table
X(51.05ns549 or 590s n5599): RO- 5(l)--+ X, Table
L(5501 nc- 589): RO-5(1) r 4 Table

r DCl Table
B(n=600): RO -600B(1) * First Table
I(6Ols n 5604 or n -609): RO -6O(l) L Ii Table
V(605 I n 5 608): RO -60(1) *. Vi Table
X(610InS649 or 6905n5699): RO-6(1) -t X1 Table
L(650s 115689): RO-6(1) :- LI Table
C(700sns899): NRO(1) L
 * DC2Table First Table

RO -7O(l) -I, Table
V(705 Sn 5708): RO -70(1) VI Tabk
X(710snl749or 7905n-i799): RO-7(1) -+X1 Table
L(7505 n 5789): RO -7(1) i- Li Table

r Tens Table

M(n 1000): RO- lOOOB(2) ------+ First Table

(18 tebles; 82 words (table entries)]

FIG.17.7. Tables for conversion from Roman to Arabic numerala.

numbers to be transformed are al1 assumed to lie in the range from 1to
1,000, inclusive.

The flow chart (Fig. 17.7) shows 18 tables consisting of a total of 82
memory words. Under each table heading a two-part entry is shown,
the parts being separated by a colon. On the left of the colon is the argu-
ment being looked up, followed in parentheses by an indication of the
range in which the final number or digit must lie. On the right of the
colon the parameters of the table word corresponding to the argument are
indicated symbolically; for example, RO-1B (meaning "read out the
integer 1 followed by the character for a blank") or XRO (meaning "no
readout"). This is followed by an integer in parentheses indicating what
data byte is the next argument (O means same byte, l means next byte,
etc.). The arrow indicates the table in which the next argument is
looked up.

As an illustration, consider the transliteration of DCLXXVIII:

1. D is looked up in the first table. The number must be in the range
500 to 899 inclusive. Xo digit is read out. The next argument is t>he
next data byte.

2. C is looked up in the DI table. The range is 600 to 899. Ko
readout. The next argument is the next data byte.

3. L is looked up in the DCi table. The range is 650 to 689. Read
out 6. The next argument is the next data byte.

4. X is looked up in the L1 table. The range of the unknown part of
the number is 60 to 89. No readout. The next argument is t,he next
data byte.

5. X is looked up in the LX1 table. The range is reduced to 70 to 89.
No readout. The next argument is the next data byte.

6. V is looked up in the LX2 table. The range is now 75 to 78. Read
out 7. The next argument is the next byte.

7. I is looked up in the V l table. The range of the next digit is 6 to 8.
No readout. The next argument is the next data byte.

8. I is looked up in the V2 table. The digit is 7-or 8. No readout.
The next argument is the next byte.

9. I is looked up in the Va table. The final digit is 8. Read out 8R.
The next argument is the second following byte (the next byte being a B).
This would be the first byte of the next number to be transliterated and is
looked up again in the first t,able.

The process just described yielded the number 678 for DCLXXVIII.
Only one instruction, SEQUENTIAL TABLE LOOK-UP,was needed. In
fact this single instruction serves to transform an entire set of numbers,
continuing unti1 the character-B is looked up in the first table.

Clearly, the decision logic for the problem is incorporated in the struc-
ture of the tables. In constructing these tables the programmer con-
centrate~ on precisely this logic; most of the bookkeeping and other
peripheral programming considerations are automatically taken care of.
Wherever possible, this philosophy guided the systems planning of the
7951 Processing Unit.

Appendix A

SUMMARY DATA

A.1 List of the Larger IBM Storod-program Computers

The experience gained with earlier IBM computers played a major
role in the development of the 7030. Because these earlier computers
have been referred to in the text, it may be helpful to list them here.
The computers are listed chronologically; the date of a computer is
defined arbitrarily as the year of first public announcement. Only
the larger computers that have been produced in multiples are shown.
These include al1 700 and 7000 series computers preceding the 7030, as
well as the 650. The basic 650 is hardly a large computer in com-
parison with the others, but it deserves a place in the list because of its
widespread use and because extended versions of it are used in much the
same applications as many of the larger machines. The list excludes
military computers and a series of smaller stored-program computers.

The listing distinguishes between the earlier computers constructed
almost entirely with vacuum-tube circuits (V) and the 7000 series which is
completely transistorized (T). Another common but not altogether
satisfactory distinction is made between computers intended primarily for
scientific applications (S) and those intended primarily for processing
large files of alphanumeric data (D). In the 700-7000 series the chief
technical characteristic distinguishing "scientific" computers is fast
parallel binary arithmetic on numbers of fixed length, whereas the data-
processing computers have seria1 decima1 arithmetic and alphanumeric
operations, for processing more readily fields of different lengths, as well
as heavier emphasis on input-output. The smallest (680) computer on
the list and the largest (7030) do not quite fit the classification. The
650, initially designed for numerica1 work, has found extensive applica-
tion in data processing. The 7030, intended mainly for scientific applica-
tions, combines the characteristics of both classes and is thus also a very
powerful data processor.

A genera1 description of each current comput'er will be found in the
corresponding Genera1 Information Manual published by IBM; detailed

273

information is given in the Reference Manual for each machine. Some
additional references to technical papers are given here.

Year Computer Comments

701 Parallel binary arithmetic, 2,048-word (36-bit) elec-
trostatic memoryl

650 Seria1 decimal arithmetic, magnetic drum memory2
702 Seria1 decimal arithmetic, variable-field-length, alpha-

numeric data handling, 10,000-character (6-bit)
electrostatic memory3

704 Redesigned 701 with new instruction set, 4,096-word
magnetic core memory, built-in floating-point
arithmetic, indexing, and higher speed

705 Redesigned 702 with larger instruction set, 20,000
characters (Model I) or 40,000 characters (Model 11)
of core memory, higher speed, and simultaneous
input and output

709 Improved 704 with up to 32,384 words of core mem-
ory, multiple input-output channels buffered in
memory, and faster multiplication4

705 I11 Improved 705 with an 80,000-character core memory,
higher speed, more parallel operation, and multiple
input-output channels 'buffered in memory

7070 Seria1 decimal computer, partly patterned after the
650 but with major improvements; newer transistor
and core memory technology place it in the 705 per-
formance class a t a lower cost5

7090 Transistorized version of 709, about six times as fast
7080 Transistorized version of 705 111, about six times as

fast, with up to 160,000 characters of memory
7030 Stretch computer described herein

l W. Buchholz, The System Design of the IBM Type 701 Computer, Proc. IRE,
vol. 41, no. 10, pp. 1262-1275, October, 1953.

F. E. Hamilton and E. C. Kubie, The IBM Magnetic Drum Calculator Type 650,
J. ACM, vol. 1, no. 1, pp. 13-20, January, 1954.

C. J. Bashe, \V. Buchholz, and N. Rochester, The IBM Type 702, An Electronic
Data Processing Machine for Business, J. ACM, vol. 1, no. 4, pp. 149-169, October,
1954.

J. L. Greenstadt, The IBM 'i09 Computer, "Proceedings of the Sympoiaum: New
Computers, a Report from the Manufacturers," published by the ACM, March, 1957,
pp. 92-96.

6 5. Svigals, IBM 7070 Data Processing System, Proc. Western Joint Computer
Conf., March, 1959, pp. 222-231.

A.2 Instruction Formats

VFL arithmetic,
radix conversion

VFL connective

Transmission

Store instruction
counter i f branch

Branch on bit

F loating-point
arithmetic

Uncond. branch,
miscel faneous

Direct index

Immediate index

Count and branch

Branch on
indicator

Index word

I
Address 10001 I I P I ~eng th ~BS I Offset IS

I
O 18 24 28 32 35 41 44 51 60 63

Decimai
I

Address
I

O 18 24 i8 32 35 41 44 51 55 60 63

Length

1
Channel address

I

1000

, I
Op. 10000

I

I
Address 000

I

BS

I 1000

5 18 24 28 32 5 1 60 63
Forward Transmit

Backward 1 (1 Swap

O 18 24 28 32 5 1 63

I
Branch address I

I
I

Address
I

Address

Branch i f 1 :: 1

Offset Conn I

I
Address

I

Branch Op., etc.

O 19 28 31

I

Op. ,00000

I
I

Address
I

l
Address

I

I
Address

I
o l9 25 (~ e a v h indicator

P

1

I FDT I
Address

I B ~ S ? O ~ I I

O 19 23 2 8 3 1

- 1 Set indicator to zero

I

Address
I

O 18 24 28 32 51 55 60 63
Direct

Immediate 1 'Ount

J

O 19 23 2831

J

I

Op. l

l

IO000 Op.
I

I 1
Value iF

I I

O 18 '25 28 46 63

Count Refill

A.3 Lisi of Registers and Spocial Addresses

Zero
Interval timer
Time clock
Interrupt address register
Upper houndary regist,er
Lower boundary register

Notes

3.57 1
4.0 i 64
5.12 1

6 . O 19

l t0
31.0 I 61 l ,l5

Index register 15

Xotes: Al1 unused bits in addresses 0.0 to 15.63 are permanently set to O.
p Permancntly protected area of inemory
a Read-only, except for STORE VALUE, STORE COUNT, STORE REFILL, and STORE

ADDRESS.

b Read-only. Address 1.28 means hit position 28 in word l .
c In multiple-CPU systems, used to turn on CPU signal indicator in another CPU.
d In FLP operations only, the explicit operand address 8.0 is interpreted to mean

the 64 bits 8.0 to 8.59 and 10.04 to 10.07, which combine to make up a proper
single-length signed FLP number corresponding to the high-order part of tlie
accumulator. In al1 other operations, a 64-bit operand at address 8.0 includes
bits 8.0 to 8.63.

e Bits 11.0 to 11.19 are read-only.
f The rest of 12.0 are permanently set, read-only mask bits, 12.0 to 12.19 being 1s

and 12.48 to 12.63 being 0s.
276

BC 1 Boiindary-contro1 hit I p

7.17
7.44
8 . O
9 .0

7
7

64
64

b
C

d

e
f

Maintenance bits ff 1 Channel address register
CPU Otlier CPU

10.0 / 8
11.0 i 64
12.20 / 28
13.0 1 64
14.0 1 64
15.0 64
16.0 1 64

t0

LZC

AOC

L

R

Left-zeros count
All-ones count
Left half of accumulator
Right half of accumulator

se Aceumulator sign byte
IND ' Indicator register

l MASK Mask register
RM Remainder register
FT 1 Factor register
TR 1 Transit register
SO Index registcr O

A.4 Summary of Operations and Modifien

The mnemonic abbreviation is given in parentheses after the name.

Arithmetical Operations

a. Operations Auailabie in Both Variable-jield-Eength and Floating-
point Modes
LOAD (L)

The accumulator contents are replaced by the memory operand,
except for data flag bits.

LOAD WITH FLAG (LWF)

Same as LOAD, except that the data flag bits are included.
STORE (ST)

The memory operand is replaced by the accumulator operand,
including the data flag bits.

STORE ROCXDED (SRD)

The operand is rounded before storing, but the accumulator is not
changed.

ADD (+)
The memory operand is added algebraically to the accumulator
operand, the sum replacing the accumulator contents.

ADD 	TO MAGNITUDE (+MG)

The memory operand is added algebraically to the magnitude of the
accumulator operand, except that the accumulator is set to zero if
the result attempts to change sign. The accumulator sign is ignored.

ADD T 0 MEMORY (M +)

The accumulator operand is added algebraically to the memory
operand, the sum replacing the memory contents.

ADD MAGNITUDE TO MEMORY (M+MG)

The magnitude of the accumulator operand is added algebraically
to the memory opernnd, except that the memory operand is set to
zero if the result attempts to change sign.

COMPARE (K)

The accumulat.or operand is compared with the memory operand by
algebraic subtraction; comparison indicators are set according to the
result, but neither operand is changed.

277

COMPARE FIELD (KF) (VFL mode)
COMPARE MAGNITUDE (KMG) (FLP mode)

Same as COMPARE, except that the accumulator sign is ignored, and
(in VFL) only a portion of the accumulator, equal in length to the
memory, is compared.

COMPARE FOR RANGE (KR)
Vsed fo!lowing COMPARE to detvmine whether tEe sccullzulator
operand falls below (accumulator low),wit hin (equal),or above (high)
the range defined by the memory operands of the two instructions.

COMPARE FIELD FOR RANGE (KFR) (VFL mode)
COMPARE MAGNITUDE FOR RAXGE (KMGR)(FLP mode)

Analogous to COMPARE FOR RANGE.
MULTIPLY (*)

The product of the memory and accumulator operands replaces the
accumulator operand (see note).

LOAD FACTOR (LFT)
The memory operand is placed in the factor register, usually in
preparation for MULTIPLY AND ADD.

MULTIPLY AND ADD (*+)
The product of the memory and factor-register operands is added
algebraically to the accumulator operand (see note).

DIVIDE (/)
The accumulator operand (dividend) is divided by the memory
operand (divisor), with the quotient replacing the accumulator
operand and (in t,he VFL mode only) the remainder going to the
remainder register (see note). (To obtain a remainder in floating-
point division, use DIVIDE DOUBLE;see below.)

Note: In the decima1 VFL mode, the operations MULTIPLY, MULTIPLY AND ADD,
and DIVIDE are not executed directly, but operate like LOAD TRANSIT AND SET (see
below) for execution by subroutine.

b. Operations Avaiiable in Variable-field-length illode Onl y

ADD 	O N E T 0 MEMORY (M+ 1)
+l or -1 is added algebraically to the memory operand, ignoring
the accumulator.

COMPARE IF EQUAL (KE)
COMPARE FIELD IF EQUAL (KFE)

Same as COMPARE or COMPARE FIELD, respectively, except that the
operation is performed only if the accumulator egual indicator is
already on. I t is used for multiple-field comparison.

LOAD TRANSIT AND SET (LTRS)
The memory operand is loaded into the transit register, and the offset

O F ANDSEC.A.41 SUMMARY OPERATIONS MODIFIERS 279

field of the instruction is loaded into the all-ones counter for ready
use as a pseudo operation code in interpretive fashion.

C. Operations Available in Floating-point :Mode Only

RECIPROCAL DIVIDE (R/)
Same as DIVIDE, except that the operands are interchanged, the
memory operand being the dividend and the accumulator operand
the divisor.

STORE ROOT (SRT)
The square root of the accumulator operand is stored in memory.

LOAD DOUBLE (DL)
LOAD DOUBLE WITH FLAG (DLWF)

These are double-length operations similar to the single-length LOAD

and LOAD WITH FLAG, except that an extra 48 bits to the right of the
fraction being loaded are set to zero, whereas the single-length opera-
tions leave these bits unchanged.

ADD DOUBLE (D+)

ADD DOGBLE TO MAGNITUDE (D+MG)

MULTIPLY DOUBLE (D*)

Similar to ADD, ADD TO MAGNITGDE, and MULTIPLY, respectively,
except that the fraction part of the accumulator operand is of double
length (96 bits). (I o t e that floating-point MULTIPLY ASD ADD is
also a double-length operation.)

DIVIDE DOUBLE (D/)
Similar to DIVIDE, except that a 96-bit dividend is used and a
remainder is produced and placed in the remainder register. Quo-
tient and remainder are both of single length.

STORE LOW ORDER (SLO)
The low-order part of the double-length accumulator operand is
stored in memory with the proper exponent.

ADD 	T 0 FRACTION (F+)
Same as ADD DOUBLE, except that the exponent of the accumulator
operand is used as the exponent of both operands during addition.

SHIFT FRACTIOS (SHF)
The double-length fraction in the accumulator is shifted left or right
by the amount specified in the address; the accumulator exponent is
unchanged.

ADD 	T 0 EXPOXEXT (E+)
The exponent of the memory operand is added algebraically to the
accumulator exponent .

ADD IMMEDIATE T 0 EXPOPLEST (E+I)
The address part of the instruction, interpreted as an exponent, is
added algebraically to the accumulator exponent.

d. VFL-arithmetic iVodiJiers and Addressing Modes

Radix modifier (D , decimal; B, binary)
l : Arithmetic and data format are decin~al.
O: Arithmetic and data format are binary.

Unsigned modifier (v)
l : Thc memory operand has no sign byte, and tEe operand is cori-

sidered positive.
O: The memory operand has a sign byte.

Negatwe sign modifier (N)

l : The sign of the unreplaced operand is inverted.
O: The sign is used unchanged.

Immediate acidressing (I)
The address part after indexing serves as the memory operand. This
mode precludes progressive indexing.

Progressive indexing
The specified index value is used as the address of the memory
operand of the VFL operation; this is followed by one of six immedi-
ate index-arithmetic operations (which see), as specified by a second-
ary operation code:

v + 1 v - I
v + I C v - I C

V + ICR V - ICR

Norrnalixation modifier (N, normalized; v, unnormalized)
1 : The result is left unnormalized.
O : The result is normalized automatically.

Absolute value modifier (A)

l : The sign of the memory operand is ignored, and tlhe operand is
considered positive.

O: The sign of the memory operand is used.
Note: This modifier is analogous to the VFL unsigned modifier.

Negative sign modifier (N)
Same as in VFL arithmetic.

Radix Conversion

a. Operations

LOAD CONVERTED (LCV)

The radix of the memory operand, considered as an integer, is con-
verted and the result placed in the accumulator.

LOAD TRANSIT CONVERTED (LTRCV)

Same as LOAD CONVERTED, except that the result is placed in the
transit register.

CONVERT (CV)

The accumulator operand, considered as an integer, is converted and
the result returned to the accumulator. The binary operand cor-
responds in length and position to a single-length floating-point
fraction.

CONVERT DOUBLE (DCV)

Same as CONVERT, except that the binary operand corresponds to a
double-length fraction.

b. Modifiers and Addressing Modes

Same as in VFL arithmetic, except for

Radix modifier (D, decimal; B, binary)

Specifies the radix of the unconverted operand.
1: Conversion is from decimal to binary.
O: Conversion is from binary to decimal.

Connective Operations

a. Operations

CONNECT (C)

The memory operand is combined logically with the accumulator,
according to the specified connective. The result replaces the
accumulator operand. A left-zeros count and an all-ones count
of the result are developed.

CONNECT T 0 MEMORY (CM)

Same as COKSECT except that the result replaces the memory
operand.

CONNECT FOR TEST (CT)

Same as COXNECT except that the result is discarded after testing and
both operands remain unchanged.

b. Connective Code

A 4-bit code xoo xoi xlo xll defines one of the sixteen connectives by
listing the 4 result bits for each of the four states of a memory bit (m)

and the corresponding accumulator bit (a):

Operand bits i
m Resuli bii, i

c. Addressing Modes

Immediate addressing
Progressive indexing

Same as in VFL arithmetic.

Note: Immediate index arithmetic, mhere the address serves as the
(unsigned) operand, is distinguished from direct index arithmetic, where
the (signed) operand is a t the addressed location, by the operation code
rather than by a modifier. Separate positive and negative immediate
operations on the signed value field are provided because the operand is
unsigned.

LOAD INDEX (LX)
The specified fu11 word replaces the entire contents of the specified
index register.

LOAD VALUE (LV)

LOAD VALUE IMMEDIATE (LVI)

LOAD VALUE NEGATIVE IMMEDIATE (LVNI)

The specified operand and sign replace the value field of the specified
index register.

LOAD COUKT (IMMEDIATE)(LC or LCI)
LOAD REFILL (IMMEDIATE)(LR or LRI)

Replace the count or refill field, respectively.

STORE INDEX (SX)

The entire contents of the index register are stored a t the specified
location.

STORE VALUE (SV)

STORE COUNT (SC)
STORE REFILL (SR)

The value, count, or refill field, respectively, of the index register is
stored in corresponding fields of the index word a t t8he specified
location.

OF ANDSEC.A.41 SCMMARY OPERATIONS MODIFIERS 283

ADD (IMMEDIATE) TO VALVE (V+ or V + I)
SUBTRACT IMMEDIATE FROM VALVE (V - I)

The specified operand is added to or subtracted from the value field.
ADD (IMMEDIATE) TO VALVE AKD COUXT (V + C or V + IC)

SUBTRACT IMMEDIATE FROM VALUE AKD COUST (V - IC)

Same as above, and the count is reduced by l.
ADD (IMMEDIATE) TO VALUE, COUNT, AND REFILL (V + CR or V + ICR)

SUBTRACT IMMEDIATE FROM VALVE, COUXT, AXD REFILL (V - ICR)

Same as above and, if the count reaches zero, the word specified
by the refill address replaces the contents of the index register.

ADD IMMEDIATE T 0 COUXT (C + I)
SUBTRACT IMMEDIATE FROM COUNT (C - I)

The address part is added to or subtracted from the count field.
COMPARE VALUE [(NEGATIVE) IMMEDIATE] (KV Or KVI Or KVSI)

The specified operand and sign are compared algebraically with the
value field, and the index-comparison indicators are set.

COMPARE COUST (IMMEDIATE) (KC or KCI)

The magnitude of the specified operand is compared with the count
field, and tlhe index-comparison indicators are set.

LOAD VALUE W I T H SVM (LVS)

The value fields of al1 index registers, corresponding to 1 bits in the
instruction address part, are added algebraically, the sum replacing
the value field of a specified index register.

LOAD VALVE EFFECTIVE (LVE)

The effective address is used to fetch, eventually, a non-LVEinstruc-
tion whose effective address replaces the value field of the specified
index register.

STORE VALUE IPU' ADDRESS (SVA)

The value field of the index register is stored in the address part of
the instruction a t the specified location.

REXAME (RNX)

The contents of the specified index register are first stored a t the
address contained in the refill field of index register xO; the effective
address of the RXX instruction is then loaded into the xO refill field,
and the specified index register is refilled from that address.

Branching Operations

a. Unconditional Branching

BRAKCH (B)

The effective address of this instruction replaces the instruction-
counter contents.

BRANCH RELATIVE (BR)

The effective address is added to the instruction-counter contents.
BRANCH ENABLED (BE)

Branch after enabling the interrupt mechanism.
BRANCH DISABLED (BD)

Branch after disabling the interrupt mechanism.
BRANCH ENABLED AND WAIT (BEW)

Same as BRANCH ENABLED, but no further instructions are executed
unti1 an interrupt occurs.

NO OPERATION (NOP)

Same as BRANCH to next instruction in sequence, regardless of the
address part.

b. Indicator Branching

BRANCH ON INDICATOR (BIND)

Branch if specified indicator condition is satisfied.
On-O$ modifier

1: Branch if indicat,or is on (1).
O: Branch if indicator is o$ (O).

Zero modifier
l :Set indicator to O after testing.
O: Leave indicator unchanged.

C. Index Branching

COUNT AND BRANCH (CB)

Reduce the count field of the specified index register by 1,and branch
depending on whether the count has gone to zero or not; also incre-
ment the value field as specified.

COUNT, BRAXCH, AND REFILL (CBR)

Same as COUNT AND BRAXCH, but also refi11 the index register if the
count has gone to zero.

On-O$ modifier
l :Branch if count has gone to zero.
O: Branch if count has not gone to zero.

Advance modifiers
00: Leave value field unchanged.
01 :Add 45 to value.

l0:Add 1 to value.

l l : Subtract 1 from value.

d. Storing Instruction Counter

STORE INSTRUCTION COUNTER IF (SIC)

If prefixed to any of the preceding branch instructions, store the
instruc tion-counter contents at the specified location if the branch is
successful.

e. Bit Branching

BRANCH ON BIT (BB)

Branch if the specified test bit meets the specified condition.
On-O$ modifier

1:Branch if test bit is on (1).
O: Branch if test bit is o$ (O).

Zero modifier
1: Set test bit to O after testing.
O: Leave test bit unchanged.

Invert modifier
1 : Invert test bit, after application of zero modifiec.
O: Leave test bit unchanged.

Data-transmission Operations

TRANSMIT (T)

The contents of a first memory area are sent to and replace the con-
tents of a second memory area.

SWAP (SWAP)

The contents of a first memory area are interchanged with the con-
tents of a second memory area.

Immediate count modifier (I)

l : The number of words to be transmitted are specified in the
instruction.

O: The number of words to be transmitted are specified in the count
field of an index register.

Backward modifier (B)

l : Addresses are decreased by 1 for each word transmitted.
O: Addresses are increased by 1 for each word transmitted.

Input-Output Operations

WRITE (W)

Data are transmitted from memory to an input-output unit.
READ (RD)

Data are transmitted from an input-output unit to memory.
CONTROL (CTL)

Contro1 information is sent from memory to an input-output
unit.

LOCATE (LOC)

A selection address is sent to an input-output unit.
RELEASE (REL)

Any operation in progress for the specified channel is terminated
immediately and status indications are reset.

Suppress end of operation modifier (SEOP)

Norma1 end-of-operation interrupt is suppressed after completion
of any of the above five operations.

COPY CONTROL WORD (CCW)

The current contro1 word for the specified channel is sent to memory.

REFILL (R)

The index word a t the specified memory address is replaced by the
word located a t the address contained in its refi11 field.

REFILL OPI' COCXT ZERO (RCZ)

A REFILL operation is performed only if the count field of the ad-
dressed index word is zero.

EXECUTE (EX)

At the specified address there is an operand which is executed as an
instruction.

EXECUTE IXDIRECT AXD COUXT (EXIC)

At the specified address there is another address which is treated as
a pseudo instruction counter: its operand is executed as an instruc-
tion, and the pseudo instruction counter is then advanced to the
next instruction location.

STORE ZERO (z)
Store an all-zero word a t the specified full-word location.

A.5 Surnrnary of Indicators

The indicator number is shown to the left of the name and the mne-
monic abbreviation to the right in parentheses. The notation in brackets
gives the class of indicator :

1 Interrupt mask bit always 1;always interrupts
m Interrupt mask bit set by programming
O Interrupt mask bit always 0; never interrupts
P Permanent indicator; remains on until reset by interrupt or by

programming
T Temporary indicator; corresponds to most recent result which

affects it

Equipment Check

0. Machine check (MK)

A general error has been detected by the CPU checking circuits.
1. 	Instruction checlc (IK) W']

An error has been detected during the performance of the current
instruction.

2. 	 Instruction reject (IJ) [LP1
The current instruction cannot be executed.

3. 	Exchange contro1 check (E K) [l$']
A general error has been detected by the exchange checking circuits.

Attention Request

4. 	T ime signal (TS) [l$]
The interval timer has gone to zero.

5 . 	CPU signal (CPUS) IlJ'I
A signal has been received from another, directly connected CPU.

Input-Output Reject

6. 	Exchange check reject (E K J) W]
An error was detected by the exchange while it mas setting up the
current input-output instruction.

287

7. 	Uni t not ready reject (U N R J) [l,pl
The unit selected by the current input-output instruction was not
ready to operate.

8. 	Channel busy reject (CBJ) [U'l
The channel selected by the current input-output instruction has not
completed a previous instruction.

Input-Output Status

(Indicators 9 to 13 are used in conjunction with the channel address
register, which contains thc address of the input-output channel involved.)
9. 	Exchange program check (EPGK) W]

The exchange hns terminated a previously initiated input-output
operation because of a programming error.

10. 	Uni t checlc (UK) [l,pl
An error or malfunction has been detected by checking circuits a t
the unit or the channel.

11. End exception (EE) [l,pl
The last operati011 for the channel encountered an exceptional
condition.

12. End of operation (EOP) [l,pl
The last operation for the channel was ended as specified by the
instruction and its contro1 words.

13. 	Channel signal (cs) [v']
An attleiition-request signal has been received from the channel.

14. Reserved for future expansion.

Instruction Exception

15. Operation code inoalid (OP)
An instruction was suppressed because t'he operation code or the
modifiers were not valid.

16. 	Address invalid (AD) [l,pl
An instruction was suppressed because the effective address was not
valid.

17. 	Unended sequence of addresses (USA) W]
A one-instruction addressing or execute loop has been forcibly ter-
minat'ed after 1 millisecond (severa1 hundred cycles).

18. Execute exception (EXE) [LP]
An execute operation was suppressed because it attempted to change
the instruction counter.

19. 	Data store (DS) [l,pl
An attempt to change the contents of a protected storage location,
while the interrupt system was enabled, was suppressed.

20. 	Data fetch (DF) [m,pl
An attempt to fetch data from a protected storage location, while
the interrupt system was enabled, is indicated, and, if the corre-
sponding mask bit was l , the data fetch was suppressed.

21. 	 Instruction fetch (W) [m7Pl
An attempt to branch to an instruction a t a protected location,
while the interrupt system was enabled, is indicated, and, if the
corresponding mask bit was l , the operation was suppressed.

Result Exception

22. Lost carry (LC)

A carry has been lost a t the high end of the result.
23. Partiai fieid (PF)

An operation failed to use al1 of the significant operand bits.
24. Zero divisor (ZD)

A divide operation with a zero divisor was suppressed.

h P I

b7p1

h p]

Result Exception, Floating Point O n l y

Imaginary root (I R) [m,PI
The operand of a STORE ROOT operation was negative.
Lost significance (LS) b7P1
An adding or shifting operation produced a result with a zero fraction
and no overflow.
Preparatory shift greater than 48 (PSH) b7pl
One operand in a FLP addition was shifted right, relative to the other
operand, by more than 48 bits.
Exponent JLag positive (XPFP) [m,P]
The result of a FLP operation had a positive exponent with an
exponent flag of 1 propagated from an operand with an exponent
flag of 1.
Exponent overjiow (XPO) [m,Pl
The positive result exponent has gone into the range E >= +21°,
generating an exponent flag of 1.
Exponent range high (XPH) [m,Pl
The result exponent was in the range +21° > E 2 +Z9.
Exponent range tow (XPL) [m,Pl
The result exponent was in the range +Z9 > E 2_ +P.
Ezponent underjlow (x p u) b 7 P 1
The negative result exponent has gone into the range E 5 -21°,
generating an exponent flag of 1.
Zero muit iply (ZM) [%TI
The result of a normalized FLP mult iply operation was an order-of-

magnitude zero, with a zero fraction and no generated or prop-
agated exponent underflow.

34. 	Remainder underjlow (RU) b b p]
The remainder after DIVIDE DOGBLE had a negative exponent
E 5 -21° and a generated exponent flag of 1.

F!agging

35. 	Data Jlag T (TF)
36. 	Data JEag U (UF)
37. 	Data jlag V (VF)

Data flag T , U , or V of the current operand was on.
38. 	Index jlag (XF)

The index flag of the index word just modified was on.

Transit Operation

39. 	Binary transit (BTR) [m?']
A binary VFL LOAD TRANSIT IXD SET instruction was executed.

40. 	Decima1 transit (DTR) [m,PI
A decima1 VFL LOAD TRANSIT AND SET, MULTIPLY, ANDMULTIPLY

ADD, or DIVIDE instruction was executed.

41 to 47. 	Program indicator zero to six (PGO to P G ~)
These indicators are set by programming only.

Index Result

48. 	Index count zero (xcz) [O,Tl
The count field resulting from an index-word modification mas zero.

49. 	Index value less than xero (x v ~ z)
50. 	Index value zero (xvz) [O,Tl
51. 	Index value greater than zero (x v ~ z) [o,T]

The value field resulting from an index-word modification was less
than zero, zero, or greater t'han zero, respectively.

52. Index low (XL) [O,Tf
53. Index equal (XE) [O,Tl
54. Index high (XH) [O71

An index compare operation showed the compared field in the speci-
fied index register to be lower than, equal to, or higher than the
corresponding field a t the effective address.

Arithmetic Result

53. 	To-memory operation (MOP)
The operat,io,tionjust executed was of the store type.

56. 	Result less than zero (RLZ) [o,T]
The result of a data-arithmetic or radix-conversion operation was
nonzero and negative.

57. 	Result zero (RZ) [O,Tl
The result of a data-arithmetic, radix-conversion, or connective
operation was zero.

58. 	Result greater than zero (RGZ) [O,Tl
The result of a data-arithmetic, radix-conversion, or connective
operation was nonzero and positive.

59. 	Result negative (RN) [OA
The result of a data-arithmetic or radix-conversion operation was
negative, whether zero or not.

60. 	Accumulator low (AL) [O,Tl
61. 	Accumulator equa1 (AE) [O,Tl
62. 	Accumulator high (A H) D J 1

-4 data-arithmetic compare operation showed the accumulator
operand to be respectively lower than, equal to, or higher than the
operand a t the effective address.

Mode

63. 	Noisy mode (NM) [o,pl
When this indicator is on, al1 normalized FLP operations are per-
formed in the noisy mode. (This indicator can be set only by
programming.)

Appendix B

PROGRAMMING EXAMPLES

This appendix contains some short examples of programs essentially
in machine language. The purpose here is not to teach programming, for
a machine of this magnitude will always be programmed in symbolic
form, nor is it claimed that these programs represent the best or the
fastest method of solving each problem on the 7030. The purpose is
merely to illuminate severa1 features of the 7030 that are discussed in
various chapters.

Notation

The following notat'ion will be used in the examples. The notation is
incomplete and does not cover some ~perat~ions not used in the examples.

Al1 integers are written in decimal form unless prefixed by a different
radix in parentheses:

Floating-point Numbers

An FLP number is written as a (signed) decimal fraction, followed by
the letter E and a (signed) decimal integer representing the pomer of 2;
+ signs may be omitted :

0.5 E O (?h1
0.8 E -4 (0.05)

-0.75 E 12 (-3,072)

The term XFNZERO denotes an injnitesimal (zero fraction, zero expo-
nent, exponent sign negative, and exponent flag l), which behaves
arithmet,ically like a true zero. An alternative notation is 0.0 E -1024.

Addresses

Addresses are written as two decimal integers separated by a period.
Thus 1257.48 is the address of bit 48 in word 1257 of memory. (These

292

are not mixed decima1 fractions.) Interna1 registers are referred to by
the addresses listed in Appendix A.3. Index registers are referred to as
xO to x15 in the index addresses and as 16.0 to 31 .O in the operand address.

Short arithmetical expressions are to be evaluated with carries past
the period being modulo 64:

Half-length Instruction Format

o Operation
M Mode symbols (M is replaced by one or more of the symbols listed

below or omitted if there are none)

J J-index address (omitted in instructions that have none)

A Address

I I-index address (omitted if no address modification)

List of Mode Symbols:

FN FLP normalized
FU FLP unnormalized

F branch if indicator o$ (omitted for "branch if indicator on")
z set indicator to O after test
+ 	add 1.0 to value
H add 0.32 (half) to value for index branching only
- subtract 1.0 from value

VFL Instruction Formats

o Operation

M Mode symbols (M is replaced by symbols listed below)

L Field length (1 to 64)

BS Byte size (1 to 8)
A Address
E' Offset (O to 127, may be omitted if O)
I 	 I-index addresses (there may be one for modifying the address and

another for modifying the offset; either is omitted if not needed)

List of Mode Symbols:

V B binary signed
VD decimal signed

VBU binary unsigned (the only one which applies to connectives)
VDU decimal unsigned

Operation Codes and Suffixes

For greater clarity the operatlion codes are spelled out in the examples,
although mnemonic symbols would ordinarily be used.

Operation modifiers are partly included in the mode symbols (above)
and partly shown as suffixes to the operations. The suffixes may be one
or more of the following:

NEGATIVE

ABSOLUTE

IMMEDIATE

COUXT

REFILL

Progressive indexing is shown by the addition of an immediate index-
ing code in parentheses after the operation:

(V + 1) add immediate t'o value
(V - 1) subtract immediate from value
(v + IC), (V - IC) (same) and count
(V + ICR), (V - ICR) (same), count, and refi11

The connective-operation codes are followed by a 4-bit code to specify
the connective (see Chap. 7) ; for example, C O ~ E C Twith the and con-
nective is written

COKNECT 0001

Indicator branching operations will be written BRASCH ISD 11-here IND

is replaced by the appropriate indicator abbreviation as listed in Appendix
A.5. Thus BRASCH xcz means branch on indcx count zero.

Data Formats

To distinguish program constant's, et'c., from instructions, one of
these prefixes is used:
INDEX index word consisting of value, count, reJill separated by commas
VALUE signed index value

DATA any other data, such as a FLP number

B.1 Polynomial Evaluation (Table B.1)

The polynomial
m

is best evaluated by the expression

using repeated floating-point rnultiplication and addition.
This example illustrates the universal-accurnulator concept applied to

floating-point arithmetic wit,h simple indexing.

~ o c a t i o n S t a t e r n e n t N o t e s1 1

LOAD INDEX, ~ 1 ,200.0
LOAD (FN), 301.0 (xl)
MULTIPLY (FX), 201.o
ADD (FN), 300.0 (x l)
COUNT AND BRAKCH (-), ~ 1 ,101.0
STORE (FC), 202.0
BRANCH ENABLED ARD WAIT, 103.0

ISDEX, M.O - 1.0, M, 200.0
DATA, X

DATA, P

DATA, AO
DATA, A l

DATA, A 2

.

N o t e s : (1) Set up index register 1.
(2) Load accumulator with initial a, = al+,-i.
(3) Multiply accumulator contents (ak) by x.
(4) Add ak- l .

(5) Traverse loop m times, each time reducing index value by 1.0.
(6) Store result.

295

B.P Cube-root Extraction (Table B.2)

The cube root .=m

may be found by means of the recursion formula

Let N be a normalized FLP number with exponent P and fraction F.
A suitable choice of a starting value xowill give a high accuracy in very
few iterat,ions. For example, a value of xo with exponent

P
p = T rounded to nearest integer in the positive direction

3

and fraction
fo = 0.7109375 = 0.101 101 1 (binary)

will give fu11 48-bit accuracy for any N in three iterations (I c = 3),
except for a possible rounding error in the last iteration. This value of
p is the fina1 exponent of the (normalized) result, and the fo value is
selected to give about equa1 iteration errors a t the ext4reme values of
the fina1 fraction.

A starting value with a fixed fraction was chosen for simplicity in the
programming example. By a more elaborate formula1 it is possible to
choose a closer value of xo that will yield the desired accuracy by only one
or two applications of the recursion formula. Such a program would be
longer and somewhat faster.

This program shows an effettive comhination of VFL and FLP
arithmetic.

l E. G. Kogbet,liantz, "Computation of Sin N, Cos N and .;"fNUsing an Aut,omatic
Computer," IBM J. Research and Developmeni!, vol. 3, no. 2, pp. 147-152, April, 1959.

296

L o c a t i o n 	 N o t e s

LOAD INDEX, ~ 1 , 	 Start200.0
LOAD (FU), 204.0
ADD IMMEDIATE T0 EXPOSEXT (FU), -1 (1)
ADD (FS), 204.0
STORE (FU), 203.0 (2)

LOAD (VB, 12, l) , 204.0, 117 (3)

ADD IMMEDIATE (VBV, 1, 8) , 1, 117 (4)

DIVIDE IMMEDIATE (VBU, 2 , 8) , (2) 11, 116 (5)

STORE ROUNDED (VB, 12, l) , 8.0, 117 (6)

ADD T0 FRACTION (FU), 202.0 (7)

STORE (FU), 205.0 (8)

MULTIPLY (FN), 205.0

MCLTIPLY (m) , 205.0

ADD IMMEDIATE T0 EXPONEXT (FU), 1 (9)

ADD (FN), 204.0

RECIPROCAL DIVIDE (FN), 203.0 (1 0)

ADD (FN), 201.0 (1 1)

MULTIPLY (FN), 205.0

STORE (FU), 205.0 (1 2)

COUNT AND BRANCH, x1, 107.32 (1 3)

BRANCH ENABLED AND WAIT, 112.0 Stop

IXDEX, 0.0, 3, 200.0
DATA, 0.5 E O
DATA, 0.7109375 E O
DATA

DATA, N

DATA, X

N o t e s : (1) Form N/2 by subtracting 1 from exponent.
(2) 	 Place 3K/2 in temporary storage.
(3) 	 Treating exponent of N as a signed VFL number P, load magnitude into

accumulator exponent position and exponent sign into sign register.
(4) 	 Form P + 1 (to bias subsequent rounding operation in positive direc-

tion).
(5) 	 Divide by 3 (binary 1 1) . Offset is chosen to give signed quotient with

one binary place to right of point for rounding. (Rest of accumulator,
corresponding to FLP fraction magnitude, is cleared.)

(6) 	Form FLP number 0.0 E p, where p = (P f 1) / 3 rounded to integer
(= P/3rounded with positive bias). Rounded, signed result is returned
to accumulator exponent position (exponent sign replaces extra quotient
bit). Fraction sign is immaterial.

(7) 	Form xo = f o E p.
(8) Store xoas first trial root.
(9) Form 2xk3.

(1 0) Form (3 N / 2) / (2xk3 + N).
(l l) Add *.S.
(1 2) Store x ~ + I .
(13) Traverse loop three times.

297

B.3 Matrix Multiplication (Table 0.3)
An m-by-n matrix A and an n-by-p matrix B are multiplied to produce

an m-by-p matrix C. Each element of A is a single FLP number, the
elements being stored row by row a t consecutive word locations starting
with ,LO. Similarly, matrixes B and C are stored row by row starting a t
B.O and c.0, respectively. This program, which is essentially the matrix
rnultiplication example of Table 11.5, illustrates indexing procedures.

L o c a t i o n Statement

LOAD INDEX, ~ 1 ,201.0
LOAD INDEX, X2, 202.0
LOAD INDEX, x3, 203.0
LOAD INDEX, x4, 17.0
LOAD INDEX, x5, 18.0
LOAD DOWLE (FU), 204.0

LOAD FACTOR (FN), 0.0 (~ 4)
MULTIPLY AND ADD (FN), 0.0 (~ 5)
ADD IMMEDIATE T0 VALUE, ~ 5 ,P

COUNT BRANCH AND REFILL (+),~4,103.0

STORE ROTJNDED (FN), 0.0 (~ 3)
ADD IMMEDIATE T0 VALUE, ~ 3 ,1.0
COUNT BRANCH AND REFILL (+),~2,102.0

ADD IMMEDIATE T0 VALUE, ~ 1 ,N

COUNT BRABCH AND REFILL, x3, 101.32
BRANCH ENABLED AND WAIT, 107.32

INDEX, A.O, N, 17.0
INDEX, B.O, P, 202.0
INDEX, c.0, M, 203.0
DATA, XFNZERO

X o t e s : (1) Load index register xl (io) from ioo, x2 (jo) from j 0 0 , and x3 (k)from ko.
(2) 	 Load x4 (i) from xl (io) and x5 (j) from x2 (jo) .
(3) 	Clear double-length accumulator before starting cumulative multi-

plication.
(4) Accumulate product element in accumulator.
(5) Increment j by p to advance to next column element of B.
(6) 	Increment i by l to advance to next row element of A. Traverse inner

loop n times. At the end, reset i to i o to restart same row of A.
(7) 	Store product element.
(8) Increment FG by 1to advance to next product element.
(9) 	Increment j o by 1 t,o start next cslumn of B. Traverse middle loop p

times. At the end, reset j o to j o o to return to beginning of B.
(10) Increment io by n to start next row of A.
(11) Traverse outer loop m times.

298

B.4 Conversion of Decima1 Numbea to a Normal-F l ~ a t i n ~ - ~ o i n t
ized Vector (Table B.4)

A group of 25 decimal fixed-point numbers is to be converted to a
normalized vector of 25 binary FLP numbers. The decimal numbers are
positive, unsigned, and ten digits long. The decimal digits are expressed
in a 6-bit code whose low-order 4 bits are the corresponding binary inte-
gers; thus the field length is 60 and the byte size 6. The decimal num-
bers are stored consecutively starting a t address D. The vector is to be
"normalized" by replacing each number F k by the expression

(The meaning of the term normaiixation here differs from that used in
describing FLP arithmetic.) The vector is to be stored in consecutive
word locations starting at address F.O.

This example shows the use of radix cpnversion and progressive index-
ing combined with FLP operations.

TABLEB.4. CONVERSIONOF DECIMALNUMBERSTO A FLP NORMALIZED VECTOR

Location 	 Statement

LOAD INDEX, ~ 1 ,201.0

LOAD INDEX, ~ 2 , 202.0

LOAD (FU), 203.0

STORE (FU), 204.0
LOAD CONVERTED (V + I) (VDU, 60, 6), 0.60 (xl), 68
STORE (FU), F.0 (~ 2)
MULTIPLY (FN), 8.0
ADD (FN), 204.0
COUNT BRANCH A N D REFILL (+),x2, 101.32
STORE ROOT (FN), 204.0

LOAD (FN), F.O (~ 2)
DIVIDE (FN), 204.0
STORE (FU), F.0 (~ 2)
COUNT AND BRANCH (+), x2, 105.32
BRANCH ENABLED AND WAIT, 107.32

INDEX, D, 0, 201.0

INDEX, 0.0, 25, 202.0

DATA, SFPYZERO

DATA

Notes: (1) Current ZFk2 to temporary storage.
(2) 	Convert decima1 integer to binary and place in FLP fraction position

of accumulator, the exponent being zero. Progressive indexing is used
to increment the index value by 0.60 after the present operand field is
fetched.

(3) Store Fk temporarily in unnormalized form. (The exponent need not
be adjusted to correspond to the actual decimal-point position of the
original field, for the subsequent normalization process cancels out the
exponent discrepancy.)

(4) Square Fk.
(5) Place (Z F ~ ~) ~ ' in temporary storage.
(6) Replace each Fk by normalized value.

B.5 Editing a Typed Message (Table B.5)

One of the chief uses for the logical-connective operations is in editing
input and output data. Editing may cover a variety of different opera-
tions, and only a few of these will be illustrated in this skeletonized but
useful example. I t includes the various connective operations, the left-
zeros count applied to indexing, zero tests, and a byte-size adjustment.

A message, which has been entered on a typewriter like the one on the
7030 console, is edited to delete control characters which appear in the
coded message whenever a contlrol key (such as carriage return) is struck.
Deletion here means removing the control character and closing the gap
(not just replacing the character with a blank). The number of control
characters is not known in advance, and the length of the edited message
must be determined by looking for an END code. The input message is
stored in memory starting a t address 300.0, and the block of edited output
data is to be stored a t address 400.0. For subsequent input-output
operations it is necessary to fill any unused portion of the last word of the
block with O bits. A control word for use with read-write instructions,
containing in the count field the number of words in the output block, is
to be made up and stored a t 201.0.

In the 8-bit code used with the typewriter, al1 control bytes (other than
blank) are distinguished from data by a l bit in the high-order position.
The program shown tests this bit in eight characters a t a time. The
left-zeros count is used to locate the control byte (or the leftmost control
byte if there are severa1 among the eight). The control byte is then
tested for the END code, which is 11 l1 1110. Advantage is taken of the
coincidence that the complement of this code is a single 1 bit, which, by a
suitable offset, serves as the mask to isolate the high-order bit in the
previous test for al1 control chmacters. (Such a short cut is not neces-
sarily sound programming, but it offers here an additional opportunity
to demonstrate the flexibility of the VFL system in genera1 and of the
connective operations in particular.)

L o c a t i o n

LOAD INDEX, ~ 1 , 0.0
LOAD INDEX, ~ 2 , 0.0
CONNECT IMMEDIATE 001 1 (vsu, 9, l) , (2) 1 1111 1111, 63

CONNECT 0011 (v s u , 64, 8) , 300.0 (x l)
CONNECT TO MEMORY 0101 (VBU, 64, 8), 400.0 (x 2)
CONNECT FOR TEST 0001 (v s u , 64, 8) , 8.0
ADD TO VALUE, xl, 7.17
ADD TO VALUE, x2, 7.17
BRANCH RZ, 102.0
CONNECT FOR TEST 1001 (vsu, 8, 8), 30050 (x l) , 71
ADD T0 VALUE, ~ 1 , 200.0
BRANCH RZ (F), 102.0

CONNECT TO MEMORY 0000 (v s u , 56, 8) , 400.0 (x 2)
ADD TO VALUE, x2, 200.32
LOAD INDEX, ~ 3 , 201.0
LOAD COUNT, ~ 3 , 18.0
STORE INDEX, ~ 3 , 201.0
BRANCH XCZ, 112.32
BRANCH ENABLED AND WAIT, 112.0
BRANCH ENABLED AND WAIT, 112.32

VALUE, 0.08
VALUE, 0.56
INDEX, 400.0, 0, 201.0

N o t e s

ATotes: (l) The operand, specified by immediate addressing, is the 9-bit field
l 11 11 l1 1 l. Specifying a byte size of 1 causes each l to be expanded
to an S b i t byte 0000 0001. The fu11 operand, therefore, consists
of nine such bytes. The connective 0011 and the offset of 63 then
cause the left half accumulator to be filled with the pattern i 000 0000
1000 0000 (The fina1 I, n-hich spills into the right half, is not
used.)

(2) 64 bits (eight bytes) of input data are placed into the right half accumu-
lator.

(3) These 64 bits are tentatively stored in the output area.
(4) The data field is anded with the test pattern in the left half accumulator.

The left-zeros count register contains either 64 or the position of the
first "control byte" with a high-order l bit.

(5) The left-zeros count is added to both the input and output indexes.
(6) Branch if the r e s u l t z e r o indicator is o n , i.e., if there is no control byte.
(7) A 0000 0001 byte from the test pattern is matched against the control

bgte; if the control byte is an END code, al1 result bits are 0.
(8) In any case, skip the control byte in the input data by adding 0.08 to

the index value.
(9) Branch to the beginning of the loop if the r e s u l t z e r o indicator is 08 after

the last test (not END), thus starting with the 64 bits following the con-
trol byte, which may include severa1 bytes transferred previously but
which now must be offset by one byte. (Multiple control bytes in a
64bit field will be taken care of one a t a time.)

(10) Enough 0s are inserted to a 1 the last word of the block.
(11) The output index value is rounded up to the next full-word address.
(12) The index value from x2 is transferred to the count field of the control

word being made up in x3, dropping the bit-address portion and leaving
only the number of fu11 words in the block.

(13) Test for a zero index count, which could result from an END code in the
F s t data byte and be interpreted as a word count of 2l8 a t the output.

Transposition of a Large Bit Matrix (Table 8.6)

Location Statement Notes

LOAD INDEX, ~ 1 ,201.0

LOAD INDEX, ~ 2 , 202.0

LOAD INDEX, x3, 203.0

CONNECT 0011 (V + I) (VBU, 1, l) , N.0 (~ l) , 63 (~ 3)
SUBTRACT IMMEDIATE FROM VALUE COUNT AND REFILL, x3,0.32
BRANCH xcz (F), 101.32
STORE (V + IC) (VBU, 64, 8), 1.0 (x2)
BRANCH xcz (F), 101.32

LOAD COUNT IMMEDIATE, ~ 2 , N

ADD TO VALUE AND COUNT,x1, 204.0

BRANCH xcz (F), 101.32

BRAKCH ENABLED AND WAIT, 106.32

INDEX, A.O, 6 4 * ~ , 201.0

INDEX, B.0, N, 202.0

INDEX, 0.0, 64, 203.0

VALUE, - ~ * ~ * 6 4 . 0 + 0.01

Notes: (l) Assemble 64 successive column bits in the right half accumulator by
indexing the offset from 63 to O.

(2) 0.32 means a 1 in the low-order bit of the 19-bit address in this instruc-
tion, which matches the low-order position of the offset field; thus the
effective offset will be reduced by 1.

(3) Branch if the index count is not zero.
(4) Store 64 row bits of the transposed matrix.
(5) Traverse the loop n times.
(6) Reset x2 count to n.
(7) Advance the column index to the start of the next column by subtracting

the length of the column (64n2 words) and adding 0.01.

In a computer with efficient bit-handling facilities, bit matrixes can be
useful tools. For instance, computing time and storage space for sparse
matrixes can be saved by storing only the nonzero elements in consecutive
locations and using bit matrixes to indicate the position of successive zero
and nonzero elements in the complete matrix. The present example of
transposing such a bit matrix illustrates the use of bit address and offset
indexing with VFL operations (see Table B.6).

A square 64n-by-64n bit matrix beginning at address A.O is to be trans-
posed and stored at nonoverlapping addresses starting at B.O. The
technique chosen here is to assemble 64 successive bits of a column into
a 64-bit word in the accumulator and then store that word in a row of the
transposed matrix.

A more efficient, but longer, program can be written by making use of
the bit-interleaving ability of the connective operations. The core of
such a program is the transposition of a small 8-by-8 matrix within the
accumulator ; this is done in eight steps, 8 bits at a time (see Table B.7).
By dividing t'he larger matrix into a group of 8-by-8 subrnatrixes, each
submatrix may be transposed separately and stored at the mirror-image
position with respect to the main diagonal of the fu11 matrix. The fu11
program, not shown here, would be almost four times as fast as that of
Table B.6.

Location Statement Nolesl
LOAD INDEX, ~ 1 , Start2 0 1 . 0
LOAD INDEX, X2, 2 0 2 . 0
STORE ZERO, 9 . 0 (1)
CONNECT 0 1 1 1 (V + I) (VBU, 8, l) , 0 . 0 8 (X l) , 7 (X2) (2)
SUBTRACT IMMEDIATE FROM VALUE AND C O ~ T ,~ 2 ~ 0 . 3 2
BRANCH xcz (F), 1 0 1 . 3 2
STORE (VBU, 64, 8), A.O (3)
BRANCH ENABLED AND WAIT, 1 0 4 . 3 2 Stop

INDEX, A.O, 0, 2 0 1 . 0

INDEX, 0 . 0 , 8 , 202.0

Notes: (1) Clear right half accumulator.
(2) Or 8 bits from A.O into the accumulator, 8 bits apart.
(3) Store transposed matrix back into A.O.

INDEX

Absence of information, distinguishing,
66

Absolute error, 103
Absolute-value form (see Numbers, nega-

tive)
Access to disks, 186
Accumulator, 20-24, 208-2 10

addressing, 24, 276
examples, 300, 302

bit numbering, 79, 80
byte size, 80
carries, 81, 84
clearing, 81-90
in FLP, 106-121, 276
implied operand address, 79, 125, 156
loading, 81-90
overflow, 81, 84
push-down, 126
selective alteration, 90
sign, 22, 83, 107
in subroutine linkage, 134
universal, 79, 113

illustrated, 295
in VFL, 79-90

Accumulator registers (A, B), 22-24,
208-210, 276

Accumulator sign byte register (S), 22,
83, 107, 276

holds data flags, 83, 108
holds zone bits, 80

Accuracy (see Checking; Precision)
Add absolute, modifier for, 24
Adders, 49, 50, 204, 224

parallel and serial, 208-21 1
Adding to memory, 22, 84-86, 115
Addition, FLP, 22, 95-97, 115, 116

of FLP singularities, 109
logica1 (Or function), 27, 88, 89
speed, 49, 50, 218
VFL, 83-86
(See also Subtraction)

Address, base (see Base address)
contro1 word, 181
data word, 181, 249-251
direct, 30, 153, 184
effective (see Effective address)
field, 76
immediate (see Immediate address)
implied, 70, 125, 156-159
index (see Index address)
indirect, 30, 267
notation, 292, 293
operand (see Operand address)
refill, 165-175, 181, 182
relative, in array, 152, 153
variable-length, 35, 129, 167

Address assignment (see Address num-
bering)

Address coding, 14, 52-58
Address interlacing, 18, 202, 238
Address modification, for exchange, 248

by indexing, 27, 28, 124-127, 151-
157

and indirect addressing, 167, 168
omitted if index address zero, 19, 126
by programming, 77, 150
in 7951, 260
(See also Index arithmetic; Index

registers; Indexing)
Address monitoring (see Memory protec-

t,ion)
Address numbering, bits, 76, 77

words, 18, 202, 238
Address protection (see Memory protec-

tion)
Address sign, 129
Addressable registers, 24, 276
Adjustments, 262-264
Advancing by one, 161
ALGOL programming language, 62
All-ones count, 24, 90, 276
Allocation, 194, 198, 229

Alphanumeric (alphabetic-numerical)

code, 78-80

(See also Character code)

Alphanumeric comparison, 26, 66, 67, 77

Alphanumeric data, 26, 52, 78

(See also Variable field length)

Alphanumeric data processing, 6, 44,

l62

And circuit, 89, 224

-4nd function, 27, 35, 88, 89

Applications, 44, 59, 254-256

of 7030, 5, 6

(See also Data processing)

Arabic numerals, 267-270

Arithmetic bus counter, 240

Arithmetic mode in 7950 system, 265

Arithmetic operations, data, 24-27> 277-

280

index, 27, 282, 283

in 7951, 257

(See also Fixed-point arithmetic ;Float-

ing-point arithmetic; Variable field

length)

Arithmetic result indicators, 84, 112: 290,

29 1

(See also Indicators)

Arithmetic unit, component count, 216,

217

data, 208-218

efficiency, 234

index (see Instruction unit)

parallel, 22-24, 208-218

seria1 (see Serial arithmetic)

speed, 217, 218

Array, data, 151-162

Ashenhurst, R. L., 100n.

Assembling (see Programming language)

Assembly, byte, 19, 248-252

Assignment (see Address numbering;

Allocation)

Asynchronous operation, 23 1

Atomic Energy Commission, U.S., 2

Attention request, 184-186, 195

Attention request indicators, 287, 288

Automatic programming (see Program-

ming language)
Auxiliary storage (see External storage)

B line (see Index registers)

Backward transmission, 285

Ballance, R. S., 228

Base address, array, 152, 153, 161-163

table, 53-55, 196

Bashe, C. J., 274

Bemer, R. W., 60, 63n.

Bias in rounding, 100, 101

Binary addressing, 66, 76, 77

(See also Radix, address)

Binary arithmetic, choice, 49-59

VFL fixed-point, 25, 26, 80

(See also Floating-point arithmetic)

Binary-coded decima1 (BCD) digits, 43,

46, 68, 69

Binary comparing sequencc, 26, 66, 67

Binary computers, 273

Binary data transmission, 53

Binary-decima1 conversion (see Radix

conversion)
Binary-decima1 modifìer (see Modifier,

radix)

Binary digit (see Bit)

Binary logic (see Logical operations)

Binary numbers (see Radix)

Binary point (see Radix-point alignment)

Bit, 39-45

distinctive type face, 19n.
Bit address, 29-35, 259

example of use, 162, 301-304

resolution needed, 38

in table look-up, 54-56

in VFL instruction, 77, 129

Bit branching, 28, 136

Bit indexing, 30, 77, 162

Bit interleaving, 91, 303, 304

Bit manipulation, 89-91

Bit matrix transposition, 303, 304

Bit numbering, 66, 76, 77

Bit setting, 89, 136

Bit test, by bit branching, 28, 136

by connectives, 90

instruction, 131, 275, 285

Bit transposition, in buffer, 186

matrix, 303, 304

Bite respelled as byte, 40

Blaauw, G. A., 33, 75, 150

Blank, 62-68

on cards, 72

Bloch, E., 202

Block of data, 39, 40, 163

for input-output, 182-188

Blocks, multiple, 183, 252

Blosk, R. T., 206n.

Bookkeeping (see Housekeeping)

Boolean algebra (see Logical operations)

Bosset, J., 201

Boundary contro1 (see Memory protec-

tion)

Branch condition anticipated, 207, 230-

238

Branch operations, 28, 135, 136, 283-285

Branching, 21, 133-136, 146-149

on bit, 28, 131, 285

execution of, 207

Branching, with index counting, 136,
161, 275, 284

on indicator, 10, 28, 284
instruction format, 128-131, 275
prevented for execute, 147-149
relat,ive to instruction counter, 135,

136, 284
Bright, H. S., 62n.
Brillouin, L., 45n.
Brooks, F. P., Jr., 5, 33, 75, 86n., 133
Buchholz, W., 1, 17, 33, 42, 60, 75, 122,

179, 248, 274
Buffer registers, in CPU, 205-207, 228,

229
in exchange, 250

Buff er storage, 186-188
Buffering in memory, 187, 188, 248
Bull, Compagnie des Machines

(GAMMA 60), lln., 40, 201
Burks, A. W., 43n.
Business data processing (see Data proc-

essing)
Busy condition, in memory, 232-235

on memory bus, 206
Byte, 39, 40

basic data unit in 7951, 258, 259
Byte assembly, 19, 248-252
Byte conversion for tape, 71
Byte mask, 260, 261
Byte size, 40

of character code, 63-66, 78, 79
connective operations, 90, 9 1
examples of adjustment, 301-304
indexing of, 127
of sign byte, 82, 83

Byte transmission, input-output, 249-251

Calling routine, 147
Campbell, S. G., 92, 254
Ca,pital letter, 62-69
Ca,rd Programmed Calculator (CPC),

94
Card-to-tape conversion, 189
Cards (see Circuit packaging; Punched

cards)
Carr, J. W., 100n.
Carry look-ahead, 210
Carry loss, unnormalized FLP, 112, 1 15

VFL, 84, 85
Carry-propagate adder, 210, 211
Carry-save adder, 210, 211
Case shift, 67-69
Casting-out-three check, 216
Catena, 40
Cell, 37, 38

(See also Field; Word)

Centra1 processing unit (CPU), 17, 20-24,
203-227

buffering action, 205-207, 228, 229
clock cycle, 204, 209
component count, 216, 217
multiple CPGs, 15, 195

signal, from another CPU, 287
to another CPU, 276

multiprogramrning, 193
Chain flag, 164, 181, 182, 251, 252
Chain printer, 63, 186
Chaining, in exchange, 251-253

of index and contro1 words, 29, 172-
l82

Channel address, 181-185, 249-252, 288
Channel address register, 21, 276
Channel signal, 185, 186, 252, 288

button for, 191
Character, 39, 40

special, 62-69, 264
Character code, 40, 52, 60-74

byte size, 63-66, 78, 79
in 7030, 26, 60, 61
standardization, ix
uniqueness, 69, 70
(See also Code)

Character sets, 60-78
Character subsets, 62-65
Characteristic, 95n.

(See also Exponent)
Checking, automatic, 2, 3, 216

casting-out-threes, 216
component count for, 217
for double errors, 17
by duplication, 209
in look-ahead, 207, 240-246
for machine malfunction, 194, 252
in memory, 17
parity, 66, 209

for input-output, 71, 72, 203, 251
(See aLso Error correction)

Checkout (see Program debugging)
Circuit packaging, 7, 223-225
Circuits, 7, 218-223
Classification of information, 256
Clear and add, 84
Clearing, accumulator, 81, 84, 90

memory, in 7951, 265, 266
Clock cycle, CPU, 204, 209
Clocks (see Interval timer; Time clock)
Cocke, J., 228
Codd, E. F., 192, 200n.
Code (see Character code; Contro1 code;

Decima1 digits; Numbers, coding)
Code translation, 26, 53-56

for comparing, 67
Coincidence (see Matching)

Collating (comparing sequence) , 66-69
Command (see Instruction)
Common control for input-output, 248
Communication between computers, 180,

189, 190
(See also Data transmission)

Comparing sequence, 66-69
Comparison, 26, 257, 266

alphanumeric, 26, 66, 67, 77
FLP, 110-116
index, 159
VFL, 84-86

Comparison indicators, 84, 112, 291
(See also Indicators)

Compiler, 8, 198, 256
Complement (see Inversion; Numbers,

negative)
Complexity, equipment, 8, 50

instruction set, 131
Component count, 7, 216-225
Component mounting, 223-225
Compromise, 15, 16, 68, 80n.

need for, vii
Computed wiring layout, 226
Computer, general-purpose, 5, 6

solid-state, 1, 273
(See aEso Data processing; Scientific

computing)
Concurrent operation, 202-204

of input-output, !SO, 186-188, 249, 249
local and nonlocal, 11, 192
look-ahead unit, 230-238
performance estimate, 32
read-process-write cycle, 172
(See aiso Multiprogramming)

Conditional branching, 28, 131, 136
condition anticipated, 207, 230-238
restricted indexing, 128, 135

Conjunction (And function), 27, 35, 88
Connective code, 88, 89, 281, 282, 291
Connective operations, 27,89-91,281,282

all-ones count, 24, 90, 276
examples, 301-304
execution of, 208
instruction format, 275
left-zeros count, 24, 90, 276
need for, 15

Console, operator's, 13, 14, 193
as input-output unit, 14, 190, 196

Construction, 223-227
Control bits, setup in 7951, 265
Control code, 52, 60

in CONTROL instruction, 183
delete on paper tape, 67, 68
END, 72, 301-303
for input-output devices, 63, 183
null, 67, 68

Control field, 266
(See also Identifier field)

Control unit, disk, 20, 193, 203-205
tape, 189

Control word, 155, 162-178
compatible with index word, 29, 182
copying, 253, 286
for input-output operations, 29, 181-

l84
use in exchange, 249-253
(See also Index word)

Control word address, 181
Control word modification, 249-252
Conversion (see Code translation)
Core, magnetic, 1
Core memory (see Memory)
Cost, effect of number coding, 48

reduction by multiprogramming, 12
related to performance, 5, 6

Count, control word, 162-166, 181, 182
in exchange, 249-252
index, 28, 153-160

combined with branching, 136, 161
Counting, 42, 255

in memory, 7951 feature, 262, 267
by VFL instruction, 25, 85

CPU (see Centra1 processing unit)
Cube-root program, 296-297
Cumulative multiplication, 23-25, 79

upp!icatlon, 101, IN!
FLP, 115
VFL, 86

Current switching circuits, 218-221

Da,gger function (Nor), 88
Data-arithmetic operations, 24-27,

277-280
Data collection, 255
Data definition, 75
Data fetch, 17-22, 206, 207, 240, 241

indicat,or, 289
Data field (see Field)
Data flag, 83, 107, 108, 290
Data flow, CPU, 204-207

exchange, 185, 235-237, 249-252
input-output, 48, 49, 180
in 7951, 257-261
smoothing of, 229
(See aiso Data transmission)

Data format, 33-41, 51
conversion, 75, 87
interpretation, 56
notation, 292-294
(See also FLP data format; VFL data

format)
Data hierwchy, 39, 40

Data interchange (see Swapping)
Data memory, separate, 233-238
Data modification, problem with look-

ahead, 230
Data ordering, 163-165, 256, 265-267
Data processing, alphanumeric, 6, 44, 162

computers for, 59, 273
need for variable field length, 15, 37
nonarithmetical, 254-257

Data selection pattern, 260, 261
Data sequence, left to right, 76, 77
Data source and sink, 256-259
Data stream (see Data flow)
Data transformation (see Editing; Table:

look-up)
Data transmission, 151

any bit pattern, 53
control codes, 63
with control words, 155, 162-166
exchange, 248-252
input-output, 48, 49, 179-190
operations, 28, 36-41, 285

instruction format, 275
serial, 180

Data word address, 181, 249-251
Davis, G. M., 125n.
Debugging (see Program debugging)
Decimal addressing (see Radix, address)
Decimal arithmetic, 26, 27, 80, 208

choice of, 42-51, 59
Decimal-binary conversion (see Radix

conversion)
Decimal com~uters. 273
Decimal dig&, binary-coded, 43, 46, 68,

69
byte size, 55, 78, 79
in character set, 62, 67
2-out-of-5 code, 53

Decimal multiplication and division by
subroutine, 26, 208, 278

Decimal numbers (see Radix)
Decimal point (see Radix point)
Delay, circuit, 7, 219-222

due to memory conflicts, 228
involved in buff ering, 187, 188

Delay-line memory, 43
Delete code on pa.per tape, 67, 68
Deletion, record, 163-177, 266

zero, on tape, 37
Demand fluctuation, 229
Design objectives, 2
Detail file, 175, 266
Difference (see Subtraction)
Digit, 42

(See also Bit; Decimal digits)
Digital computer (see Computer; Data

processing; Scientific computing)

Direct address, 30, 153, 184
Direct index arithmetic (see Index

arithmetic)
Disabling interrupts (see Interrupt)
Disassembly, word, 19, 248-251
Disjunction (Or function), 27, 88, 89
Disks, 19, 179-187

access to, 184, 186, 193
high-speed, 4, 20, 203-205

contributes to performance, 10
as multiprogrammable facility, 193

Division, 23-26, 79, 208-216
decimal, by subroutine, 26, 208
FLP, 95-97, 109-118
quotient generation, 77n., 117,211-215
remainder, 86, 115
scaling not needed, 26, 86, 87
speed, 15, 50, 218
VFL, 26, 86, 87, 208
by zero, 26, 85-87, 110

Double card, 217-225
Double-length FLP, number, 25, 107, 108

operations, 104, 116-121
Double-precision arithmetic, 119-121
Dreyfus, P., l l n .
Drift transistors, 218
Dunwell, S. W., xi, 2n.
Duplicate circuits for checking, 209

Ease, of programming, 8, l51
of use, 43

Editing, 9, 52, 256
example, 301-303
natura1 data units, 35, 36, 75
not done by exchange, 250
for printing, 56-58, 75, 267
separate computer, 3

Effective address, 21, 151-153
loading into index register, 167, 168
monitoring, 31, 196
in progressive indexing, 161, 162
(See aiso Address modification; Oper-

and address)
Efficiency, arithmetic unit, 234

storage, 46-49
Elapsed time (see Interval timer)
Element address in array, 152, 153
Ellis, T. O., 164n.
Emitter follower circuit, 222, 223
Enabling interrupts (see Interrupt)
End of operation, input-output, 185, 186,

252, 253
END code, 72, 301-303
Endless loop, 148, 194, 200
Equality (see Comparison; Matching)
Equals (symbol), 70

Equipment check indicators, 287
Equipment choice, 8, 9, 50
Equipment count, 7, 216-225
Error from malfunction, 194, 252
Error analysis, 100
Error correction, automatic, 2, 3, 216

on disks, 20
for input-output, 66, 203
in look-ahead, 2Q7, 243
in memory, 17

Error detection (see Checking)
Error recording, 216
Escape character, 63
Even parity, 66, 90
Exception fixup, 8, 138-146, 183
Exception monitoring, by interrupt sys-

tem, 137, 195
in set-up mode, 259, 264

Exchange, 3, 203-205, 248-253
&ed-program computer, 15, 250
input-output channels, 19,20, 179, 180,

193
peak traffic, 185, 235-237, 251

Exchange memory, 249, 250
Exclusive or function, 27, 88
Execute operations, 134, 146-149, 286
Existence in memory, 262
Exponent, FLP, 25, 94, 95, 104, 105

arithmetic, 118, 208, 216
(See also FLP data format)

Exponent flag (tag), 25, 98, 107-109
Exponent flag negative (see Infinitesimal)
Exponent flag positive, 289

(See also Infinity)
Exponent overflow, 98-1 l 3
Exponent range indicators, 112, 1l 3
Exponent underflow, 98-1 l 3 1
Extended character set, 60, 78
External storage (tapes or disks), 19, 29,

179, 248
transmission rate, 48, 49

External units (see External storage;
Tnput-output units)

Extraction, data field, 37
(See also Logica1 operations)

Facility, multiprogrammable, 192, 193
Factor register, 23, 86, 276
Fast memory (see Memory)
Fault location, 2

(See also Malfunction)
Fetching, 180

(See also Data fetch; Instruction fetch)
Field, 39, 40, 257

packing and e~tract~ing, 37

partial, 84-, 112, 117-119, 289

Field address, 76
Field comparison, 86, 116, 278
Field length, 39, 77, 78

in connective operations, 89, 90
&ed, 36, 37, 47
indexing of, 127
(See also Variable field length)

File, 39, 40, 175, 260
File maintenance, 175-17'7, 256, 265-

267
File processing (see Data processing)
Fingers, counting on, 42
Fixed field length, 36, 37, 47
Fixed-point arithmetic, data format, 34,

80-83
problems with, 92-94
by unnormalized FLP, 103, 115-119
by VFL, 75

Fixup, exception, 8, 138-146, 183
Flag (see Chain flag; Data flag; Exponent

flag; Index flag)
Flag indicators, 290
Flip-flop, 223
Floating-point (FLP) arithmetic, 94-104

division, special rules, 117, 118
fractional, 1l 4
noisy mode, 25, 102, 113, 114
normalized, 25, 97, 103

modifier, 106, 280
shifting, 95, 100, 105
on singularities, 108-1 19
unnormalized, 97, 103

addition overflow, 115
as fined-point arithmetic, 103, 115-

119
to indicate significance, 100-103
for multiple precision, 119

(See also Multiple-precision arithrnetic ;
Precision;Range;Rounding;
Scaling)

Flow (see Data flow; Instruction flow)
FLP arithmetic unit, 208-218
FLP data format, 25-34, 104-108

conversi011 to and from, 87
notation, 292, 293

FLP indicators, 112, 113
FLP instruction format, 106, 126-128,

275
FLP number, 94-105

singularity, 96-99, 108-1 19
(See also FLP data format)

FLP operations, 24,25, 114-118,277-280
modifiess, 106, 280

Forced input-output termination, 253
Forced interrupt, 148
Forced zero, 86
Forgie, J. W,, 201

Format (see Data format; Instruction
format)

FORTRAN programming language, 95n.
Forwarding in look-ahead, 240, 241
Four-address instruction, 123
Fraction, compared to integer, 47, 81, 82,

1 l 4
FLP, 25, 94, 95, 104-108

arithmetic on, 118, 208, 216
(See also FLP data format)

Freeman, H., 200n.
Freiman, C. V., 211n.
Frequency count, 257
From bit, 240
Full-word address, 35, 129
Full-word instruction (see Instruction

length)

GAMMA 60, Bull, l ln., 40, 201
Gap, interblock, 182
Gate (see And circuit ; Or circuit)
General-purpose computer, 5, 6, 59
Generality, applications, 4, 6, 59

features, 9
input-output, 179, 188-190

Generated overflom-, 11 2
Generated underflow, 112
Gill, S., 134n., 201
Goldstine, H. H., 43n.
Greenstadt, J. L., 274
Group of records, 163, 164, 174-177

Half-word address, 35, 129
Half-word instruction (see Instruction

length)
Halt (see Stop)
Hamilton, F. E., 274
Herwitz, P. S., 254
Hierarchy, data, 39, 40

memory, 229
Housecleaning mode, look-ahead, 246,

247
Housekeeping, built into 7951, 265

and look-ahead design, 229, 230
reduced, by indexing, 151, 160, 178

by universal accumulator, 79
Human intervention (see Operator inter-

vention)

I address, 126-130, 157
IBM CPC (Card Programmed Calcu-

lator), 94
IBM SORC (Xaval Ordnance Reskarch

Calculator), 94

IBM SSEC (Selective Sequence Elec-
tronic Calculator), 192

IBM 24, 26 keypunch, 63n., 68
IBM 604, 37
IBM 650, 1, 10, 274

instruction in accumulator, 147
two-address instructions, 123

IBM 701, 1, 192, 274
instruction format, 124

IBM 702, 1, 189n., 274
IBM 704, 1, 10, 274

arithmetic, 81, 94, 119-121
circuit speed, 7
indexing, 154
instruction format, 124, 131
program print-out, 57

IBM 705, 1, 274
arithmetic, 81
input-output system, 189n.
program print-out, 57
variable field length, 38, 77

IBM 709, 10, 274
contro1 word, 164, 166
indexing, 154
indirect addressing, 167
instruction sequencing, 134n., 147
(See aiso IBM 704)

IBM 727 tape unit, 20
IBM 1401, 38, 63n.
IBM 7030, 17, 274

Project Stretch computer, 4, 5
IBM 7070, 164, 274
IBM 7080, 274

(See also IBM 705)
IBM 7090, 274

(See also IBM 704; IBM 709)
IBM 7950 system, 258
IBM 7951, 257-271

relation to Project Stretch, x
Identifier field, record, 40, 163
Identity function, 88
Immediate address, 30, 153, 241

example, 297-304
in input-output instructions, 183, 184
in VFL instructions, 77, 280

Immediate index arithmetic, 129, 282,
283

(See also Index arithmetic)
Implication function, 88
Implied address, 79, 125, 156-159
Increment, index, 153-159

combined with count, 28, 159, l60
and refill, 28, 166

in 7951, 260, 261
Index address, 21, 124-130, 155-157

restricted, 128, 135
truncated, 156

Index arithmetic, 27, 153
operations, 27, 28, 282, 283

instruction format, 156, 157, 275
(See also Address modification)

Index arithmetic unit, 21, 207
Index branching, 136, 161, 275, 284
Index comparison, 159
Index counting (see Count)
Index fiag, i64, 290

(See aiso Chain flag)
Index incrementing (see Increment)
Index memory, 19, 206, 207
Index registers, 27, 28, 126, 276

number of, 14, 27, 28, 156
stored in index memory, 19, 207
(See also Address modification; Index

address; Index arithmetic)
Index result indicators, 290
Index value, 27, 28, 151-165

(See also Data word address)
Index word, 19, 28, 155-166

format, 127-129, 275
(See also Contro1 word)

Indexing, of bit address, 30, 77, 162
initialization, 154, 165
by instruction counter, 135, 284
multiple, 9, 155
progressive (see Progressive indexing)
termination, 153-160
(Swn1s0 Address modification)

Indexing leve1 in 7951, 260, 261
Indexing pattern in 7951, 256-264
Indicator, 10, 28, 287-291

accumulator equal, 291
accumulator high, 291
accumulator Eow, 291
address invalid, 288
binary transit, 85, 290
channel busy reject, 288
channel signal, 185-191, 252, 288
CPU signal, 287
data fetch, 289
data jlag T, U , or V, 290
data store, 288
decima1 transit, 85, 290
end of operation, 288
end exception, 288
exchange che& reject, 287
exchange contro1 checlc, 287
exchange program check, 288
execute exception, 148, 288
exponent jlag positive, 289
exponent overjlow, 289
exponent range high, 289
exponent range low, 289
exponent underjlow, 289
imaginary root, 111-1 13, 289

Indicator, index count nero, 290
index equal, 290
index jlag, 290
index high, 290
index low, 290
index value greater than zero, 290
index value Eess than zero, 290
index value zero, 290
instruction check, 287
instruction fetch, 289
instruction reject, 287
lost carry, 84, 85, 112, 115, 289
lost signi$cance, 113, 289
machine check, 287
noisy mode, 113, 291
operation code invalid, 288
partial Jivld, 84, 112, 117-119, 289
preparatory shift greater than 48, 113,

289
program indicator zero to six, 290
remainder under$ow, 113, 290
result greater than zero, 291
result less than zero, 291
result negative, 291
result zero, 90, 291
tinze signal, 200, 287
to-menzory operation, 85, 112, 290
unended sequence of addresses, 288
unit check, 288
wnit nol wndy reject, 288
zero divisor, 85, 110-1 12, 289
zero multiply, 11 1-1 13, 289

Indicator register, 21, 28, 276
Indicators, branching on, 28, 136, 284

data flag, 112, 290
FLP, 112, 113
held in look-ahead, 239
for interrupt, 137-139, 195, 196
testing of, 10, 28, 131
VFL, 84, 85

Indirect address, 30
formation in 7951, 267

Indirect addressing, 27, 153, 204
and address modification, 167, 168
in input-output instructions, 184
by separate instruction, 9, 131, 167
similar to execute, 146
(See also Operation, LOAD VALUE

EFFECTIVE)
Indirect indexing, 167
Inequality (see Comparison; Exclusive or

function; Matching)
Infinitesimal, 96-98, 108-1 13, 292-300
Infinity, 96-98, 108-1 l 3
Information, absence of, 66

measure of, 8, 36, 45
Information-channel capacity, 49

Information content, instructions, 9,
128-131

numbers, 45-49
Information retrieval, 254-256
Initial program loading, 186n.
Initialization, indexing, 154, 165

7951 set-up, 265
Inner product, 101, 116
Tnput by key-recording, 68, 69
Input-output, 179-191

reject indicators, 185, 287, 288
status indicators, 288

Input-output channels, 19, 20, 179-193
number of, 249
(See also Channel address; Channel

signal)
Input-output data, 39, 40, 175, 260
Input-output interrupts, 137
Input-output operations, 29, 180, 181,

285, 286
control, 252
control words, 29, 181-184, 250-253
end, 185, 186, 252, 253
example, 172-177
forced termination, 253
instruction format, 126, 127, 181,

275
in multiprogramming, 199
secondary addresses, 184, 190, 253

Input-output units, 179, 180
allocation, 194, 198
buffering, 186-188, 248
concurrent operation, 11-14
control codes, 63, 72, 183
on exchange, 20, 203-205, 248
interface connection, 188-190
speed, 180, 235-237

Tnsertion, record, 163, 173-177, 266
Institute for Advanced Study (Prince-

ton), 43
Instruction, as data, 150, 229, 230

frequency, 130
information content, 9, 128-131
neighbors executed concurrently, 11
notation, 8n., 292-294

Instruction counter, 21, 134, 135, 207
held in look-ahead, 239
in relative branching, 135, 136, 284
storing, 28, 134, 135, 275, 284

after interrupt, 139-145
by separate instruction, 9, 131

Instruction counter bit, 240
Instruction decoding, 128-13 1
Instruction exception indicators, 288,

289
Instruction fetch, 17, 22, 207

indicator, 289

Instruction flow, CPU, 206, 207
concurrency, ll
delayed by branch, 236
interlocks (see Interlocks)
smoothing of, 229
(See also Instruction counter)

Instruction format, 125-127, 275
early computers, 122-124
FLP, 106, 126-128
input-output, 126, 127, 181
interpretation of, 56
for 7951, 265
VFL, 77, 126, 127

Instruction length, 21, 126-131
for branching, 135, 136

Instruction memory, separate, 233-238
Instruction modification, 150

problem with look-ahead, 229, 230
(See also Address modification; Modi-

fier)
Instruction prefix, 131, 135, 167
Instruction sequencing (see Branching;

Execute operations; Instruction
counter; Instruction flow ;Interrupt)

Instruction set, 24-29, 277-286
complete, 131
simplest possible, 131, 151
symmetrical, 121
systematic, 9, 10, 130
(See also Operation)

Instruction stream (see Instruction ffow)
Instruction unit, 17-21, 206, 207

buffering action, 207, 229
component count, 217
speed, 234

Instruction-unit counter, 240
Integer, compared to fraction, 46-48, 81,

82
notation, 292

Integer arithmetic (see VFL operations)
Interblock (interrecord) gap, 182
Interchange (see Swapping)
Interface, 188-190
Interference between programs, 194
Interlaced (interleaved) addresses, 18,

202, 238
Interleaving of bits, 91, 303, 304
Interlocks, instruction, 22, 204-207

look-ahead counters, 240-243
need for, 11, 12, 229, 230

Internal operand bit, 240
Internal registers, 30

(See also Machine registers)
International Business Machines (IBM),

1
(See also specific IBM machines)

Interpretive console, 14, 190, 196

Interpretive programming, 87, 147, 195
Interrupt, 133, 134

disabling and enabling, 139-145, 195,
196, 252

during multiprogramming, 199, 200
forced, 148
from input-output, 184-186, 252
interlocks needed, 11, 12, 229, 230
!o&-ahead recovery, 16, 230, 246, 247
masking, 138-146, 195, 196
multiple levels, 145, 146
simultaneous, 139-145
supervisory control, 198-200
suppression, end-of-operation, 185, 286

Interrupt address register, 21, 138-146,
276

Interrupt system, 21, 30, 31, 136-146
for multiprogramming, 13, 195-200
(See also Indicators)

Interrupt table, 138, 139, 196
Interval timer, 31, 135, 276

in multiprogramming, 194-197
Inversion, bit, 27, 89

branch-test bit, 136, 285
Italicized digits, 68, 70

J address, 126, 157
Jumping (see Brancliing)

Key field (identifier field), 40, 163
Keyboard, 68, 69
Keypunch, 63n., 68
Kilburn, T., 150n.
Kogbetliantz, E. G., 296n.
Kolsky, H. G., 228
Kubie, E. C., 274

Language (see Instruction set; Program-
ming language)

Leading zeros (see Floating-point arith-
metic, unnormalized; Zero)

Left-to-right data sequence, 76, 77
Left-zeros count, 24, 90, 276

use in division, 117-1 19
Leftmost-one identifier, 138-140
Leiner, A. L., 15n., 201
LEM-l computer (U.S.S.R.), 134n., 147
Length, in indexing, 153, 154

(See also Field length)
Letter (see Alphanumeric code; Char-

acter)
Level, indexing, in 7951, 260, 261

indirect address, 167, 168
interrupt, 145, 146
look-ahead, 229-246

Level checked bit, 239
Level jìlled bit, 239
Limit, 153, 154
Lines, input-output, 190

phone, 63, 179-190
Loading of accumulator, 84-90, 115, 116
Loading effettive address (see Indirect

address)
Lscating operation, 184
Location (see Address)
Logarithm, 96
Logic unit, 209
Logical connectives, 87-89
Logical operations, 44, 257

data for, 34, 35, 52, 55
symbols for, 62
(See also Connective operations)

Look-ahead, 11, 21, 22, 228-230
buffering action, 229
recoveri after interrupt, 16, 230, 246,

247
Look-ahead address register, 240, 241
Look-ahead level, 229-246
Look-ahead operation code bit, 240
Look-ahead unit, 205-208, 228-247

checking, 207, 240-246
component count, 217
simulation, 218, 230-238

Look-up (see Table look-up)
Loop (see Program loops)
Los Alamos Scientific Laboratory, 2, 4,

231
joint planning group, x

Lower boundary register, 31, 276
Lower-case letter, 62-69
Lowry, E. S., 192
Lozenge, 66, 73

McDonough, E., 192
Machine language (see Instruction set)
Machine malfunction, 194, 252
Machine time accounting, 194
Blachmudov, U. A., 134n.
Macroinstructions, 119, 264, 265
Magnetic cores, 1

(See also Memory)
Magnetic disks (see Disks)
Magnetic tape, 43, 179-187

automatic zero deletion, 37
block length, 182
code convention, 71
control of, 183-189
data flow rate, 48, 76
high-speed, 258
as storage, 19, 179
tape control unit, 189, 249

Magnetic tape, tape unit selection, 184
Magnetic wire, 43
Main memory (see Memory)
Maintenance bits, 276
Maintenance controls, 191, 227
Malfunction, 194, 252
Man-machine relation, 12, 13

(See also Operator intervention)
Manchester computer, 150n.
MANAC I1 (Los Alamos), 105
Uantissa, 95n.

(See also Fraction)
Manual contro1 (see Maintenance con-

trols; Operator intervention)
Mapping, 256
Marimont, R. B., 201
Marker bits, 38
Mask register, 21, 138-146, 276
Masking, of indicators, 138-146, 195, 196

to select bits, 39, 89
Master file, 175-177, 266
Match function, 88
Match unit, 263, 264
Matching, bit, 27, 88, 264

record (see Record handling)
Mathematical symbols, 62
Matrix, 53

bit, transposition of, 303, 304
Matrix multiplication, 170, 171, 298
Matrix operations, 260, 261
Memory, 3, 17-19, 202

auxiliary fast units, 3n., 229
as instruction memories, 233-238
in 7951, 258

buffering in, 187, 188, 248
delay-line, 43
effect on performance, 48, 49, 233-238
exchange, 249, 250
existence (oring) feature, 262, 267
multiple units, 12, 15, 233-238
nondestructive reading, 207
virtual (see Look-ahead)

Memory addressing (see Address number-
ing; Word length)

Memory area, 29, 163, 181-183
Memory bus unit, 15, 17, 205, 206
Memory conflicts, 232-235
Memory cycle, 7, 202, 233
Memory hierarchy, 229
Memory protection, by address monitor-

ing, 8, 31, 196, 197
boundaries defined, 21, 31 276
multiprogramming requirements, 13

199
for input-output, 183

Memory sharing, 193
Memory speed, 7, 202, 233-238

Memory word, 7, 17, 39, 40
Merging, 163, 256, 265-267
Mersel, J., 134n.
Meteorology, 254
Metropolis, N., 100n.
Microprogramming, 132
Minus sign, 70
Mnemonic abbreviations, 276-291
Mode, immediate addressing, 280

progressive indexing, 77, 280
Modification (see Address modification;

Instruction modification)
Modifier, 10, 130

absolute vnlue, 106, 280
advance, 284, 295-300
backward, 285
branch operations, 28, 136, 284, 285
data transmission, 285
FLP, 106, 280
immediate count, 285
input-output, 286
invert, 285
negative sign, 84, 106, 280
normalization, 106, 280
on-o$, 284, 285
radix, 80, 280, 281
suppress end of operation, 185, 286
unsigned, 83, 280
VFL, 80-84, 280, 281
zero, 284, 285

Modifier notation, 293, 294
Monitoring (see Exception monitoring;

Memory protection; Program
monitoring)

Multiaperture core memory, 207
Multiple-address instruction, 122-125
Multiple-block operation, 183, 252
Multiple computing units, 15, 195, 287
Multiple flag, 183, 252
Multiple indexing, 9, 155
Multiple-precision arithmetic, 93, 10'7,

119-121
double-length numbers for, 25, 101
rare in fixed point, 77, 82
requires unnormalized FLP, 103

Multiplexing in exchange, 249-251
(See also Concurrent operation)

Multiplication, 22-26, 44, 50
cumulative (see Cumulative multi-

plication)
decimal, by subroutine, 26, 208
FLP, 95, 109-116
high-speed unit, 208-21 1
logical, 27, 35, 88, 89
speed, 15, 218
VFL, 26, 86, 208
zero problem in FLP, 110-113

Multiprogramming, 192-201

need for interrupt, 138, 146, 195,

196

operating techniques, 10-14, 193-

196

program protection (see Memory pro-

tection)

reasons for, 10-14

syxrvisor, 8, 194-200

Murphy, R. W., 86n.

Naming of index register, 28, 156

Nand (not and), 88

Nanosecond (ns), 7, 220

Natura1 data units, 33-39, 75

influente on instruction format, 127,

128

Naur, P., 62n.

Naval Ordnance Research Calculator

(NORC), 94

Negation (see Inversion; Not function)

Negative numbers, 82, 210-212

(See aiso Sign)

Neighbors in array, 152

Nesting store, 125

Newell, A., 164n.

No operation bit, 240

Noise, electrical, 225, 226

numerical, 102

Noisy mode, PLY,25, 102, 113, 114

Nonarithmetical data processing (see

Data processing)

Nondestructive-read memory, 207

Nonnegative numbers, 25, 26, 83, 86

Nonnumerical data (see Alphanumeric

data)

Nonprint code, 67

Nonrestoring division, 21 1-2 13

Nonstop CPU operation, 135, I9G

Nor function, 88

Normalization, FLP (see Floating-point

arithmetic)

Normalized vector, 299, 300

Not function, 35, 88

symbol, 73, 88, 219

Not and function, 88

Note, W. A., 15n., 201

NPN transistor, 218

Null code, 67, 68

Number base (see Radix)

Number range, 92-94, 99

(See also Scaling)

Number systems, 42

Numbers, coding, 43-51

negative, 82, 210-212

positive, arithmetic far, 83, 86

Numbers, unsigned, 25, 26, 83

(See also Alphanumeric data; Charac-

ter code; Decima1 digits; FLP

number)

Numerical data (see Numbers)

Numerical keyboard, 69

Octal (base-8) code, 78

Odd parity, 66, 90

Off-line input-output operation, 13, 189

Offset, 79, 90

indexing of, 127, 303, 304

Oh, distinction of letter, 70

On-line input-output operation, 13, 189,

193

One, distinction of, 70

One-address instruction, 122-125, 156,

157

Operand address, 21, 151, 155

greater length, 124, 125

in indirect addressing, 167

in progressive indexing, 161

(See also Data word address)

Operand check counter, 240

Operand registers (C, D), 22-24, 208-210

Operand specification, 21

Operating techniques, 10-14, 193-196

Operation, 277-286

ADD, 24, 85, 277, 295-300

ADD DOUBLE, 120, 279

TO MAGNITUDE,
279

ADD TO EXPONENT,
118, 279

ADD TO FRACTION,118, 279, 297

ADD IMMEDIATE TO COUNT,283

ADD IMMEDIATE TO EXPONENT,
118,

279, 297

ADD IMMEDIATE TO VALIJE,283, 298

AND COUNT,283

COUNT, AND REFILL, 283

ADD MAGNITUDE TO MEMORY,
86, 277

ADD TO MAGNITUDE,
25, 85, 86, 277

ADD TO MEMORY, 84, 85, 277

ADD ONE TO MEMORY,
85, 278

ADD TO VALUE,157-159, 283, 302

AND COUNT,159-161, 283, 303

COUNT, AND REFILL, 166, 283

BRANCH,
135, 283

ON BIT, 28, 136, 285

ON IXDICATOR, 28, 136, 284, 302-304

BRANCH DISABLED,135-145, 199, 284

BRANCH ENABLED, 135-145, 284

AND WAIT, 135, 284, 295-304

BRANCH RELATIVE,135, 136, 284

BYTE-BY-BYTE,
263-265

CLEAR MEMORY,
265

COMPARE,
86, 277, 278

IF EQUAL,86, 278

Operation, COMPARE, FOR RANGE, 86, 278
COMPARE COGNT, 283

IMMEDIATE,283

COXPARE FIELD, 86, 278

IF EQUAL,86, 278

FOR RANGE, 86, 278

COMPARE MAGNITCDE,
116, 278

FOR RANGE,116, 278

COMPARE VALUE, 159, 283

IMMEDIATE,
283

NEGATIVE IMMEDIATE,
283

CONNECT,
27, 89, 90, 281, 302-304
TO MEMORY,27, 89-91, 281, 302
FOR TEST, 27, 90, 281, 302

CONTROL, 181-190, 252, 285
CONVERT,87, 281
COXVEBT DOUBLE, 87, 281
COPY CONTROL WORD,253, 286
COUNT AND BRANCH,136, 161, 162,

284, 295-300
COUKT, BRANCH, 136, 169, AND REFILL,

170, 284, 298, 300
DIVIDE, 10,24-26,86,87, 115, 278,279,

297, 300
DIVIDE DOUBLE,115-1 18, 279
EXECUTE, 146-148, 286

INDIRECT AND COUNT,148, 149, 286
INDIRECT LOAD-STORE,267
LOAD,24,84-90, 115, 120,277, 295-300

WITH FLAG, 85, 115, 277
LOAD CONVERTED,87, 280, 300

LOAD COUNT,282

IMMEDIATE,
282, 303
LOAD DOUBLE,116, 120, 279, 298

WITH FLAG, 116, 279
LOAD FACTOR, 86, 115, 120, 278, 298
LOAD INDEX, 282, 295-304
LOAD REFILL, 282

IMMEDIATE, 282
LOAD TRANSIT CONVERTED,87, 281
LOAD TRANSIT AND SET, 87, 278, 279
LOAD VALUE,282

EFFECTIVE,30, 167, 168, 283
IMMEDIATE,282
NEGATIVE IMMEDIATE, 282
WITH SUM, 155, 283

LOCATE,181-190, 252, 285
MERGE, 266
MCLTIPLY,24-26,86, 278,279, 295-300

AKD ADD, 86, 115-120, 278, 279, 298
MULTIPLY DOUBLE,120, 279
NO OPERATION, 136, 284
READ, 29, 175-177, 180-185, 250-252,

285
RECIPROCAL DIVIDE, 10, 116, 279, 297
REFILL, 166, 175, 286

ON COUNT ZERO, 286

Operation, RELEASE, 253, 285
RENAME,28, 156, 283
SEARCH, 266
SELECT, 266
SEQUENTIAL TABLE LOOK-UP, 267-270
SHIFT FRACTION,118, 279
STORE, 24, 85, 120, 277, 295-304
STORE COUNT, 282
STORE INDEX, 282
STORE INSTRUCTION COGXTER IF,

135-145, 284
STORE LOW ORDER, 116, 120, 279
STORE REFILL, 282
STORE ROOT, 116, 279, 300
STORE ROUNDED,86, 115, 277, 297, 298
STORE VALUE,282

IN ADDRESS,8, 283
STORE ZERO, 286, 304
SUBTRACT IMMEDIATE FROM COCXT,283
SUBTRACT IMMEDIATE FROM VALCE,283

AND COUXT,283, 304
COUNT,AKD REFILL, 283, 303

SWAP, 28, 126, 145, 173, 285
TAKE-INSERT-REPLACE,266
TRASSMIT,28, 126, 285
WRITE, 29, 175-177, 180-184, 250-252,

285
Operation code, 70, 126-130

notation, 294
Operation modifier (see Modifier)
Operator error, 193, 194
Operator intervention, 13, 186

facilities for, 190, 196
Optimization of design, 7, 8
Or circuit, 89, 224
Or function, 27, 88, 89
Order-of-magnitude zero, 97, 98, 109-1 11
Ordering, 163-165, 256, 265-267
Oring in memory, 262, 267
Other-CPU bits, 276
Output (see Input-output)
Overdraw in division, 213
Overflow, 92, 97

exponent, 98-1 l 3
in unnormalized FLP arithmetic, 112,

115
in VFL arithmetic, 75, 81-85

Overlap (see Concurrent operation)

Packaging, circuit, 7, 223-225
Packing, data field, 37

decima1 digits, 66, 68
Paper tape, deiete code, 67, 68
Parallel arithmetic, 22, 208-218
Parallel computers, 273
Parameters set up in 7951, 265-267

Parity, 90
Parity bit, 66-72
Parity check (see Checking)
Partial field, 84, 112, 117-119, 289
Partition symbols, 38
Performance, arithmetic, 217, 218

balanced, 121, 234
comparison with IBM 704, 1, 2
effect, of memory, 48, 49, 233-238

of number base, 48-50
objective, 2-6
rough approximation, 32
tape-limited, 48, 76

Performance-to-cost ratio, 5, 6, 151
Perlis, A. J., 62n.
Phone line, 63, 179-190
Pilot Computer (Xational Bureau of

Standards), 15n.
Pipeline effect, 188, 204
Planning of Project Stretch, vii-xi, 4-

16
Plugboard, 150

electronic analogy, 257, 264
Plus sign, 70
PNP transistor, 218
Polynomial evaluation program, 295
Pomerene, J. H., 254
Positive-number arithmetic, 83, 86
Positive numbers, 83, 86

(See also Sign)
Postshiit, 1 u O
Power preferred to simplicity, 8, 9
Power supply, 225-227
Precision, 92-105

VFL, 77, 82
(See ~~so'~lulti~le-~recisionarithmetic)

Prefix instruction, 131, 135, 167
Preshift, 100
Print editing, 56-58, 75, 267
Printer, 67, 179, 189

chain, 63, 186
Priority, input-output, 235

interrupt, 31, 139, 140
memory bus, 205, 206
in queue, 185, 198

Procrustes, 38
Product (see Multiplication)
Program assembly, 14, 132, 267

(See aZso Programming language)
Program debugging, 8, 31, 56

during multiprogramming, 13, 193
Program indicators, 290
Program initialization, 169, 170
Program interruption (see Interrupt)
Program loops, 128, 160, 170

endless, 148, 194, 200
examples, 149, 169-171, 295-304

Program loops, fast memory for, 233
(See also Index arithmetic; Indexing)

Program monitoring, 147-149
Program relocation, 8, 135, 198
Program restart, 169, 170
Program scheduling, 14, 194, 195

(See also Priority)
Program start and stop, 135, 186n., 196
Prograni switch, 136
Program tracing, 147-149
Programming, compatibility, 7, 125

ease of, 8, 151
error in, 193, 194, 252, 253
examples, 119-121, 295-304

notation in, 292-294
interpretive, 87, 147, 195

Programming language, affects instruc-
tion set, 132

ALGOL, 62
compiler for, 8, 198, 256
macroinstructions, 119, 264, 265
print-out,, 56

Progressive indexing, 28, 127, 161, 162
effect on look-ahead, 246
example, 300-304
instruction format, 77, 280
notation, 294

Project Stretch, viii-xi, 1-7
Propagated overflow, 112
Pseudo instruction counter for execute,

148, 149
Pseudo operations, 26
Punched cards, bit transposition, 186

card-to-tape conversion, 189
8-bit code. 71. 72
keypunch, 63n., 68
output punch, 179, 186
reader, 179-189
12-bit code, 55, 64, 78
(See also Plugboard)

Punctuation symbols, 40, 62, 69
Push-down accumulator, 126

Queuing, 163, 185, 198, 199
Quotient (see Division)

Radix, address, 14, 52-58
choice of, 42-59

affects information content, 45-49
in FLP, 104, 105
mixed, 42n.

Radix conversion, 16, 44, 208
aflects format, 51, 87
example, 299, 300
operations, 27, 87, 280, 281

Radix modifier, 26
Radix-point alignment, 79-82, 92
Range, number, 92-94? 99

(See also Scaling)
Range comparison, 86, 116, 278
Read-only registers, 276
Read-only storage, 147
Reading, 29, 180-188

in exchange, 251, 252
Ready, 190
Real-time response, 5, 193
Recomplementing, 77n., 82n., 210
Record, 39, 40
Record handling, 162-165, 172-177,

266
Redundancy, instruction format, 130
Redundancy bit (parity bit), 66-72
Redundancy check (see Checking, parity)
Refill, 165-171

(See aEso Chaining)
Refill address, 28, 155, 165, 166

as branch address, 166
for input-output, 29, 181, 182

Register stages, 224
Registers, 19-24, 204-210, 276

storing on interrupt, 139
(See also Accumulator sign byte

register)
Rejection of instructions, 185, 287, 288
Relative address in array, 152, 153
Relative branching, 135, 136, 284
Relative error, 103
Reliability, 2, 7

(See also Checking)
Remainder (see Division)
Remainder register, 24, 86, 276
Remington Rand (GNIVAC), 123, 134
Renaming of index registers, 28, 156,

283
Reset and add, 84
Resetting bits, 89
Resolution (see Bit address; Scaling)
Response, to external signals, 136, 137

real-time, 5, 193
Result, alignment, 81, 82

indicators, 84, 112, 289-291
(See also Indicator)

Return address for operand fetch, 206
Rewinding of tapes, 183, 186
Ring of memory areas, 172-177
Robertson, J. E., 216n.
Rochester, S., 274
Roman numerals, 267-270
Root (see Cube-root program; Square

root)
Round-off error, 92, 99-101

effect of radix, 50, 105

Rounding, 100-103
example, 296, 297
operations, 86, 115, 277

Samelson, K., 62n.
Scale factor, 93, 94
Scaling, 50, 54, 93-95

avoided in division, l l 7
rare in VFL, 82

Scalzi, C. A., 192
Scanning, file, 265-267

as opposed to addressing, 37
Scattered contro1 words, 173
Scattered records, 164, 165
Scheduling, 14, 194, 195

(See also Priority)
Schmitt, W. F., 201
Scientific computers, 273
Scientific computing, 6, 59, 254-256
SEAC computer (Kational Bureau ol

Standards), 123
Searching (see Scanning)
Selection address, 181-184
Selectron memory tube, 43
Sense, 184
Sequence (see Comparing sequence; Data

ordering; Data sequence; Seria1
arithmetic)

Seria1 arithmetic, 22-24, 75-77, 208, 209
plan for separate unit, 3

Seria1 computers, 273
Seria1 input-output, 187
Service programs, 56
Service request, input-output, 249-251
Set-up mode, 257-267
Setting bits, 27, 89
Shannon, C. E., 45n.
Shaw, J. C-, 164n.
Shift, case, 67-69

code, 63-69
Shifter, parallel, 210, 216, 224
Shifting, 37

in exchange, 249-252
in FLP, 95, 100, 105
to multiply or divide, 50
replaced by offset, 70

Sign, 33, 34, 47, 210
in accumulator, 22, 83, 107
in address, 129
in index value, 27, 129, 155, 282
separate byte, 70, 82, 83

Signal button, 191
Significance loss, 92, 99-105

checking for, 99-103
indicator, 113
(See also Multiple-precision arithmetic)

Significant bits, lost, in unnormalized

FLP, 112, 115

in VFL, 84, 85, 289

Simon, H. A., 164n.

Simulation, 218, 230-238

Simultaneous operation (see Concurrent

operation; Interrupt; Multiprogram-

ming)

Single-address instruction? 122-125, 156,

157

Single-block operation, 182, 183

Single card, 217-225

Single-length FLP number, 103-108

Single-length operations, 104, 114-1 16

Single precision (see Multiple-precision

arithmetic)

Singularities, FLP, 96-99, 108-1 19

Sink unit, 259-267

Skipping, of instructions, 133

over zeros or ones, in division, 211-214

in multiplication, 50

Smith, J. L., 15n., 201

Solid-state components, l

Sorting, 39, 163, 256

7951 facilities for, 265-267

Source unit, 259-267

Space, allocation of, 194, l98

character, 62-68, 72

Spacers for grouping data units, 36, 38

Sparse matrix, 304

Special aààresses, 276

Special characters, 62-69, 264

Special FLP operations, 119

Special-purpose computer, 6, 59

exchange as, 15, 250

Speed, circuit, 7, 220

memory, 7, 202, 233-238

(See also Performance)

Square root, 111-119

instruction, 116, 279

Standard character code, ix

Start, computer, 135, 186n.

input-output, 184-191

Starting address in 7951, 260

Statistical accumulator (SACC), 263

Statistical counter (SCTR), 263, 264

Statistica1 operations, 255, 263

Status bits, 184, 248-250

Status indicators, 288

Stimuli, 263, 264

Stop, computer, 135, 196

input-output, 185-191

Storage, external (see External storage)

interna1 (see Memory)

number, 46-49

saved by VFL, 76

Storage allocation, 194, 198, 229

Storage efficiency, 46-49

Store che& counter, 240

Store opera,tions, FLP, 115, 1 l 6

VFL, 85-90

Stored-program computers, IBM, 273,

274

Storing in memory, 84-90, 112, 180

by look-ahead, 207, 229, 230, 241-247

Storing instruction counter (see Instruc-

tion counter)

Strachey, C., 201

Stream (see Data flow)

Stretch, viii-xi, 1-7

String of bits, memory as, 76, 259

Subroutine, single instruction, 146, 147

Subroutine linkage, 134

by contro1 word, 177

by execute, 147

by rea l address, 166

by transit interrupt, 24, 26, 85-87

Subscript digits, 68, 70

Subsets, character, 62-65

Subtraction, by complement, 208-210

FLP, 95, 96

of FLP singularities, 109, 110

modified addition, 24, 84, 106, 130

zero result, FLP, 96

Sum (see Addition)

Supervisory program, 8, 1 1, 194-200

Suppression, of end-of-operation inter-

rupt, 185, 286

of instructions, 133

Svigals, J., 274

Swapping, 28, 126, 285

examples, 145, 173-1 75

Switch matrix, 208, 209, 259, 260

Switching, within a program, 136

among programs (see Multipro-

gramming)

Synchronization of computer with input-

output, 184

Synchronizer, disk, 20, 193, 203-205

System design of 7030, vii, 5, 17-32

Systematic instruction set, 9, 10, 130

Table address assembler (TAA), 261-267

Table base address, 53-55, 196

Table entry, 53-56, 261, 267

Table extract unit (TEU), 261, 262

Table look-up, 53-56, 153, 255-257

in 7951, 259-271

(See also Editing)

Tag (see Index address; Index flag)

Tag bits, look-ahead, 239, 240

Tagging, exponent overflow and under-

flow, 98

Tallying (see Counting, in memory)
Tape, magnetic (see Magnetic tape)

paper, delete code, 67, 68

Tape-limited data processing, 48, 76

Tape-operated printer, 189

Technology, 1, 6, 7

Telegraph or telephone line, 63, 179-190

Termination, indexing, 153-160

input-output operation, 252, 253

(See aiso Stop)

Ternary number system, 43, 46n.

Test for termination, 153, 154

Testing bits (see Bit test)

Third-leve1 circuit, 219-221

Three-address instruction, 123

Tilde, modified, 70

Time, accounting of, 194

allocation of, 198

elapsed (see Interval timer)

Time alarm if in endless loop, 200

Time clock, 31, 276

in multiprogramming, 194-199

Time-sharing, of CPU (see Multipro-

gramming)

in exchange, 248

Timing in CPU, 204, 209

Timing simulation, 218, 230-238

Tonik, A. B., 201

Tracing (program monitoring), 147-149

Transfer (see Branching; Data trans-

mission)

Transfer bus counter, 240

Transformation (see Table look-up)

Transistor circuits, 1, 7, 216-223

Transistorized computers, 1, 273

Transit operation indicators, 290

Transit register, 24, 87, 276

Translation, code, 26, 53-56, 67

Transmission (see Data transmission)

Transposition, bit, 186, 303, 304

Triangular matrix, 261

True-complement switch, 208, 209

True zero, 98, 109

Truncated index address, 156, 157

Truth tables, 88

Turing machine, 267

Two-address instruction, 123

TX-2 computer (MIT Lincoln

Laboratory), 201

Type font, 62, 70

Typewriter, 179, 187, 301

character set, 62, 63

keyboard, 68, 69

Gnconditional branching, 28, 135, 283,

284

Underflow, 92

exponent, 98-1 13

USIVAC I, 134

UNIVAC Scientific (1103), 123, 134n.

Unnormalized FLP arithmetic (see

Floating-point arithmetic)

Unsigned numbers, 25, 26, 83

Unusual condition, interrupt for, 252,

253

Upper boundary register, 31, 276

Upper-case letter, 62-69

Vacuum-tube computers, 273

Value (see Index value)

Van der Poel, W. L., 131

Variable byte size, 79

Variable field length (VFL) 75-91

need for, 15, 36-39, 75, 76

Variable FLP number length, 107

Variable-length address, 129, 130, 167

Variable-length instruc tions, l28

Vector, 299

Vector multiplication, 159, 160, 169

VFL arithmetic and logic unit, 208, 209

VFL data format, 33-39, 77-79

logica1 fields, 34, 35, 89-91

numbers, 34, 51, 80-83

in radix conversion, 87

VFL indicators, 84, 85

VFL instruction format, 77, 126, 127,

275

VFL operations, 24-27, 85-91, 277-280

(See also Immediate address; Progres-

sive indexing)

Virtual memory (see Look-ahead)

Von Neumann, J., 43, 44, 51, 192

Wadey, W. G., 100n.

Wait, for input-output, 187, 188

for program, 13, 135, 194

Weather forecasting, 254

Weaver, MT., 45n.

Weighting in statistica1 operations, 255,

263

Weinberger, A., 15n.

Wheeler, D. J., 134

Whirlwind computer (MIT), 122

Wilkes, M. V., 134n.

Word, 7, 17, 39, 40

Word address, 29, 35, 259, 260

data, 181, 249-251

(See also Address numbering)

Word assembly and disassembly, 19,

248-252

Word boundary, 34-36

Word boundary crossover, bytes, 79, 259

fields, 25, 29, 76

instructions, 21, 126

Word-boundary crossover bit, 240

Word length, power of two, 29,54,76,

259

related to instruction format, 123-125

Writing, 29, 180-183

in exchange, 250-252

XFN (in finitesimal), 96-98, 108-1 13,

292-299

XFP (infinity), 96-98, 108-1 l 3

Yes-no logic (see Logica1 operations)

Zero, code, 68

distinction of, 70

division by, 26, 85-87, 110

forced, 86

multiplication by, 110-1 l 3

nonsignificant, bits on tape, 71

not unique in FLP, 96

resetting to, 89, 90, 265, 286

irue, 98, 109

(See also Infinitesimal)

Zero address, no data, 19, 276

Zero delet'ion on tape, 37

Zero fraction, 97, 98

Zero index address, no indexing, 19

Zero index count, 161, 166

Zero tests after connective operation, 90

Zone bits, 51, 68, 80, 83

	Foreword
	Preface
	Acknowledgments

	Contents
	1: Project Stretch
	2: Architectural Philosophy
	3: System Summary of IBM 7030
	4: Natural Data Units
	5: Choosing a Number Base
	6: Character Set
	7: Variable-Field-Length Operation
	8: Floating-Point Operation
	9: Instruction Formats
	10: Instruction Sequencing
	11: Indexing
	12: Input-Output Control
	13: Multiprogramming
	14: The Central Processing Unit
	14: The Look-Ahead Unit
	16: The Exchange
	17: A Nonarithmetical System Extension
	A: Summary Data
	B: Programming Examples
	Index

