:» : L_@/‘/LL\;\‘S"L) Fvw ?VDP-@(té O’g

- . Jean E§bxnnﬁe
Ori Atkq\

Cc)\af)

PRELIMINARY REPORT

Programming Research Group
Applied Science Division
International Business Machines Corporation

November 10, 1954

Specifications for

The IBM Mathematical FORmula TRANslating System,

Eaa N

FORTRAN

Copyright, 1854, by International Business Machines Corporation

590 Madison Avenue, New York, 2_2, New York T

T -
- /”'— &

!

& ¥

PRELIMINARY REPORT

Specifications for the IBM Mathematical FORmula TRANslating System,
FORTRAN

The IBM Mathematical Formula Translating System or briefly, FORTRAN, will
comprise a large set of programs to enable the IBM 704 to accept a concise
formulation of a problem in terms of a mathematical notation and to produce
automatically a high speed 704 program for the solution of the problem. The
iogic of the 704 is such that, for the first time, programming techniques have
becn devised which can be applied by an automatic coding system in such a way '
that an automatically coded problem, which has been concisely stated in a
language which does not resemble a machine language, will be executed in
about the same time that would be required had the problem been laboriously
nand coded. Heretofore, systems which have sought to reduce the job of

coding and debugging problems have offered the choice of easy coding and slow
execution or laborious coding and fast execution.

1t is felt that FORTRAN offers as convenient a language for stating problems
for machine solution as is now known. Studies have indicated that a hand coded
program for a problem will usually contain at least 5 times as many characters
and sometimes 20 times as many characters as the problem statement in
I"ORTRAN language. Furthermore, after an hour course in FORTRAN
rotation, the average programmer can fully understand the steps of a
vrocedure stated in FORTRAN language without any additional comments.

Before considering the way in which a problem may be presented for automatic
coding by the FORTRAN system, it might be well to consider some of the
advantages of such a system. Basically, of course, the reason for the
existence of high speed computers is the fact that they make possible the
solution of problems in a much shorter time and at much less cost than

would otherwise be required. The time and cost required for the solution

of a problem on a high speed calculator fall roughly into 4 catagories:

1. Analysis and Programming
2. Coding

3. Debugging

4,

Machine Solution

i"aster and more capacious machines will considerably reduce the cost and
time required for item 4 but so far the advent of new machines seems to

have dore little to reduce either the cost or time required for items 1, 2,

and 3. It seems to be quite generally true that the personnel costs of a
computing installation are at least as great as the machine cost. Further-
more, it is reasonable to assume that personnel cost for coding and debugging
constitute considerably more than half the total personnel cost. Finally, at
installations which have relatively few long term problems, as much as 1/2

of the machine cost is devoted to de bugging. Therefore, in a crude fashion

1

one can say that out of every dollar spent to solve an average problem on a
nigh speed computer, less than 25 cents is spent for analysis and programmins,
more than 25 cents is spent for personnel coding and debugging cost, about

5 cents for machine debugging cost, and about 25 cents for machine running
cost.

S.nce FORTRAN should virtually eliminate coding and debugging, it should

oe possible to olve problems for less than half the cost that would be re-
quired without such a system. Furthermore, since it will be possible to
“avote nearly all usable machine time to problem solution instead of only half
tne usable machine time, the output of a given machine should be almost
doubled. Also, of course, the toial elapsed time for the solution of a problem
should be a small fraction of the time required without FORTRAN since the
time required for coding and debugging is usually more than 3/4 the total
elapsed time. Not only does FORTRAN greatly reduce the initial investment
in producing a program, but it will reduce even more the cost of repro-
gramming problems for future IBM calculators, since each such calculator
siould have a system similar to FORTRAN accompanying it which could
translate the statement of the problem in a language very much like FORTRAN
¢ its own code.

In addition to FORTRAN's great potentialities for economy, such a system
will make experimental investigation of various mathematical models and
numerical methods more feasible and convenient both in human and economic
terms. Also, FORTRAN may apply complex, lengthy techniques in coding

a probiem which the human coder would have neither the time nor inclination
to derive or apply. 'Thus, in many cases, FORTRAN may actually produce
a better program than the normal human coder would be apt to produce.

JF'inally, the amount of knowledge necessary to utilize the 704 effectively

by weans of TORTRAN is far less than the kniowledge required to make
effective use of the 704 by direct coding. Information concerning how to
use subprograms, what machine instructions are available, how to

optimize a sequence of calculations, and concerning a large number of other
coding techniques, is built into the FORTRAN system and it is not necessary
for the programmer to be familiar with this information. In fact, a great
deal of the information the programmer needs to know about the FORTRAN
sysiem is already embodied in his knowledge of mathe.aatics. Thus it will
be possible to make the full capabilities of the 704 available to a much wider
range of people than would otherwise be possible without expensive and time
consuming training programs.

In summary, then, a system such as FORTRAN has the following potential-
ities

1. Great economy of time and money.

2. TFeasibility of more mathematical experiments.

3. Ability to apply complex, lengthy techniques in coding a
problem.

4. Ability to make the 704 avilable to more people with more
convenience and less training.

Before beginning a description of the FORTRAN system, it should be noted
that the following description is intended only to indicate present plans. Al--
though the methods by which FORTRAN will operate are well understood,
future developments in programming FORTRAN may necessitate certain minor
changes in the system as it is presented below.

The following is a description of the admissible symbols and combinations of
symbols in the FORTRAN language and how to use it:

1. CONSTANTS

A. FIXED POINT (INTEGERS)

i) General Form:

1 to 5 sequential decimal digits optionally preceded by a plus or
minus sign '

ii) Examples:
3
+1
- 34500
3, FLOATING POINT

i) General Form:

Any sequence.of decimal digits with a decimal point preceding or
intervening between any 2 digits or following a sequence of digits,
-all of this optionally preceded by a plus or minus sign.

038

The number must be less than 1 in absolute value and

greater than 10-38 in absolute value.

if) Examples:

2. VARIABLES

A, FIXED POINT VARIABLES

i) General Form:

A sequence of 1 or 2 alphabetic or numeric characters the first
one of which is one of the following: i, j,k,1,m,n

il) Examples:
i, ia, ii, ij, il
B. FLOATING POINT VARIABLES

i) General Form:

A sequence of 1 or 2 alphabetic or numeric characters where th.e
first character is an alphabetic character, not one of the following:

i, j, k, 1, my n
ii) Examples:
a, aa, ab, ai, al

3. OPERATIONS

A. UNARY OPERATIONS (OPERATING ON A SINGLE VARIABLE OR
EXPRESSION)

i) + Take the value of the following constant, variable or expression.

ii) - Take the negative of the value of the following constant, variable
or expression. = ,

B. BINARY OPERATIONS

i) + Add the constant, variable or expression preceding to’the
constant, variable or expression following.

ii) - Subtract
iil) x Multigly
iv) / Divide. Note that a/b/c=(a/b)/c
v) xx Exponentiation. a><><b=ab

4, FUNCTIONS

No specific list of functions is given since there is no limit on the number
of possible functions. Functions must be single-valued.

A.

B.

GENERAL FORM:

Three or more alphabetic or numeric characters (beginning with an
alphabetic character) followed by a left parenthesis followed by 1st
argument followed by a right parenthesis or by a comma followed
by 2nd argument followed by a right parenthesis or by a comma
followed by 3rd argument, etc.

EXAMPLES:

i) sin(a)

ii) sqrt(a+b) : means Ya+b
iii) factl(m+n) : means (m+n) !

—
iv) sqrt(sin(axx2)) : means Jsinta?)

v) max(a,b,c,d,e) : means select the largest of the quantities
a,b,c,d,e.

5. EXPRESSIONS

A.

B.

INFORMAL DESCRIPTION:

Any sequence of variables and functions separated by operation
symbols and parentheses which forms a meaningful mathematical
expression in the normal way. Note that every adjacent pair of
variables or functions must be separated by an operation symbol.

FORMAL DESCRIPTION:

By repeated use of the following rules, all legal expressions may

be derived and all expressions so derived are legal provided they
have less than 750 characters.

i) Any constant or variable is an expression.

il) I E is an expression not of the form +F or -I', then +E and -E
are expressions,

iii) If xxx denotes a function of n arguments, and if E,, EZ‘ ..E, are

expressions, then in general xxx (E{,E9,...,Ey)"is “an = ex-
pression. Although functions may have this general form, certain

functions will place restrictions on the form of permissibie
arguments.

iv) If E is an expression, so is (E)

v) If E and F are expressions where F is not of the form +G or -G
and o is one of the permissdble binary operations, then EoF is
an expression.

vi) If E and F are expressions, so is ExxF
C. EXAMPLES:
i)' a/b/c Note that this is equivalent to (a/ b)/c_
if) a/bxc Note that this is equivalent to (a/b)xc
iil) a/(b+c)xd Note that this is equivalent to (a/(b+c))xd
iv) a+sin(bxc /(d+(e+(f+g)))xcos(b))xbxx2 Note the use of redundant
parentheses in this example to indicate the desired order of

computation.

v) 2.xr Note that the decimal point is used to denote that 2 is
retained in floating point form.

vi) 1.53x10xx-14 denotes 1.53 x 10714

vii) m/n
When the order of binary ope.ations in an expression is not
completely specified by parentheses, the order of precedence is
understood to be as follows:
1, addition - subtraction
2. multiplication - division
3. exponentiation
For example, the expression
a+b/c+dxx2xf-g
will be taken to mean

(2)+(b/c)+(a%x)-(g)

Multiplication and division will have no fixed relationShip of
precedence, except in the sense of example 1i above.

D. FIXED POINT EXPRESSIONS, FLOATING POINT EXPRESSIONS,
MIXED EXPRESSIONS '

i) Fixed point expressions are expressions containing only fixed point
constants and variables.

a) All fixed point sxpressions will be evaluated by fxed point
intorer arithmetic. Thus, the value of i+m/n wul be
i4 {the Lnu,gral part (unrounded) of m+n). —_—

I

ii) Floatmg pomt expressmns are expressions containing only floating
- point constants and variables with the exception of fixed point
arguments of certain functions and fixed point variables or
constants following the operation xx.

a) Floating point expressions will be evaluated usirg floating
point arithmetic. It may be necessary in certain cases to use
redundant parentheses to indicate a particular sequence in
which the operations should be performed in order to avoid
obtaining intermediate results in the evaluation of the ex-
pression which might lie outside of the range 1973% 1038,

iii) A mixed expression is any expression not belonging to one of the
two above catezories.

a) The type of arithmetic employed in evaluating a mixed ex-
pression is described below in the section headed:
ARITHMETIC FORMULAS.

E. VERIFICATION OF CORRECT USE OF PARENTHESES

In complicated expressions involving the use of many parentheses,

it is very easy to omit closing some parentheses. Therefore, in
such cases, it is suggested that the programmer use the following
procedure to make sure that the parentheses in an expression
indicate the sequence of operatioiis he desires. Working from left
to right, number each parenthesis, right or left, as follows: Number
the first parenthesis "1", label each left parenthesis with an integer
one larger than the number of the parenthesis immediately to the left
of it. Label each right parenthesis with an integer one less than the
number of the parenthesis immediately to the left of it. Having done
this, the mate of any left parenthesis labeled "n" will be the first
right parenthesis to the right of it labeled n-1. It should bz noted
that these numbers are not part of the FORTRAN language and should
not be entered in the expression.

6. SUBSCRIPTS AND SUBSCRIPT EXPRESSIONS:

Subscripts and subscript expressions described below must have non-
negative, non-zero values at all times.

A, SUBSCRIPIS

A subscript is any fixed point variable or constant.
B. A SUBSCRIPT EXPRESSION

A subscript expression is a fixed point expression of not more than 3
terms where all but one term is a single fixed point variable or
constant and one term may be a product of two subscripts. All but
one of the variables in a subscript expression must be designated as
relative constants (see section, RELATIVE CONSTANTS, under
SPECIFICATION SENTENCES). Parentheses are not permitted in
subscript expressions.

i) Examples:
where j and n are relative constants:
a) i+l
b) i+j
C) nxi+j
d) 2xn-i
e) 100-nxj

7. SUBSCRIPTED VARIABLES

A. A subscripted variable is a variable (fixed point or floating poir*
followed by a left parenthesis followed by one, two, or three subscripts
or subscript expressions (where each subscript or subscript ex-
pression except the last is followed by a comma) all followed by a
right parenthesis.

B. Each subscript or the elements of each subscript expression may be
subscripted fixed point variables.

C. Subscripted variables may be used in an expression in the same
manner as ordinary variables.

D. No subscript or element of a subscript expression which is a
subscript of a fixed point variable which, in turn, is the subscript
of another variable may have a subscript.

E. EXAMPLES:

—

) ali) e——
ii) a(i’ J)
iii) a(i,, k)

iv) a(3xi+n,m) : means a_ .
3xi+n, m

8

8.

vi) n(i,j) ———

- vii) a(i(j)) : mea'ns'é'i"j“”'

J

viii) i(j(k))

ix) a(n(i,j), m(k, 1)) : means a

;5 Mg, 1
x) a(3xi(§)+2, k)

xi) a(l)
xii) a(i,i+1,1)
xiii) a(1,3j)

xiv) a(5,7, 15)

ARITHMETIC FORMULAS

A.

B.

C.

D.

An arithmetic formula is a variable (subscripted, or not), followed
by an equals sign, followed by an expression.

It should be noted that the equals sign in an arithmetic formuia has
the significance of "replace". In effect, therefore, the meaning of
an arithmetic formula is as follows: Evaluate the expression on the
right and substitute this value as the value of the variable on the left.

If the variable on the left of an arithmetic formula is a fixed point
variable and the expression on the right is a mixed expression, then
the value of each floating point constant and variable in the mixed
expression, with the possible exception of arguments of certain
functions, will be truncated to integers. The value cf any floating
point valued function will also be converted to an integer and the
entire expression will be evaluated by fixed point integer arithmetic.
Similarly, if the variable on the left of an arithmetic formula is a
floating point variable, and the expression on the right is a mixed
expression, the values of fixed point constants and variables will be
represented as floating point numbers and the expression will be
evaluated with floating point arithmetic.

I the variable on the left of an arithmetic formula is a fixed point
variable and the expression on the right is a floating point expression,
the expression will be evaluated with fleating point arithmetic and

the result truncated to an integer. Similarly, if the vz.iable on the
left of an arithmetic formula is a floating point variable and the
expression on the right is a fixed point expression, the expression

¢

10.

will be evaluated using integer arithmetic and the result substituted
in floating point form for the value of the variable on the left.

E. EXAMPLES:

1) a(i,j)=sqrt(b(i)xx2+sin(c(j)x(g+cos(h/ (p+q/ (r+s)))))) means:

a, j=\lb?{u+sin(cjx(g+cos(h/(p+q/(r+s)))))

>

ii) a(i,j) = ixj

iil) i=i+15 means : increasé value of 1 by 15 or i(n+ 1)=i(n)+ 15
iv) a=b
v) n()=a()+b(i)x17.3-

vi) x(i)=bxxi ' | e

vii) a(i)=a(i)+5-1xsum (§, 1, 20, b(i,)xc(j)) This formula means increase

the value of aigymt,he following quantity:
’ 20

5. lxji:lbi, jXCj

viii) a=a+i
ix) i=axb+n/(m+c)

FORMULA NUMBERS

Each FORTRAN formula may have an integer associated with it called
the formula number. If a formula has a formula number, the formula
number is written to the left of the formula. The formula number must
be less than 100,000. If a formula is to be referred to by a control
formula as described below, it must be assigned a formula number
which is different from the formula number of every other formula.
With this exception, the choice of formula number for a formula is
completely arbitrary.

A, EXAMPLE
i) 12 a=b

CONTROL FORMULAS

A sequence of arithmetic formulas indicate that the operations implied

by the first formula should be carried out and then the operations indicated
by the second one, etc. Certain formulas called control formulas are
provided to alter this sequence of operations in various ways.

10

In giving the general form of the control formulas beiow, iower case
letters and various symbols such as comma, equals sign and parentheses
will be given in the way which they must appear in the particular formula.
Capital letters will be used to represent a class of symbols which may
appear at a g'ven point in a formula. Square brackets are used to enclose
symbols which may optionally appear ‘n the formula.

A. DO-FORMULAS

i) Informal Description

Do-formulas specify a sequence of formulas to be repeated

a number of times for different values of a specified subscript
and the formula to be executed next after the required number
of repetitions. Thus the formula.

do 10, 14, 50 i=4, 20, 2

will cause the sequence of formulas beginning with the formula
numbered 10 and ending with the formula numiered 14 to be
executed 9 times, the first time with i=4, the second time with
i=06, the third time with i=8, etc. and the last time with i=20.
Formula 50 will be executed after formula 14 when i=20.- Thus_
the first number after the equals-sign-is the initial value of the
subscript, the next number the final value or upper bound for the
subscript, and the third number is the increment tobe applied
“each time. The increment need not be given when it is 1.
Furthermore, since it frequently happens that a do-formula
immediately precedes the sequence of formulas to be repeated
and that the formula to be executed after the proper number of
repetitions immediately follows the repeated sequence, it is not
necessary in such a case to specify the first formula of the
sequence or the formula to be executed after the appropriate
repetitions of the sequence. Thus the formula:

do 17 i=1, 20
causes the formulas immediately following itself up to and
including the formula numbered 17 to be repeated in sequence
20 times for i=1, i=2, ... i=20, after which the formula
following the formula numbered 17 will be executed.

i1) Formal Description

General form:
doF, F, F S=N, N[, N]

or:

P__L
-

a) Begin execution of the sequence of formulas in the range
of do-formula A,

b) If the last formula in the range of do-formula A or a
control formula referring control to do-formula A is
encountered before a control formula referring to a
formula not in the range of do-formula A, increment
the specified subscript by the appropriate increment
and if the resulting value is not larger than the upper
bound specified for the subscript, begin step A again,
if this value is larger than the specified upper bound,
execute the formula having the third formula number
specified in do-formula A. If do-formula A specifies
only one formula number, execute the formula follcwing
the last formula in the range of do-formula A. The
execution of a do-formula is considered complete only
when the formulas in its range have been repeated the
appropriate number of times or when a control formula
in the range of the do-formula is encountered which’
refers to a formula not in the range of the do-formula.

vii) Restrictions on the Range of a Do-Formula

a) The third formula number specified by a do-formula A
may not refer to a formula in the range of do-formula
B unless do-formula A is itself in the range of do-
formula B. A similar restriction applies to formula
numbers specified by if-formulas and go to-formulas
described below.

b) If do-formula A and do-formula B are such that neither
lies in the range of the other and if S is the sequence of
formulas comprising the range of do-formula A and if
S' is the sequence of formulas comprising the range of
do-formula B, then either S must be wholly included in
S!' or S' must be wholly included in S, if S and S' have
any formula in common..

B. IF-FORMULAS T e

i) Informal Description————

If-formulas enable one to state an inequality or equality
condition and indicate that one formula should be executed
next if the condition is satisfied and to indicate a second
formula to be executed next if the condition is not satisfied.

ii) Formal Description

13

77\\. S

k\‘

—

General Form:
¥ (NSN)F, F
Where:
N may be a single floating point variable or constant or a

subscript or a subscript expression.
S may be one of the following symbols:

Vv

i

F is a formula number.
Thus the symbols within the parentheses indicate an equality
or inequality. The first formula number indicates the formula
to be executed next if the equality or inequality is satisfied
and the second formula number indicates the formula to be
executed next if the equality or inequality is not satisfied.

iii) Example

¥ (nxi>=k+1)3, 9

This formula means "If nxi z k+1, execute formula 3 next,
otherwise execute formula 9 next".

C. GO TO-FORMULAS

i) General Form

GotoF

where I is a formula number indicating the formula to be
executed next. :

D. STOP-FORMULAS

i) General Form

Stop
When such a formula is executed, the machine will stop. I
the start button is depressed following execution of a stop-
formula, the formula following will be executed next.
E. RELABEL-FORMULAS

14

) Informal Description

iii)

——

Relabel-formulas enable the programmer to cyclically

relabel the elements 'n a vector, the rows or columns of

a matrix, the rows or columns or planes of a three dimensional
array. For example in a 4 by 4 matrix, he may wish to
operate on rows 2 and 3, record rows 1 and 2 on auxiliary
storage, replace rows 1 and 2 by new information, operate

on rows 4 and 1, record rows 3 and 4 and replace them by

new information, operate on rows 2 and 3, etc. If, after
replacing the information in rows 1 and 2 with new information,

he relabels the rows as follows he can then use the same formulas

to carry out the second set of operations that he used to carry
out the first:

Old row 3 becomes new row 1
Old row 4 becomes new row 2
Old row 1 becomes new row.3
Old row 2 becomes new row 4

Using this type of relabeling, the sequence of operations
indicated ahove becomes simply the repetition of the following
steps:

Operate on rows 2 and 3

Record rows 1 and 2

Replace rows 1 and 2 with new information
Relabel

Formal Description

General Form:
Relabel V

where V may be any subscripted variable all but one of
whose subscripts is the integer 1 and whose remaining
subscript is either a constant or a single fixed point
variable. The subscript which is not 1 indicates which
element, row or column, row, column or plane is to
become the new first element, first row or first column,
first row or first column or first plane.

Examples:

a) "Relabel a(3)" has the following significance where a
is a vector of 7 elements. A reference to a(l) after
the execution of this formula is equivalent to a reference
to a(3) before the execution of this formula. Similarly, the

15

new a(2) corresponds to the old a(4), the new a(3) to the
old a(b), the new a(4) to the old a(6), the new a(b) to the
old a(7), the new a(6) to the old a(l), the new a(7) to the
old a(2).

b) "Relabel a(l,n, 1)" has the following meaning where "a"
is a 3 by 4 by 5 array and where n has the value 3, the
old a(i, 3, j) become the new a(i, 1, j) for all values of i
and j and finally the old a(i, 2, j) become the new af(i, 4, j)
for all values of i and j.

INPUT-OUTPUT FORMULAS

Input-output formulas enable the programmer to specify that
information should be brought into the 704 from cards or input tapes
or information should be printed or punched or written on output tapes.
Since the number of variables which may be referred to at any moment
in a calculation is limited by the extent of high speed storage, it may
be necessary to record the values of certain variables in auxiliary
storage and at other times to assign new values to certain variables
corresponding to information in auxiliary storage. Input-output
formulas are provided for this purpose also. Capital letters appearing
in the formula descriptions below will again be used to indicate the
class of symbols which may appear in the corresponding position in
the formula.

A. DESCRIPTION OF SEQUENCE OF AN ORDERED ARRAY

In specifying that the elements of a 1, 2, or 3 dimensional array
of data should be recorded in auxiliary storage or in specifying
that the elements of a 1, 2, or 3 dimensional array should be
assigned values corresponding to certain quantities in auxiliary
storage, it is necessary that a certain sequence of the elements in
the array be either understood or specified. This sequence is that
in which elements will be recorded or brought from auxiliary
storage. If no sequence is specified, the sequence will be
understood to be aq az. . an in the case of vectors or a1qr 291+ --

a e o0 i i i
anl’ 19’ a22, amn in the case of 2 dimensional arrays or

2111 39117 811’ 2100 Po91? Bno1 Bamy’ B11pr Baieeee

anmk in the case of three dimensional arrays.

When no sequence is specified for a given array which is to be
recorded on or read from auxiliary storage, it will be understood
that the entire array is to be recorded on or read from auxiliary
storage.

i) Informal Description

18

A specification of sequence for a one dimensional array a(i)
might be "i=1, 7". This indicates the sequence 81)8g9) .87

A specification of sequence for a two dimensional array af(i, j)
might be j=4, 8, i=f, 10, 2. This indicates the sequence

32’4, 34’4, a6’ 4,. . qalo’ 4, 8.2,, '5,_ 8.4' 5, 36, 5’ () .-3.10, 5, s s
840 g Note that a third quantity specified after the range of a
b

given subscript indicates an increment and if a third quantity is
not specified the increment is taken to be one.

In general, the subscript specified first in a specification of
sequence is varied least frequently, the subscript specified
second is varied more frequently and the third subscript
specified is varied most frequently. If a specification of
sequence is given, each subscript of the array with its
appropriate range and possible increment must be listed 'in

the appropriate order.

il) Formal Description

A description of sequence for a one dimenisional array has
the following form:

S= N, N[,N]

A descr1pt10n of sequence for a two dimensional array has
the following form: \

S=N, N[, N], S=N, N[, N]

A description of sequence for a three dimensional array has
‘the following form:

S=N, N[, N], S=N, N[, N], S=N, N[, N]
where:
S may be a subscript which appears as a subscript of the array
whose sequence is being specified
N may be a subscript or subscript expression
Note that square brackets enclose symbols which are optional.

B. LIST OF QUANTITIES

f) Formal Description

A list of quantities has the following form:
v Vv, Vv, ...]
17

where V may be:

1. a single variable or constant

2. a subscripted variable

3. a left parenthesis followed by one or more
subscripted arrays (each except the last
followed by a comma) followed by a
specifiration of sequence followed by a

riger o i NERLS,
ii) Examples:

a) a, (b(i,), c(i,i) =1, 2, i=1,8), ¢, e
The above list of quahtities specifies the following sequence:
a, b(1,1), ¢(1,1), b(2,1), c(2, 1),‘ b(3, 1), ¢(3,1), b(1,2),
c(1,2); bl2,2), c(2,9), bs,2), cB,2), 4, e

b) a, {b(1,1), e(i), d(i, 1) i=1,3), e(l,1)
The above %ist of duantities specifies the following sequence:
a, b(1,1), c(1), d(1,1), b(1,2), c(@), d(2,1), b(1,3), c(@3),
d@, 1), e(1,1)

C. CARD READING FORMULAS

i) General Form:
read L

where 1. may be list of quantities. However, none of the
quantities in the list may be constants.

a) Example
read n, (a(i,j) j=1,20, i=5,10), b(i)

This formula indicates that the sequence of variables n,
8y j's and bi's should be assigned the sequence of values
’

coming from the card reader in a one-to-one fashion.

D. CARD PUNCHING FORMULAS

—

i) General Fd}\&f\\

18

punch L
where L is a list of quantities

i) Card Punching Formulas indicate a sequence of quantities
to be punched on cards.

E. PRINT FORMULAS
i) General Form:
print L
where L is a list of quantities
F., TAPE READING FORMULAS

i) General Form:

read tape (N) L
or:
read input tape (N) L

where N is a tape number or fixed point variable and L is a list
of quantities and no quantity is a constant.

G. TAPE WRITING FORMULAS
i) General Form:
write tape (N) L
or:
write output tape (N) L

where N is a tape number or a fixed point variable and L is a
list of quantities,

H. ADDITIONAL FORMULAS FOR MANIPULATING TAPE

i) General Form:

end file (N)
e rewind (N)

- backspace (

19 e

R

where N may be a tape number or a fixed point variable.

I. DRUM READING FORMULAS

i)

i)

General Form:

read drum (N, M) L

where N is a drum number or fixed point variable and M 1s a

drum location or fixed point variable and L is a list of quantities.

The drum location is an integer between 1 and 2048. The effect

_of this formula is to cause the quantities on the given drum

beginning at the given drum location and in the consecutively
numbered drum locations following to become the values of
the quantities specified in the list of quantities in high speed
storage.

DRUM WRITING FORMULAS

General Form:

write drum (N, M) L

where N is a drum number or fixed point variable and M is a
drum location or fixed point variable and L is a list of
quantities. '

RESTRICTION ON LISTS OF QUANTITIES IN DRUM READING AND

WRITING FORMULAS

If a specification of sequence is given with any array specified in
a list of quantities in a drum reading or writing formula, the
subscripts appearing in such a specification of sequence must
appear in the opposite order from the subscripts associated with the
array and only the last subscript may have an arhitrary range.
Subscripts other than the last must have ranges specified
beginning with 1 and ending with the maximum value possible

for that subscript. None of the subscripts in the specification

of sequence may have increments other than 1. Only one array
may appear with a specification of sequence in a single pair of
parentheses. '

iy

Examples:

The following list of quantities may correctly be specified by
drum reading or writing formulas:

a, (b(i,§,k) k=7, 10 j=1, 50, k=1, 50)

20

where 50 is the maximum possible value for i and j.
The following list of quantities may not be correctly specified
by a drum reading or writing formula: :

a(i,j,®) j=1,50, i=1,50, k=1,50)" —

e S S
e e e

12. SPECIFICATION SENTENCES

In addition to the problem formulation in terms of FORTRAN formulas,
certain additional information is either necessary or desirable to
enable the FORTRAN system to produce an eificient program.
Specification sentences provide the means of supplying such information
to the FORTRAN system.

A. DIMENSION SENTENCES

The maximum possible dimensions of each 1, 2 or 3 dimensional
array referred to in any formula in the problem formulation must

be specifically given. Thus if a(i, j, k) is specified as a 5 x 10 x 20
array, then at no time when a reference to a(i, j, k) is made should

i exceed 5, or j exceed 10, or k exceed 20. Having so specified

a(i, j, k), it is nevertheless possible to regard af(i, j, k) as representing
a 4 x 4 x4 array in a particular instance. This type of situation

will obtain where the dimensions of an array are input parameters.

i) General Form:

Dimension V[, V,V,...]

where V is a subscripted variable whose subscripts are fixed
point constants. Thus a(10, 11, 12) occurring in a dimension
sentence indicates that the maximum dimensions of the array a
are 10 x 11 x 12. -

Note that dimension sentences specifying the dimensions of all
arrays appearing in a problem formulation must be given.

B. EQUIVALENCE SENTENCES

In certain cases, it may be possible for the FORTRAN system to
assign the same storage location to several variables. For the
purpose of defining when this is possible, we shall say that a
variable appears in a formula in a type 1 position if the exzecution
of the formula could not possibly alter the value of the variable
and we shall say that a variable appears in a formula in a type 2
position if the execution of the formula could result in changing
the value of the variable. Thus a variable appears in a type 1

21

1) it is onthé right i side of an arithmetic formula.

2) itisa Subcript of a variable on the left side of an
arithmetic formula.

3) it appears in an output formula.

4) it appears in a do-formula but not as the subscript to
be varied.

5) it appears in an "if" or a "“zo to" formula.
And similarly, a variable appears in a type 2 position if:
1) it is the variable on the left side of an arithmetic formula.
2) it appears in an input formula.
3) it appears as the subscript to be varied in a do-formula.

Thus a set of variables may be assigned the same storage location
if for any two variables a and b in the set, a type 2 appearance of a
followed by a type 1 appearance of b always means there is an
intervening type 2 appearance of b, where the order of appearance
is the order of execution of the formulas Under the same con
ditions it is also possible to allot overlapping storage space to the
elements of two different arrays. Equivalence sentences Apecify
sets of variables and arrays such that all variables or arrays in
the same set may be assigned the same storage area.

i) General Form:

Equiralence (V, V[, V, V..., (V,V[,V,V,...]),...]

where V is a variable symbol. The variable symbol may be
either one associated with a simple variable or one associated
with an array. Thus, to indicate that the variable a, the array
b(i, j) and the array c(i, j, k) can be assigned overlapping storage
space, one includes in a dimension sentence the set (g, b, ¢).

If the product of the maximum dimensions of c(i; j, k) is greater
than the product of the maximum dimensions of b(i, j), the
inclusion of the above set in an equivalence sentence means
that the storage space allotted to b(i, j) will be included in the
storage space allotted to c(i, §, k) and that the storage space
allotted to a will be included in that allotted to b(i, j).

C.. FREQUENCY SENTENCES
22

Frequency sentences enable the programmer to provide the
FORTRAN system with information concerning estimates of the
frequency with which certain portions of the program will be
executed. Thus the programmer may indicate that he expects the
condition specified by an if-formula to be sutisfied 10, 000 times
and that the condition will not be satisfied 400 times during the
execution of the program. If the if-formula has formula number

3, this estimate would be stated in a frequency sentence as foltows:

e

(3, 10000, 400)

Similarly, if a do-formula has a variable range for the subscript
that is to be varied, the programmer may specify that on the
average he expects the do-formula to call for, say, 200 repetitions.
If the do-formula has the formula number 17, the programmer
would indicate this estimate as follows:

(17, 200)

as part of a frequency sentence, and finally if a go to-formula has
a fixed point variable included in it, the programmer may give
estimates of the frequency with which the fixed point variable

will assume the various possible values. I the go to-formula has
the formula number 2 and reads "go to n" and if n may take on the
values 14, 15 and 16, then the estimate (2, 13, 100, 14, 10, 15,
1000) indicates that he expects n to take on the value 13, 100 times,
the value 14, 10 times and the value 14, 1000 times. The above
three types of estimates, one for if-formulas, one for do-formulas
and one for go to-formulas are the only permissible types of
estimates which can appear in a frequency sentence.

i) General Form:

Frequency E[, E,E...]
where E is an estimate of any of the three types described above,
RELATIVE CONSTANT SENTENCES

In certain cases it will be possible for the FORTRAN system to
produce a more efficient program for a problem if it is supplied
information specifying those fixed point variables whose values
change very infrequently on a relative basis. Relative constant
sentences offer the programmer the opportunity of providing this
information to the FORTRAN system.

i) General Form:

Relative constants N[, N, N, ...]

23

where N is a fixed point variable. Thus the sentence,

Relative constants i, n
where i is a single fixed point variable and n(j) is a fixed point
vector, indicate that the value of i and the values of n(1),n(2),...

change very infrequently.

13. PROBLEM PREPARATION

Problem preparation for automatic coding by the FORTRAN system
consists of the following steps:

A. PROGRAMMING

_punched in the formula cards. In addition to the formulas specifying
the problem, dimension sentences giving the maximum dimensions
of all arrays in the problem and possibly other specification
sentences must be written in the form described above.

to

DATA PREPARATION

Input data, referred to by card reading formulas or read input
tape formulas in the problem, should be written on standard forms
suitable for key-punching in standard card forms associated with
card reading formulas and read input tape formulas.

C. CHECK OF DATA STORAGE SPACE REQUIRED

The data storage required for a given problem if no equivalence
sentences are specified, is computed as the number of single
variables and constants plus the sum of the products of the
maximum dimensions of each array referred to in the problem.

In computing data storage space, it is only necessary to count one
space for a sequence of constants separated by arithmetic
operations. If equivalence formulas are given, the amount of
storage space required is the number of constants plus the number
of single variables not appearing in an equivalence Sentence plus
the sum of the products of the maximum dimensions of arrays not
appearing in equivalence sentences plus the sum of the products of
the maximum dimensions of the largest array appearing in each
set in an equivalence sentence plus the number of the sets,
containing only single variables, which appear in equivalence
sentences. The data storage space required for a program must
be less than a certain amount which will depend on the total high
speed storage space of the machine on which the problem is to be

24

run. The amount of storage space that would be available in any
machine with 4096 words will be at least 3, 000 units. Problems
must be planned in such a way that the data storage space
required is less than the appropriate amount.

KEY PUNCHING

The formulas specifying the problem are punched on cards in the
exact form in which they are written. There will be space for
approximately 65 characters on each card. There will be-a..

if the formula has-monumber asmgneu Large formulas may
extend over many cards.. An indication on each card will indicate
whether or not the information on the card is a continuation of a
formula on a preceding card. Spaces (denoted by blank columns
on a card) are ignored by the FORTRAN system. This means
that, if desired, the key puncher can space between symbols

in exactly the way they are written, or not, without disturbing the
meaning of the formula. Specification sentences are also punched
in a manner similar to that of formulas. Note again thatdimension
sentences must be punched for any problem making reference to
arrays. Data cards are punched in the appropriate form to be
accepted by card reading formulas or to prepare tapes which are
10 be read by input tape reading formulas.

PREPARATION OF CARD DECKS AND INPUT TAPES
The FORTRAN system offers two options:

1) punching of binary program deck for the problem or preparation
of similar program tape and printing of program.

2) immediate execution of problem.

I the user of the system selects option 1, he should prepare a
deck of cards in the following order: all specification sentence
cards followed by formula cards in the correct order followed by
a specially punched card indicating the end of the FORTRAN
formulas for the problem. If the user selects option 2, he should
prepare the same deck as above and, in addition, a deck of data
cards for each input tape «mployed in the problem and for the

card reader, if employed.

Having prepared the above decks of cards, he should then prepare
the appropriate input tapes, if any, on auxiliary card to tape
equipment. He may further elect to enter the FORTRAN formula
deck directly from the 704 card reader or to prepare an input tape
from this formula deck and enter the formulas in the 704 from this
input tape.

25

F. AUTOMATIC PROBLEM CODING OF PROBLEM BY 1HE FORTRAN
SYSTEM , o R
If the user has gelected option 1 (to obtain the binary cards
representing his program or a tape representing his grogram),
he should simnp}y,load the FORTRAN system from its.tape and
place the deck ¢f FORTRAN fermulas in the card reader or the
corresponding tane on a tape unit. He should then set a sense
switch indicatipg thathe has elected option 1. He should set
another switch indicating that the program should either be
punched on binary cards or that it should be written on magnetic
tape. Pressing the start button will then cause the .g,QR'I‘RAN
system t® srite the required program, check it, and-efther
punch it on binary cards or write it on tape and %eggre an
output tape which can'be used to print the progr on duxiliary
tape-ta-prinier equipraent. (Installations not haging auxiliary
tape-to-prifiter devices may arrange to Have the program printed
directly). s o\ ' '\&?

tr Aty L]

If the user selects option 2 (immediat?execution), e should put
the appropriate input {apes on the app¥opriate tape tUnits and

the appropriate card deck, if any, jn the card readery When the
FORTRAN system is loaded and the appropriate switches set and
the start button pressed, the FOR'],‘RA&}I system will write the
required program and cause its execution to gegin immediately
thereafter. oog 3 o Q“PN" "

14. FUTURE ADDITIONS TO THE FORTRAN SYSTE@L_;, N

The language of FORTRAN formulas and sgnteqjcgs des;,'critpd above

is to be regarded only as thé basic FORTRAN laniuage. ~"T1he’ FORTRAN
system will be constructed in a manner to make the addigion gf new
formulas, new sentences and new functions as easy ad Possible:

It is expected that the FORTRAN language will be continually enriched
by such additions to make it rhé),'re economical, more convenient and
more efficient, Some of the possibilities for* future additions to
FORTRAN are listed below: -

A. A VARIETY OF NEW INPUT-OUTPUT FORMULAS WHICH WOULD
ENABLE THE PROGRAMMER TO SPECIFY VARIOUS FORMATS
FOR CARDS, PRINTING, INPUT TAPES AND OUTPUT TAPES

B. POSSIBLE ADDITIONAL CONTROL FORMULAS

i) Begin Complex Arithmetic T

ii) End Complex Arithmetic

iii) Begin Double Precision Arithmetic

26

iv)

vi)

vii)

viii)

ix)

X)

POSSIBLE ADDITIONAL FUNCTIONS

End Double Precision Arithmetic
Begin Matrix Arithmetic
End Matrix Arithmetic

Sort the Vectors on Tape Number N using the kth element of
each vector as indicative information '

Solve the following N simultaneous equations

Solve the following system of ordinary first order differential
equations

Find the vector x(i) which maximizes the linear function {
and satisfies the following linear inequalities

There will, of course, eventually be a large list of arithmetic
functions available to the FORTRAN system. The following
items indicate certain slightly unusual types of functions.

i)

ii)

iit)

iv)

General Function:

Such a function would enable a programmer to avoid rewriting

a set of formulas describing a function peculiar to his problem
but which occurs frequently in his problem. Such a function
would enable the programmer to specify the formula numbers oi
the formulas describing his function and the arguments to be
used in a given instance. The value of the function would be

the value of the right hand expression of the last specified
formula in the function description, having substituted the
specified arguments for the original arguments appearing in

the formula description of the function.

Definite Integral

Such a function would enable the programmer to specify the
independent variable, the limits of integration and the expression
to be integrated.

Summation
This function would enable the programmer to specify the

index of summation, the limits of summation and the expression
to be summed.

Table Lookup

This furction would enable the programmer to specify the table
number and the argument (or arguments if the particular function

was bivariate).

15. DESIRABLE TECHNIQUES TO USE IN PROGRAMMING A PROBLEM
TO BE CODED BY FORTRAN

Although the FORTRAN system is being designed to produce a correct
program from a correct meaningful set of FORTRAN formulas and
although the programmer will invariably discover many possible
formulations of the same problern, the use of certain techniques will,
of course, result in more efficient 704 programs. ’

A. REPRESENTA.ION OF COMPLICATED EXPRESSIONS

In translating a single arithmetic formula, the FORTRAN system
will permute the operations indicated in the expression on the right
wherever this is permissible in order to minimize the number of
STORE instructions which will be required in the resulting 704
program. Thus a x b x ¢ /d/e would be permuted to a/dxb/exc.
However, any order of computation which is specified by use of
parenthesis will be followed. Furthermore, if certain portions

of an expression are identical to certain other portions of the same
expression (all in the same formula), the system will recognize
this and avoid duplicafe calculations. To enable the FORTRAN
system 10 recognize duplications of various subexpressions in an
expression on the right side of an arithmetic formula, it will only
be necessary Lo enclose duplicated subexpressions where they
appear as part of a term in the expression. Where duplicated
subexpressions occur as complete terms, it will not be necessary
to enclose the term in parentheses. Furthermore, if the duplicated
subexpression is a function which appears in several places with
tne same argument, it will not be necessary to enclose thie function
in parentheses even though it may be a portion of a term. Thus
the following expressior.:

a x b x ¢ x(a xbxc+excos(a))/(axbxe+fxcos(a)) +sqrt (axbxe+fxcos(a))
may be written in the following form to avoid duplicate calculations:
((axb)xc)x((axb)xc+excos(a;)/ ((axb)xe+fxcos(a)) + sqrt{(axb)xe+ixcos{a))
In general then, if a complicated expression is involved in & problem,
it is best not to introduce new dependent variables to represent
portions of the complicated expression and then to represent the
complicated expression as an expression involving the new dependent

variables. Adherence to this principle allows the FORTRAN system
to carry out the maximum amount of optimization.

28

D.

FORMATION OF LOOPS

In specifying operations on sequential items in ordered arrays,

it is best to use do-formulas wherever possible since such formulas

present the control information which the system needs'in forming
loops in a consolidated form. The use of formulas such as__

P

if (i>n) nl, n2

may result in some unnecessary instructions in the resulting
program if such instructions are used to form loops which could
be otherwise formed by the use of do-formulas.

DEBUGGING

No special provisions have been included in the FORTRAN system
for locating errors in formulas. After some experience has been
gained in the use of the system, it will be possible to write a
program to locate the most common of the frequently occurring
errors in a formula program. Since FORTRAN formulas are
fairly readable, it should be possible to check their correctness

by independently recreating the specifications for the problem irom
its FORTRAN formulation. In this way it should be possible to
write correct formula programs from which the FORTRAN system
will of course produce correct 704 programs.

PROGRAM CHECKS

There are no automatic provisions in the FORTRAN system for
ineluding checks on correct machine dperation in an automatically
coded program unless the checks are provided for in the original
formula program. Since FORTRAN-written 704 programs will be
written in accordance with certain uniform principles, it should
be relatively simple for an operator experienced with FORTRAN=
written programs to determine what has happened in a program
after a machine failure,

28

