
F-67 (166)

ARITHMETIC PROCESSOR 166
INSTRUCTION MANUAL

VOLUME

DIGITAL EQUIPMENT CORPORATION MAYNARD, MASSACHUSETTSl

1

F-67(166)

PDP-6 ARITHMETIC PROCESSOR 166

INSTRUCTION MANUAL

VOLUME 1

DIGITAL EQUIPMENT CORPORATION . MAYNARD, MASSACHUSETTS

PREFACE

This instruction manual is published in two volumes to aid personnel in the operation and

maintenance of the Arithmetic Processor Type 166 and four of the more common PDP-6 input-

output devices: Paper Tape Reader Type 760, Paper Tape Punch Type 761, Teletype Keyboard-

Printer Type 626, and Card Reader Type 461. Maintenance information for the in-out devices

is confined primarily to those portions of DEC manufacture; separate manuals for the devices

themselves are furnished with the system.

The first three chapters present a general description of the system and its operation. Chapter

lists the operating specifications and describes the physical and electrical characteristics of the

system. Chapter 2 provides a general description of system organization at the block diagram

level, explaining what the system does rather than describing the circuit hardware involved in

the various functions. This chapter also describes the number system and instruction formats used

in the Type 166 Processor. Chapter 3 explains the use of all controls and indicators on the oper-

ator control panels and in-out devices, and outlines basic operating procedures.

The next five chapters present a complete, detailed description of the system logic. Chapter 4,

Drawing Conventions and Flow Charts, discusses PDP-6 documentation and describes the symbols

and terminology used in the logic drawings and flow charts. This chapter also escorts the reader

through the flow charts in sequence, so that he may better understand the flow of operations in

the processor, and discusses in detail some sequences that neither appear as coherent hardware

units in the logic drawings nor are obvious from the flow charts. The next two chapters in this

group describe the hardware for the main control sequence and logical and arithmetic processing;

the final two describe the processor interfaces with the memory bus and the in-out bus = Also

included in the last chapter are the control units for four common in-out devices. The reader

is strongly advised not to embark upon any logic chapter in this or any other PDP-6 system

manual without first gaining a thorough understanding of the material presented in Chapter 4.

Chapter 9 contains information useful in maintaining the system, including a discussion of main-

tenance operation, maintenance programs, and preventive and corrective maintenance.

. . .
III

1

Following Chapter 9 are appendixes on engineering drawings and spares, a glossary, and several

convenient tables. AlI logic drawings and flow charts referred to in the text are in Volume 2;

all other figures are interleaved with the text.

iv

FOREWORD

PDP-6 is a general-purpose, digital computing system consisting of processors, memories, and

input-output devices, each of which has independent internal timing. Processors in a system

may share memories and input-output equipment; the memories themselves may have different

speeds.

A central processor, usually the Type 166 Arithmetic Processor, performs arithmetic and logic

operations and governs the movement of information between memory and peripheral devices.

The Type 166 includes an executive system that allows a number of programs, each restricted

to a definite area in core, to share processor time. The central processor uses two busses for

system intercommunication, one to the memory system, the other to its input-output devices.

A system may contain any number of central processors, each with a memory bus and an in-

out bus. The memory buses permit the memory complex to accommodate several processors-

as many as four may address a single memory module. In order to deposit or retrieve informa-

tion, the processor supplies an address and requests a memory cycle. Upon accepting the

request, the addressed memory times its own cycle and furnishes the appropriate response to

the processor.

Through the in-out bus the processor controls all information transfers to and from the peripheral

equipment. A priority interrupt system in the processor allows a device to signal when it needs

service so that the processor is free during the actual input-output time. One of the Ifnits that

may be connected to the bus is the Type 167, an autonomous drum processor which supplies

direct memory access for high-speed devices such as drums, discs, magnetic tape, and displays.

In addition to its in-out bus connection to the central processor, the drum processor is itself

connected to the memory system via its own memory bus, and has its own smaller scats :$)-out

bus through which it may govern up to three input-output control units. Although the central

processor must provide initial conditions and commands, the drum processor then operates inde-

pendently, so large blocks of information may be transferred between an in-out device and a

memory without reducing central processor efficiency.

V

All PDP-6 memories store words of 36 bits but may be of different sizes and speeds. Core mem-

ories usual I y have core banks of 8192 or 16,384 words. Cycle times for reading from and

writing back into memory are typically 2 and 5 psec, although in each case access time is much

shorter: when reading, the processor need wait only until data is available; when writing, only

until data is accepted. A fast flip-flop memory, with access time less than l/2 psec, is normally

used instead of the bottom 16 locations in core.

The instruction format allows the basic instructions to address one of 262,144 locations in mem-

ory for an operand, one of 15 index registers for modifying the memory address, and one of

16 accumulators for a second operand. Instruction results may be stored in an accumulator, in

memory, or in both. In-out instructions govern the transfer of data in both directions over the

in-out bus, the transfer of control information, including priority interrupt channel assignments,

to the peripheral equipment, and the gathering of status information from that equipment. In

addition to addressing a memory location and an index register, an in-out instruction may ad-

dress one of 128 devices, two of which are the priority interrupt system and the processor itself.

For further information on the overall system, refer to PDP-6 Programming (DEC publication K-06),

which also describes system software and discusses programming for the processor and most in-out

devices. Maintenance documentation for the system is provided by a series of manuals. This

one discusses system maintenance for the Type 166 Arithmetic Processor and several common in-

out devices, others cover the several types of memories that may be used in a PDP-6 memory

system, and still others treat the drum equipment, magnetic tape equipment, DECtape, and other

in-out devices. A separate circuit manual discusses circuit maintenance and describes most

standard circuits including all those used in the equipment described in the present manual and

all logic circuits used in the memories. Descriptions of specialized circuits, such as those asso-

ciated with the core stack, reading and writing on magnetic tape, and the like, are included in

the appropriate system manuals.

Vi

CONTENTS

Chapter Page

1 INTRODUCTION ... l-l

1 .l Operating Specifications l-2

1.2 Physical Characteristics 	 l-3

1.3 Electrical Characteristics 	 1-5

2 SYSTEM 	 FUNCTION .. 2-l

2.1 	 Programming ... 2-3

a Number System 2-4

b Instruction Format 2-6
-

c Program Flags 2-8

2.2 	 Main Sequence ... 2-l 0

a Console Control 2-l 0

b Instruction Execution 2-l 1

c Executive System 2-14

2.3 Arithmetic Logic ... 	 2-15

2.4 Memory Interface .. 	 2-l 8

2.5 Input-Output System 	 2-l 9

3 OPERATION ... 	 3-l

3.1 	 Control Panels ... 3-l

a Control Operator Panel 3-2

b Bay Indicator Panels 3-10

c In-Out and Marginal Check Panel 3-13

3.2 	 Operation of In-Out Equipment 3-l 8

a Tape Reader 3-l 8
-

b Tape Punch 3-19

c Teletype Keyboard-Printer 3-20

d Card Reader . 	 3-23

vii

C 0 N TE N T S (continued)

Chapter 	 Paae

3.3 	 Processor Operating Procedures 3-27

a Read In .. 3-27

b Operating Keys 3-28

c Emergency Stop 3-31

4 DRAWING CONVENTIONS AND FLOW CHARTS 	 4-l

4.1 Logic Drawings ... 	 4-2

4.2 Signa I Notation .. 	 4-8

4.3 Instruction Decod ing 	 4-l 0

4.4 Flow 	 Charts .. 4-13

4.5 Execute Cycle Flow 	 4-15

5 MAIN SEQUENCE CONTROL . 5-1

5.1 Console Control .. 	 5-l

5.2 	 Processor Cyc les .. 5-4

a Instruction .. 5-5

b Address ... 5-6

c Fetch .. 5-7

d Execute .. 5-9

e Store ... 5-12

5.3 Instruction Control .. 	 5-13

5.4 Program Control .. 	 5-l 8

5.5 Executive Logic .. 	 5-20

6 ARITHMETIC LOGIC .. 	 6-l

6.1 Memory Buffer .. 	 6-2

. . .
VIII

C 0 N TE N T S (continued)

Chapter Page

6.2 Arithmetic Register .. 6-5

a AR Gating .. 6-6

b Addition Algorithm 6-9

c AR Control .. 6-12

d AR Subroutines 6-15

e AR Flags .. 6-17

6.3 Multiplier - Quotient Register 6-18

6.4 Arithmetic Shift Counting 6-20

a_ SC Gating .. 6-20

b SC Control .. 6-22

c SC Subroutines 6-23

6.5 Subroutine Interface 6-24

6.6 Data Subroutine Instructions 6-25

a Block Transfer 6-26

b Character Operations 6-27

c Shift Operations 6-31

6.7 Arithmetic Instructions 6-32

z Fixed Multiply 6-32

b Floating Scale 6-33

c Floating Add-Subtract 6-34

d Floating Multiply and Divide 6-35

6.8 Arithmetic Subroutines 6-36

a Exponent Co lculate 6-36

7 MEMORY LOGIC . 7-1

7.1 Memory Address Logic 7-l

a MA Register 7-2

b MA Control 7-3

c User Mode Registers 7-5

ix

C 0 N TE N T S (continued)

Chapter 	 Page

7.2 Memory Data Logic 7-6

7.3 Memory Control ... 7-7

8 INPUT/OUTPUT .. 	 8-l

8.1 In-Out Transfer Control 	 8-1

8.2 	 Priority Interrupt .. 8-3

a Priority Chain I 8-4

b PI Control 8-5

8.3 Processor I/O Control 	 8-7

8.4 I/O 	 Interface Logic 8-8

8.5 	 Standard In-Out Equipment 8-l 2

a Paper Tape Reader 8-l 2

b Paper Tape Punch 8-14

c Keyboard-Printer 8-l 6

d Card Reader 8-l 9

9 MAINTENANCE ... 	 9-l

9.1 	 Operation for Maintenance 9-3

a Power Controls 9-3

b Marginal Check Controls 9-4

c Maintenance Switches 9-5

d Single Step Operation 9-7

9.2 Maintenance Programs 	 9-8

9.3 	 Preventive Maintenance 9-9

a Schedules and Margins 9-l 0

b Arithmetic Processor PM 9-l 1

c In-Out Equipment PM 9-14

X

C 0 N TE N T S (continued)

Chapter 	 Page

9.4 	 Corrective Maintenancee.......................... 9-24

a Troubleshooting*............................ 9-25

b Repair . 9-29

5 Validation and Log Entry . 9-31

Appendix

1 ENGINEERING DRAWINGS Al-l

2 SPARES .. A2-1

3 GLOSSARY .. A3- 1

4 INSTRUCTION CODES .. A4- 1

5 TELETYPE CODE . 	 A54

6 CARD READER CODE .. 	 A& 1

ILLUSTRATIONS

Figure

Arithmetic Processor 	 Type 166 l-4

3-l Conbole Operator Panel .. 	 3-3

3-2 Bay Indicator Panels ... 	 3-3

3-3 In-out and Marginal Check Panel 	 3-14

3-4 Paper Tape Reader Type 760 	 3-19

3-5 Paper Tape Punch Type 761 	 3-20

3-6 Keyboard-Printer Type 626 	 3-22

3-7 Card Reader Type 461*........................... 	 3-25

4-l Logic Symbols 	 4-4

9-l Processor Marginal Check F low 9-12

9-2 Paper Tape Dimensions . 9-16

xi

CHAPTER 1

INTRODUCTION

The Type 166 is a general-purpose central processor that performs all of the arithmetic, logical,

executive, and internal data transmission operations in a PDP-6 system. It also controls all

transfers of data between memory and peripheral equipment, although in many cases it may

provide control merely by supplying system commands and initial conditions to an in-out pro-

cessor. It contains two bus interfaces, one for connection to memory, the other to the input-

output system.

Except for certain control information held permanently in the processor, the state of the pro-

cessor resides entirely in memory. The only information carried over by the processor from one

instruction to the next is the program count, flags, and information for a user mode which allows

a number of programs, each restricted to a definite area in core, to share computer time. Be-

sides operating on a stored program, the processor must retrieve all operands for every instruction,

and al I data and results of computations are stored at the completion of an instruction. Thus

the arithmetic registers in the processor contain information only during actual processing and

the registers used for address modification are the same as those used for computations within a

single instruction. The accumulators, 15 of which double as index registers, actually occupy

the bottom 16 memory locations and are usually contained in a fast memory. Most basic in-

structions have three addresses which select an accumulator, a memory location (which may be

another accumulator), and an index register for memory address modification. All instructions

may use multiple-level indirect addressing end some may use a single address to call two adja-

cent accumulators for processing double-length operands. With a single instruction, the pro-

cessor is capable of performing a full-word or half-word transfer, a block transfer, or the

manipulation of a character (byte) of variable size. The processor includes hardware for per-

forming Boolean functions, shift operations, both fixed- and floating-point arithmetic, jumps,

logical and arithmetic comparisons, and a variety of modification and testing instructions.

In addition to standard instruction operations, the hardware also includes a program-assignable

priority interrupt system through which an external device or an internal condition can interrupt

l-1

the normal program sequence; a number of flags that allow checking of various conditions and

facilitate double-precision arithmetic; and memory protection and relocation registers that allow

an executive routine to assign a specific area in core to each user program.

1.1 OPERATING SPECIFICATIONS

All timing in the Type 166 is completely asynchronous, and al I processing is done in parallel

except for a few extremely fast serial functions, such as carry propagation in the main arith-

metic register and in dc adders that relocate memory addresses. Information handled by the

processor has the following characteristics:

Word Length 	 36 bits

Instruction Format

Basic 	 Instruction code, 9 bits
Accumulator address, 4 bits
Indirect, 1 bit
Index register address, 4 bits
Memory address, 18 bits

Input-Output 	 Instruction code, 6 bits
Device code, 7 bits
Indirect, 1 bit
Index register address, 4 bits
Memory address, 18 bits

Internal Number System 	 Binary

Neaative Representation 	 2’s complement

Number Format

Fixed Point 	 Sign, 1 bit; magnitude, 35 bits

Floating Point 	 Sign, 1 bit; exponent, 8 bits;
fraction, 27 bits

The time required for execution of any particular instruction varies tremendously because of

the completely asynchronous operation. The basic operations, such as addition in the arith-

metic register or a sequence of shifts controlled by the shift counter, are performed by built-in

l-2

hardware subroutines. These are called whenever necessary either from the main instruction

sequence or by special sequences such as byte manipulation, block transfer, floating add-

subtract, divide, etc., which are in turn entered from the main instruction sequence. Even

at the level of individual events, the execution time may vary; for example in the basic

addition or subtraction subroutine, the complement function and the parital addition each require

100 nanoseconds but carry propagation, which is serial, depends upon the number of carries

needed. Similarly on a larger scale, multiplication and division are performed by a series of

additions and subtractions and the time required for such a major sequence depends upon the

number of times it must cal I various subsequences. Most processor control functions involved

in the retrieval and setup of instructions, and retrieval and storage of operands take a negligible

amount of time when compared to memory access time. Exact instruction execution times may

be determined from the flow charts included in Chapter 4. For each memory access, the pro-

cessor must first check for memory protection and relocation and then wait until the addressed

memory is free; the time required for access once the memory is free depends upon the type of

memory.

The processor must set up all transfers of control information and data to and from the peripheral

equipment; but since a device can signal the processor by means of the priority interrupt system

when it requires service, no processor time need be lost in waiting, and processor and peripheral

equipment can operate in parallel. Every transfer over the I/O bus does, however, require

2.5 microseconds. The four I/O devices included in this manual have the following operating

specifications.

Paper Tape Reader 400 8-bit characters per second

Paper Tape Punch 63.3 8-bit characters per second

Keyboard-Printer 10 8-bit characters per second

Card Reader 200 800column cards per minute

1.2 PHYSICAL CHARACTERISTICS

Most DEC equipment is housed in steel bays with aluminum control panels. The arithmetic

processor with its console uses four such bays bolted together. The front of each bay can

accommodate up to twelve 19 inch by 5-l/4 inch. panels lettered A to N from top to bottom

l-3

(skipping G and I). Bays 1 and 2, which house the bulk of the processor logic, each have an

indicator panel at the top with the remainder of the bay occupied by eleven standard logic

panels mounted behind double doors. Each mounting panel can hold up to 25 DEC system plug-

in modules numbered from left to right when viewed from the front. At the center of bays 3

and 4, which hold the console, is the main operator control panel. Usually, a tape reader

is mounted in the left console bay just above the control panel and a paper tape punch at the

top (the front panel of the drawer containing the punch has an opening for removing fan-folded

tape). At the top of bay 4 behind a metal cover are the marginal check controls and an indi-

cator panel for the standard in-out equipment. The remaining space above the control panel

may be used for DECtapes, displays, or other equipment. The space below the console table

can hold up to eight logic mounting panels, two of which are used for the arithmetic processor;

the remainder may be used to hold the control logic for some of the in-out equipment. Inside

the double doors at the back of each bay is an inner plenum door, on which are mounted the

required power supplies and power control panels.

Arithmetic Processor Type 166

l-4

Physical dimensions are as follows:

Arithmetic Processor

Height 69-l/2 inches

Width 100 inches

Depth 60 inches

open)

(75 inches with rear plenum doors

Weight 1300 pounds including tape reader and punch

Keyboard-Printer, Teletype Model 35 KSR

Height 38-l /2 inches

Width 20 inches

Depth 24 inches

Weight 151 pounds

Card Reader, Burroughs 8122

Height 50 inches

Width 48 inches

Depth 29 inches

Weight 200 pounds

Intake fans at the bottom of every bay cool the logic modules by blowing air out between them.

All equipment described in this manual can operate in an ambient temperature range from 50’

to lOOoF. However, if the installation includes temperature sensitive equipment such as

magnetic tape, air conditioning is required. The floor should be capable of supporting approx-

imately 150 pounds per square foot.

1.3 ELECTRICAL CHARACTERISTICS

All PDP-6 equipment uses standard line power at 105 to 125 vat, 60 cycles, single phase.

All power cables use Hubbell Twist-Lok connectors; both cable and connector are rated at

30 amperes. The arithmetic processor, console and console-mounted standard in-out equipment

together use two I ines and two power controls. The main power control is usually a Type 829

l-5

or Type 835; it provides ac to all of the power supplies for the processor logic and any in-out

control logic mounted below the console operator panel. The dc voltages required by the logic

are +lO and -15 volts. Some power supplies provide both, others provide only the negative

voltage. In some cases, two -15 volt supplies may be connected in series to provide - 30 volts

to solenoid drivers for in-out equipment. One -15 volt I ine turns on a secondary power con-

trol (Type 811 or 834) that provides ac to the motors for the reader, punch, and keyboard-

printer. For the punch, ac is fed through a Type 823 Power Control (mounted directly on the

punch) that allows the processor logic to control application of punch motor power. Another

-15 volt signal is applied to external power controls (usually Type 811 or 834) via the in-out

bus to turn on the peripheral equipment. Still 	 another -15 volt signal turns on the power con-

trols (usually Type 836) in the memories. This 	 last dc turnon signal is not sent via the memory

bus; instead it is included in a small bus that also carries marginal check voltages from a var-

iable power supply located in the console.

Current consumption of the equipment described in this manual is as follows:

Arithmetic Processor, including console and 25 amperes, 1900 watts
console-mounted in-out logic Turnon surge, 40 amperes

Tape Reader 	 1.8 amperes, 150 watts
Turnon surge, 2.8 amperes

Tape Punch 	 1.85 amperes, 65 watts
Turnon surge, 9 amperes

Keyboard-Printer 	 2.6 amperes, 140 watts
Turnon surge, 7 amperes

Card Reader 	 1.5 amperes, 145 watts
Turnon surge, 7 amperes

All PDP-6 logic is solid state; transistors and diodes operate on static logic levels of 0 and - 3 vdc

(tolerances are 0 to - .3 volts and -2.5 to -3.5 volts). Most logic modules include an internal

supply to derive the negative logic level from 	 the -15 volt input. PDP-6 logic uses pulse timing

almost exclusively. Pulses are of either polarity depending upon gate input requirements.

Pulse amplitude is 2.5 volts from ground with tolerances of +2.3 to +3.0 volts and -2.3 to

- 3.5 volts. Pulses at inverter outputs may be 	 from ground to - 3 volts or vice versa. Pulse

widths may be 1 microsecond or 400; 70, 40, or 25 nanoseconds depending upon module type

and application. Occasionally, an input may be triggered by a level transition instead of a

pulse.

l-6

CHAPTER 2

SYSTEM FUNCTION

The logical configuration of the Arithmetic Processor Type 166 is shown in Figure 2-l. Large

blocks at the top and bottom represent the buses that connect the processor to the input-output

equipment and the memory; the figure shows all connections to these buses, both data and

control (each connection is labeled with the number of physical lines required). Between the

buses is a block diagram of the processor showing all registers, with transfers among them

represented by I ines connecting the register blocks. Each block is labeled with both the name

of the register and the number of bits. 1 The registers vary considerably in size. Data registers

have 36 bits, those that handle only addresses have 18. Registers that handle floating-point

exponents have 9 bits; those that control memory protection and relocation have 8; 7-bit registers

govern the requesting and granting of program sequence breaks through the priority interrupt

system. The figure does not show the control lines within the processor, but all control pulses

for each register are written beside the corresponding block. For an explanation of signal names,

refer to the discussion of signal notation in Chapter 4.

The heart of the arithmetic processor is a set of three full-size registers which handle all data

transfers’ and in which are performed all logical and arithmetic operations. These are arith-

metic register AR, multiplier-quotient register MQ, and memory buffer MB. All transfers

between processor and memory are made through MB, transfers between processor and peripheral

equipment are made via AR. At the console, the operator may communicate with the system

through a register of data switches for sending information in via AR and a register of memory

indicators for displaying memory words via MB. MB takes part in all data transfers, but in

logical and arithmetic operations it usually plays a passive role by holding an operand which

is combined with the operand in AR, the result appearing in AR. MQ serves primarily as an

extension of AR for handling double-length operands.

The processor performs a program by executing instructions retrieved from consecutive memory

locations as counted by the program counter PC, although the program may change its own

sequence by changing the address in PC. To gain access to memory for retrieval or storage,

2-l

the processor requests a memory cycle and supplies an address over the bus from memory

address register MA. This register also serves as a control link to the operator in that the

system receives addresses via MA from the address switch register on the console. When a

word is retrieved at MB as an instruction, its left half passes to the instruction register IR which

controls further retrieval of index registers and accumulators, and which is decoded to govern

the actual execution of the instruction. The right half in MB is the memory operand address,

which may be modified iI; AR by the contents of an index register.

The operands are brought from memory to AR, MB, and sometimes MQ, for whatever operations

are necessary for the execution of the instruction. In some of the more complicated operations,

these full-size registers are aided by the shift counter SC and the floating-exponent register FE.

SC is used for subsidiary computations such as the calculation of the exponent in floating-

point arithmetic, and it also controls the count of any operation performed by the repetition

of basic steps in the three main registers. FE is used only for temporary storage of preliminary

results while SC is control I ing the remainder of the operation.

Besides the registers that enter into the regular execution of the program and its instructions,

the processor contains an executive system and a priority interrupt system. The first contains

two registers for memory protection and relocation. When the processor is in executive mode,

all instructions and al I memory are available to the program. In user mode, a number of pro-

grams share processor time with each program restricted to a specific area in core, and certain

instructions are illegal. All programs are written using the lower addresses but these are not

supplied directly to memory from MA. In requests for memory access, the address in MA is

compared with the contents of the memory protection register PR. The number in this register

defines the size of the block available to the program and prevents it from addressing any

location outside its assigned area. The address is then changed to one within the assigned

area by adding a constant contained in the relocation register RLR to the address in MA.

The priority interrupt system allows peripheral devices and certain conditions internal to the

processor to interrupt the normal program sequence. There are seven interrupt channels through

which sequence breaks are allowed on a priority basis as governed by three control registers.

The first register allows the program to turn individual channels on and off; the second syn-

chronizes break requests to internal processor timing and assigns the break to the highest

2-2

priority channel that has been recognized; the third holds the break and prevents further inter-

ruption by lower priority channels. A break is executed by performing the instruction in a

particular memory location associated with each channel. The assignment of channels to de-

vices is entirely under program control; the program may assign several devices to a single

channel or give a device no assignment. One of the devices to which the program may assign

a channel is the processor itse If. For this purpose the processor has an I/O interface con-

taining a number of flags that allow internal conditions to interrupt the sequence; the flags

may be sensed and controlled by the program. Through this interface, the processor may also

bring information in from the console DATA switches or supply memory protection and relocation

information to the executive system.

Timing for all operations in the processor is supplied by asynchronous pulse chains. Processor

operation is initiated by means of a special key cycle that supplies timing for events associated

with operator intervention at the console and provides entry into the main sequence. When the

processor is running, timing is supplied by the main sequence which is repeated for each in-

struction. Th e main sequence uses a hierarchy of other sequences- built-in hardware subroutines-

which can be called directly by the main sequence or by any sequence of higher rank. Thus

the processor operates using many levels of nested sequences; each sequence stops upon calling

a lower ranked sequence and restarts upon return from it (although the restart need not be at

the point of departure). For example, in a block transfer, the main sequence calls the block

transfer subroutine which in turn calls others to perform the necessary arithmetic and obtain

memory access.

2.1 PROGRAMMING

The first 16 locations in memory function as accumulators, index registers, or ordinary memory

locations. Their particular functions are determined entirely by the processor under program

control, but they differ from the remainder of the memory system only in that they are usually

contained in a fast memory. All 16 locations may be used as accumulators or ordinary memory,

but only locations 1 to 17 may be addressed as index registers because a zero index register

address specifies no indexing. Since ordinary memory addresses are 18 bits, only the informa-

tion contained in the right half of an index register is actually used for address modification.

2-3

In systems that include a fast memory, it replaces the first 16 core locations (which normally

hold a readin loader) for normal processor operations- operations in the reading area can be

initiated only from the console; and once an instruction has been taken from outside this area,

it again becomes inaccessible to the program. In all systems locations 40 and 41 are used for

programmed operators, 42 to 57 are used by the priority interrupt system-a programmer should

be wary of using these locations for other purposes.

The logic descriptions contained in this manual assume that the reader is completely familiar

with the processor instructions, all of which are described in detail in PDP-6 Programming

(K-06). That manual describes the instructions in terms of elements available to the program,

i.e., by their effect on accumulators, memory locations, flags, and control registers. For

convenience Table 4-l lists the mnemonic and octal codes for all instructions. The remainder

of this section describes the Type 166 number system, instruction format, and flags.

a Number System

For arithmetic computations the hardware is capable of handling numbers in two formats, fixed

point and floating point. Both formats use the full 36-bit word; bits are numbered 0 to 35 from

left to right. In all numbers, bit 0 represents the sign, 0 for positive, 1 for negative. In

floating point, bits l-8 represent an exponent, bits 9-35 represent a fraction. In fixed point,

bits l-35 represent magnitude, which is usually interpreted as a full fraction with the binary

point between sign and magnitude or as an integer with the binary point to the right of bit 35.

Of course, the assumed position of the point has no effect on the processor and a program may

adopt any consistent point convention. However, the fixed-point hardware does include special

provisions to facilitate hand1 ing of integers in multiplication and division because these opera-

tions make use of double-length numbers.

In ordinary arithmetic, the negative of a number is usually formed merely by changing the

sign. This notation is inconvenient for a machine so hardware arithmetic represents negatives

by l’s and 2’s complements. If x is an n-digit binary number, its 2’s complement is 2n - x

and its l’s complement is (2” - 1) - x or equivalently (2” - x) - 1. Subtracting a number

from 2n - 1 (i.e., from all ones) is precisely equivalent to performing the logical complement,

i.e., changing all zeros to ones and al I ones to zeros. Therefore, to form the l’s complement,

2-4

the processor uses the logical complement-usually referred to merely as the complement-and

to form the 2’s complement it complements and adds one to the result.

In l’s complement notation, one can read a negative number by attaching significance to the

zeros instead of the ones. For 2’s complement notation, this simple interpretation is not

possible because adding one to the logical complement changes at least the final bit and in

fact changes bits as far as the carry propagates. Thus in 2’s complement notation, one can

read a negative number by attaching significance to the rightmost 1 and attaching significance

to the zeros to the left of it. A 2’s complement system has the following characteristics. A

number all ones represents -1. All even numbers both positive and negative end in 0. In a

negative integer, ones may be discarded at the left. In a negative fraction, zeros may be

discarded at the right; as long as only zeros are discarded, the number remains in 2’s comple-

ment form because it still has a 1 which possesses significance. However if a portion including

the rightmost 1 is discarded, the remaining part of the fraction is now a l’s complement.

in the Type 166, the 2’s complement is used to represent negatives for both fixed and floating

numbers . In a positive fixed-point number, the sign bit is 0 and bits l-35 represent magnitude

in normal binary fashion. In a negative, the sign is 1 and the remainder of the word contains

the 2’s complement of the magnitude of the corresponding positive number. Since 0 is con-

sidered one of the positive numbers, the magnitude of the largest positive number is one less

than the-magnitude of the largest negative number. Fixed-point integers thus have a range
- 35

from 02~~ to 235 - 1; for fractions, the range is -1 to 1 - 2 .

The floating-point hardware interprets a computer word as containing an 8-bit exponent and

a 27-bit fraction. For a positive number, the sign is 0, as before; but the contents of bits

9-35 are now interpreted only as a binary fraction and the contents of bits l-8 are interpreted

as an integral exponent in excess 128 (2008) code, i.e., exponents from -128 to +127 are

represented by the binary equivalents of 0 to 255. Floating-point zero and negatives are

represented in exactly the same way as fixed point: zero by a word containing all zeros, a

negative by the 2’s complement. The negative thus has 1 for its sign and the 2’s complement

of the fraction, but since every fraction must contain a 1 unless the entire number is 0 (see

below), it has the l’s complement of the exponent code in bits l-8. Since the exponent is

in excess 128 code, an actual exponent x is represented in a positive number by x + 128, in

2-5

a negative number by 127 - x. The program, however, need not concern itself with these

representations because the hardware compensates automatically . For example, for the instruc-

tion that scales the exponent without affecting the fraction, the hardware interprets the scale

factor in standard 2’s complement form but produces the correct l’s complement result for the

exponent.

In al I floating-point operations, the hardware assumes that all nonzero operands are normalized

and always normalizes a nonzero result. Floating-point numbers are considered to be normalized

if the magnitude of the fraction is greater than or equal to l/2 and less than 1. The test for

normalization is thus that either the sign bit differs from bit 9 or bits 9-35 contain 4000000008,

the latter being required for the special case of the fraction -l/2, in which bits 9 and 0 are
- 27

equal. Floating-point numbers thus have a fractional range in magnitude from l/2 to l-2

and an exponent range of -128 to +127. Note that the signed fractional part -1 (i.e., a 1 in

bit 0 and all zeros in bits 9-35) satisfies the test for normalization but the hardware always

changes it to -l/2 and adjusts the exponent appropriately. The hardware may not give the

correct result if the program supplies an operand that is not normalized or that has a zero

fraction with a nonzero exponent.

The characteristics of 2’s complement notation require additional precautions in floating-point

operations and fixed-point fractional multiplication because these have double-length results.

The programmer must remember that discarding the low-order part of a double-length negative

leaves the high-order part in correct 2’s complement form only if the low-order part is null.

In floating point, the programmer may request rounding, which automatically restores the

high-order part to 2’s complement form if it is negative.

b Instruction Format

All but the input-output instructions and programmed operators use a basic format with bit

assignment as fol lows:

O-8 Instruction code

9-12 Accumulator address

13 Indirect bit

14-17 X Index register address

18-35 Y Memory address

2-6

Bits O-8 determine which operations are executed for the instruction. Bits 9-l 2 and 14- 17

each address the first 16 memory locations which serve as accumulators and index registers.

On some occasions, bits 9-12 are used for control purposes instead of addressing an accumulator,

for example to address flags. The effective address E of an instruction depends on the values

of I, X, and Y. The contents of index register X (zero X specifies no indexing) are added to

Y to produce an address. If I is 0, this address is used as the effective address; if I is 1, this

address is indirect and is used to retrieve another word. The new word is processed in exactly

the same manner as above, i.e., X and Y are used to determine the effective address if I is

0; otherwise, they are used to retrieve another word. The process continues until a word is

found in which I is 0. This calculation using I, X, and Y is carried out for all instructions

even when E is to be used as an operand or control information instead of a memory address.

IOT instructions (designated by three ones in bits O-2) have the following bit assignment:

o-2 111

3-9 Device code

10-12 Instruction code

13 I Indirect bit

14-17 X Index register address

18-35 Y Memory address

Bits 3-9 address an I/O device out of a possible 128, bits lo-12 specify one of eight IOT in-

structions; the processor and the priority interrupt system are considered devices. As in the

basic format, I, X, and Y are used to calculate E, which is used as an address in some cases,

as control information in others.

A programmed operator is designated by three zeros in bits O-2. Whenever such an operator

appears in the program, the processor calculates an effective address from bits 13-35 of the

instruction word in the usual manner but it does no further decoding; instead it stores the con-

tents of the instruction register in the left half of location 40 and the calculated effective

address in the right half, and then executes the instruction contained in location 41 (which

is usually a JSR to an appropriate subroutine).

2-7

c Program Flags

The processor contains a number of flags that may be sensed by the program. Flags that are

set automatically, e.g., by error conditions, usually cannot be set by the program; whereas,

flags that allow the program to enable specific operations can always be both set and cleared.

Some flags are governed primarily by iump instructions but most are contained in the processor

I/O interface and are governed by IOT instructions. Any flag listed as being able to cause

a priority interrupt does so on the channel assigned to the processor provided the priority inter-

rupt system is active.

AR CRYO, AR CRY1 	 These flags are set by carries from the corresponding bits in AR.

They are useful primarily for double-precision arithmetic and in

correcting a result that has overflowed.

AROV 	 The overflow flag may be set by arithmetic operations in a variety

AROV ENABLE 	 of instructions. It indicates a loss of information, an incorrect

result of a computation, or failure of the processor to perform a

computation. Setting OV causes a priority interrupt if the enable

flag has been set by the program.

PC CHG The PC change flag is set when the program sequence is changed

PC CHG ENABLE by a skip or iump instruction. Setting PC CHG causes a priority

interrupt if the enable flag has been set by the program.

PDL OV The flag is set and triggers a priority interrupt when a pushdown

or pullout instruction has gone outside of the core area assigned

to the pushdown I ist.

NON EXIST MEM 	 This flag is set and triggers a priority interrupt when the memory

system fai Is to respond to a memory request.

CLOCK The clock fl ag is set every sixtieth of a second by a signal from

CLOCK ENABLE the main power control. It causes a priority interrupt if the

enable flag has been set by the program.

2-8

USER 	 As a flag, the sole function of USER is to indicate to the execu-

tive routine whether a user program was interrupted, either by a

priority interrupt or UUO (the executive routine must service all

priority interrupts) or by the trapping of an illegal instruction

(instructions that are illegal during a user program are a JRST

that attempts to dismiss an interrupt or halt the computer, and any

IOT). The execution of a JSR during a PI cycle or following a

UUO or the trapping of an illegal instruction clears USER.

As a control flip-flop, USER implements the restrictions on user

programs. Thus in order to restrict the operation of a user pro-

gram, the executive routine must set USER when it transfers

control to the program. If the sole purpose of an interrupt is to

service a block IOT and there is no overflow, USER stays set and

control automatically reverts to the user program after the IOT.

ILLEG OP 	 An attempt by a user program to address a location outside of its

restricted area in core sets this flag causing a priority interrupt.

At the time of the interrupt, PC may point either to the location

of the instruction which tried to use the address or to the location

following this instruction.

Some subroutine-calling iump instructions store what is referred to in the logic as “miscellaneous

bits” in the left half of the location that receives the program count. In returning from the

subroutine, the program may use a jump that restores the bits to their original states. Included

in the miscellaneous bits are the two carry flags, overflow, PC change, user, and a control

bit that is used in a special case for returning from a priority interrupt. The four byte manip-

ulation instructions that load or deposit a character require two main sequences for their

execution, and a priority interrupt can occur between them. The first part fetches and, if

necessary increments the pointer; the second operates on the byte. If the program jumps to

a subroutine for an interrupt that occurs between the two parts, bit 4 is set in the PC store

location. Then in the subroutine, the program may determine whether a character operation

was interrupted; and upon the return, the stored bit ensures that the interrupted instruction,

which must be restarted, will not reincrement the pointer.

2-9

2.2 MAIN SEQUENCE

This section is devoted primarily to the manner in which the processor main sequence executes

an instruction and sequences the program, but it also treats the control elements that allow

entry into the main sequence from the console and the executive system which controls the

sharing of processor time by user programs.

a Console Control-

Operator control over the processor is exercised through two types of logical inputs associated

with the keys and switches. Inputs from the switches are control levels that may provide data

or addresses for use by the processor or gates to govern specific processor events. The keys

are momentary contact switches that trigger specific events or initiate sequences although the

level output of a key may also be used as a gate for events associated with the key action. The

complete effect upon the computer of all keys and switches is described in detail in Chapter 3,

Operation; we are concerned here only with the way in which the keys affect processor operation,

in particular the main sequence.

The logic associated with the console keys consists primarily of a key cycle time chain and a

control flip-flop RUN. Normal processor operation is initiated by triggering the main sequence

and setting RUN-the 1 state of this flip-flop allows the completion of each main sequence to

trigger the next so that the processor executes one instruction after another. Whenever RUN

is cleared either from the console or by the program, operation ceases at the end of the cur-

rent main sequence. The stop keys can, of course, affect the computer while it is running, but

most keys that initiate events cannot; only the initiating keys trigger the key cycle. For those

key functions that make use of the main sequence, the key cycle performs the necessary pre-

I iminary operations, such as transferring information in from the console data and address

switches; but for those functions that do not use the main sequence, the key cycle controls

the entire operation.

The operator may place the processor in normal operation by means of the START, READ IN, and

INSTRUCTION CONTINUE keys. For these functions, the key cycle sets RUNand triggers the main

sequence. The INSTRUCTION STOPkey halts the processor at the end of the current main sequence

by clearing RUN. The processor may also be stopped at the end of any memory access by means

2-10

of the MEMORY STOPkey, which disables the return from the memory subroutine to the waiting

sequence. In this case, the processor is still “running” and normal operation may be resumed

through the MEMORY CONTI NUE key which simulate a memory subroutine return. The operator

may also deposit information in the memory location addressed by the ADDRESS switches or

examine the contents of that location while the processor is running. For these two console

functions, a single key cycle is merely inserted between two main sequences. For the remain-

ing functions, the processor cannot be running, i.e., RUN must be 0. The EXECUTE key causes

the processor to execute as an instruction the word contained in the DATAswitches. For this

instruction, the key cycle triggers the main sequence but does not set RUN, so the processor

stops when the instruction is complete. There are also two keys that allow the operator to

examine or deposit information into a sequence of consecutive memory locations without ad-

dressing them individual ly . Each such examine or deposit requires a key cycle and these

functions cannot be performed unless the processor is stopped.

For maintenance purposes, the console has a REPEAT switch. When this switch is on, any key

function can be repeated at a rate determined by a pair of speed controls. The logic enables

this by having the key cycle retrigger itself through a delay whose interval is determined by

the speed setting.

b Instruction Execution

Most instructions are executed by the five cycles that comprise the main sequence: instruction,

address, fetch, execute, and store. Each main sequence begins when the instruction cycle

requests memory access to retrieve an instruction from the location specified by the program

counter. Upon receiving the instruction, the processor enters the address cycle and performs

the effective address calculation as outlined in 2. lb. If an address is indirect, a new address

word is retrieved from memory and the cycle begins again. After repeating the cycle as many

times as is necessary to produce the effective address, the processor goes on to the fetch cycle

to retrieve the necessary operands. If an accumulator is specified, it is retrieved first and sent

to AR. If the instruction uses a double-length operand, a second word is fetched from the next

consecutive accumulator (with location 0 being taken as following location 17) and sent to

MQ. In some instructions, an extra word must be retrieved from the memory location addressed

by either the right or left half of the addressed accumulator. This type of operand is also sent

2-11

to MQ. Finally the processor fetches the memory operand as specified by the effective address

and leaves it in MB. This last fetch is skipped if E is to be used as control information, an

operand, or a iump address.

After fetching the operands, the processor enters the execute cycle in which it performs

whatever logical, arithmetic, or control functions are necessary to carry out the instruction.

This cycle also increments the program counter by one so that it points to the next instruction

in normal sequence. If a iump or skip is being performed, PC is changed following the count.

Finally the processor enters the store cycle to deposit the result, which is usually contained

in AR. For most instructions, the result may be deposited in an accumulator, in memory or in

both as specified by the instruction; for a double-length result, AR and MQ may be stored in

consecutive accumulators. The processor then returns to a new instruction cycle.

Although most instructions are performed by the sequence outlined above, there are many that

are performed by variations of it. The more complicated instructions are performed by special

sequences that are entered from the execute cycle and usually return to the store cycle. Some-

times a special sequence handles the storage itself and returns directly to the instruction cycle.

Other instructions must first fetch and operate on a pointer that provides information necessary

for the retrieval of the true operand; such instructions require in effect two main sequences.

A block transfer repeats the fetch and execute cycles once for every word in the block. When-

ever the execute cycle occurs more than once for a single instruction, the incrementing of the

program counter is inhibited in all but the final occurrence. In this way, PC points to the next

instruction only when the current one is bound to be completed before any interruption can

occur.

The actual form of the sequence and the operations carried out in it are determined entirely

by the instruction code as decoded from the instruction register. The codes are divided into

eightclasses according to the configuration of bits O-2. If these bits contain 111, the instruc-

tion is in the special IOT format and IOT control decodes bits 10-12 to determine which of

eight instructions is specified. If bits O-2 are 000, the instruction is taken to be a programmed

operator-there is no further decoding and the processor enters a special sequence from which

a subroutine must properly interpret the remainder of the code (and of the instruction word for

that matter). In the other six classes the remaining six bits are decoded by the hardware,

2-12

primarily by the logic associated with IR. They may be decoded in a variety of ways depending

upon the instruction class. Occasionally, single bits are used to represent specific operations,

such as specifying the left or right half in a half-word transfer or whether fixed-point multiply

is to interpret the operand as an integer or a fraction. In other cases, groups of bits are

decoded; for example in the Boolean class four bits determine which of 16 Boolean functions is

specified, the other two determine the mode of execution. In some cases, all six bits are

decoded to a single control level for an individual instruction that has no modes.

There are some instruction codes that are not used and are executed as no-ops; the unused octal

codes are those for which no mnemonic is listed in Table A4-1. Since most instruction codes

are divided into sets of bits that are decoded in different ways, it is possible for some com-

binations of mode and instruction to have no effect on the state of the computer and these may

be considered as no-ops. An obvious example is a full-word transfer that does not change the

operand and is performed in the self mode.

The way in which instructions are executed is also influenced by the requirements of the

priority interrupt system and the executive system. The interrupt channels are strobed at the

beginning of every instruction and address cycle; and if a request is discovered, the processor

honors it by entering a special PI cycle in which it executes the instruction in the location

corresponding to the channel being serviced. For a PI cycle, the processor starts a new main

sequence and executes it in the normal fashion except that the address supplied to MA for

instruction retrieval comes from a channel address encoder in the PI system rather than from

PC, and the strobe is disabled so that the PI cycle cannot itself be interrupted. The instruction

executed in a PI cycle must either do an I/O data transfer or transfer control to a subroutine

for further service. If the data transfer requires no further service, the processor automatically

returns to the interrupted instruction; if further action is required, a second PI cycle is executed

so that control can be transferred to a subroutine before honoring any other interrupt. If con-

trol is transferred to a subroutine, the interrupt is “held” so that the processor may again be

interrupted but only on a channel of priority higher than the one being held; the subroutine

is responsible for releasing the interrupt upon completion.

The executive system restricts processor operation in order to permit time sharing by several

programs. When running restricted (user mode), each program must operate within the area of

2-13

core assigned to it; an attempt to use an address outside of the assigned area causes a flag to

be set and immediately initiates an interrupt on the processor channel (the location to which

PC points depends upon the time within the main sequence that the illegal memory request

was made). The execution of a programmed operator (UUO) is unrestricted, but the locations

used by UUOs (40 and 41) are inaccessible to user programs; UUOs executed by user programs

always transfer control to the (unrestricted) routine responsible for overall system operation.

Besides restricting addresses, the user mode traps (as if they were UUOs) attempt to halt the

processor, dismiss an interrupt channel, or operate an I/O device. Instructions executed in

PI cycles are unrestricted even if the interrupted program was running in user mode.

c Executive System

The executive system includes the 8-bit memory protection and relocation registers PR and RLR,

nets that monitor user instructions, and the user flag. These logic elements allow the processor

to be run in a restricted mode to permit time sharing of several user programs. A program that

runs unrestricted (the executive routine) must be responsible for overall system operation. The

executive routine is responsible for scheduling user programs (assigning core areas, entering

user mode, and transferring control to the current program, interrupting when its time is up),

for servicing all interrupts and UUOs, for servicing all I/O needs of user programs, and for

taking action when it receives control because a user program attempted to use an illegal

address or instruction or gave up control through a UUO.

Following power turnon, the processor is automatically in executive (unrestricted) mode, and

when it is not running, the operator may place it in executive mode by pressing the I/O RESET

key (this action also clears the I/O equipment). During a priority interrupt cycle, the pro-

cessor runs unrestricted; but if a user program is interrupted, the user flag (which normally

implements the user restrictions) remains set. Thus unless one instruction suffices to service an

interrupt, the executive routine must within a PI cycle clear the user flag to return the processor

to the executive mode and transfer control to one of its subroutines. Similarly, since all UUOs

are under executive routine control, the instruction in location 41 must be a JSR, which stores

and clears the user flag. The executive routine enters a user program by means of a iump which

sets the user flag (JRST with a 1 in bit 12). The return to a user program after an interrupt or

UUO may be made by means of a restoring JRST (a 1 in bit 11). This instruction restores all

2-14

other flags to their original states and can set the flag but can never clear it. This prevents

a user program from leaving user mode as a result of an incorrect restoring JRST.

Each user program is assigned a block in core whose first location is an integral multiple of

2000 octal (since the executive routine must use locations 40 to 57 to service UUOs and

interrupts, 2000 is the lowest first address available for a user block); the block size is also

an integral multiple of 2000. A user program is restricted to addresses from zero to one less

than its block size; if it attempts to use an address equal to or greater than its block size, the

illegal operation flag is set and an interrupt occurs immediately on the processor channel.

To assign a core area to a program, the executive routine uses a processor DATAO, which

loads PR and RLR, respectively, from bits O-7 and 18-25 of the data word. Each time the

memory subroutine is called during a user program, the executive system tests for an illegal

address by checking that the address does not exceed C(PR) x 2000 + 1777; the size of the

block is equal to [C(PR) + 11x 2000. At the same time the user address is relocated by adding

the block starting address to it; i.e., the address sent out on the memory bus is equal to

C (RLR) x 2000 + C (MA). Addresses 0 to 17 are never relocated, so all programs have access to

fast memory (note that this means that no user program ever uses the first 16 core locations in

its assigned block).

The user flag implements the restrictions on a user program by enabling the relocation and

protection circuits and enabling the nets that monitor user instructions. A user program may

not use a JRST with a 1 in bit 9 or 10 (an attempt to dismiss an interrupt channel or halt the

processor) nor any IOT. These instructions are trapped by having their IR decoder outputs

drive the UUO command line when the processor is in user mode. As mentioned above, UUOs

are unrestricted, i .e., unrelocated location 41 is executed. Thus in user mode, an illegal

instruction is executed as if it were a UUO and thereby returns control to the executive routine.

2.3 ARITHMETIC LOGIC

The arithmetic part of the processor includes the three full-size registers AR, MB, and MQ,

the two 9-bit registers SC and FE, the time chains that execute the special sequence instruc-

tions and subroutines, and a subroutine interface through which connections are made from

the special time chains to the gating for the three main registers. Included in the AR part of

2-15

the logic are four flags, AROV, AR CRYO, AR CRYl, and PC CHG. The states of these flags

are stored as miscellaneous bits and may be restored by a JRST; they may also be sensed for a

iump and cleared by a JFCL.

Transfers of ful I words or half words may be made between MB and AR, transfers of ful I words

between MB and MQ. MB may also receive PC, IR, or the miscellaneous bits for storage in

a UUO and in certain jumps. The two halves of a word can also be interchanged (swapped)

in MB. Although the AND function of MB and AR can be formed in MB, it usually plays a

passive roll in logical and arithmetic operations by holding an operand which is combined with

an operand in AR. Associated with AR is a myriad of gates that implement the clearing or setting

of individual bits in a word according to a mask, the formation of the complement, OR, AND,

and exclusive OR logic functions,’ and the shifting of bits left or right. There is also a carry

function which can be triggered at any point in the register and produces an arithmetic carry

to the left; i.e., it complements the first bit, complements the second if the first changes from

1 to 0, and ripples to the left in this manner until it complements a 0 bit. If this carry chain

is triggered only at the register LSB, it adds 1 to the number represented by the contents of

the register . Some instructions use the left and right halves of a word to hold a word count

and an address; in order to allow indexing of both half words simultaneously, the carry chain

can be triggered at AR17 and AR35 Although this is used as two simultaneous index functions,

there is no break in the carry chain and an overflow from the right half can carry into the left:

hence the pair of index functions effectively adds 1000001 to AR. The above I isted functions

are the only ones that can be performed directly-all others are executed by combinations of

them. If following an exclusive OR, the carry function is triggered at a number of places in

the register (the particular places being determined according to the addition algorithm by the

previous configuration of the words in MB and AR), it generates the algebraic sum in AR of

the numbers originally in MB and AR. Negation (which always means arithmetic negation) is

performed by complementing and adding 1. In subtraction, the number in MB must be subtracted

from that in AR: for fixed point, the processor performs subtraction by complementing AR, then

adding and complementing the result; for floating point, MB and AR are switched and the sub-

trahend in AR is then negated so the result can be produced merely by adding. Multiplication

or division is a sequence of shifts with additions or subtractions interspersed.

2-16

The third register, MQ, is used occasional I y for temporary storage and there is a special case

in character operations where AR and MQ are shifted in parallel for control purposes, but

MQ serves primarily as a right extension of AR for handling double-length operands. For

actions on a pair of accumulators, the two registers are joined end to end and the double-

length operand may be shifted in either direction. Moreover, the opposite ends of both

registers may be joined to form a ring and the contents rotated in either direction. In multi-

pl ication, the multiplicand comes from AC and the multiplier is either C(E) or E, but when

performing the actual arithmetic operation, MB holds the multiplicand and the mul tip1 ier in

MQ controls the formation of partial products in AR. As bits of the multiplier are used and

shifted out of MQ, the low-order bits of the double-length product are shifted in. In division,

MQ holds the low-order half of the double-length dividend and as bits are shifted out to AR

for use by the division steps, bits of the quotient are shifted in at the least significant end.

At the completion of the computation, MQ contains the quotient and AR the remainder, but

the divide subroutine then switches their positions so the quotient can be stored in AC.

In floating-point operations, the exponent is first calculated in SC, whose gating provides

addition and indexing. In floating scale, the only operations performed are on the exponents.

For other floating-point instructions, the exponent is calculated in SC and then stored in FE

while SC is used to count the steps in the fixed-point part. Following computations, the

exponent is transferred back to SC in case it must be changed while normalizing the result,

and finally from SC it is inserted in the exponent part of AR. SC is also used to calculate the

position portion of a pointer for a character operation that increments, and from SC the new

position is inserted in the pointer in AR.

in addition to the registers, the arithmetic logic also includes the time chains and many con-

trol nets for executing the special sequences and subroutines. The basic subroutines, which

can be called from any higher level, are the AR subroutine group (which includes fixed-point

addition, subtraction, negation, and indexing in either direction), the SC addition subroutine,

and the SC shift-count subroutine which simultaneously counts SC and shifts AR and/or MQ

(for shift instructions both registers are shifted even though for a single operand only AR con-

tains information). For fixed add and subtract, the execute cycle calls the AR subroutines

directly. For other instructions, the processor switches from the execute cycle to a special

sequence which calls the lower rank subroutines and which usually returns to the store cycle.

2-17

The sequences for character operations, block transfer, shift operations, and floating scale

call only the basic subroutines (including the memory subroutine). Floating multiply and

divide begin by calling the exponent calculate subroutine, then the multiply or divide sub-

routine whichever is appropriate, and both terminate by entering the normalize return sub-

routine which also follows the floating add-subtract sequence. The fixed multiply sequence

calls only the multiply subroutine; fixed divide does not make use of an intermediate special

sequence but instead enters directly into the divide subroutine.

2.4 MEMORY INTERFACE

The interface that connects the processor to the memory bus includes the memory address register

MA, memory buffer MB, user mode registers PR and RLR, memory indicator register Ml, and

the control logic for the memory subroutine. A processor cycle or special sequence gains access

to memory by triggering the memory subroutine, which has entries for read, write, and read-

pause-write which must later be followed by a read-write restart. The calling sequence must

also supply an address to MA, and if information is to be written, a word to MB. If the pro-

cessor is in executive mode, the subroutine places the appropriate request levels on the bus

immediately, but for user mode there is a delay while the address in MA is compared with PR.

An illegal address causes the processor to go to the end of the current main sequence and sets

the illegal operation flag requesting an interrupt on the processor channel.

While the comparison against PR is being made, the outputs of RLR and the more significant

MA bits are applied to a set of dc adders whose outputs represent the sum of the two registers.

If the address in MA is legal, memory control puts the relocated address on the bus (low-order

bits are supplied directly from MA, high-order bits from the relocation adders). In the address

as received by memory, MA34 supplies the least-significant bit of the address within a single

memory and bit 35 is used as the LSB to select the bank. In this way, consecutive addresses

are interleaved-all odd addresses in one bank, all even in another. A switch at the memory

allows the operator to disable this feature when using a 16K bank (with 8K banks, addresses

must be interleaved).

The processor memory subroutine requests a memory cycle by calling memory as a subroutine,

and it must wait until the addressed memory accepts the request, which does not occur until

2-18

the memory is free and this processor has priority. The processor restarts upon receipt of an

acknowledgement signal from memory. If the request is for a write cycle, the processor need

wait only until the memory accepts the word in its own buffer; but for a read cycle, it must

wait until it receives the information read from the memory location. If the request is made

to fast memory, the write takes slightly longer than the read because there is no buffer. If

the request is not acknowledged within a considerable time compared to a memory cycle, the

nonexistent memory flag is set, requesting an interrupt on the processor channel. Following

the acknowledgement signal, the memory subroutine sends a restart pulse to the waiting

sequence unless the MEMORY STOP key is on. To restart the processor after a memory stop, the

operator must simulate the return to the waiting sequence by pressing theMEMORY CONTINUE

key.

If the address in MA is the same as that in the console ADDRESS switches or the operator is

examining or depositing information from the console, the contents of the memory buffer are

displayed in the memory indicators. On a read MI displays the information read, on a write

it displays the information to be written.

2.5 INPUT-OUTPUT SYSTEM

At the processor end of the I/O bus is the in-out transfer control logic that times the transfer

of data, initial conditions, and status over the bus by sending command signals (also over the

bus) to the device control units. Two of the devices on the bus are the priority interrupt

system located in the processor, and the processor itself whose I/O interface contains a number

of flags through which internal processor conditions can request priority interrupts and which

allow the processor to check its own internal status with IOT instructions.

When the code 111 appears in bits O-2 of the instruction register, the processor IOT control

decodes bits lo-12 to determine the specific IOT instruction. Upon reaching the execute

cycle, the processor switches to a special IOT sequence that times the instruction operations

and generates the necessary command signals. Only four types of command signals are sent

out on the bus; these are for DATAI, DATAO, CONO, and STATUS, of which the first three

correspond to individual IOT instructions. BLKI or BLKO requires signals on the bus only

2-19

after conversion to a DATAI or DATAO. CONI, CONSZ, and CONS0 bring conditions in

and the latter two then perform tests; all three generate the STATUS command and affect the

peripheral equipment in exactly the same way.

While IOT control is generating the command signals, the device code from IR bits 3-9 is sup-

plied over the bus to enable a gate in the device with that assigned code; signals are sent to

ail devices but only the selected device can respond. Data or initial conditions are supplied

from AR over the bus to the selected device; data or status is supplied from the device over

the bus to AR. Among the initial conditions that CON0 may supply to a device is a priority

interrupt assignment; CON0 assigns a channel from 1 to 7 (zero is no assignment); and when-

ever the device requires service, it requests an interrupt by sending a request signal to the PI

system on the bus I ine corresponding to its assigned channel. Every device except the PI

system itself can receive at least one PI assignment.

The PI lines go to the priority interrupt system which contains three 7-bit registers, PIO, PIR,

and PIH, to control the seven channels. A given channel is governed by one flip-flop from

each register . The PI0 flip-flop turns the channel on or off. The PIR flip-flop synchronizes

the request to the processor main sequence and in conjunction with the remaining PIR flip-flops

and a priority chain, generates an internal request signal for the channel that has priority.

The PIH flip-flop holds a break on the selected channel. There are also three control flip-flops

for the interrupt system, one that activates it, another that places the processor in a PI cycle,

and a third that detects overflow from a block IOT performed in a PI cycle. By checking status,

the program can determine whether the system is active and which channels are on. The processor

strobes the PI lines at the beginning of every instruction and address cycle, and synchronizes

a request signal from any PI line provided that the corresponding channel is on. If a PIR is on

(a CON0 can set the PIR for a channel even if the channel is off), the processor enters a PI

cycle and starts a new main sequence which honors the request by performing the instruction ‘I

in a particular memory location associated with the channel (if several PIR flip-flops are set,

the lowest numbered channel has priority). To retrieve the instruction, MA receives the address

from an encoder in the PI system. The encoder outputs are connected to MA in such a way that

the channel number is doubled and added to 40. Thus for channel n, the processor executes

the instruction in location 40 + 2n (the PI system uses locations 42 to 57, two for each channel).

This instruction should be either a JSR to an appropriate subroutine or a block IOT to handle

2-20

a data transfer. If it is a BLKI or BLKO and there is no overflow, the processor returns im-

mediately to the interrupted program (another priority interrupt can occur before any instruc-

tion in the interrupted program is actually executed). If there is overflow, the processor goes

into a second PI cycle in which it performs the instruction in location 41 + 2n, which should

be a JSR to an appropriate subroutine. An instruction in a PI cycle should be either a BLKI,

BLKO, or JSR; other instructions can be executed but they usually would have unfortunate

consequences for the program and could even hang up the processor. If there is a iump to a

subroutine, the break is held by setting the PIH flip-flop for the channel. This disables part

of the priority chain so that the break routine can be interrupted only by a channel of higher

priority. At the completion of the subroutine, the program should dismiss the channel so as

to reenable all lower priority channels as well as the channel on which the break occurred.

. 	Since a BLT may require considerable execution time, the PI request lines are also strobed

following each word processed in the block. Whenever a request is discovered, the current

source and destination addresses are stored in the accumulator and the partial block is terminated.

The processor then begins a new main sequence as if to restart the block transfer, but is inter-

rupted instead.

The I/O interface for the processor contains the flags discussed in 2.15 except for the four

flags associated with AR and the user flag in the executive system. However two of the AR

flags, overflow and PC change, can be set by the CON0 that controls the interface flags and

supplies it with a PI assignment, and these AR flags plus the user flag can be sensed as pro-

cessor status (although the user flag is meaningless as status since it is 0 by definition whenever

an IOT can be executed). The flag set by an illegal user address, a pushdown list overflow,

or a request made to a nonexistent memory automatically requests an interrupt on the processor

channel. Setting the clock, overflow, or PC change flag can cause an interrupt only if it has

been enabled by a CONO. The program may also use data instructions for the processor:

DATA0 loads PR and RLR for a user program; DATAI brings in information from the console data

switches.

Control units for other devices each contain a data buffer for transfers between the I/O bus and

the device, an interface for control ‘connections to the device, and an interface for control

connections to the bus. The size of the buffer depends upon the device. It is 36 bits if full

2-21

words can be transferred, but smaller if the transfers must be single characters. For an output

device, the buffer can be loaded by DATAO; for an input device, DATAI gates the buffer onto

the bus. The interface between the control unit and the bus includes a control register and a

status register, which usually overlap and may be identical. For initial conditions, CON0

can provide at least one PI assignment, plcce the device in operation, clear whatever error

flags there may be, and often provide additional information such as determining the mode of

operation or selecting an individual device from several that are connected to the same control

unit. Usually all control bits can be examined as status and often additional status signals are

supplied by the device. In most cases, the data instructions also perform certain control func-

t ions. For input, the loading of the buffer with information from the device usually sets a

flag causing a priority interrupt. The processor responds with a DATAI that not only gates the

buffer onto the bus but also clears the flag and initiates the retrieval of more information. For

output, the transfer of information from the buffer to the device sets a flag causing an interrupt,

and the processor responds with a DATA0 that not only supplies new information but clears the

flag and initiates the next transfer from buffer to device.

Included in this manual are the control units for four I/O devices. The paper tape reader has

a 360bit buffer but information may be retrieved in two modes. In alphanumeric mode, only

one 8-bit line is read from the tape; in binary mode, the control unit accepts data from holes

1-6 only in lines in which hole 8 is punched, but it assembles six such characters into a 360bit

word. The punch handles only one character at a time but it still has two modes. In alpha-

numeric, it punches an 8-bit character; in binary, it punches a 6-bit character in holes l-6,

never punches hole 7, and always punches hole 8. The keyboard-printer is actually two

independent devices with one PI assignment. For output, the processor prints single characters;

for input, each character typed by the operator is placed separately on the bus. Characters

typed at the keyboard are not printed unless the program sends them back out. With the card

reader, only a CON0 can initiate operations but only one CON0 is required per card because

once a card is started all 80 columns are read. The program can specify whether an interrupt

shall be requested following each column or only when the buffer is full. In binary mode, all

twelve holes of each column are read and three columns are assembled into a word. In alpha-

numeric mode, the Hollerith character in a column is translated into a 6-bit character and

the control unit assembles six into a word. If an interrupt is requested but is not serviced before

a new column is read, an error flag is set.

2-22

CHAPTER 3

OPERATION

This chapter discusses the normal operation of the arithmetic processor, reader, punch, Tele-

type, and card reader; some maintenance information is included, but the detailed discussion

of operation for maintenance purposes is in Chapter 9. Although this chapter is relatively self-

contained, it is recommended that the reader first familiarize himself with the functional organ-

ization of the equipment as presented in Chapter 2.

3.1 CONTROL PANELS

This section describes the function of the controls and indicators that are readily accessible to

the operator; those mounted behind the doors of the bays are described in 9.1 . All controls

for normal operation of the processor, reader, and punch are on the main operator panel at the

center of the console; this panel also contains most of the processor indicators. The panels at

the top of bays 1 and 2 contain only indicators, most of which are for maintenance purposes.

Indicators for the four in-out devices are on the upper part of the panel located behind the

metal cover at the top of the right console bay (the lower part of this panel contains the mar-

ginal check controls, which are described in 9.1).

The name used in the logic drawings for a register or control level is listed in parentheses

whenever it differs from the name engraved on the panel. When any indicator is lit, the

associated flip-flop is in the 1 state or the associated function is asserted. Indicators for logic

elements that retain their states over a considerable number of main sequences display useful

information while the processor is running, but most indicators change too frequently and are

therefore discussed in terms of the information they display when the processor has stopped.

For maintenance purposes, the processor may be stopped from the console after every memory

subroutine. Switches located inside the bay doors allow stopping after AR subroutines and

single stepping through a shift-count. However, the discussion here is limited to stops at the

end of a main sequence, i.e., at the completion of an instruction. This includes all pro-

grammed halts as well as the situation in which the operator latches down the INSTRUCTION

STOP key to run a program at slow speed stopping after every instruction.

3-l

a Console Operator Panel

This panel contains indicators for most of the registers and control flip-flops that are of concern

to the operator and contains all of the operating keys and switches. The switches supply con-

tinuous levels and all but the rotary speed controls and the console lock are Z-position toggles

for which up is 1 or on. The keys are momentary contact levers that initiate or terminate oper-

ations, or produce an action only while held on.

Indicator Registers

INSTRUCTION (IRO-8) - Bits O-8 of the instruction just completed. If the left three lights are

all off, the instruction is a UUO and the remaining bits are defined by the program; if the left

three are on, the instruction is an IOT and the remaining lights display the first six bits of the

device code. Any other configuration of the first three bits indicates the basic format, for

which the register contains the instruction code.

AC (IR9-12) - For instructions using the basic format, these four bits are usually an accumu-

lator address, but for some instructions they are used for special purposes such as addressing

flags. In an IOT instruction the left bit is the LSB of the device code; the remaining three

bits specify one of the eight IOT instructions.

I (IR13) - This is the indirect bit, and it should always be off when the processor has stopped

at the end of an instruction.

INDEX (IR14-17) - Contains the address of the last index register used in the instruction just

completed. If the four lights are all off, there was no address modification in the final address

cycle.

MEMORY (Ml) - This 36-bit register displays the contents of the memory location associated

with any console examine or deposit operation. The I ights may also be used to display any

desired location while the processor is running.

3-2

PROGRAM COUNTER (PC) - This 18-bit register contains the address of the next instruction

in the program.

MEMORY ADDRESS (MA) - 0 n a programmed halt this 18-bit register indicates an address

one greater than that of the location containing the halt instruction. On an instruction stop

in slow speed operation, the register usually contains the address used for the last memory

access. However, if there was no storage, either in the store cycle or in a subroutine, it

contains the effective address, which may or may not be the address of the last memory access,

In addition to the above there are three processor registers located at the top of the in-out

panel (c below).

Switch Registers

DATA (DS) - Th is register allows the operator to supply a 360bit word to the processor. The

operator may either deposit the word in memory or cause the processor to execute it as an in-

struct ion. The program may also read DATA with a DATAI for the processor.

ADDRESS (MAS) - By means of this 18-bit register the operator may specify address for use

with the operating keys and switches. Whenever the memory subroutine gains access to the

location specified by ADDRESS, the contents of that location are displayed by MEMORY.

For a read request MEMORY displays the word read; for a write request the word written is

displayed.

Control Indicators

RUN - Lit while the processor is running in normal operating mode, with each main sequence

triggering the next. When the light goes off, the processor stops upon completion of the cur-

rent instruction.

MEM STOP (MC STOP) - If this light goes on at the beginning of a memory subroutine, the

processor stops after memory access is completed because the subroutine fails to send a restart

3-5

pulse to the calling sequence. If RUN is also on, the processor can be restarted only by I ifting

the MEMORY CONTINUE key. If RUN is off, other keys may be used but only MEMORY

CONTINUE restarts the interrupt key function.

PI ON (PI ACTIVE) - Indicates that interrupt requests can be granted by the priority interrupt

system.

PI ACTIVE (PI01 -7) - Th ese lights indicate which PI channels are on. The numerals below

the lights specify the channels for these and the following two sets of indicators.

PI REQUEST (PIRl-7) - These lights indicate the channels on which requests have been synchro-

nized. The program can force a request even if a channel is not on; for a request from any

other source the REQUEST light can go on only if theother source the REQUEST light can go on only if the corresponding ACTIVE light is on.

PI IN PROGRESS (PIHl-7) - These lights indicate thePI IN PROGRESS (PIHl-7) - These lights indicate the channels on which breaks are currently

being held.being held. Several lights may beSeveral on simultaneously,onlights may be simultaneously, but while a given light is on, no higher-

numbered light may go on; a lower-numbered channelnumbered light may go on; a lower-numbered channel can interrupt following the PI cycle(s),

and the channel that is actually being serviced is theand the channel that is actually being serviced is the lowest-numbered one whose light is on.

When a PROGRESS light goes on (following a jump toWhen a PROGRESS light goes on (following a jump to a routine for the break), the corresponding

REQUEST goes off and cannot go on again until PROGRESS goes off.

If a break is serviced by a block IOT without overflow, the PIH flip-flop is set and cleared

within a single PI cycle so REQUEST goes off without PROGRESS going on. If there is over-

flow, two PI cycles are required; at the end of the first, PROGRESS will not yet be on and

REQUEST will still be on even though the break is being serviced. However, in this case the

PI OV, PI CYC, and PI REQ lights at the top of bay 1 will all be on. The lights act in this

way because PROGRESS can go on and remain on in a PI cycle only if the instruction per-

formed is not an IOT. Thus a faulty program can hang up the processor in a PI cycle, and the

only visual indication that the break is being held is that PI CYC and PI REQ will be on. For

example if the channel location contains a CONO, the processor will repeat the instruction

indefinitely with REQUEST on and PROGRESS off; PC will be static and will point to the next

instruction in the program.

3-6

Operating Keys

In the right half of the operator panel is a row of eight 3-position switch levers, each of which

is two logical keys. The momentary contact, up and down positions of a given lever are the

on positions for the keys whose names are written above and below; the stable center position

is off for both keys. The two levers at the right end of the row control the reader and punch,

and these may be used at any time whether the processor is running or not. The other twelve

keys affect the processor, and of these, two are stop keys, the others are initiating keys (i.e.,

they trigger the key cycle). Although special considerations for individual keys are given below,

it is assumed throughout the discussion that the executive system is not in use, i.e., that both

operator and program have access to all of memory and no operations are illegal. In order to

use the keys properly when the executive system is in use, the operator must be fully aware of

the special conditions imposed (a complete discussion of the relation of the keys to the pro-

grammed operation of the system is presented in 3.3t$.

START - This key functions only if RUN is off. It places the processor in normal operation

(lighting RUN) an d causes the first instruction cycle to retrieve an instruction from the location

specified by the ADDRESS switches.

READ IN - This key is exactly the same as START except that it also causes the processor to

enter the readin mode, lighting the RIM SBR indicator at the top of bay 1. In this mode the

fast memory is disabled, and any memory cal I with an address 17 or less is given access to the

readin area, the normally inaccessible bottom 16 core locations. Whenever an instruction is

retrieved from any location above 17, the processor leaves the readin mode.

INSTRUCTION STOP (INST STOP) - T urns off RUN, causing the processor to stop at the com-

pletion of the current instruction. This key has a catch that allows it to be left in the on pos-

ition for single step operation. The turnon of the key triggers events that faci litate emergency

stops (for detai I s see 3.3~).

INSTRUCTION CONTINUE (INST CONT) - This key functions only if RUN is off. It causes

the processor to resume normal operation (lighting RUN) beginning with the instruction in the

3-7

location specified by PROGRAM COUNTER. By leaving INSTRUCTION STOP on, the

operator can single step instructions by pressing INSTRUCTION CONTINUE. The latter key

also has a catch so that by leaving both keys on and using the REPEAT switch, a program can

be run at slow speed.

MEMORY STOP (MEM STOP) - This key has a catch that allows it to be left in the on position

for single step operation. While the key is on, the MEM STOP light goes on at the beginning

of every memory subroutine, causing the processor to stop at the completion of each memory

access. During single step operation a call for read-pause-write in the fetch cycle generates

only a read request so the processor does not hold memory during the stop. The subsequent

restart then triggers a separate write cycle. This key is used only for maintenance purposes

and the meaning of the lights depends upon where the stop occurs within the main sequence.

However, MEMORY ADDRESS always displays the location to which access was made.

MEMORY CONTINUE (MEM CONT) - Th’IS k ey f unctions only if the MEM STOP light is on,

and it then restarts whatever sequence was interrupted by the MEMORY STOP key (it also

turns off the light). By leaving MEMORY STOP on, the operator can use MEMORY CONTINUE

to single step by memory cal Is. The latter key also has a catch so that by leaving both keys on

and using the REPEAT switch, a program can be run at slow speed from one memory call to the

next.

EXECUTE (EXEC) - Th’IS k ey f unctions only if RUN is off. It causes the processor to execute

the instruction contained in the DATA switches and stop immediately upon completing it.

While the key is on, the normal program counting in the execute cycle is inhibited; thus PC

cannot be affected unless a skip or iump is executed. A programmed skip always increments

PC once for the normal program count and may increment it a second time for the skip; from

the console a skip increments PC at most once. A programmed jump always increments PC

before saving it so that it points to the next instruction in the program; when executed from

the console, a iump loads PC normally but saves the count that is already in it.

IO RESET - This key functions only if RUN is off. It clears all flags, control flip-flops and

control registers in the processor (placing it in executive mode) and in most equipment con-

nected to the in-out bus.

3-8

DEPOSIT THIS (DEP) - Deposits the contents of DATA in the location specified by ADDRESS.

The word deposited is displayed by MEMORY. If RUN is off during the deposit, the processor

stops with the MA lights displaying the address of the affected location. This key should be

used while the processor is running only if there is no chance of a program halt occurring (3.3b).

DEPOSIT NEXT (DEP NXT) - This key functions only if RUN is off, It deposits the contents of

DATA in the location whose address is one greater than that specified by MEMORY ADDRESS,

and the word deposited is displayed by MEMORY. At the completion of the operation MA

contains the address of the affected location.

EXAMINE THIS (EX) - C auses MEMORY to display the contents of the location specified by

ADDRESS. If RUN is off during the operation, the processor stops with the MA lights displaying

the address of the examined location. This key should be used while the processor is running

only if there is no chance of a program halt occurring (3.3b).

EXAMINE NEXT (EX NXT) - Th’IS k ey f unctions only if RUN is off. It causes MEMORY to

display the contents of the location whose address is one greater than that specified by MEM-

ORY ADDRESS. At the completion of the operation MA contains the address of the examined

location.

READER ON - Turns on the reader motor, energizes the brake, and triggers a PI request on the

reader c hanne I .

READER OFF - Turns off the reader motor, releases the brake, and triggers a PI request on the

reader channel.

READER FEED - Feeds tape through the reader while held on (provided the reader is on).

PUNCH FEED - While th’ IS k ey is held on, the punch generates blank tape, i .e ., tape with

only feedholes punched.

3-9

Operating Switches

The first four switches are toggles located at the right end of the operator panel, and associated

with each is an indicator that lights while the switch is on.

POWER - This switch applies power to the processor and the control units for reader, punch,

and Teletype, and makes power available to all external units (memories, peripheral equip-

ment) whose local power controls are in remote. Almost every unit has its own power switch,

which if left on, allows the unit to come on with system power. Exceptions include the reader,

which must be turned on and off at the processor console, and the punch, which is turned on

by the logic and goes off automatically whenever it is not called for 5 sec. After turning

POWER on, wait a few seconds to allow the power clear to terminate and memory power to

come on.

ADDRESS STOP (ADDR STOP) - While this switch is on, a memory stop occurs whenever access

is made to the location specified by the ADDRESS switches. At the stop the MEM STOP light

is on, and MEMORY displays the word read or written. Throughout the time that the switch

remains on, any fetch cycle call for read-pause-write generates only a read request, so the

processor does not hold memory following the stop. The subsequent restart then triggers a

separate write cycle.

DISABLE MEMORY (MEM DISABLE) - While this switch is off, the failure of a memory to re-

spond within 100 psec to a request for access turns on the NONEX MEM light on the bay 1 in-

dicator panel, causing a PI request on the processor channel. If the switch is on, such failure

causes the processor to hang up in the memory subroutine. The operator can free the processor

by pressing INSTRUCTION STOP and then I/O RESET.

REPEAT - Causes the sequence initiated by an operating key to be repeated as long as the key

is held on. The sequence is iterated at a rate determined by the SPEED switches.

SPEED - These switches allow the operator to vary the repeat interval from 3.4 psec to 8 set in

six overlapping ranges. They include a 5-position rotary range switch and a potentiometer knob

for fine control within each range.

3-10

Console Disable - In the lower right corner of the panel is a key-locked switch. Turning the

key clockwise disables all operating keys and switches on the panel (except those for the

reader and punch) so no one can interfere with the operation of the processor.

b Bay Indicator Panels

Figure 3-2 shows the indicator panels at the tops of bays 1 and 2. Bay 2 displays the three

main ful I -word registers: memory buffer MB, arithmetic register AR, and multiplier-quotient

register MCI. Since the results of an instruction are stored in memory, these registers are use-

ful primarily for single-step maintenance operation, and their contents at an instruction stop

depend entirely upon the instruction just performed. If the instruction requires storage, MB

always contains the last word stored. AR contains the word stored in an accumulator (if any),

and for a double-length result MQ contains the word stored in a second accumulator.

On bay 1 are the indicators for flip-flops and control levels. Indicators for the flags described

in 2.1~ are at the right end of the panel. At the top of the third column from the right is the

EXEC MODE I’ rg ht , which is driven from the 0 output of the user flag and is thus lit when the

executive routine is running (or the executive system is not in use). The remaining flags are

as listed in the text, although the names engraved on the panel are in many cases abbreviated

from those used in the logic drawings. PDL OV is at the bottom of the sixth column from the

right. The second light in the third column, CPA ILL OP, is the illegal operation flag, which

indicates that a user program has attempted to address a location outside of its assigned core

area and should not be confused with EX ILL OP just below. The latter flip-flop inhibits re-

location when a UUO or an illegal user instruction is trapped, and the light is always off at

an instruction stop. In the second column are the AR overflow and carry flags and the PC

change flag. The carry flags should not be confused with the carry flip-flops above them:

the flip-flops detect carries in AR and their states are transferred to the flags only in those

instructions wherein the information is relevant to the program. The remaining flags are in

the right column.

Besides the flags, the indicator panel also includes shift counter SC, floating-exponent reg-

ister FE, several important control levels, and a multitude of flip-flops that govern the se-

quencing of the various processor cycles, special sequences, and subroutines. The following

3-11

indicators are of importance to the operator in normal operation (un Iess otherwise specified,

the meaning of a light is given for an instruction stop):

KEY EX SYNC, KEY EX ST - If the operator presses EXAMINE THIS while the processor is

running and it stops with both of these lights on, the desired key function has not been per-

formed. If only the sync light is on, the operation may have been performed incorrectly (see

3.3b). If the key is pressed while RUN is off, the start light does not go on at al I, but the

sync light goes on and remains on until some other initiating key is pressed.

KEY DEP SYNC, KEY DEP ST - If the operator presses DEPOSIT THIS while the processor is

running and it stops with both of these lights on, the desired key function has not been per-

formed. If only the sync light is on, the operation may have been performed incorrectly (see

3.3b). If the key is pressed while RUN is off, the start light does not go on at al I, but the

sync light goes on and remains on until some other initiating key is pressed.

CHF7 - If this light (bottom, fifth column from left) is on following a PI cycle that executes

a BLKI or BLKO, an interrupt has occurred between the two parts of a character operation.

Following a JSR in a PI cycle, the light will be off even if a character operation was interrupted.

If CHF7 is on following a JRST, the instruction is returning from a break and the processor is

about to restart an interrupted character operation.

SPLIT SYNC - Indicates that if there was a read-pause-write call during the preceding fetch

cycle, it triggered only a read request, and the subsequent restart triggered a separate write

cycle.

STOP SYNC - Indicates that the preceding fetch cycle triggered a read-pause-write memory

cycle.

PI OV - Indicates that a BLKI or BLKO performed in a PI cycle has overflowed.

3-12

PI CYC - This light goes on when a PI request is honored, but is still on at the completion of

an instruction only if a second PI cycle is required for the interrupt (i ,e., the instruction was

a BLKI or BLKO that overflowed).

PI REQ - At the completion of an instruction this light is on whenever PI OV and PI CYC are

on. If those two lights are not on, PI REQ indicates that the PI system is active and a request

that has been synchronized has not yet been honored. This can occur if a previous instruction

activated the system and some requests were already waiting. If the system was already active,

either a request was made by the program or synchronized by a BLT, or several requests were

synchronized simultaneously and the processor has just finished servicing one of those with

higher priority.

A LONG - Indicates that the address cycle of the preceding instruction used an index register

for address modification or used an indirect address.

MA = MAS - Indicates that the number displayed by the MEMORY ADDRESS lights is identical

to that contained in the ADDRESS switches. This light is on whenever an address stop occurs

but may be on at other times as well.

EX PI SYNC - Indicates that the main sequence just completed was a PI cycle. This light

remains on even when PI CYC goes off before the instruction is completed.

RIM SBR - Goes on when the operator presses the READ IN key and remains on until an in-

struction is retrieved from a location above 17. The light is always on if the system includes

no fast memory, or if it is not in use.

PIA 33, 34, 35 - Indicate the PI channel assigned to the processor. If all three lights are off,

no channel has been assigned.

At the completion of an instruction, SC and FE may have any configuration. Besides the flags

and the control indicators discussed above, the following lights may be on at an instruction

stop: MC WR, NRFZ, NRF3, DSF7, MPF2, SC = 777, UUOFl, EX UUO SYNC (always on),

3-l 3

MQ36, CRY0 V CRYI, AR CRYO, AR CRY1 . None of the remaining lights should be on at an

instruction stop. At a memory stop MC RD will be on if the memory cycle was used to retrieve

information, and at least one other light will be on to indicate the point at which a time chain

is stopped awaiting the return from the memory subroutine. For example if KEY RD/WR in the

left column is on, the memory stop occurred in an examine or deposit operation initiated at

the console. Refer to 9.1 for further information on the use of these indicators for maintenance

purposes.

CAR0 R E A D E R

Figure 3-3 In-Out and Marginal Check Panel

c In-Out Indicator Panel

Figure 3-3 shows the panel that contains the in-out indicators and the marginal check controls

(the latter are described in 9.1). At the top of the panel are three 8-bit indicator registers

that are associated with the executive system rather than the in-out equipment. These are as

fol lows:

3-14

MEMORY PROTECTION (PR) - D e f ines the size of the block in core available to a user program.
10

The number of locations in the block is 2 times the number one greater than that contained in

the register. Each program must use addresses from zero to one less than the block size. If a

user attempts access to an address greater than the number in PR followed by ten ones, i .e.,

to an octal address greater than C(PR) x 2000 + 1777, the processor skips the remainder of the

current instruction, and the CPA ILL OP light at the top of bay 1 goes on causing a priority

interrupt on the processor channel.

MEMORY RELOCATION (RLR) - Specifies the position of a user block in core. The address

of the first location in the block is the number contained in RLR followed by ten zeros. Each

user address other than for fast memory is relocated to the assigned block by adding C(RLR) x

2000 to the number displayed by MEMORY ADDRESS.

RELOCATED ADDRESS (RLA) - Th ese lights display the most significant eight bits of a user

address as it is placed on the memory bus (the least significant ten bits come directly from MA).

The bottom row of indicators on the panel displays the contents of the 36 data lines in the I/O

bus. Since the bus is reset following every data transfer, the lights should always be off when

the processor is stopped. The remaining lights are the buffers and some of the control and sta-

tus bits for the reader, punch, keyboard-printer, and card reader. Each device has a 3-bit

PIA register that contains the number of the PI channel assigned to it. Whenever the FLAG

light for any device goes on, a PI request is made on the channel specified by the associated

PIA (if all three PIA lights are off, there is no channel assignment). The lights labeled TELE-

PRINTER are actually for two distinct devices, keyboard and printer. Both share a common PI

assignment but have duplicate control bits. The data buffer shown is actually for the keyboard;

the printer buffer is not shown because it automatically clears as each character is being trans-

mitted.

PAPER TAPE PUNCH -

DATA REGISTER (PTPl-8) - Contains the last character punched. The buf-

fer bits are numbered 1 to 8 from right to left and correspond to a frame of

3-15

tape viewed with the feed hole near the right edge. The buffer receives

information from bus lines 28-35, with line 35 supplying the information

for bit 1 .

BIN (B) - While this light is on, any punch operation always punches

hole 8, never punches hole 7, and punches hole 6-l according to the

information on bus lines 30-35. While the light is off, the information

on lines 28-35 is punched.

BUSY - indicates that the punch is in operation.

FLAG - Causes a PI request upon completion of a punch operation. FLAG

goes off when the program supplies another character.

TELEPRINTER -

TTI DATA (Ill1 -8) - Contains the last character received from the key-

board. The buffer bits are numbered 1 to 8 from right to left so that

when a character is shifted in at the left, the first bit received ends up

in buffer bit 1. The character is transferred to the processor over bus

lines 28-35 with bit 1 on line 35.

BUSY, TTI (BUSY, FLAG) - Th is pair of lights (at the left) is for the

keyboard. BUSY goes on when a key is struck. When the entire char-

acter is assembled in ill DATA, BUSY goes off and TTI goes on, re-

questing an interrupt. TTI goes off when the program retrieves the char-

acter.

BUSY, TTO (BUSY, FLAG) - In the right pair of lights, BUSY is on

while a character is being transmitted to the printer. When transmission

is complete, BUSY goes off and TTO goes on, requesting an interrupt.

TTO goes off when the program supplies a new character.

3-16

PAPER TAPE READER -

BUFFER (PTRO-35) - Contains data read from tape but no yet retrieved

by the program. The 36 buffer bits are numbered to correspond to the

bus lines. Characters of six or eight holes from tape are brought in at

the right end of the buffer, with bit 35 receiving hole 1 .

BIN (B) - When this light is on, each reader operation reads hole 6-l

of only those characters in which hole 8 is punched and assembles six

such characters into a 36-bit word. When each character is brought

into the buffer at the right, the previously read characters are shifted

left. When BIN is off, each read operation retrieves a single character,

sensing all eight holes.

BUSY, FLAG - When BUSY goes on, the reader goes into operation re-

trieving information in the manner specified by BIN. When the required

number of characters is retrieved, BUSY goes off and FLAG goes on, re-

questing an interrupt. FLAG goes off when the program retrieves the in-

formation from the buffer. FLAG is also set when the operator turns the

reader motor on or off.

CARD READER -

BUFFER (CRO-35) - The 36 bits of this buffer are numbered left to right

to correspond to the bus I ines. Six-bit characters from cards are brought

in at the right end of the buffer over reader signal lines 1, 2, 4, 8, A, B,

with buffer bit 35 receiving information from line 1 . The program spec-

ifies whether information retrieved from a card is to be placed on the bus

in units of one, two, or six characters. If more than one character is to

be read per bus transfer, previously read characters are shifted left in

the buffer as new ones come in.

3-17

BIN (B) - While this light is on, a card is read in binary mode wherein

each column is read as two characters. The first character is from the

lower half of the column (holes 4-9) with hole 9 on reader line 1; the

second character is the upper half (holes 12, 11, 0, 1, 2, 3) with hole

3 on line 1. If the light is off, reading is in alphanumeric mode in which

the reader converts the Hollerith character in a column to the Burroughs

6-bit code, and six columns are required to fill the buffer.

BUSY - This light goes on when the program requests that the reader be-

gin a card cycle, and the light remains on until the entire card is read.

FLAG - Each time the buffer contains the amount of information speci-

fied by the program, this light goes on, requesting an interrupt. Re-

trieving the data turns FLAG off and clears the buffer, which is cleared

automatica I ly if the program does not respond to the request before the

next column is read. FLAG may light after each column or only when

the buffer is full; depending on whether BIN is off or on respectively,

a single column is one or two characters, and a full buffer contains six

or only three columns. FLAG also signals that the reader has finished

an entire card regardless of the number of characters in the buffer, or

that a card iam has occurred.

CARD DONE - Lit from the time the reader completes one card cycle

until it starts another. It is possible for CARD DONE and BUSY to be

lit at the same time. The program turns on BUSY to cause the reader

to begin a card cycle, but CARD DONE remains on until the cycle actu-

ally starts.

EOF - When the card hopper is empty, pushing the END OF FILE button

on the reader turns on this light. It also turns on FLAG, requesting an

interrupt.

ERR (CREL) - Indicates a validity check or read check error in the reader.

3-18

3.2 OPERATION OF IN-OUT EQUIPMENT

This section describes the normal operation of the photoelectric perforated tape reader, paper

reader, paper tape punch, keyboard-printer, and card reader. Information for other devices

is included in their maintenance manuals and in the operator manual, PDP-6 Operation.

DEC also supplies manufacturer manuals for al I devices included in a PDP-6 system.

a Tape Reader

Figure 3-4 Paper Tape Reader Type 760

Before loading a tape in the reader, turn off the reader motor by pressing the READER OFF key.

This releases the brake so that tape may be inserted, and it also requests an interrupt on the

reader channel to inform the program that the reader is unavailable. Place the fanfold tape

stack vertically in the bin at the right with the tape oriented so that the front end of the tape

is nearest the read head and the feed holes are nearer the reader mounting panel, i.e., away

from the operator. Take three or four folds of tape from the bin and slip the tape into the

reader from the front so it is threaded as shown in Figure 3-4. Make sure that the part of the

tape in the left bin is placed to correspond to the folds, otherwise it will not stack properly.

3-19

Once the tape is properly loaded lift the READER ON key to start the motor and energize the

break. This also requests an interrupt to inform the program that the reader is on. When using

the readin mode loader, always turn on the reader before starting the loader. The program

makes use of the reader by sending signals to the clutch, which moves the tape past the sensing

photoce I Is. After the program has finished reading the tape, run out the remaining leader by

lifting the READER FEED key, or turn the reader off so the tape may be slipped out directly.

b Tape Punch

The punch is located in a drawer at the top of the left console bay. The punch mechanism

faces the right side of the drawer. Fanfold tape is fed from a box as shown in Figure 3-5. Af-

ter punching, the tape moves into a storage bin from which the operator may remove it through

a slot on the front of the drawer.

Figure 3-5 Paper Tape Punch Type 761

3-20

Toload the punch, first empty the chad box below the punch mechanism. Then tear off the

top of a box of fanfold tape (the top has a single flap; the bottom of the box has a small flap

in the center as well as the flap that extends the full length of the box), Set the box in the

frame at the right side of the punch and thread the tape through the mechanism as shown in

Figure 3-5. The arrows on the tape should point in the direction of tape motion. If they point

in the opposite direction, the box was opened at the wrong end; remove the box from the frame,

seal up the bottom, open the top, and thread the tape correctly. After loading the tape, hold

down the console PUNCH FEED key long enough to feed approximately 18 in. of leader.

Make sure the tape is feeding and folding properly in the storage bin.

To remove a length of perforated tape from the bin, first hold down PUNCH FEED long enough

to provide an adequate trailer at the end of the tape (and also leader at the beginning of the

next length of tape). Remove the tape from the bin and tear it off at a fold within the area

in which only feed holes are punched. Make sure that the tape left in the bin is stacked to

correspond to the folds; otherwise, it will not stack properly as it is being punched. After re-

moval, turn the tape stack over so the beginning of the tape is on top, and label it with both

name and date.

c Teletype Keyboard-Printer

The teletypewriter (Figure 3-6) provides two-way communication between operator and com-

puter. It is actually two independent devices, keyboard and printer, which may be operated

simu I taneously . The equipment operates at speeds up to ten characters per second, with 8-bit

characters plus start and stop control signals transmitted serially. Located at the right front

of the unit is a 2-position rotary switch, OFF/LINE. When this switch is set to LINE, the

unit is on line and it goes on and off with system power.

The keyboard resembles that of a standard typewriter with four rows of keys and a space bar.

Striking a key transmits a character to the Teletype control unit connected to the bus, but the

character is printed or the function executed only if the processor sends it back to the printer.

The line feed moves the carriage only vertically with a spacing of six lines to the inch. The

return moves the carriage to the left margin but does not feed a line: to start a new line the

operator must strike both return and line feed. Codes for the characters on the lower parts

3-21

of the key tops can be transmitted merely by striking the keys. Codes for printable characters

on the upper parts (punctuation, ampersand, percent sign) are transmitted by holding down the

shift key when striking the character key. Control codes are transmitted by holding down the

control key, CTRL, when striking the appropriate character key. Codes for all characters

listed on the keyboard and some that are not can be transmitted to the computer, but codes

for some of the control functions have no effect on the printer when sent back. Table A4-2

lists al I codes, their ASCII assignments, and the key combinations required to transmit them.

Because of recent changes in the code, there may be slight differences in the printing char-

acters associated with certain key positions. In such cases alternate characters are listed in

parentheses.

Figure 3-6 Keyboard-Printer Type 626

In line with the space bar below the keyboard are four red buttons. At the right end is the

repeat button REPT. Pressing this button and striking any character key causes repeated trans-

mission of the corresponding code so long as REPT is held down. Characters that require the

shift key may also be repeated in this manner, but there is no repetition of control characters.

3-22

The red button on the left, BRK RLS, is not connected in the console teletypewriter, The

remaining two buttons, LOC LF and LOC CR, are the local line feed and carriage return.

These buttons affect the printer directly and do not transmit codes over the bus.

Paper installation, ribbon replacement, and the procedure for setting horizontal and vertical

tabs are described below. All references are to figures in typing unit section 574-220-l 00 in

Vol. 1 of Teletype Bulletin 281 B (Technical Manual 35 Keyboard Send-Receive (KSR) and

Receive-Only (RO) Teletypewriter Sets).

Paper

The unit has a sprocket feed and uses 8-l/2 x 11 fanfold form paper. The supply is held in a

tray at the back of the unit, and printed forms can be torn off against the edge of the glass

window in front of the platen. To replace the paper first remove the upper cover by pressing

the cover release button on the right side. To free the remaining old paper for remova I, lift

the paper guides by pushing the handle marked PUSH at the right of the platen. To insert new

paper from the tray, offer it up below the platen at the rear, lining up the holes at the edges

of the paper with the sprockets, and press the local line feed button to draw the paper in under

the platen.

Ribbon

Replace whenever it becomes worn or frayed or when the printing becomes too light. Dis-

engage the old ribbon from the ribbon guides on either side of the type block, and remove the

reels by lifting the spring clips on the reel spindles and pulling the reels off (the ribbon feed

mechanism is called out in Figure 4). Remove the old tape from one of the reels and replace

the empty reel on one side of the machine; install a new reel on the other side. Push down

both reel spindle spring clips to secure the reels. Unwind the fresh ribbon from the inside of

the supply reel, over the guide roller, through the two guides on either side of the type block,

out around the other guide roller, and back onto the inside of the take-up reel. Engage the

hook on the end of the ribbon over the point of the arrow in the hub. Wind a few turns of the

ribbon and make sure that the reversing eyelet has been wound onto the spool. Make sure the

ribbon is seated properly and feeds correctly in operation.

3-23

Tabs

The horizontal and vertical tabulator mechanisms are also called out in Figure 4. Each is a

slotted wheel surrounded by a spring on which are mounted a number of tab stops. The hori-

zontal tab mechanism is shown in detail in Figure 47. The slotted wheel is mounted on the

spat ing drum, and a tab can be set by inserting a tab stop in a groove where it catches the

tabulator pawl when the type block carriage is in the desired position. With needle-nose

pliers or equivalent, lift the tab stop out of the slot in the wheel against the spring tension.

Slide the stop along the spring in the desired direction, and reinsert it into the slot at the new

location. A stop may be removed from use by turning it so that it does not catch the pawl.

Figure 49 shows the vertical tabulator mechanism. The slots in this disc al low vertical tabs

at any desired line, but adjacent tabs must be at least 1 in. apart.

d Card Reader-

The 8122 Card Reader handles 200 cards per minute and has a hopper and stacker capacity of

500 cards. With a trivial change in the control unit logic, the processor can control the

B124 Card Reader. Its operation is similar to that described here, but the maintenance infor-

mation given in Chapter 9 applies only to the B122. The B124 handles 800 cards per minute

and has a hopper and stacker capacity of 2000 cards. In both machines the cards are read

lengthwise and sensed photoelectrically. In Figure 3-7, the hopper is at the right, the stacker

at the left; in the center is a console that contains the operating buttons and indicators. Of

the following four indicators, the first is white, the other three are red error indicators.

NOT READY Indicates one or more of the following:

START button has not been pushed

Hopper empty

Stacker ful I

Card iam (feed check)

Read check

Validity check (only when VALIDITY ON button is lit)

3-24

Figure 3-7 Card Reader Type 461

The reader cannot respond to the program while NOT READY is lit. The program may check

a not-ready status bit to determine if the reader is available. This status bit is 1 on any of

the above conditions and also when the reader power is off (the console cover is interlocked

to turn power off when not in place).

READ CHECK - Indicates a NOT READY condition due to a malfunction in the read circuits,

e.g., exciter I amps, solar ccl Is, photo amplifiers. There is no read checking during any card

cycle; otherwise, read checking is continuous. When this light is on, the ERR light on the

processor in-out panel is also on and the reader error status bit is 1.

FEED CHECK - Indicates a NOT READY condition due to a jammed card or failure to select

a card. The drive motors stop as soon as the I ight goes on. A signal to the processor turns on

the FLAG light on the in-out panel, requesting a priority interrupt on the channel assigned to

the reader; the signal also supplies a status bit to the program.

3-25

VALIDITY CHECK - This light functions only if the VALIDITY ON button is lit. It then

indicates that an invalid punch combination has been read in alphanumeric mode. When this

light is on, the ERR light on the processor in-out panel is also on and the reader error status

bit is 1 .

Located on the left side of the stacker is the main power switch that controls power to the

reader auxi I iary power supply. With this switch on, the reader may be turned on either at the

reader console or by turning on system power at the processor console. The reader console

contains seven buttons, three of which light; the first six below are momentary contact, the

last is alternate action.

POWER ON - Green button which turns on the main power supply, the reader motors and,

after a 3-set delay, the reader control logic. This action is duplicated by turning on system

power at the processor console. Button is illuminated when power is on.

POWER OFF - Turns off the main supply, but the auxiliary supply remains on.

START - Turns off the NOT READY indicator provided no other not-ready condition exists.

STOP - If the reader is in operation, this button turns on the NOT READY light and the reader

stops when the current card runs out to the stacker.

RESET - Turns off the three red check I ights: READ CHECK, FEED CHECK, VALIDITY CHECK.

END OF FILE - P ressing this white button when the hopper is empty, lights the button and turns

on the EOF and FLAG lights on the processor in-out indicator panel, requesting a priority in-

terrupt on the channel assigned to the reader; the button light goes out when cards are placed

in the hopper. The signal generated by the button can be checked as a status bit by the

program.

VALIDITY ON - Th’ IS is an alternate-action yellow button that is lit when on. An invalid

punch combination read in alphanumeric mode is sent to the reader control unit as an all-zero

character; when the switch is on, and invalid punch also lights VALIDITY CHECK and stopsthe

reader.
3-26

In addition to the above there are also interlocks in the hopper and stacker and a LOCAL RUN

toggle switch under the cover; the interlocks generate the NOT READY condition when the

hopper is empty or the stacker is full. Raising the toggle switch [local) causes the reader to

feed cards continuously until the hopper is empty, and then stop with the FEED CHECK light

on. With the switch in remote (down), card cycles can be started from the processor whenever

the NOT READY light is off.

For operation off line, turn on the main power switch and press POWER ON; after 3 set NOT

READY should light. For normal operation on line, the main power switch is turned on at system

power turnon and the reader is left on with NOT READY lit whenever it is not in use. Cards

should be placed in the hopper face down with the 12 edge toward the operator. Place the

plastic weight on top of the deck to prevent jamming as the last few cards are read. If any of

the red check lights are on, push RESET. Push START to turn off NOT READY, and the reader

is then available to the processor. STOP may be pushed at any time to generate a NOT READY

condition, causing the reader to stop at the end of the current card. To continue, push START.

When reading is in alphanumeric mode, every column is checked for a valid Hollerith char-

acter . If an invalid punch is encountered and the VALIDITY ON button is lit, a VALIDITY

CHECK error is indicated and the reader stops at the end of the current card. If a second at-

tempt to read the card fails, check it for improper punches. Table A4-3 lists the Hollerith

character codes and all invalid punch combinations (note that the Burroughs code is incom-

patible with that used by the IBM 029 Card Punch).

lf the reader stops with READ CHECK lit, the self-checking circuits have detected a malfunc-

tion in the read circuitry. Usually this is either the failure of a lamp or solar cell and may be

temporary. If both READ CHECK and FEED CHECK go on together, the reader is in need of

adjustment. There is one section of the read circuitry in which a failure is not detected as a

read check error. However, a failure in this particular part would cause incorrect timing re-

sulting in a validity check error if reading is alphanumeric. If no invalid punches can be found

on a card, but several attempts to read it result in a validity check error, it is likely to be a

malfunction in this unchecked part of the read circuits. For particulars refer to the manual

for the Burroughs B122 Card Reader.

3-27

When a card cycle begins, the card is first contacted by a knife at the bottom edge of the

hopper and is pushed into the read station where the feed operation is taken over by rollers.

The most probable point for a feed malfunction to occur is at the entry into the read station.

If the card is bent, it may iam in the feedways; if the trailing edge had been damaged by

frequent handling, the pickup knife may fail to move the card through the rollers. When a

card fails to appear at the read station in the prescribed time, the FEED CHECK light goes on

and the drive motors stop. Do not attempt to reread a worn or damaged card that has caused

a feed check error, but put a duplicate in its place.

In the unlikely event that a card should iam inside the read station, no FEED CHECK is indi-

cated, but no cards are processed either (if reading is in alphanumeric, a card stuck in the

read station may produce a validity check error). To check for jammed cards, remove the

head cover by lifting it at its base and pulling it out horizontally (an interlock removes power

if it has not already been turned off). If necessary, the photocel I head can be removed by

moving the knurled-head sliding bolts to their vertical positions and squeezing them toward

the center. The head can then be lifted straight up. Be sure when replacing the head that

it is seated properly and the knurled-head bolts are fully engaged.

3.3 PROCESSOR OPERATING PROCEDURES

After turning on system power at the processor console, check the memories and peripheral

equipment connected to the memory and in-out busses. In general all memories should go on

with system power unless a single unit has been taken off line deliberately. Whether a par-

ticular peripheral device is on depends upon its own organization. Most in-out control units

go on and off with system power; however, in some instances power supplies must be turned

on and off independently of the processor.

a Read In

In order to allow initial information to be brought into memory, a readin loader is usually kept

permanently in the part of core that is ordinarily inaccessible because of the fast memory. To

use the readin loader, set the appropriate starting location in the ADDRESS switches and lift the

READ IN key. This turns on the RIM SBR light at the top of bay 1, and while the light is on,

3-28

any memory address from 0 to 17 provides access to core instead of fast memory, The light

goes out and the processor leaves readin mode whenever an instruction is retrieved from any

location above 17. Read in can be single stepped using the CONTINUE and STOP keys, but

any other key takes the processor out of readin mode.

To deposit a loader in the bottom of core, the operator must make use of a small toggle switch

labeled RIM MAINT, which is mounted behind the double doors on bay 2, on a bracket at the

left end between mounting panels 2L and 2M. Putting this switch up holds the processor in

readin mode regardless of any action taken at the console, so the operator may deposit the

loader. Place the first word in the DATA switches, set the ADDRESS switches to the first

location (0 is most convenient), and lift DEPOSIT THIS. MEMORY displays the word deposited.

If the remaining words are in consecutive locations, they may be deposited in order by setting

them in the DATA switches and pressing DEPOSIT NEXT for each. Although all words are

displayed when deposited, it is a good idea to check the entire loader by going through it

first pressing EXAMINE THIS, then EXAMINE NEXT. After the loader has been deposited,

turn RIM MAINT down.

b Operating Keys

The operator should check material accompanying each program for information on halts, tape

requirements, and so forth. Every program is begun by either START or READ IN. On a halt

the operator should make note of the console lights, particularly PROGRAM COUNTER, and

do whatever is requested in the program operating instructions; the operator may restart by

pressing INSTRUCTION CONTINUE.

To debug programs, INSTRUCTION STOP may be latched on and the progmm single stepped

using INSTRUCTION CONTINUE. 0 r with the REPEAT switch on, and both INSTRUCTION

STOP and INSTRUCTION CONTINUE latched down, the program speed can be varied by the

SPEED controls. By similar use of the MEMORY STOP and MEMORY CONTINUE keys, a

program may be single stepped from one memory call to the next; low-speed operation can be

effected by using REPEAT.

The keys for the reader and punch may be operated at any time whether the processor is running

or not. The stop keys may also be pressed at any time, but ordinarily these are used only for

3-29

single-step or low-speed operation (for special stop considerations see c below). The remaining

ten keys use the key cycle to initiate some operation, if only a clear function as is the case

with IO RESET. For seven keys, entry into the key cycle is gated by the 0 state of RUN so

that inadvertent key manipulation can have no effect while a program is running. Even through

RUN remains on throughout memory single stepping (unless of course a program halt should occur),

the program can be restarted by pressing MEMORY CONTINUE; at a memory stop MEM STOP is

on. Of the initiating keys, only EXAMINE THIS and DEPOSIT THIS have any effect while the

program is actually running, i .e., there is neither an instruction stop nor a memory stop. Either

of these keys inserts a key cycle between two instructions without stopping the processor. How-

ever, do not use these keys if there is any chance of a program halt occurring. The halt in-

struction stops the processor by clearing RUN at the beginning of the execute cycle, and it is

thus possible for a key cycle to be triggered between the time RUN is cleared and the instruc-

tion is completed (of course the same caution holds for any wanton key manipulation while the

processor is running). If a program halt should occur (RUN goes off) at the same time that EX-

AMINE THIS or DEPOSIT THIS is operated, check the corresponding pair of SYNC and START

lights in the left column on the bay 1 indicator panel. If both lights are on, the corresponding

key function was not performed; if neither light is on, the key function was performed prior to

the halt instruction. If only a SYNC light is on, the key function was performed but there is

no way of knowing whether it was executed during the halt or after, and thus the console lights

are meaningless. If EXAMINE THIS or DEPOSIT THIS is pressed with RUN off, the SYNC light

does not go out but the key function is performed.

There are also special precautions that must be observed while user programs are sharing proc-

essor time. While RUN is on, relocation and protection are inhibited during a key cycle so

the operator may use EXAMINE THIS and DEPOSIT THIS with all of memory available to him.

However, when the processor is stopped, as between instructions in single-step operation, the

operator must make sure his actions at the console are compatible with the operating mode. In

user mode any address supplied for a key function, including addresses in an instruction ini-

tiated by the EXECUTE key, must be smaller than the block size as indicated by the MEMORY

PROTECTION lights at the top of the in-out panel, or a priority interrupt for an illegal address

will occur. The operator should also understand that unless the address is for fast memory, it

is relocated to the block specified by MEMORY RELOCATION (the RELOCATED ADDRESS is

3-30

displayed at the right). Furthermore, an illegal instruction executed from the console will

take the processor out of user mode. The operator must observe the lights at the top of bay 1

to determine what he can do. All addresses and instructions are legal if EXEC MODE is on.

If this light is off but PI CYC is on (this can happen only between two PI cycles required for

the same interrupt), there is also no relocation or protection. However, in this circumstance

not all instructions are legal; an IOT may be executed from the console, but any other illegal

user instruction or a UUO wil I return the processor to executive mode. If both EXEC MODE

and PI CYC are off, the operator must observe all user restrictions. The operator can switch

from either mode to the other by executing the appropriate instruction from the console. The

switch may be made from user to executive mode by pressing IO RESET, but this also clears

most of the in-out equipment including all PI assignments.

Care should be exercised in the use of the EXECUTE key whenever priority interrupts are al-

lowed while a program is being single stepped. In addition to observing the user-executive

restrictions associated with priority interrupts, the operator must be aware of the following.

An interrupt has priority over any instruction including one executed from the console. If an

interrupt request is waiting when EXECUTE is pressed, the processor performs the PI instruction

instead of the one in DATA switches. If PI CYC is on (indicating that the preceding instruction

was a block IOT that overflowed), a non-IOT executed from the console will be taken by the

processor to be the iump to the break routine. This wi I I turn off PI CYC, and the JSR to the

subroutine will be skipped when the program is continued. Furthermore, the processor wil I

“hold” the break-i .e., PI REQUEST goes off, PI IN PROGRESS goes on, and both the chan-

nel on which the interrupt was requested and all lower priority channels will remain disabled

as the program continues.

CAUTION

Never under any circumstances press more than one initiating key
at a time because the processor will try to perform both functions
at once. Note that in low-speed operation one of the continue
keys is always on, so although EXAMINE THIS or DEPOSIT THIS
can be used while the processor is running, they cannot be used
in low-speed operation.

3-31

c Emergency Stop

Ordinari iy I NSTRUCTI ON STOP is used for single step operation and maintenance procedures,

but it can also be used for an emergency stop if the processor should get caught in a loop. For

this purpose the turnon of the key triggers a pulse generator whose output triggers a one-shot

that temporarily inhibits certain pulses in the instruction and address cycles; then the processor

can stop at one of these points if a loop prevents its reaching the end of a main sequence. The

pulse generator output also clears RUN in case a hardware malfunction should disable the nor-

mal clearing in the execute cycle. Both features apply only to the turnon of the key so that

once it has been latched down it will not interfere with single step operation. Once RUN is

clear, IO RESET can be used to clear the computer.

If the processor should hang up or be running without seeming to accomplish anything, do not

call a DEC Technical Representative until certain routine checks have been made, as it is

possible for an inept programmer to hang up the machine. Although it is recommended that

only BLKI, BLKO, or JSR be used in a PI cycle, nonetheless the processor will perform a PI

cycle correctly for any non-IOT instruction. But a condition IOT will cause the processor to

hang up in the PI cycle. When this happens, the processor repeats the instruction over and

over: PC is static, the PI REQUEST light for the channel is on but the PI IN PROGRESS light

never goes on, and PI CYC and PI REQ at the top of bay 1 remain on indefinitely (the AC

lights display the IOT instruction code).

lf the program attempts to retrieve an instruction from a memory that is not connected to the bus

(and the DISABLE MEMORY switch isoff), the lack of any instruction retrieved is interpreted by the

processor as a UUO. The attempt to address a nonexistent memory usually results in an interrupt

on the processor channel, but if the JSR for the break should attempt to go to the same memory,

the processor would go into a loop.

Both of the above loops include the complete main sequence, so pressing INSTRUCTION STOP

will causea stop at the completion of an instruction. There are other program failures, how-

ever, that never allow the processor to finish an instruction. If a program should include

an XCT that executes itself or if a programmer puts a UUO in location 41, the processor goes

into a loop that keeps jumping back to the instruction cycle without ever completing a main se-

3-32

quence. The key thus halts these in the address cycle. If DISABLE MEMORY is on and the

program attempts any access to a memory that is not on line, the processor hangs up in the mem-

ory subrorftine. Interrupting the time chain cannot affect this situation, but INSTRUCTION

STOP clears RUN, and the machine can then be freed by IO RESET.

Hardware malfunctions can cause loops that the time chain inhibit cannot stop. For

example if PI CYC fails to set, an interrupt request will cause a loop in which the processor

keeps trying to honor the request without succeeding. If MQO refuses to clear in a block

transfer, the processor wil I loop forever, returning on each step to the fetch cycle. For any

loop that includes a memory call, do not free the processor merely by clearing RUN and press-

IO RESET. If th c procctssor is within the memory subroutine when the reset occurs, it will very

likely hang up a nvmory while freeing the processor. For this situation it is preferable to press

MEMORY STOP and then check the lights to be sure the processor has not stopped following the

read part of a read-write access. If it has, hold on MEMORY STOP and press MEMORY CON-

TINUE, so that it will stop following the subsequent write. Once the processor has stopped with

no chance of hanging up a memory, press INSTRUCTION STOP to clear RUN, and then press

IO RESET.

3-33

CHAPTER 4

DRAWING CONVENTIONS AND FLOW CHARTS

Accompanying each PDP-6 is a complete set of drawings, consisting primarily of D-size flow

charts, logic drawings (block schematics), and wiring diagrams. Every drawing is labeled with

both a DEC drawing number and a type code. The drawing number is in four parts separated by

dashes (e . g., D-166-4-EX): the first part is a letter indicating size; the second is the type

number of the equipment (usually three digits); the third is the drawing serial number (see next

paragraph); and the last is a number or a mnemonic letter code specifying the individual draw-

ing (the code may end with a number, sometimes preceded by another dash, if more than one

drawing is required to treat a section of the logic). If a drawing includes several sheets, both

the sheet number and the number of sheets are written at the lower left of the drawing number.

If a drawing is revised after being signed by the project engineer, a revision letter is written to

the right. To the left of the number is a type code; some typical codes are block schematic BS,

system diagram SD, flow diagram FD, timing diagram TD, interconnection diagram ID, cable

diagram CD, wiring diagram WD, power wiring PW, module list ML, utilization module list

UML, master drawing list MDL, cable list CL, wiring list WL (the last three are usually A size).

In general, the only drawings included in the manual for a given piece of equipment are the

associated flow diagrams and logic drawings. The maintenance chapter of each manual does,

however, describe the other types of engineering drawings and their use. Drawings in the man-

ual are intended for instruction purposes only; personnel working at the machine should use the

prints for the equipment rather than the figures for the manual. Drawings that are reduced to

B size and printed in this and other manuals for the PDP-6 system are serial 0, corresponding to

the standard production machine. Al though every unit of a given type is assigned a different

serial number, most of the prints accompanying the equipment have drawing serial 0. But if a

particular unit differs in some way from standard, those drawings that reflect the difference have

the same serial number as the lowest numbered machine that is so modified. Therefore, although

each manual contains the drawings for that portion of the standard system that it describes, main-

tenance personnel should use the prints for work on the equipment because they show any varia-

tions peculiar to the installation.

4-l

All drawings included in a manual are assigned figure numbers by chapter. These numbers are

also written on the prints in the lower right, above the drawing legend. To differentiate draw-

ings associated with one manual from those of another, a code designating the manual appears

in front of the figure number (the code may not be included on the figures reproduced in the

manual). The letters “AP” indicate a figure for this manual, which includes not only the Arith-

metic Processor Type 166 but also the control units for four in-out devices Types 461, 626, 760,

and 761. Figures for the memory manual are prefixed “M” and show both the fast and core

memories. Figure numbers on drawings for in-out devices described in separate publications

are usually prefixed by the appropriate type number.

The complete system logic for the arithmetic processor and the common in-out devices is shown

in a series of flow charts for Chapter 4 and a series of logic drawings for Chapters 5, 6, 7, and 8.

This chapter describes the conventions and notation used in these drawings.

4.1 LOGIC DRAWINGS

The logic drawings are block diagrams that show the function of every logic element used in the

computer. Th ey also show the type of signal present at any module connector pin that carries

a logic signal or some special voltage level. The standard power and ground pins (A to D on

every module) are not shown. In addition to showing the function of every logic element, the

drawings indentify every circuit by type and by physical location. Circuit type is always iden-

tified by the type number as given in the DEC module catalog. Below the type number is a lo-

cation code made up of one digit, one letter, and one or two digits. For example, the location

code 2FlO represents plugin unit connector 10 in mounting panel F in bay 2 (in the lettering on

the logic drawings, each numeral “0” has a slash through it to distinguish it from letter “0”).

Pin designations may be formed merely by adding the pin letter to the module location code,

e.g., 2FlOH.

The frame containing the arithmetic processor and the console includes bays 1 to 4. Each mem-

o'y, or peripheral device requiring a major portion of a bay, is designated as bay 1. If an in-

out device control unit requires only a few logic mounting panels, it has no bay number; the

pa.neIs are designated A, B, . . ., even though they may be mounted in any position. For the

smaller block symbols, such as those representing single inverters and capacitor-diode gates,

the circuit type number and location code are written near the symbol, and the inputs and

4-2

outputs are labeled by connector pins. With all larger blocks, the circuit and location infor-

mation are written inside the block. If several logic elements from the same module appear

together in a drawing, they may be enclosed in a dashed line: the location and type number

are then written only once within the module boundary and the pin letters are written just in-

side the boundary where the signal lines cross it.

Some modules have connectors on both front and back; pins on the rear connector are identified

by the prefix “R. ” Some modules are double height, with two front connectors. The location

of such a module is given by two panel letters, e.g., 2DE17, and the front connector pins are

prefixed by the appropriate panel letter (pins on this module would be designated 2DE17-DT,

2DE17-EB). Only the upper connector receives the power lines, so pins A to D of the lower

connector are available for logic signals. Such modules usually also have two rear connectors,

the upper one identified by the prefix “RI” the lower by ‘5.” Thus for a double-height module

mounted in 2DE, the R connector is at the rear of panel D, the S connector at the rear of panel E.

On the logic drawings, the type of signal present at a pin connection is shown by a triangle or

diamond . In DEC convention, timing is provided by pulses whose polarities are shown by open

and closed triangles. These polarities depend only upon input requirements and represent no

logical difference. Similarly, gating levels are represented by open and closed diamonds that

represent the assertion polarity that satisfies the gate; neither voltage level categorically represents

1 or 0, true or false. A given logic function may have different assertion levels in different

places depending upon gate input requirements. For example, if a function has a negative as-

sertion level, the function is considered true when the line corresponding to it is at -3 vdc;

for ground assertion, the function is considered true when the line is at ground. Sometimes a

line carrying a logic level is shown connected to the input of a pulse amplifier or capacitor-

diode gate, which produces a pulse output. In these cases, the output is triggered by a level

transition at the input. If the input is shown as a diamond, triggering occurs at the leading

edge, i.e., the diamond shows the assertion polarity of the logic function immediately after the

triggering transition. An event triggered on a trailing edge is indicated by a composite symbol

with a diamond showing the assertion polarity of the level, and a triangle showing the opposite

polarity required for the input pulse (i.e., the triangle indicates the direction of the transition

when the logic level is negated). Sometimes a leading edge is shown by a composite diamond

and triangle of the same polarity, but this is not necessary. Occasionally in the in-out equipment,

4-3

a wide pulse is used to produce a delay by triggering events on the pulse trailing edge. The

composite signal for this is a pair of triangles, the first showing the pulse poikity, the second

the polarity of the triggering transition. Any nonstandard signal is shown merely by an arrow

pointing in the direction of signal flow.

LWd NegOiwC -going

Ncgotive Pulse w
Assertion bb

Nonstondord
bb Sign01

0 b Trailing - Clomped
Level Positive-going edge Lood
Ground PUlSe Tronsi?ions
Assertion

SIGNALS INVERTERS

Posilt ve Negative

CAPACITOR-DIODE GATES

-----------__
I--- II 6102 II 20111 I

x~+(--$~
XVY

l--~-.E---~~~~A
A

FF(0) FFtl)

FF(0'2J4-FF("
FFs
T T

E

Figure 4-1 Logic Symbols

4-4

The upper part of Figure 4-l shows the signal designations and the symbols for inverters and

capacitor-diode gates. These are described fully in the introduction to the DEC module

catalog. With the symbols in Figure 4-l are examples of type numbers, location codes, and

connector pin letters. The remaining lettered sections of Figure 4-l show other conventions

for the PDP-6 drawings.

The logic drawings show the function of every logic element in the simplest way consistent with

the requirement that every pin connection be shown. Thus if two single inverters are connected

to form an AND or OR gate, the individual inverters are shown in the drawing as indicated at

A in Figure 4-1. However if the gate is produced by connections internal to a module, such as

a pair of ihverters with a common collector pin and internally grounded emitters, then it is shown

by a block labeled for the appropriate logic function as shown at B. Blocks are used to represent

inverter gates with as many as four inputs and diode gates with as many as eight (the in-out

equipment uses capacitor-diode modules in which the gates have common pulse connections, but

the individual gates are always shown). Since all such nets invert (a diode gate includes an in-

verter output) the blocks are always labeled “Q /\I’ or 11 % V .I) The tilde (s)in these labels has

no actual connection with logical function and may be ignored when learning the logic. Because

an assertion level may be inverted without affecting its truth value, all gates are AND (A) or

OR (v) gates, and the tilde merely indicates that the output assertion level is of opposite po-

larity to the inputs. Each block also contains a location code and a type number; input and

output pin connections are labeled in the usual way. Since the logical function of a gate de-

pends both upon its logical configuration and the assertion polarities of its inputs, a given net

may be used as either an AND or an ORgate-theequivalence is shown at C. Of course, a

single level input may be replaced by a pulse in an AND gate, and all levels may be replaced

by pulses in an OR gate. Inputs to a gate are generally at the left, outputs at the top, and a

signal shown passing through a gate from left to right implies no logical change: D shows a pair

of AND gates in which the pulse X, though labeled only once, is an input to both gates, where-

as levels Y and Z each enter only one.

All other circuit elements except flip-flops appear as blocks that contain a mnemonic abbrevia-

tion of the circuit function. Some examples are delay DLY, pulse amplifier PA, pulse gener-

ator PG, clock CLK, bus driver BD, solenoid driver SD, majority gate MAJ, dc adder DCA.

4-5

Clocks, pulse amplifiers, pulse generators, and some one-shot delays have a pair of transformer-

coupled pulse outputs (usually shown at the right of the block). When the input to such a cir-

cuit. is triggered, a positive-going pulse appears at the positive output if the negative output

is grounded, or a negative-going pulse appears at the negative output if the positive output is

grounded. One-shot delays other than the 4303 have a logic level output that is asserted neg-

ative during the delay period. The symbol that represents a flip-flop is shown at E (the same

type of symbol also represents the 4303 integrating Delay and the 6131 DC Adder). In this

rectangle, terminals S and T are drawn twice, showing the polarities associated with either state

of the flip-flop. In normal convention the “0” is at the left and the O-out terminal is repre-

sented by the left diamond in both pairs. Some flip-flops have a separate output terminal,

represented by a fifth diamond, to drive an indicator.

The principal advantage in showing the two states at both assertion levels is that there is never

any need to invert the name of a signal that appears as an input to a logic net: all logical

conditions appear in the drawings with correct truth values. When a flip-flop output is used

as the input to a logic net, the signal name indicates the enabling state of the flip-flop. To

determine the physical source of the signal (the output terminal to which the signal line is con-

nected), one must know both the signal name and the assertion level. For example, the signal

FF(1) at negative assertion originates at the l-out terminal of flip-flop FF; at ground assertion

this signal actually originates at the O-out terminal.

Two gatable inputs are shown at the bottom of the rectangle at E, with the O-in terminal at

the left. Direct pulse inputs (i.e ., those that are not gated) are at the sides of the flip-flop:

in the example a direct clear input is shown at the left. A flip-flop may also have a complement

input, which is drawn at the bottom center. An unbuffered flip-flop may be set or cleared by

grounding one of the flip-flop collectors; such a function may be represented in either of the

ways shown at F .

Connections between flip-flops are shown in various ways on the logic drawings, always in the

simplest way consistent with showing all pin connections. The clear line for an entire register

is usually shown entering the lower left corner of the leftmost flip-flop, then out of the lower

right corner on to the next fl ip-flop, and so on through the register. If the flip-flops in a

4-6

counter have count inputs and outputs, the count pulse is usually shown going from right to left,

entering the center of the right side of each flip-flop and leaving at the center of the left (e.g.,

see the program counter, Figure 5-l 1). If flip-flops from different modules are connected for

shifting, all of the shift gates must be shown; however, if the flip-flops within a module are

connected internally as a shift register, the shift signal is shown in the same way as a count

(e.g., the shift register modules in Figure 8-7). In all processor registers, most transfer input

gates for a given’ flip-flop are included on the module containing the flip-flop. These gates

are therefore shown as small rectangles with logic symbols and pin connections but without lo-

cation codes or type numbers (refer to AR, Figure 6-5). In many instances no pin numbers are

included because the input connections are internal to the module: e.g., the AR, MB, and

MQ flip-flops are on the same modules and the connections shown between them have no pin

numbers. If these internal logic gates are similar to the regular inverter and diode gates, i .e.,

if all inputs to a given gate are of the same polarity and the output is inverted, the block is

labeled with th e appropriate symbol, either ‘%A” or “s v.” However, in many cases there are

nonstandard gates, e.g., one in which a ground level is gated by a negative pulse to produce

a ground output. Such gates are labeled merely by logic function, “A” or “v,” and no attempt

is made to indicate signal polarities other than the diamonds and arrows used for inputs and out-

puts. In some cases pulse inputs to individual bits of a register are made through NPN emitter

fol lowers. Since these perform no logical function and do not even change signal polarity, each

is shown on the logic drawing merely as a small circle at the pin to indicate that the signal at

the flip-flop input terminal through other input gates is not available at that pin.

State changes in the IO-mc flip-flops take place more rapidly than the duration of the input

pulses. To compensate for this, many gated inputs to these flip-flops are made through delay

elements, which are not shown on the logic drawings. Since in many instances the outputs of

a register flip-flop condition its inputs, the flip-flop state change isdelayed until the termina-

tion of the input pulse to prevent logical race problems.

In addition to the many modules containing flip-flops, pulse amplifiers, etc., there is also a

hybrid module, the subroutine card SBR, which includes three circuits each containing a flip-

flop and a gated pulse amplifier. The flip-flop 1 output is an input to the AND gate at the PA

input; the PA output, besides being available at a connector pin, is connected internal I y to the

4-7

flip-flop clear input (see the SBR at the left in Figure 5-2). An SBR (or its equivalent) is used

whenever a subroutine is called from any time chain. The same pulse that triggers the subroutine

also, sets the flip-flop in an SBR, enabling the input gate to the PA; the other input to the PA

gate is the return pulse from the subroutine. At the completion of the subroutine, the return

pulse triggers the PA, whose output both clears the SBR and restarts the time chain.

All logic drawings are laid out with rectangular map coordinates, numbered 1 to 8 from left to

right and lettered A to D from top to bottom. Because a single drawing may contain a number

of logic elements, coordinates are often included in figure references. For example, a refer-

ence to the circuit in “Figure 5-6B6” would mean the circuit located in block Bb of logic draw-

ing 5-6.

4.2 SIGNAL NOTATION

All signal names in PDP-6 are mnemonics that indicate both the function of the signal and its

source. Each register with associated logic and each control system, whether it occupies sev-

eral drawings, one drawing, or only part of one, has a single mnemonic code of one to three

letters, which appears in the drawing title and at the beginning of the name of any signal ori-

ginating in this part of the logic. This source code may appear naturally as part of the signal

name; if not, it is merely prefixed to the name. For example the arithmetic register AR and its

associated transfer logic, flag logic, and AR subroutines require a number of drawings all with

prefix code AR, and the pulse that shifts the contents of AR to the left is AR SH LT. On the

other hand, the readin mode subroutine flip-flop, which is associated with read in and is shown

on one of the drawings for the key logic, is designated KEY RIM SBR. All prefix codes and

corresponding figures are listed at the left in Figure 4-2.

The name of a signal that transfers information from one register to another includes the names

of the two registers with an arrow between them. The arrow invariably points to the left be-

cause the transfer logic is always associated with the receiving register and its name must there-

fore appear first in the signal designation. The name of a transfer signal specifies not only the

registers and the direction of transfer, but also the type of transfer and the register bits involved

if the signal acts on less than the entire register. Numerals representing register bits are merely

appended to the register name; bit 8 in AR is AR8 and bits O-7 in MB are MBO-7. Operations

4-8

that affect only half of a full-word register are indicated by appending LT or RT to the register

name. The state of a flip-flop is represented by a numeral in parentheses, e .g., the 1 state of

bit 8 in AR is AR8(1). S ince transfers in effect transfer states, the type of transfer is a Iso indi-

cated’by a symbol in parentheses following the register name. For example the signal that

transfers all zeros into the bits of AR, i.e., the signal that clears AR, is AR +(O). This action

of course is not usual ly referred to as a 0 transfer but rather as the clear function. The actual

transfer of zeros from register A to register B is as follows: the transfer pulse clears a given bit

of B if the corresponding bit in A is in the 0 state. The pulse that produces this effect is B-A(O).

Since B now contains ones only in bit positions that originally contained ones and also corres-

pond to ones in A, the 0 transfer therefore produces in B the AND function of A and B. Simi-

larly, the transfer of ones from A to B, B ‘A(l), p ro d uces the inclusive OR function. If B is

cleared before the transfer, then after the transfer A and B both contain the same information

and the pair of pulses B -(0) and B +A(1) transfer the contents of A to B. The same effect would

be produced by setting al I bits in B and then transferring zeros. If both the zeros and ones of A

are transferred to B simultaneously so that B bits corresponding to zeros in AR are cleared and

those corresponding to ones in AR set, no prior setting or clearing is necessary. This is a iam

transfer and is written B-A(J). S ince the iam transfer occurs at a single point in time, it is

possible to switch the contents of two registers: the outputs from A can provide the gating levels

for the transfer into B while the B outputs gate the transfer into A. The signal that triggers both

transfer pulses at once is labeled B(J)“A(J).

There are other types of transfers, such as B(0) -A(1), which clears bits-of B that correspond to

ones in A, i.e., transforms ones into zeros. The pulse that complements a given bit in B if the

corresponding bit in A is 1, produces in B the exclusive OR function of A and B, and is written

B -A(V). Most other types of signals have fairly obvious names: MQ SH RT shifts the word in

MQ to the right (a shift is a iam transfer from one bit to another in the same register); AR COM

complements the word in AR. We have been discussing pulse signals so far but the names of

gating levels are also quite descriptive: PC+1 INH inhibits incrementing the program counter;

FC(E) PSE causes memory control to fetch the word in location E and then pause to wait for a

restart for subsequent storage; SAC2 causes the store cycle to deposit a second accumulator.

AC0 always refers to accumulator 0, but AC2 refers to the accumulutor following the one ad-

dressed by the instruction (if the instruction AC address is 17, AC2 refers to accumulator 0).

No more than two sources can have the same signal name, and any pair must have opposite

4-9

polarities so that the source of every signal is uniquely identified by its name and the associated

polarity symbol. Whenever two logically equivalent signals have the same polarity, they are

differentiated by adding an extra letter or number to one of the signal names; for example,

MR CLR and MR CLR A are equivalent pulses. If one logic signal produces an equivalent sig-

nal through a bus driver, the buffered signal is indicated by the letter “8” at the end of the

signal name. If the outputs of a flip-flop are buffered externally to the flip-flop module, the

buffered signals are indicated by a ” B” between the flip-flop name and the state numera I.

The pulses in the time chains for the various main cycles and subroutines all have the same three-

part format: first the prefix code naming the chain, then the letter “T,” followed by a number

or number and letter combination specifying the pulse. For example, FT3 is pulse number 3 in

the fetch time chain; DST13 is pulse 13 in the divide subroutine time chain. These pulses are

not always in exactly the order that one might expect, and the.reader should always consult the

flow charts to determine the proper sequence. For example the first three pulses in normalize

return are NRT0.5, NRTO, NRTO.1. In the execute cycle, ET0 and ETOA are logically equi-

valent and together are the first pulse in the execute cycle-the two labels indicate separate

but equivalent pulse lines. The next pulse is ET1 but this is followed by ET3. In character

operations CHT8B follows CHT8 but precedes CHT8A. But in most cases a letter following the

number in a pulse name indicates the next pulse in the chain, usually following return from a

subroutine. Thus the first pulse in the floating multiply chain, FMTO, calls the exponent cal-

culate subroutine, and the next pulse, triggered by the subroutine through an SBR, is FMTOA.

The SBRs and most control flip-flops that govern the time chains also have similar three-part

names in which the ‘IT” is replaced by an “F. “

4.3 INSTRUCTION DECODING

Figure 4-2 is a tree which shows the decoding of instructions from the instruction register. The

output signals in the figure appear as the gating levels in the flow charts that are described in

the following sections. The purpose of the tree is to al low the reader to gain familiarity with

these logic gates and to correlate them with the instruction codes. No attempt is made here to

give a detailed explanation of every logical function; for this the reader should use the tree in

conjunction with the discussion of the decoding hardware in 5.3.

4-10

Any code placed in IR is converted into gating levels to govern events that must occur in the

fetch, execute, andstorecycles and various special sequences to execute the particular instruc-

tion. The decoding begins at the left in the figure with the three most significant IR bits, which

are converted into signals representing the eight instruction classes. These primary outputs act

as gates to enable decoding of the remaining bits. In some cases the output enables a second

decoder for several more bits whose outputs in turn act as gates for further decoding. In others

the first output represents a single instruction group and it gates the decoding for al I remaining

bits. For the former type, the line extends only part way across the figure and then generates

a number of branches at a single position; for the latter the line extends the length of the tree,

and branches appear at several positions. Most of the groups of two, three, or four bits shown

together are decoded by binary-to-quarternary or binary-to-octal decoders.

Groups of bits are actually decoded into individual outputs only where signal names are shown

for each bit configuration. Where only parenthetical items are listed, the coding as shown pro-

duces the mode or action listed, but the hardware does not decode the bit configuration into in-

dividual outputs.

When IR receives an instruction code in the instruction cycle, the first three bits are decoded

to generate one of eight primary command levels shown at the left in the figure. At the top

is the decoder output for a UUO, which corresponds to three zeros in bits O-2. The decoder

output is conditioned by a flip-flop to prevent the generation of the actual command level while

IR is clear awaiting an instruction code. Other conditions also generate the command level to

perform a UUO when a user program attempts an illegal instruction. At the bottom of the draw-

ing is the decoder output for an IOT, corresponding to three ones. If it is not a user IOT, the

command level is generated and causes the decoding of bits 1 O-1 2 into the eight IOT instruc-

t ions. Some of these individual instructions are ORed to generate composite functions. At

the same time IR bits 3-9 are placed on the I/O bus to select the device.

Between the top and bottom entries in the figure are the decoder outputs for the six instruction

classes that use the basic format (these are not in numerical order, but are instead listed so

that classes with common decoding are adjacent). The configuration 001 indicates the floating-

point instructions and character operations. If the second octal digit in the code is 0, 1, or 2,

there is no further decoding as these 24 codes are not used. If bits 3-5 contain 111, IR6-8 are

4-11

decoded for two unused codes, the five character operations, and the single instruction float-

ing scale. A 1 in bit 3 indicates the floating-point instructions and for these, bits 4 and 5 are

decoded for the specific instruction, bits 7 and 8 for the mode. The logical condition for round-

ing (NR ROUND) is dependent upon bit 6, but is not dependent upon any command level

because the gate is used only by the normalize return subroutine, which is called only by

floating-point instructions.

The second basic ‘instruction class corresponds to the primary command level IR 2Xx, which

represents a number of small instruction groups. Either 0 or 1 in the second octal digit specifies

a full-word transfer for which bits 7 and 8 are decoded for the mode, and specific configurations

of bits 5 and 6 generate the levels that control swapping and negating of the word. Second

octal digits of 2 and 3 correspond to fixed multiply and divide, respectively. The 01 configura-

tion of bits 3 and 4 (shown as 01-) generates a composite multiply-divide level to enable the

net that determines the necessary fetch and store operations from bits 7 and 8. Further fetch

and store operations are determined separately for multiply and divide from the state of bit 6,

which specifies whether the operands are to be treated as integers or fractions. For division

bit 6 is actually decoded into a further pair of control levels, but for multiplication the outputs

of IR6 act as gates directly on the multiply sequence. The next three configurations of IR3-5

enable the decoding of IRb-8 for the shift operations, a group of miscellaneous instructions, and

the pushdown and jump instructions (the absence of a signal name by any configuration of IR6-8

corresponds to an unused op code). The decoder output for JRST, like IOT, generates the true

command level only if it is not executed as a UUO. For the JP group there are two additional

control levels corresponding to the six instructions that actually execute a iump, and the three

instructions that store the miscellaneous bits. The last group of instructions in IR 2XX are fixed

addition and subtraction wherein IR6 determines the instruction, and bits 7 and 8 are decoded

for the mode. These modes are equivalent to those for the Boolean instructions, which make up

an entire class with the configuration 100 in IRO-2. IR BOOLE also enables the decoding of

lR3-6 to determine which of the 16 instructions is specified.

Another single instruction group, the half-word transfers, is specified by 101 in the first three

IR bits. For these instructions bit 3 determines which part of the destination register shall re-

ceive the half word. Bits 4 and 5 determine the effect on the nontransfer half: a 1 in either

bit clears AR, and further decoding enabled by bit 3 determines whether that half shall then be

4-12

set to all ones. A 1 in bit 6 causes the operand to be swapped before the transfer so that the

destination register receives the half word from the opposite half of the source register. Bits

7 and 8 are decoded for the mode.

The remaining two IRO-2 configurations, 011 and 110, are for the arithmetic compare instruc-

tions and the logical compare instructions (ACBM). The former class includes the ACCP group

in which an accumulator is compared against either C(E) or E, and the MEMAC group in which

either AC or C(E) is compared against zero. For the arithmetic class, 00 in lR3-4 specifies the

ACCP type, and a 1 in bit 5 indicates a direct comparison, i .e., against C(E); the other three

configurations of bits 3 and 4 specify the types of MEMAC instructions, any of which generates

the composite MEMAC command level. The state of IR5 determines whether the comparison tests

AC for a jump or memory for a skip. In the ACBM group, bits 3 and 4 determine the action on

the masked bits. A 1 in bit 5 specifies that the mask is C(E), and a 1 in bit 8 swaps the mask

before the test. The remaining bits in the two classes determine the skip or jump condition as

shown; for the logical comparison the condition is determined by bits 6 and 7, for the arithme-

tic comparison by bits 6-8. The level for ACCP or MEMAC appears in the term for bit 8 because

this port of the condition is not used by the ACBM instructions; otherwise no instruction levels

need appear because the test level generated is used only by these instructions.

4.4 FLOW CHARTS

The remaining figures in this chapter are flow charts of all operations that can be executed by

the arithmetic processor and the four common in-out devices. These figures show every event,

and in so far as possible, show the flow of operations in a manner that is equivalent to the actual

gating and timing in the hardware (the terminology is from the logic drawings unless italicized).

Certain intermediate pulses are shown only implicitly (for example ET1 is shown clearing AR,

when actual ly it triggers AR +(O), which in turn triggers ARLT -(O) and ARRT +(O), which to-

gether clear both halves of AR). If an event is prefixed by CFAC, the time pulse is routed via

the subroutine interface to the register gating.

Each flow chart is based on a sequence of time pulses shown along a vertical line. Except for

insignificant intervals, such as the delay across a pulse amplifier or inverter, time between

pulses is shown by breaks in the line. Pulses always appear in ellipses and events in rectangles.

4-13

A pair of single horizontal lines breaking a vertical line indicates a delay; between the lines

is I isted the delay time, or the signal that must be asserted to continue the flow. A break shown

by double lines indicates a subroutine call; the upper term identifies the subroutine, the lower

term names the pulse returned by the subroutine to restart the calling sequence. A flow line that

terminates with an arrow indicates that the flow continues with the pulse listed below the arrow

(numbers in parentheses are figure references); a line that terminates in an ellipse indicates that

the flow along thjs path ends with the events associated with the pulse. In a rectangle, a con-

dition written to the left of a colon must be satisfied in order for the event written to the right

to occur. A condition written on a line must be satisfied for flow to continue along the line.

When several vertical lines branch from a horizontal line, the conditions are written above the

vertical lines.

The key cycle, through which initial entry into processor operations must be made, is shown at

the left in Figure 4-3. Key functions that require a sequence of events are shown in columns

associated with the key time pulses. Some console operations, such as examine and deposit,

. 	 require only the key cycle; others, such as start and read in, use the key cycle to provide entry

to the main sequence. Figure 4-4 and 4-5 show the main sequence. The flow charts for the

instruction, address, fetch, and store cycles show all possible events; the execute flow chart

shows the main time chain for the cycle, including all exits to special instruction sequences

and all operations that are not produced by any instruction, e.g., clearing AR CRY0 at the

beginning of the cycle. The basic memory and AR subroutines can be called from the main

sequence and are shown, respectively, in Figure 4-3 and at the right in Figure 4-8.

The remaining figures show the execution of instructions following the fetching of the operands.

Those instructions that are timed by the execute cycle are shown in tables in Figure 4-6, 4-7,

and at the left in 4-8; instructions, other than IOTs, that are executed by special sequences

are shown in Figures 4-8 to 4-10. These special sequences may call the basic SC subroutines

(Figure 4-8, right) and the special arithmetic subroutines shown in Figures 4-l 1 and 4-12.

Figure 4-13 shows the IOT instructions, some of which require the entire execute cycle as well

as the special IOT sequence. In-out operations that take place outside of the processor are

shown in Figure 4-14; for each of these an IOT isrequired at the beginning or the end, but other-

wise the sequence goes on independently of processor operations.

4-14

For every instruction, Figures 4-6 to 4-10 and 4-13 list the complete decoding, the instruction

action, the initial registers, and the initial and final gates. The decoding is shown as performed

by the hardware; whenever the decoding does not correspond exactly to the meanings of the

bits in the instruction codes, further explanation is given in italics. The action is given in the

programming sense (i . e . , in terms of accumulators, memory locations, control registers, flags),

but in the notation of the logic drawings: AC may mean either an accumulator or its contents,

E may mean either an address or the addressed location; the meaning is evident from the context.

The states of the processor registers are shown following the fetch cycle; MA always contains

the effective address and is not shown. The initial gates are those that control the fetch and

execute cycles. It should be understood that PC is incremented at ET0 whenever the PC inhibit

is not shown as an initial gate, unless there is some special situation (e.g., the processor is

in a priority interrupt cycle or the instruction is being executed from the console). For all in- ’

structions that are executed by the execute cycle, or return to it, the fina I gates (i . e . , those

that control the store cycle) are listed at the end of the sequence. In al I cases, registers and

gates are I isted in terms of the instruction modes even though the modes for fixed multiply and

divide are not decoded individually.

Since the complete timing for the execute cycle is defined in Figure 4-5, those instructions

whose events are timed entirely by the execute pulses are shown in tables. In a table entry

for ET3, double vertical lines indicate the call of an AR subroutine; the subroutine is at the

left, the return pulse at the right. The pulses from ET6 to ET9 are omitted when the instruction

does not use the second half of the cycle.

4.5 EXECUTE CYCLE FLOW

Every main cycle, subroutine, and special instruction sequence is explained with the descrip-

tion of the logic that generates the time chain and gating levels for it. However, for instruc-

tions that are performed by the execute time pulses it is impossible to consider the multitude of

possible events in the description of the execute cycle. For most such instructions the reader

can easily determine how the specific sequence of events produces the desired result by inspect-

ing the tables in Figures 4-6, 4-7, and 4-8. A few of the less obvious sequences are, however,

described here (in the following it is assumed that the reader is familiar with the action of each

instruction) .

4-15

In a half-word transfer (Figure 4-6, left) the positions of the source and destination words after

the fete h cycle depend upon the mode; i .e . , the fetch cycle always places an accumulator in

AR and a word from memory in MB, and the mode specifies which of these is the source and

which the destination. The execution of the instruction requires that the source word be in

MB and the destination in AR, so ET0 switches MB and AR for the memory mode and transfers

MB to AR for the self mode. If the transfer is to be from one half of the source to the opposite

half of the destination, then ET1 swaps the two halves of the source in MB. If the instruction

is to perform any operation on the unused half of the destination, ET1 also clears AR. Then

ET4 jams the specified half word into the appropriate half of AR and completes the action on

the other half by setting it, if required. At ET1 0 the result is transferred from AR to MB for

either the memory or self mode, i .e., those modes that require the store cyc le to deposit the

result in location E. In most instructions the result is in AR at the end of the execute cycle and

thus any mode requiring storage in E usually includes the AR to MB transfer at ETlO. Exceptions

include instructions such as EXCH in which the correct words are already in MB and AR at ETO.

In a full-word transfer, ET0 performs whatever transfer is necessary so that the word to be moved

is in both MB and AR. Then if the halves are to be swapped, the swap is made by ET1 in MB;

if the word is to be negated -.which may happen for either MOVN or MOVM-the AR negate

subroutine is called at ET3. By ET4 the result is in MB only for MOVS, so for this instruction

MB and AR are switched. Of course only a transfer from MB to AR would be necessary, but the

gate for the bidirectional transfer is required for other instructions (no instruction requires a

transfer limited to one direction). The other instructions in Figure 4-6 are quite straightforward

with the possible exception of the logical compare group, ACBM. At the end of the fetch cycle,

the word to be used as the mask is in MB, and the word to be tested in AR. For convenience

let US refer to the latter as the data word, and the AND function of it with the mask as the test

word. ET0 completes the construction of the mask by swapping the two halves of MB, if this is

necessary . ET1 then produces the test word by transferring zeros from AR to MB, and at the

same time it adjusts the data word for the complement and set actions by complementing bits of

AR corresponding to ones in MB (the exclusive OR function) or transferring ones from MB to AR.

ET4 then moves the test word to AR and the data word to MB. At this point the clear action has

not been handled and it would seem that the mask has been lost. However, any ones now in AR

must be a subset of the ones in the original mask, and these correspond exactly to all the ones

4-16

within the masked bit positions in the data word in MB. For the clear action the next three

time pulses clear these bits by complementing AR, transferring zeros to MB, and complementing

again to restore the test word. At ET9 the test is made according to the contents of AR, and

the adjusted data word is transferred into AR at the same time so that it is available for sub-

sequent storage in AC. The bidirectional transfer listed in the table is not necessary, but is

available because of the requirements of other instructions. The store cycle deposits the data

word in AC unless it has not been changed from the original.

In JRST (Figure 4-7), the second half of the execute cycle performs a series of operations that

seems to be pointless, since the store cycle does not deposit anything. Pulses 5 and 6 transfer

the current program address from PC to MB, and after the iump address has been transferred to

PC, pulses 9 and 10 transfer MB to MA. If the program does continue, these operations are

pointless, but the JRST can halt the processor and may be used for error halts in maintenance

programs. When the processor stops, PC displays the iump address and MA displays an address

one greater than that of the location that contained the JRST.

4-17

CHAPTER 5

MAIN SEQUENCE CONTROL

This chapter describes the processor response to console inputs and explains the way in which

the main control elements operate on instructions. Of the five maior cycles, four are des-

cribed in detail here: retrieval of an instruction from memory and decoding it from the in-

struction register; calculation from memory and decoding it from the instruction register;

calculation of the effective address; retrieval of the operands; and storage of the result. The

execute cycle is discussed only to the extent of basic operations, and timing events required

for the execution of individual instructions are described in other chapters. The many arith-

metic and data subroutines are described in Chapter 6 with the arithmetic registers; Chapter 7

describes the memory subroutine and memory address and data transfers; Chapter 8 includes

the decoding of IOT instructions and control over transfers between the processor and input-

output equipment. The various test conditions that affect the program sequence are discussed

here, but any arithmetic or logical operations necessary to produce them are described in

Chapter 6.

5.1 CONSOLE CONTROL

In general, the console switches provide continuous control levels that gate certain operations

within the processor; whereas the keys are momentary contact switches that allow the operator

to trigger specific sequences of events or to stop the processor. The hardware that provides

control and timing for the various console operations is shown in Figures 5-l and 5-2 (flow

chart, Figure 4-3).

When the operator turns on computer power at the console, the 4303 Integrating Delay in the

lower right of Figure 5-l comes on in the 1 state, turning on a clock that provides a string

of master power clear pulses. These pulses clear RUN so the processor cannot begin operations

inadvertently, and they also trigger the master clear and the master start (Figure 5-2, right).

MR START clears the flags and the in-out system including all flip-flops in the priority interrupt

system and the processor l/O interface; MR CLR clears the major control registers and flip-flops

5-l

intheprocessorproperincludingali SBRflip-flops. The masterclearalsooccursat the beginningof

every new operating sequence, i.e., at the beginning of every console operation other than

memory continue (see below) and at the initiation of any new instruction (IT0 or any equivalent

pulse). The master start is generated only by the power clear and when the operator specifically

wishes to clear the I/O system or place the processor in the executive mode. The flags and

several special control flip-flops are cleared only by MR START because they must carry in-

formation over from one main sequence to another.

The left half of Figure 5-l shows the logic inputs from the keys and switches, and nets that

generate a number of composite functions to control events common to two or more console

operations. Several of the nets AND key functions with a state of the RUN flip-flop. For

example, a net in A3 allows the input from the EXECUTE key to affect the processor only if

it is not in operation. Since examine and deposit may be performed while the processor is

running, these two operations are governed not by levels from the keys but rather by two pairs

of sync and start flip-flops (upper right). A pulse in the key time chain, KTOA, normally

clears all four flip-flops, but for examine or deposit the appropriate sync flip-flop is set in-

stead. Then, if the processor is running, the corresponding start flip-flop is set at the begin-

ning of the execute cycle. The sync flip-flops provide gates for the events in these operations;

the start flip-flops control the insertion of the operation between two main sequences. For

th is purpose, two of the nets at the left generate the AND functions of RUN (1) with functions

of the start flip-flop states. If at the end of a main sequence, either flip-flop has been set

and the processor is to continue, the signal from the net in C5 causes the processor to enter

the key cycle at the end of the main sequence. However, if neither flip-flop has been set,

the signal from the net in C3 causes the processor to begin a new main sequence.

Pushing any key other than the twoSTOP keys generates the level KEY MANUAL through the

net in the top center of the figure (the entire net is disabled during the power clear period).

The turnon of this level triggers a pulse generator in the upper left of Figure 5-2 to start the

key time chain. This chain is broken between KTOA and KTl by the condition RUN (0) so that

KTOA triggers the following triplet of pulses only if the processor is not running. There are,

however, two gates that bypass the RUN condition: if the operator selects EXAMI NE or DE-

POSIT while the processor is running, the appropriate start flip-flop allows the final pulse in

a store cycle to trigger KTl; furthermore memory continue goes directly from KTOA to KTl

5-2

because it is assumed that the processor is “running”-i .e +, RUN is l-but that the operator has

previously stopped it at the end of a memory cycle by inhibiting the memory subroutine return.

Th,is is why memory continue is the only operation in which KTl does not generate the master

clear: somewhere an SBR is legitimately waiting for the subroutine completion. Memory

continue triggers the MC restart at KTl .

For read in, KTl sets the readin mode subroutine flip-flop shown at the lower left. When

the processor is operating in readin mode, the normally unused core registers at the bottom of

memory replace the 16 flip-flop registers of the fast memory. In all other respects, read in

is exactly equivalent to start; thus the operator may keep a loading program stored permanently

in the readin area of memory, and the processor switches to normal operating mode whenever

an instruction is taken from any location beyond 17 (I, MA18-31 = 0). For console operations

other than read in, KTl clears the flip-flop for normal operation, but the clear is inhibited by

the CONTINUE keysso that READ IN can be single 6 stepped (the clear net is in Figure 51 Dl).

A few of the functions produced by the key time pulses are shown on drawings associated with

the appropriate function (such as operations involving PC) but most are shown in the center

portion of Figure 5-2. Start, read in, examine, and deposit all clear MA and transfer an

address into it from the console ADDRESS switches. Examine next and deposit next, instead of

loading MA, increment it. The three operations that send data into the computer, deposit,

deposit next, and execute, clear AR and load it from the DATAswitches. Also shown in the key

drawing is the gate through which the DATAI for the processor loads the DATAswitches into

AR. CPA indicates that the IOT has selected the processor and the assertion of the DATAI

level triggers the transfer PA (see 8.3).

Following the various setup operations, start, read in, and instruction continue all generate

KEY GO (upper right). This pulse places the processor in operation by setting RUN (Figure 5-2)

and starting the instruction cycle. As long as RUN remains set, the completion of every store

cycle triggers a new instruction cycle so that the processor performs one instruction after

another in the program. Either the operator or the program may stop the computer at the end

of a store cycle by clearing RUN at ETO. The executive program clears it by a 1 in bit 10 of

a JRST; a user program cannot stop the processor. The operator clears it by pressing the IN-

STRUCTION STOP key, but the logic gate is bypassed by a pulse generator that is also connected

5-3

to the key. The action through the PG is slow compared to the processor time chains, but

this ensures that RUN will be cleared even if some malfunction should interrupt the normal

procedure.

The other console functions do not place the processor in normal operation. Execute trans-

fers AR to MB at KT3 and enters the instruction cycle at the point at which an instruction

would normally be in MB after retrieval from memory but it does not set RUN, so the processor

stops at the completion of this single instruction. In the four examine and deposit operations,

KT3 requests a memory read or write as required and sets KEY RE/WR (Figure 5-2 86, Cl). To

deposit information in memory, KEY WR also transfers AR to MB. Upon completion of the

memory subroutine, the MC restart generates the read/write return clearing the SBR.

The upper right portion of Figure 5-2 shows the gates that generate KT4 for the repeat mode.

If the REPEAT switch is on, KT4 triggers a repeat delay (upper left): the 4303 state change at

the end of the delay period then retriggers the key time chain as long as any initiating key is

held on. To use the memory repeat function, the processor must already be running when the

operator presses the STOP key for memory; then KT4 is generated every time the memory stop

fl ip-flop is set. To repeat start, instruction continue, or read in, the operator must hold on

both the initiating key and the INSTRUCTION STOP key; then at the completionof each instruction,

SV triggers KT4. Since execute does not start the processor, the operator need not use the

STOPkey to repeat it; in this case, KT3 triggers KT4. Similarly, for the four examine and

deposit operations, the read/write return triggers KT4. Furthermore, examine or deposit

may be repeated while the processor is running: if one of these operations interrupts the

normal transition from store cycle to instruction cycle, the appropriate start flip-flop causes

KT4 to trigger KEY GO. This pulse does not affect RUN, which is already 1, but it does

retrigger the instruction cycle and clear the start flip-flops.

5.2 PROCESSOR CYCLES

There are five cycles in the main sequence: instruction, address, fetch, execute, and store.

All but the execute cycle perform only operations that are common to all instructions or to

groups of instructions, and these four are described in detail in this section. Instruction,

fetch, and store can call only the memory subroutine; whereas the address cycle can call

both the memory and the add subroutines.

5-4

The execute cycle performs some general control operations but is limited primarily to the

specific operations necessary for the execution of individual instructions, including entry into

special instruction sequences. For this reason, the description of the execute cycle included

here is limited to timing, general control functions, the calling of the simple AR subroutines,

and the entry and return for special sequences.

in the fetch, execute, and store cycles, the gating levels that govern the sequence of time

pulses and the calling of subroutines are OR functions of instruction conditions. An input

condition may be an entire instruction class or a single instruction, or it may be a single mode

either within an instruction or in an instruction class. The reader is assumed fami I iar with the

standard outputs from the instruction decoders (4.3) and only special conditions are discussed

here.

-a instruction

The lower half of Figure 5-3 shows the time chain that controls the retrieval of instructions

from memory (flow chart, Figure 4-4). Wh en the operator starts the processor or causes examine

or deposit to interrupt normal processor operations, KEY GO begins a new instruction cycle by

triggering ITO. If the processor is in normal operation and no examine or deposit has been

synced by key timing, the final pulse in the store cycle of an instruction starts the instruction

cycle of the next one. IT0 generates the master clear, clears the memory address register,

and after a slight delay sets IFlA, the SBR for the memory subroutine that will subsequently

retrieve an instruction. IT0 also generates PI SYNC (8.2k) which strobes the priority interrupt

system provided the processor is not already in a Pi cycle. if the PIR strobe produces no re-

quest or if the processor is already in a Pi cycle, the sequence continues to IT1 directly. if

the strobe does produce a request, the sequence continues instead to IATO, which triggers the

master clear, places the processor in a Pi cycle by setting Pi CYC, and then triggers ITl, which

calls the memory subroutine and supplies a memory address for instruction retrieval.

in a normal sequence, i.e., Pi CYC(O), th e address comes from the program counter; if the

processor is in a PI cycle, however, the appropriate PI channel address is transferred into MA.

Furthermore, if PI OV is 1 (this can occur only in the second consecutive PI cycle when a

block IOT is completed), MA is incremented by 1 at the same time that the channel address is

5-5

transferred in, so the processor performs the instruction in the second location associated with

the channel. When the instruction is available in MB, the memory restart triggers ITlA, which

transfers the instruction code and AC address from MB into IR. If the instruction was retrieved

from a location above 17, ITlA also clears the readin mode flip-flop in case the processor has

been in read in.

The instruction cycle may also be entered late for several situations. If a UUO appears in the

program, UUO T2 starts a new instruction execution by setting IFlA and making a read request

to retrieve the instruction in location 41; the memory restart then continues the chain auto-

matical ly by triggering IT1 A. After retrieval of the operand in the fetch cycle of the execute

instruction, XCT TO returns to ITlA so that the operand is executed as an instruction. Similarly,

the console operation execute triggers ITlA after the contents of the DATAswItches have been

transferred to MB via AR.

b Address

The calculation of the effective address for an instruction is governed by the logic shown in

the upper half of Figure 5-3 (flow chart,Figure 4-4). In a normal sequence, ITlA starts the

address cycle by triggering ATO. However, the cycle is also triggered by CHT9 for the second

part in a character operation: in this case, the processor has already handled the pointer and

must now calculate the effective address for the operand as specified by the pointer. AT0

transfers the address portion of the instruction word from MB to AR, transfers the indirect bit

and the index register address to IR, and clears MA in preparation for subsequent memory

access.

AT0 also generates PI SYNC (8.2H which strobes the priority interrupt system provided the

processor is not al ready in a PI cycle. If the strobe discovers any request, PI SYNC generates

IATO which re t urns the processor to the instruction cycle. If there is no request or if the pro-

cessor is already in a PI cycle, the sequence continues the address cycle by triggering AT1

provided the operator has not pressed the INSTRUCTION STOP k ey within the preceding IOOpsec

(IFlA being 0 guarantees that the return is to the address cycle rather than the instruction

cycle .) If the instruction specifies no index register (IR14-17 = 0), AT1 jumps directly to AT4.

However, if address modification is to be performed, AT1 triggers AT2, which transfers the

index register address to MA, makes a memory read request, and sets A LONG. The return from

5-6

--

memory triggers AT3, which sets AF3A and requests the add subroutine to add the contents of

the index register to the address specified by the instruction. The subroutine return trans-

fers the calculated address from AR back to MB and moves the cycle on to AT4, which clears

the left half of AR. If the instruction specifies an indirect address (lR13 is l), the cycle

continues to AT5 which transfers the calculated address from MB back to MA and makes another

read request to retrieve the new address. AT5 also sets A LONG, clears the indirect bit and

index register portions of IR, and sets AFO. The last action allows the memory restart to trig-

ger ATO, restarting the address cycle.

If the instruction specifies a direct address, the processor goes on from AT4 to the fetch cycle.

At the completion of address calculation, MA, MQ, and ARLT are all clear; the effective

address calculated for the instruction is contained in the right halves of both MB and AR. The

contents of MBLT are equal to the last word retrieved from memory, provided the final address

cycle did not index.

c Fetch

Figure 5-4 shows the logic that controls the retrieval from memory of the operands necessary

for the execution of an instruction (flow chart, Figure 4-4). The lower part of the figure shows

the generation of the control levels for the cycle. In all instruction groups, individual in-

structions or specific instruction modes which do not require an accumulator, the net in the

lower left generates an inhibit for that function. The bottom two inputs, CH INC OP and

CH CL INC OP, both apply to the first part of character operations and indicate whether or

not the pointer shall be incremented after it is retrieved. The level IR 254-7 is asserted for

the four included instruction codes: the first two are jumps; the third is XCT; the fourth is

not used. All other inputs that generate FAC INH are standard instruction situations (5.3).

There are a few instructions which, after retrieving the accumulator, require the retrieval

either of a second accumulator or of a word addressed by half of the already retrieved accum-

ulator. The three levels that govern these situations are shown in the center of the figure.

The cycle fetches AC2 for any double word shift operation and for fixed point division, which

uses a double-length dividend. POP and POPJ both pull out the word addressed by ACRT,

which keeps the final address for the pushdown list. Fetching of the word addressed by ACLT

5-7

is required by JRA and BLT: the former to restore AC as the return from a JSA which stored

AC in E and saved E and PC in AC; the latter to retrieve a word for subsequent storage in the

location addressed by ACRT.

Two levels govern the retrieval of a word according to the effective address, FC(E) and FC(E)

PSE. The first reads and releases the memory so it can rewrite automatically . The second

makes a read/write request: the memory subroutine thus pauses after fetching so that information

can later be written into the same memory location (usually in the store cycle and controlled

by the same level). For the first part of character operations, FC(E) retrieves the pointer if

it is not to be incremented; whereas the pause is required if an incremented pointer is to

be written back in. Similarly, in the second part, a character deposit requires the pause

while a load does not. An IOT BLK also retrieves a pointer which is automatically indexed

and thus requires the pause. The remaining inputs to both nets are al I standard instruction situations,

but the reader should take special note of two inputs to FC(E): IRMD FC(E) and IR FP. The

first represents all fixed-point multiplication and division operations that do not use E as an

operand; the second includes all floating instructions except floating scale. All of these in-

structions have modes that store the result in E; however, all require significantly greater

execution time than other instructions and they request read to release the memory.

In the upper half of the figure are the delaysand SBR flip-flops that provide the fetch time chain, The

normal entry is from the address cycle at AT4 when no further deferring is required. If the

address calculation requires no indexing or deferring at al I, A LONG is 0 and the entry into

FTO is delayed; otherwise the entry is immediate. There is also an entry into FTO for a block

IOT: after the pointer has been indexed and stored, IOTTOA triggers the fetch cycle for the

data instruction that follows (8.1). FTO performs no outside operations but continues the

proper fetch sequence. If the instruction requires no accumulator, the sequence goes directly

to FT5. To fetch AC, the sequence goes to FTl, which transfers the AC address from IR to MA

and requests a memory read. The memory restart triggers FTlA, which is also produced directly

by BLT T6. In a block transfer, each word is retrieved by a fetch cycle; but the store and

index operations are performed by the special BLT subroutine. The subroutine returns to

FTlA bypassing FTI, because the instruction must fetch AC, which contains the initial source

and destination addresses, only for the first transfer.

5-8

The sequence from FTlA and the operation performed by it depend upon whether additional

AC operations are necessary. All sequences include a switch between MB and AR so that AC

is in AR and E in MB. If there are no extra AC fetch operations, FTlA clears MA and switches

MB and AR. To fetch a word addressed by AC, FTlA clears MA; and if the address is in the

left half, swaps the halves in MB. It also triggers FT3, which loads MA with the selected

half of AC, makes the MB-AR switch, and goes on to FT4. If a second accumulator is re-

quired, FTIA adds 1 to MA, switches MB and AR, and skips to FT4 which triggers the memory

read for either type of extra AC fetch. FT4 also sends MB to MQ to save E. The memory sub-

routine returns to FT4A, which clears&H, and switches MB and MQ so that MQ contains the

extra word fetched and MB again contains E. FT4A also triggers FT5, which results directly

from FTlA if no additional AC operations are required. FT5 transfers E from MB to MA and

then triggers FT6 or FT7 depending upon whether the instruction requires a memory read or

read/write. The memory return then completes the cycle by triggering FT6A, which results

directly from FT5 if the effective address is not used for memory access.

At the completion of the cycle, MA contains E; and AR and MB contain AC and C(E) if both

words were fetched, although the AC halves are swapped if the cycle also fetched the word

addressed by the left half. If there was no AC fetch, AC contains E with the left half clear;

and if there was no C(E) fetch, MB contains E with the left either clear or in the same state

as at the end of the address cycle (the latter case occurs only if no fetch operations were

performed at al I). MQ is clear unless an additional AC operation was required, in which

case it contains the extra word.

.Id Execute

After fetching the operands, the processor performs the operations necessary for the execution

of the instruction. Figure 5-5 shows the logic for the execute time chain, the flow chart is

Figure 4-5. Only the simpler instructions are actually executed by the ET pulses; for the more

compl icated ones, the pulses trigger appropriate subroutines.

The lower portion of the figure shows the generation of three levels that control the execute

sequence. Two are inhibit levels that break the chain for subroutines; reentry into the main

sequence is made from the subroutine usually-but not always, at ET10 (XCT and UUO, for

5-9

example, both return directly to the instruction cycle). The subroutines for ull IOTs and for

FSB start at ET4 and thus inhibit ET5. All otherinstructions requiring execution by subroutine

inhibit ET4 although this does not mean that the subroutine entries are made at ET3. In fact,

most of them are at ET0 but the execute chain continues to ET3. There is also a group of

instructions (including fixed-point add and subtract and some of the data transmission and

executive instructions) whose transfer and logical operations are triggered by the ET pulses

but which require an AR subroutine. These instructions all generate the level AR SBR which

inhibits ET4 but only for a pause: AR SBR causes ET3 to trigger the SBR at the left at the same

time that it triggers an appropriate subroutine. The subroutine return then triggers ET4 to

continue the chain. AR SBR includes several instructions which generate both inhibits:

floating subtract requires the negate subroutine at ET3 and enters the floating add subroutine

at ET3 and enters the floating add subroutine at ET4; both block IOTs index the pointer at

ET3 and switch to an IOT subroutine.

Almost all logical and transfer operations triggered by ET pulses occur in the first half of the

chain; most instructions using ET6 to ET9 affect the program counter. These instructions gen-

erate E LONG (right) which causes ET5 to go to ET6 instead of skipping to ETlO.

In the execute cycle flow chart, the only events for which complete conditions are listed are

general operations independent of specific instructions and operations involving PC, MA,

and the flags. The many logical and transfer operations on AR and MB that actually execute

the Boolean, data transmission, and other instructions occur almost exclusively at pulses 0,

1, and 4; to determine which events are required for a specific instruction, refer to the appro-

priate instruction flow chart. The following description of the execute cycle discusses only

the sequencing of the cycle, entry to and return from subroutines, and the more general

operations. For events involving individual registers, refer to the appropriate section of the

logic in this and following chapters.

To begin the execute cycle, the final pulse from the fetch cycle FT6A, triggers ET0 and ETOA

simultaneously and also triggers a delay for a subsequent ETI; ET3 follows automatically from

ETl. The two 0 pulses are logically equivalent but two pulse lines are required because of

the many events they trigger. Usually ET0 increments the program counter so that the next

instr-uction will be taken from the next memory location in sequence. The only circumstances

5-l 0

that inhibit PC+1 are those in which ET0 will occur again before the next instruction in normal

sequence is to be performed. ET0 also clears the AR carry flip-flops for use during the cycle,

synchronizes those console operations which may interrupt the normal sequence from store

cycle to instruction cycle (5. l), and clears RUN for the halt instruction (JRST with a 1 in

bit 10). The first three execute pulses also handle hold and dismiss operations for the priority

interrupt system (8.2b), restoration of flags, and entry into user mode. ET0 provides subroutine

entry for character operations, both fixed and floating multiplication and division, and

floating addition; ET3 starts the subroutines for BLT, FSC, UUO, and all shift operations.

XCT also stops the chain at ET3 in order to return to the instruction cycle.

ET4 follows immediately from ET3 only if there is no inhibit. For the instructions that generate

AR SBR, ET3 triggers the appropriate AR subroutine and sets ET4 AR PSE. The subroutine return,

ART3, clears this SBR and triggers ET4, which in turn continues to ET5 unless there is an entry to

the FSB subroutine. If ET4 follows from ET3 without pause, ET5 follows immediately except for

the in-out transfer instructions: for these ET4 triggers the IOT subroutine, but at its completion

time pulse IOTT returns to the execute cycle by triggering ET5.

Most computational and data transmission instructions skip the second half of the execute cycle

by having ET5 go directly to ETlO. However, if E LONG is asserted, the chain continues

through all the remaining pulses without interruption. ET 7-9 perform the necessary program

control operations (5.4); the final two pulses in the cycle regulate the flags (6.22, 8.3).

Since most instruction results that are to be deposited by the store cycle are produced in AR,

most instructions switch AR and MB either at ET9 or ETlO. ET10 sets up MB and triggers the

store cycle not only for most instructions executed in the execute cycle but also for many of

those executed by subroutine. The return for fixed-point division is at ET9 (provided the

division could be performed); return is made at ET10 for character operations, all floating-

point instructions (all of these except floating scale are made from the normalize return sub-

routine), fixed-point multiplication (which also returns via NRT6), and the block transfer

routine if the block is complete.

5-l 1

-- e Store

lnformation resulting from the execution of an instruction is deposited in memory by the store

cycle (logic, Figure 5-6; flow chart, Figure 4-5). The sequencing of the store time chain is

controlled by four levels: FC(E)PSE from the fetch cycle, which gates in the write restart

for any instruction that used a fetch and pause before execution; and three levels that gate in

write requests and are generated by the store logic. SC(E) is generated by three types of in-

structions: thos’e which merely clear location E and deposit information in it without having

required a fetch; those which store C(E) in a location other than E; and those which require

so much execution time that they requested only the read rather than the read and pause in

the fetch cycle to free the memory during execution. SAC INH is generated by instructions

that address no accumulator, by computational and data transmission instructions in the mem-

ory mode (that mode which stores the result only in memory), or by test instructions that have

no result to store. Instructions that compare a memory word against zero store the word (which

may be indexed) in both memory and an accumulator, but AC storage is inhibited if AC0 is

addressed (the net in C6 decodes IR9-12 for no AC selection). The input BLT LAST inhibits

AC storage in the cycle following completion of a block transfer. If a priority interrupt stops

the block before completion, the current addresses are stored in AC so that the block may be

continued after the break. Some arithmetic and shift instructions generate SAC2 to store MQ

in a second accumulator. This event occurs for all double-length shifts, floating-point in-

structions that store the low-order halt, and fixed-point operations that have a double-length

result.

To generate a write request for SC(E), ET10 triggers STl; whereas, it triggers ST2 to provide

a read/write restart for SC(E) PSE. Either time pulse sets SF3, andat the completion of the

memory subroutine the return triggers ST3. If there is no storage according to E (or whatever

address has replaced E during the execute cycle), ET10 triggers ST3 directly. If there is also

to be storage in an accumulator, ST3 clears MA and ST5 loads the AC address into it from

lR9-12, transfers AR to MB, and makes the write request. The memory restart triggers ST5A

which goes on to ST6 if a second AC storage is necessary. In this case, ST6 increments MA

to address the second AC, transfers MQ to MB, andcalls another write. ST6 is also delayed

slightly to generate ST6A which sets SF7, the SBR for the memory subroutine call. This delay

is necessary to guarantee that the return from the previous subroutine cannot trigger both

5-l 2

ST5A and ST7. Th e return from this storage then triggers ST7 which also follows directly

from ST3 if there is no AC storage at all, or from ST5A if there is no second AC storage.

ST.7 is the return time for the divide subroutine if the division could not be performed, and

for a character operation that terminates after the first part (i .e., an instruction which operates

not on a character but only on the pointer). Since all FP/CH codes inhibit ET4, those that

are not used for instructions cause ET3 to trigger ST7; thus all unused codes (except the UUOs)

are interpreted .as no-ops. Furthermore, if at any time a user program attempts to address a

protected area of memory, a priority interrupt is requested on the CPA channel and the sequence

jumps directly to ST7. If RUN is 0, the processor stops at this point. Otherwise, ST7 returns

to a new instruction cycle unless the operator has requested examine or deposit, in which

case, it returns to the key cycle.

5.3 INSTRUCTION CONTROL

For each instruction to be performed, the 18-bit instruction register receives the instruction

code, indirect bit, and AC and index register addresses from MB (Figure 5-7). Although in-

formation may be transferred into IR only from MB, the IOT time pulse TOA directly sets lR12,

which changes a block IOT instruction into the corresponding data instruction after the pointer

has been indexed. For effective address calculation, the indirect bit IR13 controls the repetition

of the address cycle, and IR14-17 provides the address of an index register to be used in the

calculation. Although there are 16 accumulators, only 15 of them can be used as index registers.

A 0 address in IR14-17 indicates no index register selection and the address cycle performs

no indexing. The generation of the appropriate address cycle gate, IRl4-17=0, is shown in

the lower right of Figure 5-8. For the fetch and store cycles, the AC address is supplied by

lR9-12. For IOT instructions, IRO-2 are all ones, and IOT control decodes the instruction

specified by IRlO-12. A device is selected according to the code supplied by IR3-9; the bus

drivers for the in-out selection lines are at the top of Figure 5-7.

The lower portion of the figure shows the pulse signals that control IR. MR CLR clears the

entire register at the beginning of every main sequence. In every instruction cycle, ITlA

transfers the instruction code and AC address (or instruction and device codes for an IOT) into

IRO-12 from MB; at the beginning df every address cycle, AT0 transfers an indirect bit and

index register address into IR13- 17 from MB. If the calculated address is indirect, AT5 clears

5-l 3

IR14-17 in preparation for reloading at AT0 when the cycle repeats. When the first part of a

character operation is completed, the processor returns to the address cycle to calculate the

effective address for the character from the pointer. Thus CHT8A clears IR13-17 in prepar-

ation for loading at ATO, which is triggered by the final pulse in the first part of the char-

acter time chain.

The next three jogic drawings, Figures 5-8 to 5-l 0 show the main decoding of IRO-8 to control

the execution of individual instructions. In this section of the processor, the decoding is

carried down in many cases to individual instructions and instruction modes. There are,

however, a few command lines which represent instruction pairs whose differences are minor;

trivial additional decoding for these is shown with the hardware that actually executes the

instruction. For example, the IR multiply and divide outputs represent both integral and

fractional operations; the floating command outputs represent both the standard instructions

and those that round. Figure 5-8 shows the primary decoding into maior classes, decoding

into command levels for fixed-point multiply and divide and for all floating-point instructions,

and final decoding for all single instructions without modes that correspond to unique 9-bit

codes. All of the Figure 5-8 outputs, although representing functions at several different

levels in the decoding hierarchy, have the prefix IR. Outputs from the groups decoded in

Figures 5-9 and 5- 10 have the appropriate group prefix. Figure 5-l 0 also shows the timing for

SCT and UUO.

The binary-to-octal decoder in the upper left of Figure 5-8 performs the first stage in instruc-

tion decoding by determining which of the eight primary instruction classes is specified by

IRO-2. The decoder gating input P is grounded so that the decoder is always on. All codes in

the UUO class produce exactly the same operations and require no further decoding. In the

IOT class, the eight instructions specified by IRlO-12 are decoded in IOT control. Outputs

and 2, IR FP/CH and IR 2Xx, gate other decoders shown in this figure; further control in the

classes represented by outputs 3, 4, 5, and 6 is shown in Figures 5-9 and 5-10. The primary

command level IR FP/CH includes the instructions for floating-point arithmetic and character

operations, and instruction codes 100 to 131 which are not used. IR FP/CH ANDed with the

condition 011 in IR3-5 (i ,e., codes of the form 13X) gates the lower left decoder, which

produces the command levels for FSC and the five character operations. At the right, the

5-14

1

primary level gated by IR3(1) re p resents all floating-point instructions other than FSC: bits 4

and 5 are further decoded to determine the instruction, bits 7 and 8 to determine the mode.

Bit 6 does not appear here but controls rounding at the normalize return subroutine.

The top center decoder is gated by IR 2XX to convert IR3-5 into eight command levels, each

representing eight instructions or two instructions with four modes. The 0 and 1 outputs each

represent two of the move instructions and are ORed to generate the command level for the

group. At the left, IR SH is further decoded into the six shift instructions plus two unused

codes (the two types of arithmetic shift are ORed in 84 for use by the overflow logic); at the

upper right IR 25X is decoded into seven miscellaneous instructions plus one unused code.

Just below, a gate generates the signal IR 254-7 to inhibit AC fetch and storage, which is

not required for these codes.

Although the decoder gated by IR 2XX generates two outputs for fixed-point multiply and

divide, the condition representing both of these outputs also generates a combined command

level IR MO (Figure 5-8, center). Further decoding produces the appropriate fetch and store

gates. Al I modes but the immediate (01 in bits 7 and 8) fetch C(E). Only fractional division

uses a double-length dividend and fetches AC2. The two modes with a 1 in bit 7 store the

result in memory; whereas only the memory mode inhibits storage in AC. For all modes that

do store in AC, a second AC storage is required for the remainder in division and for the low-

order half of the double-length product in fractional multiplication.

Note that three of the decoder outputs at the top of the figure have a suffix “A:” these are

IR UUO A and IR IOT A in the upper left, IR JRST A in the upper right. These decoder out-

puts do not drive the command lines for the corresponding instructions. Instead, they are ap-

plied to the executive logic (5.5) to determine in the latter two cases whether the instruction

is allowed or must be executed as a UUO. The command level for UUO is generated by the

executive logic; the command lines for the other two instructions are driven by the gates in C4,

each of which is enabled by the appropriate decoder output when the instruction is not being

executed as a UUO. The gate just below ORs the 1 states of IR9 and IRlO for use by the ex-

ecutive logic in testing a JRST.

5-15

ACCP V MEMAC, ACBM (Figure 5-9) ,

For the ACBM group (upper right), bits 3 and 4 are decoded for the action on the masked bits:

do nothing clear, complement, set. IR5(1) selects C(E) for the mask direct, as against im-

mediate which uses E. A 1 in bit 8 swaps the AC halves before masking. The net in the

upper left decodes bits 3 and 4 for instructions in the class that includes both ACCP and

MEMAC: one fourth of the instructions do an arithmetic comparison of AC against either E

or C(E); the other three types compare C(E) or AC against 0 and either merely test, or add

or subtract 1 before testing. Any instruction in the latter three types generates the main

control level MEMAC; the state of bit 5 determines whether the test word shall come from

memory or an accumulator. In ACCP, a 1 in bit 5 specifies a comparison with memory (direct);

otherwise the test is made against E (immediate).

The logic nets at top center in the figure test the skip or jump condition for all three groups,

ACCP, MEMAC, and ACBM. The condition is determined by the pair of gates at the left:

bit 7 selects the condition that AR is 0; bit 8 that the test word is less than the standard,

be it 0, C(E), or E. The upper gate functions only for ACCP and MEMAC: the logical com-

parison employs an AND function and the only test is whether or not the masked bits are all

zeros. In an arithmetic comparison, the function AR = 0 represents equality of the test word

and the standard. The function representing the inequality is the exclusive OR of the AR sign

bit and the overflow condition. This function is true when the subtrahend is greater than the

minuend; but since the standard is subtracted from the test word, it is true when the test word

is smaller. In MEMAC, the overflow condition is automatically false (for a complete des-

cription, see the flag logic, 6.2d so the entire function is true when AR0 is 1, i.e., when

the test word is less than 0.

FWT (Figure 5-9)

For a full-word transfer, the four standard modes are decoded from bits 7 and 8; a left-right

swap is made for MOVS (bits 5, 6 = 01); and the word is negated either when moving the

negative or when moving the magnitude while the word is negative, both situations being

represented by the condition IRb(0) V ARO(1) in MOVN or MOVM.

5-l 6

HWT (Figure 5-9)

For a half-word transfer, the standard modes are decoded from bits 7 and 8; a 0 or 1 in bit 3

specifies whether the half word shall be transferred into the left or right half of the destination;

and a 1 in bit 6 specifies that the source word shall be swapped before the transfer is made so

that the left half of the source is transferred into the right half of the destination or the right

into left. The other levels control the operation on the other half of the destination. If bits 4

and 5 are both 0, there is no action. If either bit is 1, AR is cleared; the word is constructed

by loading a half word into one half and complementing the other half if it should be all ones.

If bit 4 is 0, the other half is left clear; however, on IR4(1) the other half is set to all ones

(i.e., complemented) if the instruction requires that it be set or that its bits be made equal

to the sign of the transferred half and that half is negative. The gates to the left generate

the appropriate functions. For a transfer to the right, the upper net generates HWT LT SET

if instruction bit 5 is 0 or the sign bit MB18 of the right half word is 1. The lower gate per-

forms an equivalent function for the transfer left.

BOOLE, AS (Figure 5- 10)

Since BOOLE and AS have the same modes, the OR function of the two instruction levels gates

a decoder for bits 7 and 8. For further decoding of AS, the command level is merely gated

by the states of bit 6 to determine whether addition or subtraction is required. To decode for

the 16 Boolean operations, bits 4, 5, and 6 are applied to binary-to-octal decoders, one

gated by the 0 state of bit 3, the other by the 1 state. The table at the left lists the 16 opera-

tions by name, function, and number, shows the result for each of the four possible pairs of

operand bits, and lists the basic functions which, taken together, produce the required result

for a specific instruction. Each operation is performed by three of the execute time pulses and

may require from one to three of the basic functions.

JP (Figure 5-l 0)

Bits 6-8 of the iump and pushdown group are decoded into eight individual instructions. For

controlling transfers between MB and AR at the end of the execute cycle, there are two sub-

sidiary levels-one that representsal I JP instructions except JSP, and another that represents

the pushdown and pullout instructions. For PC control, JP JMP represents the six instructions

5-l 7

that iump, i.e., all except PUSH and POP. Three of the instructions that save PC (PUSHJ,

JSR, JSP) a Iso g enerate JP FLAG STOR to save the miscellaneous bits (JSA also saves PC

but it stores E instead of the miscellaneous bits).

XCT, UUO (Figure 5-l 0)

IR XCT causes ET3 to trigger XCTTO, which returns the processor to the instruction cycle at

a point beyond the memory subroutine so that the processor then executes the operand in MB

as an instruction , just as though it had been retrieved by the instruction cycle. For all codes

in the UUO class, the execute clears MA and MBLT, then transfers address 40 into MA and the

instruction code into MBLT. The last event is equivalent to UUO TO, which triggers a memory

write to deposit the trapped instruction, with its address portion replaced by the calculated

effective address in location 40. The memory return triggers UUO Tl to index MA, and

UUO T2 makes a read request and sets IFlA in the instruction cycle logic. The memory return

automatically triggers the remainder of the instruction cycle so the processor performs the

instruction in location 41.

5.4 PROGRAM CONTROL

Each instruction in the program is retrieved from the memory location addressed by the 18-bit

program counter (Figure 5-l 1). At the beginning of every execute cycle, the counter is

stepped one position so that instructions are taken from consecutive memory locations. The

program controls its own sequence by means of skip and iump instructions. Skip instructions

cause the processor to skip one instruction in the normal sequence if a specified condition is

satisfied; the skip is implemented by advancing PC one extra position at the end of an execute

cycle. Jump instructions transfer program control to any chosen location, sometimes upon

satisfaction of a condition, by loading a new address into PC. An address can be transferred

in only from MA so any input from the console ADDRESS switchesor a jump address from MB

must be made via MA and the transfer must be preceded by a clear. The flip-flops are con-

nected in a carry configuration so a pulse at the PC+1 input to PC35 adds 1 to the contents

of the counter.

Figure 5-12 shows the control logic for the counter: three control pulses are produced in the

upper half; t.he lower half shows the ge nera tion of the gates that control counting, skipping,

5-18

and jumping. Every program begins with the console operation start or read in, in which

KTl clears PC and KT3 loadsthe ADDRESS switches into it. For normal counting, PC is incre-

mented at the beginning of every execute cycle. The circumstances which inhibit program

counting at ET0 are those in which another execute cycle will occur before the next instruc-

tion in normal sequence is to be performed. Character operations generally require two main

parts, the second beginning with the address cycle, so PC is not incremented during operations

on the pointer except in the single instruction that affects only the pointer and has no second

part (C3). XCT, UUO, anda block IOT BLT all involve execution of instruction pairs and

counting occurs in the second execute cycle. Since a PI cycle interrupts the normal sequence

between instructions, the count must be inhibited in it because the processor has not yet

executed the currently addressed instruction. Counting is inhibited throughout a block trans-

fer because the BLT subroutine returns to the fetch cycle to process each word. When the

block is complete (MQO = 0), PC is counted directly from the subroutine at BLTT5A. The

inhibit also applies to an instruction executed from the console.

For changes in the program location out of normal sequence, PC SET causes ET7 to clear and

ET8 to load, whereas PC+1 (ET9) causes ET9 to count. The net for PC SET has as input all

unconditional iump instructions and an enable level which is asserted for any conditional

jump when the condition is satisfied. Conditions include JFCL when the addressed flag is

1, the add-l jumps when AR has the appropriate sign, and those arithmeitc compare instruc-

tions that use an accumulator when the test is satisfied. An extra count occurs at ET9 on two

unconditional subroutine jumps so that the subroutine begins one place beyond the storage

location of PC or AC. Any other extra count is for skipping and is represented by PC+1 ENABLE.

The skip conditions include the two IOT status test instructions when the appropriate condition

appears in AR, and the satisfaction of the test condition for any logical compare instruction or

those arithmetic instructions that compare memory against 0 or an accumulator against either

E or C(E). There is another conditional skip for a block IOT that does not use the PI system:

if the indexing of the pointer did not produce a carry into ARO, IOTTOA counts PC (the

computer performs the next instruction in normal sequence only if the block is complete). If

any iump or skip occurs (other than an IOT block skip), the OR gate at the right generates the

level PC SET \/ PC+1 for setting the PC change flag (6.2e).

5-l 9

5.5 EXECUTIVE LOGIC

The executive logic allows the executive routine to control the sharing of processor and memory

by a number of programs. The executive routine selects a user program and the area in core

assigned to it by loading the protection and relocation registers, placing the processor in the

user mode, and jumping to a location appropriate to the selected program. The user program

may be interrupted temporarily by a block IOT in a PI cycle (which is under control of the

executive routine and is hence unrestricted); but if a JSR is performed in a PI cycle (such as

following the completion of a block IOT or for servicing some other type of interrupt), the pro-

cessor leaves the user mode with control returning to the executive routine. Other than for

priority interruptions, the user program has control unti I it attempts to use a protected area of

memory or to perform an illegal instruction. The former action causes the processor to go the

end of the current main sequence and triggers a priority interrupt on the processor channel; the

latter causes the processor to perform the il legal instruction as a UUO (a I I UUOs are unrestricted

but automatically return control to the executive routine).

Figure 5-l 3 shows the executive logic except for the memory protection and relocation registers

which are discussed with the memory address logic (7. I& The pulse amplifiers at top center

provide the clear and set pulses for PR and RLR when the DATA0 clear and set pulses are gated

by CPA, i.e., when a DATA0 for the processor appears in the program. The only unprogram-

med clear for these registers is the master start because their states must remain until deliberately

changed by the program. Similarly, the user flag and the illegal operation flip-flop (A3, B5)

are also cleared only by the master start because they must maintain control functions from one

ma in sequence to another. The remaining three flip-flops in Figure 5-13 provide synchroniza-

tion and are cleared by the master clear. However, since the set function for EX PI SYNC is

a level output from the PI cycle flip-flop, it remains set as long as PI CYC is 1 even though

there may be a master clear between a pair of PI instructions. After PI CYC is cleared, the

sync remains set until the beginning of the next main sequence. EX UUO SYNC is set at the

beginning of every address cycle and then cleared at the end of the main sequence. The pur-

pose of this flip-flop is merely to prevent the generation of the UUO command level during the

time that IR is clear in the instruction cycle.

To set up a specific user program, the executive routine loads PR and RLR with a processor

DATAO. It then jumps to the location for the program with a JRST that also sets the executive

5-20

mode sync flip-flop (83). Th e setting may be done either by programming a 1 in bit 12 of the

JRST, or by restoring the flags (a 1 in bit 11) provided that a user program was running at the

time the flags were stored. Instructions that store the miscellaneous bits with PC store EX USER

in bit 5, but the restoring JRST does not act on the user flip-flop directly. Instead, it sets the

executive mode sync if MB5 is 1. The processor does not leave the executive mode until the

end of the main sequence in which the sync is set: at this time, the transition of the sync back

to 0 sets EX USER.

The addresses in the user program are checked against PR to determine whether they are legal

and relocated to the area assigned to the program. The net in the lower right generates a level

that inhibits both relocation and protection; the inhibit is always asserted if the user flag is 0.

The net also inhibits the relocation of fast memory addresses so that these locations are available

to all programs (the protection inhibit is really unnecessary here because these addresses are

ipso facto less than the minimum block size). There is also no protection or relocation of addres-

ses that occur in a PI cycle because the instructions executed are under control of the executive

routine and must be unrestricted even if a user program is running. Again only the relocation

inhibit is necessary for the PI channel addresses, but both inhibits are necessary for the addresses

given by the instructions. If the interrupt should require a iump to the executive routine, the

JSR that calls the routine also stores and clears the user flag (82).

The nets in the upper right monitor user instructions by receiving the IR decoder outputs for

JRST, IOT, and UUO to generate the UUO command level. The JRST or IOT decoder output

drives the corresponding command line only if the instruction is not executed as a UUO. When

the system is in user mode, EX IR UUO replaces a JRST that attempts to dismiss a priority in-

terrupt or halt the processor and replaces user IOT (a block IOT in a PI cycle is not part of the

user program). Any UUO regardless of mode enables EX IR UUO (after the UUO sync is set);

this thus provides a means by which a user program can communicate with and return control to

the executive routine. EX IR UUO inhibits relocation since it must use addresses 40 and 41,

and at ET1 it sets EX ILL OP. The 1 state of this flip-flop then continues the inhibit into the

JSR in location 41. At ET7 the JSR clears the user flag and at ET8 the illegal operation

flip-flop. Just in case a block IOT that does not overflow should interrupt the JSR, EX ILL OP

is cieared by all block IOTs.

5-21

The illegal operation flip-flop is also used to inhibit relocation during an examine or deposit

that is inserted between two main sequences while the processor is running. For this purpose

EX ILL OP is set by ST7 at the same time that the key cycle is triggered and cleared by the

read/write return.

5-22

CHAPTER 6

ARITHMETIC LOGIC

The first half of this chapter describes the registers used for arithmetic calculations. Three

full-word registers, AR, MQ, and MB, are used for computations on full-word and half-word

fixed-point numbers and the fractional parts of floating-point numbers. All data transfers and

logical operations on computer words are also performed in these registers. Besides the full-

word reg isters, there are two 9-bit registers SC and FE that are used for floating-exponent

calculations and for various subsidiary computations such as calculating the size and position

portions of the pointer in character operations and counting the number of steps required for

fixed- and floating-arithmetic operations. Included with each register is a discussion of its

input gating, its control logic, and any other hardware associated specifically with the reg-

ister (e.g., the flag logic and AR subroutines with AR, the SC subroutines with SC).

The second half of this chapter describes the time chains that control the execution of data

and arithmetic instructions outside of the execute cycle. The test discusses the generating

conditions for the pulses in a given chain and also describes the events that occur at each

step. In many instances, a number of pulses from the different time chains all must trigger the

same operation in an arithmetic register. Many subroutine time pulses are therefore connected

to the register control logic through OR gates in a subroutine interface (6.5). Lines from this

interface are labeled by the functions they perform and all have the prefix CFAC (computer

floating-arithmetic connection). When only one or two subroutine time pulses trigger a given

event, they are supplied directly to the register logic from the subroutines. In the following

discussion of the arithmetic registers, the significance of the generating conditions for an

individual register operation is given only for the execution of those instructions performed

in the execute cycle and for other events in the main sequence. To determine the significance

of any event triggered by a subroutine time pulse, either directly or through the subroutine

interface, the reader should refer to,the discussion of the appropriate subroutine.

The three full-word arithmetic registers are contained in the same set of double-height modules,

that is, MBi, AR;, and MQi are all on the same module (it also contains the ith bit of the

6-l

memory indicator register Ml, which is described in the memory logic). Each 360bit register

is controlled as a pair of half registers and is shown in two logic drawings, the first for the

left half in mounting panels D and E of bay 2, the second for the right half in panels H and

J of the same bay (e.g., see MB, Figures 6- 1 and 6-2). The flip-flops of all half registers

are in panel locations 5 to 12 and 16 to 24. All control pulses are supplied to them by a

pair of pulse amplifiers in locations 14 and 15. On the register drawings, these are shown

merely as blocks with the pin connections labeled; the actual pulse amplifiers with input

gates are shown in the drawings of the control logic associated with the registers. Each PA

output drives 18 input gates and is connected to 18 register modules for ordinary 0 or 1 trans-

fers, but to only 9 for iam transfers. All inputs to every register bit are labeled by signal

name; but since all the registers are contained in the same set of modules, connections be-

tween corresponding bits are made internally and pin connections are listed only for external

signals.

6.1 MEMORY BUFFER

Figures 6-l and 6-2 show the left and right halves of the full-word memory buffer. All trans-

fers to and from memory are made via MB, butthe register is discussed here because it holds

one of the operands in most arithmetic and logical instructions. Each MB flip-flop has a

direct clear input (which receives the register clear pulse) and gatable clear and set inputs.

The MB modules include six sets of internal gates, but the gatable inputs are also available

at the connector so that transfers can be made with single-bit pulses from external gates.

Transfers of either zeros or ones may be made into MB from either AR or MQ. The two halves

of MB may also be swapped; i.e., the left may be iam transferred into the right and the right

into the left. For various executive instructions, the program counter may be stored in the

right half of MB; the instruction register in MB LT. Transfers of information into MB from the

memory bus (7.2) are made via single-bit pulse set inputs shown at the bottom of the figures.

Clear inputs are also available, but these are used only for bits l-8.

The external gates for the single-bit inputs other than those from the memory bus are shown

at the top in Figure 6-4. Besides the clear gates for bits l-8, there are also set gates for

bits O-8 that parallel the memory bus inputs. The gates are controlled by three transfer pulses,

two of which set or clear bits l-8; whereas the third stores the miscellaneous bits in MBO-5.

6-2

The generating logic for these transfer pulses is shown in the upper right of Figure 6-3. The

set and clear functions occur in floating-point operations to nullify the exponent part of the

register and are conditioned by the MB sign bit (refer to the appropriate subroutine). Storage

of the miscellaneous bits occurs at ET6 in several of the subroutine-calling jumps. These bits

include the four AR flags which can be used by a subroutine but return to their original

states fol lowing the interruption. The miscellaneous bits also include CHF7 and EX USER.

The latter is saved so that the executive routine can return control to a user program by re-

storing the flags. Saving CHF7, which is set at the end of the first part in a character opera-

tion, allows the computer to return properly to the second part if there is a priority interrupt

between the two.

The remainder of Figure 6-3 shows the logic that governs all of the regular MB transfers. The

top section shows the pulse amplifiers that drive the register gates; these PAS are triggered

through OR nets whose inputs come either from the subroutine interface (6.5) or from the trans-

fer gates in the center section of the figure. Timing inputs to these gates are supplied by the

various main sequence and subroutine chains; the gating levels for the execute time pulses are

supplied by the OR nets shown in the bottom section.

The clear function (upper left) is not required for transfers to MB from AR or MQ since these

are always iam transfers. For transfers in from memory, a signal from memory control clears

MB before the single-bit pulse inputs arrive via the bus. For a UUO, ET1 clears only the

left half of MB leaving the effective address in the right half, and the ET3 loads IR into

MBLT (D2, B7). The transfer pulse also triggers the UUO subroutine (5.3). MB must also

be cleared before the transfers from PC that occur in various jumps. These iump instructions

generate the level MB PC ST0 (C3) which c I ears MB at ET5 (Bl) and transfers PC into it at

ET6 (Ab, 86). All but the restoring iump JRST also save the miscellaneous bits along with

PC (A8). There is one iump, JSA, that transfers PC at ET6 but is not included in MBPC STO;

this instruction gates ET6 via the diode net in D6. No prior clear is required because the

left and right halves of MB are swapped at ET0 (07) pl acing E in the left half and leaving the

right half clear.

The two diode nets in D7 provide six conditions for the left-right swap of MB. Three of these

conditions are standard instruction modes and a fourth, JSA, is described above. For the

6-3

other two, CON0 makes the swap so that E is available over both halves of the I/O bus, and

BLT does it to restore the address pair to its original configuration in order to store the data

word in the location specified by the right half. These two levels gate the appropriate execute

time pulses at B2 to trigger the transfer PAS in A2, 3. The swap is also triggered at FTlA (82)

whenever the processor must fetch a word addressed by ACLT (5.2~). The fetch cycle swap

includes BLT, which then requires the second swap to restore the original address pair at ET1 .

The logic that controls transfers from AR to MB occupies the entire center portion of the draw-

ing from top to bottom. Almost all the transfers are of zeros and ones simultaneously, but

there are several cases in which zeros are transferred alone (83). In the ACBM group, a 0

transfer is always made at ET1 (the group command level is inverted through the diode net in

05) to AND the data word with the mask; then at ET6 zeros are transferred again if the masked

bits are to be cleared. The 0 transfer is also used in a character deposit to produce an actual

transfer: the character portion of MB contains all ones and all bits outside of the character

in AR are also ones. The other three control pulses trigger the transfer of zeros and ones to-

gether: they iam transfer AR to MB, but two of the signals (one from the subroutine interface)

are also applied to AR control (6.2~) to trigger the transfer from MB to AR at the same time.

The double transfer always occurs in the fetch cycle to move AC to AR and E to MB; FTlA

does it (03) if there is no fetch of an additional word addressed by either half of AC, other-

wise FT3 makes the transfer (83). The MB-AR switch is required at three points in the block

transfer subroutine (6.62); the remaining transfers are at execute times gated by levels gen-

erated in Figure 6-3 (ETO, C2; ET4, D8; ET9 and ETlO, Cb). In a few instances, the transfer

is actually necessary in only one direction but additional hardware would be required to

eliminate the superfluous one. For an explanation of these cases as well as any other events

that are not immediately obvious in the flowcharts, refer to 4.5 (also see below).

The single transfer from AR to MB (B5) fo II ows index register modification in the address cycle

at AT3A to move the calculated address back to MB; ST5 triggers the transfer in order to store

the result of an instruction in an accumulator. Any deposit or instruction execution from the

console uses the transfer because the contents of the DATA switches can be sent to MB only via

AR; AR also goes to MB at the beginning of the multiply and divide subroutines (6.8_b, _c).

In the execute cycle, the transfer may be made at either ET0 or ETlO: the former involves

only standard instruction situations (D5), but the latter is complex and requires some comment.

6-4

In most instructions, the result appears in AR; and if it is to be stored in an accumulator, the

transfer from AR to MB occurs at ST5 (the MB-AR switch at ET9 in ACBM is made specifically

to move the result from MB to AR because the transfer in the opposite direction occurs auto-

matical ly for AC storage). However, if the result is to be stored in E, either by requesting

a write or restarting a read/write, the result is transferred from AR to MB at ET1 0 in prepara-

tion for the store cycle unless a transfer inhibit is asserted. The net that generates the trans-

fer gating level. is in C7; the net for the inhibit is in 04. The conditions generating the

inhibit represent situations in which the result is already in MB or is being moved there by a

2-way transfer. In EXCH, the switch is made at ET0 (C2); in a character deposit, the char-

acter is inserted into the data word in MB. The transfer is also inhibited for all instructions

in the iump and pushdown group: instead these instructions use the Z-way transfers at ET9

and ET10 (C6). At ET9, the switch is made for all instructions except JSR, whose result is

already in MB (flowchart, Figure 4-7 left). In JSP, JSA, and JRA, the ET9 transfer results

in the appropriate configuration for the store cycle. In the other four instructions, represented

by the logic level JP A tR6(0), the result is already correctly placed before ET9, so a second

switch of MB and AR is made at ETlO. This double switch is made so that the address from AC

right is available to MA at ET10 in PUSH and PUSHJ (the transfers are unnecessary in POP

and POPJ, but extra hardware would be required to eliminate them).

The remaining transfer is that of both ones and zeros from MQ (Figure 6-3, upper right) which

is triggered by two signals from the subroutine interface, one for a single transfer, the other

for a switch of MB and MQ. The conditions within MB control that trigger the transfer (B5)

include FT4A to return E to MB following a second accumulator fetch operation, and ST6 prior

to storing a second accumulator. The transfer also occurs at the beginning of the block trans-

fer subroutine (6.6~1). In the execute cycle, it is used at ET0 in three of the JP instructions

(C 1) to move to MB the word fetched from a location addressed by ha If of AC.

6.2 ARITHMETIC REGISTER

Figures 6-5 and 6-6 show the left and right halves of the full-word arithmetic register. Each

AR flip-flop has a direct clear input (which receives the register clear pulse), gatable clear

and set inputs, and two complement inputs, one of which accepts a positive-going pulse, the

other a negative-going pulse. The AR modules include ten sets of internal gates, but the

\. 6-5

gatable 0 and 1 inputs are also available at the connector so that transfers can be made with

single-bit pulses from external gates.

The AR outputs are connected within the 6205 modules to the input gating of the memory buffer

and are also available through the module connectors for connection to the shift gates in other

AR flip-flops, the in-out bus, and various other places in the processor. The outputs of the

sign bit AR0 are used throughout the processor for control purposes, such as in the prograrn

control test nets and in many of the arithmetic subroutines, so these outputs are buffered by the

drivers shown in the lower left of Figure 6-5. The 0 outputs of all AR bits are also available

at the connectors through diodes that are joined externally to form large AND gates as shown

in the left of Figure 6-l 0. Assertion of the output from a single AND gate indicates that the

corresponding portion of the register contains all zeros (note that bit 9 is not included among

the four gates). The first stage decoder outputs are further ANDed in the two nets in C3: the

lower net decodes AR for the condition that every bit is 0, the upper net for the condition that

bit 9 is 1 and bits 10 to 35 are al I zeros. The latter condition, represented by assertion of the

signal AR = FP HALF, is necessary for normalizing in floating-point operations. The floating-

point fraction -l/2 (AR bits 0 and 9 both 1, and zeros in bits 10 to 35) is considered normal-

ized even though bit 9 is the same as the sign bit.

In addition to the arithmetic register gating and control, this section describes the addition

algorithm, the AR subroutines, and the flag logic,

a AR Gating

The external gates for single-bit pulse inputs are shown at the bottom of the two AR drawings,

Figures 6-5 and 6-6. The only inputs presently used are for bits O-8 and the gates for these

are shown in the lower part of Figure 6-4. The upper pair of transfer pulses merely clear or

set bits 1-8; the lower pair (the two gates at the lower left are triggered by the same transfer

pulse as the row above) provide iam transfers from SC l-8 to ARl-8 and from SC3-8 to ARO-5.

The bottom two sets of gates in the register drawings, Figures 6-5 and 6-6, provide 1 transfers

into AR from the l/O bus and the console DATAswitches. Both of these transfers are preceded

by the clear pulse for the register. The next two rows are iam transfer gates for right and

left shifting; gating levels for a given bit are the 0 and 1 outputs of the adjacent bits. Since

6-6

at the register extremities the connections vary depending upon the type of shift, there are

special inputs for the left shift gates at AR35 and for both sets at ARO. The generating nets

for these special shift inputs are shown in the upper portion of Figure 6-7. At the left are

listed the different types of shifts with the time pulses at which they occur and block diagrams

showing the shift configurations. These diagrams are also drawn at the appropriate places in

the flow charts. Among the level inputs to the shift nets are several composite functions that

represent groups of conditions, all of which require the same shift type. The arithmetic shift

of AR and MQ combined (84) is required by the corresponding shift operation, but it is also

required in the normalize return and floating-add subroutines. Another composite function is

SHC DIV, which is asserted by any type of division provided NRF2 is 0 (D4). The flip-flop

condition does not apply to fixed division but is necessary in control over floating division so

that the control level cannot affect shifting in the normalize return subroutine, which follows

al I floating-point arithmetic subroutines. Just above is another composite function (C4), which

is asserted during a division or a combined logical shift.

The three shift input nets use these composite functions as well as individual instruction levels

bo determine the effect of any given shift on the AR extremities. In left shifting, AR0 receives

the state of AR1 unless some type of arithmetic shift is being performed, in which case AR0

is unaffected. The center net controls AR0 whenever AR is shifted right. The upper two gates

make MQ35 the source of data for AR0 on a combined rotation and AR35 the source on a single

rotation. The gates at the lower right of the net disable the 1 input so that AR0 is automatically

cleared in a character load or a logical shift; the gate at the lower left disables both inputs

so that AR0 is unaffected by any right shift in multiplication or division, or a right arithmetic

shift. The net at the right provides shift left input to AR35 from AR0 in a single register ro-

tation, from MQl in any double length arithmetic shift, and from MQO in a combined logical

shift, combined rotation, or division shift. The gate at the lower right disables the 1 input so

that AR35 is automatically cleared in a single left arithmetic or logical shift, or a character

deposit.

Above the shift gates are three rows of gates that use the outputs of the corresponding bits in

MB. The bottom two rows supply 1 and 0 transfers that provide the OR and AND functions

of MB and AR when used separately, but provide a iam transfer when pulsed together. The

third set is connected to the AR complement inputs and is conditioned by ones in MB. Pulsing

6-7

this set of gates produces in AR the exclusive OR of MB and AR. The next row of gates above

the MB gates provides a simple complement function, i .e., pulsing these gates complements

al! AR bits. The top two sets of gates generate carry pulses, both of which are applied to the

flip-flop to the left of the module containing the gate that generates the pulse. For example,

the gates on the AR8 module use AR8 and MB8 outputs as level inputs, but the carry output

complements AR7 (this method of placing the gates saves pin connections because the level

inputs are internal to the module). The two sets of gates provide related carry functions, a

ripple carry and a carry initiate. The lower set, the ripple carry, is a serial function, i.e.,

there is no control pulse applied to all gates simultaneously. The chain starts at AR35 with

the pulse AR+-1 Tl, which is applied both the the AR35 complement input and the lower carry

gate. This pulse, which occurs only when adding 1 to the contents of the register, complements

AR35; and if AR35 is 1, it also triggers the ripple carry to AR34. This second carry in turn corn-

plementsAR34;and if that bit is a 1, carries on to AR33. The chain continues through the

register in this manner except for a break between AR18 and AR17: the carry out of AR18

automatically enters AR17, but the latter may be pulsed independently in order to index two

18-bit words simultaneously .

The upper set of carry gates provides the full-register carry-initiating function for addition.

This arithmetic operation is carried out in two stages, first a partial addition, then a carry

function. The partial addition is the exclusive OR function of MB and AR (AR c MB(V)).

After the partial sum (the result of the partial addition) has been formed, the full-register

carry-initiating pulse triggers the upper set of carry gates to change the exclusive OR into

the arithmetic sum. At the end of the operation, the number in AR represents the sum of the

contents of MB and the previous contents of AR.

For any given bit, the partial sum *(the exclusive OR function) of two numbers is actually the

correct sum if there is no carry into that bit. But if there is a carry for that bit, the partial

sum is the opposite of the arithmetic sum. For each bit where both summands are 1, the carry

initiate directly complements the next more significant bit. However, since the processor

cannot sense the prior state of a flip-flop, it instead senses the corresponding configuration

of the partial sum. If after partial addition, AR; is 0 and MBi is 1, both bits must originally

have been 1 and the carry therefore complements ARi 1. Anytime a bit is complemented, a

ripple carry is initiated into the next more significant bit, but this carry is inhibited if the

6-8

bit was complemented from 0 to 1. At each stage, a carry produced through the upper gate

goes not only to the complement input of the next more significant bit but also to its lower

gate. Thus, a carry initiated by the partial addition of two ones ripples up the register until

it terminates when a 0 bit is complemented. That this algorithm does produce the correct sum

of two binary numbers is proved below.

-b Addition Algorithm

Let A be the original contents of AR, B the contents of MB, PS the partial sum produced in

AR by the partial addition, and S the arithmetic sum of A and B. For convenience, let A

and B be positive binary fractions whose sum is less than 1, i.e ., there is no overflow. A

bit of the partial sum Psi is equal to a bit of the sum Si if there is no carry into Si. If there

is a carry, Psi is the complement of Si. Since there can be no carry into the least significant

bit, PS35 = S35.

To understand the operation of the two carry functions, divide PS into sections from the right

so that the first section starts with PS and ends at the first bit Psi that satisfies the conditions
35

psi = 0, A; = Bi = 1. The second section starts with Psi , and extends to the next bit that

satisfies the same conditions as PSI. Proceed in this way through the entire partial sum. Since

there can be no carry input to the least significant bit of the partial sum, it must be correct.

If this bit is 1 or if it is 0 resulting from the partial addition of two zeros, there is no carry out

and the next bit of the partial sum is also correct. Proceed with each more significant bit

of the partial sum until reaching the bit Psi, which is 0 resulting from the partial addition of

two ones. This bit is also correct; therefore, al I bits in the first section are correct.

Because the partial sum in Psi generates a carry, Psi-, is not correct and a 1 from the first

section is carried into it by the carry initiate. If PS is 1 (resulting from the partial addition
i-l

of 0 and l), there is a ripple carry into PS i 2. The ripple carry propagates up the register

until a 0 bit is encountered. If this 0 is the result of a partial addition of two zeros, no

further carry is generated; all further bits are correct up to the next 0 that results from the

partial addition of two ones, i.e., up to the end of the section. If the 0 that terminates the

ripple carry results from the partial a.ddition of two ones, there must be a carry into the next

bit. However, the partial addition of two ones is the condition that ends the section and the

6-9

carry initiate begins a new ripple carry in the next section. Consequently, the carry comple-

ments all incorrect bits of the partial sum. At the completion of the carry operation, the

result S is the correct sum of A and B.

The preceding example shows that the addition algorithm works for the special case of two

positive numbers. Before proving the algorithm for the remaining cases, including negative

operands, some further facts should be understood:

The sign bits are included in the partial addition, i.e., the partial sum of two minus signs

(ones) is a plus sign (0).

Both carry functions are applied to the sign bit ARO, which is treated as though it were a

next more significant bit of AR.

The sign bit conditions both carry functions: there is a carry out of AR0 if two negative num-

bers are added, or if there is a carry out of AR1 and the sign of the partial sum is minus.

Carries into and out of the sign bit (i.e., carries out of AR1 and ARO) are used to detect

overflow.

Assume that the binary point is to the left of the most significant bit, i.e., all positive num-

bers are 3%bit, fixed-point fractions. The computer representation of the positive number

is therefore +. [xl where the brackets enclose the number contained in ARl-35. The sign of

this number is represented by the state of ARO. In 2’s complement arithmetic, the negative

of a number is produced by changing the sign and subtracting the magnitude from 1. The com-

puter representation of the number -x is therefore -. cl - xl . With this representation, there

is no negative 0; the magnitude 1 - 0 overflows, changing the sign back to plus. Furthermore,

the largest negative number is -1, represented by the configuration -. CO1.

The four cases of addition of two positive 35bit fractions are:

X+Y

(4 + ('Y)

x + (-Y)l Y Fx

x + (-)h Y >x

6-10

x

Since the 2’s complement format allows a representation for -1, either x or y may be : in the

second case and y may be 1 in the fourth case. In the first case, which is discussed above,

the contents of AR after addition represent the number +. Cx + yl . If (x + y) > 1, the carry

out of AR1 changes the sign. Consequently, if the addition of two positive numbers results in

a negative answer, it is apparent that the sum has exceeded the capacity of the register. The

processor detects the overflow by checking the sign bit carries: there is a carry from AR1 but

none from ARO: The contents of AR then represent the number:

-.cx+y- 11

In case two, the addition of two negative numbers, the partial addition and all carries except

that into the sign bit would be:

41 -xl

-4 - yl

+.61 + 1 -x - yl

If (x + y) < 1, the AR1 carry changes the sign and the complete result is:

41 -x - yl

which is the computer representation of -6< + y). If)x + y) > 1, there is no carry into the sign

bit, and its absence in the presence of a carry from the sign bit indicates overflow. AR then

contains:

+. Cl - (x + y -I)1

In case three, the addition of x and -y, where y is less than or equal to x, the partial addition

and all carries except that into the sign bit would be:

+.Cxl

41 - VI

41+x-yl

Since y <x, it follows that (1 + x - y) > 1. Hence the AR1 carry changes the sign and the

complete result is +. Cx -yl . Since the signs of the operands are different, the magnitude of

the result cannot exceed the larger operand and there can be no overflow. Although there is.

an AR1 carry, the minus sign resulting from the partial addition allows it to ripple through pro-

ducing an AR0 carry.

6-11

In case four, the addition of x and -y with y greater than x, the partial addition and the

carry function are:

+.Cxl

-.Cl - yl

41 + x - yl

Because y > x, it follows that (1 +x - y) < 1. Hence there are no carries from AR1 or AR0

and no overflow. The above result is the 2’s complement representation of the number x - y,

i.e., '(Y - 4.

Addition is also used in fixed-point subtraction with the minuend x in AR, the subtrahend y

in MB. The subtraction could be performed by taking the 2’s complement negative of x,

adding -x to y and taking the negative of the result. It is much simpler however to comple-

ment the word in AR, then add and again complement the result in AR. The complement of a

word, which is produced by exchanging all ones for zeros and zeros for ones, is equivalent to

the arithmetic l’s complement in which the sign is changed and the magnitude is subtracted
-35

from all ones, i.e., from 1-2 . The complement of x is thus:

-35
1 -x-2 ;

adding y to 2r x yields:
1 -x+y-2 -35

which equals:

1 - (x - y) - 2 -35

which is the 1’s complement of x - y. Overflow is indicated in the same way as in addition;

that is, by an AR1 carry without an AR0 carry or vice versa. Overflow is properly indicated
-35

even for operations involving -1 because the l’s complement is 2 more negative than the

2’s complement (i.e., when subtracting -1 from 0, the proper carries occur in the addition

of -1 to the complement of 0).

c AR Control

Figure 6-8 shows the generating logic for the AR control pulses. The pulse amplifiers that

drive the register gates are in the top section; these PAS are triggered through OR nets most

of whose inputs come either from the subroutine interface (6.5) or from the transfer gates in

6-12

the left center section. Timing inputs to these gates are supplied by the various main sequence

and subroutine chains, and the gating levels for the execute time pulses are supplied by the

OR nets at the lower right. Six of these diode nets are used almost exclusively to gate the

AR events necessary for the execution of the Boolean instructions. The flow chart (Figure 4-8)

lists at each time the instructions that require each event, and also lists the specific sequence

of events necessary for each of the 16 Boolean functions. Because there are no complement

gates for MB, a.11 functions that require the AND with the complement of memory use the OR

and complement the result; the same is true for the converse. BOOLE 14, which places the

complement of memory in an accumulator, clears AR first and then uses the exclusive OR as a

1 transfer. All other functions are quite straightforward. The other diode nets in Figure 6-8

gate the events necessary for the data transmission, IOT, and compare instructions; the functions

that are not immediately obvious from the flowchartsare described in 4.5.

The pulse amplifiers that clear AR are shown in the upper left corner of Figure 6-8. To leave

the desired address in the right half, only the left half is cleared in the address cycle and the

block transfer subroutine. For console operations, both halves are cleared by a signal from

the key logic (5.1) and the subsequent transfer from the DATA switches is triggered through the

PAS in B7. The other AR clear input is generated by the nets in B3 and C3. Subroutines that

require the clear include divide, floating add, and multiply. The clear may also occur at the

first two pulses in the execute cycle: it is required at ET0 for four of the Boolean functions (D2),

at ET1 by any input IOT (D6) and in any half-word transfer that affects the other half of the

destination location. For input instructions, IOTT triggers the subsequent transfer into AR

from the bus (88). For an HWT, there is no further action if the instruction is to clear the

other half, or the transfer half is positive and the instruction is to extend it; however, to set,

or to extend a negative half, the other half is set by complementing through the appropriate

gate in Bl.

All other complements affect the entire word. One input to the PA gates (A2) comes from the

subroutine interface; another is the first pulse in the add-subtract time chain-this pulse occurs

only if the subroutine is to subtract (d below). Corresponding time pulses for the index and

negate subroutines trigger the complement through the top gate in C2. The gates below that

provide the complement at ET0 or ET4 for Boolean functions, and at ET5 and ET7 for the ACBM

6-13

group in case the masked bits must be cleared at ET& The bottom gate complements at the end

of the carry function in an AR subroutine if the complement control flip-flop has been set.

The four PAS in A3 and A4 are triggered in several combinations to provide 0, 1, and iam

transfers from MB into either or both halves of AR. Al I four must be triggered for a full-word

jam transfer. The top two inputs provide for a simultaneous interchange of MB and AR; for

any such transfers not made through the subroutine interface, the generating logic is shown

with MB control (6.1). Half-word jam transfers include transfer of the address portion of the

instruction word into ARRT at the beginning of the address cycle, and transfer of the selected

half word in an HWT triggered by ET4 through the gates in 82 with gating levels supplied from

the nets in C7. The left transfer also occurs in a CON0 so that E is available on both halves

of the I/O bus. All other pulses that trigger the PAS in A3 and A4 are for full-word, one-

directional transfers. Transfers of zeros alone (B4) are required in both the deposit and load

character sequences (6.6b), at ET1 in four of the Boolean functions (04) and at ET6 for the

two IOT status test instructions (D8). The 1 transfer (CS) is used to set the masked bits in an

ACBM (D4) as well as to provide a 1 transfer in SETM (BOOLE 3) and an OR function in four

of the other Boolean instructions. The gates for the jam transfer are located between 83 and

84 in the figure. This transfer is required in fixed-point multiplication (6.7g), at ET0 in

various data transmission, compare and IOT instructions (D5), and in character operations in

the first part and in the load sequence of the second part (6.6b).

The PAS for the exclusive OR function of MB and AR (As) are triggered when ET1 is gated at

B4 by the level from D5. This function complements the masked bits in an ACBM, provides

a 1 transfer in SETCM (BOOLE 14) an d an exclusive OR in XOR and EQV (BOOLE 6 and 11).

The exclusive OR pulse amplifiers are also triggered by AR AS Tl in the add-subtract subroutine

to provide the partial addition. The next pulse in the chain initiates the carry function

through the pulse amplifier in B6. The remaining PAS in the upper right of Figure 6-8 provide

for the left and right shifts, which are triggered from the subroutine interface.

The control pulses for the special AR gates that are external to the arithmetic register modules

are shown at the right in Figure 6-9. To understand the significance of these transfers, the

reader should refer to the description of the subroutines in which they occur. In the exponent

calculate and floating add subroutines, AR bits 1-8 are cleared or set according to whether

6-14

the sign bit is 0 or 1 in order to nullify the exponent part of the register. The jam transfer

from SC1 -8 into AR occurs in the normalize return and floating-scale subroutines to insert

the exponent in the result; a similar transfer of SC3-8 to ARO-5 occurs in the first part of a

character operation to insert the new position if the pointer has been incremented.

d AR Subroutines-

Figure 6-9 shows the logic governing the negate, index and fixed-point add and subtract sub-

routines; the flowchart for these is in the upper right of Figure 4-8. In the lower right of

Figure 6-9 are the nets that provide the level gates to trigger and control the subroutine time

chains. The add gate is asserted only for fixed-point addition, the subtract gate for both

fixed-point subtraction and the instructions that arithmetically compare an accumulator

against memory. The add 1 and subtract 1 levels are generated by instructions requiring up-

ward or downward indexing of either the entire AR or its two halves independently. AR+1 is

asserted in any MEMAC instruction that adds 1 to the test word, in the two add-l-to-both

iump instructions, and to index the pointer in any pushdown instruction or block IOT. Similarly,

AR-1 is asserted for the MEMAC instructions that decrement the test word and to decrement the

pointer in the pullout instructions. Between the add 1 and subtract 1 nets is a net that gen-

erates the level AR+-1 LTRT, which causes any entry into the carry chain at AR35 to enter

the chain at AR17 as well. The double indexing occurs in the two add-l-to-both jumps and

for operations on the pointer in a block IOT or in any pushdown or pullout instruction (these

last four are included in the level JPA IR6(0)). Th e net in the lower right corner generates

the level that causes the execute cycle to pause after ET3 for an AR subroutine. AR SBR is

generated by any of the four subroutine calling levels described above, and also for negation

in a full-word transfer and for a floating subtraction (this last case is for negation of the

subtrahend before entering the floating-add subroutine).

The AR subroutines are actually two separate time chains, each with multiple entries, that

join for the return to the interrupted sequence. The chain in the upper left handles indexing

and negation; downward indexing and negation both require a preliminary pulse to comple-

ment AR. Subtracting 1 is done by complementing, adding 1, and complementing again;

negation by complementing, then adding 1. All subroutines in the execute cycle are triggered

at ET3. AR-1 triggers AR+-1 TO, which complements AR and also sets the complement control

6-15

flip-flop (C5). Th e complement pulse for negation may be triggered by a signal from the sub-

routine interface (6.5) as well as by ET3 in a floating subtraction or the appropriate FWT.

Fo,ilowing either TO pulse, there is a delay to allow the register complement to function before

triggering AR+-1 Tl which carries into AR35 adding 1 to the contents of the register. This

latter pulse is also triggered directly by time pulses from block transfer, normalize return, and

character operations as well as by the input for execute cycle incrementing. For indexing

both halves of AR together (this occurs in a block transfer as well as in those instructions that

generate AR+-1 LTRT), the same pulse that carries into AR35 is also gated to carry into AR17.

Of course, a carry into AR17 occurs automatically whenever there is a carry out of AR18.

Just to the right of the index and negate chain is a separate time chain for addition and sub-

traction. The first pulse in the chain, which complements AR, is necessary only for subtrac-

tion and is triggered not only in the execute cycle, but also from the subroutine interface,

and in a block transfer to determine whether the block is complete. AR AS TO sets the comple-

ment control flip-flop, and after a delay sufficient for the complement to function, triggers

the partial add pulse AR AS Tl . The chain begins at this pulse for any execute cycle or sub-

routine addition and also when adding an index register in the address cycle. After the partial

addition, the chain continues to the next pulse which initiates the full register carry.

There are three pulses that initiate carries in AR. These are AR+-1 Tl in the right half,

AR17CRY IN in the left half and ARAS T2 which triggers carries at any required point through-

out the register. All three pulses are applied to the OR gate in Bl cutting off the transistor

just to the right by grounding pin 2F5Y. ORed with these carry initiating pulses is a vast OR

gate (lower left) that receives the carry outputs from all AR bits. Once any carry function is

initiated, all further carries are from the ripple carry, i.e., a carry for any bit can come only

from a contiguous bit. Successive carries overlap because of the carry speed and the OR gate

is enabled until all carries die out: 2F5Y then goes negative triggering the carry completion

pulse. If the complement of AR is not required (i.e., the subroutine is not performing a sub-

traction) the completion pulse triggers the subroutine return ART3. However if the comple-

ment control flip-flop has been set, the carry completion complements AR, and after an

appropriate de lay triggers the return. ART3 clears the complement control flip-flop and trig-

gers the next pulse in the time chain that has called the AR subroutine.

6-16

-e AR Flags

The jump-addressable flags and associated logic are shown in the right half of Figure 6-10.

Although some AR flag control functions also affect the user flag and the flip-flop that dif-

ferentiates the two parts of a character operation, only the four AR flags can be sensed or

cleared directly by the program. The PC change, overflow, carry &and carry 1 flags are

cleared initially by the master start rather than the master clear because their states must re-

main from one main sequence to the next. Program control over the flags is exercised by

three instructions, JRST with a 1 in IRl 1, JFCL, and the CON0 for the processor. The last

instruction, which governs the many flags in the processor I/O interface (8.3), clears the PC

change flag if a 1 is programmed in bit 29 or the overflow flag if bit 32 is 1. JFCL selects

flags with bits 9-12 of the instruction word and clears the selected flags after sensing them to

make the jump. The JRST, which must be addressed indirectly, clears all the flags and re-

stores them according to the first four bits of the word taken from memory as the direct address.

The flag clear and set pulses generated here also handle the restoration of CHF7 and EX USER.

The remaining gates include conditions for setting the flags so that the program may determine

whether or not certain events have occurred. Any iump or skip sets the PC change flag pro-

vided the instruction in process is not a JRST that is restoring the flags. All other gates are

for arithmetic conditions indicating overflow. Overflow in most fixed-point cases is determined

from the pair of flip-flops in the lower right, which are cleared at the beginning of every

execute cycle and then set by carries out of AR0 and AR1 . Since overflow is indicated by the

presence of one of these carries in conjunction with the absence of the other (as is shown in

the discussion of the addition algorithm in b above), the level AR OVSET is asserted when the

two fl ip-flops have oppositestates; i . e., the overflow level is the exclusive OR of the two

carry flip-flops. In fixed-point addition or subtraction or in the MEMAC instruction group-

the latter condition being relevant only for those MEMAC instructions that index the test word-

ET10 transfers the states of the carry flip-flops to the corresponding flags, and if overflow has

occurred, sets the overflow flag. The remaining gates in C6 set the overflow flag on an over-

flow signal from the subroutine interface (6.5); on the attempt by an FWT to form the negative

of -1; and on the loss of a significant bit in an arithmetic shift to the left, i.e., if a 1 is lost

in a positive number or a 0 in a negative number (the exclusive OR input for this gate is gen-

erated in E5).

6-17

The top nets at the far right in Figure 6-10 provide control levels for use in various arithmetic

subroutines: the exclusive OR of AR0 and MBO, and the complementary function of AR0 and

SCO. The remaining nets at the lower right test for the inequality conditions in arithmetic

compare instructions (5.3). The lower net ANDs the overflow condition with Q MEMAC,

and this output is exclusive ORed with AR0 in the upper net. In a MEMAC, the output of

the lower gate is automatically false and the output of the upper gate is true or false as AR0

is 1 or 0. In this case, since the comparison is with 0, the function specifies whether the test

word is negative or positive, i.e., less or not less than 0. In the ACCP group, a test word

from AC is compared against a standard, either E or C(E). The comparison is made by sub-

tracting the standard S from the test word T. The four possible configurations of T and S result

in the following signs and overflow conditions:

T 2 0, T < S: - and 2, OV

T > 0, T > S: + if s OV, - if OV

T<O, T<S: - if s OV,+ifOV

T<O, TX: +and Q OV

Hence, the function AROWAR OV specifies the relation between the test word and the

standard: it is true for T < S, false for T > S.

6.3 MULTIPLIER-QUOTIENT REGISTER

Figures 6-11 and 6-12 show the left and right halves of the full-word, multiplier-quotient

register . Each MQ flip-flop has a direct clear input, which receives the clear pulse for the

register, and gatable clear and set inputs. The MQ modules include four sets of internal

gates, but the gatable inputs are also available at the connector so that transfers can be made

by single-bit pulses from external gates (at present, these are used only for MQO).

The upper two sets of gates provide transfers of zeros or ones from MB, The lower two rows

are iam transfer gates for right and left shifting; gating levels for a given bit are the 0 and

outputs of the adjacent bits. Since the connections at the ends of the register vary depending

upon the type of shift, there are special inputs for the left shift gates at MQ35, the right

shift gates at MQl and both sets at MQO. The generating nets for the special shift inputs are

shown in the lower portion of Figure 6-7. At the left are the different types of shift with the

6-18

1

time pulses at which they occur and block diagrams showing the shift configurations, These

diagrams also appear at the appropriate places in the flow charts. Among the level inputs to

the shift nets are two composite functions that represent groups of conditions, all of which

require the same shift type. The arithmetic shift of AR and MQ combined (84) is required by

the corresponding shift operation, but it is also required in the normalize return and floating-

add subroutines. Another composite function is SHC DIV which is asserted by any type of

division provided NRF2 is 0 (D4). The flip-flop condition does not apply to fixed division but

is necessary in control over floating division so that the control level cannot affect shifting

in the normalize return subroutine, which follows al I floating-point arithmetic subroutines.

The four shift input nets use these composite functions as well as individual instruction levels

to determine the effect of any given shift on the MQ extremities. In left shifting (C4), MQO

receives the state of MQl unless some type of double-length arithmetic shift is being performed

in which case AR0 is the source. The next net controls MQO whenever MQ is shifted right.

AR0 is shifted into MQO by any double-length arithmetic shift or by the final multiplication

shift, i.e., when the shift counter contains 777. In all other circumstances, AR35 provides

the input. The next gate to the right causes information to be transferred directly from AR35

to MQl in any double-length right arithmetic shift (MQO is skipped in the shifting), otherwise

MQO shifts into MQl . The final net connects AR0 to MQ35 for any left combined rotation

but causes MQ35 to receive the complement of AR0 in a division shift. The two gates below

provide constant inputs to MQ35. The left gate grounds the 0 input so that ones are always

shifted in the first part of character operation; similarly zeros are shifted in a combined logical

shift, in any double-lengtharithmetic shift, and in the character deposit sequence. There is a

single additional gate that affects MQO when MQ is not itself shifted. In the first floating

division shift at DSTlOA, only AR is shifted but AR35 must enter MQO. The pair of gates at

the left in Figure 6-13 allow entry through the single-bit pulse inputs, leaving the remainder

of the register unaffected.

For use in multiplication, the register actually has an additional bit MQ36 (Figure 6-13, right).

This bit receives the state of MQ35 on any right shift but is of significance only in multiplication

(6.8b). For the multiply subroutine, the net at the right supplies a level indicating when bits

35 and 36 are equal. Another net in C4 supplies the exclusive OR function of MQ35 and

MB0 for use by the divide subroutine (6.8~).

6-19

At the top of the figure are the pulse amplifiers that control the register. MQ is cleared only

at the master clear and the shift PAS are triggered only from the subroutine interface (6.5).

The remaining PAS provide transfers of zeros and ones from MB. Transfer of ones occurs in the

deposit character sequence (6.641). The jam transfer occurs on a signal from the subroutine

interface that switches MB and MQ, and at the four time pulses I isted at the gate in 84. The

transfer at FT4 saves E in MQ if there is to be a second AC fetch operation; FT4A transfers

this additional word into MQ at the same time that it returns E to MB. The remaining transfers

occur in the multiply and divide subroutines (6.&, c).

6.4 ARITHMETIC SHIFT COUNTING

In addition to the three full-word arithmetic registers, the arithmetic logic also includes two

T-bit registers for use in auxiliary computations and counting steps in arithmetic operations.

The shift counter and the floating-exponent register are shown in Figure 6-14. Each module

in the figure includes one flip-flop from each register and all associated gating. FE is used

only for storage of intermediate results. In floating multiplication and division, the exponent

is calculated in SC and stored in FE while SC counts the number of shift steps in the operation

on the fractions. FE also provides temporary storage for the position portion of the pointer in

a character operation.

Since actual computations are performed in SC, there is considerable gating associated with

its flip-flops, including a carry chain; but FE is used only for storage so it includes only a

direct clear and two sets of transfer gates connected to the flip-flop collectors. These provide

1 transfers from SC and from MBO-5 to FE3-8.

a SC Gating

Below the SC flip-flops in Figure 6-14 are the gates that implement the transfers, partial

addition, and carry logic. In addition to gatable clear, complement, andset inputs, each

flip-flop also has a carry input and a carry output. These are connected from one flip-flop to

the next so that a pulse at the SC+1 input to SC8 adds 1 to the contents of the counter. The

clear input is used only for the register clear. There are three sets of complement gates: the

top one provides a simple complement function and the other two provide the partial add and

carry functions which are described below. The remaining gates are connected to the 1 inputs.

6-20

The top gate provides an ordinary 1 transfer from FE to SC. The middle gate provides a com-

plement transfer from MB1 8, 28-35 into SC. The last gate is a diode net (not part of the

6203 module) which receives no level inputs, but instead control pulses are applied to individual

gates in order to place a specific number in the counter. In multiplication and division, for

example, SC receives the complement of the number of steps to be counted; it is then incre-

mented until it contains all ones, terminating the operation.

At the bottom of the figure are two networks, the lower a carry chain, the upper a set of level

gates that supply the data inputs to the partial add (exclusive OR) gates at the complement

inputs to the SC flip-flops. The partial add gates are used not only for partial addition but also

for transfers provided SC is cleared or set first. The source of information for the partial add

gates varies depending upon the operation in which SC is being used. The nets that generate

the data levels are sets of four AND gates ORed together; each AND gate receives an enabling

level that is common to all nets and an input from a single bit of a source register. For example,

the top set of AND gates places the complement of MB04 into SC3-8, i.e., with SC clear,

a 0 in a given MB bit causes the partial add pulse to set the corresponding SC bit by comple-

menting it. For this function, the first three data levels are automatically asserted. For

the other three sets of AND gates, the data levels are asserted by ones in the source register:

the second set enables input from MB64 1 to SC3-8 with the first three bits negated; the

bottom two sets enable input to SC from ARO-8 and MBO-8.

To calculate the exponent in floating-point operations and the pointer in character operations,

numbers must be added in SC. The addition is performed with essentially the same algorithm

used in the arithmetic register (6.2b). First, the partial add pulse produces in SC the exclusive

OR of the contents of SC with the number represented by the data inputs, then the carry pulse

adjusts the partial sum to produce the arithmetic sum. The carry function for SC differs from

that in AR in that no ripple carry is used. The carry connections from one flip-flop to the next

are for indexing and are not associated in any way with the full-register carry function; no

carries propagate from one bit to the next when a bit is complemented by the carry pulse. ln-

stead, as soon as the partial sum is formed, a series of level transitions from right to left across

the carry chain determines the carries for all bits, and all bits are adjusted simultaneously by

the carry pulse. The conditions for a carry are the same as those in AR. There is no carry into

6-21

the least significant bit (D8) and a carry out occurs only when two ones are added-a condition

that is indicated by a 1 in the data and a 0 in the partial sum. For the other bits, there are

two carry out conditions, one dependent upon a carry in. For any bit, there is a carry out if

both summand bits are ones, or if the partial sum is 1 and there is a carry in. After the level

changes have propagated through the chain defining the carries for all bits, the carry pulse

complements those bits that receives carries; the SC8 carry supplies the gating level for SC7,

and so on through the register. Since there can be no carry into the LSB, the carry gate for

SC8 is disabled (B8).

b SC Control

The various functions of SC and FE are triggered directly from the subroutine time chains in-

cluding the SC subroutines. There are no connections through the subroutine interface and

SC functions are triggered by execute time pulses only prior to entry into a subroutine. The

logic governing the SC and FE functions is shown in Figure 6-15. The conditions governing

FE, which is used only for temporary storage, are quite simple: it is cleared only on the

master clear (Bb), and may receive an exponent from SC in the exponent calculate subroutine

for floating multiplication or division (B7), or may receive the position portion of the pointer

in the first part of a character operation (84). In all cases, the information is subsequently

transferred to SC (B2).

The complement transfer of MB18, 28-35 into SC (C8) is made at ET0 in a shift operation or

floating scale. The only other function triggered from the execute cycle is the complement

pulse, which occurs at ET1 in FSC if AR is positive (B3). All other functions govern SC for

shifting or calculating in the data and arithmetic subroutineinstructions, and they are triggered

by pulses from the special time chains. In most instances, these pulses are ungated although

many of those that trigger the complement are gated by sign conditions. Read the appropriate

subroutine description (all are included in the final three sections of this chapter) to determine

the significance of each SC event in a given subroutine. SC is cleared through the net in the

upper left (which includes the master clear), complemented through the nets in the top center,

and its partial add function is triggered through the net in the upper right. This last function

is used for addition only in the SC add subroutine in which it is followed by the carry (B3); in

all other cases, the exclusive OR is used for transfers. The source of information for the data

6-22

levels to the partial add gates is determined by the enabling levels in the upper right of

Figure 6-16. A flip-flop in the logic for the appropriate subroutine enables the required

input for each transfer or partial addition. There are no flip-flops associated with the SC add

subroutine; instead the enable level is derived from a flip-flop in the main subroutine that

cal Is for the SC addition. SC may also be incremented by 1 through the nets shown below the

enable levels.

In the lower left of Figure 6-15 are several control signals derived from the SC outputs. The

function in 06 indicates that the first three bits are all ones and hence SC contains a l’s

compl’ement negative less than or equal to 63 in magnitude. The net in Dl decodes SCO-7 for

all ones and its output is ANDed with SC8(1) for a signal indicating that a shift-count has

been complemented, i . e . , SC has counted to -0 which is all ones. The termination of the

count may also be indicated by a pulse through the pulse amplifier in C4. When SCO-7 are

al I ones, the next count pulse in theshift-count, multiply or divide subroutine triggers the PA

to produce a leading edge at output SC8B. The PA output is ORed with the -0 configuration,

so SC8B remains asserted even after the PA output disappears.

c SC Subroutines

There are two subroutines associated with the shift counter, an add subroutine for use in cal-

culations on exponents and pointers, and a shift and count subroutine that counts the number

of steps required in an operation and shifts the intermediate result at each step. The logic

for these subroutines is shown at the left in Figure 6-16 and the flow charts are in the lower

right of Figure 4-8. Listed with the shift-count subroutine are the entry conditions, the con-

trol levels governing the type of shift, and the pulses to which the subroutine returns in the

interrupted sequences. Similarly, the flowchart for add lists the entry, the source enabled

for the partial addition, and the return for each call .

The time chain for add is in the upper left in Figure 6-16. The first pulse always clears the

character control flip-fIopCHF1 ,although this is of relevance only in character operations.

SAT1 then triggers the partial add, and after a delay sufficient for all level transitions through

the carry chain, SAT2.1 triggers the carry. SAT3 then returns to the interrupted sequence.

6-23

The shift-count subroutine is used only in character operations, shift operations, and the floating-

add subroutine. All other shifting counted by SC is produced directly by pulses from the

arithmetic subroutines. Entry into the shift-count sequence ’ at SCTO, which performs no

operation but provides a delay before the first shift. If SC does not contain -0 (indicated by

the condition that either SC8 is not 1 or SCO-7 does not contain all ones), SCTl increments

SC and triggers the appropriate shift (6.5). If the counting is still incomplete, the output

of the delay triggered by SCTl again triggers SCTl for a new shift and count. When the count

is complete, the delay output returns to the interrupted sequence via SCT2.

6.5 SUBROUTINE INTERFACE

Because the same event is often required at many different times in the various subroutines,

the processor includes a subroutine interface that collects signals from the subroutines to re-

duce the number of signals applied to the control logic for the arithmetic registers. For

example, all shifts of AR or MQ are triggered through the nets at the left in Figure 6-17. The

lower set of nets, which includes level gates, is for shifting on SAT1 in the shift-count sub-

routine. For a shift operation, AR and MQ are shifted left if bit 18 of the instruction word is

0, right if bit 18 is 1 . Note that even though the program may request the shift of a single

accumulator, the logic shifts both AR and MQ, the latter being empty. The level gates for

other SC-control led shifts are supplied by subroutine control flip-flops. The first part of a

character operation requires an MQ left shift; this is followed in the second part by a shift

left of both in the deposit sequence or an AR shift right in the load sequence. Floating

addition requires a right shift of both registers. The upper set of gates allows pulses from the

subroutine time chains to trigger shifts. The regular division shift is both registers left at

DST14A, but two other divide pulses produce right shifts of AR alone and one left shifts MQ

alone. Similarly the multiplication process shifts both to the right at MST2, but a final shift

at the end of the subroutine moves MQ alone to the right. The normalize return begins by

shifting both registers right in case there has been overflow in calculations with the fractions,

and then the regular normalizing process shifts both to the left. In floating division, a 2-bit

overflow is possible; so following the divide subroutine, the final pulse in the floating-divide

instruction sequence (FDTl) shifts both registers right to supplement the single shift that begins

the norma I ize return. The effects at the register extremities for all of these shifts are controlled

6-24

by the special shift inputs shown in Figure 6-7 and described with the gating for the regis-

ters (6.22, 6.3). The exact configurations for all shifts are shown in block diagram form

in Figure 6-7 and each shift is shown at the appropriate place in the flow charts.

The remaining nets in Figure 6-17 are mostly for gates that collect subroutine time pulses

for transmission to the register gating. In some cases, the pulse inputs are gated by levels,

particularly in the upper right nets that detect overflow. Al I connect ions from subroutine

time chains, other than for functions listed at the top of the figure, are made directly to

the control logic for the registers. All subroutines pulses that trigger the AR negate or

add subroutine, the switch of MB and MQ, or the AR complement are routed through the

subroutine interface. For the other functions, which include entry to the AR subtract sub-

routine, the transfer of MQ to MB, the switch of MB and AR, and overflow, most pulses

are routed through the interface but some are connected directly to the register gating.

For example, the net in the upper right of Figure 6-17 handles overflow for multiplication,

division, and all floating-point operations, but overflow in an arithmetic shift operation is

handled by a net included with the flag logic (6.2~).

Except for one special case, all SBR flip-flops and control flip-flops in the subroutine

logic are cleared at the beginning of every main sequence. For this purpose, the master

clear triggers several pulse amplifiers to drive additional clear lines. Two of these with

prefix MP are in the lower right of Figure 6-21, a third with prefix DS is in the upper

right of Figure 6-26.

6.6 DATA SUBROUTINE iNSTRUCTIONS

Three types of data transmission instructions switch to subroutines for their execution. Flow

charts for all three types are’in Figure 4-9. The block transfer moves an entire block of words

from one area in memory to another. The character operations handle single characters smaller

than a word and can insert a character into a word in memory or retrieve a character from a

word without affecting the rest of it. Shift operations move the bits of a word or pair of words

to the left or right. There are several shift configurations differentiated mainly by the effects

6-25

of the shift on the register extremities. The last group may be viewed as logical operations

rather than data transmission; the arithmetic shift is equivalent to multiplying the word by a

power of 2.

a Block Transfer-

A flow chartof the block transfer instruction is at the right in Figure 4-9 and the time chain

is in Figure 6-18. The left and right halves, respectively, of the accumulator addressed by

the instruction provide source and destination addresses S and D. The first fetch cycle retrieves

a word from location S. The subroutine then stores the word in location D, increments both

S and D, and returns to the fetch cycle to retrieve and store a second word according to the

incremented source and destination addresses. The entire sequence is iterated until D equals

the effective address E.

The first fetch cycle retrieves AC, swaps its halves so that S is available to MA, and fetches

C(S). At the beginning of the execute cycle, AR contains (D,S), MB contains (0, E), and MQ

contains C(S). The first execute pulse switches MB and AR to save E and bring (D,S) to MB.

ET1 then clears MA and swaps the MB halves so ET3 can transfer D to MA. ET3 also triggers

the first subroutine pulse BLT TO (Figure 6-18, upper left) which switches MB and MQ to save

(S, D) in MQ and make C(S) available to memory from MB. It also requests a memory write

to store C(S) in D .

Upon receipt of the memory return, the BLT time chain transfers MQ to MB so that the addresses

are now in both registers. The next pulse then switches MB and AR so that E is now in MB

and (S, D) in AR. BLTT2 clears ARLT and the next pulse calls the subroutine to subtract E

from D. Following the AR subroutine, BLT T3A places E in MQ and returns (S, D) to MB.

BLT T4 then moves D-E to MB and the two addresses to AR. The next pulse moves the subtrac-

tion result to MQ, bringing E to MB, and triggers the subroutine that adds 1 to both halves of

AR, incrementing both addresses. Upon the return BLTT6 saves E in AR, moves the new

addresses to MB and reenters the fetch cycle at FTl A. This is the point just following the

retrieval of an accumulator, so the processor repeats the entire procedure using the incremented

addresses in MB as though they had just been retrieved from AC. For convenience, the fol-

lowing table shows the contents of AR, MB, and MQ following each pulse in the sequence (or

following a subroutine called by the pulse).

6-26

AR MB MQ

INITIAL D,s E C(S)
ET0 EV D,S C(S)
ET1 E S,D C(S)
BLT TO E c(s)=S, D
BLT TOA S,D
BLT Tl S,k-==2~ S/D
BLT T2 D E S/D
BLT T3
BLT T3A
BLT T4
BLT T5
BLT T5A S+l,D+l E D-E
BLT Tb Ex, D+l D-E

Since E is initially greater than D, the result of the address subtraction is negative until the

cycle following that in which the indexing of D makes it equal to E; then the result is 0 so the

sign is positive. The transfers at BLT T4 and BLT T5 move the result to MQ, and BLT T5A tests

MQO (D4, 88) to determine whether the block is complete. If MQO is 0 at this time, the

program counter is incremented (the normal program counting at ET1 is inhibited throughout

the block transfer) and the subroutine returns to ET1 0 instead of going on to BLT T6. There

are no operations in the store cycle and the processor goes on to the next instruction.

Since a block transfer may use many main sequences, the subroutine includes provision for

strobing the priority interrupt system at every BLT T4. If a PI request is generated, the level

BLTDONE is asserted even though MQO may not be 0 (if it is, the subroutine terminates in the

usual manner). This prevents the final MB-AR switch at BLT T6, so the incremented addresses

are still in AR and BLT T5A goes directly to ETlO. Since BLTLAST is negated (D6), there is

no store-AC inhibit and the current addresses are stored in the accumulator in place of the

original ones. Following the store cycle, the processor returns to the instruction cycle osten-

sibly to repeat the same instruction but it is interrupted by the PI request. After all requests

have been serviced, the program returns to the interrupted block transfer, fetches the new

addresses from AC, and begins where it had previously left off.

-b Character Operations

There are five instructions in the character operation group, four of which require two main

sequences for execution: the first part fetches and if necessary increments the pointer, the

6-27

second handles the character designated by the incremented pointer. The flowchart for all

character operations occupies the left half of Figure 4-9 and the logic for the two parts is

shown in Figures 6-19 and 6-20. The top of the flow chart I ists the different instructions, the

main control levels governing their execution, and the configuration of the pointer, The first

fetch cycle fetches the pointer according to the effective address calculated from the instruc-

tion; the address cycle in the second part calculates the effective address of the operand from

the I, X, and Y, portions of the pointer. Within the operand, the character is defined by the

P and S portions of the pointer: S specifies its size; P specifies its position as the number of

bits remaining to the right of the character in the word. Two of the instructions merely fetch

the pointer in the first part and then one enters the load sequence in the second part, the

other the deposit sequence. The load sequence retrieves a character of size S from position

P in the word in location E and loads it right justified into AC. The deposit sequence fetches

a character of S bits from the right end of AC and inserts it at position P in C(E)* Two other

instructions increment the pointer in the first part and use this new pointer in the load or de-

posit sequence that follows. The last instruction merely fetches and increments the pointer and

then returns to the instruction cycle to continue the program, skipping the second part.

The maior control levels for the first part are derived from the instruction command levels and

two control flip-flops CHFS and CHF7, both of which are set by the final pulse in the first

part. The first flip-flop distinguishes the two parts, the second compensates for the fact that

a PI request can interrupt the program between the two parts. The level CH INC is asserted

during the first part of any instruction that increments the pointer (Figure 6- 19A2). This level

is ANDed with CHF7(0) to generate CH INC OP, whose assertion indicates that the first part

must actual ly increment the pointer. If the pointer is incremented and a priority interrupt

occurs, the program must not reincrement upon repeating the first part after returning to the

interrupted sequence (the first part is repeated only to fetch the pointer that was lost). Unlike

most control flip-flops, which are cleared by the master clear, the state of CHF7 (D3) must

remain from the first to the second main sequence and is cleared by the master start via the

flag clear (6.2~). When it is set by CHT9 at the end of the first part, the sequence returns

to the address cycle at which point a priority interrupt may occur. If an interrupt merely

executes a block IOT, CHF7 remains set for the return. However if there is a iump to a sub-

routine, the JSR saves CHF7 with the flags and clears it so that it may be used by the break

6-28

routine. When the routine is complete, the restoring JRST again clears CHF7 via the flag

clear and restores its original state from MB4 at the same time that it restores the flags. Then

when the program repeats the first part, CHF7(1) inhibits CH INC OP and instead causes

CH INC to assert CH ‘L INC OP (C5). Th’IS evelI is also asserted in the first part of the two

instructions that do not increment the pointer. Finally, CHF7 is cleared by either sequence

in the second part.

The first part fetches the pointer from location E: CH 2, INCOP allows memory to rewrite the

pointer, but CHINC OP requests a fetch and pause so that the incremented pointer may sub-

sequently be deposited. Since there must be only one program count for each instruction,

PC+1 is inhibited by all but the IBP (CAO), which uses only the first part. If there is no pointer

incrementing, ET0 triggers the subroutine time chain at CHT6 (Figure 6-1984); otherwise it

starts at CHTl (upper left). The first pulse transfers the pointer to AR and sets CHFl, enabling

the zeros of MBO-5 as data inputs to SC so that the partial add at the next pulse loads -P-l

(i . e. % ,P) into SC . CHT3 then sets CHF2 and calls SC add. CHFl is not cleared until the

first pulse in the SC add chain to give the CHT2 partial add a little more time. CHF2(1) then

enables the ones from MB6-11 for the partial add in the SC subroutine so that upon the return

SC contains -P+S-1 . If there are not enough bits left for another character; i.e., if S >

P + 1, the result in SC has a positive sign and the instruction must go on to the next location

for the character. Thus if SC0 is 0, the chain continues to CHT4, which clears SC and calls

an AR subroutine to index the address portion Y of the pointer to the next location. Upon

completion, CHT4A loads -37 (i.e., -P-l for a character of 0 size) into SC and returns to

CHT3 to call SC add again; this time the addition of S generates the complement of the position

portion of the pointer for the new location. If SC0 is 1 at the junction following CHT3A, the

chain skips to CHTS (B3), which complements SC so that it now contains P-S, the position of

the next character in the same location or the first character in the next location. Actually

CHT4A loads -229 into SC so that an S larger than 36 cannot put the processor into a loop.

The result is then interpreted mod 64 so the correct position results. Thus if the pointer must

go to the next location and S is larger than 36, the new P is 100 -S rather than 36 -S.

The chain then continues to CHT6, which is the starting point for any nonincrementing in-

struction. CHT6 again sets CHF2 but there is no subroutine call: CHF2(1) merely enables

the MB6-1 l(1) data inputs to SC so that the partial addition at CHT7 transfers S into it. For

6-29

CH s INC OP, the chain then skips to CHT8B. CH INC OP uses the CHT6 and CHT7 opera-

tions already mentioned because S is still available from the old pointer in MB; additional events

specifically for CH INC OP are that CHT6 inserts the new P into the pointer by transferring it

from SC3-8 into ARO-5 (dropping SCO-2 means SC mod 64 is transferred) and clears SC. CHT7

then moves the new pointer to MB after which CHT8 restarts the read/write memory cycle to

deposit it. The return triggers CHT8B which clears both CHF6 and CHF2, transfers the new P

from MB04 to FE and complements S in SC. If incrementing the pointer is the only operation

required by the instruction, the subroutine terminates here and the sequence returns to ST7 for

a new instruction cycle. For any character operation other than an IBP, CHT8B calls the shift-

count (C2) which shifts MQ left S places loading ones in at MQ35. Upon the return, CHT8A

clears SC and IR13-17, the latter in preparation for receiving the I and X portions of the pointer

in the address cycle following the first part. Then CHT9 transfers P from FE to SC, sets Cl-IF5

so that the next execute cycle will select the second part, and sets CHF7 in case there is a PI

request at the beginning of the address cycle to which the sequence then returns.

The two chains for the second part are shown at the top in Figure 6-20. Both sequences start

with MB containing the word retrieved according to the effective address of the pointer, and

MQ containing a word made up of ones in the last S places at the right and zeros elsewhere.

For the two load instructions, AR contains E. The initial gates include FC(E) as there wil I be

no subsequent storage in E, and ET0 triggers the first pulse in the chain (A2). LCTO moves the

data word to AR and the mask to MB, complements P in SC, and calls the shift-count subroutine.

The character is then right justified by right shifting AR P places. Following this, LCTOA trans-

fers zeros from the mask into AR thus clearing all of AR except that part containing the desired

character. The pulse also clears CHF7 and returns to ETlO.

The two deposit instructions request a fetch and pause, and ET0 enters the deposit sequence (Ad).

DCTO complements P in SC and calls a shift-count that moves AR and MQ left P places loading

zeros in at the right in both registers. Upon subroutine completion, AR contains the character

in the appropriate position and the ones in the mask are in the same position. The pair of

pulses triggered by the return transfers the mask to MB, the ones from MB to MQ, and com-

plements AR. Thus MB contains the mask, whereas MQ contains the data word other than in

the character position which contains all ones. DCTl then transfers zeros from the mask to

AR clearing it other than in tne character position which contains the complement of the

6-30

character. At the same time, the data word with ones in the character position is moved back

to MB. The next pulse again complements AR so that it contains ones outside of the character,

and DCT3 then inserts the character into the appropriate position in the data word by trans-

ferring zeros from the character (all other bits are ones) into the all ones portion of MB. This

pulse also clears CHF7 and returns to ETlO. The subsequent store cycle restarts the waiting

memory cycle to deposit the data word in E.

If the program specifies a size greater than 36, the character is at most the entire word. For

P > 36, no character is processed. If both P and S are less than 36 but P + S > 36, a character

of size 36 - P is loaded from position P or the right 36 - P bits of the character are deposited

in position P.

-c Shift Operations

The lower part of Figure 6-20 shows the logic governing the shift operations and the flowchart

for them occupies the right portion of Figure 4-9. The three combined instructions generate

the level SHAC2 (86) w h’ICh causes the main sequence to fetch and store a second accumulator.

The direction of the shift is specified by bit 18 of the instruction word (0 left, 1 right), and the

number of places to be shifted is specified by bits 28 to 35.

At the beginning of the execute cycle, AR contains AC; and for a combined shift, MQ con-

tains a second AC. ET0 transfers the complement of MB1 8, 28-35 into SC. Since left shift-

ing is considered to be positive and right shifting negative, it is assumed that if bit 18 is 1,

bits 28 to 35 contain the 2’s complement of the number of shifts desired. Thus if MB18 is 0,

SC is already correct and contains the complement of a positive number; however if MB18 is

1, SC contains a positive number one less than the number of shifts. Thus MB18(1) gates ET1

to trigger SHTO (B5), which adds one to SC. Then ET3 starts the subroutine chain for all in-

structions and the first pulse SHTl complements SC on the condition MBl8(1) so that SC now

contains the correct complement. SHTl also calls the shift-count, which counts SC up to all

ones and at each count shifts AR and MQ left or right according to the state of MB18. The

shift connections to the registers are made through the subroutine interface (6.5), andthe special

shift inputs that control the shift actions at the register extremities are shown in Figure 6-7

and described with the AR and MQ gating (6.2~1, 6.3). Block diagrams below the flowchart

show the configurations for all twelve types of shift.

6-31

Since an arithmetic shift multiplies fixed-point numbers by powers of 2, an overflow condition

is included in case significant bits are lost in a positive shift. In a single- or double-left

arithmetic shift, the overflow flag is set if a 1 is shifted out of AR1 in a positive number, or

a 0 in a negative number (6.2~). The return from the shift-count triggers SHTlA which re-

truns to the main sequence at ETlO.

6.7 ARITHMETIC INSTRUCTIONS

This section describes fixed multiply and the floating-point instructions. Each of these in-

structions goes from the execute cycle to a special sequence which may or may not call an

arithmetic subroutine. Fixed add and subtract are both performed within the execute cycle

and are described with the arithmetic register (6.2). Fixed divide enters directly into the

divide subroutine from ET0 and is described with that subroutine in 6.85

2 Fixed Multiply

A flow chart of the two fixed-multiply instructions is in the left part of Figure 4-8; Figure 6-21

shows the special time chain for them. Both integral and fractional multiplication use AC and

either C(E) or E itself as operands, but the product in the latter case is a double-length fraction,

whereas in the former it is assumed that the desired integer is in the low-order half of the

double-length product. Both instructions enter the special sequence at ET0 by triggering

MPTO (Figure 6-21, upper left). This pulse sets the appropriate bits in SC to count 35 steps

and sets MPF2 if both operands are negative. It also calls the multiply subroutine (6.8b) and

waits until MST6 returns to MPTOA. If both operands are negative and the result is also neg-

ative, MPTOA sets the overflow flag. This can occur only if -1 is multiplied by -1, whose

answer +1 overflows generating the representation for -1. If integral multiplication is being

performed (IRb(0)) and the result is negative, MPTOA complements the high-order half in AR.

At this point, the fractiona. process is complete and the sequence returns to ET10 via NRT6,

the final pulse in the normalize return subroutine. In the store cycle, the low-order half is

stored in a second accumulator for all but the memory mode wherein no accumulator is stored.

For integral multiplication, MPTOA continues the chain to MPTl, which transfers the resulting

integer in the low-order half from MQ to MB and sets the overflow flag if the high-order

half is not clear. MPT2 then transfers the result to AR so that the sequence can make use of

the standard transfer and store functions following the return to ET10 via NRT6.

6-32

b Floating Scale

This instruction allows the program to change the exponent of a fl oating-point number without

affecting the fractional part. The number in AC is multiplied by 2’ where y is the number

contained in bits 28 to 35 of the effective address. This number i s interpreted as positive or

negative in 2’s complement notation as the sign, bit 18, is 0 or 1 . The flowchart for the in-

struction occupies the left quarter of Figure 4-10, and the time chain is shown in the lower

right of Figure d-19.

The first pulse in the execute cycle transfers the complement of MB18, 28-35 to SC. The next

two pulses then adjust SC according to the sign of the number in AR: if positive, ET1 com-

plements SC; if negative, ET3 adds one to SC by triggering FSTl . In either case, ET3 triggers

FSTO, which calls the SC add subroutine. During the subroutine, the 1 state of FSFl enables

the ARO-8(l) data inputs to SC. The return pulse FSTOA transfers the new exponent from SCl-8

to the exponent part of AR; and if the signs of AR and SC are different, it sets the overflow

flag.

To see that the above sequence of events produces the correct exponent and properly detects

overflow or underflow, consider the various cases keeping in mind that the floating-point

exponents from - 128 to +127 are represented by the numbers 0 to 255 and that the scale fat tor

in E is in 2’s complement notation. Let x and y be the absolute values, respectively, of the

exponent part of AR and the scale factor in MB. Thus if AR is positive, ARl-8 contains x;

otherwise 2, x, i.e., 255 - x. On the other hand if MB is positive, MB28035 contains y;

otherwise the 2’s complement, i .e., 256 - y. At each step, C (SC) is a function of the signs

of AR and MB as follows:

AR+, MB+ AR-, MB+ AR+, MB- AR-, MB-

ET0 -[255 - yl -[255 - yl +cy - 11 +Ey - 11

ET1 +[yl -[255 - yl -[256 - yl +cy - 11

ET3 +Cyl -[256 - yl -c256 - yl +Cyl

SC ADD +cx + yl -[255 - (x + y)] +cx - yl -c255 - (x - y)]

6-33

Hence with no overflow or underflow, SC and AR have the same sign and SC contains the pro-

per representation of the new exponent. However, if in the first two columns x + y > 255 (over-

flow)or in the last two x - y < 0 (underflow), AR and SC have opposite signs.

-c Floating Add-Subtract

Both of these instructions use the floating add time chain shown in the upper half of Figure 6-22;

the flow chart occupies the center portion of Figure 4-10. For floating add, ET0 triggers the

special sequence (Figure 6-22Al); but for floating subtract, ET0 switches MB and AR so that

the subtrahend is then in AR, and ET3 calls the negate subroutine. Since the number to be

subtracted has now been replaced by its negative, the operands may instead be added and

ET4 triggers the floating add sequence.

If the signs of the operands are the same, FAT0 complements SC to all ones. It also sets FAFl

enabling the MBO-8(l) data inputs to SC so that the partial addition at FAT1 produces a 1

transfer if the signs are different, but transfers the complement of the MB sign and exponent if

the signs are the same. In either case, the sign of SC is opposite that of AR. FAT1 also triggers

SC add, and shortly after, FATlB clears FAFl and sets FAF2 (A3) to enable the ARO-8(l) data

inputs to SC. Since the signs of AR and SC are different, at least one exponent is represented

by its complement, and hence the result of the addition in SC is a l’s complement negative of

the difference between the exponents unless there is overflow. Let x and y be the abklute

values of the exponents of the numbers in AR and MB. The possible signs, exponent represen-

tations, and results are as follows:

AR, MB signs ARO-8 SC Before SC After Result

AR+, MB+ +cxl -[255 - yl DC255 - y + xl y 1 x: signs #
1

AR+, MB- + Cxl -[255 - yl -[255 - y + XIJ y < x: signs =

AR-, MB- -[255 - xl +[yl -[255 + y - xl y >x: signs #

AR-, MB+ -[255 - . xl +Cyl -[255 + y - xl y Lx: signs =

Hence, if the MB exponent is greater than the AR exponent, the AR and SC signs differ after

the addition. If the AR exponent is greater, the signs are the same and FATlA switches MB

and AR because the number with the smaller exponent is the one that is shifted. If the exponents

6-34

are equal, the signs may or may not be the same but it matters not whether the transfer takes

place. Since the result in SC is a l’s complement, no further action on it is necessary if it

is negative , and in this case FATlA jumps directly to FAT4 (A6). However if overflow has

produced a positive result, the number in SC is one less than the difference between the

exponents (since a 2’s complement addition was performed on numbers in l’s complement

notation); in this case FATlA triggers FAT2 which adds one to SC, and FAT3 complements it

in preparation for the shift-count.

If the number with the smaller exponent must be shifted more than 63 places (a condition

represented by at least one 0 in SCO-2), the addition can affect neither the fraction nor the

low-order part so FAT6 clears AR (A8). H owever if fewer than 64 shifts are required, FAT5

ensures that all bits to the left of the fraction MSB are of no significance by loading the sign

into ARl-8, sets FAF3(B4) to generate the correct arithmetic shift inputs to the registers

extremities (6.2~1, 6.3), and cal Is the shift-count subroutine. After the number has been right

shifted in AR and MQ so that its bits correctly match the MB bits in order of magnitude, the

return triggers FAT5A which follows directly from FAT6 if there is no shifting. FAT5A clears

SC and again sets FAFl to enable the MBO-8(l) data inputs. Then FAT7 changes SC to all

ones if MB is negative, and the partial add at FAT8 loads SC with the MB sign and exponent

or their complements depending upon the state of SC. Thus SC always receives a positive

sign and the absolute value of the exponent. The next pulse in the chain then nullifies the

exponent portion of MB, and FAT9 calls AR add. If AR was cleared at FAT6, the addition

merely transfers MB to it. The return triggers FAT1 0 which clears those control flip-flops that

are still set and enters the normalize return subroutine. The return via NRT6 is directly to

ET1 0 for storage of the result.

-d Floating Multiply and Divide

These two simple sequences do I ittle more than call the three subroutines necessary for the

execution of floating-point multiplication and division. The flowcharts are at the right in

Figure 4-10 and the logic is shown in the lower half of Figure 6-22. Both chains are triggered

at ET0 and the first pulse in each calls the exponent calculate subroutine. The return from

FPT4 places in SC the complement of the number of steps required (27 for multiply, 30 for

divide) and enters the appropriate subroutine. The return from multiply at MST7 triggers

6-35

FMTOB, which transfers the calculated exponent from FE to SC, sets NRF2 to set up the nor-

mal ize shift gates, and enters normalize return. NRT6 returns directly to ET10 for storage of

the result .

The divide subroutine first tests that division can be performed. If the divisor is less than or

equal to half the dividend, the sequence sets the overflow flag and jumps directly from DST13

to ST7-the only normalized number that fails to satisfy this condition is a zero divisor. lf

the division is executed, DST21A returns to FDTOB, which transfers the calculated exponent

from FE to SC and sets NRF2 to set up the normalize shift gates but does not enter the normal-

ize return subroutine. This subroutine can compensate for only one bit overflow whereas

floating divide, by doing 30 steps, deliberately generates two extra quotient bits, one for

possible overflow, the other for rounding. The divide instruction sequence includes an extra

time pulse, FDTl, which shifts AR and MQ right to compensate for the rounding bit. It then

enters normalize return and NRT6 returns directly to ET10 for storage of the result.

6.8 ARITHMETIC SUBROUTINES

Besides the simple AR and SC subroutines, there are four arithmetic subroutines that are called

by more than one arithmetic operation. Floating multiplication and floating division both

begin with a subroutine that calculates the exponent. The multiply subroutine is used by both

fixed and floating multiplication, the divide subroutine by both fixed and floating division.

All floating-point instructions except floating scale call the normalize return subroutine to

normalize the result of their arithmetic computations.

a Exponent Calculate

Floating multiply and divide call a subroutine to calculate the exponent before beginning

operations on the fractions. The flowchart for exponent calculate is at the left in Figure 4-11

and the logic for the time chain is shown in Figure 6-23. The nets at the right in the logic

drawing generate several levels necessary for execution of the subroutine. These are exclusive

OR and equivalence functions of the operand signs and FMFl, the last term providing a dis-

tinction between multiplication and division. In multiplication the exponents are added,

whereas in division the exponent of the divisor is subtracted from that of the dividend. Since

6-36

FMFl is the SBR for the return to multiplication from the exponent calculation, it is 1 in multi-

plication but 0 in division; therefore, the sign functions for multiplication are exactly the

opposite of those for division.

The first time pulse in either multiply or divide triggers the floating-point time chain (Figure6-23,

upper left). The first floating-point pulse sets SC1 thus loading 128 into SC. The next pulse

complements SC if the sign of AR is different from the state of FMFl , i .e., the complement

occurs if AR is positive in multiplication or negative in division. FPTl also enables the

ARO-8(l) d a t a inputs to SC and calls the SC add subroutine. At the return FPTlA complements

SC if the exclusive OR of ARO, MBO, and FMFl is false; otherwise it adds one to SC. The

latter action is triggered by FPT2, which is generated only if the appropriate condition holds

(upper right); the gating for the complement is included in the complement net for SC. The

next pulse then calls another SC addition, this time using MBO-8(l) as the SC data inputs

enabled by FPF2(1). After this addition, the result is correct for two of the four cases; for the

other two, MB0 and FMFl the same, FPTl B complements SC. Then FPT3 transfers the calculated

exponent to FE, clears SC, and nullifies the exponent portions of both MB and AR by loading

the appropriate sign into bits 1 to 8. FPT4 returns to the interrupted special sequence.

First, consider multiplication. FMFl is set, thus at FPTl the complement occurs if AR0 is 0;

then at FPTlA if the signs of AR and MB are not equal, SC is again complemented, otherwise

it is indexed. Finally at FPTl 8, SC is complemented if MB is negative. On the other hand,

FMFl is 0 for division, so the complement at FPTl occurs if AR is negative; at FPTlA com-

plementing occurs if AR0 and MB0 are the same, and indexing otherwise. Finally, FPTl B

complements SC if MB is positive.

To see that these operations give the correct result, let x and y be the true exponents of AR

and MB. Since excess-128 code is used, the exponent portion of AR is x + 128 if the number

is positive; but if negative, it is 255 - (x + 128) = 127 - x. Since the result must also be in

excess-l 28 code, the sum of the exponents must be reduced by 128 for multiplication; whereas,

in division the difference must be increased by the same factor. For multiplication, the above

sequence of events operates in SC as follows (the table items show the sign of SC and the con-

tents of SC1 -8 as a positive number):

6-37

AR+, MB+ AR+, MB- AR-, MB+ AR-, MB-

FPTl -c127l -Cl271 +c1281 +[1281

SC ADD +rx - 13 +cx - 13 -c255 - xl -[255 - xl

FPTlA +1x1 -c256 - x3 +Cxl -[256 - xl

SC ADD +[128 + x + yl -cl27 - x - yl +[128 + x + yl -cl27 - x - yl

FPTl B +[128 + x + yl +[128+ x + yl

For every case, the result in SC is the correct exponent for the product (but expressed in

positive form), unless there is overflow, as indicated by a negative result (SC0 = 1). The ex-

ponent remains in positive form during the multiply subroutine, and the subsequent normalize

return subroutine checks for overflow and puts the exponent into correct form. For division,

the sequence of events is:

AR+, MB+ AR+, MB- AR-, MB+ AR-, MB-

FPTl +[1281 +c 1281 -11273 -Cl273

SC ADD - [xl 4x3 +[254 - xl +[254 - xl

FPTlA +[255 - xl -IX +x1 +c255 - xl -Cl +x1

SC ADD -cl27 - x + yl +[128 + x - yl -cl27 - x + yl +[128 + x - yl

FPTl B +[128 + x - yl +[128 + x - yl

which again gives the correct result in positive form.

b Multiply

A single subroutine handles multiplication for both fixed point and floating point; the two

types differ only in the number of steps- 35 for fixed point, 27 for floating point. The sub-

routine flow chart occupies the center portion of Figure 4-l 1; Figure 6-24 shows the time

chain. A pulse in the fixed- or floating-multiply sequence loads the complement of the num-

ber of steps into SC, sets an SBR and calls the subroutine. To control the AR and MQ extremities

in multiply shifting, the two SBR flip-flops are ORed by the net at the right in Figure 6-24.

For fixed point, the subroutine time chain is triggered by MPTO, which is equivalent to ETO;

for floating point, the entering pulse is FMTOA, which follows the exponent calculation.

Either pulse triggers MST1 (upper left), which moves the multiplier from MB to MQ and the

6-38

multipl icand from AR to MB. AR is cleared shortly thereafter. Form MSTl, the sequence may

continue to either MST2, MST3, or MST4 depending upon the relationship between bits 35

and 36 of MQ, but every step includes the incrementing of SC and the shifting of AR and MQ

right one place. Initially, MQ35 contains the LSB of the multiplier and MQ36 is 0. On

each successive step, MQ35 contains the next more significant bit of the multiplier and MQ36

contains the bit MQ35 held on the previous step. Arithmetic operations are performed when-

ever there is a transition from 1 to 0 or vice versa in a pair of multiplier bits, rather than on

the basis of a particular bit being 1 or 0. At the 3-way decision following MST1 , there is

no arithmetic action if the two bits are equal and in this case the chain goes to MST2. If

there is a transition from 1 to 0 in the bit pair, the chain goes to MST3, which calls the AR

add subroutine. For a transition in the opposite direction, MST4 calls AR subtract. Either

return triggers MST3A, which goes to MST2. Thus MST2 appears in every loop whether any

AR subroutine is called or not. This pulse increments SC and shifts AR, MQ right one place.

It then returns the sequence to the 3-way decision to check the next bit pair (which has just

been shifted into MQ35, 36).

At the 3-way decision, the equality branch has the additional condition that the step count

is not complete, i.e., SC does not contain 777. In the final shift, MQ36 receives the multiplier

MSB and MQ35, the sign. If these two bits are equal, MST2 leaves the loop, jumping to

MST5 (lower left). If they are not equal, MST2 returns to the 3-way decision, only two of

whose branches are now open -those which necessarily call AR subroutines. Since the step

count is complete, the return jumps directly from MST3A to MSTS. This pulse clears SC,

shifts the low-order half of the product in MQ to the right, and makes its sign equal to that

of the high-order half in AR. MST6 then provides the return to the appropriate instruction

sequence.

The multiplication sequence is as follows: Initially, MB contains the multiplicand, MQ the

mul tipl ier, and AR is clear. AR and MQ are connected so that the low-order bits of the pro-

duct are shifted into MQ as the multiplier is shifted out. At each step, the current bit of

the multiplier is available at MQ35, and the effect of the multiplicand in MB on the partial

sum in AR is one binary order of magnitude greater than in the preceding step because the

partial sum was right shifted. Thus MB can be combined directly with AR. Since MQ36 is

initially 0, the sequence shifts without calling an AR subroutine until a 1 is shifted into MB35.

6-39

At this transition, the sequence jumps to MST4 to subtract the multiplicand from AR, which

is clear. The shifting then continues until the next transition (which will be from 1 to 0), at

which time the sequence goes to MST3 to add the multiplicand to the previous partial sum.

The process continues in this way, subtracting the multiplicand at every transition from 0 to

1, adding at every transition from 1 to 0. At the end, AR contains the correct sign and the

high-order half of the double-length product. The low-order half is in MQO-34 with the sign

of the mul tip1 ier in MQ35. Thus, there is an additional right shift of MQ to move the correct

sign from AR0 to MQO and to place the low-order fraction in the MQ magnitude positions.

To see that this procedure results in a correct product, consider the positive binary integer:

100111011

876543210

(The decimal digits below the binary digits are the powers of 2 corresponding to the bit posi-

tions.) This number is obviously equal to:

100000000
+ 111000
+ 11

k k+n k
Now an n-bit string of ones whose rightmost bit corresponds to 2 is equal to 2 -2 ,or

0 k
equivalently 2k(2n- 2’); i .e., 2n - 2 is a string of n ones and the 2 shifts the string left

k places. Thus:

100000000 =: = 29- 28

= p+ c 20

100111011 = 29- 28+ 26- 23+ 22- 2O

In this last representation, each power of 2 that is subtracted corresponds to a transition from

0 to 1 (in the direction of increasing significance), whereas each that is added corresponds to

the opposite transi Con. The largest term corresponds to the transition to the sign bit, which

is 0 for a positive number. The multiplication algorithm in PDP-6 interprets the multiplier in

this manner, alternately subtracting the multiplicand from the partial sum and adding it to the

partial sum in the order-of-magnitude positions corresponding to the transitions. If a multiplier

6-40

--

of the same magnitude were negative, it would have the form:

1011000101

-876543210

in which the extra bit at the left represents the sign. The number is now equivalent to:

- z9+ z8.. p+ z3- z2+ $- 2O

wherein opposite signs correspond to opposite transitions. The algorithm may thus use exactly

the same sequence for a negative multiplier: this time the subtraction of greatest magnitude

is detected by the transition to the sign bit, which is now 1.

c Divide

The time chain for the divide subroutine is on two logic drawings, Figures 6-25 and 6-26;

Figure 4-12 is the flow chart. Entry is at ET0 in fixed point, at FDTOA in floating-point.

Either pulse loads SC with the complement of the number of steps required-30 for floating-

point, 36 for fixed-point-through pulse gates at individual bits. For this purpose, ET0 gated

by IR DIV generates DS DIV TO (Figure 6-25Al). Although the subroutine is triggered only

by ET0 or FDTOA, there are nevertheless six entries, depending upon the sign of the dividend

in AR and upon whether the fixed division is integral or fractional. To make the latter dis-

tinction, the fixed-point command level is further decoded into a pair of levels according to

the state of IR6 (Bl).

For a negative dividend, entry is at DSTO (upper left) for integral or floating-point operations.

The first subroutine pulse sets DSF7 (D6) t o remember that the dividend was originally negative,

and calls the AR negate subroutine. Following negation, the sequence jumps to DSTIO for

floating-point but continues to DSTl for division of integers. This is also the entry for integral

division with a positive dividend. Integral division uses a double-length dividend just as does

fixed-point fractional division, but only one accumulator is fetched and it is used for the low-

order half. Since the fetch cycle brings AC to AR, DSTl moves the divisor from MB to MQ and

the significant half of the dividend from AR to MB. DST2 then switches MB and MQ, placing

the dividend in low-order position, and clears the high-order half in AR. The sequence then

jumps to DSTlO for computations.

, 6-41

The only other entry earlier than DSTlO is for a negative fixed-point fraction, wherein ET0

enters at DST3 (Ab). F or all other entries, the dividend is either one word in length or is

already positive. The sequence starting with DST3 is necessary to change a double-length

negative dividend into positive form. DST3 sets DSF7 because the dividend is negative and

interchanges MB and MQ. DST4 then switches MB and AR so the low-order half is now in

AR, and DSTS calls AR negate. After the return (B3), th e sequence branches depending on

whether AR is clear. The 2’s complement of a double-length number is formed by complementing

the entire double word and adding one into the LSB. A carry into the high-order half is neces-

sary if the 2’s complement of the low-order half is null (the complement was al I ones before

the LSB addition). Thus if AR is clear, the sequence goes on to DST8, 9: this reverses the

preceding interchanges, returning all words to their original positions, and DST9 calls AR

negate to form the 2’s complement of the high-order half (i .e., to complement it and then

add one as required). If AR is not clear, the sequence goes instead to DST6, 7 which also

returns all words to their original positions but merely complements AR.

The computational part of the subroutine begins at DSTlO, which is triggered through the net

at the right in Figure 6-25. This pulse begins the subroutine for a positive dividend in floating

point or fractional fixed point. Otherwise, it follows from one of the preliminary sequences

discussed above. Entry is direct from DST2 or DST7; from DSTOA, it is conditioned by

‘L DSDIVI, which in this case represents floating point; and if DST9 calls AR negate, entry

is made at the subroutine return. For a floating division, DSTlO triggers DSTlOA (lower left)

which right shifts AR, moving the LSB of the high-order half into MQO, so the double-length

dividend now has the sign bit in both AR0 and AR1 and the 700bit magnitude in AR2035 and

MQO-35. This action closes up the hole between the two halves of the dividend but it also

divides the dividend by 2. For fixed division the sequence goes to DSTlOB, which left shifts

MQ, closing the hole but leaving the magnitude the same. The shift brings the complement

of AR0 into MQ35 because of the division shift connections, but this is of no significance.

The next step in the process is to compare the divisor with the dividend to determine whether

the division can be performed. Thus, the next pulse is either DSTll or DST12 depending upon

whether the divisor is negative or positive. The former pulse calls AR add; the latter, AR

subtract. Since the dividend is positive, the result of the computation is also positive if the

magnitude of the divisor is less than or equal to that of the number in AR. There are actually

6-42

three different conditions being tested here for the three types of division, For a fixed integer,

AR is clear and the result is positive only for a 0 divisor; if the divisor has anything of signif-

icance in it, the quotient cannot possibly be greater than 2
35

-1 which does not overflow. For

a fixed fraction, the divisor is actually subtracted from the dividend and no overflow is allowed.

For a floating fraction, the divisor is subtracted from half the dividend (the preceding right

shift having divided it by 2), so theremay be one bit overflow but the normalize return auto-

matical ly compensates for this. Since all floating fractions are normalized, the only case that

fails the test is that of a 0 divisor (a dividend of -1 could also fail but this number cannot

occur as the result of any floating-point operation). After the return from the AR subroutine,

DSTl 1A tests the result. If it is positive, the sequence continues to DST13, which sets the

overflow flag and jumps directly to the end of the store cycle. If AR0 is 1, the overflow can-

not be greater than allowed in the particular type of division in progress, and DSTllA con-

tinues the sequence to DST14A (Figure 6-2687).

The next few pulses comprise the loop that performs the actual division. In division on paper,

one subtracts out the divisor the number of times it goes into the dividend, then shifts the

dividend one place to the left (or the divisor to the right) and again subtracts out. In binary

computations, the divisor goes into the dividend either once or not at all at each step. The

loop thus subtracts the divisor to generate a single bit of the quotient. If the subtraction does

not overflow, i .e., if the dividend is larger than the divisor, the sign of the result is positive

and a 1 is entered into the quotient. If there is overflow, a 0 is entered. To compensate for

the overflow, one could add the divisor back into the dividend before going to the next

subtraction step. However the PDP-6 algorithm instead shifts first and then adds the divisor

back on in the new position. It then continues to shift and add putting zeros into the quotient

until the result again becomes positive. This procedure generates the same quotient without

ever going back a step.

The following processor operations correspond to the procedure outlined above. If the initial

test subtraction produces a negative result, the sequence enters the loop at DST14A, which

increments SC and triggers the division shift of AR, MQ to the left. This shift is equivalent

to a combined rotation except that MQ35 receives the complement of ARO. The complement

of the sign of the result is the next bit of the quotient: if the divisor does not go into the

dividend, the result produces a 0 quotient bit. Each loop loads one bit of the quotient into

6-43

MQ35, and the low-order half of the dividend is shifted out from MQ as the quotient is shifted

in. Following DST14A, the loop checks the previously generated quotient bit in MQ35 to

determine what action to take next. If the quotient has received a 1, the divisor is subtracted;

for a 0, it is added. The gate is the exclusive OR of MQ35 and MB0 (Figure 6-26, upper

left) because the divisor may have either sign. if MQ35 is 1, DST14 subtracts the divisor if

positive, or DSTl5 adds it if negative. A 0 quotient bit reverses the functions. Either NT14

or DSTl5 sets DSFS (I ower left) to gate the AR subroutine return which goes back to the begin-

ning of the loop (A7). The loop iterates 36 times for fixed division, 30 times for floating.

The first bit loaded into MQ35 is not actually part of the quotient but rather the sign bit to

the left of the binary point. It must be 0 because the sequence enters the loop only if the

divisor is larger than the dividend. The 36 fixed-point iterations generate the sign and 35

magnitude bits of the fractional or integral quotient. Floating-point requires 30 steps for the

27-bit fraction because there may be one bit overflow and an additional quotient bit is com-

puted to allow running.

The test for termination of the process is made not at the end of the loop but in the middle.

Thus each step is not shift and subtract, but rather subtract and shift, the first subtraction

occurring before the loop. The test for completion follows DST14A. When this pulse generates

the final shift and increments SC to 777, the assertion of the SC completion signal prevents

the delayed DSTl4B from continuing in the loop (upper left) and it instead jumps out to DST16.

The remaining operations in the subroutine generate the correct remainder, adjust the signs of

quotient and remainder, and place them in correct position. The final shift in the loop places

the last quotient bit in MQ, but it leaves the remainder off one place to the left. Therefore

DST16 right shifts AR. Since all operations have been performed on positive operands, the

remainder should also be positive. If it is already, the sequence jumps directly to DST17A

(C4). A negative remainder indicates that too much has been subtracted from the dividend,

so either DST17 or DST18 adds the divisor back in (84). Again this addition may call either

AR subroutine, depending upon the MB sign. DST17A then checks the sign of the original

dividend: if DSF7 is 0, the sequence jumps to DST19A (I ower left); but if the dividend was

originally negative, DST19 (A6) cal Is the AR negate subroutine. Thus at the end, the remain-

der has the same sign as the dividend. The setting of the SBR for the return from AR negate

(lower right) is delayed slightly to prevent the return from the previous subroutine from getting

c

6-44

through both SBR. DSTl9A then moves the quotient from MQ to MB, and the divisor

in the opposite direction. Next DST20 (A6) c Iears SC and switches the remainder

presently in AR with the quotient in MB. The sequence then determines the proper sign for

the 	 quotient by checking the exclusive OR of DSF7 and MQO, which is generated by the

net in the lower left. If the operand signs are the same (A5), the result is already in correct

form and the sequence jumps to DST2lA. If the signs are different, the result should be neg-

ative and DST21 calls AR negate. DST2lA then moves the remainder to MQ where it is

available for storage in a second accumulator. The subroutine returns to ET9 for fixed division,

FDTOB for floating division. The reader should note at this point that the remainder is the

correct one for a fixed-point instruction; but in the floating case, the remainder in MQ9-35

is correct for a 290bit quotient which cannot be stored in its present form. For further

particulars, refer to the normalize return subroutine (&p, 6-46).

As an example of the way this algorithm operates, consider a division of 3-bit fixed-point

fractions with a dividend of +. 100100 and a divisor of +. 101, By paper computation, we

obtain the quotient this way:

,111
lOl)loo.loo

10 1
10 00

1 01
110
101
-i

Assuming the computer registers to be four bits in length, AR contains 0.100, MQ has 0.100,

and MB has 0.101. Before starting the division, MQ must shift left to close the hole, giving

MQ = 1 .OOl . The sequence has four steps as follows:

0.100 1 1.001
-0.101

1.111 1 .OOl
1 	 + 1.111 I 0.010

+o. 101

0.100 0.010
2+ 	 1 .ooo 0.101

-0.101

6-45

0.011 0.101
3 	 c 0.110 1 .OOl

-0.101

0.001 1 ,011
4 + 0.011 0.111

- 0.001

The quotient is in MQ at the right, the remainder in AR at the left.

d Normalize Return-

All floating-point instructions that operate on the fractional parts of the operands end by

cal I ing a subroutine to normalize the result. A floating-point number is considered normalized

if the MSB of the fraction (bit 9) is opposite in state to the sign bit or if the magnitude of the

fraction is l/2 (the fraction -l/2 has the same magnitude representation as +1/2). The nor-

malize return flow chart occupies the right half of Figure 4-l 1, and the time chain is shown

in Figure 6-27.

Entry into the normalize return chain is immediate from FATlO, the last pulse in the floating

add sequence (upper left). The first pulse in the chain, NRTOS, sets NRF2 (CS),which enables

the shift inputs at the AR and MQ extremities for a double-length arithmetic shift (6.2~ 6.3).

NRTO then adds one to the exponent in SC (which is in positive form, see 6.7g, 6.8~) and

right shifts AR, MQ to accommodate any overflow that may occurred in the fractional com-

putations. Since a right shift is equivalent to dividing by 2 and indexing the exponent is

equivalent to multiplying by 2, the result is unchanged. The next pulse tests for a 0 result.

Since the answer has already been shifted right, the net in the center of the figure generates

the gating level as the AND function of AR = 0 and MQl(0) . The test can include all of AR

because any operation on the fractions that produces a 0 result clears the exponent part of

the register . If there is a 0 result, NRT. 1 jumps directly to NRT6, the final pulse in the

subroutine (84). For a nonzero result, the chain goes to NRTl, which complements SC (SO

the exponent is now in negative form) and enters the normalizing loop (As).

Multiply skips the right shift because it cannot overflow. The last pulse in the multiply sequence,

FMTOB, sets NRF2 and after a delay that allows the exponent in SC to settle (C3) enters the

chain at the 0 test. MQl is unnecessary for the 0 test in this case, but its inclusion merely

6-46

allows attainment of a significant result with certain unnormalized operands for which the

result would otherwise vanish. For divide, there must be two right shifts, one to compensate

for a possible overflow bit, the other because of the extra quotient bit generated to allow

rounding (5 above). FDTOB, the pulse in the divide sequence generated by the return from

the divide subroutine, sets NRF2 and transfers the calculated exponent from FE back to SC.

The final pulse in the sequence, FDTl, then triggers the required extra right shift of AR,MQ;

the regular right .shift occurs in normalize return. Divide enters at the beginning of the chain

but is delayed slightly so that the total delay between FDTl and NRTO is ample to allow the

preliminary shift-count to settle down. Even though there are two shifts, only MQl need be

included in the zero test because MQ2 contains an extra quotient bit generated only for

rounding.

In the normalizing loop, if AR9 and AR0 are the same and the fraction is not of magnitude l/2

(the gating levels are generated respectively by the net in C2 and the decoding nets for

AR, 6.2), NRTl triggers NRT2. This pulse adds one to the negative exponent in SC thus

decreasing its magnitude, and triggers an arithmetic left shift of AR,MQ . NRT2 also enters

a delay whose output retriggers NRT2 if the number is not yet normalized. The loop continues

until either AR9 and AR0 differ or the fraction has magnitude l/2, at which time NRT2 goes

on to NRT3. If SC is now positive, NRT3 sets the overflow flag. This does not necessarily

mean that the normalizing loop counted from negative into positive exponents-the overflow

or underflow may have occurred when the exponent was calculated before multiplication or

division. Since the loop uses the negative representation of the exponent, it is already in

proper form for insertion into the result if the result is also negative. However, if AR0 is 0,

NRT3 complements SC.

At this point, the subroutine must determine whether any rounding action is required. The net

that generates the round gate is in C3 and C4. The program specifies rounding by a 1 in IR6,

but the gate is asserted only if a rounding action is necessary, i .e., if the MSB of the low-

order part of the fraction is 1. The rounding sequence requires the repetition of the entire

subroutine, so theassertion of NR ROUND first causes NRT3 to complement SC, making the

exponent positive again for the initial right shift. Then NRT3.1 continues the chain to NRTS,

which cal Is the subroutine that adds one to AR. The completion triggers NRTSA (lower right)

which returns to the beginning of the subroutine (C2). Thus the entire routine is repeated in

6-47

case the rounding has overflowed (which can occur only if the fraction was all ones). NRTSA

also sets NRF3 (03) disabling the round net. Then when the chain again reaches NRT3.1, it

automatically continues to NRT4, to which it goes on the first pass if no rounding is required.

NRT4 transfers the exponent from SC to AR so the result is now complete and in proper floating-

point form. This pulse also triggers NRT6 which returns to ET10 to store the result.

The rounding used here is in magnitude, i.e., away from O- if the bottom part is < 1/2LSB of

the top part then it is ignored, but if the bottom part is >1/2LSB then the magnitude of the

top part is increased by 1 LSB . The reason for conditioning the round on a 1 in MQl is that

the action both rounds and places the result in correct 2’s complement form. The answer, if

negative, is a l’s complement unless the low-order part is null and a l’s complement is one

greater in magnitude than a 2’s complement. Adding one because of a 1 in MQl increases

the magnitude of a positive result when the lower order MSB is significant, but decreases

the magnitude of a negative result when the low-order MSB is not significant. Of course,

a 0 can be null in a negative number, but only if the entire low-order part is null, in which

case the high-order part is already a 2’s complement. The program should always round unless

the low-order half is actually going to be used.

A further caution is necessary concerning division. The divide subroutine computes 29 quotient

bits and leaves the remainder in MQ9-35. Following the two right shifts, MQO contains the

true sign of the remainder, and MQl l-35 contain a truncated remainder-the two least signif-

icant remainder bits are lost in the shifts. If there was overflow in the division after normal-

ization, MQ still contains two quotient bits, otherwise only one. In order to use the low-

order part of the result, the program must either reconstruct the true remainder or save the

extra quotient bits and append them at the left end of a lower order quotient calculated from

the given remainder.

6-48

CHAPTER 7

MEMORY LOGIC

In a PDP-6 system, the core memories and fast memories are separate units connected to the

arithmetic processor by a memory bus. A core memory may contain an 8K or l6K bank, and

a fast flip-flop memory may replace the bottom 16 locations in any core bank. The internal

operation of these memories, their control functions, their timing, and the way they respond

to processor requests are described in a separate manual. This chapter describes only the

hardware at the processor end of the memory bus: the logic elements that request access to

memory, provide the necessary addresses, and control the transmission and receipt of data.

A time pulse in a main cycle or a subroutine may request access to memory by triggering

appropriate operations in the memory control section of the processor. Memory control

places a request signal on the bus and the processor must wait for a response from the memory

addressed by the high-order address bits. Once the memory is free and available to the pro-

cessor, the time required by the processor to transmit or receive data depends upon the type

of memory. For a core memory, this time is usually much shorter than the memory cycle.

The fast memory contains no buffer, soa read requires only slightly less time than a write.

For reading from a core memory, the processor must wait until the data is available and the

memxy rewrites the word automatically; for writing the processor need wait only until the

memory acknowledges the request, at which time the memory stores the data in its own buffer

and continues with the clear and write cycle.

In addition to the standard logic for controlling access to memory, this chapter also describes

the user mode registers. These govern the protection and relocation of areas in core and are

included in the description of the memory address logic.

7.1 MEMORY ADDRESS LOGIC

The memory system appears to a processor as one homogeneous unit: the processor may address

any one of 262,144 locations merely by providing an 18-bit address from the memory address

register. The actual address put on the bus is the sum of C(MA) and C(RLR). The bus control

7-l

portion of each memory decodes four or five address bits (depending upon whether a given

memory contains a 16K or 8K bank), and a given memory responds only to the address wired

in, If the bottom of a core bank is replaced by a fast memory, an additional selection sig-

nal is required; this signal is generated by the processor.

-a MA Register

Figure 7-l shows the 18-bit memory address register. Transfers of addresses into MA, which

must always be preceded by a clear, may be made from the memory buffer, the program

counter, or the console address switches. For the transfer of short addresses of accumulators,

index registers, and PI channels, individual pulses may directly set bit 30 and bits 32-35.

The transfer gates that produce the pulses are included in the MA control circuits (b below).

The MA flip-flops are connected in a carry configuration so that a pulse at the MA+1 input

to MA35 adds 1 to the contents of the register. The carry chain is broken, however, between

the fourth and fifth bits from the right. A carry out of MA32 cannot go into MA31 if the

processor is fetching or storing a second accumulator; such actions occur for double-length

shift operations and certain arithmetic instructions that use a double-length operand or produce

a double-length result. When such an instruction addresses location 17 as an accumulator,

the second AC is in location 0. In all other situations that increment MA, the second address

is in the normal order.

To address a location within a single memory bank, address bits 21-35 are supplied over the

memory bus with ones asserted negative. Bits 26-35 are supplied directly by MA, bits 21-25

from the sum with the relocation register RLR. Bus drivers for the direct bits are shown above

MA; those for the relocated bits, RLA, are with RLR in Figure 7-5. The high-order relocated

bits, which select a memory, must be supplied in both states at ground assertion. Figure 7-2

shows the required bus drivers and all control connections to the memory bus. Bits 21 and 35

are supplied over the bus in both forms; that is, they are supplied both as bits to select a

memory bank and to select a location within a bank. A switch at each 16K memory allows

the operator to select between the bits for the two uses. If bit 35 replaces bit 21, the memory

locations are interleaved; i.e. , al I odd addresses are in one bank, all even in another. With

an 8K bank, addresses must be interleaved because five bits are required to select the bank.

7-2

At the upper left in Figure 7-2 are the bus connections for the memory control section of the

processor. At the right is a net that decodes MA bits 18-31 for all zeros, a condition which

means that the address in MA is 17 or less. The decoder output generates the fast memory

selection signals for the bus since a fast memory replaces the bottom 16 locations in core

(fast memory addresses are not relocated). Additional fast memories require extra decoding.

The signal that selects the fast memory is also conditioned by the 0 state of the readin mode

flip-flop. This mode allows the operator to start a program in the area of core that is

replaced by the fast memory and is ordinarily inaccessible to the program. The ungated

decoder output is used by readin mode control to determine when the program leaves the

readin area.

In addition to a flip-flop and three transfer gates, each MA module contains a logic net that

compares the MA bit with the corresponding console address switch (these are shown below the

input gates in Figure 7-l). The outputs of these nets are ANDed (Figure 7-2, left) to assert

a level when the address in MA is identical to the address in the switches. This signal is used

by the memory indicator logic (7.2).

b MA Control-

Figure 7-3 shows the circuits that control the transfer of addresses into MA. Every transfer

requires a pair of pulses: the first triggers the clear PA through the net in the upper left; the

second triggers the transfer, usually through one of the PAS at the top of the figure. TWOof

the transfer pulses, those for MBRT and PC are applied to the gates shown with the register.

Figure 7-3 shows no pulse for the transfer from the address switches because that signal is

generated by the key logic and applied directly to the register gates. The other transfer PAS

in figure 7-3 set individual MA bits through the gates in the lower right. A UUO loads

address 40 into MA by setting MA 30. The transfer of a PI channel address sets MA30 and

loads the channel number into MA32034, producing the address 40 + 2n. The other sets of

gates load accumulator and index register addresses into MA32-35 from the appropriate IR bits.

The address transfers are as follows: A signal from the key logic clears MA prior to any trans-

fer in from the address switches. At the beginning of every instruction cycle, IT0 clears MA

and IT1, loads PC into it to retrieve the instruction, unless the processor is in a PI cycle, in

7-3

which case IT1 loads the PI channel address. AT0 clears MA in preparation for the address

cycle. If the instruction specifies an index register, AT2 transfers the address in from IR 14- 17

and AT3 clears it again. If the address is indirect, AT5 transfers in MBRT and the cycle returns

to AT0 after the new address is retrieved. When the address calculation is complete, the pro-

cessor continues to the fetch cycle, in which FTl transfers IR9-12 into MA to fetch an accumu-

lator and FTlA subsequently clears if addressed by either half of the accumulator; FT3 transfers

in MBRT and the clear follows at FT4A. Finally, FT5 again transfers MBRT to fetch C(E) and

the effective address is left in MA as the cycle ends.

MA transfers in the execute cycle are required only for particular instructions. UUO, POPJ,

and BLT all clear MA at ETl. For UUO, ET3 sets MA30 so that the UUO subroutine will

subsequently deposit the instruction code in location 40. For the other two instructions,

MBRT goes to MA at ET3. This special transfer is required for POPJ because this instruction

jumps to the location specified by the contents of the top location in the pushdown list

(transfers to PC must be made via MA). BLT loads a new address into MA in preparation for

the subroutine which subsequently moves C(E) to a new location. Three instructions, PUSH,

PUSHJ, and JRST, c Iear MA and load it late in the execute cycle (ET9, ETlO). The first

two make the transfer so that the following store cycle wil I deposit C(E) or PC in the top

location in the pushdown list; the third uses it to display the current instruction location in

case the JRST is a halt.

At the beginning of the store cycle, the appropriate address for the deposit of C(E) is already

in MA. If storage of an accumulator is also required, ST3 clears MA and ST5 loads it from

IR9-12.

In the upper right of Figure 7-3 is a net that increments the address contained in MA. The PA

is triggered by a signal from the key logic for the operations examine next and deposit next,

by UUO Tl to switch from location 40 to 41, and by ST6 which is generated by the store cycle

only for the deposit of MQ in a second accumulator. The two gated pulse inputs allow count-

ing by FTlA to fetch a second AC, and by IT1 if the indexing of the pointer has overflowed in

a block IOT that is using the PI system. Note that this latter event occurs only when perform-

ing the second instruction in the pair for a Pl channel and that the channel address is trans-

ferred into MA at the same time. Since the channel address always ends in 0, MA+1 merely

sets MA35.

7-4

c User Mode Registers

Figures 7-4 and 7-5 show the two registers that provide protection and relocation for the

user mode. The bits in both registers are numbered 18-25 to correspond to the most significant

eight bits in a memory address. Information is transferred into the registers by a DATA0 for

the processor, but the clear and set inputs have the prefix EX because the gating by the CPA

selection level is included with the executive mode logic. The DATA0 loads the protection

register PR from’bits 0 to 7 of the I/O bus, the relocation register RLR from 10818-25.

The executive routine determines the size and location of the block assigned to a given user

program by loading PR and RLR. Since both registers correspond to the most significant eight

address bits, the numbers they represent are actually multiples of octal 2000 (all numbers in

this discussion are octal), but identical contents do not represent the same multiple; the two

registers have entirely different functions. An address in MA is compared with C(PR) and

it is legal only if MA is less than or equal to PR. Since the remainder of MA may have

anything from al I zeros to all ones, if PR is clear, MA may contain any address from 0 to

1777, i.e., any address in which MA18-25 is clear. A clear PR represents a block of 2000

words; setting PR25 represents a block of 4000 words. The number in RLR, however, defines

the first address in the assigned block as a multiple of 2000 since RLR is added to MAI&25.

An address in a user program is legal if C(MA) < C(PR) x 2000 + 1777, and each address must

be relocated to the actual address to which memory access is made is C(MA) + C(RLR) x 2000.

Every time a user program reloads MA, bits 18-25 of the address are compared with PR by the

chain of majority gates at the top of Figure 7-4. Each gate receives a 1 signal from an MA

bit, a 0 from the corresponding PR bit and a carry in from the previous gate in the chain. The

carry output of the gate is asserted whenever at least two of the inputs are asserted (a block

diagram of the gate is in the lower left). The carry mentioned here is real I y a borrow-the

comparison is a subtraction of MA from PR and the outputs are labeled to indicate that a

comparison is 2, OK when the input conditions are fulfilled. At the beginning of the

chain (upper right), the borrow in is disabled and there is a borrow out only if the MA bit

is 1 and the PR bit is 0. At all other stages, the output is asserted whenever MA is 1 and PR

is 0 or if there is a borrow from the previous stage and either MA is 1 or PR is 0. NO actual

7-5

difference is produced and the time required for the comparison is the time taken for level

transitions across the chain each time MA changes state. A borrow out at the left end

indicates that MA is larger than PR; and the two outputsof the last gate, when asserted at the

same polarity, indicate whether or not MA contains a legal address. The nets in the lower

right AND these two levels with% EX INH REL so that the signals sent to memory control (7.8)

can be asserted only when the memory is being protected.

At the same time that MA is compared against PR, the contents of RLR are added to MA to

relocate the address to the assigned block. Every block starts at a multiple of 2000 because

the 8-bit RLR is added to MA18-25. The addition is carried out by a chain of dc adders

shown above RLR in Figure 7-5. The circuit, shown in block diagram at the lower left, has

three inputs: a bit of MA, the corresponding bit of RLR, and the carry from the next less

significant adder. It has two sets of outputs, one a bit of the sum, the other a carry to the

next more significant stage. The sum circuit uses exclusive OR nets to generate a 1 output

whenever an odd number of the inputs are ones; the carry circuit uses a voltage division net-

work to generate a 1 output whenever two or more of the inputs are ones. The RLR input is

ORed with an enable level (the negation of the inhibit from executive mode control) so that

if no relocation is desired, the sum output is equivalent to MA and there are no carries. This

enable level is applied to pin H of all adders. The carry inputs to the first adder in the chain

are disabled (upper right). Each time MA changes state, the sum of MA and RLR appears at

the RLA outputs after a settling interval required for level transitions across the chain.

7.2 MEMORY DATA LOGIC

Transmission and receipt of data at the processor end of the memory bus are controlled by 86

pulse ampl if iers, each with AND gates at both input and output (Figure 7-6). For a write

cycle, the input AND gates are enabled by the 1 states of MB bits. To transmit data pulses

over the bus, memory control applies a transfer pulse to al I input gates and triggers those

PAS that correspond to ones in MB. To receive information from a read, memory control

generates a level that enables all output AND gates; pulses that arrive over the bus are then

gated through to set the appropriate MB bits (6.1).

7-6

Figure 7-7 shows 36 MI flip-flops that drive a set of console indicators to display the contents

of a memory location. The flip-flops are included on the arithmetic register modules, and the

MB connections to the input gates are internal to the modules. Whenever the address for a

memory access is the same as that in the console address switches, the read restart or write

restart from the memory subroutine clears Ml and loads MB into it. The write restart includes

the condition of a write request for a nonexistent memory so that MI displays the word that

would have been written. The indicators also display the contents of any location that the

operator examines or deposits information into. The equal address condition suffices for

examine and deposit, but an additional gate is necessary for examine next and deposit next,

which use MC RSTl to trigger the transfer.

7.3 MEMORY CONTROL

Figures 7-8 and 7-9 show the logic that governs requests for memory access by the processor

(flow chart, Figure 4-3). The processor may request three types of memory action: read, write,

and read/write -the last being available only for operations in normal mode, which we shall

consider first .

Pulses from the main cycles and a few subroutines trigger the memory subroutine for the

appropriate type of memory access through the gates, at the top in Figure 7-8. The reason

for the access is written along with the triggering pulse. Each gate generates an output that

triggers the specific type of access required; however, any specific request also triggers a

general request pulse (A!$, and either type that requires a read clears MB (B5). For any in-

struction that requires fetch and pause, FT7 triggers the read/write request, but there are

three inputs to the net that generate the restart for the subsequent store (86). Indexing of a

pointer in character operations or a block IOT is performed by a subroutine which skips the

store cycle and returns directly to an earlier point in the main sequence. In these special

cases, the restart is supplied by the subroutine; whereas, it is supplied by ST2 for all fetch-

and-pause instructions that include the store cycle.

The request pulses supply the request levels to the bus by setting up the flip-flops in the upper

left of Figure 7-9. A read request sets MC RD and clears MC WR, a write request sets MC WR

and clears MC RD, and the read/write request sets both. A request for any type of cycle

7-7

clears MC STOP and sets MC RQ, although the general request pulse is not applied directly

to the latter flip-flop; instead it enters the two delay lines in the lower right of the figure. If

the system is in executive mode, the output of the right delay triggers the PA in C7 to set

MC RQ; however, if the system is in user mode, a longer delay is allowed to carry out the

necessary protection and relocation operations (7. ld. Then if the user program has supplied a

valid address, the request flip-flop is set; but if the address is greater than the PR maximum

address, the illegal address pulse (C6) causes the processor to skip the remainder of the current

main sequence by jumping direct1 y to ST7 (5.2~) and triggers a priority interrupt on the channel

assigned to the processor (8.3).

Tne bus levels that request a cycl e and specify read or write are derived through bus drivers

from the outputs of the three request flip-flops. (Note that the cycle request is generated

from MC RQ only if a read or write is also specified. This is done to prevent a possible mal-

function in processor memory control from generating a memory request which would not result

in a response from memory.) MC RD also supplies the bus enable level that gates data pulses

from the bus into MB (7.2). lf the operator has pressed the MEMORY STOP key or if the ADDRESS

STOPswitch ison and MA now contains the selected address, the main request pulse (delayed)

sets t) e stop flip-flop (D4).

Comp etion of the memory subroutine is controlled by the circuits in the lower half of Figure

7-8. When the addressed memory becomes available to the processor, it returns a pulse

(lower left) that acknowledges receipt of an address. This pulse triggers MC ADDR ACK,

which clears MC RQ. For write access, the acknowledging pulse also sends a write restart

back to memory, transfers data from MB onto the bus, and triggers the restart pulse MC RSTl

from the memory subroutine to the waiting sequence (C6). For read or the read portion of .

read/write, the processor must wait for the read restart from memory to trigger the MC restart.

In this case, the return from memory triggers a preliminary pulse so that the subroutine return

is delayed. MC RS Tl clears MC RD and supplies the subroutine return. If MC STOP has

been set during the subroutine, neither the read nor the write restart from memory can trigger

the MC restart, and the processor stops even though RUN is not clear. The operator may then

trigger the return to the waiting sequence by pressing the MEMORY CONTINUE key, which triggers

MC RS TOat KTl.

7-8

For a read/write cycle, the response by the memory in the first part is the same as for a read

cycle: MC ADDR ACK c I ears MC RQ and the read restart generates the completion pulses,

of which MC RS Tl clears MC RD. For the second part, the write request signal alone

remains on the memory bus. The read/write restart pulse supplied by the processor duplicates

the action of the address acknowledgement in a write cycle by triggering the write restart

(Figure 7-8, lower left). Thus the processor, which already has access to the memory, both

restarts the memory and provides its own subroutine completion pulses at the same time that it

transfers data over the bus from MB.

The other circuits shown in the two memory control drawings handle special situations. In the

lower left of Figure 7-9 is an integrating delay Type 4303 which is placed in the 1 state by

every request pulse. The delay remains continuously in the 1 state as long as triggering

pulses keep arriving at intervals shorter than the delay period. But should there be no request

for 100 psec, the delay returns to the Ostate, and if MC RQ is still set at this time indicating

that the last request for access to memory has not been granted, the 4303 state change triggers

the nonexistent-memory pulse (the pulse is inhibited if there is a memory stop). This pulse sets

an error f lip-flop in the processor I/O interface to trigger a priority interrupt on the assump-

tion that if the addressed memory does not respond within lOOpsec, there isnomemory with

that address connected to the bus. If the console MEMORY DISABLE switch is off, the error pulse

generates a restart that clears MC RQ by simulating the address acknowledgement from memory.

For write, the simulated MC ADDR ACK also triggers the subroutine completion pulse in the

normal manner; for any other cycle (MC RD(l)), an additional pulse is generated to supply the

MC restart.

The remaining logic is associated with a pair of synchronizing flip-flops (Figure 7-9, right)

that compensate for memory stops between the two parts of a read/write cycle. If the operator

has pressed the MEMORY STOP key or the ADDRESS STOPswitch ison (which would al low a stop on

the equal address condition), AT4 sets the split/cycle synchronizing flip-flop. There is no

need to set it earlier in the main sequence because all instruction and address memory

requests are for read only: a fetch-and-pause request can be made only in the fetch cycle.

The 1 state of the sync f I ip-f lop prevents FT7 from triggering the read/write request pulse and

prevents the read/write restart pulse from triggering the write restart for memory. Instead,

7-9

separate read and write requests are triggered by FT7 and the read/write restart (Figure 7-8,

left center) to prevent the processor from memory in the event it stops. There is an extra

switch input to the sync flip-flop set gate that allows the operator to override the split cycle

for maintenance purposes. In case the processor might stop while hanging onto memory,

the read/write request pulse sets another flip-flop, the stop sync. If the operator should

restart the processor with some operation other than memory continue, KTT triggers the write

restart to memory so that it may finish its cycle, writing the same word back into the addressed

location.

7-10

CHAPTER 8

INPUT/OUTPUT

The PDP-6 input-output system includes the peripheral equipment and three sections of the

arithmetic processor. The processor elements are in-out transfer control including the I/O

bus, the priority interrupt system, and an I/O interface for the processor that allows IOT in-

structions to control the processor itself as a device. In addition to the above processor equip-

ment, this chapter describes the control units for four of the more common in-out devices:

photoelectric paper tape reader, paper tape punch, Teletype keyboard-printer, and card

reader. Other equipment may be added to the system merely by connecting the associated

control units to the I/O bus.

8.1 I N-OUT TRANSFER CONTROL

Figure 8-l shows the logic that decodes the IOT instructions and times the transfer of informa-

tion into and out of the computer via the I/O bus. The 36 cable drivers for the bus data lines

are shown in Figure 8-2. The I/O device selection lines come from bits 3-9 of the instruction

register and the bus drivers for them are shown on the IR drawing, Figure 5-7. Every device

control unit contains a diode net which receives input from 7 of the 14 IOS lines, one from

each bit in lR3-9. The configuration of these input connections determines the selection code

for a particular device, which responds to IOT commands only when the appropriate number

appears in the device code portion of an instruction word.

The cable drivers for the I/O bus are transceivers, i .e., they handle signal transmission both

into and out of the computer. IOT control governs output from AR onto the bus by supplying

transfer and reset levels to the drivers; any signal placed on the external bus by an input

device is automatically made available through the drivers to the AR input gating, with no

transfer signal required other than command levels sent to the device, followed by the driver

reset. As an example, consider the driver for bit 0 shown in the upper left of Figure 8-2. A

1 in AR0 is represented by a negative level at input E (the input resistors are mounted on the

AR f I ip-f lop modules). The transfer and reset levels from IOT control are connected, respec-

tively, to L and M. In an output sequence, L goes negative for 2.5 psec, transferring the

8-l

input at E to outputs J, F, and H: the assertion level of the first and third is negative; the

second is ground. J merely drives an indicator on the console in-out panel. F drives the

external bus and is connected to the capacitor-diode inputs of the control registers and output

buffers in the various devices. F and H together provide bus signals at both assertion polarities

for use in l/O operations within the computer- in the priority interrupt system and in the I/O

control of the processor. At the same time that the transfer level returns to ground, the reset

signal brings inpyt M to ground, placing a hard negative on the bus (F) for 2 psec. This action

discharges the capacitor-diode gates connected to the bus to ensure that there will be no con-

flict with a subsequent I/O operation. For input, since the outputs of the device control/

status registers and input buffers are connected (through diode gates with no dc load) to the

same bus lines, an addressed device merely places ones at ground assertion on the bus. With

the control signals at both L and M off, a ground at F produces a negative level at H, which

is connected to the AR input gating. The gate for incoming status or data is applied to the

device control for 2.5 psec and is followed by the 2-psec reset to the bus drivers.

The levels and pulses that control the bus and devices are generated by the logic shown in

Figure 8- 1 (fl ow chart, Figure 4-13). When IRO-3 contains the code for the IOT class, the

net shown at the lower left decodes IRlO-12 to determine the specific instruction. The four

OR gates at the right develop levels that control functions common to more than one instruc-

tion. The IOT time chain always begins at ET4 (upper left). For a block instruction, the

chain starts at IOT TO, which restarts the second part of a read/write cycle to write the indexed

pointer word back into memory (7.3). Th e return from the memory subroutine generates

IOT TOA which clears MA, sets lR12 to convert the block instruction into its associated data

instruction, and triggers the fetch cycle for the data. It also carries out the required skip and

overflow operations depending upon whether the block transfer is using the PI system and

whether the block is complete.

In any nonblock IOT, including a data instruction within a block, ET4 sets IOT GO. The

O-to-l transition of this flip-flop triggers the initial setup delay provided the system is not

still within the reset period following a previous IOT. If two IOTs occur too close together,

the second waits until the fall in the first reset level itself triggers the delay. The terminating

pulse from the initial setup delay, IOT T2, triggers a pair of delays: a restart delay whose

terminating pulse is IOT T3, and a final setup delay whose terminating pulse is IOT T3A.

8-2

The level outputs of the initial and final setup delays are ORed to produce a 2.5psec gate

that places information on the bus (the pulse IOT T2 keeps the gate well grounded during the

initial to final setup transition). During this period, an output instruction connects AR to the

bus through the I/O cable drivers; an input instruction connects the data buffer or status reg-

ister to the bus in the device control. For the two output instructions, IOT pulses T2 and T3

trigger the appropriate clear and set pulses for the device. The initial setup delay allows the

device selection from IR to enable the capacitor-diode gates in the device enough ahead of the

clear; the restart delay allows enough time between clear and set. For any input instructior

AR is cleared prior to the IOT chain by ETO; the transfer in from the bus is accomplished by

IOT T3. This pulse also causes the computer to reenter the execute cycle at ET% When al I

transfers are complete, IOT T3A triggers the reset delay whose level output prevents the

initiation of IOT operations for 2 psec and resets the bus.

In addition to the timing logic, Figure 8-1 also shows a pair of general control signals (upper

right). Whenever computer power is turned on, -15 volts is applied to pin C of I/O cable 3,

turning on all peripheral equipment. The reset signal at pin B clears the device control units

on the power clear and when the operator triggers the reset from the console (both conditions

are included in MR START, see 5.1). The program can also generate this reset by means of a

1 in bit 19 of the same CON0 that controls the flags in the processor I/O interface.

8.2 PRIORITY INTERRUPT

The priority interrupt system allows the program to be interrupted by a signal on any one of

seven channels arranged in a priority chain. The priorities assigned to the I/O devices and

to the processor are completely under program control. Moreover, the program may turn any

channel on or off and may request a break on any channel. The processor checks for requests

at the beginning of every instruction and address cycle, and honors immediately the highest

priority request that has been made. Any requests made after the processor has completed the

effective address calculation must wait until the end of the current instruction except in a

block transfer. The processor honors a request by entering a PI cycle and executing the in-

struction in location 40 + 2n where n is the channel number. No further interruptions can oc-

cur while the computer is in a PI cycle. If the break instruction is a block IOT and the block

is not complete, the processor leaves the PI cycle and dismisses the break automatically.

8-3

If the break instruction is not a block IOT or the processor goes on to the second instruction

in the break pair, the PI cycle terminates at the end of the non-IOT instruction, which must

be a JSR to a break routine. This routine may then be interrupted at any time by a higher

priority request, and the program must dismiss the channel with a JRST at the end of the

routine.

The processor I/O interface and all device control units each contain a 3-bit PI assignment

register: the program assigns a priority to a device by loading a channel number into its

assignment register (Omeans no selection). The outputs of the register are appl ied to a gated

binary-to-octal decoder whose outputs 1 to 7 are connected to the seven PI request lines.

When a device requires service, it requests a break by gating on the decoder, grounding the

I ine corresponding to the number in the register.

a Priority Chain

The 21 flip-flops in the priority chain are shown in Figure 8-3. Each channel is controlled by

a column of three flip-flops, PIOi, PIRi, and PIHi, where i is the channel number. The set-

ting of each fl ip-flop represents a stage in the interruption process for a given channel in the

sequence: channel on, request made, break held. Between the rows of PI0 and PIR flip-flops

are the logic gates through which breaks are requested by a device or the program; between the

PIR and PIH rows is the priority-determining chain of level gates which is activated by the

input PI ACTIVE at the left. All other signals at the left control state changes in the flip-

flops by rows (for the generation of these pulses, see ,b below). For program control over the

system, the individual channels 1 to 7 are selected by ones in bits 29-35 (lOB29-35) of CONO. ’

Since the control sequence for all channels is identical, let us consider channel 4. The pro-

gram selects this channel by a 1 in CON0 bit 32 and turns the channel on or off by setting

or clearing P104. To request a break on channel 4, a device must ground the PI4 line, pin V

of IOC3. At specific times during its operations, the processor strobes the request lines by

generating PIR STB. This signal sets PIR4 if the channel is on and a device has requested a

break on it. The program, however, may bypass the PI0 flip-flops by selecting a channel

and setting the associated PIR flip-flop directly (PIR - IOB (1)).

8-4

Several PIR flip-flops may be set simultaneously, but the PI system honors only the highest

priority request (i .e., for the lowest numbered PIR flip-flop that is set), by asserting one of

the PI REQ outputs shown at the top of the figure. The selection of a request output is made

by the chain of level gates between the PIR and PIH flip-flops. The 1 state of PI ACTIVE

enables the highest priority stage of the chain at the left. If a break is neither requested nor

held on channel 1, the first stage enables the second. Similarly, if stage 2 is enabled and an

interrupt is neither requested nor held on channel 2, stage 3 is enabled, and so on to each

successive stage. For example, a request is honored on channel 4 in the following manner:

If the request and hold flip-flops for the first three channels are all 0, stage 4 is enabled at

2NllR. If there is currently no break held on channel 4, PIH4 is 0, satisfying AND gate

2Nl lR,S and producing a ground at 2N12S and 2N13R. The 1 state of PIR4 satisfies the

upper AND gate asserting the request output PI REQ4, but negates input S of the lower AND

gate disabling the rest of the chain to the right. After the break has been started, PI control

generates PIH +-PI CH RQ, which sets PIH4. The 1 state of this flip-flop negates input 2NllS,

disabling both PI REQ4 and the remainder of the chain. Furthermore, it also holds PIR4 in the

0 state, preventing any further request on the same channel while the break is in progress.

These actions, however, have no effect to the left, so a request on a higher priority channel

can interrupt the current break.

To dismiss a break when returning to the interrupted program, PI control generates PIH(0) c

PI OK(l), which clears the PIH flip-flop for the channel on which a break is currently being

held. It does this by clearing all PIH flip-flops from the left, up to and including the first

one that is 1. The enabling levels for the clear gates in the stages to the left require that

both the PIH and PIR flip-flops be 0, but this condition is bound to be satisfied because setting

any higher priority PIR flip-flop would have caused an interruption of the break in progress.

Thus, the system always dismisses the current break which is of highest priority and returns to

a lower priority break, or if there is none, to the main program.

b PI Control

Figure 8-4 shows the circuits through which the program controls the priority interrupt system,

and which governs the sequence of operations in the priority chain when a device requests a

break. When an IOT with device code 004 appears in the program, the AND gate in 86

8-5

enables the selection level for the PI system. In CONI, the status level from IOT control

gates PI ACTIVE and the PI0 flip-flops onto the I/O bus (the bus gates are shown in Figure

8-5, upper right). CON0 bit 23 gates the clear pulse to clear the entire system by generat-

ing PI RESET (84). This pulse clears PI ACTIVE, clears the PI0 flip-flops directly, and gen-

erates other pulses which clear the PIR and PIH flip-flops (Al, 3). The following set pulse in

CON0 triggers PI CON0 SET, which performs the various operations specified by bits 24-28.

Bit 28 turns on the PI system by setting PI ACTIVE (C7); bit 27 turns it off. The other three

control bits perform operations on channels selected by ones in bits 29-35: bits 25 and 26 turn

the selected channels on and off (A8); bit 24 requests a break on the selected channels (A3).

The remaining logic in Figure 8-4 controls operations associated with the requesting, execu-

tion, and dismissal of a break (most events are listed in the flow charts for the instruction and

execute cycles, Figures 4-4 and 4-5). When any device grounds a request line, the inverted

level from the PIR input gating I ights an indicator located at 2L20 (right of the figure). The

initial time pulses in both the instruction and address cycles check for an interrupt request by

generating PI SYNC (B3), which triggers PIR STB (B5), p rovided the processor is not in a PI

cycle. The PIR strobe sets the PIR flip-flop in any on channel over which a device has re-

quested a break. Assoonasoneormore PIRflip-flopsareset, theprioritychainasserts oneandonly

one PI REQ level. The nets in the lower left of Figure 8-4 generate a level PI RQ if any

request is honored, and encode the channel number into binary. PI RQ allows a delayed

PI SYNC (5.22) to g enerate IATO (A5) which places the processor in a PI cycle by setting

PI CYC (C6). Th e p rocessor then returns to the instruction cycle, and using the binary-

encoded channel number, retrieves from memory the instruction contained in location 40 + 2n

(see 7. lb).

Since the most common interrupt for an I/O device is one that merely executes a single block

IOT that takes the place of a whole subroutine, let us consider this type first. If the indexing

of the pointer word overflows, IOT TOA sets PI OV when the processor switches from the block

to the data instruction. If the block is not complete, both a hold and a restore level are gen-

erated (upper left) . In the execute cycle, ET0 holds the break by setting PIH, only to have

ET1 immediately dismiss it; then ET10 ends the PI cycle by clearing PI CYC. If the block is

complete (PI OV(l)), th e b reak is not held, and after completing the data instruction, the

8-6

processor performs the instruction in location 41 + 2n (which must be a JSR to the break rou-

tine). The sequence of events is now the same as it would have been had the first instruction

not been an IOT. The break is held at ETO; ET10 dismisses the PI cycle and clears PI OV.

The routine must then terminate with the appropriate restore instruction to dismiss the break

(B2).

When the program performs a block transfer, PIR STB is generated at BLT T4 during the pro-

cessing of every word in the block. If a request is discovered, there is no IATO; the pro-

cessor instead terminates the incomplete block as though it were finished (6.6a), and then

returns to the instruction cycle to finish the remainder as a new BLT with initial addressesone

greater than those last used. However, since a request is waiting, the instruction cycle is

interrupted and the processor does not restart the block until all requests have been honored.

8.3 PROCESSOR I/O CONTROL

The interface between the arithmetic processor and its own IOT control section is primarily a

system of flags and enable flip-flops that allows the processor to check its own status and per-

mits processor actions to request sequence breaks through the priority interrupt system. Certain

data transfers may also be triggered through the interface. An IOT instruction selects the

processor in the same manner as any other device: when the device code 000 appears in

IR3-9, the diode net at the left in Figure 8-5 generates the level CPA which gates the various

command signals from IOT controt. For DATAI, CPA gates the contents of the console data

switches into AR (this transfer does not use the I/O bus and the gate is shown with the key

logic, Figure 5-l); a processor DATA0 loads the memory protection and relocation registers

from the bus (7.12). The condition commands, gated by CPA, controt and sense the flip-

flops shown in Figure 8-5 plus the user mode flag (5.5) and the PC change and overflow flags

in the AR logic (6.2e). CPA CON0 SET regulates the flip-flops according to information

on the bus; CPA STATUS gates the flip-flops onto the bus. Extra bus lines are used for condi-

tions out so that the set pu Ise may set or clear individual bits; some fl ip-f lops are set only by

external conditions and CPA CON0 SET can only clear them. A complete list of the bus

lines and the CON0 actions and status bits associated with them is included in the IOT flow-

chart (Figure 4-13). In addition to the enable flip-flops and flags, CPA includes a PI

8-7

assignment register PIA which is loaded from 10833-35. Various flag conditions gate the PIA

decoder to request an interrupt on the PI line addressed by the register.

The first two flip-flops at the left indicate errors: the left one is set when a user program at-

tempts to use a protected area of memory; the right one, whenever the processor requests

access to memory but specifies an address which fails to elicit a response within 100 psec

(7.3). Either error flip-flop triggers an interrupt when set. The next pair of flip-flops provide

a means of synchronizing computer operations to real time. A filament transformer in the power

control drives a pulse generator that sets the clock flag 60 times per second. If the enable

flip-flop is on, the flag causes a break every time it is set. The other two enable flip-flops

allow the PC change or overflow flag in AR control to request an interrupt. There is also an

overflow flag for the pushdown list: if there is a carry out of AR0 in a pushdown or pullout

instruction, ET10 sets PDL OV causing a break. Both types of instructions are represented by

the level that gates a switch of MB and AR at ETlO. AR CRYO(l) represents overflow for

pushdown, underflow for pullout.

8.4 I/O INTERFACE LOGIC

Every peripheral device attached to PDP-6 must have a control unit that acts as an interface

between the device and the IOT control section of the arithmetic processor. A control unit

is connected to the processor via the in-out bus, but an automatic control unit for a high-speed

device may also be connected to the memory bus for direct transfers of data to and from

memory. The basic control unit includes a data buffer and a control section. The data buffer

contains a number of bits appropriate to the device (up to a maximum of 36) and is connected

to both the device and the I/O bus data lines. The control section handles receipt and

transmission of control signals for both the processor and the device.

The data and control connections from a control unit to its device depend upon the organiza-

tion of the device and are described with the appropriate equipment. All control units are

connected to the processor via the in-out bus, whose configuration is shown in Figure 7-10,

and which includes the following lines:

8-8

1 Power On Line - This line is at -15 volts whenever computer power is on.

It is connected to the remote terminal of the local/remote switch in the

power control for each device and normally turns on all peripheral equip-

ment when the computer is turned on.

1 Reset Line - This line supplies negative pulses to clear the control regis-

ters and data buffers of all equipment attached to the bus. The line is

pulsed when computer power goes on or when the operator presses the I/O

reset key on the processor console; the program may also generate a reset.

36 Data Lines, IOBO-35 - These lines transfer all data and control informa-

tion, with ones asserted at ground. For output, the lines connect AR to the

device control registers and data buffers through capacitor-diode gates; for

input, the status registers and data buffers are connected to AR through Type

4657 Diode-Gate Bus Drivers (connection must be made by a 4657 or equiv-

alent circuit that places no dc load on the bus).

7 PI Request Lines, PI l-7 - A device requests an interrupt on one of seven

priority channels by placing a ground on the appropriate I ine.

14 In-Out Selection Lines, lOS3-9 - These seven pairs of lines are derived

from the outputs of IR3-9, which contains the device code in an IOT in-

struction. Assertion is at ground for both ones and zeros. A device control

is connected to only seven of the lines, one from each pair. The configura-

tion of these connections determines the selection code for the device, which

then responds to only those IOT commands that are accompanied by the ap-

propriate code.

6 Command Lines - These lines provide two pairs of negative pulses for

output, two negative levels for input. E,oth pulse pairs include a clear and

a set: one pair loads conditions from the bus into the control register, the

other loads the data buffer. The two input levels gate status and data onto

the bus.

8-9

Every control unit includes control and status registers, al though these registers usual I y over-

lap and may even be identical. That is, all control fl ip-flops can usual I y be sensed by the

program as status, and all status flip-flops within the control unit can usually be governed

by CONO. Some devices have additional status signals which can be sensed by the status

checking instructions but cannot, in general, be affected by the program directly.

The control/status registers for all devices include the same basic elements. As an example,

consider the control/status register for the paper tape reader, Figure 8-6. The basic elements

are a 3-bit priority interrupt assignment register PIA and two control flip-flops, BUSY and

FLAG. These elements have the same names in most control units but are distinguished by an

appropriate equipment prefix. The tape reader has an additional control flip-flop that governs

the data mode, i .e., whether data is to be read from the tape in binary or alphanumeric. The

punch register contains the same bits; whereas the Teletype has two busy fl ip-f lops and two

flags because it is actually two devices-one input, the other output. Even in large scale

in-out systems such as magnetic tape, the control connections to the processor are the same

as in the tape reader, and the control and status registers differ only in complexity, not in

kind. Every device has a PIA register, but it may have a command register associated with

the busy flip-flop, several flags, and a number of status bits for error and other conditions.

CON0 can provide a maximum of 18 control bits; control information on a larger scale such

as full addresses and word counts must be supplied by a DATAO. A maximum of 36 bits can

be checked b y a single status instruction; if more are necessary, additional device codes must

be used.

Selection of a device and the timing of all transfers of data, initial conditions, and status

between the processor and the peripheral control units are described in detail in 8.1 (which

the reader is strongly advised to study before investigating any of the peripheral equipment).

At the left in Figure 8-6 are the connections to the processor for PI requests, IOT commands,

and device selection. Every device is connected to the six command lines that govern the

transfer of conditions out, data in and out, and status in. The pulses provide output clear

and transfer functions while IOT control gates AR onto the bus; the levels gate input onto the

bus while IOT control pulses the information into AR at the processor. All devices require the

condition and status commands; however, only a bidirectional device uses both types of data

commands.

8-10

Although al I devices are connected to the six command I ines, to have any effect on a control

unit, the commands must be gated in by a selection level that is generated by the net in the

lower left of the figure. Every control contains such a diode net, wired to the seven IOS

I ines that define the device selection code. The control unit then responds to IOT commands

only when the appropriate code appears in the instruction. Note that the reset bypasses the

selection gate in triggering IC CLR and clears the control registers for all devices.

In the normal sequence of operation for any device, the program first provides the initial con-

ditions by means of a CONO, whose pair of command pulses generates the IC pulses within the

control unit. The first pulse usually clears all the control and status flip-flops; the second

pulse loads the assigned channel number into PIA and sets up the other control bits as neces-

sary. The control information is supplied over the in-out bus by the effective address cal-

culated for the CONO: bits 33-35 always provide the priority assignment; the configuration

for other bits depends upon the device and is listed in the flowchart of the input-output

operations (Figure 4- 14).

The 1 states of the status bits are separately ANDed with the status level, which is generated

by any of the three conditions-in instructions. The AND gate outputs are applied, in gen-

eral, to the same bus lines over which the equivalent initial conditions are sent to the con-

trol register. The outputs of individual bits in the right of the figure provide control levels

for the various operations within the control unit. The outputs of the three PIA bits, however,

are applied to a gated binary-to-octal decoder. Outputs I to 7 of this decoder are connected

to the request I ines of the priority interrupt system. A group level at pin P enables the

decoder, placing a ground on the output corresponding to the number contained in PIA, i .e.,

requesting a break on the channel assigned to the device. The 0 decoder output is not

connected, SO it corresponds to no PI assignment.

In addition to governing information transfers, the data commands also perform certain con-

trol functions so that an entire block of data can be processed after giving the initial condi-

tions only once. CON0 must assign a PI number and provide the necessary data mode

information, but it need not necessarily set BUSY. A common procedure for output is that

each DATA0 not only loads the buffer but also sets BUSY causing the device to operate.

When a control unit has completed the transfer of data from buffer to device, its completion

8-11

signal dears BUSY and sets FLAG. The latter action enables the PIA decoder requesting an

interrupt. Th e p rocessor then responds with another DATA0 which provides new data, clears

FLAG, and again sets BUSY. Following the last word in the block, the program must provide

an extra CON0 to clear FLAG. For input, the initial conditions must include setting BUSY

to make the control unit retrieve information from the device; the completion of the transfer

from device to buffer then clears BUSY and sets FLAG for an interrupt. Then the DATAI that

gates the buffer onto the bus also clears FLAG and sets BUSY causing the control unit to

retrieve more data. The turnoff of the DATAI level clears the buffer in preparation for the

next word. To end a block, the program must follow the last DATAI with an immediate

CON0 to clear BUSY, preventing the retrieval of an extra word.

8.5 STANDARD IN-OUT EQUIPMENT

Small scale in-out devices most commonly used with PDP-6 are paper tape reader and punch,

Teletype keyboard-printer, and card reader. This section describes the control units for

these four devices; control units for other peripheral equipment are described in separate pub-

lications. The remaining Chapter 8 logic drawings are in four groups of two or three each

for the standard devices. In each group, the first drawing shows the control/status register

and control connections to the processor via the I/O bus as described in 8.4. The other

drawing or drawings in each group show the control connections to the device, and the data

buffer with its connections to both the device and the I/O bus.

a Paper Tape Reader

In addition to PIA, BUSY, and FLAG, the control register for the tape reader (Figure 8-6)

contains a data mode flip-flop B. There is also an extra status bit which indicates that the

reader motor is on. Since the reader is an input device, for initial conditions CON0 must

provide a PI assignment, clear FLAG, set BUSY to cause the device to retrieve the first

data from tape, and set up B according to the desired mode. Alphanumeric mode (B=O) reads

a single 8-bit character from tape and makes it available over bits 28-35 of the bus with

hole 1 in 10835. Binary mode (B=l) reads holes 1-6 of only those characters in which

hole 8 is punched and assembles six such characters into a 36-bit word. The first charac-

ter encountered is made available over bits O-5 of the bus with hole 1 on IOB5.

8-12

Figures 8-7 and 8-8 show the 36-bit buffer, which is made up of six Type 4221 6-Bit Shift

Registers. A single shift register module contains one buffer bit from 0 to 5 and every sixth

bit after it; output from a single hole position is always read into a single module. For

example, hole 1 is associated with that part of the buffer containing bits 5, 11, 17, 23, 29,

and 35 (upper right, Figure 8-7). The strobe generated by the feed hole reads hole 1 into

bit 35 (the presence of a hole is indicated by a negative level), hole 2 into bit 34, etc.

In alphanumeric mode, B(0) causes the strobe to load holes 8 and 7 directly into bits 28 and

29 at the same time that the other six holes are loaded into the least significant bits of the

422 1 Registers . Thus in reading a single 8-hole character, the 4221 Registers are not used

as shift registers at all. But in binary mode, the first strobe loads the six data holes into

the least significant bits of the register, and each subsequent strobe shifts the previously

read character one place to the left in parallel at the same time that it reads in a new one.

The characters are counted in an extra 4221 Shift Register in the upper left of Figure 8-7.

Every strobe sets the right bit SR6 and also shifts left those ones that have already been

strobed in. The sixth strobe sets SR36 indicating that the entire 36-bit word has been

assembled.

Retrieval of information from tape is controlled by the logic shown in the lower left of

Figure 8-8. When the operator turns on the reader from the console, the level MOTOR ON

generates a pulse that clears BUSY to ensure that the reader does not go into operation

inadvertently. This start clear pulse also sets FLAG to cause an interrupt when the motor

goes on, and the same action is also produced through a pulse generator in Figure 8-606

when the motor goes off. When a CON0 for the reader appears in the program, the first

command pulse clears the control register. The second command pulse must then set BUSY,

whose O-to-l transition generates PTR CLR (Figure 8-8C4) to clear the buffer and the char-

acter counter SR. BUSY(l) also engages the clutch and releases the brake (lower left),

placing the tape in motion. (The operator may duplicate this action by means of the console

tape feed switch but no reading occurs.) The feed hole signal is connected to two pulse

generators -one through an inverter- so that a leading edge pulse is generated on the

transition-to-ground when the feed hole is encountered and the trailing edge generates a

.second pulse on the negative return. If BUSY is 1, the leading pulse triggers a 400-psec

delay whose termination generates the strobe that loads the buffer. This is timed to occur

8-13

when the holes are centered with respect to the photocells. In alphanumeric mode, every

feed hole strobes all eight data holes into buffer bits 28-35. The trailing edge pulse then

sets FLAG and clears BUSY: the former enables the PIA decoder, the latter releases the

clutch and engages the brake, stopping the tape. (The trailing edge pulse is gated by

BUSY(l) to prevent the tape feed from setting FLAG.) When the processor responds,

DATA1 gates the buffer onto the bus and clears FLAG. The termination of DATAI sets

BUSY to restart, the reader and the flip-flop transition again clears the buffer and SR by

generating PTR CLR.

In binary mode, every feed hole triggers the delay but the terminating pulse generates a

strobe only if hole 8 is punched. The strobe loads holes l-6 into the least significant bits

of the shift registers and sets SR6. Six strobes fill the buffer and shift a 1 into SR36, which

allows the trailing edge pulse to set FLAG and clear BUSY. Retrieval of the word by the

processor and restart of the reader are the same as for alphanumeric mode.

b Paper Tape Punch

The punch has th e same control bits as the reader: a 3-bit PIA register, BUSY, FLAG, and

a data mode flip-flop B (Figure 8-9). B determines whether punching is in alphanumeric or

binary mode; unlike the reader, however, either mode punches just one 8-bit character per

DATA0 and the only difference between modes is in the character format. Alphanumeric

mode (B=O) punches the character supplied by bits 28-35 of the bus, with I0835 controlling

hole 1. Binary mode (B=l) always punches hole 8, skips hole 7, and punches holes 6-l

according to the characters supplied by 10830-35. Also unlike the reader, the program

rather than the operator turns on the punch motor and there is a wait of 1 second after

turnon to allow the motor to reach speed. To reduce wear, the motor goes off whenever the

program does not call the punch for 5 seconds. Because the program must turn on the motor,

the initial conditions may vary. However, in normal circumstances CON0 supplies a PI

assignment, sets up B according to the desired mode, and may set FLAG if the programmer

wishes to handle an entire block including the first character through the PI system. Then

the clear for every DATA0 clears FLAG and sets BUSY to trigger the punch cycle for the

character supplied by the instruction; when the cycle is complete, a done pulse clears

BUSY and sets FLAG to request a priority interrupt by gating on the PIA decoder.

8-14

Figure 8-10 shows the data buffer with associated gates, punch solenoid drivers, and timing

circuits that govern the motor and punching cycle. Whenever the program sets BUSY or the

operator feeds tape from the console (either of which generates GO), the 4303 Integrating

Delay in D6 is set and remains set as long as it is triggered at intervals shorter than the

delay period. The 1 state of this delay turns on the punch motor by enabling the Type 823

SCR Driver (Al) and holds the motor on for 5 seconds after the final GO. The gate to the

driver is inhibited, however, by the power clear enable from the key logic so that the punch

cannot go on when computer power is turned on. The delay 1 state is also ANDed with the

off level from a second delay to generate SPEED, which is in turn ANDed with BUSY(l) to

generate READY. The second delay is triggered by the turnon of the first, SO the assertion of

the two signals by GO is delayed 1 second if the motor is off. Both signals indicate that the

motor is up to speed and punching may proceed, but the busy condition in the ready signal

prevents the tape feed from setting the flag and causing an interrupt.

The circuits in the upper left synchronize punching to the period of the motor and drive

mechanism. A reluctance pickup provides a sync mark through a pulse generator whose

output, gated by READY, triggers a 5rnsec delay. The delay level output, ANDed with

BUSY(l), gates the data buffer 1 outputs to enable the drivers for the punch solenoids. At

the end of the punch interval, the solenoids release and the delay terminating pulse, DONE,

clears BUSY and sets FLAG. Note that the input from the tape feed key operates the feed

hole solenoid driver directly, provided the motor is up to speed. This allows the operator

to generate tape leader: the tape feed key enables the speed level after the appropriate

delay but does not generate the ready level, so it punches feed holes without punching the

contents of the buffer.

The data mode f I ip-f lop contra s the character format through the gates in the lower left.

In binary, B(1) provides a hard ground through the 4113 Diode Gates to hold PTP8 set and

PTP7 clear regardless of the act ion of the DATA0 clear and set pulses on the remainder of

the buffer. in alphanumeric, the 4113 outputs float, and punching of holes 7 and 8 is

determined solely by the contents of the corresponding buffer bits.

8-15

c Keyboard-Printer

The Teletype is actually two separate and distinct devices with a common PI channel and

device code. Signal names in the logic drawings use three prefixes: TTY for elements com-

mon to both devices, TTI and TTO for signals unique to the keyboard and printer, respec-

tively. In addition to PIA, the control register (Figure 8-11) includes two pairs of control

flip-flops, TTO BUSY, TTO FLAG, TTI BUSY, and TTI F LAG. In order to allow the

program to control the devices separately, the first pulse in the CON0 pair clears only

PIA; both clearing and setting of the other control bits are handled directly by CON0 bits

(of course the IOB reset does clear the control bits in addition to PIA). In regular operation,

the control bits are handled by the data instructions and signals derived from flag state

changes in the transmitter and receiver. For output, the DATA0 clear sets TTO BUSY and

clears TTO FLAG; the subsequent setting of TTO DONE in the transmitter clears TTO BUSY

and sets TTO FLAG. For input, TTI BUSY is set by the O-to-I transition of TTI ACTIVE

when the operator strikes a key. When the entire character has been received, TTI DONE

is set, clearing TTI BUSY and setting TTI FLAG. The response by the program with a

DATAI then clears TTI FLAG. Setting either flag gates on the PIA decoder to request an

interrupt. During a prolonged idle interval, PIA should be left clear to prevent interrupts

due to inadvertent keyboard manipulation. When setting up PIA following an idle period,

the CON0 should also clear TTI FLAG to prevent readin of a character that may have been

typed accidently.

Data transmission between the processor and the Teletype control unit is in 8-bit characters

over bus lines 28-35. IOB35 corresponds to the first character bit and the eighth bit

(10828) is always 1. Between the control unit and the keyboard-printer, data transmission

is in the form of 1 l-unit characters which are presented serially at 110 bits per second, SO

one complete character requires exactly 100 msec. Character transmission always begins with

a start impulse (space), followed by the eight data bits in order-with ones represented by

marks-and transmission is terminated by a stop impulse (2 marks). An idle line marks con-

tinuously.

8-16

At the right in Figure 8-12 are a crystal oscillator and a countdown chain that generate a

pair of clocks to regulate the transmission and receipt of data. The higher speed clock for

input provides greater time resolution: this allows sampling the keyboard data near the

center of each bit to prevent ambiguity during level changes. Almost all of the remaining

logic in the figure is included in two modules, a 4706 Teletype Receiver and a 4707 Teletype

Transmitter . Each includes an 8-bit data buffer with associated control circuits and flags.

Both buffers are shift registers (the output buffer is actually included within a IO-bit shift

register) .

TTO (Figure 8-12, upper half)

The transmitter module receives no initial reset, so the program or the operator should

always send a rubout character after computer power turnon. After every transmission, the

data buffer is left clear in readiness for the next character. When a DATA0 triggers a

transmission cycle by setting BUSY, it also clears DONE and then loads the character into the

buffer and sets ENABLE. The stop timer is a 4-counter that holds at 4 until enabled by a

1 count applied to a terminal separate from the clock input. The 4 count ANDed with

ENABLE(l) conditions the set gate for ACTIVE so the next clock sets it. ACTIVE(l) enables

t 2, and the transition clears OUT LINE, placing a start impulse (0) on the printer line.

Clocks 2 and 3 then set and clear +2, whose clear transition generates the first shift pulse.

Shift 1 clears ENABLE, shifts the 1 that was in ENABLE to TT08, and moves the entire

character left one unit, placing the first character bit in OUT LINE and out to the printer.

The seven succeeding shifts, at clocks 5, 7, . . ., 15, 17, move the rest of the character

out to the printer one bit at a time; they also fill the register with a 1 followed by zeros

immediately after the eighth data bit. When TTOl-8 contain 10 000 000, the AND gate

in A6 is satisfied, enabling the ACTIVE clear gate. The shift at clock 19 then clears

ACTIVE and shifts left again, clearing the register and setting OUT LINE to feed a stop

impulse to the printer. ACTIVE(O) disables 42 to inhibit further shifts, enables the stop

timer by loading in a 1 count, and sets DONE, which clears BUSY and sets FLAG. It also

holds OUT LINE on to keep the line marking.

8-17

The next character cycle cannot begin until the .4CTIVE set gate is enabled again. Clock 22

asserts the 4 count: if the new DATA0 has already set ENABLE or does so before the next

clock, ACTIVE is set at clock 23 and printing continues at maximum rate; if not, ACTIVE(l)

does not occur until the clock following DATA SET, Thus the stop is held on the line for

four clock periods or two character units (minimum) as required by the printer; and for max-

imum printing rate, DATA0 should appear within this interval. The left and right sections

of the output timing chart show, respectively, the flip-flop conditions for relatively late

and normal DATA0 arrival within the maximum rate interval. Levels shown at the left also

apply to first-character or slow-speed printing except that the 4 count would be up already.

TTI (Figure 8-12, lower half)

At the beginning of an input cycle, the data buffer contains the previous character; other

conditions are as shown at the left end of the input timing chart. The negative start impulse

from the keyboard distributor asserts SPACE, which enables the ACTIVE set input through

the AND gate in 08. ACTIVE(l), produced by clock 1, enables t 8; the transition clears

+ 	 8, clears LAST UNIT, sets BUSY, and generates SET, which sets all flip-flops in the

buffer. LAST UNIT(O) enables the shift one-shot, so each 4 count asserted by +8 generates

a shift pulse. The first shift, at clock 5, clears DONE and loads the start impulse into

TT18 as a 0; successive shifts read in the character bits and move the 0 left. When TTll

contains the 0, the last shift fills the buffer and sets DONE and LAST UNIT. The DONE

transition sets FLAG and clears BUSY; when the program responds, the DATAI gates the

buffer onto the bus and clears both FLAG and DONE. LAST UNIT(l) inhibits the one-shot

but enables the lower ACTIVE clear gate; no more shifts are generated within the cycle but

the next 4 count clears ACTIVE, inhibiting t8 and enabling the upper input to the AND

gate for the ACTIVE set input. The next character cycle begins when a start impulse satis-

fies the lower input to this gate.

The AND gate in 07 connected to the upper ACTIVE clear input prevents activation of the

unit by momentary noise pulses at the data input. The start impulse must prevail through

clock 5; otherwise QTTI SPACE satisfies the gate (the buffer was set at clock 1) so the

first shift clears ACTIVE to reset the device.

8-18

d Card Reader

In addition to PIA and FLAG, the control register for the card reader (Figure 8-13) contains

START instead of the usual BUSY, a data mode flip-flop B, an error flip *flop DATA MISSED,

and an auxiliary flag, FLAG ALL. All of these but START are available for status checking,

and the reader provides four additional status signals. Since START is cleared as soon as the

reader starts a card cycle, the busy status is the OR of START(1) and CARD CYCLE, which

is derived from the CCL signal from the reader. The negation of this signal, CARD DONE,

is also available separately as a status bit (27) as are the other four reader status signals, FEED

CHECK, CRL, CREL, and EOF (bits 23-26). CRL rn d icates that the card reader is not ready for

operation, CREL indicates a validity check or read check error in the reader (for a full explana-

tion of reader conditions, refer to card reader operation, 3.2d). The EOF signal indicates that

the card hopper is empty and its assertion triggers the pulse generator in 88 to set FLAG. The

PG is also triggered whenever a feed check error occurs.

l

Both modes determined by B assemble standard 36-bit computer words from six 6-bit charac-

ters, but the type of information and the number of columns varies. Binary mode (B=l) reads

all 12 bits in a single column and assembles three columns into one word. Although 12 bits

are taken from the column, it is read as two &bit characters. The data lines are designated

CRXL where X has the values 1, 2, 4, 8, A, B, and CR1 L is the least significant bit. Each

column read requires two strobes: the first reads the lower half (holes 4-9) with hole 9 cor-

responding to CRlL; the second reads the upper half (holes 12, 11, 0, 1, 2, 3) with hole 3

corresponding to CR 1 L . In alphanumeric (Hollerith) mode, the reader converts the 12 bits

in a column to a 6-bit code which is then read by a single strobe. This mode therefore

assembles six columns into a single word. Either mode, however, requires six strobes for

six characters.

Since the reader is an input device, for initial conditions CON0 must provide a PI assign-

ment, set START, and set up B according to the desired mode. Usually the program begins

a card in binary because the first column contains information about the card format. Set-

ting START causes the reader to read an entire card even though the program can retrieve

no more than six columns at a time. To retrieve a single column at a time, CON0 sets

FLAG ALL, a II owing every column read to set FLAG, which otherwise is set for every six

8-19

characters. FLAG(l) requests a priority interrupt in the usual manner, and the DATAI

response by the program clears FLAG but does not affect START, which is cleared when the

card cycle begins. If the program does not respond quickly enough after FLAG is set,

the buffer is cleared and DATA MISSED is set, informing the program that there are still six

characters in search of a reader. Completion of the entire card sets FLAG even though the

buffer may not contain a complete word (a card has 80 columns). The program must provide

a new CON0 t.o read the next card.

Figures 8-14 and 8-15 show the 36-bit buffer, which is made up of six Type 4221 6-Bit

Shift Registers. Each shift register module contains a buffer bit from 0 to 5 and every sixth

bit after it; output from a single data line is always read into a single module. For example,

CR1 L is associated with that part of the buffer containing bits 5, 11, 17, 23, 29, and 35

(Figure 8-14, upper right). The strobe generated for a character reads CRlL into bit 35

(a 1 is asserted negative), CR2L into bit 34, etc. The first strobe loads the six data bits

into the least significant bits of the register und each subsequent strobe shifts the previously

read character one place to the left in parallel at the same time that it reads in a new one.

The characters are counted in an extra 4221 Shift Register in the upper left of Figure 8-14.

Every strobe sets the right bit SR6 and also shifts left those ones that have already been

strobed in. The sixth strobe sets SR36 indicating that the entire 36-bit word has been

assembled.

Retrieval of information from a card is controlled by the logic shown in the lower left of

Figure 8-15. The first CON0 pulse clears the entire buffer and character counter (C4) at

the same time that it clears the control register. When START is set, SCCL is asserted (02)

causing the reader to process an entire card. When the reader starts the card, CCL asserts

CARD CYCLE which clears START but continues to assert the busy status. For alphanumeric

mode, CBIL is negated causing the reader to translate each column from the 12-bit Hollerith

code to a 6-bit character; if B is 1, however, signals from the hole positions are applied

directly to the data I ines. The reader indicates that data is ready by sending a column

strobe pulse to the control unit, which responds by asserting a level that causes a validity

check in alphanumeric mode only. If the column does not contain a valid Hollerith char-

acter, the data lines are cleared so al I zeros are read; and if the operator has pressed the

validity check button on the reader, it stops and must be reset manually. The CSP from the

8-20

reader also triggers the PA in Dl to generate a strobe that loads the character into the

buffer and counts it in SR. The PA output also triggers a delay which asserts CBHL for 20 psec.

This signal has no effect in alphanumeric, but in binary it causes the reader to put

the upper half of the column on the data lines in place of the lower half, and the termin-

ating pulse from the delay triggers a second strobe. There are thus six strobes for six

characters whether the unit reads six columns or only three. The delay terminating pulse

also indicates the presence of a column in the buffer and sets FLAG if FLAG ALL is 1.

If full words are being assembled, the fifth strobe sets SR30 which then allows the sixth

strobe to set FLAG. When the program responds, DATAI gates the buffer onto the bus, and

the turnoff of the gating level triggers the clear to prepare the buffer for the next character.

Each pulse from the 20-psec delay also triggers a 2.2-msec delay. lf this terminates while

FLAG is still 1, indicating that the data has not been retrieved, DATA GONE clears the

buffer and sets DATA MISSED. Finally when the card is finished, CCL from the reader is

negated, generating CARD DONE, which sets FLAG and again triggers the DATA GONE

delay.

The logic also includes a gate that allows the program to read any column twice. If the

program gives a CON0 during the card cycle, the set pulse for the initial conditions,

which may change the mode, also triggers a short delay whose termination triggers the same

PA that is usually triggered by the column strobe. The CON0 thus generates a strobe or

strobe pair that rereads the column in either the same or the opposite mode. This feature is

usually used in conjunction with FLAG ALL to determine what mode to read in a card, based

on information contained in the first column. The program usual I y starts the card in binary

to inspect the first column. It may then clear FLAG ALL and reread the first column as

part of a full word either in binary or in alphanumeric. The program may also use this

feature to reread the third column of a binary card so that the final 78 columns are read in

groups of three. If a CON0 given during a card cycle sets START, the next card will be

read as soon as the present one is finished.

8-21

CHAPTER 9

MAINTENANCE

This chapter discusses preventive and corrective maintenance for the arithmetic processor, tape

reader, punch, keyboard-printer and card reader. Since neither the processor nor its mem-

ories can operate in isolation, the information herein must be used in conjunction with main-

tenance information in the memory manual. Except for the exhaustive preventive maintenance

procedures for the basic in-out equipment, the maintenance is discussed at the system logic

level. Circuit troubleshooting and repair are described in PDP-6 Circuits; specific lubrication

and adjustment procedures as well as corrective maintenance for the in-out devices are included

in the following manufacturer’s manuals:

Digitronics Perforated Tape Reader Model 3500

Teletype Bulletin 2158: High Speed Tape Punch Set (BRPE)

Teletype Bulletin 281B: Model 35 Send-Receive Teletypewriter Set (KSR),
Vols 1 and 2

Teletype Bulletin 1187D: Parts, Model 35 Send-Receive Teletypewriter Set
(KSR)

Burroughs B122 Card Reader Technical Manual (B122.51)

The first section of the chapter discusses operation of the equipment for maintenance purposes

and describes those controls and indicators not used in the course of normal system operation.

The second section discusses maintenance programs and includes a list of those for the equip-

ment described in this manual, plus the fast and core memories. The third section includes

preventive maintenance schedules and a description of marginal check procedures. Finally,

corrective maintenance includes troubleshooting procedures and a description of the construc-

tion of a diagnostic and exercise program loops. Special tools and test equipment required for

the performance of the various procedures are listed below; except for DEC equipment, sug-

gested commercial brands are given for purposes of specification only, and do not constitute

exe lusive endorsement.

9-l

Multimeter Triplett Model 630-NA; Simpson Model 260

Dual-channel oscilloscope Tektronix 580 series, preferably with de-

layed sweep trigger faci Ii ties

System module extender DEC Type 1954

System modu le pu I ler DEC Type 1960

Paper tape gauge DEC Type 18467

l-inch width gauge DEC Type 0001

Tape reader cleaning kit Digitronics MS-133

Feeler gauges Any quality set, 1-25 mils

O-10 pound spring scale Chatillon 719-10

O-20 pound spring scale Chati I Ion 719-20

Tape punch maintenance kit Teletype Bulletin 11248 lists all special

punch tools; order with discretion

Punch lubricants Teletype KS7470 oi I; Mobi lgrease #2

KSR-33 lubricants Teletype KS7471 grease

(installations without punch add KS7470 oil)

Card reader lubricants Burroughs S 15821-26 and S64960-2 oi Is;

S 1582 l-32 and -39 greases

Lint-free cloths Cheese cloth or equivalent

Cotton swabs Q-tips or equivalent

Cleaning f Iuids DuPont Freon TF; denatured alcohol

Test cables and probes Low-capacity probes for the osci I loscope;

alligator clips; etc.

Super Fi lter Kote (aerosol) Research Products Corp., Madison,

Wisconsin

9-2

Also have standard hand tools including Phillips screwdrivers and a complete set of Allen

wrenches. The card reader requires a drift punch, a brass drift rod, a plastic-headed hammer,

and a pair of 18-inch water-pump pliers. Standard cleansers for the bay exteriors, etc. should

also be available. At installations that include magnetic tape equipment, consult the tape

transport manual for additional housekeeping necessities.

9.1 OPERATION FOR MAINTENANCE

Chapter 3 discusses normal operation of the processor and basic in-out equipment, and explains

the use of the controls and indicators that are regularly available to the operator. There are

many additional controls, primarily for maintenance. They include controls for ac line and for

marginal checking, and maintenance switches for the logic.

a Power Controls

Most power controls and all power supplies are mounted on the plenum doors at the rear of the

bays; all their switches and indicators face outward, directly behind the exterior double doors.

The main power control, usually a Type 835, is at the bottom of bay 4 (the left bay of the

console viewed from the rear). It has a red light that is on whenever the external ac line is

plugged in, a ganged pair of ac circuit breakers, and a LOCAL/OFF/REMOTE toggle switch .

Switching to LOCAL turns on power; when the switch is in REMOTE, power is controlled from

the console. The total time that power has been on is registered by an elapsed time indicator

at the lower left on the in-out panel (Figure 3-3). In some processors the main control is a

Type 829 which has an additional switch for a delayed output that is not used. This type of

control also supplies a power clear enable directly to the power clear clock; so in a system

using the 829 the integrating delay shown in the lower right of Figure 5-l is not present.

Turning on the main power control supplies ac to the fans and the power supplies.

Located in the upper part of the bay 3 plenum door is a secondary power control that supplies

ac for the motors in the reader, punch, and Teletype. This control is usually a Type 834,

otherwise Type 811; both have controls and indicators identical to those on the 835. When

this secondary control is in REMOTE, it goes on whenever the power supplies are turned on

by the main control. Also at the top of bay 3 is a panel containing six ac convenience

outlets.

9-3

As explained in 3.2, power to the reader and Teletype motors is controlled by the operator.

The ac line to the punch is controlled by a Type 823 (mounted directly on the punch motor)

through which the logic turns the punch on and off. For maintenance purposes the logic may

be bypassed by means of an ON/OFF toggle switch located behind the right end of the chad

box. The card reader can go on only if the operator has turned on its main power switch

located on the left side of the stacker. Then it turns on with system power in the same way

as the 834: a -1.5 vdc turnon signal is supplied through the I/O bus. If system power is off,

the reader may be turned on and off independently by the POWER ON and POWER OFF

buttons on the reader console.

-b Marginal Check Controls

At the top of the bay 4 plenum door is a Type 734 Power Supply whose floating output may be

varied from 0 to 20 volts. Its controls are on the front of the console at the bottom of the in-

out panel (Figure 3-3). The 3-position switch controls the polarity of the supply output; the

large knob controls the output voltage amplitude, and the dc voltmeter indicates the magni-

tude of the output (a similar meter is mounted directly on the supply).

In every logic mounting panel (except the lower panel of a pair containing double-height

modules) pins A to D are connected to the power and ground lines. To allow submodular

marginal checking, there are two independent +I0 volt power lines, +lOA and +l OB; one is

bussed to all A pins in a panel, the other to all B pins. All D pins are grounded. The C pin

on every module receives -15 volts, but all the C pins are bussed together only if the panel

contains no pulse amplifiers. The C pins of the pulse amplifiers in a mounting panel are sep-

arately bussed to permit independent application of negative marginal check voltage to them

(in the processor the pulse amplifiers are module types 1607, 1609, 4606, 6603, 6609); the

remaining modules in the panel always receive the fixed -15 volts.

At the left end of each logic panel are three toggle switches. When all three switches are

down, all the modules in the panel receive the normal fixed voltages. Turning the polarity

switch to + 10 MC and pushing up the top or middle toggle switch applies the output of the

variable power supply to the + 10A or + 10B bus respectively on the panel. Turning the

polarity switch to -15 MC and pushing up the bottom toggle switch applies the marginal check

9-4

voltage to the C pins of the pulse amplifiers in the panel. Turning the polarity switch OFF

applies normal voltage to all power lines regardless of the setting of the toggle switches.

While marginal checking a panel, the toggle switches need not be turned off when switching

from one polarity to the other because the polarity switch applies correct fixed voltages to

all unselected lines (i.e., those of opposite polarity) even if the individual panel switches

are left on. However, this interlock and the center-off polarity switch position are provided

only as a convenience and should not be used as a substitute for turning off the toggle switches.

At the completion of marginal check procedures the technician should turn off all three mar-

ginal check toggle switches on every mounting panel.

Marginal check voltages may also be applied to the photo amplifiers in the tape reader. Two

switches, one for the eight code holes, the other for the feed hole, are located below the con-

sole shelf in the upper right corner of mounting panel 4K. When both switches are in the +lOV

position (left), all amplifiers receive the normal fixed +lO volts. Turning the polarity switch

to 3-10 MC and pushing the FEED HOLE switch to the right (also labeled +lO MC) applies the

output of the variable supply to the amplifier for the feed hole photodiode output. Similarly

the CODE HOLE switch allows application of marginal voltage to the amplifiers for the infor-

mation holes.

Maintenance Switches

Mounted on brackets between the mounting panels on the wiring side are five toggle switches

that allow the technician to alter the normal operation of the processor as an aid in trouble-

shooting the logic. All of these switches are off when down. One switch was mentioned in

Chapter 3 because it must be used when depositing a readin loader in the bottom of core.

The RIM MAINT switch is mounted just above 2M1,2, and it is shown in the lower left of

Figure 5-2. Turning the switch on grounds the 0 output of the RIM SBR flip-flop so that it

cannot be cleared no matter what location is used for instruction retrieval. The processor thus

stays in the readin mode indefinitely, and a memory checkerboard may be run that includes

the readin area. Also shown on Figure 5-2 is the REPEAT BYPASS switch which is mounted

above lM22, 23. While this switch is on, KTOA triggers the repeat delay, so the key cycle

can be repeated even when the chain does not include KT4.

9-5

Two of the switches provide interruptions in the normal flow of events in the arithmetic and

shift-count subroutines. Shown in the upper right of Figure 6-9 and mounted above lH18, 19

is ART3 MAINT, which prevents the carry completion in an AR subroutine from generating the

return pulse ART3; the return is instead simulated by KT2. A technician may single step

through a shift-count by using SCT MAINT, which is mounted above 2C7,8 and shown at the

left in Figure 6-16. With this switch on, neither SCTO nor SCTl can trigger the next step in

the subroutine; instead each step is triggered by KT2.

The last switch may be used for troubleshooting the memory from the processor. This is SPLIT

CYCLE OVERRIDE, shown at the right in Figure 7-9 and mounted above 1 N15, 16. Ordinarily

if the MEMORY STOP key or the ADDRESS STOP switch is on, AT4 sets the split cycle sync

flip-flop. Then if the fetch cycle should generate a fetch-and-pause request, the memory

subroutine makes only a read request to memory; so a processor that is undergoing trouble-

shooting procedures does not hold the memory during a stop. But in troubleshooting the mem-

ory it may be desirable to stop it between the read and write parts of a cycle. The override

switch accomplishes this objective by disabling the set gate to the flip-flop.

Other than the power and marginal check controls mentioned in a and b above, there are no

special maintenance switches for the reader, punch, or Teletype. The card reader, however,

has switches inside the hopper and stacker that generate NOT READY when the former is

empty or the latter ful I, and these may be operated manually for maintenance. Under the

reader cover is a local/remote toggle switch, LOCAL RUN. Raising this switch (local) causes

the reader to feed cards continuously until the hopper is empty, and then stop with FEED CHECK

on.

Besides the switches there are many maintenance indicators. This category includes at the

top of bay 1 most of the indicators which display the states of all SBRs and many control

flip-flops and levels. The PI REQUEST lights on the console indicate those channels on which

requests have been synchronized, but the signals arriving at the logic over the I/O bus are

displayed by a set of lights mounted in front of module connector 2L20. The top light is for

the PI1 line.

9-6

d Single Step Operation

By using the STOP and CONTINUE keys for instructions, the operator may single step a

program from one instruction to the next. Similarly, for maintenance the technician may

single step from one memory call to the next by using the STOP and CONTINUE keys for

memory. In either case the STOP key should be latched on, and each restart may be done

manually by pressing the CONTINUE key; or the single stepping can be performed automat-

ically by latching on the CONTINUE key, turning on the REPEAT switch, and setting the

SPEED controls to the desired time interval. Each time the processor stops following a memory

call, the MEM STOP light is on, and at the top of bay 1 a light must be on for the SBR that

is awaiting the subroutine return. The meaning of the information displayed by the indicators

on the console and the bay indicator panels can be determined by following the flow charts

as the processor proceeds. Using REPEAT, the function associated with any initiating key can

be repeated; all require that KT4 set the repeat delay, and the required switch settings are

discussed at the end of Chapter 5.

By using the maintenance switches discussed in c above, the processor can be operated in even

finer steps. Turning on ART3 MAINT inhibits the return pulse from the AR subroutines; so the

processor stops every time an addition, subtraction, index, or negation is performed. The

immediate results of the subroutine can then be seen by observing the lights for the arithmetic

registers on bay 2, and the point at which the stop occurred is indicated by one of the SBR

lights on bay 1. To observe the operation of the shift counter and the effect of shift pulses ap-

plied to AR and MQ, turn on SCT MAINT. The processor then stops prior to the shift-count

subroutine and also following every step in it. After either an ART3 or an SCT stop, the

processor should be restarted by pressing MEMORY CONTINUE. The attendant key cycle sup-

plies the necessary pulse for simulating the subroutine pulse, but triggers no other operations

because there is no memory stop.

To produce an automatic restart after every stop, turn on REPEAT BYPASS and latch on

MEMORY CONTINUE; this causes every KTOA to retrigger the repeat delay, and the level

from the key causes the delay termination to retrigger the key cycle. The ART3 and SCT

switches can be left on together, so the processor stops after every AR subroutine and every

step in a shift-count; if MEMORY STOP is left on too, the processor wi II also stop after every

memory subroutine. MEMORY CONTINUE supplies the restart for all three types of stop.

9-7

While the processor is single stepping, the technician should follow the operations in the flow

charts and compare the information given by them with the state of the processor as displayed

in the lights. The point at which the processor has stopped is indicated by the lights on bay 1 l

The indicators display a great deal more information about the workings of the processor at

stops within an instruction than they can provide when the processor is stopped only at the end

of an instruction. For example, the indirect light I is always off at the completion of an in-

struction, but when single stepping through an address cycle with AR and memory stops, the

light may sometimes be on. For particulars always refer to the flow charts.

9.2 MAINTENANCE PROGRAMS

MAINDEC (maintenance DEC) programs permit self-testing of the PDP-6 for check-out, pre-

ventive maintenance, or diagnosing equipment malfunctions. Each MAINDEC package con-

sists of program tapes and a reference manual . All manuals have the same format: an abstract;

a section containing operator information; another suggesting applications of the programs;

and a third describing the programs.

The first section is all that the operator need use when running a MAINDEC. It lists the re-

quired tapes, specifies the usage of the console switches, and gives detailed instructions for

loading and starting the programs. The final part specifies how errors are indicated to the

operator (e . g . , programmed halts or typeouts), providesinformation as to the cause of the error,

and tells the operator how to repeat or restart the program. The second section suggests various

applications including procedures for using the MAINDEC with marginal checking. It specifies

the panels and margin levels that apply to each program. The third section contains detailed

program descriptions including octal and symbolic listings; flow charts are included where

appropriate. Each description explains what the program is testing and in what manner, and

furnishes information to aid in updating or modifying the program.

The following MAI NDECs are applicable to the basic hardware (consult the DEC program

library for the current list of all MAlNDECs for PDP-6).

9-8

Test MAINDEC

Instruction Test
Part 1

Part 2
 601-2

601-3

601-4

601-5

602

603

604

605

606

Power Failure

607

608

610

611

612

613

614

Memory Checkerboard

1

622-2

622-3

622-4

623

641

662

Part 3

Part 4

Part 5

Micro Checkerboard

Memory Address Test

Clock Test

Memory Speed Test

Memory Retention after

Memory Over lap

Power Failure Test

Reader Binary Test

Reader Alpha Test

Punch Test

Memory Data Test

Teleprinter Test

Low 64 x 4K
 662-
Hi 4x 4K

16x 16K

16 x 16K Interleave

Protect and Relocate Test

Card Reader Test

Fast Memory Test

9.3 PREVENTIVE MAINTENANCE

This section discusses preventive maintenance schedules and use

601-l

of marginal check during PM

procedures, and lists recommended procedures for the arithmetic processor and the basic in-out

equipment. Preventive maintenance consists of tasks performed prior to initial operation of the

system and periodically during its operating life to ensure that it is in satisfactory operating

9-9

condition. Faithf u I performance of these tasks forestalls possible future failure by discovering

progressive deterioration and correcting minor damage at an early stage. The tasks consists of

mechanical checks, including cleaning and inspection; marginal checks, which aggravate

borderline circuit conditions or intermittent failures to make them easy to detect; and checks

of specific elements such as power supplies, in-out interface circuits, drivers, and sense

elements.

a Schedules and Marains

Preventive maintenance procedures should be performed according to strict schedules. Recom-

mended intervals for PM checks are based on elapsed operating time as well as calendar sched-

ules. For convenience in scheduling normal operations, and to minimize malfunctions, large-

scale PM procedures that occur at long intervals should be staggered. Each user should set up

a schedule for his entire installation that distributes the total PM task evenly over the longest

interval recommended. In every operating shift, a specific period should be assigned to per-

formance of the scheduled PM program for that shift. Without an appropriately designed

program of this type the PM function would necessitate system unavailability for two or three

days every month.

Marginal checking utilizes the MAINDEC diagnostic programs to test the functional capabili-

ties of the system with module operating voltages biased within specified margins above or

below nominal levels. Failures brought about by over- or under-biasing are detected by the

program, which provides a printout or other visual indication helpful in locating the source of

the malfunction. Marginal components can then be replaced during scheduled preventive

maintenance. After such preventive replacement, or when no marginal components exist,

operating voltages are then biased beyond the specified margins, and the margins at which

circuits fail are recorded in the maintenance log. By plotting bias voltages obtained during

each scheduled PM, progressive deterioration is easily observable and expected failure dates

are predictable. Accurate information acquired over a long period provides a basis for plan-

ning future preventive replacement. These plots are also useful in locating marginal or

intermittent components such as deteriorating transistors.

9-l 0

Raising the operating voltage above +I0 volts increases the transistor cutoff bias that must be

overcome by the previous driving transistor; therefore low-gain transistors fai I. Lowering the

voltage below +lO volts reduces transistor cutoff bias and noise rejection, and thus provides

a test for high-leakage transistors and simulates high temperature conditions (to check for

thermal runaway). Raising or lowering the -15 volt supply (this is done only to pulse ampli-

fiers) increases or decreases the output pulse amplitude. Each panel has a separate negative

bus to pulse amplifiers; the line to pin C for logic level modules comes directly from the power

supply, whereas the line to pulse amplifiers comes through the marginal check switch. The

l-10 margins are normally 3-5 and +15 volts; the -15 margins are -7 and -8 volts. The -15 volt

supply must never be made more negative than -18 volts or damage to the logic can result.

For every system in the PDP-6 the user should keep preventive maintenance voltage charts on

which are plotted the failure margins for each maior section of logic while running the appro-

priate MAINDEC. DEC supplies a standard form for such plots; each page has three pairs of

charts for +lOA, -+lOB, and -15 marginal checks. The ordinate is the margin level as read

from the meter on the supply; the abscissa is the time (nine spaces are provided below each

chart for the date). At each check-out, two points are plotted: the voltage level which is

too high for normal operation, and that which is too low. Thus a chart shows the change in

time of the voltage region over which a particular section of the logic operates properly.

When equipment malfunction is induced by abnormal margin levels (e.g., the region being

too narrow), troubleshooting procedures (9.4) should be performed to diagnose the abnormality.

At the top of each chart, spaces are provided for entering the page number in the maintenance

log where such dysfunction is explained.

b Arithmetic Processor PM-

The procedures in this section apply only to the arithmetic processor; procedures for the in-

out equipment are given in c below.-

Daily Operator Maintenance

1. Run all five parts of the Instruction Test (MAINDEC 601) without margins.

Log al I error ha Its, noting the cause if known.

9-l 1

The

2. Check that all cooling fans of the system are running

air flows freely through the filters.

3. Replace any noncritical components such as indicators,

note any replacement in the log.

remaining procedures are to be performed by trained personnel

and that

fuses,

only.

cooling

etc;

RUN PART
WITHOUT

3
MC *

FIX
TROUBLE

__I
FIX TROUBLE
USING PART 3

HALT TROUBLE
4

RUN PART 2 RUN PART 3 PART 5 MAY BE
WITtiOUT MC WlTti MC HELPFULL IN FIX 4DETERMINING *

TROUBLEEXACT CAUSE
I

OF FAILURE
1 1

HUN PART 4 RUN PART 5

NITHOUT MC WITHOUT MC

I

RUN PART 4 RUN PART 5
WlT!i FULL MC WITH FULL MC

PERFORMAfuCE

Figure 9-l Processor Marginal Check Flow

9-l 2

Weekly

1. Check the operator log; note any malfunctions which have occurred in

the machine, and take corrective measures if necessary.

2. If trouble noted in the log cannot be reproduced by normal trouble-

shooting methods, contact the operator who made the note; using his

program, try to reproduce the trouble. If the system can be kept opera-

tional by use of moderate margin voltages on certain small sections of

logic, do so. Do not fail to make an appropriate entry in the log des-

cribing any provisional measures adopted, and notify the scheduling

authority that diagnostic down time wi II be required to rectify the trouble.

Every 1000 Hours

1. Run all five parts of the Instruction Test (MAINDEC 601) with margins,

using the flow diagram (Figure 9-l) and plotting the results on the preven-

tive maintenance voltage charts. In case of failure at abnormal margin

levels, note all circumstances in the maintenance log and cross reference

the log to the chart by page number.

2. Change and clean the air filters at the bottom of every bay in the en-

tire system using the following procedure:

a. Loosen the two thumb screws holding the fan and filter housing to

the floor of the bay.

b. Remove the housing. Take the filter out of the housing and

install a clean one.

c. Replace the housing containing the clean filter and tighten

the two thumb screws.

9-l 3

d. Clean the dirty filter by flushing it thoroughly with hot tap

water in a direction opposite to that of air flow. When all dust

and lint is removed shake out excess moisture.

e. Stand the fi I ter on one end for 10 to 15 minutes to allow re-

maining moisture to evaporate. If the flush water is sufficiently

hot, the fi I ter shou Id dry camp etely in about 15 minutes.

f . Spray the filter with aeroso Super Filter Kote or an equivalent

product . The spray serves both as a dirt capturing medium and as

a detergent which helps wash out trapped dust and lint during the

next reverse flushing.

c In-Out Equipment PM

This section includes preventive maintenance procedures for the tape reader, punch, keyboard-

printer, card reader, and DEC logic associated with them. Procedures for al I four devices

are grouped together under the recommended PM intervals.

The paper tape equipment requires accurately punched tape. A DEC standard paper tape

gauge is supplied with the system; use it for al I paper tape measurements. A paper tape with

the correct specifications is shown on the next page.

The most important dimension is the lateral distance from feedhole to inner edge: it must be

.392 f .002 inch. Wh en examining the tape on the gauge with the naked eye, this dimension

must be exact-the smallest visible error will exceed the tolerance. The reader has a wide

tolerance to variations in longitudinal hole spacing, but mechanical readers in general do not.

To ensure that tape punched by the processor will be readable on mechanical readers such as

the Teletype Model 35 or the Flexowriter, longitudinal hole spacing must be within k5 mi Is

accumulated error in 6 inches. The 5 mil tolerance is about one eighth the diameter of the

feedhole. The output of every punch in the system should be checked once every day to en-

sure that the base dimensions are within tolerance. It is much easier to punch the tape accu-

rately than to try to jockey the reader adjustments to read a wide tolerance of tape dimensions.

9-14

The punch can be adjusted to produce accurate lateral spacing on any given tape whose width

is within 7 mils of the nominal 1 inch. Once it is so adjusted, any tape of 1 f .007 inches

wi I I punch properly . If possible, make adjustments whi le punching the narrowest tape

(993 inch).

The following procedures are recommended for the in-out equipment.

Oai ly Operator Maintenance

Tape Reader -

1. Using Digitronics cleaning kit MS-133, clean the read head, tape guides,

roller bearings, capstan, and brake.

2. Run the reader tests (MAINDECs 610, 611) without margins. During the

tests, check that the tape is laterally positioned to ride along the inner edge

of the tape guide; the photoelectric read head is designed to accept tape in

this position. Log all error halts, noting the cause if known.

3. Remove the exciter lamp cover and check that the lens is clear and the

photodiodes clean; replace the bulb if there is any sign of yellowing.

4. Check that the lamp cover springs are adjusted so as to just touch the

top surface of the tape.

Tape Punch -

1. Run the punch test (MAINDEC 612) without margins. Log all error halts,

noting the cause if known.

2. Using the DEC standard tape gauge, check that the punch output conforms

to the following standards (see Figure 9-2).

a. Feed hole to inside edge: .392 f .002 inch.

9-15

b. &I5 mils accumulated longitudinal error in 6 inches.

c. Width: 1 f .007 inch.

IDIRECTION 0F TAPE MOTION

mooooooooooooooooooooooeoeeeeeeeeoeeeoeeeeeeeeoeeeeeeeeeoeeeeeeeeoeeeee

00 0.0
0.0. 0
00 0
.
l e.0..
0.00..
00 0.0

..:.
0

.
0.0
0.0

00

EDGE NEAR

IA00
0 0000

71

. 0.00.0.
-7l o.0

OPERATOR

t
1.000

5.007 in

Figure 9-2 Paper Tape Dimensions

3. Check

block.

for “fuzzy” holes. This indicates a misadjusted or worn out die

4.

new

Empty the chad

box of tape is

box (the

insta I led).

chad box should also be emptied every time a

5. Clean the punch by blowing

or other solvents near the feed

the light lubricating film.

dust

pawl

off the die

or die block

block.

since

Do

such

not use

solvents

alcohol

remove

Teleprinter -

1. Inspect and clean the platen

the platen needs cleaning only

has been run without paper).

and paper guides as necessary (in general,

if typing has run off the page or the printer

9-l 6

2, Remove lint and other fouling material from the ribbon guides and

replace the ribbon if necessary.

3. Run the Teleprinter Test (MAINDEC 614) without margins. Log all error

halts, noting the cause if known.

Card Reader -

I. Remove the exciter lamp assembly. Clean the solar cells, the feed head,

and the hopper area with a soft bristle brush.

CAUTION

Use only Freon as a cleaning agent for the solar cells. Other
cleaning fluids may damage the potting in the assembly.

2. Run the Card Reader Test (MAINDEC 641) without margins. Watch for

unusual wear on the test deck. Log all malfunctions with probable cause

if known.

Every 160 Hours (Monthly)

Tape Punch -

1 . Remove the punch from the console and perform the complete lubrication

procedure outlined in 5 of Teletype Bulletin 2158. Be sure that no oil or

grease accumulates between the armatures and magnet pole faces or between

contact points.

2. Inspect the general condition of all moving parts and tightness of wiring

connect ions. Make sure nuts and screws that lock the adiustments are tight,

but do not apply sufficient torque to disturb the adjustment. See that all

contact points meet squarely. Rotate the main shaft slowly in the normal

direction (clockwise as viewed from the front) and activate all movable

elements. Check for freedom of movement.

9-l 7

3. Run the Punch Test (MAINDEC 612) with margins. Plot the failure points

on the PM voltage chart; log abnormal failure margins and cross reference

the log to the chart by page number.

Every 330 Hours

Tape Reader -

1 . Carefully perform the daily PM paying particular attention to the position

of the tape as it proceeds through the reader, and making sure that it travels

against the inner edge of the tape guides. Use an accurately punched paper

tape, i.e., one which is well within the dimensional tolerances in Figure 9-2.

2. Carefully check the alignment of read head photodiodes with the holes

in the accurate tape (with lamp cover still removed). Turn on the reader

and thread the tape through the guides but not through the clutch or brake.

Using a line with all holes punched, center the feedhole directly over the

feedhole diode. The diodes for holes 1 and 8 must lie directly under the

centers of those holes. If this alignment is incorrect or if skew is apparent,

correct it by shimming either the read head or the tape guides.

3. Check the exciter bulb voltage: 8.5 f .l volts.

4. Check the pinch roller to capstan gap clearance with clutch de-

energized. The proper clearance is TO to 12 mils; if the clearance is

insufficient, dirt may be limiting the full travel of the clutch solenoid.

5. With no tape in the reader, turn it on and lift the READER FEED key to

engage the clutch as if reading tape. The correct clutch setting is that

which allows the pinch roller just barely to engage the highest point on the

rotating capstan, causing a slight jittering sensation in the finger when held

against the roller. If the roller does not contact the capstan, or runs con-

tinuously with it, adjust the clearance according to Section 4-13 of the Digi-

tronics manual. Severe iitter indicates excessive capstan runout, which should

be tested as follows:

9-l 8

a. Turn the reader off, pull it from the console on its extension

slides, and remove the drive belt from both capstan and motor

pulley.

b. Turn on the reader and lift READER FEED to engage the clutch.

Using I- and 2-mil feeler gauges check the clearance between

capstan and pinch roller for various angular positions of the cap-

Stan, turning it by hand. If runout is excessive, the capstan must

be replaced.

c. Turn the reader off and replace the belt.

6. Using a spring tension scale, check that the force necessary to unseat the

activated pinch roller is from 3 to 4 pounds. If adjustment is necessary use

the procedure in Section 4-15 step 2 of the Digitronics manual.

7. Check for ridges on the capstan around the area where the edges of the

tape ride. Such ridges can cause tape skew; they may be removed by ap-

plying a fine file to the capstan while the reader is running. Do not allow

rubber dust to collect on the clutch block.

8. Check brake tension using a short piece of paper tape with a loop in one

end. insert the free end of the tape between the brake solenoid and its

armature; use a spring scale hooked into the loop to measure the tension re-

quired to move the tape with the brake engaged. The force must be from

3-l/2 to 7 pounds.

Teleprinter -

1. Lift the cover and check everywhere for effects of vibration: loose nuts,

screws, retaining clips, etc.

2. Check the selector magnet coils for signs of overheating. Make sure there

is no lubricant or other fouling material under the armature. If necessary,

9-l 9

insert a piece of bond paper between the pole and armature to soak up any

lubricant. Make sure no lint is left.

Card Reader - Sections and figures referenced below are in Burroughs Card Reader Technical

Manual B112.51 .

1. Check exciter lamp brilliancy according to 3.16; adjust if necessary.

The procedure requires a deck of cards punched with a repetitive pattern

of all ones in twelve columns followed by all zeros in the next five. This

step and step 2 must be performed whenever photo amplifiers are changed

in the reader.

2. Using the same test deck, check the leading edge timing of the strobe

pulse with respect to the read pulse for all twelve rows (Section 3.17).

3. Check operation of the strobe-8 counter according to Section 3.18

(performance can be checked only by adjusting the counter).

4. Check response of card-detect solar cell CD1 according to Section 3.19

(the procedure requires a deck of cards having a 4 punch in column 80).

5. Check performance of the translator for valid Hollerith codes (Section

2.3), using a deck prepared by punching each valid code in alternate col-

umns of a card.

6. Test performance of the validity check circuits (Section 2.4), using a

50-card deck in which column 40 of each card contains one of the invalid

punches (all invalid combinations are listed at the bottom of Table A4-3).

7. Using Burroughs S64960-2 oil, lubricate the feed-sIide/gib bearing

surfaces (Figure 3.4-1, right), the feed-knife pivot (Figure 3.4-1, C),

and ‘the feed-slide fork/actuator-arm pivot post bearing surfaces

(Figure 4.5-1, top right).

9-20

8. Run the Card Reader Test (MAINDEC 641) with margins. Plot the

failure points on the PM voltage chart; log abnormal margins and cross

reference the log to the chart by page number.

Every 1000 Hours

Tape Reader -

1. Perform the daily and 330-hour PM schedules. Tape must travel along

the inner edge of the tape guides.

2. Check all power supply voltages including the exciter lamp voltage.

3. Using the same length of accurately punched test tape with alternate

lines of ones and zeros, run the Reader Tests (MAINDECs 610, 611) with

margins applied to the read amplifiers and reader control logic. Run the

reader at top speed (400 characters per second). Make no adjustments

unless the tape being read has lateral dimensions well within the tolerances

in Figure 9-2, and travels against the inner edge of the tape guides.

4. Observe the feedhole signal at pin 18M in the panel containing the

reader logic (beneath the processor console) with one vertical input of a

dual -channe I osci I loscope. Adjust the feedhole output for a width of 1 msec.

5. Apply a +9 volt margin to the code hole amplifiers, and adjust the read

amplifier cards while observing both the code hole and feedhole signals with

the scope. The trailing edge of the feedhole should lead the trailing edge

of the code holes by 300 to 500 psec; code hole width should be approximately

1 .8 msec when it satisfies this trailing edge timing requirement. A read

amplifier that exhibits extreme changes in gain with moderate rotation of the

adjustment potentiometer should be replaced with a less sensitive card.

6. Using MAINDEC 610, run the test tape at all speeds up to 400 characters

per second with code hole margins from 3 to 17 volts and feedhole margins

9-21

from 5 to 15 volts. Amplifiers should be touched up as necessary to obtain

these margins. Error halts occurring with a splice on the test tape between

clutch and brake can usually be disregarded since these are generally caused

by poorly made splices. Plot the margin levels on the PM voltage chart; if

adjustments are required, log the prior and post adjustment margin levels and

cross reference the log to the chart by page number.

Tape Punch -

1. Check the Teletype Maintenance Kit for parts which may require periodic

replacement.

2. Run the Punch Test (MAINDEC 612) with margins. Plot the failure points

on the PM voltage chart; log abnormal failure margins and cross reference the

log to the chart by page number.

Teleprinter -

1 . Clean the distributor with Freon and a cotton swab,

2. Perform the complete teleprinter lubrication procedure as prescribed by

Teletype Bulletin 281 B, Volume 1 (there are four applicable sections; see

the Bulletin table of contents).

3. Run the teleprinter test (MAINDEC 614) with margins. Plot the failure

points on the PM voltage chart; log abnormal failure margins and cross ref-

erence the log to the chart by page number.

Every 2000 Hours

Tape Reader -

1. Check all electrical connections for electrical and mechanical security.

2. Inspect all moving parts for wear.

9-22

Card Reader - Sections and figures referenced below are in Burroughs Card Reader Technical

Manual B122.51; part numbers specify Burroughs lubricants.

1. Check the following adjustments:

a. Top and bottom feed roller clearance and feed-roller pivot

arm spring tensions (Section 3.1).

b. Exciter lamp bracket to read-bed plate clearance; light spot

registration; side plate to insulation block clearance (Section 3.2).

c. Top and bottom hopper throat blade clearance (Section 3.3).

d. Feed-knife to card-column-80 clearance (Section 3.4).

e. Clutch collar to actuated trip-arm clearance; actuated trip-

arm to rear solenoid core clearance; disengaged trip-arm/clutch-

collar latching ridge overlap (Section 3.5).

f. Gap between card deck and front card guide, and slide to left

gib clearance (Section 3.6).

g. Stacker-stop-actuator arm position (Section 3.7).

h. Reluctance-pickup strobe output pulse duration; pickup tip

protrusion and orientation (Section 3.8).

i. Clutch-reset and feed-test circuit breaker timing (Section 3.9).

2. With S64960-2 oil, lubricate the feed-roll arm pivots (Figures 4.3-l ,2),

the circuit breaker contact-arm pivots (Figure 4.4-l), the clutch trip-arm

pivot (Figure 3.5-l), and the stacker-switch actuator shaft (Figure 3.7-l).

3. Using Sl5821-39 grease, lubricate the feed roll shaft gears (Figure 4.3-3),

the feed cams (Figure 4.5-l), and the circuit breaker cams (Figure 4.4-l).

4. Using S15821-32 grease, repack the clutch housing and spring (Section

4.5-l).
9-23

5. Using S15821-26 oil, lubricate the drive motor bearings.

6. Check the following bearings for wear as evidenced by excessive bear-

ing noise under rotation; replace worn bearings using the procedures of

Section 4.

a. Feed-rol ler shaft bearings

b. Cam-fol lower rol I bearings

c. Pulley bearings (at the clutch assembly)

d. Clutch shaft bearings

e. Card-feed actuator-arm shaft bearings

9.4 CORRECTIVE MAINTENANCE

PDP-6 is constructed of highly reliable, solid state modules, and the possibility of failure

during the first year after installation is exceedingly remote. The maintenance staff should

use this period to acquire total familiarity with the system and all its documentation -

approaching the system in ignorance guarantees frustration. This section contains no fault

classification system with specific remedies; instead it outlines a broad plan of attack for

isolating malfunctioning hardware. When diagnosis is complete, proper remedial action is

manifest. Diagnosis depends on logical thinking, common sense, secure knowledge of the

system, and an organized step-by-step procedure.

Do not attempt to memorize the prints; instead concentrate on associating the drawing number

mnemonic with the logic section portrayed. When system logic is well understood, the logic

drawings and flow charts are generally sufficient reference documentation during troubleshooting.

Logic drawings are cross-referenced to the manual by section number (it appears with the figure

number in the lower right) allowing recourse to the text in cases of extreme difficulty. In addi-

tion to the DEC prints and manuals, there are manufacturer‘s manuals for the in-out devices.

Familiarity with the contents of these manuals avoids time wasted in futile searches for informa-

tion.

9-24

When confronting a malfunction in the machine, the following plan of attack should be

employed:

Initial investigation: gather all available information on the problem.

2. Preliminary check: see if the malfunction presents obvious physical symptoms.

3. Console troubleshooting: use pertinent diagnostic programs, maintenance

controls, marginal check procedures, etc., to localize the problem within a

particular section of the logic.

4. Logic troubleshooting: complete the diagnosis by isolating the malfunction

within a particular module, supply, or control.

5. Remedial action.

6. Validation of remedy: ensure that proper system function is restored.

7. Log report: make a complete record of diagnosis, remedy, and validation.

Troubleshooting, which is discussed in a below, includes the first four steps above. The diagno-

sis is expected to suggest a remedy (step 5), but the remedy may require attendant procedures;

such situations are treated in b. The final two steps are discussed in c .

a Troubleshooting

This section details the diagnostic procedure to explain how faults may be isolated to individual

modules; troubleshooting within modules is discussed in PDP-6 Circuits.

Initial Investigation

Before commencing troubleshooting procedures, explore every possible source of information.

Ascertain all possible information concerning any unusual function of the machine prior to the

fault and all symptoms evident when the fault occurred, such as the type of program in progress,

conditions reflected by console indicators, etc. Search the maintenance log to determine

whether the present fault or a similar one has occurred before or whether any cyclic history of

9-25

related malfunction exists, to determine how similar past conditions were corrected. Examine

the PM voltage charts for any steadily narrowing operating voltage regions under marginal

check. If a deteriorating module produces failures seemingly related to the present trouble,

diagnosis may be simplified. The more information the technician can gather, the more

rapidly he can make a diagnosis. Attempting to troubleshoot the system without first ex-

ploring every available source of information usually just wastes time.

Preliminary Check

Troubleshooting begins with a check for physical symptoms of malfunction. If a very large

portion of system logic is inoperative, inspect the physical and electrical security of power

sources, cables, connectors, etc. Be sure that power supplies provide proper voltages. Check

the condition of all filters for free flow of air; a clogged filter may allow the temperature

within a bay to rise sufficiently to cause marginal semiconductors to fail. This preliminary

check is useful more often for catastrophic malfunctions than for intermittent ones. Except

for cable and module connections, most intermittent failures are due to cold-soldered joints

or faulty circuit components. Unless the malfunction is isolated with certainty to within two

or three modules by the initial investigation, it is poor strategy to start checking arbitrary

modules; more sophisticated troubleshooting procedures must be used. Nevertheless, the

preliminary check often discloses troubles which would otherwise require considerable diagnos-

tic work. Few things are more annoying than the discovery of a simple power supply failure

after complex, time-consuming troubleshooting procedures.

Console Troubleshoot ina

In many cases the initial investigation discloses an appropriate line of attack, but does not in

itself pinpoint the location of a malfunction. Troubleshooting from the console localizes a

malfunction within a small section of machine logic, and is usually accompanied by use of

the MAlNDECs (with or without marginal checking, depending on the nature of the malfunction).

Intermittents caused by weakened components can almost always be aggravated and thus trans-

formed to relatively consistent malfunctions by use of marginal checking with an appropriate

MAINDEC (Section 9.2), selected on the basis of information derived from the initial in-

vestigation. Intermittent connections, however, are substantially more difficult to locate.

9-26

If the malfunction does not show up in the first run without margins, perform the operation in

which the trouble was initially observed, using the same user program. In-out equipment

faults frequently give indications similar to those caused by processor malfunctions. Since

the entirely solid state processor is inherently more reliable, check the peripheral equipment

first. Faulty ground connections between periphery and processor are common sources of

trouble.

If a malfunction is caused by loading conditions unique to a user program, it can generally be

detected by a MAINDEC run with margins. Malfunctions caused by differences in loading

conditions show up at narrower margins than those listed in the last few plots on the PM vol-

tage charts. If the MAINDEC discovers the error during application of marginal check, do

not restart the computer; use the error halt listings to diagnose the trouble.

Console troubleshooting procedures for locating catastrophic malfunctions, or those made con-

sistent through use of margins, should be directed toward discovering a pattern of consistency

among the errors. Although some ingenuity may sometimes be necessary to discover it, all

malfunctions display consistency in the errors they produce; separate error diagnoses must

intersect at a common fault point.

Logic Troubleshooting

Logic troubleshooting is detail work performed on a small section of the logic after a malfunc-

tion has been detected but before the source has been identified. The two main parts of

troubleshooting are to reproduce the malfunction and then to identify the source. A common

technique for reproducing malfunctions is the use of diagnostic loops, though at times it may

be necessary to reproduce the exact conditions under which the failure first occurred, e.g.,

by repeating the program that was running at the time. For an intermittent fault it may be

useful to try aggravation techniques while a diagnostic loop is being run.

In general a diagnostic loop is a small string of instructions that causes the computer to per-

form some operation and checks that it is executed correctly; usually the error is indicated

by having the computer halt. If the operation is executed correctly, the program starts over;

in this manner the computer runs until a malfunction is encountered. The technician may

design his own diagnostic loop and toggle it in from the console, but it is usually easier

9-27

to modify the maintenance program. MAINDEC 601 consists entirely of small diagnostic

routines seldom containing more than ten instructions. Each routine halts the processor on

an error by using JRST 4 with the address pointing to the first loaction of the next routine.

Any routine may be converted into a diagnostic loop by replacing the instruction following the

halt with a iump to the beginning of the routine.

Aggravation is intended fo convert intermittent malfunctions to catastrophic ones. The tech-

nique involves either marginal check voltages or vibration (weak component detection by

marginal checking is part of console troubleshooting described above). As long as reasonable

care is used to avoid inflicting permanent damage, maintenance personnel should not hesitate

to twist and probe at connections, cables, plugs or modules. All connections in the system

are designed for excellent reliability; so plugs, cables, or sockets should be impervious to

any reasonable amount of pulling or flexing. Although PDP-6 systems are tested before leaving

the factory, nevertheless, a poorly soldered connection occasionally shows up; this type of fault

usually appears as an intermittent and issometimesverydifficult to locate. Poorly soldered

connections are more likely toappear in mounting panel or cable connections than within

modules. Well hidden malfunctions of this type are occasionally located by tapping suspect

modules with the plastic handle of a screwdriver or other such harmless implement.

Once the malfunction can be reproduced, the next step is to identify the source and correct it.

Three common techniques are substitution, observing panel indicators, and signal tracing.

Substitution is simply replacing a suspect module to see whether a malfunction is thereby cured.

Whenever possible, swap modules rather than substituting a’ spare, e.g., swap counter or

register bits. If the malfunction moves to the new location, the trouble is in the ei<changed

module. If the malfunction has not moved, the trouble is likely to be elsewhere, probably in

the logic that feeds the module, Regardless of the outcome of the swap the good module should

be returned to its original location - it is a desirable maintenance practice to keep each mod-

ule in a specific place in the system.

Panel indicators may be used to detect malfunctions by following machine state changes.

Using REPEAT or REPEAT BYPASS and the SPEED controls, a program loop can be run at slow

speed by pausing after each instruction, memory access, AR subroutine, or even every step

in a shift-count. A complete discussion of single step operation is presented in 9.15

9-28

Repetitive memory access can be produced without using any instructions by repeating an

examine or deposit operation from the console. A single instruction may be repeated by set-

ting it in the DATA switches and using REPEAT with the EXECUTE key. A single instruction

in memory can be repeated by using START or READ IN. Complete information on the repeti-

tion of key functions is given in the final paragraph in 5.1.

Signal tracing requires a scope. With the machine running in an exercise loop, synchronize

the oscilloscope sweep to one of the main sequence time pulses or to a pulse that should gen-

erate the suspect pulse or event. (The flow charts are very helpful for selecting an appropriate

pulse. All pulses and levels are available at module output pins; all pin locations are shown

on the logic drawings, and every signal name is prefixed by a mnemonic indicating the source

logic for it.) In order that events may be viewed on the scope, the exercise loop should not

halt the machine when an error occurs (to change a diagnostic loop into an exercise loop,

replace the skip with a iump). It is difficult to pinpoint intermittents using signal tracing,

so an effort should be made to change intermittent faults into catastrophic ones which can be

located far more easily. When constructing an exercise loop keep it simple and use a minimum

of instruct ions. For example, a simple loop can be obtained by starting the processor at a

memory location that contains a iump to itself, or by repeating key functions.

Once the malfunction has been isolated and is presumably corrected, be particularly careful

during validation to ensure that the module or component replaced was reaIly.at fault, and

thus that the malfunction was actually cured by the replacement.

b Repair

Once a malfunctioning module has been located, repair should be made immediately by sub-

stitution, as intensive system scheduling requirements preclude use of the processor to aid in

submodular troubleshooting. It is expected that defective modules will be returned to DEC

for repair or replacement; those who wish to undertake module repair may refer to procedures

given in PDP-6 Circuits. When replacing a module, make sure the new one is properly pre-

pared to replace the old: in some cases adjustments must be made or internal connections

must be made or broken.

9-29

Internal Connections

Most inverter, diode, capacitor-diode, and decoder modules have provision for internal

jumpering to connect clamped loads at the output inverter collectors. These modules are

shipped with all clamped loads connected; to prepare a replacement module for insertion in

any given location the unused jumpers must be disconnected (e.g., with wire cutters). Some

modules have jumpers for other purposes; for example some flip-flops, decoders, etc., have

jumpers to select the connections to the module pins, and some delay lines require selection

of the tap to choose the delay duration. Whether jumpers must be cut or soldered in depends

upon the type of module. The utilization module lists (UML, see Appendix 1) give the jumper

configurations in all locations for modules in which jumpers may be used. The jumper codes

as they appear on the UML depend upon the type of module and the way in which the jumpers

are used; these codes are explained in the circuit manual.

De lays

Most delay modules contain distributed-constant delay lines that cannot be adjusted. There

are, however, three types of adjustable delays, 1304, 4301, and 4303. Whenever one of

these modules is replaced, the new module must be adjusted to give the correct time interval.

The 1304 and 4301 may be adjusted as follows:

Set up an exercise loop that repeatedly triggers the delay.

2. Set up an oscilloscope to observe the duration of the level output at

pin J of the module (-3 volts during the delay interval, ground other-

wise).

3. Set the scope sweep to the calibrated position, and select a per-

centimeter sweep that displays the entire duration of the level output.

The output is adjusted to the required duration by means of a screwdriver

trimpot accessible through a hole in the rear of the module frame.

The 4303 has flip-flop type outputs. Use the above method but connect the scope at pin W

to observe the negative output, or at pin U to observe the ground output. The delays for

9-30

power clear and punch motor turnoff are not critical, so the replacement may not need adjust-

ment at all; the delay period for detecting a nonexistent memory should not exceed 100 psec.

The 4303 in the repeat logic isadjusted by means of the speed controls: the selector chooses

one of five external capacitors or none at all (the smallest is internal); the potentiometer

varies the available charge current for the selected capacitor.

Tape Reader .

When replacing any reader circuit card having a trimpot adjustment, perform the entire lOOO-

hour PM checkout (and all checks subordinate to it). This action not only provides for the

required card adjustment but also serves as a validation procedure for the repair.

Card Reader

Replacing any photoamplifier package in the card reader requires complete readjustment of

the exciter lamp brilliance and of the strobe pulse coincidence, using the procedures of

Sections 3.16 and 3.17 of the card reader manual. Replacement of any mechanical part that

involves an adjustment requires performance of the adjustment procedure as part of the re-

assembly; the replacement procedures of Section 4 in the reader manual should be followed by

appropriate calibration procedures from Section 3.

-c Validation and Log Entry

Following replacement of any electrical component in the system, tests should be performed

to ensure correction of the fault condition and to trim up final adjustments or signal levels

affected by the replacement. Validation normally requires performance of the PM procedure

most applicable to that portion of the system in which the fault occurred. If repair or replace-

ment is made in an area not normally checked during preventive maintenance, the appropriate

diagnostic program (MAINDEC) should be run, or an alternate operational test should be

devised to ensure proper operation. It is strongly suggested that the entire preventive main-

tenance task be performed for the malfunctioning system component. This action ensures

detection of faults that may have been masked by the just-corrected malfunction and may

reveal a failure mechanism, perhaps still extant elsewhere, that is likely to cause recurrence

of the fault. If the entire PM procedure can be performed while the equipment is down and

available, it need not be scheduled for the whole PM interval.

9-31

Corrective maintenance activities are not complete until they are recorded in detail in the

maintenance log. Include all data indicating symptoms given by the fault, the method of fault

detection, the component at fault, and any comments that might be helpful in future diagnosis.

Suggest improvements in PM procedures if indicated. A complete and detailed write-up of

diagnostic procedures used to locate a real dog is particularly important. Although some

details may seem insignificant and obvious, they should nevertheless be included since exami-

nation of the log will be a maior part of the initial investigation for a future malfunction.

Reduce down time by recording everything.

9-32

APPENDIX 1

ENGINEERING DRAWINGS

Reduced copies of engineering drawings are included in Volume 2 of this manual. Chapter 4

explains the drawing numbers and type codes that identify engineering drawings for all com-

ponents in a PDP-6 system and details the notation and conventions used in the block schematics

and flow charts, which are the basis for learning and maintaining the equipment. However,

there are many other engineering drawings used primarily for reference in maintenance. For a

given system component, every drawing number has the type number of that component follow-

ing the size letter; drawings that apply to the entire system are identified by “6” as the type

number. In the following discussion all drawings mentioned are D size unless otherwise speci-

fied; the type of drawing in each case is identified by the code, and individual drawings are

specified by the number or mnemonic code that follows the drawing serial number.

The master drawing list (MDL) for the entire system is an A-6 drawing with no individual draw-

ing number. It I ists the MDLs for al I system components; these are also A size and identified

only by the equipment type number and drawing serial number. Each MDL lists all drawings

for the system component by title, number, code, revision letter, and number of sheets. The

only other drawing for the entire system is a module list ML; in this instance the system module

list SML, which lists the module requirements for all system components (this drawing is dis-

cussed further in Appendix 2).

The 166 MDL lists first the SD, FDs, and BSs that accompany this manual. Detailed informa-

tion about the modules that make up the processor is shown in the utilization module lists UML,

of which there are ten, numbered 14 to 23. Each UML shows three mounting panels, each divided

into 25 sections representing the plug-in locations. Above each location is the type number

and jumper code for the module occupying it. Each location is further partitioned according

to the individual circuits (flip-flops, pulse amplifiers, inverters) in the module. Circuits are

identified by logical function, using the same signal names that appear on the block schematics.

For example, a pulse amplifier is labeled by naming the output pulse; an inverter or diode

gate, by the output of the net in which it is used.

Al -1

Of the various cable diagrams, CD, the one that shows the logical signals on the in-out and

memory busses is included in the manual (IOMB, Figure 7-10). Another CD that is closely

associated with the logic is CONS, which shows the connections to all operating keys and

switches on the console. This drawing shows the generation of logic levels from the keys and

switches and the connections to the main power control including the 60-cycle signal for the

clock flag. Note how the on position of the key-locked console disabling switch holds system

power on but disrupts the console power that enables the keys and switches. Note also that the

NO and NC labels on switch contacts bear no invariant relationship to the normal position of

the switch; these are merely the labels molded onto the switch case for physical identification

of connect ions.

A pair of drawings CBL-2 and CBL-3 show all levels from the logic to indicators and switch

registers on the console and on the bay indicator panels. CBL-1 shows the locations of all

plugs and iacks throughout the four bays; CH shows the configuration of the main cable harness

and its many branches. There are also a large number of cable lists CL that show the connec-

tions made from cables to module connector pins and identify the signals carried on the various

cable I ines .

All connections made among the module connector pins are shown in a series of wiring diagrams

WD. Each drawing shows three mounting panels and is identified by the panel letters. Because

of the complexity of the wiring in the processor, each set of three panels is shown in two draw-

ings, one showing for example the grounds and pulses, the other the levels and flip-flops out-

puts (there are also other combinations).

Power wiring is shown in the PW drawings, ACPW and DCPW. Each shows the location of power

controls and power supplies on the inside of the rear plenum doors viewed from the front, i .e.,

as though one were looking right through the mounting panels from the wiring side. ACPW shows

all ac connections from the power controls and fans (for machines using 240 volts, 50 cycles,

drawing 50ACPW is substituted). The interlock circuit in the lower right is associated with the

plenum doors in bays 3 and 4 and may be used for example in the high-voltage line to a display

mounted in the console. The interlock switches have three positions including an override the

technician may use during maintenance. DCPW shows all of the dc wiring from the supplies to

the termina I strips. All wiring is color coded +lO red, -15 blue, ground black. As shown in

Al -2

the lower left, all terminal strips and the terminals on the 728 and 734 Supplies use the same

color code as the wiring; the terminals on the 778 Supply are different but the wires connected

to them use the standard coding. The strip between the pair of representations for each bay is

a power connector bracket, whose layout and wiring are shown at the lower left and right.

These are mounted horizontally about halfway up the sides of the bays. The smaller horizontai

strips in the right block for each bay are actually vertical and located at one end of every

mounting panel .’ The green and yellow terminals and wires carry the positive and negative

variable voltages for marginal check (the wires are color coded identically). In the upper

right are the connections to the marginal-check control panel and the marginal-check bus.

This bus carries the variable voltages for marginal checking to other equipment at the site and

also carries the -1%volt turnon signal for the memories. A wiring diagram, MCLT, shows the

connections from the controls on the marginal-check panel to the variable power supply at the

rear of the same bay. Connections to the elapsed time meter are at the right.

Many processor drawings, such as the PWs, also present information about the in-out control

units included in this manual. However, each device has its own UML, WD, and various other

cable drawings as listed in the appropriate MDL. For the card reader there are a number of

Burroughs logic schematics not included in the card reader manual. These include drawings

H-l 182627 to H-l 182640, H-l 1900107, H-l 1900115, H-l 1877446, H-l 1877453, and

H-l 1877461 . The last three are lists of equations for the reader logic; the others are computer-

printed block schematics. These schematics show signal flow and give pin numbers and part

designations of electrical components, plug-in units, and connectors, all of which are shown

by rectangles. Wires are indicated by dashed lines; a “0” at an intersection point of two wires

represents a common connection. The information is laid out on a rectangular coordinate sys-

tem, with all inputs to the drawing in the input column at the left, all outputs at the right.

The columns between are numbered and all horizontal rows are identified by a letter and a num-

ber. All input signals are identified by at least two rows of information, the top row giving the

signal name, the bottom row indicating its source by page and row. Supplementary data may

be included between the top and bottom rows. Output information is identified in the same way,

giving the destination of the signal by page and row.

All boxes are eight character positions wide. The first two positions are used exclusively for

the pin connections of input lines, and in all but the bottom row, the final two positions are

Al-3

used for pin connections of output lines. At the top center of each box is a part designation,

and the bottom row gives the location. Section 2.2 of the card reader manual explains the

system used to designate the locations of all electrical parts. The location of a plug-in unit

is given in the form AAB5L6, which means that the unit is in rack A, panel A, row B, posi-

tion 5 and that its key pin (the one larger than the others) plugs into row L, column 6 of the

socket. The part designation is usually the initial letters of the words describing the part or

some standard symbol such as K for relay; some of the part designations are given in Burroughs

Section 2.5, and wherever the meaning of the part designation cannot be deduced, the loca-

tion designation can be used to find and thus identify the part. If the box represents a plug-

gable unit, such as a photo amplifier, low-speed switch, or diode stick, its location also

appears in Table 2.5-l. A schematic and description of the part can be found in Chapter 6.

The majority of the plug-in units are diode sticks which are not described, but are all identical

and are wired as follows:

CUT ’ 7

0 1 2 3 4 5 6

C l-l J K L
PIN ; “,

R V W x Y

A diode stick is designated in the drawings by 0 followed by a letter or number. It may be cut

to form two or three diode gates: the top, center, or bottom part of the stick is represented by

the box if a T, C, or B follows the D. A number indicates the position of the cut or cuts made

(no cut is indicated by NC). Replacements are sent uncut, and the technician must cut them

to conform with the configurations required for any given location. In addition to pin con-

nections, the remaining rows may contain other information. Row 2 often indicates the part

of the logic the circuit is used in. For a diode stick, rows 3 and 6 give information about the

resistors at positions 1 and 6 and the gates associated with them: an R in position 3 indicates

Al -4

that the resistor is tied to -12 volts; a numeral in position 4 indicates the number of diodes

used in the gate; A or 0 in position 5 or 6 indicates the use of the gate as logical AND or OR.

Information contained in other rows depends upon the element represented; for example in a

box representing a relay, NO or NC in row 5 indicates normally open or normally closed.

Al-5

APPENDIX 2

SPARES

For a large-scale system such as PDP-6, even moderate downtime is generally far more expensive

than the cost of maintaining a fully adequate stock of spares. The system module list SML 1 ists

the quantities of all modules, power supplies and power controls used in all system components

(i.e . , processors, memories, in-out control units) available in PDP-6. However, individual

systems may differ considerably in quantity and type of system components, so DEC Field Ser-

vice supplies each user with a list geared to his particular system. This list gives the total

quantity and number of spares recommended for every module, power supply, and power control.

Field Service also supplies spares lists of electrical components needed for repair of DEC mod-

ules and lists of electrical and mechanical spares for the various in-out devices. It is further

recommended that the user keep a spare tape reader, tape punch, and keyboard-printer, and

stock the following miscellaneous items for the system.

Quantity Item Part Number Vendor

1 Switch

key

for bat-handle Telever Switch
16006 Cat. No.
Reworked per DEC
drawing MA-C-01

S-302

510

Switchcraft Inc.

5 Subminia
switch

ture
SPDT

toggle 6ATl Micro Switch

1 Lockout switch DPDT 1575-L Arrow Hart

2 Rotron fan 53E168 Type CFG Rotron Mfg. Co.

2 Rotron filter 34-x1 431 Rotron Mfg. Co.

10 Indicator lamp MC4806390 Transistor Electric

1 Howard fan 12-80-l 5 Howard Industries

A2-1

APPENDIX 3

GLOSSARY

It is not intended that use of this glossary shall be substituted for reading Chapter 4 or for using

the flow charts when following any sequence of events in the logic drawings. This glossary

gives the meanings of all prefix codes and all terms used in the signal names for the processor

and the four in-out devices. Only a few complete signal names are included because all

names are composites of standard terms, and their meanings are usually quite obvious to anyone

who knows the meanings of the terms and has read 4.2. No generating conditions are given

for logical functions because these are listed in the flow charts. The processor flags are I isted

and described in 2.12, and all inputs to the logic from the console are discussed in 3.la.

With each prefix code below are listed in parentheses the numbers of the figures to which the

code applies.

A (5-3) 	 Address cycle.

AC 	 Accumulator.

AC0 	 Accumulator whose address is 0.

AC2 	 Accumulator following the one addressed

by an instruction.

AC BM (5-9) 	 Accumulator bit modify; the logical

compare instructions, which test bits of

AC as specified by a mask (either E or

C(E)) and may modify the masked bits.

ACCP (5-9) 	 Accumulator compare, i .e., those arith-

metic compare instructions that compare

AC with either E or C(E).

A3-1

ACCP ET AL TEST

ACCP ETC COND

ACK

ADDR

A LONG

AOBJP

AOBJN

AR (6-4, 5, 6, 7,

AR COM CONT

AR CRY COMP

AR CRY0

ACCP ETC COND 	 is the skip or iump

condition as specified by bits 7 and 8 in

ACBM, ACCP, or 	 MEMAC. Since bit 6

of the instruction 	 code specifies whether

the skip or iump is to be made on the

presence or absence of the condition

specified by bits 7 and 8, the condition

signal is exclusive ORed with IR6 to

generate ACCP ET AL TEST, which is

sensed by the program control logic.

Acknowledge,

Address.

Flip-flop set whenever any operations are

performed in the calculation of an address.

Add one to both and jump if positive.

Add one to both and iump if negative.

8, 9, 10) 	 Arithmetic register and associated control

logic, special inputs, subroutines, and flags.

AR complement control flip-flop; set at the

beginning of subtraction or decrementing

in AR to indicate that result must be com-

plemented following the addition or incre-

menting used.

AR carry complete.

Flip-flop set by any carry out of ARO.

A3-2

AR CRY1 Flip-flop set by any carry out of AR1 .

AR = FP HALF Level asserted when

AR as a floating-point

tude l/2.

the fractional part of

number is of magni-

AR OV SET Condition

or MEMAC.

that determines overflow in AS

AR SBR Level that

at ET4 for

causes

an AR

the execute

subroutine.

cycle to pause

AS (5-l 0) Add-subtract e

ASH Arithmetic shift.

ASHC Arithmetic shift combined.

B Binary; buffered .

BLK Block.

BLKI Block in.

BLKO Block out.

BLT (6-18) Block transfer.

BLT DONE Level that terminates a block transfer either

permanently because the block is complete

or temporarily to handle an interrupt.

BLT LAST Inhibits AC

is complete.

storage when block transfer

BOOLE (5-10) Boolean instructions.

A3-3

BOTH

CA0

CBHL

CFAC (6-17)

CH (6-19, 20)

CHG

CH INC

CH INC OP

CH %INC OP

Mode in which result is deposited in both

AC and memory.

Character add one (= IBP).

Leve I to the card reader causing it to place

the upper half of a binary column on the

output lines.

Contents of b

Contents of location specified by effective

address .

Computer floating-arithmetic connection

(subroutine interface).

As a prefix, character operations (byte

manipulation); also channel.

Change.

These three levels control the first part

in a character operation. CH INC is

asserted during the first part of any in-

struction that calls for incrementing the

pointer. The other two levels are mutu-

ally exclusive within the first part of a

character operation. CH INC OP causes

incrementing of the pointer; CH %lNC OP

inhibits incrementing either because the in-

struction does not require it or the first part

of an incrementing character operation is

being repeated following a priority interrupt

between the two parts.

A3-4

CL Clear.

CLK Clock.

CLR Clear,

CMC Core memory

signals from

the bus.

control;

memory

prefix for control

(core or fast) over

COM Complement.

COMP Complete a

CONI Conditions in.

CON0 Conditions out b

CONS0 Conditions in and skip if one.

CONSZ Conditions in and skip if zero.

CONT Control; continue.

CPA (8-5) Processor I/O interface. This is the inter-

face at the other end of the bus from IOT

control; through it the processor, via IOT

control and the bus, controls itself as a

device.

CR (8-13, 14, 15) Card reader.

CRE L Signal from the card reader that

a validity or read check error.

indicates

CRL Signal from the card reader

it is not ready for operation.

that indicates

A3-5

CRY Carry.

CYC Cyclel

DATAI Data in.

DATA0 Data out.

DC (6-20) Deposit character.

DCA DC adder.

DEP Deposit l

DIR Direct, i .e., C(E) rather than E.

DIV Divide.

DN Do nothing.

DPC Deposit character (= DPB).

DPCI Index pointer and deposit character (= IDPB).

DS (6-25, 26) Divide subroutine.

E (5-5) As a prefix, execute cycle; also effective

address.

E LONG Level that causes processor to use second

half of execute cycle.

EOF End of file.

EX (5-13) As a prefix, executive mode; also examine.

EXCH Exchange 0

A3-6

EXEC Execute,

F (5-4) As a prefix, fetch cycle; also flip-flop.

FA (6-22) Floating add.

FAD Floating add.

FC (C (AC LT)) Fetch the contents of the ocat ion addressed

by the number in AC LT.

FC(C(ACRT)) Fetch the contents of the oca t ion addressed

by the number in ACRT.

FD (6-22) Floating divide.

FDV Floating divide,

FE (6-14, 15) Floating exponent.

FM (6-22) Floating multiply.

FMC Fast memory control,

FMP Floating multiply.

FP (6-23) As a prefix, floating-point exponent calcu-

late subroutine; also floating-point instruc-

tions.

FP/CH IR decoder output for the floating-point in-

structions and character operations.

FS (6-l 9) Floating scale.

FSC Floating scale.

A3-7

FSB Floating subtract.

FWT (5-9) Fu I I -word transfer,

HWT (5-9) Ha If-word transfer.

I (5-3) Instruction cycle.

ILL Illegal l

ILLEG Illegal0

INC Increment b

INH Inhibit.

INST Instruct ion e

INT Interrupt a

IO In-Out.

IOB (801,2) In-out bus; IOBi (i = 0, . . ., 35) is data

line i on the bus.

10s (5-7) In-out select.

IOT (8-T) In-out transfer.

IOT A IR decoder output for IOT (replaced by a

UUO in user mode).

IR (5-7, 8) Instruction register and associated decoding

nets.

JFCL Jump on flag and clear.

JP (5-10) Jump and pushdown.

A3-a

JRA Jump and restore accumulator.

JRST Jump and restore.

JRST A

JSA

JSP

JSR

K (5-2)

KEY (5-1, 2)

KEY MANUAL

LC (6-20)

LDC

LDCI

LSB

LSH

LSHC

LT

IR decoder output for JRST (replaced by a

UUO in user mode if a halt or PI dismiss).

Jump and save accumulator.

Jump and save program counter.

Jump to subroutine.

Key cycle l

Key.

Level generated when any initiating key is

pressed.

Load character.

Load character (= LDP).

Increment pointer and load character (= ILDP).

Least significant bit.

Logical shift.

Logical shift combined L

Left
 l

MA (7-1, 2, 3) Memory address V

MAI (7-2) Memory address interface.

A34

MAJ

MARK

MAS

MA SW

MB (6-1, 2, 3, 4; 7-6)

MC (7-8, 9)

MD

MEM

MEMAC (5-10)

MI (7-7)

MISC BITS

MOVN, M

MOV, S

MP (6-21)

MQ (6-7, 11,12, 13)

Majority gate,

Teletype signal representing a 1.

Address switch.

Address switch.

Memory buffer and associated control logic,

special inputs, and data interface with mem-

ory bus.

Memory control 0

Multiply-divide.

Memory; as a mode, result is stored only

in E.

Memory and accumulator modification and

test instructions; these test AC against zero

for a jump, and may or may not increment

AC, or test C(E) against zero for a skip,

and may or may not increment C(E).

Memory indicators.

Miscellaneous bits.

Move negative or magnitude.

Move or move and swap.

Multiply.

Multiplier quotient register and associated

control logic and special inputs.

A3-10

MQ36 Extra MQ bit for use in multiply.

MR (5-1, 2) Master.

MR CLR Pulse

main

that prepares processor for each

sequence or console function.

MR START

(

Pulse

turnon

that

or

clears entire computer at

when IO RESET is pressed.

power

MS (6-24) Multiply subroutine.

MSB Most significant bit.

MUL Multiply.

MULT Multiply.

NEGATE Form the arithmetic 2’s complement.

NR (6-27) Normalize return.

NXT Next.

OP Operation.

ov Overflow.

PC (5-l 1, 12) Program counter and control.

PDL OV Pushdown list overflow.

PI (8-3, 4) Priority interrupt.

PI A Priority interrupt assignment.

PICH PI channel address.

A3-11

PIH PI hold.

PI0 PI on

PIR PI request l

POP Pullout.

POPJ Pullout and jump.

PR (7-4) Protection e

PSE Pause.

PTP (8-9, 10) Paper tape punch e

PTR (8-6, 7, 8) Paper tape reader.

PUSH Pushdown a

PUSHJ Pushdown and jump.

PWR Power.

PWR CLR Pulses that clear computer at power turnon.

RD Read.

REL Relocation *

REM Remainder; floating-point mode that stores

low-order half of result in AC2.

REQ Request.

RIM Readin mode.

RLA (7-5) Relocation adder.

A3-12

RLR (7-5) Relocation register .

ROT Rotate.

ROTC Rotate Combined.

RPT Repeat l

RQ Request a

RS Restart,

RST Restore l

RT Right.

RUN (5-l) Run,

s (5-6) Store cycle l

SBR Subroutine; also a mnemonic for subroutine

card 1260.

SC (6-14, 15, 16) Shift counter ,

SEL Select 6

SH (6-20) Shift.

SH AC2 Double-length shift l

SHC (6-7) Shift connection.

SPACE Teletype signal for 0.

SR Shift register.

ST Start.

A3-13

STATUS 	 Any IOT instruction that examines status,

i.e., CONI, CONS0 or CONSZ.

STB Strobe l

SW (5-l) Switch.

SWAP Interchange the left and right halves of

a word.

SUB Subtract .

T Time.

TST Test.

TTI (8-11, 12) Teletype input .

TTO (8-l 1, 12) Teletype output.

TTY (8-l 1, 12) Teletype.

uuo (5-l 0) 	 Programmed operator (unused op code); a

UUO is performed when one is programmed

or when it replaces an illegal user instruction.

UUO A IR decoder output for UUO.

WR Write,

XCT (5-10) Execute.

2xx Level indicating that IR contains an octa I

code beginning with 2.

25X Level indicating that IR contains an octal

code beginning with 25.

A3-14

APPENDIX 4

INSTRUCTION CODES

Octal Mnemonic Octal Mnemonic Octal Mnemonic

000 172 FDVM 242 LSH

uuo 173 FDVB
174 FDVR

243
244 ASHC

,0;7 175 FDVRL 245 ROTC
100 176 FDVRM 246 LSHC

177 FDVRB 247
200 MOVE 250 EXCH

131 201 MOVE I 251 BLT
132 FSC 202 MOVEM 252 AOBJP
133 IBP 203 MOVES 253 AOBJN
134 I LDB 204 MOVS 254 JRST
135 LDB 205 MOVSI 255 JFCL
136 IDPB 206 MOVSM 256 XCT
137 DPB 207 MOVSS 257
140 FAD 210 MOVN 260 PUSHJ
141 FADL 21 1 MOVNI 261 PUSH
142 FADM 212 MOVNM 262 POP
143 FADB 213 MOVNS 263 POPJ
144 FADR 214 MOVM 264 JSR
145 FADRL 215 MOVMI 265 JSP
146 FADRM 216 MOVMM 266 JSA
147 FADRB 217 MOVMS 267 JRA
150 FSB 220 IMUL 270 ADD
151 FSBL 221 IMULI 271 ADDI
152 FSBM 222 IMULM 272 ADDM
153 FSBB 223 IMULB 273 ADDB
154 FSBR 224 MUL 274 SUB
155 FSBRL 225 MULI 275 SUBI
156 FSBRM 226 MULM 276 SUBM
157 FSBRB 227 MULB 277 SUBB
160 FMP 230 IDIV 300 CAI
161 FMPL 231 IDIVI 301 GAIL
162 FMPM 232 IDIVM 302 CAIE
163 FMPB 233 IDIVB 303 CAKE
164 FMPR 234 DIV 304 CAIA
165 FMPRL 235 DIVI 305 CAIGE
166 FMPRM 236 DIVM 306 CAIN
167 FMPRB 237 DIVB 307 CAIG
170 FDV 240 ASH 310 CAM
171 FDVL 241 ROT 311 CAML

A4-1

Octal Mnemonic Octal *Mnemonic Octal Mnemonic

312
313
314
315
316
317
320
321
322
323
324
325
326
327
330
331
332
333
334
335
336
337
340
341
342
343
344
345
346
347
350
351
352
353
354
355
356
357
360
361
362
363
364
365
366

CAME
CAMLE
CAMA
CAMGE
CAMN
CAMG
JUMP
JdMPL
JUMPE
J UMPLE
JUMPA
JUMPGE
JUMPN
JUMPG
SKIP
SKIPL
SKIPE
SKIPLE
SKIPA
SKIPGE
SKIPN
SKIPG
AOJ
A03 L
AOJE
AOJ LE
AOJA
AOJGE
AOJN
AOJG
AOS
AOSL
AOSE
AOSLE
AOSA
AOSGE
AOSN
AOSG
SOJ
SOJL
SOJE
SOJ LE
SOJA
SOJ GE
SOJN

367 SOJ G
370 SOS
371 SOSL
372 SOSE
373 SOSLE
374 SOSA
375 SOSGE
376 SOSN
377 SOSG
400 * SETZ
401 SETZI
402 SE TZM
403 SETZB
404 AND
405 ANDI
406 ANDM
407 ANDB
410 ANDCA
411 ANDCAI
412 ANDCAM
413 AN DCAB
414 SETM
415 SE TMI
416 SE TMM
417 SETMB
420 AN DCM
421 ANDCMI
422 ANDCMM
423 ANDCMB
424 SE TA
425 SETAI
426 SETAM
427 SETAB
430 XOR
431 XORI
432 XORM
433 XORB
434 IOR
435 IORI
436 IORM
437 IORB
440 ANDCB
441 ANDCBI
442 ANDCBM
443 ANDCBB

444 EQV
445 EQVI
446 EQVM
447 EQVB
450 SETCA
451 SETCAI
452 SETCAM
453 SETCAB
454 ORCA
455 ORCAI
456 ORCAM
457 ORCAB
460 SETCM
461 SETCMI
462 SE TCMM
463 SETCMB
464 ORCM
465 ORCMI
466 ORCMM
467 ORCMB
470 ORCB
471 ORCBI
472 ORCBM
473 ORCBB
474 SET0
475 SET01
476 SETOM
477 SETOB
500 HLL
501 HLLI
502 HLLM
503 HLLS
504 HRL
505 HRLI
506 HRLM
507 HRLS
510 HLLZ
511 HLLZI
512 HLLZM
513 HLLZS
514 HRLZ
515 HRLZI
516 HRLZM
517 HRLZS
520 HLLO

A4-2

Octal Mnemonic Octal Mnemonic Octal Mnemonic

521 H ILL01 571 HRREI 641 TLC
522 H I LLOM 572 HRREM 642 TRCE
523 H I LLOS 573 HRRES 643 TLCE
524 H IRLO 574 H LRE 644 TRCA
525 H IRLOI 575 HLREI 645 TLCA
526 H IRLOM 576 H LREM 646 TRCN
527 H IRLOS 577 HLRES 647 TLCN
530 HILLE 600 TRN 650 TDC
531 H ILLEI 601 TLN 651 TSC
532 H LLEM 602 *TRNE 652 TDCE
533 H ILLES 603 TLNE 653 TSCE
534 H IRLE 604 TRNA 654 TDCA
535 H iRLE I 605 TLNA 655 TSCA
536 H RLEM 606 TRNN 656 TDCN
537 H IRLES 607 TLNN 657 TSCN
540 H RR 610 TDN 660 TRO
541 H RRI 611 TSN 661 TLO
542 H RRM 612 TDNE 662 TROE
543 H IRRS 613 TSNE 663 TLOE
544 H ILR 614 TDNA 664 TROA
545 H LRI 615 TSNA 665 TLOA
546 H LRM 616 TDNN 666 TRON
547 H LRS 617 TSNN 667 TLON
550 HRRZ 620 TRZ 670 TDO
551 H RRZI 621 TLZ 671 TSO
552 H RRZM 622 TRZE 672 TDOE
553 H RRZS 623 TLZE 673 TSOE
554 H LRZ 624 TRZA 674 TDOA
555 H LRZI 625 TLZA 675 TSOA
556 H LRZM 626 TRZN 676 TDON
557 H LRZS 627 TLZN 677 TSON
560 HRR0 630 TDZ 7-00 BLKI
561 H RROI 631 TSZ 7-04 DATAI
562 H RROM 632 TDZE 7-10 BLKO
563 H RROS 633 TSZE 7-14 DATA0
564 HLRO 634 TDZA 7-20 CON0
565 H LROI 635 TSZA 7-24 CONI
566 H LRiIM 636 TDZN 7-30 CONSZ
567 HiLROS 637 TSZN 7-34 CONS0
570 H RRE 640 TRC

A4-3

APPENDIX 5

TELETYPE CODE

The 8-bit codes are listed below. An asterisk indicates a code that has no effect on the

Model 35. Alternate characters are listed in parentheses. The characters actually contain

only seven information bits. The eighth bit may be used for parity, but currently all machines

are set up so that the eighth bit is a mark, and thus the codes generated from the keyboard are

2008 greater than the corresponding ASCII codes.

Octal ASCII Key Remarks
Code Character Combination

200 NULL SHIFT CTRL P Null.

201" SOM CTRL A Start of message.

202* EOA CTRL B End of address.

203* EOM CTRL C End of message.

204 EOT CTRL EOT End of transmission; shuts off TWX
machines.

205 WRU CTRL WRU “Who are you?” Triggers “Here
is . l . , ” at remote station.

206* RU CTRL RU “Are you.. .?”

207 BELL CTRL BELL Rings the bell.

210* FE CTRL H Format effector.

211 HT CTRL TAB Horizontal tab.

212 LF LINE FEED Line feed.

213 V TAB CTRL VT Vertica I tab.

214 FF CTRL FORM Form feed.

215 CR RETURN Carriage return.

216* so CTRL N Shift out.

217* SI CTRL 0 Shift in.

220* DC0 CTRL P Device control reserved for data
I inc escape.

As-1

Octal ASCII Key
Code Character Combination Remarks

221. DC1 CTRL Q

222* DC2 CTRL TAPE

223 DC3 CTRL XOFF

224* DC4 CTRL &&&

225* ’ ERR CTRL U

226* SYNC CTRL V,

227* LEM CTRL W

230* so CTRL X

231* Sl CTRL Y

232” s2 CTRL Z

233* s3 SHIFT CTRL K

234* s4 SHIFT CTRL L

235” s5 SHIFT CTRL M

236’ S6 SHIFT CTRL N

237* s7 SHIFT CTRL 0

240 Space Space bar

241 B . SHIFT !

242 II SHIFT ”

243 # SHIFT #

244 $ SHIFT $

245 % SHIFT %

246 & SHIFT &

247 ‘(9 SHIFT ‘(I)

250 (SHIFT (

251)
*

SHIFT)

252 SHIFT *

253 + SHIFT +

254 I

255

256

Turns reader on.

Turns punch on.

Turns reader off.

Turns punt h off.

Error .

Synchronous idle.

Logica I end of media.

Separator, information.

Separator, data delimiter.

Separator, words.

Separator, groups.

Separator, records.

Separator, files.

Separator, misce I laneous.

Separator, misce I laneous .

A5-2

Octal ASCII Key
Code Character Combination Remarks

257 / /

260 B 0 Zero, prints with a slash

261 1 1

262 2 2

263 '3 3

264 4 4 *

265 5 5

266 6 6

267 7 7

270 8 8

271 9 9

272 : :

273 I I

274 < SHIFT <

275 SHIFT =

276 > SHIFT >

277 ? SHIFT ?

300 ‘w SHIFT ‘A (@)

301 A A

302 B B

303 C C

304 D D

305 E E

306 F F

307 G G

310 H H

311 I I

312 J J

313 K K

314 L L

A593

Octal
Code

315

316

317

320

321

322

323

324

325

326

327

330

331

332

333

334

335

336

337

340-373*

374*

375”

376*

ASCII

Character

M

N

0

P

‘Q

R

S

T

U

V

W

X

Y

Z

1

- 0

1

ACK

01

ESC

Key
Combination Remarks

M

N

0

P

Q

R a

S

T

U

V

W

X

Y

Z

SHIFT K

SHIFT L

SHIFT M

SHIFT n(t)

SHIFT (+)

Lower case letters; codes cannot
be generated from keyboard and
should not be used in programs
for reasons of compatability.

Acknowledge;
erated from
not be used
of compatabi

code cannot be gen-
keyboard and should
in programs for reasons
I ity.

ALT MODE May be
purpose.

used for any desired control

Escape; code cannot be generated
from keyboard and should not be
used in programs for reasons of
compatability.

AS-4

Octal ASCII Key
Code Character Combination Remarks

377* DEL RUB OUT Delete

REPT Causes any other key that is struck
to repeat continuously until REPT
is released.

LOC LF Local line feed.

LOC CR Loca I carriage return.

BRK RLS’ Not connected.

A5-5

6-bit
Code

00
01
02
03
04
05
06
07
10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37

APPENDIX 6

CARD READER CODE

Column 6-bit
Character Punch Code

Any invalid 40

1 1 41

2 2 42

3 3 43

4 4 44

5 5 45

6 6 46

7 7 47

8 8 50

9 9 51

0 0 52

=[#I 83 53

’ [@I 84 54

85 55

86 56

87 57

Space None 60

/ 01 61

S 02 62

T 03 63

U 04 64

V 05 65

W 06 66

X 07 67

Y 08 70

Z 09 71

082 72

083 73

i VI 084 74
OO

085 75
086 76
087 77

Character

J
K
L
M
N
0
P
Q
R

$
*

+ [a1
A
I3
C
D
E
F
G
H
I

i m

Column
Punch

11
11 1
11 2
11 3
11 4
11 5
11 6
11 7
11 8
11 9
11 0
11 8 3
11 8 4
11 8 5
11 8 6
11 8 7
12
12 1
12 2
12 3
12 4
12 5
12 6
12 7
12 8
12 9
12 0
12 8 3
12 8 4
12 8 5
12 8 6
12 8 7

A6-1

Invalid Punch Combinations

0 1 11 Q 1 12 12 23 $3 5 56
0 2 11 0 2 12 13 24 36 57
0 3 11 0 3 12 14 25 37 59
0 4 11 0 4 12 15 26 39 67
0 5 11 0 5 12 16 27 45 69
0 6 11 0 6 12 17 2 8" 46 79
0 7 11 0 7 12 18 29 47 89
0 8 11 0 8 12 19 34 49 11 12
0 9 11 0 9 12

*except 2 8 0

A692

