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branch Boolean). A compromise for test set generation would be to analyze branch conditions for test 
data while using a random number generator for non- looping test data. 

CONCLUSION 

Various aspects of the testing problem and the time-hardware tradeoff required to test have been 
explored. Testing -- both in actual check-out and debugging, and in constructing testing systems -- is a 
large part of the total design process. It does not make itself evident in the written word, but does as soon 
as physical systems are constructed. By devoting an entire chapter to the problem we have hoped to 
indicate its importance. We even suggest that testing is important enough to be included in the original 
design criteria, hence to effect the structure of the physical system. That is, there exists a testability-
performance-cost tradeoff. 

PROBLEMS 

1. Design several tests for the M(transfer), which are analogous-to those of the M(array). 

2. Modify the M(transfer) test for testing S<-R<-C. 

3. Modify the M(transfer) tests to also test M(byte). 

4. Carry out the designs for automatic and comparison tests for the DMgpa. 

5. Design a procedure that allows a person to generate tests for a new module. Try it for DMar. 

6. Note that in the memory tests checking always follows writing, and that the 2 pairs of subroutines 
write pattern-write walking and check pattern-check walking are nearly identical. Carry out a design 
which makes them the same and selectable by a DMflag. 
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that the SUT is altered as little as possible. Altering the SUT has four distinct disadvantages: 

1. It changes the system from what it was when the fault occurred, perhaps leading to an incorrect 
diagnosis. 

2. The alterations themselves could be sources of error. 

3. The alterations are time consuming. 

4. Removal of the alterations from the SUT could itself inflict faults such as the accidental 
removal of a control wire. 

There are several parameters of a SUT which determine testing ease. If these constructs exist, then the 
SUT need be altered very little. Thus these are items system designers should keep in mind: 

1. Moderate loop sizes are easier to test since fewer control and data operations have to be tested. 

2. All registers which appear in the righthand of an assignment in a loop should also appear as the 
lefthand of an assignment in the same loop. Thus the loop need not be exited to set up test data via 
ORing data to the Bus. This would speed up testing and cut back on the number of necessary 
alterations to the SUT. 

3. After a branch the system should perform dissimilar data operations. Thus by observing the 
data on the Bus after a branch the direction of the branch can be determined without having to 
observe the branch Boolean. 

4. Loops should be designed so that they exit on conditions which can be established by ORing 
data to the Bus. For example, a loop should exit on negative values of the Bus Sense Register 
rather than positive values since a leading one bit (negative value) can be OR'ed with a zero 
(positive value) to force a one on the Bus but not vice versa. Recall that since data appears in 
negative logic on the Bus, this one will appear as a logical low signal. As another example, loop 
exit conditions when sensing a bit in a register should consist of that register bit being one since a 
one can be OR'ed onto the Bus. Thus loops can be exited easily under control of the tester without 
requiring extra control wires to force the exiting condition. 

Finally, consider the testing program. The program could analyze the flowchart input and decide on what 
test data to use. Such a program would have to be fairly sophisticated. An alternative would be to use a 
random number generator to select test values. To predict the outcome of a branch, the program would 
simulate both paths with the selected random number until the branch taken is uniquely predicted. The 
test is accepted or rejected depending on whether the desired portion of the branch was taken. 
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The random number test generator would require many simulations if the branch condition, was skewed 
to large or small numbers, as is often the case. For example, if the branch condition is n < 64 (for a loop) 
the loop would be exited on a simulation with a probability of (2^16 - 64)/(2^16) = 32704/32768 
(assuming a uniform distribution of random numbers) and re-entered with a probability of 64/32768. 
Testing the looping condition would be very inefficient in simulation time. Often a loop contains a 
counter and only exits when the counter is zero or equal to some power or two (which can then be used 
as a 
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Now let us explore the spectrum of capabilities for the controller of the tester. The controller could 
inhibit the Bus DONE\DONE signal until it could analyze the data appearing on the Bus. Since all data 
transfers appear on the Bus, the controller can observe them all. Before releasing the DONE signal the 
controller could OR data to that already on the Bus. Thus with very little alteration of the SUT the 
controller can achieve a small measure of observability and controllability. 

The fewer assumptions made about the nature of failures in the SUT the more observability and 
controllability that will have to be built into the controller. Figure 15 depicts some of the other 
capabilities that can be built into the controller. The further down the list an item is, the more the SUT 
has to be altered. Let us look briefly at these other controller capabilities. In order to tell which branch 
was taken it may be necessary to observe a selected number of Boolean values. To speed up the testing 
procedure it may be necessary to start the SUT at points other than the beginning; for example, at the 
beginning of a loop or 8-way branch using a ((manual evoke). Finally, some added control of the system 
can be achieved by wiring in some additional functions which do not exist in, the SUT. Additional 
functions such as clearing selected registers or setting selected Booleans could help place the SUT in 
states which facilitate testing. 

One other capability that could be added to the controller to speed up the testing process is a counter. 
Every branch of a SUT has to be examined for proper behavior. Normally the steps before a branch will 
be tested on the first time, down one path of a branch and need not be tested again. The counter can be 
set to .a value by the test program and the computer would not be interrupted by the controller until the 
number of DONE signals indicated in the counter have elapsed. This counter allows the SUT to proceed 
in almost normal speed over paths that have already been tested without wasting time for the interrupt 
request. and processing procedure of the computer. 

Now consider, the test program in the computer. To be a general purpose tester, the program would 
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accept a description of the SUT, probably in flowchart form, and conduct the system test and diagnosis 
automatically. The program could simply simulate the actions of the SUT and, if complete observability 
and controllability were available, compare predicted data transfers with those from the SUT. 
Mismatches would indicate faults. Ideally, however, the program should make as much use of the wired
in control structure of the SUT as possible so 
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These are usually constructed around stored program computers. Also, such a tester could be used in 
debugging. A detailed design of an automated tester will not be presented. Rather, some of the 
considerations in the design of such a tester will be examined. Based upon the system failure 
assumptions, cost, and time limitations, the reader can design an automated tester to meet specifications 
for various types of systems. 

The block diagram of a general purpose, automated tester is shown in Figure 14. The RTM system under 
test (SUT) is observed and, to varying degrees, controlled by a controller built from RTM's. The 
controller passes information about its observations to the Computer-to-RTM interface. A program in the 
computer then determines the next course of action and informs the controller. The controller performs 
the requested action and observes the results. The cycle is then repeated. 

Unlike acceptance testing where at most one or two modules at a time are under test, a system 
undergoing maintenance testing could have any number of faulty modules in addition to having any 
number of wires open or short circuited. The system testing problem is thus much more complicated than 
module testing. The assumptions made as to the nature of failures in the SUT largely establish the 
sophistication required for the test program and controller. For example, it could be assumed that all the 
modules have been tested (using module acceptance testers) and only the wiring needs to be checked. 
Checking the wiring is relatively easy since the controller need only apply voltage to a pin and observe 
whether the appropriate pins, as determined from the wiring list which would be given as data to the 
computer, also have a voltage appearing on them. Assuming that the modules are fault free, however, 
requires dismantling the SUT and a set of module testers. 

At the other extreme, no assumption about the SUT is made except that at some former time it performed 
according to specification. A very intelligent test program is required under this assumption 

An assumption which is intermediate to these two extremes is that the data part is fault free (through 
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module acceptance testing) and only the control modules or wiring may be faulty. This assumption is of 
value when the data modules are relatively few in number (compared to the control modules) and may be 
tested on site or shipped to a manufacturing facility for testing. 
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All eight combinations for each bit should be tested if the arithmetic add is to be completely functionally 
tested. A set of test values which accomplishes this is: 

Note that many of these test sets were used for the testing of logical shifting, and storing operations. 

Solution 3 

The next step is to automate the manual test. Each function could be tested completely before proceeding 
to the next one. In some cases, especially the logical functions, several operations could be performed on 
a set of test data before the. result was compared to the predicted result. 

The test sets could be automatically generated. For example, an alternating zero and one vector could be 
stored as a constant and both alternating zero and one vectors could be generated by retrieving the data 
and performing a single end around shift. A memory could be used to store the predicted results of each 
test for comparison to the calculated test result. 

Solution 4 

Instead of a memory to store the predicted test results a second DMgpa could be used as the predictor. 
This second DMgpa could be either a known non- faculty module or a second module under test. 

Kbus TEST 

The bus sense module could be tested as a portion of any of the other module testers. However, a 
separate, straightforward Kbus sense test can be developed as shown in Figure 13. 

First, the A register is loaded from the switches. The ability to load the bus sense register is then tested. 
The load zero on to the Bus is exercised and- the ability of the Bus to store the overflow from the DMgpa 
is tested. Finally the Bus tests BSR = 0, BSR < 0, and BSR > 0 are exercised. 
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MAINTENANCE TESTING 


Maintenance testing is performed on a system which is in the field and has already undergone debugging 
and module acceptance testing. Thus the system is known to have been operational at some time. The 
maintenance testing could be performed periodically to insure the system functions as specified. It also 
could be performed on a faulty system to facilitate repair and restoration. 

In any event, maintenance testing can be conducted manually using techniques similar to those used in 
system debugging. However, manual testing can be very time consuming and usually requires an 
intimate knowledge of the system under test. For these reasons a general purpose, automated tester might 
be desirable. 
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one into a zero and the even bits' ability to shift a zero into a one. A second shift tests the odd bits' ability 
to shift a zero and the even bits' ability to shift a one. Next, patterns of alternating pairs of ones and 
zeroes are shifted to test the ability of the register to shift ones into ones and zeroes into zeroes. (If 
memory tests have already been planned for the register, these latter two patterns become redundant.) 

Testing the more complex arithmetic operations is not as easy. For example, recall the table for the 
addition of two bits given in Chapter 5. 
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1, A <- A+B, A <- A-B. The overflow, and the three Bus indicators zero, positive, and negative, should 
also be connected to a light output. Also a K(branch) can be used in conjunction with Boolean switches 

to select one of B <- A^B, B <- AvB, B <- A~B, BSR ~- AAB, BSR <- AvB, BSR <- A~B. When the 

Boolean switch is a 0 the contents of register B are not altered (the results of the operations are simply 
put on the Bus). Thus the contents of B can be different from the contents of A and the Exclusive OR 
function can be properly tested. These alternatives to solution 1 are shown in Figure 12. 

For a memory cell a good set of tests consisted of all zeroes, all ones, walking zero and walking one. 
Since logical operations are performed on a bit-wise basis the following combinations for the A and B 
registers will test the logical operations exhaustively: 
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To test the-shifter part of DMgpa, a pattern of alternating ones and zeroes is first used. The first shift 
tests the ability of half the bits, say the odd ones, to shift a 
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themselves. With the tester in the single step mode the contents of the A and B registers can be tediously 
checked with a voltmeter at the end of each step to insure that the predicted and actual contents of the 
registers coincide. 
A manual Boolean-switch determines whether the data that has been stored in A and B will be used to 
test the arithmetic data operations or the logical data operations. Register A is wired for circular (end
around) shifting, (i.e., LSI is connected to A<0> and RSI to A<15>). 
As in the previous manual testers, the DMgpa test should be run with several different sets of input data. 
For example if A contained all ones then A <- A+1 would yield all zeroes and help to check carry 
propagation. 

Solution 2 
Note, there is no test for overflow. Also, the Exclusive OR cannot be completely checked (i.e., just prior 
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to the B <- A~B operation B contains A v (A^B) which is identical to A, thus B <- A~B will always 

yield all zeroes). 

The overflow should be enabled for the operations A <- A+1, A <- A 
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DMgpa TEST 

The DMgpa is yet a further generalization of the memory cell. It has two temporary storage cells, the 
contents of which are operated upon by many data transformation operations. These operations must be 
tested. The large number of data operations greatly complicate the required testing structure. 
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Solution 1 

The simplest test consists of manually exercising the various functions of the module and observing the 
results, as shown in Figure 11. 

The A and B registers are loaded from the switches and stored back into 
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Since the transfer register contains only one memory word it therefore can be tested exhaustively. The 
automatic generation of tests would be very simple using a counter. But since the mapping function from 
input to output could be any bit mapping, the predicted outputs are difficult to generate. The simplest 
solution would be to store the predicted results in a memory. Storing results would require 3*2^16 
memory words (2^16 test results for each of the full word, upper half word, and lower half word). 

A subset of all possible tests would reduce the memory size drastically. The all-zeroes and all-ones tests 
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would serve to test stuck-at-one and stuck-at-zero faults, respectively. The all-ones test would also detect 
reading errors associated with reading and storing half words. Finally a walking/one test could be used to 
check the input to output bit mapping pattern. This scheme would require about 50 memory words. 

An automatic tester which is independent of the mapping function could also be fabricated. Such a 
scheme would test two identical registers at the same time (or alternatively check one against a known 
good transfer register) using the registers themselves to provide the predicted test results. 
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M(transfer) AND M(byte) TEST 

The Mtr and Mbyte modules are used both for temporary storage and for mapping register bits into a 
different output configuration, as used in data packing operations. In testing M(transfer) and M(byte), 
tradeoffs exist between time to test, hardware, and the completeness of the test. 

The transfer register can be considered to be a one word memory and thus be tested by the techniques 
established for memory testing. If the transfer register does not perform an identity mapping between its 
inputs and outputs, then the test is more complex -- also, a register transfer can be instructed to store half 
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words. 

Alternatively, a memory can be used to store the tests and predicted results. The resulting design is 
analogous to that for the memory test and will be left to the reader. 

406 

previous | contents | next 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000422.htm (2 of 2) [4/3/2002 6:13:19 PM] 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000422.htm


Designing Computers and Digital Systems 

previous | contents | next 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000421.htm (1 of 2) [4/3/2002 6:13:20 PM] 



Designing Computers and Digital Systems 

previous | contents | next 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000421.htm (2 of 2) [4/3/2002 6:13:20 PM] 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000421.htm


Designing Computers and Digital Systems 

previous | contents | next 

1. Address holds the current address being checked. 

2. Limit holds the last address in the memory to check; it is constant and read from the switches. 

3. Pattern\P holds the pattern being checked depending on the test (i.e. 0's, l's, constants 1,2,3, or 
4, or walking 1, or 0). 

4. Check is a temporary to be compared with constants. 

Two subroutines, shown in Figure 6, are used to write the whole of memory with a test pattern. The first 
is for test patterns which are constant. Before calling the subroutine, Limit is initialized with the memory 
size. The constant test pattern is read into memory from Pattern\P. The second subroutine generates a 
walking pattern of the input data by shifting Pattern to the right; 

Likewise, two subroutines check the test patterns; they move through memory in opposite order from the 
order in which it was written. The read constant subroutine is shown in Figure 7. Register Address, the 
current memory address, is initialized to zero before the subroutine is called. The memory content of the 
current memory address is compared to what was written. A mismatch causes the current memory 
address to appear on the lights and the test system to halt. Otherwise, the end of memory is tested for by 
comparing the current memory address with the end of memory. The subroutine is in a loop until 
memory is completely tested. 

The compare subroutine for walking test patterns is similar except the test pattern' is shifted to the left 
since it is being read in reverse order. This subroutine is given in Figure 8. 

Finally, the main flowchart is shown in Figure 9. The memory size is first loaded into Limit from the 
switches, and must be a multiple of 16. The current memory address is initialized to the memory size and 
the test pattern is all zeroes. After the memory has been written the current memory address is initialized 
to zero and the memory is read in reverse order from the order in which it was written. Similarly, the all
one test pattern, the four test patterns of alternating blocks of ones and zeroes, and the walking-one and 
walking-zero test patterns are tried. Note the blocks of ones and zeroes are applied separately rather than 
in conjunction in two sets of two as suggested. These patterns could be applied as walking test patterns or 
could be applied in sets of two by alternating the read and write constant pattern subroutines to operate 
only on every other memory cell and calling each subroutine twice, once for each member of the sets of 
blocks of ones and zeroes. This exercise is left to the reader. 

One should note that the walking-one (zero) constructed for the read operation assumes that the memory 
size is a multiple of the number of bits in the word (i.e. 16). Otherwise, since the read subroutine reads 
the memory in the opposite order from which it was written, provision must be made so that the proper 
constant is generated, i.e., the constant that was written into memory location zero. 
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Finally, the memory test scheme can be altered to test the maximum read- write speed of the memory 
instead of the long term storage ability, as was tested by the last solution. Instead of separate write and 
read subroutines, one write- read subroutine, as shown in Figure 10, would be used. The necessary 
alterations to the main test system flowchart are straightforward and left as an exercise for the reader. 

Fault diagnosis can be assisted by observing the contents of the Lights which indicate the memory cell 
address when the mismatch occurred. Examining the contents of Pattern would indicate the test pattern 
that detected the failure and perhaps give a clue to the reason for failure. 
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Unlike the other memory tests, this solution-tests the long time storage ability of the memory since the 
entire memory is written into before it is read. The other two solutions tested, whether the memory could 
operate at maximum speed by writing into a cell and reading its contents immediately afterwards. Note 
further that this last solution reads into the memory in one order and writes out in another. This helps test 
the memory accessing mechanism. 

All the solutions presented so far have consisted of a single write into a cell followed by a single read. 
Some faults could go undetected. For example, if all zeroes were read into a cell a /stuck-at-logical zero 
fault in that cell could go undetected. 

Solution 4 - Exhaustive Testing 

Thus for 100% confidence it would be necessary to test each memory cell exhaustively, as in this 
solution (Figure 4). The R register obtains the memory size from the switches. The inner loop starts with 
the A register containing zero and alternately writes and reads a memory cell until all possible 
combinations have been tried (i.e. until A = 2^16-1). The outer loop insures that all memory cells are 
tested. 

For a 4K, 16-bit memory this would require 2^12*2^16 = 2^28 tests. Even at one microsecond/test 
(which this does not achieve) this would require about 4.5 minutes. For larger memories exhaustive 
testing is prohibitive and even for this size memory it may be prohibitive. 

Solution 5 

A compromise is to apply to each cell several carefully selected tests so that if each cell passes these tests 
one can be fairly sure the memory is fault free. This solution summarizes all we have thus far learned. 

To detect stuck-at faults (i.e., fixed at either 0 or 1) each cell should be tested with a pattern of all zeroes 
'and a pattern of all ones. Historically, memories have also been tested for possible coupling between 
separate memory words. This has been accomplished by using the so-called walking-one and walking-
zero patterns. In the walking-one pattern there is only one bit at a logical one level and the pattern written 
into successive memory words is: 
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The walking-zero pattern is similar with the rules of one and zero interchanged. Other useful patterns, for 
detecting possible interference between bytes, are: 

These last patterns are applied in sets, patterns (1) and (2) forming one set and patterns (3) and (4) 

another.


The data part of the test system is given in Figure 5. The registers are given names according to the 

function they perform in the checking:
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memory 2 and compared. A mismatch indicates an error. The test iterates until each cell in the entire 
memory under test is examined. 

This solution requires an extra memory. It would be desirable to generate the tests logically instead of 
relying on tests stored in a memory. 

Solution 3 - Testing With a Generated Function 

By switching the method in which the tests are generated each memory cell can be tested for more than 
one value. This provides an automatic and faster test. Figure 3 shows this scheme. The final address is 
entered into register A via the switches. Each memory cell whose address is less than or equal to the final 
address has its address entered as data. Then starting from address zero the memory cells are read and 
compared to the data that was written in. A mismatch indicates an error. If the address of the current cell 
is equal to the final address shown on the switches the whole process cycles back to the start, otherwise 
more comparisons are made. 
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outputs are small, optimal testing is not significantly faster 'than exhaustive testing. Alternatively, these 
simpler modules can be tested as a part of a test system for a more complex module. Thus normal 
completion of the tasks of a test system imply all the modules forming the test system are acceptable. 
However, when several modules are concurrently under test an error indication might lead to a time 
consuming diagnosis to isolate the faulty module. For these reasons the following modules will be 
assumed to be tested exhaustively: 

Example test systems using non-exhaustive schemes will be developed for the following modules: 


MEMORY TEST 

The problem is to develop a test system for a read-write random access array memory module. Many of 
the concepts in test system design will be explored in detail in the following solution. Test systems for 
the other modules will thus only need to be sketched. 

To test a module it is necessary to insure that the module performs its.. specified functions. The standard 
method for memory testing is to write a word into a memory cell and then later read the word and 
compare it to what was written. A mismatch indicates an error. 

Solution 1 - Manual Testing 

An RTM solution is shown in Figure 1. The memory address to be tested is read into the MA register 
from the switches. Likewise the test data is read into the B register from the switches. The memory 
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address under test is written into and read out, and the two values compared. A mismatch indicates an 
error. 

It is easy to see that this solution requires a significant amount of time to conduct the test, especially if 
the memory is large, because of the requirement of manual inputs. This method would be acceptable for 
M(transfer), however, since it has only one register. The system could operate at a higher speed by using 
a second switch register. 

Solution 2 - Testing Against Known Results. 

In Figure 2, two memories are used: one stores the tests and the other is the system under test. The 
former could be a read only memory. 

The memory size is input via the switches to R. The test data is retrieved from memory 1 and placed in 
memory 2. Next, the test data is retrieved from 
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becomes Low, then another data sender was also evoked and supplied the DR signal. 

Care should be exercised when. a register's content is checked .by probing. For example, the latches of an 
M(transfer) are active as long as the evoke which enables them to read is active. Thus probing an 
M(transfer) while its read input is active could cause erroneous data to be entered. 

Another way to detect incorrectly read data is to-remove the receiver at each step in the flowchart and see 
if a DA signal is generated. If a DA signal appears, then a multiple read from the Bus was incorrectly 
performed at that flowchart step. 

It should be noted that unless Boolean branch variables are brought out to light they are unobservable. 
An erroneous data transfer (appearing on the Bus) may be due to the system taking an incorrect branch. 
The branches can be forced to a one state by leaving their inputs floating By removing the inputs to a 
Boolean branch of the flowchart, the system will take a path that is uniquely determined (assuming the 
K(branch) is not faulty). This will help detect wiring errors associated with the K(branch) modules. 
Observation of the Boolean inputs to the K(branch) modules at each branch situation of the flowchart 
will also help locate wiring errors. 

Sometimes an RTM system will operate in manual-single step mode but will not operate properly at full 
speed. An oscilloscope can observe the K(evoke) following a K(branch). If the K(evoke) is supposed to 
be activated and is not, isolation is achieved by observing where the system first deviates from the 
flowchart. Checking earlier branch points is a good isolation procedure. If in doubt as to whether a 
timing problem actually exists, operate the system in manual-single step mode at different pulsing rates 
to see' if the system operation is intermittently incorrect. 

In order to facilitate debugging, the design should include testing facilities and a plan for testing. For 
example, software programs are debugged by dividing the program functions into several small 
subroutines and debugging the subroutines individually. By using K(subroutine) modules an RTM 
system can be divided into small, easy to test blocks. Also, (daisy) chaining wires is often suggested to 
distribute a signal to many pins. However, daisy chaining makes it difficult to trace wiring. For example, 
tracing a wire to a pin which has three wires attached to it means the traced wire could have one of two 
origins. If the traced wire does not have an active signal on it, detection of the relevant source wire is 
extremely difficult. 

ACCEPTANCE TESTING OF MODULES 

After the modules have been manufactured they have to be tested to insure that they will meet 
specification. Normally this is done by the manufacturer, but in a laboratory environment it is possible to 
introduce defects. It will be assumed that an RTM system has been built that exercises all of the 
functions of the module to be tested. Thus a newly manufactured or an aged and suspected faulty module 
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would be plugged into the test system. Any detected fault in the module under test would cause the test 
system to indicate an error. If the test system completed its designed operation, then the module under 
test would be accepted as fault free. Some of the modules, such as K(branch) and K(evoke) are easy to 
test on a functional basis, while others, such as a DMgpa, are quite complex. The simpler modules can be 
functionally tested by observing the module outputs for all possible module inputs. Since the number of 
inputs and 
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numerically controlled wire-wrap machine. (Such a program has been. written in the BASIC language, 
and is available from DEC.) In most instances the prototype will be a one-of-a-kind project and can be 
wired by hand. The following techniques can be used to validate the wiring. 

1. Check to see that the Bus and T(lights and switches) to K(bus) are wired correctly. The lights 
and switches are the chief manual debugging aid. 

2. Recheck every connection to reduce mistakes. (When the wiring is complete for a large system, 
the mounting panel is crowded with wires and wire tracing is difficult.) 

3. The wiring may be rechecked by performing a continuity test (e.g., using an ohmmeter) 
between pins which, according to the wiring list, are connected. Also check shorts to ground. 
Check that each pin has the expected number of wires on it. 

4. Insert the modules and apply power. If the power supply light does not go on, turn the supply of 
f and recheck for open and short circuits. 

5. With power on, check to see if the DR and DA are High (lights on). If the DR and DA are not 
High, the problem may be: 

(a) Module(s) missing or not fully inserted. 

(b) Modules may be touching each other on the back of the panel. 

(c) Modules in wrong slot. 

(d) Modules incorrectly wired. 

(e) Bus voltage may be low because the Bus is being loaded by an erroneous signal. Try 
removing modules on a one-by-one basis until DR and DA become High (lighted). 

DEBUGGING 

Test the system to see if it conforms to specifications. Place the system in the manual mode and verify 
that the system does what is expected by observing the lights and depressing the single step switch. Each 
time the single step switch is depressed the system will execute until the next K(evoke). step. (The 
system will not stop at K(branch) and K(merge) steps.) The system can be wired so that at each step the 
transferred data appears on the lights. The single step mode coupled with observing the lights is 
analogous to placing a print statement after each instruction in program debugging. Since each step is so 
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small system debugging is normally quite easy - although tedious. 

As in program verification, the data used for RTM verification in this mode should be representative of 
what the system will encounter during actual operations. Therefore, debugging must be accompanied by 
a plan. For example, if the system is to read ASCII characters from a tape, valid eight level ASCII 
characters should be used as test data. All branches of the algorithm should be tried. Further, if the 
system is to interface with some external device, the input/output of the RTM system., should verify that 
the data exchange occurs in the proper sequence. 

If an unexpected data transfer appears on the lights, then usually the sender or receiver of data on that 
step is in error or a wrong function was evoked. However, some wiring error other than those associated 
with the sender and receiver of data for that 'operation might exist. For example, if the Bus is shorter than 
planned for (common in laboratory experiments) the effect is to produce zeroes in the data transfer. 

Incorrect data transfers could also result from multiple evokes being active. To check for this, remove the 
data sender wire and observe the DR light. If DR 
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CHAPTER 9 SYSTEMS AND COMPONENT TESTING 
by Daniel Siewiorek . 

As anyone who has programmed a moderate-size problem on a digital computer knows, the design and 
coding of the problem is only half the job. Even in a large, fast system it may be impossible to test 
exhaustively all cases to validate a design. Insuring that a program performs as intended may be a 
formidable task. Assemblers and compilers help isolate syntactical errors but, are of little aid in detecting 
errors in logical flow. At program run time only a few errors, such as division by zero, will be detected 
by systems software and hardware. In consequence, the designer is currently faced with logically 
validating a system with little automatic assistance either in the planning or running stages. 

Many of the same problems that face the programmer also face the hardware designer. Logical errors can 
be produced by errors in the fundamental design algorithm, as well as in the hardware implementation of 
the algorithm, e.g., wiring. errors. Before a system is correct the programmer must insure that' a program 
meets its specification; So, too, the logic designer must validate his design. 

Logic design validation usually takes one of three forms: (1) system development, e.g., debugging the 
system prototype; (2) manufacturing acceptance testing of the individual components which make up the 
system; and (3) systems testing. Systems testing usually takes place after the system is first assembled. 
However, maintenance testing of the system after it has become operational is - also an important, aspect 
of system testing. Each of these three types of logic design validation requires different basic 
assumptions. The assumptions underlying logic validation and the various techniques to assist testing 
will be described below. 

SYSTEM DEBUGGING 

The basic operations performed by the RTM's are analogous to those performed by a simple stored
program computer. The stored program is hard- wired in the control portion of the RTM system. Indeed, 
the flowchart used in designing an RTM system is similar to an assembly language program for the 
simple computer. Thus, many of the suggested techniques for RTM system debugging can be borrowed 
from software debugging techniques. 

VALIDATION OF SYNTAX 

An assembler for a computer will check to see if a program consists of correctly formed and valid 
operations. The counterpart of syntax analysis in the RTM system is to check if only allowable functions 
are used. For example, in a DMgpa, A<-Ax2 is available whereas A<-Bx2 is not. A further consideration 
of the RTM syntax is that the proposed wire list performs the functions as specified in the flowchart 
(analogous to determining the octal machine codes for mnemonic instruction names.) 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000412.htm (1 of 2) [4/3/2002 6:13:24 PM] 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000412.htm


Designing Computers and Digital Systems 

An assembler-like program could be written to check the proposed flowchart and wiring list. In lieu of 
such a program the validation must be done manually by checking the proposed operations against those 
performed by the RTM's and by checking the wiring list. 

An RTM assembler-like program could further yield as output a tape for a 
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SOLUTION 

Figure EPUTsc-l shows the PMS structure of the EPUT meter. The various parts are: 

1. T(switches), called Timebase, holds n digits (of unspecified radix). These determine the length 
of time, in terms of clock pulses, the timebase, UT, is to run. This requirement is derived directly 
from the problem statement. 

2. An n-digit DM(counter; Unit-Time\UT) is used to count the clock events,. and derive the 
timebase. In this scheme, UT requires operations for being set to the Timebase switches (i.e., UT 
<- Timebase), and also UT must be counted down (i.e., UT <- UT-1). 

3. The D(UT=0) network determines when UT=0, hence the completion of the time base is 
known. 

4. For the EPUT counting section, an in-digit DM(counter; EPUT<m-1:0>) holds the number of 
events occurring during the timebase. 

5. M(register; EPUT-view) is an m-digit register that holds the number of counts which occurred 
during the previous timebase for display. 

6. T(lights) show the output of EPUT-view. 

7. K(Unit-Time. part) controls the two operations for the UT counter. It takes a clock input, and 
has only two outputs. 

8. K(Events-Per-Unit-Time) part controls counting of EPUT and the viewing of EPUT results. 
Thus there are three operation outputs, and an input in synchronization with the clock which 
specifies when EPUT is to be counted (i.e., EPUT <- EPUT+1). 

9. K(synchronization) takes events that occur at random with respect to the clock and 
synchronizes them with respect to the clock. In this way EPUT and UT counting are synchronized 
with respect to one another. 

The behavior of the system is expressed as the behavior of three coupled control parts. Figures EPUTsc
2, 3, and 4 describe these control parts for Unit Time, EPUT, and Event synchronization. K(UT), the 
simplest, is shown in Figure EPUTsc-2. It has only one state, so there is no memory required to control 
its behavior. At each clock time, either UT is decremented (i.e., UT <- UT-1) or UT is reset to a new 
value (i.e., UT <- Timebase), depending on whether (UT=0) is true or not. This requirement comes by 
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noting that the Synchronized-event output must have a one clock time duration, otherwise it may not be 
used properly as an input in the EPUT circuit. With only two states the output would be on an 
indeterminate time. (Only long enough to be reset by the next clock event.) 

Figure EPUTsc-3 describes the behavior and structure for the K(EPUT) part. This K control has only a 
single state which takes synchronized event inputs (SyEv) and then increments the EPUT counter 
accordingly. This control also transfers data to the EPUT-view register arid resets EPUT. 

Figure EPUTsc-4 is the most complex circuit, having 3 states, and is used to synchronize input events 
with the clock such that an output, Synchronized-event, is only present at the clock interval. Note that 
various cases of the circuit's behavior are given in the timing diagram of Figure EPUTsc-5. This 
synchronizer solves the same problem that occurs in the Punch problem and K(arbiter) of Chapter 5. 

ADDITIONAL PROBLEMS 

1. What is the maximum event g rate which the EPUT meter can accept in terms of the clock? 
2. Design a meter which will count at twice this rate and still operate properly. 
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●	 5. K controls the sequential register transfer process of the data part. 

6. Register initialization is required for P <- 0, MPD <- Input-1 and MPR <- Input-2. 

7. Register transfer operations are implied by the algorithm. 

The design for the behavior of the control part of the system, which expresses the algorithm, is done in 
parallel with the PMS structure design. 

Figure MPY-2 presents diagrams for the behavior of both the multiplier and the control part. The 
behavior is expressed in three forms: 

●	 1. The familiar flowchart, modified to reflect the possible structures which can be formed from 
RT switching circuits. 

2. The state diagram, which indicates the number of states, and hence memory bits, required in the 
control. The state diagram is the conventional representation that permits a transformation to 
hardware. 

3. The ISP description, which gives a linear (i.e., one dimensional) expression of the control's 
behavior. In effect, it expresses the conditions for evoking various register transfer operations. 
This description does not always permit a direct translation to hardware, although it can reflect the 
structure of hardware which is already designed. 

The implementation of the control follows directly from either the flowchart or the state diagram. One 
flip flop is needed to hold the required two states of the control's state diagram. The circuit is activated 
when the entry signal is a one. Activation causes several initialization register transfers to occur. At each 
clock time, while there are still 1 digits in the multiplier, a multiplication step takes place in which either 
P <- Px2 or P <- (P+MPD)x2, depending on whether MPR<0> is 0 or 1. At the completion of the 
multiplication the exit signal is 1. 

The performance of the multiplier is substantially greater than that of the RTM systems designed in 
Chapter 4 (see Figure 32). Assuming a clock time of 200 nanoseconds, the average multiplication time is 
200 * (1 + 7) or 1600 nanoseconds assuming 8-bit numbers. The cost of such a dedicated unit would no 
doubt be approximately the same as that of a DMgpa. 

ADDITIONAL PROBLEMS 

1. Modify the design to tabulate various statistics about the way the multiplier is used, and the numbers 
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which are given it. 

2. Design a multiplier for 2's complement signed numbers. 

3. Design a multiplier which first interchanges the multiplier and multiplicand, depending on their 
magnitudes, in order to increase the multiplication speed. 

4. Design a multiplier based on the 8-step process given in Chapter 4. 

5. Carry out the design of a special multiplier that would be an RTM. 

EPUT METER 

PROBLEM STATEMENT 

Design an EPUT meter of the type given in Chapter 5 using conventional sequential circuit components. 
Assume a clocked sequential design in which a high speed clock is used to supply the timebase. Assume 
the events to be counted arrive at random times with respect to the clock and that the event rate is about 
1/4 that of the clock. The input events can be used directly to cause a register transfer operation. The time 
base is specified by a switch input and the EPUT output is to be placed in a separate output register and 
held there until another time base period is counted. 
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●	 Fig. SPI-11. Switching circuit for ith bit of I register, showing input data selection and clock 
control. 

3. The controller in the above problem does not generate a done (completion) signal. Modify the design 
so that it does. 

4. Try some other state assignments for the controller described above and compare the number of gates 
required for their implementation with the circuit of Figure SPI-l0. 

5. The state diagram edges (transitions) roughly correspond to the boxes (actions) in the flowchart, 
whereas the flowchart edges (lines) correspond to the states of the state diagram. Show a flowchart form 
for Figure SPI-4. 

6. A memory could encode the next state, the output register transfer actions, and any inputs to sense, as 
was done in K(PCS). Design a K(PCS)-like control part for doing this and subsequent control problems. 
Can K(PCS) do it directly? - with slight modification? 

A 16-BIT MULTIPLIER USING THE RUSSIAN PEASANT'S ALGORITHM 

PROBLEM STATEMENT 

Design a 16-bit multiplier that implements the Russian Peasant's algorithm using conventional switching 
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circuit components. The algorithm and examples of its implementation are presented in Chapter 4. The 
product should be less than or equal to 16 bits, and the multiplier or multiplicand can be up to 16 bits. 

SOLUTION 


Figure MPY-1 presents a PMS diagram of. a multiplier. The structure of the design' is determined by the 
following: 

●	 1. M(registers) is based on lengths needed in the algorithm; these are derived from the problem 
constraints. 

2. D(adder) is based on the requirement to form Sum<15:0> := (P+MPD). 

3. DM(Multiplier; shift-register) is based on the requirement for MPR <- MPR/2. 

4. Booleans MPR<0> and (MPR<15:1>=0) are needed to control the algorithm; that is, MPR<0> 
determines whether to use the D(adder) output or not, and (MPR<15:1>=0) determines the 
completion of the iterative multiplication process. 
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Fig. SPI-9. Karnaugh maps for the combinational circuit in the sum of integers controller (excitation and 

output).
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Fig. SPI-l0. Switching circuit for combinational part of sum of integers controller. 
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Fig. SPI-7. General configuration for sum of integers controller.
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Fig. SPI-8. Transition table for sum of integers controller. 
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Fig. SPI-5. Non-minimal state table for sum of integers controller.


Fig. SPI-6. Minimal state table for sum of integers controller. 

The next task is to realize this state table with hardware, using the switching circuit model shown in 
Figure SPI-7. Two flip flops are used in the model, because three states of the controller have to be 
encoded. The job of encoding the three states is called the state assignment task. It should be clear that, 
depending on which combinations of l's and 0's in the two flip flops correspond to which states, different 
complexities of the combinational circuit in the model may result. For illustrative purposes, we arbitrarily 
choose a state assignment as shown in the state transition table in Figure SRI-8. 

The task remains to design that combinational circuit. This can be done simply by constructing separate 
Karnaugh maps (see Hill and Peterson, 1968) for each of its outputs, and then selecting minimal Boolean 
equations for them, as shown in Figure SPI-9. Finally, the Boolean equations are translated into 
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switching circuit realizations, as shown in Fig. SPI-l0.


The manner in which the outputs of the controller evoke the register transfers is shown in Figure SPI-11, 

where the steering logic for the ith bit of the I register is shown.


ADDITIONAL PROBLEMS


1. Do the switching circuit design of the D's in the above problem. 

2. A "full adder" is a combinational circuit that takes an addend bit, an augend bit, and a carry bit as 
inputs and produces a sum bit and a carry bit as outputs (assuming binary addition). Do the switching 
circuit design of the D's in the above problem using only full adders, wires, and Boolean constants (l's 
and 0's). 
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Fig. SPI-3. Register transfer level diagram of sum of positive integers to N. 
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Fig. SPI-4. Non-minimal state diagram for sum of integers controller. 
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Fig. SPI-1. Flowchart for sum of positive integers to N.


Fig. SPI-2. Data flow graph for sum of positive integers to N.


The next step in the design of the controller is to translate the state diagram into tabular form, as shown 
in Figure SPI-5. At this point in the design process, state minimization procedures can be applied to the 
state table (see Hill and Peterson, 1968 for details), In this case the state minimization procedures. will 
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note that states q2 and q3 have identical sets of outputs in the table. Furthermore, if their next states are 
interchanged, the behavior of the system will be the same. Thus, states q2 and q3 are equivalent, and they 
are replaced by the single state q2, as shown in the state table of Figure SPI-6. This can be proved to be 
the realization with the minimal number of states for this state table. 
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integrated logic circuits. Thus, the control scheme methodology used in this book can be applied directly 
to control parts as an alternative to the conventional state diagram approach. 

SUM OF POSITIVE INTEGERS TO N 

PROBLEM STATEMENT 

Design a system to sum the positive integers to N, as described in Chapter 2, using conventional 
switching circuit components. Assume a 

clocked sequential design. Further assume that the integer, N, is initially stored in a register (the N 
register) and that the result is placed in another register, the S register. Finally, assume that a Start signal, 
which is present for one clock period, initiates the operation of the system. 

SOLUTION 

The flowchart for the algorithm is shown in Figure SPI-1, with each operation labelled by a lower case 
letter of the alphabet, for later reference. Instead of plunging ahead and postulating a register transfer 
level diagram for a system to implement this algorithm, it is instructive -to analyze first what data storage 
and transfer mechanisms will be needed. One way of doing this is to construct a data flow graph (Dennis 
and Patil, 1970), as shown in Figure SPI-2. In the graph the rectangles represent Memory registers, one 
for each of three variables in the algorithm; the circles and diamonds represent the data operations 
performed on the data (see the letter designations in Figure SPI-1); and the arrows represent data flow 
paths (links). 

For this problem, the data flow graph provides a plausible model for the register transfer level system 
diagram. This is shown in Figure SPI-3, with a controller, K, added to properly sequence the operations. 
In the diagram, PMS notation is used to identify the various component types. Data paths are shown by 
double lines, and control signals are drawn as single lines and are labelled with the letters corresponding 
to the operation they evoke (see Figure SPI-1). It is assumed that the system will be built using D-type 
edge triggered flip flops. Thus the control lines are shown connected to the transfer paths, where they 
will effectively be used to strobe the appropriate data into the registers. The D's are assumed to be 
combinational circuits that are operating continuously, and need not be evoked. 

The controller for the system will be designed using standard clocked sequential design techniques, as 
described, for example, in Hill and Peterson (1968), Kohavi (1971) and Peatman (1972). The first step in 
the design of the K is to translate the algorithm flowchart into a state diagram, as shown in Figure SPI-4. 
In the state diagram, each node corresponds to a state of the controller (a state is determined by the 
memory encoding in the controller part) and each graph edge (or arc or line) designates a transition from 
one state to another. All transitions are evoked by the occurrence of a clock pulse. The edges are labelled 
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with the value of the inputs to the controller (to the left of the slash) at the time of the transmission, and 
the outputs of the controller (to the right of the slash) at the time of the transition. Because trailing 
"waveform edge" triggered flip flops are used, the outputs do not change value until after the clock pulse 
that evoked the state transition has disappeared. 

The reader may note that this state diagram is a bit sloppy. State q3 is really unnecessary, as the ~0/0011 
transition from state q2 could have been directed back to state q2, giving a system with identical 
performance. We leave the state diagram this way to illustrate a later step in the design procedure. 
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■ CHAPTER 8 RT LEVEL DESIGN 

WITH CONVENTIONAL SWITCHING CIRCUIT COMPONENTS 

Throughout this book we have illustrated register transfer level digital design using RTM's as a standard 
set of building blocks. We did this partly for uniformity and partly because the RTM notation lends itself 
to quickly understandable system diagrams. However, the concepts of register transfer level design are 
for the most part applicable for any well-chosen set of building blocks. We illustrate this by presenting 
here three of the designs that were done using RTM's earlier in the book, and implementing them using 
ad hoc techniques with conventional 'switching circuit components. We make no claim that all types of 
register transfer level design are represented in these problems. One was done by one of the authors and 
the other two by another of the authors, so only two of the many possible alternative register transfer 
level design styles are illustrated. 

We are attempting to show that the principles illustrated in this book should be of use in all system 
designs, regardless of the set of primitives used. However, the choice of the set of primitives can have a 
considerable affect on the ease of design. Since no standard design approach or set of register transfer 
level, components is used in this chapter, design decisions are based on the characteristics of the problem 
at hand. Thus, the reader will see varying sizes and types of building blocks, varying notations, and 
varying synthesis approaches in the three problems. (The building blocks are about the same size as those 
currently available from integrated circuit manufacturers.) This flexibility allows the designer to optimize 
solutions locally in a way that is not possible with fixed sets of modules, such as RTM's. On the other 
hand, the price paid for this flexibility is the loss of standardization, with all of its attendant advantages. 

APPLICATIONS OF THE RTM CONTROL STRUCTURE TO CONVENTIONAL RT LEVEL 
DESIGN 

It should be noted that while we have warned the reader that the methods of control used in this book are 
highly specific to RTM's, the RTM control structure also is easily used with conventional switching 
circuit design. In Chapter 7, where the internal operations of the various modules are described, it can be 
observed that certain common switching circuit components are used to implement each of the control 
operations. That is: Kevoke consists of a two state device utilizing two flip-flops; Kbranch requires a flip 
flop to sample the incoming Boolean variable, and two AND gates to route the output control signals; 
Ksubroutine is actually just a flip-flop to mark the state of control temporarily for one of several possible 
control return points; K(serial-merge) and K(parallel- merge) are just the negative logic OR and AND 
gates, respectively. 

In introductory logical design texts on sequential circuit design, assumptions can often be made to 
simplify the control part, because only clocked, synchronous logic is used. On the other hand RTM's 
operate asynchronously, in that a single operation on the Bus can take an arbitrary amount of time. This 
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requirement adds to the control complexity. If one were to relax the requirements to only permit 
synchronous clocked logic, then it would be possible to use a single flip-flop for Kevoke, and no flip-flop 
would be required for the Kbranch, thus simplifying the modules. 

With this view of the control elements, problems 3 and 4 of Chapter 7 can be considered using the 
control scheme of this book together with available 
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It is interesting to speculate on how the DMgpa might be redesigned subject to design goals other than 
those which influenced the PDP-16 set of modules. This topic is beyond the scope of this book, but the 
reader is invited to try the DMgpa design problem given in the problem section. 

PROBLEMS 

1. Assume that the DMgpa. to be implemented is on a single large scale integrated circuit chip. Do an RT 
level design, such as the one shown in Figure 22, for a DMgpa. The PDP-16 DMgpa is composed of 
about 500 gate equivalents, but current LSI technology is capable of getting several thousand gate 
equivalents on a chip. There will be a pin limitations problem, since current LSI technology is limited to 
about 50 pins per chip. The two double height printed circuit boards which hold the current DMgpa have 
about 144 pins for input and output. 

Thus, on the one hand, LSI provides greatly increased internal complexity. (For example, one might 
implement more than two registers, built-in register transfers (for Bus-exclusive operations), hardwired 
multiply, other data operations, etc.) But, on the other hand, the pin limitations change the use of multiple 
evoke-operations, parallel data transfers, Boolean outputs, etc. Perhaps the reader would like to change 
the RTM system ground rules (Bus and control part) in order to achieve his design. In any case, this 
problem opens up further the fascinating subject of the design of RT level module sets to investigate. 
Note that the DMar, described at the end of Chapter 2, is one solution to this problem.. 

2. Verify that Ksub' operates correctly for the cases of a single operation in the subroutine, and nested 
subroutine calls, as shown in Figure 20. 

3. Take a standard integrated circuit catalog and try to make' some sense from it by expressing the 
functions and interconnections as register transfer operations. 

4. Design an appropriate set of control modules for a particular set of integrated circuits, so that the 
logical design process is not the laborious process given in the usual logical design textbooks, resulting 
in non-modifiable designs. 

5. Strictly speaking, the K(evoke) does not have three states, it has four. Find under which conditions the 
fourth state occurs, and illustrate it, using an RTM diagram and a timing diagram. 

6. Design a fast, combinational circuit multiplier RTM. 
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like to have a truly asynchronous Bus control scheme which waits for all DA's before proceeding. In such 
a scheme the DONE signal for a Bus could occur only after all the DA's of all operations being evoked 
had been generated. 

A flexible and low cost scheme for providing multiple transfers from a single source is shown in Figure 
21. Another control signal, called "Active", or "AV", has been added to. the Bus. Whenever any 
operation of a DM module that generates a DA has been evoked, the AV bus line goes Low. (The control 
circuit to accomplish this for a DM module is shown at the top of Figure 21. Note the use of "Bus driver" 
and "Bus receiver" gates; like the other Bus lines, AV is effectively a negative logic "wired OR.") When 
the DA for a given module has been generated, its AV output is returned to a logical High. Because of 
the wired OR nature of the Bus, only when all modules have generated their DA signals does the AV Bus 
line go High. At this .point the DONE signal is generated by the Kbus (see bottom of Figure 21). When 
all DA signals have been removed, the DA Bus line again goes High and resets the Kbus control 
circuitry, thus removing the DONE signal and completing the control cycle. 

The scheme that is shown has too many gate delays in it. Since one would like to obtain the highest speed 
possible in an asynchronous system, the reader is invited to attempt a higher performance design to 
accomplish the same operational goals. 

DM(GENERAL PURPOSE ARITHMETIC UNIT) 

The logic level design of the DMgpa is of interest primarily because it is the most often used of the data
memory type modules. A block diagram of the DMgpa, with the PMS types of its components labeled, is 
given in Figure 22. The dotted line on the figure separates the logic assigned to the two printed circuit 
boards that constitute DEC's DMgpa - one is called the GPA Control and the other the GPA Registers. 

The core of the DMgpa, the D(Arithmetic-logic unit), is implemented using two, three, or four 4-bit wide 
medium scale integrated circuit chips (for 8,12, or 16- bit word size), which are capable of 16 simple 
arithmetic (see DMar Chapter 2) and 16 Boolean logic operations on the two input registers, A and B. 
The operations are encoded from the evoke-operation inputs to the Dmgpa, and. because of pin 
limitations for the module, not all 32 possible operations are utilized or desired. The DMar does provide 
these. 

As mentioned previously, all connections to the RTM Bus are. made via negative logic wired OR 
connections, which require a special type of gate for interfacing to the rest of the DMgpa logic. These are 
shown as the T(Bus drivers) and T(Bus receivers) in Figure 22. On the input side, A and B registers only 
accept data from the Bus when they receive clock strobing control signals from their D(operation 
encoder). However, on the output side they are continuously broadcasting to the Bus, through the 
D(Arithmetic-logic unit) and the D(Result/2|null). Therefore when data source operations are being 
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evoked in a DMgpa, the operation code of the D(Arithmetic-logic unit) is locked to produce all zeros at 
its output, thus insuring that the Bus is free to carry data from other modules. 

The D(Result/2|null) network had to be added to the DMgpa because the chips used for the D(Arithmetic
logic unit) have no right-shift operation - in fact they achieve left-shifting only by adding A to A. Thus 
the right shift is implemented using the Result/2 Boolean input. The T(DR generator) and T(DA 
generator) have already been shown earlier in Figure 7. The rest of Figure 22 is (hopefully) self 
explanatory. 
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Fig. 20. RTM system diagrams for testing Ksub'. 

373 

previous | contents | next 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000389.htm (2 of 2) [4/3/2002 6:13:38 PM] 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000389.htm


Designing Computers and Digital Systems 

previous | contents | next 

Fig. 19: RTM diagram of Ksub' wired to a trival subroutine. 

One further problem with Ksub' is that if it is to be used as a K(manual evoke), flip flop F2 has to have 
been initialized to the High output state. Since the activate input is normally held Low by the pushbutton, 
both inputs to F2 may always have been High since the time power was turned on, in which case F2 
would be in an unknown state. This problem can be solved in one of two ways. First, if at least one 
K(evoke) had been activated prior to the use of the K(manual evoke), then a DONE signal would have 
been generated and F2 would be set to High. Alternatively, POWER CLEAR and DONE could be 
connected through an OR gate to the S input of F2. This would allow F2 to be initialized to Low when 
the circuit is used as a K(manual evoke), and to a High (by the uncomplemented output of Fl) when the 
circuit is used as a Ksub'. 

SINGLE BUS PARALLELISM 

Various ways of achieving parallelism in an RTM system, using one or more Busses, were described in 
Chapters 2 and 4. Certain aspects of the switching circuit implementation of RTM systems affect the ease 
with which various types of parallelism are achieved. The single Bus parallelism case, where 'multiple 
destination assignments are made from a single source, e.g., A<-B<-S+X, will be examined. 

By disabling the DA output of all but one of the modules which receive the data, an operation of the 
preceding form is possible. For example, a NAND gate in the DA generation path would provide the 
facility for enabling or disabling the DA. 

Currently the only PDP-16 modules (options) that have this DA-disable facility are the M(transfer 
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register), the DM(f lag), and the T(serial interface). However, future additions to the set of modules may 
result in further Bus-exclusive operations or Bus-utilizing operations that can be performed in parallel on 
a single-Bus system. For example, a DMgpa with an internal bus that links its registers could be used for 
intra-DMgpa register transfer operations. Such operations could then be evoked in parallel with other 
operations that required the main RTM Bus. 

In either present or future cases, a potential engineering difficulty is introduced whenever the DA's are 
disabled, because asynchronous timing is violated. If an operation with a disabled DA takes longer than 
another operation which generates the DA, the former transfer may be incorrect. Thus, one would 
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Fig. 17. RTM diagram showing two calls to the same subroutine in series. 
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Fig. 18. Switching circuit for Ksub', a Ksub circuit based on the K(evoke). 

371 

previous | contents | next 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000387.htm (2 of 2) [4/3/2002 6:13:39 PM] 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000387.htm


Designing Computers and Digital Systems 

previous | contents | next 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000386.htm (1 of 2) [4/3/2002 6:13:40 PM] 



Designing Computers and Digital Systems 

previous | contents | next 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000386.htm (2 of 2) [4/3/2002 6:13:40 PM] 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000386.htm


Designing Computers and Digital Systems 

previous | contents | next 

Fig. 14. Switching circuits for merge modules. 

SUBROUTINE CALL 

The DEC circuit for the K(subroutine call)\Ksub is shown in Figure 15. In essence, Ksub is just a flag (or 
Boolean variable) which remembers one of the possible callers to a subroutine. Its operation is fairly 
straightforward. When the module is activated, the flip flop, Fl, goes to the High state. Then, when the 
SUBROUT1NE RETURN input is asserted by going to Low the activate-next output is asserted. After 
SUBROUTINE RETURN reverts to High, Fl returns to the tow state and the Ksub is deactivated. 

The PDP-16 handbook gives the diagram shown in Figure 16 for using the Ksub as a K(manual 
evoke)\Kme. When the pushbutton is inactive, the activate input of the Ksub is Low, thus putting it in the 
.active state, but with activate- next not asserted. When the button is pushed, the SUBROUTINE 
RETURN goes Low, thus causing activate-next to be asserted. When the data operation it evokes is 
finished, the BUFFERED DONE signal returns the Ksub to the inactive state, thus removing activate
next. When the pushbutton is released, the Ksub is rearmed1 ready to act as a K(manual evoke) the next 

time the button is pushed. 

However, there is a problem with this circuit realization for the Ksub, which occurs when two calls to the 
same subroutine are made in series (see Figure 17). Suppose that the first of the two Ksubs is activated. 
At some time later the SUBROUTINE RETURN lines of both Ksubs are asserted, as the subroutine is 
completed. This causes the activate-next output of the first Ksub to be asserted, which is equivalent to the 
the activate input for the second Ksub. However, the first SUBROUTINE RETURN signal has not yet 
been removed, and thus the activate-next output of the second Ksub is also asserted, incorrectly. 
Therefore, calls to the the same subroutine may not occur in direct succession. 

The problem is resolved by interposing an event in the Ksub between when it is activated and when it 
delivers an activate-next output. A convenient event to - use might be the occurrence of a DONE signal. 
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Thus, an alternative design for the Ksub would be to alter a Kevoke in the manner shown in Figure 18 to 
produce a circuit called Ksub'. 

The use of the DONE signal constrains Ksub' to be used only with subroutines that contain at least one 
K(evoke), which is not a serious limitation. For example, Ksub' can not be used for the trivial subroutine 
shown in Figure 19, as it would never generate an activate-next. Figure 20 gives some other 
configurations in which Ksub' should be tested. A problem on this is given at the end of the chapter. 
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Fig. 13. Switching circuit diagram for DEC Kb8. 

the flip flop F1, Kb2 cannot change its output again until a Ke is activated and the activate input to the 
Kb2 returns to High. Thus a Ke which evokes a dummy operation (e.g., BSR<-0) must be inserted into 
the loop, as shown in Figure 12b. Alternatively, a special K(No-op) module, when activated, -provides a 
DA and an activate-next output after a delay of about 100-200 ns. This scheme is used in the Kwait 
Extended RTM of Chapter 3. 

Eight-Way Branch\Kb8 

The Kb8 switching circuit is essentially just an extended version of the Kb2 circuit. Instead of one latch, 
it has three, one to hold each Boolean-condition input. The outputs of these latches go into a decoder 
which, when enabled, determines which of the 8 possible activate-next outputs should be asserted (see 
Figure 13.) The three latches and the decoder are each shown as black boxes in the figure because each 
is, in fact, implemented via a single integrated circuit chip. There are actually four latches on the latch 
chip, but only three are needed in this circuit. The two separate clocks on the chip (one for two of the 
latches, and one for the other two) are tied together, since the latches are used in parallel. The activate 
signal is used to enable the decoder as shown in the figure. 

MERGE MODULES 

The use of level sensitive or DC logic makes the design of the merge modules simple. For the <(serial 
merge)\Ksm the DEC flowchart primitive is quite descriptive (see Figure 14a): namely it is a negative 
logic OR gate. Thus, when either activate 1 or activate 2 goes Low, the output is Low, passing control on 
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as activate-next. The negative logic OR gate is equivalent to an AND gate for positive logic. Similarly, 
the K(parallel merge) module is shown as a negative logic AND gate, which is equivalent to a positive 
logic OR gate. (The design of a K(parallel merge) with pulsed logic methods would require a much more 
complex circuit.) 
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Fig. 9. Switching circuit for a naive Kb2.
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Fig. 10. RTM diagram for a Kb2 example. 
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is High and the RTM system operates continuously. When that switch is in the MANUAL position, the 
DONE ENABLE is normally Low, since the Q output of flip flop Fl is High. Thus, when a DATA 
ACCEPT (DA) signal is received, it cannot propagate to the K modules as a DONE signal (see Figure 7). 
In this mode of operation the active Ke is terminated by pressing the SINGLE STEP button. This process 
is characterized by the following steps: 

1. Assume that the system is in MANUAL mode, and the DA line is Low, waiting to pass a 
DONE signal as soon as DONE ENABLE is received. 

2. The SINGLE STEP button is pushed, thus activating the single shot shown in the circuit. 

3. The single shot presets the flip flop Fl to _'Q= High, thus causing the DONE ENABLE signal to 

be asserted, which then in turn allows DONE to be asserted. 

4. After the DONE signal is received, the DA signal goes High and the next Ke is activated. The 
DA signal transition to high resets Fl to Low (- Q is High).'

5. When DA goes Low again at the completion of the operation evoked by the current Ke, DONE 
ENABLE is again inhibited by - Q High. To activate the next Ke, the SINGLE STEP must again'


be pushed.


BRANCH MODULES 

Two-Way Branch\Kb2 

Upon first consideration, one might think that the design of a branch module would be trivial. For 
example, the circuit of Figure 9 would seem to be perfectly acceptable, and, indeed, it is provided the 
Boolean input is constant. However, a problem arises if the Boolean condition changes while the Kb2 is 
being activated. For instance, consider the sub-portion of an RTM system shown in Figure 10. Suppose 
that after Ke1 is activated, N is a 1. Then the Kb2 will activate Ke2 next, which evokes the action N4-N
1. After this action BSR = 0, and since it is possible that this would alter the Boolean input to the Kb2 
before the activate- next output of Kel returns to a High, the Kb2 might inadvertently activate Ke3, thus 
causing chaos. 

To avoid the above synchronization problem, a flip-flop, Fl, is needed to hold the Boolean condition 
while the branching paths are activated. When the Kb2 is activated the inputs to Fl are disenabled, thus 
the Kb2 will not change its output if the Boolean condition changes while Kb2 is being evoked. The 
combination of the enabling gates with the flip flop Fl constitutes a latch circuit (see Figure 11). As long 
as the activate input is High, the output of Fl tracks the Boolean- condition input. However, when 
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activate goes Low, Fl remembers the last value of the Boolean condition that appeared at its input. 

An arbitration difficulty still exists for this circuit, however. In a multiple-Bus system (or a system in 
which Kb2 is examining an unsynchronized changing input) the Boolean condition might change just 
before Kb2 module is activated. This would make it uncertain whether the flip flop has settled properly 
before the branch output is selected. Synchronization problems of this sort were discussed in Chapter 5. 

One slight inconvenience is introduced by the presence of the flip flop in the Kb2. Consider the 
subportion of an RTM system shown in Figure 12a. If Tflag is not equal to 1 when the Kb2 is activated, 
it is supposed to loop on itself, waiting for Tflag to change. However, once the Boolean condition has 
been locked into 
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ACCEPTED\DA signal is asserted on the Bus, again through a wired OR connection, signalling 
that data has been taken from the Bus. 

4. The DA signal is sensed in the Kbus module. Before it is passed on to the Ke modules of the 
system, signalling final completion, it must pass through a NAND gate enabled by a special 
DONE ENABLE signal. The DONE ENABLE signal can be used to single-step an RTM system, 
as will be explained later in this section. 

5. The Ke which initially activated Ke(T<-A) senses the DONE signal and removes the activate 
signal. 

6. This now causes the DR signal to be removed. Note that this return of DR to High bypasses the 
delay Tr, as there is no need for a delay at this point. (In fact, speed is-now the concern.) 

7. The DR being removed causes DA to be removed, by-passing the Ta delay. 

8. The DONE signal is removed, and Ke(T<-A) now produces its activate-next output. At this 
point the cycle for the T<-A transfer is complete, although the Ke still has to complete the cycle 
for its activate-next signal. 
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Fig. 8. Switching circuit for DONE ENABLE. 

The circuit that generates the DONE ENABLE signal within the Kbus is shown in Figure 8. The 
AUTO/MANUAL switch and the SINGLE STEP pushbutton are located on the control panel for an 
RTM system or within T(lights and switches). When the AUTO/MANUAL switch is in the AUTO 
position the DONE ENABLE signal 
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Fig. 6. Switching circuit for K(evoke) using fundamental mode design. 

1. The Ke module is activated, and thus the <-A input of the source module, DMgpa(A,B), and 
the T<- input of the destination module, here, Mtr(T), are asserted by the negative-going signal. 

2. Inside the DMgpa the <-A signal causes A to be placed on the Bus. This signal also goes 
through two levels of gates that collect the assertion signals for other source data operations that 
can be evoked in this module. The output goes through a special. delay circuit, with delay Tr. This 
delay is long enough to allow the calculation of the source data and to gate it onto the Bus. The 
output of this delay circuit is the negative-going DATA READY\DR signal which is connected 
through a negative logic "wired-OR" to the BUS DR line. (The TTL logic used to implement 
RTM's allows such wired OR's. If the DR output of any module goes Low, the Bus DR line goes 
Low. Interfacing with the Bus is done using special "Bus driver" and "Bus receiver" gates, 
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marked with a B in the figure.) 

3. Within the destination module, having had the T<- input asserted, it awaits the DR signal. 
When DR is sensed, a delay circuit, with delay Ta, is timed out to allow the input stages of the flip 
flops of the T register to settle. After the delay, the data is clocked into the T register, and the 
DATA 
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Whenever power is turned on or an RTM system is cleared, a Low pulse on the POWER CLEAR input 
clears flip flop Fl to Q = Low. In addition, since DONE is resting at logical High, flip flop F2 will be 
reset to Q = High . Thus (Fl, F2) = (Low, High) corresponds to state Q0. When the Ke is activated (i.e., 
the activate input goes Low), Fl is preset to a High via its Preset (PR) input. Thus, (Fl, F2) = (High, 
High) corresponds to state Q1. If the Ke is in state Q1 and DONE is asserted (i.e., DONE goes Low), F2 
is set to the Low state and the Ke ends up in state Q2, i.e., (Fl, F2) = (High, Low). While in state Q2, 
when the DONE input returns to logical High the Ke asserts its activate-next output (i.e., activate-next 
goes Low). The next time the DONE input is asserted, the Ke returns to its inactive state, Q0, via the 
following chain of events. First, DONE goes Low and disables activate-next. When activate-next goes 
High it triggers Fl back into the Low state. Fl being Low will reset F2 to High as soon as DONE returns 
to High, and thus the Ke is again in state (Low, High). An interesting question is, what happens if DONE 
returns to High before Fl returns to Low? We would then get an undesired Low pulse on activate-next, 
i.e., a hazard. In the next section it will be seen that this hazard never occurs because of the way in which 
the DONE signal is generated. 

Fundamental Mode Design of K(evoke) 

DEC implements the Ke with discrete memory elements because that mode of design is most suitable to 
the use of small and medium scale integrated circuits as switching circuit building blocks. Although this 
design is their current commitment, future generations of RTM's might be fabricated using LSI 
techniques. Thus, a completely custom-designed Ke might be feasible. To save gates, and for faster 
operation, one could implement in LSI a fundamental mode version of the Ke, such as the one shown in 
Figure 6. This circuit takes 8 gate equivalents (three of which are inverters), as contrasted with 9 for the 
design using discrete memory elements. Also, in this circuit the three operating states are defined 
somewhat differently (see Figure 5a). State qo for the fundamental mode circuit is equivalent to state Q0 
for the DEC circuit, and it is encoded as (Yl, Y0) = (Low, Low). State q1 is the state in which the Ke is 
evoked, but not producing an activate-next output, and is encoded (Y1, Y0) = (Low, High). State q2 is 
the state in which the Ke is producing an activate-next output, and is encoded (Y1, Y0) = (High, Low). 
The delay in the feedback path for Y0 prevents a hazard in the activate-next output during the-transition 
from state q1 to state q2. The reader should carry out a fundamental mode design in which this feedback 
delay is not necessary to avoid critical races or hazards. Such a circuit would be faster and more reliable 
than the one shown. 

BUS CONTROL SEQUENCING 

The description of the K(evoke) that was just given accounts for a significant portion of the behavior in 
the control signal timing diagram in Figure 4. Now, taking the switching circuit design of the K(evoke) 
as given, the circuit realization which accounts for the behavior in the rest of that diagram can be carried 
out. For example, consider the register transfer T <- A being evoked between an Mtr and a DMgpa in 
Figure 7. The figure shows simplified versions of the modules that carry out the sequencing of the 
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transfer correctly. Only the relevant portions of. the modules are shown; the registers and the data 
operator circuits are not shown (although the control signals for them are). 

Keeping the diagram from Figure 4 in mind, the sequence of events for Figure 7 is as follows: 
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4. The Kbus module senses the DA signal and passes it on to all K(evoke) modules as the DONE 
signal. 

5. When Ke1 senses the DONE signal as its operation-complete input, it removes activate 2, 
which causes DR to be removed, which causes DA to be removed, which causes DONE to be 
removed which causes Ke2 to now assert its output signal, activate-next 2. 

6. Now the cycle for activate-next 2 is repeated in the same form as the cycle for activate-next 1 
(activate 2). 

Two questions might arise when examining the timing diagram: Why not use pulses instead of level 
changes as significant events? Why negative logic? In answer to the former, pulse mode design for the 
K(evokes) was tried and found to present several problems. First, for debugging, pulses are hard to 
observe, even using an oscilloscope, because they must be captured. Second, pulse mode logic is 
inherently slower than fundamental mode (level change) logic, because two transitions are required for 
an event. Also, certain modules, such as the K(parallel merge) are harder to design using pulse mode 
logic. Finally, single- stepping the system is more difficult using pulse mode logic. 

Negative assertion was used because in the TTL logic used to implement RTM's, a floating (i.e., 
unconnected) input to a gate becomes a 0(High) signal.(2) Thus if an operation-evoke input to a DM 
module is left unconnected, this means that input is unevoked (disabled). Consequently, in wiring a 
system, only. those inputs that correspond to evoked operations are connected, greatly saving effort (and 
causing less errors to be automatically designed in). 

DESIGN OF THE K(evoke) 

Now that the fundamental signal sequencing method has been presented, we can look at the detailed 
logic design of the modules involved. The most basic module is the K(evoke)\Ke. 

Design of K(evoke) Using Discrete Memory Elements 

Recall that the explicit input to a Ke is activate (this control), and its explicit outputs are evoke-operation 
(equivalent to activate) and activate-next (control). In addition, there are the two other inputs which do 
not appear on flowcharts: DONE (operation-complete) and POWER CLEAR. Both inputs are usually 
prewired for all K(evokes). 

The timing diagram for a Ke, showing its behavior, is given in Figure Sa. It can be considered as a three 
state device: in state Q0 it is inactive; in state Q1 it is active, but disabled from producing an activate
next since the operation it has evoked is not yet completed; and in state Q2 it is active and enabled for 
producing an activate-next when DONE returns to a logical High. Thus the Ke cannot evoke another Ke 
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while DONE is asserted, as this could activate the second Ke. The three states of the Ke can be realized 
using two memory elements, as shown in the DEC implementation of the Ke in Figure 5b. The two 
memory elements are the edge triggered D-type flip flop Fl, and the negative logic 2 NAND gate RS flip 
flop F2. 

2. In this chapter we continue to use the logic conventions established in Chapter 2. That is, for positive 
logic, the logical High level is asserted (a I), and the logical Low level is not asserted (a 0). For negative 
logic, the logical Low level is asserted (a I), and the logical High level is not asserted (a 0). All gate and 
flip flop symbols are to be interpreted according to the logic levels at their inputs and outputs (i.e., High 
and Low, not 1 and 0). Thus the symbol for a NAND gate designates that if all inputs are High, the 
output is Low, etc. 
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deviation would have created very high setup costs. Also, since most users of IC's have previously made 
the same decision, the manufacturing cost of' TTL is lower. In fact, reasons for using, say ECL, such as 
higher speed and higher noise immunity, were not of sufficient importance to overcome the extra 
manufacturing, development, and setup costs. 

Another constraint related to current MSI technology is word length. Integrated Circuit registers and data 
operations are commonly available in packages of four or eight bits. Furthermore, problems in the 
computer area usually dictate the use of word lengths of 8, 12, or 16 bits. Thus there was no conflict in 
choosing these word lengths for RTM's. If a need for word lengths of larger than 16 bits materializes, the 
word length can be extended by producing another set of modules. 

SET OF MODULES 

In view of the constraints discussed above and shown in Figure 1, a final set of engineering decisions 
was made regarding the modules. Some of the more important ones are listed in the table in Figure 2. 

SWITCHING CIRCUIT DETAILS 

This section deals with the switching circuit level design of RTM's. Much of this design is 
straightforward and conventional and will not be covered in any detail. Instead, those aspects of the 
design that give RTM's a unique, modular behavior will be presented. The intention herein is to assist the 
potential module designer, and also to provide enough detail so that one could extend the RTM concept 
by interfacing various components into the RTM framework. 

CONTROL SIGNAL TIMING DIAGRAMS 

The most interesting and most important characteristic of RTM's is the method used to pass control 
among the K modules and between the K portion of a system and its DM part. That is, how do K 
modules activate one another, and how do they evoke operations in the DM part of the system? These 
questions can be answered by first looking at a control signal timing diagram for two sequentially 
connected K(evokes). Two such modules are shown in Figure 3.(1) They both evoke simple register 
transfers on the RTM Bus. The control signal sequence for their operation is shown in the, timing 
diagram in Figure 4. The diagram uses arrows to show the cause and effect relationship between events. 
Notice that each logic level change is an event, and signals are at the logical Low level for assertion, i.e., 
negative logic is used. The interpretation of the sequence is as follows: 

●	 1. The activate input to Ke2 is asserted by Kel, thus asserting the evoke- operation inputs to the 
appropriate DM modules to evoke the desired operation. 

2. When the data from the source DM module (i.e., the source of C) is ready, that module asserts 
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the DATA READY\DR signal on the Bus. 

3. When the receiving DM module (i.e., the module containing the B register) senses the DR 
signal, it accepts the data on the Bus and asserts the DATA ACCEPTED\DA signal on the Bus. 

1. Here the RTM boxed notation is superimposed on DEC's PDP-16 notation. Since we are discussing 
DEC's implementation of the modules, we shall use mostly the PDP-16 notation in this chapter. 
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CONSTRAINTS 

Constraints imposed on the choice of an RTM set by the application areas can be broken down into two 
types: problem-dictated constraints and user-dictated constraints. In addition, hardware technology and 
internal constraints are imposed by the realities of the production environment, in this case those at DEC. 

These constraint categories are discussed in detail in the following sections. The manner in which these' 
constraints manifest themselves for each of the application areas is shown in the table of Figure 1. 

Problem-Dictated Constraints 

Within each application area, each digital system problem can be characterized by its hardware (and/or 
programming) requirements. Such constraints, for example, include word length, number base, and 
operation types. This set of constraints is a measure of the problem size. 

We further measure problem size by the number of control steps (statements), the number of registers 
(and register operations), and the amount of memory needed for constants and variables (see Figure 1). 

In terms of these problem requirements, RTM's were designed to accommodate up to 100 hardwired 
control steps, multiple arithmetic units, a small read-write memory of about 100 variables, and possibly a 
read-only memory. Other problem constraints, e.g., speed, noise, and reliability, also influenced the basic 
RTM design. 

User-Dictated Constraints 

User-dictated constraints (see Figure 1) are both objective and subjective because they reflect how a 
human user views the modules (e.g., with respect to cost, ruggedness, and the ability to debug) for 
solving a particular class of problems. 

The cost constraint is very important in most problem classes. Thus, decisions for the modules like 
packaging, fixed word length (8-, 12-, and 16-bit), and. the method of interconnecting were all made to 
keep the cost low. RTM's are able to compete with relatively poorly packaged, overpriced, 
underproduced, or past produced computers just by having a simple structure and high volume 
production. 

Perhaps the most important user requirement is the ability of RTM's to be used smoothly and rigorously 
in a design process. Such an ability directly affects design time and, therefore, cost. In the case of 
conventional logic design, the user selects registers, attaches data, operations and switches, and then 
designs a sequential circuit to evoke the system operations (see Chapter 8). Hopefully, such a design is 
based on a precise description such as a state diagram or a flowchart. Thus, since a logical design 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000371.htm (1 of 2) [4/3/2002 6:13:50 PM] 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000371.htm


Designing Computers and Digital Systems 

problem is usually solved through the use of some high level description -- in this case a register transfer 
flowchart -- we chose such a high level description as the basic and only design documentation for 
RTM's. This particularly influenced the model for the control part of RTM systems. We wanted to make 
it difficult to build poor systems by poor design and documentation practices. 

Hardware Technology and Internal Constraints 

The hardware technology and internal constraints dictate the parts from which the modules are to be 
constructed. Logic types other than TTL (e.g., DTL, RTL, ECL) were only briefly considered because 
TTL was the local standard, and 
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CHAPTER 7 THE DESIGN OF RTM's 

The design of the RTM modules is presented with two goals: to communicate detailed information on the 
structure of the modules in order that the operation may be better understood; and to stimulate the reader 
to think about the process of choosing and designing a set of register-transfer level components for 
implementing digital systems. This latter goal is important both because it is likely that other sets of such 
components will be developed in the future (particularly some useful integrated circuits for control), and 
because all logical design should involve a conceptual structuring into modules. Thus, the chapter is 
organized into two major sections: the first presents the general engineering design considerations that 
entered into the choice of the RTM set of modules; and the second discusses the important aspects of the 
switching circuit realization of, the modules. 

CHOOSING A MODULE SET 

APPLICATIONS 

The design of a set of register-transfer level components presents unique problems that are not 
encountered in other digital components. For example, in choosing a set of gates and flip flops at the 
switching circuit level, the Junctions of the components are very basic; and many small sets exist that are 
universal, i.e., can be used, to realize any function (e.g., NAND|NOR|AND+NOT|OR+NOT). At the 
other extreme large scale computers are rarely designed for the primary purpose of being components, so 
they are usually universal in themselves. 

However, register-transfer level components do not have functions as basic as those at the switching 
circuit level, yet they are used as components in larger systems. Thus, the choice of the functions that the 
modules perform becomes nontrivial. Furthermore, the type of systems that they will be employed in 
influences their design. Therefore potential applications became a big factor in determining the RTM set 
of modules. As for universality, there are many more possible universal sets at the RT level than at the 
switching circuit level. Thus, in a sense, the choice becomes more difficult. 

Three main areas of application were considered in the design of the RTM set and the interconnection 
scheme: special purpose digital systems, computer-related systems, and educational systems. In Figure 1 
we present a rough categorization of examples within each of these areas, showing those cases in which 
RTM's would be an appropriate solution. 

Within each application area there is a wide range of problems. In the special purpose digital systems 
area, problems range from A-D and D-A conversion to instrument control and analysis. In the computer
related area, problems range from controllers for plotters and card handling equipment to special 
processors and the emulation of older computers which are no longer produced, but which have 
adequately seasoned software. In the educational area, problems range from simple computer arithmetic 
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to the construction of small computers. The reader should be already quite familiar with this full range of 
problems, as they are covered in previous chapters of this book. 

Depending on how the various application areas and their requirements are weighted, a different set of 
modules emerge. For example, weighting the educational requirement heavily might cause highly rugged 
components to be built. In the actual design of the modules all three applications areas were weighted 
about equally. 
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The internal processor (calculator) state which the user sees is very important. Should there be a single 
register (accumulator), multiple internal registers, or a stack organized memory? Also, perhaps the 
calculator should be programmable, providing the capability to store the operations to be performed. 
Adding program capability to the calculator offers more interesting possibilities. By being 
programmable, both multiply and divide might. be programmed rather than hardwired. The design should 
have operations which are accessible directly and via the program. Conditional operations are necessary 
for a programmable calculator. The programmability introduces several other problems: (1) How is a 
program loaded into memory? and (2) if inputs must go through. a BCD to binary conversion, then 
instructions which utilize addresses (in binary form) become awkward to input in BCD. 

PROBLEMS 

1. What are the cost and performance for a minimum non-programmable calculator which will just add, 
subtract, and multiply? 

2. Design (1) and compare with a more elaborate calculator which still has only the three operations. 

3. Design a programmable calculator which is based on principles similar to those used in the computers 
of this chapter. 

■ Crtm-2/2: A SIMPLE RTM COMPUTER USING THE DMar 

KEYWORDS: DMar, computer 

At the end of Chapter 2 a new module, the DMar, was introduced. Since it has a 16-word scratchpad 
memory built in, one can build a simple RTM computer utilizing only a DMar, a T(lights and switches), 
and a Kbus for the data part. A partially completed (approximately 1/2) ISP description of such a 
computer, the Crtm-2/2, is given in Figure Crtm-2/2-1. The following problems are based on this 
computer. 

PROBLEMS 

1. Finish the ISP description of the half-finished Crtm-2/2 and then implement it using RTM's, thus 
making Crtm-2. 

2. Notice that the skip instructions skip two words rather than one. Why is this so? (Hint: Try writing 
some non-trival programs for this machine.) 

3. Design a version of Crtm-2 that only skips one word on skip instructions, yet is just as generally 
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programmable as the version that skips two words. Compare the compactness of similar programs in the 
two machines. Compare their cost; their speed. 

4. Notice that the effective address of the Crtm-2/2 instruction word is 8-bits long. Design a version of 
the machine with a 256-word memory. How are the 16 words of the DMar scratchpad utilized to the best 
advantage in such a computer? Compare the cost and performance of this machine with those described 
earlier in this chapter. 
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6. Add input-output instructions and a direct memory access facility. 

7. Suggest modifications to the DMgpa to improve the capability to implement Cgr. (E.g., add 4 to 8 
registers as part of DMgpa.) Does DMar do it better? 

8. Carry out a similar conversion task for the DEC PDP-11 based on the ISP description in the PDP-11 
manual. 

SIMPLE DESK CALCULATOR 

KEYWORDS: Desk calculator, BCD, arithmetic, programmable 

This problem is the design of a simple desk calculator. The problem was given successfully as a 
laboratory exercise to juniors at Carnegie-Mellon University. The calculator should be capable of adding, 
subtracting, multiplying, and possibly dividing. Input numbers can be limited to two decimal digits while 
output may be up to four decimal digits. Since this is to be a decimal calculator, binary input and output 
is unacceptable. For example, to input the number 12v10 from the switches the BCD form, 0012v16, 
should be used rather than the binary form, 000Av16. A Users Manual for the design should be written 
so that someone unfamiliar with digital systems could use the calculator. The conventional T(lights and 
switches) may be used to encode the BCD input and output. 

DESIGN CONSIDERATIONS 

Perhaps the first major decision in the design is whether data should be represented in binary or BCD 
form within the calculator. Since RTM's already use the binary representation for addition and 
subtraction, there is some merit to using binary, although a BCD to binary conversion routine is required. 
The BCD to binary conversion operation usually uses the division operation. Thus the division operation 
might be available within the calculator at almost no extra cost. 

Various design objective functions need to be set, i.e., should the calculator perform at high speed, 
should it have low cost, or should it have features to make it easy to use (sophistication)? Consider for 
example, the speed, cost, sophistication trade-off. For high speed a fast multiply algorithm (e.g., those in 
Chapter 4) might be used. These are usually more costly than the algorithm which simply adds the 
multiplicand to itself while decrementing the multiplier. But the increased speed is hardly required, since 
at most 100 additions need be performed in the adding multiply algorithm. In any case, multiplication 
would - appear instantaneous to the user as long as it takes less than 100,000 microseconds. On the other 
hand, a fast multiply design might enable the sine function to be calculated rapidly using polynomial 
expansion. Again, an analysis might show that the number of operations required to achieve four decimal 
digit accuracy (all that can be represented under the design constraints of the problem) might be small 
enough to negate the advantages of a high speed multiplier. 
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Other features of the calculator also exhibit similar design trade-offs. The decimal display, signed 
number representation, and decimal point influence the complexity of the calculator. Negative number 
operations are desirable and relatively easy to implement, while the inclusion of a decimal point is more 
difficult. Error indications such as overflow or division by zero are very helpful. A structure whereby the 
results of the previous operation is used as one of the operands in the next operation is very convenient 
from a user's viewpoint (essentially necessary for, say, adding a column of figures). 
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Fig. Cgr-3. PMS structure of the registers and data operators of Cgr. 

and data operators (see Figure Cgr-3). First, some registers (one or two) are used as operands for the 
COMplement, NEGate, MOVe, INCrement, DECrement, ADd Complement, SUBtract, ADD, or AND 
instructions. The result appears as the name of a register, shifter, which is actually the input to shift gates. 
Second, the shift function may change the position of the bits (see the ISP), yielding a 17-bit result. 
Third, the result may be read back into the accumulator specified by the destination of the instruction, 
A[d]. Fourth, the programming counter P, may be incremented an extra time (i.e., P<-P+1) causing the 
next instruction to be skipped. 
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ADDITIONAL PROBLEMS 

1. Carry out the ISP to RTM translation for the Cgr. What are the cost and performance for this 
implementation? 

2. What are the cost and performance using a K(PCS)? 

3. Add multiply and divide instructions to Cgr, 

4. Show one tradeoff in your implementation. 

5. Add console keys and switches to your design. 
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* This process can be an indefinite indirect loop as specified in M[x] 
and Mi[a] 

**Not Instruction-execution in ISP, since all M[e] should be changed to 
Mp(e] because the effective address, e, is known. 

Fig. Cgr-2. ISP description of interpreter part for a general register based minicomputer. 

and for fetching/storing data: e and M[x]. The effective address calculation process, e, is invoked as the 
operands are required in individual instructions, whereas the process of fetching/storing data in memory 
is called for by M[x]. As an alternative description for effective address calculation and instruction 
fetching, Figure Cgr-2 shows an interpreter that carries out the effective address calculation process prior 
to. Instruction-execution. This interpreter is similar to that used in the RTM implementation of the PDP
8. By carrying out this change in representation which fixes the value of the effective address, e, rather 
than leaving it to be calculated as a variable when needed, it is easier to go from the ISP description to 
the RTM implementation. There is still a process, M[x], defined in the main ISP for fetching/storing 
memory with indirect addressing. 

The instruction-set is given in the Instruction-execution process part of the ISP. This process initially 
defines the instructions that use addresses: LDA, STA, ISZ, DSZ, JMP, JSR and IO, which are 
essentially those of the PDP-8. These instructions load and store the general register array, A, and control 
the program flow. Finally, the Operate group instructions are given, which allow operations to be 
performed on the A registers using source A[s] and destination A[d). Fundamentally four sequential 
operations are carried out in the operate instruction: 
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The process is also shown pictorially by looking at the structure of the registers 
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a DMgpa is used for updating the clock A clock count flag is set each 10 microseconds by the master 
clock, and the control part senses the state of the flag and then increments C[1:3] by 1. 

The computer transmits a control word to the clock which signifies which of the two functions are to be 
performed. For resetting the clock, a non-zero word is transmitted to the clock, signifying that the next 
three values will be transmitted to reset C[1:3]. When this occurs, the sequence to reset the clock is 
invoked, and clock counting is stopped until all three words are placed in the clock registers. 

A zero word is transmitted from the computer to the clock-calendar signifying that the three values of C 
are to be transmitted back. Unlike the case of resetting C, it is necessary for the clock to continue while 
the read-in process occurs. Also, the clock must not change during this process, since a carry might be 
generated and cause subsequent words to change. Note that adding a value to C is just a triple word 
addition by 1. While transmitting C[1:3] to the computer, counting is carried out in an intermediate 
register, and after C[ 1:3] is transmitted, the intermediate counts are added back to C to update it. 
(Alternatively, the clock might have transmitted C[3] to the computer on command and then continued to 
count C[3] while only keeping an overflow from C[3] for eventual update of C[1:2].) 

Problem 

1. Design the mixed-base system, which provides time units that can be read directly by humans. 

A GENERAL REGISTER BASED MINICOMPUTER IMPLEMENTATION 

KEYWORDS: General register, minicomputer, ISP 

Cgr, a stored program minicomputer with multiple general purpose registers (i.e., Accumulators) is 
presented using ISP to give the reader an idea of another type of computer.(4) The implementation is 
similar in size to the DEC PDP-8 implementation. 

ISP DESCRIPTION 

The implementation is to be based on the Instruction-set definition in Figure Cgr-1, given in ISP. 

The processor state memory is five words + 2 bits: P<0:15>, A[0:3]<0:15>, Run and Carry-flag. The 
physical program primary memory is 2^15 words, declared as Mp[0:32767v10]<0:15>. Two 17-bit 
intermediate result registers, shifter and result, are needed in the description to correspond to outputs of 
Data operations in the actual machine. 

Two instruction formats are given: the operate instruction that specifies the operations to be carried out 
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on the four Accumulator\A registers; and instructions which address operands for loading and storing the 
A registers and for modifying memory (i.e., incrementing and decrementing by 1). The addresses also 
specify locations for loading the program counter register\P, for transferring control, and for calling 
subroutines. 

There are two main processes for calculating addresses 

4. This machine is similar to the DEC PDP-11, but substantially simpler pedagogically. The PDP-11 
manuals include ISP descriptions. 
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Problems 

1. Assuming event inputs of the form illustrated by the flow meter, design a special system which counts 
these events into a computer's memory. 

●	 a. When an overflow of a channel count occurs (i.e., the number is greater than 2^16-1) interrupt 
the computer, giving the channel number. 

b. Use two memory locations to store double precision counts. 

2. In the above design allow another set of inputs from incremental shaft position. The encoders present 
counts of + 1 and -1 together with reference positions (e.g., 0). 

3. Further modify the design of the special interface to control the movement of a set of stepping motors 
of the type given above. The desired incremental positions are given in a table in the computer's memory, 
and the function of the special processor is to make certain that the correct step commands are issued. 
(Note, a stepping motor of this type will supply return information as- to when it has completed a step 
process.) 

CLOCK-CALENDAR INTERFACED TO A COMPUTER 

Design a clock-calendar, interfaced to a computer, using the T(program controlled) interface which is 
able to perform the following functions: 

●	 1. be reset under control of the computer to a specific time; 

2. respond to queries for the time. 

Assume a master clock of 100,000 KHz. Also, assume that the calender-clock is to operate for several 
years (e.g., 10) without resetting. There are at least two alternatives for representing time: 

●	 1. The clock can count in binary. 

2. The clock can count in suitable (human) units: years, months, days, hours, minutes, seconds, 
fractional seconds. 

The first alternative has simpler clock hardware and provides for simple operation (e.g., comparison, 
addition) in the computer. The second alternative is needed for human output. Also, in this latter case, the 
algorithm, is needed, in hardware, to deal with the calendar (leap years, and months). The length of the 
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clock would be some multiple of 16-bit words. The following bits would be needed for the mixed base 
representation: 

❍	 4 (10 years) + 4 (12 months) + 5 (31 days) $5 (24 hours) + 

6 (60 minutes) + 6 (60 seconds) + 10 (1000 milliseconds) + 

7 (100 10-microseconds) = 47 bits or 3 16-bit words. 

Actually since there are only 

12 x 31 x 24 x 60 x 10^3 x 10^2 = 3.19 x 10112 10-microseconds/year 

and 2^48 256~ x 10^12, then the 48-bit clock can count for 80 years without intervention in the full 
binary representation. 

The structure of the clock for the binary alternative is given in Figure CC-1. The data part consists of the 
two systems: the minicomputer and the RTM Bus. - They are linked together by the full duplex 
T(program controlled) interface. The data part of the RTM system holds the three words of the clock, 
C[1:3], and 
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a table pointed to by the value (address) in memory location k2. Increase k2. 

The behavior of the processor consists of the familiar fetch-execute cycle. The processor normally waits 
until the computer sets the start-flag, before proceeding. The instruction-pointer is picked up from 
memory location k1. The instruction-pointer is then used to address various instructions. Each instruction 
is then fetched, decoded, and executed. The 4 instruction types have very simple actions, as defined in 
the flowcharts. 

When a value is found to be out of range, the scan address and the out of range value are placed in a list 
which is addressed by memory location k2. This location is continuously updated. At the completion of 
the process, the Halt instruction sets the Done-flag which signals the computer that the Scan cycle has 
been carried out. 

Problems 

1. What is the maximum scanning rate, assuming all channels are within range, and all use the same 
range? 

2. Modify the design to place the sampled value in the same 16-bit word as the channel number. 

SPECIALIZED PROCESSORS FOR EVENT COUNTING 

There are systems related to the EPUT meter described in Chapter 5 that are used in process control and 
communication. Event counting systems are often connected to a computer because other processing is 
carried out within the computer, including closed-loop control The purpose of an RTM system used as an 
adjunct to a computer would be to lighten the processing load associated with the basically trivial, but 
time consuming, operation of counting. As we indicated in the EPUT meter example of Chapter 5, a 
minicomputer dedicated to counting could only handle 1/3 the counting rate of the RTM system. 

Two types of event input signals exist in process control. First, uni-directional inputs count in one 
direction (i.e., only increment) and are encoded as either events or as pulse widths. Flow meters for 
gasses and liquids are typical devices. Each pulse output from the flow meter indicates an incremental 
movement of the meter, hence an incremental quantity of material has flowed. By integrating the output 
of the meter (i.e., counting the pulse outputs from it) the flow is recorded. 

The second similar, but bi-directional, counting system of this type is the incremental stepping motor 
which controls either a rotational or linear position of a mechanism. For example, a stepping motor is 
given a command to move either forward or reverse. The motor itself has no output that can be used to 
detect the position of the mechanism being moved. There is usually some other part of the system which 
provides this feedback as to the actual position of the mechanism. Often, however, no incremental or 
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absolute feedback is used. The feedback as to the gross position for calibration is obtained from two limit 
reference switches indicating when the motor is in the extreme position. 

Alternatively, there may be direct coupling of an input transducer to give the actual position (using an 
optical or magnetic position encoder, for example). This type of indicator has an output that indicates 
movement of +1 or -1 position, together with information about the absolute (limit) position. 

339 

previous | contents | next 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000355.htm (2 of 2) [4/3/2002 6:14:01 PM] 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000355.htm


Designing Computers and Digital Systems 

previous | contents | next 

Fig. Ps-2. Memory and instruction formats for special processor. 

list of instructions specifying input channels to sample, and limit values for the samples. Figure Ps-2 
gives the format of how the instructions are interpreted, together with the structure of a program for Ps. 
The instruction table can contain any one of four instruction types as specified by bits <15:14>: 

00 - Halt. Halt the comparison process, signal the computer by setting a Done-flag and 
then wait until the processor is reinitiated by the computer. 
01 - Set high. Take value in bits <11:0> as a high limit value; incoming results will be 
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compared against this 
high value. 
11 - Set Low. Take value in bits <11:0> as a low limit value: incoming results will be 
compared against low value. 
10 - Sample and Compare. Take bits <6:0> as line number, set up- an analog multiplexor 
(switch address), sample the data and compare against the high and low values. When an 
incoming value is tested and found to be out of range, place it and its address (channel) in 
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Transfer of Data from the RTM System to the Computer 

Figure Cl-2c shows the flowchart of the RTM system for transmission to the minicomputer. The process 
is: 

●	 1. The RTM system first checks to see that the Outbuff is empty by waiting until the Outbuff-full 
flag is 0. 

2. The RTM system places a word in Outbuff and sets the Outbuff-full flag to 1. 

3. The Outbuff-full flag causes an interrupt to the minicomputer. 

4. The minicomputer reads the Outbuff indirectly via its C-input register and resets the Outbuff
full flag to 0, denoting that another word can be transmitted from the RTM system. 

Note that a flowchart for the input and output processes in the minicomputer would be the opposite of 
those in the RTM system. 

RTM-MINICOMPUTER INTERFACE VIA DIRECT MEMORY ACCESS TO COMPUTER 

The structure of an interface which can be used by an RTM system to access directly the minicomputer's 
memory is given in Figure Cl-3a. The interface provides a capability that is essentially identical to that of 
the RTM system, i.e., having a large random access memory directly connected to its Bus. For this 
interface, standard minicomputer interface modules are not available directly; thus we simply postulate 
the registers and main functions. The control part of this interface is quite simple. The behavior of the 
interface is almost identical to the program controlled transfers except that hardware (within the 
minicomputer processor) controls the transfers instead of a program interpreted by the processor. Also, 
unlike the program controlled case, this channel is half-duplex; it can either transfer data to or from the 
computer's memory, but the transfers cannot be carried out simultaneously. This interface design is 
somewhat different from random access memories, even though. the computer provides an identical 
function, because a flag signifies when the transfer is complete (DC- request). By examining the DC
request condition the RTM system can carry out several steps while waiting for service since the 
computer may take several microseconds to respond with the data. The two macro processes for reading 
and writing are given in Figure Cl-3b and c. With the exception of the Kwait's, the behavior is identical 
to a random access memory. 

Ps, A SPECIAL PROCESSOR TO SAMPLE ANALOG INPUT DATA AND COMPARE AGAINST 
LIMITS 

Figure Ps-1 shows the structure and behavior of a special processor interfaced to a computer, which 
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accepts analog data and checks the data against variable limits. The processor operates completely in 
parallel with a program in the computer, and the only interference is when the process accesses the 
computer's memory using the T(direct memory access). The structure of this hardwired process is similar 
to that of the hardwired processors in an IBM 1800. The process samples analog data, compares the data 
against high and low limits in a table, and signals when the out of limit condition occurs for each data 
point. The structure assumes that data is input-via an analog-to-digital converter with multiple selectable 
input channels. The data part also shows the various registers which the processor uses. The processor 
operates in much the same way as the processor of a stored program computer. There is a location in 
memory, k1, which contains an address of a data table That is interpreted as a 
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Fig. Cl-1. PMS diagram of a simple minicomputer. 

General Purpose Interface Control Part which determines input-output instructions and transmits status 
and interrupt requests to the computer. 

A T(general purpose interface) RTM module is cross-coupled to the minicomputer data interface 
providing the two simultaneous paths for data (i.e., full duplex). The RTM part of the interface has only 
two DM(f lags): Outbuff-full, indicating that a word is in the RTM Outbuff register and is waiting to be 
taken by the computer; and C-output-full, indicating that a word is in the computer's Output register and 
waiting to be taken by the RTM system. Note that the C- input register is not really needed because 
Outbuff has the same data. Both of these flags cause interrupts to the minicomputer (i.e., when Outbuff
full = 1; and when C-output-full = 0). 

Transfer of Data from the Computer to the RTM System 

Figure Cl-2b shows the flowchart for the case of the computer transferring data to the RTM system. The 
process is: 

1. The computer loads data into its C-output-register and sets the C-output- full flag to 1. 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000349.htm (1 of 2) [4/3/2002 6:14:06 PM] 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000349.htm


Designing Computers and Digital Systems 

2. When the C-output-full is 1, the RTM control flow proceeds past the waiting loop (i.e., Kwait). 

3. The RTM system takes the word from the computer's output register via the T(general purpose 
interface) input section and resets the C-output-flag to 0, interrupting the minicomputer. 

4. The minicomputer either decides to ignore the interrupt or places another word in its Output
register. 
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PROBLEMS 

1. For the example program given above, show a possible pattern of bits in the K(PCS) program memory, 
assuming a particular assignment of operation codes (see Chapter 2). 

2. Write the BCD-to-Binary and Binary-to-BCD conversion subroutines required in the example 
program. 

3. Write a program in the 16/M so that a program held in a M(array; 1024 words) is interpreted the same 
way that Crtm-1 would interpret it. Modify 16/M to improve the ability to interpret Crtm-1. 

4. Try problem 3 for a PDP-8 or your favorite minicomputer. 

5. Solve any of the application problems given in other sections. Compare the conventional RTM, 
K(PCS), and 16/M cost and performance (recall the analyses in Chapter 4). 6. Respecify the 16/M in ISP. 

THE RTM-COMPUTER INTERFACES 

An RTM system can be interconnected to a general purpose computer in many ways, depending on the 
system objectives (e.g., cost and performance) and the computer being interfaced. No doubt the simplest 
interface is the T(serial), which only involves connecting two pairs of wires between the computer and 
RTM system, providing full duplex data transmission at 10,000 bits/second. Two other interfaces will be 
described which provide closer coupling and higher data transmission rates. A particular minicomputer is 
used to illustrate the transmission scheme. The structure of the simple minicomputer is shown in Figure 
Cl-1. All external devices are connected to the minicomputer by means of an In- Out Bus. This bus has 
two types of controllers: 

Ks - Slow data transfer controllers - (Program controlled transfers) - Data transmission is accomplished 
by a program in Pc. Ks may request words by signalling using an interrupt request. 

Kf - Fast data transfer controllers - (Direct memory access transfers) - Data transmission is accomplished 
by having Kf request words. Pc merely passes requests for data on to primary memory (Mp). In this 
mode the system looks like a random access memory to Kf. 

In building an interface between RTM's and the minicomputer, the method used for transfer mainly 
depends on the needs of the RTM system for data. With minicomputers the programmed transfer method 
can be used for word transfer rates of perhaps 100,000 words/second, although this method is normally 
used at only 10,000 words/second because of the high processor utilization. The direct memory access 
methods are used for magnetic tapes and disks at speeds varying from 10,000 ~500,000 words/second. 
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In order to reduce processing time substantially the direct memory access method is usually used, and in 
some designs both interface methods are required. Both interface methods are presented in the following 
sections. 

RTM MINICOMPUTER INTERFACE VIA PROGRAM CONTROLLED ACCESS 

Figure Cl-2 gives most of the details for an interface between an RTM system and a minicomputer. The 
interface is full duplex in that data can be flowing quasi-simultaneously in both directions. The part of 
the interface nearest the minicomputer is constructed from two of the minicomputer's modules: a General 
Purpose Register Interface containing both an input and output register; and a 
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which holds the character being transmitted, and a Punch Flag, PF, which indicates when a new character 
can be loaded into T. The instructions for the transmitter part are: 

The receiver section contains an 8-bit register, <7:0> which holds the character while it is being received 
from a keyboard or the attached paper tape reader. The keyboard flag, KF, indicates when a new 
character has arrived in R. The instructions for the receiver section are: 
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M(byte). The Byte Register BR<15:0> is a 16-bit register used as a temporary register. Various parts of it 
can be loaded into A. 

M(constants; 4 word, 24 word)*. The Mc4 and Mc24 have access times of 0.2 and 1.0 microseconds, 
respectively. 

M(scratchpad) 1*, 2*. The 16-word scratch pad is an optional read-write memory which is addressed in 
an explicit fashion as though each word were an independent register. The two scratch pads are denoted 
SP[1:16] and SP[17:32]. There are 16 instructions to read and 16 instructions to write each word of the 
16 word scratch pad. 

M(arrays). There are three memory arrays of 256, 256 and 1024 words. The cycle time of each memory 
is roughly two microseconds. They all operate in exactly the same way. Each array has a memory 
address register (MAR) which holds the address of a word being accessed. After MAR is loaded the 
word (specified by MAR) can be either read from A or written into A. 

M(array; 256 words)*. 
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The <condition> input mnemonics of the second, optional group (MUX 1), which give additional 
capability, are: 

The subroutine CALL and EXIT instructions allow a subroutine to be called and terminated (exited) 
respectively. The CALL instruction is two bytes, and EXIT one byte. They are specified: 

Memory Instructions 

DM(flag) FFI,FF2,FF3,FF4*,FF5*,FF6*. The flag bits can be reset to 0 or set to 1 under program 
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control. The conditional jump instructions (above) also permit the flags to be tested and used to control 
branching. 

M(transfer). Although normally wired to perform a particular bit transformation, the M(transfer) can be 
wired for other uses. The normal instructions are: 
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Control Instructions 

A special set of instructions controls the program flow. All instructions may affect the Program 
Counter\PC. The instructions are: unconditional branch (i.e., set PC) - the GOTO instruction; conditional 
branch (conditionally set PC) - the IF instruction for testing Boolean (bit) conditions; CALL subroutine; 
and EXIT from subroutine. The instructions which load the PC with a new address are two bytes long. 
Two byte instructions take 3.0 microseconds; and one byte instructions take 1.6 microseconds. The 
unconditional and conditional branch instructions are: 
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There are two groups of Boolean input variables which can be tested by the above IF instruction. In order 
to specify which of the two groups is being tested, the MUX-bit (which is either 0 or 1) must be set 
properly to access either the first or second group, respectively. The first group is standard with the 
16/M; the second group is optional. The MUX instructions are: 
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The Arithmetic-Logic, Memory, and Input-Output parts respectively operate on, hold, and transfer 
outside the computer 16-bit data. Data is transferred among these parts via the RTM Bus, into which all 
the parts are connected. 

PHYSICAL ORGANIZATION 

All of the registers accessible to the program (programmer) are given in Figure l6m-2. The components 
in the diagram correspond to the functional components in the standard PDP-16 set (i.e., RTM's). The 
optional modules and operations are indicated by asterisks. The actual physical layout of 'the computer 
with its modules is given in Figure 16m-3. Module locations are reserved and prewired for the basic 
machine plus the various options. 

INSTRUCTION SET 

The instruction set for the PDP-16/M is taken from the basic set available from the K(PCS) and those 
instructions permitted by the specific DM, M, and T modules used. The set will be described in the order: 
Arithmetic-Logical (DM), Control (K), Memory (M), and Input-Output (T) parts. 

The instruction-set is described using the assembler format of DEC. This, notation is slightly different 
from that of ISP used elsewhere in the chapter. 

Arithmetic and Logical Instructions 

The following instructions are specified by a 1 byte operation code, and operate on a DMgpa and Kbus. 
Each instruction takes 2.1 microseconds. The instructions use the A and B registers of the DMgpa as 
arithmetic and logical operands, and operation results are placed in either A or B. Other instructions use 
and affect the Bus Sense Register\BSR\BS, Overflow-bit\OVF and a DMflag which holds the shift LINK 
bit\L 
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Programs are written in the 16/M's language and assembled (prepared) on another computer (e.g., the 
PDP-8). These programs are then either held in the PDP-8's memory and run in the 16/M while being 
debugged, or the PDP-8 prepares a program which is written into the Programmable Read Only Memory 
of the 16/M. The various attributes of interest to the system designer are given in Figure 16m-1. 

The attributes that characterize the 16/M as a microprogrammed computer are somewhat tenuous. A 
microprogrammed computer is one whose K(interpreter) and instruction set are realized by a second 
computer (the microprogram computer). This latter computer is more primitive than regular computers in 
several ways: in having as its basic operation set the transfers between all the registers in the machine; in 
accessing random addressed (core) memories via address registers as external memories; in having read
only (hence non-modifiable) programs; and in evoking sets of parallel operations (like the OPR 
command of the Crtm-1). The 16/M has the first three of these characteristics, but not the fourth. Still, it 
appears as a genuinely more primitive computer than the minicomputers available on the commercial 
market 

LOGICAL ORGANIZATION 

The organization of the PDP-16/M is shown in the RTM design of Figure 16m-2. PDP-16/M has four 
functional component parts, which are the same as those of the RTM set: 

Arithmetic Logic 

K(bus) and DM(general purpose arithmetic) contain 3+ registers and arithmetic/logic operations capable 
of carrying out instructions on 16-bit data. The registers are: A and B which hold arithmetic results; the 
Link-bit\L which is used as, input data to A and B for shift operations; Overflow-bit\OVF, which holds 
overflow results from A and B; and Bus Sense\BSR which is set on every register data transmission and 
can be tested (i.e., BSR=0, BSR>0, BSR<0). 

Memory 

These components are organized as bits (flags), registers, read only and read write arrays. The total 
memory size can be approximately 1,600 16-bit words. Only data is stored in the memory (not 
programs). The actual memory configuration can be up to: 6 bits - DM(flags), 2 word registers -
M(transfer), 2 16-word scratchpads- M(scratchpad), 4+24 words of read only constants - M(constants), 
and 256+256+1024 (1536) words of read-write array - M(array). 

Input-Output 

T(general purpose interface) and T(serial interface) communicate with the external systems. Up to three 
sets of 16-bit parallel input and output lines, and two sets of bit-serial input and output communications 
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equipment lines, are provided. Also, 26 Boolean (bit) inputs can be sensed and 32 output-evoke 
operations can be given. 

Control and program memory 

The K(PCS) holds programs from 256 to 1024 words, 8 bits/word, in 256 word increments. It fetches 
instructions from its program memory and instructs the above three parts. It also senses input (bit) 
conditions from other parts of the system. Control has a Program Counter, PC, which points to the 
instruction being executed and a Subroutine Stack (16 words) to hold the previous value of the Program 
Counter when subroutines are called. 
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Fig. 8-10. Control part for manual-key macros. 

Bitran-6 described in Chu (1971), write the ISP, convert the ISP to RTM, and construct it. 

THE PDP-l6/M - A SUBMINICOMPUTER BASED ON RTM'S 

The PDP- 16/M is a particular configuration of modules interconnected to behave in a fashion similar to 
a microprogram computer. The user (programmer) expresses register transfer operations in terms of the 
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fixed set of operations that are hardwired into the 1 6/M. The computer is based on the Program 
Controlled Sequencer, K(PCS), control module (see Chapter 2), and microinstructions are stored in the 
K(PCS) memory. Although the microinstruction set is fixed, it can be extended by rewiring. Also, 
additional data part modules can be added to change the basic structure of the 16/M. Behavior is 
expressed in about the same way as with the RTM flowchart. 
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is either a K(conditional-execute), Kce(i<4> =>AC-0), or a Kb2(IR<4>) connected to a Ke(AC<-0), 
followed by a K(serial merge; 2 input). The remaining instructions are executed similarly. F& the rotate 
instructions, a rotate subroutine is defined and called once; if IR<10> equals one, rotate is called again. 

Manual Key Processes 

Figure 8-10 gives the six processes that define the action taken when each one of the six console keys is 
depressed. These processes are of interest because they occur in parallel with the main execution process. 
There is, however, an assumption that no two of the keys are depressed at exactly the same time. All of 
these processes call the stop subroutine (also the same as the STOP-key), which first sets the Run 
Boolean to 0 so that the interpretation loop will be broken (and the machine will stop) prior to the 
execution of the action implied by the key strike. 

CONCLUSIONS 

In the above section we have shown another implementation of a computer, given a set of primitives. In 
this case, very few design decisions were exercised in implementing an Instruction set with the RTM's. 
The problem of translating the ISP into an RTM implementation was of interest. We were concerned 
with making the translation easily, cheaply, and clearly. Actually, the ISP description (Fig. 8- 1) has been 
manipulated more than trivially in restructuring the interpreter to avoid the use of closed subroutines. A 
different initial ISP description would have minimized this factor. There can be other implementations 
that execute instructions faster. By adding more busses (and possibly more memories) the system would 
have more parallelism. Such an implementation might look more like pipelined machines or those 
machines with instruction look-ahead units; one unit would be concerned with fetching as many 
instructions as 'possible, while the other unit independently executed the instructions. These techniques 
would create a computer which might be considered larger than a minicomputer. From a pedagogical 
viewpoint such machines are quite interesting. 

PROBLEMS 

1. What is the cost and performance of PDP-8/RTM? 

2. Write programs for the PDP-8/RTM for the sum-of-integers, multiply, binary BCD, BCD-binary, and 
Fibonacci number algorithms. 

3. Modify the PDP-8/RTM to have built-in multiplication. Show several incremental, designs which 
trade off cost-performance. One intermediate possibility is to have a design which requires 12 multiply 
steps, and thus might be considered in the middle between hardware and software. 

4. Modify the PDP-8/RTM to include facilities to convert between BCD and binary. Show several 
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designs and show incremental cost-performance tradeoff. 

5. How can PDP-8/RTM be modified to have higher performance? 

6. Given the programming manual or your knowledge of a minicomputer, describe the minicomputer 
using ISP. 

7. Given an ISP of a minicomputer, convert the ISP into an RTM implementation. 

8. Given the ISP of the Crtm-1, the PDP-8, the general register minicomputer, or any other, write a 
Fortran program to simulate the behavior, of the minicomputer. List the steps required in the translation 
from ISP to Fortran. 

9. Design a multiple Bus RTM PDP-8 that operates faster. How fast will it operate? 

10. Given a computer used for educational purposes (e.g. the simple computer or 
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Fig. 8-8. Control part of Instruction-execution macro (for addressable instructions). 

Operate Instruction-Execution Process 

Figure 8-9 gives the implementation of the operate (OPR) instruction. Operate actually consisted of two 
(really three, but we exclude the instructions for the control of the optional Extended Arithmetic element) 
sub-instruction sets and the first Kb2 decides which of the two sets is to be executed. The execution of 
these microcoded instructions is carried out in a direct translation from the ISP description using 
K(conditional evoke) ERTM modules. 

For example, the instruction: 
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Fig. 8-7. Control part of effective address calculation.


contents of memory, specified by z (via MA) from its Memory Buffer register, MB, into register X (X<-
MB). The actual execution of each particular instruction is a direct translation from the corresponding 
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ISP statement. For example, JMS (M[z]<-PC; PC<-z+1) translates into: 
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START-Key and CONTINUE-Key processes for example, note that the subroutine, stop, is first called in 
order to insure that the computer is not started when it is already running. 

The basic part of the control flow which is of interest here is the Instruction- fetch process, consisting of 
the control steps MA<-PC; read; and IR<-MB. We have omitted incrementing the Program Counter (i.e., 
PC<-PC+1) at this time because the Effective-address-calculation process which deviates from the ISP 
description requires a value based on the location of the current instruction. In this diagram there are still 
three large remaining control processes: Effective-address- calculation, Instruction-execution (for 
Addressable instructions), OPR and IOT execution. 

Effective-address-calculation-process 

In the initial description (above) of the control part for the effective address calculation, the formal ISP 
description was redefined in a form which could be converted to a simple RTM control process without 
using closed subroutines and K(subroutine call). Now, the problem is to take the basic ISP (above) and 
convert it into the RTM control. Such a conversion is quite direct; the RTM version is given in Figure 8
7. 

The first part of the ISP description is concerned with determining an address which is either on page 0 
or the currently active page. Thus, in the ISP description the page 0 bit is examined, and if 0, the address 
is the page-address, IR<5:11>. If the page 0 bit is 1, then the address is on the current page, 
PC<0:4>[]IR<5:11>. In the RTM implementation this is just a sequential process which begins by testing 
IR<3>, the page 0 bit, and forms one of the above corresponding addresses. The formation of the address 
on page 0 is just z<-IR<5:11>. The address formation on the current page requires several steps in order 
to accomplish the concatenation. First, the PC must be preserved in a temporary register while the 
calculation is made; X<-PC saves the PC (and PC<-X restores PC, on completion of the concatenation 
process). In order to get at the most significant bits of the PC a constant mask 7600v8 is put in the 
register z and the result of z<-PC^X isolates PC<0:4>. Finally, IR<5:11> is placed in the register 
normally holding PC, and z (which holds PC<0:4>) is OR'd with IR<5:11> to give the final operation 
needed for concatenation. 

In the second part of the Effective-address-calculation process the indirect address bit IR<4> is 
examined, and if 0, then z already contains the effective address; otherwise M[z] contains the effective 
address, z. As a side effect of indirect addressing, if a reference is made to locations 10v8 to 17v8, then a 
1 is added to the memory location (auto-indexing). In this part of the calculation there is a direct 
translation of the ISP statements into the corresponding RTM control statement implementation, since no 
temporary registers are involved. 

Instruction-Execution Process for the Addressable Instructions 
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Figure 8-8 gives the RTM implementation of this process which is a more direct translation from the ISP 
description than in the preceding cases. The first control, Kb2, decides whether a memory reference is 
required (the jump instruction is the only instruction with an address that does not reference memory). 
For the execution of the jump instruction (JMP mnemonic with op code equal to 5), the execution is 
merely PC4-z (identical to the ISP definition). 

For the remaining instructions, which actually reference memory, the loading of the Memory Address 
register, MA, has been done initially and causes the memory to read (MA<-z; read). Next a Kevoke 
specifies the loading of the 
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Fig. 8-6. Control part for PDP-8/RTM, (including START, CONTINUE keys, Instruction-fetch, 
and Interrupt service). 
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Fig. 8-4. Control part for PDP-8/RTM interpreter.


actions when the user strikes various console keys. These are not given in the ISP, but are given in the 
figure for completeness. 

Figure 8-6 is basically the same as Figure 8-4, except that the macros START-Key, CONTINUE-Key, 
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Instruction-fetch, and Interrupt-service are completely defined in terms of physical K's. (The other Key 
processes of Figure 8-4 are not defined here, but are given in detail in Figure 8-10). With the 
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where the subsequent effective address values z' can now be defined simply as: 


Thus, in the modified description of the ISP, all other parts of Figure 8-1 remain the same, and all we 
have done is to allow the value of the effective address to be precalculated to the value, z. The Effective
address-calculation. process for this value becomes: 

The reader should note that the value z appears several times in the above process. Instead of continuing 
to calculate the value repeatedly, we can as in the method used above, first calculate the value for z" (and 
store it in z temporarily) prior to executing the body of the process. Thus the process now becomes: 

We now have an ISP description that evaluates functions in a sequential manner, using a procedure 
mechanism rather than making excessive calls (as was the case in the original description of Figure 8-1). 
The problem of converting the ISP description to an RTM control flow diagram which will be used to 
control the data part in the previous section can now be solved. 

Basic Control Process for PDP-8/RTM Interpreter 
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The complete control process is given in Figure 8-4 using several complex secondary processes 
(macros). These secondary processes are defined precisely in .subsequent figures. (Figure 8-4 identifies 
the specific figures for the detailed secondary macros.) The actual Kmacro structure would be substituted 
for the Kmacro call in a higher level figure. The reader should note that the PDP-8/RTM implementation 
does not include the definition of the i/o transfer instruction, IOT, nor does it include the various console 
keys. 

The basic process of the interpreter is a loop (which is unbroken so long as the Run-switch AND the Run 
Booleans are true; otherwise the process stops). If an Interrupt request Occurs AND the machine is in the 
Interrupt state, then the Interrupt-service process is evoked. 

The main interpretation, or fetch-execute cycle, is the just the sequence consisting of the four control 
parts shown in Figure 8-5. 

The remaining control parts in the figure are concerned with carrying out 
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Fig. 8-3. ISP to RTM transformation for memory access. 

The instruction, i, is stored in an M(transfer) labelled IR. We can deduce from the ISP instruction formats 
the various decoding and register partitioning operations required to separate the instruction more 
completely; two parts of the M(transfer) are declared: the subregister IR<5:11>, which is used to hold the 
page-address, and the IR<0:2> bits, which form the op code part of the instruction. Note that the 
specially named bits, e.g., page 0 bit, indirect bit, sma, sza and snl, are all available as Booleans at the 
output of the IR. 

The final data part is the effective address, z, which we have discussed above. Here we include it as part 
of the DMgpa which holds the PC. Three other modules are connected to the data part: the Kbus, the 
T(serial interface) for a Teletype, and an M(constants). (We place M(constants) in the structure now 
because we have already worked the problem and know it is required.) 

Now we have at least enough memory modules to hold the state (registers) of the machine. We also have 
a certain amount of flexibility in assigning the various registers to the appropriate DM and M modules. 
The Instruction-interpretation process can now be defined in terms of the actions implied by each of the 
instructions in the ISP. 

CONTROL PART 

There are basically two approaches to the Instruction-interpretation process descriptions. The first 
method, with many subprocesses (macros), was used in the ISP description of Figure 8-1, because this 
approach is suited to the human reader. In this approach the Effective-address-calculation process is not 
invoked until an address is needed in the description of an instruction. Unfortunately, this description is 
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not well suited to hardware, since it makes repeated subroutine calls to the Effective-address-calculation 
process for the value, z. The second approach, which will be used in the following, first calculates the 
effective address as part of the process of the interpreter, prior to the execution of the instruction. Thus, 
the ISP interpreter should be modified to: 
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Fig. 8-2. RTM data part of PDP-8/RTM registers. 

Three DMflag's hold the following 1-bit registers: Link\L, Run, and Interrupt state. 

The main program memory, M, is a core memory array consisting of 4096 12- bit words.(3) There are 
two registers within M, namely, MA and MB, to hold the address and data especially for the array. In this 
case, the RTM implementation introduces other registers that are not part of the ISP description because 
of hardware memory idiosyncrasies. The control parts of the ISP to RTM transformation of the memory 
accesses for reading, writing, and reading-pause- writing (where a memory expression appears on both 
sides of an ISP expression) are shown in Figure 8-3. The read, write, and read-pause-write commands are 
needed to tell the core memory which part(s) of its inherent read-write cycle to use in each case. 
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The Data-switches, a transducer, is a 12-bit switch register which takes human input and converts it into 
RTM readable form. 

3. Although the basic set of RTM's has no such module, the only difference between it and the 
conventional M(array) is the number of words. 
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9. Modify Crtm-1 to include a Direct Memory Access (DMA) facility. With DMA, another system can 
communicate with a computer by reading directly into the computer's memory. Thus, the DMA provides 
a computer with the capability of behaving as an M(array). 

10. Read about the two ERTM's described in the last section which assume program interrupt and DMA 
capabilities for a computer. Modify the two ERTM's to be compatible with the design of problems 8 and 
9 above. 

PDP-8/RTM IMPLEMENTATION 

In this section we show how the DEC PDP-8, a common small minicomputer, can be implemented using 
RTM's. The goal of designing the PDP-8 from RTM's is mainly pedagogical. One would not expect to 
see a production, model computer constructed from RTM's due to considerations of production economy 
and technology. 

The computer will be defined using ISP. In the implementation of any computer, we feel it is necessary 
to have a relatively formal (non-natural language text) description. Such a description enables the 
machine to be well defined. ISP satisfies this goal. Figure 8-1 gives the ISP description of the PDP 8, 
taken from Bell and Newell (1971). 

A premise of, the RTM implementation is that one can take the formal description of the machine, in ISP 
(or some other language), and in an algorithmic fashion generate the implementation. In reality, we have 
not yet accomplished this goal, but the description will proceed in a quasi-formal way as though this 
were possible, and thus we will proceed to generate all the given parts from the ISP description. We are 
ignoring the various input-output devices. 

DATA PART 

For each register declared in the/ defining ISP description, a corresponding physical register is required 
to contain the actual condition. Using this procedure we get an RTM structure for the data part as shown 
in Figure 8-2. In this figure the two registers, AC\Accumulator and PC\Program Counter, of the ISP 
processor state are assigned to two DMgpa's. (In Crtm-i these were named A and P.) Two DMgpa's are 
used, not because of the innate character of AC or PC, but 'because of the operations to be performed 
upon them. We know that binary arithmetic and logical operations are performed on AC, necessitating a 
second operand register. Lack of the second operand register X<0:11>(2) would require undue 
movement of data to get the operands into the register to be operated on. Thus, we have made the first 
implicit design decision (which we hope will result in a short, simple control part). As the second 
decision, the PC is assigned to a second DMgpa, based on the knowledge that PC is to be incremented by 
one (i.e., it is a counter). For the time being, no other assignments are made to the second registers in the 
two DMgpa's, and they are considered to be temporary registers, X and z, being synonymous with the B 
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registers of DMgpa's. We might expect that having an additional, separate DMgpa for the effective 
address calculation process (i.e. for z) would simplify the control; unfortunately it doesn't. There would 
only be one less Kevoke in the control part; therefore, we would rather increase the control part by one 
unit, in order to save an extra DMgpa. 

2. Note, bits in the PDP-8 are numbered from left to right (most to least significant). 
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the instruction, especially if it is to be calculated only once and will have a fixed value independent of 
anything that happens while. executing instructions. Console activity can also be described in the 
interpreter, e.g., the effect of a switch that permits stepping through the program under manual control or 
interrogating and changing memory. 

The normal statement for the simple computer interpreter is just the loop: 

which corresponds essentially to the loop expressed as a flowchart in Figure Crtm-4. 

Instruction-Set and Instruction Execution Process 

The instruction set and the process by which each instruction is executed are usually given together in a 
single definition; this definition is called Instruction- execution in most ISP descriptions. This Instruction
execution usually includes the definition of the conditions for execution, i.e., the operation code, value, 
the name of the instruction (usually a comment), the mnemonic alias by which it is known, and the 
process for the instruction's execution. Thus, an individual instruction typically has the form: 

With this format for the instruction, the entire instruction set is simply a list of all the instructions. On any 
particular execution, as evoked by the Instruction- execution process, typically one and only one 
operation code correlation will be satisfied, hence one and only one instruction will be executed. 
Instruction decoding occurs locally and in parallel as each instruction recognizes whether it is to be 
executed. However, if more than one operation code is satisfied then this implies that parallel activity is 
initiated. (This is how parallel acting microcodes are described.) 

PROBLEMS 

1. Write a program for Crtm-1 to compute the sum-of-integers and the Fibonacci numbers. Modify these 
to be subroutines. Show the numeric values for instructions of the multiply subroutine for Crtm-1 given 
in Ch. 4. 2. Add the Run-switch, described in the ISP description, to the RTM diagram of Crtm-1. 
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3. Add a link bit, L', like the PDP-8 has, together with instructions to manipulate it, to Crtm-1. 

4. Since subroutines cannot be nested (i.e., call one another), nor can a subroutine find out from where it 
was called, their use tends to be awkward and limited in Crtm-1. Correct the design to fix this (e.g., allow 
L to be read into A). 

5. Add an instruction to Crtm-1 to be able to load data from T(lights & switches). 

6. Give Crtm-1 the capability of inputting and outputting data through T(serial interface) and T(lights & 
switches) under console control. 

7. Add instructions to Crtm-1 to improve the performance of BCD-Binary conversion. 

8. The PDP-8 design has a capability, called program interrupt, which allows an external event Boolean 
signal to request that a program beginning in memory location 1 be run. Modify Crtm-1 to include this 
capability. 
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performs the second data transmission after the first one (provided M[z]=0). 

Memory Declarations 

Memory is defined by giving a memory declaration as shown in Figure Crtm-5. This declaration is 
essentially the convention which prevails in this book. 

Instruction Format 

Instruction formats are declared in the same fashion as memory and are not distinguishable as special non
memory entities. The instructions are carried in a register; thus it is natural to declare them by giving 
names to the various parts of the instruction register. Usually only a single declaration is made, the 
instruction\i, followed by the declarations of the parts of the instruction; the operation code, the address 
field, indirect bit, etc. This corresponds to the conventional box diagram of Figure Crtm-2. 

Operand Address Calculation Process 

In all processors instructions make use of operands. In most conventional processors, the operand is 
usually in memory defined as M[z), where z is the effective address. It is defined in ISP by giving the 
process that calculates it. This process may involve only accesses to primary memory (possibly indexed), 
but it may also involve side effects, i.e., the modification of either primary memory or processor memory 
(e.g., by incrementing a register). Note that the effective address is calculated whenever its name is 
encountered during the evaluation of an ISP expression (either in an instruction or in the interpretation 
expression). That is, it is evaluated on demand. 

The PDP-8 ISP in the following section has an address calculation process, whereas Crtm-1 does not. In 
Crtm-1, bits <9:0> of the instruction are simply used to specify a memory location, z. 

Data-types 

In more complex computers it is worthwhile to describe data-types in terms of various field within a 
word. For example, sign-magnitude and sign-magnitude floating-point data have 2 and 4 parts of data, 
respectively, that must be manipulated. Crtm-1, the PDP-8, and indeed most minicomputers do not have 
sufficiently complex data-types to require declaration. 

Data-type operations 
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Given that data-type declarations are made, it is necessary to define operations on them. (e.g., +,-,x,/, 
movement). The reader is invited to look elsewhere for this aspect of ISP (Bell and Newell, 1971). 

Instruction Interpretation Process 

The instruction interpretation expression and the instruction set constitute a single ISP expression that 
defines the processor's action. In effect, this single expression is evaluated and all the other parts of the 
ISP description of a processor are evoked as indirect consequences of this evaluation. Simple interpreters 
without interrupt facilities have just the familiar cycle of fetch-the- instruction and execute-the
instruction. In more complex processors the conditions for trapping and interrupting must also be 
described. The effective address calculation may also be carried out in the interpreter prior to executing 
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The main virtue of ISP, and indeed the reason to introduce it to the reader ,is the fact that it is a 
specification for both Instruction-sets and complete computers. An ISP description is usually completely 
independent of an implementation, thus serving as a definition of the computer, whether using an RTM, a 
microprogram, a conventional register technology implementation, or even a simulation program in 
Fortran. By adding more detail to the ISP definition an implementation can be implied. 

A computer is completely defined at the programming level by giving both its instruction set and its 
interpreter in terms of basic operations, data types, and the system's memory. For clarity the ISP 
description is usually given in the following order: 

Declare the system's memory: 

Processor state (the information necessary to restart the processor if stopped between 

instructions, e.g., general registers, program counter, index registers).


Primary memory state (the program and data memory directly addressable from the 

processor).


Console state (any external keys, switches, lights, etc., that affect the interpretation 

process).


Secondary memory (the disks, drums, dectapes, magnetic tapes, etc.).


Transducer state (memory available in the peripherals that is assumed in the instructions of 

the processor). 

Declare the instruction format. 

Define the operand address calculation process. 

Declare the data types. 

Declare the operations on the data-types. 

Define the instruction interpretation process including interrupts, traps, etc.


Define the instruction set and the instruction execution process (provides an ISP expression for 

each instruction).
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Thus, the computer system is described by first declaring memory, data-types and primitive data 
operations. The instruction interpreter and the instruction- set is then defined in terms of these memory 
entities. In this sense, the ISP notation is similar to that used in higher level programming languages. Its 
statements define entities by means of expressions involving other entities in the system. 

ISP expressions are inherently interpreted in parallel, relecting the underlying - parallel nature of 
hardware operations. This is an important difference between ISP and standard programming languages, 
which are inherently serial. For example, in 

both righthand sides of the data transmission operators (<-) are evaluated in parallel. The values are then 
transmitted. Thus the old value of P would go to L, and the new P would contain z. Serial ordering of 
processing is indicated by using the term "next". For example, 
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needed in the interpretation of the instructions are: i, an instruction holding register; and B, a temporary 
register used for binary operations on A (e.g., ADD, AND). Also connected to the RTM Bus are the read
only and read-write memories and the Teletype, as well as a special input/output register interface to the 
remainder of the system. Instructions for manipulating these are left as an exercise for the student. 

The method of defining the interpreter can be seen from the RTM diagram (Figure Crtm-5). The control 
part consists of four sub-parts: the start and continue keys, which are used to initialize the processor to 
start at location 0 and to restart the processor; the instruction fetch; the instruction decoder; and the 
instruction execution. The instruction fetch consists of picking up the instruction from the memory word 
addressed by the program Counter, P, and incrementing P to point to the next instruction. The instruction 
is placed in the register, which has been specially wired to a Kb8 to allow decoding of the three most 
significant bits. Individual bits of i can be tested for the Operate (OPR) instruction, and the address field, 
i<9:0>, can be read. 

After the instruction is fetched and placed in i, Ke(MA<-i<9:0>) is evoked to address data referenced by 
the instruction. Immediately following this evoke operation, K(branch; 8-way) allows control to move to 
the one path corresponding to the operation code of the instruction being interpreted -- that is, the 
instruction is decoded and control is transferred to execute it. After the execution of the appropriate 
instruction, control returns to fetch the next instruction. For example, executing the ADD (two's 
complement add) instruction consists of loading the data from memory into the temporary register, B 
(i.e., B<-MB) and then adding B to the accumulator, A (i.e., A<-A+B). 

For the Operate instruction, which does not reference memory, each bit of the address part of tie 
instruction specifies an operation to be carried out on the accumulator (test for - or 0, clear, complement, 
add one, shift right or left, or return from the subroutine). Each bit is tested in the sequence shown, and if 
a one, the corresponding operation is carried out. If the instruction code with op = 6 is given, the 
computer halts; pressing continue restarts it. 

The instruction set shown above is straightforward and simple. Subroutine return addresses are stored in 
a link register, L. ,Thus to call subroutines at a depth of more than one level requires the called 
subroutine to save the link register in a. temporary location. But there is no way of storing this register; 
thus it is difficult to call a subroutine and pass parameter information (e.g., the location of data). A 
problem is given to correct these design faults. 

USING ISP TO DEFINE THE COMPUTER 

The ISP notation can be used alone, in a linear text fashion, as an alternative description of the stored 
program computer. In fact, ISP was initially developed solely for the purpose of defining the instruction
set of a computer. The difference between an ISP and an RTM description appears fairly slight, with only 
a few more RTM actions required to implement the ISP. Also, an ISP description usually does not imply 
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an implementation or structure. The main difference between the ISP and RTM description occurs 
because ISP is fundamentally a 1- dimensional or linear-text representation. For some descriptive 
applications this shortens the description, while in other cases the two are nearly the same size. The 
reader should not have a serious problem in understanding the ISP description because the various RTM 
register declarations and actions used in this book have been borrowed from ISP. The ISP description of 
Crtm-1 is given in Figure Crtm-6. In this description a Run-switch has been added for manually 
interrupting the computer. 
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Fig. Crtm-4. Control part showing Crtm-1 fetch, decode, and execute processes for instruction 
interpretation. 

RTM IMPLEMENTATION OF Crtm-1 

Figure Crtm-5 shows the RTM diagram for the small general purpose, stored program computer that we 
have been calling Crtm-1. It was initially constructed as an application experiment to demonstrate the 
feasibility of RTM's and to investigate systems problems. The process of specifying the machine took 
approximately two hours (with three people). The computer was wired, and aside from minor 
system/circuit problems (for which the experiment was designed) the computer operated essentially when 
power was supplied, since there were no logic errors. 

The computer was designed for an actual application which had 300 constants, 600 control steps and 16 
variables. (An alternative approach would have been to hard-wire the 600 control steps directly, thereby 
operating faster, but being more expensive and less flexible.) The computer has only 24 K(evoke) and 10 
K(branch) modules. (By way of comparison, RTM interpreters require about 90 control modules, 2 
DMgpa's, and core memory to emulate the PDP-8 minicomputer.) Since the price ratio of a single 
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hardwired control to a single read-only memory control word is approximately 10:1, and since the 
overhead price of a 1000-word read-only memory is about the same as 100 controls, it was cheaper in the 
above application to use RTM's to first build an interpreter, (i.e., a stored program digital computer) and 
then let the computer program execute the control steps. 

The data part of the machine is shown in the upper right of Figure Crtm-5. Three DM-type RTM 
modules hold the processor state and temporary registers. The processor state, that part of memory 
accessible to and controlled by the program, includes: A, the accumulator; P, the program counter; and L, 
the register used to hold subroutine return addresses (links). The temporary registers 
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Fig. Crtm-3. Program for Crtm-1 computing z<-x+y. 

1. The interpreter picks up (fetches) the instruction in 10, loading it into K(interpreter). P is 
increased by 1, becoming .11. 

2. K(interpreter) determines that the instruction is an 0PR type (i.e., 111 001 0000000000) and 
furthermore proceeds to execute the proper register transfer called for. This causes A to be cleared 
(i.e., A<-0). 

3. The interpreter fetches the instruction addressed by P (i.e., 11). P is increased by 1 (P becomes 
12). 

4. The interpreter carries out (executes) the instruction in 11 (i.e., 001 000 0001000000), which is 
ADD 100. This causes data in memory location 100 to be added to A. Now, A contains a 3. 

5. The instruction ADD 101 in location 12 is fetched, and P is advanced to 13. 
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6. The instruction is executed causing a 4 to be added to A. A now contains 7. 

7. The instruction, DCA 200, in location 13 is fetched, and P advanced to 14. 

8. The instruction is executed, causing a 7 to be placed in location 200. A is reset to 0. 

9. The instruction in location 14 is fetched and the process continues. 

This process of fetching an instruction, determining what it is (i.e., decoding it), and then executing it, is 
called instruction interpretation, and can be expressed by a flowchart as shown in Figure Crtm-4. There 
are only 1+1+8 basic boxes. 
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Clear A microcoded operate instruction. Reset the Accumulator to 0. The micro-operation is selected by 
bit 10. The ISP expression defining clear A is: 

Complement A microcoded operate instruction. Complement the Accumulator and place the result back 
in the Accumulator. The micro-operation is selected by bit 9. The ISP expression defining complement A 
is: 

Add 1 to A microcoded operate instruction. Add a 1 to the Accumulator and place the result back in the 
Accumulator. The micro-operation is selected by bit 8. The ISP expression defining add 1 to A is: 

Shift right A microcoded operate instruction. Shift the Accumulator right 1 position; i.e., divide the 
Accumulator by 2, and place the result in the Accumulator. This is an arithmetic shift (i.e., the sign is 
shifted in). The micro-operation expression defining shift right A is: 

Shift left A logical microcoded operate instruction. Shift the Accumulator left 1 position, i.e., like 
multiplying by 2, and place the result in the Accumulator. This is a logical shift since a 0 is shifted in. 
The micro-operation is selected by bit 6. The ISP expression defining shift left logical A is: 

Return from subroutine microcoded operate instruction. Place the subroutine Link register in the Program 
Counter. This causes the computer to jump back to where a JMS instruction was given. The micro
operation is selected by bit 5. The ISP expression for defining return from subroutine is: 
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Instruction-Interpreter 

Having given the definition of the computer's memory and registers, together with the definition of each 
of the instructions, only the process for interpreting the instruction set remains to be described. The 
K(interpreter) part was included in Figure Crtm-l. Before defining the behavior of the interpreter more 
formally, let us look briefly at a program stored in Crtm's memory (see Figure Crtm-3). This program is 
4 instructions long and begins in location 1018 (all numbers shown are base 8). It assumes that there are 
three additional variables, x, y, and z, held in locations 100, 101, and 200. If we start the program in 
location 10, by somehow having the Program Counter\P contain 10, the following behavior is observed: 
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Deposit and Clear Accumulator (DCA) instruction. The Accumulator is stored.. in the memory word 
addressed by the effective address. The Accumulator is then reset to hold the value 0. The instruction is 
selected when the opcode is 3. The ISP expression defining DCA is:(1) 

Jump to Subroutine (JMS) instruction. Place the Program Counter in the Subroutine Link register. Next, 
reset the Program Counter to the value specified by the effective address. The instruction is selected 
when the opcode is 4. The ISP expression defining JMS is: 

Jump (JMP) Instruction. Reset the Program Counter to the value specified by the effective address. The 
instruction is selected when the opcode is 5. The ISP expression defining JMP is: 

Halt (HLT) instruction. Stop the computer by not causing any subsequent action. The instruction is 
selected when the opcode is 6. The ISP expression defining HLT is: 

Operate(OPR) microcoded instructions. The OPR instruction is actually a set of instructions which can 
be given by placing ones in various bit positions to cause certain actions called micro-operations. Any 
number of micro-operations can be executed in a single OPR instruction. The instruction is selected 
when the opcode is 7. The ISP expression defining OPR is: 

Micro-operations are executed in the sequence described below: 

Skip if A=0 microcoded operate instruction. If the Accumulator is zero, a 1 is added to the Program 
Counter causing a skip. The micro-operation is selected by bit 4. The ISP expression defining skip if A=0 
is: 
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Skip if A is negative microcoded operate instruction. If the Accumulator is negative, a 1 is added to the 
Program Counter, causing a skip. The micro-operation is selected by bit 3. The ISP expression defining 
skip if A negative is: 

1. The semicolon in the instruction indicates that the operations can be executed perfectly in parallel. 
That is, M[z] gets the old value of A, not the zero. This type of parallelism is easily achieved using 
registers composed of edge triggered or master slave flip flops. If a definite sequence of actions is 
implied. The word "next" is used following the semicolon. 
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the instruction format. There are three main parts: the 3-bit operation code, bits <15:13>, which define 
one of 8 instructions; 3 unused bits <12:10>; and ten address bits, <9:0>, which specify the location in 
memory of an operand. This address of the location is called the effective address. 

Fig. Crtm-2. Instruction format for Crtm-1. 

The particular assignment of operation code bits to the eight possible instructions, and the behavior of the 
instructions will be given below. The complete set of instructions is called the Instruction-set. To 
describe the action of the instructions, the ISP notation will be used, which gives both the definition of 
the the value of the instruction code and the behavior of it. The ISP format is: Instruction-name (:= op = 
value)=>(action of instruction). There is a name for the instruction, a value for the op code corresponding 
to the name, and each instruction has a certain action (behavior) expressed as a series of register transfer 
operations. (The complete ISP description is given in a later section.) 

Instruction-Set 

The instruction-set for Crtm-1 is: 

Logical AND instruction. The operand in memory accessed by the effective address is ANDed with the 
Accumulator and the result is stored in the Accumulator. The instruction is selected when the opcode is 
0. The ISP expression defining ADD is: 

Two's Complement Add (ADD) instruction. The operand in memory accessed by the effective address is 
added to the Accumulator and the result is stored in the Accumulator. The instruction is selected when 
the opcode is 1. The ISP expression defining ADD is: 
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Increment and Skip if Zero (ISZ) instruction. The operand in memory accessed by the effective address 
is added to a one, and the result is stored back in memory. If the result is zero, a one is added to the 
Program Counter causing the next instruction to be skipped. The instruction is selected when the opcode 
is 2. The ISP expression defining ISZ is: 
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Fig. Crtm-1. PMS diagram showing four basic components of a general purpose stored program 
computer. 

Registers and Memory 
In describing a computer, the common method is to describe first all the registers within the above parts 
which are accessible by the program (i.e., all the registers that can be affected by an instruction). 

Crtm-1 has the following registers: 

A\Accumulator<15:0> - a 16-bit register in the arithmetic-logical unit which holds intermediate results of 
calculations. In Crtm-1, A is the only arithmetic register which can be manipulated under program 
control. 
P\Program-Counter<9:0> - A 10-bit register which is part the computer's control component, and which 
points to (accesses) the next instruction to be carried out. 
L\Link<9:0> - The subroutine link register. This register is part of the control component and holds the 
return address when a subroutine is called. In this way, the program knows where to come back to at the 
completion of a subroutine. 
M[0:1777v8)<15:0> - The array memory which holds the program and the data which the program 
operates on. 
Data-switches<15:0> - A 16-bit external switch register, which can be read into the A register under 
program control (i.e., gets data into the machine). Also, the switch register, can tell the computer at 
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which location in memory to start. 

Instruction Format 
Instructions in Crtm-1 manipulate the above registers and program memory. As has been outlined 
already, the control component contains a mechanism for fetching instructions pointed to by the Program 
Counter. These instructions are then interpreted and operations are performed. 
The instructions are stored in M. Figure Crtm-2 shows the assignment (meaning) of bits in the instruction 
word. This assignment of bits is usually called 
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system (in this case a computer). Up until now, the RTM diagram has provided a two-dimensional 
representation schema for behavior and structure. The reader has not been burdened with learning a 
register-transfer language because they are quite cumbersome for expressing digital systems. Since most-
computers behave simply, a one-dimensional representation is usually adequate. 

The motivation for introducing ISP notation is that it serves as the formal basis for defining computers. A 
computer can be defined precisely and relatively easily in ISP. The section on the PDP-8/RTM is based 
on the ISP description; the specification in ISP is converted into an RTM implementation in a relatively 
formal way. ISP's of many larger computers (e.g IBM 7090, CDC 6600) can be found in Bell and Newell 
(1971). 

COMPUTER SIMULATION 

An ISP description can also be converted to a programming language (e.g., Fortran) rather easily, so that 
a computer may be simulated, and the design and description verified. Subsequent design problems are 
given to describe computers in ISP, carry out ISP-to-RTM, and ISP-to-Fortran conversions. 

COMPUTER INTERFACING 

A section presents several extended RTM's for use in interfacing an RTM system to a computer. With 
these interfaces, it is possible to build combined systems in which some operations are carried out within 
the computer (i.e., programmed) and some operations are done in the specialized system (hardware). 
Thus, the hardware-software trade-off can be exploited in a design. 

Crtm-1: A SMALL, GENERAL PURPOSE, STORED 

PROGRAM COMPUTER DESIGNED USING RTM'S 

In this section, we present three aspects of computers using Crtm-1. -The first section describes the 
computer in a conventional way, without regard to the fabrication. The second section describes the 
implementation using RTM's; hence, the reader has another opportunity to understand how the computer 
operates. Finally, the structure and behavior of Crtm-1 are defined again using ISP. This last section will 
be referenced in subsequent sections for designing computers based on their ISP descriptions. 

DESCRIPTION OF CRTM- 1 

A computer is usually considered in terms of a structure constructed from the four components shown in 
Figure Crtm-1; these are: a D for carrying out arithmetic and logical operations; an M for storing the 
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program and information (data) for the program; a T, for communicating with the outside world, which 
includes a console for direct human control of the computer; and a K, the interpreter, which defines the 
behavior of the components through the use of instructions. The interpreter operates by picking up (i.e., 
fetching) instructions from the computer's memory, examining (i.e., decoding) them and then carrying 
out (i.e., executing) the operation they specify. After each instruction is interpreted, a register within the 
interpreter, called the Program Counter (also called the instruction address, the instruction location 
counter, etc.), selects (accesses) the next instruction to be interpreted. Control then repeats the fetching
decoding-execution process for this new instruction. This simple 3 step sequential process is basically 
how all current, general purpose, stored program digital computers operate. 
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CHAPTER 6 COMPUTER DESIGN EXAMPLES 

The goal of this chapter is to give the reader insight into the operation of computers. Again RTM's are 
used -- here for fabricating computers. That we have used RTM's before in a slightly different context 
does not seem to limit our ability to present new concepts with them. In fact, since we use a fixed set of 
components, now well-known to the reader, it is feasible to carry out the description and analysis at a 
much deeper level than when we have to worry about implementation details. In describing a computer 
we can show the details of the structure and behavior by allowing the reader to look at the complete 
internal structure of the computer. 

COMPUTERS 

Several computers are presented for various reasons. Holding with the policy that repetition reinforces 
learning, we. also include at least two problems to reinforce concepts. Three C's are given: the Crtm-1, 
the first minicomputer constructed from RTM's; the PDP-8/RTM, based on a common minicomputer, the 
PDP-8; and the PDP-16/M, a subminicomputer which is microprogrammed. 

The Crtm-1 is given both for historical and pedagogical reasons. Besides having been the first, it is 
nearly the simplest computer that can be constructed from RTM's, requiring only about 200 control 
wires. Because it is so simple, we believe that anyone who is unfamiliar with general purpose stored 
program computers can understand them using Crtm-1 as a model. Computers of about its size take about 
8 to 12 hours to define, document, wire, and get operational. Therefore, we hope every reader who has 
not had the joy of designing and implementing a language or a computer will take the time to design and 
build one with RTM's, or at least carry out the paper exercise. He should then spend at least as long 
writing programs for it, and possibly re-iterate the design. 

The PDP-8/RTM is given to provide an exam pie of an existing minicomputer, which was designed 
independently (actually, long ago in 1965) of the work in RTM's. Educational examples are almost 
always oversimplified. This is especially true of computers, since they have many seemingly irrelevant 
details. But these details are in fact an essential part of the design -- of what makes the computer useful 
in the real world. Consequently, it is important to design and analyze an actual computer. 

The PDP-16/M is presented because in applying the PDP-16 (i.e., RTM's) to a problem, a 16/M 
configuration might be the best solution. Also,, since the 16/M is like a microprogram computer with no 
higher level instruction-set, it gives another view of microprogramming. 

In terms of gradual transition from hardwired RTM systems to fully developed computers, the order 
should be 16/M, CRTM-1, PDP-8/RTM. We place the 16/M at the end in this chapter for reasons of 
pedagogy. 
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Several additional small computers are described briefly as problems: a general register structure 
machine, a desk calculator, and a machine using the DMar. 

ISP NOTATION, AND ISP TO RTM CONVERSION 

In describing Crtm-1, a notation for computer instruction-set description, ISP, is introduced. ISP should 
be relatively familiar by now, since it is the programming-language-like notation used in the RTM 
flowchart and data part diagrams. By using the notation, a one-dimensional text string (such as in 
conventional programming) expresses the structure and behavior of a digital 
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3. Extend any of the search schemes to access alt entries between a starting entry name, Name-lo, and an 
ending entry name, Name-hi. Develop a scheme which accesses data by entry name and attribute. 
4. The initialization scheme for the binary search strategy implemented in Figure MCA-8 guides the 
search properly only if logv2(N) is an exact integer. Devise an initialization scheme that works for any 
N. 
5. Design an M(content addressable) that uses a hash function. Implement the operations shown in Figure 
MCA-l. Predict the performance of your system as a function of the fullness of the memory. 
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Solution 2 - A Content Addressable Memory Using a Binary (Logarithmic) Search Strategy. 

The design of an effective CAM requires that the search time be as small as possible. In the previous 
example, the data was unordered and the average number of comparisons to a match was N/2. However, 
if the data can be kept ordered, the search can be carried out with at most logv2(N) (the integer part) 
comparisons for a CAM with N entry names. This technique is useful for example for converting analog 
inputs to digital values or for any table look-up scheme (e.g., sqrt(x), sin(x)). 

Since the data is monotonic, a series of trials regarding the location of the desired entry name can be 
made. The trials are ordered such that each trial divides the search space in half and the succeeding trial 
is above or below the current point depending on the relationship between the entry name at the division 
point and the entry name being accessed. Figure MCA-7 shows the overall control strategy for a binary 
search. The main loop is controlled by a K(for loop) which steps through the search space for up to 
logv2(N) trials and assumes that the entry names are stored in increasing order. The first trial compares 
the desired entry name (Name) with the N/2 entry name in the memory. The search terminates on a 
match; otherwise, the N/4 entry name or the 3*N/4 entry name is checked, depending on whether Name 
was greater or less than N/2. The search continues in this fashion until a match is found or until the List 
has been exhaustively subdivided. 

Figure MCA-8 shows the data part, control part, and memory organization for an M(content addressable) 
with a binary search scheme. 

Solution 3 - A Content Addressable Memory Using Hash Coding for Direct Addressing. 

There is another accessing scheme, called hash code addressing which would provide faster access than 
either the linear or binary search. A hash function, H, is applied to an entry name to produce an address, 
H(Name), of a physical location in the memory space. For the design presented here, the entry name is a 
sixteen-bit word which must be mapped into a ten-bit address. The purpose of the hash function is to 
provide rapid access to unordered data with little or no searching. The memory can be organized as in 
Figure MCA-2, but any empty cells must have blank entry name fields. 

The choice of the hash function depends on the distribution of the names in the address space. A 
desirable hash function is one which randomly distributes the entry names throughout the address space 
without bunching the entry names in dense groups. A collision occurs when two entry names are mapped 
into the same address. The object of the hash function is to avoid collisions; However, when a collision 
does occur, some scheme must be developed to provide an alternative location for the new entry name. A 
simple scheme is to start from- the collision point and consider successive addresses until an available 
slot is found. 

When reading from the memory, the hash function is applied to the entry name and if the entry name at 
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that address does not match the given name, then whatever scheme was applied to write into the memory 
is used to search for the given entry name. If a blank entry is encountered before the entry name is found, 
the name 'toes not exist in the memory. 

ADDITIONAL PROBLEMS 

1. For both Solution-1 and Solution -2, implement all of the operations shown in Figure MCA-1. 

2. Design an M(content addressable) which uses a linked list to organize the memory. 
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Fig. MCA-4. PMS diagram of the general structure of a read-only, content addressable memory with a 
sequential search strategy. 

Fig. MCA-5. RTM diagram of the data part of a read-only CAM with a sequential search strategy. 

The solutions presented will be given in terms of the search strategy employed in accessing the memory. 

Solution 1 - A Content Addressable Memory Using a Sequential Search Strategy. 

The design presented here will be a read-only, content addressable memory based on a 1024 word M(array), using the 
organization scheme shown in Figure MCA-2. This scheme provides for 512 sixteen-bit entry names and 512 sixteen- bit 
data entries. The entry names will appear unordered and will be unique. When a read command occurs, a register, Name, 
contains the entry name to be accessed; at the completion of the search, the data associated with the entry name is placed in 
a register, Data. If the entry name is not found in the memory, an error exit is taken. the general structure of the system is 
shown in Figure MCA-4 and the specific data part is shown in Figure MCA-5. 

The search scheme is straightforward and is shown in Figure MCA-6. The search steps through the physical memory 
addresses and at each step checks for a match. The search is terminated when a match is found or when the entire memory 
has been searched. The average number of comparisons before a match is 256. We use the operation 4-MA here for 
compactness of presentation, although strictly speaking this operation is not available in RTM memories. 
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Figure MCA-1 shows the general structure of a system with these operations. The memory might be 
organized in one of the following ways: 

1. Linearly-unordered - Each time a new entry name is to be written into the memory, it is 
appended to the existing list as an entry name - data pair. Figure MCA-2 shows such a memory 
organization. 

2. Linearly-ordered - Each time that a new entry name is to be written into the memory, it is added 
so that the entry names appear in some fixed order. The same entry name-data pair could be used 
as in Figure MCA 2, except that the entry names would be ordered. The simplest scheme for 
entering data in an ordered list is to find the proper place for the entry name-data pair, then move 
all entries which appear after the new entry down two spaces in memory and add the new data. 

Fig.. MCA-l. PMS diagram of the general structure of an M(content addressable). 

3. Linked-list - If ordered entry names are desired but the moving required in the previous case is 
not allowable, then a linked list structure might be feasible. Associated with each entry name-data 
pair is a link which points to the next entry in the list. The link most likely to be used is the 
physical memory address. Adding a new entry involves stepping through the linked list to find the 
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proper location, entering the new entry at an available memory location, setting the link of the 
new entry to have the value of the link of its predecessor, then changing the link of the 
predecessor so that it points to the new entry. Deleting an entry simply involves setting the link of 
the predecessor to the value of the link of the entry that is to be deleted. Figure MCA-3 shows an 
example of a linked list, organized memory. 
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M(CONTENT ADDRESSABLE) 

KEYWORDS: Content addressable memory\CAM, entry name search, hash code, linked list. 

With array memories, each item is accessed with an explicit address which is an index that must lie in a 
specific range of values, i.e., zero to n-1 where n is the number of words in the memory. With queues and 
stacks, items were accessed at the front and rear or at the top of the memory. Another type of memory is 
the content addressable memory which is a type of associative memory. The content addressable 
memory, as its name implies, is addressed by content rather than by an implicit or explicit address. Each 
cell of a content addressable memory has two parts: the entry name by which the cell is addressed, and 
the data associated with the entry name. With such a memory, there is no restriction on the address range 
and the entry names need not appear in any specific order. 

A telephone directory is an example of a read-only content addressable memory\CAM, (ignoring the fact 
that some people often write in telephone books). The entry names are persons' names and the associated 
data are their telephone numbers and addresses. In one, sense, the telephone directory is organized as a 
conventional, linearly addressed memory; there are explicitly numbered pages with columns and lines 
and alphabetic keys at the tops of the pages. Various search strategies that take advantage of the 
alphabetic order of the entry names may be 'used to locate a particular entry name. If, however, someone 
were searching for a name associated with a particular telephone number, on the average, half of the 
directory would have to be searched to find the name associated with the given number. 

There are numerous applications for content addressable memories both in hardware and software. For 
example, the symbol table of a compiler or assembler is such a memory. Some of the entry names are the 
operation codes (e.g., ADD); associated with each entry name (op code) is data used by the compiler or 
assembler. Consider a hardware character converter which translates character sets. The source 
characters would be the entry names into a CAM and the target characters would be the associated data. 

Another type of organization for a CAM is by entry name and attribute; each entry name has an 
associated set of attributes in addition to the data (the data"' may be just the attributes). This allows 
multiple instances of the same entry name with different attributes for the different cases; whole classes 
of data could be accessed by providing an entry name and desired attributes. The data might also be 
processed as a function of its entry name and attributes. 

PROBLEM STATEMENT 

Design an M(content addressable) using an M(array). 

DESIGN CONSIDERATIONS 
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The principle design issues are memory organization, search strategy and available operations. 

The following is a set of useful operations: 

● 1. Read (search) - locate a particular entry name and read its associated data. 

2. Write - enter a new entry name and data into the memory. If the entry name already exists, 
overwrite the old data. 

3. Clear (initialize) - delete all entries in the memory. 

4. Delete - delete an instance of a particular entry name. 
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Fig. MS-4. RTM diagram of the general structure of an M(stack).


3. A deque (double ended queue) is another type of memory which has the operations associated with a 
stack, but provides access to both ends of the memory; design an M(deque) using an M(array). 

4. Design an M(double stack) which shares a common memory between two stacks. Extend the design to 
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n stacks sharing a single memory. (Knuth, 1968) 
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Fig. MS-1. Data in M(stack) for recursive sum-of-integers-to-N subroutine. 

e. Duplicate (equivalent to Fetch, then Push of that element) which duplicates the top 
element of the stack so that the top two elements are the same. 

f. Arithmetic, logical and shift operations such as complement, increment, NOT, right 
shift, left shift, performed on the top of the stack, with the result replacing the top. 

2. Binary - These operations affect the top two elements of the stack. 

a. Swap (equivalent to Pop-Pop, then two Pushes of the items in reverse order) which 
interchanges the top two elements of the stack. 

b. Pop-two (equivalent to Pop-Pop) which removes the top two elements of the stack 

c. Replace-two (equivalent to Pop-Pop-Push) which replaces the top two elements of the 
stack 

d. Arithmetic and logical, such as addition, subtraction, multiplication, division, AND, OR, 
XOR. These operations replace the top two elements of the stack with a single result. 

3. N-ary - These operations can be composites of the unary and binary operations though 
certain n-ary functions which replace the top n elements of the stack with a single result 
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are possible. 
a. Max(a,b,c,...n) and Min(a,b,c,...n) 
b. Sum(a,b,c,...n) and Product(a,b,c,...n) c. Clear 

Examples of several of the above operations are shown in Figure MS-3 and an RTM 
diagram of an M(stack) is shown in Figure MS-4. The stack, unlike the queue, does not 
allow simultaneous operations since all accesses to the stack are made at the top of the 
stack 

PROBLEMS 
1. Design an M(stack) using an M(array), with many of the operations described above. 
Consider the problem of handling invalid operation requests. 
2. Design an M(stack) using a number of independent subsystems for each level in the 
stack. 

282 

previous | contents | next 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000298.htm (2 of 2) [4/3/2002 6:14:41 PM] 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000298.htm


Designing Computers and Digital Systems 

previous | contents | next 

keep track of which memory belongs to which subroutine is facilitated by the stack. 

Another important application for stacks is in the implementation of recursive subroutines, i.e., those 
which call themselves. For example, in the sum-of- integers-to-N problem, the computation 

The above recursive procedure requires both temporary information identifying at which of the N calls it 
is currently executing, and the intermediate value of the computation it is performing. For each procedure 
call, a temporary memory call for N is created and the return address to the point of call is saved. Figure 
MS-1 shows what the stack could look like for the innermost call of this procedure. 

A simple, stack-based arithmetic unit will illustrate the use of stack for evaluating arithmetic expressions. 
An arithmetic expression of the form (A*B)+C is said to be in operator infix notation, that is, the 
operators are between its operands. The expression could alternatively be written in functional notation 
as Plus(Times(A,B),C) or as +*ABC, which is operator prefix notation. A third possibility is operator 
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postfix notation which, for the example, would be AB*C+. In this last form there is strict left to right 
evaluation of the expression and this form is ideally suited for implementation on a stack. Figure MS-2 
gives an example illustrating the use of the stack for storing operands while evaluating arithmetic 
expressions. 

Three classes of operations are performed on stacks: 

1. Unary - These operations affect only the top element on the stack. 

a. Push (put |store |write) which adds an item to the top of the stack. 

b. Pop(get |load |read) which removes the top item from the stack. 

c. Replace (equivalent to Pop-Push) which replaces the top item on the stack. 

d. Fetch (equivalent to Pop, then Push of the same element) which reads the top 
element of the stack without removing it. 
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N-1, which indicates that no items are in the queue; Empty-flag to true; full-flag to false; Item-count to 0; 
and the Clear-request flag to false. 

The Put subprocess, shown in Figure MQ-4c, performs several tasks: increments the Item-count by one; 
sets the Empty-flag to false; if tem-count equals N, sets the Full-flag to true; increments Put-ptr by one 
(mod N) and stores the data item from Put-buff at this address (rear of the queue); and sets the Put-
request flag to false. 

The Get subprocess, shown in Figure MQ-4d, performs these tasks: decrements the Item-count by one; 
sets the full-flag to false and the Empty-flag to true if the Item-count is zero; increments Get-ptr by one 
(mod N) and takes the data item at this address (front of the queue) and places it in Get-buff; sets the Get
request flag to false. 

Figure MQ-5 shows various examples of usage of the queue. 

ADDITIONAL PROBLEMS 

1. Carry out a design which minimizes cost by storing control information about the queue (i.e., Put-ptr, 
Get-ptr, Item-count) in the memory array. 

2. Design an M(queue) which has a number of data parts (stages) which transfer data from stage to stage 
in a pipeline fashion. Carry out the design for 2,3,...,n data parts. 

3. Do a cost/performance analysis to determine the feasibility of always keeping Get-buff filled. 

4. Design a time-shared M(queue) which provides for data inputs from multiple sources and data outputs 
to multiple sinks. Assume that there is a fixed amount of memory to be shared which is shared equally 
among all queues. Alternatively consider a design with a fixed amount of memory dynamically shared 
among the queues. 

5. Determine the rate at which Put, Get and Clear operations can be processed. In the system described 
above, an operation request is lost if it is given while a previous request of the same type is being 
handled. Design an M(queue) that can stack up to K requests of the same type without losing a request. 

6. Use K(arbiter) to design M(queue). 

M(STACK) LAST-IN, FIRST-OUT MEMORY 

KEYWORDS: Stack, LIFO, push, pop, memory 
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The usual example given of a stack is that of a pile of plates stacked on top of a spring-loaded rack, to 
which new plates are always put on or taken from the top. In the stack memory, words would correspond 
to the plates. The stack is used less than the queue in hardware structures, but it is quite useful in 
programming and in studying theoretical models of computation. Stacks have been used as the main 
memory in computers, and in desk calculators for holding intermediate results. The two applications of 
the stack that are most frequently encountered in programming are saving procedure (or subroutine) 
return addresses, saving temporary information which subroutines use, and evaluating nested arithmetic 
expressions. 

The advantage of the stack as a memory for saving return addresses and temporary information is that 
space is not required within each subroutine to hold that information. All subroutines use a common 
memory and the total requirement for the memory is equal to the space required by all subroutines active 
at a given moment - a dynamic requirement. The bookkeeping required to 
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Fig. MQ-4b. RTM diagram of the Clear subprocess for M(queue).


Fig. MQ-4a. RTM diagram of the polling control for M(queue). 

5. two single word registers of a DMgpa, Get-ptr and Put-ptr, which act as pointers to the front of 
the queue (for Get operations) and to the rear of the queue (for Put operations), respectively; 

6. two constant registers, N and N-1, where N is the maximum number of items that the queue can 
hold. 

The control part interface, shown in Figure MQ-3, consists of three subroutines which are called by the 
system using the queue. In each subroutine, the appropriate request flag is set to one when a call is made 
on the subroutine, then control loops through a no-op module until the request flag is set to zero. The 
completion signal is then given. An independent central control part controls the actual manipulations on 
the queue. Communication between the interface subroutines and the central control is through the 
request flags. The central control part polls the request flag (see Figure MQ-4a) and on finding a request, 
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initiates the appropriate subprocess. At the completion of the subprocess, the request flag is set to zero 
which causes the interface subroutine to issue a completion signal. Then polling continues. Notice that 
simultaneous requests can be entered, but that only one operation subprocess is executed at a time and 
that requests for invalid operations (i.e., Put with a full queue, Get with an empty queue) are ignored in 
the polling loop until the operation can be completed successfully. 

The Clear subprocess, shown in Figure MQ-4b, sets: Get-ptr and Put-ptr to 
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There are no explicit names or addresses given to data in the memory. Putting is always done at the rear 
of the queue and Getting is always done at the front of the queue. Figure MQ-la shows the behavior of a 
queue. 

Figure MQ-lb gives a PMS diagram of an M(queue), with n words and w bits per word. The queue is 
composed of two parts: the memory for storing the data items in the queue, and the control part which 
executes the Get and Put processes. The various links and signals are: w-bit input and output links at the 
memory part; a k-bit item count which is a count of the current number of words in the queue; two 
Boolean flags which indicate an empty or full queue - these are used by external processes to determine 
whether an item can be taken from or placed into the queue, before actually making a request for an 
access operation; Put- and Get-request input control signals, and Put- and Get- complete output control 
signals; optional Put-full-error and. Get-empty-error output signals which indicate an invalid operation 
request, i.e., Putting into a full queue or Getting from an empty queue; and a Clear-request (and Clear
complete) signal which evokes an operation that initializes the queue, i.e., in effect removes all items 
from the queue. 

Figure MQ-lc shows an alternative method for making operation requests to the control part; a single call 
request is given with a parameter to specify which operation, Get, Put, or Clear, is being requested. In the 
former control part, simultaneous Put and Get requests could be handled while in the latter case, only 
single commands can be handled. Figure MQ-1d shows another control part which accepts single 
operation requests but does not issue an operation completion signal. It only sets an error-flag when 
invalid operation requests are issued. The assumption allowing this design is that it is the responsibility 
of the controlling process to wait a certain amount of time after issuing an operation request before 
issuing a second request. This time is the processing time of the operation requested. 

An alternative specification for the design that allows simultaneous Get and Put requests with explicit 
error returns might be a system which does not issue error signals, but holds queue operation requests 
until they can be satisfied. For example, if a Put request were entered when the queue was full, that 
request would be held until a Get request was issued that would free a place in the queue, then. the Put 
would be executed and the completion signal given. A similar process would be performed if a Get 
request was issued when the queue was empty. Clearly, error signals are not necessary in this design. 

PROBLEM STATEMENT 

Design an M(queue) using any of the control parts described in the introduction. 

SOLUTION 

Figures MQ-2 and MQ-3 present the data and control parts which form the interface between the 
M(queue) and the system that uses it. The data part consists of: 
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1. two one-word buffers, Get-buff and Put-buff, which hold data items to be read from or written 
into the queue respectively; 

2. a one-word register, Item-count, which holds the count of the numbers of words in the queue; 

3. an array memory which stores the data in the queue; 

4. two Boolean flags, Full-flag and Empty-flag, which are used to indicate a full or empty queue 
respectively; 
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that the T(general purpose interface) output, Bin, holds the number of the current bin being filled. T is 
used to detect whether random or sequential addressing is used to input since it holds the old value of the 
ID switches. 

The control part for the controller process is shown in Figure BIN-7. Note the register, temporary\T, 
holds the physical number of the conveyor cell being considered. The controller waits for the Advance-
Conveyor-Flag signal from the conveyor, then \decrements the CHP and inserts the item number in the 
cell corresponding to that of the conveyor. It then checks all 63 conveyor positions to find those parts 
that may be ejected into each bin. New items enter the conveyor at the position. marked by the CHP. A 
count is kept of the items in M[OJ that could not be binned and the Over-30-alarm-f lag is set when this 
number reaches 30. 

ADDITIONAL PROBLEMS 

1. Carry out a study to determine parameters for specifying a class of conveyor-bin systems. 

2. What is the approximate rate at which the conveyor can move and not be limited by the controller? 

MEMORIES 

This section introduces three new memories, namely M(queue), M(stack), and M(content addressable), 
into the set of those that have already been introduced as primitive RTM components: DM(flag) - a 
single bit Boolean; M(transfer), M(byte), and M(constants) - sixteen bit registers; and M(scratchpad) and 
M(array). In the primitive memories, a particular piece of data is accessed explicitly. The new memories 
use the following accessing schemes: M(queue) - the first item placed in the memory is the first item 
removed (FIFO); M(stack) - the last item placed in the memory is the first item removed (LIFO); 
M(content addressable) - an item of data is accessed by its value rather than by name, a form of 
associative memory. 

The M(queue) presents an interesting synchronization problem. This memory has two independent 
processes: one for input (called Put), and one for output (called Get). These theoretically could be used 
simultaneously, but since one physical memory is used to hold the data, it is necessary to synchronize the 
usage requests. The extended RTM, K(arbiter), previously described, solves this synchronization 
problem. 

With both the M(queue) and M(stack), items are not addressed explicitly; rather the "next" item is 
accessed. The M(content addressable), though, implies that some searching technique must be used to 
retrieve data. 

An excellent description of queues, stacks and other types of memories is given in Chapter 2 of Knuth 
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(1968). 

M(QUEUE) FIRST-IN FIRST-OUT MEMORY 

KEYWORDS: Queue, FIFO, put, get, clear, memory, synchronization 

Queues appear in many different systems ranging from barber shops and grocery store check-out stations 
to components within computers and their programs. For information processing systems, an 
M(queue)\Mq is usually a fixed-size array memory with the following basic operations: Put(write) - for 
entering items into the queue; Get(read) - for taking items out of the queue. 
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Fig. BIN-7. RTM diagram of the control part for the controller process. 
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Fig. BIN-6. RTM diagram of the control part for modifying the bin-count array. 
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Fig. BIN-5. Mapping of conveyor-state-array [65:127] to conveyor positions [1:63]. 

6. a six-bit number, Item-number <5:0>, which is input from the conveyor system to the controller 
indicating the item-number of the part just placed on the conveyor; 

7. a six-bit number, Bin <5:0>, which is output from the controller to the conveyor indicating a 
bin number; 

8. an evoke-signal, Eject-to-bin, which signals the conveyor to read the number on Bin <5:0> and 
eject the part on the conveyor in front of that bin into it; 

9. an evoke signal, Full-bin, which signals that Bin <5:0> contains the number of a bin that is full 
and cannot accept the item on the conveyor in front of it; 

10. a four position switch, operation-mode-switch, which indicates the mode of operation for the 
controller. 

The control part of the system can now be specified in terms of the problem description and the data part. 
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Figure BIN-6 gives the control part for manually modifying the Bin-count array; the control part for 
modifying the Conveyor- state-array is almost identical. The general operation of these two processes, 
which is a product of the design process, not the initial specification, is that ID specifies a starting bin 
(conveyor) position, and each time the SR flag is set, the contents of SR are read into the Bin-count 
(Conveyor-state) array. The bins (conveyor positions) are filled sequentially starting from ID until a new 
value for ID is entered, at which point the process is repeated. The two processes stop when the final 
Tgpi output Bin (conveyor) position has been referenced. Note 
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PROBLEM STATEMENT 

Design the controller for the conveyor-bin system, described above. 

DESIGN CONSIDERATIONS 

Some type of scheme must be developed to represent the capacities of the bins; therefore; the following 
assumptions will be made: finite capacity bins are limited to contain no more than 9999 items and will be 
represented by a positive integer that represents the current number of available spaces in the bin. Zero, 
therefore, indicates a full bin; open-ended bins with infinite capacity will be represented by a bin count of 
-1. 

As stated in the introduction, BCD numbers will be used at the human operator interface, therefore the 
BCD conversion routines developed earlier will be used. 

SOLUTION 

The data part of a controller for the conveyor-bin-system is shown in Figure BIN-4. A 128 word memory 
array (not part of the RTM set, but assumed for this problem)- stores two 63 word arrays: words [1:63] 
are bin-counts which indicate the capacities (as explained above) of the 63 bins; words [65:127] 
correspond to the 63 conveyor positions (referred to as the Conveyor-state-array); word [0] contains the 
number of items in the holding hopper which cannot be placed in bins -- when this number exceeds 30, 
the over-30-alarm-flag is set. Since the conveyor is moving, some relationship between memory words 
and conveyor positions must be made. One alternative is to assign each memory word to a fixed physical 
positron and each time the conveyor moves, the Item-numbers in the cells are shifted up one position so 
that items in memory correspond to bin positions. 

A second alternative, which was adopted in this design, assigns each memory cell to correspond to a 
conveyor cell. A pointer, the Conveyor-Head Pointer, CHP, is used to point to the head (i.e., the first 
position) of the conveyor at a given instant in time. Each time the conveyor moves forward one position, 
CHP is decreased by one; thus the relative distance of a particular item on the conveyor to the head is 
increased by one. Thus memory cells are not moved. CHP is stored in word [64] of the memory array, 
and must be counted modulo 63. New items enter the conveyor at the cell pointed to by CHP (see Figure 
BIN-5). 

By storing all of the above data in a single array, an added benefit is gained. If the memory is non
volatile (i.e., it does not change when power is turned of f), then the controller can be shut down and 
restarted at some later time in the same state as when it was turned off. 

The following registers, flags, and signals form the interface between the controller and the external 
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system (i.e., conveyor and operator): 

1. a register, ID, which is a two digit BCD switch that addresses either a bin or a conveyor 
position when it is necessary to change the state of the system manually; 

2. a register, SR, which is a four digit BCD switch that is used to input a bin capacity or an item 
number; 

3. a flag, Advance-conveyor-flag, which is set by the conveyor externally and signals the 
controller that the conveyor has advanced one position; 

4. a flag, SR-flag, which is set by the operator and signals the controller that the operator would 
like to have data read in from the SR register; 

5. a flag, Over-30-alarm-flag, which signals that over 30 unbinned items are in the holding 
hopper; 

268 

previous | contents | next 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000284.htm (2 of 2) [4/3/2002 6:14:51 PM] 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000284.htm


Designing Computers and Digital Systems 

previous | contents | next 

previous | contents | next 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000283.htm [4/3/2002 6:14:52 PM] 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000283.htm


Designing Computers and Digital Systems 

previous | contents | next 

The inputs and outputs of the controller for the system are shown in Figure BIN-2. The conveyor gives an 
Advance-conveyor signal which signifies that all items have been moved up one position, and an Item
number is supplied signifying the part number just placed on the conveyor. The numbers 1 to 63 will be 
used for item numbers and 0 will indicate an empty position on the conveyor. 

Fig. BIN-2. PMS diagram showing inputs and outputs to the conveyor-bin-system controller. 

The remaining inputs come from the human operator interface. The number, ID, identifies a bin or 
conveyor position number and the Operation-mode switch allows the operator to select one of four 
possible modes for operating the system. The switch-input SR is used by the operator to input 
information about the system. This includes items on the conveyor when it is started and the number of 
available spaces for each bin. The signal, SR-ready, indicates that data is available to be read from SR. 
All inputs from the human interface are encoded in Binary-Coded-Decimal and must be converted to 
binary by the controller. 

The outputs from the controller include: the bin number being specified by the controller; the Eject-to-bin 
signal which causes the specified bin to be opened and the item on the conveyor placed in the bin; the 
Full-bin-alarm signal which initiates an audible alarm and the display in lights of the bin number at any 
bin each time an item cannot be placed in the bin because it is full; and the Over- 30-alarm-flag which 
might be used to shut down the system when over 30 unplaceable items are in the special holding hopper. 

The four modes of operation (shown in Figure BIN-3) for the system are: 

1. Automatic-run - in which the controller is running the system. 
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2. Modify-bin-count - in which the operator may change the specification of the capacity of any of 
the bins. 

3. Modify-conveyor-state - in which the operator may change the status of the items on the 
conveyor. 

4. Reset-unbinned-item-count - in which the Over-30-alarm-flag is Reset to zero. 
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CONTROLLER FOR A CONVEYOR-BIN SYSTEM 

KEYWORDS: Controller, operator, interface, representation 

This problem originated as a controller for a conveyor carrying umber to be sorted into bins. Since it is 
typical of sorting conveyor-bin problems, the parameters of the lumber system will be used. The problem 
is presented for its practical significance and its interesting human interface and representation problems. 

A production process creates items to be placed in 63 bins. When an item is placed on the conveyor, it is 
given an tem number which identifies the bin into which it is to be placed. Faulty items are also placed 
on the conveyor and transferred to a reject-bin, t is assumed that the conveyor moves in discrete steps, 
and after each step, a new item is placed on the conveyor and all items move up one position. if items 
opposite new bin positions have the corresponding item number, they are ejected into the respective bins. 
A diagram of the system is shown in Figure BIN-1 

. 

Fig. BIN-1. Flow diagram for a conveyor-bin-system. 


The bins are of two types: those with a finite capacity which is set when the process is initialized, and 
those which are open-ended and have an infinite capacity. This latter type is used for the reject bin and 
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may be used in other positions. When a bin is filled, any items which are assigned to that bin ride to the 
end of the conveyor and are placed in a special holding hopper called the Unbinned items hopper. After 
some fixed number of items are placed in this hopper, an alarm is given which can be used to stop the 
system so that the bins can be emptied and the items in the holding hopper placed on the conveyor again. 
Each time an attempt is made to place an item in a bin that is filled, a signal is given to indicate the 
condition. 
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EXTENSION 

The most useful extension to the parity counter design would allow tapes longer than sixteen bits to be 
processed. The device that would allow this extension is a Turing Tape Transport. Such a device is 
shown in Figure TUR-5 and is a close approximation to an actual drive known as an incremental tape 
drive. With a tape device such as this each character of the alphabet 0, 1, and B may be represented 
(assume two bits represent a character as 0 = 00, 1 = 01 and B = 10 or 11). In fact most tapes are 7 or 9 
bits wide which would allow alphabets with 2^7 and 2^9 characters respectively. Design a controller for 
the Turing Tape Transport to compute parity using the quintuple of Figure TUR-2. 

ADDITIONAL PROBLEMS 

1. Design a Turing machine which computes parity without erasing the tape. 

2. Design a Turing machine which adds one to a binary number stored on the tape and leaves the result 
on the tape. The read head will be placed under the least significant bit of the word initially and the 
termination symbol, B, will mark the left end of the word. 

3. Design a Turing machine which adds two binary numbers together. Assume that special characters 
delimit the numbers on the tape (i.e. increase the alphabet). 

4. The parity counter essentially had its quintuples hardwired in the design. Design a Turing machine 
simulator that operates from quintuples stored in a memory array, i.e., this machine should operate for 
any set of quintuples. The major issue here is the representation of the quintuples and the method of table 
lookup to determine the appropriate action for each current state - symbol read pair. Such a machine 
resembles K(PCS), described in Chapter 2. 
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Fig. TUR-1. Format for specification of Turing machine quintuples. 

l's. The machine will also write 0's on all squares of the tape until a termination character, B, is 
encountered; this symbol will be written over by a 0 or 1 to denote even or odd parity, respectively, of 
the tape. The symbols 0, 1, B are the only symbols that will appear on the tape. The machine will start at 
the rightmost end of the tape and move left until the 'termination character is detected. The table 
presented in Figure TUR-2 shows six quintuples which express the behavior of the parity counter Turing 
machine. A state diagram of the parity counter is shown in Figure TUR-3. 

PROBLEM STATEMENT 

Design a parity counter using RTM's which "simulates" the Turing machine. 

DESIGN CONSIDERATIONS 

The tape representation is the most important design issue for this problem. There are three tape symbols, 
0, 1, and B, requiring two bits to represent uniquely the values. For the parity counter, however, the 
termination symbol, B, occurs only once on the tape. Possibly an alternative method could be found to 
mark the end of the tape, thereby doubling the density of the tape since one bit will suffice to represent 0 
and 1. The infiniteness of the tape also presents a problem. The largest data element that can be operated 
on with RTM's is a sixteen bit word. The parity counter, in this problem, will be restricted to tapes with 
sixteen squares. The overflow bit will be used to mark the end of the sixteen square tape which will be 
held in a register of a DMgpa. 

SOLUTION 

A parity counter is shown in Figure TUR-4. The tape is held in the B register of a DMgpa and the read 
head is represented as a single one bit in the A register. The tape is read by ANDing the tape and the read 
head. If the result is zero, the bit under the read head is zero; if the result is non-zero, the bit under the 
read head is a one. The symbol 0 is written on the tape by ORing, then XORing the tape and the read 
head together. A left shift moves the read head; when the bit is shifted into the OVF bit, the machine 
halts. The action of writing a zero and shifting the read head left is implemented as a subroutine. 
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An initial tape is entered through the switches of a T(lights and switches). The state of the control for the 
machine, either 0. or 1, is held in the DMflag(Q) and is displayed at light L1. When the machine halts, 
the light will show the parity of the tape, 0 = even and 1 = odd. 
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The device is to take a fixed number of 8-bit analog samples, here 512. The samples are first stored in a 
fast memory and then punched on paper tape with an 8-bit identifying number preceding the samples. 
This number, the Sample Identification, is supplied from an external source. 

ADDITIONAL PROBLEMS 

1. Design a system in which the analog input is multiplexed for eight inputs. 

2. Modify your system so that the identifying number has four 8-bit characters. 

3. What is the maximum sampling rate that might be accomplished using the same a-to-d converter, and 
memory? What would such a design look like? 

4. There is no way to tell if the data punched is the same as that sampled and read. Paper tape systems of 
this type have been known to make errors (e.g., 1 character in 10^6 punched is not unheard of). Design a 
scheme for detecting whether an error has been transmitted in the data which was punched. Design a 
scheme that assumes 1 character has been erroneously punched with a single bit error. Add enough 
information so that the error can be corrected. 

5. Assuming the analog-to-digital converter samples are variable from 8 to 12 bits, modify the design to 
accommodate the variable sample accuracy. 

TURING MACHINE SIMULATOR 

KEYWORDS: State, symbol, tape, transport, Turing machine 

In 1936 A. M. Turing in a paper on the theory of computability, defined a class of abstract machines 
which we now call Turing machines. These machines have both theoretical and pedagogical applications 
in the study of the nature of computation. Turing machines provide an effective method for expressing a 
computational procedure; these model initial, terminal and looping conditions as well as the basic 
computational steps of the procedure. A Turing machine has a finite number of states (resembling a 
conventional controller) and is coupled by a single read-write head to a tape (resembling a magnetic tape) 
which is infinitely long and consists of squares which may have symbols from a finite alphabet written 
on them. The Turing machine executes three basic functions: 

❍ 1. Read - read the symbol from the square of the tape under the head. 

2. Write - write a symbol on the square of the tape under the head. 
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3. Move - move the read head one square to the left or right on the tape. 


The operation of the Turing machine proceeds as follows: 

❍ 1. Read a symbol from the tape. 

2. Using the current machine state and symbol read as parameters, compute: 

■ a. a symbol to write on the tape (possible the same symbol as was read); 

b. a new machine state (possibly the same as the current state); 

c. a direction to move along the tape (left or right). 

3. Loop to step 1. 

The functions for computing new machine states, symbols, and directions are usually expressed in 
tabular form. Each combination of machine state and symbol has an associated triple which indicates the 
new machine state, symbol to write, and direction of movement resulting from that combination of 
parameters; the complete entry is referred to as a quintuple. The table format is shown in Figure TUR-1. 

A parity counter will be developed as an example of a particular Turing machine. The purpose of the 
parity counter is to count the number of l's, modulo 2, that are on a tape of 0's and l's, i.e., detect an odd 
or even number of 
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interconnected sequential elements. Use a K(wait-until) and conventional RTM's to solve this problem. 

3. An important factor contributing to the unreliability of the punch mechanism is wear. This can be 
decreased significantly by having the punch off when not punching. Modify the design so that the punch 
power is automatically turned on and off when the punch is to be used and is not in use, respectively. The 
punch requires about four seconds to come to speed when started from rest. As an alternative, a circuit 
might be designed which senses the Punch Synch pulses and detects when the punch is at speed (at 
speed, Punch Synch signals should occur each 1/1 10 seconds). Note, the punch should not be 
immediately turned off if a character is missed, but rather the punch should wait until no characters have 
arrived for say two seconds since, given that a character has been punched, the probability is high that 
another character will arrive to be punched shortly thereafter. These circuits can be constructed using 
either an all digital or a control delay (particularly the integrating delay) approach. 

4. Design an interface to control the following asynchronous punch. Assume the punch has similar 
signals to those in Figure PH-3. Anytime the physical punch is free and turned on for 4.5 ins., punch 
magnet energizing current can be supplied which signifies that punching is to occur. At the end of the 
punch cycle the Punch Synch Pulse signifies that the punching is completed, and a new punch cycle can 
be started. Thus, a "model" for this behavior is that when the punch currents are energized a 1/110 
second delay within the punch is evoked, and at the end of the delay the Punch Synch Pulse is emitted by 
the punch. Why is the design of an asynchronous punch interface fundamentally simpler than the one 
discussed above? 

SAMPLED ANALOG INPUT TO PAPER TAPE CONVERTER 

KEYWORDS: Sampling frequency, punch, analog-to-digital conversion. 

A device which can sample an analog waveform a number of times and record the samples in a 
permanent memory for later analysis is a common scientific instrument. The signal to begin the sampling 
process is usually evoked externally, and the samples are taken in synchronism with a clock that occurs 
at the sampling frequency. The inputs to the system are the clock (sampling frequency), the analog signal 
to be sampled, the signal to start the process, and a signal to denote when the process has been 
completed. Another necessary input (here an 8-bit number named Sample Identification) identifies the 
particular set of samples. 

PROBLEM STATEMENT 

Design a system to sample and store values of an analog waveform. This particular problem is derived 
from an actual one, so values have been fixed for the number of samples, maximum sampling clock 
frequency, etc. At the end of the discussion extensions are proposed which give an excursion into the 
design alternatives of the system. 
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The sampling rate is very high relative to the rate at which data can be punched on the paper tape. The 
paper tape punch operates at approximately one 8-bit character each 1/110 second (i.e., ~10 ms./ 
character). The minimum sampling time is the time of the analog-to-digital conversion plus the time to 
store the samples in memory in this design. (The design could be modified to operate at a still higher 
rate.) 
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to, wait a sufficiently long time for the deciding circuit to decide, thus giving a low probability of 
undecidability. In many cases being undecided when a decision is made is acceptable because the circuits 
which make the decision have a value, and it does not matter which decision was made. The reason that a 
problem occurs in the punch circuit is that the decision is sent to two places which interpret the decision 
and each may interpret it differently. 

Another solution to the problem involves placing a circuit that examines the outputs of a circuit and then 
gives a signal at a time when the decision is ready and can be examined. 

MORE ON THE SYNCHRONIZATION PROBLEM 

Although the reader may think the synchronization problem has been belabored, this is probably not the 
case. Almost all digital systems require the solution to this problem because they interface with the 
outside world. Many digital systems engineers do not know that digital circuits behave in the somewhat 
capricious and arbitrary manner described above when marginal input commands are given. 

Some of the phenomena that engineers have used in the past to account for unpredicted behavior are: (1) 
circuit noise, (2) faulty power supplies, (3) local keypunch (or other equipment) noise, (4) static 
electricity by the operators who touch the machine, (5) thunderstorms, (6) power failure, (7) noisy input 
power, (8) intermittent wiring or board failures, (9) heavy cosmic ray showers, (10) someone slamming a 
door, etc. The point is that many of these failures were probably due to the synchronization problem. 

Now, it is important to consider how often an error such as the punch synchronization error might occur. 
The probability that such an event will occur is the product of several independent events. The events 
are: 

1. A narrow pulse width window at the end of the synchronization pulse. Assume that the window 
is say 10 ns wide. The probability of this event is: 

l0ns/(1/ll0sec)= 1.1 x 10^-6 

2. Assume that a weak pulse of 10 nanoseconds duration causes only an occasional error, of 1 in 
100. 

3. Assume that only the first character is likely to cause an error because synchronization occurs 
after the first character is punched. Also assume that characters are punched in blocks of 100 
characters. Thus, the probability of a first character is 1 x 10^-2. 

Therefore the probability that a given character will be punched erroneously is about 1.1 x 10^-10. We 
feel that the given design is satisfactory because this probability of failure is small compared to other 
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errors having to do with the handling of paper tape. The errors one might expect with paper tape would 
be in the range of one error each 10^5 ~ 10^7 characters. Also, the time between failures is roughly 10^8 
seconds; which is in the order of the punch's life. 

ADDITIONAL PROBLEMS 

1. Even though we need not worry about the errors caused in the punch, consider what happens when a 
drum is transferring at a data rate 10^3 ~ 10^4 faster. 

2. The synchronization problem can be solved using an RTM control structure (together with the various 
transducers required in the previous solution to supply the higher currents). This structure is identical to 
that of Figure PH-3, except that the implementation of the actual control part is with RTM's instead of 
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the punch process is a parallel merge of the Punch Synch Pulse and the Punch- Request. That is, when 
both of these signals are present the punching process is started. 

SOLUTION 2 

It would seem that the above process and the design as specified in Figure PH-4 are completely correct. 
To a certain extent this is true, as tong as we believe that all systems behave in a fundamentally digital 
manner. But this example serves to illustrate a synchronization problem inherent in digital systems which 
have to synchronize two independent processes. Here the Punch Synch and the Punch-Request are being 
synchronized to create the punching process. When what we think of as a fundamentally digital event 
(i.e., it is either present or absent) is examined more closely, it is found not to be digital at all. There is 
some probability that a partial event will occur. The synchronization process can be examined by looking 
at Figure PH-5. Here, we illustrate the one event in possibly 10^10 which is erroneous. It can occur as 
follows: 

1. The punch is outputting normal Punch Synchronization pulses of 100 microseconds duration, 
each 1/110 seconds. 

2. A Punch command is given by another process (i.e., the Punch Request becomes 1) at a time 
near the end of a Punch Synch as shown in the figure. 

3. The condition for starting the 4.5 millisecond punch delay is a NAND gate with inputs from 
conditions 1 and 2 above. The output of this gate is a very small signal(fundamentally not a 1 or 
0) which causes the delay to be evoked with some uncertainty. That is, there may not be enough 
energy in the input signal which is to evoke the punching process. Thus one of the following 
Occurs: (1) the punch does not operate at all, which is an acceptable condition because it will be 
evoked the next time by the Punch Synch Pulse; (2) the punch is evoked, which is also acceptable 
because that was the condition desired; or (3) the punch character signal rises for a few 
nanoseconds or microseconds and then falls, causing erroneous behavior because the pulse had 
insufficient energy to fire the delay. For this operation the punch signal may not be long enough 
to cause punching to occur, but may be long enough to turn off the Punch Request. Therefore, the 
punch does not operate, but the Punch Ready Flag is set indicating punch completion. 

This phenomenon has been discussed in the literature only briefly. A nice mechanical analog of this 
system (pointed out by the Macromodule group at Washington University, St. Louis) is a marble which is 
being pushed over a frictionless hill by impulses on each side (shown in Figure PH-6). Here, a strong 
force normally pushes the marble so that it will rise and go to the other side of the hill. If the force is too 
small, it will fall back; if too large, it will always go over the hill. If the force is just at the right 
magnitude, the marble will go to the top of the hill, remain there for a time which is undecidable except 
by a probability measure and then fall to either side. Circuit solutions to the problem place amplifiers at 
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the inputs (which increase the probability that a good pulse will always be emitted). Other circuit 
solutions increase the storage device circuit gain (analogous to making a pointed hill). Another solution 
is to add a specification to all multiple state devices which indicates the probability of deciding a state 
within a certain time, given a particular pulse input amplitude and duration. 

The solution used in the RTM circuits when synchronization problems arise is 
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accepted as given, and the RTM control must adapt the punch to the RTM system. - Alternatively, it may 
be necessary to modify the definition of the punch as an RTM component if the design indicates such a 
solution. 

The Teletype BRPE punch has eight punch magnets (solenoids). The punch solenoids require a current of 
several hundred milliamps, and the current is supplied from a +30 volt power supply. In order to convert 
logic signals to high currents the control portion of Figure PH-2 must contain T(solenoid driver)'s so the 
Punch Buffer data signals can be matched to the punch solenoids. A ninth solenoid current must be 
supplied at the same time as the data in order to punch a small hole, called the feed or sprocket hole. The 
hole is between data bits 3 and 4 and is used by a paper tape reader as a synchronization signal. For some 
readers the sprocket hole is used to pull the tape through the reader. The punch has a pulse output signal 
of several hundred microseconds duration and amplitude of about 30 volts. This Punch Synchronization 
Pulse occurs when it is possible to punch a character on the tape. In essence, one can think of the punch 
as a flywheel that rotates at the rate of 110 revolutions per second, and only during a particular portion of 
the flywheel can punching occur. In order to punch (when a punch request is pending) the punch magnets 
are energized for exactly 4.5 milliseconds following the Punch Synchronization Pulse. No characters are 
punched and the tape is not moved if none of the nine punch magnets are energized. 

SOLUTION 1 

With this background a straightforward design of the RTM control can be posited. T(solenoid driver)'s 
and T(level converter)'s are required to energize the punch and convert the return signals from the punch 
so that they are compatible with the logic system. The solenoids are timed by a K(delay) of 4.5 
milliseconds. A DMflag is used for the Punch-Request Flag. D(AND)'s are used to conditionally operate 
(switch) the respective solenoids so that the correct information will be punched corresponding to the bits 
in the Punch Buffer. Figure PH-3 shows the structure of the RTM punch control in terms of conventional 
combinational and sequential logic elements. The parts are taken from the DEC catalog. 

The behavior, of this control is expressed in the flowchart of Figure PH-4. There are two independent 
(unsynchronized) processes: the running of the punch and the user RTM process which issues the 
command to punch a character. The two processes achieve some natural synchronism after the first 
character has been punched, since the RTM process must wait until the punching is complete before 
proceeding. The punch can be thought of as a clock pulse which occurs each 1/110 seconds and lasts for 
about 100 microseconds, the duration of the Punch Synchronization Pulse. 

The other independent process of the RTM system is the occurrence of the Punch-Request being set to 1. 
The two processes are synchronized by a polling process in the righthand part of Figure PH-4. 'While the 
Punch Synch Pulse is present the Punch-Request is polled and, if present, the punching process is 
initiated. If the Punch Synch Pulse becomes 0 (indicating the end of the 100 microsecond pulse) the-
polling stops, and punching cannot occur until approximately 1/i 10 seconds later. The punch process is 
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the four step sequence of turning on the delay, delaying 4.5 ins., turning off the delay and resetting the 
Punch-Ready Flag to 1 (signifying that a new character can be loaded into the Punch Buffer). As an 
alternative way of looking at the synchronization between the two processes (used in this 
implementation), starting 
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loaded with a character and a command, Punch Character, is given. This has the effect of setting a 
DMflag; called the Punch-Request Flag, to a 1. The punching mechanism, sensing the Punch-Request 
Flag as a 1, proceeds to punch the character. 
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Fig. PH-2. PMS diagram of RTM Module T(Paper Tape Punch).


When completed with the punching the Punch Request Flag is reset to 0. Another signal is available from 
the punch, indicating that it is out of paper tape. This signal originates from the closure of a switch 
contact pair. The Punch Buffer is loaded from the least significant eight. bits of the data Bus. In order to 
define the operation of the RTM punch control the Teletype punch will be 
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The Octave bits (Note <1:0>) are placed into two DMflag's before dividing N' by 4. Later they control 
the left-shifting of N" into lower octaves (the more shifts, the lower the octave). This scheme avoids 
using an M(transfer). 

ADDITIONAL PROBLEMS 

1. Design an advanced instrument to play 3-part harmony over a three octave range. Then extend to four 
parts and/or four octaves. 

2. Design an instrument whose note frequencies are more accurate. A read-only memory may be used. 

3. For these more complex instruments what code would be used to control the device? Is it necessary to 
transmit at a higher data rate? Can you encode each event (note or rest) into two characters? 

4. Row would you modify the basic waveform generator to vary volume? - to change the shape of the 
waveform to better approximate a sine wave? - to approximate other (variable) musical instruments? - to 
change waveform under computer control? 

5. It was assumed in the design above that when the same note is received two or more times in 
succession, no perceptible break would occur, and one continuous note would sound. Is this really so? If 
not, how would you redesign to make it so? 

DESIGN OF INTERFACE TO A PAPER TAPE PUNCH 

KEYWORDS: Paper tape punch, synchronization, nondigital behavior, transducer. 

Several problems assume the existence of a T(paper tape punch); therefore we will design an interface 
for one. A unit of this type appears to be similar to the T(Teletype ASR 33; printer; keyboard; paper tape 
reader; punch). The design problem is given for several reasons; it is typical of the devices interfaced to 
digital systems, yet it is fairly simple; there are interesting pitfalls in the obvious synchronization 
technique, hence there will be extensions to the problem to increase the reliability; and the design will be 
carried out with both conventional and RTM logic. In any case, it is necessary to go outside the RTM 
logic framework for Transducer modules (e.g., to interface to the high current punching magnets). 

PROBLEM STATEMENT 

Design a system which will serve as an interface between the Teletype Model BRPE paper tape punch 
described below and the RTM system. The punch will appear as a conventional module in the RTM 
system. 
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DESIGN CONSIDERATIONS 

The overall structure of a T(paper tape punch) as seen by an RTM user is shown in Figure PH-1. A 
register, the Punch Buffer, holds the eight bit character to be punched. The character is eventually 
punched on a one inch wide paper tape, and 10 characters are punched per linear inch of tape. The 
physical punch is manufactured by Teletype Corporation as the Model BRPE. The punch operates at the 
rate of 110 characters per second. 

Figure PH-2 shows the internal structure of the T(paper tape punch) system of Figure PH-1 in the next 
stage of detail. In this figure the signals to the physical Teletype BRPE punch are depicted along with the 
logic that performs the actual punching process. In order to punch a character the Punch Buffer is 
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Fig. Tel-2. Table of ASCII characters for 'tones and octaves. 

All this needn't be computed at the computer transmitting end -- the character for any given pitch can be 
looked up in a table such as Figure Tel-2. However, since the device at the receiving end has no memory 
for such a table, it must compute to "decode" the characters into notes. Treating the incoming character 
as a binary number N', we can recover N by the formula (see Figure Tel-1.): 

N" = (N'/4+ 7)* 2=N'/2 + 14 

Note that the octave bits are shifted out when N'/4 is done, so they have to be stored before-hand. In the 
special case of tone F, whose N" is 45, we check for N" = 44 and then add 1. The N for the correct note 
(tone plus octave) is then: 

N = N" * 2 ^ octave 
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Note that octave 3 is the lowest (bass), 0 is the highest (treble). 

The RTM terminal design in Fig. Tel-3 implements the above scheme and treats any character below 
decimal 36 (octal 44) as a rest. Rests are actually a tone 32 times the highest note's frequency, well above 
the range of human hearing. This system sounds the last note (or rest) transmitted until another comes in. 
The T(serial) holds the latest input note, N'. 

The output is a square wave from DMflag(Output). Dividing by N is accomplished by decrementing the 
A register by 1 on each clock pulse. When A reaches zero, A is reloaded with N from the B register, and 
Output makes a transition to give half an output cycle. 
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5. The output feeds into a conventional audio amplifier and speaker. 

Musical Requirements 

1. Only one musical part (note) need be played at a time (no harmony). 

2. (Forced by technical restriction 3) "Tempo" must be determined by the incoming character rate. 
Each character corresponds directly to one note -- nominally a 16th, 24th (triplet 16th) or 32nd 
note. The last character. (note) received .is played until a new note is received and overwrites it. 
Thus all notes are "legato, that is, continuous-sounding. "Staccato" notes and other phrasing 
(breaks) are sounded with rests. 

3. At least one character must produce a "rest" or null-note (no sound produced). Carriage-return 
(octal 15) and line-feed (octal 12) should also evoke rests, due to computer output-buffer line
length limitations. 

4. Intonation (pitch accuracy) need not be perfect, but should be close enough on all 12 tones of 
the chromatic scale (includes sharps and flats) that it will not offend a musical ear (the lack of 
harmony gives extra leeway). Absolute pitch is not important (this can be adjusted from the 
clock), but the tones should be in tune with one another (relative pitch). A 1.0% error or less is 
desired, where error is defined as follows: If the desired frequency for perfect relative pitch for a 
tone is d, and the actual frequency is a, then percentage error = |1-d/a|*100. This error measure is 
derived from the fact that in music ratios of frequencies, rather than frequency differences, 
determine tone intervals. 

5. Pitch range should be at least three or four chromatic octaves. 

6. It is acceptable to generate tones with a square wave, hence tone quality (timbre) is quite 
simple. 

SOLUTION 

One method to generate a variety of frequencies (pitches) is to use a clock running at a constant 
frequency, F, much higher than desired, and divide F by various integer numbers. To divide the clock by 
N means that on every Nth pulse from the clock, the divider outputs one pulse. Thus output frequency 
varies inversely with N. 

F must be an integral multiple of each output frequency desired. However, the 12 tones of the chromatic 
scale are not all in integral ratios with one another, making exact pitches impossible by the divider 
method, so some approximation must be used. 
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Figure Tel-1 shows a tolerable approximation for one octave, based on 60- that is, the lowest note, C, is 
F/60. To get four octaves, one can encode the 6 bits of a character as shown in the format in Figure Tel-2. 
Here, we shall use the word Note to denote the combination of a tone (one of the 12 in the chromatic 
scale) and the octave in which it is to be played. Thus bits 5 to 2, of Note <5:0> give the value of N for 
the note (Tone <3:0>), and bits 1 to 0 give the desired octave (Octave <1:0>): In Figure Tel-1, N ranges 
from 32 to 60. The problem is to fit this into the 4 bits of Tone <3:0>. This can be done by dividing N by 
2, giving a range of 16 to 30. Then, subtracting 15 gives a range of 1-15 which just fits into 4 bits. If 
Note <5:0> is treated as an integer, then the range 1-15 of Tone <3:0> becomes the range 4-60 in Note 
<5:0>. Adding the codes for the 4 possible octaves gives Note a range of 4-63. 

Recalling technical restriction 2, the 64 character subset, octal 040 through 137, is used in transmitting 
notes to Teletrola. Thus, if we add decimal 32 to the decimal 4-63 range for Note, we get decimal 36-95 
(octal 044-137), which encodes into the desired character set. 
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●	 sampled data with transfer to the transmit buffer, T. The transmit and receive buffers are registers 
in a DMgpa. (Note that in this problem an 8-bit DMgpa is used.) 

The control part of the system is comprised of a principal control loop and three subroutines. The control 
loop is a polling process which checks the DMflags, T-clock, and R-clock, for an indication that data is 
to be transmitted or received. On transmission, the data in the DMflag (T-data) is transferred to the 
DMflag (T-out), the data in the transmit buffer, T, is shifted left one bit, and the most significant bit 
(shifted to OVERFLOW) is placed in T-data prior to the next clock signal. On receiving input, each new 
bit is shifted into the receive buffer, R. When the start bit is shifted out of R into OVERFLOW, the nine 
bits of the message have been received. Thus, when OVERFLOW is set, the 5-bit channel number is 
transferred to the analog multiplexor switch which selects the appropriate channel, and an analog sample, 
is taken. The T(analog-to-digital) converts the analog sample to digital form and the data is transferred to 
the transmit buffer, T. 

TELETROLA, A MUSICAL TERMINAL 

Design by Michael Knudsen 

KEYWORDS: Tone synthesis, frequency division, Teletype 

Most of us are familiar with devices known as electronic music synthesizers. These usually consist of 
various analog tone generators driven by a human playing a keyboard. In this problem we shall deal with 
the design of a synthesizer which generates tones digitally, and is driven by incoming, serial digital data 
of the form used by a Teletype. 

PROBLEM STATEMENT 

Design a musical instrument which connects to a bit-serial communications line and interprets incoming 
characters as notes to be played. For the purposes of this problem, assume the bit serial line comes from a 
Teletype, hence the name Teletrola for the musical instrument. Since nearly all computers have interfaces 
for low-speed (10, 15 or 30 characters/sec) typewriter-like terminals and use bit-serial (or Teletype) 
format data, Teletrola could be easily interfaced with a computer. 

The design should adhere to the following restrictions: 

Technical Restrictions 

●	 1. The terminal is a 10, 15 or 30 char/sec Teletype using the 6-bit subset of the 7-bit ASCII code 
of book Table 5. The data which gets transmitted to the device has only the 64-character subset, 
octal 040 through 137, plus carriage-return (015) and line-feed (012). This includes capital letters, 
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special characters, and digits, but no small letters or other control codes. 

2. No buffer memory is available to store incoming data. Characters must be processed (played) 
as received. 

3. No addressable read-only memory (ROM) is available for table-lookup operations, just a few 
constants registers. Try for one M(constants; 4- words). 

4. An adjustable Kclock is used to set a DMflag, to provide a real time measure. 
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Fig. ADSU-3a. RTM system diagram of a remote analog-to-digital sampling unit (data part). 

digital form and are stored in the DMflags, R-clock, and T-clock, respectively. Whenever a clock 
signal is present on the line, the appropriate Boolean register (flag) is set to one. The data on the 
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incoming data line, Receive-data, is valid at the time of the clock transition, i.e., when the 
DMflag(R-clock) is set the signal has been converted and is available in digital form. When the 
DMflag(T-clock) has been set, outgoing data from the sampling unit is transferred from the 
DMflag(T-data) to the DMflag(T-out); T-clock is set to zero immediately before the transfer. 

2. The data part associated with the Bus carries out three functions: serial to parallel conversion of 
the analog channel number; sampling of the appropriate analog channel (the multiplexor\mpx 
register is set to the desired channel number); and parallel to serial conversion of the 

244 

previous | contents | next 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000260.htm (2 of 2) [4/3/2002 6:15:06 PM] 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000260.htm


Designing Computers and Digital Systems 

previous | contents | next 

Certain characters may be used as control characters, e.g., start of header (an identifier), start of 
text, end of text, end of block, end of transmission, acknowledgment (message o.k.), negative 
acknowledgement, parity check, etc. When no data is being transmitted, a special, idle line 
(synchronizing) character is continuously transmitted. Data characters are, of course, those 
characters not reserved for control. In essence, the component interfaced to a modem looks at the 
data through a continuous 8-bit wide window; synchronization is important so that the component 
only looks through the window to retrieve a character at proper intervals. 

2. Start-stop - With the start-stop scheme, an idle line is signified by a constant string of zeros 
(ones). A character is transmitted by sending a one (zero) followed by the data bits of the fixed 
length word. 

It should be remembered that the components connected to the modems transmit their data to the 
modems by one of the methods described above. It is of no concern to the components how the modems 
communicate with one another. The transmission data rate, though, is determined by the link between the 
modems. The rate for a telephone line is 2400 bits/second, although rates of 4800 and 9600 bits/second 
are also used. For even higher data rates, special communications lines (and modulation techniques) are 
employed; these methods provide rates of 40~50 Kilobits/second, and megabit rates are possible. 

In the design presented below, characters will be transferred using the start-stop transmission scheme. A 
request from the central unit for a sample from the remote unit is signified by a 1(start bit), followed by 
the 5-bit channel number, followed by three 0's (stop bits); i.e., lxxxxx000 in which xxxxx represents a 5
bit channel number. The remote sampling unit takes a sample from the appropriate channel, converts the 
analog sample to digital form, and transmits the data in the format lyyyyyyyy where the 1 is the start bit 
and yyyyyyyy is the 8-bit digital encoding of the sample. Fig. ADSU-2 shows a diagram of the modem 
and the remote sampling unit. 

There are two other considerations concerning the timing of the system that should be noted. The remote 
sampling unit must have sufficient time to process either incoming or outgoing bits of information. 
Obviously the system cannot function properly if the modem is transmitting the sampling unit 
information faster than the sampling unit can process the data. Equally important, the modem cannot be 
allowed to request data from the sampling unit at a higher rate than the sampling unit can provide the 
data. A check of the execution times of the subroutines, comprising the remote sampling unit (see below) 
will indicate that even at a moderately high transmission rate, e.g., 10,000 bits/second, the inter- bit time 
gap is sufficient for all processing that is necessary. A second assumption that must be made is that the 
transmit clock operates at an equal or faster rate than the receive clock; if not, a potentially infinite buffer 
would be needed at the sampling unit to hold the build up of bits that would occur. (Show how this build 
up would occur.) For this problem, assume that the transmit clock of the modem is faster than the receive 
clock by 0.1%. (Show why this time differential does not lead to any difficulties). 
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SOLUTION 

An RTM implementation of the remote analog-to-digital sampling unit is shown in Figure ADSU-3. The 
system has two data parts: 

1. There are four i-bit interfaces to the communications modem. The two clock signals from the 
modem, Receive and Transmit, are converted to 
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This problem is concerned with the conversion of analog data to digital form at a remote sampling unit, 
and the subsequent transmission of the digital data via a full duplex, synchronous communications link to 
a central controlling unit. A complete system, shown in Figure ADSU-1 consists of these components: 
(1) a central controlling unit (actually a computer) which issues commands to and receives data from the 
remote sampling unit; (2) a synchronous modem at the central unit which converts digital signals 
originating at the central unit to a form suitable for transmission along the communications link and vice 
versa; (3) a communications link to the remote sampling unit; (4) a synchronous modem at the remote 
unit which converts signals in the communications link format to digital form and vice versa; (5) a 
remote analog-to-digital conversion unit and switch (multiplexor) which selects one of 32 analog inputs 
for sampling and converts the analog signal to digital form for transmission back to the central unit. 

The general operations sequence of the system is as follows: 

1. The central unit transmits a code, which specifies a channel to sample, to the remote sampling 
unit via the modems and the synchronous communications link. 

2. The remote sampling unit samples the channel specified by the code, converts the analog data 
to digital form, and transmits the result back to the central control unit via the modems and the 
synchronous communications link. 

Synchronous Modems 

A synchronous communications modem performs two types of data representation conversion. A modem 
can convert signals arriving along a communications link to standard digital form by frequency shift 
keying (frequency modulation), for use by the equipment connected to it. The modem can also perform 
the inverse conversion -- it accepts standard digital data and converts it to a form suitable for 
transmission along the communications link. The communications link is full duplex, that is, information 
can be transmitted and received simultaneously by the modem attached to the link. Although a 
synchronous, full duplex modem, such as a Bell System 201A or 201B (2400 bits/sec), is a relatively 
complex component internally, only the two pairs of signals (see Figure ADSU-2) which form the 
interface to the sampling unit will be considered in this problem. Thus, stated information about the 
modem, such as it being on or off, whether it has just came on, etc., will be ignored. The two modems 
and the communications link (phone line) in Figure ADSU-1 can be thought of as a strictly digital link, 
with clocks that control the data flow along the link. A modem has two clocks: a transmit clock, which 
determines when the modem transmits a bit along the link, and a timing signal (clock), which is set when 
the modem detects the arrival of a bit from the communications line. The communications line is never 
idle; a 0 or 1 must always be transmitted. 

PROBLEM STATEMENT 
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Design the remote analog-to-digital sampling unit.


DESIGN CONSIDERATIONS


A scheme must be developed for transmission of data from the remote sampling unit to the control unit. 

Two possible schemes which are commonly used are:


1. Character transmission - A fixed length character is always transmitted. A common size is 8 
bits/character which yields 256 possible characters. 
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3.(2) Examine the feasibility of a digitally controlled, sampling switchboard for communications lines 
carrying {asynchronous| synchronous) communications data in the form found at the digital interface 
side of a modem (see Figure TRAN-8). Switching can be performed by sampling the incoming lines at a 
very high rate and transferring the samples to outgoing lines. The virtual interconnection of the links i 
and j is shown in Figure TRAN-9. Here, the receiver of i is connected to the transmitter of j and the 
receiver of j to the transmitter of i. The system would require a 1-bit memory for each half of each line at 
the transmitter, since the outgoing line must be held between sample times and the switching process 
consists of taking incoming samples at the receiver and passing them on to the transmitter bit. 

The most important parameter of the design is to make the sampling process time, ts, for all the lines 
short so that a high sampling frequency is possible. The number of lines, n, that can be switched is a 
function of the maximum allowable distortion, d. The percentage of the variation in the bit-time the 
sampled transition times occurs and the bit data rate, r, determine d. 

Another problem of the design is determining the control part of the system. As indicated in Figure 
TRAN-8, a standard full duplex communications link would give the control information concerning the 
switching paths. That is, the control link gives information designating that a line, i is to be connected to 
another line, j. This link could also transfer switch status information. The sampling switch uses this 
information to carry out the switching (by sampling). (Why each pair is to be connected is another story 
and problem.) The switching request information is usually contained on the incoming line. Thus 
information as to which incoming line is to be switched to another line is a difficult problem. You can 
determine designs which perhaps, ignore the problem-but hopefully you can solve it. Some solutions may 
require a modem signal that tells when a line is turned on. 

ANALOG TO DIGITAL CONVERTER 

Assuming that only a T(digital-to-analog) converter and a D(analog comparator) are available, design a 
family of T(analog-to-digital) converters. A D(analog comparator) has two analog inputs, I1 and I2, and 
one Boolean digital output. The relationship between output and input is B := I2 > I1; that is, if I2 < I1 
then B will be false\0, and if I2 > I1, then B will be true \1. 

By interconnecting these two components, finding a digital value corresponding to an analog input can 
be considered as a kind of guessing game. A digital value is given to the T(d-a), and the control for the 
conversion is able to find out whether the analog input is greater than or equal to the number given. Thus 
by systematic searching the value of the input can be found. 

Examine various search strategies, determining the cost and conversion time. (Two obvious candidates 
are: t ~ k1 x input-value and t ~ k2 x logv2(b), where b is the number of bits in the answer.) 

REMOTE ANALOG-TO-DIGITAL SAMPLING UNIT 
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WITH MULTIPLE CHANNEL INPUT 

KEYWORDS: Synchronous, communications link, transmit, receive, modem, sample 

2. This design was suggested by Mr. William Broadley, manager of the Carnegie Mellon University 
Computer Science Department Engineering Laboratory. 
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Fig. TRAN-9. Timing diagram showing interconnection of full-duplex links.


Some of the design considerations are: RTM system cost, total system cost, interference time taken away 
from the computer for bit or character accessing, computer program time. At one extreme, the 
communications part of the system would transfer data to the processor on a character-by-character basis. 
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At the other extreme, the external system would perhaps be a specialized programmable processor, 
placing all messages in the computer's primary memory. Alternatively, the system might be given buffers 
of messages to input and output. It might perform character-by-character conversion for different line 
speeds, line protocols and character sets. For example, a carriage return character usually signifies that 
the processor is to be informed when handling typewriter-like devices. 
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Fig. TRAN-6. Timing diagram showing the sampling time for detecting (receiving) the START-bit. 

is illustrated by the waveform in Figure TRAN-6. The first 0 is detected, indicating the presence of the 
START-bit; at this time a bit counter is set to count to three, and a delay of 3/7 bit-times is measured. At 
the end of the delay, the center of the bit is marked (on the average). Now, subsequent sampling times are 
derived by counting delays of 7/7 bit-times. (Some counting schemes use a frequency of an even number 
for detecting the START-bit, e.g., eight. Why is this less desirable?) 

Figure TRAN-7 shows a subroutine for receiving an 8-bit character with two STOP-bits. That is, it would 
receive data of the type sent by the transmitter of Figures TRAN-2,-3,-4 or by T(serial interface) modules 
(provided the clock frequencies agree). 

The receiving process has four major parts: detecting the START-bit; verifying that the START-bit is 
present at the center of the bit sample time; sampling the eight data bits; and moving past one STOP-bit 
before ending the subroutine. If a 0 is not present at the center of the START bit, the subroutine is 
reinitiated. The eight data-bits are counted by placing a 1 in the R shift register initially, and waiting until 
it is shifted to the overflow-bit. Two delay subroutines measure delays of 3/7 and 7/7 of the bit-time. The 
final delay of 7/7 bit-times after the 8th bit insures that when reentering the subroutine the last data bit 
won't be detected as a start bit. 

PROBLEMS AND APPLICATIONS 

1. Explore the design space of Vs for synchronous communications. Use the control characters from the 
ASCII character set to "frame" (i.e., synchronize the link). 

2. For communications message switching applications computers are usually required because there are 
switching, buffering, and character conversion tasks to be done. These applications usually involve 
multiple lines (e.g., 20 100). If a hardwired device is interfaced to a computer for each line, the hardware 
cost (and perhaps program execution time) can be quite large. To reduce the hardware cost, a single, 
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physical T can be time-shared to provide the interface to a number of physically independent lines. 
Explore the design space for a set of systems which connect to a computer to provide the. interface to 
{asynchronous| synchronous} communications links. Give one design in detail. 
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Fig. TRAN-4. RTM diagram of the control part of a subprocess to transmit one, eight-bit 
character in a synchronous, eleven-bit code format using straight-line control. 

the second Bus and the communications between Busses, thereby providing a cheaper solution. The 
process (Figure TRAN-5) provides another example of the synchronization problem; the output process 
takes data from T-buff, moves it via the transmitter Bus (on left) into T for output. The DMflag (T
request) is the synchronizing variable, and indicates that a character in T-buff is to be output. 
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The receiving process is usually not as simple as transmission because there is a fundamental problem of 
determining when a bit arrives. That is, a time base (clock) has to be derived from which subsequent bit
times are marked. The scheme used here, which is the one used in most digital systems, is to use a high 
frequency clock (some integer multiple of the transmitter clock) to sample the line, detecting the first 
occurrence of the START-bit. The frequency of the clock used in this design is seven times the 
transmitter clock frequency. The method 
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Fig. TRAN-3. RTM diagram of a subprocess to transmit one eight-bit character in a synchronous, eleven
bit code format using a loop control. 

A system of this type could be used to transmit to a Teletypewriter, for example (in which case the clock 
interval would be 1/110 sec. or about 9.9 msec.). Note that while the above scheme is presented with a 
goal of pedagogical clarity it would undoubtedly not be a real design in RTM's because there is a more 
cost effective solution. This solution merely examines each bit in turn and transmits it without needing a 
DMgpa. A flowchart for this scheme is given in Figure TRAN-4. 
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Figure TRAN-5 takes the scheme given in Figure TRAN-3 and interconnects it to a second bus via a 
T(gpi) to provide an overall system which behaves as the T(serial interface) module. Using the scheme of 
Figure TRAN-4 would eliminate 
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Fig. TRAN-2. Timing diagram showing a synchronous transmission technique. 

Disadvantages of the technique are: 

a. Characters must be sent synchronously, not asynchronously, as they become available (which is 
desirable for some real time and mechanical applications) although start/stop synchronous 
transmission is possible. 

b. One bit-time added to or missing from the data-bit stream can cause the entire message to be 
faulty. 

c. The common-carrier equipment to accommodate this mode of operation is more expensive than 
the equipment required for asynchronous modes of operation. 

d. Mechanical equipment cannot readily transmit or receive this format directly without 
electronics. 

COMMUNICATION LINE INTERFACE TO RTM'S 

The T(serial interface) module in the basic module set, described in Chapter 2, behaves as described in 
the previous section on asynchronous communications. Here the process for transmitting characters, i.e., 
the output part of the full duplex transducer, will be described. This system, is similar to the clock and 
waveform generation type of system, because the problem is to transmit the character data bits in 
synchronism with the transmit clock. The clock of the synchronous system, in effect, marks the bit-time 
boundaries, whereas the asynchronous system is self-clocking. 
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Before examining a system which behaves as the T(serial interface) module, a simple system for 
asynchronous data transmission will be presented. One such system is given if Figure TRAN-3. It is a 
subroutine which, when called, outputs a character from a register, T. The subroutine is purely 
sequential; when called, it waits for a clock tick (T-clock = 1), then transmits the START-bit. Next, the 
eight data-bits of T are transmitted, followed by the two STOP-bits. The first operation resets T-clock so 
that bit output is in synchronism with the clock transitions. 
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as having two ports: one for transmitting and one for receiving. The ports can be thought of as consisting 
of a single wire, or at most two wires. These simplifications are possible and reasonably accurate. 

There are two signalling methods for data transmission among communications links: asynchronous and 
synchronous. The application (type of data transmitted and data rate) and history determine which of the 
methods are used. The following description of these two signalling methods is based on Murphy and 
Kallis (1968). 

In asychronous serial data transmission, characters (encoded into streams of bits) are transmitted one at a 
time, whenever the line is not busy. A continuous stream of characters can be sent, end to end, but this is 
not necessary. The presence of each character is indicated by special start/stop codes, which appear on 
the line. Asynchronous transmission has the following advantages: 

a. Data is easily generated and detected by electromechanical equipment (e.g. Teletype keyboards 
and printers). 

b. Characters can be sent at an "asynchronous" rate (i.e. at will, as long as the line is not busy), 
because each character carries its own synchronizing information. 

The disadvantages of this technique are: 

a. It is distortion sensitive. The receiver depends upon incoming signal sequences becoming 
synchronized. Any distortion in these sequences will affect the reliability with which the character 
is assembled; hence characters are usually limited to eight bits. 

b. It is speed limited. To accommodate distortion, transmission speeds can only go as high as 
about 2000 baud (bits/sec). 

c. It is inefficient. At least 10 bit-times are required to send 8 data bits. If a 2-bit start/stop code is 
used, 11 bit times are required to transmit 8 data bits. 

In the synchronous serial technique, a continuous stream of characters is sent over the line, and there is 
usually no need for special start/stop codes for each character. Instead, characters are separated by 
transmitting a unique code at the beginning of a character stream which, when recognized, causes the 
receiver to lock in (frame) the incoming bits and assemble them as characters. As in the asynchronous 
technique, the character length (in bits) is fixed. Other full character codes signify other conditions 
concerning the data stream. 

Unlike the asynchronous technique, a synchronizing signal must be provided along with the data bit 
stream. This signal is in the form of a clock which signifies when each data bit can be transmitted or has 
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been received; bits are transmitted only at clock times, and at each clock time, either a 0 or a 1 must be 
transmitted. This clock signal can either be provided by the transmitter, or by some separate source that 
the transmitter uses for timing. The format for this type of transmission is shown in figure TRAN-2. 

In the format shown, the transmitter presents data to the line on the negative going (+ to -) transition of 
the timing signal, and the receiver samples the data line on the timing signal positive transition (- to +). 

The advantages of the synchronous serial techniques are: 

a. A common timing source can be used for both transmitter and receiver, hence clock
synchronizing logic is minimal. 

b. Efficiency is increased, since there are no bit-times wasted with the use of start/stop code bits. 
All bits on the line are data, with the exception of a single synchronizing pattern at the beginning 
of the bit stream. 

c. There is low distortion sensitivity, due to the timing being provided with the data, allowing 
higher speeds. 

232 

previous | contents | next 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000248.htm (2 of 2) [4/3/2002 6:15:13 PM] 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000248.htm


Designing Computers and Digital Systems 

previous | contents | next 

Fig. TRAN-1. The communications space environment.


criterion. For most designers, however, the digital interface begins at the digital data transmission side of 
the modem. There are still several concerns at the modem interface: 

1. Data is transmitted on a one-bit at a time (serial) basis. 
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2. We can have either the equivalent of two simultaneous links -- full duplex, or a link which is 
either receiving or transmitting, but whose direction can be reversed -- half duplex. 

3. The modems and telephone links add noise, hence the data received is not exactly the data 
transmitted. 

4. There is a large number of different types of modems and corresponding interfaces. 

Ignoring the error problem and various modem interface signals (e.g., those that indicate whether the unit 
is turned on or off), the modem can be considered 
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subprocesses check the flags and issue an error return if the operation cannot be successfully completed. 
Note that the complete signal is given when the error signal is set (why?). Can this spurious complete 
signal be eliminated? 

2. The K(arbiter) presented above used a polling loop to check the request flags. In some applications, 
however, such a loop might not be fast enough to allow efficient use of the shared facility. Design a 
combinational circuit to replace the polling loop in the K(arbiter). The rest of the structure can remain 
unchanged. 

TRANSDUCERS FOR DATA COMMUNICATIONS SYSTEMS 

KEYWORDS: Synchronous, asynchronous, communications, timing, receive, transmit. 

This section will examine a class of transducers which are used to transfer data between physically 
separate sites via communications links, usually conventional telephone lines. They are presented 
because nearly all digital systems engineers eventually are involved with digital data communications 
and this section will serve as a brief introduction. It is also hoped that when users understand how really 
simple data communications are, these concepts, formats, and interfaces will be used instead of designing 
new interfaces which are incompatible with everything else. 

James Martin has written a series of books (e.g., 1969) on digital communications. Knowledge in this 
area is based on classical communications theory together with a large variety of equipment. The digital 
communications professional should know: classical communications theory, various telephone company 
line tariffs and policy, equipment that is available and which can be legally interfaced to lines provided 
by the telephone communications companies, what types of equipment can use the facilities, etc. 

An overview of the system under study is given in Figure TRAN-1. The telephone companies (i.e., 
communications carriers) fundamentally provide communications lines (links) between pairs and larger 
groups of subscribers, allowing them to communicate audio, picture phone, video, and digital data 
information. They also provide facsimile devices and Teletypes for the transmission of printed 
information. Finally, they allow subscribers to select connections to other subscribers (i.e., switching). 
To be considered along with the telephone companies are federal, state and local regulating commissions, 
etc. This large, internal mass, Figure TRAN-1, is considered as given -- with no clear input or output. 

As one moves away from the central hard-core of communications suppliers that fundamentally provide 
a switched, twisted pair of wires between one site and another, the next system obstacle is encountered. 
Since the twisted pair of wires usually transmits data in the audio frequency range of 100-3000 Hz, there 
has to be some transducer to convert information in that frequency domain into the 0 and 1 needed by the 
digital engineer. The transducer which converts this audio frequency data into digital data bits (0 and 1) 
is called a modem. The conversion encoding is implemented by using one of the following': amplitude 
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modulation (AM) with on-off keying; frequency modulation (FM), using frequency shift keying; and 
phase modulation (PM). For the vast number of people who profess to be communications engineers and 
who do not work for the telephone company or the government (which regulates the telephone 
companies) the modem is simply another given component. There are exceptions, since a ruling of one of 
the regulatory agencies does allow a user to provide his own modem in certain cases; user provided 
modems are common when low cost is a design 
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request for a fetch or store is detected in the central polling loop, the central process gives the requesting 
process access to the common memory. The producer and consumer processes enter a wait-loop which 
allows control to proceed when the request flag is set to false by the memory access facility as it 
completes its use of the memory. Since the polling loop in the central process inspects the flags 
sequentially, there is no way that both the producer and consumer can gain access to the common 
memory at the same time. This solution will be used to solve the synchronization problem in the 
M(queue). 

PROBLEM STATEMENT 

Design a module, a K(arbiter), which performs the function of examining a number of possibly 
simultaneous calls for use of a shared resource facility. The module should grant a calling accessor the 
next access to the facility, thereby locking all other calls out, and then unlock the facility, allowing access 
by other processes after the current user of the shared facility completes its use of the facility. 

SOLUTION 

Figure ARB-4 shows the general structure of a K(arbiter) module for two inputs. When an activate is 
acknowledged by the K(arbiter), the appropriate subprocess which uses the common facility is called and 
entered: On exit from the subprocess, the return signal is given to the K(arbiter) which unlocks the 
facility and sends control to the appropriate activate-next part. Multiple K(arbiter) modules of this type 
could be interconnected, providing more than two inputs. Figure ARB-5 shows how the K(arbiter) is 
used to solve the producer- consumer synchronization problem. 

Figure ARB-6 shows an RTM implementation of a K(arbiter) based on an equal priority polling scheme. 
The poll-entry input and poll-exit output are used to connect multiple K(arbiters) together; for a single 
module, they are connected to each other; the poll-initialize input starts the polling process. The control 
flow from an activate input to the activate-next output is broken, since the activate inputs only set a 
request flag. The request flags are detected by the polling process which passes control to a Ksub to call 
the particular subprocess to use the shared facility. On completion, the subprocess issues a return signal 
which restarts the polling process and issues the appropriate activate-next signal. Alternatively, both 
calling processes could call the same subprocess which uses the common facility. Examples of this type 
of usage are in arithmetic function evaluation. 

EXTENSIONS AND ADDITIONAL PROBLEMS 

An M(queue) based on the K(arbiter) is shown in Figure ARB-7. The data part of the design is given in 
Figure ARB-7a; this structure is essentially that of the M(queue) problem except that no additional 
request-flags are needed since the K(arbiter) has internal request flags. Figure ARB-7b shows the control 
structure of the design; the three subprocesses, Get, Put and Clear, are as defined in the M(queue) 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000242.htm (1 of 2) [4/3/2002 6:15:17 PM] 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000242.htm


Designing Computers and Digital Systems 

problem except that the subprocesses do not have to reset the request flag on completion. A Get call is 
not issued to the K(arbiter) until the Empty-flag is false, likewise a Put call is not made until the Full-flag 
is false. 

Problems 

1. Figure ARB-7c shows a control structure for a design which does not hold Put and Get calls until they 
can be successfully completed. Rather, the Get and Put 
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Fig. ARB-3. RTM diagram of a Producer-Consumer system using a "busy waiting" polling loop 
for synchronization. 

time find the common memory free, hence both would proceed to access the facility causing erroneous 
operation. 

This synchronization problem does have a solution which involves polling (commonly called "busy
waiting" as described in the EPUT problem). In this design, shown in Figure ARB-3, the central process 
polls requests (indicated by the flags) from the producer and consumer for use of the common memory. 
As a 
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K(ARBITER) - AN ERTM FOR SYNCHRONIZATION OF MULTIPLE PROCESSES 

KEYWORDS: Arbiter, producer, consumer, polling, synchronization, parallelism. 

The purpose of the K(arbiter) module is to arbitrate multiple requests for use of a common set of 
facilities. A polling structure which examines such requests in turn, e.g. as described in the M(queue) 
problem (later in this chapter), solves the same type problem as the K(arbiter), but the K(arbiter) saves 
hardware and makes the solution of timing and synchronization problems quite apparent. These 
synchronization problems arise from the need (desire) to achieve a high degree of parallelism in digital 
systems. 

The K(arbiter) module is similar to a parallel merge in that it waits for a specific condition to occur 
before proceeding, but unlike the parallel merge, its use is not predicated on lock-step parallelism. The 
form of parallelism it addresses is referred to as concurrency; in essence two or more processes are active 
concurrently, and, at some time, must share a common set of facilities (resources). In the M(queue) 
problem, the three control subprocesses each access a common data part, hence only one control part is 
allowed to be active at a given time. On the other hand, in the histogram recorder problem, a record 
updating process and display process could run concurrently except when, both required access to the 
shared memory. 

The basic structure of this latter type of system is shown in Figure ARB-1. There is no coordination 
required by the two processes except that they cannot access the common memory (essentially a queue) 
at the same time. The producer process generates data and makes calls to store the data in the common 
memory while the consumer process makes calls to fetch data, to use in the process, from the memory. 
The producer and consumer processes call the common memory buffer process at different rates and 
neither is synchronized with it or with each other. A common process controls access to the central 
memory in such a way that only one process (producer or consumer) can use it at a time, thereby 
protecting the two processes from one another. Without such protection, the processes might incorrectly 
change a controlling variable in the central process, thereby causing erroneous action by either the 
producer or consumer. 

Suppose that there is a flag that indicates whether the common facility is in use or not. Each process can 
examine the flag, and if' the memory is free, then that process can set the flag to indicate that the memory 
is in use at that time, thereby inhibiting the other process from gaining access to it. When the process has 
finished using the memory, it can reset the flag to indicate that the facility is not in use, thereby allowing 
the waiting process to access the memory. An implementation based on such a flag is shown in Figure 
ARB-2. There is a slight' flaw in the design, however, that could make the system operate incorrectly. 
When examining the flag, both the producer and consumer might at the same 
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USE OF THE COATING THICKNESS MONITOR IN CONJUNCTION WITH A STORED 
PROGRAM COMPUTER 

Advantages from building an RTM based system usually include lower cos than a stored program 
computer for a fixed small task, and faster operation than a computer because of specialization to the 
task. The CTM is a good example of how a system can be hardwired to give very high performance. 
Another benefit of hardwiring is involved in interfacing, because a computer usually has to be 
specialized to meet interface constraints. On the other hand the RTM system once hardwired, is relatively 
inflexible for month to month changes, and large algorithms are not particularly suited to the structure 
because of limited control and processing structures. The analysis algorithm implemented in the CTM is 
getting to the complexity limit that one might wish to hardwire. 

By using a computer with an RTM system one might combine the advantages of both high performance 
processing, and flexibility in the analysis and control algorithms. The time-consuming functions in this 
problem are the reading of the beta gages and storing them in memory, and the averaging and distribution 
analysis. Accepting switch inputs, converting them from decimal, and displaying results happen 
infrequently compared to the constant stock movement. 

PROBLEM STATEMENT 

Assume an RTM system is attached to a small computer to provide the CTM functions, and design a 
system to provide the functions of the original monitor. You may use any of the small computers 
described in Chapter 6. The input information about the material, Kj, the number of samples to be taken 
in the computation of the averages, the allocation of memory for results, and the various analysis 
functions would all be specified as parameters to the RTM system. Also, the RTM system might check 
for out of tolerance limits. Note, the RTM system would use the small computer's memory on a shared 
basis to store results. 

DESIGN CONSIDERATIONS 

It is important in this design not to give up any of the computer's flexibility. Doing too much 
automatically will often lead to a system that cannot be changed in the future, hence a large amount of 
automation is undesirable. Another problem which will arise is that constant use of the computer's 
memory by the hardwired portion of the system will cause its processor to stop, hence the design should 
allow some computation (say 50%) while the memory is being utilized. The gross structure of such a 
system is shown in Figure CTM-3. 

There are several types of designs that might be examined. One would be similar to the alarm scanner 
(see Chapter 6) which performs one instruction at a 
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● Fig. CTM-3. PMS diagram giving structure of a CTM based on RTM's and a minicomputer. 
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readings by an appropriate constant. For the jth station the thickness of the material is, thickness = Kj 
(B2j-B2j-1). Here, it may be assumed that the beta gage reading is known to only 1 part in 256 (8-bits) 
and the value of Kj is also only known to 8 bits. Prior to a run, these constants (the K's) are read 
manually into the CTM via switches. 

There are many different types of outputs that a monitor of this type could display. Some possible 
measurements on the samples are: 

1. The instantaneous value of the coating at a particular station. 

2. The minimum thickness -- measured since start-up. 

3. The maximum thickness -- measured since start-up. 

4. The average value of thickness of the last m samples, where 1 < m <256. 

5. A distribution of the thickness (which can be output on paper tape after a certain time period). 
This distribution gives a measure of the consistency of the coating. 

PROBLEM STATEMENT 

Design an n station CTM to display as many of the measurements listed above as possible. 

COATING THICKNESS CONTROL 

After exploring the design space of CTM's in the previous section, it should be clear that a hardwired 
structure provides for a very fast computation of various parameters about a coating station's behavior. In 
addition, one might want to use the thickness information to aid in controlling the amount of coating 
material being applied at a given station. As the speed of the process increases, it might be necessary to 
do this automatically. Suppose that the coating material flow valves are also under control of the CTM. 
In PMS terminology the two functions, data operations (D) and control (K), are being performed, hence 
the system becomes a DK(coating thickness). 

Assume a coating valve has a ramp shaped time characteristic to change from one opening to another, 
where the time constant of the ramp is quite long. A valve of this type might be controlled by a stepping 
motor which takes a fixed time (tm) for one step. At any moment of action, the valve can be left alone, 
opened one step, or closed one step. The two inputs to a given valve might be: Move one step, and a 
Boolean which indicates close (if 0) and open (if 1). Two Boolean outputs could indicate whether the 
valve is Fully Open or Fully Closed. A third output, an event, could be derived from the valve indicating 
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that the stepping process has completely taken place. Alternatively, a valve might have the same input 
control structure, but be continuous in nature. That is, it would take Boolean inputs to indicate movement 
and direction, but then would merely continue moving until a stop is reached. (The stop would prevent 
the valve from proceeding beyond its travel.) With a scheme of this type there would be no feedback 
about the actual position of the valve except via the measurements taken at the Beta gages. 

PROBLEM STATEMENT 

Design a control system which would operate the valves. Since the valves are incompletely specified, 
either make some assumptions about their parameters, or leave the actual control algorithm free to be 
specified when more information is known. The data from the thickness monitor would be used to 
manage the control. Using this data together with the tolerance limits of the coating, assume the 
DK(coating thickness) would have parameters which would be used to specify the actual thickness to be 
maintained. 
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Parameters for each of the inputs to the CTM from the pairs of beta gages are operated on independently 
to produce an output for that pair of gages. The only coupling among the coating stations is the fact that 
the sheet moves through all coating stations at the same rate. That is, there is a velocity detector which 
produces a pulse every time a certain length of stock, Is (in cm.) has passed. The velocity of the stock is v 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000236.htm (1 of 2) [4/3/2002 6:15:21 PM] 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000236.htm


Designing Computers and Digital Systems 

(in cm/sec). Therefore, if all beta gages are sampled each time one of these pulses arrives, the time 
between samples, ts, is ts = Is/v. Since there are n coating stations, the amount of time for the output 
computation is tc = ts/n = Is/n*v, assuming the output is updated each time a sample is taken. 

The current coating thickness at a coating station, j, is computed by multiplying the difference between 
its initial, B2j-1, and final, B2j beta gage 
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manual switch as a variant of the display as indicated in Solution 4. What is the maximum allowable 
event rate? 

3. Define the action of Ksub(Process-cell-overflow) for Figure Hist-6 and draw the flowchart of its 
behavior. 

4. Carry out the design indicated in Solution 1 to increase the update rate (i.e., decrease the time between 
events). This is accomplished by polling the update- request process within the Kmacro(Display). What 
is the maximum allowable event rate? 

5. Design the control parts for the two-Bus scheme as indicated in Solution 3. 

6. Design a two-Bus histogram recorder using a K(arbiter). Minimize the time spent in the common 
control section. What is the maximum allowable event rate? 

7. Plot the cost and performance for the various solutions. 

8. Compute and display the integral of the distribution. Form the cumulative probability distribution: 
FF(X[J]) = sum, 1= 0 to J, of F(X[I]) for all J = 0,1,....,N such that FF(X[N]) = 1. This process would be 
initiated by pressing a K(manual evoke). 

9. Compute the mean of the distribution described in problem 8. 

10. Compute the median of the distribution described in problem 8. 

11. Using the T(paper tape) described in the transducer section, punch the contents of the 16 bit switch 
register, followed by the 2*1024 8-bit characters in the histogram memory. Punch a 16-bit sum check of 
all this preceding data; 

A MONITOR TO MEASURE THE THICKNESS OF A COATING PROCESS 

KEYWORDS: Monitor, control, waveform analysis, multiplexing 

This problem involves the design of a system for the analysis of multiple, but similar waveforms. The 
process from which the waveforms arise is a continuous, multiple station coating mill (see Figure CTM
1).(1) The coatings are on sheet stock such as paper, cloth, plastic, and tin which move through the mill. 
Since this is a continuous process it is difficult (too costly and impractical) to test the thickness of the 
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coating at completion. However, controlling the coating thickness is extremely important because 
material will be wasted if too much is applied, and similarly, the quality of the product may be 
unacceptable if too little is applied. We will discuss and propose the design problem for this task, but will 
not present detailed solutions. 

A special purpose digital system, which we shall call a coating thickness monitor (CTM), can permit the 
nondestructive testing of the coating thickness. In this method, coating thicknesses are measured by beta 
gages that provide an electrical (analog voltage) output related to the mass of material in the gage 
measuring gap. Gages are placed before and after each coating station as shown in Figure CTM-1. 

A PMS diagram of a possible general structure for the CTM is given in Figure CTM-2. The various beta 
gage voltages are selected via an input S(multiplexor). The results of analyzing the beta gage waveforms 
are displayed at the various T(display)'s via an output S(multiplexor). In general, for an n station coating 
mill, there would be 2n input beta gages and n T(display)'s. Thus the main emphasis of this design is to 
show how a single system can appear to be n, independent systems by time-sharing a single CTM. 

1. This problem was derived from Jurgen (1970). 
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Fig. Hist-l0. RTM diagram data part of a two-Bus histogram recorder for a simultaneous sample and 
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display.


3. Install, a switch in the display process such that when the switch is on, the process resets the 
memory word to zero after fetching the Y-coordinate (record). This feature can be implemented 
by changing the display process slightly. 

ADDITIONAL PROBLEMS 
1. Use a K(for-loop) and design the Kmacro(Initialize-memory) 
2. Show how memory-initialization would be carried out more simply using a 
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Fig. Hist-9. PMS diagram of a two-Bus RTM histogram recorder (independent update and display 
processes). 

SOLUTION 3 

This scheme divides the histogram recorder into two parallel subprocesses: generation of display data 
and memory management; each subprocess employs its own Bus. This allows the record update rate to 
be increased while maintaining a constant display rate. The memory management process can initialize 
the memory, update the records, and supply data to the display process. The display process prepares the 
data for output, including any necessary scaling, and manages the display unit. The overall structure of a 
two-Bus system is shown in Figure Hist-9. The structure of the data part of this scheme is given in Figure 
Hist-l0. The control part is almost the same as that given in the first solution. Minimum synchronization 
is needed between the memory and display processes; a straightforward method of synchronizing the two 
processes could employ request flags for use of the memory facility. The details of the control part for 
the two-Bus scheme are not given. 

SOLUTION 4 
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This scheme employs a two-Bus structure with a shared, two-port memory. Each port of the memory is 
connected to a Bus. In this design, the display process and the record update process are not connected 
via control. The two- port memory resolves conflicts for access in much the same way as the K(arbiter) 
did in Solution 2. The initialization process can be incorporated into the design in one of several ways: 

1. Use a K(arbiter) on one of the Busses. The initialization process and one of the other processes 
will share that Bus. 

2. Extend the number of ports to three to allow concurrent execution of all three processes. 
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Fig. Hist-8. RTM diagram control part for a one-Bus histogram recorder using a K(arbiter). 

The update rate can also be increased by polling the update request one or more times during the 
Kmacro(Display). In this way, any requests for update are honored, and merely interrupt the displayed 
points. 

SOLUTION 2 

A variant of the previous scheme can be designed using the K(arbiter) module, described later in this 
chapter. The data part in Figure Hist-3 is assumed. The K(arbiter) module resolves conflicts for use of 
the Bus containing the memory. A shared resource. The main control part of the system is shown in 
Figure Hist-8. 
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This scheme uses the same processes as defined in the above solution: initialization, histogram update, 
and display of Figures Hist-5, 6 and 7. When an initialization request is given, the K(arbiter) is locked (if 
not already locked) and the initialization process is started. The process unlocks the K(arbiter) on 
completion. At this point another process request may lock the K(arbiter) and proceed. The histogram 
update process locks and unlocks ((arbiter) in the same manner as the initialization process. The display 
process operates in a similar way. 
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could not read the d-a register x-co-ord onto the Bus, but we do it here for compactness of representation.


Fig. Hist-7. RTM diagram control part for a Display-point-in-memory macro.


With this scheme the display process takes approximately 30 steps, if six shifts are executed, with a total 
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time requirement of 20 microseconds. If record updating and display are operating concurrently, the 
display process limits the record update rate to an order of (1/20)*(10^16) or 50 kilo-operations/second.. 
The rate may be improved by limiting the time during which record update requests are ignored. 
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Fig. Hist-4. RTM diagram control part for a one-Bus histogram recorder using a busy-waiting 
scheme to synchronize facility requests. 

Kmacro(Initialize-memory). The simplest process is the initialization of memory by clearing all cells to 
0. (See Figure Hist-5.) It consists of a single loop to count from 0 to 1023, clearing cells 0,1,...,1023. 

Kmacro(Update-histogram). This macro is shown in Figure Hist-6, and consists of taking an event, x(ti), 
and adding 1 to the cell selected by the event-value. This provides the function: M[x] <- M[x] + 1. Note 
that a subroutine for handling the event count overflow is indicated, but not defined. 

Kmacro(Display-a-point-in-memory). Since the display unit accepts only 10 bits of data, the- 16 bits of 
the memory word must be scaled for display. One possible scaling procedure is that of using only the 1-0 
most significant bits of the word. With a prior knowledge of the possible range of values, these 10 bits 
are not necessarily the 10 high-order bits of the memory word. The data will be shifted to the right until 
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the 10 most significant bits are in the 10 low-order bits of the word. The switches <2:0> will contain the 
number of shifts to apply to the memory word. Six shifts guarantee that all data is in the range zero to 
(2^10)-1, but this many shifts may not be required for all cases. The control part is shown in Figure Hist
7 for Kmacro(Display). Strictly speaking, in the control part one 
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Fig. Hist-3. RTM diagram data part of a one-Bus histogram recorder. 
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Control Part 

The major control part is shown in Fig. Hist-4. It consists of four independent processes all of which run 
asynchronously with respect to one another. The main histogram control execution is shown on the left. 
It consists of a process which polls the other three processes, and if it finds any requests for activity, calls 
the appropriate Kmacro to carry out the action. On the right, the three independent processes make 
requests to be served. 
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Fig. Hist-2. PMS diagram of a one-Bus RTM system histogram recorder. 

The first system, shown in the PMS diagram of Figure Hist-2, has a single control process which drives 
the initialization, display and histogram-update processes. The system is capable of performing only one 
of the operations at a time, since each of the processes requires the common memory facility. The 
following synchronization schemes might be used to control the use of the common memory facility: 

1. Busily-waiting. While idle, the memory facility is busily-waiting to be used, i.e., it is looking 
for requests for the facility from the processes. The memory only recognizes requests when it is 
idle. This prevents multiple processes from accessing the memory simultaneously. 

2. Event-driven. In this scheme, the processes may perform some operations in parallel, but when 
a process requires the memory facility, it must wait until the memory is free before proceeding. 

Data Part 
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Figure Hist-3 shows the data part of a histogram recorder using one Bus. The various components are 
taken, to a large degree, from the problem statement. These components are: the memory to hold (record) 
the histogram; two T(d-a) converters to deflect the T(CRT) oscilloscope beam; a DMgpa to carry out the 
arithmetic of the process; a T(switch) to accept data about how the data might be manipulated (i.e., 
scaled); a T(input) for accepting event, x(ti), input; and an M(constants). 
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Fig. Hist-1. Example of a histogram which records the distribution of dice throws. 

Design an RT system to implement a histogram recorder. The number of available memory words is 
1024 with a word size of 16 bits. 

DESIGN CONSIDERATIONS 

There are limitations which affect this design. If the number of event types, M, is greater than the number 
of memory words available, all possible events cannot be uniquely represented. In this case a record can 
be maintained for only a subset of the original set of events. A possible solution to this problem is to 
group the events into distinct classes such that the number of classes does not exceed the number of 
available memory words. A second limitation is that only a finite range of values may be stored in a 
record, given a word size of W bits. The histogram recorder can correctly maintain only those records 
with values in the range zero to (2^W)-1. The use of scaling or shorter time periods of observation are 
possible solutions to this problem. 

Finally, it is important that the recorder operate in a short time to minimize the necessary duration of 
time between two events at ti and ti + /\t. In this way, the event occurrence rate can be high. 

The following functions are necessary in the design: 

1. Initialization - A switch should be provided which initiates a process to reset each word in 
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memory to zero. 

2. Histogram update - This is a process which increments the histogram by one for each event, 
x(ti). 

3. Display - A display process which reads a memory word and displays the value on a T(CRT 
display) should be incorporated in the design. This process can be used to successively plot each 
value of M[0:1023]<15:0> as shown in Figure Hist-1. A K(clock) should provide a signal to 
initiate the display process which should be capable of plotting a new point every 30 
microseconds. (This fast plotting time is required so that the 1024 points can be plotted in about 
30 milliseconds, providing a flicker rate of about 33 frames/second.) 
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figures are approximate). Assuming a random occurrence of events on all channels, the time to perform 
all operations is 8*1.8+9.35 ~ 24 microseconds. This provides an aggregate counting rate on all channels 
of 42 KHz. This is not a strict bound; if the events do not occur randomly, the polling loop may execute 
consistently above or below the average figure with different performance characteristics. However, 
polling is clearly the limiting time-consuming process and any general performance increase will be 
gained only if the polling time is decreased. 

ADDITIONAL PROBLEMS 

1. Design a solution that has a polling process consisting of a branch tree using combinational circuitry at 
the branch points. That is, a D network would carry out the computations at each of the branch points. 

❍ a. What effect does this have on the system performance? 

b. Design the polling network so that it polls in a more equitable manner. 

c. Write the initialization subroutine to set the event counts and time base. 

2. Write a software, n-channel EPUT meter for your favorite computer. What are the performance 
characteristics of the program? 

3. Design an output process for the n-channel EPUT meter; consider using BCD for the output data. How 
does this process affect the design, its accuracy, maximum frequencies, etc.? 

4. Modify the EPUT meter of solution 1 to have independent time base generators for each channel. 
Assume a single K(clock) and that the values of the time bases are stored in a memory array. Give the 
performance characteristics of the system. 

5. How would multiple DMgpa's affect any of the designs above? 

6. Design a polling scheme which will find the selected bit in a constant time by using the binary 
searching technique. With this technique, the control first examines whether a flag is on in the first 1/2 of 
the word or not. It then proceeds to subdivide the search space in two each time. Such an approach can be 
done using either a combinational or register transfer approach. 

HISTOGRAM RECORDER 

KEYWORDS: Display, event, histogram, initialization, synchronization, record, waveform analysis, 
arbiter. 
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A histogram recorder is a device, principally a memory, which records an occurrence count for each 
member of a set of discrete events. For the purposes of this problem, an event of this form at a particular 
time, ti, has a 10-bit value, and is denoted x(ti)<9:0>. A record is defined as the occurrence count, taken 
over a finite time period, for an event. 

An example of a histogram is given in Figure Hist-1. The 11 events represent all of the possible 
outcomes from a single throw of a pair of dice. The values stored in the histogram are the records for 
each possible outcome over some time period, e.g., 1000 throws. Histograms are usually presented by 
such a visual display, hence the recorders described below will have display capabilities. 

If the set of events contains M elements, the histogram recorder can be implemented as a memory of M 
words. The records for events E[0:M-1) can be. uniquely assigned as the value of memory words 
MW[0:M-1]. 
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5. Result output - A process must be implemented to output the results of the EPUT meter. For this 
problem however, the output process will not be examined. 

6. As in the case of the single-input EPUT meter of the previous problem, the limitations on the clock 
and event frequencies must be considered. 

7. The extent to which the functions expressed in 2 to 5 above can be executed in parallel is of interest in 
the design problem. 

SOLUTIONS 

The overall structure of four systems in the design space of time-shared EPUT meters will be examined 
before giving a detailed solution to the problem. 

Figure EPLJT-4a shows a completely time-shared system which can be constructed using a single Bus. 
Each event count is operated independently and there can be either a single time base for all channels, or 
each channel can have a separate time base by time-sharing a central clock. With a single control 
structure and Bus, the systems capabilities are shared among all of the inputs. 

Figure EPUT-4b shows a system which performs input polling and event counting in parallel. The 
counting and polling processes are still shared among all inputs. The time base generation shown is 
common to all the channels, although a time base generator for each channel could be constructed using a 
time-shared clock. The coupling between the time bases and the EPUT counting would be more 
complicated in the latter case than in the single time base situation. 

Figure EPUT-4c shows a system with a shared polling process and clock. The system exhibits a high 
degree of parallelism in that each event has its own counting and output processes. A single time base is 
used for all inputs. 

Figure EPUT-4d shows the extreme in parallel design; n independent systems sharing only a clock for 
time base generation. 

Solution 1 

With this overview of possible time-shared EPUT meters, a specific system will be designed to illustrate 
solutions to the various design issues. Figure EPUT-5 presents a time-shared system which utilizes a 
single Bus and control for n inputs, and a common time base for all inputs. The operation of the polling 
process is of principal interest. The sixteen event flags, Ev-flag<0:15>, are interfaced to the system 
through a T(input interface); on command, the event f lags are transferred to the A register of a DMgpa. 
If A is non-zero, a shift and count loop is initiated to find the first bit (from the left) that is a one, then the 
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count for this event is incremented and the flag for the event is set (notice that the single command, Ev
flag<j><-0 is used). With this strategy, the events have implicitly assigned priorities, Ev-flag<15> is of 
highest priority, Ev-flag<14> next highest, and so forth until Ev-flag<0> with the lowest priority. If the 
higher numbered events occur at too high a rate, the lower numbered events will not be correctly 
counted. If, instead of always polling from the left, the process continued polling from the point at which 
an event was last detected, all channels would be handled more equitably. 

The performance of this system is determined by the time required to read the event flags, poll the events 
and update the event and time base counts. The flags can be read in .7 microseconds, the polling loop has 
an initial overhead of .85 microseconds and each pass through the loop represents 1.8 microseconds, 
event count updating takes 5.7 microseconds, time period count updating takes 1.6 microseconds, and 
resetting the time base takes .5 microseconds(all timing 
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PROBLEM STATEMENT 

Design a system which behaves as n EPUT meters, i.e., a system in which n different event streams may 
be counted. 

DESIGN CONSIDERATIONS 

1. The interface between the system and the external events is a straightforward extension of the single 
input system: a vector of DMflag's, one per event, will be used to signal event occurrences to the system. 
The flags will be denoted: Ev-flag<0:n-1>. The flags may be reset in one of two ways: (1) each flag can 
be reset explicitly with one of the n independent commands: Ev-flag<0><-0, Ev-flag<1><-0,...,Ev-flag<n
1><-0; (2) a decoder network can be used to reset the flags with a selection parameter used in the single 
command, Ev-flag<j><-0. Figure EPUT-3 shows both ,of these schemes. The solutions described below 
will assume that one of these two schemes has been implemented and that the number of inputs is sixteen. 

Fig. EPUT-3. An RTM system which provides two methods for resetting event flags. 

2. Input polling - The input events must be sensed and a corresponding input channel determined. Some 
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polling strategy must be developed to detect event occurrences recorded in the event flag. 

3. Event counting - Once an event has been detected at Ev-flag<j> the count for that event must be 
updated. A separate event count must be maintained for each event; the question is Where? Separate 
DMgpa registers could be used, but the cost would be prohibitive. Alternatively, the event counts could be 
held in a vector of memory words and a single DMgpa time-shared for incrementing the event counts. 

4. Time base generation - Two possibilities exist for time base generation; either use a common time base 
for all channels or provide an independent time base for each channel. 
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Fig. EPUT-2. An RTM system diagram of an Events Per Unit Time\EPUT meter. 

TIME-SHARED EPUT METER 

KEYWORDS: Parallelism, time-sharing, polling 

This design problem illustrates how the EPUT meter design of the previous problem might be modified 
such that a single system would give the appearance of being many independent EPUT meters. Such a 
system falls into the space of time-shared systems design, the main objective being the design of a single 
system which behaves as n independent systems. The gain from this design approach is that it is usually 
more economical to have a single system handle n inputs than to have n independent systems handle one 
input each. A drawback to the centralized, time-shared approach is that unless such systems are handling 
a close-to-capacity number of inputs, they are unnecessarily complex and expensive. 

The technique of time-sharing usually focuses upon a resource which must be shared among all 
processes in the system. The trade-off between n independent systems and a single time-shared system is 
that each process in the time-shared system can use only 1/n of the shared resource; expense has been 
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traded for performance. Of course time-shared systems are not constrained to have a single instance of a 
shared resource; the n processes may share several instances of the same resource (approaching n 
independent systems in the limit), or the processes could share the services of many resources combined 
to form a single system. 
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in standard units. As the input events arrive (Figure EPUT-1b) they are counted and recorded in a 
memory (register). At the end of the time base, the results are displayed, the count is zeroed, and the next 
time base (counting period) is started. The system can also be used to measure the frequency of a 
sinusoidal input (Figure EPUT-1c) by adding an input section (Figure EPUT-1d) which amplifies the 
sinusoidal input (Figure EPUT-le) to produce 0 and 1 signals only. These are subsequently differentiated 
and clipped to allow only positive voltages (Figure EPUT-1f), which are used as a clocking input to Ev
flag. 

PROBLEM STATEMENT 

Design a general purpose EPUT meter. 

DESIGN CONSIDERATIONS 

The limit on the frequency of events is perhaps the principle design issue in this problem. As mentioned 
above, the end of the time base initiates a display of the event count, the count is zeroed and the next 
time base is started. All of these operations must be completed before the next event occurrence if all 
events are to be recorded. If the operations are not completed sufficiently rapidly, an event which occurs 
during the processing of the operations would be lost if another event occurred before the first event was 
counted. A partial solution to this problem is to allow a short interval of time between successive time 
periods during which events are ignored. This scheme would yield correct results for each individual 
time period, but would not reflect a true total count. Even using this scheme, the event frequency is 
limited by the speed with which the meter can update its event counter and/or the clock count. Again, if 
two events occur while the event or clock count is being updated, the first event of the two will not be 
counted. Similarly, the clock pulse frequency cannot be so high that two clock pulses arrive before the 
clock count can be properly updated (decremented). 

SOLUTION 

The structure (and behavior) of an EPUT meter is given in Figure EPUT-2. The data part requires two 
registers: UT to hold the unit time count (programmable clock); and EPUT to hold the event count. For 
greatest speed, two DMgpa's are used so that both registers can be incremented without extra transfer 
operations. The switch register in the T(lights and switches) holds the variable time base parameter for 
the programmable clock. The lights in the T(lights and switches) display the event count in binary. A 
clock pulse sets the DMflag (UT-flag) and an event occurrence sets the DMflag (EV-f lag). If no interval 
is allowed between time base periods, the maximum event-frequency is approximately 250 KHz. If an 
interval is allowed between sampling periods, this rate can be increased to approximately 500 KHz. The 
maximum allowable frequency for the clock pulses is 1 MHz. 

ADDITIONAL PROBLEMS 
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1. Now were the frequency rates for the EPUT meter described above computed? 

2. Would an increase or decrease of the clock pulse frequency allow a higher event frequency? 
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desired, e.g., one part is 2^16, the maximum frequency that can be counted is only 10 Hz. However, it 
should be noted that a 10-bit T(digital-to-analog) is not capable of such a fine resolution. For an error of 
one part in 1024(delta = 2^6), the error is: 2^6/2^16 = 1/2^10 ~ 10^-3 or 0.1%. This provides for a 
maximum frequency of ~666 Hz. Increasing the allowable error to one part in 2^7 (~0.8%) yields a 
frequency limit of ~5 KHz. By increasing the frequency to 10,000 Hz, the error increases to 
(10^4)*(3/2)/10^6=1.5%. What can be done to further increase performance, considering the values for f 
and error? As has been indicated previously, the ability to make multiple simultaneous register 
assignments can significantly improve system performance. In this case, the two transfer operations 
would be performed as: analog-out <- output <- output + delta. This procedure would halve the 
processing time and double the frequency. 

Another parameter not yet examined is the frequency quantization for a fixed sample time, ts. For a fixed 
sample time, ts, the frequency formula becomes f = K*delta (where K=1/(2^16*ts)) which shows that the 
frequency varies linearly with respect to delta. For ts= 1.5 microseconds, the frequency change per unit 
is: f-change/delta =1/(2^16*1.5*10^-6) 10 Hz. The frequencies possible from this function generator 
with ts=1.5 microseconds are: 10,20,...,10*delta,...,666KHz (independent of error). Different frequencies 
may be obtained by varying the sample time, ts. 

ADDITIONAL PROBLEMS 

1. In the above generator the amplitude remains fixed. Suppose the amplitude is to be varied over a range 
and step size by input parameters. What would the parameters be for such a generator? Design such a 
generator and analyze its characteristics. 

2. In the generator presented above, the error varies with respect to the frequency. Using a programmable 
clock, design a generator which has a constant maximum error for all frequencies; the maximum error 
should be set by input parameters. Analyze the characteristics of your design. 

3. Figure SG-3 shows the output of a triangle waveform generator. Design a generator with such an 
output and determine the relationship between delta, Error, f, and f-change/delta. How does the sample 
time, ts, affect the performance of the generator. 

4. Design a waveform generator for the exponential function, et-t. Describe the error as a function of t. 

5. Design a waveform generator for sin(t), cos(t) for 0<t<2. Note that sin and cos can be defined in terms 
of each other by integrating. 

EVENTS PER UNIT TIME \EPUT METER 

KEYWORDS: Waveform, time base, event, frequency limit 
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An EPUT meter is about the simplest waveform analyzer that can be constructed. It merely counts pulses 
(events) within a certain measured time period. A description of the structure of an EPUT meter was 
given in the introduction of time-based systems. The basis of the time period measurement is a clock 
which produces pulses at a frequency of 1/ts Hertz as shown in Figure EPUT-la. The clock counts for a 
variable time to give the basic time unit measurement; that is, it forms the basis for a programmable 
clock. The time base may be any fraction of a second, but it is usually a multiple or submultiple of ten 

201 

previous | contents | next 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000217.htm (2 of 2) [4/3/2002 6:15:33 PM] 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000217.htm


Designing Computers and Digital Systems 

previous | contents | next 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000216.htm (1 of 2) [4/3/2002 6:15:34 PM] 



Designing Computers and Digital Systems 

previous | contents | next 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000216.htm (2 of 2) [4/3/2002 6:15:34 PM] 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000216.htm


Designing Computers and Digital Systems 

previous | contents | next 

Fig. SG-lb. Graph of an example of a step approximation to a ramp function. 

1. A fractional binary representation will be used to normalize the function so that the range 0 to 
(2^16)-1 represents the range 0 to 1. 

2. The minimum period, Tmin, of the waveform equals (2^16/delta)*ts seconds. The maximum 
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frequency, F, therefore equals 1/Tmin. 

3. The maximum fractional error is just the fractional step size; error = delta/2^16. The 
relationship between error and frequency is: f = error/ts or error = f*ts. 

4. The sampling time, ts, generated by the clock is constrained to be no faster than the processes it 
controls, in this case roughly 1.5 microseconds (2 register transfers). Therefore the maximum 
frequency is f = delta/(2^16*1.5*10^-6) and the error is: error = f*1.5*10^-6. 

From the above characteristics, it can be seen that if extreme accuracy is 
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■	 Fig. Time-11. RTM diagram of a system to compute fourier transform of a 
waveform. 

functions for variable sweep time, automatic scaling, and taking statistical data. Provide for a 
synchronization input which triggers the scope to start the sweep. Also, provide for automatic triggering 
based on certain input signals. 

SAWTOOTH WAVEFORM (RAMP) GENERATOR 

KEYWORDS: Real time, waveform generator 

Figure SG-la shows an example of a ramp function, output(t), and Figure SG- lb shows the error which 
results from an approximation to the ramp function by a step function. 

PROBLEM STATEMENT 
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Design a sawtooth waveform (i.e., a ramp) generator with the peak amplitude for the function constant at 
one (i.e., normalized). 

SOLUTION 

The characteristics of a single sawtooth waveform generator, shown in Figure SG-2 will be examined to 
introduce concepts common to many waveform generators. The generator is basically a register in a 
DMgpa which holds the value output(t), to which an input increment (a slope), delta, is added modulo 
2^16. The value of delta (where 1 < delta < 2^16) is added to output at ts second intervals. The value for 
output is transferred to a T(digital-to-analog) at the sample intervals. The following characteristics can be 
formulated for the generator: 
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Fig. Time-l0. RTM diagram of a system for average response computation 
(stimulus-response system). 

3. Design an RTM system to compute one of the common transforms: Fourier, fast Fourier, auto
correlation or cross-correlation. 

4. Design a digital voltmeter (using a T(analog-to-digital)) which computes the maximum, minimum, 
average and peak to peak values, and the root mean square of the waveform. Note that for measuring a 
periodic function, a large number of samples must be taken to insure that the total error is no greater than 
the input quantization error. 

5. Design a D(clock and calendar) which displays the time (in 1/100 second increments) and date. Two 
important principles are counting in mixed bases (i.e., 100,60,60,24,(28,29,30,31 ),12,-) and 
synchronizing independent processes, since counting and display occur nearly simultaneously. Assume 
that the system can be initialized with base values for seconds, minutes, hours,... at the occurrence of an 
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input signal. Also, assume that a master clock generates the time base for the D(clock and calendar) by 
providing a pulse at 10 microsecond intervals. All interface signals (inputs and outputs) should be given 
together. with any restrictions on the system. 

6. Design a sampling oscilloscope using RTM's, which assumes a basic x-y plotting oscilloscope with z 
axis control and T(a-d) converters. The input function is sampled, held in memory, possibly operated on, 
and then displayed. Provide 
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3. Derivations of a quantized analog waveform, where the input signal indicates that a certain 
condition (event) has occurred. 

The output from the waveform analyzer might be one (or more) of the following: 

1. A count of the number of events that occurred over some unit time period. Such a system is 
called a frequency meter or Events Per Unit Time\EPUT meter. The basic structure is shown in 
Figure Time-7. A complete design problem will be presented in a later section. 

2. Various statistical measures of the .waveform such as: maximum (peak), minimum, and 
average (mean) values, median, mode, standard deviation, root mean square, etc. The basic 
structure is shown in Figure Time-8. 

3. A recording of the input waveform for later analysis. The design of Figure Time-9 shows that 
the input waveform samples are stored in a memory; then an analyses is performed on the data. 
One type of. record which is kept is a histogram which records the number of occurrences of each 
sampled event type; statistical analysis could be performed on the histogram. A complete design 
for a histogram is presented in a later section. 

4. An average response computation, which is an analysis of signals that are either periodic or of 
known time origin. The basic structure for such a system is shown in Figure Time-l0a. A 
generator stimulates the system being analyzed by giving it an input at a known time. The system 
responds with an output waveform which is transferred to the waveform analyzer for the 
computation. In Figure Time-l0b the system response output is shown as it might appear at the 
input to the waveform analyzer. The signal in the figure has a large amount of additive random 
noise - in fact, there is more noise than true signal. Taking a single sample of the waveform, 
therefore, gives little accurate information. Typically, the true signal might be 1/10 of the noise 
amplitude. By repeatedly evoking the system and adding each response to an accumulated sum of 
sample values, the noise can be averaged out. The effect is that the repeated sampling of each 
point along the waveform will drive the average value of the noise to zero. If the average noise 
value does go to zero, the average of the accumulated sum of samples will give a good 
approximation to the true signal value at the sample point. 

5. A transform type analysis based on a vector of samples. Figure Time-11 shows the basic 
structure of an analyzer to compute Fourier transforms. The purpose of the system is to transform 
the time sampled results into some frequency domain (spectrum). Other transforms of this type 
include auto-correlation and cross-correlation which have similar design structures. 

PROBLEMS 
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I. Figure Time-2 shows various schemes for carrying information. Sketch functional diagrams for the 
parts of systems which might be used to transmit (encode) and receive (decode) the information 
expressed in those forms. Assume that various T's are available to produce and convert the signal forms. 
For example, one such transducer might take a time parameter as input and produce a sinusoidal output 
with this period. 

2. Explore the design space of average response analyzers and show several alternatives with their 
performance characteristics. The systems should be capable of simultaneously sampling the input and 
displaying previous results. 
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3. The data operations macro which generates the output value requires a certain amount of time 
and this time must be considered when choosing the sampling time, ts. If the sampling time is 
sufficiently small, the data operations macro may be re-activated before it has completed the 
processing initiated with the previous activate signal. This condition would cause erroneous 
operation. 

4. If the data operations macro does not perform its processing in a constant amount of time, the 
output will appear at irregular intervals, rather than at the equally spaced intervals which are 
desired. This irregularity is called variable time jitter. 

A design with the above modifications is shown in Figure Time-5. A K(manual evoke) is used to start the 
system and a switch in the control part loop allows the generator to be stopped. The variable time jitter is 
corrected by calculating an output value during a particular time delay, then outputting it at the beginning 
of the following time delay. This gives the constant spacing of the output values as desired even if the 
processing time is not constant. If one looks carefully at the loop, it is clear that a clock has been 
constructed. Replacing the delays by a clock, the design in Figure Time-6 is achieved. 

Fig. Time-6. RTM diagram of a waveform generator using K(clock) as a time base. 

The problem of activating the data operations macro while it is still processing from the previous activate 
signal has been corrected in the design presented in Figure Time-5 via the K(parallel merge), but it still 

exists in the design of Figure Time-6.


TIME FUNCTION ANALYSIS (WAVEFORM ANALYZERS)


Waveform analyzers take an input waveform, Input(t), and analyze it by observing (sampling) the 
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waveform to extract information about certain defining properties of the waveform. This information is 
the output of the waveform analyzer. For the systems described here, the input waveform will either be 
encoded in digital form or may be readily encoded with a T(analog-to-digital). The types of input to the 
analyzer might be: 

1. An analog voltage at a certain sampling time, which has been quantized to one of 2^n levels 
(e.g., the output of the waveform generators described previously). 

2. A digital signal, which indicates whether an analog waveform is above or below a given 
threshold (actually a special case of 1 above with 2 levels). 
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The second type of scheme is characterized by the modulation of a carrier sine wave, as shown in Figures 
Time-2b, c, and e. In amplitude modulation (on off keying), as shown in Figure Time-2b, the carrier has 
an amplitude of 1 when a pulse is present and 0 when it is not. In the type of frequency modulation 
known as frequency shift keying, as shown in Figure Time-2c, a zero is transmitted as a given frequency, 
and a 1 is transmitted as a second frequency, both with the same amplitude. In conventional frequency 
modulation (FM), as shown in Figure Time-2e, the instantaneous frequency is proportional to the value 
of the information being transmitted; that is, FM has a fixed carrier frequency and the value of the 
information transmitted is proportional to the frequency deviation from the fixed carrier frequency. 

From these examples, it can be seen that while it is commonly recognized that communications systems 
transmit information in a continuous form, systems are also designed to transmit and receive data using 
digital (discrete) techniques. 

TIME FUNCTION SYNTHESIS (WAVEFORM GENERATORS) 

Waveform generators produce as output functions of specified input parameters and time. In this book 
the dependence upon the input parameters is not usually expressed explicitly; the function is most often 
specified as output(t). An example of a periodic function, output(t), is shown in Figure Time-3a. 
Although the function is shown to be continuous, RTM and other digital system waveform generators are 
constrained to approximate the true function by a, series of discrete samples. Such an approximation, 
which produces a sample every ts seconds, is shown in Figure Time-3b. Approximation of a continuous 
function by a set of discrete samples introduces two types of errors: discretization or quantization errors, 
which arise from the use of only a finite number of samples (e.g., 2^8~ 2^12) in the approximation; and 
sampling errors, which are introduced by the fact that between any pair of samples the function is held 
constant, while the true function may exhibit a non-linear behavior between the points. (Linearization 
between samples would be a better approximation, for example.) The error can be expressed in various 
ways: maximum value, average value, root mean square (rms), etc. The choice of sampling time, ts, is 
dependent on: the specific waveform and its period T, the 'resolution (number of levels) of the discrete 
output (e.g., 2^w where w is the number of output bits from some digital device), and the maximum 
allowable error. 

A waveform generator has the simple structure shown in Figure Time-4. A K(delay) generates the time 
base by producing a ts seconds delay, after which a data operations macro is called which generates 
output(t) based on the input parameters and time. The output of the data operations macro can be used 
directly, (parallel by word pulse code modulation); or, if necessary, a T(digital-to- analog) converts the 
digital outputs into voltage steps that approximate the desired waveform (amplitude encoding). The 
design shown in Figure Time-4 must be modified, though, in order to provide a more complete and 
correct design. To that end, the following changes and considerations are necessary: 

1. An activate signal is needed so that at power on, or by manual control, the generator can be 
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started. Another switch is needed so that the generator may be stopped. 

2. Two K(delay)'s are needed in series to produce the desired delay because a K(delay) cannot be 
re-activated a short time after being active. The recovery of a delay is nominally 20% of the delay. 
Alternatively, a K(programmable delay) as described in Chapter 3 could be used. 
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state. This last analyzer is often called an Events Per Unit Time\EPUT meter though it is usually called a 
frequency meter when analyzing continuous waveforms (e.g., sinusoidal). 

MODULATION: CARRYING' INFORMATION IN A TIME-DEPENDENT 
FORM 

In digital systems, information is usually transmitted in a direct parallel form; that is, there is a direct 
physical link for each bit of a data word, and each link has to carry only a 1 or a 0 during a word transfer. 
However, digital information may also be transmitted' serially by using one of the various types of 
modulation as shown in Figure Time-2. It will be seen that the modulation schemes are of. two basic 
types. The first type, exemplified in Figures Time-2a and 2d, is characterized by intermittent steplike 
transitions of the signal between two voltage values. In pulse code modulation, shown in Figure Time-2a, 
the high voltage values correspond to l's and the low values correspond to 0's. In pulse duration 
modulation, shown in Figure Time-2d, the information is encoded in the length of the pulse. 
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Fig. Time-2. Various modulation schemes for transmitting digital information. 
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When the result of a subtraction is negative, the 1000v10 is added back into the binary register and no 
increment is made to the BCD registers. The second, third and fourth calls on the subroutine cause the 
subtraction of 100v10, 10v10 and 1 respectively from the binary numbers and the addition of 100v16, 
10v16 and 1 into the BCD register. Each subroutine call is complete when the result of a subtraction is a 
negative number. 

ADDITIONAL PROBLEMS 

1. Develop RTM systems to perform BCD complementation, add 1, x10, /10, multiplication, division, 
single and double precision. 

2. Perform an analysis which compares the cost/speed of the arithmetic flowcharts which operate on 
BCD numbers without conversion and those routines which perform the equivalent operations with 
conversion from BCD to binary on input and binary to BCD on output. 

3. Design a DMgpa which would facilitate BCD arithmetic. Carry out problem 1 above, based on this 
design. 

TIME-BASED SYSTEMS: CLOCKS, TIMERS 

WAVEFORM GENERATOR, AND WAVEFORM ANALYZER 

INTRODUCTION 

This section presents systems which synthesize (generate) and analyze time dependent functions. 
Carrying information in a time-dependent function is called modulation, converting information into 
such a function is called synthesis (encoding), and extracting information from such a function is called 
analysis (decoding). The primitive clock, delay, and integrating delay, classified as controls in Chapter 2, 
form the basis for time measurement, permitting encoding and decoding functions of time. The types of 
systems to be considered are shown in Figure Time-i. The first three (and variations) are, fundamentally, 
components for use in larger systems, whereas the last two might stand alone as independent systems. 

The first two systems, K(clock) and K(delay), with and without variable time parameters, were presented 
as primitive RTM components in Chapter 2 and as. design problems in Chapter 3. 

The third system, a K(clock and calendar), maintains a clock and calendar 'relative to a base point. The 
time is made available as output data either on a continuous basis or on demand. Such a design problem 
is presented in a following section and such a clock is interfaced to a digital computer in Chapter 6. 
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The fourth type of system, the waveform synthesizer (generator), is usually a combination of a clock (or 
timer) and a Data operation part which computes an output value at times t, t + st,.. . The output value, 
which is a function of any input parameters specified and the time, is either an analog (continuous) or a 
digital (discrete) waveform. The square wave generator presented in Chapter 3 is a simple example of a 
discrete waveform generator. Additional, more complex waveform generators will be presented in a 
following section. 

The remaining system of interest, the D(waveform analyzer), is an analytic device which takes 
information from an input waveform, 1(t), and decodes it in an attempt to reduce the amount of 
information needed to represent the waveform; the reduced set of data is the output of the analyzer. For 
example, analyzers might measure the instantaneous amplitude of a waveform, waveform duration, or the 
number of occurrences per unit time that a signal has remained in a given 
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Fig. BCD-6. RTM diagram of a system to perform double precision BCD to two's 
complement binary conversion in straight line form. 

Solution 2 

Figure BCD-10 illustrates a straight-line single word two's complement binary to BCD conversion 
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flowchart. This scheme employs successive subtraction of powers of ten to form the BCD number. The 
sign of the binary number is once again saved in the Boolean register, Sign-bit; negative binary numbers 
are complemented and the check is made for binary numbers greater than 9999v10. The first call on the 
subroutine successively subtracts 1000v10 from the binary numbers and adds 1000v16 to the BCD 
register for each 1000v10 subtracted. 
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Fig. BCD-5. RTM diagram of a system to perform double precision BCD to two's 
complement binary conversion using a ((for-loop). 

9999v10, since this is the largest four-digit BCD number than can be correctly stored. If the binary 
number is out of the proper range, an Overflow-flag Boolean is set to one. 

The conversion process produces the digits by integer division by 10 of the binary number. The 
remainder at each step is a digit of the BCD number; the digits are produced in order from least 
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significant. The process is illustrated by the example in Fig. BCD-9 (Fig. BCD-9 is on the same page as 
Fig. BCD-7). Each digit is added into a partial sum as it is produced. 
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BINARY CODED DECIMAL TO BINARY CONVERSION 

Solution 1 

An algorithm for converting a four-digit BCD number into standard two's complement binary format is 
shown in Figure BCD-4. The BCD number is held in the base 16 register, S[1]<3:0>v16 with the sign bit 
held in a DMflag (Sign-bit). The resulting binary number is stored in the register S[0]<15:0>v2 and is 
computed as follows: 

S[0] is 2's complemented if the sign bit of the BCD number was one (negative). The main control part 
calls a subroutine four times to convert each of the digits and forms the two's complement if necessary. 
The subroutine, on each call, multiplies the partially converted binary number by ten and adds in the next 
least significant BCD digit; this process is Homer's method for polynomial evaluation. The next digit is 
found by shifting the four most significant bits into the least significant four bits of the A register and 
masking the other digits out. The partially converted binary number is multiplied by ten by repeated 
shifting and addition. The last step of the subroutine adds the new digit into the partial sum. 

Solution 2 

An algorithm for converting an eight-digit BCD number into a double word two's complement format is 
shown in Figure BCD-5. The eight BCD digits are held in the double word register D[1] which is 
comprised of the register pair S[3] [] S[2]; the binary number will be held in the double word register 
D[0) which is formed by the register pair S[1] [] S[0]. The same subroutine as was developed in solution 
1 is used to convert the eight digits; in this implementation, though, a K(for-loop) module is used to 
control the conversion routine. The conversion routine is divided into four subroutines: (1) circular shift 
to find next BCD digit; (2) extract the BCD digit; (3) multiply the partial sum by ten; and (4) add the 
BCD digit into the partial sum. The main routine also calls a subroutine to complement the binary 
number if the BCD number was negative. 

Solution 3 

Figure BCD-6 shows a straight-line method for converting eight BCD digits to two's complement binary. 
The BCD number is held in a double-word register D[1]<7:0>v16 and the binary result is stored in the 
double-word register D[0]<31:0>v2. The scheme adds 10^1 to the accumulated sum in D[0], D[1]<|>v10 
times for l=0,1,...7. A subroutine is called by the main routine to complement the binary number if the 
BCD number was of negative sign. Figure BCD-7 gives an example of this scheme. 
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BINARY TO BINARY CODED DECIMAL CONVERSION 

Solution 1 

A routine to convert a single word two's complement binary number to BCD is given in Figure BCD-8. 
Since the BCD number is stored in sign-magnitude form, the sign of the binary number is saved in the 
DMflag Sign-bit and negative binary numbers are complemented so that all conversion is done on 
positive integers. The magnitude of the binary number must be less than or equal to 
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Fig. BCD-3. RTM diagram of a system designed by Robert Chen to perform BCD addition using 
binary operations; BCD numbers stored four digits per register. 

Solution 2 (Robert Chen algorithm)


An algorithm for adding two four-digit BCD numbers is shown in Figure BCD


3. The numbers are held in the registers of a DMgpa; a temporary register, T, is also used. In this scheme 
the six correction is made to all sum digits, then a mask of sixes is created from those sum digits in which 
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no carry was produced. The sixes are then subtracted from the digits which required no correction. 

This latter algorithm by Robert Chen still appears costly and time consuming compared to binary 
addition. Signed addition, subtraction, multiplication, and division will no doubt be more difficult. The 
alternative of converting from BCD to binary to perform the arithmetic operations and reconverting from 
binary to BCO for output will now be considered. 
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instead of modulo 10 as in proper decimal addition. To achieve the correct' decimal result, a six must be 
added to each BCD digit of the sum which represents a decimal sum greater than nine. That is, sums in 
the range 10 to 15 (binary) should produce sums in the range 0 to 5 (decimal); addition of a six to each 
sum digit in the result will produce the desired effect. A carry into the next BCD sum digit must also be 
generated in the above case. For sums in the range 16 to 18 (binary) a carry has already been propagated 
to the next digit sum, but the six correction must still be added to adjust the BCD sum digits 0, 1, 2 to 6, 
7, 8 respectively. If the sum of any pair of BCD digits is less than or equal to nine, no correction is 
necessary. Fig. BCD-lb summarizes the correction procedure for achieving proper BCD addition using 
binary operations. 

Fig. BCD-1. Illustration of BCD addition. 

Solution 1 (S <- S+T) 

A simple, direct method of BCD addition is illustrated in Figure BCD-2. Two vectors of registers, S[0:n
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1] and T[0:n-1], hold the N digits of the two numbers to be coded; the jth digit is stored in bits <3:0> of 
the jth register in the vector. The algorithm adds the first two digits (S[0]) and T[0]) together and then 
adds in a correction number, FFF6v16. If a carry is generated, it is propagated to the BusOVERFLOW 
and the sum is correct; otherwise the correction was unnecessary and it is removed. The carry is added to 
the sum of the next two digits. This process is repeated for each pair of digits (S[j] and T[j], j=0,1,..n-1) 
to form the complete sum, which is stored in the S vector as it is generated. 
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ADDITIONAL PROBLEMS 

1. Implement higher precision floating point operations, e.g., a double word with an eight bit exponent 
and twenty-three bit mantissa. 

2. Consider and implement a floating-point scheme in which the mantissa part is an integer instead. What 
are the advantages or disadvantages of this scheme? 

BINARY CODED DECIMAL (8421 CODE) ARITHMETIC AND CONVERSION' 

KEYWORDS: Subroutine, overflow, carry, arithmetic, BCD; straight-line, loop, data-representation 

Binary coded decimal (BCO) arithmetic will be discussed because it is a necessary adjunct to the 
standard binary system. BCD is often used outside the RTM system for representing data in a form 
convenient for human handling. In these examples each decimal digit is represented using four bits in the 
standard binary encoding, hence the name 8421 code. The sixteen bits of an RTM register will hold four 
BCD digits, but with no provision for a sign-bit. A Boolean register, Sign-bit, will be used to store the 
sign of the BCD number; a 0 will represent a positive sign and a 1 will represent a negative sign. Thus, 
for example, +9015 would be represented in ,binary coded decimal as 0 1001 0000 0001 0101. 

Each BOD character is a four bit pattern. A simple notational extension of decimal digits is used to refer 
to each of the 16 possible patterns, called hexadecimal digits: 

For example, 1D3Fv16 is the 16 bit word 0001 1101 0011 1111. 


PROBLEM STATEMENT 


Design an RTM system to perform addition of two positive numbers expressed in binary coded decimal. 


DESIGN CONSIDERATIONS 
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These are two possible strategies for operating on numbers expressed in BCD with RTM's: operate on the 
numbers in BOD form inside the system; or convert the BCD numbers to standard binary form on input, 
operate on the binary numbers, and reconvert the binary numbers to BCD form on output. The systems 
described below include systems which perform addition directly on the BCD numbers and systems for 
BCD-to-binary and binary-to-BCD conversions. 

BCD ADDITION 

The mechanics of BCD addition using binary registers will be briefly described to provide background 
for understanding the systems presented below. An example of BCD addition using binary registers is 
illustrated in Fig. BCD-la. First, binary addition is performed producing A+B. This operation produces 
some correct BCD digit results; however, corrections must be made to some of the other digit sums to 
produce the correct result in BCD. Since binary addition has been performed, the addition for each pair 
of BCD digits has been modulo 16 
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subroutine which implements the Russian Peasant's Algorithm will be presented here (see Figure DATA
9). Two sixteen-bit, two's complement numbers, initially held in registers S[2] and S[4], are multiplied 
together and the result placed in the double register D[0] defined as S[1] [] S[0]. This subroutine requires 
double-word addition and left-shift operations. The reader should note the high overhead time for setting 
up the multiplication. Four steps are required: 

initialization of P\D[0]; exchange of multiplier and multiplicand (so that |MPR|<|MPD|) to improve the 
performance of the algorithm; adjusting the sign (if necessary) of the multiplier and multiplicand so that 
the sign of the multiplier is positive; and extending the sign of the multiplicand into S(3). 

SCIENTIFIC (FLOATING POINT) NOTATION 

KEYWORDS: Scientific notation, floating point, exponent, fraction, mantissa 

A common representation used to express numeric data is the scientific (floating point) notation. 
Numbers in this form are written as d*2^j (for base two), where d is a binary fraction (mantissa) 
multiplied by 2^j, where j is referred to as the exponent. For example: .1011*2^6=101100. , .0110*2^-3= 
.0000110. Floating point notation is most often used for numbers of a fixed precision, but with a widely 
varying exponent. 

One possible format for floating point numbers using a sixteen bit word is shown in Figure DATA-l0. 
The exponent, R<14:9> is encoded in so-called excess 31 notation, that is, the true exponent of the 
number is 31 less than the number stored in the word; e.g., -31 is encoded as 0, -30 is encoded as 1,...,0 
as 31,..., and +32 is encoded as +63. This method avoids using a sign bit for the exponent. The mantissa, 
R<8:0>, is stored as an unsigned binary fraction with the binary point assumed to be immediately to the 
left of R<8>. The sign bit, R<15>, stores the sign of the mantissa. This format gives a range of numbers 
from -.000 000 001 *2^-31 to .111 111 111 *2^32 whereas a sixteen-bit, two's complement notation 
gives the range -(2^15) to (2^15)-1. 

In addition to the common arithmetic operations (addition, subtraction, multiplication and division), one 
other operation is usually provided for floating point numbers, i.e., normalization. Normalized floating 
point numbers always have the left-most one-bit of the mantissa in R<8>, except of course for a zero 
fraction. To normalize a number, the mantissa is shifted to the left until a one- bit is in R<8> while the 
exponent is decreased by one for each shift. Using the format shown in Figure DATA-10, the range of 
normalized floating point numbers is -.100 000 000 *2^-31 to +.111 111 111 *2^32. 

PROBLEM STATEMENT 

Implement a set of subprocesses to provide floating point arithmetic operations for RTM systems; 
include addition, subtraction, multiplication, division, and normalization. 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000191.htm (1 of 2) [4/3/2002 6:15:51 PM] 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000191.htm


Designing Computers and Digital Systems 

DESIGN CONSIDERATIONS 


There are three types of errors which can result from the floating point operations: 


● 1. overflow - the exponent of the result of an operation is too large to be represented 

2. underflow - the exponent of the result of an operation is too small to be represented 

3. significance - normalization of a number causes exponent underflow. 
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Fig. DATA-7. RTM subprocess for n-word, two's complement subtraction with arithmetic 
overflow detection. 

N-WORD PRECISION SHIFTING 

The definitions of logical, circular, and two's complement arithmetic shifting were presented in Chapter 3 
and knowledge of these will be assumed here. The only difficulty in n-word shifting is propagating a 
shift bit between registers. However any bit shifted out of a register may be saved in the K(bus sense) 
module OVERFLOW-flag\OVF, and the bit to be shifted into a register may be specified. Thus the 
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problem is easily solved. 

Figure DATA-8a shows implementations for n-word logical, circular, and two's complement arithmetic 
right shifts. A flag, Shift-Flag\SF, is used to hold the bit being transferred between registers. Figure 
DATA-8b shows implementations for n-word logical, circular, and two's complement arithmetic left 
shifts. The ArOvF flag is set to one if the sign is changed on the arithmetic shift. 

MULTIPLICATION 

Since multiplication was discussed extensively in Chapter 3, a single 
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Fig. DATA-5. RTM subprocess for n-word, two's complement addition with arithmetic overflow 
detection. 

Figures DATA-6a and 6b show subtraction of unsigned integers with and without borrow detection 
respectively. Figure DATA-6c shows a subtraction scheme with overflow detection for two's 
complement numbers which has the same logical structure as the addition scheme in Figure DATA-4h. 

Figure DATA-7 shows an n-word subtraction process. The first n-1 pairs of words of the operands are 
subtracted using unsigned integer subtraction with borrow detection. A borrow produced in one 
subtraction will be subtracted from the next word of the operand, then the next subtraction is performed. 
A borrow may be generated (into the OVF flag) either when a previous borrow is subtracted from the A 
register or when the B register is subtracted from the A register, but the OVF flag can be set to 1 only 
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once for each pair of words (why?). Two's complement subtraction is used on the most significant pair of 
words in the operand. Overflow checks are needed when a borrow from the n 1st subtraction is 
subtracted from the A register and when the B register is subtracted from A. 
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Fig. DATA-4 (Part 3 Of 3). Several RTM subprocesses for one-word, two's complement addition. 

testing the sign of the result and the sign of B. The tests on each path are appropriate to the original sign 
of A which initiated control along the path. 

Figure DATA-5 shows the process to perform two's complement addition of n word operands. The lower 
n-1 words of each operand contain sixteen-bit numbers, no sign is included. The sign for the operand is 
held in the most significant bit of the nth word. With this convention, unsigned integer addition is 
performed on the lower n-1 pairs of words, retaining any carry from a single addition and adding it into 
the sum of the next pair of words. The most significant pair of words are added using one of the schemes 
for two's complement addition developed above to detect arithmetic overflow. Note that a carry in one of 
the first n-1 additions is generated (into the OVF flag) either when a previous carry is added to the A 
register or when the A and B registers are added together, but that the OVF flag can be set to 1 only once 
for each pair of words (why?). 

SUBTRACTION 

Figure DATA-6 shows two methods for performing unsigned integer subtraction and one method for 
overflow detection for two's complement numbers. For unsigned integers, the borrow out of a register is 
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important, but the concept of overflow is meaningless. For one word, two's complement subtraction, the 
borrow out is not significant, but overflow must be considered. Subtracting a negative number from a 
positive number may produce a positive number out of the representable range, likewise subtracting a 
positive number from a negative number may produce a non-representable negative number. Figure 
DATA-3 shows the difference and borrow results for individual bit subtractions. 
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control (multiple branches), and designs which use combinational circuitry to compute a single Boolean 
value for the branch input. 

To provide a basis for this section, Figure DATA-3 shows the complete table of sum (difference), carry 
out (borrow out), and arithmetic overflow results for all combinations of bit patterns at the jth bit position 
of a binary adder (subtractor) with input words A and B. The, arithmetic overflow is only dependent on 
the 15th bit position. 

For the simplest case, addition of unsiged integers, carry and arithmetic overflow are identical. Figure 
DATA-4a shows that addition of unsigned integers with no carry\overflow detection can be performed in 
one operation. Of course, operations are necessary to load the A and B registers from the S and T 
memories and store the result, but these operations will not be shown explicitly except in the first few 
cases. 

Figure DATA-4b shows unsigned integer addition with carry\overflow detection. Sixteen-bit unsigned 
integers can be represented in the range 0<x<(2^16)-1. Overflow occurs when the sum of two integers is 
greater than or equal to 21'16; the carryout of the register into the Bus OVERFLOW flag signals this 
condition. 

Various methods of detecting carry and arithmetic overflow in addition of two's complement numbers are 
shown in Figures DATA-4c to 4h. For signed numbers, when overflow occurs, the sign of the result is 
erroneous; the sum of two positive numbers yields a negative (erroneous) result, or the sum of two 
negative numbers yields a positive (erroneous) result. Any carry out of the register in signed-number 
addition is superfluous information, since any significant carry can be detected from the sign-bit. The 
sum of numbers of different sign will never produce overflow, but may generate a meaningless carry out 
of the register. 

The scheme of Figure DATA-4c uses a flag, SgnF, to indicate whether the signs of the operands match. 
A match (both operands positive or both negative) indicates potential overflow since the magnitude of 
the result may not be representable. SgnF is set initially and the addition is performed, then if the sign of 
the result does not match that of the original operands, overflow has occurred and the flag, ArOvF, is set 
to I. 

The scheme shown in Figure DATA-4d is similar to that in 4c, but more combinational circuitry is used 
to set the ArOvF flag. The scheme in Figure DATA-4e is a more direct form of the scheme in 4d, but it 
violates the condition that the ArOvF flag is not set (to zero) on successful operations. 

In Figure DATA-4f, SgnF holds the original sign of the operand in the A register. Note that SgnF (i.e., 
B(15>) indicates whether the signs match or not. The test for overflow is made using combinational 
circuitry to compare the original sign of A, in SgnF, the sign of B, in B<15>, and the sign of the result, 
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saved in the K(bus sense) and in A. 

In Figure DATA-4g, the same principle for detecting overflow as was used in 4f is implemented, but 
without combinational circuitry. A set of two-way branches is used to successively check the original 
sign of A, the sign of B and the sign of the result. The ArOvF flag is set when an erroneous result sign is 
encountered. 

The process shown in Figure DATA-4h uses the same principle for detecting overflow as the schemes 
shown in Figures DATA-4f and 4g, but this scheme does not use a sign flag. The sign of the operand in 
the A register causes one path to be taken for a negative number, the other for a non-negative number. 
The addition is performed on each of the paths, then the overflow check is made by 
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Fig. DATA-1. RTM data part used by all arithmetic subprocesses. 

a Sign-Flag \SgnF in the addition and subtraction operations. A second, independent DMflag, Arithmetic-
Overflow-Flag\ArOvF, retains arithmetic overflow information. The ArOvF flag is set to a one on 
arithmetic overflow, but a successful operation (no overflow) does not reset the flag to zero. This allows 
a sequence of arithmetic operations to be performed prior to checking the result of a previous operation. 

COMPLEMENTATION (NEGATION) 

In two's complement notation, changing the sign of a word is more involved than for either the sign
magnitude or one's complement notations which require only a change of sign bit or bit 
complementation, respectively. In two's complement representation, the value of each bit is b<j>*2^j; 
however the most significant bit has the value b<15>*(-(2^15)). (Why?) Since two's complement 
notation is not symmetric about zero (there is no -0), on negation all bits of the word. must be 
complemented, including b<15>, and a one added to the result. For example, consider the negation of 
zero (all 0's) which is zero. The result of complementing all the bits results in sixteen l's, but by adding a 
1, the desired result of all 0's is obtained. 
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Using 16-bit, two's complement notation, numbers in the range -(2^15) < x < (2^15)-1 can be 
represented. Negating the smallest negative number, -(2^15), then, will cause arithmetic overflow since 
2115 is not representable. Figure DATA-2 shows both n-word and one-word negation processes for two's 
complement notation. 

ADDITION 

Two implementations of unsigned integer addition and several implementations for ore-word, two's 
complement addition will be given. The examples for two's complement addition are given to illustrate 
the tradeoffs between sequential 
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operations on data not encoded in the regular 16-bit, two's complement integer form of the RTM system. 
(The shifting problem of Chapter 3 contains a discussion of two's complement representation.) 

There are other forms of binary encoding for signed numbers such as sign- magnitude and one's 
complement (see the shifting problem in Chapter 3) which will be discussed only briefly here. Logical 
design texts, enumerate these other forms. They are omitted from extensive discussion both because most 
digital systems use the two's complement encoding and because we simply cannot be all-inclusive. The 
principal reason, though, for discussing two's complement operations is that RTM's were designed to 
facilitate arithmetic on data in this form. 

Two's complement numbers will be presented in two forms: single word precision -- one 16-bit word; 
and n-word precision -- n 16-bit integers concatenated to form an n*16-bit word with the sign bit held in 
the most significant bit of the most significant word. The n-word case is presented for the sake of 
generality. Two-word (double) precision, which is sufficient for most applications, is readily derived 
from the n-word case. Using both the one-word and n-word forms, subprocesses are given to perform 
addition, subtraction, complementation (negation), shifting, and multiplication. These subprocesses are 
easily understood and will be discussed only briefly. The problem-statement format used for most 
examples in this book will be returned to for the description of more complex subprocesses. 

The binary coded decimal(BCD) encoding scheme using the 8421 code is presented since it is often 
needed outside the RTM system for devices used in human communications (lights, switches) and for 
some instrumentation transducers (e.g., shaft position indicators, digital voltmeters). BCD addition and 
conversion algorithms for BCD-to-binary and binary-to-BCD are given. 

A short section presents the scientific notation (floating point) representation, which is used for data that 
varies over a wide exponent range. The section will introduce the problem of implementing floating point 
operations but will not give detailed solutions. 

DATA PART FOR THE ARITHMETIC OPERATIONS 

In the design of the data operations subprocesses, a particular fixed structure for the data part of the 
system will be used. In this way, the operations can be considered as a collection of subprocesses, all of 
which operate with a common memory and arithmetic unit; Figure DATA-1 shows the common data 
part. Two scratch pad memories, S[0:15] and T[0:15] hold the operands. The arithmetic operations are 
performed in the A and B registers of the DMgpa. Register S[0] is used for monadic (unary) operations 
of the type, S[0]<- u(S[0]), e.g., shifting, incrementing, complementing, etc. The form for the dyadic 
(binary) operations is S[0] <- b(S[0],T[0]), which includes operations such as addition, subtraction, 
multiplication, etc. which require two operands. For n-word precision operations, registers S[n-1],...,S[0] 
and T[n-1],...T[0] hold the operands (most significant part to least significant). Note, however, that in 
some cases T might merely be a renaming of some of the registers in S. For example, using double 
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precision, S[1] and S[0] might hold the first operand and S[3] and S[2] hold the second, then T[1]:=S[3] 
and T[0]:=S[2]. 

Since the arithmetic operations are carried out in the A and B registers of the DMgpa, extra operations 
are required to load the operands from S and T and store the results back. A DMflag is used to hold carry 
information, Carry Flag\CF, in some of the multiple precision operations and it is also used as 
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CHAPTER 5 ADVANCED DESIGN EXAMPLES 

This chapter contains problems organized in terms of PMS component types. The first set of problems 
treat the Data operations\D type component. These problems are used as a basis for subsequent sections 
since they illustrate more complex data operations for binary and binary coded decimal (BCD) data 
types. Since BCD is so important at the system interface to humans, and also since the internal operations 
of RTM's and in two's complement binary, it is important to understand both the BCD operations and 
binary-BCD conversion operations. 

The next set of problems in the chapter describes systems in which time is the primary constraint. The 
encoding and decoding of information as a function of time underlies these systems. Two problem 
classes are presented: waveform generators (synthesizers) and event per unit time (EPUT) counters 
(analyzers). Subsequent problems give more complex systems for analyzing various waveforms. One 
such system records the histogram (distribution) of input samples; this system is functionally a 
compound DM since data operations and memory are central to it. Another system, the DM(coating 
thickness monitor) problem is similar to the histogram. The two system synchronization problem is 
illustrated in the time-based systems using an extended RTM, called the K(arbiter). The arbiter allows 
two independent control sequences to enter a common control, K(arbiter), in which one control sequence 
only is permitted to emerge at a time. In this way multiple independent systems can share common 
facilities in a co-ordinated way. 

The Transducer section has four complete problem-examples which are also involved with timing and 
synchronization. Transducers by their function are interfaces between two systems - an inherent 
synchronization problem. The first problem considers various methods of digital communication via the 
telephone network An analog sampling unit at the end of a communication link is then presented. Next 
an interface to a paper tape punch is given. Finally, T(Teletrola), a device which .uses the data 
communication format of the ASCII code Teletype to produce a four-octave range of square wave tones 
is given. With Teletrola, any computer with Teletype output can easily synthesize music- like sounds. 

Next, two controls\K are given. One control is for solving abstract problems, using the Turing Machine 
formulation. A Turing Machine tape transport (with infinite tape) is postulated as an "extended" RTM. 
Several Turing machine problems are solved for smaller (i.e., 16-cell) tape units. The other problem is 
concerned with the control of a conveyor which has a number of output stations. As items enter the 
conveyor a record of them is stored in the control, and then as they move along on the conveyor, they are 
ejected into the correct output station. 

The final section presents three functionally different kinds of memories which use a conventional 
M(array): the queue, stack, and content addressable. Each is used in a particular way, according to 
function. 
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DATA OPERATIONS SUBPROCESSES 


INTRODUCTION 

This section is concerned with the design of subprocesses, i.e. macros and subroutines, that perform 
operations on data held in RTM memories. The data 'operation subprocesses are generally necessary 
because they provide the ability to perform operations not available in RTM's, like multiplication, 
division, and/or 
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13. Consider the problem of generating constants ,for an RTM system. Make a study of this problem in 
the manner of this chapter. 

14. Do a study in the manner of this chapter on the problem of computation versus control flow for 
realizing Boolean functions, as illustrated in Figure 34. Be sure to estimate the cost and speed of the 
obvious ways to do the task, as a basis for comparison. 

15. (A) Add a multiply instruction to the Crtm-1 computer of Chapter 6 so that. giving one instruction 
carries out the operation. (B) Add a multiply-step (i.e., an add an shift) and evaluate it against the other 
systems. 

16. (A) Write down a process for converting an RTM system to a Fortran program for simulation. Carry 
out this conversion process for the various schemes in this chapter. (B) What must be true of the Fortran 
system so that the simulation is possible? 

17. Unwind the control of the RP algorithm and evaluate it. 

18. Checking the RTM System (Part 2). The problem is to check the actual system exhaustively. The 
difficulty is that there is no obvious way to know whether a given multiplication 4s right except by 
comparing it to a true source. One solution that .might have been suggested is to tie the system to a 
computer and use the computer (which presumably has a true multiply) to compare. This is a good 
solution, if an interface is available, and a terrible solution if not. A second solution that might have been 
suggested is to create two multipliers, say the 8-step and the RP, and play them against each other. If they 
are in error at least it will be in the same way! This is a reasonable solution, though inelegant and clearly 
not fool-proof. A third solution, and the one we recommend comes from considering the identity: 

If this is not zero, then there must be an error in the multiplier. Now do this, over all values of A and B 
that lead to legal products (since A+B must be less than 2^8). In this manner every product gets executed 
at least once and checked. (A) Design such a tester to exhaustively check the multipliers in this chapter. 
(B) Does this scheme guarantee that the multiplier is correct? (C) If not, what is the difficulty and can 
you fix it? (D) Does this whole exercise suggest a general way to test certain systems? What is it? (E) 
Can you list some other functions which might be checked this way? Some others that seem to you 
unlikely? (F) How do you know that your tester is correct? 

19. Algorithms for Multiplication. Consider the identity used in Problem 12: 
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(A+B) * (A-B) = A*B - B*B. 

(A) Can this be used to design a multiplier? (B) Do so. 

20. In this chapter we have not considered one of the simplest of all multiplication algorithms. This 
simply consists of adding the multiplicand to itself a number of times that is equal to the multiplier. 
Design a minimal cost RTM system to implement this algorithm. 
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4. We have started with a hardwired version of multiply defined in an RT module system and compared 
it with various software implementations. But systems of RT modules themselves represent 
specializations. If one moves down to general logic-level design, one would confidently expect 
multipliers to be either cheaper, aster or both. (A) Search the literature on multipliers and compare their 
costs and speeds with those of the systems discussed in this chapter. (B) Compare the methods used with 
those used here. Can the algorithms used at the logic design level be applied at the RT level? 

5. In the discussion of the pipeline and array, we only worked with the multiplication. (A) Pipeline the 
entire processes of Figure 7. (B) Show the array design noting that there is not necessarily a loop but 
possibly arrays of adders. 

6. Conduct an analysis in the style of this chapter of the problem of calculating a quadratic function: 
F=A*X^2+B*X+C. (A) Do it assuming that the coefficients are fixed, so that the system takes X in as 
input and delivers F as output. Assume that numbers are 8-bit positive integers. This case might arise in 
practice; e.g., the quadratic function plays a fixed role in a large calculation, say, it computes a decision 
criterion. (B) Do it assuming that there are four inputs X, A, B and C with one output, F. 

7. The 8-step multiplier has the property that it actually computes Z=X*Y. Make use of this feature to 
design a general polynomial evaluation system, assuming a fixed number of coefficients and an 8-bit 
input. Design the first, middle and last stages. 

8. Reduction of Control. In unwinding the control loop, we engaged in a shift of knowledge from 
encoded data (the iteration variable) to position (in the control sequence). These are simply two different 
ways of maintaining the same state. (A) Can this be applied elsewhere? (B) Avoid the flags in the 
pipeline by generating all stages in parallel, and then feeding forward all at once. Does it help the speed? 

9. General Concurrency. In seeking ways to introduce parallel computation into an algorithm we sought 
places in which there was no output from one part of a computation that was required as input to another. 
We did it by examining Figure 4. (A) Can you find a way to identify all the opportunities that arise in this 
fashion, just by a mechanical examination of the flowchart? (B) Does this lead you to another 
representation of the computation that is useful for looking for parallelism? 

10. Forms of Parallelism. We introduced three forms of parallelism, two of which were special -- array 
parallelism and pipeline parallelism. The third, concurrency, we simply characterized as general 
parallelism. (A) Are there any other interesting special cases of parallelism? (Hint: Take the various 
metaphors for naming parallelism and ask about variations.) (B) Do they have any application to the 
multiplication problem? [Note: One answer is job shop parallelism, in which there are job queues 
established in front of specialized machines.) 

11. Checking the RTM System. With the simulation we checked the RT flowchart completely. But we 
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certainly did not check the actual RT circuit. (A) Find a way to exhaustively check the RTM system itself 
after it has been assembled and seems to be working. (B) Why is this hard to do? (Hint: Examine the 
Fortran program used in the simulation to see why it is possible there.) 

12. In the 8-step straight line implementation, the reader is invited to show how the number of control 
modules can be further reduced while keeping the essentially straightline nature of the structure by using 
a multiple level subroutine. This achieves a slightly better point in the local cost-performance space. 
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INCREASING GENERALITY AND MODIFIABILITY 

These criteria were not a part of our study. They clearly do not have much impact on a simple multiply 
operation. However, in more substantial systems they become important. The basic fact is that all 
generality costs in terms of hardware and (possibly) speed, since additional parametric inputs must be 
processed and either consulted during the computation or the computation adapted according to them. 
Thus, one rule to keep costs down and speed up is to decrease generality. However, if generality is 
required, and especially if the kinds- of amounts of generality are not clear at design time, then going to a 
software implementation provides one generally available solution. 

INCREASING RELIABILITY 

Like generality and modifiability, reliability is an evaluative dimension that we did not explore. As we 
discussed earlier, it is not really an appropriate concern of alternative designs is most cases, in this book 
In general, one should use a technology that has the right reliability characteristics so that straightforward 
design is appropriate. However, this is not always possible, and we list in the figure several standard 
strategies that are used to deal with unrealiability. 

COMPUTE WITH LOGIC 

Since Boolean operations are just selections on the basis of whether an operand is a 0 or 1, and since one 
can store the knowledge of a computation in the control path, it is possible to do all Boolean 
computations in the control part. In general, with a suitable functional system (e.g., our D, M, K labelling 
of components) there should be only a single way of doing basic operations and this should be with 
components of the appropriate functional label. Indeed, Boolean operations can be done with D 
components. They can, of course, be done with a DMgpa. However, this is extremely expensive, since a 
DMgpa processes 16 bits in parallel. Thus, there is a full set of combinatorial data operations, e.g., 
D(AND|OR|NAND|NOR). But the third way of computing with K's remains an alternative, which can 
sometime be of use in saving either time or hardware depending on the exact details of the design. Figure 
34 illustrates how this is carried out. 

PROBLEMS 

1. Reliability as another criterion. (A) Using the formulation that the probability of failure is roughly 
proportional to cost, derive several tables for the failures of the RTM modules. Make reliability 
calculations for two similar implementations of multiplication in order to see how different their 
reliabilities are. (B) Design a highly reliable version of multiply, assuming that you wanted to remain 
within RTM's. 

2. The multiplication scheme using table look-up would appear to work with any sized component, e.g., 
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2-bit, 3--bit, etc. With each component there is a trade- - off of the size of memory for the table and the 
number of stages in the computation. (A) Design the multiplication system using 3-bit components. (B) 
If one considers N-bit numbers and K-bit components, can one decide in general which D-bit versions 
are plausible candidates? 

3. In the RP algorithm we introduced an initial selection of the smaller operand to be the multiplier in 
order to speed up the system somewhat. (A) Is this addition worthwhile (since it takes more hardware)? 
(B) How can you answer this question so that the answer is usefully available to future designers who 
might want to use this implementation, say by being added as a note in a designer's notebook? 
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DECREASING COST BY MERGING CONTROL PATHS 

Whenever two control paths are similar or identical they can be shared. Usually this involves separation 
of the paths again at some points, so that some additional processing must be done. But if the shared path 
is long enough, there can be a slight decrease in cost. The modification of the concurrent version of 
multiply, where we got rid of one K(parallel-merge) and put a Kb2(C=O) in series, was essentially a 
small example of this. 

SAVING MEMORY 

In the chapter we emphasized only cost and performance. On the surface there does not appear to be any 
reason to want to save memory (or contrarywise, to wish to use memory), since memory can be seen as 
simply one component of hardware costs. There are two reasons for separating it out. First, there are 
generally several ways to generate alternative systems that depend on increasing or decreasing memory 
and these options need to be available. However, the effect of these options on cost and performance is 
not predictable in many cases, so they cannot all be subsumed there. Second, because memory comes in 
large units, it is either very cheap (when excess capacity has been made available in the system by other 
demands) or very dear (when staying within an existing memory limit will keep the costs down, but 
exceeding it forces a large jump). In either case one may wish to consider explicitly the trade-off of 
memory for other processing. 

Recompute on Demand 

This is really the opposite strategy from the table look up. Even though an algorithm forces the 
computation of certain data ~t some point, it recomputes it on subsequent demands rather than take the 
space to store it. 

Store Information in Control Part 

By running a separate control path, knowledge that is implicitly known at the beginning of the control 
can be remembered all along the path. The other side of this coin occurs in trying to merge two paths to 
save cost, in which some memory may be required because running a joint path no longer permits 
knowing which source one came from. 

Compress Data 

The total set of bits to hold the information may be much in excess of the logarithm (base 2) of the actual 
set of distinguishable states that occur. Thus, there is the opportunity to recode the data in a more 
compact representation and thus save memory space. This almost always costs additional processing, 
since the algorithm usually cannot work on the data in compressed form and hence a decoding operation 
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must be performed whenever the data is to be processed. Whether the encoding and decoding operations 
cost more than is saved by the memory depends on the details of the algorithm and the volume of data. 

Avoid Storing Unrequired Data 

Often the question is not really one of compacting data in terms of a new encoding, but simply of 
recognizing that a large part of the data in the representation that is being used "automatically" with the 
problem will never be processed and therefore can be discarded. A related possibility is to recognize 
when an item of data has been used for the last time and thus its memory space can be used for another 
purpose. 
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then a macro is used in the implementation, Kmacro(...). the data operations are directly determined from 
the algorithm and then the additional memory required is determined. (This is the correct order, since 
RTM data operations often have associated memory that obviates the need for separate memory.) 

Thus it .is always possible to obtain a starting design. This base design may not be the preferred one. The 
viewpoint of Figure 33 is that one will wish to explore variations in design before one settles on an 
appropriate version for actual implementation. But it is a fundamental feature of a good technology that 
there exists a straightforward way of producing at least one reasonable design from the specifications for 
a system. The functional notation for the RTM modules, the division into control and data parts, and the 
creation of the control part as isomorphic to a standard flowchart for specifying algorithms -- all these 
serve to provide this essential property of good technology for the RTM system used in this book. An 
essentially similar scheme underlines the system of the Macromodules of the Clark.. 

Figure 33 should be looked at as a proposer of plausible moves for wandering in the design space. There 
is no guarantee that a given move can be made for a given design or that, if made, it will produce a 
design that has the specified change. In many cases we know something about the conditions under 
which a move is applicable -- e.g., array parallelism requires a series of independent, almost identical 
computations on an array of data. We have not added such notes on feasibility to. the figure because the 
conditions of applicability are not generally clear. Similarly, though sometimes it can be assured that a 
move will produce an effect in the direction under which it is listed, often it cannot and, in any event the 
size of the change is quite unpredictable. Equally important, the new system will differ along other 
evaluative dimensions as well. Indeed, the trade-off structure at the top of the figure guarantees that this 
will often happen in undesirable ways -- that is, in ways that decrease the system's value. Of course, as 
we know from the example in the chapter, occasionally, a move may yield a design that is preferred 
along all relevant dimensions. The point is that Figure 33 is a generator of moves and that the result of 
attempting such a move must be evaluated post hoc, after each new design has been constructed. 

Most of the entries in Figure 33 are familiar from earlier in the chapter and further discussion of them 
would be repetitious. However, the new ones that have been added require some comment, although we 
cannot illustrate them extensively here. 

INCREASING SPEED BY MULTIPLE REPRESENTATIONS 

Whenever data is to be used for several purposes, there is a conflict over the representation of the data --
to which of the several purposes it is adapted. This means that extra processing has to be done for one or 
more of the purposes due the presentation adopted. Often keeping multiple representations adapted to 
each purpose can save computation time. It invariably requires extra memory and usually requires extra 
processing to set up the representations. Thus, there needs to be a high rate of use to compensate for 
these disadvantages. 
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Multiplication is too simple to show this affect. In principle one could, imagine keeping around both the 
regular and logarithmic representations of numbers to be used in addition and multiplication, 
respectively. 
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accurately known, since empirical frequencies of the types of failures are known and the costs of repair 
and replacement are also known. Sometimes no quantitative estimate can be made because we (computer 
science) do not yet understand what we want to mean by a given concept. Generalizability is an example. 

Despite the restriction of the present analysis, we see that it goes quite a way. Certainly it is adequate 
enough to select an implementation that should be used within some particular larger system. Where 
basic data is available, accountings can be made of the performance and cost along additional 
dimensions. Observe, however, that if one of 30 systems is to be selected, having them evaluated on 100 
dimensions will probably not help much in making the right selection -- two or three dimensions will 
dominate. The others are of interest to the decision only as a check that costs and performance on 
subsidiary dimensions are not out of bounds (which can often be checked without detailed calculations). 
A detailed accounting of the other costs may still be of interest however, even though they do not 
contribute to the decision. 

SUMMARY OF THE TYPES OF VARIATIONS 

Our strategy in this chapter has been to raise some issues of RT-level design by taking a single task and 
exploring the space of possible designs. We have asserted the existence of recurrent options for creating 
alternative designs and that these options are a principal means for generating the design space. Each 
example design has been created in response to one of these recurrent patterns, in order to bring out as 
many of them as possible. In this last section we summarize these patterns in a more systematic way. We 
expand the list somewhat beyond the examples given. Although our single task of multiplication has 
served us well, it could hardly be rich enough to reveal all the useful patterns. Our summary, of course, 
can also hardly pretend to be exhaustive, but it can make evident a few more patterns. 

Figure 33 provides the summary. At the top it gives the various major evaluative criteria amongst which 
trade-offs can occur. The existence of trade offs is guaranteed simply by the fact that several functions of 
the same variable (here the design, which varies over the design space) do not in general attain their 
respective optima all at the same place. Thus, to maximize on one criterion is to be less than maximum 
on all the others and in principle there should exist a trade-off of each criterion against all the others. The 
structure given in the figure expresses more than this, namely, the possibilities for significant trade-off. 
Thus, one regularly trades performance (in speed or rate) for hardware and vice-versa. The introduction 
of any significant special design for any of the criteria on the right -- generality, modifiability, reliability, 
maintainability -- leads to a trade-off with either performance or cost. But it is rare that one directly 
trades, say, reliability for generality, or speed for rate. 

The remainder of Figure 33 is organized by listing the changes to be sought in order to effect changes in 
specified criteria. The viewpoint is that an implementation is given and the problem is to modify it. This 
may seem to jump over what would seem to be a major concern: how to get an implementation for an 
algorithm in the first place. But, as we illustrated in the first part of this chapter, there exists a 
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straightforward technique for going from an algorithm, expressed as a conventional flowchart, to an 
RTM design. This is essentially a one for one mapping from the algorithm into the control part of the 
RTM system. Whenever an operation is used in the algorithm that is not an RTM primitive, 
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SUMMARY 

The task we have examined (multiplication) is an extremely limited and specialized one (as indeed are all 
particular tasks). The quantitative comparisons from Figure 31 reflect a mixture of general factors and 
factors special to the task. The particular gains in both speed and cost which occurred with unwinding the 
control loop depend intimately on the algorithm. They were not there when we did the same task with 
different algorithms, either the RP algorithm or the 4- bit component algorithm. On the other hand, the 
degradations in the software system show up in some form in working with any task, though the exact 
numerical size of the factors due to each cause will vary both with task and with computer organization 
and implementation. Consequently, this evaluation exercise is meant in large part to be an example of 
how to explore and compare the options within the task given and the hardware available in the actual 
case. 

A particular limitation of the entire analysis has been the decision to consider only two criteria: 
performance and parts cost. As Figure 8 of Chapter 1 made clear, there are a large number of distinct 
objectives that are of concern in an RT system. We have attended to one already on the performance side, 
operation time versus operation rate, though we have restricted ourself to operation rate in this section. 
Multiplication is too simple to have a profile of performances over varying inputs that makes a difference 
to the evaluation. The RP algorithm does take a variable length of time, performing very fast for simple 
inputs such as multiplication by 0 and 1, and in a rough way taking longer with larger operands; the 8
step algorithm takes an invariant time. But it is not easy to set up examples where such a difference in 
performance profiles is consequential. In general, however, it does matter, e.g., whether wait time in a 
batch computer is uniform for all jobs or proportional to job duration. 

Other aspects of performance, such as reliability, are vital in general for digital systems, but cannot be 
affected by the sorts of variations under consideration here. Given a specific RT technology, such as the 
PDP-16 modules, reliability becomes a function simply of the total complexity of the system (thus 
becoming coupled with total parts cost). The reliabilities of the modules do vary, but not in a way that 
permits direct selection of modules to achieve high reliability. One can of course deliberately design for 
reliability, introducing redundant computations or checking 'stages. If such were a genuine concern, one 
would be well advised to expand the design space to include alternative technologies. 

Although there are restricted variations of performance measures, especially in simple systems, there are 
a substantial number of costs to be considered. Total parts cost is, of course, the easiest one to obtain. But 
there are assembly costs, and parts cost if bought in bulk, design costs, modifiability costs, maintenance 
costs, power costs, cooling costs, and space costs. On large systems' all of these can be independent items 
and must be separately evaluated. On small systems and in a modular technology the situation is much as 
it is with reliability. Almost everything is fixed on a per module basis and therefore varies directly with 
total parts costs. In an actual accounting of the different costs, there will be some variation (i.e., the 
correlation with total parts cost is say, .8 rather than 1). But there is little margin for deliberately 
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designing to minimize some other cost without at the same time minimizing total parts cost. 

Many aspects of system performance and cost are not specifiable in any quantitative form, e.g., 
maintainability or generalizability. Sometimes this is because there is not enough knowledge (usually in 
terms of field experience) to make an estimate. For many types of systems maintainability can be rather 
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only four on the average instead of eight, which are more than enough to compensate for slightly more 
processing in each iterative step. We also noted in the discussion earlier the several ways in which the RP 
appears to be a qualitatively preferable algorithm. 

In case of the 4-bit component algorithm, we have only a single point, which is not worth -considering 
because of the tremendous shuffling of data required to find and add the components. 

HAROWIRE VERSUS SOFTWARE 

We have a complete sequence for the RP algorithm for the hardwired case (which we can take as the 
standard 2 DMgpa implementation) and the four software versions. Comparing the K(PCS), which is the 
most basic form for microprogramming of control, the evaluation is straightforward: evoke and branch 
instructions take roughly a factor of 2.6 and 50 longer respectively than with a hardwired structure. Thus, 
the degradation factor depends on the relative use- of the two instructions. In this case the degradation is 
a factor of 6. A similar factor of 6 can be observed in comparing the Crtm implemented with a hardwired 
control with one implemented with a K(PCS) microprogram. Since the C(16/M) is the K(PCS) as far as 
its control structure is concerned, the performance effect of using a 16/M is to degrade the time to that of 
a 1 DMgpa organization. That is, the 16/M is a factor of 6 slower than the 1 DMgpa hardwired version. 
The other effect of the 16/M is a higher cost due to the overhead of the total physical assembly, costs that 
did not have to be included in the specially constructed hardwired system. 

The Crtm case provides a final view of the total performance degradation that accrues to programming in 
a stored program computer. First, the necessity of fetching instructions from memory accounts for a 
factor of 2. Second, the interpretation of the instruction once it is obtained accounts of a factor of 4. 
Third, the inefficiency of coding caused by the minimal number of active registers (the single 
accumulator) accounts for a final factor of 2. Thus we get a total factor of degradation from the 
hardwired case of: 

2(fetch) * 4 (interpretation) * 2 (coding) = 16. 

For the microprogram implementation of Crtm-1 with K(PCS) we might expect: 

16 * 6 (microprogram) = 96 

GENERALITY VERSUS SPECIALIZATION 

Our example of a single input-output function (multiplication) does not lend itself well to exploring the 
costs of obtaining additional generality. However, the software systems do provide some indication of 
the issues. All of them provide more capability than the multiplication algorithm requires, for they can 
interpret any sequence of instructions within their memory limit, and thus perform many additional 
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functions. For these minimal computers, with minimal data operations and active registers, the cost of 
this generality shows up in the cost of unused memory and in the cost of the interpretation of unused 
instructions. For instance if we take the C(16/M) with a 256 word 'memory, the cost could be prorated 
over the various cells it uses. We have assigned to the multiply the cost of each of its memory cells and 
the full cost of any part of the system that it uses at all. Thus, it bears the full cost of the interpretation 
cycle. Thus, even if the system were fitted with exactly the right sized instruction memory, there would 
still be excess costs of generality. If the extra instructions were eliminated, we would get a system 
identical to a K(PCS) implementation with one DMgpa. 
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Fig. 32. Table of performance factors for various RTM multipliers. 

computation (the average). Using that formula and taking N=8, the overall gain would be about 3.2. The 
other two implementations are affected analogously, only with the degree of parallelism being 4 and 2 
respectively, rather than 8, yielding gains of 2.1 and 1.4. The systems maintain their ordering, but the 
whole comparison has flattened out. The extreme case, the array, becomes less impressive relative to the 
others. 

UNWINDING THE CONTROL LOOP 

The effect of taking operations that have to be controlled iteratively and replacing the explicit control by 
a straightline sequence is to remove the overhead. The improvement in performance is by a factor of two, 
since each step has a Kevoke for counting (overhead) and a Kevoke for the add and shift part. The speed 
improvement is to be expected. But there is a cost improvement as well, which is unexpected. It arises 
because the extra control hardware in the unwound loop is minimal, so that it does not offset all the 
savings from getting rid of the DMgpa for the iteration count. Note that the times are essentially the 
same. 

THE ALGORITHM 
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We have three algorithms to compare: the eight-step algorithm, the Russian Peasant algorithm (RP), and 
the 4-bit component algorithm. The 8-step and RP algorithms were each designed for both the 1 and 2 
DMgpa cases, so we can see clearly the effect due to the algorithm -- they are about equal, and any 
significant improvement depends on the distribution of the numbers input to the RP algorithm. Any 
improvement comes about because of the automatic calculation of the termination condition and because 
the number of iterations are 
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Fig. 31b. Legend for graph of Fig. 31a.


even the two .of a DMgpa). Thus, operands must be acquired from memory and a further degradation in 
speed occurs, accounting for another factor of .5 with the particular computer. 

The main influence of parallelism can be observed by comparing the three designs with the 
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corresponding version of the direct eight-step algorithm: an eight element array multiplier; an eight stage 
pipeline; and the system for concurrently counting and taking multiplication steps. For the eight step 
array performance of the multiplier increases by a factor of 8. For the eight stage pipelined multiplier, a 
factor of eight is degraded through overhead by a factor of 2.7, giving an overall increase of a factor of 
three. Finally, in the case of concurrent loop control and multiplication step, there is a factor of two 
improvement, since the two dominant operations are being done concurrently. 

Whether these factors are realizable in any particular application is dependent on the details of the larger 
algorithm. Recall the calculation made in the discussion of the array implementation with regard to a 
particular embedding 
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operation. The final stage, realized in all large computers, is where a multiply exists as a primitive 
operation. The latter brings us full circle to where the multiply itself is realized in a hardwired form. 

EVALUATION OF THE DESIGN 

We have now created a substantial number of designs, all ostensibly to do the same task. Our analysis is 
not complete without an attempt to compare the designs in some uniform way. Throughout we have been 
concerned primarily with operational performance, measured in terms of operation time or operation rate, 
and total system hardware cost, measured in terms of the costs presented in this book, which are 
representative of relative technological cost. These are not the only objectives of concern in a design --
recall the list of objectives in Chapter 1. We will return to this issue at the end of the section; for now let 
us work with the kinds of data we have made available in our analyses. 

In Figure 31 we select most of the systems and plot them horizontally on effective operation time (the 
reciprocal of the operation rate) and vertically on total hardware cost. In discussing each of the separate 
systems, we did not always provide the explicit cost figure. These can be computed from each of the 
figures using Figure 17 from Chapter 2. Earlier we distinguished operation time and operation rate as two 
separate measures. We prefer to use operation rate in the figure, on the assumption that parallel 
organizations will be used in situations where the rate can be exploited. We prefer to express the 
operation rate as an effective operation time, since a designer's intuitions are built up in terms of 
microseconds per operation rather than millions of operations per second. RT-level systems are generally 
serial so that one adds operation times for a heterogeneous collection of operations. There is essentially 
no use for a number like 750,000 multiplications/second, since it never occurs that a system does nothing 
but multiplications for any period of time. 

The most striking fact about the Figure 31 is that the operation times vary over a factor of 500, from 1 to 
500 microseconds and the costs vary over a factor of 10, from 50 to 400. The total ranges, however, are 
less important than detecting the effects of the various types of alternatives that are generally available in 
designing an RT-level system. We can get some insight into the effect of parallelism and facility sharing, 
unwinding control loops, varying the algorithm, hardwire versus software control, and generality versus 
specificity. Where quantitative factors can be made of the effect from the figure, these are summarized in 
the table of Figure 32. 

PARALLELISM 

We take parallelism to include both replication of hardware to achieve concurrency factors greater than 1 
and facility sharing to achieve concurrency factors less than 1. 

The simplest effect of parallelism, facility sharing, is independent of algorithm and implementation. 
Some of the implementations are given as pairs in Figure 31, showing both the 1 and 2 DMgpa 
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arrangements. With shared resources extra time is required to carry out the sharing, consisting of 
shuffling data to and from the shared resource. In the two implementations for the eight-step algorithm 
that use the straight-line control, only two active registers are required. Since a single DMgpa provides 
these, only one DM module is required. Sharing in this form costs in time by a factor of about .5 to .6. 

Facility sharing also occurs in the Crtm, since it has only a single register (not 
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Fig. 29. Subroutine for multiplication using RP algorithm for PDP-16/M. 

Even before making a quantitative estimate of the operation time, an important feature of the 
organization of small minicomputers can be seen directly from Figure 30. Since they only have a single 
arithmetic register (A) with the second operand coming from the primary memory, they require a large 
number of operations to load and store data. This is apparent from a horizontal comparison between the 
righthand side, expressing the essential computation, and the code, along the lefthand side. This extra 
quota of operations, which occurs throughout all .the code, creates another factor of speed degradation to 
be multiplied in with the factor already present for accessing of control steps from memory and the 
interpretation loop for decoding each control step once obtained. 

SUMMARY 

We now have three distinct software organizations to be compared, both against each other and against a 
hardwired organization. Rather than make that comparison in this subsection, it will prove worthwhile to 
step back and examine generally all of the solutions that we have obtained in the chapter. 
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Before we leave this implementation, however, it is worth noting that there is no single hardware
software tradeoff, but rather an entire spectrum of implementations, both on the hardwired side (which 
one might expect) but also on the software side, defined as those implementations that encode the control 
part of the algorithm into memory. Putting forth three distinct software implementations was done, in 
part, to make this point. In fact, we could have proceeded through at least two more stages. One would be 
a mini-computer organization where a multiply-step of some kind was given as a primitive 

146 

previous | contents | next 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000162.htm (2 of 2) [4/3/2002 6:16:09 PM] 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000162.htm


Designing Computers and Digital Systems 

previous | contents | next 

C(1 6/M): A MICROCODE COMPUTER 

Chapter 6 describes a small computer, the PDP-16/M, which consists of a particular collection of RT 
modules in which a fixed set of control operations have been preassigned in terms of a fixed data part. 
Only a certain subset of all possible transfers for the particular data part can be given. The control part is 
a, K(PCS), so that the program is the set of control steps that are placed in the primary memory of the 
K(PCS). 

The instruction set of the C(16/M), being identical in form to that of the K(PCS), is similar to the 
instruction sets typical in microprogramming. Thus, we can refer to the C(16/M) as a microprogram or 
microcode computer, to distinguish it from computers with conventional instruction formats, involving N-
addresses, indexing, general registers, and various other addressing modes. Terminology is still unsettled 
in the microprogramming area, since the term microprogrammed computer refers not at. all to the nature 
of the computer's instruction set, but to the fact that its interpreter is realized through another - computer, 
which interprets a code of its own (the microcode). Thus to call a computer a microcode computer is only 
describing it indirectly by means of a family resemblance to other computers which occur in a certain 
application (i.e., microprogramming). But the C(16/M) stands on its own as a particular small computer. 

The program for the RP algorithm coded into the 16/M is given in Figure 29. It is similar to the hardwired 
version in Figure 24, since the 16/M uses only a single DMgpa. Consequently, extra memory transfers are 
required. The operation time required is longer than for the prior case, where the data structure could be 
adapted to the algorithm at hand. Thus, the preselection of a fixed set of data operations implies some 
costs to be paid later when particular algorithms are to be coded. The cost, by the way, is an opportunity 
cost (to use a phrase from economics), since it only shows up in terms of alternative organizations that 
were not available. If two DMgpa's were included in the 16/M, then real costs would be accrued in all 
those applications where only one (or none) DMgpa was used For then actual equipment would be sitting 
idle. 

Crtm-1: AN RTM MINICOMPUTER 

Multiplication is carried out using subroutines in some small minicomputers. One, called Crtm-1, is 
described in Chapter 6. We can use it to provide a third example of a software realization of 
multiplication. It differs from C(16/M) and from K(PCS) in having a typical minicomputer one-address 
instruction set. 

In Figure 30, we show the subroutine for multiplication coded for the computer. We give it in three 
representations, since we have not formally defined the machine here. The lefthand side gives the code, in 
conventional assembly language format: the instruction location label (if it exists), followed by the 
operation code, followed by the address (or other argument, on occasion). In the center we give the 
equivalent ISP statements. The meaning of the operation codes can rather easily be inferred from this 
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representation. The righthand side gives a flowchart for the algorithm in the style we have been using 
throughout. 

This computer could be implemented either with a hardwired control part or with a K(PCS), which would 
make it a microprogram computer. Between the two there is a speed-cost trade-off of roughly a factor of 
two in speed for roughly a factor of two in cost. Which choice is taken clearly effects the performance of 
the total system as a multiplier. Better stated, it provides two separate points on a cost-speed trade-off 
curve, to be compared against the points for C(16/M) and K(PCS). 
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Figure 28 gives the encoding for the RP multiplication algorithm, using the 2 DMgpa scheme of Figure 
23, but without the initial selection of the multiplier. Due to the design of K(PCS), there is a direct 
mapping of each hardwired control step into an encoded state in the K(PCS) memory. 
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Fig. 28. RTM diagram and subroutine for K(PCS) multiplier using RP algorithm. 
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used so that costs can be optimally prorated. Figure 27 compares the costs of the two schemes for 
implementing control, as a function of the number of control steps. This assumes an average cost of 0.6 
per hardwired control step and an average of one 8-bit word in the memory for a software control step. 
The remarks of the earlier part of the section come into clear view here. With few control steps (less than 
about 80) the fixed costs of K(PCS) make it more costly; above this point the software scheme gets 
progressively more advantageous. The steps in the cost function of K(PCS) are caused by having to 
obtain control memory in discrete blocks of 256 words each. 
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Fig. 27. Graph of cost of control part versus control steps for hardwired and K(PCS) cases. 
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examples of software systems, which implement their control by storing an encoded version of it in a 
memory. We will continue with multiplication as an. example, since we have already produced an 
extensive analysis of hardwired versions. All of the software systems belong within the RT-level design 
domain. None has an instruction that simply evokes a multiplication operation; hence for each 
multiplication must be programmed. We will not be concerned here with the internal hardware structure 
of these software systems. Chapter 6 is devoted to computers and the systems used here are all analyzed 
in detail there. We take the software systems as given, and examine how they perform multiplication. 

K(PCS\PROGRAMMABLE COMMAND SEQUENCER) 

The K(PCS\Programmable Command Sequencer) was introduced in Chapter 2 as an available RTM 
control module. It provides a general scheme to control RTM's from a memory rather than from a 
hardwired control part. The discussion there and in Chapter 6 provides a description of the. encoding and 
gives the details of the module's internal operation. 
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Fig. 26. Table of K(Programmable Control Sequencer) cost and performance. 


With K(PCS) additional time is required to fetch the encoded control steps from memory, giving the 
longer operations times shown in the table of Figure 26. Costs are also given in the table, assuming that 
all the words of the memory are 
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(hereafter, hardwired) RT systems is the implementation of control. In hardwired systems, such as we 
have been considering so far throughout this chapter, the control part of the RT system holds the steps on 
the algorithm to be performed. There is a mapping from the algorithm to the structure of the control part. 
In software systems the steps of -the algorithm are held in a memory in some encoded form 
(conventionally called an instruction). There is a mapping from the algorithm to these instructions. What 
does exist in hardware is a control, part that interprets the encoding of the algorithm in memory (which is 
called the primary memory\Mp of the interpreting control system). The interpretation of an instruction 
not only involves evoking the data and memory operations encoded therein, but determining the next 
instruction to be interpreted, which is also encoded in the instruction. All digital computers are examples 
of software systems, of course. But the basic principles of interpretation can be realized in many partial 
guises. The recent flourishing of microprogrammed systems is only a beginning of the variations that are 
possible. 

What does one get with software -- what is its side of the trade-off? Let us ignore the issues of flexibility
and reuseability, whereby a single physical system can be programmed to do any task and reprogrammed 
to do another. These issues are indeed critical and they would make software systems worthwhile, even if 
their performance was always inferior. But the emergence of RT-level design in terms of RT modules 
(e.g., the Macromodules of Clark and the present PDP-16 RTM's) is an initial attempt to provide both 
these advantages at the hardware RT level. The primary focus of attention should be on the performing 
systems themselves: what advantages does one gain from a software system and what advantages from a 
hardwired system? 

The basic advantage of a software system is the cost per step of control. A K(evoke), the basic control 
step in a hardwired system, costs 0.6. A 1024 word read-only memory costs 85. Assuming one word per 
control step, this leads to an estimated cost of .08 per step. The amount of control per word depends on 
the encoding, of course, but one can as easily get higher densities as lower, depending on the system. 
Furthermore, as the memory gets larger, the cost per word decreases. For Mp(16 bit/w; 2^16 words) the 
cost is about .06 per word. Thus, software control is potentially an order of magnitude less expensive 
than hardwired control. The hardwired interpreter also costs, but it is amortized over all the instructions. 
As these increase, the contribution of the interpreter to the cost per control step becomes negligible. In 
sum, if the algorithm is larger than a certain modest size, then it is simply impractical to realize it by any 
means except software. (We have ignored other aspects, such as reliability and power consumption, that 
also operate to keep hardwired systems within limits; they act in concert with costs of control.) 

The basic comparative advantage of hardwired control is speed. The software system must engage in an 
entire loop of interpretation, fetching an instruction and decoding it. While there are many ways to make 
this efficient, it is still fundamentally more expensive than a K(evoke). In addition to the basic cost of the 
interpretive loop, the software system foregoes any of the possibilities of parallelism that we exploited 
earlier in the chapter. These can be incorporated in software systems (as in the Illiac-IV, Barnes et al., 
1968, or the CDC Star, Holland and Purcell, 1971), but require quite complex controls and appear to be 
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outside the RT-level design domain of the present book. (No one knows for sure, however, since it has 
hardly ever been tried.) 

There are other aspects to the software-hardware trade-off, but they are best seen in the light of particular 
examples. Thus, we will look at three 
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the original-case. However, the opportunities depend on the algorithm. Thus, since there is no arithmetic 
step associated with the control and a test for termination is required, there is little to be gained from 
running a straightline version of Figure 23 (though it can be done). However, one can attempt a cheaper 
implementation by time sharing a single DMgpa. This is shown in Figure 24. It uses two more control 
steps (taking more time) by substituting two memory cells for one DMgpa. 

Fig. 25. Control part for signed multiplication. 

The RP algorithm has several desirable properties that permit improvement of its specifications. It takes 
both its inputs in the same form, without requiring one to be shifted to the correct half word. It also will 
work on any 16-bit inputs, as long as the resulting product does not exceed 16 bits. If the latter happens it 
simply gives the correct low order 16 bits. Thus, none of the problems of specifying behavior in special 
cases arise, as they did for the original algorithm. Finally, with only a slight additional control, the 
algorithm can be extended to be used with signed numbers in a two's complement representation, 
whereas the schemes so far have permitted only positive integers. (See Chapter 5 for discussion of the 
representation.) We show the implementation of this in Figure 25, which involves only an additional 
initialization segment. The multiplier must be made positive in order to detect when to terminate. 
Therefore, the multiplier is complemented initially if it is negative. 

VARIATIONS IN THE IMPLEMENTATION OF CONTROL 
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One of the most frequently-discussed trade-offs is that between hardware and software. Reference to it 
occurs repeatedly in the critical discussion of any computer -- in analyzing why one feature was realized 
"in hardware" and some other feature was realized "in software". At the RT level of design this trade-off 
appears as the option of whether to build a "direct RT system" to do a given job or whether to obtain a 
minicomputer and simply program it. Since in all cases the functioning system is realized in hardware 
consisting of K's, D's, M's, etc., the first step is to be clear on what constitutes a software system (realized 
in hardware). Then we can discuss what is being traded for what. -

The essential feature distinguishing software RT systems from nonsoftware 
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Fig. 23. RTM diagram of multiplier using RP algorithm.
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Fig. 24. RTM diagram of multiplier using RP algorithm, shared DMgpa. 
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Fig. 22. Example of 67 * 12 multiplication using RP algorithm. 

(the multiplier becoming zero), hence it is not necessary to keep a separate iteration count. 

A system diagram based on the RP algorithm is given in Figure 23. The data part has roughly the same 
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structure as the original basic algorithm. While we eliminate one DMgpa for the iteration count, we must 
have a separate DMgpa for both the multiplier and multiplicand, so the implementation is still a 2-
DMgpa, 1- Bus implementation. The multiplicand-multiplier interchange subprocess has been included 
to speed up the algorithm slightly. With the change of algorithm the performance has improved over the 
original. The multiplication step is now a little longer, but the number of steps is less (on the average), 
assuming small numbers. 

Variations can be played on the implementation of the RP algorithm, just as in 
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Fig. 21. RTM diagram for 8-bit multiplier using table look-up on half-word partial products.
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Fig. 20. Example of multiplication using half-word partial products. 
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bit stages, rather than the 1-bit stages of the original algorithm. Since the desired goal is to handle 8-bit 
numbers, the use of 4-bit multiplication implies that the table look-up is into a 2^4 x 2^4 = 2^8 memory. 
RTM read-only memories are not currently available in the smaller size, but 1256 word read- write 
memory is available at 50, thus cutting the table cost a little bit. 

Figure 20 shows the basic algorithm using an example: 1010 * 0111. We use 2-bit components, so that 
each 4-bit number is made up of two 2-bit components, analogously to the 8-bit number being made up 
of two 4-bit components. However, there is no scaling up of the stages in the computation, since the 
components simply increase in size. Thus, three stages of computation are required, with shifts for each 
stage corresponding to the size of the component (2 in the example, 4 in the actual case). Figure 21 gives 
the RTM system for the 8-bit case with 4-bit components. Unlike the basic algorithm, there is no 
requirement for a test on the multiplier, since all cases are handled in a uniform way through the 
component multiplier. The problem with this implementation is that a significant amount of field shifting 
is required to manipulate the partial products. This raises the time and-cost both to a factor of 2 times the 
unwound loop case of Fig. 17. Normally when this scheme is used, all the shifting is done with wires and 
combinational circuitry. Here we have used the transfer fields of the M(transfer)'s, and Tin's specially 
wired to the Boolean outputs of the M(transfer)'s. 

This scheme with 4-bit components might appear to be like doing arithmetic in 4-bit digits -- i.e., serial 
hexadecimal arithmetic -- since the multiplication is done hexadigit by hexadigit. However, the additions 
are done in parallel in binary. If this, were not the case, the addition in each stage would have been a 
multistage process, making the scheme still more expensive. 

ALTERNATIVE: THE RUSSIAN PEASANT'S ALGORITHM (RP) 

Though we can only be illustrative, let us examine one other alternative scheme for multiplication. This 
algorithm, known in some parts as the Russian Peasant's Algorithm (Knuth, 1971) and hereafter 
abbreviated simply as the RP algorithm, works on two positive integers. It involves doubling the 
multiplicand and halving the multiplier, while accumulating only the multiplicands of odd multipliers to 
get the total product. Figure 22 provides an example of multiplying 67 by 12. The first row is obtained by 
placing the original multiplier (67) in the Multiplier column and the multiplicand (12) in the Multiplier
odd column because 67 is odd. The second row is obtained by dividing the multiplier by 2 and putting in 
the truncated value (33); the multiplier is doubled (2*12 = 24) and placed in the odd side again since 33 
is odd. The process is continued until the multiplier becomes 1 or 0. Then the product (804) is obtained 
by adding up all the entries in the Multiplier-odd column. The figure also gives the scheme run with 12 
as the multiplier and 67 as the multiplicand. 

The algorithm has a peculiar flavor when expressed in decimal notion, but it does not take much insight 
to see that it is well adapted to RTM implementation, and in fact works with the underlying binary 
representation of the two numbers. Note, this is similar to the algorithm of Figure 1. The number of 
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iterations in the algorithm is dependent on the number of 1-bits in the multiplier. It is likely that the 
numbers are small. Thus, assuming that the logarithms of the numbers are distributed uniformly, only an 
average of four iterations is required. In general the smaller of the two inputs will have fewer 1-bits 
(though not always), so the number of iterations can be reduced somewhat by taking the smaller number 
as the multiplier. The algorithm automatically generates its termination condition 
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obvious properties when it comes to computing all the things of interest in playing checkers. 

MEMORY VERSUS COMPUTATION: TABLE LOOK-UP 

The one alternative algorithm that always exists for a simple input-output function is to store the values 
in memory and use a table look-up to obtain them. This was the strategy followed above in trying to 
obtain the logarithm and the antilogarithm. Of course, the values must be computed once in order to 
initialize the table and they must be stored in appropriate cells. If the function is to be used many times, 
as with multiplication, such one-time developmental costs are justified. But if a function is to be 
computed only a small number of times, compared to the total number of values in the table, then table 
look-up is a poor choice. 

The prime determiner of the feasibility of a table look-up is the size of the table involved. This depends 
critically on the number of arguments, since values must be available for each combination of arguments, 
hence on the product of their ranges. Our arguments for the multiplication are 8-bit numbers, hence have 
a range of 2^8 or 256. This implies a reasonable sized table if only one argument is involved, as in the 
logarithm. However, if we apply the same strategy to the multiplication itself -- planning to do the whole 
job by table look-up -- then we need 2^8 x 2^8 = 2^16 = 65,536 cells. This is a large, hence expensive, 
memory, though it is still possible with available RTM components. 

It would seem that the size of the table required settles the matter. But let us quantify the judgment. After 
all, table look-up is extraordinarily simple and fast, and its use here is even more advantageous than in 
the case above involving the logarithm. A 2^10 word read-only memory costs 85 (we clearly need no 
capability for writing). This is to be compared to a DMgpa at 31. Counting the extra control and Kbus's 
(at 14), we might consider that 2 DMgpa's are easily equivalent to 2110 words of memory. To compete 
with the pipeline which .has 9 DMgpa's (whose operation rate of around 2 microseconds would be 
roughly equivalent to the table look-up scheme) implies a memory of 4 - 5000 words. But we require 
around 65,000 words. Thus, unless something can be done to decrease drastically the memory used, the 
table look-up scheme is out of bounds. This is true of a particular technology. If the relative costs of 
memory and data operations were to change significantly, then the solution might not be outlandish. 
There is nothing inherently wrong with using a 65,000 word table, if such tables are cheap enough and 
fast enough. 

Can anything be done to decrease the amount of memory used? We can attempt to exploit some of the 
structure of multiplication. The most obvious is the commutativity of multiplication so that A * B is the 
same as B * A. Thus, we need only store approximately half the table. This would reduce us to a 32,000 
word table which is still quite a way from the desired goal. Furthermore, we must now compute the 
address to the table from the inputs, rather than simply concatenating the two arguments A and B, which 
is all that is required in a pure table look-up. Such a calculation will take some precious time, and so 
reduce the effective gain from the memory reduction. Something much more drastic is needed. 
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Since any scheme must involve more processing than the pure look-up let us lower our sights to using 
1000 words or less of memory. What could be done then? One could always do a smaller multiplication. 
2^10 words permits numbers of size 2^5, since 2^5 x 2^5 = 2^10. Thus one can multiply 5-bit numbers 
rapidly. This suggests breaking down the total multiplication into multi-
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Fig. 18. Control part of incorrect 8-bit multiplier using logarithms. 

Fig. 19. RTM diagram of incorrect 8-bit multiplier using logarithms. 

This is a unique representation up to the maximum number expressible by the basis (here 2 * 3 * 5 = 30). Both addition and multiplication can be 
expressed as simple algorithms, but if turns out to be difficult to compare numbers. However, a good deal of investigation has gone into residue 
arithmetic as a possible alternative internal representation of numbers. 

For RTM's none of the above representations seem to be an alternative to the binary representation. Our example of multiplication was ill conceived to 
illustrate gains to be made by changing representation. If we had chosen the example of checkers (recall the two representations in Chapter 1), the story 
would have been quite different. Here the basic hardware system is not already specialized to the representation of checkerboards (as it is to numbers). 
Each different internal representation of the board has distinctly different and non-
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only because of external constraints of human readability. Internally, they simply add problems, rather 
than provide processing options. 

The first alternative that comes to mind is the logarithm. Given that numbers were represented internally 
as their logarithms, then multiplication would simply be addition of logarithms: 

log(X * Y) = log(X) + log(Y) 

This yields the result in the form that is wanted, i.e., the logarithm of the product, which is in the 
appropriate logarithmic representation. The difficulty, of course, is that if any additions or subtractions 
are to be done on the resulting product, then the representation is impossible -- direct algorithms for 
adding two numbers represented as logarithms (and not involving multiplication) do not exist. Rather, it 
would be necessary to convert back to the numbers (by taking the antilogarithms) and then add. 

Thus, one would use logarithms only when the total algorithm involved only multiplication (and 
division). If this were the case, the transformation to logarithms would undoubtedly be carried out at the 
level of the algorithm itself and would not be seen as occurring in the RT implementation. 

It is worth considering briefly the feasibility of developing an implementation of multiplication that input 
and output numbers in binary, but operated internally in terms of logarithms. The basic scheme is shown 
in Figure 18. It requires a conversion from numbers on input and from the logarithm back to numbers on 
output. If these conversions take much time and hardware, then there can be no advantage in the scheme. 
Given the small amount of hardware in the basic multiply implementation itself, it would seem that the 
only possibility lies in a fast, though possibly expensive, scheme that would produce a fast total 
algorithm, thus competing with some of the parallel algorithms that take considerable hardware. 

The above considerations dictate the use of table look-up, which is the only fast scheme for arbitrary 
algorithms. Let us suppose that we use sufficient memory so that each table look-up is done in the most 
efficient way possible, by a direct memory access with the argument as address. This is certainly possible 
for taking the logarithm of the inputs, where it requires a table of size 2t8. It is much more complex, 
however, on the output side, where the argument is a 16-bit logarithm of the product. Still, continuing 
with the assumption, we get the basic implementation shown in Figure 19. It can be seen that the time is 
about & multiply steps, and the cost is 256 + 16,384 read-only memory cells. Thus, it yields less than a 
factor of 2 in speed over the basic algorithm and provides little with which to compete against the array 
and pipeline parallel schemes. (Note that it is also incorrect as it stands because of the 0 factor case.) 

Thus, we can finally lay to rest the use of the logarithm. One could have predicted the outcome, perhaps, 
since multiply yields a simple algorithm and the mere introduction of a function such as the logarithm 
bodes inescapable complexities. We carried out the analysis a bit to indicate the regard one should have 
for the actual examination of alternatives, rather than their dismissal on general grounds, 
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There exist other representations of numbers. For instance, a number can be expressed as the product 
(with repetition) of its prime factors. Multiplication then reduces to summing of exponents. The 
complexitites here turn out to be worse than for logarithms. 

Numbers can also be represented as the residues taken modulo a basis set of primes. The number 18 for 
instance would be represented as the vector (0,0,3) where the basis is (2, 3, 5), since: 

18 = 0 mod(2), 18 = 0 mod(3), 18 = 3 mod(S) 
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The basic cause of the high performance can be traced to a combination of three things. First, DMgpa is 
an expensive module, so its replacement can support a substantial amount of control. Second, the number 
of iterations was only eight, so the total size of the unwound control was small. Third, since the number 
of steps in the iteration loop was fixed, the test of termination was required only because the loop was 
introduced. Normally, each stage in the unwound control would not only have to evoke the basic 
processing step, but to test for termination. This increases the cost of the control step considerably. 
Removing these last two conditions would increase the cost of the control beyond the the saving from a 
DMgpa, returning the situation to a trade-off between speed and cost. 

VARIATIONS IN THE ALGORITHM 

Throughout the chapter we have taken as given the algorithm for doing multiplication. But clearly there 
are many ways to perform multiplication. From an investigation of the properties of one algorithm 
essentially nothing can be known about the others. It might seem simple to define the essential 
information processes involved in an operation as basic as multiplication, where the function is easily 
defined mathematically (by axioms), free of any particular way of computing it. But no such results are 
yet available in computer science, though the topic currently is highly active. Indeed, 'recently new 
algorithms have been found for the multiplication of two matrices which take less time than anyone 
would have predicted earlier. 

The upshot is that we cannot offer any systematic view for finding-alternative algorithms or knowing that 
an algorithm in hand is as good as can be expected. The best we can do is illustrate issues. This is not as 
crippling as it might sound. Design at the RT level is very much the implementation of algorithms 
defined externally to the design and not, like programming, very much the creation of new fundamental 
algorithms. The reasons for this lies in the relative simplicity of the algorithms realized at the RT level 
compared to those realized routinely by programming (which can have thousands of instructions). 

ALTERNATIVE REPRESENTATIONS 

In general an algorithm can be realized in RTM's with any basic set of data operations on a set of data 
structures capable of holding the required information. At one level, the data structure and data 
operations are completely fixed, given by the RTM system. But, in fact for any realistic information 
processing task there is a design issue of how to represent the information of the task in terms of the 
basic bit vectors of the RT level. Though occasionally the choice of data representation and algorithm are 
separate design decisions, usually they are tightly coupled. Given the algorithm, one chooses just that 
data representation that makes the processing efficient. To do otherwise invariably generates needless 
operations of extraction and encoding, just to deal with the inappropriate data representation. 

Conversely, if the data representation is selected first, then it determines a class of algorithms as the 
natural candidates to do a task. Thus, the data representation can be used as means of generating possible 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000148.htm (1 of 2) [4/3/2002 6:16:16 PM] 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000148.htm


Designing Computers and Digital Systems 

alternative algorithms. Applying this to multiplication leads to searching for the different possible 
representations of numbers. It is clear that various familiar encodings of numbers, such as binary coded 
decimal, will not provide interesting alternatives in comparison with the basic binary coding already 
used. They exist 
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multiply step, using Ksubroutine. Alternatively, a form of open subroutine organization can be used in 
which 8 groups consisting of a K(branch), two K(evoke)'s and a K(serial-merge) are interconnected. The 
former requires less control components, but the latter is somewhat faster. 

The reader will discover in Chapter 7 that with 1972 PDP-16's two Ksub's that evoke the same subroutine 
in series are not permitted; thus the 8-step straight line implementation using Ksub's cannot be built. 
However, a simple modification of Ksub, presented in Chapter 7, corrects this problem. Alternatively, 
placing a Kevoke with a dummy operation (e.g. BSR<-0) between the Ksub's will solve the problem, but 
this will slow the system down. 

Fig. 17. RTM diagram of 8-bit multiplier with open and closed subroutine implementations. 

The implementation of Figure 17 actually dominates the basic solution of Figure 4, being both faster and 
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less expensive. This shows that one cannot always depend on the general rule, which we have been 
illustrating continually, that to explore a design space is to explore the trade-offs that exist between the 
various objectives (here speed and cost). Often one finds designs which are both slower and costlier. 
Occasionally, as here, one finds designs which are faster and cheaper. 
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multiplication had been part of a larger system with several variables to be stored, then an M(16 word; 
scratchpad) could have been used and the savings would have been even greater. Conceivably, the larger 
memory might already be required by the other demands of the system, so that the additional memory 
cost for the cheap multiply would in fact be zero. 

Fig. 16. RTM diagram of 8-bit multiplier, shared use of a common DMgpa. 

REDUCTION OF THE CONTROL PART: UNWINDING LOOPS 

In general, it is difficult to make changes in the control part of an algorithm per se (i.e., not associated 
with some other change in the data part, such as in all the prior examples). Given that the algorithm and 
the data part are both fixed, then each module in the control part tends to perform some specific step in 
the algorithm, which function cannot be eliminated. Any attempt to provide an alternative way of 
performing such a function would also involve control and would negate any conjectured savings. (Try 
sharing Ke's or Kb's.) 

One exception to this that arises with great regularity is avoiding control operations associated with an 
iteration by unwinding the loop. This is a standard technique. in programming, where it forms part of a 
general space-time trade-off. Some of the time spent controlling the loop can be avoided if the program is 
written as straight-line code with the requisite number of copies of the loop- body (which take extra 
memory). The same philosophy exists in RT-level design, where the trade-off is in the saving of 
hardware to do the loop calculations versus the extra control, which must be replicated for each iteration. 
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Figure 17 shows the application of this to multiply. The control loop has been removed and with it the 
DMgpa(C). The steps have been strung out as a sequence of 8 subprocesses. These can be defined as 
subroutine calls on the 
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● Fig. 15. RTM diagram of 8-bit multiplier, concurrent implementation, test at beginning of loop. 

FACILITY SHARING 

As in the earlier section, we may not be concerned about obtaining more speed (by paying more 
hardware). Rather, we can be concerned about doing the operation more cheaply, being prepared to give 
up some speed in the process. Such a decision need not occur because of any general weighing of speed 
versus cost in an overall objective function. It can occur just as well because we are working on a part of 
a larger system that is speed critical or speed non critical. For instance, it is quite possible that the 
multiplication in question is being done in parallel with another process that takes much longer. 
Consequently, no increase in speed will make any improvement at all and no decrease in speed (up to 
some limit) will detract from overall performance at all. Hence, one wants to implement the cheapest 
version of multiply possible consistent with the lower limit on speed. 

In such a case, the general strategy is to look for facilities to share. In the present case, taking Figure 4 as 
the defining RTM flowchart, we observe two DMgpa's, one for control and one for the multiplication 
step. These become candidates for sharing. We can anticipate that some additional control will be 
necessary to share facilities (as it was with subroutines, for instance). But DMgpa's are relatively 
expensive, so that we can undoubtedly afford additional control and still reduce cost. 

The present case turns out to involve more than control, however. The DMgpa's perform two functions: 
the arithmetic operation and the memory operation. The arithmetic operation can be shared, but the 
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memory cannot, since the registers of both DMgpa's are fully occupied throughout the computation with 
holding the relevant data. Thus, to share the arithmetic part, by having only a single DMgpa, implies that 
one must introduce additional modules to provide the memory. Figure 16 shows the resulting 
implementation, using two M(transfer register)'s. Since these cost roughly 1/3 of a DMgpa, the resulting 
system is still somewhat less expensive overall, even with the additional Ke's for control. If the 
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stream) detects both that the two streams have been completed and also that the C-stream found that C=0, 
hence that the computation should terminate. This two- Bus parallel implementation is approximately 
twice as fast as the one-Bus serial version, but requires extra hardware in the form of an extra Kbus and 
two K(parallel-merge)'s. 

Fig. 14. RTM diagram of 8-bit multiplier, concurrent implementation, test at 
end of loop. 

One can attempt to avoid some of the extra cost by making minor adjustments in the control structure. 
For instance, one of the Kpm's can be eliminated if the loop control is divorced from the synchronization. 
This can be done by putting the test prior to entering the loop, as shown in Figure 15. Unfortunately, this 
structure requires one additional control step in the P-MPD control stream, thus slowing up the system 
slightly. 

The type of parallelism exhibited here is really the general case -- functionally diverse computations that 
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do not depend on each other for data (or do not affect data used by each other, such as updating in 
midstream) are done by independent machinery. Synchronization, when it is finally required, is forced by 
means of parallel-merges. This is often called concurrency, although the term parallelism itself is often 
used as well; terminology is not yet standardized. Our example again illustrates a rather general rule: that 
there is always a tradeoff between speed and hardware. The increase in speed (in the two-Bus system) 
costs hardware; the attempt to avoid some of that cost has to give back some of the speed gain. 
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actual facts on which a design choice must be based. But the alternatives almost always exist to be 
considered, since they reflect pervasive qualitative characteristics of RT systems: the occurrence of an 
operation more than once in a larger system; the prevalence of array data; and the existence of serial 
computation. 

Having set out to study the design of RTM systems to multiply, it may seem odd that we concentrated 
first on the use of multiply as a subsystem within a larger algorithm, rather than simply taking multiply 
as an autonomous computation and considering alternatives that arise for its internal structure. Our 
reason for so doing is to counteract the natural tendency to consider multiply as a new unit, just as if a 
DM(multiply) had been defined as a basic RTM module. This latter is a powerful notion and in 
programming it is almost universally the right thing to do. In RT design it is also appropriate to a degree. 
Every designer should have a personal library of such schemes, designed, checked out and documented. 
However, as the present section shows, the larger system should always be taken into account in 
determining the way the subsystem is to be implemented. In the examples given above the internal 
structure was substantially modified in response to whether to implement the algorithm with one or 
another degree of parallelism. Thus, the level at which the unit should exist is that of the conceptual 
RTM flow chart, such as Figure 9. In fact,-one could even write simply K(...) for Kmacro(...), indicating 
that no decision had been made on how to realize the computational function. 

With this fundamental point made, we can henceforth restrict our concern to the function of 
multiplication considered in isolation. 

VARIATIONS IN IMPLEMENTING THE BASIC ALGORITHM' 

In this section we ask what alternatives for implementation regularly occur if we take a given algorithm, 
such as that given by Figure 3 for multiplication, and consider the calculation of an output from a single 
input. The basic option is given by a direct one-to-one mapping of the algorithm into an RTM flowchart; 
it was already presented in Figure 4. What other alternatives exist? 

GENERAL PARALLELISM: CONCURRENCY 

Given that a certain set of operations has to be performed, speed comes from doing some of them at the 
same time -- in parallel. What prevents simply doing everything at once is that some operations depend 
for their inputs on the outputs of other operations. Such operations are forced into a sequential 
relationship. Thus the opportunity for parallelism arises from operations that do not depend on each 
other. Examination of Figure 3 shows that the calculations on C are independent of the calculations on P 
and MPD, providing only that the 

two sets of calculations remain locked together as a whole (only. one decrement of C per multiplication 
step). Thus, these two sequences can be separated into two parallel streams. 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000143.htm (1 of 2) [4/3/2002 6:16:18 PM] 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000143.htm


Designing Computers and Digital Systems 

Figure 14 shows the implementation, with separate data-memory parts for shifting and adding, and for 
counting. The parallelism begins at the output of the K(serial merge) following Ke(C<-8), control 
branching into two paths. Control must be synchronized again at the end of the sequences. This is done 
by a K(paralled-merge). Actually, two Kpm's are required. The left hand one (under the P-MPD control 
stream) detects both that the two streams have been completed, and that the C-stream found that C was 
not 0, hence that another iteration of the loop is required. The Kpm at the right (under the C control 
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Fig. 13. Control part for 8-stage pipeline multiplier. 

[RREPEAT OF 00000140.htm] 

below that predicted from the operation time. A common example in memory technology occurs in 
magnetic core random access memories, which deliver the contents of the addressed work in, say, .9 
microseconds, but require another .4 microseconds to finish the rewrite cycle. This gives an access time 
of .9 and an access rate of 1/1.3, equivalent to 770,000 accesses per second, compared to a "predicted" 
11.9 or 1,110,000 accesses per second. Often only one of these two performance measures is important, 
but only an analysis of the larger system can tell. 
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SUMMARY 

We have devoted this section to examining how a subsystem, such as multiplication, might occur in a 
larger algorithm. Several alternatives almost always make themselves felt at the RT-level of design: 
minimizing the hardware by using subroutining; mapping each occurrence into separate hardware 
(macros); speeding up the algorithm by pipelining; and maximizing speed by complete duplication of 
hardware for independent operations (array parallelism). These alternatives provide a set of trade-offs 
between hardware (cost) and speed, though where each alternative stands in the trade-off (how much 
hardware for how much speed) depends on the details of both the subsystem and the larger system in 
which it occurs. Only detailed analysis can reveal the 
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Fig. 12. Data part for 8-stage pipeline multiplier. 

transfers data and of setting the flags of stage i to 1 after its computation is complete. Each stage operates 
as soon as its input data is available and its just- computed outputs have been used. Thus, the whole 

pipeline moves as fast as possible, compatible with not mixing up the computations. 

The alert reader will have noticed that since the flag outputs are positive logic and the Ke control flow 
outputs are negative logic, the complements of the named flag outputs are the ones that must enter the 
K(parallel merge)'s. Even so, there are some problems in using Kflag's to enable K(parallel merge)'s. 
Chapter 7 must be read to discover why. After reading Chapter 7, return to this example and, if 
necessary, alter it so that the K(parallel merge)'s are enabled properly. 

The pipeline structure is considerably more complicated than the array case from a control viewpoint. 
The limit to the parallelism is set by the structure of the algorithm -- here, 8 stages -- rather than by the 
size of the data array being processed. The time to perform a given stage is 2.7 microseconds, computed 
from the control sequence of Figure 13, so that the time to get an answer is 8 * 2.7 21.6 microseconds. 
However, providing the data is fed into the pipeline rapidly enough, the system will finish a' 
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multiplication every 2.7 microseconds. 

The pipeline makes clear that one must always consider two distinct performance measures for a process. 
One is the time taken to produce a result, measured from the time at which the input., is presented -- this 
is the operation time. The other is the rate at which results are produced -- this is the operation rate. In 
ideal serial systems the operation rate is simply the reciprocal of the time for each operation: 1/operation
time. But in general the two can vary independently. In parallel systems, as we have seen, the operation 
rate can be increased many fold. To do so usually implies an appropriate organization of the input data. 
But also, systems sometimes produce their outputs prior to the time they are prepared to accept the next 
input, thus reducing the operation rate 
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■	 Fig. 13. Control part for 8-stage pipeline 
multiplier. 

below that predicted from the operation time. A common example in memory technology occurs in 
magnetic core random access memories, which deliver the contents of the addressed work in, say, .9 
microseconds, but require another .4 microseconds to finish the rewrite cycle. This gives an access time 
of .9 and an access rate of 1/1.3, equivalent to 770,000 accesses per second, compared to a "predicted" 
11.9 or 1,110,000 accesses per second. Often only one of these two performance measures is important, 
but only an analysis of the larger system can tell. 

SUMMARY 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000140.htm (1 of 2) [4/3/2002 6:16:20 PM] 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000140.htm


Designing Computers and Digital Systems 

We have devoted this section to examining how a subsystem, such as multiplication, might occur in a 
larger algorithm. Several alternatives almost always make themselves felt at the RT-level of design: 
minimizing the hardware by using subroutining; mapping each occurrence into separate hardware 
(macros); speeding up the algorithm by pipelining; and maximizing speed by complete duplication of 
hardware for independent operations (array parallelism). These alternatives provide a set of trade-offs 
between hardware (cost) and speed, though where each alternative stands in the trade-off (how much 
hardware for how much speed) depends on the details of both the subsystem and the larger system in 
which it occurs. Only detailed analysis can reveal the 
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Fig. 12. Data part for 8-stage pipeline multiplier. 

transfers data and of setting the flags of stage i to 1 after its computation is complete. Each stage operates 
as soon as its input data is available and its just- computed outputs have been used. Thus, the whole 
pipeline moves as fast as possible, compatible with not mixing up the computations. 

The alert reader will have noticed that since the flag outputs are positive logic and the Ke control flow 
outputs are negative logic, the complements of the named flag outputs are the ones that must enter the 
K(parallel merge)'s. Even so, there are some problems in using Kflag's to enable ((parallel merge)'s. 
Chapter 7 must be read to discover why. After reading Chapter 7, return to this example and, if 
necessary, alter it so that the K(parallel merge)'s are enabled properly. 

The pipeline structure is considerably more complicated than the array case from a control viewpoint. 
The limit to the parallelism is set by the structure of the algorithm -- here, 8 stages -- rather than by the 
size of the data array being processed. The time to perform a given stage is 2.7 microseconds, computed 
from the control sequence of Figure 13, so that the time to get an answer is 8 * 2.7 = 21.6 microseconds. 
However, providing the data. is fed into the pipeline rapidly enough, the system will finish a 
multiplication every 2.7 microseconds. 

The pipeline makes clear that one must always consider two distinct performance measures for a process. 
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One is the time taken to produce a result, measured from the time at which the input., is presented -- this 
is the operation time. The other is the rate at which results are produced -- this is the operation rate. In 
ideal serial systems the operation rate is simply the reciprocal of the time for each operation: 1/operation
time. But in general the two can vary independently. In parallel systems, as we have seen, the operation 
rate can be increased many fold. To do so usually implies an appropriate organization of the input data. 
But also, systems sometimes produce their outputs prior to the time they are prepared to accept the next 
input, thus reducing the operation rate 
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both on the objectives of the design (how much speed is worth) and on how much gain can. be made in 
the overall time of the algorithm. 

Array parallelism is not the most general form of parallel computation, defined as many independent-
heterogeneous computations going on concurrently. It is distinguished by the fact that all the parallel 
computations are 'identical, hence there need only be a single control part for them all. This has often 
been likened to a symphony orchestra with a single conductor (the control) and many instruments. As we 
have seen, even in our simple example, the computations need not be completely identical. Often a small 
amount of control can be included in each instrument and still most of the control can be put in the hands 
of the single conductor. The problem of so orchestrating a computation to make this possible can pose a 
major challenge in the analysis - of the underlying algorithm. 

PARALLELISM: PIPELINES 

The cost in hardware of array parallelism is very high. There exists another alternative for parallel 
organization, commonly called pipelining, that uses less equipment though (in consequence) obtains less 
speedup. It exploits the fact that any sequential flow diagram can be viewed as a sequence of work 
stations, through which the data to be processed flows. Each work station is active at the same time (i.e., 
in parallel), but doing its particular job on a different input. Thus, the computation flows along, as in a 
pipeline. An equally apt metaphor would have been assembly-line processing, since this' is the same 
organization that is used in all mass production assembly lines (e.g., for automobiles). To make use of 
pipelining we need a continuing stream of inputs, for the efficiency depends on not having holes in the 
stream of data. But this is exactly the-situation we have in the averaging algorithm of Figure 7. 

We could pipeline the entire process of Figure 7, but to keep our attention on multiplication let us just 
build a pipeline for multiplication, viewing the total flow diagram as providing a context in which the 
demand for multiplications are provided at a sufficiently high rate to justify a pipeline multiplier. Note 
that to do averaging, the final stage simply has to accumulate a running sum, which eventually gets 
multiplied by 1/W, or, more correctly divided by W. 

The basic stage in the multiplication algorithm is the multiplication-step, which forms the body of the 
loop in the basic flow diagram of Figure 8. Rather than executing a loop to use the same hardware (the 
DMgpa's) for each stage, we now wish to form our pipeline by providing separate parallel systems for 
each stage. Figure 12 shows the organization. There are 8 iteration steps in the algorithm, hence there are 
8 stages in the pipeline. Each step consists of taking in P and MPD, looking at P<0>, and then 
transferring data (the new values of P and MPD) to the next stage. Each stage essentially duplicates the 
data and memory part of the basic iteration step, here the DMgpa and the Kbus. Memory used for control 
will in general be different. Here, there is no need for the Mc used to hold the iteration count; but there 
are two 1-bit flags, P-full and MPD-full, that are required for the pipeline control. 
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The control for a single stage is given in Figure 13. The two flags for each stage permit the 
synchronization for the stages to operate at the same time yet pass data to one another. Stage i (in the 
figure) does not transfer data from the prior stage (i-1) to its own registers, P[i] and MPD[i], until the i-1 
registers are full (as guaranteed by the i-1 flags being 1) and its own registers have had their contents 
transferred to the i+1 stage (as guaranteed by the i flags being 0). Thus, stage i has the responsibility for 
setting the flags of stage i-1 to 0 after it 
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Much more important is to recognize that the loop in the algorithm is basically a way of getting N 
independent operations performed (multiplying the X's by the W's). Thus, all of the multiplications could 
be carried out at the same time -- in parallel to use the accepted term. This will radically alter the total 
time to perform the algorithm, since what took N time intervals originally takes only one with the parallel 
implementation. The amount of gain depends on the size of N, and can reach any size if N is large 
enough. However, the gain, also depends on the rest of the algorithm and how it is implemented. For 
instance, the weighted X's still have to be summed and multiplied by 1/W. Since these operations depend 
on each other they cannot simply be separated into parallel computation streams. Thus, to evaluate the 
actual gain requires that we have a total implementation to analyze. 

To implement the parallel scheme requires separate data-memory parts for each independent multiplier, 
in particular a DMgpa and a Kbus. The straightforward way would be also to have independent control 
parts. This would require a K parallel-merge at the end to be sure that the summation loop did not begin 
until all the multiplications had been completed. 

However, each of the parallel parts has an identical control -- being simply copies of the same algorithm. 
Thus, one need only construct a single basic control part. Figure 11 gives the RTM structure of this 
implementation. Note that Kparallel-merges are required in order to coordinate each step. One can 
certainly not depend on the systems to remain synchronized by themselves, even if the components are of 
identical physical construction. Note also that separate control must exist for each test on P<0>, since 
which way control goes is data dependent. The basic control loop is not data dependent, which permits it 
to be factored out. The basic loop of the Figure 9 is still needed, but it now encompasses only the 
summation of the weighted X's, and we do not show it. Similarly, the final multiplication by 1/W still 
occurs in series and is not shown. 

We can now make a rough estimate of the increase in speed from the parallelism. The serial scheme 
takes: 

t.serial = N*t.multiply + N*t.sum-loop + t.multiply + t.set-up The parallel takes: 

t.parallel = t.multiply + N*t.sum-loop + t.multiply + t.set-up' 

The two set-up times and the time for the summation loop are small fractions, f, of the multiply time and 
we can approximate them by f*t.multiply. Thus we get: 

t.parallel/t.serial = (2 + f*N + f)/(N + 1 + f*N + f) 

As N gets very large -- thus getting the most parallelism -- the increase in speed becomes like f/(1+f) 
(simply ignoring all terms without an N). If the small operations, represented by f, were such that f -1/8 
(e.g., like a single multiply step) then this limiting advantage would be 1/9. We see that the remaining 
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structure of the algorithm puts a limit to how much advantage is to be obtained by parallelism. While N 
is still small the advantage is about 2/(N+1), reflecting the fact that at least two multiplications must be 
done in series. If we consider only the multiplication time as the. measure of performance, the ratio 
t.parallel/t.serial - 1/N. That is, we achieve a factor of N speed-up. 

This form of parallelism, which we can call array parallelism, arises repeatedly in RT-level design. Many 
of the data structures that occur in practice consist of one or two dimensional arrays, and algorithms often 
specify that the same operation be done independently to each element of the array. Then the option 
always exists of factoring out the independent part and doing it in parallel, thus reducing that part of the 
time cost by a factor of N, the size of the array. One pays substantial additional hardware for this, and 
whether it is worth it depends 
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■	 Fig. 10. Control part to compute weighted averages with multiply subroutine 
of Fig. 4. 

make this design alternative easily available, since in general when the subsystem is large or used in 
many different places, subroutining is preferred. The Ksubroutine permits the nesting of subroutines to 
any level. However, it does not permit recursive subroutines, that is, subroutines that call themselves or 
call other subroutines that call them. In this respect the Ksubroutine is exactly parallel to its software 
counterpart in some programming languages, the conventional subroutine-call instruction, differing only 
in that its control is in unique hardware and that the subroutine is hardware rather than a program. 

PARALLELISM: ARRAYS 
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We used subroutines above in response to a concern with using too much hardware, giving up a small 
amount of operating speed. But our concern might not be with hardware cost at all. Instead, we might 
wish the algorithm of Figure 7 to run as fast as possible and are prepared to use additional hardware. One 
choice, of course, is simply not to use the subroutines, but to use the original implementation with 
macros (Figure 9). However, as we just noticed, this helps only a little. 
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Fig. 9. Control part to compute weighted averages using multiply macro. 

end of the subroutine. A return is made to all calling modules simultaneously and only the Ksub that 
actually made the call is active and will respond to pass control on to the next module. 

The option of whether to share facilities via subroutining or whether to use separate hardware for each 
occurrence (macros) is one of the recurrent design alternatives in RT-level design. (It occurs as well in 
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programming, under the same rubric of subroutines versus macros; originally it was known as the 
alternative between open and closed subroutines, where an open subroutine was a form of what is now 
termed a macro.) As can be seen by comparing Figures 8 and 10, there is a very slight cost to be paid for 
using subroutines, both in time and in hardware. The cost in time is about 0.02 microseconds per call. 
The cost in hardware is the use of a Ksubroutine instead of a Kevoke at each occurrence plus the one 
Kserial-merge associated with the subsystem. In general this hardware cost is minor compared to the 
hardware savings from not having the additional hardware for each copy of the subsystem. However, it 
does put a lower bound on how trivial a subsystem can be effectively used as a subroutine. 

The Ksubroutine was added to the basic set of RTM modules precisely to 
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Fig. 7. Flowchart to compute weighted average. 

multiplications are not. We can simply treat these expressions (the X <- X[i] * W[i] and the S<- 5*. 
(1/W)) as standing for more complex RTM circuits. Thus, a direct mapping of the-flowchart leads to 
Figure 8 in which we have replaced the two multiplication expressions by the appropriate memory array 
accesses and also copies of the multiply subprocess of Figure 4. We have left out the data- memory part 
of the system, since the structure is apparent from the control part. There will be separate DMgpa's and 
Mc's for each of the two multiplications, as well as components for the other operations in- the flowchart. 
Two M(array)'s are necessary to hold the X's and the W's. We assume that the X's and 1/W are originally 
stored in the 8 most significant bits of their words, so that they load MPD properly. 

In creating an RTM flowchart for the algorithm of Figure 7 there is no reason not to have written Figure 
9, rather than Figure 8. Here we have not yet replaced the multiplication expressions by the subsystems. 
Instead we have simply indicated that there is something that evokes that multiplication by using the 
Kmacro that was introduced in Chapter 2. Thus, provided we have recorded someplace that Kmacro(P<-
P*MPD) is the structure of Figure 4 (with names appropriately changed), Figures 8 and 9 give the same 
information. 
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SHARED FACILITIES: SUBROUTINES 

It may have occurred to you that we were providing a lot of hardware for each multiplication, and that it 
would be nice to be able to share a single multiplication facility between the two uses of multiplication. 
This is exactly what the special control module Ksubroutine\Ksub permits. Figure 10 shows the 
algorithm of Figure 7 accomplished .in this fashion, giving links explicitly to the single version of the 
multiply subsystem. This subsystem is identical to the system of Figure 4, except that there is a Kserial
merge at the beginning to handle the multiple calls. No additional coordinating structure is required at the 
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Fig. 6. Fortran program to test 8-bit RTM multiplier of Fig. 4. 

To have a concrete task to discuss, Figure 7 gives an algorithm for taking a weighted average. The 
components of a data vector, X[i], are each multiplied by weights, W[i], which are then summed 
(forming the vector dot product) and divided by the total weight, W. We will assume that the data 
remains within 8 bits, to avoid distraction from the central points. Since multiplication is available and 
not division, we have written the flowchart to use multiplication by 11W. The weights are themselves 
constant, hence 1/W is a given constant, just as W is. Since we are working with integers, 11W will be a 
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fraction between 0 and 1, hence not representable. However, we can simply take 11W to be the fractional 
part (as an integer), which is equivalent to rescaling the expression. Actually since such a representation 
will cause unnecessary errors, we would have to use the integer division system to do the task properly. 

THE NATURAL MAPPING: MACROS 

One can attempt to produce an RTM flowchart directly from Figure 7, just as we did for the 
multiplication itself. However, unlike Figure 3, not every component of Figure 7 is a primitive module --
in particular, the two 
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design is equally important. Major errors can often be detected by testing the design with a small set of 
input values that provide results that are known independently. For the actual system this can be done by 
running it on the selected inputs; for earlier (paper) stages of the design this can be done by hand 
simulating the operation. 

The most important property of these test cases (besides the fact that the results must be independently 
known so a true check is possible) is that they exercise all the logical paths in the program. It is not 
sufficient that each K(branch) have each output taken at some time, though that is surely necessary. Each 
combinatorial possibility for tracing a path through the program must occur. In addition, an attempt must 
be made to include both special values and general values of inputs, in terms of the operations known to 
occur. For arithmetic 0 and 1 are always special, as well as the. numbers at the maximum and minimum 
of the range. With all these conditions, the number of test cases can be quite large, especially with 
systems that have any degree of cascaded branching. 

Hand simulation is an untrustworthy process, especially when what is desired is an assurance of 
correctness. It can often be replaced by using a computer to do the simulation. Figure 6 gives a 
FORTRAN program for checking the RTM flowchart stage of our multiplier design. The program is 
directly mapped from the RTM structure of Figure 4, and it is not taken from the flowchart describing the 
algorithm (though that could be checked too, if desired). In our case the two flowcharts are essentially 
identical, but that will not be the case most of the time. Consequently, care must be taken in the 
simulation program to reflect each of the RTM actions correctly. 

The program of Figure 6 actually proves the correctness of the RTM flowchart of Figure 4 (assuming the 
translation to the simulator was made correctly), for it exhaustively checks all possible inputs. All 2^8 
values of N1 are tested against all 2^8 values of N2, for a total of 2^16 test cases. This requires only 
about 30 seconds of time on a large computer (IBM 360/65 or DEC PDP-1O), well worthwhile to attain 
completeness. However, this is a very special case, as consideration of the time required to exhaustively 
check a full 16-bit multiplier will show. The point of our example is that the notion of exhaustive testing 
should not be excluded automatically, just because it usually takes too long; sometimes it can be done. 

The final step in a design, even after checking out the system, is documentation. The notation of Figure 4 
serves this purpose well -- one of the side benefits from a systematic scheme of RT-level design. The 
wiring pin numbers and module locations can be conveniently entered on the same diagram, as was done 
in Figure 7 of Chapter 2 for the sum-of-integers problem. It is desirable to have as few separate 
documents as possible, since changes and corrections then have to be entered in several places. However, 
if handwiring is to be done in implementing a design, it is usually convenient to prepare a separate wiring 
list. 

VARIATIONS IN THE USE OF MULTIPLICATION 
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We have now designed a scheme for multiplying. Let us resist for the moment casting it into concrete 
hardware. Some of the recurrent issues in RT-level design occur when one considers doing some 
multiplication within a larger computation. To consider multiplication as analogous to another basic 
module (e.g., a DM(multiply)) is certainly possible and often useful. But it can pre-empt some other 
options. 
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if inputs are physically possible they will in fact occur at some time and someone will want to be alerted 
to the possibility of aberrant behavior by a subsystem such as our multiplier. This incompleteness in 
specifications is much more serious when it occurs for a general purpose component, such as our 
multiplier, than for a subsystem to be used only within a specific arrangement, where the inputs that will 
occur in the environment can be known. 

We have three choices in completing the specification. One is simply, to enunciate explicitly the 
conditions under which the system will produce an error. With this solution we would say: Our system 
multiplies two 8-bit numbers located in registers P and MPD in such and such fashion; if the other halves 
of the registers are non-zero an error will occur. This is not very satisfactory, but at least it is honest. The 
second choice is to make explicit what the output actually is, especially if it is understandable so that its 
effects could be detected. With this solution we would say: Our system multiplies two 8-bit numbers 
located in the low-6rder half of P and the high-order half of MPD, assuming the other halves are zero; if 
the high-order half of P is non-zero, it is added to the product; if the low-order of half of MPD is non
zero the result is garbage. This choice is somewhat more useful: The third and conceptually most 
satisfactory choice is to specify appropriate behavior on all inputs and then modify the design to achieve 
it. For instance, we could enforce the assumptions by setting the two halves to be zero. With this solution 
we would say: Our system multiplies two 8-bit numbers located in the low-order half of P and high-order 
half of MPD; a larger number in P is truncated to the least significant 8 bits; the low-order bits of MPD 
are set to zero. The trouble with solutions of this type is that they cost both in time and in hardware to 
implement. For instance, Figure 5 shows the control part for an initialization process for the multiplier to 
meet these new specifications. It must be judged whether the additional costs are worth the cleanliness of 
the behavior specification. 
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Fig. 5. Control part of initialization process for multiplier.


We emphasize the completeness and correctness of the specification because it is so easily overlooked, 
being taken as a given. Correctness of the rest of the 
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Fig. 4. RTM diagram for 8-bit shift right multiplier. 

Figure 3 into a control step with a suitable K in the RTM flowchart: Ke's are used to evoke the OM's and 
Kb's are used to test for the conditions and branch control as shown in Figure 4. 

Figure 4 completely specifies the design of an RTM multiplier system. The next step would be to 
implement the system by obtaining the indicated modules, assigning them to physical locations and 
interconnecting them. This step was described in Chapter 2 for the sum-of-integers example. It is 
sufficiently mechanical that it need not be repeated again here. Indeed, this step has been automated 
(providing a wire list), and the operation of the program that does this is described in the PDP-16 
handbook. 

The design, though completely specified and perhaps even built, is not yet complete. Two more steps 
remain. The first is to verify the correctness of design. If the specifications are correct and complete, and 
if the algorithm is correct, and if all the design steps described above have been taken correctly, up to and 
including the physical interconnection of the modules -- then of course the system should operate 
correctly. But all these if's are exactly what has to be checked. 

Notice, for instance, that we have included the specifications as part of what must be verified. Though 
they usually form the assumed starting point, they can never in fact be assumed. With multiplication, the 
function is so well known that it seems hard to imagine what could be missing. But what if the inputs are 
greater than 8 bits? Physically, the multiplier could be 16 bits. Similarly, though with our particular 
conventions it is not really possible for the multiplicand to be greater than 8 bits, the 8 least significant 
digits could be non-zero and this would invalidate the result. We did not specify what the system output 
should be in these cases. 

It can be objected that, since we assumed certain things, we are not responsible if the assumptions are not 
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met. But such a cavalier attitude will not do. Our specifications are incomplete, since they do not specify 
what the behavior is for all physically possible inputs to the system. We can be sure that 
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Fig. 2. Example of multiplication scheme by shifting result right. 

Accepting this as a rough idea, the next step in the design is to specify the algorithm precisely. This can 
be done easily by a flowchart (or diagram) augmented by a declaration of the specific data required. This 
is given in Figure 3 for the algorithm of Figure 2, using 8-bit arguments with a 16-bit product. Two 
registers are needed for input: MPD for the multiplicand and P for the multiplier. The product is also 
developed in P. Notice, however, that the input data is positioned in an unconventional way: the 
multiplier is in its conventional position at the right side of the word; but the multiplicand is in the left
most 8 bits of MPD. Furthermore, the right-hand least significant bits of the multiplicand register, 
MPD<7:0>, must be 0 initially. We adopt these constraints in the hope, mentioned above, of achieving a 
somewhat more efficient algorithm. The flow diagram in Figure 3, written below the data declarations, is 
simply a straightforward description of the algorithm used in Figure 2. It is necessary to introduce one 
other 3-bit register, C<2:0>, to keep track of the iterations in order to exit the loop when the 
multiplication is finished. 

With the algorithm specified, the next step in the design is to choose an appropriate set of M and D 
modules to hold the data and to carry out the operations. A straightforward selection leads to a DMgpa 
for the arithmetic operations on P and MPD and another DMgpa for the subtraction on C. Since the 
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DMgpa's have sufficient memory for their operands, no additional M's are required for MPD, P and C. 
(This simple example makes it clear that one should always select the D's first with RTM's, rather than a 
set of M's to hold the data, since D's are often combined with some memory.) However, the system does 
require the constant 8 to initialize C, so that an Mc is needed in addition to the two DMgpa's. This data
memory part is shown in Figure 4. 

Given the organization of data and memory, the next step in the design is to construct the RTM 
flowchart, which specifies the control part of the system. In the present case this can be done by mapping 
each step of the flowchart of 
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CHAPTER 4 EXPLORING RTM DESIGN ISSUES 

You have now been introduced to the set of basic RT modules and have designed a number of simple 
devices and systems, no doubt relying mostly on native intelligence. As we commented in the first 
chapter, in any sufficiently complex domain there is no systematic way of doing design. The design 
specifications and objective functions are too varied and the combinatorial possibilities for composing 
new structures are too immense. Still, much more can be said than just asserting 'that each design 
problem is an isolated puzzle. Candidate designs can be evaluated quantitatively to reveal explicitly the 
extent to which the objective functions are satisfied. The space of possible designs can be explored 
systematically (even if not exhaustively) to obtain a clear impression of the properties of the accepted 
design in contrast to the ones rejected. Furthermore, recurrent patterns arise in the space of possible 
designs that help in understanding whether further possibilities exist to be investigated. 

This chapter is devoted to indicating the systematic characteristics of RT-level design. Consonant with 
the rest of the book we will proceed primarily by example, rather than by detailed theoretical description. 
The entire chapter will be devoted to the design of a-single device -- the multiplier. We will endeavor to 
carry this through in a way that exhibits good design as well as revealing many of the basic patterns of 
design alternatives. 

BASIC DESIGN OF A MULTIPLIER 

We take as given the desired goal of multiplying any two 8-bit positive integers to form a 16-bit product. 
We will consider that such a system for multiplication is to be used in many other systems that will be 
constructed later. Thus, the data is to be represented in standard form. as 8 and 16 bit vectors in a word, 
and the fixed character of the PDP-16 data organization with the Bus determines almost completely the 
way input and output will occur to our system. 

The first design decision is the algorithm for doing multiplication. Starting with what we all know about 
multiplication, Figure 1a shows by example (on 4- bit numbers) the standard method of multiplication, 
using the multiplicand 11 and multiplier 6. For machine implementation, the algorithm consists of 
forming a series of partial products for each digit of the multiplier, shifting each one, to the left one 
place, and then adding them all up to obtain the final product as shown in Figure lb. Since the hardware 
adds all the bits of a word in parallel, but does not add up a column of digits (all corresponding digits of 
the partial products) all at once, the algorithm has been reformed to accumulate the partial result at each 
stage. Furthermore, multiplication by a 0-bit does not add anything and. multiplication by a 1-bit is 
equivalent to simply adding the multiplicand. Thus, the algorithm reduces fundamentally to adding the 
multiplicand whenever the multiplier bit is 1 and then shifting the multiplier and multiplicand one place, 
until all the bits of the multiplier have been processed, as shown in Figure 1c. 

Additional insight into adapting this standard manual multiplication algorithm to a binary machine with 
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parallel addition can be obtained by considering the right shift scheme of Figure 2. Here we shift the 
partial result and the multiplier to the right at each stage. But since the partial result grows by 1 bit each 
step and the multiplier shrinks by 1 bit each step, their total bit, size remains constant (at 8 in the example 
of the figure). Thus, if the multiplier and product can be coupled together it may be possible to shift them 
in the same operation. 
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SOLUTION 

Figure SW-2 shows an implementation of a waveform generator for the function which uses a K(clock) 
for the time base. In order to change the period of the waveform, the clock must be changed. The 
K(clock) would have either a fixed period waveform or be variable using a potentiometer. A 
programmable clock (given in the preceding section) would provide the variability needed for such a 
generator. Note with a K(clock) there is no data part which uses an RTM Bus. The only evoke 
complements the Output(t) function which is held in a DMflag. The function simply is 0,1,0,1,... with 
every clock period count. 

Fig. SW-2. RTM diagram of square wave generator using clock 'time base. 

ADDITIONAL PROBLEMS 

1. Design a square wave generator which uses the K(delay) to specify the time. Note, two K(delay)'s are 
needed because of the recovery time restrictions of K(delay). 

2. Design a square wave generator using the K(programmable delay) given in the problems of the clock
delay. 

3. Design a square wave generator in which the period, T, consists of two variable parts, t-off and t-on. 

That is, T = t-on + t-off.


The Output(t) = 0 for 0 < t < t-off


= 1 for t-off < t <T 

Use either a K(clock) and K(delay) or two K(delay)'s. 
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4. Design a complete system in which the output of the waveform generator, time t-off, is 1, and time t
on is proportional to the next Fibonacci number. Each time the waveform changes, a one is added to the 
number used to generate the Fibonacci number. That is: the Output(t) sequence will be: 

off, on(0), off, on( 1), off, on (1), off, on(2), off, on(3) off ... 

When the generator overflows it should be reset to start at 0. 

5. What is the maximum rate for the clock in the case of the Fibonacci number generator? Can you 
redesign the system to increase this rate? 
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Fig. WU-2. RTM diagram of K(wait-until) ERTM. 

D(SQUARE WAVE GENERATOR) 

KEYWORDS: Timing, clock, delay, waveform generator, synchronization 

One important use 6f the K(clock) and K(delay) is in the design of waveform generators. These systems 
take input parameters and create an output waveform, Output(t), which varies with time. The simplest 
digital-type waveform that can be generated is the symmetrical square wave. It is represented graphically 
and functionally in Figure SW-1. With this function the sampling time between changes of the function 
is equal to half the period of the function, T/2. The function changes in discrete steps, hence, the 
Output(t) is 0 or 1, rather than begin continuous. 
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Fig. SW-1. Timing diagram of square wave function. 

PROBLEM STATEMENT 

Design a waveform generator which will behave according to the square wave function. 
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Fig. CD-3. Module diagram for K(programmable delay). 

K(WAIT-UNTIL) EXTENDED RTM 

KEYWORDS: Wait-until, ERTM, polling, synchronization, parallel merge 

Conceptually the notion of waiting for a Boolean condition to occur (to be true) prior to proceeding is 
fundamental to synchronization between systems. Normally some external process causes a Boolean 
(flag) to be set to indicate the occurrence of an event. A second process, which is to be synchronized with 
the event, checks the Boolean input condition by polling, and when true, proceeds. 

PROBLEM STATEMENT 

Design a module, ((wait-until), which carries out the waiting function with external characteristics as 
shown in the module diagram of Figure WU-1. 
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Fig. WU-1. Module diagram of K(wait-until). 

SOLUTION 

This module is similar to the K(parallel merge) in that it is activated, waits until a Boolean input 
condition is satisfied, and then proceeds to activate the next module. Figure WU-2 shows the equivalent 
RTM macro formed from three conventional modules. For systems with an activate control signal 
identical to a Boolean, the K(wait-until) is identical to a K(parallel merge). 
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a DO loop causes a one time execution of the DO loop, they become slightly critical about meaning and 
consistency. Here, however, the problem is not just that 0 produces no actions; it is stilt necessary to 
check for a zero case prior to entering the loop, even if the loop detects 0 indexes prior to executing the 
loop. The following two solution implementations point this out. 

SOLUTION 4 

In Figure CD-2e the testing for n=0 is performed before entering the loop, using the for loop ERTM 
previously described. Waiting for the clock will occur no times if n is 0. The structure has a more 
consistently defined behavior than Solutions 1 and 2 because the for loop is executed in a short time, 
generating a very large number of outputs per unit of time. The rate is uncontrolled, however, being 
determined by the time taken by the for loop control. That is, when n is 0 the part that synchronizes with 
the clock is never evoked. Somehow, this type of action also seems strange when compared with the 
behavior of a program. The difference can be seen between this case and that of programming; in 
programming one is interested in the number of times a process is to be executed and less interested in 
the control part (i.e., a program). Here the' number of times a process completes is of interest and the 
control structure completion is giving erroneous outputs. 

SOLUTION 5 

Figure CD-2f finally solves the problem again, by first checking whether n is 0 before starting the for 
loop. In this way, erroneous outputs for this case are not generated. This rather lengthy discussion of five 
designs, only two of which are correct, illustrates concepts of number representation, loop control, and 
inter-process synchronization. In addition, it illustrates how a problem often becomes totally specified 
only when the design is carried out. 

ADDITIONAL PROBLEMS 

1. Design a K(programmable clock) which has only one control part (instead of two) that is activated 
from the K(clock; period: T'). A DMflag (Clock-Event) might not be used, but instead each occurrence of 
the clock would cause the status of n and i to be checked and updated. Output control events would be 
given each time i is counted down to zero. 

2. K(programmable(variable)delay). - A K(programmable delay) can be constructed which is similar to 
the K(programmable clock). The overall structure of such a device is given in Figure CD-3. The behavior 
is like the standard K(delay) of Chapter 2. 

3. Design a clock that has two control parts that are similar to the control parts used in the K(clock) 
above. Determine the average delay time as a function of the input delay time, n. Take care to avoid a 
solution which has the behavior of (n,t) as (0,0), (1,0), (2,0~1), (3,1~2)...(n,n-2~n-1). 
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4. Design a delay with two control parts which uses the time base generator to cause the output activate
next signals as in the control part case of problem 1 above. The counting process is started by a flag set 
by the activate input which indicates that a time period is to be measured. 

5. Design a K(integrating programmable delay) which is similar to that given in Chapter 2. 
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SOLUTION 1 

This method assumes a variable, i, which can be counted down at each T' event; when i reaches 0 an 
output signal is generated and the count is reset to n, to begin the next countdown. 

Figure CD-2a shows the data part of the design and one section of the control part that accepts time base 
clock pulse inputs from a conventional RTM K(clock). The data part requires an input interface, T(input) 
to input the variable time count, n. A DMgpa contains i, the variable which is counted down to give the 
number of time base clock events. The time base is-generated by having the K(clock) set the. DMflag, 
Clock-Event. That is, the Clock-Event flag is set each time a clock event occurs and a second, 
independent clock-timing control part counts these clock events. 

The completely independent clock-counting control part can be designed directly; a design is given in 
Figure CD-2b. For this control part, count variable, i, is first initialized to n. A loop is then entered which 
waits until the Clock- Event flag becomes 1. Upon detecting the clock event, i is counted down by 1. The 
process is repeated for each occurrence of the Clock-Event flag becoming a 1. When i < 0, an output is 
generated and the clock counting process repeats. Thus, there are two independent control parts: the time 
basis generation which sets a Clock-Event flag; and a counting part which resets the Clock-Event flag. 

There are several problems with this design as shown by the behavior in the figure which gives the 
number of outputs for each input value of n. If n is 0, the clock period is still 1, and if n is less than -1, 
then the clock period is also 1. One limitation arises from the fact that a signed two's complement 
number is assumed rather than an unsigned 16-bit number. In this way only half of the possible numbers 
are being used; since time is always positive, an unsigned convention should be used to give a greater 
range. 

SOLUTION 2 

In Figure CD-2c the test is changed to a 0 test condition at the end of the loop, thus assuming an 
unsigned number (i.e., the other 2^15 numbers can also be used). Now a wider range of numbers can be 
used, but there is still a problem that a period of 0 is perhaps ill-defined. The behavior for the control 
flowchart given opposite the design shows that an input parameter value yields 2^16 unique periods. 
Perhaps a period of n=0 should produce a better defined result. That is, for n=0 either a large (infinite) 
number or zero of output .events should be generated. The Figure CD-2c produced some low output rate. 
Note that in this design we have defined the K(wait-until) macro which we will include in the set of 
Extended RTM's, because it is frequently used. The following example problem describes this macro. 

SOLUTION 3 

The problem of an ill-defined case of n=0 can be solved by first checking for 0 before the waiting loop 
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(see Figure CD-2d). A Kbranch has been added to check the initial condition before entering the loop. 

One might think that the problem with this design is simply that we started off with a poor flowchart 
structure and then continued making modifications until a workable solution was found. The real 
problem, perhaps, is that the value of the number of times a loop is to be traversed should be checked 
before entering the loop. In this way anomolous cases will be sorted out without having the 
embarrassment of doing a loop one time when a parameter of 0 is specified. When neophyte Fortran 
programmers discover that giving an index count of 0 in 
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ADDITIONAL PROBLEMS 

1. What value is output in case of overflow? Is it the same value for all inputs that are large enough to 
create an overflow? What is the largest N for which the system can compute F(N)? Given this value of N, 
is it clear why only one check was made for overflow in Solution 2? 

2. Cost out the three proposals. Discuss the tradeoff between cost and speed. Why does it come out this 
way? 

3. Is there a direct formula for calculating F(N)? Find one and determine whether it provides an 
alternative basis for computing F(N). 

4. Suppose you had only 8 words of memory available (say as part of a larger core memory devoted to a 
total system). What sort of a fast Fibonacci generator could you build? Where would it come on the cost
speed graph of Problem 2? 

■	 K(PROGRAMMABLE (VARIABLE) 
CLOCK) 

KEYWORDS: Counting, clock, delay, integrating delay, wait-until, time-base, synchronization 

The period T' of the basic RTM K(clock) described in Chapter 2 is a constant, or more precisely, a 
variable which is set by a manual potentiometer adjustment. It seems desirable to have another kind of 
clock that has a period T that can be specified dynamically by a parameter from within an RTM system. 

PROBLEM STATEMENT 

Design a clock, using RTM components, that has a variable period T that can be set by an RTM system. 

DESIGN CONSIDERATIONS 

The proposed clock might have an overall RTM structure such as that shown in Figure CD-1. It would 
use a basic RTM ((clock) of constant period T' as an input. It would also have an input word, n, to 
specify the period T as a multiple of the base period T', i.e., T = n*T', where n = 0,1,2,...,n-max. The 
clock would give an output control signal for each n counts of the basic clock, which has period T'. We 
can assume that n is held outside the system and is Accessible via a T(input interface). 
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Fig. CD-1. Module diagram of K(programmable (variable) clock). 
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Fig. FIB-3. RTM system to compute the Nth Fibonacci number by a table look-up 
process. 

SOLUTION 2 

This scheme employs a two-Bus structure and is shown in Figure FIB-2. This design uses the same 
preloop structure as that in the design of solution 1. The generation of the numbers in the sequence and 
the indexing on N are performed in parallel. K(parallel merge) modules provide the necessary 
synchronization of the two operations. The upper section of the loop generates the even-indexed terms of 
the sequence and the lower section generates the odd-indexed terms. Both sections of the loop decrement 
N, and the normal exit is taken when N = 0. As in solution 1, the detection of overflow passes control out 
the overflow exit. More parallel (concurrent) processes will be given in Chapter 4, and in subsequent 
design examples. 

SOLUTION 3 

The fastest method for computing F(N) uses a table-lookup process and is illustrated in Figure FIB-3. 
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Those values of F(N) less than 2^16 may be stored and retrieved from a memory; the value for F(J) is 
stored in the jth word of the memory. The check for N < 0 is made initially to prevent an illegal memory 
reference. A constant, NMAX, contains that value of N such that F(N) > (2^16)-1 and the overflow 
check is made against this value. With known N, this is just 2 Kevoke's. 

101 

previous | contents | next 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000115.htm (2 of 2) [4/3/2002 6:16:37 PM] 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000115.htm


Designing Computers and Digital Systems 

previous | contents | next 

Fig. FIB-2. RTM system to compute the Nth Fibonacci number by a parallel 
process. 

up according to the formula. The only concern is that all computations for F(1), F(2),... up to F(N) 
are being made, even though they are not themselves wanted. Having settled on a basic method 
does not determine fully the actual processing, as we show below by giving several designs. 

SOLUTION I 

Figure FIB-i shows a straightforward design for a Fibonacci number generator. F(0) and F(1) are 
generated at the beginning of the process and the normal exit is taken for N = 0,1; for N greater 
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than I but small enough not to cause overflow, the loop is performed N-1 times yielding F(N), N 
is decremented by 1 on each pass through the loop, and the normal exit is taken when N = 0. For 
those N such that F(N) >2^16, overflow will occur and the overflow exit is taken. 
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Fig. FIB-I. RTM system to compute the Nth Fibonacci number by a 
sequential process. 

The second question to ask is about the various limits of the computation. The natural representation for 
F(N) is in a single 16-bit word, which means that F(N) cannot be greater than 2^16-1. How fast does 
F(N) grow? We can answer that question by finding a simple upper bound for F(N). For example: 

F(N +1) = F(N) + F(N-l) 

F(N+1) > F(N-1) + F(N-l) = 2*F(N-l) 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000113.htm (1 of 2) [4/3/2002 6:16:38 PM] 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000113.htm


Designing Computers and Digital Systems 

We simply ignore the additional contribution from F(N) being greater than F(N-l). The above formula 
shows that F(N) grows by at least a factor of 2 for each increment of 2 in N; thus by the time N = 32, 
F(N) > 2^16 and has overflowed the word. Thus, the design specifications must include an overflow 
return as an additional part of the output representation. In addition a check should be made to insure that 
N > 0; an underflow exit should be included for the condition that N <0. 

The third question is to decide on a basic method of computation. The simplicity of the recurrence 
relation suggests computing F(N) simply by adding it 
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least four variable locations is needed with a data operations part, a DMgpa, to carry out the updating of 
<v1>. The control part is shown on the left. In this implementation we have placed an additional data 
operations part to carry out the computation of (v 1 -v4) * sign (v3). This operation could have been 
carried out in the DMgpa however, Thus, we have defined the meaning (or semantics) of the Algol loop 
in terms of RTM primitives, although we have made the simplifying assumption that the variables are the 
two's complement 16-bit integers represented by the RTM system. The control part is somewhat like a 
K(subroutine), together with a number of implicit connections to the DM part to manipulate the 
controlling loop variables. 

APPLICATION 

Figure FL-3 shows an implementation of the sum-of-integers problem, Chapter 2, using the K(for loop). 
Note that in this case only one control step has been saved. There is also an implicit assumption that the 
variable <v4> has been loaded into the DM part of the for loop module. Hopefully this implementation is 
somewhat easier to understand as it separates the control of the algorithm from the part of the algorithm 
performing the calculation. 

PROBLEMS 

1. Redesign the K(for loop), Figure FL-2, using sequential Ke's to carry out the (vi -v4)*sign (v3) > 0 
computation. 

2. Since there is a problem with the K(for loop) having access to variables which are used in the rest of 
the system (do part), as a practical matter almost all K(for loops) would have to be tailored to the 
particular application. But the customizing process variables would not have to be duplicated as they can 
be taken from other parts of the system. Show a special K(for-loop) for the sum- of-integers problem, 
Figure FL-3. 

3. Use the K(for-loop) and K(conditional-execute) to solve the ones count problem. 

FIBONACCI NUMBER GENERATOR 

KEYWORDS: Functions, generation, overflow, underflow 

● The Fibonacci sequence is defined by the relations: 

❍ F(N+1) = F(N) + F(N-1) with F(0) = 0 and F(1) - 1 

The first few values of the sequence are: 0,1,1,2,3,5,8,... The Fibonacci sequence has a fascinating 
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history, showing up in many odd guises. For our purposes, they can illustrate the task of function 

generation where some implicit relationships are given, rather than a direct explicit formula. 


PROBLEM STATEMENT 


Design a Fibonacci number generator that takes N as input and computes F(N). 


DESIGN CONSIDERATIONS 

The first design question is to ask about the interface between the system (the number generator) and the 
external world: what information is to be provided as input and output and in what representation? The 
matter appears quite simple here: the input is a 16-bit number held in a 16-bit word; similarly the output 
is a 16-bit number representing F(N). 
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where the <v>'s indicate register real (floating point) or integer variables or constants which are 
substituted, <B> is a Boolean condition, and S is the statement or statements to be executed. In practice 
<v2>, <v3> and <v4> are often constants and can be positive or negative. Actually the Algol statement is 
even more general than this since <v2> can be replaced by a list of variables for <v1>, but we will not 
consider this case. 

In terms of the for-loop the sum-of-integers problem, from Chapter 2, can be expressed in Algol as: 

Note that in these cases the while B part is not used. This part is a further test for deciding whether to 
continue iterating and may replace the until part. 

PROBLEM STATEMENT 

The for-loop extended RTM is fairly complex and is classified as a K module, consisting of both a 
control and data part as shown in Figure FL-1. 
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Fig. FL-I. Module diagram of K(for loop) ERTM. 

Design a K(for-loop) which assumes a macro (open subroutine) will be used for the do part. Use standard 
RTM's to specify the structure. Assume that if <v3> is positive the test for until-completion is (v1-v4) > 
0 and for <v3> negative it is (v4-vl) >0. These two conditions can be expressed as: (vl-v4) * sign (v3) > 
0. 

SOLUTION 

Figure FL-2 shows an RTM implementation of the K(for-loop). Memory for at 
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is called. In this case the direction of the shift (i.e., x2 or /2) is controlled by the sign of N. Also this sign 
determines whether incrementing (+1) or decrementing (-1) is to occur. The absolute value of N may lie 
outside the range of 16, thereby causing shifts in V which leave 0 as the result. 

If we apply the K(conditional execute), the control part for this problem is slightly simplified as in Figure 
SO-4. 

ADDITIONAL PROBLEMS 

1. The sign-magnitude representation for numbers was shown in Figure SO-1. Modify the design of the 
previous solution to perform x(2^N) and /(2^N) operations using this representation. 

2. Further generalize the previous problem so that it has three control inputs for the logical, circular and 
arithmetic shift cases. N specifies the direction and number of shifts to be carried out. 

3. Can you find a way to decrease the time for the parameter shift operation case given in Figure SO-3 
and problem I above? 

4. A related pair of operations to logical shifting permits the loading, and storing of a field of data within 
a single word. Design the RTM system for loading and storing a field of up to 16 bits, which takes 
parameters bit, b, field length I+1 (varying from 1 to 16 bits), and word, A, within a DMgpa. For loading, 
field A<b+l: b> is placed in data<l:0>. On storing, data<l:0> replaces A<b+l: b>, where 0 < b < 15 and b 
+ 1<15. 

5. Design RTM systems to test the various cases given in Problems 1 to 4. 

FOR LOOP EXTENDED RTM 

KEYWORDS: For loop, DO statement, ERTM, sharing DM modules, sum-of-integers 

An important control operation encountered in almost every application is a set of operations which are 
iterated a variable number of times. This is called a loop, and in this example we shall build an ERTM to 
carry out loop control. First, however several programming language structures related to this problem 
will be discussed. 

Fortran DO Statement 

The following program uses Fortran to compute the sum-of-integers problem from Chapter 2: 
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This may not be correct for some Fortran implementations because the DO statement increment is -1. It 
is given because it corresponds to our implementation in Chapter 2. The DO loop also has the problem 
that statement 10 must be interpreted at least once, although that causes no difficulty for the example 
shown. 

Algol For Statement 

In Algol a more general form for loop control is allowed and, in addition, a loop can be executed zero 
times if desired. The general form of the Algol for statement is: 
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circular shift is in fact necessary to put the correct digit into bit 0. Again, if the number 6 were originally 
represented in a register, as the register is shifted left three times its contents would be 12, 24, and 48 
respectively. If a number is created during left shifting that exceeds the capacity of the register, this 
condition is indicated by setting an Arithmetic Overflow Flag\ArOvF. For l's or 2's complement notation, 
this condition is detected when a different bit is transferred into the sign position. That is, take the set of 
large 16-bit positive numbers which have bit positions 01~..~, where ~ indicates the bit may be either 0 
or 1. This representation indicates numbers in the range 2^14 < n < 2^15 - 1. Shifting left would call for 
2^15 < n < 2^16 - 1, which is impossible to represent in .a signed 16-bit register, which only has room 
for storing positive numbers up to 2^15 - 1. Large negative numbers can cause overflow in a similar way. 
Notice that for sign-magnitude representation, leaving the sign alone and shifting bits 14:0 left does not 
cause the sign to be lost when an overflow results, but the result is still erroneous. Under these conditions 
the result is: 

result-number - original-number (x2) modulo 2^15 

PROBLEM STATEMENT 

Assume that a number to be shifted is held in the A register of a DMgpa. Design an RTM system 
(subprocess) to perform the three shift operations, logical, circular, and arithmetic (2's complement), for 
both the left (x2) and right (/2) cases as indicated in Figure SO-1. Assume that an arithmetic overflow 
will cause a 1 to be placed in the DMflag(Arithmetic-Overflow-Flag\ArOvF). 

SOLUTION 

The solution can be written down directly in terms of the data part statement as shown in Figure SO-1. 
The RTM diagram for the shift operations is given in Figure SO-2. In both the left and right shift cases 
the approach is to first establish the input bit, Shift-Flag\SF, to be shifted into A, and then carry out the 
appropriate shift operation. In the case of the arithmetic left shift (x2) the ArOvF (flag) may be set. 

RELATED PROBLEM 

The previous case only provided a single operation of x2 or /2. More generally, the number of shifts is 
also a parameter in the operation. That is, consider the three operations:(1) 

A <- A x 2^N {arithmetic} 

A <- A x 2^N {logical} 

A <- A x 2^N (circular) 
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where N may be either positive, zero, or negative, giving a x2^N, null or /2^N operation. Design an RTM 
subprocess which takes A and N as input parameters and performs the appropriate operation for the 
logical shift case. 

SOLUTION 

Figure SO-3 shows the RTM diagram which solves the above problem. The parameter, N, to specify the 
number of shifts is held in a DMgpa when the macro 

1. Hereafter arithmetic shifts will be assumed to be 2's complement, unless otherwise stated. 
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3. Can a Kce activate a Kce which activates a Kce which ...? 

4. Use Kce's in the redesign of the ones counter, Figure OC-2. 

LOGICAL SHIFT, CIRCULAR SHIFT (ROTATE), 

AND ARITHMETIC SHIFT OPERATIONS 

KEYWORDS: Number representation, single loop control, X2, /2, arithmetic operations, shift, rotate 

There are three basic operations, collectively known as shifts, that are often needed in digital systems 
design (especially general purpose computers). In shift operations bits are moved by one or more bit 
positions within a register,' either to the left or to the right. Since the arithmetic value of a bit is either 
increased or decreased by a factor of two for each position that it is shifted, these operations are often 
denoted as either multiplication or division of the contents of the register by 2, for left and right shifts 
respectively. Strictly speaking, however, this is just a shorthand notation for what actually happens 
during the shift. Depending on the data-type of the word under consideration, there are actually three 
different kinds of shifts: logical shift, circular shift (rotate), and arithmetic shift. The actual paths for the 
movements of bits in the registers for three shift operations are shown pictorially in Figure S0-1. 

The logical shift merely moves the various bits to the right or left one position, and reads in a 0. The 
operation is not used for arithmetic, but might be used to isolate a field of bits (contiguous set of bits). 
The circular shift, also called rotate, just connects the end bits of the register and no bits are lost or 
introduced in the shifting process - they are merely moved. 

The true arithmetic shift (x2, /2) is slightly more complicated. For one thing, there are three common 
integer number representations to consider, each of which is treated slightly differently: sign-magnitude, 
l's complement, and 2's complement. In sign-magnitude representation, bit 15 is the sign bit (1 for -, 0 for 
+), and bits 14:0 are the binary magnitude of the number. In 1"s complement notation, positive numbers 
are the same as in sign-magnitude notation, but negative numbers are represented as the l's complement 
(bit by bit complement) of their positive counterpart. In 2's complement notation, positive numbers are 
again the same as in sign-magnitude notation, but negative numbers are represented as the 2's 
complement of their positive counterpart. The 2's complement of a number is the l's complement, 
incremented by 1 (i.e., 2's complement = l's complement + 1). Notice that in l's complement and 2's 
complement notation the convention for the sign bit is maintained, i.e., bit 15 is 0 for positive numbers 
and 1 for negative numbers. 

On dividing numbers in each of these representations by 2 (see Figure 50-1), the sign should not change, 
thus the sign remains the same during a right shift (or alternatively, one could claim that a copy of the 
sign is shifted into the sign position). Notice that in sign-magnitude notation, a 0 must be shifted into bit 
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14. Consider now an example in which the number 6 is originally represented in a register. As the 
register is shifted right three times, its resultant contents become 3, 1, and 0 respectively. Clearly 
information is being lost as bits are shifted out the right side of the register. In some digital systems this 
might possibly be indicated by an underflow flag indicating that a number which is smaller than the 
register can represent has occurred. 

On multiplying numbers in each of these representations by 2, again the sign should not change, 
Furthermore, note that in l's complement notation a left 
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Fig. CE-1. Module diagram of Extended RTM, K(conditional execute).


Fig. CE-2. RTM diagram of Extended RTM, K(conditional execute). 

ADDITIONAL PROBLEMS 
1. Design a part of an RTM system using Kce (including Kce switch positions) for the following: 

a. B=>(C <- F); 

b. B=>(multiply subroutine) else (X <- 0); 

d. B=>(GOTO Q) else (GOTO Y); GOTO is used here to denote change of control flow; what 
might Q and Y be? 
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e. B=>(X <- 1; next Y <- 1) else (V <- 1; next Q <-0); 

2. Design a Kce which only has an "if B then S" where S is a single operation that can be evoked. 
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is both the count and a number shifted with its most significant one in the bit 15 position. Design an 
RTM system to normalize a word. 

CONDITIONAL EXECUTE EXTENDED RTM 

KEYWORDS: Extended RTM, conditional execution, if-then-else, IF, closed subroutine, open 
subroutine 

PROBLEM STATEMENT 

Design an Extended RTM/ERTM which behaves similarly to the Algol" if B then S-true else S-false", 
and Fortran "IF" statements. The control is to sense the condition of a Boolean input, B, and depending 
on whether the input is true or false, evoke either the S-true or S-false control parts. A block diagram of 
the desired ERTM is shown in Figure CE-1. 

DESIGN CONSIDERATIONS 

There are several possible structures for such an ERTM depending on the operations being initiated. 
These operations could be: a single register transfer operation as given in a K(evoke); a closed subroutine 
(subroutine) which would be called and produce a return as in a K(subroutine call); an open subroutine 
(macro) which would be called and produce an exit; and a transfer of control flow as in a K(branch). 

SOLUTION 1 

Before presenting a general solution, we illustrate the simple case in which the operation is a K(evoke), 
i.e. Kce(B=> evoke-if-true else evoke-if-false). The structure could be realized as shown in Figure CE-2. 
Namely, there are two K(evoke)'s, a K(branch; 2-way), and a K(serial merge). 

SOLUTION 2 

A general solution is required to handle all cases stated in the above problem. Assuming such a module is 
to be specially fabricated and the module is to be statically switched to handle the various cases, two 
separate switches for specifying the true and false operations are required. Figure CE-3 shows the 
structure of a Kce which has those capabilities. 

The implementation consists of four basic parts: the Kbranch makes the decision (if part); the true part 
then carries out the appropriate call if the Boolean is true; the false (else) part carries out the call if the 
Boolean is false; the merge brings the true and false parts together at completion. The false part is similar 
to the true part, except that it has an additional switch position which allows the false part to be bypassed, 
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permitting the statement: B=>operation-if- true. A three-position manual switch selects the type of output 
required for the true part (then case), giving a standard evoke operation (from the Kevoke), a subroutine 
call (from the Ksubroutine), or a call to a macro (direct). The three gangs. (or decks) of the three-position 
switch operate in parallel; that is, when the switch position is moved (shown in position 1) all decks are 
switched. The first gang selects the controlling input type; the second gang routes the output of the 
appropriate call control to the output (evoke-operation, subroutine call, or macro entry); and the third 
gang routes the exit signal back to the activate-next output when a macro is' used. The false (else) part 
fourth position is used as a bypass when only a true (then) part is used. 

With these capabilities a K(conditional execute) can be used to activate any subprocess including the 
trivial subprocess consisting of a single K(evoke). 
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Fig. OC-6. RTM diagram to test the "Count number of ones in a word" RTM system. 

TESTING 

The above four designs represent solutions to the isolated problem of designing subprocesses to compute 
the number of ones in a word. These designs create an additional problem of testing whether they in fact 
work. Each system can be checked by the additional components given in Figure OC-6. A T(lights and 
switches) is added to the data part. The control part causes the switches to be read into W, the subprocess 
to be executed, and the results to be displayed. By observing the relationship between lights and switches 
the system correctness can be verified to a certain extent. 

ADDITIONAL PROBLEMS 

1. Why does Solution 2 take an additional loop time? What is the average time for Solution 2? 

2. What is the operation time and system cost for Solution 3? 
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3. The solutions given assume that the data is shifted left (i.e., A <- Ax2). Since the B register of a 
DMgpa can be shifted right, then the best solution (in terms of minimum cost and time) may be based on 
an assignment of A\Count and B\Word\W in a single DMgpa. Thus the arithmetic operations: Count <-
Count+1; and W <- W/2 are both permitted. Carry out this design. 

4. Using the flowchart to hold data, as in Figure OC-4, together with 16 different constants, design an 
RTM system which counts the number of ones in a word without using shifting. 

5. Using a specially wired M(transfer register), design a faster ones counter for both the count, and 
modulo 2 count cases. 

6. Plot the time vs. cost on a graph for Solutions 1 to 3, and your designs in problems 3, 4 and 5. 

7. Another operation, normalization, is used in certain arithmetic operations and is similar to counting 
ones. Normalization consists of determining a count which corresponds to the bit position of the most 
significant one in a word. The result 
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Fig. OC-5. RTM diagram to count the number of ones in a word, modulo 2 (i.e. parity), holding result 
within the control part. 

Figure OC-5 gives an RTM diagram for a considerably faster method. Also note that only one register, 
A, is used for word W (at entry) and the result, Count (at exit). This method uses the flowchart to hold 
data; in this case, the location of the control within two loops indicates whether an odd or even number of 
ones have been detected. At the exit Count is either 0 or 1. 
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Fig. OC-4. RTM diagram for counting number of ones in a word using one DMgpa. 
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shown in Figure OC-3. In doing this re-ordering we have probably decreased the understandability of the 
algorithm, and we have certainly made it more difficult to describe whether it operates correctly. The 
algorithm is correct, but the testing for completion is slightly erratic, since either W or Count is checked 
for 0. Therefore the algorithm will take one more loop time than really needed to terminate. 

Fig. OC-3. RTM diagram (alternative) for counting ones in a word. 

SOLUTION 3 

Figure OC-4 gives a solution which uses only a single DMgpa. That is, the DMgpa is time-shared, being 
used for arithmetic operations on Count and W. Since the A register can only be used for counting and 
shifting, the two registers must be interchanged before counting can be carried out in B. Thus time is 
traded-off for lower cost. 
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RELATED PROBLEM 

Another problem related to counting the number of ones in a word is counting the ones modulo 2, that is, 
counting whether an even number or odd number of ones appear in the word. The result is to be 0 for an 
even number and 1 for an odd number. A simple calculation of this form is often used when transmitting 
data via some error-prone information medium. By adding this count, called a parity bit, at the 
transmitter, and then checking the data and parity bit at the receiver, single bit transmission errors are 
detected. 

SOLUTION TO RELATED PROBLEM 

The direct computation for parity based on the previous problem simply uses the previous solutions and 
takes the least significant bit of Count to indicate parity. 

83 

previous | contents | next 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000097.htm (2 of 2) [4/3/2002 6:16:48 PM] 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000097.htm


Designing Computers and Digital Systems 

previous | contents | next 

Fig. OC-2. RTM diagram for counting the number of ones in a word. 

The first step of the algorithm resets the Count register. The next two steps are used to check whether the 
input word is a zero. When W is 0, there are no more 1's in the word, and the algorithm terminates 
(exits). If W is not 0, the main step of the control part shifts out (destroying) the most significant bit into 
the OVERFLOW flag\OVF for counting. OVF is then checked and counted if 1 (i.e., Count <- Count+1). 
In shifting the result left (i.e., multiplying by 2) a 0 is input to the least significant bit A<0>. This shift 
can be represented in a number of ways: (OVF[]A <- A[]0) or (A<15:0> <- A<14:0>[]0; OVF <-
A<15>) - signifying the actual bit transformation; (A <- Ax2{logical}; Set OVF) - signifying a shift 
takes place, but modified by the name {logical} meaning a 0 is shifted into the least significant bit; or 
(LSI:=0; A <- Ax2; Set OVF) - signifying a shift where the actual shift input bit is specified (i.e., by the 
left shift\LSI input). The. symbols "x2" here mean shifting left one bit position, not multiplying by 2. 
Multiplying is designated by "*" in this book We choose the form (A <- Ax2 (logical); Set OVF) for this 
example. 

It should be noted that the implementation has a specific cost (consisting mainly of the 2 DMgpa's) and 
takes a certain time (approximately 1 + 8*3 + 7 1/2 * 2 evoke times, or 40 evokes * .83 ~s/evoke or 35.2 
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microseconds for an average of eight l's randomly placed in a word). 

SOLUTION 2 

A slight reordering of the steps of the algorithm can remove the step which accesses W to test if it is 
zero. Carrying out the re-ordering gives the design 
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SOLUTION 1 

To simplify the design of the RTM system, an abstract algorithm can be determined. Since flowcharts are 
used in this book to express behavior, a flowchart of the algorithm is given in Fig. OC-1. The algorithm 
explains how such a system might operate, but need not in general be constrained by a physical / 
structure. However, since the purpose of this book is to discuss RTM's, assumptions made about 
operations on RTM systems will often affect how we write a flowchart. 
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Fig. OC-1. Algorithm flowchart to count the number of one bits in a binary word. 

Figure OC-2 gives a diagram of an RTM system which carries out the ones counting computation. 
Although only two registers are needed in the computation, two DMgpa's are used because of the 
asymmetric capabilities of the A and B registers of a DMgpa. At the entry to the control part, one DMgpa 
holds the word W, which is assigned to the A register by using the alias convention (i.e., W\A means that 
this register can be identified by either name). At the exit of the control part, register Count (the other 
DMgpa A register renamed) holds the number of l's in W at entry. The subprocess destroys the data in 
W. 
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CHAPTER 3 ELEMENTARY DESIGN EXAMPLES 

The purpose of this chapter is to introduce the reader to the RTM design process by posing and solving a 
number of elementary RT-level design problems. The problems use the modules in Chapter 2 in a 
straight-forward fashion to hold Booleans (bits), and unsigned, and 2's complement signed integer data. 
The main concepts that are introduced are data representation and defining and structuring problems for 
solution; also included are some uses of subroutines, clocks for timing, and the related problem of 
synchronizing two independent systems. 

Most of the designs in this chapter, being small, are actually subprocesses that occur in larger programs. 
For example, the first problem, counting the number of one bits in a word, would hardly ever be done for 
its own sake. Not until Chapter 5 do the problems become sizable enough to constitute entire information 
processing tasks. We do pose a couple of the problems in this chapter to have external input and output, 
thus being complete systems. But these are somewhat contrived, in order to give the flavor of total 
systems. 

However, one should not view the designs of the present chapter simply as finger exercises. As we noted 
in Chapter 2, one builds up subprocesses out of the basic RTM's that are used again and again in larger 
systems. Some of the more important of these we have called Extended RTM's\ERTM's, and this chapter 
includes several of them. These ERTM's package various complex forms of control, the most complex 
one being the K(for loop) which evokes the operation of a subsystem for a variable number of iterations. 
Thus, these elementary examples contain important lessons about how to build complex control. They 
will be useful throughout the book both as actual modules (i.e., as ERTM's) and as models for larger 
systems. 

The design examples are presented in a uniform format. A list of keywords appear first and sometimes a 
brief introduction is given. The problem is then stated, design considerations (possibilities) posed, and 
solutions given. In most examples, additional problems (exercises) are either posed or posed and solved. 

COUNTING THE NUMBER OF ONE BITS IN A WORD 

KEYWORDS: Counting, parity, cost-performance tradeoff, storing data within a flowchart, termination, 
testing 

The operation of counting the number of l's in a word is usually needed when the word is considered to 
represent independent conditions (i.e., the word is a 16-bit Boolean vector). The 16 individual bits might 
represent the indices of stations requesting attention, hence a one's bit count would correspond to the 
total number of stations requesting attention at one time. 

PROBLEM STATEMENT 
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Design a system which will count the number of one bits in a 16-bit word (sometimes called tallying in a 
computer). 

DESIGN CONSIDERATIONS 

The word is held in a register of a DMgpa. The word (data) may be destroyed in the calculation. The 
resulting count is held in a DMgpa register. For example, the following illustrates the relationship 
between input and output. 
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1. Stop error - a one when the system is no longer evoking operations. Invalid when using 
K(PCS). 

2. DS error - a one when Test is evoked AND there is another operation in progress. 

3. Alarm - a one when either Stop error or DS error is one. 

4. Auto Run - a control activate output which occurs after using a power clear cycle. If this output 
is connected to the Run input, then the system will start automatically (Start will be evoked) on 
power up, or after the PC switch is depressed. 

The additional inputs of Kbusc that Kbus doesn't have are: 

1. Test - an evoke input used to determine whether the system already is active (see DS error 
output above). 

2. Run - a control input signal to cause a system start. Any negative pulse of greater than 50 ns 
will start the system. 

3. Auto restart - a high to low transition at this input will cause a power clear pulse to be 
generated. If Auto-Run is connected to Run this input clears the system and restarts it. This input 
can also come from the error flags. 

4. Ev-con - if this pin is connected to the activate input of any Kevoke in an RTM system, then 
the system will halt when it gets to that module. At this point the user can switch the system to 
manual mode and single step for debugging purposes. The single step switch resets the system, so 
switching back to automatic will then allow the system to continue. 
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available. One is a variation of the Dmgpa, and the other is a variation of the Kbus. Because of the 
importance of these modules we include a description of them here. However, because of their late 
arrival, none of the examples in the book utilizes these modules. 

DM(arithmetic and registers)\DMar. Two modules, the DM(arithmetic register unit)\DMaru and the 
K(function encoder)\Kfe, taken together form a module which will be designated as the DM(arithmetic 
and registers)\DMar Although the Dmaru can conceivably be used alone, the two modules will most 
likely be used together, hence they will be described together. Figure 24 describes the DMar, and should 
be consulted during the following description. 

Briefly speaking, the DMar is much like a DMgpa with 16 addressable B registers, and the ability to 
receive encoded as well as direct evoke inputs for its functions. Actually, the DMar has 17 + 5/16, 16-bit 
registers available: A<15:0>, a 16 word scratchpad M[0:15]<15:0>, and 5 bits of the last result loaded 
into any of the positions of the scratchpad, designated r<15, 3:0>. Like the DMgpa, most operations are 
carried out on A. For operations on two registers, the second operand is held in the 16-word memory, M. 
The specific word of M is selected by a 4-bit input, X<3:0>, thus operations are actually on M[X]. Since 
all 16 combinations of X<3:0> are used, they may be addressed with either positive or negative logic. 
Thus, for example, they may be addressed using a Kevoke. Four NOR gates are provided on the Kfe to 
expand the inputs to X<3:0> if necessary. 

DMar has essentially the same functions provided by DMgpa, with the exception that M[X] appears in 
place of B. There is no right shifting capability; however, an RTM subroutine can be written to do this. 
On the plus side, data can be written simultaneously into A and M[X] if desired. 

DMar is implemented using a model S54181\N74181 Integrated Circuit which has the capability of 
implementing 16 arithmetic functions and 16 Boolean functions of the 2 input variables (in this case. A, 
and M[X]). The functions can be evoked in either of two ways: direct (e.g., <- A, <- M[X],..., <- A + 
M[X]); or encoded, in which the 5-bit code at M [] S<3:0> determines the operation. When used in the 
encoded mode, the code inputs must be present only during the desired operation and not at other times. 
Again, the NOR gates that are provided can be used to expand these inputs. The operations using this 
mode are given in Figure 25 for the logic case (m=0) and the arithmetic case (m=1). Whenever the code 
HHHHH (for all High) is used, the readout signal, <-f, on the DMaru must be separately evoked (see 
Figure 24). For all other functions (direct or encoded) <-f is automatically evoked via the Common read
out signal from the Kfe. Whenever the encoded evoke is used, the C input must be used to specify the 
Carry In to the DMaru. For direct evokes, the Carry In is specified automatically, e.g. on <-A*2 it takes 
the value of LSI, just as it does in the DMgpa. 

K(bus control and termination combined)\Kbusc. Kbusc (see Figure 26) is a simplified version of the 
Kbus and the Bus terminator within a single (double height) board. Kbusc has no Bus Sense Register, 
although the result given in the most recent transfer on the Bus can be monitored via the following 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000089.htm (1 of 2) [4/3/2002 6:16:54 PM] 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000089.htm


Designing Computers and Digital Systems 

signals: DZ\(result = 0); DN\(result < 0); DP\(result > 0); and OVF\OVERFLOW. The evoke input 
signals: Bus <-, <- 0, and Set OVF are also available. The above signals and the four basic switch inputs: 
POWER CLEAR\PC, AUTO-MANUAL, SINGLE STEP and START are identical to those of Kbus. 

In addition, Kbusc has the following outputs that Kbus doesn't have: 

75 

previous | contents | next 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000089.htm (2 of 2) [4/3/2002 6:16:54 PM] 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000089.htm


Designing Computers and Digital Systems 

previous | contents | next 

Fig. 23. RTM system to compute sum-of-integers to N using K(PCS).


structure with particular instruction assignments for the data part components. Thus a given algorithm 
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can be specified in a number of ways using RTM systems: 

1. hardwired 
2. encoded in K(PCS) memory in terms of desired instructions 
3. encoded in terms of PDP-16/M instructions (and structure) 
4. programmed in terms of a hardwired computer 
5. programmed in terms of a computer implemented using a K(PCS) 
6. programmed in terms of a computer implemented using a PDP-16/M 

TWO NEW MODULES: DMCARITHMETIC AND REGISTERS) 

AND KCBUS CONTROC AND TERMINATION COMBINED) 

Just before publication of this book, two new PDP-16 modules became 
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In a similar way, one of 29 Boolean (bit) input conditions (three of the possible conditions are reserved) 
can be sensed using the switch input structure. This function is: 

With this function the branch-code selects one of 29 Booleans to test. The final part of the structure is the 
K(interpreter) which controls the action 

of the other parts and forces the system to take on the desired behavior (see Figure 22). Note the behavior 
is expressed using a flowchart with register transfer operations. It is not an RTM system because it is not 
implemented with RTM parts, although it could be built in this fashion. The behavior is very similar to 
that of a general purpose stored program computer in that the interpreter picks up instructions 
sequentially (fetching), examines them (decoding), and then executes them. The execution process 
consists of taking one of four alternatives, depending on the instruction code. These alternatives 
correspond to evoke, conditional branch, subroutine call, and subroutine return, respectively. It is implicit 
in the execution of the evoke instruction that the ((interpreter) waits for a Bus DONE signal before 
proceeding. 

APPLICATION OF THE MICROPROGRAMMED CONTROLLER 

Figure 23 shows the microprogram which computes the sum of integers to N. The program begins in 
location 0. Here, each operation is assigned a location in the memory in sequence. The convention for 
interpretation is that each instruction is picked up sequentially from memory. The sequence is broken by 
the final branch instruction, which returns control back to location 2. Note that the serial merge 
corresponds to a branch to a particular location. To convert the above microprogram to a microprogram 
subroutine only requires a subroutine return instruction in location 6. Doing this implies that location 0 is 
the beginning of the subroutine, i.e., a subroutine call 0 instruction specifies the function as a subroutine. 

By looking at the previous example and structure of the microprogrammed controller, the reader may 
have some idea of its intended use. Whereas the hardwired structure can provide for parallelism in the 
control structure behavior, the microprogrammed control operates in a completely sequential fashion; 
each step is at least one access to the memory. Although the K(PCS) gives up parallelism, the cost is 
considerably less than that of a conventional RTM control part for larger systems. Also, the user commits 
himself to a fixed memory structure with the microprogrammed controller, whereas the hardwired 
structure can be modified somewhat. In Chapter 4 a graph is given for the cost of the control part versus 
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the number of control, steps for hardwired and K(PCS) implementations. The cross-over point for 
K(PCS) is approximately 80 control steps. 

Chapter 6 presents the PDP-16/M computer which uses K(PCS) in a fixed 
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Fig. 21. PMS diagram of K(PCS). 
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The remaining parts of the structure are the various D(decoders) which evoke operations. The decoders 
"sense" the value of IR and create unique outputs. In effect, the decoders generate the following evoke 
functions: 
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Fig. 20. Microinstruction formats for K(PCS). 

Subroutine Call and Subroutine Return 

Two remaining instructions exist for calling a subroutine and specifying the return from a subroutine. A 
subroutine call has the effect of transferring the control (i.e., setting the Program Counter) to the address 
of the first instruction of a subroutine. At the completion of the subroutine an instruction, return, is given 
which returns control back to the instruction following the original subroutine call. Subroutine return is 
encoded 376v8. Up to 16 subroutines can be called and the return addresses are placed in a subroutine 
stack which is attached to the Program Counter. 

Note that there is an instruction, which corresponds to each of the hardwired operators: evoke, 
conditional (and unconditional) branch and subroutine call. Using these instruction formats, the 
instructions cannot be freely allocated to any memory locations, but instead, are fixed for sequential 
interpretation. There is no physical instruction for a ((serial merge); each occurrence corresponds to an 
address in the microprogram memory. Also, K(parallel merge) is impossible since there is but one 
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Program Counter for purely sequential control flow.


THE STRUCTURE AND BEHAVIOR OF THE K(PCS)


Figures 21 and 22 show the structure and behavior of the K(PCS). Basically it has the following 

memories: 

PC<8:0>\Program Counter - the instruction address pointer which selects the next instruction to be 
interpreted (selects 1 of 512 words) 
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T(general purpose interface)\Tgpi. The Tgpi provides for bidirectional transfer between external data and 
the RTM Bus. It contains a register, R<15:0> to buffer outgoing data. The R register can be written by 
the Bus, i.e. R <-. The input data lines can be read directly onto the Bus, i.e. <- Input <15:0>. 

T(input interface)\Tin. This is just the input part of the Tgpi. 

T(output interface)\Tout. This is just the output part of the Tgpi. 

THE K(PROGRAMMED CONTROL SEQUENCER\PCS), A MICROPROGRAMMED 

CONTROLLER FOR A CENTRALIZED ENCODED CONTROL PART 

The RTM control structure as realized with interconnected standard evoke, branch, merge, and 
subroutine call control modules has the interesting and useful characteristic that the abstract control 
flowchart is isomorphic to the physically wired control structure. Hence, specifying the behavior of the 
digital system specifies the control structure. This one-for-one mapping simplifies the system design and 
implementation processes. The control structure actions are specified by K-type components, and the 
notion of 'the next control step is specified by a wire which directs the next K module to be active. One 
alternative to this control structure, called microprogramming, encodes the control structure (i.e., 
flowchart) into a memory. An interpreting control unit reads instructions from the encoded memory and 
carries out the appropriate control steps on a one-at- a-time basis in much the same way as the hardwired 
structure. Each step, called a microinstruction, stored in the microprogrammed control's memory, 
corresponds roughly to a .hardwired component. This microprogrammed control is implemented as a set 
of modules called the K(Programmed Control 

Sequencer)\K(PCS). 

K(PCS) MICROINSTRUCTION ENCODING 

The various instruction encodings for the K(PCS), and the K modules that they correspond to are given 
in Figure 20. An 8-bit/word memory array holds the microinstructions. The status of the K(PCS) is held 
in a 9-bit Program Counter\PC plus a 1-bit PC-page which points to the currently active control step (1 of 
2110 words). 

Evoke Instructions 

Each 8-bit memory cell can hold (encode) one of 192 (3x64) values which correspond to particular evoke 
functions (e.g., A <- A+1). Thus, a single cell corresponds identically to an instance of an evoke. 
Instructions 0 ~ 277v8 denote the coded range of evoke instructions. 
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Branch Instructions 

The branch instruction occupies two words and has two variable fields: a 5- bit branch field to select 1 of 
32 input conditions and a 9 bit address field to select 1 of 512 memory addresses. If the input branch 
Boolean condition is true, the branch will be taken, and the control will proceed to the address specified 
in the branch instruction. If the condition is not true, then the instruction following the branch will be 
taken. Note that by fixing one branch condition at true, one can create an unconditional branch 
instruction. An unconditional branch instruction is often called a jump. 
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T Modules 

T(lights & switches). T(lights & switches) is an interface between an RTM system and the human user. It 
has a set of 16 toggle switches which may be set manually, and read by the Bus, i.e. <- switches<15:0>. 
In addition, there are 4 auxiliary toggle switches. (S1, S2, S3, and S4). These switches are wired single-
pole-double-throw to ground, and are expressly intended to provide the Bus control switches for Kbus. 
However, with suitable adaptations they can be used in K(manual evoke)'s and as Boolean conditions. 
This module also has 20 display lights. Sixteen of these can be read from the Bus, i.e., Lights<15:0> <-. 
Of the other four, two correspond to the Bus timing signals, DA and DR, and the other two, L1 and L2, 
can be used to display Boolean data. If the Monitor enable input is grounded, then all Bus transfers will 
appear on the lights. 

T(serial interface). This module is used as an interface to a standard Teletype, model 33, 35, or 37, either 
ASR or KSR, operating as either half duplex or full duplex. There are two registers, Transmit \T and 
Receive \R, which buffer the output to, and input from the Teletype, respectively. 

If it is desired to receive a character from the Teletype papertape reader, the Start R operation is evoked. 
When the character has been received by the R register, Rflag goes to a 1. Then the character can be read 
onto the Bus, and Rflag cleared by a single evoke operation (i.e. <- R; Rflag <- 0). If another character is 
written into the R register before it is read, the Overun flag goes to a 1. 

To send a character to the Teletype, one must first monitor the Tflag. If it is a 1, the Teletype is ready to 
receive a character. Then one can send the character and clear the Tflag with a single evoke-operation 
(i.e. T <-; Tflag <- 0). 

Since Start R is an operation that does not require the Bus, it may be evoked in parallel with some other 
operation that does. If so, the Boolean DA disable input must be set to 0, as in the DMflag and the Mtr 
described previously. 

T(analog-to-digital converter)\Tad. Tad converts an analog input into digital form for entry into the RTM 
system. It contains a register, a-d<9:0>, which contains the digital value which is proportional to the 
analog input. Since it takes time to do an a-d conversion, the control may be operated in either of two 
ways. In the first way, the user may evoke the operation <- a-d<9:0>,and the conversion will be made, 
then the result read onto the Bus, all the time holding up control flow. In the second way, a command to 
initiate a conversion may be given (Start a-d), and then after the a-d flag signals that the conversion is 
complete (by going to 1), the <- a-d<9:0> operation is evoked. In the latter mode, the Bus may be used 
for other purposes while the conversion is going on. The <- a-d<9:0> operation also clears the a-d flag. 
Since this is not yet a standard PDP-16 module, it needs some additional steering logic to make it 
compatible. Thus, the, user may implement the DA generation scheme for the Start a-d signal as he sees 
fit. The alternatives are: (1) generate a DA whenever Start a-d is evoked; (2) alternative (1) coupled with 
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an optional DA disable input; (3) no DA generated by Start a-d, so it must always be evoked in parallel 
with some DA generating operation. Similarly, a DR generation circuit must accompany <-a-d. Chapter 7 
shows standard formats for DA and DR signal generation. 

T(digital-to-analog)\Tda. The Tda contains a register, d-a, which when loaded forms an analog voltage 
proportional to the value in the register. The output analog signal is continuous. Thus the only functional 
command for the module is d-a <-. Here, as in the case of Tad, it is up to the user to provide a DA 
generation circuit. 
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Bus, respectively. These two fields can map the bits of the R register onto the selected half of the bus in 
any configuration. All unmapped bits can be wired to fill either 0's or l's. Either one or both of the write 
operations can be evoked simultaneously. The same applies for the read operations. However, one cannot 
both read and write the same Mtr simultaneously. 

Each bit of the R register is available as a Boolean output. The D(decoder) is often used with the P 
register to decode its contents. By using the Boolean DA disable input (see DMflag explanation) a 
register transfer can be made to multiple Mtr's at the same time, e.g. A <- B <- C <- D, where A, B, and 
C are all Mtr's and all registers (A,B,C, and D) are connected to the same Bus. The effect is; A <- D; B <-
D; C <- D. The same caveat applies for zeroing the DA disable input here as applied for the DMflag. In 
addition, special wiring, not specified in the PDP-16 handbook, must accompany the Mtr, whether the 
DA disable is used or not. (See the pin number in Table 5.) 

M(byte register)\Mbyte. The M(byte register) is similar to the Mtr, except it only has one write operation, 
R<-, and it has 4 read operations, Bus<3:0> <- R<f 1>, Bus<7:0> <- R<f 2>, Bus<11:0> <- R<f3>, and 
Bus<15:0> <- R<f4>. There is no DA disable on the Mbyte. 

M(array;1024 word). This M is a 1,024 word, random access, solid state memory, declared 
A[0:1023]<15:0>. It allows (indirect) expressions of the form <- A[X] and A[X] <-, for reading and 
writing, respectively. In order to specify the location in memory, the address, X, is first loaded into the 
memory address register, MA, by the operation MA <-. In fact sometimes we shall use these latter forms 
for the operations rather than the former. In addition, we sometimes use <-M[MA) and M[MA]<- (where 
M simply stands for Memory), or we use e.g. <-CHP or Unbinned-item-count<-, where CHP and 
Unbinned-item-count are aliases for specific memory locations. These different forms reflect the 
different ways that one can think about memory access. 

Once the memory address has been specified, a command to transfer data is given. The data is transferred 
in or out of the Data register which is the interface to the storage part of the memory. Thus the two 
commands are <- Data and Data <- for reading and writing, respectively, which correspond to ,- A[MA] 
and A[MA]<-. 

M(array; read only; 1024 word). This is a 1,024 word braided wire, read only memory. It is similar to the 
previous M in behavior, except it does not allow write operations. This module required special interface 
to the PDP-16 system (see the PDP- 16 handbook). 

M(array; 256-word). This M is just like the M(array; 1024-word), except it has fewer words. 

M(scratchpad; 16 words). This memory is an array of 16 temporary storage registers, S[0:15]<15:0>, 
which are essentially considered independently. The individual words are selected by one of 15 operation 
inputs, S[i] for I=0,1,...14, and these are accompanied by a read or a write input. If no operation input is 
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selected, S[15] is selected. Only one register can be used at a time. 
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book that they are given the special name "Extended RTM's" (specifically, "Extended K modules"). 
These modules will be derived as they occur naturally in the design examples. However, as an 
illustration, Figure 19 constitutes a K(wait until). 

D Modules 

D(decoder; inputs:4). The decoder is a Data-operation only component. It functions as a 4 input, 10 
output BCD decoder, where the outputs correspond to the binary encoded value of the 4 inputs, i.e., 
Out[0]:=(l=0)...Out[9]:=(l=9). The decoder can be used with the M(transfer register) (see below) to 
provide a set of Boolean outputs. It occupies a single height, single length board. The decoder can be 
enabled with a logical low signal. 

D(NOT), D(AND|OR|NAND|NOR), D(Exclusive-OR| Equivalence). These modules are merely gates 
that can be used as needed for building small switching circuits to augment the larger modules, e.g. to 
calculate complex Boolean functions. They also function as K(serial merge) and K(parallel merge). 

DM modules 

DM(flag)\DMflag. A DMflag contains a one bit register, F, that corresponds to the Boolean variable in 
programming languages. Alternatively, the F register can be thought of as storing one bit of data. Its 
Boolean output can be used to condition Kb2's and Kb8's. The operations that can be performed on F are 
F <- 0, F <- 1, F <- -' F, and F <- data, where data is a Boolean input to DMflag. F and F are available as 

Boolean outputs. 

Since the DMflag does not use the Bus to transfer data, it is sometimes convenient to use a single 
K(evoke) to evoke both a DMflag operation and some other operation that does use the Bus, in parallel. 
For these situations a Boolean DA disable input is provided, which when set to 0 (logical low) prevents 
the DMflag from giving out a redundant DA Bus timing signal. Thus a typical operation incorporating 
this, type of "single-Bus parallelism" might be Ke(A<-A+ 1;F<- -' F;DA disable on DMflag).(4) 

M Modules 

M(constants;4 word)\Mc4. Mc4 is a module that has four 16-bit read only memory constants, 
C[0:3]<15:0> which the user can read (i.e., <- C[i], where i=0,1,2,3). Each constant is defined by wiring 
within the module by the user. 

M(transfer register)\Mtr. Mtr is a single register, R<15:0>, that can be read and written. For the write 
operations, R<15:8> <- and R<7:0> <-, either the upper half of the Bus, or the lower half can be written 
directly into the corresponding half of the register. For the read operations, Bus<15:8> <- R<f 1> and 
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Bus<7:0> <- R<f2>, Mtr is constructed so that either of two fields (f 1 and. f 2) specified by user wiring, 
can be read selectively back onto the upper half or lower half of the 

4. Because of internal races, in 1972 PDP-16's the Boolean DA disable input to a DMflag cannot be 
zeroed directly by the evoke-operation output of a K(evoke). Instead, a Boolean signal, or a direct source 
of logical low must be used. 
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Fig. 18. Timing diagrams for K(delay; integrated).


Fig. 19. RTM diagram for K(no-op)\Knop usage. 
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K(manual evoke)\Kme. Kme provides an interface between the RTM system and the human user. It 
allows a human to press a key which in turn creates a manually evoked activate-next control signal. This 
is not a PDP-16 module, but must be fabricated from other modules (see PDP-16 handbook or text, 
Chapter 7). 

K(clock). This generates an activate-next signal at periodic intervals. The period is controlled by a 
potentiometer within the module. Care must be taken that the clock pulse is of the right width, so that it is 
properly synchronized with the DONE signal (see Chapter 7). Care must also be taken to avoid initiating 
a control path that is already active. 

K(delay). When the delay activate input is applied, the K(delay) waits a period of time and then 
generates an activate-next output. The length of the delay period is controlled by a potentiometer within 
the module. The delay also has a Boolean output which indicates the delay is in progress. This module 
and the following module are not standard PDP-16's, so when physically implementing systems, care 
must be taken to insure compatibility. 

K(delay; integrated). This module behaves in exactly the same way as the K(delay), but has an additional 
characteristic that permits it to be used in timing. All other modules are assumed to have only a single 
activate input signal before producing an output; this restriction is not present with the integrating delay. 
The function of the integrating delay is to delay from the most recent activate input signal. Thus, for 
example, for the activate input shown in Figure 18a, the delay-in-progress Boolean output is as shown in 
Figure 18b, where td is the characteristic delay of the module. 

K(subroutine call)\Ksub. It is possible to have collections of K module sequences organized as 
subroutines so that they can be called from various places in the control portion of an RTM system. The 
module that calls these "hardwired" subroutines is similar to K(evoke), except that its call output is 
directed to a set of K modules, rather than to a DM module. When the hardwired subroutine is 
completed, it returns control to Ksub via the return link, and Ksub passes control on to the activate-next 
output. The use of RTM subroutines is illustrated later in greater detail. 

K(no-operation \nop). This module is required in the PDP-16 system when a polling loop composed of a 
single K(branch) is being executed. That is, assuming the Boolean variable, B, is to change at some 
unknown time, and waiting must occur until that time, then the loop shown in Figure 19 is needed. The 
module serves no other function. The reason for this need is explained in Chapter 7. 

K(macro). A K(macro) is not a single module, but effectively an open subroutine composed of other K 
modules, possibly in combination with other components. Whenever a K(macro) appears in an RTM 
control part, it indicates that the entire control part of the K(macro) is assumed to be inserted, in line, at 
that point (just like the open subroutine, or macro, of programming). This is in contrast to the 
K(subroutine call) which, whenever it appears in a control part, designates a call to some separate RTM 
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control part (just like the closed subroutine, or simply the subroutine of programming). Certain 
K(macro)'s i.e. K(arbiter), K(conditional execute), K(for-loop), K(manual-evoke), and ((wait-until), are 
used so often in this 
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table of Figure 17 we give certain engineering data for the modules that are useful in this book, i.e., cost, 
size, power, and timing data. In addition, we give the 1972 PDP-16 model numbers for the modules. For 
the reader who is physically building PDP-16 systems, Table 5 at the end of the book gives pin numbers, 
fan-in, etc. for the modules. In the figures, the modules are given in the alphabetical order of Figure 17 
for easy reference. However, in this section we describe the modules in an order convenient for 
exposition. 

Supplements to the Module Set 

Most of the modules described in Figure 16 and 17 are manufactured by DEC as PDP-16's. A few 
modules are not actually PDP-16's, but are DEC modules that can be made compatible with the PDP-16 
set by a small amount of switching circuit interfacing, so they are included as RTM's. A few other 
modules in the figures have not been built as of this writing, but they are planned additions to the PDP-16 
set. 

Two unique types of modules deserve special mention. The K(macro) modules are not really modules at 
all, but rather sets of specially interconnected modules that are treated as a unit. The other unique type of 
module is the Data Operator(combinational)\D. Since many of these are actually switching circuit level 
gates, they give one the flexibility to custom-design small combinational circuits where they are 
necessary to supplement the module set, e.g. for calculating complex Boolean conditions for Kb2 
modules. 

All of these special cases are pointed out by comments in Figure 1.7. 

K Modules 

K(branch 8-way)\Kb8.- This module is similar to the two way branch described earlier, but it has three 
Boolean inputs and eight possible activate-next control / flow output ports. Each one of these eight ports 
corresponds to one of the eight possible combinations of the three Boolean input variables. The signal 
level conventions are identical to the two way branch. 

K(diverge). The K(diverge) is an implicit module in that it is merely the fan-out of a piece of wire. It is 
used whenever two or more parallel-operating control paths are to be activated. Parallel-operating RTM 
systems can be implemented by using several Busses, which may or may not be interfaced to allow 
passage of data back and forth. This subject will be taken up in greater detail in various examples, 
beginning in Chapter 4. 

K(serial merge)\Ksm. This allows several control paths, only one of which may be active at one time, to 
come together and form a single control flow link. That is, if any one of the control flow inputs of a Ksm 
is activated, it will produce its active-next output and control will flow to the next K in the control path. 
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The serial merge is actually either a 2-input or 4-input negative logic OR gate. Several Ksm's are on a 
single height board. 

K(parallel merge) \Kpm. This allows several control paths, all of which must be active simultaneously, to 
come together and form a single control flow link. That is, when all activate inputs have occurred, Kpm 
generates an activate-next signal and control will flow to the next K in the control path. The Kpm is 
actually a negative logic AND gate. 
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4. The receiving module senses the DR signal and reads the data from the Bus. 

5. The receiving module puts a Bus DATA ACCEPTED\DA signal on the Bus. 

6. The Kbus module senses the DA signal and passes it on to all Ke module operation-complete inputs as 
the Bus DONE signal. Only the most recently evoked Ke responds to this signal. 

Drawing boxes around modules in the RTM system diagrams is pretty, but the boxes are not really 
necessary. Furthermore, the slashed control lines linking the K part of the system to the DM part of the 
system can be inferred from the notation that accompanies each K module. Thus, throughout the rest of 
the book we shall draw RTM system diagrams as shown in Figure 15, which is the compact version of 
Figure 6. Notice that the K(serial merge)\Ksm is drawn simply as a merging of control arcs. Also, the 
Kb2 module reads I = 0 instead of BSR = 0, since this is a better description of the condition being 
tested. 

Fig. 15. RTM system diagram (compact) of Fig. 6. 

SUMMARY OF REMAINING MODULES 

Introduction 

In this section we present descriptions of the remaining Register Transfer Modules. Block diagrams of all 
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RTM modules are given in Figure 16. We encourage the reader to use these block diagrams as module 
ready references. For the K modules, which are used to specify flowcharts, three types of notation are 
shown. The first is the PMS boxed form with signals, which we have used for clarity in most of the 
examples in this chapter. The second is the unboxed (explicit) form of notation, in which we have just 
removed the boxes, as was done in the example of Figure 15. in the third notation, unboxed (implicit), we 
also remove the PMS type designations from the statements, because they can be inferred from the 
flowchart and a knowledge of RTM's. We use the second and third notations throughout the remainder of 
this book. 

The block diagrams of Figure 16 describe the modules at the RT level. In the 
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DMflag, below). The Kbus is a double height, extended length board. In addition, a special double height 
board must be connected at the opposite end of the Bus, to provide electrical termination. 

RTM SYSTEM OPERATION 

Now that some basic modules have been described in detail we can illustrate how they function, when 
connected together by discussing the previous example in detail. The example is the one that was 
presented in Figure 6. 

Notice that we have renamed the registers to correspond to the names used in the algorithm. For instance, 
the A and B registers of the DMgpa are renamed the I and S registers, respectively. The T(switch 
register) that is shown hasn't been described in detail yet, but it simply holds the value corresponding- to 
the binary switch value, and can be read, i.e.,<- N. 

This particular implementation-operates as follows: 

●	 1. The power is turned on and all registers (except the manually set switches) are initialized to 
zero. This is carried out via the Bus POWER CLEAR line. 

2. The manual START button is pressed and the Start control signal activates the first Ke module, 
which corresponds to the operation labeled I <- N. This module sends a <- N signal to the 
T(switch) and a I <- signal to the DMgpa. 

3. Now the actual transfer is carried out under control of the Kbus, T(switch), and DMgpa. That 
is, the N register gates its stored information onto the Bus, and subsequently the DMgpa reads the 
information on the Bus into its I register. Notice that the Bus is fundamentally just a link (L), and 
not a register. 

4. When the data transfer is completed, the first Ke receives the operation-complete signal (via 
DONE) and subsequently activates the- next Ke module, S<- 0. 

5. The S <- 0 Ke module is now in control of the system and the cycle of evoking an operation is 
repeated for this module, causing 0 to be read into the S register of the DMgpa. 

6. Control is passed on to the S <- S + I Ke, through a K(serial merge \Ksm) module. (Here a 
K(serial merge) allows control flow links to merge into a single link. A Ksm module is used 
whenever control paths for the same Bus are merged.) 

7. The next Ke causes I to be decreased by 1 (i.e., I <- I - 1). 
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8. The I = 0 Kb2 module utilizes the fact-that the result of the previous register transfer is stored 
in the BSR register, which can be tested for 0. If the register is non-zero, control flow activates the 
serial merge causing the loop to be traversed again(steps 6, 7, and 8). When BSR = 0, the loop is 
terminated and the process stops. 

Although the synchronization of the Bus transfers is invisible to the RT level designer-user, it operates as 
follows: 

● 1. A Ke module is activated and given control of the system. 

2. The Ke sends the evoke operation control signal to the sending and receiving DM, M, or T 
modules. 

3. The sending module gates its information onto the Bus and puts a Bus DATA READY\DR 
signal on the Bus. 
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Start signal to activate the first control module. When the AUTO/MANUAL switch is set to 

AUTO, the RTM system is in continuous operation (i.e., running). When the switch is set to 

MANUAL, then pulsing (depressing) the SINGLE STEP switch will cause one Bus transfer at a 

time to be executed (the SINGLE STEP switch does this by

withholding the Bus DONE signal until it is pulsed).

3.It provides the reset signal, called POWER CLEAR, which initializes all modules when power 

is turned on. A switch can also be connected to provide this function manually.

4.It allows sense lights to be connected to the BSR register so that data transfers that use the Bus 

may be monitored.

5.It provides for a word source of zero, through the operation <-0.

6.It allows the transfer of data to the BSR for testing, through the operation BSR<-.

7.It forms the following Boolean outputs which are available after each

control step using the Bus:

BSR<15:0> = 0 (detects whether the last word transferred was a zero)

BSR<15:0> > 0 (detects whether the last word transferred was positive)

BSR<15.0> ( 0 (detects whether the last word transferred was negative)

BSR<15:0> (16 Booleans, one for each bit)

OVERFLOW\OVF (the carry out from an addition, borrow out from a subtraction, or the shift out 

from a shift)


Fig. 14. Module diagram of K(bus sense and termination) 
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module 

Whenever the OVF signal on the Bus is to be saved in the OVF bit register, the Save OVF input to Kbus 
must be evoked. This operation does not cause a redundant DATA ACCEPTED\DA timing signal to be 
produced (see discussion of 
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Similarly, the source expression <- (RS|[] (A+B))/2 indicates that the output will be the result (i.e., 
(A+B)), shifted right one bit, with RSI becoming the most significant bit of the output. 

After a shift operation one may want to remember the bit that was shifted out. This can be accomplished 
by using the overflow facility. There is an OVERFLOW\OVF line on the RTM Bus, and each DMgpa 
has an output connected to this line.(3) After any given operation the value of OVF may be stored in a 
one bit OVF register in the Kbus module (see below) and be available for use as a Boolean output of 
Kbus. The values that OVF takes for DMgpa operations where it is of interest are shown in the table in 
Figure 13. 

Fig. 1-3. Table of values of 0VF for associated DMgpa operations. 

All 16 bits of the A register, and bits 15 and 0 of the B register (i.e., A<15:0>, B<15,0>) are available as 
Boolean outputs of a DMgpa. 

The DMgpa0 consists of two double height, extended length boards interconnected via a rear connector. 

K(bus sense and termination)\Kbus. Each independent Bus in an RTM system requires a centralized 
control module. It has a register, Bus Sense Register \BSR, which always contains the result of the' last 
register transfer that took place via the Bus. Each bit of BSR<15:0> is available as a Boolean. 

The block diagram of Kbus is shown in Figure 14. Kbus provides for the following functions: 

1. It monitors all register transfer operations via the Bus transfer sequencing signals, and supplies 
the operation completion signal to the Ke modules to indicate that the requested function has been 
completed. This signal is called Bus DONE\DONE. As indicated, these signals are invisible to the 
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RT level user because they are a prewired part of the Bus. 

2. It provides for manual control of an RTM system, if switches are connected to it. A set of 
suitable switches are provided in the T(lights and switches), described later. The manual START 
switch causes an output 

3. For 1972 PDP-16's, the OVF Bus signal is not valid when more than one DMgpa is connected to a 
given Bus. 
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*These numbers indicate the number of module inputs available for 

evoking the shown operation. The absence of a number denotes that 

there is one input. If more inputs are desired for 1972 PDB-l6's, 

negative logic OR gates must be used, since the operation evoke 

signals are negative logic.


Fig. 12. Module diagram of DM(general purpose arithmetic 
unit). 
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Four data transfer operations are provided, namely <- A, <- B, A <-, and B <-. Finally, there are two 
shifting operators. The left shift is quite simple, i.e., <- A x 2. The right shift uses a special input in 
which the notation "(result)" appears, i.e. (result)/2. This input is always used in combination with a 
conventional evoke input coming from a Ke, and it signifies that a right shift is to be performed on the 
result of the conventionally evoked operation. For instance, a <- A+B accompanied by the input 
(result)/2 indicates that the operation <- (A+B)/2 is to be performed. 

The <- Ax2 and <- (result)/2 operators, strictly speaking, are not arithmetic operators. They simply imply 
that a logical one-bit shift to the left or right, respectively, is to be made. Since a shift implies that an end 
bit must be coming in from the outside, the two Boolean inputs left-shift-input\LSI and right-shift-
input\RSI are provided (see Figure 12). For instance, the source expression <- (A[]LSI)x2 indicates that 
the output will be the contents of the A register, shifted left one bit, with LSI becoming the least 
significant bit, i.e., A<0>. 
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Fig. 10. Module diagram for K(evoke) module. 

Fig. 11. Module diagram for K(branch 2-way) module 
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receives a signal, called "activate", at its input terminal which activates the control; (2) Ke sends a signal, 
called "evoke-operation", to the data-memory part of the system to evoke the desired operation(s); (2) (3) 
when the operation(s) is (are) completed, the Bus control module sends a signal, Bus DONE\DONE, 
back to the Ke module at its operation-complete input; (4) Ke then passes control on to the next control 
module via its output signal, called "activate-next". 

The block diagram for a Ke, with its input and outputs labeled, is shown-in Figure 10. Although th? 
Kevoke has four terminals, the actual PDP-16 module has only three terminals since the activate input 
and evoke-operation output are the same terminal. The operation-complete is not explicitly shown in 
RTM system diagrams because in the physical implementation it is prewired (the K modules plug into 
the control part of the-Bus) and is common for all K modules. Several K(evokes) are mounted on a single 
height, double length board. 

K(branch 2-way)\Kb2. A Kb2 provides for the branching of control flow based on the condition of a 
Boolean data input variable. Each time a Kb2 is activated, it in turn, on activate-next, activates either of 
the subsequent control modules attached to it, depending on whether the Boolean input is true (a Boolean 
1) or false (a Boolean 0). The block diagram for Kb2 with its two inputs and two outputs is shown in 
Figure 11. Note that although the rectangle- indicates an RTM component in general, -we also use the 
diamond to represent the decision taken by the branch. This convention is compatible with the general 
flowchart conventions (and also PDP-16). Several Kb2's are mounted on a single height, double length 
board. 

DM(general purpose arithmetic unit)\DMgpa. The DMgpa is the workhorse of the modules of the data 
part of an RTM system because it carries out arithmetic and logic operations. Like most DM modules it 
can accept data from the Bus and place it, unaltered, in one or both of its two registers, or it can perform 
(possibly null) data operations on the contents of its registers and place the result on the Bus. These 
operations and results correspond to the righthand side and lefthand side respectively of a register. 
transfer statement, such as A <- B, or B <- A+B. The notation used for describing data operations lists 
the lefthand (destination) sides of these expressions as A <- and B <-. The corresponding righthand 
(source) sides are written, <- B, <- A+B. The arrow is used in both cages to avoid confusion about 
whether the register is source or destination. Notice that the DMgpa allows the same register to occur in 
both the source and destination parts of an evoked register transfer operation if desired. 

The block diagram for a DMgpa is shown in Figure 12. A DMgpa has two 16 bit registers, designated A 
and B. These are declared as A<15:0> and B<15:0> within the figure. For arithmetic operations these 
registers are assumed to hold two's complement integers. The conventional arithmetic operations for a 
DMgpa are <- A+B, <- A-B, <- A+1, and <- A-1. In RTM system diagrams the evoking of one or more 
of these operations is indicated by drawing a dashed link from a Ke to the DMgpa and labeling it with the 
operation to be evoked. A given operation may be called by any number of Ke's, and a different evoke 
link is shown for each instance of that operation. In Figure 12 one such link is shown for each of the 
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allowable DMgpa operations. Actually, in PDP-16 modules several operation inputs are available for 
each operation. The call for a given operation can be extended by using additional input gating logic 
(negative logic OR gates). 

For logic operations registers A and B are assumed to hold bit vectors. The 

2. Data transfers with multiple sources and/or multiple destinations are also possible under certain 
conditions. This will be described later. 
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All logic voltages are standard TTL signals, 0 ~.8 volts for logical Low, and 2.0 ~ 3.6 volts for logical 
High. We shall use the terminology that a signal has the value 1 if it is asserted (i.e., active, equal to the 
binary digit 1, or equal to a Boolean 1), and the value 0 if it is not asserted (i.e. inactive, equal to the 
binary digit 0, or equal to a Boolean 0). 

On the RTM Bus, logical Low signals correspond to l's (assertion), and High signals are 0's. Likewise 
control part signals are logical Low for assertion, and the passing of control from one K module to 
another takes place at the moment of 0 to 1 (High to Low) transition of the signal. On the other hand, 
Boolean and other data signals are logical High for assertion. Finally, other signals (erg., signals from 
analog devices, Teletypes, etc.) have a variety of conventions and will be described as needed. 

In describing switching circuit components, i.e., gates and flip flops, we shall refer to positive logic and 
negative logic implementations. Thus, for example, a positive logic OR gate will be referred to in a part 
of the system in which logical Highs correspond to l's. If either input of the positive logic OR gate is a 1 
(High), its output is a 1 (High). In a part of the system in which logical Lows correspond to l's we shall 
refer to negative logic OR gates. If either input of a negative logic OR gate is a 1 (Low), its output is a 1 
(Low). The same kind of reasoning applies for AND's, NAND's, NOR's, etc. Notice that a certain type of 
duality exists, e.g., a negative logic OR gate is a positive logic AND gate, etc. 

FOUR BASIC MODULES 

Introduction 

This section describes in detail four modules with which it is possible to build non-trivial RTM systems. 
Using these modules we shall then discuss in the next section basic control and data flow in an RTM 
system. 

To review the notation to be used: Registers are given by expressions such as A<15:0>, which specify 
both the name and the set of bit positions. Concatenations of several registers into a single long one is 
indicated by the box, e.g., A<7:0> [] B<7:0> is a register of 16 bits. To give it a name and label its bits 
we could have written C<16:0>:= A<7:0> [] B<7:0>. Thus := is used to make declarations whereby the 
name on the left is defined by an expression (which may be arbitrarily complex) on the right. Transfers 
of bits from one register to another are indicated by the left-pointing arrow, e.g. B <__ C indicates the 
transfer from register C to register B. Boolean conditions are given by equations, e.g. (BSR = 0) has the 
value 1 if the register called BSR contains the integer 0, otherwise it has the value 0. Boolean conditions 
are also given simply by the contents of a register; e.g., B<6>, when used as a Boolean condition, would 
have the value I if the bit in B<6> was 1 and the value 0 if the bit was 0. If the reader encounters 
hereafter any notation that he does not understand, he should consult Tables 1, 2, and 3 at the back of this 
book. 
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The Modules 

Kevoke\Ke. The Ke module is the basic control module in an RTM system. Its function is to evoke 
(cause) a single register transfer operation in the data- memory part of the system, using the Bus, e.g., C 
<__ B, A <__ A+B. It may also simultaneously evoke a data operation that does not require the Bus, such 
as setting, complementing, or clearing a single bit Boolean register, e.g., D <__ __

| D, or it may evoke a 

Bus-exclusive operation by itself. 

The operation sequence of a Ke module is as follows: (1) the Ke 
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Fig. 9. RTM Bus signals. 

RTM system, so they must be transduced. Examples are signals from analog devices, Teletypes, 
modems, lights, switches, etc. Figures 2 to 6 used ( ____ _ __ __ ), but in subsequent chapters these will be 
shown merely as _______ . 

To summarize, in subsequent chapters only two types of links will usually be differentiated graphically: 
the RTM Bus (shown _____ or ====), and all other links ( ____ ). Normally the differences in these latter 
links is easily seen by the context. Generally, the signal names will be labeled on top of the 'links. 

Physical Implementation of RTM's 

The physical implementation of RTM's depends on the technology being employed. The current DEC 
PDP-16 modules are constructed using medium scale integrated circuits mounted on double sided printed 
circuit boards of 5" x 8 1/2" with 72 pins (double height, extended length) or 2 1/2" x 8 1/2" with 36 pins 
(single height, extended length) or 2 1/2" x 4 1/4" with 36 pins (single height, standard length). A few 
RTM's, e.g., the DMgpa, are actually two of these boards; these require board connectors on the top and 
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back of the printed circuit boards. Some RTM primitives, e.g., the Kevoke's, are so small that several are 
placed on a single height printed circuit board. The boards can be plugged into the back of 5 1/4" x 8 1/2" 
x 19" wirable panels, which contain a prewired Bus. The panel is plugged into a mounting rack which 
usually contains a power supply. 

Logical Level - Voltage Level Conventions. In Chapter 7, we discuss the switching circuit level design of 
RTM's. At the RT level, which we are presently discussing, it is generally unnecessary for the reader to 
know the actual voltages that correspond to logic signals. However, we present them here for 
completeness. Detailed information is available in the PDP-16 handbook. 
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alternatively consider them to be unsigned integers or bit vectors). The 8, 12, or 16 bits of a register, R, 
are usually denoted R<7:0>, R<1 1:0>, or R<15:0>, respectively, thus giving both the range and the 
numbering to be assigned to each bit position in the register. For example, the bits of. R<7:0> are 
numbered from left to right, R<7>,R<6>,...R<0>. When interpreted as an integer, the j-th bit would have 
the value of 2^j. In some cases, when needed, bits are numbered in the opposite order <0:15>. 

Associated with each data type is a full complement of appropriate data operations. This allows the user 
to selectively treat a 16-bit data word as a vector, for instance, if he limits himself to using only 
operations that apply to that data type. The data operations are more appropriately listed later, in. 
association with the DM modules that implement them. 

Signal Types and Designations in Diagrams 

The RTM Bus. The Bus carries the data among the registers for the various register transfer operations. 
All the DM, M, and T modules connect to it for inter-register transfers. Two signals, Bus DONE and Bus 
POWER CLEAR, connect to all control modules. The Bus is shown in Figure 9. There are two categories 
of signals on the Bus -- data signals, and control signals. The data signals correspond to the 16 bits of a 
data word and are denoted DATA<15:0>. There is a 17th link which carries OVERFLOW\OVF (actually 
carry) information. There are four Bus control signals -- POWER CLEAR which initializes the RTM 
system when it is turned on, and three internal Bus transfer sequencing signals that are essentially 
invisible to the RT level user. K modules are implicitly connected (i.e., prewired) to the pertinent control 
part of the RTM Bus to use the sequencing signals. A special control module, Kbus, is connected to the 
Bus for the purpose of controlling and defining it. 

In the schematic diagrams used in this book, the Bus is denoted either as a single line or parallel lines (I 
or II) and a module connection to the Bus is denoted "___" or "==" (see Figure 6). 

Control Part Signals. There are- two types of control signals in RTM systems. One type is carried by the 
links that pass control from K module to K module, called control flow links. In the schematics, these 
links are shown as solid lines (____). The other type of signal is passed from K modules to the data part of 
an RTM system to evoke data operations, along evoke-operation links. These links are drawn in the RTM 
diagram of Figure 6 as ( ____ ____ ____ ); in subsequent chapters, these links will normally not be drawn, 
or if they are drawn, they will be shown as solid lines (possibly labelled). All the various styles of lines 
used in this chapter are used to avoid confusion while introducing new material. In' subsequent chapters, 
however, we use mostly solid lines for compactness and simplicity. 

Boolean and Other Data Signals. Single bit Boolean data signals may be passed between the control and 
the data parts of an RTM system and also solely within either part. A link carrying this type of signal is 
shown in Figures 2 and 6 as a dashed line, (-------); in subsequent chapters it will be shown as (b 
<Name> 
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or ( <Name> >).Conventional combinatorial switching circuits can be used to form functions of 

Booleans. 

Other Signals. These signals are those whose form is not directly usable by the 
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memory (M). However, there are also modules with only an M part, e.g. core memory arrays, solid, state 
scratchpad memories, and read-only memories. 

K Modules. K stands for control. K modules are responsible for evoking the various operations of the 
DM and M modules, including data transfers. K's are interconnected among themselves to determine the 
sequence in which the operations are evoked, and in addition they can use information from the DM and 
M modules to decide which operation to evoke next. K modules can be used to connect a series of 
operations together as a subroutine. They also synchronize control when there is more than one operation 
taking place at a time. 

T Modules. These modules are transducers. They provide an interface to the environment outside an 
RTM system by changing external signals into RTM compatible signals; Examples include the Teletype 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000052.htm (1 of 2) [4/3/2002 6:17:19 PM] 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000052.htm


Designing Computers and Digital Systems 

interface, analog/digital converters, lights, switches, other combinatorial and sequential switching 
circuits, etc. T modules generally plug into the RTM Bus and appear to the K's to be much like. DM's 
and M's. 

Data Types 

RTM's provide for two basic data types: Booleans (single bit Boolean variables); and 8, 12, or 16-bit 
signed two's complement integers (the user may 
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Fig. 8a. Front view of sum-of-integers system: rack, mounting panel, and T(lights and switches).
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Fig. 8b. Rear view of sum-of-integers system, showing modules inserted into mounting panel. 
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Fig. 7c. Wiring list for sum-of
integers to N. 
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Fig. 7b. Control part, with pin numbers, for sum-of-integers to N. RTM and PDP-16 

notation shown.
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Fig. 7a. Parts list and mounting panel pin assignment for sun 
of integers to N. 

Categories of Modules 

DM and M modules. DM stands for data operation combined with memory, and M stands for memory. 
The DM modules provide the register transfer gating paths and combinatorial switching circuits for 
performing simple arithmetic and logical functions on data. The expression "lefthand side <- righthand" 
side indicates that the integer or Boolean vector value of the righthand side is computed, or taken as a 
source, and placed in the register on the lefthand side. 
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The D (data operation) part of the DM module carries out evaluation of the righthand side of such an 
expression in which an integer or Boolean vector value is computed, e.g., <- A+B, <- A-B, or <- A+1. 
The M (memory) part of the DM module is just the registers (e.g., A, B) that hold data between 
statements. The operations on memory are usually just writing (M <-) and reading (<- M). The use of 
bussed data transfers makes it necessary to combine data operations (D) with 
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Fig. 6. RTM diagram for summing positive integers from 1 to 
N. 

the data-memory part of the system. The remaining modules, the control part of the system, specify the 
algorithm by causing operations to be performed on the data, and causing data to be transferred in the 
data-memory part. 

The descriptions that are given in this section of the chapter are at the RT level of detail. The user, 
whether he is interested in using RTM's as a design notation or actually wants to build an RTM system, 
need only understand this level. Those who wish to understand the switching circuit level of the modules 
should consult Chapter 7. 
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■ 

Fig. 5. Algorithm flowchart for summing positive integers from 1 to N. 

This brief introduction should have given an idea of what RTM's are, how they operate, and how they are used. It is 
highly recommended if the reader is planning on physically using these modules, that he first construct the above 
system in order to become familiar with the modules, conventions, etc. This would be subject to the reader's own 
prewired Bus conventions. Having gone this far, we are now in a position systematically to describe RTM's in detail. 
This is done in the next major section of this chapter. 

■ RTM PRIMITIVES AND THEIR BEHAVIOR 

THE RTM SYSTEM 
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Introduction 

The RTM system is a set of about 35 different modules, plus a method of interconnecting modules via a common Bus 
that transfers data from module to module. This Bus also carries timing signals to interlock the register transfers --
thereby making the system timing independent. For a given system, some of the modules connect to the Bus in order to 
transfer data; this combination constitutes 
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Fig. 3. PMS diagram (expanded) of RTM Bus. 
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Fig. 4. PMS diagram of an RTM system without evoke-operation, operation complete, and Boolean 
data inks. 
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propagate control. via its "activate-next" output port: Information about the condition of the DM part 
(e.g., whether a certain memory location is zero) is also led back to the control part via Boolean data 
links (----) to affect the operation control sequence. 

The data-memory portion of the system provides several functions: storing of data in memory (M) 
components; transmission of data to and from the outside world via transducer (T) modules, -- for 
example to or from analog, high voltage, low current or manual links (the links are shown as __ -, __ -); 
execution of data operations on various data cells via the RTM Bus \Bus, shown as heavy parallel lines 
(i.e., === ). Another module on the RTM Bus, the K(bus sense)\Kbus, controls the flow and timing of 
information and serves several other functions. While the bus is a common entity in digital systems 
engineering, it is not a primitive component, and the bus of the previous figure is more correctly shown 
in Figure 3. The RTM Bus is actually a set of 21 parallel links (wires) to which the M, DM, and T 
modules connect. Each module has a switch which allows it to be connected or not with the links. The 
actual function of each wire will be described later. For brevity, we shall normally present the Bus as in 
Figure 2. 

In most diagrams only the K components connected by the control flow links will be given, together with 
the DM, M, and T components. The interconnection between the control and data-memory parts will be 
implied by the control part. Removing the interconnecting links, Figure 2 becomes Figure 4. 

System design with the modules can best be illustrated with a simple example. Consider the algorithm 
for summing the positive integers from 1 to N, shown in Figure 5. Note that the computation is actually 
taken from N to 1, where N > 1. The diagram of an RTM system that implements this algorithm is shown 
in Figure 6. The design procedure for obtaining this design result from the algorithm is quite 
straightforward. First an appropriate set of data-memory (DM) modules from the possible set is selected, 
and each module is connected to the RTM Bus. For this problem, a T(switches) module allows an 
external environment (a human) to specify the value N, and -a DM(general purpose arithmetic unit) holds 
a counter, I, of the index to N, and the sum, S. The Bus requires a Kbus module attached to it, for sensing 
and controlling the Bus. Next the flowchart of the control algorithm is directly mapped into a network of 
control (K) modules. Then the wires implied by the algorithm statements and shown as dashed lines in 
the figure are run from the control part to the data and memory part to evoke the appropriate operations. 
This completes the RT level design. 

The next step is the physical implementation of the system. It is usually the practice to use prewired 
panels, upon which the power, RTM Bus, and operation completion lines are already wired in some 
standard format. The only wires that have to be added to this panel are the control wires shown as solid 
and dashed lines in Figure 6. When the wiring has been completed, the DM, T, and K modules plug into 
the panel, and the panel is connected to an appropriate mounting rack, which contains the power supply. 

Figure 7a gives the complete parts list for this example, plus the module locations on the mounting panel. 
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Figure 7b shows the RTM system diagram with complete information on pin numbers for wiring. In this 
figure we have superimposed the block diagram notation used in this chapter on the standard DEC 
notation for PDP-16's. This is for the benefit of the reader who is using the PDP-16 handbook. The only 
other place in this book that we refer to the DEC notation is in Chapter 7. Note that Figure 7b contains 
the complete design documentation of the system. However, if one wishes a more systematic wiring list, 
one can be derived, as shown in Figure 7c. Figures 8a, b, and c show photographs of various parts of the 
system. 
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Fig. 2. PMS diagram of an RTM system showing various link and component types. 
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■ CHAPTER 2 PDP
16: 

A SYSTEM OF RT-LEVEL MODULES (RTM's) 

This chapter presents a specific set of RT-level modules, called Register Transfer Modules \RTM's.(1) 
They will be used throughout the book as the given components out of which designs are to be 
constructed, except in Chapter 7, where we discuss the details of their construction, and in Chapter 8, 
where we discuss general RT-level design. The RTM components are the DEC PDP-16 modules, 
augmented by a few DEC modules that are not included formally in the DEC PDP-16 series. Throughout. 
we use the PMS notation for these modules, rather than the DEC names, believing the PMS names to be 
somewhat more descriptive functionally, hence making design easier. However, for some details of PDP
16's and their accessories, we shall refer the reader from time to time to the, "PDP-16 Computer 
Designer's Handbook" (DEC, 1971), or simply, to the PDP-16 handbook 

This chapter differs from all those that follow in being a listing of information and specifications, rather 
than a series of design problems to be performed. It is a chapter that is to be used as a reference 
throughout the rest of the book and it should not be read through as if each of its pages should be 
understood in toto. We have organized it in several parts. The first introduces RTM's and describes a 
complete example system, carrying it all the way to photographs of the final constructed physical system. 
The second, gives the specifications of all modules, first a set of the four most important ones, and then 
description of the rest. To keep this part self contained as a reference, it is intentionally a little redundant 
with the preceding part that gives the example; The third part describes a major module, K(PCS), that 
provides a microprogrammed control. The final part describes two new modules that became available 
too late to be -used in the designs of the book. 

A FIRST LOOK AT.RTM'S 

A typical system implemented with RTM's, having external inputs and outputs, is shown in Figure 1 in 
PMS notation. This embodies a control portion (K) and a data-memory portion (DM). At a more detailed 
level an RTM system usually has the form shown in Figure 2. Figure 2 shows that the control portion of 
the system is in fact a network of K modules which is connected to the data-memory portion of the 
system by another network of three types of links (i.e., -- evoke-operation, ....operation-complete, and ----
Boolean data). The control network is isomorphic to the flowchart of the control algorithm for the system. 
Each K module carries out one step of the algorithm by sending control signals to the data-memory 
portion of the system to evoke the desired operation(s), -- for example, evoking the transfer of data from 
register X to Y, expressed as Y <__X. As each step is completed, control is passed on to the next K 
module in the network via control flow links (____) 

Control flow enters a K module via an input port called "activate" which activates it. The K module 
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requests that an operation be carried out in the data- memory part by using the evoke-operation link (--). 
As an operation is carried out in the DM part, it informs the control part of the completion so the next 
step can proceed. The operation-complete signal is used for this purpose (i.e., ....) The operation complete 
signal causes the currently active K module to 

1. We use the backslash (\) to separate a name from its accepted alias. 
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the addition of the assignment arrow. Thus in the figure we write that i <_ i+1, meaning that the value of 
the variable i takes on a value equal to its current value, plus 1. If we were to use 'the equality sign, i = i 
+1, this might be confused with the statement that the variable i is equal it itself plus 1 (which is 
universally false). Some programming languages make use of the equality sign in this way but it is 
preferable to use a separate notation. Thus, whenever the equality sign occurs it implies an assertion of 
the equality of two quantities (e.g., in the diamond in the figure where i = N+1 asks if i and N+1 have the 
same value). 

The language of flowcharts is adequate for most of what we do in this book. However, it is not adequate 
for all tasks of specification. For instance, it is not, adequate to specify i desired computer, prior to 
constructing an RT system that would realize the computer. For this one wants a language for describing 
computer instruction sets. Flowcharts have in fact been used for this on occasion but they are usually a 
bit awkward. Special languages have been proposed and in Chapter 6, which discusses the design of 
small computers, we will use one called ISP (for Instruction Set Processor), giving there as much of the 
notation as we need. The language was introduced in Bell and Newell (1971) where complete details can 
be found. Our reason for mentioning it here is to emphasize that there are many specification languages, 
adapted to the demands of different task environments. 

SUMMARY 

We have now provided a framework within which to proceed with the design of RT systems. We 
introduced digital systems, both what they are good for and what they are constructed of. We established 
that we would operate at the register-transfer level, distinguishing this from the many other levels at 
which digital systems could be considered. We posed the design task in general terms, just so you would 
be clear on what you were being asked to do. Then, we introduced the languages for the two main 
boundaries of the design task: the components out of which RT systems are to be built and the 
specifications for desired behavior. 

There is nothing left to do now except start designing. Chapter 2 gives the full specifications of the PDP
16 modules, and from there you can begin. 
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example, Chapin, 1971). However, we need only a few basic symbols. A rectangle specifies one or more 
actions, with the expression in the box describing the results of the actions in terms of the data on which 
they depend. A diamond specifies that a decision is to be made among one or more alternatives, 
depending on the value of the computation stated- in the box (we use the term box indifferently for 
rectangles and diamonds). The lines show the control flow, so that if one takes the action at a box then 
one follows the arrow leading out of the box to determine what action to take next. Several control lines 
lead out from a diamond, corresponding t6 the different decisions that can be made, and they are labeled 
accordingly. Several control lines may impinge on a single box or a single line since there is no reason 
why one should not arrive at an action (or decision) from many separate places. 

The important thing to realize about flowcharts (assuming you do not already know all. about them from 
programming) is that they express a single sequential scheme of computation, in which only one thing 
happens at a time (i.e., only a single box is active at a time) and where there is no memory at all of what 
particular sequence of activities in the past lead to the current state. One can follow the method shown in 
a flowchart by putting a button or similar token down at the active place (starting at the place marked 
entry or start) and looking only at the box containing the button and the lines that emanate from it. 
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Fig. 9. Flowchart to sum integers from 1 to N.


The flowchart only expresses the flow of control. The actions taken in the rectangles make changes in the 
data of the problem. (No changes in data ever occur in a diamond.) It is assumed that the current values 
of these variables are used in each box. Thus, values of the variables can be set in some rectangle, and 
then the flow of control made dependent on them via the expression in a diamond somewhere else. In 
Figure 9 this occurs when the variable i is finally increased until its value is N+1. 

The language we use inside the boxes of a flowchart is standard algebra, with 
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processing. We want to connect to the external environment (to interface) at particular points and in a 
manner that is externally dictated, at least in part. We want to take from that external world various 
information, including commands, and to deliver various other information, including acts of control. We 
need to be able to state these things, without already giving the design of the system. 

There is no universal natural language for stating system behavior. There cannot be, in fact, since this 
behavior is defined in terms of two things, each almost totally variable: (1) the subject matter that the 
information processing about; and (2) the form in which the specifications reside in the heads of those 
who want the jobs done (be they the designers themselves or some extern authorities or customers). 

The important thing about a specification of behavior is that it should state what is wanted, without 
prejudicing the design any more than necessary. Thus, statements of behavior desired should be as much 
as possible in terms of the ultimate significance, which is to say, in terms of the intended subject matter 
intepretation of the information processed. Similarly, the ultimate specifiers the system have their 
knowledge in a particular way (usually in terms of subject matter concepts). They should make these 
specifications as definite and detailed as possible, but they should never be pressed to where they begin 
making design decisions about the digital system. Such decisions then masquerade as specifications, and 
freedom to create appropriate designs is lost. 

This is not an idle worry. For many areas, especially non-mathematical one precise languages are not 
available for describing the jobs to be done. The language of information processing, as developed for 
digital systems, is the be language in which to say what one wants.. Consequently, the line between 
behavior specification and system design easily becomes blurred. 

To specify desired behavior we will generally use the language of flowchart which is a language of 
sequential procedures. For example, suppose we wish construct a system to sum up the integers from 1 to 
N. We could express this, the first instance, by stating: 

This is adequately precise. It does not, however, tell us how we are to compute it, that is, by what 
method. In the first instance, this is exact[y what is desired, since one does not want to prejudice the 
computation in any way. If one knows just a little mathematics, one knows that: 

S = N*(N + 1)/2 
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One wishes the option of basing the processing on the latter formula as well as on the first one. 

Settling on a method, either one of the above or some other, is only a first step toward the realization of 
an RT system that will compute S. All of the problems of the processing of data are still to be faced --
just as we saw them come to the fore in our miniature example of adding two numbers. We need a 
language to express the essential characteristics of the method (or algorithm, as it is also called). Such an 
expression will actually play the role of specifications for the design of the hardware system. Flowcharts 
are a useful language here, backed up by a language (such as algebra) used to designate the relations and 
functions of a substantive area. 

Figure 9 shows flowcharts for a method of determining the sum of the first N integers. The conventions 
used in the figure are taken from those standard-in the field. Flowchart symbology is actually rather 
highly developed (see, for 
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the world to a few simple numbers. The solution is to understand what systems objectives are : they are 
guides to understanding and assessing system behavior in various partial aspects. Various measures for 
each type of objective are developed, and each shows something useful. Since all measures are partial 
and approximate (even conceptually), rough and ready measures that are easy to make, display and 
understand are often to be preferred to more exact and complex measures. Standard measures are to be 
developed and used, even If not perfect. Experience with how a measure behaves on many systems is 
often to be preferred to a better, but unique, measure with which no experience exists. 

There is no need to treat systematically all the different system measures. We will illustrate a large 
number of them through the design examples we treat in Chapter 3. However, Figure 8 does provide a 
guideline, listing in one place many standard objectives on systems, cost, performance and structure, and 
giving brief definitions of the standard measures that are used for them. 

Cost components 

designing 

specifying 

designing 

prototyping 

describing 

designing the production system 

producing 

buying (parts) 

assembling 

testing 

selling and distributing 

using 
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understanding 

purchasing 

applying 

operating environment (heat, humidity, vibration, color, power, space) 

repairing 

remodeling 

Performance 

designing, producing, selling 

using 

environment 

for a single task (operation times, operation rate, memory size, utilization) 

for a set of tasks 

reliability and error rate 

mean time between failures (mtbf) 

mean time to repair (mttr) 

error rate (detected, undetected) 

Fig. 8. Cost and performance components for a system. 

INPUT-OUTPUT BEHAVIOR 

We want to design digital systems to do specific jobs of information 
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other systems, different from the one in Figure 6, that also did the same job. We might have provided two 
transducers and no memory, each number remaining available at its transducer until ready to be used by 
the adder. We might have provided for both numbers to have gone into the memory, insulating the adder 
entirely from the input 'process. With such a simple task there are only a limited number of non-foolish 
ways to do it. Still, there are several -- enough to show that the statement of the task to be done by the 
system is not to be confused with the description of the system that does the job. 

The desired characteristics of a system are specified in two different ways: (1) by overall objectives on 
the system behavior and structure; and (2) by detailed specifications on the information processing to be 
accomplished. Both are important and are used jointly to state what is desired. We take up each in turn. 

OBJECTIVES AND EVALUATIONS 

Objectives can often be stated as maximizing or minimizing some measure on a system. A system should 
be as reliable as possible, as cheap as possible, as small as possible, as fast as possible, as general as 
possible, as simple as possible, as easy to construct and debug as possible, as easy to maintain as possible 
-- and so on, if there are any system virtues that we have left out. 

There are two deficiencies with such an enumeration. First, one cannot, in general, maximize all these 
aspects at once. The fastest system is not the cheapest system. Neither is the most reliable. The most 
general system is not the simplest. The easiest to construct is not the smallest, and so on. Thus; the 
objectives for a system must be traded off against each other. More of one is less of another and one must 
decide which of all these desirables one wasn't most and to what degree.(11) 

The second deficiency is that each of these objectives is not so objective as it rooks. Each must be 
measured, and for complex systems there is no single satisfactory measurement. Even for something as 
standardized as costs there are difficulties. Is it the cost of the materials -- the components? Do we use a 
listed retail cost or a negotiated cost based on volume order? What about the cost of assembly? And 
should this be measured for the first item to be built, or for subsequent items if there are to be several? 
What ab6ut the costs of design? That is particularly tricky, since the act of designing to minimize costs 
itself costs money. What about cost measured in the time to produce the equipment? What about the cost 
of revising the design if it isn't right; this is a cost that may or may not occur. How do we assign 
overhead or indirect costs? And so on. In a completely particular situation one can imagine an omniscient 
designer knowing exactly which of these costs count and being able to put dollar figures on each to 
reduce them all to a common denominator. In fact, none of us knows that much about the world we live 
in and what we care about. 

The dilemma is real: there is no reducing the evaluation of performance in 
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11. Belief in the perversity of nature that forces all good things to trade off against each other should not 
be carried to extremes. The field of digital systems provides a counter-example. Digital systems now, 
compared to digital systems even a few years ago, are: faster, cheaper, smaller, more reliable, simpler, 
and easier to maintain. In short, they are better in every way, and nothing had to be traded off in the final 
performing system to. obtain them. Within this, there always exist small trade offs, e.g., between speed 
and cost. But this is barely significant against the major trend. 
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Fig. 6. PMS diagram of a calculator with typewriter output. 

Fig. 7. PMS diagram of information retrieval system. 
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With the exception of the link itself, two components are in general physically distinct and thus their 
ports must be connected by a link. A perfect link would make this connection into an identity. In fact, 
there is always propagation delay so that the bit values at the port of the one component do not instantly 
assume the values of the corresponding bits of the other port to which it is connected. In modern digital 
technology these delays are often significant in the- performance of the system. In high performance 
designs they always effect the design in detail. In much other design they can simply be lumped in with 
the speed of the components themselves. Though they degrade the overall performance somewhat, they 
do not effect the design. When this is true, as it will be throughout this book, the link itself is no longer a 
significant separate component in the system. It can be replaced by a simple connecting line that 
identifies two ports. It does, of course, still have a capacity of a certain number of bits. It also has 
directionality, permitting bits to be transmitted either just in one direction (called a simplex link), in both 
directions at the same time (called a duplex link), or in either direction, but only in one direction at a time 
(called a half-duplex link). 

With the role of links cleared up, we can now show concretely how to connect digital systems together. 
Figure 6 shows the illustrative system for simple addition used earlier. We have made a box for each 
component, labeling it with the appropriate abbreviation. The boxes are a matter of style only, and we 
will often dispense with them. We-have shown the direction of data flow in the links but omitted the data 
flow capacities. Links between controls and the components they control are invariably two way (at least 
half-duplex) since the controls both evoke their components and sense when they have completed 
operation. 

Figure 7 shows a simple system for storing away data and then retrieving it. The component called X 
stands for the component outside the digital system in question, say a human at a keyboard or whatever. 
We often do not want to bother stating exactly what the nature of the external component is. Below the 
memory system we put in a blow-up of the M component itself, showing it as another system described 
in the same functional terms. 

Both figures are still quite general, with the components labeled only by the gross functional category to 
which they belong. Before we can show the full detail, we need to know how to specify system behavior. 

SPECIFYING SYSTEM BEHAVIOR 

To design one must specify what one wants of the to-be-constructed system. Recall that all the 
formulations of the design task had both a part that gave the technology and a part that gave the desired 
specifications. These specifications must be given in independent terms. Suppose, for the system of 
Figure 6, we had just said "We want a system that takes data from the keyboard, transduces it, ships it to 
a memory, transduces a second number, ships it and the number in the memory to the data 
operation,...(and so on through the details of the figure)." How would you ever know whether it did the 
task that was wanted? It simply is what is and there is no independent statement against which to 
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evaluate it. Worse yet, how would it ever have been designed in the first place? How would one have 
known what to write down in the diagram before it was written down? 

In fact, of course, we did have an independent specification. We wanted to add two numbers given by a 
human and present the sum to him. But isn't this the same thing? Not at all. We could show it was not the 
same by exhibiting 
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Fig. 5. Hierarchy of components used in logical design of a sequential multiplier. 

structural scheme of description, we specify seven exact operations and then say everything can 
be built by combining them, here we specify seven functions and say everything can be 
decomposed into systems whose components are also only of these seven types. 
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HOW TO CONNECT COMPONENTS INTO SYSTEMS 

Each component, of whatever type, has a number of ports. Each port permits the transmission, in 
or out (sometimes both) of a set of bits that play some role in the operation of the component. To 
construct a system one connects the ports of one component with the ports of another. 
Conceptually, they become identical: two connected ports always have identical bit values. 
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16 set supplied by DEC, that will have memories of particular sizes, controls of particular character, 
various specific transducers, etc. 

The second, and more important, reason why it is not necessary to catalogue all possible parameters and 
subtypes of each component type is that a scheme of functional description enjoys the important property 
of being recursive. Take any component (say a memory), however complex, and open it up. It will 
consist of a combination of subcomponents that can also be described in these same functional terms. A 
big, memory consists of a collection of smaller memories connected together by links and switches and 
made to operate by controls; if its internal representation (say as magnetic patches on a drum) is different 
from the external one, then there will be transducers both going into the internal form and coming out of 
it. The. addressing will be accomplished by a switch (that, in fact, is what addressing is), and so on. A 
similar story will hold if you open up a complex control (say a disk controller), or a complex data 
operation (such as a multiplier), or a complex transducer (such as a line printer). 

All the variety of each type of component is to be defined by all the different ways in which systems can 
be defined (in the same terms) that perform the function. Somewhere down at the bottom of such a 
decomposition -- of continually opening up each component and finding it to be an assemblage of 
subcomponents of the same type -- there must be some primitive components. We can consider these to 
be simple components: simple memories, simple transducers, simple links, etc. These simple 
components, which cannot be decomposed further conceptually, are all defined on single bits. They 
correspond to the operations available at the lowest logic level of digital systems: the primitives of 
combinational and sequential circuits. 

Figure 5 shows how a sequential multiplier at the RT-level is hierarchically formed as combinations of 
K's, M(register)'s, L's, and D's. In Chapter 8, we have the design of such a multiplier; also Chapter 4 
describes multipliers formed with our particular RT primitives (RTM's). Notice that there are several 
distinct design activities: the RT- level, sequential circuits (the K), combinational circuit (the D's), and 
electronic circuit (the NAND's and possibly the 1-bit M's). With respect to data operations there is no 
single unique set of primitives. We have given one that involves a single Boolean connective 
NAND.(1O) 

The exercise provided in Figure 5 is entirely for conceptual clarity. It once was the case that the physical 
components provided to a logic-level designer were simple components such as the NAND and he 
always had the task of specifying all systems made from these elements, including compound 
components that he might put together as intermediate subsystems in a design (such as a register 
consisting of a specified number of bits, which would be used throughout .a design). This is no longer 
true. What the manufacture provides is a collection of compound components, which then form the 
actual primitives that terminate the decomposition of a system into subsystems. Now the primitives are 
registers, adders, and shift networks, but the control part, the most difficult, is still left to the logical 
designer. Only rarely (as when one is designing a set of new primitives) does one design entirely from 
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simple components. 

Again we have exhibited the peculiar feature of digital systems that they elude completely specific 
description. We have just been definite in one more respect: there are exactly seven types of components. 
But whereas in a 

10. NAND(x,y) is defined to be NOT(AND(x,y)) and all logical combinations can be defined in its 
terms, e.g., NOT(x) = NAND(x,x); OR(x,y) = NAND(NAND(x,x), NAND(y,y)), etc. 
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Occasionally one names by the structure of a system. For example in electrical circuit theory circuits 
such as Tee and Pi are so named because the structure resembles a T and ~(Pi). 

Given that you know a component is a memory (M), you know something about the behavior it can 
exhibit, but it is still mostly unspecified. You don't know how much memory (in total bits), how it is 
organized in terms of an addressing scheme (e.g., does it hold 1000 16-bit words or 2000 8-bit words). 
You don't know how fast it reads information (i.e., retrieves it) given an address, nor whether the time to 
access information is independent of the address (as in a random access memory) or linearly dependent 
(as in a magnetic tape). You don't know the details of how to control it. You also don't know other, more 
remote things: its reliability, its size, the effect of temperature, vibration, humidity, and so on. In short, 
all you know is that it is a device that will store information over time. 

That is still a lot to know, since a link, transducer, control, or any other basic type of component cannot 
store information.(8) Thus, the labels are extraordinarily useful in. design, since whenever information 
must be stored over time one knows an M must be involved. Similar statements hold for all the other 
types of components. They divide all the tasks to be done in a digital system into a set of exclusive 
categories -- the basic functions of L, T, M, D, K and S -- and whenever such a type of job must be done, 
it is known what kind of component must be used. Thus, they help to bridge the gap between the 
structure of the physical components and the behavior desired. 

What we indicated for memories above is true of all the other component types. There is a great diversity 
of specific varieties of each component type. We could describe in a formal way all the various 
parameters and subtypes involved in each component type -- all the types of memories, of switches, of 
transducers, etc.(9) These further specifications are to make the component fit all the other conditions of 
the design: to have enough memory, to switch to all the required places, and so on. There are two 
important reasons why we do not have to provide all this detail here in a big catalogue. The first is that 
any particular digital technology (as supplied by a manufacturer) offers a finite set of basic components 
of each of these types (or special mixtures of them). All other systems must be built up by connecting 
these together. Thus a system's parameters become those that arise through combination of the basic set. 
For instance, Chapter 2 will present a set of RT-level modules, constituting the PDP

instance, knowing that a component is a resistor of 100 ohms does not tell anything about the 
modification of its behavior under high temperatures, or the point at which the component will 
disintegrate under vibration, or any of innumerable other aspects of its behavior that are relevant to its 
operation in a circuit under some circumstances. 

8. Again, we must be careful. A link has a certain transmission delay and thus does have a small amount 
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of memory associated with it (much as a physical ,device designed to be a resistor has a little inductance 
also). Thus, a link could be used as a memory in a digital system. But to do so is strictly poor design or 
(in rare cases) exotic design. It can be ignored to a first approximation. Of course, a memory can be 
deliberately constructed out of links with long delays (that therefore act as low performance links if used 
just to transmit data). So-called delay line memories are just such devices. 

9. See the Appendix of Bell and Newell (1971) where this is provided with some attempt at 
completeness. 
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L \Link Transmits data from one place to another without modification.

T \Transducer Changes the representation of data, either from a non-digital representation (external to the 

digital system) or from one bit representation to to another (within the system). Does not modify the 

information content.

M \Memory Stores data over time without modification.

D \Data operation Produces new information (in some bit representation) from a set of input data.

K \Control Evokes the operation of some component in a digital system in response to various input 

conditions and its current status.

S \Switch Changes the links that connect other components in a digital system, so as to reroute data.

P \Processor A digital system consisting of a set of operating components (D's, M's, K's, T's, S's, and L's) 

with a control(called the interpreter) that both reads an instruction to determine what operations to 

perform, and determines what next instruction to obtain, thus running autonomously from a memory that 

holds a program of instructions (called the primary memory, Mp).

C \Computer A digital system that includes at least one processor and its primary memory.


Fig. 4. PMS primitive component types. 

We label components by the general functions they perform. This is to be contrasted with schemes that 
label components by a specific function, in which the exact behavior of the component can be 
determined from its label. Labelling by specific function occurs in the combinational and sequential logic 
level, where the components are labelled AND, OR, NOT, NAND, NOR, DELAY, etc. An AND -
component takes two binary inputs and produces a binary output that is the logical AND of the inputs: 

AND(0,0) = 0 

AND(0,1) = 0 

AND(1,0) = 0 

AND(1,1) = 1 

The output behavior of an AND component is completely defined as a function of its inputs. Similar 
definitions apply to the other components. 
Another example of this labelling occurs in elementary circuit theory where components are called 
resistors, inductances and capacitances. There is no single resistor, but rather a family of them, each 
defined by a single numerical value (e.g., 25 ohms, 75 ohms, etc.). To know that a component is a 
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resistor of a specific value tells almost everything necessary to compute its behavior in a circuit.(7) 

7. All such schemes are only approximations of actual physical systems. This should not be forgotten, 
even while making use of the simplified models. For 
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the transducer, link and memory control themselves? And nothing has been solved anyway, since who 
controls the controller? These questions are not quibbles or philosophical conundrums, but correspond to 
real design issues and options. Control can be associated with other components. If you look inside a 
control component, you may indeed find a subcomponent that controls it. Also, controls control each 
other. And the data itself may be used on occasion to effect control. But in all cases the question of 
control must be explicitly formulated and answered in specific terms. A major source of the power and 
generality of digital systems comes from making most components passive and inert -- memories, 
transducer, links, etc. -- and localizing control in a physically and logically separate component. 

With the components introduced so. far, the first number can be transduced and transmitted to memory, 
and the second number can be transduced (when typed by the human). The two bit representations are 
now to be added.. Addition is an operation on bit sequences that generates a genuinely new item of 
information -- the bit representation of a sum. In this case it should produce: 110 0 1 + 1 1 00 = 1 00 1 0 
1, which is the bit representation of 25 + 12 = 37. The component that generates such new information is 
called a data operation and is abbreviated by D. More specifically we would use an adder here, which is 
simply a name given to a special subvariety of data operations. 

To get the addition actually done requires some more links and some more control. The first number 
must be read out of the memory and transmitted to the data component (the adder). The second number 
must be transmitted from the keyboard to the data component. Here we have another issue: we set up the 
system to transmit the bit representation at the keyboard transducer to the memory; now we want it to go 
somewhere else. This requires another component, called a switch and abbreviated S, to reroute the data 
over a different link. This switch must also be controlled, so that on the first occasion it switches the data 
to the memory and on the second it switches it to the adder. 

Now we have all the types of components necessary to finish the job. The results of the adder must be 
sent over a link to a transducer that converts a bit sequence to a human-readable display, say a sequence 
of type impacts on a typewriter. This total operation must be controlled. Possibly, also, the memory must 
be cleared and the switch at the keyboard transducer must be reset to send the next data to the memory 
again, so that the whole system can perform a new addition. These operations use additional components 
(such as controls and links) of the same types as have already been introduced. 

The types of components we have just given are not only sufficient for our illustrative task, they are 
sufficient for the construction of all digital systems. They constitute our basic set of components. Figure 
4 provides a summary. We have added two additional components at the bottom of the figure: a 
processor, abbreviated P, and a computer abbreviated C. Both of these stand for complex systems. They 
complete the basic set of abbreviations defined in this notation.(6) 
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6. The notation is also used to describe digital systems at the much higher level of equipment 
configurations. The notation itself is called the PMS notation (for processors, memories and switches, 
three of the important components). Its use in other contexts is described in Bell and Newell (197 1). 
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3. There -may be different ways to represent information in bit sequences; which way is used may 
be important since what processing must be done depends on the bit representation and not just on 
the information. 

4. Digital systems need only process bit sequences in the limited ways possible with 0's and l's; 
but thereby they are able to effect any information processing. 

5. Conventional encodings of information, called data types, exist (especially for numbers and 
alphabetic characters) and the operations of digital systems assume these data types in their 
processing. 

6. Any physical structure that can take on binary values can represent bits and participate in a 
digital system. The actual physical character of the bit representations is safely buried inside the 
technology. 

WHAT COMPONENTS DO THE PROCESSING: L, T, M, D, K, S. 

When a human thinks about a task of processing information he usually concentrates on the complex 
transformations to be done. If two numbers are to be added, the act of addition is the main thing. 
However, if you try to mechanize that task -- i.e., get a digital system to perform it -- then there. are 
many other things that must be done besides just the addition. Let us list these things for even so simple a 
task as a single addition. As we do so, we will label them with the names used for them throughout the 
book 

First, the two numbers to be added must be given to the system. These numbers are generated by the 
human who wants them added. He does not generate them as bit sequences, but he might use a keyboard 
in which he presses a certain key for the digit 1, another for 2, etc. For example, the human could press 
the sequence, key-2 key-5, to indicate that 25 was the first number to be added. Something must create 
from these key presses the bit sequence 1 1 0 0 1 (the standard binary bit encoding of the number 25). 
We call such a component a transducer, and abbreviate it by T. 

To add two numbers the human must give them both -- that seems elementary. Yet it means that the 
keyborad must be used to input the second number (say 12) and the transducer used to convert it to a bit 
sequence(1 1 0 0). This must happen before the code for 25 can be used. Thus something must save this 
code (the 1 1 0 0 1) for later use. We call such a component a memory and abbreviate it by M. 

Just having the memory is not enough, for the memory and the transducer are not in the same place and a 
bit-sequence at place 1 is not the same. thing as a bit-sequence at place 2. Thus, there must be a 
component to transmit the data from the transducer to the memory. We call such a component a link and 
abbreviate it by L. 
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We do not yet have all the components necessary to get the 25 out of the way and into the memory. The 
transducer only developed the bit sequence (the 1 1 0 0 1) at a certain moment in time. Thus, the link 
should transmit it when and only when it is ready, and the memory should store it away when and only 
when it arrives at the memory end of the link. Thus, there must be a component that evokes all these 
operations at the right time and in the right sequence. We call such a component a control and abbreviate 
it by K.(5) 

The need for control components may not be immediately obvious. Why don't 

5. We do not abbreviate it by C, since this character is used to stand for stored program computer. 

15 
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rather than as the equivalent binary number representation. For example, the number 6235 would be 
represented in BCD as 01 100010001 10101 and in binary as 000110000101011. Needless to say, doing 
arithmetic in the two representations involves quite different bit processing.. 

The simplicity that comes to digital systems because they only have to process sequences of bits is 
incalculable.(4) Sequences of 0's and l's are of sorts of things indeed and they can only be subjected to a 
small variety of fundamental transformations. All the rest comes out of compounding these. Although 
this compounding can become quite complex (indeed it has to, since ultimately any information 
processing, no matter how complex, can be done this way) the basic sorts of operations retain their 
simplicity. 

We have described what is processed by digital systems in a very abstract way -- only as 0's and l's -- and 
not at all as some specific physical structure. You will be forgiven if you conclude that we always 
promise to be concrete and specific and then manage to avoid it.. But the peculiarity lies in the nature of 
digital systems and digital technology, not in our writing habits. Any physical system that can be 
arranged to exhibit two possible states can be transformed into a digital technology out of which digital 
systems can be constructed. And in fact the physical phen6mena actually used are of the most diverse 
kinds -- different in magnetic core memories, magnetic drums, transmission wires, transistors, storage 
tubes, and in all the subvarieties of solid state devices. All these can occur simultaneously within a single 
operating digital system, such as a large digital computer. At the lower levels of the digital system 
hierarchy, each of these technologies must be dealt with separately and requires its own scientific and 
engineering know-how. At the register transfer level all the differences have been smoothed over and all 
devices look alike in processing two abstract distinguishable states, called by convention 0 and 1. 
Differences still exist, but they all show up as parameters of speed, size, cost, reliability, etc. 

It makes no sense to describe to you in detail, as some textbooks used to do, a particular lower level' 
technology (such as transistor logic), as if that made matters more concrete and real. The whole point is 
that 0's and l's are real and one need not go below them. Someone has to go below the register transfer 
logic level, but that is simply a different design world with its own problems and its own rewards. We 
will say hardly anything more about such physical details. 

We have dwelt on what a digital system processes, because it is Important to get fundamental matters 
straight. All that we have said in this section is probably known to you in some fashion. It is simply part 
of the accepted view of a digital system and does not appear as concrete rules, facts or principles about 
how to design digital systems. Yet it is important to understand each of these things. We summarize them 
below. If not so already, they should begin to appear to you to be commonplace and obvious: 

1. Digital systems process information represented as sequences of bits. 

2. Any definite information can be represented in sequences of bits. 
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4. Someone is sure to note that the term 'digital systems' should also cover systems that process discrete 
signals that have more than two values, e.g., ternary systems, which have three values, 0, 1 and -1. There 
is, of course, no issue of generality: binary systems can do all that ternary systems can do and vice versa. 
There would be some necessity to include such systems if (and only if) there was a ternary digital logic 
that was at all cost-effective. Categorically, there is little, chance in the immediate future for any other 
technology than a binary one. Consequently, digital systems can be restricted to binary systems. 

14 

previous | contents | next 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000028.htm (2 of 2) [4/3/2002 6:17:32 PM] 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000028.htm


Designing Computers and Digital Systems 

previous | contents | next 

types may be defined by the designer that are unique to a specific application. Figure 3 provides an 
outline of the basic ones. The basic data type is-the word, which is a sequence of 16 bits. The PDP-16 
system is built around this word size and thus all representations of information occur in its terms, either 
as multiples of 16 bits (if they take many words) or as various fractions of a word. The basic 
representation for a number is the 16-bit two's complement integer (details given in Chapter 3), which 
can encode the numbers from -2^15 to 2^15- 1. The PDP&mdash;16 arithmetic modules take such 
integers as input and deliver them as output. Larger integers (say 32-bit integers) must be constructed out 
of 16&mdash; bit parts. Addresses into memories are also given as integers and form a conceptually 
distinct type. The size of such addresses depends on the memories used; we list 6,8, and 10 bits, 
corresponding to memories of 64, 256 and 1024 words. 

The second basic data type is the Boolean vector, which is simply the word treated as a set of bits. This 
can be broken down into fields of arbitrary size (less than 16 bits). The standard way to encode arbitrary, 
non-numerical information is to determine an upper bound to the variety (e.g., only five types of checker 
squares), then assign a field of the requisite number of bits to hold that variety (e.g., three bits to cover 
five types) and. produce an arbitrary mapping of the possibilities into the bit sequences. Two special 
cases of this are the one-bit Boolean variable and the one-bit sign for signed integers. 

word (16 bits) 

two's complement integer (16 bits) 

address integer (6, 8, 10 bits) 

Boolean vector (16 bits) 

field (any size < 16 bits) 

Boolean (1 bit) 

integer sign (1 bit) 

character string (arbitrary number of characters) 

character (8 bits) 

ASCII 
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EBCDIC 

binary coded decimal (4 bits) . 

Fig. 3. Basic data 
types. 

The third basic data type is the character string. All the alphabetic characters can be encoded. 
Unfortunately, due to historical reasons, there is more than one standard encoding of the alphabetic 
character set (thus destroying some of the gain to be obtained). The two standard ones (called EBCDIC 
and ASCII) are given in Table 5 (at the end of the book) for reference. They are both 8-bit codes, but 
with 7-bit (128 characters) subparts that cover most of the characters (capital and lower case letters, 
digits, basic punctuation marks, and some standard control signals). The eighth bit is reserved for a 
special purpose. Two 8-bit characters (also called bytes) fit into a single 16-bit word, but one almost 
always deals with sequences of many characters, corresponding to names, text, etc., thus requiring a 
sequence of words. Within the character code there is a 4-bit code for the 10 decimal digits, called binary 
coded decimal (BCD), which is just the first 10 binary digits (0000 to 1010). Sometimes decimal 
numbers are represented as sequences of BCD characters,, 
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Fig. 2. Encoding of checker position. 

are called data types. To give a data type is to live a description of some types of information plus a rule 
for mapping that information into a sequence of bits. There are three independent reasons for having data 
types: 

( 1) They simply provide pre-packaged solutions to be used by the designer for how to represent 'his 
information, among the many ways he might do it (several of which may be equally good). He is relieved 
of additional design decisions. In some cases, the conventional choices are actually better and the 
designer is relieved of having to rediscover that fact. 

(2) Given that a standard is used on all occasions, it provides for coordinating the representation used in 
separate parts of a large RT system. The designer need not explicitly check that he is using the same 
representation within various subsystems, which might then require-additional processing to translate 
from one representation to another. 

(3) The basic operations provided in an RT technology must assume some representations for their input 
and output data. These impose a set of data types on the systems built up from these components. Extra 
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costs will occur with other data types because they must be translated into the form required by the given 
operations. A committment to data types can be almost completely avoided by providing only the basic 
'data types implicit in having bit sequences -- i.e., something corresponding to a sequence of bits (usually 
called the word) and the basic logical operations on a single pair of bits. However,: this substantially 
reduces the power of the resulting RT-systems technology and committing to higher data types is almost 
always worthwhile. 

The systems we consider in this book, which are built out of PDP-16 modules, are quite restricted 
compared to the full range of digital processing (e.g., as done by large computers). Only a few data types 
show up, though additional data 
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the sum of the positional values: a6*2^6 + a5*2^5 +...+ a0*2^0 and the a's are either 0 or 1. 

Often it is necessary to encode other than numerical information. If one wants a digital system to play 
checkers, then it must have a representation of the checker position. This must also be encoded into 
sequences of bits. For instance, one encoding is based on the fact that each of the 32 squares of the 
checkerboard can be in any of five situations: 

The checker position in Figure 2 would be coded as shown. This requires a total of 3 * 32 = 96 bits for the 
representation: In the figure we wrote it as 32 3-bit sequences; we could also have written it as two 48-bit 
sequences: 

As long as the digital system that processed these bits assumed the correct interpretation of each of the 
bits, it would make no difference. 

There is more than one way to construct a representation of some situation -- more than one way to 
encode it into bit sequences. For instance, we could have coded the checker position as a 7 bit sequence 
for each checker man. 

Five bits are required for the board position, since there are 32 possible squares (2^5). Since there are 24 
men (12 for each side), the total number of bits for this representation is 24 * 7 = 168. This is much larger 
than the 96 for the original encoding, though it represents the same set of situations and thus has the same 
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amount of information.(3) 

Any informational situation may be represented in terms of sequences of bits. As long as one can be 
definite about the things to be represented and the variety of these different things that can exist, one can 
invent some sort of correspondence to state these same things in terms of bit sequences. The limits are the 
total variety of things that have to be represented (e.g., 7 bits only distinguishes 128 things) and whether 
you can be definite about your description of them. 

Standard ways exist for representing information in sequences of bits. These 

3. Can you find out why they differ? Actually, both representations take more bits than are necessary. Can 
you find better representations? What is the minimum number of bits required? Such questions are just 
intellectual games, of course, but they help to understand the issue of encoding. Actually, don't work too 
hard on the minimum; no one knows it exactly. 
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RT-LEVEL COMPONENTS 

A processing system always involves: (1) something to be processed; (2) a set of components that do the 
processing; and (3) a way to connect these components into a system. Digital systems process 
information. Therefore we should be able to identify all three of these things. Knowing them provides a 
clear idea of the nature of digital systems. 

WHAT IS PROCESSED: BITS 

To say that digital systems process information is elliptical, for information only exists in so far as it is 
represented in some physical form. Digital systems actually process these physical representations of 
information. Furthermore, the representations it uses are highly specific: they consist of sequences of 
bits. 

Something represents a bit if it can take on just one of two possible values, which are usually called zero 
(0) and one (1). Thus, if we had something (we might as well call it a register, which is what we will call 
it eventually) that can represent (hold) a sequence of seven bits, then it could take on various values, such 
as: 

In fact, the register could take on any of 2|^7 distinct patterns (where a^b is used to indicate that a is 
raised to the b power) corresponding to each bit-place taking on the value of 0 or 1 independently of the 

others. Thus, a seven bit register can represent one of 128 different situations (128 = 2^7). 

The representation of digital information is always in sequences of digital bits. All information must 
somehow be encode into such sequences. That can be a problem. If you want to. encode the age of a man 
in years; then you have to decide what pattern is 0 years old (i.e., less than a year), what pattern is 1 year 
old, what pattern 2, and so on. We could adopt the following code: 
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You may recognize this as the standard way of encoding the integers into a binary sequence. It is 
normally referred to as the binary number system. It takes seven bits to hold all the possible ages of 
modern man; a sequence of only six bits would have only permitted ages through 63. The integer value is 
just 
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search. This is why there may be no substitute for experience, since building up these networks of 
patterns must take place in the designers head, and requires a long immersion with the material to do it. 
Note that the immersion is in designing systems, not in abstract study of the technology. It is devoted to 
acquiring many partial solutions that jump little gaps from desired behaviors to patterns of components 
(subsystems) that achieve them. 

We have not told you all we know, abstractly, about the task of design and how humans are able to do it. 
Perhaps we have told you enough to give you a feeling for why the book is written the way it is and how 
you should treat it. We can package some of this general advice in a way that may help to start you out in 
the right direction and may jog you occasionally if you get stuck. We offer this in Figure 1. But general 
strategies are no substitute for building up that network of special knowledge. 

State explicitly the behavior desired. 

Can you use a more precise language than English? 

Everything desired cannot be said, but say some of it -- the most important. 
Design to the behavior you have explicitly specified. 

You can always redesign it when new specifications are added. 

Know the components at your disposal. 

Design some little systems with each component, just to see how they operate. 

Can you describe each component? 

What is it for -- its function? 

What peculiarities must be watched for? 

Design at least some system, even if it is not the best system. 

Improving, a system may be easier than designing one from scratch. 

Use a separate component for each function to be performed. 

Analyze the performance of any candidate system you design. 
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What is the function performed by each component? 

Are all the functions necessary? 

The cheapest and fastest parts of a system are those that don't exist. 

Can one component perform several functions? 

Can you quantify the behavior along each dimension of interest? 

How does the system behave under extreme conditions? 


How long does it take for the minimum task?


What are the maximum performances it can achieve?


How can it fail and what happens when it does? 


Explore the design space. 

Don't be afraid to design many variations for the same task. 

Each actual design tells you something about other possibilities. 

You learn nothing from a design that doen't exist; 

You can't even analyze its performance. 

Fig. I. Good advice for designers. 
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appreciable way towards this goal, both in actual physical structure of the components and in the 
languages it provides for talking about them. 

Jumping the remaining gap constitutes the primary act of designing. On what can it depend? Without 
knowing anything special, an intelligent person can still fashion designs. He can compare the list of 
specifications of what the components do with the list of specifications of what is wanted and see 
correspondences between them that indicate some necessay ingredients to the final system. As choices 
become apparent -- where there appears to be more than one way to accomplish a part of the task -- he 
can mentally explore forward, seeking some feature of each proposal that will let him discriminate which 
is preferable. Thought carries only so far, and if it doesn't get far enough to provide a clue, then a 
committment must be made to one of the designs, carrying its development forward in a more explicit 
(hence time consuming) form. Backtracking to old choice points may occur (if they can be remembered), 
as it becomes apparent that the current candidate fails to meet the specifications. 

The immense set of possible systems that can be fashioned and the depth of search required, measured in 
terms of design choices for an RT system of reasonable size, put a severe limit to how far unaided 
intelligence can proceed. For one thing, the process of taking a single design step is quite expensive if the 
characteristics of the components are only known indirectly, by having a list of them to consult. Thus, 
absolute familiarity with the components available contributes substantially to the ability to design. You 
will see this yourself when you must rummage in Chapter 2 fox what components are possible, and then 
discover the swiftness later on, when all the components have been learned and come immediately to 
mind. 

Familiarity with the desired features is equally important. Unlike the components, however, most of 
these will apply only to the particular design at hand. Working in a particular technology-- here, with a 
particular set of RT components -- means that the same components are used over and over again and 
their properties are fixed features, to be learned once and for all. With the desired features, the most 
important consideration is getting them out in the open where they will remain constant long enough to 
be analyzed and understood. In fact, as we noted, in most design it is not possible to state all the features 
desired -- one can always think of a few additional things it would be nice to have -- increased reliability, 
increased speed for a special class of input data, additional generality, or whatever. However, one cannot 
easily close the gap to a moving target. Stating some parts of the design specifications explicitly permits 
a design task to be posed and solved. Keeping them all implicit produces the equivalent of the moving 
target. 

We have again focused on the two boundaries of the design tasks, the given components and the desired 
specifications. Knowing both of these are essential, but the gap is still too large in any real life design 
environment (such as RT-level design). What special knowledge helps to jump the gap? The major 
ingredient appears to be a very large number of patterns for subsystems that accomplish intermediate 
sized tasks -- exactly the sort of knowledge that is obtained by doing hundreds of designs and analyzing 
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their performance. We say appears, because the psychological evidence for what the master designer 
knows that the novice doesn't is not conclusive. But evidence from other areas (in particular, believe it or 
not, from our understanding of masters versus novices in playing chess), suggests strongly that the major 
role of experience is the building up of a very large number of functional patterns, so that they are 
recognized instantly in a new design situation, rather than having to be discovered by intelligent 
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If you have done much real design (whether of computer systems or other things) your own experience 
will probably not be entirely in accord with the above. Design seems a much more open activity, in 
which the emphasis appears to be on discovering ways to put the components together to obtain various 
specific features. It never seems possible to put all the desired features together at one time and think of it 
as an optimization problem. In fact, the model of a design problem that seems closest to actuality is one 
where there is an unlimited supply of desirable behaviors, some of which are more important, some less. 
The problem of design, then, is to obtain a system that has some of these desirable behaviors (the 
important ones) and, if there is any freedom left, it can be used to obtain some additional desired 
properties. We can even put this in the same way as the other formulations: 

Given: (1) A technology 
(2) An ordered list of specifications of desired behavior. 
Create: A system that has as many as possible of the 
specifications, taken in order. 

If the list., is really unlimited, there is no way to pose this problem as an optimization problem, since it is 
never possible to take all the constraints together. In fact, some of the constraints down the line may well 
be incompatible with some of the initial important ones. This formulation, though it still leaves some 
loose ends, captures an essential feature of design problems as posed by humans -- that humans can never 
know all that they want. The nature of our long term memories is such that we can never find out all that 
we know about something, even our, own desires. Thus, it often seems better to add a new specification 
to the list of desired properties of a proposed design, than simply to make the design better along the 
dimensions currently included in the list of desired specifications. 

It can be seen from all formulations of the design task that a clear scheme for setting out the 
specifications desired and a clear scheme for describing the components out of which to construct 
systems ,are of critical importance. Design is concerned with bridging the gap between these two types of 
information. If one simply selects arbitrarily a set of components and connects them together into a 
system there is only an infinitesimal chance that they will produce a performance of any interest at all. 
Thus, the essential property of the languages for describing the two boundaries of the design task -- the 
technology on the one side and the desired specifications on the other -- is to make it easy to jump across 
the gap. Given a description of components and subsystems, it should be easy to see what it is they do --
what functions they perform. Given a description of desired behavior, it should be easy to see what 
components satisfy the demands. 

We will devote the last two sections of this first, chapter to these two boundary conditions: first, how to 
describe the RT-level components and second, how to describe desired behavior. In the best of all 
possible worlds these descriptions should be so close to each other that to express a desire is to set down 
the RT-level system that could accomplish it. In reality, of course, design is harder than this. Candidate 
designs must be proposed, which must then be evaluated to see how well they satisfy the specifications--
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with the expectation that several iterations will be required before a tolerable design is discovered. 
However, as we remarked earlier,, a good design technology moves an 
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This form of the design problem shows up frequently. For instance, we spend all of Chapter 4 designing 
a multiplier, and it is easy to identify there all of the items in the problem statement above. Likewise 
most of the problems in the book have this form. But there are other variants of the design problem. For 
example: 

Given: (1) An already-designed system. 

(2) A specification of additional or modified behavior. 
Create: A modification of the given system that exhibits the 
modified behavior. 

Sometimes the added requirement is a specific bit of behavior --e.g., to display the result in a new useful 
way. Sometimes the added requirement is in terms of some measure of the system -- e.g., reduce its cost 
by half, or increase its speed by two. 

Both types of design problems share some things in common. For one, the givens are essentially parts 
and the solution is to be constructed or composed out of these parts. Not all problems have this 
constructive character. For instance, solving a set of simultaneous equations seems quite different, as 
does (say) finding someone's house in an unknown city, or (say) deciding which used car to buy. Even 
many problems closely associated with RT-level systems are quite different. Determining if a given 
system actually performs a given processing task correctly is quite a distinct type of problem, as is 
determining which of two given systems is better for a given family of tasks. These latter are often called 
analysis problems and the design ones are called synthesis problems; though just assigning different 
names does not really help much. 

An important feature of the design problems above is that a specification of the desired features of the 
system is given. It is usually -- and we do so, as well -- that being clear on the specification of the system 
is all important. If you don't know' what you want, how can you build it? This leads to the view that a 
proper design problem has a/complete specification, and that whenever the properties desired of a system 
are incomplete or vague, then the design problem is ill-posed. For example, if you look in books on 
logical design, problems such as the following are taken as prototypes of design problems: 

Given: (1) A system of components for doing the 

three logical functions, AND(X,Y), OR(X,Y), 
NOT(X). 
(2) A cost for each component. 
(3) A specific logical function of N logical 
variables F(XI,X2,...,XN). 
Create: The logic network that computes F and 
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has minimum cost. 

Algorithms are then developed for solving this minimization problem. In fact, a great deal of work in the 
area of logical design has gone into the investigation of such minimization problems. One is left with the 
impression that design problems are all ultimately mathematical problems of constrained optimization, 
where it is desired to optimize an objective function (e.g., minimize cost or maximize speed) subject to 
satisfying the constraints that the system produce certain specific behaviors; 
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or easier to assemble. However, most of these options exist only potentially, since only the PDP-16 
modules are commerically available.(2) Although we will treat general register-transfer design (in 
Chapter 8) and the design of RT-level modules themselves (in Chapter 7), the book concentrates on 
design with a fixed system of RT-level primitives (namely, the PDP-16 modules). 

THE TASK OF DESIGN 

Besides the two questions that you are entitled to ask, there is a third one: 

3. How does one design systems of type X? 

Whether you are entitled to an answer to this question or not is a moot point. In fact, you cannot obtain 
an adequate answer in specific and operational terms. Engineering textbooks on the design of X normally 
tell you all about the technology, analyzing its properties and what it can do. They exhibit some designs 
of systems. that accomplish typical but simple objectives and analyze how these designs actually meet 
the objectives. They also pose many simple problems, some in design, some further analyzing the 
technology. Beyond this, they assume that you will use your native intelligence and discover how to 
design by yourself. You have been led to water; it is up to you not only to drink but to find out how to 
drink. 

The difficulties in giving you an answer stem from two distinct sources. On the one hand, no one knows 
much about how design is actually accomplished by humans. The psychological processes involved are 
only a little studied and that only recently. On the other hand, what little is known, both about designing 
and educating, indicates that what must be learned consists of extensive cognitive structures built up in 
the context of attempting to design. Even if we knew all the right things (whatever they might be) and 
told them- all to you (and you listened) -- even so, this could serve only to let you construct for yourself 
the design situations in which to experience and learn, thus to grow into being a designer. In short, there 
may be no avoiding learning how to design by doing it. 

In this light a textbook on design should operate as a guide to experience. It should serve to immerse you 
in a continual sequence of designs, contrived to expose you to the right sorts of things and to let you see 
how certain ways of designing lead to successful designs. This book, then, consists mostly of design. 
problems, with various divisions of labor between what we design, which exhibit solutions for your 
understanding, and what we expect you to design, which let you obtain the experience yourself. 

Most of the explicit things we have to say about design will occur in connection with the specific design 
examples. But a few words can be said about the nature of the task of design. The fundamental problem 
of RT-level design can be stated thus: 

Given: (1) A technology consisting of a set of primitive 
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RT-level components and a method of assembling 
them into systems. 
(2) A specification of the behavior desired.

Create: A system out of the components that has the desired behavior.


2. The Macromodules of Clark are available in a more limited way. A single large collection of them 
exists in his laboratory at Washington University in St. Louis, where they are being used for 
experimental studies. 
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The physical technology that- underlies the register-transfer level is located at the basic logic level and 
permits the design-of any combinational or sequential logic circuit. There are no natural physical RT
level components and the creation of complete sets of RT-level primitives is an act of relatively 
unfettered conceptual design. The limits that exist are only on the total complexity of the components, 
not on the logic and memory functions they are to perform. 

Matters are still more complicated. There are many distinct physical technologies, even for the logic 
level. Much of the history of the computer and digital systems field can be traced to the spectacular 
development of these technologies, as they have increased in speed and reliability by orders of magnitude 
while decreasing in size and cost, also by orders of magnitude. The current array of technologies (various 
systems using MSI and LSI circuits) provide various cost/speed tradeoffs. They all have the property, 
stemming from the assembly of many basic logical elements on a single small physical surface (the 
chip), that they force the creation. of register-transfer level components. That is, not only do they finally 
make possible RT-level components,)they prohibit design in terms of a collection of physical 
components each representing a single basic logical element (a NAND gate or a flip-flop) that can be 
arbitrarily connected together to form-larger systems. 

RT-level technology is thus of recent origin (as opposed to the conceptual notions of the RT-level, which 
have been around since digital computers began). It has emerged only with the emergence of these 
underlying physical technologies. A great variety of RT-level components have been produced; they can 
be- found via manufacturer's catalogues (Texas Instruments,...; Fairchild Semi conductor...). But so 
recent is the technology that only two sets of complete RT- level primitives have been produced, the first 
being the Macromodules of Clark (1967) and the second being the PDP-16 RTM's used in the present 
book.(1) 

To be concrete, we give a specification of the physical characteristics of the RT-level components out of 
which the digital systems in this book will be designed. Modules vary in size, but all are on boards a few 
inches on each side. They vary widely in the amount of logical function they contain, but range from tens 
up to a few thousand. elementary logical operations and tens up to a few thousand bits of memory. They 
execute their operations (a transfer, an addition, etc.) in a few microseconds and the mean time between 
errors is of the order of 10|^12 operations (i.e., measured in fractions of a year). Costs vary with the 
complexity of the module, but a complex module is about a hundred dollars. Useful systems can be built 
with a dozen modules and small computers can be constructed with about twenty. Thus, the costs of the 
physical components of designed systems is in the range of one to a few thousand dollars. Given the 
design and the modules, the physical systems can be assembled and checked out in a few days by a single 
person. 

With these last specifications we have finally answered the second question on what digital systems are 
constructed of; It took some preparation, since we had to distinguish the particular slice of digital 
systems design we were concerned with. It even took a little cheating in-order to be specific, since (just 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000018.htm (1 of 2) [4/3/2002 6:17:37 PM] 

file://///gbell1/d$/My%20books/Designing_Computers_and_Digital_Systems%201972/00000018.htm


------------------------

Designing Computers and Digital Systems 

as with the tasks digital systems perform) digital technologies are diverse and offer a range of options. 
Compared to the PDP-16 modules, RT-level modules could be larger or smaller, faster or slower, cheaper 
or more expensive, harder 

1. Other sets of RT-level primitives have been discussed in the theoretical literature (e.g., Patil, 1970), 
but none have led yet -to new sets of physical primitives that can be used for actual systems. 
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register-transfer components. We will present a scheme for describing any set of RT-level components. 
In practice, there will be available only a particular set, and the full reality of design requires that we 
settle on some such set. We will do this, using a set called the DEC PDP-16 Register Transfer Modules 
(also called RTM's), which were specified initially by one of the authors (GB) with collaboration from 
another one (JO) and developed at DEC by John Eggert, Robert Van Naarden, and Peter Williams. The 
entire second chapter is devoted to defining these modules. 

Underlying any particular set of RT-level components is a technology that permits the construction of 
physical devices that perform as advertised for each component. It is this digital technology that dictates 
the speed, size, cost and reliability of the RT components. It is another peculiar feature of the RT-level of 
design of digital systems that the underlying physical technology can be used indifferently to produce 
many different sets of components. Tradeoffs in speed and cost exist, to be sure, but these are tradeoffs 
on the complexity of the processing accomplished by a proposed component. It very rarely happens that 
the. technology is good (say) for registers of size 16 bits, but bad for registers of size 24 bits, or good for 
logical, but bad for arithmetic operations. 

This separation of digital technology from the RT level reveals an important feature of digital systems: . 
the hierarchy of levels of design. It is common to distinguish four main levels: the circuit level (of 
resistors, transistors, etc.); the logic level (of bits and AND'S and OR'S); the programming level (of 
addresses and instructions); and the level of total system configurations (of processors and drums and 
printers).. This last topmost level has no accepted name, though we have proposed elsewhere (Bell and 
Newell, 1971) that it be called the PMS level (for processors, memories and switches, three of its most 
important components). In addition to these main levels there are others. One can move downward below 
the circuit level to the physics of the devices. There are many levels within the programming level, e.g., 
the levels defined by the operating system, by the higher languages being used, etc. Most important to us, 
there are two levels of logic; the combinational and sequential level and the register-transfer level.. 

With such a hierarchy of levels, there are several technologies that simultaneously exist for digital 
systems -- a technology for circuits, for logic- design, for programming and so on. It is important to 
know what level of technology is being assumed in a work on digital system design. The lower the 
starting technology, the more freedom is available in the construction of systems, but correspondingly, 
the more difficult is the design task to obtain a system that performs the desired information processing 
job. 

This book starts at the register-transfer level, which is the higher of the two logic levels. Most books on 
digital design start at some lower level. Recent books tend to start with the basic logic level of 
combinational and sequential circuits (e.g., Peatman, 1972). Earlier books, tended to start even lower 
down with the electronic circuits used to construct the basic logic elements, such as a flip-flop, an AND 
gate, and an inverter (e.g., Ware, 1963). 
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The gradual trend of digital design to start with higher and higher levels stems from three related aspects 
of the digital field: (1) the development of physical technologies that make it possible and economical to 
package physical components at higher levels; (2) the increasing complexity. of the systems to be 
designed, so that one simply cannot afford to start so far down; and (3). the gradual conceptual 
development of the field, so that it is possible to conceive of a base for design at the higher levels. Thus, 
this is the first book, as far as we know, that starts at the register-transfer level." But you may rest assured 
it will not be the last. 
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credited with the ability for general information processing. We use the more general term, but not to 
downgrade the computer. General purpose stored program digital computers are by far the most effective 
existing device for processing information above a certain level of complexity. But systems are always to 
be engineered to the actual tasks they are to perform. For many specific and limited in formation 
processing tasks, digital systems that do not have the classic organization of a stored program computer 
are cost-effective and are to be much preferred to the use of a general purpose computer. We do deal with 
computers and computer-like organizations in this book, as well as with other digital systems. But .our 
concern is not with the large data processing tasks and scientific calculations that lead immediately to 
large computers, higher level programming languages, multiprogramming, time sharing and multi 
processing. Our focus is on lesser fry. The computer organizations we entertain are mini computer 
systems, where there is always the potential that some other form of digital system will prove the design 
of choice, given performance and cost objectives. 

Despite our insistence on the propriety of a highly general answer to the first main question, you have a 
right to expect more, namely, that we should illustrate for you the kinds of information processing that 
can actually be achieved by digital systems that can actually be designed. A scan of the Table of 
Contents will show the array of different systems designed in the present book. Many of them, of course, 
do intermediate tasks, useful only if one is already in the :midst of digital systems: multiplication, 
interfacing to computer, conversion of analog signals to digital form, etc. But there are also systems that 
do an externally defined task: a histogram recorder, a programmable desk calculator, a music synthesizer, 
a coating thickness monitor, a system for controlling the destinations of objects on a conveyor belt, a 
system for testing the correctness of a memory, and a Turing machine (a general information processing 
system that has played a strong role in the theoretical development of computer science). Besides these, 
there are designs for several small digital computers, which simply puts off the question of what final 
information processing tasks can be done. Even within the confines of a single book, the diversity of 
tasks essentially precludes categorization, except in terms of amount of processing and size of memory 
required. 

WHAT DIGITAL SYSTEMS ARE CONSTRUCTED OF 

Digital systems are constructed out of registers, which hold information encoded in the form of arrays of 
bits. The registers are connected together by transfer paths, which permit the information in one register 
to be transmitted to another via processing units. These take as input sets of bits and provide as output 
some logical or arithmetic function of these bits. The level of digital systems corresponding to these 
components is called the register-transfer level (or RT level). 

This is not quite all there is to it. For one thing, it is critically important exactly what components are 
available in the way of registers, processing units and transfer paths, and what are their precise 
properties, in terms of performance, connectivity, reliability, cost, size, and availability. Real design 
occurs with real components and much that makes design an intellectual challenge derives from the fact 
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that only certain particular components are available out of all possible components. The old saw about 
"If wishes were horses, beggars would ride" applies with a vengenance to design. 

We will spend a goodly part of this first chapter describing the nature of 
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■	 CHAPTER 1 
INTRODUCTION 

This book tells how to design digital systems. Whenever a book proposes ~o teach you how to design 
systems of type X, you are entitled to ask two questions and receive specific answers: 

●	 1. What do systems of type X do? 

2. What is used to construct systems of type X? 

Only then will you know whether you should be interested in designing such systems, whether you want 
systems that perform the stated tasks, and whether the technology proposed is reasonable. There are 
many other reasons why you might wish to read or study a book on the design of type-X systems: The 
beauty of the designs; the rigor of the intellectual discipline; the view afforded of a complex intellectual 
structure; the pleasure of mastering yet one more art. All these, though real, should be secondary. Design 
is the art of obtaining useful devices, and technologies are fashioned to make design practical without 
excessive creativity and intelligence. First things first. 

Herewith we attempt to answer the two basic questions. 

WHAT DIGITAL SYSTEMS DO 

Digital systems process information. They do calculations on information input in specified physical 
forms, delivering answers represented in some other (or the same) physical form. They sense the current 
state of physical devices, such as instruments or manufacturing tools, and control them to achieve given 
objectives. They acquire information at a given time and in a given place, and make that information 
available at some later time and in some place. They monitor ongoing physical processes at discrete 
times so that they perform as desired, recording errors when they occur and deactivating a process if it 
moves outside of stated bounds of safety and reliability. 

If these statements seem to you too general -- that we should answer our question by stating-specific 
capabilities -- then it is you who must revise your notions, not us who must become more definite. For a 
peculiarity of digital systems is that they are capable of performing any specified task of processing 
information and, further, that they can perform any collection of such tasks, doing each when 
commanded. Not only are 'they capable of doing this, in some technical sense of possibility, but they are 
the main practical device for doing it in an ever widening domain of application. 

There are many technologies for processing information and for sensing and controlling physical devices. 
For instance an autopilot on an airplane senses broadcasted external signals from which it can determine 
the plane's position and then manipulate the plane's controls to guide it along a predetermined path. 
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Currently these devices are entirely analog, i.e. continuous, working with the intensities and phase 
relationships of received electromagnetic signals, making all the computations of how to respond in 
terms of voltages in fixed circuits, and effecting the. controls by setting other voltages appropriately. 
These analog systems have been developed to a high state of performance. and reliability. However, add 
a little complexity to the task, especially if it involves remembering past behavior or arbitrary future 
plans (e.g., a flight plan), and make digital technology a little cheaper, and digital systems may become 
practical competitors for the task. 

Digital systems include digital computers, which are the machines normally 
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insistence to one of the authors (GB) that there should be a reasonable way (especially for students) to 
build digital systems. This led to a National Science Foundation grant (GY-5160) for undergraduate 
laboratory equipment which was used to purchase RTM's. 

We would also like to thank Professor Angel Jordan, head of the Electrical Engineering Department, and 
Professor Joseph Traub, head of the Computer Science Department for their support and encouragement. 
In addition, Mr. Paul Stockhausen, business manager of the Computer Science Department, patiently 
provided valuable support for this work. 

AT CMU there have been a number of students and researchers who have contributed to the modules and 
to this book A simulator by Messrs. Bhandarkar, Goel, Rege, Schulte, and Staab contributed in -this 
regard. Mr. Paolo Coraluppi together with Messrs. Berera, Orban, and Philiph set up The PDP-16 
laboratory stations at CMU and got the first operational results with the modules in an educational 
environment. 

We have particularly enjoyed the experimentation with the art of textbook production, by using our own 
computing facility for editing and typesetting -- it being the antithesis of the conventional textbook 
production process. .. The specific people who used the process and contributed to, the direct production 
are credited, following the author page. Other than costing less for production, it is also approximately 5 
to 10 times faster. The editing and typesetting were done on line using the PDP-1O, in conjunction with 
the SOS editor and PUB typesetting programs developed at Stanford University. The printing masters 
were created directly using a Xerox -LDX(Long Distance Xerography) printer which was developed at 
CMU. The printer has a 200 point/inch resolution and is driven directly by a PDP-11. All characters are 
thus generated point by point by scanning, and a page is printed in about 10 seconds. The pages are then 
photoreduced for lithographic offset printing. Professor Raj Reddy led the development of the LDX 
project. Lee Erman, Richard Neely, George Robertson, Philip Karlton, and Richard Johnsson provided 
consultation and-programming in making the system convenient to operate . The necessary News. Gothic 
Roman character sets were formed and input by Janice Karlton. 

It is evident that we have had much help with this book. However, we alone remain responsible for the 
remaining errors and difficulties in the text and problems. 

G.B. J.G. A.N. 

July, 1972 
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permits some additional features of RT-level design to emerge that remain hidden if a fixed set of 
primitives is taken. It also reflects the fact that most RT-level design is still done ad hoc, without a set of 
primitives in mind. Chapter 9 is on the problem of debugging a system, designing systems for testability, 
and testing (verifying) that the individual modules carry out their required function. To a very real extent 
we have completely overlooked the constraint in all problems that these designs have to be tested. We 
hope to be forgiven for this, for we do not approve of such design. Our only excuse is that the testing 
constraint might obscure the problem. For the student who builds actual systems, testing will be a very 
important problem, after he builds his first system. 

Various supporting and reference materials are gathered into Tables at the end of the book. 

Ideally all of the example problems would have been verified by either construction or simulation. This is 
not the case. Only a few of the designs have been wired; these include sum-of-integers, multiplication, 
Teletrola (by Michael Knudsen), several of the computers, and various arithmetic algorithms. Simulation 
has also been used on the CMU RTM simulator, but is generally top costly. Also, some of the designs are 
pedagodical in nature, and presented only to show tradeoffs. Therefore, the reader will no doubt find a 
number of errors. We hope these will be fed back to us so that we may correct subsequent versions. 

The list of acknowledgements with regards to the modules is long and we will attempt to be as complete 
as our memories allow. It would be difficult to acknowledge all the representational work which permits 
the simple description of these structures, because its origin is with the state machine and flowchart. 
Clark's Macromodules (with engineering care and assistance of Charles Molnar), provided the main 
impetus to the idea that fairly large modules could exist to build digital systems, these being smaller than 
computer components (i.e., Processor, Memory, Switches), but still much larger than gates and flip flops 
packaged into Integrated Circuits. Much of the work on expressing and implementing control was taken 
from the PDP-6 and PDP-1O -- especially the ideas of parallel and serial branches and subroutines. 

Research on basic . ideas underlying hardware modularity together with various applications, studies was 
supported by Advanced Research Projects Agency of the Office of the Secretary of Defense (F 44620-67-
C-0058) and is monitored by the Air Force Office of Scientific Research. 

The whole management group at DEC who, in fact, are on the line for deciding to produce such a 
collection of modules, are perhaps the only real pioneers that have anything to lose by building them. 
These include Kenneth Olsen, Stanley Olsen, Al Devault, and Fred Gould. Robert Pouliot and Bill Hogan 
finally decided to produce and distribute the textbook -- they also being responsible for module sales. 
This group is responsible for allowing us to experiment with the production of textbooks. The 
engineering group led by John Eggert, with the assistance of Peter Williams and Robert Van Naarden are 
to be commended for carrying basic ideas and specifications to a workable engineering solution. 

Professor E. M. (Rod) Williams, former Head of Electrical Engineering at CMU, was a key factor in PDP
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thus to be charged to capital budgets rather than current expenses, and to be reviewed by a Facilities 
Committee. The success of minicomputers is gradually wearing down some of these myths, though it 
leaves others untouched. The sort of digital systems designed in this book give the lie to all of them. But 
even realities dispel myths only slowly. Thus, we feel it is legitimate to state the case for register-transfer 
systems designs in specific and unequivocal terms. This book is our attempt to do so. 

The book is organized as follows: Chapter 1 provides an introduction, describing both what digital 
systems are and their applications. It includes a basic description of register-transfer level modules in the 
functional PMS language used throughout the book It also introduces ways to specify the behavior of 
desired systems. It provides a set of diverse examples of digital systems to define concretely the scope of 
the book. Finally, it discusses the processes of design. Chapter 2 is a systematic description of the 
specific set of PDP- 16 modules. 

Chapter 3 gives the solutions of 8 small systems built from RTM's: These should give the reader a good 
feeling about the design process and what RTM systems look like, since the problems being solved are 
small and straightforward. These problems are presented in a relatively standard format which we carry 
throughout. 

Chapter 4 is the main reference on the process of RTM design. It too uses a problem, that of a multiplier, 
to illustrate both the design process and the many trade-offs that are possible even with a limited set of 
modules. These tradeoffs include: hardware-microprogram-program; parallelism (time-size) in the form 
of concurrency, array processing, and pipeline processing; the algorithm; and memory-compute. 

Chapters 5 and 6 proceed by cases to design a wide array of systems. Some are introduced at length with 
intensive discussion, some are given simply as problems. Always there are suggestions for further work, 
even where our own treatment is most complete. Generally, designs are separated from the statement of 
the design problem, so that a student can attempt the design first, before seeing how we approached the 
problem. Any of the readers mentioned earlier-in the preface should find some designs to fit his interest 
or tickle his fancy. We include the design of several real computers so that the mystery of the operation 
of computers can be dispelled once and for all, for all readers. In Chapter 6, we urge the reader who has 
never designed, built, and programmed his very own stored program computer to take the few days to do 
so. All in all, about one hundred design problems are posed and treated, and a similar number of tasks are 
posed. 

Chapter 7 disc the design of register transfer modules themselves. This is necessary, not only to keep 
them from appearing to be black boxes, but because no one set of modules is appropriate for all tasks. As 
a by-product, we hope that some integrated circuit logical designer will read this and derive designs for 
control schemes that people can actually easily use with integrated circuit logical design. We also hope to 
encourage the logic design textbook writer to think about control schemes. Chapter 8 treats register 
transfer design generally, freed from the dependence on the PDP-16 modules. This chapter 
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(1971) for structure and behavior, knowledge of these, languages (notations) is not required. We have 
avoided using a register transfer language for defining behavior. We use instead the flowchart, with ISP 
language expressions. This method is equally formal and precise, yet shows 'the structure and parallelism 
without burying the reader in the language control syntax. We do invite the reader to describe and design 
RTM systems in his favorite (1 dimensional) register transfer language, as an exercise. Alternatively, he 
should simulate his design in a conventional language (e.g., Fortran). In a few instances, we have 
described systems in pure ISP language. 

The book is aimed primarily at people who wish to design specific small digital systems -- either to learn 
about digital technology or to accomplish a particular task. The book is specifically designed to be used 
as either a primary or a secondary text in undergraduate and graduate courses on logical design. It can 
also be used for self study by students in departments of electrical engineering. and computer science. It 
is especially suited for the latter, if the department does not provide any courses that descend below the 
programming level to tell how digital systems really operate. Although not a requirement, a knowledge 
of a programming language will be helpful in reading the book. 

When the book is used as a primary text, at the sophomore or junior level, as a first course, some minor 
amount of supplementary material on number representation and Boolean algebra may be useful. After 
the first four chapters, the book becomes topical and can be read in any order. We strongly recommend 
the style of design and analysis given in Chapter 4, and several weeks can be spent studying this chapter. 

The book is also designed specifically for self study by engineers and scientists of all persuasions (civil, 
mechanical, chemical,..., physics, chemistry, biology,..) who deal with laboratory and industrial 
processes that need monitoring and control. As this book demonstrates, the design of RT-level systems is 
no more difficult than programming, the construction of working systems is no more onerous than 
debugging programs,, and the cost of such systems is low enough to be cost-effective for use with all 
manner of laboratory instrumentation, industrial instrumentation, and production processes. The 
performance that can be delivered in the way of useful bits processed per second per dollar is, for the 
right task in the right place, phenomenal. The design time appears to be cut at least a factor or 10, making 
it possible to design, wire, and test a simple computer or a desk calculator in about 20 hours. 

If we appear to sell a little bit in the previous paragraph, that sour intent. There is a certain amount of 
missionary work to be done. The making of myths is a constant avocation of man. He establishes them 
continually as he packages his experiences in verbal formulas to make his world seem comfortable and 
familiar. They linger almost forever, being cut free from the old experiences that generated them. Some 
myths that cling to the computer field are: that hardware is much harder to construct than software, so 
always program rather than construct equipment; "that all digital systems are digital computers; that 
interfacing digital systems to the external world is complex and costly; that the only fit interfaces for 
digital systems. are punched cards in and printers out (recently modified to include Teletypes in and out); 
that digital systems are expensive facilities (i.e., capital equipment), rather than instruments or supplies, 
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of our own invention), and partly because these are the only system of RT modules that are readily 
available through commercial channels. 

In addition, we believe that the emergence of the RT-level is still uncertain enough in its character that it 
should stay fairly close to its roots. The field is not quite ready for a general treatment of the register
transfer level. In fact, we have in preparation a more extended and scholarly treatment which includes 
other modules, microprogramming, and switching circuit RT design; the present book can be viewed as 
an initial attempt to characterize and create this level in an appropriate way. 

Although the book uses only a single set of modules (aside from one chapter) and might appear limiting, 
we urge the reader to go beyond the book and see for himself how general RT level design is carried out. 
Only some imagination is needed to show that the representation and design techniques are applicable to 
other RT schemes. We believe the payoff for the reader will be far greater than, say, reading about RT 
languages for the simulation of hypothetical digital systems. 

To those who are interested in microprogramming, RTM's provide a very interesting structure. 
Microprogrammed and RTM operations appear similar; at each step there are one or more register 
transfer actions, and input conditions select the next step. There are two substantial differences between 
RTM and microprogrammed systems: the RTM control part is hardwired (as opposed to being stored in a 
memory); and the RTM structure can be changed (as opposed to having a fixed data and control part). 

A special microprogrammed control module called K(Programmed Control Sequencer) is also. provided 
as an alternative to hardwiring the control part. Thus, for studying and using microprogramming, its 
advantages remain, but in addition the very structure can also be changed, providing substantial 
flexibility. 

The book is written in an elementary 'how-to" fashion. Its aim is to get people to design digital systems at 
the RT level. Our reasons for choosing this style of book can be inferred from the previous paragraphs. 
Let us note only that a design level exists and becomes real only if lots of designs get created in its terms. 
Thus a "how-to" book in the area of design plays the same role as does the treatise, with theory and 
supporting data, in an area of science. This has led us to make various assumptions about our readers. 

Thus, we have not discussed number representation in any detail for several reasons. Positional notation 
for representing binary numbers is being presented in primary and secondary schools. In the rare cases 
where readers are not familiar with number representation, the concepts can either be "picked up" herein, 
or be obtained from any book that has anything to do with digital computers or digital systems. Boolean 
algebra is also not given for the same reasons. Both concepts are not used in substantial quantities, 
although the reader may feel they are needed to thoroughly understand all of the problems. The concepts 
of integers and Boolean algebra as given in a programming language (e.g., Fortan, Algol, Basic) are 
sufficient. 
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PREFACE 

Digital technology continues to change and with it changes both our understanding of digital systems and 
the nature of the cost-effective ways to create them. The development has continued to be towards 
greater performance and the accomplishment of more complex information processing tasks. 
Simultaneously it has continued toward cheaper, more reliable systems, and the accomplishment .of an 
ever widening spectrum of tasks. This joint development gives no hint yet of slackening. 

One particular item in this development is the current emergence of the register-transfer level (RT level) 
to the status of a full fledged system level. The conceptualization of digital systems in terms of registers 
and data transfers goes back to the beginnings of digital computers. But in practice logical design has 
been carried out in terms of combinational and sequential circuits, with the concepts of registers, 
functional units and transfer paths playing only a heuristic role. Examination of any of the standard 
books on logical design will confirm this, as will the degradation of the formal concern with the register
transfer level since the work of Bartee, Lebow and Reed (1962) which provided a high water mark in the 
explicit treatment of this level. 

The current maturation of the register-transfer level is due primarily to the technology -- to MSI and LSI 
fabrication techniques. However, it is perhaps due also to the creation of systems of primitives at the RT 
level, first the Macromodules by Wesley Clark (1966) at Washington University and then by one of the 
authors, (see Bell and Grason, 1971). These have provided the conceptual scheme around which to 
conceive of design operating exclusively at the register-transfer level, without involvement of the lower 
logical levels of general combinational and sequential circuits. An additional conceptual tool, in our own 
case at least, has been the development of an appropriate language for describing RT-level components 
(so-called PMS notation, see Bell and Newell, 1971). This is a functional notation which has led us off in 
a somewhat different direction than that implicit in the earlier attempts to create a register-transfer level, 
e.g., the work of Bartee et.al., which was strongly algebraic in character (essentially formalizing the level 
as Boolean rings on vector elements). 

This book is an attempt to bring this level of design to fruition. We have based it strongly on the use of a 
specific set of RT-level components, the DEC PDP- 16 modules which we call Register Transfer 
Modules (RTM's). Our reasons for using RTM's herein are partly pedagogical, partly proprietary (in both 
a corporate(1) and a personal sense--we like our own modules, they being children 

1. The system of modules used here was originally called Register Transfer Modules (RTM's) and was 
initally designed by one of us (GB) at Carnegie- Mellon University for educational purposes under an 
NSF equipment grant (GY 5160). They have been described in the literature (Bell and Grason, 1971; 
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Bell, Eggert, Grason, and Williams, 1972). The production version of these modules was developed by 
John Eggert and Peter Williams of DEC, using the name PDP-16. These differ slightly from the original 
RTM's, mostly for production reasons. The PDP-16 set is described in the present book, although the 
precise definition specification is given in DEC PDP-16 Computer Designer's Handbook, 1971. 

v 
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