

DECUS NO.

85

TITLE

The LISP Implementation for the PDP-1 Computer

AUTHOR

L. Peter Deutsch and Edmund C. Berkeley

COMPANY

DATE

March 1964

FORMAT

LISP

Appendix 5

The LISP Implementation for the PDP-1 Computer

L. Peter Deutsch and Edmund C. Berkeley

TABLE OF CONTENTS

Part I

- 1. Introduction
- 2. Functions and Properties Included in Basic PDP-1 LISP
- 3. Use of these Functions and Suggested Test Sequences
- Auxiliary Functions which May Be Defined with LISP Expressions
- 5. Some Additional Functions for Basic PDP-1 LISP
- 6. Input and Output
- 7. Operation of the System
- 8. Error Diagnostics
- 9. Some Remarks

Part II

- 1. Macro Symbolic Program for Basic PDP-1 LISP
- 2. Alphabetic Listing of Defined Macro Symbols
- 3. Numeric Listing of the Defined Macro Symbols
- 4. Mnemonic Key or Derivation of Symbols

Part I

1. Introduction

In October 1963 a system for implementing LISP on the PDP-1 computer was finished by L. Peter Deutsch. This system was further improved in March 1964 by adding:

-- variable length of push-down list;

-- variable quantity of combined storage;

-- optional machine language subroutines;

and is here called Basic PDP-1 LISP. It uses a minimum of some 2000 (decimal) registers out of 4096 registers in a one-core PDP-1 computer; it may use 16,361 registers in a four-core PDP-1 computer.

Basic PDP-1 LISP is presented in considerable detail in this appendix for the following reasons:

-- the structure of a system for programming LISP on any computer is thereby revealed;

-- if changes are to be implemented, they can be easily linked with the existing system.

In a one-core PDP-1 computer with 4096 registers, as many as 4070 registers may be assigned to regular LISP, and only 23 reserved for the read-in routine (namely, from 7751 to 7777, octal).

With the system described here, additional LISP functions can be defined and included in the system and later used when desired. Or if desired, additional functions can be programmed in machine language and these can be inserted compatibly with the system.

Punched tapes for placing this LISP system on the PDP-1 computer are available through DECUS, the Digital Equipment Corporation Users Organization, Maynard, Mass.

In the following, it is assumed that the reader has a fairly good working knowledge of: (1) LISP (which may be obtained from the "LISP 1.5 Programmer's Manual," 1962); (2) the machine language codes for the PDP-1 computer (which may be obtained from the computer manual supplied by Digital Equipment Corporation); and (3) the program assembly language MACRO, in which the sym-

bolic tapes are written (a description may be obtained in two manuals published by Digital Equipment Corporation).

2. Functions and Properties included in Basic PDP-1 LISP

The functions and properties included in Basic PDP-1 LISP are shown in Table 1. These functions and properties together constitute a basic subset of the functions and properties of the LISP interpreter for the IBM 7090, as stated in the LISP 1.5 Programmer's Manual.

In order to obtain other LISP functions and properties as may be desired for any particular purpose, see Sections 4 and 5 below.

Table 1 FUNCTIONS AND PROPERTIES OF BASIC PDP-1 LISP

A. Functions Identical with the Corresponding IBM 7090 LISP Functions

MOTA	LIST	PROG
CAR	LOGAND	QUOTE
CDR	LOGOR	READ
COND	MINUS	RETURN
CONS	NULL	RPLACA
EVAL	NUMBERP	RPLACD
GENSYM	PLUS	SASSOC
GO	PRINT	SETQ
		TERPRI

B. Functions Somewhat Different from the Corresponding 7090 Functions

EQ This works both on atoms and on numbers

GREATERP This tests for X greater than Y, not for X
greater than or equal to Y.

STOP This is equivalent to PAUSE in 7090 LISP. It
takes a numerical argument which appears in
the accumulator when the computer halts.

PRINT X This prints the atom X without the extra space
at the end. Its value is NIL.

C. Functions Which Have No Analog in 7090 Functions

XEQ This provides for putting into storage a named machine language subroutine, which can be referred to and used by the PDP-1 LISP interpreter. It also provides for executing single specified machine language instructions.

The SUER (XEQ C A I) executes the machine language instruction C, with A in the accumulator and I in the in-out register; and returns a value in the form of $(\underline{a} \ \underline{i} \ \underline{P})$ where \underline{a} is the new value of the accumulator after execution, \underline{i} is the new value of the in-out register after execution, and \underline{P} is T if the instruction skipped, and NIL if the instruction did not skip.

LOC X This gives the machine register in which the atom or list X begins; its value is the location.

Of the foregoing functions, COND, LIST, PROG, SETQ, PLUS, TIMES, LOGAND, LOGOR, and QUOTE are FSUERs and the remainder are SUERs.

D. The following special form is available and is identical with the corresponding form in 7090 LISP:

LAMBDA

E. The following permanent objects exist in the Basic PDP-1 LISP system:

OBLIST the current list of atomic symbols NIL F has been replaced by NIL

EXPR

FEXPR

FSUBR

APVAL

F. Miscellaneous

The print names of atomic symbols are <u>not</u> part of property lists. A quick examination of listings of the system will show exactly where the print names are.

Doing a CDR of an atom is permissible and will get the atom's property list. Doing a CAR of an atom may very easily wreck the system.

QUOTE should be used in place of 7090 FUNCTION. This may re-

quire a bit of extra care in defining functions with functional arguments.

It is advisable to use PROG to avoid recursion wherever possible, even though it may take more space.

3. Use of these Functions and Suggested Test Sequences

How to use these functions is briefly explained here.

As soon as the basic PDP-1 LISP system is read into the computer, control stops at register 4. Turn up sense switch 5 for typewriter input; press CONTINUE; and the system enters a waiting loop which causes lamps to light in the program counter, looking like 1335. At this point, the LISP system is ready for manual typewriter input. As soon as the operator types, for example:

together with a final space at the end of the last right parenthesis, the computer takes control of the typewriter, impulses a carriage return, and then types out:

A

which of course is the correct answer. Similarly, for the other suggested test sequences in Table 2 below.

Table 2
SUGGESTED TEST SEQUENCES

(CAR (QUOTE (A B C D))) A (CDR (QUOTE (A B C D))) (B C D)	Input		Response
(CDR (QUOTE (A B C D))) (B C D)	(CAR (QUOTE (A B	; D)))	A
	(CDR (QUOTE (A B	: D)))	(B C D)
type out a comple list of the atomi	OBLIST		The interpreter will type out a complete list of the atomic symbols stored with- in it.
(LIST (QUOTE (A B C D))) ((A B C D))	(LIST (QUOTE (A	3 C D)))	((A B C D))

NIL	NIL
(CDR NIL)	(APVAL NIL)
(CAR (QUOTE (T.NIL)))	T
(CONS (ATOM (CDR T)) (LIST (GENSYM) (GENSYM)))	(NIL G00001 G00002)
(COND (EQ T NIL) (STOP 1)) (T (EQ (PLUS 1 1) 2)))	T
(PROG (U) (PRINT NIL) (TERPRI) (PRINT T) (SETQ U T) (RETURN U))	NIL T T
(RPLACD (QUOTE CAAR) (QUOTE (EXPR (LAMBDA (X) (CAR (CAR X)))))) (CAAR (QUOTE ((A))))	CAAR
(STOP 2)	Computer stops and
	puts 2 in the accumulator.
(PRIN1 (QUOTE CAR))	CAR, with no punctua- tion before or after; the value of PRINI is NIL.
(PRINT X)	Prints out the value of X; the value of (PRINT X) is X.
(TERPRI)	Prints a carriage return; the value of (TERPRI) is NIL.
(LOC NIL)	2651; this is the register where the NIL atom starts.
(LOC (QUOTE COND))	2725; this is the register where the COND atom starts.
(LOGAND 6 7 3)	2
(LOGOR 12 3 15)	17

(RPLACA (QUOTE (NIL X Y))
(QUOTE (A B)))

((A B) X Y)

Suppose the computer contains DDT — DDT is short for "Digital Equipment Corp. Debugging Tape"; its starting register is 6000, and in one of its customary forms it uses registers 5540 to 7750. Then, if the highest storage register of LISP is below 5540, the instruction:

(XEQ 606000 0 0)

transfers control to DDT, and puts zero in the accumulator and in the in-out register.

If there is the following subroutine stored in the computer:

5500 dzm 5507 idx 5507 5501 5502 lac 5507 dpy! 5503 5504 sma 5505 jmp 5501 jmp 2241 5506 (being used for storage) 5507

and LISP is below 5500, then:

(XEQ 605500 0 0)

Will cause a horizontal line
to be drawn on the scope
from the origin to the xaxis positive limit, and
then control will be returned to LISP.
NIL will be typed out.
2241 is the register called
"prx" in the macro symbolic.

4. Auxiliary Functions Which May Be Defined with LISP Expressions

Any of the functions listed below in Table 3 can be put into the system at will, as follows: Prepare a punched tape listing of it. Insert tape into the reader. Turn on the reader. Turn down Sense Switch 5. Thereupon the computer will read in the The typewriter, when the reading in is accomplished, the inserted function. type back the name of 3 may be other functions besides those listed in Table inserted.

Table 3

AUXILIARY LISP FUNCTIONS

(GREATERP (RPLACD (QUOTE ABSVAL) (QUOTE (EXPR (LAMBDA (X) (COND O X) (MINUS X)) (T X))))))

(LAMEDA (X A) (PROG NIL N (COND (EVAL (CAR X) A)) (RETURN NIL))) (RPLACD (QUOTE AND) (QUOTE (FEXPR (NULL X) (RETURN T)) ((NULL (SETQ X (CDR X)) (GO N))))) B

(RFLACD (QUOTE ASSOC) (QUOTE (EXPR (LAMEDA (X Y) (COND ((EQUAL (CAAR Y) X) (CAR Y)) (T (ASSOC X (CDR Y)))))))

(RPLACD (QUOTE CAAR) (QUOTE (EXPR (LAMEDA (X) (CAR (CAR X))))))

(QUOTE CADR) (QUOTE (EXPR (LAMBDA (X) (CAR (CDR X))))))

(LAMEDA (X) (CDR (CAR X))))) (EXPR (QUOTE (QUOTE CDAR)

(LAMEDA (X) (CDR (CDR X)))))) (EXPR (QUOTE (QUOTE CDDR.)

COUCTE APVAL) Y)))))) (RPLACD (QUOTE CSET)

(RPLACD (QUOTE CSETQ) (QUOTE (FEXPR (LAMEDA (X A) (CSET (CAR X) (EVAL (CADR X) A))))))

(RPLACD (QUOTE DEX) (QUOTE (FEXPR (LAMBDA (X A) (RPLACD (CAR X) (CONS (QUOTE EXPR) (CDR X))))))))

(RPLACD (QUOTE DEX) (QUOTE (FEXPR (LAMBDA (X A) (RPLACD (CAR X) (CONS (QUOTE FEXPR) (CDR X)))))))

(RPLACD (QUOTE DIFFLIST) (QUOTE (EXPR (LAMBDA (A X) (COND ((NULL X) NIL) ((EQUAL A (CAR X)) (DIFFLIST A (CDR X))) (T (CONS (CAR X) (DIFFLIST A (CDR X)))))))

(RPLACD (QUOTE DOUBLE) (QUOTE (EXPR (LAMEDA (X) (PLUS X X)))))

(RPLACD (QUOTE EQUAL) (QUOTE (EXPR (LAMEDA (X Y) (COND ('ATOM X) (EQ X Y)) ('ATOM Y) NIL) ('EQUAL (CAR X) (CAR Y)) (EQUAL (CDR X) (CDR Y))) (T NIL)))))

(RPLACD (QUOTE GCD) (QUOTE (EXPR (LAMEDA (X Y) (COND ((GREATERP X Y)))))))))

(RPLACD (QUOTE LAST) (QUOTE (EXPR (LAMBDA (L.) (COND ((NULL L.))))) (T (LAST (CDR L.))))))))

(RPLACD (QUOTE LENGTH) (QUOTE (EXPR (LAMEDA (L.) (PROG (U V) (SETQ V O) (SETQ U L.) A (COND ((NULL U) (RETURN V))) (SETQ U (SETQ V (PLUS 1 V)) (GO A))))))

LENGTH using Recursion (QUOTE LENGTHR) (QUOTE (EXPR (LAMEDA (L) (COND ((NULL L) (T (PLUS 1 (LENGTHR (CDR L)))))))))) (RPLACD

(RPLACD (QUOTE MAPLIST) (QUOTE (EXPR (LAMEDA (X A) (COND ((NULL X) NIL) (T (CONS (A X) (MAPLIST (CDR X) A)))))))

(RPLACD (QUOTE MAPLIST) (QUOTE (FEXPR (LAMEDA (X A) (PROG (V M R)

(SETQ R (SETQ M (LIST (EVAL (CADR X) A))) (SETQ V (EVAL (CAR X) A)) P (COND ((NULL V) (RETURN (CDR R)))) (SETQ M (CDR (RPLACD M (LIST (EVAL (LIST (CAR R) (LIST (QUOTE QUOTE) V)) A))))) (SETQ V (CDR V)) (GO P)))))

MEMBER

(RPLACD (QUOTE MEMBER) (QUOTE (EXPR (LAMBDA (A X) (COND ((NULL X) NIL) ((EQ A (CAR X)) T) (T (MEMBER A (CDR X))))))

MINIMUM
(RFLACD (QUOTE MIN) (QUOTE (EXPR (LAMBDA (L) (COND ((NULL L) NIL) ((NULL (CDR L)) (CAR L)) (T (SMALLER (CAR L) (MIN (CDR L))))))))))))))))

(RFLACD (QUOTE NOT) (QUOTE (EXPR NULL)))

(PROG NIL N (COND (RETURN T))) (RPLACD (QUOTE OR) (QUOTE (FEXPR (LAMEDA (X A) ((NULL X) (RETURN NIL.)) ((EVAL (CAR X) A) (SETQ X (CDR X)) (GO N)))))

PAIR

(RPLACD (QUOTE PAIR) (QUOTE (EXPR (LAMBDA (X Y) (PROG (U V M) (SETQ U X) (SETQ V Y) (SETQ M NIL) K (COND ((NULL U) (COND ((NULL U) (RETURN M))))) (SETQ M (CONS (CONS (CAR U) (CAR U)) (SETQ U (CDR U)) (SETQ V (CDR V)) (GO K))))))

PATRLIS

(RPLACD (QUOTE PAIRLIS) (QUOTE (EXPR (LAMBDA (X Y A) (COND ((NULL X) A) (T (CONS (CONS (CAR X) (CAR Y)) (PAIRLIS (CDR X) (CDR X) (CDR X)

(RPLACD (QUOTE PDEF) (QUOTE (FEXPR (LAMBDA (X A) (LIST (QUOTE RELACD) (LIST (QUOTE QUOTE (CAR X)) (LIST (QUOTE QUOTE (CAR X)) (LIST (QUOTE QUOTE) (CDR (CAR X)))))))))

(RPLACD (QUOTIENT) (QUOTE (EXPR (LAMEDA (Q D) (PROG (U V) (SETQ V O) (SETQ U Q) A (COND ((GREATERP D U) (RETURN V))) (SETQ U (PLUS U (MINUS D))) (SETQ V (PLUS 1 V)) (GO A)))))

QUOTIENT using Recursion
(RPLACD (QUOTE QUOTIENTR) (QUOTE (EXPR (LAMBDA (Y X) (COND GREATERP X Y) 0) ((EQ X Y) 1) ((GREATERP X X) (PLUS 1 (QUOTIENTR (FLUS Y (MINUS X)) X))))))

- REMAINDER
 (RPLACD (QUOTE REM) (QUOTE (EXPR (LAMBDA (Y X) (COND ((EQUAL Y X) O) ((GREATERP X Y) Y) (T (REM (PLUS Y (MINUS X)) X))))))
- REVERSE (Defined Recursively with Auxiliary Function)
 (RPLACD (QUOTE R1) (QUOTE (EXPR (LAMBDA (M L) (COND ((NULL L) M)
 (T (R1 (CONS (CAR L) M) (CDR L))))))))
 (RPLACD (QUOTE REVERSE) (QUOTE (EXPR (LAMBDA (L) (R1 NIL L)))))
- REVERSE using Program Feature

 (RPLACD (QUOTE REVERSE) (QUOTE (EXPR (LAMEDA (M) (PROG (U V)

 (SETQ U M) K (COND ((NULL U) (RETURN V))) (SETQ V (CONS

 (CAR U) V)) (SETQ U (CDR U)) (GO K)))))
- SEQUENCE

 (RPLACD (QUOTE SEQUENCE) (QUOTE (EXPR (LAMEDA (L) (PROG (U V W)

 (SETQ U L) (SETQ V (MIN L)) (SETQ W NIL) A (COND ((NULL U)

 (RETURN W))) (SETQ V (MIN U)) (SETQ U (DIFFLIST V U))

 (SETQ W (APPEND W (LIST V))) (GO A)))))
- (RPLACD (QUOTE SMALLER) (QUOTE (EXPR (LAMEDA (X Y) (COND (GREATERP X Y) Y) (T X)))))
- (RPLACD (QUOTE SUB2) (QUOTE (EXPR (LAMBDA (A Z) (COND ((NULL A) Z) ((EQ (CAAR A) Z) (CDAR A)) (T (SUB2 (CDR A) Z)))))))
- (RPLACD (QUOTE SUBLIS) (QUOTE (EXPR (LAMBDA (A Y) (COND ((ATOM Y) (SUB2 A Y)) (T (CONS (SUBLIS A (CAR Y)) (SUBLIS A (CDR Y)))))
- (RPLACD (QUOTE SUBST) (QUOTE (EXPR (LAMEDA (X Y Z) (COND ((EQUAL Y Z) X) ((ATOM Z) Z) (T (CONS (SUBST X Y (CAR Z)) (SUBST X Y (CDR Z))))))))
- TIMES using Recursion
 (RPLACD (QUOTE TIMES) (QUOTE (EXPR (LAMEDA (N M) (COND ((EQUAL N 1) M) (T (PLUS M (TIMES M (PLUS N (MINUS 1)))))))))

TIMES using Program Feature

(RPLACD (QUOTE TIMES) (QUOTE (EXPR (LAMEDA (X N) (PROG (U V)

(SETQ V O) (SETQ U O) A (COND ((EQ V N) (RETURN U))) (SETQ U

(PLUS X U)) (SETQ V (PLUS V 1)) (GO A))))))

(RPLACD (QUOTE UNION) (QUOTE (EXPR (LAMBDA (X Y) (COND ((NULL X)
Y) ((MEMBER (CAR X) Y) (UNION (CDR X) Y)) (T (CONS (CAR X)
(UNION (CDR X) Y)))))))

(RPLACD (QUOTE ZEROP) (QUOTE (EXPR (LAMBDA (X) (COND ((EQUAL X O) T) (T NIL)))))

5. Some Additional Functions for Basic PDP-1 LISP

In order to remove symbols from the OBLIST, and reuse the storage capacity that they previously occupied, we use:

- (RPLACD (QUOTE XSY) (QUOTE (EXPR (LAMBDA (X) (PROG (Y) (SETQ Y OBLIST) A (COND ((NULL (CDR Y)) (RETURN NIL)) ((EQ X (CAR (CDR Y))) (RETURN (RPLACD Y (CDR (CDR Y)))))) (SETQ Y (CDR Y)) (GO A)))))
- (RPLACD (QUOTE REMOVE) (QUOTE (FEXPR (LAMBDA (X Y) (PROG NIL A (COND ((NULL X) (RETURN OBLIST))) (XSY (CAR X)) (SETQ X (CDR X)) (GO A))))))

XSY stands for "expunge symbol".

REMOVE is used as follows: Suppose we have a case where the OBLIST starts for example with G F OBLITT Y X ATOM CAR CDR COND CONS and we wish to delete F OBLITT Y. We put in: (REMOVE OBLITT F Y), and the computer response is:

G X ATOM CAR CDR CONS

In this way, both accidentally mistyped expressions and symbols no longer needed in the LISP system can be removed from storage, and from any recollection within the LISP system. (Note: REMOVE will not operate on the first expression in the OBLIST, but only on the second and later expressions.)

In order to put in machine-language subroutines, outside of the storage used by LISP, name them, use them, and return from them to LISP, we use:

- (RPLACD (QUOTE DEPOSIT) (QUOTE (EXPR (LAMEDA (X Y) (PROG NIL A (COND ((NULL X) (RETURN Y))) (XEQ (PLUS 240000 Y) (CAR X) 0) (SETQ X (CDR X)) (SETQ Y (PLUS 1 Y)) (GO A))))))
- (RPLACD (QUOTE PUTSUER) (QUOTE (EXPR (LAMEDA (N X Y) (PROG NIL (RPLACD N (LIST (QUOTE SUBR) (PLUS 160000 Y))) (RETURN (DEPOSIT X Y)))))))
- (RPLACD (QUOTE DEFSUBR) (QUOTE (EXPR (LAMBDA (N X) (RPLACD N (LIST (QUOTE SUBR) (PLUS 160000 X)))))))

The EXPR (DEPOSIT X A) deposits the list of numbers X starting at location A; its value is the first register beyond the list.

The EXPR (PUTSUER N X A) performs (DEPOSIT X A), and then sets up N (name) as a SUER starting at A.

An example (if LISP storage stops at 5477) is:

(PUTSUER (QUOTE SHOWLINE) (LIST 345507 445507 205507 730007 640400 605501 602241) 5500)

This inserts the line-display program mentioned above into the computer starting at register 5500 and makes it accessible to LISP with the name SHOWLINE.

The EXPR (DEFSUER N X) accepts an existing, inserted, machine-language subroutine starting at register X, gives it the name N, and makes it accessible to LISP with the name N. For example, the line-display program mentioned above, if already in the computer, could be named and called with:

(DEFSUBR (QUOTE SHOWLINE) 5500)

The last command in the subroutine, instead of 602241, should be either 600004, if LISP is to return to the starting address 4, or 600005, if LISP is to continue to the waiting loop.

If the A-LIST is wanted, establish GETALIST with:

(RPLACD (QUOTE GETALIST) (QUOTE (FEXPR (LAMBDA (X Y) Y))))

and then use:

(PRINT (GETALIST))

6. Input and Output

Input comes from the typewriter if sense switch 5 is up and from the tape reader otherwise. Output is normally on the typewriter; however, SS 3 up causes punching (with correct parity) and SS 6 up independently suppresses typeout.

Each S-expression typed in will be evaluated and its value printed out. Unlike 7090 LISP, arguments of functions are also evaluated on the top level; for example, to evaluate

cons [A;B]

it is necessary to write

(CONS (QUOTE A) (QUOTE B))

In preparing input:

Tab, space, and comma are equivalent;

Carriage return is ignored:

Backspace causes deletion of everything typed since the last control character (parenthesis, space/tab/comma, or period);

An extra space must be typed to terminate the entire

expression;

Upper and lower case shifts will be noted but not necessarily inserted into the symbol at that point (for example, the sequence u.c., l.c., u.c., A, space, produces a symbol with print name u.c., A, l.c.);

Alphabetic characters should regularly and generally be in lower case; and basic functions, (such as CAR, CDR,) contrary to their representation throughout this report, are in PDP-1 LISP actually stored in lower-case symbols (such as car, cdr); and then taken in to the system and put out by the system as lower-case symbols;

It is very advisable to stick to "printout" format for all input since the READ routine is not guaranteed to work on any other form, although it may;

Hyphen, "-", is a letter and does not negate a following number;

All numbers are octal integers; to input the number -1 it is necessary to type 777776;

There is no limit on the length of a print name;
The character overbar "-" or vertical bar "!" will cause
the next character to be inserted in the print name
and considered a letter, regardless of what it
actually is (the "-" or "!" itself does not appear

in the print name): thus atoms may be generated for output formatting purposes with names such as "tab" or "space".

In producing the output:

A carriage return is automatically generated after any 100(octal) characters not containing a carriage return;

Unlike the 7090 LISP output, no spaces are provided before and after the "." of concatenation (since there are no floating-point numbers to be concerned with).

7. Operation of the System

First, zero core, to avoid unnecessary difficulties.

Second, put the binary tape in the reader, and press READIN. Do nothing until the tape stops. Almost all of the tape will read in; and the machine will come to a halt. If you wish 7701 to be the highest register of free storage, and 300 to be the length of the push-down list, press READIN once more. The machine will stop at address 4. Turn up Sense Switch 5 (to control from the typewriter). Press CONTINUE.

If you wish to select the highest register of free storage, when the machine stops for the first time, with memory address at 0004, put the number of the highest register of free storage (recommended, 5000 to 7750; possible but not recommended, 4000 to 4777) in the Test Word switches and press CONTINUE. Then put the length of the push down list (suggested 200 to 400) in the Test Word switches, and press CONTINUE. The machine will go to address 4. Turn up Sense Switch 5, and press CONTINUE. The LISP system should be ready for use.

If the tape stops at an improper place, pull the tape back a block, check for missing holes, and CONTINUE. When the tape stops at 4, CONTINUEing begins the READ-EVAL-PRINT cycle. STARTing at 4 at any time and CONTINUEing is safe; indeed, it is the only way to annull most typing errors.

If the system "drops dead", the normal recourse is to start over.

Following is the assignment of the sense switches and the program flags:

SS	1	Idiot trace
	2	
	3	Punch out
	4	-
	5	Type in
	6	No typeout
PF	1	Used for type-in
	2	Zero suppress in octal print
	3	- "
	4	-
	5	Letter in symbol
	6	Off in error printout

8. Error Diagnostics

Error halts cause identification of the error and typing of the error code in red on the typewriter, regardless of the settings of Sense Switches 3 and 6; an error usually sends the system to address 4. The list of error indications follows:

icd	Illegal COND; returns value NIL and continues.
uss	Unbound symbol in SETQ; returns NIL and continues.
tma	Too many arguments for a SUBR (more than 3); ignores
	extra arguments and proceeds.
uas	Unbound atomic symbol (followed by the form current-
	ly being evaluated).
ilp	Illegal parity; halts with character in accumulator. CON- TINUE ignores character, but SS 5 may be turned
	up, and typing used to provide a replacement if desired.
lts	LAMBDA variable list too short.
ats	Argument list (paired with LAMBDA list) too short.
sce	Storage capacity exceeded. CONTINUEing is not advisable, as it will probably call the same error again in short order, unless one promptly deletes several atoms having lengthy definitions from the OBLIST.
pce	Pushdown capacity exceeded.
nna	Non-numeric argument for arithmetic, followed by the argument in question; returns value zero and proceeds.
ana	Argument not atom (for PRIN1); returns NIL as usual and proceeds.
ovf	Division overflow; returns zero and proceeds.

9. Some Remarks

In general, each character in each LISP expression is recognized by the computer as 2 octal digits called concise code. The pairs of octal digits are packed 3 pairs at a time into the 6-octal-digit registers of the PDP-1. If a LISP atom has a number of characters which is not a multiple of three, there will be spaces left over, which are filled arbitrarily with a filler character, 76 (octal). For example, a LISP word with 7 characters such as SMALLER will be packed into three computer registers, S M A in one, L L E in a second, and R along with two filler characters in the third.

These three registers are linked by list structure. An example of a hypothetical list structure which might store SMALLER if introduced as a defined function into the LISP system would be as shown in Table 4:

Table 4

PDP-1			
Register	Contents	Meaning	Comments
5763	405765	pointer to 5765	5765 is the start of the print name of the atom SMALLER
5764	005773	pointer to prop- erty list	
5765	224461	SMA	Concise code
5766	005767	pointer	5767 holds continuation of the list
5767	434365	LLE	Concise code
5770	005771	pointer	5771 holds continuation of the list
5771	767651	R	Concise code and 2 filler characters
5772	003011	nil	Terminator of list

If SMALLER were defined by the expression:

then the property list of SMAILER would be (hypothetically) as shown in Table 5:

Table 5

Register	Contents	Meaning
5773 5774 5775 5776 5777	003271 005775 005777 002651 003255	"EXPR" pointer pointer "NIL" "LAMEDA"
6000 6001 6002 6003 6004	006001 006003 006007 007701 006005	pointer to forking pointer to (X Y) pointer to (COND
6005 6006 6007	007711 002651 002725 etc.	"COND" "NII" "A"

An accepted LISP expression L is identified within the machine by the address of the list structure in storage which represents L.

The computer evaluates expressions using either machine subroutines (SUBRs and FSUBRs) or LISP subroutines (EXPRs or FEXPRs).

The computer converts the resulting value into concise codes, and presents the value for output to the computer-associated typewriter or the punch.

Basic PDP-1 LISP is very flexible:

1. The number of registers on the push-down list can be reasonably varied between 200 and 400 octal. The number chosen can vary according to the amount of recursion it is desired to provide for.

- 2. The number of registers of storage (there is only one kind of storage) can be varied from under 1000 octal to over 4000 octal in a one-core machine. In the smallest extreme case, LISP system can occupy only the registers up to about 4000 octal; in the other extreme case LISP can occupy all the registers up to 7750 octal, leaving 7751 to 7777 for the read-in subroutine.
- 3. Machine subroutines may be located in core, and referred to and used. These machine subroutines should be located above the highest register in free storage.
- 4. DDT (the Digital Debugging Tape) may be loaded in registers 5500 up and LISP may be loaded below, so that the facilities of DDT are available for modifying LISP.
- 5. A core dump routine may be loaded into 400 (octal) registers above free storage and used upon LISP.

Part II

1. Macro Symbolic Program for Basic PDP-1 LISP

lisp 3	-23-64 : 1 f	ield	define	move (B,A	load A,B
define	termin	extend		termin	
define	law B dac A termin	1load A,B	define	isp A jmp B termin	count A,B
define		init A,B	define	sad (K	test K,P
deline	law B dap A termin	IIII A,B		jmp P termin	
define	idx A sas B Jmp C termin	index A,B,C	define	law 1 1 add A dac A termin	undex A
define	index A,(B,	step A,B,C	define	rcl 9s rcl 9s termin	swap
define	law i B dac A termin	setup A,B		smi=spi i szm=sza sma- spq=szm i	-szf
define	jmp R termin	exit		xy=0 xx=hlt clo=spa sma mul=540000 div=560000	szo 1-szf-szf
define	lac A dac B termin	move A,B	start		

```
Lisp interpreter 3-20-64, part 1
                                                buf,
                                                77/
                                                            0
4/
                                                            0
                                                            dap rx
go,
            hlt+cla+cli+7-opr-opr
                                                            sub (1
            stf 6
                                                            dap .+1
            extend
                                                           lac xy
                                                            dap ave+1
            dzm 77
                                                           lac rx
            law 77
                                                           jda pwl
lac 100
            dap avx
                                               ave,
                                                           exit
beg,
            law pdo-1
            dac pdl
lac n
                                               /create number
            dac ar2
                                               crn,
                                                           lio (jmp
            cal rin
                                                           rcl 2s
            cal evo
                                                           rar 2s
            cal pnt
                                                           dac 100
            jmp beg
                                                            jmp cpf
to,
            0
                                               /print or punch character
t1,
            0
g0,
            0
                                               pc,
                                                           and (77
g1,
            0
                                                           sad (76
hi,
            0
                                                           jmp x
ior (ral
csi,
            72
cso,
            72
                                                           dac pcc
sad (ral 77
ff1,
            0
ga1,
            0
                                                            jmp pcc-3
0
            isi,
                         isi-1
                                                            isp pch
gst,
            repeat 5,20
                                                            jmp pcc-1
a0,
            0
                                                            law 277
a1,
            0
                                                            cal out
a2,
            0
                                                            law 1 100
/append word to pdl
                                                            dac pch
                                                            law 252
pwl,
            0
                                                pcc,
                                                            XX
            dap pwx
                                                            and (200
            idx pdl
                                                            ior pcc
            sad bfw
                                                            dac 100
stf 2
            jmp qg2
lac pwl
dac i pdl
                                                            jmp out
pwx,
                                                pch,
                                                            -100
            exit
/retrieve word from pdl
                                                /get numeric value
                                                            lio i 100
uw,
            0
                                                vag,
uwl,
                                                            cla
            dap uwx
lio i pdl
                                                            rcl 2s
                                                            sas (3
            undex pdl
                                                            jmp q13
idx 100
 uwx,
            exit
```

```
lac 1 100
                                           ern,
                                                      0
           rcl 8s
                                                      .+1
           rcl 8s
                                                      347776
           jmp x
                                           n, fro,
                                                      nil
                                                      error F
/get two values
                                           define
                                                      jsp err
vad,
           dio al
                                                      termin
            cal vag
            dac a0
           lac a1
                                           /garbage collector, non-compacting
            cal vag
           dac a1
                                                      dap gcx
                                           gc,
            jmp x
                                                      dio gal
                                                      dio gfr
 /pack character onto end of buffer
                                                      lac gfr
                                                      sar 2s
 oc,
            rar 6s
                                                      sza
                                                      jsp gfr+1
            lio i isi
                                                     lac ff1
            rcl 6s
sad (76
                                                     sza i
           jmp oc1
lac 100
ior (767600
                                                     jmp gco
                                                     lac 100
                                                     jda gfr
            cal cf
                                          gco,
                                                     lac 1 1ob
                                                     jda gfr
            lio to
                                                     lac isi
           idx to
            idx isi
                                                     sas (isi-1
            dac a1
                                                     jmp gci
            dio isi
                                                     law pdl+1
            lac 1 a1
                                                     dac g1
            dac 1 to
            dio i al
                                          gcp,
                                                     lac i g1
                                                     jda gfr
            jmp x
                                                     idx g1
oc1,
           dio i isi
                                                     sub (1
           jmp x
                                                     sad pdl
                                                     jmp g2e
                                                     jmp gcp
/output routine
                                          /mark one list
           110 100
out,
            szs 36
                                          gfr,
                                                     0
            ppa
            szs 1 66
                                                     dap gfx
                                                    lac gfr
ral 1s
           tyo
            jmp x
                                                     spq
 /error printout
                                                     jmp gfx
                                                     lac pdl
 err,
             clf 6
                                                     jda pwl
             dap erx
            lac i erx
                                         gfn,
                                                    lio i gfr
            dac ern
                                                    idx gfr
             law erm
                                                    lac 1 gfr
             cal pra
                                                    spa
             stf 6
                                                    jmp gfu
ior (add
             idx erx
                                                    dac i gfr
             exit
  erx,
                                                    spi
                                                     jmp gfd
             357776
  erm,
                                                    jda pwl
             .+1
```

```
dio gfr
                                                 /SASSOC
           jmp gfn
ril 1s
gfd,
                                                 aso,
                                                            cal asc
           spi i
                                                            jmp ase
           jmp gfa
                                                            Jmp x
                                                 ase,
                                                            lac a2
                                                            cal cns-1
           jsp uwl
gfu,
                                                            jmp evo
           dio gfr
           sas gfr
                                                 asr,
                                                            lio ar2
           jmp gfn
                                                            dio al
           exit
                                                 asc,
gfx,
                                                            lac a1
gfa,
           rir 1s
                                                 as1,
                                                            sad n
           dio gO
                                                            jmp x
           dac gfr
                                                            lac 1 a1
gfl,
           idx g0
                                                            dac to
           lac 1 gO
                                                            lac 1 to
           spa
                                                            sad 100
           jmp gfn
ior (add
                                                            jmp as2
                                                            idx a1
           dac 1 gO
                                                            lac i a1
           dac g0
                                                            dac a1
           xor (add
                                                            jmp as1
           sas n
           jmp gfl
                                                 as2,
                                                            idx i pdl
           jmp gfn
                                                            lac to
                                                            jmp x
/garbage collector, linear sweep phase
                                                 /program feature
           lac fro
g2e,
           dac g0
                                                 /PROG
g2n,
           idx g0
                                                            lac pa3
                                                pgm,
           110 1 g0
                                                            jda pwl
lac pa4
           smi
           jmp g2f
r1l 1s
                                                            jda pwl
                                                            dzm pa4
           sir 1s
                                                            dio ar2
                                                            lio i 100
           dio i gO
g2a,
                                                            1dx 100
           idx g0
sas hi
                                                            lac i 100
                                                            dac pa3
           jmp g2n
                                                            dio ar1
           lio ga1
g2x,
gcx,
           exit
                                                /append program variables
           lio fre
g2f,
           sub (1
                                                            lac ar1
           dac fre
                                                pg5,
                                                            sad n
           jmp g2a
                                                            jmp pg6
                                                            lac 1 ar1
gci,
           sad n
                                                            cal cns-1
           jmp gcp-2
                                                            lio ar2
           dac gfr
                                                            cal cns
           dac gO
                                                            dac ar2
           lac pdl
           jda pwl
                                                            idx ar1
                                                            lac i ar1
           law gcp-2
                                                            dac ar1
           dap gfx
           .imp gfl
                                                            jmp pg5
```

/expand go-list (on a-list)	goe,	lio 100 lac n
pg6, lac pa3		cal cns dac pa3
pg7, dac ar1 sad n		jmp prx
jmp pgO lac i ar1	/SETQ	
cal car sma jmp pg9	stq,	dac ar1 dio t1 lac i ar1
lac ar1 lio ar2		cal asc jmp qa4
dac ar2		jda pwl lac ar1 cal cdr
pg9, idx ar1 lac i ar1		cal car lio t1
jmp pg7		cal evl jda uw
/process program		dio t0 idx t0
pgO, lac pa3		lac uw dac i t0
pg1, sad n jmp pg2		jmp x
lac i pa3 cal car	/CDR	
spa	cdr,	1dx 100
jmp pg3 lac ar2	/CAR	
jda pwl lac 100 cal evo	car,	lac 1 100
jsp uwl dio ar2	х,	jda uw dio rx
cla sas pa4	rx,	lac uw exit
jmp pg4	/ATOM	
pg3, idx pa3 lac i pa3	atm,	lac 1 100
dac pa3 jmp pg1	,	sma jmp fal
/terminate program	tru,	lac tr
pg4, lac pa4	NULL	MITTER TO
pg2, jda uw dio pa4	nul,	lio n
jsp uwl dio pa3	/EQ	22.0
lac uw jmp x		dio ai
/RETURN	eqq,	sad a1 jmp tru
ret, dac pa4 jmp x		lac i a1 and i 100 and (jmp
/GO		sas (jmp jmp fal

	sad	vad			dio	(and a0
/RPLACD				lgo,	cal	elc (1or a0
rdc,	idx sub	100			jmp	
/RPLACA				tim,	110	
rda,	dio jmp	1 100 x				a0 (jmp tic
/create at	com			+1.	S 5	
mka,	ior dac lio			tic,	add	
/CONS				100.5	INC. CONT.	
cns,	idx	ffi		gcs,	jsp lac sas	fre
enc,	lac sad jmp				jmp	cna qg1
cna,	dac			/TERPRI		
	lac dac idx	100 i fre fre i fre		tpr,	law cal jmp	
	dio	i fre		/PRIN1		
	lac	to		pr1,	sma	
/PLUS						qp1 (lac
pls,	110	elc (add a0			jmp	prn (-jmp
plz, pl1,	dzm dio			pra,	sad	n
p12,	dac	ple			lac	a0 1 a0 6s
plo,	0 dac lac cal	a0			lac rar cal lac	pc i a0 6s pc i a0 pc
ple,	lac				idx	a0 1 a0
/LOGAND, 1	Logor	R, TIMES			jmp	pra
lga,	cal	elc				

prn,	cal dac clf setu	2 up t0,6		xen,	lac cal lio cal lio dac jmp dio	cns-1 ar2 efc ar1 100 efc
	stf cla rcl dio	2 3s		,,,,,	lio dio jmp	n t1
	sza law			/GENSYM		
		(20		gsm,	law dac	
A	isp jmp			gsi,	sad jmp sad	
/NUMBERP					law	1 i t0
nmp,	and sad jmp	1 100 (jmp (jmp tru fal		gsp,	ral	gst+1
	U					gst
/do a CONS	5 int	o full	word space		law	6700 gst+4
cf,	110	n			ral	
cpf,	dzm jmp				lio cal	to
/MINUS			8		jmp	
min,	cma	vag		gsn,	law dac idx	1 to
/XEQ	02-				sas	(gst+5 gsi gsp
xeq,	cal				8 8	TP: 0
	dac	t1		/QUOTIENT		
		vag a0 xei a1		qot,	cal lio cla spi clc	
xei,	0	xen			rcl	
ver	dio				jmp	qi4
xer,	dac	ar1		/COND		
	cal	crn ar2		end,	dio	ar2

cd1,	dac ar1 sad n jmp qa3 jda pwl	avc,	sma jmp qc3
	lac ar2 jda pwl lac i ar1 cal car cal evo jda uw dio ar2 jsp uwl dio ar1	avt,	law 77 and avc sas (72 sad (74 dac csi sad csi jmp ava jmp x
	lac uw sas n jmp cdy idx ar1 lac 1 ar1	avr,	index avx,ave,avx init avx,buf dap avs
cdy,	jmp cd1 lac i ar1		rcr 9s rpa rcl 9s
cuy,	cal cdr cal car jmp evo	avs,	dio xy step avs,dio 100,avn
/STOP			jmp ava
stp,	cal vag hlt+cli-opr jmp prx	avi,	szf 1 1 jmp ava tyi clf 1 dio avc
/GREATERI			Jmp avt
grp,	cal vad	/terminat	te print name
	sub a0 szo lac a1 sma jmp fal jmp tru	mkn,	law 72 sas cso cal oc idx isi dac t0 lio n dio isi
/get a cl	haracter		lac i t0 dio i t0
ava,	szs 50 jmp avi cli	/pack cha	jmp x aracter into print name
avx,	lac 77 sza i jmp avr rcl 9s dio i avx	pak,	dap pk1 lac csi sad cso jmp pk1 dac cso cal oc
	ral 2s spq jmp ava ral 7s ior (rar	pk1,	law dac 100 jmp oc
	dac avc law 525	start	

```
Lisp interpreter 3-20-64, part 2
                                                /.
/PRINT
                                                rid,
                                                        spi
                                                         jmp ri2
        dac a0
pnt,
        dac a1
                                                        idx ar1
                                                riq,
        cal tpr
                                                        lac i ar1
                                                        dio i ar1
        110 1 a0
pn1,
                                                        dac ri9
        spi
                                                        jsp rhe
jmp rix
        jmp pn2
        law 57
                                                r13,
                                                        dac ri9
        cal pc
pn5,
                                                         jmp r13-2
        lac a0
        cal cdr
                                                r12,
                                                        lac (jmp ri3
        jda pwl
lio i a0
                                                         jda pwl
                                                        law ric
        dio a0
        jmp pn1
        lac a0
pn2,
                                                /read symbol and terminator
        cal pr1
                                                        dap rhx
clf 5
dzm t1
                                                rhe,
pn6,
        jsp uwl
        cla
        dio a0
                                                        law 1s1-1
        spi
                                                        dac isi
        jmp pn7
                                                        dzm isi-1
        lio i a0
                                                        law 72
        spi i
                                                        dac cso
        jmp pn5
lac a0
                                                rhn,
                                                        cal ava
        sad n
                                                        dac 100
        jmp pn3
                                                        lio csi
        law 73
                                                        rir 3s
        cal pc
                                                        spi
        lac a0
                                                         jmp rhb
        cal pr1
                                                        sad (33
                                                        cla
pn3,
        law 55
                                                        sas (57
        cal pc
                                                        sad (55
        jmp pn6
                                                         jmp rye
                                                        sad (73
        cal pc
pn7,
                                                        jmp rye
sad (56
        lac a1
                                                rhb,
        jmp a0
                                                        jmp ryo
sad (77
/READ
                                                         jmp rhn
                                                        sad (36
r18,
        0
                                                        cla
r19,
        0
                                                        sza 1
        lac rx
rin,
                                                         jmp rye
         dac ar1
                                                         sad (75
         dzm ri9
                                                         jmp rhe+1
                                                        law 1 7 and 100
         jsp rhe
ris,
         sza 1
                                                        sza i
         jmp ric
                                                         jmp ryn
         sad (57
                                                        lac 100
         jmp ria
sad (55
                                                        sad (20
                                                         jmp ryn
         jmp rib
```

ryp,	stf cal jmp	pak		ryn,	lio 100 lac t1 rir 3s rcl 3s
ryj,	lac cal jmp	crn			dac t1 lac 100 jmp ryp+1
ryo,	cal			ryy,	clc lio (isi-1 dio isi
/symbol	100	okup		rhr,	dac to
rye,	dac cal dac sad	mkn a0			lac ri9 lio ri8 dio ri9 lio t0
		ryy 1 5		rhx,	exit
	jmp	ryj i 1ob		/, spa	ce tab
rys,		n ryc i t0		ric,	lac ar1 spi jmp ris spa jmp ri4
		i t1 t1		rio,	dio t0 cal cdr lio t0
ryw,	sad	n ryt		rie,	swap cal cns idx ar1 lac t0 dac i ar1
ryd,	idx	t0 1 t0			dac ar1 jmp ris
ryt,		rys		r14,	lac tO jmp ar1
	sad			/(
	lac sas jmp idx lac	i a1 i t1 ryd		ria,	dio tO lac ar1 jda pwl lac tO spa
	idx			riy,	jmp riz cal cns-1 dac ar1 lio ar1 cal rdc
ryc,	lio cal	a0 mka i 1ob cns i 1ob		riz,	jmp ris dzm ar1 jmp ris
rhh,	lac	i to			

```
idx ar1
rib,
       idx ar1
                                          evc,
                                                  lio i ar1
lac uw
       lac i ar1
       lio n
                                                  dzm ar1
       dio i ar1
                                                  cal cns
                                                  jmp evo
       jda uw
rix,
       dio ar1
       ril 1s
                                           /x is atomic : search a-list,
        lac uw
                                              then p-list
        spi
        jmp ar1
                                           e1,
                                                  ral 1s
        lio uw
                                                   spa
        lac ar1
                                                   jmp en1
        sza
                                                   lac ar1
        jmp rio
lac uw
                                                   cal asr
                                                   jmp ev5
        jmp riy
                                                   cal cdr
                                                   jmp ex
/EVAL
                                                  lac ar1
                                           ev5,
evl,
        dio ar2
                                           ev4,
                                                   cal cdr
        dac ar1
evo,
                                                   sad n
                                                   jmp qa8
dac t0
/evaluate current expression
                                                   lac i t0
sad lap
ev2,
        lac ar1
        szs 10
                                                   Jmp ev6
        cal pnt
                                                   idx to
        lac i ar1
                                                   lac i to
        spa
                                                   jmp ev4
        jmp e1
        dac to
                                           ev6,
                                                   idx to
        lac i to
                                                   lac i to
        spa
                                                   cal car
        jmp e2
                                                   jmp ex
                                           en1,
                                                   lac ar1
/car[x] not atomic
                                           /exit from EVAL
        sad 1la
        jmp e3
                                                   szs 10
        lac ar2
                                                   jmp pnt
        jda pwl
                                                   jmp x
        lac ar1
        jda pwl
                                           /car[x] is atomic : search
        lac 1 ar1
cal evo
                                              its p-list
        jsp uwl
                                            e2,
                                                   lac to
        dio ar1
        jsp uwl
                                            ev8,
                                                   cal cdr
        dio ar2
                                                    sad n
        jmp evc
                                                    jmp ev3
/evaluate function name and try again
                                                    lac 1 uw
                                                    sad 1fs
                                                   jmp efs
sad 1sb
        lac i ar1
 ev3,
        cal asr
        jmp qa8
cal cdr
                                                    jmp esb
                                                    sad 1xp
```

```
/function is SUBR
       jmp exp
       sad 1fx
       jmp efx
                                  esb,
                                          idx uw
       idx t1
                                          lac 1 uw
       lac i t1
                                          cal car
       jmp ev8
                                          jda pwl
                                          lac ar1
/function is FSUBR
                                          cal cdr
                                          lio ar2
       idx uw
efs,
                                          cal elc
       lac 1 uw
                                          jmp els
       cal car
       cal vag
                                  /evaluate argument list : also LIST
       dac exx
       idx ar1
                                  elc,
                                          sad n
       lac i ar1
                                          jmp x
       lio ar2
                                          dac ar1
                                          dio ar2
       dac 100
                                          lac ar2
exy,
       dzm ar1
                                          jda pwl
exx,
                                          lac ar1
       jmp ex
                                          dzm ar1
/function is FEXPR
                                          lio i pdl
                                  ele,
                                          dac to
       idx uw
efx,
                                          jda pwl
       lac i uw
                                          lac ar1
       cal car
                                          jda pwl
       jda pwl
                                          lac 1 to
       lac ar1
                                          cal evl
       cal cdr
                                          cal cns-1
       cal efq
                                          jsp uwl
       jda pwl
                                          dio ar1
       lac ar2
                                          lio to
       cal efq
                                          lac ar1
       cal cns-1
                                          sza i
       jsp uwl cal efc
                                          dio ar1
                                          idx ar1
                                          sub (1
       jsp uwl
       cal efc
                                          sas to
       dac ar1
                                          lio i ar1
lac t0
       jmp ev2
       cal cns-1
                                          dac 1 ar1
efq,
       110 to
                                          dac ar1
       lac 1qu
                                          idx to
       dac 100
                                          dio i to
       jmp cns
                                          jsp uwl
efc,
       dio 100
                                          swap
       lio to
                                          cal cdr
       jmp cns
                                          sas n
                                          jmp ele
/function is EXPR
                                          jsp uwl
                                          dio ar2
       idx uw
exp,
                                          idx ar1
       lac i uw
                                          lac i ar1
                                          lio n
       dac a1
                                          dio i ari
       idx ar1
                                          dac ar1
       lio i ar1
       dzm ar1
                                          szs 10
       lac i a1
                                          cal pnt
                                          lac ar1
       cal cns
                                          jmp x
       jmp evo
```

els,	dac ar1 jsp uwl swap cal vag dac exx init esa,a0-1 arguments for	subroutine		cal cdr lio ar2 cal elc dac ar1 jsp uwl dio a0 jsp uwl dio ar2
eda,	lac ar1 sad n jmp exs idx esa sad (dac a2+1 jmp qa7 lac i ar1		ep1,	lac a0 sad n jmp ep2 lac ar1 sad n jmp qf3 lac i a0 lio i ar1
esa,	dac xy idx ar1 lac i ar1 dac ar1 jmp eda			cal cns lio ar2 cal cns dac ar2 idx a0 lac i a0
exs,	lac a0 lio a1 jmp exy	(F)		dac a0 idx ar1 lac i ar1 dac ar1
/caar	k] = LAMBDA			jmp ep1
e3,	lac ar1 jda pwl lac ar2 jda pwl lac i ar1 cal cdr cal car jda pwl lac ar1		ep2,	sas ar1 jmp qf2 jsp uwl dio ar1 lac i ar1 cal cdr cal cdr cal cdr jmp evo

/error halt entries qa3, lac n sas pa3 jmp x error flex icd /illegal COND lac n jmp x qa4, error flex uss /undefined atom in SETQ Jmp prx error flex tma /too many args qa7, jmp exs qa8, error flex uas /unbound atomic symbol clf 6 lac ar1 cal pnt cal tpr jmp go error flex ilp /illegal parity qc3, law 377 and avc hlt+cli-opr+1 jmp ava /LAMBDA list too short qf2, error flex lts jmp go qf3, error flex ats /arglist too short jmp go qg2, error flex pce /pushdown cap. exc. jmp go error flex sce /storage cap. exc. qg1, jmp go q13, lac 100 dac a2 error flex nna /non-numeric arg for arith. clf 6 lac a2 cal pnt cal tpr jmp qix error flex ovf /overflow q14, cla 16 qix, jmp crn error flex ana /arg non-atom for PRIN1 qp1,

lac n

prx, fal,

start

jmp x

```
lisp storage 3-23-64
                                                 rcr 1s
                                                 ril 1s
constants
                                                 dio hi
                                                 law end
/special symbols
                                                 dac to
ssy,
                                         /relocate storage
1qu,
        quo
                                         rrs,
                                                 law i 1
1la,
        lam
                                                 add to
1ap,
        apv
                                                 dac to
10b,
        obl
                                                 law 1 4
1sb,
        sbr
                                                 add i to
1fs,
        fsb
                                                 sma
1xp,
        xpr
                                                 jsp rrl
1fx,
        fxp
                                                 Jsp mvs
fre,
       nil
                                                 law 1 1
bfw,
        frs-4
                                                 add to
tr,
                                                 dac to
                                                 sub frl
pdl,
       pdo-1
                                                 spa
                                                 jsp rrl
ar1,
       nil
                                                 jsp mvs
lac t0
ar2,
       nil
pa3,
       nil
                                                 sas ofs
pa4,
       0
                                                 jmp rrs
                                                 law ssy
pdo,
                                                 dac to
/load storage parameters
                                         /relocate special registers
       lio mz
                                         rss,
                                                 jsp rrl
       clc+hlt-opr
                                                 1dx to
       lat+cli-opr
                                                 sas esy
       and ad
                                                 jmp rss
lac i 1ob
       dac hi1
       hlt
                                                 jda gfr
       lat
                                                 law go
       and ad
                                                 dap gcx
       dac lp1
                                                 jmp g2e
       law i end
                                         /relocate 1 word, move 1 word
       add hi1
       spa
                                         rrl,
                                                 dap rrx
       jmp pdo
                                                 lac i to
       law i frs-pdo
add lp1
                                                 and ad
                                                 sub ofr
       spa
                                                 spa
       jmp pdo
                                                 jmp rrx
       law i pdo+end-frs
                                                 lac i to
       add hi1
                                                 add fro
       sub lp1
                                                 sub ofs
       spa
                                                 dac i to
       jmp pdo
                                                 jmp .
                                         rrx,
                                         mvs,
                                                 dap mvx
/set up registers
                                                 lac to
                                                 add fro
stu,
       law pdo
                                                 sub ofs
       add lp1
                                                 dac t1
       dac fro
                                                 lac i to
       110 h11
                                                 dac i t1
```

mvx,	jmp .			fsubr f6	
/consta	ants etc.			subr f7 subr f8	
	177777 0 0 -0 frs fws pdo pdo			subr f12 subr f13 fsubr f14 subr f18 subr f21 subr f24 subr f26 subr f27 subr f32 subr f33	
define	.+2 add X termin	item X .+3 nil		subr f34 fsubr f50 subr f51 subr f52 fsubr f53	
define	A termin	next A		subr f54 fsubr f60 fsubr f61	
define	.+2 add F+2 sbr F	subr F .+7 .+1 .+1		fsubr f62 fsubr f63 subr f00 subr f01 subr fa3	
	termin	5 E. J. J.	quo=.		fsubr fb5
define	.+2 add F+2 fsb F termin	fsubr F .+7 .+1 .+1	lam=. apv=. sbr=. xpr=. fsb=. fxp=.	2 2 2	item f40 item f42 item f43 item f44 item f45 item f46
define	apv A termin	apval A .+1 nil		next t next obj subr fb2 subr fb3 subr fb4 n11	nil
frs,			0	1177	HILL
nil,	add f38	kz	fws,		
t,	add f37	kt	defin	e opr A	loca A
kz,	apval nil			termin	·
kt,	apval t		define	e X	nam1 X
obj,	add fb0	·+1 ·+1		termin	nil
obl,	apv ols	nil	define	X nam1 Y	nam2 X,Y
/object	t list			termin	
ols,	subr f2 subr f3 subr f4		define	X nam2 Y,Z termin	nam3 X,Y,Z .+1

/SUBRs and FSUBRs

- f2, loca atm nam2 flex ato,767644
- f3, loca car nam1 flex car
- f4, loca cdr nam1 flex cdr
- f6, loca cnd nam2 flex con,767664
- f7, loca cns nam2 flex con,767622
- f8, loca eqq nam1 766550
- f12, loca gsm nam2 flex gen, flex sym
- f13, loca grp nam3 flex gre, flex ate, 765147
- f14, loca elc nam2 flex lis,767623
- f18, loca min nam2 flex min,762422
- f21, loca nmp nam3 flex num, flex ber, 767647
- f24, loca stp nam2 flex sto,767647
- f26, loca pr1 nam2 flex pri,764501
- f27, loca qot nam3 flex quo, flex tie, 764523
- f32, loca rda nam2 flex rpl, flex aca
- f33, loca rdc nam2 flex rpl, flex acd
- f00, loca xeq nam1 flex xeq
- f01, loca crn nam1 flex loc
- f34, loca tpr nam2 flex ter, flex pri
- f50, loca pgm ram2 flex pro,767667
- f51, loca ret nam2 flex ret, flex urn
- f52, loca goe nam1 766746
- f53, loca stq nam2 flex set,767650
- f54, loca aso nam2 flex sas, flex soc
- fb2, loca rin nam2 flex rea,767664
- fb3, loca evl nam2 flex eva,767643
- fb4, loca pnt nam2 flex pri,764523
- fb5, loca car nam2 flex quo,762365
- fa3, loca nul nam2 flex nul,767643
- f60, loca pls nam2 flex plu,767622

```
f61, loca tim nam2 flex tim,766522
```

/miscellany

f38, nam1 flex nil

f40, nam2 flex lam, flex bda

f42, nam2 flex apv,766143

f43, nam2 flex sub,767651

f44, nam2 flex exp,767651

f45, nam2 flex fsu,766251

f46, nam2 flex fex,764751

fb0, nam2 flex obl, flex ist

f37, nam1 767623

end,

start pdo

2. Alphabetic Listing of Defined Macro Symbols

Following is an alphabetic listing of the defined symbols used in the macro symbolic program for Basic PDP-1 LISP. The listing shows either the numeric meaning of the instruction or the numeric register (octal) in which the subroutine commences. For the mnemonic derivation or significance of the symbols, see Section 4 below.

1ap 1fs	2333 2336 2340	clo ena	65 1 600 620
1fx	2340	enc	6 1 5
1 la	2332 2334	end	1070
10b	2334	cns	614
1qu	233 1	cpf	762
1sb	2335	crn	112
1xp	2337 42	csi	26
a 1	42	CSO	27 72006 1
a2 ad	43 2470	dba	720062
		dcc dia	720060
apv	3110	div	560000
ar1	2345	dra	720063
ar2 a0	2346 41	e1	1626
a s1	405	e2	1661
as2	420	e3	2077
asc	403	eda	2061
ase	377	efc	1743
aso	374	efq	1736
asr	374 402	efs	1701
atm	562	efx	1715
ava	1133	elc	1770
avc	1152	ele	2000
ave	110	els en1	2050
avi	1204	end	1655 3530 2120
avn	1173	ep1	21.20
avr	11 65 11 77	ep2	2143
avs	1155	eqq	570
avx	1136	erm	227
beg	11	ern	231 216
bfw	2342	err	216
buf	63	erx	226
car	555	esa	2067
cd1	555 1 07 1	esb	1757
cdr	554 111 4	esy	2476
cdy	1114	ev2	1 565 1614
cf	76 1	ev3	1014

ev4

rin	1 304	pqa	650500
rio	1 5 11	ssy	233 1
riq	1 320	stp	1120
ris	1307	stq	533
rix	1 547	stu	2377
riy	1534 1541	swp	160060
riz	1 54 1	szm	640500
rrl	2445	t	2502
rrs	2410	t1	22
rrx	2457	tic	666
rss	2434	tim	661
rx	56 1	tpr	700
ryc	1455	tr	2343
ryd	1 436	tru	565
rye	1411	t0	21
ryj	1404	uw	565 21. 54
ryn	1464	uwl	55
ryo	1 407	uwx	55 62
ryp	1401	vad	1 56
rys	1421	vag	144
ryt	1441	х	556
ryw	1431	xei	556 1 000
ryy	1 473	xen	1017
sbr	3114	xeq	767
sît	660000	xer	1003
smi	652000	xpr	3120
sni	644000	хý	Ō

3. Numeric Listing of the Defined Macro Symbols

Following is a listing in numerical order by register number or other meaning of the defined symbols in the macro symbolic program for Basic PDP-1 LISP.

xy go beg t0 t1 g0 g1 hi csi cso ffi ga1 isi gst a0 a1 a2 pwl pwx uw uwl uwx buf ave crn pc pcc pch vag vad oc oc1 out err erx erm ern fro n gc	0 4 11 22 23 4 25 6 27 33 33 41 42 43 44 55 66 31 11 11 11 11 11 11 11 11 11 11 11 11	gfr gfn gfd gfu gfx gf1 g2e g2n g2x g2x g2f1 aso ase asr as1 as2 pgm pg5 pg6 pg7 pg9 pg1 pg4 pg2 ret goe stq cdr cdr cdr cdr cdr cdr cdr cdr cdr cdr	2773623613155673472350 2731322343155673472350 35555555555555555555555555555555555
gc	235		567
gco	25 1		570
gcp	260		605

p1z 633 pn3 1274 p11 634 pn7 1277 p12 635 ri8 1302 p1o 642 ri9 1303 ple 647 rin 1304 lga 651 ris 1307 lgo 656 rid 134 tim 661 riq 1320 tic 666 ri3 1326 gcs 673 ri2 1330 tpr 700 rhe 1333 pr1 703 rhn 1343 pra 712 rhb 1360 prn 730 ryp 1401 prv 736 ryj 1404 nmp 754 ryo 1407 cf 761 rye 1411 cpf 762 rys 1421 min 764 ryw 1436 xei 1003 ryt 1446 gsm 1023 ryn 1464 <td< th=""><th>pl1 pl2 plo ple lga lgo tim tic gcs tpr pr1 pra prn prv nmp cf cpf min xeq xei xer xen gsm gsi gsp gsn qot cnd cd1 cdy stp grp ava avx avc avt avr avn avs avi mkn</th><th>635 642 647 656 661 663 700 712 736 754 762 764 767 1003 1017 1023 1031 1057 1071 1114 1120 1123 1136 1155 1165 1177 1204 1212</th><th>pn7 ri8 ri9 rin ris rid riq ri3 ri2 rhe rhn rhb ryp ryj ryo rye rys ryd ryt ryc rhh ryn ryy rhr rhx ric rio rie ri4 ria riy riz rib rix evl evo ev2 ev3 evc e1</th><th>1407 14407 14411 14423 14445 14464 14464 14464 1450 1450 1450 1450 1450 1450 1450 145</th></td<>	pl1 pl2 plo ple lga lgo tim tic gcs tpr pr1 pra prn prv nmp cf cpf min xeq xei xer xen gsm gsi gsp gsn qot cnd cd1 cdy stp grp ava avx avc avt avr avn avs avi mkn	635 642 647 656 661 663 700 712 736 754 762 764 767 1003 1017 1023 1031 1057 1071 1114 1120 1123 1136 1155 1165 1177 1204 1212	pn7 ri8 ri9 rin ris rid riq ri3 ri2 rhe rhn rhb ryp ryj ryo rye rys ryd ryt ryc rhh ryn ryy rhr rhx ric rio rie ri4 ria riy riz rib rix evl evo ev2 ev3 evc e1	1407 14407 14411 14423 14445 14464 14464 14464 1450 1450 1450 1450 1450 1450 1450 145
---	--	---	--	--

ev61 ev6 exxxxqc eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee		1637 1655 1656 1661 1711 1713 1736 1743 1746 1757 1700 2051 2074 2077 2143 2153 214 2214 2214 2214 2214 2214 2214 2214	tr pdl ar1 ar2 pa3 pa4 pdo stu rrs rrs rrl rrx mvs mvx ad lp1 hi1 mz ofs frl esy ofr frs nil t kz kt obj obl ols quo lam apv sbr xpr fsb fxp	2344567017045707012344777002404040404000626426442 2334456701234477700240740340404000626426442 2447770002407403333333333333333333333333
--	--	---	--	--

f24	3270	fb5	3424
f26	3276	fa3	3432
f27	3304	f60	3440
f32	33 1 4	f6 1	3446
f33	3322	f62	3454
f00	3330	f63	3462
f01	3334	f38	3470
f34	3340	f 4 0	3472
f50 f5 1 f52 f53	3346 3354 3362 3366	fa3 f60 f61 f62 f63 f38 f40 f42 f44 f45 f46 fb0	3476 3502 3506
f27 f32 f33 f00 f01 f34 f50 f51 f52 f53 f54 fb2 fb3 fb4	3270 3276 3304 3314 3322 3330 3334 3340 3346 3354 3366 3374 3402 3410 3416	f46 fb0 f37 end	3446 3446 3446 3452 3470 3476 3506 3516 3526 3526 3530