PDP-1 COMPUTER
ELECTRICAL ENGINEERING DEPARTMENT
M.I.T.
CAMBRIDGE 39, MASSACHUSETTS

FDP-8

EXPENSIVE DESK CALCULATOR

January 2, 1963

EXPENSIVE DESK CALCULATOR

EDC provides means for performing arithmetlc operations on
numbers typed either om or off line, and printing results. Decimsl
numbers consisting of integers, decimal fractions or integer-fraction
combinatlions are acceptable, all indicated by ordinsry decimal point
conventions. The output of EDC 1s essentially the same format. In
addition, EDC allows the internal storage of often used guantities
and of partial results, in nemed "variable" registers. The name of
such registers, when used in the same contexts as typed in numbers,
automatically cause their current contents to be used in the calcula-
tion; as if this contents had just been typed in. In addition, means
for storing arbitrary character stringe for later use as input to EDC,
and for testing the sign of partial results are all provided.

SIMPLE COMPUTATIONS:

1. Numbers: A number is a string of digits of any length <39,
which may or may not include a decimal point. If a decimal point is

present, 1t may arpear anywhere within the diglt string, or at either
end of it. A number which does not contain a decimal point 1s treated
as an integer.

2. Operators: An operator 1t one of the special characters
+ | <space> | - | / | x . (Note: the symbol "|" means "or".) The

meanling of each of these operatvions is as follows:

Qperator Meaning
+ or <space> add
- subtract
X multiply

divide

These operators can be used to cause EDC to perform arithmetic opera-

tions on numbers.

3. Accumulator: EDC, like many desk calculators, contalns an
internal "working" register wherec results are accumulated. The reg-
ister may be cleared to zero by typing <{carriage return> . Alterna-
tively, its contente may be typed out before it is cleared. This is
accomplished by typing <tab> .

At this point, sufficlent concepts have been introduced to al-
low the user to perform arithmetic operations on numbers he types in
and to obtain correct results.

An expression, in EDC, consists of several numbers separated
by operators. Each operator usee as one of 1ts two arguments the num-
ber typed immediately after it. (If no number is typed, a zero is
assumed.) Since not all the operators listed above associate, 1t 1s
necegsary to define the order in which operations are performed when
more than one operetor appears in an expression. Within any expres-
sion, all multiplicatione and divisions are performed i ¢ fore any ad-
ditions and subtractions. Except for this rule; all operations take
place from left to right.

Examplea of valid expressions:

Expression Meaning Equals
-1 -1 -1
—6033" 2)(3 ""u 5 1
X
100~ /Z/9+6 joo- (3»:&) ? 26
U9 /7 4x9) /7)x11 56.573
DECIMAL DIGITS

The number of digits to the right of the decimsl point in a
number defines the number of decimal digits in the number. The nunber

~3~

of decimal digits in the result of any computation is always the

larger of':

(a) the number of decimal digits retained in the expresaion
at the time the computation 1s performed, and

(b) the number of decimal digits in the argument of the op-
erator specifyling the computation.

This 1s particularly important in the case of divyision. The division
operation rounds the quotient produced to the rumber of decimal
places specified in the above rule. Thus,

() 1/2 vields 1,
(b) 1.0/2 - A
(c) 1/2.000 r <500,
(a) .0000+1/2 = .5000,
(e) 1/2+.0000 " 15

In example &, both the 4 and 2 are specified to zero decimal places.
The answer, 1, is really .5 correctly rounded Yo zero decimal places.
In examples b and ¢, one of the factors was specified to more than
zero decimal places. The answer 1s computed accurate to a mmber of
decimal places equal to the larger of the number of decimal places
specified in either factor. In example d, the .0000 specifies that
the expression is hereafter to retain 4 decimal places. Hence the
division is accurate to 4 places. Example e illustrates what appears
to be an inconsistency. However; at the time the division is per-
formed, the numbers 1 and 2 are accurate to only 0 places. When the
-0000 18 typed the result of the division is all that remains of the
original 1 and 2. Thus, the cuotient camnnot be re-evaluated and re-
malns rounded to zero places wina: the .0000 is added in. Moral:

Type a number which specifies the number of decimal digits retained
in a division before attempting the division.

A

SIGNIFECANCE:

In example d above, the number of decimal places to be retained
in future computations was specified by typing ".0000" as the first
number in the expregesion. An exactly equivalent operation which al-
lows the user to convenlently sSpecify the number of decimal places to
be retained in all succeeding computatlons is provided. Typing NS ,
where N 1s some integer lese than 40, causes all succeeding computa-

tione to retain results accurate teo N decimal diglts.

Any expression may be enclosed in parentheses. As in glgebra,
the value of expressions enclosed in parentheses 1s computed before
operations outside the parentheses are performed. Actually, in EDC,
typing (EXPRESSION) is eguivalent to typlng a mmber egual in value
to the value of EXPRESSION.

VARTABLES :

EDC provides means for storing intermediate results intermally,
and using the stored results in later computations. This is accom-
plished by means of a notation called "variables". In form, @ variable
conslistas of a string of letters of arbitrary length. (Actually, only
the last 3 letters are significant.) 2 quantity may be placed in a
variable (and the variable "defined") by typing:

NUMBER, NAME, where NUMBER is a number or its equivalent, and
NAME is a string of letters. This causes the value of NUMBER to be
stored in the variable NAME. The number may appear as a part of an
expreseion. More of the expression may follow the variable definition.
In particular, another variable definiticn may store the same number
in still another variable. Note: The storing is not accomplished un-
til some character other than a letter is typed following the first

-5

letter in the name. If the name is mistyped, it may be deleted by typ-
ing an gverbar () before any non-letter is typed.

Once a particula” rame has been used ag the name in & varlable
definition, 1t may be used as an equivalent to & number. The value
of this type of number equivalent is the contents of the variable at
the time it cccurs in an expression. If it appears again as a name
in 2 variable definition, the new mumber replaces the old contents of
the variable.

To summarize:

A pumber is (1) a string of digits with or without a single

decimal point, or (2) (expression), or (3) varigble. Thus, the fol-

lowing are numbers:

- !
i.

1)
~1)
§3x5+1/h—6x3/2x9)

if a 1is a variable, then

Since in EDC three different types of numbers exist, it 1s pos~
sible to assign & meaning to the juxtaposition of twe nmumbers not both
of type 1 or type 3. This meaning has been chosen to be "multiply",
just as 1f an “x" had been present between the two numbers. For ex-

ample, if a is a variable, then

6~

3a 3ak 3(4(3)) a3a
3a+5 (3)4(3) a(4(3)) a(3)a

are all expressions, and, for example,
3a means 34a.

Note, that if you wished to multiply 3 by 4 you would have to write
"3(4)," or (3)4, rather than "34," since this, of course, is the
decimal integer thirty-four. Similarly, to compute a sqQuared, assum-
ing g 1s a variable, you must write gxa, or afa), or aia, rather than
ga, since this last notation represents a new varlable whose name

is "ag".

Exampleg of variable definitions:

(1‘*‘3):&
(3’(!"):&130
Note:
(-1),a puts -1 in a
-1,a puts <1 in a, since the variable definition op-

erates on the last pumber typed
before the comma.

Once a is defined as a variable, (a+i). a2 1s legal, causing
the contents of register g to be increased by 1.
The following is also legal, and is a pumber:
(t-1/(n+2),n-1/(n+2),n4t),t)

(Assuming, of course, that n and t had been previously defined.)
In order, the above expression

(4) addsthe old value of © into the mumber being computed
(2) 4increments n by 2

o

(3) inverts (takes the reciprocal of) this new value of n

(4) agein increments n by 2

(5) subtracts the inverse of this new value of n from the
first-computed inverse.

(6) adds to this difference the old value of t.

(7) stores the new value in t.

(8) subtracts this new value of t from the old value
saved previously.

ATERATION :

A simple means 1s provided for allowing EDC to repeat a pro-
cedure several times, and stop automatically. This feature is pro-
vided through the brackets ¢ and > . If S is an arbitrary string of
characters (which may include bracket pairs < . . . >), ending in a
number, n, then

<S>

willl cause the string S to be re-interpreted each time n is computed
and found to be pegative. NOTE: Zero is positive in the arithmetic
scheme used by EDC.

For example,

0,t
(-1);n
<(1/(n+2),n~(1/(n+2),n), k+t), t

(-k)>
computes pi/4 by the formula

pi/l‘ = 1*1/3+1/5-1ﬂ e ¢ @ e © © @
The result is left in register t. The computation terminates when the

value of 1/n 1s computed to be zero. This will, of course, be depend-
ent on how many digits the significance level is set to.

MACROS:

It i3 ovucn convenient to have some means of remembering some
sequences of operation. In EDC, provision is made for abbreviating
arbitrary strings of characters by completely independent names.

These names, when expanded. supply the original string of characters
automatically from memory to the rest of the processor. Thus, often
used sections of the major computation need be typed only once. When-
ever the particular computation 1s needed, it can be performed by
merely stating the abbreviatlon chosen to designate this particular
computation.

In order to define zn abbreviation or "MACRO", type the desired
name followed by & middle dot (+) . EDC will shift into red and enter
the MACRO DEFINE MODE. In this mode, no computations are done. In-
stead, each character typed is entered into storage. All characters
except middle dot, overbar. and backspece may be so entered for later
interpretation when the macro 1s expanded. The three charscters which
cannot be entered into storage each have special functions in this
mode. Middle dot is the character used to leave the MACRO DEFINE MODE.
The other two characters are provided teo facilitate correcting long
or involved MACRO's. Backspace is to be used to delete characters,
one by one, from the stored character string. Each typed backspace
causes the last remaining character in this macro's storage area to
be deleted. Overbar has a function analogous to the "start read" key
on a Flexowriter. If the particular abbreviation chosen for the macro
has been previocusly defined, the new definition will completely re-
place the old. However, whille the new definition 1s in progress, an
overbar will cause the first character in the old definlition's string
to be typed, deleted from the old definition's string, and added to
the end of the new definition's string. If the end of the old defl-

e

nition is reached, an overbar will be typed, but will not enter the

new definition's string. If sense switch 2 is on after a character

is entered in the new buffer, EDC acts as if overbars were gilven un-
til the switch 1s turned off. This allows rapld copying of the re-

maining portion of an old definition.

Once a MACRO has been defined, i1t may be expanded by mentioning
its name at any time, followed by some character which is not a let-
ter. This character, the "break" character, will not be interpreted
immediately. Instead, it will appear as the character following the
last character in the MACRO expansion. Normally, when a MACRO is be-
ing expanded, the characters in the expansion are typed cut on-line.,
This may be suppressed by turning on sense switch 3. In fact, when-
ever EDC is in the "sutomatic” mode, either as the result of itera-
tions or macro expansions, sense-switch 3 on will suppress type-out

of the characters being spilled.

OTHER OPTIONS:

Paper tapes prepared on the standard FIO-DEC flexowriter may
be used as input tc EDC, in place of the on-line typewriter. Vhen
sense-switch 1 is ON, and some character 1s typed, (to cause EDC to
leave its typewriter listen loop) EDC will read characters from a
flexo tape in the reader until a stop-code is reached. These charac~
ters will be acted on exactly as if they came from the typewriter
keyboard. When a stop-ccde is reached, EDC returns control to the
listen loop, allowing the user to turn SS1 off, or to type some
character.

A number may be lmmediately followed by an exponent, indicat-
ing that the number represgented is the number typed, multiplied by 410

(decimal) raised to the indicated power. The form of an exponent is

~10-

E¢SION><DICITS>

- wvhere <SIGN» 13 +, SPACE, -, or 1s not present;

and <DIGITS> is a string of digits, representing a decimal
integer. Af least one digit should appear in the string
<DIGITS> if the resultant number is to be followed with
a sign.

Any mumber, or mumber egquivalent may have an exponent supplied
to scale ite values by integral powers of ten. However, it
should be noted that the value of the exponent is subtrac-
ted from the number of decimal places in the mmber typed
immediately before the E. The effect of E 1s thua merely
to move the decimal point.

Note: <«DIGITS> must be an integer, and wlll be taken modulo 216.

FIELD SIZE CONTROL

Seme control is provided over the total number of diglits printed
before an E by EDC. This is accanplished by a field size character,
F, in the context ¢NIMBER.F . Hence, number must be an integer <40,
The new print field size becomes effectlive when an F is encountered,
and remains effective until a new ¥ 1s typed.

The output number is correctly rounded to the digits printed,
and the position of the declmal point i1s correct as printed, modified
by the signed munber following env output E; just as on input,

Note: This coatrol 1s approximate, because rounding of a number like
.99998 to 4 printed digits causes an extra digit to be introduced.
Thus, the above number will print as 1.0000. In addition, any number
which prints as 41, followed by no digits other than zero, will have

an extra digit printed. For example, if the current field size is 4,

41~

the number 1.00000 will print as 1.0000 although the number 1.01000
prints as 1.010.

One possible use for macros 18 in computing and printing sev-
eral results in a specifled order. For example suppose that a table
of values for the functicn

¥ = xa + 3x + 4

is tc be computed for values of x ranging from 0 to 100 in steps of 1.
This particular problem can easlly be solved by using the iteration
brackets. One might try:

0,x

<r tab oack3x+d tab ((x+4),x-101)>

and EDC will cooperate by typing a single column of alternate wvalues
of x and y (with S83 on):

It is obviocus that means for listing values in position other
than at the far left edge of the paper would be desirable., The op-
erators =, UCTAB, and UCCAR are provided to assist in this formal
control. = is an operator similar to TAB in its effect--that is, 1t
it causes a numerical typeout. However,

1) it types the "number" typed immediately before the =, rather
than the expression, as does TAB:

-12-

2) no carriage return 1g typed following the digits;

3) the "accumulator” is not cleared by the = . UCTAB and UCCAR
(tab or carrisge return typed in upper case) are ignored by the
processor, but type a tab or carriage return regardless of the
position of SS3. Using these new operators, the problem can be

re~golved as follows:

0,x

<x=|CTAB
ox+3x+ tab ((x+1),x-101)>

Now, although a table of values in acceptable form has been produced,
the first value of x, and that of y are found intermixed with por-
tions of the user's typing. To help sort them out, and to preserve
the completed program for further use, the entire character string
typed by the user could be defined to be a macro called, say, POLY:

-

volyG.%

<x=UCTAB CARR
ox+3%+4 tab ((x+1),z-101)> .

Among other advantages, defining the string as a macro allows use of
the macro editing sense switches to correct typographical mistakes.

CRO. TONS:

A properly defined macro can operate in EDC as 1if 1t were 2
nuzber (of type yariable for purposes of implied multiplication). In
addition, it is possible for a macro to take one argument from the
expression in which it is used. Thus, for example, 1f is possible
tc define a macro which replaces the last number typed with that

pumber's absolute value. The general technique is to write a macro

-13~

whose first operation is that of storing the last number in a unique
variable. For example, the definition

name ; X<+(-x), x>.

allows

(a~b)nane

to compute the absolute value of the mumber (a-b), leaving the re-
sult in x . Thils occurs because the string of characters represented
by the abbreviation name is:

»X<H(-x), 2>
Hence, typing (a-b) name is equivalent to typing

(a-b),x<+(-x),x>

The iteration <+(-x),x> changes the sign of the contents of vari-
able x repeatedly untll the sign is positive.

Note: the plus sign following the < is provided to avoid the
useless computation of -x<x which would result wherever x was origl-
nally positive. Addition in EDC 1s somewhat faster than multiplica-
tion, and should be the preferred operation. One difficulty with
this macrc is that 1t fails to supply the result in a convenlent form
for further computations. Two cperators have been provided which
simplify the cperation:

B

, and C .

I)

Both are "deletion" operators, and may be so used even outside macros.

zeros the last number typed.

]

zeros the current expresslon only back to the last
unpaired open parenthesis. (The rest of the current

expression 1s untouched.)

Using these operators, the macro "name" can be rewritten as

follows:

name ; XN (<+(-x),x>0x) .

Using this definition of "name”, let us follow EDC'S computa-
tion of

(L)nemc
The character string seen by the processor 1s, in effect:

(2),xN(<+(-x),x>Cx)

After the N is interpreted, the value of X is 1. and the aceum:ila-
tor contalns zero, giving the effect that no number was typed since
the operator which preceded the (1). In effect, then, the number
(1) has been deleted from the string seen by the processor, although
the value of this number is safely preserved in x. Now, the com-
putation inside the parentheses 1s performed, and when the C is in-
terpreted, the sum 1s deleted from the accumulator, without affect-
ing the value of any part of the expression which was typed before
the first. BSince the "answer" 1s contained in X, X 18 rcw added
into the expression, and the parenthesis count is reduced tn its

value before the macro was spilled.

-15-
Using the definition of "name,"

either

10(2a~b)name
or

((2-b)name)10

computes 10 times the absolute value of (a-b).

Similarly, (a-b)name/3 computes one-third the absolute value of (a=b).
Given the following two macro definitions, "sqr" becomes a
square root function:

aa; xxN(<+(-xx), xx>C-xx)

8Qre XN (X, <+ ((FH5/7) o 5) s 5t (3rmz, 8 JBEBIV).

Now the number 9sgr has the same value (to the number of figures
specified by the last S operation) as does 3.

Rovert A. Wagner

Approved mﬂ”‘/

/7 3. B. Dennis

	DEC.pdp_1.1963.102650084.p1.src.tif
	DEC.pdp_1.1963.102650084.p2.src.tif
	DEC.pdp_1.1963.102650084.p3.src.tif
	DEC.pdp_1.1963.102650084.p4.src.tif
	DEC.pdp_1.1963.102650084.p5.src.tif
	DEC.pdp_1.1963.102650084.p6.src.tif
	DEC.pdp_1.1963.102650084.p7.src.tif
	DEC.pdp_1.1963.102650084.p8.src.tif
	DEC.pdp_1.1963.102650084.p9.src.tif
	DEC.pdp_1.1963.102650084.p10.src.tif
	DEC.pdp_1.1963.102650084.p11.src.tif
	DEC.pdp_1.1963.102650084.p12.src.tif
	DEC.pdp_1.1963.102650084.p13.src.tif
	DEC.pdp_1.1963.102650084.p14.src.tif
	DEC.pdp_1.1963.102650084.p15.src.tif
	DEC.pdp_1.1963.102650084.p16.src.tif
	DEC.pdp_1.1963.102650084.p17.src.tif
	DEC.pdp_1.1963.102650084.p18.src.tif
	DEC.pdp_1.1963.102650084.p19.src.tif
	DEC.pdp_1.1963.102650084.p20.src.tif
	DEC.pdp_1.1963.102650084.p21.src.tif
	DEC.pdp_1.1963.102650084.p22.src.tif
	DEC.pdp_1.1963.102650084.p23.src.tif
	DEC.pdp_1.1963.102650084.p24.src.tif
	DEC.pdp_1.1963.102650084.p25.src.tif
	DEC.pdp_1.1963.102650084.p26.src.tif
	DEC.pdp_1.1963.102650084.p27.src.tif

