
NEW DIRECTIONS I N SOFTWARE 1960-1966

BY

ASCHER OPLER

Reprinted from the PROCEEDINGS OF THE IEEE
VOL. 54, NO. 12, DECEMBER, 1966

pp. 1751-1763
COPYRIGHT @ 1966-THE INSTITUTE O F ELECTRICAL AND ELECTRONICS ENGINEERS, INC.

PRINTED IN THE U.S.A.

ASCHER OPLER

elsewhere in this issue.

SOFTWARE PRODUCTION

1) Quantity requirements were rising.
2) product delivery was lagging.
3) product quality was unsatisfactory.

1966. Instead, the current position of software will be sum-
4) costs were exceeding estimates.

hods for automatic software production, - - .;
were not fulfilling expectations. -.' special conferences on aspects of software, the publication

, two major conferences (IFIP Congress-1962 in Munich same site as production of hardware.

developed and when perfected, put into operation.

I = - 1758 I - ., J - . - r @@ - DECEMBER - r a '-1. @ i- c ' . ~ . ~ ~ y ; T * * G , ~ ! &~*-;:,-,=-**.-~-i--:k;&r%!+x:#&,LL* 5,

; q

T h s transition to factory-type production methods is still
in progress. Completion is a few years away, but those
manufacturers who have installed such methods appear
satisfied with all results except costs, which have mounted
beyond all projection exceeding, in many ways, hardware
production costs. To date, automatic production of soft-
ware has not been successful in turning out a product of
commercially acceptable quality. This lack has been par-
tially compensated for by the application of computers to
many other processes involved in software production
scheduling, specification, check-out, testing, documenta-

'tion, etc.

The development, marketing, and installation of second-
generation computers (transistors and printed circuits) was
completed during this period and the introduction of third-
generation (microelectronic circuitry) computers initiated.
That problems exist in adapting applications programs for
a next-generation computer has always been known, but it
is only in the past two years that most people have become
aware of a) the size of the investment of man-years in the
existing pool of programs and, b) the difficulty of executing
a smooth, minimum effort transition.

There are a number of known aids to transition between
computer generations. For second-to-third generation con-
version, the following are available :

1) Simulation of the old computer on the new computer.
2) All-hardware compatibility mode in which special cir-

cuitry permits the new computer to perform all functions of
the old.

3) Emulation in which certain functions of simulating
the old computer are performed by special circuitry while
others are performed by software.

4) Recompilation of programs written in those program-
ming languages for which processors are available on both
the old and new computers. Where the two versions of the
programming language have significant differences, lan-
guage version to language version translators may be
useful.

5) Data conversion aids which assist in reformatting
data, changing character sets, labels, etc., as required by the
new computer and its software.

The one method that is absent is that of fully automatic
translation of any program (existing in either machine code
or assembly language) to programs that can execute suc-
cessfully on the new computer. While considerable effort
has been spent in the development of such programs (8, 9,
lo), the only translations in successful use today are special
cases :

1) Translators operating between two computers with
relatively small differences in logical design (e.g., Honey-
well 200/IBM 1401).

2) Programs which translate the simple equivalences of a

program and flag the difficult portions (1 1). These are some-
times called "reprogramming aids."

At the present time, the two most promising conversion
routes are 1) via emulation and/or all-hardware compatibil-
ity, and 2) via use of standard programming languages.
However, past difficulties are expediting the current move-
ment toward the mandatory use of such languages. Con-
currently, language standardization efforts, long in prog-
ress, are resulting in standardization at a most propitious
time.

For many years, despite claims to the contrary, there has
been little significant interchange between logical designers
and designers of software systems. To software system de-
signers, it appeared that hardware designs were facts-of-life
to be surmounted by their product. Computer designers
blamed software designers for masking the beauty of the
logical design with programming systems.

The direction that computer design has taken has forced
an end to this isolation. The design of the Burroughs B-5000
(1961) was clearly the product ofjoint efforts. The computer
aided the language processors by providing push-down
storage, while the logical design necessitated a specialized
control program in order to operate. This pioneering effort
pointed out :

1) That software performance could be enhanced by in-
clusion of appropriate manipulative ability in the order set.

2) That software designers could build processors aimed
at taking advantage of such facilities.

3) That an unconventional logical design made a special
control program an integral part of the whole hardware-
software system.

4) That the logical design forced the adaptation of a
rigorous set of programming techniques and conventions.

Since that time, increasing interchange--even team-
work-has often occurred. Consolidation of the two de-
velopmental efforts under single management has facilitated
this interchange. The knowledge that the two groups could
really support and encourage radical departures led to a
new and better mutual appreciation. Based on the logical
equivalence of hardware and software, careful and eco-
nomic trade-offs have begun to appear. For example, if the
cost of main core storage can be drastically reduced, large
complex control systems may reside in memory replacing
expensive complex circuitry, provided that the control
functions can have fast enough response. This illustrates
the type of interaction that requires considerable joint
analysis to reach proper decisions.

Third-generation computers generally have less control
circuitry than earlier computers because of greater reliance
on control programs. The recognition of the importance of
control programs is borne out in the design of a two-mode
computer which prevents "ordinary" programmers from
altering control programs stored in memory. In the event

OPL WARE

of attempted alteration, an interruption occur leads
to a three-level computer viewpoint:

1) Hardware (Hardware Designer)
Program (Software Designer)

3) User Programs (Applications Programmer).

that those who utilize any specific level must
itted to alter higher level facilities.

EFFECT OF MICROPROGRAMMING

mentation of a computer design may be done
ways. In the conventional, the logical design
lectronic circuitry. In the other, a highly
ssor is designed and then the full design
step-by-step microprogram which effects

execution of each instruction in the order set by a series of
microprogrammed instructions.

The latter approach has been known (and occasionally
implemented) for many years. The practical difficulties lay
a) in the high cost of the micro-memory which stores the
microinstructions and b) in the relative slowness of the
microprogram (8 to 30 microsteps are generally needed to

e command). The principal advantages lay
oduction cost and b) flexibility of treating

When microminiaturized circuitry was developed for
third-generation computers, operation times of 10-100
nanoseconds were made readily available, but large main
memory access time remained in the order of 500-2000
nanoseconds. Designers took a new look at microprogram-

eming and realized that the time required for a storage access
hwould generally overlap the time for 8 to 30 microsteps.

. IPromising new techniques were available for preparing
=; 'high speed read-only memories which could store the micro-

'programs. With these developments, commercially success-
rammed computers (IBM System/360 Models

67; Spectra 70, etc.) were designed and

Once the production of microprogrammed computers
was commenced, a further area of hardware-software inter-
action was opened via microprogramming. For example,
more than one set of microprograms can be supplied with
one computer. A second set might provide for execution of
the order set of a different computer-perhaps one of the
second generation. Additional microprogram sets might
take over certain functions of software systems as simu-
lators, compilers and control programs. Provided that the
microsteps remain a small fraction of a main memory access
cycle, microprogramming is certain to influence future soft-

STORAGE ALLOCATION
Perhaps the one area that most reflects current thinking

about programming is that of storage allocation. Some
years ago, the principal problems concerned relocation of
separately assembled programs to form a single executable
unit. Emphasis then shifted to problems of overlay in which

specltl segments stored in an exte
loadea as explicitly directed, replacing portions of code no
longer needed. The next storage allocation problem of
concern was that of dynamic relocation in which execution
of certain sections of code was momentarily halted, the
code shifted to a new position in core storage and then
execution allowed to resume. Dynamic relocation proved
useful in processing large complex programs on relatively
small computers and in multiprogramming situations.
Another storage allocation problem of general interest
centered on the automatic assignment of sections of code to
internal and to external memory and the development of
control programs to handle required overlay automatically. ,

The subject of storage allocation is one that continues to
be vigorously developed. Acceptance of time-sharing, multi-
programming, and multiprocessing using a single shared
memory has forced an accelerated development of storage
allocation technology.

Central to the new technology is a change which can be
best grasped by considering storage from the viewpoint of a
single user. Instead of real memory (limited to magnetic
core memory), he addresses a virtual memory (exceeding '
main memory size by orders of magnitude). Consider an
oversimplified example: if there are 1000 words of main
memory available for the user and he addressed location -
13 500, the thirteenth "page" of 1000 words is automatically -.I
fetched from external storage, after preserving the current
contents of the 1000 words, prior to the accessing of loca-
tion 500 in that page now in main memory. Thus a user has
virtual access to large memory without concerning himself
with relocation, overlay, etc.

Such systems for "swapping" "pages" of external and
internal memory are generally slow (several milliseconds
per swap) and complex in their control program design.
Considerable attention is being given to a) strategies of
swapping which minimize the number of swaps required
and b) hardware and software schemes to simplify virtual
memory control programs.

Organizationally, virtual memories operate with address-
free code stored in external media. Reference tables, stored
in main memory, are consulted whenever a storage access is
required. A reference to a page not currently in main
memory triggers a swap, an update of the memory reference
table and a binding of the page to an available main memory
area.

In addition to the development of the virtual memory
concept, new techniques for sharing common coding have
also been developed. The common coding may be an inter-
rupt-resolution routine, a square-root subroutine or a
Fortran compiler. In order to be used in a nondestructive
way by a number of simultaneous or near-simultaneous
users, these common routines must be written in re-entrant
code (also calledpureprocedure). Such code is written with
only invariant instructions and constant data. Code ex-
ternal to the routine is addressed only by indirect methods.
All variables, parameters, and work areas are located in

1760 PROCEEDINGS OF THE IEEE DECEMBER

private user space or in common push-down storage. There
are as many copies of these elements as there are users.

SOFTWARE IN COMPUTER SYSTEM CONTROL

A supervisory control program is now an integral part of
every third-generation computer. In effect, the hardware
requires the control program to enable the computational
functions to be carried out.

To illustrate, consider how multiprogramming is imple-
mented via software in distinction to implementation in
hardware (as in the Honeywell-800). The control program
>includes a number of functional routines to permit multi-
programming. One regulates a circulating queue of actively
executing programs, another dispatches input/output tasks
as channels and equipment becomes available. The multi-
programming capability is built into the control program as
follows : Whenever any interrupt occurs (if none does occur
'< naturally," an interrupt is forced every few milliseconds
via an internal clock), the currently executing program is
examined to ascertain whether it is in a hold condition pend-
ing availability of an 110 device or pending completion of a
previously initiated task. If the program is in a hold condi-
tion, others in the circulating queue are examined to locate
the next program not in a holdcbndition. That one is selected
to replace the previous (single) active program and execu-
tion commences at the point where it was interrupted during
its previous running. In this way, the multiprogramming
monitor allows each of a group of programs to continue
executing while the others wait for channel or device avail-
ability.

Another area in which functions formerly assigned to
hardware are now handled by software is that of inputlout-
put control. When computers interfaced a very small
number of prespecified devices, it was reasonable to design
logic for reading and writing each device. In the past few
years, the number of available devices has multiplied and
the rate of new device introduction has exceeded the rate of
new computer generation introduction. As a consequence,
designers of the input/output portion of a new computer
face a nearly impossible task-to design a computer capable
of interfacing a hundred or more different devices-many
not yet developed. The answer clearly lies in the software
realm. New computers have a minimum of 110 hardware-
limited to generalized channel and control unit logic. All of
the sophistication and the specialization for different devices
is built into the software. One consequence of this trade-off
is the requirement for large amounts of main storage to
hold all the required programming.

Current software for input/output processing is, in part,
an integral portion of the supervisory control program. One
portion must monitor the interrupt system to identify inter-
rupts originating outside the central processor or to initiate
an 110 interrupt when appropriate. Another portion of the
110 system must establish and maintain a queue of pending
1/0 requests and must dispatch or stack them according to
availability or nonavailability of equipment. The part that
analyzes error indications must be able to isolate both the

faulty device and the specific fault and then it must branch
to an appropriate recovery routine specialized for that de-
vice and that error. Other parts of a third-generation 110
system include specialized code for recognizing and treating
differences between specific devices, channel and device

J
availability tables, assignment tables and corresponding
allocation and assignment routines.

Multiprogramming and input/output control represent
but two of the ways in which hardware functions are now
being relegated to software. Other obvious areas are time-
sharing control, telecommunication, and graphic-display
systems.

In addition to functions previously assigned to hardware,
control programs have taken on many new functions. Some
are refinements of older practices; others are required be-
cause of the manner in which we currently view the opera-
tional environment. This can perhaps be understood in
terms of the two following paragraphs.

In 1960 the computer was viewed as a single entity of considerable
capability. Computational tasks at an installation were generally homo-
geneous (scientfic, commercial, etc.) and embodied in single programs. A
queue of these programs was organized and processed sequentially by the
computer.

In 1966, the computer is viewed as a collection of resources (CPUs,
memory boxes, input/output devices, etc.). Computational tasks at an in-
stallation are generally heterogeneous and embodied in a myriad of pro-
gram modules. A list of all required computational tasks, along with cor-
responding priorities and needed resources, is fed to the computer. Tasks
are analyzed, schedules established and processing commences. According
to the supply of useful resources, as many programs (or as many parts of
programs) as possible are run concurrently. As tasks end and before new
tasks commence, resources are re-allocated to maximize computational
work per unit time.

To implement the self-scheduling, self-resource-allocat-
ing computer, the control program must contain schedule-
planners, schedule-dispatchers resource-control routines,
numerous queue-control programs, priority-conflict resolu-
tion programs, recording and accounting routines, etc.

These functions can be supplied only at the expense of
main memory space. (Ultra-compact systems using overlays
from fast magnetic drum or disk have been implemented to
save core space at the expense of either response time, avail-
able facilities or both.) As the number of devices increases,
as the number of programs that can run in parallel increases,
so the main memory space allocated to control programs
increases more and more. In 1960, medium-size computer
sizes were typically 8192 words or 20 000 characters. Today,
a typical medium-size computer has 4 to 8 times this
capacity, with control programs often occupying 10 000 or
more words.

The history of the development of programming lan-
guages during the covered five and one-half years could be
the subject of a lengthy monograph. Indeed, concise his-
tories of some of the major languages have appeared [5] . A
number of conferences dealing with aspects of program-
ming languages have been held and programming la1
guages committees are to be found in numerous national -

and international professional societies. Furthermore, in

uages has resulted in the development of standards for
ortran and Cobol. In the broad scope of this article, only a

few generalities can be stated about programming lan-
guages; readers with special interest can refer to the

' voluminous literature. Remarks about processors (com-
g j l e r s) for programming languages will be made in the next
.; ,section.

Currently, these languages have collectively reached a r* -
t :pinnacle of acceptance. Three of the languages (Algol,

Fortran, and Cobol) are most widely used because good
processors are available for most computers and the lan-
guages themselves are proving useful. Dialects and variants
of these languages proliferated during the last five and one-
half years, but the introduction of new broad-use languages
has diminished. Thus the field seems to be moving toward
the establishment of a small number of stable standard
languages.

A new programming language of unusually broad scope
(Programming Language/I) has been under development by . ,IBM for two years, but no processor has been made avail-

figble to date. The language is designed to be coalescent with
*I iespect to previously developed scientific, commercial, and

other programming languages. IBM's heavy backing will
undoubtedly make this language an influential one. Many
other manufacturers are currently planning also to provide
PL/I compilers.

Considerable attention has been given to special-purpose
languages. Such languages fall into two categories-those

' whose semantics require special treatment and those whose
syntax and semantics both require special treatment. In the
former category are application-oriented languages which
use terminology specific to a discipline-thus there are
trajectory languages, telecommunication languages, nat-
ural language-manipulation languages, picture languages,
military languages, algebraic-manipulation languages,
simulation languages, etc. Into the second category fall lan-
guages with unusual syntactic structure. These include
languages for list processing (e.g., LISP, IPL-V,) and lan-
guages which are self-extending (e.g., TOOL, SET, SLANG,
and X-POP).

Another direction of language development is toward
' 'implicit or descriptive languages. In the programming lan-

guages mentioned above, the writer uses language in an
explicit, prescriptive manner stating the actions to be done
and the performance sequence. In an implicit language, the
writer describes the initial status and the desired final status

:. of his computation. A processor then develops a program
.. 'that will meet the requirements. At present, report writing,
,graphic and input/output languages of this type have been

. r~ developed. File structure problems are also subject to treat-
-U ' ment using such implicit languages.

I

! ' - PROCESSORS FOR PROGRAMMING LANGUAGES -, ,k ' 4

while the publications dealing with programming lan- ' guages have been voluminous, the areas associated with
the compilers that process them have received relatively less

k

out, in detail, how one processor for a given language was
developed for a given computer. In general, such publica-
tions appeared several years after the completion of the
project and describe useful techniques. While such volumes
make interesting reading, the problems relate to other spe-
cific designs in only a general way.

During the five and one-half years covered, a vast number
of significant contributions to compiler design and to im- -
plementation technique have been made but, because of a ,.,A

competitive situation and because of enormous pressure to
produce successors, publication of these methods has been
limited.

The most influential contribution was that of Irons (7 t
namely syntax direction. This concept served to relate lan-
guage specification to processor specification. Iron's original
syntax-directed compiler proved imp-ractical, but efficient
modifications and variants were soon developed. Although
many significant contributions to fundamental design and
technique were published, a meaningful gap still exists be-
tween processor techniques described in the current litera-
ture and processor techniques in use today.

The development of an efficient processor has rarely, if
ever, been produced by the application of a single design
principle. Several single-design processors have been pro-
duced but have not been commercially successful.

Most compilers produced today are syntax-oriented in
their language decomposition phase and use recursive rou-
tines for machine code generation. With usual memory
space limitations, most designers must choose between a
fast "one-pass" compiler with minimum (primarily local)
output code optimization or a slower "multi-pass" compiler
with cascading series of global code-optimizing routines. Of
course, processors which may operate in large magnetic
core memories, can optimize globally in a single pass.

Compilers can be optimized for certain performance re-
quirements only at the expense of others. In the last few
years, we have seen very compact processors, very fast ones,
very large ones, etc. Designers are now accepting the fact
that design objectives must be specialized. The general
compiler pleasing all users does not and cannot exist.

Time-sharing and multiprogramming requirements have
turned attention to two new types of processors-conversa-
tional and re-entrant compilers. The former allows a time-
sharing programmer stationed at an attached terminal to
develop his program in a conversational style: (1) a state-
ment is typed by the user; (2) it is checked and either ac-
cepted or diagnosed as an error; (3) in the latter event, the
user, having been notified, may correct it on the spot, and
(4) in any event, he prepares the next statement. When the
process has been completed, the user directs the system to
compile his program and store it for future use. An alterna-
tive approach permits fractional compilation of each state-
ment as it is accepted, with subsequent binding of the frac-
tions to form a single executable whole.

A re-entrant compiler is one constructed entirely with re-
entrant code. For each active concurrent user, a separate

1762 PROCEEDINGS OF THE IEEE DECEMBER

storage area is established for input, work,.diagnostics, out- for reliability and conformity to the specifications.
put. The actual compiler coding, of course, remains. in- A host of shortcut methods for expediting software pro-
variant. Construction of re-entrant compilers has required duction have been developed. Most have failed to provide
the development of new techniques-but many design prin- the capability necessary to meet performance and other

objectives. .&> ciples of ordinary processors have been used.
This rigorous atmosphere dominates only the realm of

PRODUCTION OF PROGRAMMING LANGUAGE PROCESSORS computer manufacturers and independent software organi-
Probably more than one hundred full-scale compilers zations. At the universities and other research-sponsored

have been produced in the United States alone during the centers, vigorous research activity continues in selected
covered period. Each year, an increasing number are software areas. While many significant contributions have
scheduled and announced. Nevertheless, difficulties con- originated at such centers, many researchers have failed to

, tinue to plague compiler producers. grasp the nature of the real software problems.
In general, difficulties may be attributed to failure to:

DATA-FILE MANAGEMENT SOFTWARE
1) Realize that the task (compiler production) is a com-

plex one requiring control by capable managers. Although thousands of small programs are being written

2) Comprehend the need for trade-offs between a) im- to perform a single task operating on a small amount of
data, the trend toward large integrated groups of programs

plementation time, b) implementation man-power, c) com-
operating on an integrated data base is quite evident. piler performance, d) object program performance, and
Furthermore, computation is becoming more and more e) quality of product.
distributed with increasing use of multiple computers, tele-

3) Comprehend the systems-integration aspects since
communication network and remote access stations. One of

compilers are only one element in an ensemble of software
the software facilities designed to support large, integrated

elements. applications operating on distributed equipment is data-file
4) Allow sufficient time, manpower and computer time

management software.
to bring the just completed product to an adequate level of

In 1960, the dominant data storage medium was magnetic
error-free operation.

tape, although rotating magnetic disk systems were in some
5) Allocate sufficient computer time for the various

use and small, slow magnetic drums were beginning to fade
phases of compiler production. from use. Today, while magnetic tape usage has greatly

6) Use experienced producers of successful compilers to
increased, it is declining relative to the use of four other

produce subsequent ones. (Compiler techniques are "more
devices: fast, high-capacity, magnetic drums; small, de- dl 'art' than science" and new implementers must re-discover mountable magnetic disk units; fixed magnetic disk units;

many of the basic techniques). and very high-capacity, moveable, individual magnetic
7) Separate the concepts of objectives, specification, de-

strip, transport units. All of these can access any of a large
sign, implementation, and evaluation.

number of data records in a much shorter average access
8) Resolve the conflict between the choice of a well- time than magnetic tape units can.

known design for a new compiler (with possible loss of effi- This capability has given rise to considerable develop-
ciency) and the choice of developing a new design (with ment in techniques (12, 13) to allow managing and efficient
probable delay in completion) for a new situation. accessing of data files stored on such devices. Such systems

9) Distrust techniques believed to simplify the task: writ-
allow the use of a variety of different access methods,

ing a compiler in its own language, writing in other high-
, maintenance, and file security methods. These systems often level languages, writing using special compiler-production

extend their capabilities to files originally described in
languages, etc. Although the principle is valid, few com-

COBOL or other high-level languages. Data-handling sys-
pilers produced using these methods have been as generally

tems of this type rank among the largest and most complex
successful in the eyes of users as those written in assembly software projects. Principal difficulties are concerned with
language. the sheer size of the data control program routines, and the

Major producers of programming language processors difficulty of handling small, simple data records when ad-
have become aware of the scope and complexity of the tech- herence to the rules of the large dominant system are
nological problems. Currently, more realistic estimates of mandatory. The file-access software must cope with a num-
calendar time, manpower and computer time are being ber of problem areas including:
made. Major producers of software (computer manufac- 1) Allowing sufficient "device independence" such that
turers and software companies specializing in this field) are drums, stationary or demountable disks and magnetic strip
devoting more attention to software problems; manage- device may be manipulated in a manner that appears
ment of software companies is becoming more realistic and identical in effect to the user.
tough-minded. In this environment, objectives are estab- 2) Allowing manipulation of files or records within a file
lished, objectives lead to specifications; designs to meet or items within a record by a variety of general technique
specifications are evaluated, quality and schedule assurance including addressing by name, by an index code, and bq -
are applied and the final product is rigorously tested both position.

1966 OPLER: DIRECTIONS I N SOFTWARE 1763

3) Obtaining the optimum redundancy-omitting need- puting, and similar man-machine interactive techniques.
less duplication on the one hand, but providing sufficient 3) Problems of simplifying, managing, and maintaining
copying facility to insure ability to preserve files to prevent programming systems of enormous size and complexity.

&,J vital loss in the event of malfunction. 4) Extension of microprogramming to supervisors, com-
4) Allowing location of records based on the content of pilers, e t ~ .

an item. 5) Software for visual, auditory, and other human ma-
5) Allowing indication of interrelations in complex data nipulative interfaces with computing systems.

bases. 6) Increased attention to the contributions being made
6) Providing the capability of sorting files while resident in more fundamental fields such as automata theory,

on the device. linguistics, information science, etc.

SUMMARY BIBLIOGRAPHY ,
Because of the level of activity in this field which has [I 1 G. M. Hopper and J. W. Mauchly, "Influence of programming tech-

burgeoned in the past five and one-half years, it has been niques on the design of computers," Proc. ,IRE, vol. 41, pp. 125G
1253, October 1961.

possible to give only a cursory summary of some of the [2] W. Orchard-Hays, "The evolution of proglamming systems," Proc.
more significant developments. In summary, the covered IRE vol. 49, pp. 283-295, January 1961.

period can be characterized by:

emphasis on production and quality control.
3) Acceptance of the use of programming languages. ington, D. C. : Spartkn ~ o o k s , 1962.

4) Attempts to control proliferation of diEerent lan- B. Randall and L. J. Russell, Algol 60 Implementatron. London:
Academic Press, 1964.

guages. A. P. Ershov, Alpha Automatic Programmzng System (in Russian).
5) User acceptance of the dominance of large (software) Novosibersk, Russia: USSR Academy of Science, Siberian Div.,

supervisory systems. 1965.
[7] E. T. Irons, "A syntax dlrected compiler for Algol 60," Commun.

6) Realization of the huge cost of transition to next- ACM, VOI. 4, pp. 51-54, 1961.
mn7erati~n computers. [8] J. H. Gunn, "Problems In program interchangeability," In Symbohc

Languages m Data Processrng New York: Gordon and Beach, 1962, 7) Unsuccessful attempts to develop completely satis- pp, 777-790,
iy factory general techniques for automatic software produc- [9] A. Opler, D. Farbman, M. Heit, w King, E. 03Connor, R. Gold-

tion and general techniques for automatic translation of finger, H. Landow, J. Ogle, and D. Slesinger, "Automatic translation

programs from one computer to another. of programs from one computer to another," in Information Pro-
cessing 1962. Amsterdam: North-Holland, 1962, pp. 550-553.

In the period that lies ahead, in addition to continued [lo] H. Oswald, "Automatic mach~ne language program translation,"
efforts to solve problems mentioned in 2).and 7) above, new Rome Air Development Center, Grlfiss AFB, N. Y., Tech. Rept.

RADC-TR-65-95, May 1965.
items can be preoccupy [l I] D. M. Wilson and D. J. Moss, "CAT:A 7090-3600 computer aided
including : translator," Comm~m. ACM, vol. 8 , pp. 777-781, 1965

1) ~ l l ~ ~ ~ t i ~ ~ and linkage problems associated with time- [12] C. W. Bachman and S. B. Williams, "The integrated data store,"
in the 1964 Proc. FJCC, vol. 26, pt. 1, pp. 41 1422, November 1964.

[13] W. A. Clark, "The functional structure of OS/360: 111-Data Man-
of fractional compiling, conversational com- agement," IBM Sys. J., vol. 5, pp 30-51, 1966.

'- Q
8 .

I.

I'

r -'
F-

	computerusagecompany.new_direct_sftware_60-66.102679059.fc.src.tif
	computerusagecompany.new_direct_sftware_60-66.102679059.p01.src.tif
	computerusagecompany.new_direct_sftware_60-66.102679059.p02.src.tif
	computerusagecompany.new_direct_sftware_60-66.102679059.p03.src.tif
	computerusagecompany.new_direct_sftware_60-66.102679059.p04.src.tif
	computerusagecompany.new_direct_sftware_60-66.102679059.p05.src.tif
	computerusagecompany.new_direct_sftware_60-66.102679059.p06.src.tif
	computerusagecompany.new_direct_sftware_60-66.102679059.p07.src.tif

