~6reated 1/18/78 4 W&&4

S
?‘,‘,“); \

P

Ha P PR\ % 2 Thue Qan v ng’/\,\j/\,m.j‘—‘ APRA
; 2
N ¥ 1 TLW-S roaaol s SRCJ'LIM en C IS “/7"{”? (;J\TTLI AUW ool T/o benchmo ke 3

C’['b w;“/qu,u(@r Ma.es .ﬁ%o) y«.o_:.gf W4, n/ 3y (,«lj(Coche / ¢ IS)
1. INTRODUCTION

& L ites

W, (fond

Y !"l(; »

A computer is not solely determined by its architecture; it reflects the

l’ ’/“) /.‘j"{ ¥ o A

LY
2

technological, economic, and human aspects of the environment in which it
{C\/v o -

was desigend and built. In Chapter;% we discussed the non-architectural

’
J

), £ Stean of

—c=
”

, 62 g

&

5 design factors: the availability and price of the basic electronic

A
o

\ technology, the various government and industry rules and standards, the

current and future market conditions. -Thefinished—eompuber—is—a—product—-
.

~of theé tg;glfgﬁgi@n‘gnvironment.

v

.P ‘/: 74 YA /t—vlf’ﬂ)‘\

fl‘d LArn
o4 2

(D 2

In this chapter, we use the evolution of the PDP-11 to provide a concrete

K\/ a‘{/{z .}{\AL\;/

f(J'J

O an d

Py
VT

example of how the various forces interact. We reflect on the PDP-11:

goals, its architecture, its various implementations, and the people who

')"1 { Jr(x ls

& designed it') We/examlne the desigh, beginning with *¥he architectural

fff(‘\Q % D Fp Mo)('é

specificatipns, and observe ho /;t was affected technology//by the,
e y

development organization, the sales, appllcatyén, and manufacturlng

/

organizations, and the,gz%ure of the flnal/users. [GB'/ Do we cgéer all,

/
e.g., manufacturing?}’

2. BACKGROUND: THOUGHTS BEHIND THE DESIGN

It is the nature of computer engineering to be goal-oriented, with pressure

to produce deliverable products. It is therefore difficult to plan for an

ams Lt

N = TS

S P

&

)
1

MODEL

PPP~11/10

v

PoP~11/20

PoP=-11/30

ppP=11/40

PDP=11/45

PDP=~11/50

KAll

KALll

KB11

KBll

KCll

KC1l

KD11

'Tabh,(liv

LOGICAL

POWER

.7

ARITH
POWER

.7

10-20

10-20

50-100

50-100

100-~-200

PDP-11 Ilamily
SPEED PRICE
(microsec.)
2-34, 4K

2.2p, 9.3K
1.2¢ 13K
l.2g 15K
_!.
DJ'_ S.)(
1.2 25K
1.2 27K
+
Disk
1.2/ 45K
32 hit -
Disk

*CP,

‘bit memory

s

Projection as e (

SOFTWAREL
PAPER TAPE

CONFIGURATION

Technilcgically
cost reduced
11/20 with MOS

CP, LKBROM,
by R/W,
Console

128
Turnkey

8KB Core,
TTY |

Assembler, Editor,
Math Utility
FOCAL, BASIC,
(AsA Das%c
Fortran)~

¥ L kk
adds *,Y, normal-Possible 8% For-—
ize, etc. Possi- tran IV Improved
ble micro-pro- Assembler
grammed process-

or, no EAL saves

$1000

Console,

11/45 with memory
protect/relocate
max’ 'corc 262KB,
Max phys memory
(using disk) 2°
Bytes

adds hardware

floating point 32
bit processor, 16
(16KB)

with memory pro-
tect/relocate

32 bit separate
memory bus 32 bit
processor. .

f\Pv:L(. 3. e,

8-like monitor
(syst.builder 5
w/ODT, DOT, PIP)

Fortran IV

. 4
Super Monitor

CHER

”‘.f‘”l/ll,".t"Y

virtual
for

.either small or

large Disk

FIDENTTAL

1. If microprogrammed, then logical power could be tailored to user.and go to 20-50, 40-100 for 11/€%.

1

Business language system under consideration.

3.. Possible

by-product of FOCAL.

4. Super monitor for 11-45, 55, 65 is priority multi-user real-time system.

created 1/18/78 Page 2
G. Bell - What Have We Learned From the PDP-11?

extensive lifetime. Nevertheless, the PDP-11 evolved rapidly, and over a
much wider range than we expected. This rapid evolution would have placed
unusual stress even on a carerully planned system. The PDP-11 was not
extremely well planned or controlled; rather it evolved under pressure from
implementation and marketing groups. /' wteer /%LL“v?jQ“’ & /’f”’k w,
{[t - vt mughhlds , Eocer Ca (ﬁ';/ who Ax r besk Hu U/ ?"””/" ii_‘/'sju,_ Tl

X _,,/4:_,,,.__&...—-.7[“: S»t vl _a. l S 7 A So ? AL ‘f rmace AIL‘«;.(,g - P AV o © M ——
F4

Because of the many pressures on the design, the planning was asynchronous‘\\\f?aCIy')'
and diffuse; development was distributed throughout the company. This sort

of decentralized design organization provides a system of checks and

balances, but often at the expense of perfect hardware compatibility. This

compatibility can hopefully be provided in the software, and at lower cost (f ’/)SQA/L

to the user. ”TZéZ;:“‘Q

‘—.

|
Despite its evolutionary planning, the PDP-11 has been quite successful in ‘
the marketplace: over 50,000 have been sold in thérglght years that it has
been on the market (1970-1977). It is not clear how rigorous a test (aside
from the marketplace) we have given the design, since a large and ‘

aggressive marketing organization, armed with software to correct

architectural inconsistencies and omissions, can save almost any design.

It has been interesting to watch as ideas from the PDP-11 migrate to other
computers in newer designs. Although some of the features of the PDP-11
are patented, machines have been made with similar bus and ISP structures.
One company has manufactured a machine said to be "plug compatible" with a
(»v»{‘A:.LA .
PDP-11/40. Many designers have adopted the UNIBUS as their fundamental
A

architectural component. Many microprocessor designs incorporate the

UNIBUS notion of mapping I/0 and control registers into the memory address

created 1/18/78 Page 3
G. Bell - What Have We Learned From the PDP-11%

space, eliminating the need for I/0 instructions without complicating the

I/0 control logic. When the LSI-11 was being designed, no alternative to

the UNIBUS-style architecture was even considered.

Chapter 6() described the design goals and constraints for
the PDP-11, beginning with a discussion of the weaknesses frequently found
in minicomputers. The designers of the PDP-11 faced each of these known
minicomputer weaknesses, and our goals included a solution to each one. In
this section we shall review the original design goals and constraints,

commenting on the success or failure of the PDP-11 at meeting each of them.

|
|
\
The first weakness of minicomputers was their limited addressing
capability. The biggest (and most common) mistake that can be made in a
computer design is that of not providing enough address bits for memory
addressing and management. The PDP-11 followed this hallowed tradition of
skimping on address bits, but it was saved by the principle that a good
design can evolve through at least one major change.
For the PDP-11, the limited-address problem was solved for the short run,
but not with enough finesse to support a large family of minicomputers.
That was indeed a costly oversight, resulting in both redundant development
and lost sales. It is extremely embarassing that the PDP-11 had to be
redesigned with memory management only two years after writing the paper
that outlined the goal of providing increased address space. All
predecessor DEC designs have suffered the same problem, and only the PDP-10
£ifteen occunasd
evolved over a long period (ten years) before a change was—needed to

increase its address space. In retrospect, it is clear that since memory

created 1/18/78 Page 4
G. Bell - What Have We Learned From the PDP-11?

prices decline 26 to 41% yearly, and users tend to buy "constant-dollar"
systems, then every two or three years another address bit will be

required.

A second weakness of minicomputers was their tendency not to have enough
registers. This was corrected for the PDP-11 by providing eight 16-bit
registers. Later, six 6U4-bit registers were added for floating-point
arithmetic. This number seems to be adequate: there are enough registers
to allocate two or three (beyond those already dedicated to program counter
and stack pointer) for program global purposes and still have registers for
local statement computation. More registers would increase the

multiprogramming context switch time and confuse the user.

A third weakness of minicomputers was their lack of hardware stack
capability. In the PDP-11, this was solved with the
autoincrement/autodecrement addressing mechanism. This solution is unique
to the PDP-11 and has proven to be exceptionally useful. wiinﬂfaet; %t has

been copied by other designers.)

A fourth weakness, limited interrupt capability and slow context switching,

was essentially solved with the device of UNIBUS interrupt vectors, which
direct device interrupts. Implementations could go further by providing
automatic context saving in memory or in special registers. This detail
was not specified in the architecture, nor has it evolved from any of the
implementations to date. The basic mechanism is very fast, requiring only
four memory cycles from the time an interrupt request is issued until the

first instruction of the interrupt routine begins execution.

created 1/18/78 Page 5
G. Bell - What Have We Learned From the PDP-11?

A fifth weakness of prior minicomputers, inadequate character-handling
capability, was met in the PDP-11 by providing direct byte addressing
capability. Although string instructions are not yet provided in the
hardware, the common string operations (move, compare, concatenate) can be
programmed with very short loops. Early benchmarks showed that this
mechanism was adequate. However, as COBOL compilers have improved and as
more understanding of operating systems string handling has been obtained,

there appears to be a need for a string instruction set.

A sixth Qeakness, the inability to use read-only memories, was avoided in
the PDP-11. Most code written for the PDP-11 tends to be pure and
reentrant without special effort by the programmer, allowing a read-only
memory (ROM) to be used directly. ROMs are used extensively for bootstrap
loaders, program debuggers, and for normal simple functions. Because large
ROMs were not available at the time of the original design, there are no

architectural components designed specifically with large ROMs in mind.

A seventh weakness, one common to many minicomputers, was primitive I/0
capabilities. The PDP-11 answers this to a certain extent with its
improved interrupt structure, but the more general solution of I/0
processors has not yet been implemented. The I/0O-processor concept is used
extensively in the GTUX display series, and for signal processing. Having
a single machine instruction that would transmit a block of data at the
interrupt level would decrease the CPU overhead per character by a factor
of three, and perhaps should have been added to the PDP-11 instruction set

for implementation on all machines. Provision was made in the 11/60 for

(A4

rw

) : . L.k
invocation of a micro-level interrupt service routine 1in WCs, *

(l Y t\ *c \,l‘»m-‘ n \J'{’ + L)«' 2 /("‘ (/(('CI

created 1/18/78 Page 6
G. Bell - What Have We Learned From the PDP-119?

Another common minicomputer weakness was the lack of system range. If a

user had a system running on a minicomputer and wanted to expand it or
produce a cheaper turnkey version, he frequently had no recourse, since
there were often no larger and smaller models with the same architecture.
The problem of range and how it is handled in the PDP-11 is discussed

extensively in a later section.

A ninth weakness of minicomputers was the high cost of programming them.
Many users program in assembly language, without the comfortable
enviornment of editors, file systems, and debuggers available on bigger
systems. The PDP-11 does not seem to have overcome this weakness, although
it appears that more complex systems are being built successfully with the
PDP-11 than with its prececessors, the PDP-8 and PDP-15. Some systems
programming is done using higher-level languages; the optimizing compiler
for BLISS-11, however, at first ran only on the PDP-10. The use of BLISS
has been slowly gaining acceptance. It was first used in implementing the
FORTRAN-IV PLUS compiler. Its use in PDP-10 and VAX-11 systems programming

has been more widespread.

One design constraint that turned out to be expensive, but probably wo4ﬁﬁ
it in the long run, was that the word length had to be a multiple of eight
bits. Previous DEC designs were oriented toward 6-bit characters, and DEC
has a large investment in 12-, 18-, and 36-bit systems. The notion of word
length is somewhat meaningless in machines like the PDP-11 and the IBM

System/360, because data types are of varying length, and instructions have

varying length: one or more groups of 16 bits.

created 1/18/78 Page 7
G. Bell - What Have We Learned From the PDP-112?

Microprogrammability was not an explicit design goal, partially since the
large ROMs which make it feasible were not available at the time of the
original Model 20 implementation. All subsequent machines have been

microprogrammed, but with some difficulty and expense.

Understandability as a design goal seems to have been minimized. The
PDP-11 was initially a hard machine to understand, and was marketable only
to those who really understood computers. Most of the first machines were
sold to knowledgeable users in universities and research laboratories. The
first programmers' handbook was not very helpful, and the second, arriving
in 1972, helpted only to a limited extent. It is still not clear whether a
user with no previous computer experience can figure out how to use the
machine from the information in the handbooks. Fortunately, several
computer science textbooks [Gear T4, Eckhouse 75, and Stone and Siewiorek

751 have been written based on the PDP-11; their existence should assist

the learning process.

We do not have a very good understanding of the style of programming our

users have adopted. Since the machine can be used in so many ways, there _
fore o) o n Asaunsed w- P 1N Sehun e HL Te¢

have been many programming styles. Former PDP-8 users adopt a

one-accumulator \convention; novices use the two-address form; some

,/

/ . . :
compilers use it as a stack machine; probably most of the time it is used
J/

machine with a spﬁék for procedure calling.

/

as a memory-to-regist

addressipg/modes have been tabulated from

g

Frequencies of the vario
Strecker's program traces and apé given in Appendix A of Chapter 11. The

high frequency of destinatipﬁ'm e zero suggests high use of a
J/

/

created 1/18/78
G. Bell - What Have We Learned From the PDP-117%

,f;/,/ NOAAY DAY Ca |)

Structural flexibility (modularityﬁ/was an important gdal. This succeeded

beyond expectations, and is discussed extensively in the UNIBUS section.

3. TECHNOLOGY: COMPONENTS OF THE DESIGN

-

/

In Chapter;;a we observed that computers are very strongly influenced by
the basic electronic technology of their components. The PDP-11 family
provides the best example, of all DEC computers, of designing with improved
technologies. Because design resources have been available to do
concurrent implementations spanning a cost/performance range, we have a
rich source of examples of the three different design styles: constant

cost with increasing functionality, constant functionality with decreasing

cost, and growth-path.

Memory technology has had a much greater impact on PDP-11 evolution than
logic technology. Except for the LSI-11, the one logic family (7400 series
TTL) has dominated PDP-11 implementations since the beginning. Except for
a small increase following the 11/20, gate desnity has not improved
markedly. Speed improvement has taken place -- with Schottky TTL =-- as has
a power improvement -- LS series. Departures from MSI TTL, in terms of
gate density, have been few -- but very effective. Examples are the 2901
bit-slice in the 11/34 floating-point processor, the use of PLA's in the
11/04 and 11/34 control units, and the use of ECL in some clock circuitry.
1969
Memory densities and costs have improved rapidly since 1970 and have thus
the most impact. Read/write memory chips have gone from 16 bits to 4096

new’ ~ 1237
bits in density and ROM's with 8K or 16 Kbits are widely available. This—

A

h«;rnOr%; Aﬁﬁ?t

dﬁdbhvr~ﬁuai

g,nﬂgtymch,dhﬂ

’

VW\ X so

Chﬂr"%ﬁl Ispmqﬁ, C‘O)

Since L6,

. & gl’ Ouq A

Wﬁ e mrdd A sen e tov A‘W’ll

created 1/18/78 Page 9
G. Bell - What Have We Learned From the PDP-117?

section discusses the PDP-11 evolution-through memory techRologies—-.

The memory technology of 1969 imposed several constraints. First, core
memory was cost effective for the primary (program) memory, but a clear
trend toward semiconductor primary memory was visible. Second, since the
largest high-speed read/write memories available were 16 words, then the
number of processor registers should be kept small. Third, there were no
large high-speed read-only memories that would have permitted a

microprogrammed approach to the processor design.

These constraints established four design attitudes toward the PDP-11's
architecture. First, it should be asynchronous, and thereby capable of
accepting different configurations of memory that operate at different
speeds. Seéond, it should be expandable to take eventual advantage of a
larger number of registers, both user registers for new data types and

internal registers for improved context switching, memory mapping and

protected multiprogramming. Third, it could be relatively complex, so that
a microcode approach could eventually be used to advantage: new data types
could be added to the instruction set to increase performance, even though
they might add complexity. Fourth, the UNIBUS width should be relatively
large, to get as much performance as possible, since the amount of

computation possible per memory cycle is relatively small.

As semiconductor memory of varying price and performance became available,

it was used to trade cost for performance across a reasonably wide range of

models. Different techniques were used on different models to provide the
S e modd s 27(0(1*' o jzo ¢

range These techniques include;microprogramming to enhance performance

oo Ao hed vn o dsn 00

.

created 1/18/78

G. Bell - What Have We Learned From the PDP-11?

(for example, faster floating point)$ use of faster progra fggories ad
. (cgln‘u“ 155 amek o 11/60 A ol Codat shove)
brute-force speed improvements, use of fast caches to optimize program

Cmodole "/70) I‘/(p[) CvacL cocdaod l)/%.\/)} . (\ i “/q&-)
memory referencesi and expanded use of fast registers inside the processor. —.
110 gan v Lé Se s concdietor iéohnb/o‘rjy Mu/aéclbcl 3 \ ;
: P amiae N Catliiaiisnoe/ S A R
4 / ;""W' A pen ., vntiers
‘Fﬁ)‘/) // C/f‘)i 2 (u;.h:‘ﬂ'
T(J war v‘"
Sl ondusdoes
W’VKWU eASUS
(& s_,.hA«m-ﬂj f”
P» ‘"\(bhi N\FI’KC'j
» € 0
- ;) V a V‘L\l .J |
6{9 6L~ . g A

vt dis omss

! (J"q&b 2'

SCHEM ’//EROUP 1
(2,1,1

MINIMUM DELAY

| S
3
27 4 MINIMUM DELA
SOLUTION
s (é: SCHEME GROUP B
i SCHEME
8 - 2,2,1©)
SCHEM%)
(
24 GPOUP 4) GROUP 2
»ﬁ/ (\
: 23 : i CHEME ,
) & SCHEME “““““\\-\.\\\\ ‘\~J%Iffil7j -
& 2,15 '
S 224 CHEAPEST GROUP 5| e
'__

SOLUTION e
| 21 - ©) SCHEM
| = (F1.% | -DOMINANT
| SOLUTIONS
20 - GROUP A
- CHEAPEST SOLUTION
18 T =T T T I T T T Y Lot
5 10 15 20 ﬂ25 30 5 40 45 50
" DELAY (SWITCH DELAYS) -
FICHRE 7. PILOT OF £OST VERSHS DEIAY EAR VARIOUS SCHEMES OF THE MU TIPLIFR Al GORTTHMS

4 b Tlu OYSC\H'\E(;“T;"'\

—J—M)/(_,Qf; Se W 3 Lc ,Q,S ’;\/\H/\.\A }{;_) NBVa 2 {&\ \'-L{‘*r:»ﬁ,) d“[,t M,),a ?
){. ')Bp' A C‘,Q(ey) S Ca (J} ng hov //’ 'f/ﬁ vor 7 /l. ci,ﬁvcg;xf lrp=
S ¢ b’f’(‘/ ff{ ‘i(' 1rr) e 5’”’ o f' *';"‘T\T"Tﬁ"_ i’j) ST _'J»*T, J ,,‘7’ o Ao :“. 0N ¢
/// Yot THE-S¥STEM-ARCHITECTURE 4) / -

Some of the initial work on the architecture of the PDP-11 was done at
Carnegie-Mellon University by Harold McFarland and Gordon Bell. Two of the
useful ideas, the UNIBUS and the generalized use of the program registers
(such as for stack pointers and program counters), came out of earlier work
by Gordon Bell and were described in Bell and Newell [71]. The detailed

design specification was the work of Harold McFarland and Roger Cady.

The PDP-11/20 was the first model designed. Its design and implementation

took place more or less in parallel, but with far less interaction between

architect and builder than for previous DEC designs, where the first—
ft

architect was theAimplementor. As a result, some of the architectural

specificgtiigs caused problems in subsequent designs, especially in the
-l to Pu on eehana /;{4'{' c,,(),\,i‘;/ b Lag ‘[‘}’ trr{ é:&n\.b:ﬂ b»v’ u,a,wv

~area—of microprogramming.

As there began to appear other models besides the original Model 20, strong

I/

N\

Satish Rege

- 17

REGISTERS

C CounTer

YES

P+ P/2

P ProDUCT/™.. nilian,

P <0> = 07 MPD MuLTIPLICAND

NO
P«P+ MPD

F» R

MERGE

C«C-1
C =207

EIGURE 5.

I YES

END

PHYSICAL CONTROL PROGRAM FOR 16 BIT
MULTIPLICATION

(ALL RecisTErRs ARE 16 BiT WibpEe) /

created 1/18/78 Page 15
G. Bell - What Have We Learned From the PDP-117?

architectural controls disappeared; there was no one person responsible for

the family-wide design. A similar loss of control occurred in the design

of the peripherals after the basic design.

.2. A CHRONOLOGY O THE DESIGN \\

[\
The internal organization of DEC design groups has through the years
oscillated between market orientation and product orientation. Since the
company has been growing at a rate of 30 to 40% a year, there has been a

v A i Ao bl ¢
constant need for reorganization. At -any given time, one third of the

staff has been with the company less than a year.

At the time of the PDP-11 design, the company was structured along product
lines. The design talent in the company was organized into tight groups:
the PDP-10 group, the PDP-15 (an 18-bit machine) group, the PDP-8 group,

an ad hoc PDP-8/S subgroup, and the LINC-8 group. Each group included

|
marketing and engineering people responsible for designing a product, ‘
software and hardware. As a result of this organization, architectural

experience was diffused among the groups, and there was little

understanding of the notion of a range of products.

The PDP-10 group was the strongest group in the company. They built large,
powerful time-shared machines. It was essentially a separate division of
the company, with little or no interaction with the other groups. Although
the PDP-10 group as a whole had the best understanding of system
architectural controls, they had no notion of system range, and were only

interested in building higher-performance computers.

created 1/18/78 Page 16
G. Bell - What Have We Learned From the PDP-11%

The PDP-15 group was relatively strong, and was an obvious choice to build
the new mid-range 16-bit PDP-11. The PDP-15 series was a constant-cost
series that tended to be optimized for cost performance. However, the
PDP-11 represented direct competition with their existing line. Further,
the engineering leadership of that group changed from one implementation to
the next, and thus there was little notion of architectural continuity or

range.

The PDP-8 group was a close-knit group who did not communicate very much
with the rest of the company. They had a fair understanding of
architecture, and were oriented toward producing minimal-cost designs with
an occasional high-performance model. The PDP-8/S "group" was actually one
person, someone outside the regular PDP-8 group. The PDP-8/S was an
attempt to build a much lower-cost version of the PDP-8 and show the group
engineers how it should be done. The 8/S worked, but it was not terribly
successful because it sacrificed too much performance in the interests of

economy.

The LINC-8 group produced machines aimed at the biomedical and laboratory

market, and had the greatest engineering strength outside the PDP-10 group.
The LINC-8 people were really the most systems oriented. The LINC design
came originally from MIT's Lincoln Laboratory, and there was dissent in the

company as to whether DEC should continue to build it or to switch software

to the PDP-8.

The first design work for a 16-bit computer was carried out under the eye

of the PDP-15 manager, a marketing person with engineering background.

created 1/18/78 Page 17
G. Bell - What Have We Learned From the PDP-11?

This first design was called PDP-X, and included specification for a range
of machines. As a range architecture, it was better designed than the
later PDP-11, but was not otherwise particularly innovative.

Unfortunately, this group managed to convince management that their design
was potentially as complex as the PDP-10 (which it was not), and thus
ensured its demise, since no one wanted another large computer unrelated to
the company's main large computer. In retrospect, the people involved in

designing PDP-X were appanghbdy working simultaneously on the design of

Data General. [GBi—Ie—bhis—statement—toocattyd,

As the PDP-X project folded, the DCM (Desk Calculator Machine, a code name
chosen for security) was started. Design and planning were in disarray, as
Data General had been formed and was competing with the PDP-8, using a very
small 16-bit computer. Work on the DCM progressed for several months,
culminating in a design review at Carnegie-Mellon University in late 1969.
The DCM review took only a few minutes; the general feeling was that the
machine was dull and would be hard to program. Although its benchmark
results were good, we now believe that it had been tuned to the benchmarks

and would not have fared well on other sorts of problems.

One of the DCM designers, Harold McFarland, brought along the kernel of an
alternative design, which ultimately grew into the PDP-11. Several people
worked on the design all weekend, and ended by recommending a switch to the
new design. The machine soon entered the design-review cycle, each step
being an n+1 of the previous one. As part of the design cycle, it was
necessary to ensure that the design could achieve a wide cost/performance

range. The only safe way to design a range is to simultaneously do both

created 1/18/78 Page 18

G. Bell - What Have We Learned From the PDP-11? x

__ LAY E
O S
ﬁ’ the high- and low-end designs. The 11/40 design was started right after .3 <§\ - 13;
N SN

] ~, o | |
{ the 11/20, although it was the last to come on the market. The low and 3 < i f&
\ S R

; . o5y ; ¥ 3 39 |}

O high ends had higher priority to get into production, as they extended the ° e I ;‘:
™ o & % %
W market . = Y2 |9
™ o 1
A N, YJA
o N S J
3 N LN/
g Meanwhile an implementation was underway, led by Jim O'Laughlin. The logic - %

d N A~
g P o \¢
~ design was conventional, and the design was hampered by the holdover of ?~ bR s

.S R AN “\\
\3 - L% |

i ideas and circuit boards from the DCM. As ideas were tested on the \l‘ N %
Q $ ¥ 93
N implementation model, various design changes were proposed; for example, 5 <> O ‘é
3 PYORE
;g the opcodes were adjusted and the UNIBUS width was increased with an extra '\\jQ §§\“5
N r 3

‘ set of address lines. “JyLy ‘4 £) 3
N (a's we \’“-gé' o :

) c?.\«?‘:" :g
_% With the introduction of large read-only memories, various llow-on 'L 3\)
< B¢

§ designs to the Model 20 were possible. Figure 2 sketches the c\?t of ¥
G&b various models over time, showing lines of constant performance.\ The

\\\\\\Eiifhs show clearly the differing design styles used in the different

— p- ’,r P ,'.) o t{, 3 Al
models. \L% Nt ¢ n.u,u DA ,Lﬂ,;..{.{?—- Hecer 5,44\%& » ; N}
)y 9 h

h"v 0 . 9,(- '\,l : ' ,
-~ < “,4"' v 3- 5«81(/0 : ‘/et.b we Ox)v ols anao /i" ﬁf" A)W{A
g 7t o M [Fn 2y, t[ﬂur;,w # Ak CU - 3‘ el
04(3 us 05 Vo e Lo VAX-t) oncliichmns,

The 11/40 and 11/45-ﬁesign—groups went through exten51ve "puy-in"
A

procsssas, as they =& dame ¢ bl 11 by first 5P09051ng alterpative
Oy Aoargror” /"'J Vovn der / 7 wto o A rmany

! Ihe_peop;e-whe—a%%tmatéiy“formed—%he'Tff#ﬁ—grcup—had started b . e
Aiis—i—%——r—l‘s—“) (\Aﬁ‘)(c HC(!y/ T‘F\>’9H ?AU /J

proposing a PDP-11-like 18-bit machine with roots in the PDP-15. Latepwg=-fri—

Lo Feratrn

total i i)

. | As the ™

.~ groups considered the impact of their changes on software needs, they

rapidly joined the mainstream of the PDP-11 design.

f/Afu{ 7}(;}&\

{ é / 7’ o / o I_L— /'/‘ (1{9 //, \.‘-'./
w—fé /.,L‘ 1/3}}{,» v/'(O an s el ey
%;OCCQ(’/ /(1/ 7[0"1: g /

. - . e & .) P2 OCA Ot #
suc'(/ St Kusch GL‘-PJ“"?/' f /f’ niceo o .0.“

A o v g/lu p
71,(, |)/U T b Stf‘ Wwas Cawvwun Trem ,//J j‘ e 7'1 U l'/—'

8@; ff & 0 ~iv(‘;’~‘ 3,3—‘\

S

created 1/18/78 Page 19
G. Bell - What Have We Learned From the PDP-117?

Note from Fig. 2 that the minimum-cost group had two successors to their
original design, one cheaper with slightly improved performance, the other

the same price with greatly improved performance and flexibility.

>SS S it—S-h e
/
5. THE PDP-11: AN EVALUATION

The end product of the PDP-11 design is the computer itself, and in the
evolution of the architecture we can see images of the evolution of ideas.

In this section, we outline the architectural evolution, with a special

emphasis on the UNIBUS.

In general, the UNIBUS has behaved beyond all expectations. Several
hundred types of memories and peripherals have been interfaced to it; it

has become a standard architectural component of systems in the $3K to

$100K price range (1975). The UNIBUS is a price and performance optimizer:
it limits the performance of the fastest machines and penalizes the

lower-performance machines with a higher cost. For larger systems,

supplementary buses were added for Pec-Mp and Mp-Ms traffic.r‘gg;’;;;y small

systems like the LSI-11, a narrower bus (called a Q-bus) was designed.

The UNIBUS, as a standard, has provided an architectural component for

easily configuring systems. Any company, not just DEC, can easily build

components that interface to the bus. Good buses make good engineering

neighbors, since people can concentrate on structured design. Indeed, the

UNIBUS has created a secondary industry providing alternative sources of

supply for memories and peripherals. With the exception of the IBM 360

Multiplexor/Selector bus, the UNIBUS is the most widely used computer

Wy
e,
b
-—
] ®
~ £
;&E
RER
I
\] 5 { &
- o
i
3 a’
S I
¢S L 4
2 P32
b NI
b
b 4
. 1 3 g
v £ 3
< :
L s
$§ .
S S |
~) ‘
Y Y
d ‘
3 <
S F
' G
< s 4
« Qi
o —_-d. L.
Q 3 'u
by go 3
& & 3
S b
=
3
- >
&
4 -
@ £
-
™
g
o S)
o S X
d < b
<z

created 1/18/78 Page 20
G. Bell - What Have We Learned From the PDP-11?

interconnection standard.

5.1. THE ARCHITECTURE AND THE UNIBUS

The UNIBUS is the architecturél component that connects together all of the
other major components. It is the vehicle over which data flow takes
place. Its structure is shown in Fig. 3. Traffic between any pair of
components moves along the UNIBUS. The original design anticipated the

following traffic flows.

1. Pc-Mp for the processor's programs and data.

2. Pec-K for the processor to issue I/0 commands to the controller K.

3. K-Pec, for the controller K to interrupt the Pc.

4, Pc-K for direct transmission of data from a controller to Mp under
control of the Pec.

5. K-Mp for direct transmission of data from a controller to Mp; i.e., DMA
data transfer.

6. K-T-K-Ms, for direct transmission of data from a device to secondary

memory without intervening Mp bufferiing; e.g., a disk refreshing a

CRT.

Experience has shown that paths 1 through 5 are used in every system that
has a DMA (direct memory access) device. An additional communications path
has proved useful: demons, i.e., special Kio/Pio/Cio communicating with a

Tha

conventional K. These demons are used for direct control of another K in

order to remove the processing load from Pc.

created 1/18/78 Page 21
G. Bell - What Have We Learned From the PDP-117?

Figure 3: UNIBUS structure

Pe Mp K === T K --- Ms

--- (UNIBUS)

Several examples of a demon come to mind: a K that handles all
communication with a conventional subordinate Kio (e.g., an A/D converter
interface or communications line); a full processor executing from Mp a
program to control K; or a complete I/0 computer, Cio, which has a program
in its local memory and which uses Mp to communicate with Pec. Effectively,
Pe and the demon act together, and the UNIBUS connects them. Demons
provide a means of gracefully off-loading the Pc by adding components, and
is useful for handling the trivial pre-processing found in analog,

—wth WM -1 control VD LS5 ov fem
communications, and process-control I/0. The DMC-112eemmunicaLinns

‘\pnoeessefkis an example.
b Spasd fo dah

corvatmad codione Lark.
5.1:1 UNEXPECTED BENEFITS FROM THE DESIGN

> s
The UNIBUS has“turned out to be invaluable as an "umbilical cord" for
A

factory diagnostic and checkout procedures. Although such a capability was

not part of the original design, the UNIBUS is almost capable of dominating

created 1/18/78 Page 22
G. Bell - What Have We Learned From the PDP-11?

the Pc, TK's, and Mp during factory checkout and diagnostic work.

Ideally, the scheme would let all registers be accessed during full
operation. This is now possible for all devices except Pc. By having all
Pc registers available for reading and writing in the same way that they
are now available from the console switches, a second system could fully
monitor the computer in the same fashion as a human. Although the DEC
factory uses a UNIBUS umbilical cord to watch systems under test, human

intervention is occasionally required.

In most recent PDP-11 models, a serial communications line is connected to
the console, so that a program may remotely examine or change any
information that a human operatbr could examine or change from the front
panel, even when the system is not running. T, &ﬁun Wy CD'W&NQLW’C oM

Voo W&(&%VL‘)L&.’ ﬁl'm‘ o vwte a7,

54 1a2s DIFFICULTIES WITH THE DESIGN

The UNIBUS design is not without problems. Although two of the bus bits
were in the original design set aside as parity bits, they have not been
widely used as such. Memory parity was implemented directly in the memory;
this phenomenon is a good example of the sorts of problems encountered in
engineering optimization. The trading of bus parity for memory parity
exchanged higher hardware cost and decreased performance for decreased
service cost and better data integrity. Since engineers are usually judged
on how well they achieve production cost goals, parity transmission is an
obvious choice to pare from a design, since it increases the cost and

decreases the performance. As logic costs decrease and pressure to_include

created 1/18/78 Page 23
G. Bell - What Have We Learned From the PDP-117?

warranty costs as part of the product design cost increases, the decision

to transmit parity might be reconsidered.

Early attempts to build multiprocessor structures (by mapping the address
Cattod 0 UMIBUS Windo/
space of one UNIBUS onto the memory of another% were beset with deadlock
problems. The UNIBUS design does not allow more than one master at a time.
Successful multiprocessors required much more sophisticated sharing

(o,ed., w0 eorshond PriMaa, memoy,)
mechanisms '\than this UNIBUS Window.

7

At the time the UNIBUS was designed, it was felt that allowing 4K bytes of
the address space for I/0 control registers was more than enough. However,
so many different devices have been interfaced to the bus over the years
that it is no longer possible to assign unique addresses to every device.
The architectural group has thus been saddled with the chore of device
address bookkeeping. Many solutions have been proposed, but none was soon
enough; as a result, they are all so costly that it is cheaper just to live

with the problem and the attendant inconvenience.
o N UNIBUS COST AND PERFORMANCE

Although performance is always a design goal, so is low cost; the two goals
conflict directly. The UNIBUS has turned out to be nearly optimum over a

wide range of products. It served as an adequate memory-processor

interconnect for six of the ten models. However, in the smallest system,
we introduced the Q-bus, which uses about half the number of conductors.

For the largest systems, we use a separate 32-bit data path between

processor and memory, although the UNIBUS is still used for communication

created 1/18/78 Page 24
G. Bell - What Have We Learned From the PDP-112?

with most I/0 controllers. The UNIBUS slows down the high-performance

machines and increases the cost of low-performance machines; it is optimum
1

over the middle range. Levy [Chapter/ﬁj discusses the evolution in more

detail.

There are several attributes of a bus that affect its cost and performance.

One factor affecting performance is simply the data rate of a single

conductor. There is a direct tradeoff among cost, performance, and
reliability. Shannon [U8] gives a relationship between the fundamental {
signal bandwidth of a link and the error rate (signal-to-noise ratio) and

data rate. The performance and cost of a bus are also affected by its

length. Longer cables cost proportionately more, and the longer

propagation times necessitate more complex circuitry to drive the bus.

Since a single-conductor link has a fixed data rate, the number of
conductors affects the net speed of a bus. The cost of a bus is directly
proportional to the number of conductors. For a given number of wires,

|
time-domain multiplexing and data encoding can be used to trade performance
and logical complexity. Since logic technology is advancing faster than

|

wiring technology, we suspect that fewer conductors will be used in all

future systems. There is also a point at which time-domain multiplexing

impacts performance.

If during the original design of the UNIBUS we could have forseen the wide
range of applications to which it would be applied, its design would have
been different. Individual controllers might have been reduced in

complexity by more central control. For the largest and smallest systems,

created 1/18/78 Page 25
G. Bell - What Have We Learned From the PDP-117?

it would have been useful to have a bus that could be contracted or

expanded by multiplexing or expanding the number of conductors.

The cost-effective success of the UNIBUS is due in large part to the high
correlation between memory size, number of address bits, I/0 traffic, and
processor speed. Amdahl's rule of thumb for IBM computers is that 1 byte
of memory and 1 byte/sec of I/0 are required for each instruction/sec. For
DEC applications, with emphasis in the scientific and control applications,
there is more computation required per memory word. Further, the PDP-11
instruction sets do not contain the complex instructions typical of IBM
computers, so a larger number of instructions may be executed to accomplish
the same task. Hence, we assume 1 byte of memory for each 2

instructions/sec, and that 1 byte/sec of I/0 occurs for each

instruction/sec.

__[This paregraph—to—be-moved to 8 rangel

In the PDP-11, an average instruction accesses 3-5 bytes of memory, so
assuming 1 byte of I/0 for each instruction/sec, there are 4-6 bytes of
memory accessed on the average for each instruction/sec. Therefore, a bus
that can support 2 megabyte/sec traffic permits instruction execution rates
of 0.33-0.5 megainstructions/sec. This implies memory sizes of 0.16-0.25
megabytes; the maxiumum allowable memory is 0.064-0.256 megabytes. Dby
using a cache memory on the processor, the effective memory processor rate
can be increased to balance the system further. If fast floating point
instructions were added to the instructions were added to the instruction

set, the balance would approach that used by IBM and thereby require more

memory (seen in the 11/70).

created 1/18/78 Page 26
G. Bell - What Have We Learned From the PDP-112?

The market life of a computer is determined in part by how well the design
can gracefully evolve to accommodate new technologies, innovations, and
market demands. As component prices decrease, the price of the computer
can be lowered, and by compatible improvements to the design (the "mid-life
kicker"), the useful life can be extended. An example of a mid-life kicker
is the writable control store for user microprogramming of the 11/40 [Almes
et al. 75]. The PDP-11 designs have used the mid-life kicker technique
occasionally. In retrospect, this was probably poor planning. Now that we
understand the problem of extending a machine's useful life, this

capability can be more easily designed in.

Fig. 4. Use of dual Pc multiproc or system with processorless UNIBUS for

1 et }\[701).
) f\wwcﬁ n thh]'s menmw Pacye 00/

In the original PDP-11 paper [Bell et al. 70], it was forecast that there

I/0 data transmission (from

L R T e i R T o I i s T

created 1/18/78 Page 27
G. Bell - What Have We Learned From the PDP-11?

would evolve models with increased performance, and that the means to
achieve this increased performance would include wider data paths,
multiprocessors, and separate data and control buses for I/0 transfers.
Nearly all of these devices have been used, though not always in the style

that had been expected.
-0 r 1‘.\ (’N{l'\t(‘C\-C)

N - (s T 9, page00),
Figure4 shows A dual-processor system as originally suggested. A number

/

of systems of this type have been built, but without the separate I/0 data
and control buses, and with minimal sharing of Mp. The switch S permitting
two computers to access a single UNIBUS, has been widely used in

high-availability high-performance systems.

~—Ftg—57 PMS structure of TT/85 —

In designing higher-performance models, additional buses were added so that
g i : . +
a processor could access fast local memory. The original design -never- did no

anticipatex‘the availability of large fast semiconductor memories. In the

created 1/18/78 Page 28
G. Bell - What Have We Learned From the PDP-11?

past, high-performance machines have parlayed modest gains in component
technology into substantially more performance by making architectural
changes based on the new component technologies. This was the case with

ace 00 Nace OO0

both the PDP-11/45 (see Fig+5) and the PDP-11/70 (see Fig+—6).

Fig. 6. PMS—stpueture—of-11/70,

Fig. Ta. PDP-11/03 (LSI-11) block diagram. (*indicates one LSI chip each

and one for data and registers.)

created 1/18/78 Page 29
G. Bell - What Have We Learned From the PDP-112?

In the PDP-11/45, a separate bus was added for direct access to either
300-nsec bipolar or 350-nsec MOS memory. It was assumed that these
memories would be small, and that the user would move the important parts
of his program into the fast memory for direct execution. The 11/45 also
provided a second UNIBUS for direct transmission of data to the fast memory
without processor interference. The 11/45 also used a second autonomous
data operation unit called a Floating Point Processor (not a true
processor), which allowed integer and floating-point calculations to

proceed concurrently.

T “‘mﬂ”%é‘%

The PDP-11/70 derives its speed from the cache, which allows it to take
advantage of fast local memories without requiring the program to suffle
data in and out of them. The 11/70 has a memory path width of 32 bits, and
has separate buses for the control and data portions of I/0 transfer. The

performance limitations of the UNIBUS are circumvented; the second Mp

created 1/18/78 Page 30
G. Bell - What Have We Learned From the PDP-112?

system permits transfers of up to 5 megabytes/sec., 2.5 times the UNIBUS
limit. If direct memory access devices are placed on the UNIBUS, their
address space is mapped into a portion of the larger physical address

space, thereby allowing a virtual-system user to run real devices.

. P(U Wt » (U’
] ») vy M
M“ ©0 gque VA rue /bwi\ﬁl Muj’l\m"" ¥ }(\} ¥ CUI"(’(M,((" .
Eigure—f shows the block diagrams of the LSI—H5—the—+1/05—and—bhe—HA45,

—It—inctudes—the—smattest—and—targest—(except—the TT770) models. Note thet—
—ttre 11/45 blrock diagram does not include the fioating=-peint—eoperattons;—but
-does—show-the—path—bo—fast-local memoryr—It has duplicate sets of

/‘h f.'é\‘ LALAL overs a““\’v'-.r" ewllol (e
registers, even to a separate program counter. The local Mp.MOS and

Mp.Bipolar provide the greatest performance improvements by avoiding the
UNIBUS protocols. When only core memory is used, the 11/45 floating-point
performance is only twice that of the 11/40. Table III charts the
implementation of each design and its performance and parallelism as
measured by the microprogram memory width. Note that the brute-force speed
of the 11/45 core is only 2 to 4 times faster than the 11/05 for simple
data types, i.e., for the basic instruction set. The 11/45 has roughly

twice the number of flip-flops.

created 1/18/78 Page 31
G. Bell - What Have We Learned From the PDP-112?

5.4, ISP DESIGN

Designing the ISP level of a machine -- that collection of characteristics
such as instruction set, addressing modes, trap and interrupt sequences,
register organization, and other features visible to a programmer of the
bare machine -- is an extremely difficult problem. One has to consider the
performance (and price) ranges of the machine family as well as the
intended applications, and there are always difficult tradeoffs. For
example, a wide performance range argues for different encodings over the
range. For small systems a byte-oriented approach with small addresses is
optimal, whereas larger systems require more operation codes, more
registers, and larger addresses. Thus, for larger machines, instruction

coding efficiency can be traded for performance.

The PDP-11 was originally conceived as a small machine, but over time its
range was gradually extended so that there is now a factor of 500 in price
($500 to $250,000) and memory size (8K bytes to 4 megabytes) between the
smallest and largest models. This range compares favorably with the range
of the 360 family (4K bytes to 4 megabytes). Needless to say, a number of

problems have arisen as the basic design was extended.

For one thing, the initial design did not have enough opcode space to
accommodate instructions for new data types. Ideally, the complete set of
operation codes should have been specified at initial design time so that

extensions would have fit. Using this approach, the uninterpreted

created 1/18/78 Page 32
G. Bell - What Have We Learned From the PDP-117

operation codes could have been used to call the various operation
functions (e.g., floating-point add). This would have avoided the
proliferation of runtime support systems for the various hardware/software
floating point arithmetic methods (Extended Arithmetic Element, Extended
Instruction Set, Floating Instruction Set, Floating Point Processor). This
technique was used in the Atlas and SDS designs, but most computer

R &

designers don'tAremember the techniques. By not specifying the ISP at the

initial design, completeness and orthogonality have been sacrificed.

At the time the 11/45 was designed, several extension schemes were
examined: an escape mode to add the floating point operations, bringing
the 11 back to being a more conventional general-register machine by
reducing the number of addressing modes, and finally, typing the data by
adding a global mode that could be switched to select floating point
instead of byte operations for the same opcodes. The FPP of the PDP-11/45

is a version of the second alternative.

It also became necessary to do something about the small address space of
the processor. The UNIBUS limits the physical memory to 262, 144 bytes
(addressable by 18-bits). In the implementation of the 11/70, the physical
address was extended to 4 megabytes by providing a UNIBUS map so that
devices in a 256K UNIBUS space could transfer into the 4 megabyte space via
mapping registers. While the physical address limits are acceptable for
both the UNIBUS and larger systems, the address for a single program is
still confined to an instantaneous space of 16 bits, the user virtual
address. The main method of dealing with relatively small addresses is via

process-oriented operating systems that handle many small tasks. This is a

created 1/18/78 Page 33
G. Bell - What Have We Learned From the PDP-112?

trend in operating systems, especially for process control and transaction
processing. It does, however, enforce a structuring discipline in (user)
program organization. The RSX series operating systems for the PDP-11 are

organized this way, and the need for large addresses is minimized.

The initial memory management proposal to extend the virtual memory was
predicted on dynamic, rather than static assignment of memory segment
registers. In the current memory management scheme, the address registers
are usually considered to be static for a task (although some operating

systems provide functions to get additional segments dynamically).

With dynamic assignment, a user can address a number of segment names, via
a table, and directly load the appropriate segment registers. The segment
registers act to concatenate additional address bits in a base address
fashion. There have been other schemes proposed that extend the addresses
by extending the length of the general registers -- of course, extended
addresses propagate throughout the design and include double length address

variables. In effect, the extended part is loaded with a base address.

With larger machines and process-oriented operating systems, the context
switching time becomes an important performance factor. By providing
additional registers for more processes, the time (overhead) to switch
context from a process (task) to another process can be reduced. This
option has not been used in the implementations of the 11's to date.
Various alternatives have been suggested, and to accomplish this most
effectively requires additional operators to handle the many aspects of

process scheduling. This extension appears to be relatively unimportant

created 1/18/78 Page 34
G. Bell - What Have We Learned From the PDP-11?

since the range of computers coupled with networks tend to alleviate the
need by increasing the real parallelism (as opposed to the apparent
parallelism) by having various independent processors work on the separate
processes in parallel. The extensions of the 11 for better control of I/O

devices is clearly more important in terms of improved performance.

The criteria used to decide whether or not to include a particular
capability in an instruction set are highly variable and border on the
artistic. We ask that the machine appear elegant, where elegance is a
combined quality of instruction formats relating to mnemonic significance,
operator/data-type completeness and orthogonality, and addressing
consistency. Having completely general facilities (e.g., registers) which
are not context dependent assists in minimizing the number of instruction
types, and greatly aids in increasing understandability (and usefulness).

We feel the 11 provided this.

Techniques for generating code by the human and compiler vary widely and
thus affect ISP design. The 11 provides more addressing modes than nearly
any other computer. The 8 modes for source and destination with dyadic

operators provide what amounts to 64 possible add instructions. By

associating the Program Counter and Stack Pointer registers with the modes,

even more data accessing methods are provided. For example, 18 varieties

R0 o (—»é;m- ?, oo
R]

of the MOVE instruction can be distinguished [Betl-et al. 70] as the

machine is used in two-address, general-register and stack machine program
forms. (There is a price for this generality -- namely, fewer bits could

have been used to encode the address modes that are actually used most of

the time.)

created 1/18/78 Page 35
G. Bell - What Have We Learned From the PDP-11?

(7.e. 2 mton] o f’%h&ni}
In general, the 11 has been used mostly as a general register machine. In
& .

one case, it was observed that a user who previously used a 1-accumulator L
. AR C o YU

computer (e.g., PDP-8), continued to do so. NepmallyT—Lhe_méQQiEELE§_2§ES e L‘?

— A AR A AL f'?i;(' Wlie e t@;_!‘g

as a memory to registers machine. -This provides the greatest performance,

oSN v ¢

I
and the cost (in terms of bits) is the same as when used as a stack J&; ,?ﬂUMV
machine. Some compilers, particularly the early ones, are stack oriented '&U“‘S+f““45
Ssince the code production is easier. Note, that in principle, and with db*b)fﬁﬂf -
much care, a fast stack machine could be constructed. However, since most
stack machines use Mp for the stack, there is a loss of performance even if
the top of the stack is cached. The stack machine is perhaps the most
poorly understood concept in computing. While a stack is natural (and
necessary) structure to interpret the nested block structure languages, it
doesn't necessarily follow that the interpretation of all statements should

occur in the context of the stack. In particular, the predominance of

register transfer statements are of the simple 2- and 3-address forms.
D <--'S

and

D1 (index 1) <-- f (S2(index 2), S3 (index 3)).

These don't require the stack organization. In effect, appropriate
assignment allows a general register machine to be ued as a stack machine
for most cases of expression evaluation. It has the advantage of providing
temporary, random access to common sub-expressions, a capability that is

usually hard to exploit in stack architectures.

7S exlpecn ol A~ |
Zj}J}JLéii C/5 Xl -

created 1/18/78 Page 36
G. Bell - What Have We Learned From the PDP-117

Although it is not surprising that multiprocessors have not been used save
in highly specialized applications, it is depressing. One way to extend
the range of a family is to build multiprocessors. In this section we
examine some factors affecting the design and implementation of

multiprocessors, and their affect on the PDP-11.

It is the nature of engineering to be conservative. Given that there are
already a number of risks involved in bringing a product to the market, it
is not clear why one should build a higher-risk structure that may require
a new way of programming. What has resulted is a sort of deadlock
situation: we cannot learn how to program multiprocessors until such

machines exist, but we won't build the machine until we are sure that there

will be a demand for it,agéggb that the programs will be ready. frs

____ evtm Hh f"i"_:‘: P

_— LS
While on the subject of demand for multiprocessoyéfiwe should note that ﬂ‘iﬁlfxlg
there is little or no market presssure for them/ /é;gé‘users don't even 'i:t;Jf,153
know that multiprocessors exist. Even though multiprocessors are used ﬁﬂﬁj }1:
extensively in the high-performance systems built by Burroughs, DEC CLU“E,AL‘.V Q
of mach'ne '

(PDP-10), and Univac, the concept has not yet been blessed by IBM.

One reason that there is not a lot of demand for multiprocessors is
acceptance of the philosophy that we can always build a better
single-processor system. Such a processor achieves performance at the
considerable expense of cost of spares, training, reliability, and

flexibility. Although a multiprocessor architecture provides a measure of

created 1/18/78 Page 37
G. Bell - What Have We Learned From the PDP-112

reliability, backup, and system tunability unreachable on a conventional

system, the biggest, fastest machines are always uniprocessors.

5.5.5. MULTIPROCESSORS BASED ON THE PDP-11

Multiprocessor systems have been built out of PDP-11's., Figure 8
summarizes the design and performance of some of these machines. The
topmost structure was built using 11/05 processors, but because of improper
arbitration techniques in the processor, the expected performance did not
materialize. Table IV shows the expected results for multiple 11/05

processors sharing a single UNIBUS:

From these results we would expect to use as many as three 11/05 processors
to achieve the performance of a Model 40. More than 3 processors will
increase the performance at the expense of the cost-effectiveness. This
basic structure has been applied on a production basis in the GT4X series
of graphics processors. In this scheme, a second P.display is added to the
UNIBUS for display picutre maintenance. A similar structure is used for
connecting special signal-processing computers to the UNIBUS although these

structures are technically coupled computers rather than multiprocessors.

created 1/18/78 Page 38
G. Bell - What Have We Learned From the PDP-112

As an independent check on the validity of this approach, a multiprocessor

system has been built, based on the Lockheed SUE[Ornstein et al. 72]. This
machine, used as a high-speed communications processor, is a hybrid design:
it has seven dual-processor computers with each pair sharing a common bus

as outlined above. The seven pairs share two shared multiport memories.

Table IV
Pc perf.
#Pc (rel.) Pc price Price?/perf. SYS price Priceb/perf.
1 1.00 1.00 1.00 3.00 1.00
2 1.85 1.23 0.66 3423 0.58
3 2.4 1.47 0.61 3.47 0.48
40 2.25 14 35 0.60 3435 0.49

8pe cost only.

bTotal—system cost assuming one-third of system is Pc cost.
The second type of structure given in Fig. 8 is a conventional

multiprocessor using multiple-port memories. A number of these systems

have been installed, and they operate quite effectively. However, they

have only been used for specialized applications.

The most ambitious multiprocessor structure made from PDP-11's, C.mmp, is

created 1/18/78 P
age 3
G. Bell - What Have We Learned From the PDP-11? ® ’

amply described in the literature [Wulf et al. 72]. As it becomes a user
machine, we will gather data about its effectiveness. Hopefully, data from

this and other multiprocessor efforts will establish multiprocessors as
LeI-/|

applicable and usefe%iin a wide variety of situations. qﬁ‘ bed le prvwsens
PuLsae dys wmkdrseihed o pace 00 (o wv—otheept—t—st aveid

E'Tt i “/‘74 HM»Q;‘,i("lfo).) A1 _‘Z :,v“ 'z,ypa;»(‘_f_,fpfj(, Ir
6. PDP-11 FAMILY EVALUATION Ha e of

M (,'“A BLV chormank.s _—] e ;)"f"'/”:;"‘i‘:*"ﬂ‘ o - I AR ﬁﬁ—wf ’,)

dv;lé/——n W - *57))‘/
V.‘(},«‘ »I/O Werk ""‘"lj w«-—-b—nt-@"'r‘ -~ ,Q““.&T

~61-COMPATIBILITY

G 9. /;f‘l "\(am‘t/\ %
pi a?;.rr' ’
fov

cuel shuchwue .
—6+2-FAMILY-RANGE- i Ve

T. VAX-11

Enlarging the virtual-address space of an architecture has far more
implications than enlarging the physical-address space. The simple device
of relocating program generated addresses can solve the latter problem.

The physical address space, the amount of physical memory that can be
addressed, has been increased in two steps in the PDP-11 family. The KT-11
memory management unit expanded the address field from 16 to 18 bits and

then from 18 to 22 bits on the 11/70.

The virtual address space, or name space, is a much more fundamental part
of an architecture. Such addresses are programmer generated: he uses
these to name data objects, their aggregates (whether they be vectors,
matrices, lists, or shareable data segments) and instructions (subroutine
addresses, for example). Names seen by an individual program are part of a

larger name space -- that managed by an operating system and its associated

created 1/18/78 Page 40
G. Bell - What Have We Learned From the PDP-11?

language translators and object-time systems. An operating system provides
sharing and protection, for example, using the name space of the

architecture.

As the 11/70 design progressed, we realized that for some large
applications there would soon be a bad mismatch between the 64 Kbyte name
space and 4 Mbyte memory space. Two trends could be clearly seen: (1)
minicomputer users would be processing large arrays of data, particularly
in FORTRAN programs (only 8096 double precision floating point numbers are

needed to fill a 16-bit name space), and (2) applications prrograms were

loree E DY— M |
growing rapidly in size, particularly COBOL programs fer— / h 0 / |
A . / . \

—transactiton—oriented—processing. Moreover, anticipated memory price T S

declines made the problem worse. The need for a 32-bit integer data type
was felt, but this was far less important than the need for 32-bit

addressing of a name space.

Thus, in 1974, architectural work seriously began on exﬁfnding the virtual
Ny S {7 g -0 A wtars masia .

oAN

address space of the 11. Strecker and Mudge-led-the—efforts.. The .,

- Tn i‘&cﬁhﬁﬂ pwo quraﬂh.dv a/\:lum»(x«—w
principal goal was compatibility with the PDP-11. Each of the general
registers, RO-R7, was extended to 32 bits. The addressing modes, and hence

address arithmetic, inherent in the PDP-11 allowed this to be a natural,

easy extension.

The design of the structure to be placed on a 32-bit virtual address
presented the "most" difficulty. The most PDP-11-compatible structure

would view a 32-bit address as 216 16-bit PDP-11 segments each having the

substructure of the KT11 memory management architecture. This segmented

created 1/18/78
G. Bell - What Have We Learned From the PDP-117?

address space, although PDP-11 compatible, was ill-suited to FORTRAN, which

expects a linear address space.

A severe design constraint was that existing PDP-11 subroutines must be
callable from programs which ran in extended mode. The main problem areas
were in establishing a protocol for communicating addresses (between
programs between the operating systems and programs on the occurrence of
interrupts). Saving state (the program counter and its extension) on the
stack was straightforward. However, the accessing of linkage addresses on
the stack after a subroutine call or interrupt was not straightforward.
Complicated sequences were necessary to ensure that the correct number of

bytes (representing a 32-bit or 16-bit address) were popped from the stack.

Our understanding of the thoroughness of the solution was hampered by the
fact that DEC customers programmed the PDP-11 at all levels -- there was no

clear user level, below which DEC had complete control, as is the case with

the IBM S/360.

The proposed architecture was the result of work by engineers, architects,
operating system designers and compiler designers. Moreover, it was
subjected to close scrutiny by a wider group of engineers and programmers.
Much was learned about the consequences of strict PDP-11 compatibility, the
4
notions of degree of compatibility, e.g., KT-11 agé’not, and the software
|
|

costs which would be incurred by an extended PDP-11 architecture.

Fortunately, the project was shelved. There were many reservations about

its viability. The two major reasons were (a) it was felt that the

.

created 1/18/78 Page 42

~ G. Bell - What Have We Learned From the PDP-117
B an S S

O e e B B R e y 0

- D | %
S 11-compatibility constraint caused too much compromise. Any new \5¥ 5&
N ' S o
72 architecture would require a large software investment; it was essential A _S

QoD AN

]?r E that it be a quantum jump over the PDP-11 to justify the effort. (b) there \
O 39 \
\3‘3 5y Was not the necessary "buy in" from a group working on a low cost \

g]
oz o) 12, Lo lftl»ﬁ

. ° & implementation of the PDP-10. (ot VAXE . O 3;“{;,” "';M, ';:,In,,, om HasTi05S)\

g‘ 2 ,\. [#28 ¢ (] ,'-1 /(’C‘J'f"'*ﬂ“)

\% \gi ,‘f ‘gflw‘j LM"' Dab* éfL’(ﬂ‘ﬂ#Ma"‘

3 /

- tu ':l ‘ﬂ " lJ ot o M
X d‘“k n April, 1975, work on a 32-bit ai&hltecture,ﬁas Peviewed—and—ted—t0 C‘?idgqﬂ D
= Tl ivadiat v P, ‘tonswtiel 7) e

4 —directiy—to VAX-11, Stfeeken—wes the principal architect. As a result of e

S Attt

"_—‘”EEE”EESEFIEHEE W1th the extended -11 designs, it was decided to drop the §‘~¢“4m#

x4

constraint of the PDP-11 instruction format in designing the extended
virtual address space or native mode of the VAX-11 architecture. However,
’/’Ih order to run ex1st1ng PDP-11 programs, VAX-11 1ncludes an 11
compatibility mode. This mode provides the basic PDP-11 instruction set
less privileged instructions (as defined by the RSX-11M operating system)

and floating point instructions. Neither is the KT-11 memory management

architecture preserved in this mode.

Preserving the existing instruction formats would have enacted too high a

price in dynamic bit efficiency. Whereas the PDP-11 has a high level of
idaces | (084 0 d . :
efficiency in this area (the AemyANawvy CFA projeet measureg this), adding
-%J oL LS U -lj/) And
theLSQ%gX new operation codes for the anticipated data typgaAwould have)

lowered the efficiency instruction stream bit. An opcode extension field oo M
would have been required. We felt that data stream bit efficiency could be
i @?\//tr/e?)

improved 'beeause measurements showed that 98% of all literals were 6 bits

or less in length.

Besides the desire to add the data types for string, integer 32, integer

R R R
created 1/18/78 Page 43
G. Bell - What Have We Learned From the PDP-11%

64, and decimal arithmetic, there were many other extenstions proposed.
These included a common CALL protocol, demand paging, true indexing,

Yot
context-sensitive indexing, and geed I/0 addressing.

Along the way, some major perturbations to the 11 style were considered and

rejected. The major ones are discussed below.

Typed data and descriptor addressing were rejected on the grounds of

dynamic bit efficiency. Although system software costs may be lower with

such architectures, we were unable to quantify the gain convinciggly. Yy
So ch s andoti c&yhﬁy(J prney ﬂnvyaﬁbﬁf;u~ﬁf7v*7

Our experience with PDP-11 (floating point, in particular) led us to reject
a soft-machine architecture, i.e., one with an instruction set (and highly
microprogrammed implementations) for general purpose emulation. Our PDP-11
experience showed that embedding a data type (once it is understood) in the
architecture gives a higher performance gain than embedding the
higher-level language control constructs. We also had a general objection
to soft machines: with them, the guidance necessary for clean moves from a
central group to a number of small software groups. Moreover, it
jeopardizes the ability to have communication between programs that are

written in different languages.

A capabilities-based architecture was rejected because we did not fully

available from the few experimental machines which have been built.

%=

\
\
\
I
\
\
\
i
\
; %§Qerstand it and because there was no performance or reliability data
\
8. FUTURE PLANS AND DIRECTIONS —
|

L

created 1/18/78 Page L4
G. Bell - What Have We Learned From the PDP-112?

The problems encountered on the PDP-11 project are not peculiar to that
machine, or to any machine or style of architecture. In the course of the
project, we have isolated\several specific problems in computer design. We

\

intend to explore each of them further.

\

8.1, THE BUS SPECIFICATiON PROBLEM

\
It has taken a long time to understand the UNIBUS in terms of its

electrical, performance, and loéical capabilities. The existing bus
specifications, however inadequate, are the result of many iterations of
respecification based on experience and redesign. Several description
techniques have been tried: timing diagrams, threaded diagrams showing the
cause and effect of signals, and partial state flowcharts showing state in
master and slave components. A rigorous specification language, such as
BNF, would be helpful. BNF has proven helpful in the specification of
communication links, but is too clumsy for general use, and is not widely
understood by engineers and programmers. |

|
\

\

\

\

\z

\ . ; :
The most important use of a rigorous bus specification 1s the testing of
faulty components rather than the exercisinétof good ones. A bus
specification would provide a behavior standépd against which to check
faulty components. It is not clear how one should best attach the problem

of bus behavior specification. A safe place to start would be an

exhaustive set of examples.

8.2. CHARACTERIZING COMPUTATION PROBLEMS

created 1/18/78 Page U5
G. Bell - What Have We Learned From the PDP-11?

When a user comes to us with a task needing computerization, we don't have

a good way to describe the ¢omputational needs of the task. The needs are
multidimensional, consisting‘pf the procedural algorithms, the file
structure, the interface trané&ucers, reliability, cost, and development
deadline. This communications Aifficulty exists between computer designers
and operating-system designers aé\much as between computer designers and

\

end users.

Even when there is a good way to specify to the system designer exactly
what the user's computational needs might be, there is still a lot of work
in finding an architecture to best solve that problem and finding an

implementation to best build that architecture.

\
\

8.3 OPERATING SYSTEMS

A taxonomy and notation is needed to describe the functions of a system,
especially the operating systems. There is no good methodology for talking
about tradeoffs, because the functions and structurg of a system are so
vague.

\
There exist numerous operating systems for the PDP-11. \Qne of the reasons
for this situation is that there is no easy way to compagg an existing
system with a design for a new one. Instead, an engineeriﬁg—mavketing
conspiracy invents a new system because it is oriented towaﬁd a particular
market in some nebulous way. If we had the ability to specify operating

system behavior in a uniform and comprehensible way, then a system could be

analyzed before it is programmed .

created 1/18/78 Page 46
G. Bell - What Have We Learned From the PDP-112?

e e S —

8.4 PROBLEMS WITH ARCHITECTURAL RANGE
o

\

In a growing family of comﬁuters, the designer is constantly faced with the
question of whether or not to build a certain model or provide an certain
point on the price/performance curve. The decision is colored by
technology, user requirements, competitor offerings, and available design
staff. It is difficult to answer precisely even a question so simple as
whether to build two models that are close together (as the 11/40 and
11/45), or to make a single model and expand it with a multiprocessor

option.

The range problem occurs at other levels. Consider memory. The number of
memory technologies available is growing constantly, and the once-clear
boundaries between memory classes based on memory speed are blurring. Some
of the new electronic-based technologies such as CCD and magnetic bubbles
have an access time in the 100-microsecond range, and fill the gap between
traditional random-access memories (.1 to 1 micrasecond) and
electromechanical memories like disks or drums (1 millisecond to 100
millisecond). The system designer must decide how much of which kinds of
memory will be used in each implementation. It may well be that a solution

to problems of this sort will be dependent on the ability to characterize

the computational needs.

9. SUMMARY

In this paper we have reexamined the PDP-11 in the light of six—years—eof—

experience, and have compared its successes and failures with the goals and

created 1/18/78 Page U7
G. Bell - What Have We Learned From the PDP-11?

problems of the initial ideas. With the clarity of hindsight, we now see

the initial design problems. Many mistakes were made through ignorance,

and many more because the design work was started too late. As we continue
X {'1 Ty

to evolve and improve the PDP-11 computer over the next-é§¥e—years, it will

indeed be interesting to observe whether the PDP-11 can continue to be a

significant, cost-effective minicomputer. We believe it can. The ultimate

test is its use.

created 1/18/78 Page U8
G. Bell - What Have We Learned From the PDP-112?

ATKNOW:.EDGMENT
\

\ \ \
\ \ \

\
I would like to thank Brian Reid for editing and rewriting secfipns of this \\

paper' .

\/

REFERENCES

Almes, G. T., Drongowski, P. J., and Fuller, S. H., Emulating the Nova on

the PDP-11/40: a case study. Proc. COMPCON, Washington, D. C., September

1975.

Bell, C. G., Cady, R., McFarland, H., Delagi, B., O'Loughlin, J., Noonan,

R., and Wulf, W., A new architecture of minicomputers -- The DEC PDP-11.

Proc. SJCC 36, 657-675 (1970).

Bell, C. G., and Newell, A., Computer Structures. McGraw-Hill, New York,

1971.

Eckhouse, R. H., Minicomputer Systems: Organization and Programming

(PDP-11). Prentice-Hall, Englewood Cliffs, New Jersey, 1975.

Gear, C. W., Computer Organization and Programming, Second Edition,

McGraw-Hill, New York, 19T74.

McWilliams, T., Sherwood, W., and Fuller, S., PDP-11 implementation using

the Intel 3000 microprocessor chips. Proc. NCC 46, 2u43-253 (1977).

created 1/18/78 Page 49
G. Bell - What Have We Learned From the PDP-11?

O'Loughlin, J. F., Microprogramming a fixed architecture machine.
Microprogramming and Systems Architecture Infotech State of the Art Rep.

23, 205-2u44 (1975).
Ornstein, S. M., Heart, F. E., Crowther, W. R., Rising, H. K., Russell, S.
B., and Michael, A., The terminal IMP for the ARPA computer network. Proc.

SJCC 40, 243-254 (1972).

Shannon, C. E., A mathematical theory of communication. Bell Sys. Tech. J.

27, 279-423, 623-656 (1948).

Stone, H. S., and Siewiorek, D. P., Introduction to Computer Organization

and Data Structures: PDP-11 Edition. McGraw-Hill, New York, 1975.

Wulf, W. A., and Bell, C. G., C.mmp: a multi-mini-processor, Proc. FJCC 41,

765-778 (1972).

