
(Bec

- No

}b

d :

:

eee
:

:

:

a

4

The LINC (Laboratory Instrument Computer) is a small stored-progam ,

digital computer designed to accept analog as well as digital inputs directly

experimental equipment. The LINC system comprises five physically distinct s

gemblies which include four console modules connected by separate cables to a r
cabinet containing the electronics and power supplies. The control module co

indicator lights, push buttons, and switches used in operating the LINC. A second'!
module provides for display oscilloscopes, while a third module holds two magnetic
tape transports of special design. The last module is provided with sockets, jacks, and
terminals for interconnecting the LINC and other laboratory equipment. This photo-
graph and those following show the prototye version demonstrated on March 27,
1962, at the MIT Lincoln aboratory.

experiments, to process data immediately, and to provide signals for the cont
as
ote

r
@ "dee 4agWALI Arno,

A
Fiqure Line 62.

(token [Clavk and Molnar, 19 ou

OW /d-4Z4

4

GIVE FOAM DELETED,

BE. NERO'
LED Cory TOTP

* Pie. NEED to Be CHANGED (A) 7 TOO

Reprinted from Annals of The New York Academy of Sciences
Volume 115, Article 2, Pages 653-668

july 31, 1964

THE LINC:
A DESCRIPTION OF THE LABORATORY

INSTRUMENT COMPUTER
W.A. Clark

Massachusetts Institute of Technology
Cambridge, Mass.

C.E. Molnar
Air Force Cambridge Research Laboratories

Bedford, Mass.

Introduction
There has been a growing recognition in recent years of the value of

digital techniques for controlling apparatus and for handling experimentaldata within the laboratory. Several kinds of special-purpose digital devices,some of them capable of simple fixed calculations, have been developed byvarious workers and applied to problems of averaging, correlation, signal
generation, event recording, etc. For the most part, each of these specially-
designed devices is capable of only a narrow range of tasks and lacks the
versatility desirable in a general laboratory tool.
The so-called general-purpose digital computer is potentially the most

versatile digital device by virtue of its ability to execute complex programsof internally stored instructions. However, it has been either too large and
inaccessible or too slow for useful work in a laboratory environment. Further-
more, the technical development of the general-purpose machine has tended to
emphasize those design features which exploit its ability to solve well-defined
mathematical problems in symbolic terms, with a consequent deemphasis of
features useful in processing data in less highly stylized and rigid forms.This deficiency of traditional computer design is particularly apparent inthe context of the biological or medical research program. Here, the problemsof achieving adequate operational flexibility, handling large quantities ofdata (often in the form of electrical signals), and having to deal with in-
completely developed mathematical procedures all underline the need for more
appropriate computer systems.
The LINC (Laboratory Instrument Computer) is an attempt to satisfythis need. It reflects some of the experience gained in several years ofcollaboration by members of the Digital Computer Group of the MIT Lincoln

Laboratory* and the Communications Biophysics Group of MIT's Research
Laboratory of Electronics.t The photographs show the LINC prototype which

*Operated with the support of the U.S.Army,Navy, and Air Force.
+Supported in part by the U. S. Army Signal Corps, the Air Force Office ofScientific Research, and the Office of Naval Research; in part by the NationalScience Foundation; and in part by the National Institutes of Health.

653

654 Annals New York Academy of Sciences
was built in early 1962 at the Lincoln Laboratory. Since that time theinstrument has been redesigned under the general supervision of the authorsin association with N. T. Kinch, 8. M. Ornstein, D. Malpass, Jr., W. Simon,M. J. Stucki, and Miss M. A. Wilkes. H. H. Loomis, Jr., D. F. O'Brien,and T. C. Stockebrand participated in the development of the prototype.

Design Objectives
In designing the LINC, the principal underlying objective has been tomaximize the degree of control over the instrument by the individual re-searcher. Only in this way, it is felt, can the power of the computer beusefully employed without compromising scientific objectives. In particular,the goal of the development has been a machine which: (1)in scale so that the individual research worker or small laboratory groupcan assume complete responsibility for all aspects of administration, opera-tion, programming, and maintenance; (2) provides direct, simple, effectivemeans whereby the experimenter can control the machine from its console,with immediate displays of data and results for viewing or photographing;(3) is fast enough for simple data processing on-line while the experi-ment is in progress, and logically powerful enough to permit more complexcalculations later if required: (4) is flexible enough in physical arrangementand electrical characteristics to permit convenient interconnection with avariety of other laboratory apparatus- both analog and digital-such as

amplifiers, timers, transducers, plotters, special digital equipment, etc., whileminimizing the need for complex intermediating devices; and (5) includes fea-tures of design which facilitate the training of persons unfamiliar with the useof digital computers.

is small enough

The present LINC design represents a reasonable balance among the con-flicting requirements set by these objectives: the success of the design canbe evaluated only by using the computer in a wide variety of laboratorysituations. Responsibility for the further evolution of the LINC now residesunder NIH sponsorship,* in the MIT Center Development Office for Compu-ter Technology in the Biomedical Sciences. The program is now in the final
development phase, during which a number of instruments are being madeavailable for evaluation and use in biomedical laboratories. A list of thelaboratories in which LINC's will be in operation is available on request.

Description
The LINC is a small stored-program digital computer which uses transistorcircuitry and a random-access ferrite-core memory. The speed of the computeris fixed by the length of time required to read information from or store
*Under contract PH43-63-540 with the Division of Research Facilities and Resourcesof the National Institutes of Health, in cooperation with the Bio-Sciences Office ofthe National Aeronautics and Space Administration.

Clark & Molnar: The LINC 655

information into one of the 1,024 (expandable to 2,048) 12-bit memory

addition, multiplication, counting, etc.; (2) logic instructions which perform

locations. Most of the LINC's instructions require from one to four memory

cycle times of eight microseconds each for execution. The instructions avail-
instructions which performable may be grouped as follows: (1) arithmetic

date transfer instructions which move infor-
toanother; (4) indexing instructions which

prov ide a convenient means of referring to tables; (5) input-output instruc-
tions which transfer information to and from external equipment: (6) magne-
tie tape instructions which control various digital magnetic tape operations;
and (7) control instructions that determine which of alternative sets of

ctions are to be executed according to various criteria.

656 Annals New York Academy of Sciences

The LINC consists of four independent console modules connected

(through easily detachable 30-foot cables) to a cabinet containing the elec-

tronics and power supply (FIGURE 1). One console module houses most of the

controls used in operating the computer as well as indicator lights. A second

module contains terminals used to connect the LINC to other laboratory

FIGURE 2. Two of the console panels mounted in a standard rack with other
1aboratory equipment in an arrangement convenient for simple electrophysiological
experiments. The oscilloscope on the table can substitute for the console module

Clark & Molnar: The LINC 657

te :

FIGURE 3. The oscilloscope is a primary means of communication between LINC
and user. A typical instruction manuscript which has just been typed on the keyboard

is displayed on both scopes.

equipment. The remaining two modules house a display oscilloscope and a

pair of specially designed magnetic tape transports which form an integral

part of the LINC. The four console modules are mechanically separate and

may be stacked and rearranged in any desired configuration. The front

panel of each console module may be removed from its box and mounted in a

standard rack with other laboratory equipment (FIGURE 2).

Programs are initially typed on a simple keyboard, stored directly in the

LINC's core memory, and simultaneously displayed on the oscilloscope (FIG-

URES 3 and 4). They may be typed either as octal numbers or, aided by a

simple assembly program, in a symbolic form which uses three letter mnemo-

nics to represent instructions. Several features which aid in the process of

"debugging" programs are incorporated in the LINC. The computer can be

set to stop whenever a chosen memory location is referred to, or a program

may be executed slowly, one instruction at a time, while its actions are

observed by means of the indicator lights on the control console. Once a

program has been written and corrected, it may be stored on magnetic tape
and conveniently retrieved for use at a later time.
A wide variety of both digital and analog data and control paths for

connecting the LINC to other laboratory equipment has been provided.
There are 16 analog input channels connected to an internal analog-to-
digital conversion device which translates an input voltage on any of these

channels into an eight-bit binary number. Up to 31,000 conversions, under

control of the computer program, can be made per second. A simple program
will display data converted in this way on the oscilloscope (FIGURE 5).

Eight of these analog input channels are normally connected to potentiometers
whose knobs can be used as manual controls or parameter inputs (FIGUREscopes shown in other figures. The remaining panels are operating in another part of

the room

658 Annals New York Academy of Sciences

one sue 8 ee ae

as

taneously stored in the central memory. From here it may be transferred to magnetic
tape and recovered whenever desired.

6). Four sets of 12-bit digital input terminals may be connected to other

digital equipment, such as counters, timers, special encoders, or other devices

which produce signals representable in parallel binary form. These digital

FIGURE 5. The oscilloscope is operated point-by-point and can display experimental
or calculated curves as well as characters. Note that the displays on the two scopes
need not be identical.

Clark & Molnar: The LINC 659

inputs may be accepted at peak rates up to 125,000 12-bit numbers per
second. Another set of inputs to the LINC provides a convenient means for
the computer to sense external events and synchronize itself with external
equipment.
The principal output of the LINC is the oscilloscope display which may

be viewed directly or photographed (FIGURES 7a-f). Displays of programs,
data, results of calculations, etc. can be generated point-by-point in graphical
or symbolic form at rates of 10,000 te 20,000 points per second in typical:

1 :

:
: : :

FIGURE 4. Information typed on the keyboard and displayed on the scope is

:
:

: :

:

GL47 FIGURE 6. The knob is being used to adjust the fit of a straight line to a curve
derived from a signal connected to one of the LINC prototype's eight analog input
channels.:

:

programs. Letters or digits are generated and displayed by a special instruc-
tion at a rate of 4,000 characters per second. There are two distinct display
channels which may be connected either to the display scope mounted in the
console module or else to remote standard oscilloscopes with special plug-in
units. LINC provides each display scope with a pair of deflection signals
which position the spot with a precision of one part in 512 along each

:

coordinate and an intensification signal to brighten the selected location on
the scope face.

660

+r

1

FIGURE 7d.

FIGURE 7c.

FIGURE 7).

FIGURES7a-f.Displaysgeneratedbytypicalprograms.Photographs were made by
a Polaroid camera on the oscilloscope shown in FIGURE 2 and reversed to improve

legibility. (FIGURE 1a, above.)

Clark & Molnar: The LINC
Annals New York Academy of Sciences

662 Annals New York Academy of Sciences

FIGURE 7e.

FIGURE 7

Clark & Molnar: The LINC 663

Themagnetic tape system was specially developed to form an integral part
of the LINC system (FIGURE 8). It can be used to store programs, numerical
data and results on small reels of 3/4 inch-wide tape which contain 512 con-
secutively numbered blocks, each capable of storing 256 12-bit numbers. The
tape moves at approximately 70 inches per second in either direction and
information is recorded at a track density of about 400 bits per inch. A
block occupies 2.5 inches of tape and can, therefore, be scanned in about

1 C TAFE copy 38 TMF A
LOA
1776 7ae TARP

4 16 4 9 Roo 16
e1c BCL aROG 1-3 41

TA 4Z 2000
SB +4 43 SRE a

iu 310 44 276
44 ET A 3 48 THP IC45
12 -3 46 JMP LF
1 SET 2 § 42 SRE 4
14 1T-1 $0 772
1 ein LOA 4 $1 IMP 1A
le 2 $2 e10 LGRi? SET 2 2 $3

$4 SHO 4eu -400
21 Abr $s 7400
ge 18 $é TMP AE

BCL $7 SHO 2
24 177? 60 7500
2% ROR 2 61 CLR

ROR a 42 AOD 16-3
2? -1 $3 STA
Sa sic i 44 SAS
i RoC és STC b+4

o16 64 Ime 3A
ve CLF 6? @1e PNE a
14 SAE a 1 70

2

:

:
:

2:

:

: :
: :

we :
:

FIGURE 8. To use the magnetic tape unit, a loaded reel is snapped onto the transportand the tape is drawn over a simple open guide to a take-up reel. Push buttons
facilitate loading and unloading.

1/25 of a second, although the time required to start or reverse a transport
is approximately 1/10 of a second.
The entire process of searching the selected tape for a desired block,

transferring information in either direction between the block on tape and
the core memory of the computer, and checking the transfer is controlled
by a single computer instruction. A variant of this instruction permits trans-
fers involving as many as eight consecutive blocks to be made. All operations
of the magnetic tape units may be initiated from the console, thus providing
a convenient way of changing programs (FIGURE 9).

664 Annals New York Academy of Sciences

Output paths from the LINC to other equipment include two channels of
analog output signals which are usually used to operate the oscilloscope
display but which can drive an x-y plotter or be used for other purposes.
These analog output signals have a precision of one part in 512 and may
be changed at peak rates up to about 60,000 times per second. Parallel
digital outputs are available over one channel which provides up to 125,000

FIGURE 9. The keyboard can be used to change the values of experimental param-
eters or to modify operating programs. Records of such changes can be stored on

Clark & Molnar: The LINC 665

:

:

BE

:

er e
:

:
:

Mi Se

FIGURE 10. The control module being stacked on top of the magnetic tape module.
Cables connecting console panels to the electronics cabinet are plugged in from the
Tear.

12-bit numbers per second. Two forms of control outputs are available, oneee

of which consists of six sets of relay contacts operated by the computer,
and the other of 16 digital output lines which can be pulsed individually
by a special computer instruction. These features make it relatively simple,
for example to installa typewriter as an auxiliary device
A box-like design has been used in the console modules to simplify mounting

and physical arrangement (FIGURE 10). Cables are installed from the rear to
connectors on the removable console panels contained within the boxes (FIG-
URE 11).

For the most part, the electronic circuits used in the LINC are standard
commercially manufactured units (FIGURE 12). These are in the form of cards
which plug into a mounting frame held in the electronics cabinet along with
the power supplies (FIGURE 13). The LINC system requires about one kilo-
watt of standard 115 volt A.C. power.:

: :

Examples of Applications
It is difficult to give a comprehensive summary of the capability of the

LINC in various applications. The flexibility of a stored program machine
allows one to choose, from among many alternatives, a programming schememagnetic tape.

666 Annals New York Academy of Sciences

FIGURE 11. Rear view of the control module showing cable connectors on the back
of the control panel. Loudspeakers provide audible indication of computer activity.

which efficiently utilizes the resources of the computer. Central storage
capacity, speed of operation, word length, and speed of magnetic tape opera-
tion are among the factors that must be taken into account in selecting a
programming scheme. For any particular problem there is usually no unique
"best solution." A description of a few typical problems which have been

FIGURE 12. Typical transistor circuit plug-in units. About 300 plug-in units are
used in the LINC.

Clark & Molnar: The LINC 667

considered and tried by various investigators may give some insight into the

range of the LINCs usefulness.
Averaging of evoked electrophysiological responses. Presentation of acoustic

stimuli to a cat with implanted electrodes and averaging of cortical and

ar?eamikk erm
:

:
4

:

FIGURE 13. The electronics cabinet of the LINC prototype opened to show plug-in
units and the power supply. The LINC system uses about one kilowatt of standard
115 volt A.C. power.

thalamic responses were performed by the LINC. Averaged responses to series
of stimuli as well as information relating to the variability of the responses
were immediately displayed and also automatically stored on the LINC
magnetic tape formore detailed examination at a later time.

668 Annals New York Academy of Sciences

Fourier analysis. A program has been written to perform a Fourier analysis
of electron diffraction data from thin metal films and to resynthesize the
original data from its Fourier components for verification of the analysis.
The Fourier components and the resynthesized data are displayed on the
oscilloscope along with the original data. The analysis and resynthesis carried
to 50 harmonics takes about one minute.

Resolving a sum of decaying exponentials. A problem in compartmental
analysis required a program to resolve a sum of decaying exponential signals
into its individual components. This was done by displaying on the oscillo-
scope the logarithm of the wave form being analyzed and fitting a straight
line to portions of the resulting curve. With the parameter knobs, the experi-
menter adjusted the slope and position of a straight line also displayed on the
oscilloscope to get the best fit to the data. The component thus determined
was subtracted from the original wave form and the process repeated with the
remainder until all of the components were resolved.

Processing of single-unit data from the nervous system. Programs have been
written to determine, from microelectrode recordings, the times at which single
neurons fired, and to calculate the distribution of intervals between succes-
sive firings. These programs can also be used to determine the distribution of
firing times following the presentation of a discrete stimulus.

Cursorprogram. An experimental curve stored in the memory of the LINC
can be displayed on the scope along with an adjustable cursor mark. This
cursor designates a desired point on the curve and its locations is controlled
by a parameter knob. The amplitude of the point under the cursor is displayed
numerically on the scope.

Arterial shock wave measurements. A LINC program has been written to
make comparative hydrodynamic measurements in the ventricular cerebro-
spinal system in order to determine the dissipation and attenuation factors
in shock waves attributable to the arterial pulse. The LINC program was
designed to work directly with amplified signals from straingauges.

In-phase triggering of stimuli from EEG alpha wave. Simple criteria have
been applied to portions of EEG signals to identify and mark the occurrence
of rhythmic bursts of alpha activity, and to trigger stimuli which are phase-
related to the alpha wave.

5

~evy, "Buses, the Skeleton of Computer Structures"
1/27/78

10

Chapter

Buses, The Skeleton Of Computer Structures

Contents

Introduction
I A 5-Function Model of Computer Buses

II Arbitration Methods

III Data Transfer Synchronization
Iv Error Control Strategies

Evolution of Buses in the High-Performance
PDP-11 Systems

Appendix A. Summary Chart of Bus Parameters

DP-1

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

0. Introduction

What is a Bus?

A bus is a communication pathway connecting two or more

electrical devices. In the context of minicomputer design,
buses are the physcial and electrical structures which

determine how the building-blocks are interconnected.

In every computer system, there are many buses:
Internal pathways connect the registers and arithmetic logic
of a CPU; Input/Output pathways connect CPUs, memories, and

peripheral devices; and external communication buses attach

computer systems to the wide world of telephone and other

data communication pathways. In this chapter, we restrict
our discussion to buses which interconnect computer system

components which are to be designed by different engineering

groups -

DP-2

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

This people-oriented criterion for a discussion of
computer design may sound out of place, but in fact one of
the most important functions of buses is to provide a

well-specified interface between subsystems which are in
themselves complex. On the basis of this criterion, we

exclude from discussion many of the internal buses which
exist inside a CPU, such as tri-state buses, and buses whose

specifications are determined by engineers not involved in
the minicomputer design process such as telecommunication
lines. We also have not included any multiprocessor
interconnection pathways here, simply because none has yet
been made into a standard PDP-11 family product.

DP-3

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

What Does a Bus Do?

A bus is a communication medium. Each one exists in
order to transfer information from place to place within a

computer system. Often, in studying the design of computer
systems, the difficulty of establishing communications
pathways is ignored by the student.

In this chapter, we attempt to illustrate the com-

plexities of bus design by drawing on the real history of
some PDP-11 family designs. Keep in mind that the success
of bus designs is measured by the following criteria in

computer systems being manufactured and sold:

1. Does the bus successfully establish the
communication pathway required?

2. Is the bus well specified (and well documented),
so that a series of interfaces to it designed

concurrently & over time by different engineers
will in fact be compatible?

3. Does the bus avoid imposing performance
constraints on the system?

DP-4

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Is the cost of the bus commensurate with the4.

computer system and the bus' role in it?

Does the bus design anticipate expansion of the5.

system in the future (without excessive cost)?

Can the bus be manufactured and tested in high
volume production without excessive hand-crafting

6.

or tuning?

Beyond the scope of this chapter are some additional

functions of buses such as providing a means to diagnose and

repair the system components connected to it, and to allow

measurement of system loads and performance.

DP-5

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Why are Buses Important

As the list of success criteria above suggests, there
are many ways in which poor bus design can spoil the

performance or cost/performance ratio of an otherwise
well-designed computer system. Failure to anticipate future
expansion of a computer system is a common problem in bus

designs. As we will see in Section V, the PDP-11 Unibus, a

very successful bus, first became inadequate as the main

interconnection pathway when processor and memory speeds

surpassed the bandwidth capability of the Unibus. Later,
the Unibus 18 bit memory address width became a limitation
to be overcome.

Computer design is driven by advances in semiconductor

technology. While the performance/cost (or storage
capacity/cost) ratio for logic and memory is increasing at a

rate of 70% to 198% per year, the bandwidth/cost and other

performance ratios of interconnections is steady or

decreasing slightly. As a result, bus designs tend to

persist in time across several redesigns of the other

computer system components. This provides all the more

justification for extensive engineering effort in the

initial design of a bus. Each bus is going to be with us

for a relatively long time.

DP-6

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

How are Buses Designed?

To design a bus, the engineer must first find out what

system components are to be interconnected. Then, studying
the requirements of communications between these components,
the engineer chooses a structure. Finally, the cost
constraints and available technologies lead to a choice of
the implementation.

The 5-function model given in Section I below is not a

set of bus designs. It is a functional model which results
from taking the commonly used minicomputer building-blocks
(CPUs, memories, and I/O controllers) and asking a simple

question about each of them: What communications need to

occur between this component and each other component? The

model shows the five types of communications which were the

answers to that question. The five functional pathways are

the maximum number of interconnections that would be useful

in a conventional single-processor minicomputer. Real bus

designs combine these functions into cost-effective
implementations.

DP-7

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

After choosing the structure and functions of buses,
the engineer must write a specification. This is crucial to
the success of bus design if it is indeed to be interfaced
by a number of different engineers. The level of detail in
a specification can never be too great. An example of a

Digital bus specification is shown in Figure 9 below. This

fragment is taken from the Massbus specification, and it
specifies the timing of a data read operation, the communi-

cation taking place between a disk and the disk controller.
The timing is specified in three forms. Figure 9a shows the

verbal description, which is the final authority, in case of

discrepancy between the three. Figure @b shows the same

specification in timing-diagram form, including all of them

minimum and maximum delay constraints. Figure @c repeats
the specification in flowchart form. These three parts

together make up only one-fourth of the timing specification
of the Massbus.

DP-8

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

After writing a specification, the engineer builds a

prototype and tests it. It is very helpful to have other
engineers build interfaces to the bus concurrently, because

misunderstandings of the specification will be uncovered

sooner. Finally, it is important that the specification be

Maintained, updating it to conform to the latest known

design constraints. A very useful appendix to a bus

specification is a list of the design problems that came up

during the engineering of interfaces to it, and the details
of how they were resolved. This was done for the Massbus,
in a section of the specification called "Design Notes."

DP-9

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

What is the plan of this chapter?

Section I presents the 5-function model of computer
interconnections. This focusses our attention on

organization of computer systems. In the hierarchy (Chapter
9) of architecture, organization, and realization, we intend
to avoid questions of realization, except as aspects of
realization affect choices in organization. Therefore,
there will be no discussion of packaging, logic families, or

electronic design parameters in this chapter. Architectural
considerations in the PDP-1l family are covered in Chapters
7, 8, and 13.

Sections II, III, and IV develop classifications of

techniques for arbitration, data transfer synchronization,
and error control of buses. These are the chief design

parameters at the organizational level.

Section V gives a structural history of the

high-performance PDP-1l Systems, beginning with the

PDP-11/2@. The sequence of designs for the PDP-11/45, the

PDP-11/78, and the VAX-11/78@ illustrate how evolving
technologies led to structural evolution of the buses

interconnecting these systems' components.

DP-19

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Finally, Appendix A contains a summary chart of the

performance and historical parameters of the buses used in
examples throughout this chapter.

DP-11

Levy, "Buses, The Skeleton of Computer Structures"
1/27/78

7
I. Functions of buses in computer systems: a 5-function model

The functional building-blocks of computers are:

central processing units (Pc), random-access (primary)
memory (Mp), input/output controllers (Kio), and peripheral
units. Peripherals tend to be classed as either secondary

memory (MS), or transducers or terminals (T).

The architecture of a computer system is the set of

concepts, states, and actions that can be seen and mani-

pulated by the programmer. Often, the components of an

architecture are virtual, that is, manipulable by the

programmer, but not necessarily implemented in physical or

real components.

We are concerned in this chapter not with archi-
tectures, but with the real organization of computer

systems. In particular, we want to examine the interconnec-

tions between real components.

DP-12

Levy, "Buses, The Skeleton of Computer Structures"
1/27/78

Figure 1 shows the components of a traditional
single-processor minicomputer system. Five different paths
are shown interconnecting these components. These paths are
not intended to represent actual buses designed for such a

system. Instead, we have considered each pair of components

in the system, and asked whether they need to communicate

with each other. If so, we have put in a pathway between

this pair. This leads to a model which has the maximum

number of interconnection pathways. We then pose two

questions about each pathway:

l. What are the transactions that occur between the

components connected to this pathway?

2. What distinguishes the engineering requirements of

this pathway from others?

We will later see how in real computer systems, we

combine the functions of these pathways into multi-function
buses in order to get economical designs.

There are five types of interconnections shown in

Figure 1, labelled A,B,C,D, and E. These labels have

mnemonic value:

DP-13

Levy, "Buses, The Skeleton of Computer Structures"
1/27/78

The pathway A, connecting the central processor (Pc),
with the primary memory (Mp), is the path by which
instructions and data are fetched from and data-are stored
into memory. Let us call a "word" the unit of memory

accessed over this pathway. This pathway is distinguished
by requiring one address per word. Random-access memory, by

its nature, must be told on each access what address to use.

Pathway B connects one or more mass storage (secondary

memory) controllers (Kio), to the primary memory (Mp). It
represents the path by which blocks of data are transferred
between primary memory and, for example, disk storage. It
is distinguished by being a block-transfer medium. In

particular, we do not require more than one primary memory

address per block transfer, because the data is (almost

always) stored in consecutive memory locations. (In paged

virtual memory systems, the pages may be scattered in the

physical address space, but the block would usually be

stored in consecutive virtual memory locations.)

Pathway C is the control pathway. It connects the

central processor to all of the I/O controllers. Over this

path, I/O commands are sent from the central processor to

the I/O controller, and status information from the

controllers is returned. Also, it represents the path by

DP-14

Levy, "Buses, The Skeleton of Computer Structures"
1/27/78
which I/O controllers can cause an interruption to the
central processor program. (Occasionally, we may find that
the control path is also used to transmit small amounts of
data to or from an I/O device, under program control, such
as sending a character to be printed to a console terminal.)

Connecting I/O controllers (Kio) with their controlled
peripheral units (Ms or T) are pathways labelled D, for
device interconnections. In Figure 1, pathway D, represents
a disk connection and D a multiple terminal connection

path. These two differ principally in that the terminal
interconnections do not normally transfer blocks of data.
Both D, and Dy carry control information, however.

Finally, pathway E represents a connection to external

communication lines. Usually, the computer designer does

not have control over the specification of such external

pathways. (Note that a communications controller, Kjiomms

may be connected via a B-type pathway to main memory, in

addition to its C-type pathway connection.)

DP-15

Levy, "Buses, the Skeleton of Computer Structures"

Table II. Requirements for the Five Types of Pathways

1/27/78

A B C D E

CPU-
Memory

Memory large: 2°7
Addressing (one
Require- address
ments per word)

Number of
Connections

Latency low
Tolerance

Bandwidth high
Reguire-
ments

Length short
Require-
ments

Pathway Types

Controller-
Memory

large: 2°7
(one
address
per block)

4Maximum small: 2 small: 2°

high

high

medium

CPU- Controller -
Controller Peripheral

none none

medium: small-
6 large: 2

2

medium medium-
high

low low-
high

long med ium-
long

Controller-
External

none

small-
large: 2

medium-
high

low-
high

medium-
long

DP-15a

8 8

Levy, "Buses, The Skeleton of Computer Structures"
1/27/78

Five key parameters Or requirements for these pathways
affect cost and performance, and are often traded off
against each other. These are: memory addressing, number of
connections, latency tolerance, bandwidth, and length.
Table 2 summarizes these requirements for the five types of
pathways.

1. Memory addressing applies only to the A and B type
pathways by which memory is connected to other functional
components. "Memory addressing" means selecting a word or

block of words within the address space of the memory

subsystem. Memory address bits are no different from data

bits, from the standpoint of the bus designer. Both must be

transmitted from one bus connection to another. However,

the handling of memory addresses is so important to computer

system performance and expandability that we cite it
separately, in order to call attention to it.

On both A and B type pathways, we need to be able to

address all of the memory words. In PDP-1l systems through
the PDP-11/70, the largest address required is 22 bits (to
address 222 bytes of memory). The Unibus was originally
designed to implement the A, B, and C type paths for

PDP-lls; it carries 18 bits of memory address. Expansion of

PDP-11 memory beyond 218 bytes caused major structural
revisions to be made, as we will show in Section VI.

DP-16

Levy, "Buses, The Skeleton of Computer Structures"
1/27/78

2. The maximum number of connections to a bus tells us

how many signals must be used to select a destination for a

data transfer on the bus. Typically, a bus will carry some

n, of "select"number, signals, and therefore be able to
deliver data to as many as 2" connections. On a type A

pathway, a CPU accesses connections which contain memory.

We do not typically need more than four select signals,
allowing up to 16 memory connections. Often, some of the

memory address bits are used to make the memory bank

selection. If a memory connection implements contiguous
addresses, then higher-order memory address bits are used to

select the connection. In "interleaved" memory systems,
some lower-order address bits are also used to select the

connection, so that apparently-contiguous memory addresses

are accessed from different connections (memory banks).

Interleaving is used to gain performance when a memory has a

longer cycle time than access time. When sequential
addresses are accessed in an interleaved memory system, the

completion of a cycle in one part of the memory can be

overlapped with the accessing of the next address in another

part. In the case of multiprocessor shared-memory systems,

it may be necessary for some "select" signals to be present

when data is delivered from memory to processor, in order to

identify which processor is the destination for the data.

DP-17

Levy, "Buses, The Skeleton of Computer Structures"
1/27/78

However, if the memory-reading operation is performed
without relinquishing the bus between delivery of an address
to memory and return of data from memory, then no processor-
identification is needed. The "owner" of the bus during the
transaction is clearly the correct receiver of the data.

On a type B pathway, selection and memory addressing
have the same properties as on type A pathways. What

distinguishes type B from type A is that blocks of data (say
512 bytes) may be transmitted to and from memory without

attaching a memory address to each byte or "word". This
could lead to cost-saving in some bus designs. Note that

typical type B pathways have multiple non-memory

connections, such as disk controllers.

A type C pathway has no memory addressing to do.

Selection of a destination connection may typically be done

with six signals, allowing up to 64 controllers to be

connected to a CPU.

DP-18

Levy, "Buses, The Skeleton of Computer Structures"
1/27/78

The Unibus carries no select signals at all. Transfers
on the Unibus are not directed to physical connections.
Instead, there is the single concept of memory addresses.
Fach data transfer (type A or type B) on the Unibus is
directed to or from a one- or two-byte section of memory.
The memory address is broadcast to all connections. If one

of the connections recognizes the address as being one of
its "own", then it participates in the data transfer. This
anonymity allows an essentially unlimited number of connec-
tions to be made to the Unibus, with each connection

implementing a locally-determined number of memory bytes.

For control transfers (type C), the Unibus has a

concept called "the I/O page". A block of memory addresses

(the I/O page) is reserved for use in accessing control and

Status registers which are located in peripheral con-

trollers. The uppermost 8192 bytes of memory addresses are

never implemented in real memory. Instead, small segments

are assigned (by administrative procedures) to each I/O
controller type. When a controller is attached to Unibus,

it responds to data transfers to and from addresses within
its assigned segment.

DP-19

Levy, "Buses, The Skeleton of Computer Structures"
1/27/78

In this manner, there is no restriction on the number

of controllers, and no fixed amount of address space need be

allocated to a given controller. If two controllers of the
same type are connected to a Unibus, one of them is assigned
to a "floating" address segment, which is an area reserved
for such conflict resolution.

I/O controllers which perform direct memory access

(DMA) do so by making data transfers to memory addresses
below the "I/O page". Block transfers are performed a word

at a time to and from successive memory addresses, with the

incrementing address being maintained by the I/O controller.

An I/O controller causes an interruption by a special
Incontrol transfer to the unique interrupt-fielding CPU.

this transfer, the destination always the CPU, and the

interrupting controller identifies itself by transmitting an

"interrupt vector" as the data. Therefore the address lines
of the Unibus are not used in this transfer.

selectType D and E pathways may need as many as eight
signals, allowing up to 256 devices or external connections

to be selected as a destination.

DP-29

Levy, "Buses, The Skeleton of Computer Structures"
1/27/78

3. Latency tolerance means: how long a delay (latency)
after a connection "decides" to make a transfer can be

tolerated by that connection.

4. Bandwidth means: how many transfers per second can

be made.

Latency is different from bandwidth: latency refers to

the delay, for any one transfer, from the time it is
initiated until it is completed; bandwidth is the repetition
rate at which the initiation and completion of requests can

be sustained, over some period time. In particular, peak
bandwidth -- the maximum possible repetition rate -- is the

parameter which affects the cost of a bus, and is the one we

refer to here.

Type A pathways require both low latency and high

bandwidth. The performance of a CPU-memory system depends

critically on the rate (bandwidth) at which words can be

delivered to the CPU. Furthermore, the nature of program

interpretation prevents the CPU from knowing very far in

advance which memory words will be required next. (If it
did know, then it could request them far in advance, and not

be sensitive to the latency.) Therefore, the CPU-memory

pathway is also very dependent on low latency. The sooner

DP-21

Levy, "Buses, The Skeleton of Computer Structures"
1/27/78

after a memory address is generated the memory can deliver
the memory contents, the faster the CPU will run. In this
type of pathway, effective bandwidth and latency are
directly (inversely) related to each other.

On a type B pathway, high bandwidth is also typically
required. Usually, this is the path on which disk and

other mass storage data is moved to and from memory. In

most cases, the rate at which data is transferred is
determined by the disk subsystem. In minicomputer systems
developed through 1977, the bandwidth required has not
exceeded 1 Megabyte/second for an individual disk-
controller-to-memory pathway.

Type B pathways, on the other hand, tolerate relatively
long latencies. If there is sufficient buffering of data at
the controller, system performance is relatively insensitive
to delays of as much as 109 to 1898 microseconds in starting
up a block transfer. The insensitivity is due to the

relatively long delays already present in disk data

accessing. Mechanical positioning delays, both rotational
and radial, may take tens of milliseconds in a typical disk
data access operation.

DP-22

Levy, "Buses, The Skeleton of Computer Structures"
1/27/78

Type C pathways -- the control and interruption links
-- do not require high bandwidth compared with CPU

instruction and DMA data activity. I/O control commands are
issued relatively infrequently compared with the instruction
execution rate in the CPU. Interruptions occur even less
frequently. However, latency tolerance is not very high on

the control pathway. It is important for interruptions to
be delivered promptly; and CPU instructions which access I/O
control and status registers usually are held from

completion until the access has been completed. Therefore,
Table 2 shows latency tolerance as "medium" (1 to 18

microseconds) for type C pathways: it is permissible to
take a little longer to complete an I/O control instruction
than other instructions, but not so long as initiating a

block transfer from a disk.

Type D and E pathways tend to handle interactions which

are a mixture of the communications on type B and type C

pathways. Therefore, their requirements for latency and

bandwidth vary over the range shown for types B and C.

DP-23

Levy, "Buses, The Skeleton of Computer Structures"
1/27/78

Length refers too the maximum possible distance, along
the pathway, from one connection to another. Maximum length
is important because it affects both performance and cost of
a bus. The CPU to memory pathway (type A) has been

shrinking in length in recent computer designs because of
the critical dependence of latency on length. The speed of
light (or, more properly, of signals in a wire) limits the

Minimum delay between request and response. As a result, we

see memories and CPUs more frequently packaged together or

in very close proximity. Fortunately, the continual size
reduction of a given amount of CPU logic or memory has

encouraged this trend. The current length range of a

type A pathway for minicomputers is approximately @.1 to 3

meters.

Type B pathways must interconnect memory with all
high-speed I/O controllers. These controllers are also

tending to be packaged closer to the memory in recent system

designs. But since there may be many controllers, the

length of the pathway may have to be two to ten times longer
than the CPU-memory pathway (@.2 to 3@ meters).

DP-24

Levy, "Buses, The Skeleton of Computer Structures"
1/27/78

Control pathways, connecting the CPU to all I/O
controllers often have to be extended out of the CPU-memory

package to reach peripheral control subsystem packages.
These tend to be the longest pathways which the computer
system designer has to deal with. Frequently, the design
choice in connecting a peripheral to a minicomputer system
is between (a) extending the main type C bus out to reach

the farthest peripherals and (b) designing type D buses

which extend from a locally-packaged controller to a remote

peripheral. Alternative (b) gives maximum flexibility and

performance, but it costs more than (a) and may lead to a

proliferation of buses in the computer system. (See Figure
2.5)

Cost is not shown as an explicit parameter in Table 2,

because all parameters shown contribute to cost in ways we

will discuss next.

DP-25

Levy, "Buses, The Skeleton of Computer Structures"
1/27/78
Cost

The cost of a computer system could be allocated in a

simple way to power, logic, and package. As applied to the
cost of buses, these become power, logic complexity, and

cable/connector costs. Let's examine how the requirements
of interconnection pathways are reflected in these costs.

Increasing memory addressing requirements lead to more

signals in the pathway with each signal adding to power and

cable costs. Or we could trade lower bandwidth for wider

memory addresses by time-multiplexing the addresses with
data. Increasing the maximum number of connections leads to
increased power in the bus drivers in order to maintain a

given signal level, or to lower bandwidth as it takes longer
for signals to settle due to the number of electrical loads.
Also, more signals are required (logarithmically increasing
with the number of connections) to select the destination of
a transfer. Increasing maximum length also requires more

bus drive power for a given signal level. Obviously, long
cables also cost more than short ones. Since longer buses

have greater propagation delays, we can trade both bandwidth

and latency for increased length. Both length and

connections contribute to signal decay, and therefore theses

two are often traded against each other. For example, each

section of a Unibus is rated for a maximum length of 5@ feet

DP-26

Levy, "Buses, The Skeleton of Computer Structures"
1/27/78

or a maximum of 28 bus "loads". Reaching either limit
requires insertion of a "bus repeater" circuit. In fact, a

Unibus with fewer loads could be operated at longer lengths,
but the configuration rules would be too difficult to
explain.

Decreased latency and increased bandwidth can be

achieved by using higher power drivers and receivers such as

ECL circuits, which have lower propagation delays through
their circuits.

We can also increase bandwidth by providing more

buffering logic (complexity) at each connection. For a

given level of reliability, either faster logic (with higher

power) or more parallelism (complexity) is required to

increase the data rate. More parallelism would mean more

signals and, therefore, higher cable and connector costs.

Lower latency can sometimes be achieved by distributing
the task of arbitration among the connections. More logic
is then required at each connection. (We will discuss
arbitration in Section ITI.)

DP-27

Levy, "Buses, The Skeleton of Computer Structures"
1/27/78

Figure 2.5 A design Tradeoff for Type C Pathways

DP-28

Levy, "Buses, The Skeleton of Computer Structures"
1/27/78

Although we haven't mentioned them before, there are
also considerations of physical and electrical environment
which affect costs. For noisy electrical environments, we

may choose balanced transmission lines or low-voltage
high-current signals, both of which lead to higher power

consumption compared to conventional single-ended 3- to 5-
volt logic signals. To compensate for noisy enviornments we

may add error detection and correction circuits at each

connection, adding to their complexity. Or we may use

shielded or twisted-pair eable, adding to their cost. For

physically stressful environments, cable costs may become

dominant as the cables are armored, strengthened or given
non-corrosive wrapping. In general, we can trade reduced

bandwidth for increased immunity to electrical noise, since
most noise-induced errors can be overcome by repetition and

redundant signalling. (At this tradeoff, bus design becomes

one with applied communication theory.)

DP-29

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

IT. Arbitration Methods

Since buses are intended for use by more than one

source of data transfer requests, there must be a means of
This is whatdeciding which source is to use the bus next.

we mean by arbitration.

If we imagine a connection following a procedure to use

it would consist of thea bus for a data transmission,
following two steps:

1. (Arbitration) Obtain the use of the bus

2. (Data Transfer) Transfer data on the bus

DP-38

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Classifying the methods of arbitration

To assist our examination of arbitration methods, we

will classify some of the methods into 12 categories using
three discriminating criteria. The criteria are:

(Where?) (1) Location of the arbitration logic
(Centralized or Distributed)

(How?) (2) Allocation rules (Priority, Democratic, or

Sequential)

(When?) (3) Timing relationship of arbitration to data
transfer (Synchronous or Asynchronous)

Centralized arbitration means that there is a single
A signal must pass from acommon arbitration point.

requesting connec tion to the common arbitration point, and a

response signal must return to the requesting connection

before it may transfer data.

arbitration means there is no single commonDistributed
arbitration point.

DP-31

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

The Unibus, for example, has centralized arbitration
method (with the exception noted below). A contention-
arbitrated serial bus, such as used in Ethernet [Metcalfe,
1975], has a distributed arbitration method.

The resolution of conflicting requests is accomplished
in all arbitration methods by allocation rules.

Priority arbitration means that in case of an apparent
tie in the race to request use of the data transfer
facilities, the rules always let one connection (or a

certain group of connections) go ahead of another connection

(or group of connections).

Democratic allocation means that there are no priority
rules. An apparent tie is resolved arbitrarily or by some

"fairness" rule which attempts to keep any one connection

from monopolizing use of the data transfer facilities.

Sequential allocation insures that there are never any

apparent ties by giving only one connection at a time the

opportunity to request use of the data transfer facilities.
(The sequence is not necessarily round-robin).

DP-32

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

The Unibus has priority allocation. (Each priority
"BR" level is wired sequentially through the devices which
share that level and, therefore, represents a group of
connections). Most contention-arbitrated serial buses have

"democratic allocation (the "p-persistent" retry algorithm
is intended to cause random allocation among the contending
connections). Centralized, polled, type D buses are

frequently used to connect character terminals to a

concentrator, and are examples of sequential allocation.

Finally, there is the question of timing. This is not

a question of the timing relationship between communicating

connections (which we call data synchronization and

clocking). It is the timing relationship between the

arbitration of a request and the data transfer which is
going to occur as a result of the request. Arbitration

synchronous with respect to data transfer means that the

choice of the next connection to use the data transfer

facilities occurs at a fixed time relative to the data

transfer. This category includes buses in which the signal
lines used in the data transfer are also used for the

arbitration process, and therefore arbitration and data

transfer cannot be overlapped in time.

DP-33

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Arbitration asynchronous with respect to data transfer
means that a connection may request use of the data transfer
facilities at any time, independent of the current state of
the data transfer facilities.

The Unibus has asynchronous arbitration. Polled buses

have synchronous arbitration because data transfer always
occurs in the time slot immediately after the arbitrator has

polled a requesting connection. Contention-arbitrated
serial buses are usually synchronous, too, in that the data

transfer is the request for use of the bus.

Table 3 summarizes the categories of arbitration
methods. Below, we illustrate some of the categories with

examples from Digital-designed buses.

Examples of Arbitration Methods

Example 1: Unibus

DP-34

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Table 3. The twelve categories of arbitration methods

Arbitration Methods Synchronous with respect Asynchronous with
to Data Transfer respect to Data Transfer

Central, Priority CPS CPA Unibus (+serial
wire-through at each BR
level)

Central, Democratic CDS CDA

CSACentral, Sequential CSS (typical multidrop
teletype polling-shareddata bus)
DPS SBI DPADistributed, Priority

Distributed, Democratic DDS (Contention- DDA
arbitrated serial bus)

Distributed, Sequential DDS (Rings with token DSA (cf Unibus for
each BR level + NPRpassing + data) --serial wire-through)

Note: The Massbus has no arbitration at all, because all control
transfers originate from one point (and data transfers are initiated
by a communication over the control section).

DP-35

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Connections to the Unibus other than the CPU can use
the bus for two different types of "data transfer" trans-
action. One is a DMA data transfer (using the bus as a type
B pathway, to transfer data between a controller and

memory) . The other is an interruption transaction which
transmits an "interrupt vector" across the data lines to the
CPU. Arbitration of requests to use the bus for these two

types of transactions is similar, as we explain below. A

third type of transaction is a CPU-memory (type A) or

CPU-controller (type C) data transfer, for which a unique
arbitration method applies. (The CPU contains the
arbitration logic, and takes advantage of its "ownership" of
the logic).

Figure 4 shows a diagram of a simplified Unibus with

two controllers, Ci and Cor sharing a request line, BR ("Bus

Request"). When Cy, the controller closest to the left end

of the Unibus, wants to use the bus for an interruption
transaction, it asserts (i.e., puts a logic "1" on) the

shared BR signal line. The Arbitrator logic, shown at the

far left end, receives the assertion of the BR signal; it is
not able to distinguish which of the two controllers
asserted the signal. At some later time (when the CPU is in

a state capable of receiving an interruption), the

arbitrator asserts the BG ("Bus Grant") signal. When

controller Cy receives the assertion of BG, it knows it may

DP-36

Levy, "Buses, the Skeleton of Computer Structures"1/27/78
use the Unibus data transfer section next, as soon as the
ongoing data transfer is complete. Cy acknowledges its
selection as the next data transfer "master" by asserting
the SACK ("Selection yhowledge") signal. Since the BG

signal is wired serially through the two controllers, it is
up to controller Cy to pass the assertion of BG if it does
not want to use the next data transfer cycle.

If controller C4 requests the bus by asserting BR, the
BG signal would pass through controller Cc, to controller Co,
which then asserts SACK. No matter which controller
initiates a request by asserting BR, it is clear that C, can

use any BG assertion (that is, can block the BG assertion
from being passed) that arrives after is (Cy) that arrives
after it (C,) has asserted BR. We could call this serial
wiring a kind of priority arbitration, but we prefer to

think of it as a sequential (or polling) type of allocation,
in which the sequence beginnings on demand and always starts
at the leftmost controller (the one closest to the CPU and

arbitrator).
The Unibus actually has four groups of controllers,

each group connected to a Bus Request line (called BR4, BR5,

BR6, and BR7) wired as we have shown in Figure 4 above. In

addition, every controller which is capable of doing DMA

data transactions is connected into a fifth group (called
NPR, for "non-processor request"[for data]). All five
groups share a common SACK line.

DP-37

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

In the most general case, a single controller can
participate in three types of transactions.

(1) As the target of a control data transfer (type C),
the controller behaves as if it were a memory. It
receives commands (as data writes) into control
registers and transmits status (as data reads)
from status registers this way. The controller
does not request the bus for these transactions:
it is the "slave" of the CPU which obtained the

bus for this purpose.
(2) As the originator of a data transfer (DMA, type

B), the controller moves data to or from memory.

To obtain the bus for this purpose, it asserts the
NPR line, and waits for the NPG signal to be

passed to it from the left. All DMA controllers
share the NPR line.

(3) As an interruption source, the controller sends an

interrupt vector to the CPU. To obtain the bus

for this purpose, the controller asserts one of
the four BR lines (BR4, BR5, BR6, Or BR7), and

waits for the corresponding BG signal (BG4, BG5,

BG6, or BG7) to be passed to it from the left.
Each controller is assigned a single BR level at

the time of its installation in the system.

Thereafter, it never blocks any of the other three

BG signals.
DP-38

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Some controllers, such as simple terminal interfaces,
do no DMA transfers. These controllers perform an

interruption transaction for each character of input or

output. When a character is received, for example, a

terminal controller interrupts the CPU, and then the CPU

retrieves the character by doing a control (actually memory)

read from the character buffer register contained in the

controller.

The priority arbitration of the Unibus is affected
directly by the priority state of the CPU. The CPU program

priority execution (PRI) varies from @ to 7. The Unibus

arbitrator grants use of the bus to non-CPU connections by
the following rules:

1. At any time, when assertion of NPR is received,
assert NPG. (A controller may do DMA data

transfers at any time.)

2. Whenever the CPU is between instructions (i.e., is
interruptable), then

(a) if PRI <7 and BR7 is asserted, then assert

BG7, else

(b) if PRI <6 and BR6 is asserted, then assert

BG6, else
DP-39

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

(c) if PRI <5 and BR5 is asserted, then assert
BG5, else

(d) if PRI <4 and BR4 is asserted, then assert
BR4.

(When the CPU is interruptable, it will accept
interruptions from a controller which is in a group whose

priority is greater than the current program execution

priority of the CPU.)

The priority arbitration rules of the Unibus involve
both the CPU priority (which causes blocking of BG signals
to groups lower than or equal to the CPU priority) and the

relative priorities of the BR signals, among themselves.

Assertion of a BR7, for example, blocks BG6, BG5, and BG4

until all controllers asserting BR7 have accomplished their

interruption transactions. Therefore, we classify the

Unibus, with its complex arbitration method, as centralized
and asynchronous, with a mixture of priority and sequential
allocation rules.

DP-49

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Example 2: Q-bus (LSI-11 bus)

The Q-bus serves the same functions for the LSI-11
system that the Unibus serves for most of the larger PDP-11

family processor systems. The Q-bus was constrained to use

fewer conductors and, therefore, less power and logic than

the Unibus. It achieves the reduction from 56 signals to 36

signals primarily by time-multiplexing memory addresses and

data on the same conductors (accepting lower bandwidth in
order to achieve lower cost).

Arbitration for DMA transfers on the Q-bus is
essentially identical to that of the Unibus.

Figure 4 suffices to show the connectivity of DMA

arbitration logic for the Q-bus. The corresponding signal
names on the Q-bus are SACK (for SACK), DMR (for NPR), and

DMG (for NPG).

Arbitration for the interruption transaction on the

Q-bus is different from arbitration for interruptions on the

Unibus. There is only one priority-group for all
interrupting controllers on the Q-bus. When a controller

wants to interrupt the CPU, it asserts the IRQ (Interrupt

Request) signal on the Q-bus. This is similar to BR signals
on the Unibus. However, the description of the interruption

DP-41

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

transaction following the assertion of IRQ properly belongs
in the section on data transfer synchronization, and will be

covered there (see Section -) Arbitration on the Q-bus,
like the Unibus, is classed as centralized, asynchronous,
with allocation rules which are mixed priority and

sequential.

DP-42

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Example 3: Synchrounous Backplane Interconnect (SBI), the

VAX-11/788 Memory Bus

This memory bus is distinguished by its limited length
(three meters: it does not extend beyond the etched
backplane of the computer mainframe), and its master clock
which synchronizes all transaction on the bus. The

functions of the SBI are the same as those of the Unibus.

However, the SBI differs in physical configuration because

every controller must be directly connected to the mainframe

backplane. Another difference between Unibus and SBI is
that all transactions on the SBI are of fixed time

duration, which gives much higher bandwidth for data
transfer. (The SBI is rated at 13.3 Megabytes/sec, while

the Unibus is capable of approximately 1.7 Megabytes/sec
when operating with equivalent-speed memory). To achieve

the SBI bandwidth, it is necessary to split the memory read

operation into two bus transactions -- one to transmit an

address to the memory, another to transmit data back to the

requesting connection. In this way the SBI can accomodate

memories of various cycle times, as can the Unibus, but the

SBI does not occupy the bus facilities for the duraction of

the cycle. [This concept occurs also in the Honeywell

Series 6].

DP-43

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Arbitration on the SBI is distributed, priority-ordered
and synchronous with respect to data transfer. Figure 5

shows a simplified diagram of the signals involved in SBI
arbitration.

A master clock, represented here by a single signal,
defines a sequence of time slots on the bus. Each slot is
of long enough duration to complete a transfer of data from

one connection to any other connection. However, there is
not enough time in a slot for a reply signal to be sent back

to the transmitting connection from the receiving
connection. (A time slot in the VAX-11/786 SBI is 208

nanoseconds long.)

There are four TR ("Transfer Request") signals in this

simplified example: TR@, TR1, TR2, and TR3. Each TR signal
"belongs" to one connection; that is, only one connection is
permitted to assert the signal.

DP-44

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Each TR signal has a priority associated with it: TR@

has highest priority, TRl has next highest, and so on. A

connection requests the use of the SBI data transfer
facilities by the following procedure:

(1) At the beginning of the next time slot (after
deciding to transfer data) assert the TR signal
which belongs to this connection.

(2) At the end of the time slot, sense the state of

["strobe"] all of the higher-priority TR lines.

(3a) If none of the higher priority TR lines is
asserted, then at the beginning of the next slot
negate "my own" TR signal and begin transmitting
data.

(3b) If any of the higher priority TR lines is
asserted, then do not negate "my own" TR signal,
and go back to step (1).

Figure 6 shows a timing diagram for a sample set of

data transfers on the simplified SBI of Figure 5. In this

example, connection number 3 (corresponding to TR3) requests

the bus during slot 1, and connection numbers 1 and 2

(corresponding to TR1 and TR2) request the bus during slot

2.
DP-45

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

At the end of slot 1, connection 3 detects no

higher-priority TR signals, so it negates TR3 and transmits
data during slot 2.

At the end of slot 2, connection 2 senses that TRI is
asserted, and therefore waits, leaving TR2 asserted. At the

same time, connection 1 senses no higher-priority TR

signals, so it negates TR1 and transmits data during slot 3.

Some transactions on the SBI require that a connection

be allowed to transmit data on two or more consecutive

slots. In order to accomplish this, the highest priority TR

signal, TR@, is not assigned to any connection. Instead,

each connection which requires an additional slot (beyond

its first one) asserts TR@ at the beginning of its first
data transfer slot.

The example in Figure 6 shows connection 2 doing a

2-slot data transfer. Having first obtained use of the bus

by asserting TR2 and waiting for connection 1 to go ahead,

connection 2 "holds" the bus for its record slot by

asserting TRO (also known as the "HOLD" signal) at the

beginning of slot 4. This guarantees that slot 5 will be

available for use by connection 2.

DP-46

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

In the VAX-11/788, connections are limited to
transmitting in no more than three consecutive slots.

We have shown four connections in this example, al-
though only three TR signals are assigned. The lowest
priority connection, number 4, does not have a TR signal
assigned to it _-_ because there is no other connection
which needs to sense a TR signal from this lowest-priority
connection! Connection 4 senses all of the TR signals. It
transmits only when no other connection is requesting the
next slot. Note that connection 4 gains one advantage by

being lowest-priority: it may transmit in any slot not used

by the other SBI connections, without taking the time to
assert a TR signal of its own. This gives it a shorter

memory-access latency. For this reason the CPU is usually
given lowest priority on the SBI in single-processor
systems.

The master clock is crucial to the operation of the

SBI. Not only must every connection sense the TR signals
late enough to be sure that they have arrived from the

farthest connection, but they must also be assured that they

do not sense the early assertion of a next-slot TR signal
from a nearby connection. In the VAX-11/788, the master

clock is distributed on six signal lines, consisting of

DP-47

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78
three clocks on balanced-pair lines; the slots are defined

by combining the three clocks into four equal-interval phase
markers. All transmitted TR signals are asserted at the

beginning of phase 1, and all received TR signals are sensed

at the beginning of phase 4 (3/4 of the way through the

nominal slot period.)

Example 4: A Polled Character-Input Bus (Type D)

Figure 7 shows a diagram of a simple character-input
bus. The controller at the left end accepts all input from

the keyboards. It "asks" each keyboard in turn whether it
has a character to send, and if so, the controller takes the

character during the next time slot. This arbitration
scheme is centralized, sequential, and synchronous with

respect to data transfer. The function of this bus is to

transfer data from peripherals to a controller: the bus is

of Type D.

Three signals are broadcast from the controller to all
terminals. One is the clock, which defines the time slots,
as did the clock in our previous example, the SBI. The

other two signals, called UNIT# and UNIT1, send out a

two-bit code which selects one of the four keyboards during

each slot. The coding is binary. Allowing an asserted

signal to represent a l, and a negated signal a 9, then the

UNIT signals together select keyboards as follows.
DP-48

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Keyboard
UNIT1 UNITS Selected

1 1

1 2

1 1 3

6

The controller changes the UNIT select signals at the

beginning of each slot. The keyboard which is selected by

the unit code senses its selection at the end of the slot.
If the keyboard contains a character to be transmitted, then

at the beginning of the next slot it asserts the SEND signal
and transmits the character on the data lines.

In the example timing diagram shown in Figure 8,

keyboard 1 transmits two characters and keyboard 2 transmits

one character.

In this type of arbitration scheme, the polling
(sequential sampling) of potential sources of data (the

keyboards) eliminates the need for contention or priority
rules. This makes the logic of each connection simpler, but

it makes poorer use of the data transfer lines in typical

applications. Note especially that this scheme limits each

connection (keyboard) to using a maximum of 25% of the data

transfer bandwidth.

DP-49

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Example 5: Massbus

The Massbus is a peripheral-to-controller (type D) bus

which has no arbitration at all. Like the previous example,
a single controller at one end of the bus receives or sends

on each data transfer. Control information is transferred
in a way similar to the Unibus, but the "master" of the

transfer is always the controller. Data blocks are
transferred using a peripheral-generated clock. These block
transfers are always initiated by a Control word write into
a register in the peripheral. Therefore, there is never any

arbitration required for data or control transfers.

Interruptions to the CPU are generated by the

controller on demand from any peripheral. For this purpose

an Attention signal exists in the control section of the

Massbus. Each peripheral is capable of asserting this
signal. Status relating to an interruption is read by the

controller (on command of the CPU), so there is no need for

arbitration in this transaction, either.

DP-58

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

III Synchronization of Data Transfers

In the section on arbitration methods, we showed bus

usage to be a two-stage process, arbitration followed by
data transfer. In this section, we describe how the timing
of a data transfer occurs. We classify and explain data
transfer timing for the five buses shown as examples in the

Arbitration Methods section. This does not purport to be a

complete compendium of data transfer synchronization
methods, but it gives an introduction to a variety of

approaches.

Synchronization of a data transfer means coordinating
the timing between two bus connections which are involved

in a data transfer. Note that the method by which data

transfer is coordinated can be different from the

arbitration method.

DP-51

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

To classify the methods of data transfer synchroni-
zation, we use two criteria:

(From where?) (1) Location of the source of the

Synchronizing signals (Centralized,
Sender, or Receiver)

(Periodicity) (2) Type of synchronizing signals
(Periodic, or Aperiodic)

Table 9 shows the six resulting categories and how the

examples fit into them.

The location of the synchronizing signal or signals may

be at the connection which is sending the data (Sender), at

the connection which will receive the data (Receiver), or at

neither (Centralized). The Unibus has synchronization which

does not fit neatly in this scheme, because every data

transfer is synchronized by signals from both connections,

the sender and the receiver.

The synchronizing signal may be a clock (Periodic), or

it may be something else (Aperiodic). The Unibus uses an

aperiodic "handshake" or exchange of signals whose timing

varies with the speed of the memory involved.
DP~52

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Table 9.

Location of
signal source

Centralized

From Sender

From Receiver

Periodicity

Periodic

CP

SBI
Polled Character-Input

SP

Massbus data-read
contention-arbitrated
serial

RP

Massbus data-write

Data Transfer Synchronization Methods

Aperiodic

CA

(no examples given)

SA

Unibus data-out
Q-bus data-out
Massbus Control
write

RA

Unibus data-in
Q-bus data-in
Massbus Control

read

DP-53

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Example 1: Unibus
The two types of data transfer on the Unibus, DMA (type

B) and CPU-memory (type A) are accomplished with the same

data timing. We omit discussion of the interrupt-vector
transaction timing because it would add nothing of
significance to our explanation.

Figure 18 shows the data transfer section of a Unibus

with two connections: a controller or CPU which will be the

"Master" in a data transfer, and a memory which will be the

"slave". (For type C control and status information
transfers, a controller plays the role of memory or

slave")

The timing of transfers on a Unibus is shown in Figure
11. BBSY ("Bus Busy") is the signal which, when asserted,
indicates that the data transfer facilities are in use.

Control and Address signals are a group which tell the

"slave" connection what kind of transfer to do and from or

to what memory address.

MSYN ("Master Sync") is asserted by the master (or

requesting connection) to indicate that Control and Address

signals are present.

DP-54

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Figure 18. Unibus Data Transfer Synchronization

BBSY

MSYN

Address and Control
Data

Controller
or

CPU

BBSY

MSYN

SSYN

Address and Control from sender

Data from sender

d set

Memory

from receiver
from sender

s set

Figure 11. Timing Diagram of Unibus

Data-Out and Data-In Transactions

DP-55

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

SSYN ("Slave Sync") is asserted by the slave connection
to indicate that signals carry the data from sender (either
the master or the slave) to the receiver.

A. Unibus Data-Out

This transfer causes data from the requesting connec-

tion to be written into memory.

The requesting connection must of course first receive

permission from the arbitrator to use the data transfer
facilities. Having received permission and acknowledged it
by asserting Select Acknowledge (SACK), the connection waits

for Bus Busy (BBSY) to be negated. It then asserts BBSY and

negates SACK. This connection now "owns" the data transfer
section of the Unibus.

Next, it must wait for SSYN to be negated, to prevent

its own logic from mistakenly sensing SSYN in the asserted

state too early.

Next, the master connection asserts the Address and

Control signals and the Data. It then waits for fixed

interval. This interval is known as the "deskew time,"

because it compensates for the variable delay in

transmission of a signal from one connection to another.

DP-56

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78
This deskew interval is necessary here because in the worst
case, the delay on the MSYN signal could be very small while
the delay on the Address and Control signals could be large.
Without the deskew interval, the slave could sense Address
and Control signals which are indeterminate. An additional
"set-up" time is inserted to allow all slave connections
time to sense and match against the Address and Control
signals.

The slave connection senses the Address and Control
Signals at all times. In this case, the address being
transmitted by the master matches one of the memory
addresses "owned" by this slave connection. Therefore, this
slave responds to the transition of the MSYN signal from

negated to asserted. In particular, since the Control
signals indicate a "Data-out" transaction, the slave senses

and stores the signals on the Data lines as soon as it
receives the MSYN assertion.

Having captured the data, the slave asserts the SSYN

signal. When the master receives the transition of SSYN

from negated to asserted, it knows that the data transfer
has been completed.

The master then negates (or disables) the Address and

Control and Data signals, and it negates MSYN. It also

negates BBSY at this time.
DP-57

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

B. Unibus Data-In
This transfer causes a data word from memory to be read

and transmitted to the requesting connection.

Having obtained permission to use the data transfer
section, the master (which will be the receiver of data in
this case) waits for BBSY to be negated. It then asserts
BBSY and negates SACK as it did for a Data Out transaction.
It is now the "owner" of the data transfer section.

The master connection next waits for SSYN to be

negated, as before.

Next, the master asserts the Address and Control

signals, but not the Data signals. Data will come from the

Slave connection later. The master waits the deskew

interval, plus the extra "set-up" delay time and then

asserts MSYN.

The slave connection has detected a match of its
"owned" memory addresses with the address on the Address and

Control lines, as before. When it receives the assertion of

MSYN, the slave connection begins a read cycle to access the

required word of data. When the data word is ready, the

slave asserts the data on the Data lines and also asserts

the SSYN signal.
DP-58

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

When the master receives the transition of SSYN from

negated to asserted, it begins waiting the deskew interval.
This deskew wait is required to compensate for the variable
delay in transmission of the data signals and the SSYN

signals from the slave connection.

After the deskew interval, the master senses and stores
the data on the Data lines. It then negates (disables) the

Address and Control signals and negates the MSYN signal. It
also negates BBSY at this time.

When the slave senses the transition of MSYN from

asserted to negated, it negates (disables) the Data lines
and negates the SSYN signal. This completes the Data-In

transaction.

DP-59

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

no clock.

round-trips of signalling occur.

Synchronization occurs by a

action between the MSYN and SSYN signals.

Signalling in tabular form as follows:

MSYN assertion

SSYN assertion

MSYN negation

SSYN negation

Data-Out
Address & Control
asserted and Data
asserted
Data captured

(by slave)
Negate Data and
and BBSY

Data transfer on the Unibus is aperiodic _-_ there is
"handshake" inter-

In fact, two

We could look at this

Data-In
Address & Control
asserted

Data asserted

Data captured (by
master) negate
BBSY

Negate Data

The sequence of four events insures a fully
"interlocked" data transfer. The timing of a transfer is
variable, depending on the speed of the slave's memory (for

Data-In) and on the speed of the logic at both connections.

On the Unibus, 75 ns is allowed for deskew and an additional

75 ns for set-up, where noted.

DP-69

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Figure 11.2 Q-bus Data Transfer Synchronization

Figure 11.4 Q-bus Data-In and Data-Out Synchronization

DP-61

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Figure 11.6 Q-bus Data-In-Out Synchronization

Figure 11.8 Q-bus Interruption Transaction Synchronization

DP-62

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Example 2: Q-bus

Data transfers on the Q-bus are also of types A and B.

The synchronization of the two types of transfer are almost

exactly the same. Below we describe the CPU-memory (type A)

transfers.

Figure 11.2 shows the signals involved in Q-bus data

transfers between CPU and memory. The CPU initiates all
data transfers of this type. Type C (control and status)
transfers are also made using the synchronization described

next, with a controller playing the part of "memory" in the

transfer.

Figures 11.4 and 11.6 show the timing of data transfers

on the Q-bus. The 16 DAL signals are used to transmit

address and then data, sequentially. SYNC is the signal
which tells all memory devices on the Q-bus to examine the

DAL lines and to test for a matching address. DIN and DOUT

initiate the memory read and memory write cycles, for Q-bus

Data-In and Data-Out transfers, respectively. RPLY, which

is similar to the Unibus SSYN signal, indicates the presence

of a response from the memory.

DP-63

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

A. Q-bus Data-In

This transfer causes data to be read from the memory

and sent to the CPU. The CPU must first wait until both

SYNC and RPLY have been negated, to be sure that no other
transfer is in progress on the Q-bus.

The CPU asserts the memory address on the DAL lines.
After waiting for a fixed interval, to allow for deskew and

set-up at the memory, the CPU asserts SYNC.

The memory senses the DAL lines when it receives the

assertion of SYNC. The memory matches the address received
and finds that it contains the data word being addressed.

After another fixed delay, to guarantee that the SYNC

assertion always arrives at the memory first, the CPU

asserts DIN and negates the address from the DAL lines.

As soon as the memory receives the DIN assertion, it
knows that a read cycle is denied. It retrieves the data

word and asserts it on the DAL lines. Meanwhile, it may

assert the RPLY signal as much as 125 ns before asserting

the data.

DP-64

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

When the CPU receives the RPLY assertion, it waits at
least 288 ns to be sure that the data is present on the DAL

lines, and then senses and stores the data. Then the CPU

negates DIN.

As soon as the memory receives the DIN negation, it
negates RPLY. Not more than 188 ns later, the memory

negates the data from the DAL lines.

When the CPU receives the negation of RPLY, it negates
SYNC. The bus is now available for the next data transfer.

B. Q-bus Data-Out

This transfer causes data from the CPU to be sent into

memory.

The CPU waits until both SYNC and RPLY have been

negated. Then it asserts the memory address on the DAL

lines. After a fixed delay, the CPU asserts SYNC.

The memory receives the assertion of SYNC, senses the

DAL lines, and matches the address.

DP-65

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

The CPU waits at least 108 ns after it asserts SYNC.

Then it negates the address and asserts the data word on the
DAL lines. After another delay of at least 108 ns, the CPU

asserts DOUT.

When the memory receives the assertion of DOUT, it
assert RPLY to indicate that it will accept the data. The

memory now begins to perform a write cycle.

When the CPU receives the assertion of RPLY, it waits
158 ns and then negates DOUT.

When the memory receives the negation of DOUT, it
senses and stores the data, and negates RPLY.

The CPU keeps the data asserted on the DAL lines for at

least 168 ns after it has negated DOUT. Then, after

negating the data and waiting at least another 75 ns, the

CPU negates SYNC. This completes the Data-Out transfer.

DP-66

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Cc. Q-bus Data~In-Out

Figure 11.6 shows the timing of another type of Q-bus

data transfer, the "Data-In-Out" operation. In this
transfer, a data word is read from an address in memory,

sent to the CPU, and then a word is sent back to memory, to

be stored at the same address. This operation is useful for

certain PDP-1l CPU instructions such as INC (Increment

Memory), which modify a single word in memory, and two-

operand instructions much as ADD, which store a result at

the address of the second operand.

Note that the Data-In-Out operation saves bus

transmission time by not requiring the address to be sent a

second time for the Data-Out portion of the cycle.

The Data-In-Out operation proceeds exactly the same as

the Data-In transfer until the memory negates the RPLY

signal. Not more than 100 ns later (as for Data-In), the

memory negates the data from the DAL lines.

DP-67

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

When the CPU receives the negation of RPLY, instead of
negating SYNC, it keeps SYNC asserted and begins using the
data. When the CPU has generated the data word which is to
be stored into memory, it asserts it on the DAL lines. The

CPU waits at least 188 ns, and then asserts DOUT.

The remainder of the Data-In-Out operation proceeds the

same as the Data-Out transfer.

This operation and the Data-In and Data-Out transfers
all may all be performed by DMA controllers on the Q-bus.

When performed by a controller, the timing differs only in

that the SACK signal, asserted by the controller during

arbitration, is negated at the time shown above for SYNC

negation. The SYNC negation is then delayed an additional
308 ns, to guarantee that the CPU does not interfere with

the DMA data transfer.

DP-68

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

D. Q-bus Interruption Transaction

Figure 11.8 shows the timing of the interruption
transaction on the Q-bus. This transaction includes both

arbitration and the transfer of a data word (an interrupt
vector) from a controller to the CPU.

The IRQ (Interruption Request) signal is asserted by a

controller when it wants to interrupt the CPU. This signal
is similar to the Unibus BR signals. But the Q-bus has only
one priority group for interruptions, and the whole group
shares the IRQ line.

The IAK (Interruption Acknowledge) signal is similar to

the Unibus BG signals. IAK is wired from the CPU

(arbitrator) serially through all controllers, just as each

BR signal is wired serially through the corresponding
priority group on the Unibus.

A controller may assert IRQ at any time. When the CPU

is ready to receive an interrupt vector, it begins a

sequence which roughly resembles a Data-In transfer.
However, the SYNC signal is not used and no address is sent

out on the DAL lines.

DP-69

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

The CPU first asserts DIN. After a delay of at least
158 ns, it asserts IAK.

The IAK assertion cascades through the controllers
which are not requesting an interruption until it arrives at
a requesting controller, which blocks the passage of the IAK

assertion. (See Fig. for the equivalent BG circuit ina
Unibus controller.) When the requesting controller receives
the DIN assertion followed by the IAK assertion, it negates
IRQ and asserts RPLY. Not more than 125 ns later, the

controller asserts the interrupt vector on the DAL lines.

When the CPU receives the RPLY assertion, it negates
DIN and IAK.

When the controller receives the DIN negation, it
negates RPLY. The controller continues to assert the

interrupt vector on the DAL lines for at least 169 ns.

When the CPU receives the RPLY negation, it senses and

stores the interrupt vector. The CPU then uses the vector

to enter an interrupt service routine.

DP-78

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Example 3: Synchronous Backplane Interconnect (SBI)

There is only one sequence of events which causes

information transfers on the SBI, and that sequence is quite
simple. However, the meaning of the information transferred
from one connection to another has two interpretations:
Command and Address, or Data. A memory read or write

operation always consists of two sequences, one to transfer
a command to the memory connection, the other to transfer
data.

Figure 12 shows a simplified SBI data transfer section.
The ID signals are used to identify the destination of the

transfer when the information transferred is data. The

other use of the ID signals is explained below.

The DATA lines carry 32 bits of information. This

information is either (a) 32 bits of data, or (b) 28 bits of

address and 4 bits of command code. The FLAG signal is
asserted to indicate case (b), or negated to indicate case

(a). In case (b), the destination of the transfer is
determined by the 28 address bits, in a way similar to the

Unibus addressing method. For these transfers, the ID lines

carry the identity of the source of the transfer. The

connection receiving a Read command saves this identity, to

know where to send the data later.

DP-71

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Figure 12. Simplified SBI Data Transfer Section

ID (2)
DATA (32)
FLAG

Clock

TRO

TR1

TR2

ID

DATA

FLAG

Clock
Time Slots

Controller 1

ID=1

address from 1

"control
and address"

Figure 13

Memory 2

ID=1

data from 2

"data"

1 2 3 4 5 6 7 8

Two SBI Transactions Which Make Up a Memory Read Operation

DP-72

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78
A. SBI Read

Figure 13 shows the timing of the two SBI information
transfers which make up a read operation from memory.

Remember that there is a master clock which defines a series
of time slots. The TR (Transfer Request) lines are shown

again to recall the fixed time sequence of arbitration,
which always immediately preceeds a transfer.

In Figure 13, the controller, (connection 1) decides at
the beginning of slot 1 to initiate a memory read. It
obtains permission to use the data section at the end of
slot 1, because no higher priority TR lines are asserted.
In slot 2 it transmits the following bits:

ID = 1, the identity of the source
connection

DATA = "Read" command code, plus 28 bits of
memory address

FLAG = asserted, indicating the format of
DATA above (command, address)

At the end of slot 2, the memory connection senses all
of these bits, and captures them in a buffer register.

In fact, every connection on the SBI captures all of

these bits on every slot. Subsequently, each connection

matches the ID bits (if FLAG is negated) or the address (if
FLAG is asserted) against its own identity or "owned" memory

DP-73

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

addresses. If there is a match, the connection accepts the

data or begins performing the operation indicated by the
command code.

In this case, the memory connection detects a match of
the address with a section of memory contained in itself,
and it therefore begins a read cycle.

Memory subsystems know what their own cycle times are.

Therefore, the memory connection in this read operation

example can assert its TR signal (TR2) one slot before it is
ready to transmit data. If there is no higher priority TR

line asserted, the memory transmits its data to the

requesting controller in the next slot. In this example,

the memory transmits the following bits in slot 7:

ID = 1, the identity of the destination
connection

DATA = 32 bits of data from memory

FLAG = negated, indicating the format of DATA
above

DP-74

Levy, "Buses, the Skeleton of Computer Structures
1/27/78

Which

TR2 asserted by 1

TR1

TRO

ID ID

DATA "Write" DATA
&

FLAG "Command "DATA"
&

Clock
Time Slots

Figure 14. SBI Transactions
Make Up a Memory Write Operation

=]

Address

Address"

slot 9 19 11 12 13

DP-75

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

At the end of slot 7, all connections to the SBI

capture this information, and controller 1 recognizes the
Match between the ID bits and its own identity. A memory

read has now been finished.

On the SBI, a memory may take a variable number of
slots before replying to a Read command. Clearly there is a

performance penalty for memories which require slightly more

than an integral number of slot-times to access a word.

They must wait until the next slot to transfer their data.
As a result, the SBI clock is "tuned" to be an integral
submultiple of the access time of the memory sub-system we

intend to use. However, we could attach a variety of memory

subsystems with different access times to one SBI, without
serious performance degradation, as long as the memory

access times are sufficiently large multiples of the

slot-time.

The VAX-11/788 system uses a slot-time of 20@ ns and

has, at first delivery, a memory subsystem access time of

just under 8@@ ns (including error detection). Therefore,
the four-slot access time shown in Figure 13 is typical of

this system.

DP-76

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

B. SBI Write

Figure 14 shows the timing of a memory write operation.
The controller, connection 1, obtains use of the data
section by asserting TR1 during slot 9. It then transmits
on the next two consecutive slots. In the first slot (slot
16), FLAG is asserted to indicate that command and address

information is present. The command is "Write". In slot
ll, the data to be written is transmitted. The memory

connection must be prepared to accept and capture the

sequence of two transmissions. It begins writing the memory

at the end of slot 1l.

The ID lines contain the identification of the con-

troller during slot 18. In slot 11, the ID lines are not

significant. (On VAX-11/786, the FLAG signal is replaced by

a multiple-bit field which indicates the nature of the data

transmission. The ID lines are used during "write data"

slots to send the identity of the source of data. The

memory subsystem can then verify that the data in fact comes

from the same source that sent the command in the previous

slot. Without this check, some failure modes could cause

the wrong data to be written.)

DP-77

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

the SBIIn summary, synchronizes data transfers by
using a master clock to define time-slots. Transmission of
command/address information and data is accomplished in
exactly the same way, using the same lines. This requires
two slots to be used for each memory read and write. The

read operation is split, allowing other transactions to take

place while a memory connection is accessing data. The

two-slot write operation is kept contiguous by using the

highest-priority TRO "hold Li signal to obtain use of the

second slot. The SBI minimizes the slot time by eliminating
all round-trip delays (i.e., the delay of transmitting a

signal from one connection to another and then transmitting
a response back, such as the MSYN-SSYN sequence on the

Unibus). This maximizes the data transmission bandwidth of
the SBI.

DP-78

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Example 4: Polled Character-Input Bus

Data transfer on this bus was described in the section
on arbritration methods. Refer to Figure 8.

Data transfer occurs in time-slots just as on the SBI.
The time-slots are defined by a master clock, and the
receiver (always the controller) must accept the data at the
end of the time slot. In contrast to the SBI, this polled
character-input bus pre-allocates one of every four slots to

connection. The controllereach keyboard must keep
internally an indication of which character was received
from which keyboard.

Massbus Control SectionExample 5 (a):

aThe Massbus actually consists of two sections,
Control Section for reading and writing the contents of

registers in the peripherals, and a Data Section for moving

blocks of data. All transfers are between the controller
and one of the (up to eight) peripherals. Figure 15 shows a

Thesimple schematic diagram of the Massbus configuration.
two sections operate independently, except that a Control

Section write into a control register of a peripheral is
required to initiate a block transfer on the Data Section.

DP-79

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

The Control Section of the Massbus is a miniature
Unibus. However, the controller is always the master, and

one of the peripherals is always the slave in the transfer.
Figure 16 shows the Control Section signals involved in data

(i.e., control) transfers. The Demand (DEM) signal takes
the place of MSYN, and Transfer (TRA) takes the place of
SSYN. Instead of Address and Control lines, there is an

eight-bit address on the Massbus Control Section: three bits
of Drive Select (DS), and five bits of Register Select (RS).
Thus, each of eight peripherals (drives) may contain up to

32 one-word registers. There is also a "Controller to

Drive" (CTOD) signal, which, when asserted, indicates that
the transfer is a write into a peripheral register.
Otherwise (CTOD negated), the transfer is a read from the

peripheral.

DP-89

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Figure 15

Massbus

Controller Control Section

Data Section
Peripheral Peripheral

1

Figure 16

Massbus Control Section (simplified)

Controller DEM

TRA

DS(3)
RS (5)
c (16)
CTOD

ATTN

Peripheral Peripheral 1

DP-81

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Control information is transferred 16 bits at a time on

the C lines. Timing of these transfers is equivalent to
that shown for the Unibus in Figure 11. The correspondence
between Unibus signals and Massbus Control Section signals
is summarized below:

Unibus Signal Massbus Control Section Signal

BBSY none (there is no arbitration)

MSYN DEM

SSYN TRA

Address & Control DS, RS, and CTOD

Data

There is also an Attention (ATTN) signal in the Control

Section. It is a shared line which may be asserted by any

peripheral which requires CPU intervention. It may be

asserted at any time. The controller normally creates an

interruption to the CPU soon after ATTN is asserted.

DP-82

Levy, "Buses, the Skeleton of Computer Structures
1/27/78

Timing of normal Read transfers is shown in Figure 16b.

It is equivalent to a Unibus Data-In transfer,
second part).

(cf, Fig. ll,

There is one special case which uses different timing
on the Massbus Control Section. In order to determine which

of the peripherals has caused an Attention interruption, the

CPU reads the Attention Summary pseudo-register via the
controller. This is a special "register" which is composed

of one bit stored in each peripheral. When the RS lines
carry a code of 04 and the direction of transfer is drive to

controller (CTOD negated), each peripheral (drive) asserts
its ATA {Attention Active) bit onto one signal of the

Control (C) lines. Peripheral number 0 asserts its ATA onto

co, peripheral 1 onto Cl, and so on. Control lines 8

through 15 always remain negated, since there are never more

than 8 peripherals on the Massbus. The word received at the

controller therefore looks like this:

c15 C8 C7 co

0 0 0 ATA7 ATAO

DP-83

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

The timing of this transfer is different because the

TRA signal is asserted by more than one peripheral. Since
there is no way of knowing when all peripherals have

asserted their ATA bits, the controller must wait the
maximum possible access time, and then complete the control
read. It ignores the TRA signal entirely.

DP-84

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Figure 16b. Timing of Massbus

Control Section Control Read (normal case)

Unibus Equivalent Massbus Signal
[control] CTOD

[address] DS and RS

[MSYN] DEM

[SSYN] TRA

[DATA]

DP-85

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

This maximum delay "time-out" is present in the
controller logic anyway, to guard against possible
non-response from an addressed peripheral or register. (The
next section will discuss such error control methods in more

detail). The Attention Summary read operation makes use of
this time-out interval to terminate its wait for the ATA

bits. The timing of this transfer is shown in Figure 17.

In order to make this transfer effective, each drive must be

designed to beat the time-out interval when it gates out its
ATA bit. (It must also beat this interval in normal reads.
See the next section).

DP-86

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Example 5 (b): Massbus Data Section

The Massbus Data Section contains 18 Data (D) lines,
which carry data in both directions. Two clock signal lines
SCLK (Synchronizing Clock) and WCLK (Write Clock) carry a

clock from and back to the peripheral, respectively. The

RUN and EBL (End-of-Block) signals control the termination

of a block data transfer. The EXC (Exception) signal is
used to indicate error conditions.

Massbus Data Read

Data in the Massbus Data Section is always transferred

in multiple-word blocks. The data read from or written to a

mass storage device, such as a disk drive, must be

synchronized with the mechanical positioning of the

recording medium. Therefore, the clock used to synchronize

these data transfers (SCLK) originates in the peripheral.

A Massbus Data Read begins when a control register in

the selected peripheral is written with a "Read" command

code. The peripheral then knows it is to begin examining

the Data Section signals.

DP-87

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Figure 19 shows the timing of a Massbus Data Read. The

controller asserts the RUN signal as soon as it is ready to

receive data.

When the peripheral has received the RUN assertion, it
begins reading data from its storage medium. When the first
data word is ready, the peripheral asserts the word on the D

lines, and it asserts SCLK. The assertion of SCLK indicates
that a new data word is present on the D lines.

Mass storage peripherals have a characteristic interval
time between data words. The peripheral doing a Massbus

Data Read will assert and negate the SCLK signal at a cycle
rate equal to the characteristic data rate.

Approximately half an interval time after asserting
SCLK, the peripheral negates it. When the controller
receives the negation of SCLK, it samples and stores the

data word from the D lines.

DP-88

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

At the next and succeeding data word intervals, the

peripheral asserts the new data on the D lines and asserts
SCLK. The controller samples and stores each successive
data word at the negation of SCLK. Note that the peripheral
does not receive any positive indication that the data word

was received by the controller: the data transfer is "open

loop".

At the end of the block of data words, the peripheral
stops asserting SCLK and asserts EBL to indicate that it has

reached the end of the data block. At this point, the

peripheral is prepared to continue by transmitting the next
data block or to shut down the data transmission.

When the controller receives the EBL assertion, it
decides whether to continue (usually by inspecting a word

count register). Within slightly over one microsecond, the

controller must negate RUN or decide to accept another block

of data.

The peripheral negates EBL not less than 1.5

microseconds after asserting it. As it negates EBL, it
senses the RUN signal. If it is negated (as shown in Fig.
19), the peripheral disconnects itself from the Massbus Data

Section. Otherwise, the peripheral would repeat the

sequence for another block of data.
DP-89

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

It is possible that the number of words desired by the

controller is less than an integral number of data blocks.
In this case, the controller may negate RUN long before EBL

is asserted. The controller then simply ignores the data

words being transmitted. However, the controller must wait
until the assertion and negation of EBL is complete before

it may initiate another data transfer.

Massbus Data Write

Figure 20 shows the timing of a Massbus Data Write. As

for a data read, the peripheral controls the rate at which

data is transmitted. However, this time the data is coming

from the controller. The WCLK signal is used to return the

SCLK signal back to the peripheral at the same time that

data is made available on the D lines.

The transfer begins when a control register in the

peripheral is written with a "Write" command code. The

controller then asserts the fist data word on the D lines

and asserts the RUN signal.

DP-90

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

When the peripheral receives the RUN assertion, it
prepares to write data onto the storage medium. The

peripheral asserts SCLK.

When the SCLK assertion arrives at the controller WCLK

is asserted.

When the peripheral receives the WCLK assertion, it
senses the data on the D lines and begins writing.

Thereafter, the peripheral negates and asserts SCLK at
the characteristic word rate. Each time the controller
receives the SCLK negation, it asserts the next data word on

the D lines and negates WCLK. The peripheral senses the D

lines each time it receives the assertion of WCLK.

The controller must have a data word ready each time

If it does not have one theSCLK is negated. ready,

peripheral will sense whatever data value is on the D lines
at the next WCLK assertion, and this erroneous data will be

written onto the storage medium. This is a "data overrun"

condition which should be detected by the controller.

DP-91

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Figure 17. Timing of Control Read From Attention Summary

Pseudo-Register (Massbus Control Section, Register No. = 04

Cl
C2

C7

C8

C15

DEM

TRA

CTOD

co

Cl
C2

C7

C8

DP-92

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

C15

DEM

TRA

CTOD

RS (5)
DS (3)

DP-93

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Figure 18. Massbus Data Section (simplified)

Controller
SCLK

WCLK

D(18)
EBL

RUN

EXC

Peripheral

Figure 19. Timing of Massbus Data Read

RUN

EBL

EXC

SCLK

WCLK

word 1 word 2 word 3 word 4D

DP-94

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

RUN

EBL

EXC

SCLK

Figure 20.

word 1 word 2

Timing of Massbus Data Write

WCLK

word 3 word 4

DP-95

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

IV. Error Control Strategies
We have so far assumed that data transfers always

succeed in delivering to the receiving connection what was

transmitted from the sending connection.
unfortunateyy, this

is not always the case. There are many ways in which data
transfers can fail to deliver the bits.

Many other kinds of failures are possible, too. We

restrict our discussion in this section to techniques which

apply to errors in data transfers. Causes of errors are not

examined here, only countermeasures. Causes of errors

include logic failures, electromagnetic interference, broken

conductors, shorted conductors, and power failures.

The countermeasures used against data transmission
errors are in the following five categories:

l. Check-bits -- Extra information is sent which

allows the receiver to detect and sometimes to

correct errors in the data.

2. Acknowledgement -- A reply from the receiver to

the sender tells whether the data (presumably

with check bits) appeared "good".

DP-96

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

3. Time-out -- Failure of an expected acknowledgement
to be received by the sender within a time limit
indicates unsuccessful data transmission.

4. Retry -- A transfer which was unsuccessful is
attempted one or more additional times.

5. Error Reporting and Logging -- Failures of all
categories above are recorded and reported to

higher level (usually software) logic, which may

attempt additional retries or other counter-
Measures. "Logging" means recording the history
of errors in a file which can later be read by a

repair engineer.

We should now revise our procedure (given in Section

II) for a connection to do data transfer. The more general

procedure is the following:

l. (Arbitration) Obtain the use of the bus.

2. (Data Transfer) Transfer data on the bus.

3. (Check) Check for error-free transfer, and

receive or send an acknowledgement.

DP-97

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

4. (Retry) If check or acknowledgement failed,
repeat steps 1 through 3.

5. (Log) If all retires fail, enter a failure
report in the log file, or send a message to

higher level software routines.

The example buses described in the previous sections
use a variety of error control methods. Table 21 summarizes

their use.

Example 1: Unibus

Data transfer on the Unibus is not checked. However,

there are two lines reserved for use by memory connections,
to signal whether a parity error has been detected on

reading a word from memory. Memory parity is generated by

the memory connection as each word is written into memory.

The Unibus does have a time-out, for protection against
non-existent connections. This means that if a CPU or

controller attempts a data transfer to or from a memory

address which no connection responds to, the CPU or con-

troller gives up after a fixed time. On the Unibus, this

time is set at 5 microseconds after MSYN has been asserted

by the master. Assertion of SSYN must be received before

this time-out or the master will assume there was no

response.
DP-98

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

The "non-existent memory" time-out error always causes

serious consequences. It usually indicates an erroneous

memory mapping (from the CPU) or an invalid DMA address

(from a controller). In either case the current stream of

activity is abandoned.

DP-99

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Table 21. Error Control Methods Used By Example Buses

Bus Check Bits Ack Time-out Retry Log
parity CRC ECC

1. Unibus X(SSYN) x Note 1 Note 2

2. Q-bus X (RPLY) x Note 2 Note 2

3. SBI X X(CNF) x Note 2

4. Polled (X)
character
input

5a. Massbus X X (TRA) x Note 1 Note 2
Control

5b. Massbus X X (EXC) X Note 1 Note 2
Data

Note l: Retry is implemented by software in
some PDP-1l operating systems.

Note 2: Logging is implemented at various
levels by operating system software.

DP-100

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Example 2: Q-bus

The Q-bus does not have check bits for data transfers.
However, it has two lines (DAL 17 and 16) which can be used

for transmitting the results of memory parity error

checking.

The Q-bus also has time-outs specified for responses to

the assertion of DIN and DOUT. If a memory does not respond
with the assertion of RPLY within 10 microseconds, the CPU

or controller will asume that no memory matched the address.

The consequences are the same as on the Unibus.

Example 3: SBI

Data transfers on the SBI carry several parity-check
bits. Parity is generated at the sending connection and is
checked at the receiving connection.

The SBI also does acknowledgement on every data

transfer. A code is returned to the sending connection two

time-slots after the data was sent. Separate Confirm (CNF)

lines are used to carry this code. The code indicates one

of four possible events:

DP-101

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

1.

2.

3.

4.

No response

Parity error

Busy

Accepted

there is no connection
responding to this address
or ID value.

the parity check shows an

error in transmission;
transfer is rejected.

(for commands only) the

memory connection addressed

cannot accept another
command now; transfer is
rejected.

parity checks "good" and the

command or data is accepted.

The Confirm code itself is error-protected by using a

distance-2 coding scheme.

is with

Of course, the "No Response" code

all CNF signals negated, because there is no

responding connection to assert them. The other codes have

CNF values which differ from each other and from the No

Response code by having different values in at least two bit

positions. Therefore, if one CNF bit is inverted the

resulting CNF code will not appear to be valid.
DP-102

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Figure 22 shows the timing of SBI data transfer
acknowledgements. The example in this figure is a data word

transfer from memory to a connection which previously
requested a read (the second half of a read operation).

In time-slot 1, the memory (connection 1) asserts TRI

to obtain use of the data transfer section. Since there is
no higher priority TR signal asserted, it transmits a data

word, with parity check bits, during slot 2. The ID field
carries the identification of the destination connection

(controller 2, in this case). At the end of slot 2, all
connections have captured the data and parity check bits.
Controller 2 matches its identity with the ID field and

prepares to use the data. During slot 3, it checks to see

that the parity is correct. At the beginning of slot 4, the

controller asserts the Confirm code on the CNF lines. The

CNF lines are always reserved for a reply from a receiving

connection exactly two slots after a data transfer. At the

end of slot 4, the sending connection (memory 1) receives

the confirm code.

DP-103

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Figure 22. Timing Of Parity Check And Acknowledgement On SBI

Clock
Time slot 1 2 3 4 5 6 7 8

TRI (1)
ID ID = 2

Data from 1

FLAG

Confirm from 2

parity by 2

checking data confirmation
received by

1

received
by 2

DP-104

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Actually, all connections check the parity of every
data transfer on the SBI. Since each connection must

capture the data and ID bits to match against, it is simple
for each one to put the data through a parity check network.
The error control philosophy on the SBI says that if any
connection detects bad parity on a data transfer, then the

validity of the data transfer is suspect. Therefore, any

connection may assert a "parity error" code at the beginning
of slot 4 in Figure 22.

In order to prevent the occurrence of "bad parity"
indications after unused data transfer slots, "even" parity
(sum of bits = 0 modulo 2) is used on the SBI.

As implemented in the VAX-11/780, the SBI also uses

time-outs and retries. Time-out applies only to memory read

requests. If the memory does not respond within a fixed
number of slots, the CPU or controller causes an

interruption, possibly leading to retry or logging of the

event. The VAX-11/780 CPU also does microprogram-controlled

retry of transfer requests which received the Busy confirm

code.

DP-105

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Example 4: Polled Character-Input Bus

Since we made up this example, rather than describing
an existing polled bus, we cannot claim to explain its
actual error-control methods. It would be reasonable,

however, to add one data signal which would carry a parity
check bit for each character. A time-out would not be

relevant here, but an acknowledgement with retry could be

implemented by having a confirm signal transmitted back to

the originator of a character during the slot following the

data transfer. (Refer to Figure 23.) If the confirm signal
did not indicate "good transfer", the keyboard could hold

the last character and attempt to send the character again 4

slots later (when its turn comes around again). The parity
is checked during the latter part of the data transmission,

by gating the incoming character through a parity-check
network at the controller.

Example 5a: Massbus Control Section

The Massbus Control Section closely resembles the

Unibus in timing, but it does carry one data parity check

signal. On reading a control register, the controller will

pass on the "bad parity" indication. (In the case of

passing the information to the Unibus, the controller passes

DP-106

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Figure 23. Timing of a Plausible Error-Checking Scheme
With Acknowledgement And Retry For Polled

Character-Input Bus

0 1 2 3 0 1 2 3 0] 2 3

UNIT 0

UNIT 1

clock

slot no.

Data &

Parity

send

parity
checking

confirm

DP-107

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

a "memory parity-error" indication). On writing a control
register, a parity error will first fail to modify the

contents of the register and second, the peripheral will
assert the Attention signal, with an internal "Control Bus

Parity Error" indication recorded in an error status register.

The Massbus Control Section also has the same acknow-

ledgement (using TRA) and time-out properties as the Unibus,

with the exception of the reading Attention Summary

pseudo-register (see Section III). Reading this register
always uses the time-out to terminate the read cycle, so the

controller will not detect which if any peripherals are

responding. However, the default state of signals on the

Massbus is "negated", so there should be no false indications
of attention status.

Example 5b: Massbus Data Section

The Massbus Data Section also carries a parity check bit
with each 18-bit word of data. Acknowledgement of "good" data

received is done by not indicating "bad" data. A signal

called Exception (EXC) can be asserted from either end to

indicate a bad data transfer, or other exceptional conditions

which will prevent further successful data transfers. Figure

24 shows an example Massbus Data Write operation which suffers
DP-108

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78
a parity error during the transmission of the second word.
The peripheral asserts the EXC signal as soon as the error is
detected. Although this is too late to stop the next word

from being transmitted, the peripheral does cease to accept
data words, and it terminates the block transfer early by

asserting the end-of-block (EBL) signal immediately. The

controller acknowledges the termination by negating the RUN

signal.

Block transfers to disk or tape are not useful if even

one word is erroneous, so it is not important to finish the

block transfer or to recover the words already written. The

entire block will have to be retransmitted. In this example,
the controller will display a "Transfer Error" when it
interrupts the CPU for "end-of-transfer" service. The word

count in the controller will show the approximate number of

words written (off by one from the actual number, in this
example).

DP-109

Structures"Levy, "Buses, the Skeleton of Computer
1/27/78

Figure 24. Massbus Data Section
Timing of Exception Signal While Writing

RUN

SCLK

WCLK

EBL

EXC

Data word 1 word 2 word 3

parity error
detected on
word 2

DP-110

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Two time-outs are used on the Massbus Data Section, both

in the controller. One starts at the transition of RUN from

negated to asserted. If the SCLK signal does not make a

transition within 7 seconds, the controller shuts down the

attempted transfer. (This lengthy time is required to permit

Magnetic tapes to transport a maximum of 25 feet of
inter-record gap before encountering a data record, following
ANSI standards for inter-record gaps.)

A shorter time-out, approximately 100 microseconds, is
used to detect a failure in a peripheral after at least one

signal transition has been received on the SCLK line. If this
limit is reached, the controller asserts EXC to tell the

peripheral to disconnect. The controller then shuts down the

data transfer operation.

DP-111

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

V. Evolution of the High-Performance PDP-11 Systems, A Bus

Design History of PDP-11/20, -11/45, -11/70, and

VAX-11/780.

The PDP-11 was first introduced in 1970. It was a

radical departure from prior minicomputer designs, having
features such as automatic stack-indexing instructions and the

"I/O page" concept which eliminated the need for special I/0
control instructions. {See Chapter 7] In terms of bus

structures, the Unibus introduced with the PDP-11/20 was also

novel, because it was a single bus to which all system

components were attached, it could be extended indefinitely,
and it did not require memory modules to operate synchronously

with the rest of the system.

In this section we trace the evolution of the high

performance descendents of the PDP-11/20, with emphasis on the

development of buses in response to design goals for each

model.

Table 30 summarizes the design goals and related bus

developments. Figures 25, 26, 27, and 28 show the bus

configurations of the four systems discussed here.

DP-112

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

PDP-11/20 (See Figure 25)

The Unibus design is integral with the PDP-11
architecture in the handling of interrupts (the priority level
of the CPU affects arbitration) and in the I/O page concept
(control registers appear as memory locations). But the

important aspect of Unibus design, as a bus, is its support of

modularity.

Digital had long been in the business of supplying
standardized modules for interfacing to a variety of
electronic equipment. When the PDP-11/20 was designed, it was

natural to offer a bus which could be interfaced to many types
of equipment, including custom laboratory electronic devices.
With the introduction of the PDP-11/20, Digital offered Unibus

interfacing modules (such as the DR11 series) which users of

the PDP-11 could easily adapt to their own equipment.

The standardization of interfacing was also a deliberate

attempt to allow long service lives of Digital's peripheral

equipment. As new members of the PDP-1l family were

introduced, older peripherals could still be attached to the

Unibus without electrical modifications.

DP-113

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

The asynchrouous data transfer of the Unibus allowed
Digital to introduce a series of memory subsystems with
successively increasing speeds without changing the Unibus

timing or data transfer protocol. In a single system, various
memory technologies could be intermixed.

The Unibus, as a standardized boundary between CPU,

memory, and peripherals, also facilitated the division of

engineering design responsibilities within the company's
development department. A memory subsystem designer, for

example, could make any modification which would add to memory

performance, as long as the subsystem interface conformed to

the Unibus data transfer rules.

PDP-11/45 (See Figure 26)

Driven by the availability of a higher-speed logic family

(Schottky TTL), the first goal of the PDP-11/45 design was a

faster CPU. The success of the result is attested by the fact
that the logic design of the PDP-11/45 remained competitive
for over five years (and it was used virtually intact in the

PDP-11/70).

DP-114

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

In addition, semi-conductor memory became available at a

cost which justified its inclusion, in small quantities, in
minicomputer systems. In an effort to match the speed of the

new PDP-11/45 CPU, an optional semiconductor memory subsystem
could be included in the CPU cabinet. This subsystem had its
own private pathway to the CPU, called the "Fastbus". Placing
the semiconductor memory in close proximity to the CPU allowed

elimination of many of the access delays present when a Unibus

was between the CPU and memory. For compatibility, however,

it was necessary for the semiconductor memory to be accessible
to DMA transfers from outside the CPU. For this reason

another Unibus was brought out of the CPU cabinet, as we shall
see below.

With higher CPU speed came the need for larger memory

sizes. While the PDP-11/20 could have up to 64K bytes of

memory (less 8K bytes reserved for the "I/O page"), the

PDP-11/45 introduced a memory segmentation module (the KT11)

which allowed addressing of up to 256K bytes. The Unibus,

with foresight, had been implemented with two spare address

lines, allowing immediate use of the 18 bits of physical

memory address from the PDP-11/45.

DP-115

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

The IBM 3330 disk technology (100 megabytes per spindle)
had by 1973 become available at a cost attractive to mini-

computer system users. The Massbus was developed specifically
to interface this and other high-data-rate devices which were

planned. The RH11 controller connected the Massbus to the two

Unibuses of PDP-11/45 systems as shown in Figure 26. The

upper Unibus, Unibus A, was to carry the control and inter-
ruption (type C) transactions, and the lower Unibus, Unibus B,

was reserved exclusively for DMA (type B) data transfers. For

this purpose, a special stand-alone Unibus arbitrator module

was developed, because Unibus B had no CPU present to perform

Unibus arbitration. (Note, however, that the BR signals are

not used on Unibus B, because there is no CPU to be

interrupted.)

Unfortunately, the configuration shown in Figure 26 could

not be used, for two reasons:

1. DMA transfers from the RH11 controller could not

reach memory modules attached to Unibus A if all
block transfers were made on Unibus B. (The

proposed solution of having the DMA path selected

by program control was rejected because of the

complexity of determining which memory was

connected to which bus.)

DP-116

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

2. DMA transfers from controllers on Unibus A could
not reach the semiconductor memory unit.

The second problem was fatal. The CPU was capable of

dealing with only one I/O page, and that was on Unibus A.

Therefore, old DMA controllers had to be attached to Unibus
A. In fact, all controllers had to attach to Unibus A,
because that is the only interruption path. Since
compatible use of old peripherals was essential to success

of the family, the PDP-11/45 was configured only as shown in

Figure 26b. Unibus B, when connected to Unibus A (and with
its separate arbitrator module removed) becomes part of the

single-Unibus system.

In the configuration shown in Figure 26b, the PDP-11/45

system was, for I/O programming, completely compatible with

PDP-11/40 and other later Unibus-based PDP-lls (see Figure
29, Genealogy of PDP-11 family buses).

PDP-11/70 (See Figure 27)

By 1974, semiconductor memory costs had become much

lower. Therefore, a cache memory became a feasible

performance enhancing addition to the PDP-11/45. (See

Chapter 9.) Without great modification to the CPU logic, a

cache memory was added, with a width of 32 bits, twice the

DP-117

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

word size of the PDP-ll. The cache effectively interfaces
to the PDP-11/70 CPU over the same "Fastbus" that was

present in the PDP-11/45.

In order to gain memory bandwidth for increases in both

CPU and DMA performance, a new "backing store" memory bus

was added, with a 32-bit wide data path [Northrup, Levy, and

Griggs patent, 1977)]. Closely related to the memory bus

was a backplane interconnection to the RH70 controllers (up

to four of them), which can carry 32 bits at a time. The

RH70-to-memory path is shown as going through the cache

because of a "look-aside" feature of the cache memory.

(See Chapter 8.)

The Massbus had been designed to provide very high
block transfer bandwidth, while keeping the control
registers accessible to the CPU at all times. The

successful splitting of control path (type C) and data path

(type B) in the PDP-11/70 matched well with the Massbus

and this match accounts in part for thedesign goals,
relatively long life of the PDP-11/70 system in its
marketplace.

DP-118

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

The PDP-11/70 also required more memory addressing
capacity to balance its increased speed. The KTll
segmentation unit was easily expanded to address four
Megabytes of memory, and the RH70 controllers were designed
to directly generate the required 22 bits of memory address.

However, the Unibus was already at its limit of 18 bits of

physical address.

Slower-speed peripherals were still to be interfaced to

the Unibus, and in doing DMA transfers from them, it is
necessary to transform the 18-bit address on the Unibus into
a 22-bit main memory address. To do this, a Unibus Map

module was inserted between the Unibus and the cache memory.

This path required to carry 16 data bits at a time, and the

bandwidth demands are relatively low.

VAX-11/780 (See Figure 28)

Late in 1977, Digital introduced the first of a new

series of systems based on the PDP-11 architecture but with

greatly enhanced performance capabilities. The VAX-11/780

returns to a single central bus concept, based on the SBI.

DP-119

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

The SBI was originally conceived in 1974 for use on a

PDP-11 family CPU. That CPU design was not completed, but
the SBI was carried into the VAX-11/780 design and tailored
for the 32-bit family environment.

High performance in the CPU is obtained by 32 bit data

paths and use of a 64-bit wide cache memory. Overcoming the
16-bit virtual address limit of the PDP-11, the VAX-11

architecture is capable of 32 bits of virtual address. The

VAX-11/780 system generates 28 bits of longword (4-byte)
address, yielding a maximum memory size of one Gigabyte.

High DMA bandwidth is obtained by the SBI short
time-slot and by the read-operation splitting which releases
the bus during the memory read-access delay [patents by

Levy, Rodgers]. To help overcome the delay associated with

having to do a full bus transaction to start a memory read

cycle, the memory control logic is capable of receiving and

storing a queue of up to four memory read or write requests
while it is working on one of the requests [VAX-11/780

patent by Durvasula].

Compatibility with existing PDP-11 peripherals is
provided by controllers which adapt the SBI to a Unibus (the

UBA in Figure 28) and to several Massbuses (MBA).

DP-120

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

On the SBI, the one-Gigabyte address space is divided
in half, with the Unibus I/O page concept being extended to

cover the upper half. Within this rather large address

space are contained control registers for all peripherals,
the 18-bit memory address space of the Unibus, and a number

of internal status and control registers, such as those that
contain error reporting information.

PDP-11 Family Genealogy Based on Bus Structure

Figure 29 shows a genealogy of the PDP-11 family
buses. Some of the PDP-1l models shown in Figure 29 were

not discussed earlier in this chapter. Grouped by bus

structure, the models fall into the following categories:

The Unibus PDP-lls: PDP-11/20, /40, /05, /34, /04

The Q-bus PDP-lls: PDP-11/03 and LSI-11

The PDP-lls with Unibus and an additional memory bus:

PDP-11/45, /55, /70, /60

The VAX-11 series (using SBI): VAX-11/780

DP-121

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

The Massbus has been used on many models of PDP-1l,
DECsystem-10, and DECsystem-20 computers. Some of the
Massbus controllers implemented for these computers are
listed below.

DP-122

Levy, "Buses, the Skeleton of Computer Structures"
1/27/78

Massbus Controller Connects
Computer Controller Name From Massbus

Unibus PDP-1ls RH11 Unibus
and /45, /55, /60

Q-bus PDP-11 not used

PDP-11/70 RH70 Internal 32-bit
memory bus

VAX-11/780 MBA SBI

bus

DECsystem-20 RH20 Internal CBUS and
EBUS

DECsystem-10 RH10 Internal I/O channel

DP-123

! JShevy - ch
Bibliography draft 18 Jan 78

1. Bartee, Digital Computer Fundamentals (Fourth Edition),
chapter 10, "Interfacing - buses"

2. Blaauw, Gerrit A., Digital System Implementation,
chapter 9., Communication, pp. 286-316,Prentice-Hall (1976).

3. Chen, Bus Communication Systems, Ph. D. Thesis (1974)

ll.

12.

13.

14.

15.

16.

4. U.S. Patent (Delagi.., (Unibus)
5. U.S. Patent (Durvasula. (VAX memory command buffer)
6. Enslow, Jr., Philip H.(ed.), Multiprocessors and

Parallel Processing, chapter 2., Systems Hardware,
pp. 26-80, Wiley (1974).

7. Kaman, C, Computer buses - a survey of design factors,
Digital Equipment Corp., unpublished technical note,
(1974).

8. U.S. Patent (Levy,..., (SBI)
9. U.S. Patent (Levy...., (Massbus)

10. MacLaren, Don, Contention-arbitrated serial buses,
(1977)

Metcalfe, Robert M., Packet Communication, Massachusetts
Institute of Technology Project MAC report MAC
TR-114 (Dec.,1973).

Metcalfe, Robert M. and David R. Boggs, Ethernet:
Distributed packet switching for local computer
networks, Xerox Palo Alto Research Center report
CSL 75-7, (Nov.,1975).

U.S. Patent (Northrup..(11/70 memory bus)

Ornstein et. al., Pluribus, NCC '75.

Tanenbaum, Andrew S., Structured Computer Organization,
chapter 4, pp. 196-204, Prentice-Hall (1976).

Thurber et. al., A Systematic approach..., FJCC '7x.

rep 978

4
1

ART LIST

Fig
Figure Title in Rdy

Proc
or Stat
Rev Ord/Av

Size

do not

arbitration, Since
transh ee.

No cavhen2

Uaibu o 23

b
af

Vw
A a

Let of dada {Abeer
Ser

7 A Tot Bus
af a

Dp put ars
; q Cro rovah)

Data Ter shor ahon y
Than rw CRAM & t bo De fx > Mot a

t:

SOT han
Two pancachons which
a mesh rend egera bsa
SED which wake

a' cd

It Vass bus Contra] (Sich bed)
loan Tima pf Wssshus Cantal chron

Conwol Read (nocmrl }

Grom

(plas sbus Conkral

Anote: Please indicate special or unusual layout considerations by way of a slip sheet.
+

DEC 2 + (553) -1013 -N373

Quah (3
qb

|
v

ART LIST
(24

Fig
No. Proc Ord/Av

D No. In aFigure Title Ray Stat Size

IG of Macshus

tary fy.Check

22 ercor-< hecking wf
+ "far

Character bus
Taira of a

on Why le Le,
as PDP. Zonk 4 pte fren 7
Ab Pop-u Als

AR VAY -1) [p< Canty

Data wy,

an Ar
:

fa

Design
72

be

NOTE: Pleasetindicate special or unusual layout considerations by way of a slip sheet.

- N373DEC 2 - (553) -

DEC STD 159 A

4.3.1.1 The data bus is used for transmission of data from and tothe drive recording medium. Timing of transfers iscontrolled by a clock which is generated by the drive.
4.3.1.3 Transfers are oriented towards blocks of data which are

transmitted asa group (e.g., sectors on a disk, records on
Mag tape). The drive will normally send and receive data
only as whole blocks. If the number of data words desired
by the CPU is not an integral times the number of words perblock, it is up to the controller to stop the transfer to
memory on reads or to provide filler words on writes.

4.3.1.2 The data bus is shared among all drives. Only one drive may
be attached to it at a time. The controller should prevent
OCC. is.asserted.

4.3.1.4 A drive attaches itself to the data bus and asserts OCC when
a data transfer command is loaded into its Control register.After transferring one or more blocks of data (unless a
class B error occurs), the drive disconnects from the data

a data -transfer.command from being. loaded into a drive. whiI

bus and negates OCC. Disconnect always occurs at the
trailing edge (negation) of an EBL pulse.

4.3.1.5 For detailed description of error conditions and their
effects on data bus signals, see section 7.

4.3.2 Data. Read Sequence
4.3.2.1 This section describes a typical data bus read sequence with

no errors. 4.3.2.3 is a timing diagram of a read of a
single sector with four words. 4.3.2.2 is a flowchart, with
timing restrictions, of the read sequence. The following
sequence occurs on a data bus read (refer to 4.3.2.3).
1. A read command is loaded into the Control register of

the drive. If. the command is valid, the drive enables
its data bus receivers and drivers and asserts OCC.

2. Not more than 188 microseconds after step 1, the
controller asserts RUN.

3. After a cable delay, the drive receives the RUN
assertion. Disk drives now begin searching for the
desired sector. Tape drives begin tape motion.

4. When the drive has read the first data word, it
generates parity for the word; the data and DPA are
gated onto the data lines and SCLK is asserted.

5. After a cable delay, the controller receives the SCLK
assertion.

6. The drive negates SCLK no less than T nanoseconds after
asserting it, where T is either 225 nanoseconds or 39

~

DEC STD 159 REV. A
: Pre|:

percent of the nominal burst data period of tthe drive,whichever is greater. The Data lines should be.
maintained valid for no less than one half of the SCLKinterval after SCLK is negated.

7. After a cable delay, the controller receives the SCLK
negation. The controller strobes the D lines and DPA,
and checks the parity.

8. If there is more data to be read in this block, then not
less than T nanoseconds after step 6, the drive gatesout the next data word onto the D lines, generates DPA,
and asserts SCLK. Steps 5, 6, and 7 then follow.

9. "ater the: negation of SCLK (step 6 on the last word of
data. in the block, the drive asserts EBL

18. After a cable delay, the controller receives the EBL
assertion. At this time, the controller must decide
whether or not to have the drive read the next block of
data without disconnecting from the data bus (the
controller may already have negated the RUN line).

ll. I the controller decides not to read the next .block,it negates the RUN line not later than 5@8 nanoseconds
after step 1@.

12. After a cable delay, the drive receives the RUN
negation (the RUN line may already have been negated).

13. Not less than 1588 nanoseconds after step 9, the drive
negates EBL. At this time the drive strobes the RUN
line. If RUN has been negated, the drive disconnects
from the data bus (the DRY bit should be set and OCC
negated at this time).

14. After a cable delay, the controller receives the EBL
negation (the controller may now generate an
end-of-transfer interrupt, and start another data
transfer).

DEC STD 159

CONTROLLER

READ COMMAND

A...

ORIVE

REV. A Ly $4 Pr

INITIALIZE FOR DATA
TRANSFER

ASSERT RUN

7
READ COMMAND
RECEIVED

ENABLE DATA BUS
ASSERT OCC
RESET ORY
RESET ATA

Figure 4. 3.2.2.

RESET GO
SET DRY
SET ATA
ASSERT ATTN

REVIOUS
ERROR

RUN: : : : :

ASSERTED ON RUN

STROBE DATA

500

CONTINUE
?

N

4

0

NEGATE RUN

Y

END OF TRANSFER

4

ERROR CLASS B
2x 10°

0 "OPERATION INCOMPLETE"

ASSERT DATA
ASSERT SCLK

U

4

NEGATE SCLK

UN
END OF

Y

ASSERT EBL

NEGATE EBL

RUN

?

N

DISABLE DATA BUS
NEGATE OCC
RESET GO
SET ORY

NOTE: MINIMUM TIME FROM
ONE ASSERTION OF SCLK TO
THE NEXT (S EITHER 500 ns
OR P, WHICHEVER IS GREATER;
MAXIMUM UNSPECIFIED.

BLOCK

T = 225 nsec OR .3P,
WHICHEVER IS GREATERDONE ASSERTED

P = NOMINAL BURST DATA
PERIOD OF DRIVE

Read Command Flowchart
11-1877

DEC STD 159 REV. A {UFhg:

1

RUN (C)(T)

EBL (C)(R)

Figure 4.3.2.3

WW
t

OPA (c (R)D (0: 17)

+ SCLK (CYR)

occ (0) (T)

D(0: 17)
WORD 1 WORD 2 WORD 3 WORD 4DPA

RUN (0)(R)

EBL 0DT)

SCLK (D)(T)

* KH375 SOO
or f U 375

9 o o 0 1500 0
375 375 375 500 375

MAX:
MIN:

0

(C)= AT THE CONTROLLER(T)* TRANSMITTING
(D)=AT THE DRIVE (R)* RECEIVING

Data

5 tt tt tht fit f tf f

% 100 MICROSEC. MAX U= UNSPECIFIED MAXIMUM

6 7 6 7 6 7 10 11 12 13 145 8f f ff tt
2 3 4 6 7

%% 200 MILLSEC. MAX

T= 225 0r 30% of P
whichever is greater

P= Nominal burst deta
period of drive

11-1884

Bus Read Timing

COMMUNICATIONS
CONTROLLER E

CPU C

DISK TERMINAL
A CONTROLLER CONTROLLER

D2

MEMORY B

TERMINAL

Dy

TERMINAL

DISK

J Lewy

FUNCTIONAL INTERCONNECTIONS

bo
f

ba
nTERMINAL

a
MODEL OFeed

(a) $
but of pe macy

D pasties

Cent,
4

Tape C
e0

:

TERMINATOR

ARBITRATOR

NOTE:

CPU MEMORY CONTROLLER 'CONTROLLER

MEMORY MODULES DO NOT PARTICIPATE IN ARBITRATION,
SINCE THEY NEVER INITIATE DATA TRANSFERS.

BR
5

BG BG BG

ARBITRATOR

TERMINATOR

CPU CONTROLLER CONTROLLER
2

fac
BR

BG
IN OUT

REQUEST

Setecreo SACK

CONTROLLER 1

R

NPR

BR7

BR6

BRS

BR4

NPG 44
BG6

BG5

BG4

SACK

BBSY

ARB DELAY ;
6

4BR a ae

BG IN

BG OUT

SACK

BBSY

BEGIN DATA
NOTES: TRANSFER

1. WAIT FOR CPU NOT USING BUS.
2. IF NPR, THEN ASSERT NPG.
3. WAIT FOR CPU INTER-INSTRUCTION.
4. IF NPR, THEN ASSERT NPG ELSE»
Sf IF PRI<7 AND BR7, THEN ASSERT BG7E LSE
6: IF PRI<6 AND BR6, THEM ASSERT BGE EL ce

IF PRI<5 AND BRS, THEN ASSERT BG5E LSE
IF PRI<4 AND BR4, THEN ASSERT BG4.

CLOCK

("HOLD")
TRO

TRI

TIME SLOTS:

DATA
TRANSFER:

SLOT 1

{37

TRO

TR1

TERMINATOR
TERMINATOR

TR2

TR3

CLOCK
CLOCK

4 1 3

5

ASSERTED BY 2

TR2

TR3

SLOT 2 SLOT 3 SLOT 4

FROM 2FROM 1FROM 3

4

34

UNIT 0

POLLED (CENTRAL, SYNCHRONOUS, SEQUENTIAL)
4

UNIT 0
UNIT 1

CLOCK

CONTROLLER KBO KB1 KB2 KB3
4

DATA (8)

SEND

UNIT 1

Fig %

32321

CLOCK
4

DATA (8) FROM 1
FROM 1 FROM 2

SEND 121

TIME SLOTS:
7654321

0

BBSY

MSYN

SSYN

ADDRESS AND CONTROL

DATA

v

CONTROLLER
OR CPU MEMORY

Fig!

f

MSYN ~
V

N
ssyn N

q

CONTROL
FROM SENDER LL

DATA FROM SENDER

DATA-OUT

ACCESSwo w STROBE
w TIME

AND FROM RECEIVER 1

1

SENDER

READ-a

a
W

Wh
DATA-IN

DAL<

:

DAL spfDATA
:

SINC yf
DIN

RPLY

: :

(JA
: wet :

:
: :

7 S6

DAL

:

Jog

Din

+ 97

0 4

t

DIN{

C- Duk Ling
Hin

3

ID (2)

DATA (32}

FLAG

CLOCK

TRO

y t v

CONTROLLER 1 MEMORY 2

TRI

TR2

ip = 1
1D 1

ADDRESS DATA
FROM 1 FROM 2DATA

FLAG
COMMAND AND "DATA"ADDRESS 11

CLOCK

7 2 4 38 F + 58 6 8TIME
SLOTS:

[38

BAECS WEAR AR ree a

ASSERTED BY 1TRO

TR1

TR2

ID1ID

DATA
ANDO AODRESSDATA __ WRITE

COMMAND DATAAND ADDRESSFLAG

CLOCK
_-

TIME SLOTS: 9 10 4 1312

4

CONTROL
SECTION

CONTROLLER CATA
SECTION

4
v qy

PERIPHERAL PERIPHERAL
0 1

44

DEM

TRA

Ds (3)

RS (5)
CONTROLLER

C (16)

cToD

ATTN

PERIPHERAL 0 PERIPHERAL 1

4

CONTROL} CTOD)4
{ADDRESS}
DS AND RS

[SYN] vem

ISSYN] TRA

[DATA] C

DS = UNIT NUMBER, RS = REGISTER NUMBER

REGISTER CONTENTS

DESKEW SET PROP ACCESS PROP DESKEW PROP LOGICUP

STROBE

dwt lod

TRA

RS (5)

DS (3}

4
ATA FOR PERIPHERAL 0

ATA FOR PERIPHERAL 1

ATA FOR PERIPHERAL 2

ATA FOR PERIPHERAL 7

(motya) {NOT USED)

co

C1

C2

c8

C15

DEM

TRA

cToD

co

C7

cs

c15
:

DEM

(IGNORED BY CONTROLLER)

RS = 04

DESKEW TIME-OUT PROP

SCLK
WCLK

D (18)
CONTROLLER EBL

RUN

EXC

PERIPHERAL

RUN

EBL

EXC

SCLK

WCLK

WORD WORD WORD WORD
2 3 4

Fig

RUN

EBL

EXC

SCLK

WCLK

WORD. woRD WORD
1 2 3 4

CLOCK

1 2 1

5 17 8TIME 1 i3 14SLOT:

TRI (1)

ID =2ID

'DATA FROM 1

22FLAG

CONFIRM FROM 2

PARITY
CHECKING BY 2

DATA RECEIVED . CONFIRMATION
BY2 RECEIVED

BY 1

3+

1 k& 2

UNIT 0

UNIT 1

cLock LJ
SLOT NUMBER: i x 3 + § 7 q. MV

REPEATFROM 1 FROM 1

DATA AND PARITY

SEND

PARITY CHECKING

vo CONFIRM CONFCONFIRM

RUN

SCLK

WCLK

. EBL

EXC

sata WORD 1 WORD 2 WORD 3

PARITY ERROR
DETECTED ON

WORD 2

hy ar

144
\\

UNIBUS

CONFIGURATION
(16 BITS OF

~

CPU

tPOP-11/20
ADDRESS)

UNIBUS A

CONTROL

CORECPU RH11 MASSBUS
KT11-D

DATA
FASTBUS

SEMI-
CONDUCTOR

UNIBUS B

POP- 11/45
CONFIGURATION 4glM

UNIBUS

cpu "CORE
. MEMORY

KT11 ;

FASTBUS

SEMICONDUCTOR
» MEMORY

dia.
RH11

MASSBUS

Fait
MAINFRAME CABINET

UNIBUS

Q" CPU
MAP RH70 RH70

KT11-D

99P-11/70 FASTBUS

32CACHE A
BACKPLANE DATA PATH

MEMORY

|

CABINET

l
CORE

16
16

32 4 MEMORY BUS MassBus MASSBUS

SBI

CACHE - 64 BITS

CPU

UBA
MBA.

UNIBUS
MASSBUS

MBA

'MASSBUS

4

PDP.11/20

UNIBUS

PDP-11/40

PDP-11/05

MASSBUS
1

Q-BUS
§

RP04

RH 1 TM02

t

y

97
RH01 (CSS)

MULTI- MASSBUS Q-BUS UNIBUS WITH
MASTER MEMORY
MASSBUS

PDP-11/45 (SOME MEMORY NOT
ON UNIBUS)

ON UNiBUS)

POP-11/70
(NO MEMORY

\ ON UNIBUS)

"DRAGON"

VAX-11/780
of

UNIBUS SBI
WITHOUT
MEMORY

7

PDP-11/55 (SOME MEMORY NOT

DISK CONTROLLERS
DATA BUSES

(WD BUS)

PDP-11/34LSI-11

RS04

RH20 "ss 7
PDP-11/04RH10- PDP-11/60

RH70

VAX-11
(MBA) t

FONZ-11? PDP-11/44

a
7a

N I

CMI 2020
BUS

Jake 30

PDP -/1

CPK ba Ose

-11/20 1970 4 '

4.

DP-I/4s- 1. AnPUM lH

(973 --4,
3.

/7 (9 F

CYLBun4 11 [280 J Mik Cacke nu 4

3. Awe DA

Ipyp-y
CartyClr.

