INTEROFFICE MEMORANDUM

TO: Bistribution

DATE: 14 June 1979
FROM: George Hof'f
DEPT: LSG Engineering Operations EXT: 231-6524
LOC/MAIL STOP: MRI-2/E78

SUBJ: VENUS TECHNOLOGY REVIEW - 06 JUNE 1979

Attached is a summary of the issues discussed, positions taken, and decisions made. I have also attached a copy of the slides presented and handouts prepared for the meeting. The minutes are highly condensed in order to get this information distributed in a timely manner. If anyone has corrections or additions please contact me.

GH/dmc
attachments

INTEROFFICE MEMORANDUM

TO:
Distribution
DATE: $\quad 14$ June 1979
FROM: George Hoff
DEPT: LSG Engineering Operations
EXT: $231-6524$
LOC/MAIL STOP: MRI-2/E78

FROM: George Hoff
DEPT: LSG Engineering Operations
EXT: 231-6524
LOC/MAIL STOP: MRI-2/E78

SUBJ: SUMMARY OF DISCUSSION AND DATA REVIEWED AT VENUS TECHNOLOGY REVIEW 06 JUNE 1979

Attendees

O $^{2} \mathrm{D}:$	Gordon Bell, Jim Cudmore, Ulf Fagerquist
LSG:	Sas Durvasula, George Hoff, Vic Ku,
	Jud Leonard, Pat Sullivan, Bill Walton,
	Sultan Zia
Microproducts:	Russ Doane
MSD:	Brian Croxon
$\mathrm{O}^{2} \mathrm{~T}:$	Dan Hamel, Steve Kavicchi

Goal for Meeting

Review tradeoffs between three technology alternatives for Venus: MCA (Motorola), Siemmens look ECL array and loOK MSI (Fairchild).

Tradeoff Review included:

1. Prime Vendor Status and second sources
2. Burdened Part Cost (Cost of each type of IC mounted on tested module)
3. Venus Cost Estimate with each technology
4. Schedule differences
5. Development Cost

Review of Positions
Decision on how to proceed

Review of Data (see slides attached)

The data presented indicated that with a average module cost estimated (\$350 for 8 layers) the MCA approach yielded a pro-
cessor kernel cost of $\$ 9695$ (5\% above goal), versus $\$ 11592$ (20\% above goal) for loOK MSI. Siemmens was significantly more expensive than the MCA and provides less functionality (36 cells vs. 48 for the MCA) and was excluded.

The cost difference between $100 K$ MSI and the MCA was noted as not highly significant in the cost of the total system. Pat Sullivan further projected the look MSI cost could be brought down to the MCA cost by reducing module cost to $\$ 120$ and application of 24 pin dips in lieu of chip carriers. Pat was alone in believing that this could be accomplished. Another issue discussed was the value of chip replacement (instead of modules) which Field Service has estimated to be worth $\$ 20$ million over the life of the product. The MCA with $I^{2} L$ diagnostic logic and sockets maximizes our chances of reaching this goal.

A review of schedule differences between the look MSI approach and the MCA indicated only a slight advantage for loOK MSI (l month). This was not generally accepted and the consensus appeared to be more like $3-6$ months based on Comet experience.

The development cost for Venus with MCA was estimated at $\$ 14.3$ million vs. $\$ 12.9$ million for look MSI.

Position Summary

The vendor/second source situation is not optimum for any of the technologies. Motorola (MCA) looks better than Fairchild (l00K MSI) primarily due to a potential $2 n d$ U.S. source and a history of more stability as a volume vendor. The fact that we will not have a qualified part until October is a major concern. (Hamel) Gordon suggested we exploit this decision process to secure commitments from Motorola at the senior management levels.

The data we have been able to generate to date indicates only a moderate cost advantage (20\%) for the MCA, however, to a designer the actual potential looks greater. As the designers learn to use the MCA the cost reduction yield relative to look MSI will increase. The MCA is the choice of the designers because it is the most competitive solution with the greatest potential and we have a running start in the CAD tools area. The MCA also reduces the level of module interconnect required which should enhance our chances of volume module build by Digital -- this is critical to Venus. (Durvasula, Hoff, Leonard, Kotok)

SUMMARY OF DISCUSSION AND DATA REVIEWED AT VENUS TECHNOLOGY
REVIEW 06 JUNE 1979
page 3
14 June 1979

Pat Sullivan's position that 100 K MSI was a better solution in terms of schedule, risk, and potential cost was not changed as a result of the discussion above. Pat suggested that a Hybrid approach of 100 K MSI and Siemens arrays for control might be optimum. Gordon rejected this proposal on the grounds that it resulted in maximum risk; i.e. we would need to develop two volume technologies to get Venus to market.

The potential application of 100 K MSI for the 2080 was also discussed. Since the 2080 is less cost sensitive, has lower volume and critical time to market requirement a different technology choice may be appropriate. The 2080 could possibly use multiwire for production relieving the requirement for a fine line multilayer look module. A multiwire look MSI approach for the 2080 would eliminate conflict for both chip layout and module layout resources between Venus and 2080 in Marlboro.

We need to build up our knowledge in complex design tools and processes. The oxide isolation process is a critical "next step" in our bi-polar process development. We must go forward into advanced technology and drive prices down. (Croxon, Cudmore, Doane)

The real tradeoff is between the short term and long term. All indications are that the future is gate array and beyond. We must stage this product to build the knowledge base for the next product. We can not skip a technology step and expect to make a double jump in the next generation machine. The comet experience indicates we can expect incremental development cost and longer time to market (3-6 months), however, this is the risk we must take to meet the competition. The Venus schedule and budget must be tested versus what happened on comet. (Bell, Fagerquist)

Decision

Gordon's position was to proceed with the design using the MCA. $O^{2} D$ approval and Operations Committee approval must be attained before the decision is final. Gordon will recommend approval of the MCA technology for Venus. Gordon also recommended that we actively pursue putting the Bipolar RAMs also in the sockets as this would yield a substantial savings in the field service replacement costs.

INTEROFFICE MEMORANDUM

TO:
.CC: Distribution

DATE: June 11, 1979
FROM: Bill Green
DEPT: LSI Mfg. \& Eng.
EXT: 2220
LOC/MAIL STOP: ML1-4 B34

SUBJ: I.C. Technology for Venus

The long range technology objective of the LSI Group may be summarized in two statements:

1. To develop silicon processes that are close to those of the industry leaders. This requires continued improvements in device density, speed, and power.
2. To develop design processes and tools of a structured (CAD-able) nature that will allow low cost, quick turn around custom chip design.

In addition to supporting these objectives with PL97 and 98 funds, experience dictates that we explore actively opportunities to integrate these efforts with product programs. In such programs the reality of the market place more effectively refines our efforts than is possible elsewhere. This memo will relate the technology objectives above to the choices you are making with respect to Venus and to a lesser extent $20 / 80$.

The alternatives you are examining for the Venus CPU are:

1. 100 K MSI
2. Siemens gate array + MSI
3. Motorola gate array + MSI.

Alternative 1 does not in any way support the technology objectives stated above. Furthermore, it does not leave any residuals insofar as we can judge - for future machines. We believe, in fact, that it merely delays an inevitable move to LSI and probably makes that step steeper when finally taken. If either alternative 2 or 3 produces an equivalent system, they are much more supportive of our objectives.

Both alternatives 2 and 3 support the LSI technology objectives. With regard to silicon processes, both the Motorola and Siemens processes represent a substantial advance over the Comet process. A detailed comparison from available sources shows the two to be literally identical step by step except for the resistivety of the starting material. Thus the work already expended on the Motorola process should contribute equally well to progress on the Siemens process. Until we know more details, it is not equally clear whether the equipment ordered for the oxide isolation step is also useful. Given the fact that both will take DEC to the same end point of performance, the maturity of the Siemens process recommends it.

To illustrate the advantages for future DEC products accruing from the acquisition of the process, a simple comparison is made below between the Comet array and a proposed Siemens TTL array.

	Comet	Siemens
Gates	480	$700+$
Pins	48	64
Power	$1.6-2.0 \mathrm{~W}$	1.5 W
Speed	$3-7 \mathrm{~ns}$.	1 ns.

Such an array might be useful for a next generation Comet.
With regard to CAD process technology, both gate arrays will lead to useful progress. The efforts already expended on the Motorola array have been substantial and are essentially complete. No such work has been done in DEC on CAD for the Siemens array. This will require additional effort to achieve an equivalent posture.

A table is attached to compare the technology for business arrangements possible with Siemens and Motorola. The Motorola agreement is known in detail. The Siemens proposal, while remarkably complete on short notice, is yet to be negotiated in detail. Note that though the Siemens agreement calls for a royalty while the Motorola one does not, there is some equivalent offset since we believe we experience some small price increase on guaranteed business. From a business point of view neither the cost nor obligations are sufficiently different to discriminate between the two.

Summary and Recommendation

-

The execution of Venus in 100 K MSI does not enhance the DEC technology position in LSI nor leave any residuals toward future systems. Either gate array proposal supports both LSI silicon and design process objectives and builds residuals toward future systems. While both silicon processes are in principle identical, the siemens process is substantially more mature and proven by a reasonable amount of production. As an offset, the CAD to support logic design is more advanced with Motorola. The business positions with both vendors are nearly equivalent with Motorola representing a broader potential as a partner. In summary, the LSI group finds little sharp distinction between the support for its programs between Motorola and Siemens and will support equally either choice.

WBG:cg

Attachment (1)
Distribution:

```
CC: Gordon Bell
    Pat Buffet
    Jim Cudmore
    Dan Hamel
    George Hoff
    Ruth Rawa
    Rod Schmidt
    Jack Schneider
    Bobby Snow
    Joe Zeh
```

Motorola

Provides gate array design
Provides ECL process
Provides technical consultation
Gate array business

Cash payment

Royalty

Standard Device Business

Unibus license

Other

Provides CAD programs

ECL RAM business
yes
yes
yes
FY81 70\%
FY82 50\%
FY83 50\%
\$150,000
no
\$5M
yes
preferential qualification on new standard device
no

40\% FY81-83

Siemens
yes
yes
yes
about 50\%
about $\$ 100,000$
about 3% on I.C.'s produced by DEC
no
no
unknown
.
yes
not clear

TEEMMNKOKY STATUS REVIEW
(1) MCA: Two U.S. Sources
(2) MOTOROLA (1) NATIONAL SEMI
(a) MOTOROLA'S WORKING PARTS - SEPT 79 COMITTED TO VOLUME - SEAT 80
(d) National semi - no data yet
(2) Siemens array: Two European Sources a) SIEMENS
b) RTC
(a) Siemens part is here in quantities
(1) RTC IS ONE YEAR AWAY FROM delivering options to siemens.
(3) look SSI, MSI: Two U.S. Sources ONE EUROPEAN SOURCE
a) FAIRCHILD HAS 35 MART TYPES
b) national will have ityyres in TWO YEARS
e) RTC wILL HAVE 27 types in TwO y y irs.

$$
\begin{array}{r}
\text { MCA } \\
\quad 33^{\circ}
\end{array}
$$

ASSUMPTIONS IN THE COSTING
OF THE MODULE
EOE MBA \& GATE ARRAY:

1. \& LAYER (L signal) ExTEnded HEX.
2. 32 mEAS OR GATE ARRAYS / BOARD
3. DEVICES SOCKETED
4. CWIP LEvEL ISOLATION
5. ASSOCIATED TERMINATORS \& CAPACITORS

FOR. LOOK LOGIC FAMILY:

1. 8 Layer (4 Signal) Extended hex
2. 162 DEVICES IN CHIP CARRIERS
3. SURFACE MOUNTED COMPONANTS WITH

REFLOW SOLDER PROCESS
4. BOARD LEVEL ISOLATION
5. ASSOCIATED TERMINATORS \& CAAACITORS.

Product cost comparison is done
By

1) CALCulative the Cost of a fully POPULATED MODULE FOR EACH OF THE THREE TECHNOLOGIES.
2) CALCULATE THE COST OF A FULLY LOADED DEVICE BY DIVIDING THE COST OF THE MODULE BY THE NUMBER OF DEVICES
3) CALCULATE THE PRODUCT COST BY MULTIPLYING THE LOADED COST/ DEVICE BY THE NUMBER OF DEVICES IN THE CPU.

ASSUMPTION: 122 MEAS PER EXTENDED HEX
2. 32 SIEMENS ARRAY PER EXTENDED HEX
3. 162 SSI,MSI PER EXTENDED HEX
4. 8 LAYER (4 SIGNAL LAYERS) P.C. BONR).
5.* COST BASED ON POSSIBILTY OF MOUNTINCA ITV $2 \angle$ PIN DIPS ON GLAYER EXTENDED HEX.

CPU DESIGNERS POLL

> "WHAT PROPORTION OF CHIPS IN A TYPICAL CPU ARE USED FOR DATA PATH AS OPPOSED TO CONTROL?"
> PAUL BINDER: $1 / 3$ TO $1 / 2$ IS CONTROL
> JEFF MITCHELL: ABOUT HALF CONTROL
> ALAN KOTOK: ABOUT $50-50$

$$
\begin{array}{ll}
\text { KL10 MODULES: } & 30 \% \text { RAM } \\
& 37 \% \text { CONTROL } \\
& 33 \% \text { DATA PATH } \\
780 \text { MODULES: } & 22 \% \text { RAM/PROM } \\
& \text { 44\% CONTROL } \\
& 33 \% \text { DATA PATH }
\end{array}
$$

IN ORDER TO COMPARE COSTS, WE WANT THE OVERALL RATIO (R) OF MSI TO GATE ARRAY CHIPS TO IMPLEMENT EQUAL FUNCTION

LET $F_{c}=$ FRACTION OF MSI CHIPS NEEDED FOR CONTROL

$$
F_{d}=1-F_{c}=F R A C T I O N ~ O F ~ M S I ~ C H I P S ~ F O R ~ D A T A ~ P A T H ~
$$

$$
R_{c}=\text { RATIO OF CONTROL MSI PER GATE ARRAY } \because
$$

$$
R_{d}=\text { RATIO OF DATA PATH MSI PER GATE ARRAY }
$$

THEN

$$
\begin{aligned}
& \frac{F_{c}}{R_{c}}+\frac{1-F_{d}}{R_{d}}=\frac{1}{R} \\
& R=\frac{R_{c} R_{d}}{R_{d} F_{c}+R_{c}\left(1-F_{c}\right)}
\end{aligned}
$$

EXAMPLE: GIVEN A 1000-CHIP MSI CPU, HALF CONTROL AND HALF DATA PATH, HOW MANY MCA'S ARE REQUIRED TO REPLACE IT, AT A $\quad \because$ RATIO OF 8.1 FOR DATA PATH AND 26 FOR CONTROL?

DATA PATH MCA'S $=500 / 8.1=62$
CONTROL MCA'S $=500 / 26=19$
TOTAL MCA'S $\overline{81}$
OVERALL RATIO (R) $=1000 / 81=12.3$

LOGIC COST COMPARISON: GOAL $=\$ 9200$

MCA IMPLEMENTATION
USING MARCH 10 ESTIMATES
70 MCA © $\$ 59$
235 4K RAM @ $\$ 19$
100 1K RAM @ \$11
\$ 4130
$4465 \because$ BURDENED
abies 1100 \$5/CHIP
\$ 9695

100K EQUIVALENT IMPLEMENTATION
@ FUNCTIONALITY RATIO.. $=12.3$
861 MSI @ \$7
\$ 6027

TOTAL RAMS
5565
$\$ 11592$

MCA BASED VENUS DEV. PERT TO FCS

mCA VENUS PERT

ASSUMPTIONS:

1. MCA, 10K Technology
2. Do all MCA design for breadboard with emulator backup for failing MCAs.
3. Maximum of 40 MCA types to do the design.
4. FY80, 81, 82 loading 10 Engineers and 7 Technicians for MCA design.
:
5. Start first MCA layout by 15 OCT, 4 pipes in layout.
6. 6 weeks layout time, 4 weeks for calma operation, 12 weeks in MOTOROLA for chips.
7. Breadboard is multiwire and proto is etch.
8. 3 passes to get MCAs right for FCS.
9. No schedule improvement in MOTOROLA during the first two years.
10. MCA development cost $80 \mathrm{~K} / \mathrm{MCA}$.

Stenos Part using 100 K

U: K
612179
Assumptions $=$ 1) 100 K SI and MSI chips
2) Total chip count $=11 / 780=2087$ chips (excluding RAMS and ROMS)
3) $160 \mathrm{chips} /$ module, 4 signal layer/module
4) Total CPU module count $=16$
5) 20 weeks per layout, 6 IC designers
6) EBs are multiwire, Prototypes, Pilots, fCS

	with MCA	with 100k
Conceptual Design Done	7/79	7/79
Specifications Available	9/78	9/79
Complete Data Path Design	2/80	3/80
Complete Control Path Design	5/80	5/80
BB Power On	12/80	9/80
Complete BB Checkout	4/81	12/80
Proto Power On	$8 / 81$	6/81
Complete Proto Checkout	10/81	8/81
Eng. Pilot Power On	2/82	12/81
	3/82	1/82
Dint, 162 Complete	5/82	3/82
FCS (50\%)	5/82	3/82 (1)
FCS (90\%)	3/83	9/82
Volume FCS (50\%)	11/82	9/82:

(1) If PC layout time is 10 weeks instead of 20 weeks, this date will be one quarter sooner.

VENUS HARDWARE DEVELOPMENT COST (K) - MCA

	FY80	FY81	FY82	FY83	Total (K)
CPU	1600	2600	2200	700	7100
Memory	327	600	300	70	1297
Technology	1016	1050	900	200	3166
MCA/tools	500	50	30	--	580
Release Eng.	46	58	200	100	404
IPA/HSC50	167	240	70	50	527
Hydra Comm/UR	40	72	50	50	212
SBI Adaptor	143	263	70	48	524
CAD	103	120	140	100	463

CRITERIA	MOTOROLA			SIEMENS			ESC/100K		\because
	SCORE	WEIGHTING	TOTAL SCORE	SCORE	WEIGHTING	TOTAL	SCORE	WEIGHTING	TOTAL SCORE
1. SYSTEM COST	10	2	20	6	2	12	9	2	16
2. A. DESIGN RISK ARRAY	7	3	21	10	3	30	10	3	30
B. SCIEDULE RISK DUE TO INTEPNAL PROBLEMS	8	3	24.	6	3	18	10	3.	30
C. SCHEDULE RISK EXTERNAL	5	3	15	9	3	27	9	3	27
3. SECOND SOURCE	8	1	8	6	1	6	8	1	8
4. MANUFACTURABILITY									
A. YIELD	5	1	5	7	1	7	9	1	9
B. CAPACITY	8	1	8	8	1	8	9	1	9
5. SUPPORT CIRCIJITS	3	1	3	10	1	10	10	1	10
6. EASE OF ENG. INTFRACTION	9	1	9	5	1	5	5	1	5
7. DESIRE TO SELL	10	1	10	7	1	7	8	1	8
8. PELATIONSHIP W/DEC	10	1	10	5	1	5	4	1	4

DECISION MATRIX (CONT'D)

CRITERIA
9. LONG TERM BUSINESS
10. EASE OF FUTURE ECL DESIGN BUSINESS
11. TECHNOLOGY TRANSFER
12. DEC PENETRATION* (LOW IS GOOD)
13. CONTRACTUAL EASE

TOTAL SCORE

	MOTOROLA		SIEMENS			FSC/100K		
SCORE	WEIGHTING	TOTAL SCORE	SCORE	WEIGHTING	TOTAL	SCORE	Weighting	TOTAL
10	1	10	10	1	10	5	' 1	5
10	1	10	7	1	7	0	0	0
10	1	10	8	1	8	우충	1	0
8	1	8	5	1	5	6	1	6
10	1	10	6	1	6	6	1	6
		181			171			172

*30\% OF MOTDROLA G/A PRODUCTION
50\% OF SIEMENS' G/A PRODUCTION
35% OF FSC'S' 100 K PRODUCTION
W/ 100\% ONLY.

DAN HA:MEL
11 JUNE 79

DATE: May 2, 1979

TO: Distribution List

SUBJ: Noise Margin for 100 K ECI
This memo shows the noise margin when using løøk and/or lok ECI parts. This study takes into account voltage and temperature differentials that may exist in a ECI system.

The Siemens Gate Array will incorporate voltage compensation and temperature compensation.

The following noise margin study is based on the logk ECI noise marging information supplied in the Fairchild ECI Data Bookpublished in 1977. This memo will follow the same outline as the memo of Nov. 2, 1978 on " System Noise Margin for the Dolphin ECI Iogic".

The following graph shows the points for determining noise margin for the l00K ECI gates:

Guaranteed noise margin (NM) is defined as follows:

$N_{\text {Migh level }}$	$=V_{\text {OHA min }}$	$-V_{\text {IHA min }}$
NM		
low level	$=V_{\text {ILA max }}$	$-V_{\text {OIA max }}$

The above equations do NOT take into account temperature and voltage varitions in a system. For logk ECl parts, the tracking rates for the supply voltages are:
$\Delta V_{\text {OHV }}=35 \mathrm{mV} / \mathrm{V}, \Delta V_{\text {BBV }}=52 \mathrm{mV} / \mathrm{V}$, and $\Delta V \underset{\text { OLV }}{=}=7 \hat{\mathrm{n}} \mathrm{mV} / \mathrm{V}$
$\Delta V_{\text {OHV }}=$ The change in $V_{\text {Oll }}$ due to a change in $V_{E E}$.
$\Delta V_{\text {OI }}=$ The change in $V_{\text {OI }}$ due to a change in $V_{E E}$.
$\Delta V_{B B V}=$ The change in $V_{B B}$ due to a change in $V_{E E}$.
Temperature:

The luck series operates in both still or forced air systems where an ambient temperature of $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ is maintained. The required cooling is determined solely by this ambient temperature requirement. There is no need to maintain a constant temperature throughout the system. The lobk devices are relatively insensitive to variations in junction temperature. No power warm-up or moving air cooling is required to assure the specified device characteristics.

The requied system voltage at Vee pins is -4.2 to -5.7 Volts. With $0^{\text {a }}$ load on all outputs of 50 ohms to -2.0 V and a $0^{\circ} \mathrm{C}$ to a $+85^{\circ} \mathrm{C}$ temperature range, the device dc parameter are guaranteed for a nominal Vee of -4.5 V .

For, 160 K ECl,

$$
\underset{\mathrm{H}}{\mathrm{NM}}=120 \mathrm{mV} \text { and } \underset{\mathrm{I}}{\mathrm{NM}}=135 \mathrm{mV}
$$

These numbers are over the temperature range $\emptyset^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. If there are supply voltage differentials between packages, the above noise margin numbers change.

The magnitude of the output levels and the bias level is larger as the magnitude of the supply voltage increases. The effects of temperature changes are specified in the data sheets. As the temperature increases, the magnitude of the input and output levels get smaller. From these facts, equation (1) and (2) are modified as follows:
(3) $N M_{H}=/ V_{\text {IHA min }}$ at smallest magnitude of $V_{E E}$ and the highest temp/

$$
-V_{\text {OHA min }} \text { at largest magnitude of } \mathrm{V}_{\mathrm{EE}} \text { and the lowest temp/ }
$$

(4) $\mathrm{NiM}_{\mathrm{L}}=/ \mathrm{V}_{\mathrm{OLA} \max }$ at smallest magnitude of V_{EE} and the highest temp/

$$
\text { -/V ILA max } \text { at the largest mag. of } V \underset{E E}{ } \text { and the lowest temp/ }
$$

Equations (3) and (4) may be rewritten in terms of temperature and voltage.
(5) $\mathrm{NM}=/ \mathrm{V}_{\mathrm{H}} \mathrm{IHA} \min ^{\prime}-\left[\left(\Delta V_{\mathrm{BBV}}\right)\left(\Delta V_{\mathrm{L}}\right)+\left(\Delta V_{\text {THAT }}\right)\left(\mathrm{T}_{\mathrm{H}}-25^{\circ} \mathrm{C}\right)\right]$

$$
-/ V_{\text {OHA min }} /-\left[\left(\Delta V_{\text {OHV }}\right)\left(\Delta V_{H}\right)+\left(\Delta V_{O H T}\right)\left(25^{\circ} \mathrm{C}-T_{\mathrm{T}}\right)\right]
$$

(6) $N M_{1}=/ V_{\text {OLA } \max } /-\left[\left(\Delta V_{\text {OI V }}\right)\left(\Delta V_{L}\right)+\left(\Delta V_{\text {OI T }}\right)\left(T_{H}-25^{\circ} \mathrm{C}\right)\right]$

$$
-/ V_{\text {IIA max }} /-\left[\left(\Delta V_{B B V}\right)\left(\Delta V_{H}\right)+\left(\Delta V_{\text {FIAT }}\right)\left(25^{\circ} \mathrm{C}-T_{\mathrm{I}}\right)\right]
$$

$T_{1}=$ Ambient temperature of incoming air to system
$\mathrm{T}_{\mathrm{H}}=$ Temperature of air exiting system.
$T=T_{H}-T_{L}=$ max. temp differential between packages.
$\mathrm{V}_{\mathrm{H}}=$ The largest magnitude of $\underset{\mathrm{EE}}{\mathrm{V}}$.
$V_{L}=$ The smallest magnitude of $V_{E E}$.
$\underset{\mathrm{H}}{\mathrm{V}}=\mathrm{V}_{\mathrm{H}}-5.2$ (or -4.5 V)
$V_{L}=5.2\left(0 \mathrm{I}_{\mathrm{L}}-4.5 \mathrm{~V}\right)-\mathrm{V}$
NM $=$ High voltage noise margin in mV. H
NM = Low voltage noise margin in mV.

The tracking rates can be inserted into equations (5) and (6) to obtain noise margin equations for for 100 K ECI. Neglect Temperature variations in 100 K ECI logic.

1) 100 K ECl driving l00K ECI

$$
\begin{aligned}
& \mathrm{NM}_{\mathrm{H}}=120-52\left(\Delta \mathrm{~V}_{\mathrm{L}}\right)-35\left(\Delta \mathrm{~V}_{\mathrm{H}}\right)_{\mathrm{L}} \\
& \mathrm{NM}_{\mathrm{L}}=135-7 \Leftrightarrow(\Delta \mathrm{~V})_{\mathrm{L}}-52(\Delta \mathrm{~V})_{\mathrm{H}}
\end{aligned}
$$

The following is a chart of Noise margin (in mV) for different supply
voltages:

The following is a comparison between 10 K ECI non-compensated, 10 K ECI compensated, and l00K.

	lok ECI Non-Comp	10K ECI Compensated	100 K ECI
Logic Levels			
Voh max.	-0.810 V	-0.810 V	
Voh min.	-0.960 v	-0.960 V	-1.025 V
Voha min.	-9.980 V	-0.960 V	$-1.035 \mathrm{~V}$
Vola max.	-1.630 V	$-1.630 \mathrm{~V}$	-1.610 V
Vol max.	-1.650 V	$-1.650 \mathrm{~V}$	-1.620 V
Vol min.	-1.850 V	-1.850 V	$-1.810 \mathrm{~V}$
Vih max.	-0.810 V	-0.810 V	$-0.880 \mathrm{~V}$
Viha min.	-1.105 V	-1.105 V	-6.880 -1.155
Vila max.	-1.475 V	-1.475 V	-1.475 V
Vil min.	-1.850 V	-1.850 V	-1.816 V
h	125 mV 155 mV	125 mV	120 mV
NOTE: Voltage taken into co	deration	temperature	135 mV king ar
aken into con	deration		
Noise Margin			
$-4.5 \vee 7 \%$			
NM NM	-	-	$92.56 \mathrm{mv}$
NM 1	-	-	$101.9 \mathrm{mV}$
-4.5 V 5\%			
NM h	-	-	103.1
NM 1	-	-	111.4
-4.5 V 3\%			
NM h	-	-	108.2
NM 1	-	-	118.5

CONTINUED FROM PAGE 5

	10K ECL Non-Compensated		10K ECL Compensated		100 K ECL
$\begin{array}{llll} -5.2 & \text { V } & 7 \% \\ \text { Nin } & h & & \\ \text { NM } & 1 & & \end{array}$	$\begin{aligned} & \Delta 10^{\circ} \mathrm{C} \\ & 53.3 \mathrm{mv} \\ & 41.3 \end{aligned}$	$\left\lvert\, \begin{aligned} & \Delta 20^{\circ} \mathrm{C} \\ & -1.9 \mathrm{mv} \\ & -13.9 \end{aligned}\right.$	$\stackrel{\Delta 10^{\circ} \mathrm{C}}{-}$	$\begin{gathered} \Delta 20^{\circ} \mathrm{C} \\ - \\ - \end{gathered}$	$\begin{aligned} & 88.3 \\ & 90.59 \mathrm{mV} \end{aligned}$
$\begin{array}{lll} -5 . & 2 \mathrm{~V} & 5 \% \\ \text { NM } & \mathrm{h} & \\ \text { NM } & 1 & \end{array}$	$\begin{aligned} & 70 \\ & 46 \end{aligned}$	$\begin{aligned} & 58 \\ & 40 \end{aligned}$	$\begin{aligned} & 101 \mathrm{mv} \\ & 127 \end{aligned}$	$\begin{aligned} & 89 \mathrm{mv} \\ & 121 \end{aligned}$	$\begin{aligned} & 97.4 \\ & 103.3 \end{aligned}$
$\begin{array}{lll} -5.2 V & 3 \% \\ \text { NM } & \mathrm{h} & \\ \text { NM } & 1 & \end{array}$	87.4 87.1	75.4 81.3	105.8 135.2	$\begin{aligned} & 93.8 \\ & 129.3 \end{aligned}$	$\begin{aligned} & : 105.4 \\ & 115.97 \end{aligned}$
$\begin{array}{lll} -5 . & 2 \mathrm{~V} & 28 \\ \text { NM } & \text { h } & \\ \text { Nin } & 1 & \end{array}$	$\begin{aligned} & 96 \\ & 108 \end{aligned}$	$\begin{aligned} & 84 \\ & 102 \end{aligned}$	$\begin{aligned} & 107 \\ & 138 \end{aligned}$	$\begin{aligned} & 95 \\ & 132 \end{aligned}$	
Iogic swing Voh max. Vol min. Voh min. Vol max.	$\begin{aligned} & 1040 \mathrm{mV} \\ & 690 \mathrm{mV} \end{aligned}$		$690 \mathrm{niV}$		$\begin{aligned} & 930 \mathrm{mV} \\ & 595 \mathrm{mV} \end{aligned}$
Rise Time 20% to 80% 0% to 100%	$\begin{aligned} & 1.1 \mathrm{NS} \\ & 1.84 \mathrm{NS} \end{aligned}$		$\begin{aligned} & 1.0 \mathrm{NS} \\ & 1.67 \mathrm{NS} \end{aligned}$		$\begin{aligned} & 0.5 \mathrm{NS} \\ & 0.84 \mathrm{NS} \end{aligned}$

Sunmary of Noise margin study:
The following is the noise margin for each ECI type operated at it's nominal operating voltage +/- 3% for power distribution, power supply regulation and filtering on modules.

Nominal Operating Voltages	10 K ECI Non-Compensated	10 K ECI Compensated	100 K
$+/-38$	$87.1 \mathrm{mV}\left(410^{\circ} \mathrm{C}\right)$	$105.8 \mathrm{mV}\left(410^{\circ} \mathrm{C}\right)$	108.2 mV

DISTRIBUTION LIST:

```
GORDON BELL ML12-1/Al1
RON BINGHAM MR1-2/E85
STEVE CAVICCHI WB
DICK CLAYTON MLl乞-2/E71
BRIAN CROXON TW/CO4
JIM CUDMORE MLl-5/E30
BILL DEMMER TW/D19
RUSS DOANE MLl-4/E34
SAS DURVASALA MRI-2/E47
ULF FAGERQUIST MR1-2/E78
BILL GREEN ML1-4/B34
DAN HAMEL WB
GEORGE HOFF MR1-2/E78
BILL JOHNSON MLIz-3/A62
ALAN KOTOK ML3-5/H33
VIC KU MR1-2/E47
JUD LEONARD MRI-2/E47
JOHN MEYER ML12-1/Al1
LARRY PORTNER ML12-1/T32
GRANT SAVIERS MR3-6/E94
BILL WALTON MR1-2/E47
SULTAN ZIA MRI-2/E47
```


VENUS PRODUCT REQUIREMENTS

$$
\text { MAY } 1979
$$

AUTHOR: Marilyn S. Ressler TW/A08 247-2421

DIGITAL EQUIPMENT CORPORATION COMPANY CONFIDENTIAL
Acknpwledgment 3
Preface 4
1.0 Overview 6
2.0 Digital's Corporate Strategy and Objectives 8
3.0 The Marketplace 9
3.1 Market Requirements 9
3.2 Market Segments 10
3.2.1. Scientific Computation 12
3.2.2. Real-time Computation 13
3.2.3. Transaction Processing 14
3.2.4. General Purpose Commercial EDP 15
3.2.5. General Purpose Timesharing 16
3.3 Digital's Marketing Groups 17
3.3.1. Technical Group 17
TOEM 17
LD P 17
MSG 18
ESG 18
ECS 19
GSG 20
3.3.2. Commercial Group 21
COEM 21
CSI 21
MDC 22
T\&UG 22
4.0 Product Strategy and Objectives 23
5.0 Product Requirements 25
6.0 Product Assessment 40
6.1 Market Fitness and Competitive Goodness 40
6.2 VAX Family Product Positioning 41
6.3 Compatibility with Digital Systems 43
6.4 Product Development Assumptions 44
6.5 Product Development Risks 44
APPENDIX A: VENUS Systems 46
APPENDIX B: Preliminary Product Forecasts and Assumptions 47
APPENDIX C: Comparison Prices and Costs for VAX-11/780 49 49
APPENDIX D: VAX Software Plans 50 50
APPENDIX E: Related Documentation 51 51
DIGITAL EQUIPMENT CORPORATION C OMPANY CONFIDENTIAL

ACKNOWLEDGMENT

This Venus Product Requirements Document is based extensively on a November 1978 preliminary draft written by Peter Conklin and Bernie Lacroute. For this update of VENUS requirements, much-needed technical and marketing information and several good ideas were contributed by Peter Conklin, Bernie Lacroute, Dave Rodgers, Steve Jenkins, Ed Slaughter, Kathryn Norris, Ed McHugh, Al Avery, and Al Ryder.

Similar product requirements documents created in the Mid-range Systems Product Management group by Kathryn Norris (VAX/VMS R2.0) and Lou Philippon (NEBULA) were used as guides for the structure and content of this VENUS document.

The Product Line Marketing section of the VAX-11/780 Sales Guide was the source of details included here on coverage of the market segments.

The MSD Red Book for FY79 provided information on corporate and MSD strategy and on the VENUS product relative to other 2 -bit products under development.

This entire document. was prepared on a WSl02 word processing system by Carol Hicks, Mid-range Systems Product Management.

PREFACE

This is a Product Requirements document for VENUS, the VAX-11/780 replacement product. Several other documents on the VENUS product will be published. Among these are:

1. Preliminary Product Summary (PPS)/Product Contract
2. Project Plans
3. System Plan
4. Product Description and Specification
5. Business Plan

The objectives of this Product Requirements document are:

1. to specify the attributes of the VENUS product;
2. to identify the marketplace for VENUS;
3. to describe how the VENUS product, its marketplace, and its product strategy are compacible with the corporate.strategy and objectives;
4. to provide product and market information to every DIGITAL group involved in the VENUS development and marketing;
5. to establish a precedent for creation and subsequent use of this document and several other product-related documents that are necessary for short- and long-term review and control of VENUS product development and marketing.

Initially this document reiterates the DIGITAL strategy and objectives for developing and marketing computer products with a 32-bit architecture. Then the market need for a VENUS product is explained. As part of this, the principal market segments are identified along with their respective product requirements. Further breakdown of the market segments is presented relative to DIGITAL's current organization of the Product Lines. The main competitors of each Product Line are also noted.

DIGITAL EQUIPMENT CORPORATION

COMPANY CONFIDENTIAL

Next the product strategy and objectives are given, that is, the plans for the VENUS product, what its principal characteristics are, how it fits in with other DIGITAL products. This is followed by a list of product requirements with development priorities specified.

Finally a product assessment denotes the product's market fit, its competitive goodness, and its positioning and compatibility with other DIGITAL products. Then the assumptions and risks of product development and marketing are given.

The last portion of this document, Appendices A through E, contain general information that is relevant to the VENUS development and marketing.
Note that this Product Requirements document is being published now to assist in the transfer of VENUS product development from Tewksbury to Marlborough. As such, the document is somewhat premature. Release of a fully updated requirements document (based on a preliminary draft authored by Peter Conklin and Bernie Lacroute in November, 1978) was anticipated following the completion of several key information gathering tasks being done in Mid-range Systems Product Management. This work has been suspenced temporarily and, instead, all effort has been giver to preparation of this interim document based on data available is of April 1979. The information gathering tasks will be resumed by LSG after transfer is complete.

The corporate strategy is to converge on a 32-bit architecture by FY85 with the center of business in systems having MLP less than $\$ 250,000$. Focus will be given to development of systems for distributed processing and for high availability.

Between now and the mid-1980's the marketplace will demand computer system products that are cost- and performance-effective, easy to use, secure, highly reliable, and family oriented. The products must support distributed processing with interconnections to systems of many vendors and to packet switched networks. They must be laden with rich software (languages, data management, utilities, applications).

The market for VENUS-based systems meeting these product requirements is divided into five segments:

1. scientific computation
2. real-time computation
3. transaction processing
4. general purpose commercial EDP
5. general purpose timesharing

Digital's Product Line Groups are currently organizied to serve these segments as follows:

TECHNICAL GROUP --
TOEM: scientific and real-time computation LDP : scientific and real-time computation MSG : real-time computation, general purpose commercial EDP
ESG : general purpose timesharing, scientific computation
ECS : general purpose timesharing
GSG : all segments
COMMERCIAL GROUP --
COEM: general purpose commercial EDP CSI : general purpose commercial EDP, transaction processing, general purpose timesharing
MDC : general purpose timesharing, real-time computation
T\&UG: real-time computation, general purpose timesharing, general purpose commercial EDP

No analysis has been done for the Product Lines in the Computer Group and the Customer Services Group.

DIGITAL EQUIPMENT CORPORATION
COMPANYCONFIDENTIAL

VENUS is a product at the high end of the VAX family pyramid during the FY82-85 timeframe. It will meet the market's requirements with product development priorities as follows:

```
#1 - design center at $l80K MLP with performance at
    3.5 times VAX-11/780
#2 - new I/O architecture based on ICCS, HSC50, and
        MERCURY
#3 - SBI capability for -1l/780 migration
#4 - FCS in QlFY82; volume in Q2FY82
#5 - entry level system at $99K MLP
#6 - significant RAMP improvements
#7 - system options
#8 - large system
```

The VENUS system product is an excellent offering to the traditional Digital markets --- scientific, real-time, timesharing. For transaction processing and for general purpose commercial EDP, VENUS will also be a strong product with the continued development of software products appropriate to those market segments.
The VENUS system product will be compatible with the VAX family architecture. It will use the single VAX family operating system, VAX/VMS. VAX-11/780 migration is supported, and PDP-ll compatibility mode is maintained.
2.0 DIGITAL'S CORPORATE STRATEGY AND OBJECTIVES

The corporate strategy is to develop and market computer products intended for distributed processing systems and for high availability systems. The center of the corporate business will be single-processor systems with a purchase price below $\$ 250,000$. While current products are based on 8-, 16-, 32-, and 36-bit architectures, there will be convergence to a single 32 -bit architecture by 1985. The products based on the latter architecture will be developed and marketed in a manner that provides maximum protection of our existing PDP-11, DECsystem-10, and DECSYSTEM-20 customer base.

3.1 Market Requirements

In the FY82-FY85 time frame, the computer system manufacturers in the EDP industry must offer products that meet the following requirements:

- Cost-/performance-effective computing engines - Distributed computing capability
- Systems with a high degree of data integrity, internal security and protection
- Effective system interconnection (DEC to DEC, DEC to IBM and other mainframes, X25 for packet switched networks)
- Non-stop computing capability, fault tolerant computing (HYDRA-like configurations)
- Highly reliable systems
- System packaging/operation suitable to an office environment
- System familiness whether or not the individual systems are physically tied into a network
Highly approchable, easy-to-use systems whether dedicated to a single application or to several different modes of operation
- Training and documentation suited to a wide. variety of end users
o Richness of software (languages, data management, utilities, applications)
- Availability of skilled services from the computer system vendor (maintenance, system design, applications programming help)

It will be necessary for vendors of these products to provide complete and accurate cost-of-ownership data to the prospective customers in each market segment. Since the distributed processing style of computing (with more computing on more data by more people) will be emphasized for these products, the amount of mass storage and the number of end user terminals to be purchased will greatly increase from present-day levels.

It will also be necessary to provide prospective customers with comprehensive system performance data that is specific to their particular use of the computer system product. As an example, for a transaction processing application this could be data on system throughput in terms of the number of transactions processed per hour based on such variables as l) the number of characters in each transaction, 2) the number and speed of the communications lines, 3) the number of multi-drop terminals on each line, and 4) the number of disk accesses per transaction.

A major challenge will be to provide these highly cost-/performance-effective computing engines for systems which require neither a sizable staff of support specialists nor a special operational environment. This means that the systems must be easy to build (dock merge), easy to install (customer merge), easy to use, and easy to repair (self-diagnosis, some customer maintenance). Similarly, the desire of customers to utilize the computer system as a resource to do a specific job (rather than to learn how to be system programmers) and to increase worker productivity puts a great emphasis on l) the availability of programming languages, data management facilties, utilities and applications software, 2) the reduction (and even elimination) of system and sub-system downtime, and 3) the familiness of systems to ensure that no learning is required when upgrading to a more powerful configuration or when adding another family member to a network.

3.2 Market Segments

VENUS-based systems will be capable of meeting the marketplace requirements outlined above. To provide focus for VENUS product development and marketing, several key market segments can be identified according to how the VENUS-based systems are used, what the characteristics are of computer system products utilized in these market segments, and who these users are.

From the perspective of system use, the market segments for the VENUS product are:

1. Scientific Computation
2. Real-time Computation
3. Transaction Processing
4. General Purpose Commercial EDP
5. General Purpose Timesharing

DIGITAL EQUIPMENT CORPORATION
 COMPANYCONFIDENTIAL

There are characteristics common to the computer systems utilized in all these segments. These include:

O Easy-to-use, highly approachable, friendly systems for various levels of users

- Easy-to-use program development tools
- Documentation, commands, prompting, error messages in the language and style of the end user
- System HELP facilities
- Internal system security and protection
- Large capacity, high-speed mass storage
- Fast backup/restore between disks and tapes
- Storage hierarchies
- Data management, data integrity
- Support (programming tools, file exchange utilities) for transfer from other current DIGITAL products, migration to future products; system familiness is critical
- Ease of connection to other DEC (DECnet), IBM, CDC, other networks (X25)
- Network transparency to applications programs and to terminal users
- One general purpose operating system with sufficient extensibility/adaptability to serve the entire range of market segments
- Systems configurable/tunable to effective use by a specific market segment (and its changing needs)
- Ease of adding applications packages to the system
- Variety of programming languages
- ANSI-standard languages with validated compilers
- Common for all programming -- call standards, data types, record management, exception handiing, run-time library, symbolic debugger
- High system reliability -- extensive H / W, S/W RAMP support; solid quality assurance testing

In addition to the above common characteristics, each market segment has very specific needs to be fulfilled by the VENUS product. By market segment these are:
3.2.1. Scientific Computation

Multi-user systems
Good interactive performance
High-speed processing
Accuracy
Fast, mainframe FORTRAN, PL/l
FORTRAN IV PLUS to match IBM Level H FORTRAN
Global optimizer (optional during program development)
APL with file system
Vector processor with language support
Large programs
Sharable programs
Reliable systems to run large programs to completion
Mainframe off-loading (ANSI-standard high performance FORTRAN and PL/l, ANSI-standard mag tape, virtual address space)
Multi-system, high-speed interconnects to other DEC; to IBM, CDC, and UNIVAC
DECnet, X25
Batch processing (especially when replacing outmoded IBM systems)
Data management (for large data files)
Software routines for graphics displays and plotters
Applications packages (statistics, project management/control, math library)

```
3.2.2. Real-time Computation
    High-speed processing
    Rapid context switching
    Low scheduling overhead
    Fast interrupt handling (response
        to, service of interrupts)
    Fast I/O
    Accuracy
    DECnet (for distributed data
        acquistion systems)
    Microcoded math functions
    High availability through
        redundancy, ease/transparency of
        switchover
    File exchange utility for other DEC
        products (especially -llM systems)
    Fast, highly-optimized FORTRAN
        (optimizer optional during program
        development)
PASCAL, PL/l, ADA, CORAL-66 (United
        Kingdom), PEARL (Germany)
Fully-supported end-user tools for
    UCS and KMC-11 or equivalent
Ease of interfacing and supporting
        special devices.
Tools for performance measurement,
        system tuning
```


3.2.3. Transaction Processing

Many (10-500) terminals on-line simultaneously in a network
Terminal cluster controllers with down-line load, up-line dump, data entry/verify, interim storage for off-line data entry
Intelligent communications subsystems (MERCURY)
TP concurrent with program development
Multi-drop terminals
Intelligent terminals with down-line load
Fast COBOL, PL/l
Data management
Distributed data base management, data base integrity
Hierarchical data storage, archiving
Message control
Forms definition languăge (compiler, debugger)
Batch
Connect to DECnet, IBM, X25
Fast, reliable communications
Network transparency to user terminals, applications programs
High availability (HYDRA-like configuration)
Journalling
Shadow recording
Transaction roll forward/roll backward
System-/network-wide data directory and dictionary
Tools for network performance measurement, load balancing, tuning, reconfiguring
Easy switchover of TP terminal to general purpose use (program development, data inquiry)
Additional operators' consoles 。

3.2.4. General Purpose Commercial EDP

Multi-user system (production EDP runs concurrent with interactive program development, word processing, on-line applications, RJE to mainframes)
Tools for computer-assisted program documentation
File design assists
Support for a family of terminals (dumb to intelligent)
Applications packages (broad range of capabilties; ease of installation, use, support)
Multi-volume disk files
Data management
Distributed data base management
Data integrity
Inquiry language, repor writer
Forms definition language (compiler, debugger)
Limited transaction processing
Journalling
Shadow recording
Transaction roll forward/roll backward
Communication with other mainframes (IBM, CDC, UNIVAC); connect to DECnet, X25
Industry standard languages
Fast, mainframe COBOL, PL/l
Interactive BASIC
RPG II, BASIC, MUMPS, APL with file system
SORT with MERGE option
Tools for migration from IBM to DEC
IBM tape handling (including EBCDIC data)
ANSI-standard tapes (labels, formats)
Disk allocation controls and reporting
BATCH (scheduling, resource allocation, reporting)
Job class scheduling
System resource accounting
System-/network-wide data directory and dictionary

Office automation (connect to remote word processors, backup storage for large documents, document interchange utility, electronic mail)
Support of typeset terminals (SCRIBE editor)
Hierarchical data storage, archiving System security and protection (e.g., terminals limited to running a single application)
3.2.5. General Purpose Timesharing

Multi-user system (5l2 edu terminals active sumultaneously)
Good interactive performance (especially for on-line applications; for edit, compile, link/task build, debug/test process)
Large programs
Sharable programs
Interactive BASIC
Multiple languages (FORTRAN, COBOL, PL/l, BASIC, PASCAL, ADA, RPG II, BLISS, APL, MUMPS, ALGOL)
Fast compilers
Fast syntax checkers for all languages
Flexible BATCH, spooler queues
File exchange utilities
Data management
Inquiry language
Report writer
Resource allocation, quotas, scheduling
System resource accounting
Dynamic working set size selection
Applications packages (especially CAI, school administration, project management/control; broad range of capabilities; ease of installation, use, support)
Tools for host development of small systems (DEC) software
Software for graphics displays and plotters
Connect to other mainframes (IBM, CDC, UNIVAC)
DECnet, X25
Scientific computation
Office automation

If we now consider the current organization of DIGITAL'S Product Line Marketing Groups, it is possible to identify several of the users (customers) within each of these segments and to denote those customers with requirements spanning two or more market segments. Mainly the Technical and Commercial Groups have been studied because of the applicability of VENUS to their Product Lines. Further study should be done especially with the Word Processing, Computer Special Systems, and Graphic Arts Product Lines.
3.3.1. TECHNICAL GROUP

TOEM, Technical OEM.
Their users are involved with

a.	flight training simulation -- real-time computation
power monitoring -- real-time	
computation (high-availability	

Potential new users are those in industrial automation and in telephone and data communications (both real-time computation).

TOEM sees competition from SEL, Interdata, Harris (all in-flight simulation), Modcomp (power monitoring), and PRIME and the mainframe vendors (in seismic and aerospace).

LDP, Laboratory Products

Their users, primarily doing scientific and real-time computation, are involved with
a. U.S. and foreign government research
b. university research
c. energy research
d. industrial research
e. simulation (sensor-based and modeling)

DIGITAL EQUIPMENT CORPORATION COMPANYCONFIDENTIAL

Competition is mainly from SEL, Harris, and Interdata. CDC will remain strong competition since there are many systems (6400, 6600, 7600 s especially in energy) to be off-loaded or even replaced by one or more VENUS systems.

MSG, Medical Systems
Their users are
a. medical OEMs -- real-time computation (high availability systems)
b. medical administration -general purpose commercial EDP (patient billing, report generation, financial applications)
With medical OEM's the main competition
comes from IBM, Data General and
Honeywell. Hewlett-Packard is becoming
very actire in this area. In medical
administration the strongest compericors
are Hewlett-Packara, IBM, and NCR.

ESG, Engineering systems
Their users specialize in
a. aerospace design
b. automotive design
c. chemical engineering
d. electronic/electrical design
e. engineering consulting
f. architectural and engineering design

A general purpose timesharing system is required with strength in the area of scientific computation.

Competition comes mainly from Data General, Hewlett-Packard, PRIME, CDC, and IBM. Sometimes Harris and Interdata are seen.

ECS, Education

Their users, always conscious of system price, prefer a general purpose timesharing system for large numbers of users with specialties as noted:
a. school district students -BASIC programs (small-scale problem solving, little I/O); good text editors, fast compile, debuggers for program development; not production.
b. university students -technically sophisticated; more FORTRAN than BASIC; heavy text editing; large, complex FORTRAN and COBOL programs.
c. university departments -variety of languages; some large FORTRAN programs.
d. school administration -- RJE required to installed main frame; high performance COBOL, some data management; administrative usage is growing; on-line, interactive applications; need application packages.
e. private college administration and students -- good COBOL and data management plus applications packages for administration; students need BASIC, FORTRAN, COBOL.

The competitors of ECS are IBM, Harris, PRIME, Hewlett-Packard.

GSG, Government Systems

Their users are from every organization within Federal governments around the world. The needs of these users cover every market segment described above. In the United States, particular emphasis is given to users in
a. military intelligence -scientific and real-time computation; extensive PDP-1l experience to migrate.
b. civilian agencies -- with competitive procurements and long systems lifetime (5-8 years), systems require wide range of capabilities and low life cycle cost; interface to other mainframes (IBM, CDC, UNI VAC).

Generally, the competitors of GSG are IBM, Univac and Honeywell. SEL also does considerable U.S. Government business. For governments in countries outside the U.S., competition is usually seen from any vendor native to the country.

DIGITAL EQUIPMENT CORPORATION
COMPANYCONFIDENTIAL

COEM, Commercial OEM
Their users acquire systems intended for operation with specialized applications packages, e.g., business office management (wages and payroll, accounts payable, general ledger), customer billing, order entry and inventory control, sales analysis. Many of these systems are sold to small manufacturing and distribution companies and to lawyers, accountants, physicians, and dentists.

Competition for COEM comes primarily from IBM, wang, and Basic Four in addition to DG and HP oems.

CSI, Commercial Service Industries
Their users work in
a. banks, insurance companies, financial institutions
b. data services companies
c. transportation companies
d. state and local government
e. retail business
f. service business

Many of these users require general purpose commercial EDP systems. A low-cost subset of the general purpose system can be geared to users in the small business community. Transaction processing is becoming extremely important to these users as is real-time computation for communications and sensor-based applications. Data service companies are interested in general purpose timesharing.

Competition is very strong from IBM at the account level. Other competitors are Hewlett-Packard, Data General, Honeywell, Tandem, NCR, PRIME, Computer Automation, and Burroughs.

DIGITAL EQUIPMENT CORPORATION
COMPANYCONFIDENTIAL

MDC, Manufacturing Distribution and Control

Their users are found in
a. manufacturing companies
b. process industries

Required is a general purpose timesharing system to be used mainly for host development of software for smaller -ll based production systems running RSX-11M or RSX-llS. This general purpose system must have a good FORTRAN with an easy-to-use file system plus COBOL for data processing activities such as inventory control and materials scheduling. Real-time computation is becoming a requirement for more of these users.

Competitors for MDC are IBM, Tandem, SEL, Perkin-Elmer (Interdata), and Harris. Hewlett-Packard is beginning to enter this market area.

T\&UG, Telephone \& Utilities
Their users are involved with
a. telephone equipment manufacturers -- real-time computation, general purpose timesharing for development of specialized applications (e.g., traffic monitoring, billing data collection, repair order administration)
b. operating telephone companies -- general purpose commercial EDP with emphasis on communications with IBM mainframes.

Competition comes from Interdata, Hewlett-Packard are competitors in the operating companies. Tandem is a potential competitor.

4.0 PRODUCT STRATEGY AND OBJECTIVES

VENUS is a high performance computer system product which implements the VAX-ll architecture and runs the VAX/VMS operating system with its associated layered software products. The MLP (\$) design center of VENUS is the same as that of the VAX-11/780. Increased system performance is achieved by applying state-of-the-art technology (e.g., Mosaic ECL Array Technology) to the VAX-11 architecture.

In the FY82-FY85 timeframe VENUS is at the top of a pyramid of VAX family distributed data processing products in terms

- general purpose computing capability,
0 cost and performance
ease of interconnection to and strict
compatibility with all other members of
the pyramid.

VENUS will remain as a product offering until FY87 although a new, higher performance processor might be introduced in the FY85/86 timeframe.

As the VAX-11/780 replacement, the VENUS product is consistent with the corporate strategy which calls for a single 32 -bit system architecture by 1985. Furthermore, VENUS will augment the VAX family of 32 -bit products in a fashion which is consistent with the corporate goal calling for concentration on systems priced at $\$ 250,000$ or less.

In a single processor configuration or in distributed processing configurations, VENUS provides the functional base for scientific and real-time computations, transaction processing, general purpose commercial EDP, and general purpose timesharing. VENUS can also be utilized in HYDRA multi-processor configurations (high availability, non-stop computing systems).

VENUS systems comply with the constraint of having VAX/VMS serve as the single operating system for the entire VAX family. A vast array of layered software products (such as COBOL, FORTRAN, DATA BASE MANAGEMENT), system options (such as TRANSACTION PROCESSING, HIGH AVAILABILITY modules), and applications will be offered. These will be VAX/VMS system add-ons in much the same fashion as, for example, disk and tape hardware sub-systems are field add-ons at an existing customer installation.

. 5.0 . PRODUCT REQUIREMENTS

The VENUS system product will satisfy the market requirements outlined above. Priorities to guide the development of this product are given below (in descending order of importance):

- Design center at $\$ 180 \mathrm{~K}$ MLP with performance at 3.5 times VAX-11/780
- New I/O architecture based on ICCS, HSC50, and MERCURY
- SBI capability for $-11 / 780$ migration
- FCS in Q1FY82; volume in Q2FY82
- Entry level system at $\$ 99 \mathrm{~K}$ MLP
- Significant RAMP improvements
- System options
- Large system

```
The capabilities and functions to be developed for
VENUS-based systems according to these priorities are
illus-rated - the following chart.
```

CPU with CIS warm floating point (includes G and H)

ECC MOS Memory

- Vector Processor
-

Disks

Mag tape
terminal plus dual
load device
Asynch lines
Line Printer
Card Reader
$\overline{S B I}$
ICCS
Remote diagnostics, console port

Cabinetry,
power supplies

On-line diagnostics, UETP

VAX/VMS
Languages

IDESIGN CENTER
*Note expansion possibilities under discussion of Priority \#l and \#5.

DIGITAL EQUIPMENT CORPORATION
COMPANYCONFIDENTIAL

PRIORITY \#l: Design center at $\$ 180 \mathrm{~K}$ MLP with performance at 3.5 times VAX-ll/780.

With an MLP of $\$ 180 \mathrm{~K}$, the system transfer cost is $\$ 40 \mathrm{~K}$ (based on $M U=4.5$).

The basic components of this dock merge system product are:

```
CPU with CIS and warm floating point
    (including G and H)
4MB ECC MOS memory
600MB disk mass storage; fixed or
    fixed/removable media
l600/6250 bpi, l25 ips magnetic tape
    subsystem
Console, including terminal and dual load
    device for software patches, software
    distribution
8 asynchronous lines
ICCS I/O bus
Remote diagnostics with console port
Cabinetry, power supplies
On-line diagnostics, UETP
VAX/VMS operating system (language licenses
    not included in the $l80K)
Expansion space in this single cabinet for
    4MB ECC MOS memory (additional)
    24 asynchronous lines (additional)
    l line printer
    l card reader
    6-8 synchronous lines
    l accelerator (FORTRAN or COBOL)
Note that the $180K MLP covers the pre-wiring
for these expansion components only and not
the components themselves.
```

The configuration rules for this design center system and for all other VENUS-based systems must be easily stated and must be subject to easy verification by all sales people.

DIGITAL EQUIPMENT CORPORATION
COMPANYCONFIDENTIAL

Performance at 3.5 times VAX-11/780
FORTRAN and COBOL --
The best FORTRAN and COBOL performance must be

$$
\begin{aligned}
& \text { FORTRAN }=3032=370 / 168 \\
& \text { COBOL }=3032=370 / 168
\end{aligned}
$$

This performance can be achieved via accelerators or any other eng ineering option.

When these high-performance capabilities are removed from the system, the performance is at the 3031 or $370 / 158$ level.

FORTRAN is measured using the whetstone and SPllll benchmark programs. The performance for data types $F, D=G$, and H should each meet these goals compared to the corresponding IBM data types.

COBOL is measured using the U.S. Steel and Profile benchmark programs. The performance for display, binary, and index subscripts and for trailing overpunched and packed decimal data should each meet these goals compared to the corresponding IBM measures.

Real-time --
Times for context switching, CALL, and response to/service of interrupts must be at least 3 times faster than the speedier of COMET and VAX-11/780.

Throughput --
Memory bandwidth for VENUS must be at least $30 \mathrm{MB} / \mathrm{second}$ with access times much faster than those of the $-11 / 780$. Further, a VENUS system configured with the new ICCS I/O bus must be capable of handling the equivalent of 4 UNIBUSes plus 8 MASSBUSes in addition to the maximum allowable number of intersystem connections. This assumes that the ICCS bus also supports (via MERCURY) line printer, card reader, asynchronous and synchronous communications lines, customer real-time devices, and slow-speed mass storage units. For availability reasons, it must be possible to configure a single VENUS system with at least two ICCS busses.

Delays in development --
Should the time to market goal not be met, it is required that all performance specifications given above will increase by 30% per year.

Availability of performance data -;
An extensive set of performance measurements tasks must be done to provide data that is relevant to customers in the respective market segmerts. These performance analyses must be completed with results available by the time of VENUS product announcement. Such performance measurement projects must continue throughout the lifetime of VENUS in response to its changing environment (e.g., in terms of new DIGITAL products and competitors' new offerings).

PRIORITY \#2: New I/O architecture based on ICCS, HSC50, and MERCURY

VENUS will have the new I/O architecture based on the ICCS bus, the HSC50 mass storage controller for disk and tape, and the MERCURY intelligent communications subsystem for asynchronous and synchronous lines and for unit record equipment.

PRIORITY \#3: SBI capability for $-11 / 780$ migration
To facilitate migration of the current VAX-11/780 customers to VENUS, ports for UNIBUS and MASSBUS devices must be provided via the SBI interface.

Under the above two priorities (ICCS and SBI capabilities), the various $i / 0$ configurations for VENUS systems and the priorities for their development are:
\# 1

For the design center system and the entry level system. This must be available at FCS.
\# 2

For - $11 / 780$ customers wanting an upgrade to a system with a more powerful central processor but with support for existing peripheral devices (via the UBA and/or MBA). This must be available at FCS.

For customers with a distributed processing operation comprised of high-performance connections among intelligent subsystems. These high availability, high reliability systems will be suited for transaction processing, real-time computation, and general purpose timesharing off-loaded from a mainframe. This I/O configuration is part of the VENUS/HYDRA configuration and must be available at FCS.

DIGITAL EQUIPMENT CORPORATION
COMPANY CONFIDENTIAL

For customers (especially OEM) needing a system with a link to the past (via the SBI) and to newly-developed products (via the ICCS).

Again for -11/780 customers wanting a more powerful central processor but with increased i/o performance using existing peripheral devices.

PRIORITY \#4: FCS in QlFY82; volume in Q2FY82
The VAX-11/780 product was announced in October, 1977 with FCS in December, 1977 (Q2FY78). Assuming the need for a replacement product every 3-4 years, the desired announcement date for the VENUS product is Q3 or Q4FY81. First customer shipments will follow in QlFY82. Volume shipments will be reached by Q2FY82.

To summarize the key dates for VENUS:

Announcement of design center product	Q3/Q4FY8l	
First customer shipment (FCS)		QlFY82
Volume availability		Q2FY82
Availability of		
Entry level system	FCS +3 months	
Vector processor	FCS +6 months	
Large system	FCS +9 months	

PRIORITY \#5: Entry level system at $\$ 99 \mathrm{~K}$ MLP
The entry level system is aimed at cost-sensitive applications. At a $\$ 99 \mathrm{~K}$ MLP, this system permits a marketing campaign based on pure system cost. With an MLP of $\$ 99 \mathrm{~K}$, the system transfer cost is $\$ 22 \mathrm{~K}$ (based on $M U=4.5)$.

The entry level system is bounded. Expansion is allowed but only at a price which does not disturb the product's design center business.

The basic components of this dock merge system are:

```
CPU with CIS and warm floating point
    (including G and H)
IMB ECC MOS memory
2 x 40/50 MB ea. disk drives (removable media)
Console, including terminal and dual load
    device for software patches, software
    distribution
8 asynchronous lines
ICCS I/O bus
Remote diagnostics with console port
Cabinetry, power supplies
On-line diagnostics. UETP
VAX/VMS operating system with license for one
    language
Expansion space in this single cabinet for
    IMB ECC MOS memory (additional)
    8 asynchronous lines (additional)
            l line printer
            l card reader
            6 x 40/50MB ea. disk drives (removable
                media)
            2 synchronous lines
            l accelerator (FORTRAN or COBOL)
Note that the $99K MLP covers the pre-wiring
for these expansion components only and not
the components themselves.
```

DIGITAL EQUIPMENT CORPORATION
COMPANY CONFIDENTIAL

PRIORITY \#6: Significant RAMP improvements

VENUS development must expand on the RAMP designed and implemented for the VAX-ll/780. The BMC of the resulting product must not exceed 1.5% of its transfer cost. RAMP plans should include software warranty and installation cost goals. RAMP must be considered according to the customer's perception of a total system, e.g., Are spares available when needed? Can troubleshooting be done without taking the entire system down? Is field software support responsive? Did the system product undergo enough quality assurance testing?

Improved RAMP is necessary for at least two reasons:

1. Customers are demanding highly reliable systems. They are becoming increasingly intolerant of computer system interruptions which wreak havoc throughout their organization.
2. With the growth of distributed data processing systems, customers will see growing maintenance costs for the many system processing units that are spread across a wide geographical area. Customers will not pay these high service costs. Furthermore, system vendors will be unable to provide a sufficient (and large) number of capable service personnel for such maintenance.

For VENUS, undetected failures must be minimized, and the total unrecovered system crash rate must be reduced. The latter includes all crashes attributed to environmental causes, operational procedures, software, hardware, and unexplained failures.

The MTBF must be increased significantly from that of the $-11 / 780$. Further, the total unproductive time per year must be reduced drastically. This includes, but is not limited to,

1. hardware preventive maintenance
2. software updates and maintenance
3. disk backup operations
4. emergency system maintenance
5. time spent waiting for parts
6. the ambiguous time during repetitive and undetected failures (especially for service calls which do not isolate the problem cause)

It is expected that reducing non-productive time will require significant changes in operational and service philosophies.
As part of the VENUS RAMP, consideration should be given to those features available from the HYDRA learning experience. Examples are redundant power supplies and fans plus devices with redundant access paths.

DIGITAL EQUIPMENT CORPORATION

COMPANY CONFIDENTIAL

To meet the requirements of the marketplace, the VENUS system product will have several options as listed below. These options must be included in VENUS from the start of product design and development. Availability to the marketplace is noted here as "FCS+n" in months.

Hardware --

(FCS+9)	32 MB max. ECC MOS memory (system total)
($\mathrm{FCS}+12$)	I/O busses: max. of 4 ICCS
(FCS +12)	max. of 2 SBI each with up to 2 UBAs plus 4 MBAs
(FCS)	disks: 600 MB , fixed media
(FCS +3)	40-80 MB, removable media optional dual channel access for both
($\mathrm{FCS}+9$)	tapes: 6250 bpi, 200 ips, auto load, radial
(FCS)	bus, dual channel access (optional) $1600 / 6250$ bpi, 125 ips
(FCS)	unit record equipment: line printer (IBM quality, VFU, DMA)
(FCS)	card reader (DMA)
(FCS)	processor options: EORTRAN (accelerator)
(FCS)	COBOL (accelerator)
(FCS +5)	Vector processor
(FCS)	UCS, MMC (or equivalent)
(FCS)	MA7,0 (including COMET shared memory systems)
(FCS)	DR780
(FCS)	terminals: multi-drop terminals for TP
(FCS)	VT100-based terminals
(FCS)	PDT terminals
(FCS)	GIGI terminal
(FCS)	Typeset terminals
(FCS)	terminal clusters

Communications --

(FCS)	DECnet
(FCS)	X25
(FCS)	Interconnect to IBM, CDC, UNIVAC
(FCS)	MERCURY communications controller
(FCS)	DMA/buffered asynchronous and synchronous
	lines

Software (native mode) --

(FCS)	SORT/MERGE	(FCS)
(FCS)	APL with file system	(FCS) BASIC-PLUS-2
(FCS)	PL/l	(?) ADA
(FCS)	PASCAL	(FCS) CORAL-66
(FCS)	BLISS-32	(?) PEARL
(FCS)	RPGII	(FCS) MUMPS
(?)	ALGOL	$(?)$ LISP

Note for all new languages: compliance with existing ANSI-standard language specifications; validated compilers.
(FCS) Symbolic debuggers for all languages
(FCS) Language support for vector processor
(FCS) DBMS-32
(FCS) DATATRIEVE-32 (inquiry language, report writer)
(FCS) TRAX-32
(FCS) Forms language compiler, debugger
(FCS) Message control with transaction roll
forward/backward, journalling, shadow recording
(FCS) Multi-volume disk files
(FCS) ANSI-standard mag tape handling routines
(ECS) IBM mag tape handling
(FCS) Routines for graphics displays and plotters
(FCS) Math library
(FCS) Routines for performance measurement, network tuning, applications program tuning
(FCS) System resource accounting
(FCS) Resource allocation, quotas, scheduling (especially by JOB class); all in BATCH also
(FCS) Support routines for office automation (interface to remote word processors, backup storage for large documents, document interchange utility, electronic mail)
(FCS) Routines for RSTS migration (emulators, conversion utilities)
(FCS) Cross-system development for RSX-11M, -11S, RT-11, RT2.

General --
(FCS) Node in a HYDRA configuration
(FCS) 512 simultaneous educational users (BASIC-PLUS on a single-processor system)
(FCS) System-/network-wide data dictionary, data directory
(FCS) $\quad H / W, S / W$ support of all devices on $-11 / 780$, COMET, NEBULA, HYDRA, FONZ, SCS, PDT.
(FCS) Additional operator consoles

$$
\begin{array}{ccccc}
& \text { DIGITAL EQUIPMENT CORPORATION } \\
\text { COMP ANY } & \text { CON F I D E N T I AL }
\end{array}
$$

The components of this system are:
CPU with CIS and warm floating point (including G and H)

16 MB ECC MOS memory
4 x 600 MB disk mass storage; fixed or fixed/removable media; dual channel access
2 x 6250 bpi, 200 ips magnetic tape; auto load; dual channel access
Console, including terminal and dual load device for software patches, software distribution
128 asynchronous lines (MERCURY)
2 x ICCS I/O bus with two (2) ICCS ports connected to VENUS, COMET, or NEBULA processors
2 synchronous lines to IBM or CDC (MERCURY)
l line printer (MERCURY)
1 card reader (MERCURY)
Vector processor
Remote diagnostics with console port
Cabinetry, power supplies
On-line diagnostics, UETP
VAX/VMS operating system with FORTRAN, COBOL, PL/1, BASIC, DBMS, PASCAL

6.0 PRODUCT ASSESSMENT

6.1 Market Fitness and Competitive Goodness

The potential for success of the VENUS system product in its marketplace is summarized below:

$$
\begin{aligned}
& \text { MARKET SEGMENT } \\
& \text { Scientific Computation } \\
& \text { Real-time Computation } \\
& \text { Transaction Processing } \\
& \text { General Purpose Commercial EDP } \\
& \text { General Purpose Timesharing }
\end{aligned}
$$

ASSESSMENT

Excellent
Excellent
Very Good
Very Good
Excellent

Against the competitive products either currently offered in the market or else known to be under development for release during VENUS' product life, VENUS should be a very strong performer for DIGITAL, especially in the traditional market segments (scientific, real-time, general purpose timesharing). The challenge will be to achieve the same level of excellence for transaction processing and for general purpose commercial EDP. By and large, success here depends upon our ability

1. to develop a considerable number of software products in time for the VENUS announcement and shipment;
2. to gain TP and commercial experience and to build a reputation as a viable vendor of high-end commercial-oriented products;
3. to understand how to win a sizable share of these two markets which are now dominated by extremely strong, well-entrenched competition.

Particular attention must be given here to the competitive challenge of IBM in all our market segments. With the coming H-series to complement their current 4300 -series, the 8100 , and the System/38, IBM will appear to have a comprehensive product offering aimed specifically at the distributed processing marketplace. The best resources of DIGITAL will be required to beat back this challenge with a rich array of products that can win wide customer acceptance.
6.2 VAX Family Product Positioning

As stated earlier, VENUS is at the top of a pyramid of VAX family distributed processing products. A brief description of each product is given below.

```
VENUS High end of the VAX family.
    VAX-11/780 replacement.
    Top of distributed computers
    hierarchy.
General purpose capabilities for
    Scientific and Real-time Computation,
    Commercial Data Processing, Time
    Sharing, BATCH.
Basic system optimized for $l80K sale
    price.
Configurable in high availability
    topologies (HYDRA).
Attack product for new customers and
    PDP-11 customers in the $150K-$300K
    average systems range.
Migrate top end of 11/74-MP business to
    venus.
Competition for VENUS is
IBM \(303 \mathrm{X}, 370,4300\) CDC Cyber Burroughs NCR
Ho neywell SEL
```

DIGITAL EQUIPMENT CORPORATION
COMPANYCONFIDENTIAL

Mid-range VAX family product at center of corporate business ($\$ 50 \mathrm{~K}-\$ 80 \mathrm{~K}$) for single processor applications.
Main product for distributed data processing host machine at the department/group level.
Tailored by application of VMS software options to Scientific Computation, Commercial Data Processing, Real-time Computation, Time-sharing, or Transaction Processing environment.
Attack product for new customers and PDP-11 customers in the $\$ 50 \mathrm{~K}-\$ 150 \mathrm{~K}$ range.
Attack product for non-stop systems.
Migrate low end of $11 / 780$ business, some of $11 / 74-\mathrm{MP}$ business, and top end of 11/44.

Competition for COMET/HYDRA is:
IBM Low end 370, 4331
HP 3000
DG M600
S250
DG 32-bit
PRINE
Tandem
Interdata SEL

NEBULA Low end VAX family product.
Optimized for $\$ 25 \mathrm{~K}$ systems range.
Tailored to specific application by packaging VMS options.
Attack product for new customers and PDP-11 customers in the $\$ 20 \mathrm{~K}-\$ 50 \mathrm{~K}$ range.
Migrate bulk of $11 / 34,11 / 44$ business.
Competition for NEBULA is:
IBM Series 1, 8100
HP 3000 , HP 1000
DG S 250 + New Series PRIME Microdata

```
LSI/VAX Very low end VAX family product.
    Optimized for personal, lab, and office
    use.
    $8-$10K system.
    Bottom of the distributed data processing
        pyramid.
    Tailored to a specific function by
        packaging of VMS (sysgen out
        functions).
    Migration for ll/04, LSI-ll business;
        co-exist with PDP-ll bounded systems.
Competition for LSI/VAX is:
                                    DG Micro Nova
                                    HP desk top
                                    Microdata
                                    Intel
                                    Wang
```

6.3 Compatibility with DIGITAL Systems

The key compatibility issues relative to VENUS product development are:

1. VAX family architecture is maintained.
2. The stifategy of one operating system, VAK/MMS, is maintained.
3. VENUS supports SBI ports to allow connection (with no changes) to the MA780 and DR780.
4. UNIBUS and MASSBUS ports are provided to facilitate migration of the current -11/780 customer base.
5. The new ICCS I / O bus structure is implemented in a uniform fashion across all family members.
6. The PDP-1l compatibility mode is maintained as in the -11/780.
7. It is possible to use the library of VAX diagnostics unchanged for all existing devices.
8. RSX-1IM compatibility is maintained in emulator mode.
9. There is a continued convergence on a single on-disk structure (ODS II), file access method (RMS), and command language (DCL).
10. Tools will be developed to support VENUS-based RT-ll development of software for PDT clusters and the FONZ and also SCS-ll host development.
6.4 Product Development Assumptions

The VENUS product development assumes that VAX/VMS is the one operating system maintained for the entire family. Further, the VAX family architecture is maintained, and all implementations are consistent throughout the family.

In this product development, emphasis is placed on languages, data management, communications, ease of use, and system availability. VENUS is suitable as a node in a HYDRA configuration. DECnet is an integral and critical part of the VENUS product. X 25 and interconnects to IBM, CDC, UNIVAC are integrated into continued VAX/VMS development.

Tailoring of hardmare products to the VENUS marketplace is achieved by adding layered software products and/or boot-time selecting VAX/VMS as appropriate.

6.5 Product Development Risks

A major risk involves timely development of several software products required especially by the commercial-oriented market segments. The significant challenge of this product development is being met today. Major software development projects are currently underway. Others are in the planning stages and require corporate funding and commitment of resources.

The design center and entry level systems depend on the availability of mass storage subsystems (disk and tape) that are significantly more cost-/performance-effective than our current product offerings.

VENUS is the first DIGITAL product scheduled to use the Mosaic ECL Array technology. Originally VENUS development plans had included the opportunity to learn from the DOLPHIN experience with the MCAs. Their extensive diagnostic capability will contribute heavily to achievement of VENUS' higher RAMP goals.

To achieve the higher RAMP goals, significant changes must be made in the philosophies governing hardware/software design and implementation and system support in the field.

```
'APPENDDIX A: VENUS Systems
Representative configurations of VENUS systems are:
```

```
1. lMB memory
    ICCS bus
    2 x RLO4 via UDA
    8 asynchronous lines
    VMS + one language
    $99K MLP (entry level system)
    2. 2MB memory
        SBI
        RM/RA80 via MBA
        TU77
        8 lines
        VMS
        4. l 6MB Memory
    2 x ICCS bus
    4 x RPO8 via HSC
    4 x TU78
    128 lines (MERCURY)
    VMS
5. 2 x System #2
    l MA780 with 1MB
        memory (esp. for
        OEM)
    3. 4MB memory
    ICCS bus
    RPO8 via HSC
    TU78
```

6. 2 x System \#4 with

256 lines total
(this is VENUS/ HYDRA)

```
8 lines
VMS (no languages)
\$l80K MLP (design center)
```

APPENDIX B: Preliminary Product Forecasts and Assumptions
In late December 1978 Al Avery and Peter Conklin prepared a forecast of VENUS units covering FY82-FY85. The forecast amounts for all high-end mid-range systems ($-11 / 70,-11 / 74,-11 / 780$, and VENUS) were derived and appear here with the assumptions of the forecasting exercise.

FORECAST

78	79	80	81	$\underline{82}$	83	$\underline{84}$	85

| Corp. NOR (\$G) | 1.44 | 1.87 | 2.43 | 3.16 | 4.11 | 5.34 | 6.94 | 9.02 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 15% of NOR (\$M) | 216 | 280 | 365 | 475 | 615 | 800 | 1040 | 1350 |

Units:

$11 / 70+11 / 74$	1400	1800	1800	1600	1000	500	100	0
$11 / 780$	35	550	1000	1500	1800	1500	200	100
VENUS	0	0	0	0	400	1800	3600	5900
TOTAL UNITS —--	1435	2350	2800	3100	3200	3800	4600	6300
Discount:								

- NOR:

$11 / 70+/ 74(\$ M)$	180	260	260	230	145	70	15	0
$/ 780$ + VENUS (\$M)	6	117	220	325	470	730	1025	1350
TOTAL NOR (\$M)	186	377	480	555	615	800	1040	1350

ASSUMPTIONS

1. High-end Packaged Systems $=15 \%$ of corporate NOR.
2. Corporate NOR grows at $30 \% /$ year compounded.
3. By the beginning of FY8l, $11 / 780$ has sufficient commercial functionality to pick up the high-end $11 / 70$ commercial business.
4. DEC will have learned by the beginning of FY8l how to penetrate high-functionality commercial business.
5. No l6-bit products beyond $11 / 74$ will be developed at the high end (\$).
6. VENUS $\operatorname{ECS}=$ Q2/82; has all functionality: $3 X$ performance @ +15\% MLP. (NOTE: Requirements now are FCS = QlFY82, Vol. = Q2FY82, $3.5 \mathrm{x}-11 / 780$ performance.)
7. VENUS is new market attack product; $11 / 780^{\prime}$ s continue to be built in whatever volumes are required to satisfy customer demands, namely, no great forced migration from /780's to VENUS.
8. OEM's and TELCO continue to buy high-end midi systems.
9. Discounts: $11 / 70$ and $11 / 74=15 \%$ flat
10. Add-on business $=15 \%$ of average of previous two years NOR.
11. This forecast addresses the Mid-range Systems contribution to corporate NOR. Large Systems Group will be responsible for an updated forecast based on VENUS' replacement of current LSG products.
12. No analysis has been made here by the Product Lines to determine how the volume given above can be achieved.

APPENDIX C: Comparison Prices and Costs for VAX-11/780
'Given here are the configuration, price, cost and BMC of VAX-11/780 packaged systems.

DESCRIPTION	$\begin{gathered} \text { FY80 } \\ \text { MLP } \\ (M . U .) \end{gathered}$	FY80 Est. Transfer Cost	$\begin{gathered} \text { FY80 } \\ \text { BMC } \\ (\% \text { XFER) } \end{gathered}$
VAX-11/780 System, 512 KB memory, 2 x RK07 (28 MB ea.), 8 asynch. comm. lines, and virtual memory operating system software.	$\begin{gathered} \$ 134,600 \\ (\times 5.1) \end{gathered}$	\$ 26,600	$\begin{gathered} \$ 748 \\ (2.8 \%) \end{gathered}$
VAX-1l/780 System, 5l2KB memory, RMO3 disk pack (67MB), TEl6 magnetic tape (1600/800 bpi, $45 \mathrm{ips}), 8$ asynch. comm. lines, and virtual memory operating system software	$\begin{array}{r} 167,000 \\ (x 4.6) \end{array}$	36,100	$\begin{gathered} 783 \\ (2.2 \%) \end{gathered}$
VAX-11/780 System, 512KB memory, RMO 3 disk pack (67MB), TU77 magnetic tape (1600/800 bpi, 125 ips), 8 asynch. comm. lines, and virtual memory operating system software.	$\begin{array}{r} 177,000 \\ (\times 4.3) \end{array}$	40,700	$\begin{gathered} 843 \\ (2.1 \%) \end{gathered}$
VAX-11/780 System, 1MB memory, RP0 6 disk pack (176 MB), TEl6 magnetic tape (1600/800 bpi, 45 ips), 8 asynch. comm. lines, and virtual memory operating system software.	$\begin{array}{r} 207,000 \\ (\times 4.8) \end{array}$	42,800	$\begin{aligned} & 937 \\ & (2.2 \%) \end{aligned}$
VAX-11/780 System, lMB memory, RP06 disk pack (176MB), TU77 magnetic tape (1600/800 bpi, 125 ips), 8 asynch. comm. lines, and virtual memory operating system software.	$\begin{gathered} 217,000 \\ (x 4.7) \end{gathered}$	46,500	$\begin{aligned} & 997 \\ & (2.1 \%) \end{aligned}$
"UNIBUS" VAX-1l/780 System, 256KB memory, $2 \times$ RK07 (28 MB ea.), 8 asynch. comm. lines, and virtual memory operating system software. (system subject to corporate approval)	$\begin{aligned} & 99,800 \\ & (\times 3.9) \end{aligned}$	25,300	$\begin{aligned} & 698 \\ & (2.7 \%) \end{aligned}$

VAXCALENDAR

COMET
DR780

NEBULA ERCURY (T

VENUS (T) HYDRA-II (T)
Multi-User
Multi-User
Real Time
Real Time
Interfacing
Interfacing
Alloc. Ctrl. SMP Breadboard
Alloc. Ctrl. SMP Breadboard
ISAM Disk Quotas
ISAM Disk Quotas
MA780
Tunable
Batch
Operator
Fast 1/O
Tapes
Mount-Disks
RMS
1

DECnet
DER FORTRAN DATATRIVE
COMMON LANG.
DEBUG
DCL
MCR
EDITORS
DIFFERENCES
RUNOFF
RSX MIGR.
\qquad R1. 5 \qquad 1.

R3.0 (T)
1.
.

KAPPENDIX E: Related Documentation
Existing documents that are useful for anyone working in VENUS product development and marketing are listed below:

1. VENUS Project Proposal (27 Dec. 1978) Contact Steve Jenkins, TW/C04, DTN \#247-2395.
2. VENUS Product Description (20 Jan. 1979) Contact Steve Jenkins
3. VENUS Impact Statement (13 Feb. 1979) Contact Don Ames, TW/A02, DTN \#247-2517.
4. VENUS Software Plans (10 Apr. 1979) Contact Peter Conklin, TW/A08, DTN \#247-2119.
5. VAK/VMS R2.0 Requirements Document (Sept. 1978) Contact Kathryn Norris, TW/A08, DTN \#247-2580.
6. System plan for VAX/VMS (10 Jan. 1979) Contact Joe Carchidi, TW/D08, DTN \#247-2251.
7. VAX/VMS RELEASE TWO Project Plan (9 Feb. 1979) Contact Trevor Porter, TW/D08, DTN \#247-2262
8. Commercial Market Product Requirements (March 1979) Contact Roger Cady, MKl-1/E25, DTN \#264-5045.
9. NEBULA Product Requirements (Feb. 1979) Contact Lou Philippon, TW/A08, DTN \#247-2860.

Gordon Bell
Ron Bingham
Brian Croxon
Art Campbell
Roger Cady
Patrick Courtin
Dick Clayton
Bill Demmer
Raff Ellis
Ulf Fagerquist
Barbara Farquhar
Ed Fauvre
Jack Gilmore
Rose-Ann Giordano
Mike Gutman
Bill Heffner
Win Hindle
Per Hjerppe
George Hoff
John Holman
Irwin Jacobs
Bob Joseph
Paul Kelley
John Kevill
Bill Kiesewetter
Bob Klein

```
ML12-1/A51
MRI-2/E85
TW/C04
PK3-1/M12
MK1-2/E25
MK1-2/D 29
ML12-2/E71
TW/D19
MR2-4/M79
MR1-2/E78
MR2-4/M79
MKl-2/E06
MKl-1/Jl4
MR1-2/A65
ML3-6/E94
TW/Cl0
ML10-2/A53
MRI-2/E78
MR1-2/E47
PK3-1/P84
MKl-2/H32
MR1-1/M42
MR1-2/El }
ML3-6/E84
MKl-1/M49
MR1-1/M85
```

Robert Lane John Leng Bill Long Si Lyle Ward MacKenzie Julius Marcus Jim Marshall
Bob Nealon
Ken Olsen
Stan Olsen Stan Pearson George Plowman Larry Portner Franco Previd Dick Rislove Joel Schwartz John Shebell Jack Shields Leo Shpiz Pete Smith Dick Snyder Charlie Spector Harvey Weiss Jim Willis Jerry Witmore

MKl-2/Bll
MR1-1/A65
ML10-2/A57
MR1-1/M42
PK3-1/A60
MKI-2/C37
TW/A0 3
MR2-4/F19
ML10-2/A50
MK1-2/C36
ML12-2/E71
ML5-5/E97
ML12-3/A62
MRI-2/E18
MK1-2/L35
MR2-4/M51
MR1-1/S35
PK3-2/A58
MK1-2/H32
MRI-1
MR1-2/E37
ML5-2/A33
MRI-1/M85
MKI-2/H32
PK3-1/M4 0

TW/A0 8
TW/A08
TW/A0 8
TW/A08
TW/A0 8
TW/A0 8
TW/A0 8
TW/A0 8

TW/E07
TW/C0 4
TW/C03
TW/D0 6
TW/C04
TW/C04
TW/A08
TW/E0 7
TW/E07
TW/E0 7

INTEROFFICE MEMORANDUM

TO: Design Review Attendees

DATE: March 12, 1980 FROM: Sultan M. Zia
DEPT: L.S.E.G.
EXT: 6277
LOC/MAIL STOP: MRI-2/E47

SUBJECT: MEETING REMINDER

This memo is to confirm the Venus Technology Design Review meeting scheduled for Wednesday, March 19, 1980, from 2:00 P.M. to 5:00 P.M., in the DECIO Conference Room.

Attached is a copy of the agenda and some reading material on the Venus technology effort.

SZ/jr1
Attachment

VENUS TECHNOLOGY REVIEN - AGENDA

1. OVERVIEN	SULTAN ZIA	$2: 00-2: 15$
2. PACKAGING	JIM MCELROY	$2: 15-3: 30$
3. POWER SYSTEM/	CHUCK BUTAIA	
ENVIRONMENTAL CONTROL	DERRICK CHIN	$3: 30-4: 15$
4. MCA	BILI WALTON	$4: 15-5: 00$
5. FEED BACK \& WRAP UP		$5: 00-5: 30$

!D I G I TA L! +++++++++++++++

INTEROFFICE MEMORANDUM

```
TO: Gordon Bell
```

SUBJ: VENUS TECHNOLOGY CONCEPT REVIEW

Gordon,

I am holding this meeting on March 19, 1980, (it is in your calender) to review with key technical people in the corporation the basic design concepts that we are using in areas of packaging, power system and environmental controls. Also, we will be updating the reviewers on the status of the MCA.

We hope that you can make it to the meeting.

SZ/jrl
Attachment

C. MACRO PLACEMENT CONSIDERATIONS

The $V_{C C}$ current is divided between the two $V_{C C}$ pins. If an imaginary line is drawn between pin 43 and 9 , the $V_{C C}$ current to the top half of the array comes from pin 60 while the $V_{C C}$ current to the bottom half of the array is connected to pin 26. When placing the macros in the array approximately half should be placed in upper or lower half. The bias network looks at the current in the lower half to determine proper bias voltages. In order to maintain the guaranteed noise margins, the power (due to $V_{C C}$ current) in the upper half of the array should be within $=10 \%$ of the lower half.
follower. The library in Appendix A designates all macro inputs that go to an input follower with an *. The reason for the compensation network is to insure that the input will not oscillate due to negative input impedance. No compensation network is required on macro inputs that are not connected to a bonding pad.

There are 26 possible outputs from the array that must be connected to bonding pad pins 1 through 24 (not including pins 3, 9, 15, and 20) and pins 62 through 68 (not pin 66). If the array contains less than 26 outputs, then these pins can be used as inputs. The output emitter followers of the output cells are located next to these bonding pad pins. Pins $67,68,1,2,16,17,18$, and 19 have two emitter followers at each pad. The driver of macro 016 or 017 (transceiver) can be routed from any output cell to one of the above pins in order to drive 50 or 25 ohm loads to -2 volts. All other macros can drive 50 ohms to -2 volts. Note that transistors $Q 6$ and $Q 7$ in Figure 9 are actually located near the bonding pad.

Figure 20 shows the location of the output emitter followers (OEF) from the output cell next to the bonding pads. Also shown is the location of the 100 K ohm load resistors (L), and the compensation networks (RC).

B. EXTERNAL PIN USAGE

Figure 10 shows the pin configuration of the Macrocell
Array. There are eight power pins and 60 iogic pins.
The ground, VCCO, for the output followers of the output cells is separated from the ground $V_{C C}$, for the rest of the logic. The current supplied to $V_{C C}$ is rather constant while the current supplied to VCCO changes when outputs are switching. The $V_{C C}$ and $V_{C C O}$ pins should be connected together to a good ground outside the package similar to normal MECL 10 K grounding.

There is an input compensation network and a look ohm input pull down resistor located next to each of 36 bonding pads (pins 24 through 62, not including pin 26, 43, and 60). There is also a 100 K ohm input pull down resistor located next to pins 4, 5, 6, 12, 13, 14, 21, 22, 23, 63, 64, and 65. There is a total of 48100 K ohm input pull down resistors with each located next to a bonding pad as indicated above. These resistors can be connected to their respective pad if it is used as an input so that an unconnected input pin will automatically be held in a logic low state. The input compensation network should be connected to its respective bonding pad pin if it is connected to an input
IV. MACROCELL ARRAY DESIGN CONSIDERATIONS

A. UNUSED INPUTS

Unused inputs in the array will automatically be forced to a low voltage (logic "O") by the CAD system (the input base is shorted to the emitter). There are no special provisions for providing a high voltage (logic "1") on an unused input. A logic "1" can be generated using a spare inverter from an interface on major cell.

The driver of the transceiver macros can drive 25 ohm or 50 ohm load resistors to -2 volts with a low voltage output, VoL, in the cut-off mode, of -2 volts. The average power dissipation of the output transistor for the transceiver driver is 20 mw for 25 ohm load or 10 mw for 50 ohm load. The power dissipation of the receiver follower can be calculated by multiplying 5.2 volts times the output follower current.

The fan-in for the output macros is shown in parenthesis (in Appendix A). Normally, the fan-in is 3 for the upper tree input and 1 for the lower tree input. An exception is the inputs of the transceiver driver where the fan-in is 3. The upper tree input normally has to switch 3.5 ma , while the input follower has to switch lma.

An output (Y1) is also available for driving internal loads. This output can be selected with an output follower current of 1 or 2 ma .

Figure g shows a schematic of the transceiver macro 016. The current source for the driver is 8 ma and the input follower current is 2 ma. A diode is not placed in series with the input follower of the driver since it is not a series gated function and soft saturation cannot occur. The output transistors Q6 and Q7 are located near the bonding pad and not in the output cell. When the y output of the cell is connected to the bonding pad via the CAD system, the collector of Q4 is actually routed to the bases of Q6 and Q7.with the emitters connected to the bonding pad. The load resistor, R4, is placed outside the package. For the receiver, the current source is 3.5 ma . The output emitter follower current of the receiver can be selected for 0,1 , or 2 ma.

The typical power dissipation, P, specified in Appendix A does not include the output follower. Since the load resistor is placed outside the Macrocell Array package, only the power of the output transistor need be calculated. For 50 ohm terminations to -2 volts, the average power dissipation for the output transistor is 15 mw .

c. OUTPUT CELL

The 26 output cells are located around the right half periphery of the array as shown in Figure 2. The output cell is used to interface to logic outside the chip by providing 50 ohm and 25 ohm drive capability. The output cell library (shown in Appendix A) provides macros with a similar logic capability as an interface cell (about $\frac{1}{4}$ the logic capability of the major cell).

Each output cell contains 15 transistors and 16 resistors as shown in Figure 8 . These components are connected together on first layer metal to form logic functions with one full series gated structure. Two partial series gated structures can be formed in one cell for the transceiver macro functions.

The current source for output cell macros 001 through 015 is 3.5 ma . The circuit configuration for a latch is similar to the interface configuration shown in Figure 7 except that only one output is available and resistor RI is zero. The output emitter follower is located near the bonding pad. The input follower current is lma instead of . 5 ma (R8 and R9 in Figure 7). A diode, Q13, in Figure 7, is connected in series with the input follower on all lower level inputs (marked with *) of macros 001 through 015.
combinations. Very useful macros like ID5, ID6, ID7, and IID (where one input is inverted)are not available in standard logic families. Macros ID6 and ID7 together can be used to form a 1 of 4 decoder similar to M45 except an enable line is not present. Macros II3 and I14 together can be used to form a D flip flop similar to M31.

If both outputs are used an output follower current of . 5 or lma may be selected in the CAD system. An output that is not used will not have a pulldown resistor. If only one output is used a 2 ma current can be selected when driving a high number of fan-ins (>6) in order to minimize propagation delay degradation. A .5ma current can be used in non-critical delay paths. Note that the outputs are actually buffered through the output emitter follawers (Q3 and Q4) and are not fed back directiy as shown in the logic equivalent diagram.

The typical power dissipation, $P D$, specified in Appendix A does not include the output follower since different current values can be specified. The power dissipation of the output follower can be calculated by multiplying 5.2 volts times the output follower current.

The logic power of series gating can again be shown in figure 7. The latch can be formed with only one series gated structure with a logic equivalent of four gates. Clamp transistors are not required in the interface macros since collector dotting occurs in only one series gated structure. All the inputs of the macros in the Interface cell library have a fan-in of 1 . Dual gate functions are also available in the library in numerous
tod, from the D input to the Q or \bar{Q} output is $1.3 n s$ while the delay, tpd*, from the $E 1$ or $E 2$ input to the Q or \bar{Q} is $1.6 n s$. These values are for a lma output follower current (at $R 6$ and $R 7$) driving a fan-in of 3 . The asterisk at the $E 1$ and $E 2$ input denote they are connected to an input follower which connects to the lower portion of the series gated current tree. The current source is Ima which is formed by Q15 and R10. The bias voltages are the same as the major cells.

The input followers, Q11 and Q12, have an input follower current of .5 ma . A diode, Q13, is placed in series with the input follower to insure that soft saturation cannot occur when interfacing to signals off the chip under worst case conditions. The diode increases the propagation delay by 100 ps . Transistor $Q 14$ is required to translate $V_{B B} 1$ (due to the diode, Q13) with a current of . 5ma through resistor Rg.

For the latch, Q and \bar{Q} are actually fed back to both sides of the differential amplifier, $Q 5$ and $Q 6$, in order to insure reliable operation. The logic equivalent shows only the Q output being fed back. Due to the feedback, a total of 1 ma of current flows through R4 and RS.

B. INTERFACE CELL

The 32 interface cells are located around the left half periphery of the array as shown in Figure 2. In addition to input buffering, the interface cells provide about one-fourth the logic capability of the major cells.
These cells can be utilized for input interfacing and to provide extra logic power within the array.

Interface cell macro outputs (as well as major cell macro outputs) can only be connected to internal macro inputs. These outputs do not have enough drive capability to drive signals off the chip. Only outputs from output cell macros can drive 50 ohm or 25 ohm loads.

Each interface cell contains 17 transistors and 13 resistors as shown in figure 6 . These components are connected together on first layer metal to form logic functions with one full series gated structure. Two partial series gated structures can be formed in one cell for dual gate macro functions. The Interface cell Library in Appendix A lists the 14 macros and their characteristics.

Figure 7 illustrates the interconnection of the components to form a latch. The maximum propagation delay,

Emitter dotting of output transistors forms a wired-OR logic function. Emitter dotting of up to four outputs is allowed between cells in the array for a 2 ma output follower current. Two outputs can be wired-oRed for a Ima output follower current.

The fan-in for each input when greater than one is also specified in Appendix A. For the circuit shown in figure 5 , the fan-in of all inputs is 1 even though some inputs go to more than one base. When an input goes to two different bases at the top of one current tree, the fan-in (as far as propagation delay degradation is concerned) is considered to be 1 . The reason is that the input driving the two bases has to switch a maximum of Ima since only ima can flow into the current source $Q 17$. If an input is connected to two different current trees (2 series gated structures) then the fan-in is specified as 2.

The value of series gating can be seen by the logic equation for the 4 input exclusive $O R$ gate shown in Figure 5. To implement this function using gates would require eight 4 -input $A N D$ gates pius one 8 -inpiut $O R$ gate. Gates also might be required to form the true and complement of each input. About 40 connections would be required if gates were used as compared to five connections for the series gated macro.

The output drive capability to other macros on the chip is limited only by propagation delay degradation. Essentially, there is no limit due to $D C$ conditions since the base current required per fan-in is only $20 u$ amps. Where performance is a premium a fan out of 12 should not be exceeded.

The typical power dissipation, $P D$, specified in Appendix A does not include the output follower current since different values can be specified. The power dissipation of the output follower can be calculated by multiplying 5.2 volts times the output follower current.

The logic power of series gating can be easily shown in Figure 5. Collector dotting in the top of the current tree (such as collectors Q3, Q5, Q8 and Q10) forms a wired AND logic function. Transistors Q1 and Q2 are used to clamp the voltage at the bases of Q19 and Q20 when more than 1 ma must be supplied through resistors R2 and R3. When collectors of two different current trees are tied together, a clamp transistor is provided in order to maintain a proper "low" level at the output. Collector dotting is allowed only within the cell since any capacitance at the collectors will degrade propagation delays appreciably.
in Figure 2 while the master bias driver cell is shown at the bottom of the array. VCS tracks with VEE to maintain a constant current in the current source.

The input followers, Q11 and Q14, each have an emitter current of . 5ma average for the input at B or D in the high or low state. The input follower current is about 10\% higher when the input is in the high state and about 10% lower when the input is in the low state. If the input follower drives two current trees from one input follower (such as the clock lines of a flip flop), the input follower current is normally ima.

The output follower current (through $R 8$) can be selected by the designer for $0, .5,1$, or $2 m a \operatorname{if}$ two outputs or less are used per half cell. If four outputs per half cell are used the current can be selected for $0, .5$, or Ima. A lma current should be selected if the output is driving a fan-in of 3 or less in order to maintain the speed specified. A 2ma current should be selected for a higher number of fan-ins (>6) in order to minimize propagation delay degradation. Curves will be available in the design manual showing the degradation versus fanout and output follower current. A . 5ma current should be used, in order to save power, if the delay path is not critical.

A. MAJOR CELL DESCRIPTION

The major cells in the array comprise the internal area on the chip and are used for the majority of the logic capability. Each major cell contains 52 transistors and 48 resistors as shown in Figure 4 . These components are connected together on first layer metal to form logic functions with four series gated structures operating on MECL $10 K$ logic levels. Figure 5 illustrates the interconnection of the components to form a 4 input Exclusive OR gate (half cell of MII). The maximum propagation delay, tod, from the A or C input to the Y output is $1.5 n s$. This value is for a lma output follower current (R8) with the output driving a fan-out of 3 . Similiarly, the maximum propagation delay, $t_{p d}$, from the 3 or 0 input to the Y output is $1.8 n s$. The asterisk at the B and D input denotes that each input is connected to an input follower which connects to the lower level of the series gated current tree.

Outputs of the major cell macro can only drive inputs of other macros within the array. The current source for each current tree (in figure 5) is 1 ma which is formed by Q17 and R6 and_Q18 and R7. The bias voltages are $V_{B B} I=$ -2.1 volts, and $V_{C S}=-4.0$ volts. The 24 slave bias drivers are shown next to the major cells in three different columns
gates. If dual flip flops, M31, were used in all the major cells (a total of 96 flip flops at 7 gates per flip flop) instead of full adders, the array would contain 904 equivalent gates. The application example for 8×82 's complement multiplier (see Application section) contains 888 equivalent gates with a 93\% cell utilization.

Although the chip is large good yields are experienced since most of the chip is composed of metal for interconnecting the macros. The total emitter area of the active devices is the primary concern in determining the yield.

The macrocell array is voltage compensated so that VEE can range from -5.2 volts $\pm 10 \%$. Thus, a system designed with the macrocell array can operate with a VEE of -4.68 volts resulting in approximately 10% less power at the same performance.

The maximum operating junction temperature is specified at $165^{\circ} \mathrm{C}$ (the same as MECL 10 K) with the package capable of dissipating 5 watts of power. A recommended heat sink and 1000 LFM of air flow result in a thermal resistance, ${ }^{\circ} \mathrm{JA}$, of only $15^{\circ} \mathrm{C} /$ watt. The ambient temperature range is 0 to $70^{\circ} \mathrm{C}$. More on the performance characteristics is discussed in Section E.

Macarial Eor Pazkaging Section oE Venus rachnology zaviziv

A bciaf description of the naterial contained hersin is orovided bo juide tae reader to the areas of interase：

1．Pino overview drawings are stown to deoizt the dual $33[$ and dual $3 I$ configurations．Je soussa tis daibus sabinat is also requirad Eor the 33I systan．

2．こ．J．Analysis of とŋ彐 enclosure．
3．Seructual analysis of the poner supoly support Erame．
4．A ：ross section tarough the c？＇J sarl age sions tio nudule／backuanel interfase．Elenants os bỉ D．O．pomar discrioution are also depictad．

5．Jecailed Jien of dual $33 I$ systan backoanzis．
j．Jesariution of wackanel laydp and anserdotion．
7．لano＇s dascribing ecL and TTL aodule densiとy estinazes．
3．Donponent plazenents for trial layout of Fpi nodulo．
9．Lemo describing calculation Exr number oE nodula ground pins．

13．Jaseripeion of nodale layup nad aonstcuation．

12．Repore on MCh darrier／socket noise problan．
13．azport on tiarnal tescing．
14．Rajort on accoustiaal tastiog．

Nore：
ETRST PAJE JE EACH SECR［ON［S MARKED NITは CERCLED NJM3ERS CJRRESPJNJING TO ITE 15 I3JVE．

FRONT VIEW
$\therefore \cdot$

SIDE VIEW

$$
\frac{\text { REAR VIEW }}{\text { 3ACKPLANE "PIN SIDE" SHOWN }}
$$

$\frac{\text { VENUS EQUIPMENT CONFIGURATION }{ }^{\circ} C^{\circ}}{\text { SCAE:14 }} \leq E I$

Calculation of Venus CG
John M. Drudge. is Munch 30

Estimated whiarts of Cabinet, components and their center st gravity sositions relative to the origin (see figure on newt -utu))

(12, - minces 32020

Tefinition of Coo-divate refirmias

Calculations

$$
\bar{x}_{c G}=\frac{\sum w_{i} x_{c G}^{i}}{\overline{\sum w_{i}}}
$$

Where W_{i} is the weight ot the component locates $=-t x_{i}^{i}$ Similarly,

$$
\bar{u}_{c q}=\frac{\sum w_{i} y_{c q}^{i}}{\sum w_{i}}
$$

USing -is weights and positions given in the thimble,

$$
\begin{aligned}
& \bar{x}_{i g}=12.4 \text { incus } \\
& \bar{y}_{\mathrm{ceg}}=32.6 \text { inches }
\end{aligned}
$$

Eice Vien

$$
\text { Cosler contesine } 4
$$

 casters.

Case ! - >0 ing aicout rear raser.

$$
\tan \theta_{1}=\frac{9.9 \mathrm{ix}}{32.6 \text { in }}=.303
$$

$$
\theta_{1}=.295 \text { razisus }=16.90
$$

Cove -isoing acost but seitin.

$$
\begin{aligned}
& \tan \theta_{2}=\frac{10 . m}{32.6}=310 \\
& \theta_{2}=.300 \text { risions }=17.2 .
\end{aligned}
$$

Eorce rajuige \rightarrow tis stationany saiznet oven.

$$
\text { Frone }+C G
$$

zaz
Sive View
,

Farte: F app: at height of $\mathrm{w}^{\prime \prime}$ with rear int

$$
\sum M_{=}=0=\left(939 \operatorname{ios}_{f}\right)(9 G \cdots-F
$$

or

$$
\bar{F}_{1}=155.054
$$

$$
\begin{aligned}
& =\text { - isst initen it ibcbe } \\
& \Sigma M_{0}=0=(939 \mathrm{lbs})(10: \mathrm{m})-F(\mathrm{i}) \mathrm{i} \\
& F=160 \mathrm{los}
\end{aligned}
$$

$$
(934=5, \therefore \sin =12325
$$

```
Structual Analysis of Venus Po:wer Supoly Mounting Scheme, Jsing
Compucer Gravhic Analysis Mathods.
```

Intro
By the use of computer graphic methods, structural analysis san be accomplished accurately and swiftly compared co hand calculation methods. rims report will give an example of a structural problem, hov it was modeled and show the results obtained.

Structures problem
The Venus power Supply will weigh appromimataly lou pounds. Dusting a typical drop East (כEC STD 192), accelerations of up to 20 g's are encountered. The mounting support for the power supply must, then, be able to withstand $200 J$ lbs-force.

The mounting support (shown in figure l) consists of four I-beams. In the front and in the back the I-beams will be connected together with steel strips. The I-bean cross section with dimensions is shown below.

Fine length of each $[-b e a m$ is 42 inches and the axes of the beans are separated from top to bottom by a distance of 7 inches. The aenterline of the beans in the front are $143 / 4$ inches from the centerlines of the beans in che back.

Modeling

To simplify the configuration, a model consisting of the front half of the power supply mounting bracket was constructed. Because of the limitations of the graphics input of the computer the cross section of ᄃぃa dean was squared off....
I-beam cross ietion i- mooe
ris langth of the beams is 42 inches and they are seperated by 7 inches. A graphics display of the model constructed is shown in figure 2.

Iha model aan be constructed by two graonic methods. Fis first cunsists of drawing the model from a top and side riew, dividing it into several elements and inputing the nodes of the elements with an electronic digitizer.

In the seaond method, a series of bricks can be aonstruatad by Lhe conputer (the dimensions of which are inout by the user) and the bricks san be sombined using interactive zraphias, aonstructing the nodel.

In Figure 2 cha beam supports are shoin by up arrows and the ioads are s.avin by down arcons. The locations of thase suppores and loads were jraphically input and the mannitudes of the forces vere Eyoed in. fhese Eorces were one handred pounds each, toealling log3 oounds.

Results

The zomputer program uses a finite element method to calculate displacenants and rotations Eor each node point and stresses for eacn brick element. Examples of the computer output are sionon in Figures 3 and 4.

Tha results indiaate that the highest steresses in the Aluminum I-beans is about $4 J J J$ psi. The aighest stresses in the steel conneating bats is about 5g30 psi. 3oth of these stresses occur close to the connecting areas between the stael connectors and the aluminum I-beans and tie walls and aluminum I-beans.

Fha largest deflections oecur at the center of the structure and ade aagnicudes less than .05 inches.

Conclusions

The tensile scrength of the aluminum alloy used is about 40,000 osi. A Eonservative estimate of the yield strength would be about one-hale oE chis, or $20,00 J$ psi. Siace the highest stress ancountered in the aluminum I-beam was $4 J J J$ วsi, the safaty Eactor is 5.

For the steel sonnectors the tensile strength is about 75,000 psi, and the yield strength is estimated at 33, DOJ psi resulting is in safaty factor of about 7.

Fhese safety factors are quite high and we Eeel comeortabla with the capabilities of the mounting support. The high safaty Eaztors indicate, also, Ehat a reduction in the $[$-bean cross section is possible. Analyses similar to chis one may be done quite easily to find the smallest cross section that will support the power supply.

John Druke

Fig. 1
Power Supply Supports.
(Metal plates at bottom simulate P/S weight.) Photo courtesy of P. Gildea's Bridge works, Inc. 1979

 E Rata.
 3_{4}^{3} 2OOM

next)

THO I-MEANS SUPPORTED OY STEEL CONNECTORS

Fig. 2

X－
TRANSLATION

$$
\begin{aligned}
& 0.0000 \mathrm{E}-01 \\
& \text { 2.7090E-04 } \\
& \text { 2.2800E-04 } \\
& \text { 2. } 2358 \mathrm{E}-04 \\
& 0.0000 \mathrm{E}-01 \\
& 2.0353 \mathrm{E}-04 \\
& \text { 0.0000E-01 } \\
& -1.7928 \mathrm{E}-04 \\
& 0.0000 \mathrm{E}-01 \\
& \text { 0. } 0000 \mathrm{E}-01 \\
& -1.0834 \mathrm{E}-04 \\
& 0.0000 \text { ビー01 } \\
& \text {-1.8605E-05 } \\
& \text { 0.0000Eー01 } \\
& 0.0000 \mathrm{E}-01 \\
& \text { 3.8924E-05 } \\
& 6.7817 \mathrm{E}-04 \\
& 1.0307 \mathrm{E}-03 \\
& \text { 9.9939E-04 } \\
& 9.0964 E-04 \\
& 6.5141 \mathrm{E}-04 \\
& \text { 8. } 3745 \mathrm{E}-04 \\
& 7.0935 \mathrm{E}-04 \\
& 6.6548 \mathrm{E}-04 \\
& \text {-1.4575E-03 } \\
& \text {-9.4548E-04 } \\
& \text {-0.4298E-04 } \\
& -1.1684 \mathrm{E}-03 \\
& \text {-4.5180E-04 } \\
& -9.5317 \mathrm{E}-04 \\
& \text {-5.7978E-04 } \\
& -3.9997 E-05 \\
& \text { 7.97HOE-04 } \\
& \text { 3.9600E-04 } \\
& \text { 3.2209E-04 } \\
& 9.1664 \mathrm{E}-04 \\
& \text { 1.6368E-03 } \\
& \text { 1.3708E-03 } \\
& \text { 1.1892E-03 } \\
& \text { 9.3995E-04 } \\
& \text {-1.3075F-05 } \\
& \text {-2.1895E-05 } \\
& \text {-2.1910E~05 } \\
& \text { 0. } 00000 \mathrm{E}-01 \\
& -1.3813 \mathrm{~F}-05 \\
& \text { 0.0000E-01 } \\
& 2.709 n E-05 \\
& 0.0000 \text { - } 01 \\
& 0.0000 \text { ビ-01 } \\
& \text { 2.4102ビー05 } \\
& 0.0000 \mathrm{E}-01 \\
& \text { 1.9464E-05 } \\
& \text { 0.0000E-01 } \\
& 0.0000 \mathrm{E}-01 \\
& 6.1171 \mathrm{E}-0 \mathrm{O} \\
& -4.8847 E-03 \\
& -4.8974 E-03 \\
& -4.1618 E-03 \\
& \text { - } 3.5909 \mathrm{E}-03 \\
& -2.8490 \mathrm{E}-03 \\
& \text {-2.8552E-03 } \\
& -4.1510 \mathrm{E}-03 \\
& \text {-3.5827ビ-03 } \\
& \text {-2.8250E-03 } \\
& \text {-2.8112E-03 } \\
& -3.577 \text { - E-0 } \\
& -3.584 n \mathrm{E}-03 \\
& \text {-4.1427E-0 } \\
& -4.1483 \mathrm{t}-03 \\
& \text {-4.8389E-03 } \\
& -4.8312 t-03 \\
& -1.87 \text { ロ2 } \mathrm{E}=02 \\
& \text {-1.8870だー02 }
\end{aligned}
$$

> -1.3645ド-02
> -1.3044t-02
> -1.1858t-02
> - $1.0454 \mathrm{t}-02$
> - - . 62t.4F-03
$2-$
$x-$
Y－
ROTATION
2－
TRAISLATION
RUTATION
ROIATPOiv
0． $00000 \mathrm{~F}-01$
$0.0000 \mathrm{t}-01$ $0.0000 \mathrm{E}-01$ 0．0000E－01 0．0000E－01 $0.0000 \mathrm{E}-01$ $0.0000 \mathrm{E}-01$ 0.0000 と－01 0．0000E－01 $0.0000 \mathrm{E}-01$ $0.0000 \mathrm{E}-01$ $0.0000 \mathrm{E}-01$ $0.0000 \mathrm{E}-01$ $0.0000 \mathrm{E}-01$ 0．0000R－01 $0.0000 \mathrm{E}-01$ 0．0000Eー01 0．0000E－01 $0.0000 \mathrm{E}-01$ 0．0000E－01 $0.0000 \mathrm{E}-01$ $0.0000 \mathrm{E}-91$ $0.0000 \mathrm{E}-01$ $0.0000 \mathrm{E}-01$ $0.0000 \mathrm{E}-01$ 0．0000E－01 0．0000E－01 0． $0000 \mathrm{E}-01$ $0.0000 \mathrm{E}-01$ 0．0000E－01 0．0000E－01 0．OOOOE－01 $0.0000 \mathrm{E}-01$ 0.0000 ER－01 0.0000 た－01

0．00U0ト－01

$0.0000 \mathrm{E}-01$	0．0000t－01
0．0000E－01	0．0000：－01
0．0000t－01	$0.8000 \mathrm{E}-01$
0．0000E－01	0.0001 E－01
$0.0000 \mathrm{t}-01$	0．000）E－01
0．0000E－01	0．00）OE－01
0．0000E－01	0．00COE－01
0．0000E－01	0．0）OOE－01
$0.0000 \mathrm{E}-01$	0．0\％00E－01
$0.0000 \mathrm{E}-01$	0． $0000 \mathrm{E}-01$
$0.0000 \mathrm{E}-01$	0．1000E－01
0．0000E－01	0．1000t－01
$0.0000 \mathrm{E}-01$	0.0000 E－
0．0000E－01	9．0000E－： 1
$0.0000 \mathrm{E}-01$	C．0000t \rightarrow O1
0．0000E－01	$1.0000 \mathrm{E}-01$
0．0000E－01	0．0000E－01
0．0000E－01	0．0000E－01
$0.0000 \mathrm{E}-01$	$0.0000 \mathrm{E}-01$
0．0000E－01	0．0000E－01
$0.0000 \mathrm{E}-01$	0．0000E－01
0．0000E－01	$0.0000 \mathrm{E}-01$
$0.0000 \mathrm{E}-01$	0．0000E－01
$0.0000 \mathrm{E}-01$	$0.0000 \mathrm{E}-01$
$0.0000 \mathrm{E}-0$ ！	$0.0000 \mathrm{E}-01$
$0.0000 \mathrm{E}-01$	$0.0000 \mathrm{E}-11$
0．0000E－01	$0.0000 \mathrm{E}-11$
0．0000E－01	$0.0000 \mathrm{E}^{-11}$
$0.0000 \mathrm{E-I} 1$	0．0000：－
0．0000E－01	$0.0000^{-1} 1$
0．0000E－01	0．000－01
0．0000E－01	$0.00114-01$
0．0000E－01	0．0001－01
0．0000E－01	$0.000 \mathrm{E}-01$
0．0000E－01	0．VME－01
0．0000E－01	0．
0．0000E－01	（1）．000－01
0．0000e－01	1．0000E－01
0．0000E－01	－ 0 （000e－01
0．0000e－01	．0000E－01
0．0000E－01	． 0000

FILEMEIT LOAD HO．FACF SIG－XX
$S I S-Y Y$
S1（；－22
$S I G-X Y$
$S 1 G-Y^{\prime}$
S $11,-2 x$

1	1	0）	$-2.62 F+03$	$-1.73 t+02$	$-3.81 r+02$	$-2.115+2$	1．0UF＋02	2．ロロビ＋U2
2	1	$1)$	$-5.0+t-02$	1．28rat 2	$1.85 t+02$		$-2.15 t+01$	－1．67E＋01
3	1	0	$9.89+501$	$-7.80 F+01$	$-8.35 t+01$	$-4.96+5+01$	$9.350+00$	1．7nE +02
4	1	0	7．175＋02	8．40E＋01	7．20t＋01	$2.13 x+02$	$1.092+01$	3．43t＋00
5	1	0	$6.48 \mathrm{t}+02$	－3．87t＋01	－4．016．01	$7.81 t+00$	$-1.14 t+01$	－1．4irat 1
6	1	0	$1.27 t+03$	$1.014+01$	$1.21 r+01$	$3.60 \mathrm{t}+01$	3．93t＋90	7．n3E＋01
7	1	0	$-2.04 t+03$	－1．70t＋02	$-3.55 t+02$	$-2.64 F+02$	$-1.70 \mathrm{~F}+01$	$2.99 E+02$
3	1	（i）	－7．50k＋01	$1.34 \mathrm{t}+02$	$1.65 r+02$	2． $28 \mathrm{~F}+01$	$-2.47 t+01$	$2.54 \mathrm{t}+02$
9	1	0	$3.91+0.12$	$-3.506+191$	$-8.88 t+01$	$-2.14 t+02$	－9．92F＋01	7． $113 t+02$
11）	1	\checkmark	$3.917+0$ ？	$3.69+$＋00	$5.19 t+60$	$9.40 t+01$	－7．い9ト＋00	2．41） $4+02$
11	1	，	$1.148+62$	－0．916＋01	－．3nt＋01	$-4.83+101$	3.17 ＋11	7．70t＋1．1
12	1	（i）	$1.17+03$	0．01セ＋01	（2．0．3F＋0．1	$-5.10 t+01$	－7．90f．00	1．24rtar
13	1	u	$-1.302+03$	$-8.23 t+01$	$-2.60 t+16$	$-2.41+02$	－7．33t．01	－1．62t＋12
14	1	9	1．52r．0．01	$-5.43 t+01$	－3．39E＋00	$2.83 t+01$	2．35＋01	1．0．ut＋u1
15	1	0	1．35r＋03	－．205， 0^{2}	＇．11t＋＂2	－•吅＋\％	1．！！＋！	－－－／r＋

$=\frac{\operatorname{SCALED} B-B}{\operatorname{sen}}$
\oplus
SENUS: VIEW
VENUS CARD CASE

 backpanel:

202 Cu
FR4 6 mils +/- 2 mils
2 oz Cu
FR4 16 mils +/- 2
1 oz Cu
FR4 3.5 mils $+/-.5$
1 oz Cu
FR4 16 mils +/- 2
2 oz Cu
FR4 6 mils +/- 2 mils
2 oz Cu
FR4 16 mils +/- 2
1 oz Cu
FR4 3.5 mils $+/-.5$
1 oz Cu
FR4 16 mils +/- 2 mils 2 oz Cu
FR4 6 mils +/- 2 mils 2 oz Cu

FR4 16 mils +/- 2
1 oz Cu
FR4 3.5 mils +/- . 5
1 oz Cu
FR4 16 mils $+/-2$ mils
2 oz Cu
FR4 6 mils $+/-2$ mils
2 oz Cu
FR4 10 mils +/- 1
2 oz Cu

Board Impedance: All signal layers are to be $55+/-5$ ohms. (ECL)
Board information:
Finished Board Size:
Venus: 17.8" x 16.3"
2080: 17.8" x 22.93"
Finished Board thickness: $186.9+/-23.5$ mils
Plated-thru-hole size: $4 \emptyset+3 \mathrm{mils},-4 \mathrm{mils}$,
A press-fit pin connector (AMP) will be used on this backplane.
Dielectric constant: I assumed a dielectric constant of
4.5 at 50 MHz for buried signal layers, 4.7 at $5 \emptyset \mathrm{MHz}$ for surface signal layers.

Etch line width: Ll and L16: $14+/-1 \mathrm{mils}$ Buried signal layers: $10+/-1 \mathrm{mils}$

Estimated number of pin to pin connections:
Venus: 27øø 2080: 4140

Estimated number of connector pins on the backpanel:
Venus: 6120
2080: 8øøø
venus
The following is a layup of the $1208 \emptyset$ Memory Backpanels:

Ll (signal)

L2 (grd/pwr)

L3 (grd/pwr)

L4 (signal)

2 oz Cu FR4 10 mils $+/-1.0$ 2 oz Cu FR4 100 mils

2 oz Cu
FR4 10 mils +/- 1 2 oz Cu

Board Impedance: All signal layers are to be 55 ohms +/-5 ohms (ECL) Board information:

Finished Board Size:

$$
\text { 2080: } 17.8 " \times 9.47 "
$$

Finished Board thickness: Minimum Board Thickness of 93 mils Plated-thru-hole size: 40 mils +3 mils, -4 mils A press-fit pin connector is to be used on this backplane.

Dielectric constant: I assumed a dielectric constant of 4.7 at 50 MHz for surface signal layers.

Etch line width: $14+/-1$ mils

The following is a layup of the $2 \varnothing 80$ and Venus I/O Backpanels:

Ll (signal)		2 oz Cu
	/////////////1/	FR4 15 mils +/- 2.0
L2 (grd/pwr)		2 oz Cu
	//////////////	
	//////////////	FR4 $20 \mathrm{mils}+/-2$
L3 (signal)	- - - - - -	1 oz Cu
	//////////////	FR4 20 mils +/- 2
	///////////////	
L4 (grd/pwr)		2 oz Cu
	//////////////	
	///////////////	FR4 10 mils +/- 2
L5 (grd/pwr)		2 oz Cu
	//////////////	
	///////////////	FR4 20 mils +/- 2
L6 (signal)	- - - - - -	$1 \mathrm{O}_{2} \mathrm{Cu}$
	//////////////1 $1 / 1 / 1 / 1 / 1 / 1 / 1 /$	FR4 $20 \mathrm{mils}+/-2$
L7 (grd/pwr)		2 oz Cu
	//////////////	
	///////////////	FR4 $15 \mathrm{mils}+/-2$
L8 (signal)	- - - - - -	$2 \bigcirc \% \mathrm{Cu}$

Board Impedance: $8 \emptyset$ ohms (TTL)
Board information:
Finished board Size:

$$
\begin{array}{ll}
\text { Venus: } \quad 3.1^{\prime \prime} \times 17.8^{\prime \prime} \\
2 ø 80: & 9.5^{\prime \prime} \times 20.5^{\prime \prime}
\end{array}
$$

Finished Board thickness: $135.6 \mathrm{mils}+/-14 \mathrm{mils}$ Plated-thru-hole size: 40 mils +3 mils, -4 mils

Dielectric Constant: $\underset{4.7}{ }$ assumed a dielectric constant of
Etch line width: 8 mils $+/-2$ mils

DATE: July 9, 1979 FROM: JOHN HACKENBERG ${ }^{*}$ DEPT: L.C.E.G. EXT: 61のб LDC: MRI-2/E47

TO: Distribution List
Subj: Number of MCA's per Extended Hex Board for Venus

The following method was used to determine the component count for an extended Hex module. This method is used by Andy Matthews to determine component count for any given type board, but I modified it to handle termination of ECL signals.

The method goes as follows:
A) Determine what components go into a cell. A cell in the case of the MCA consists of one MCA, two bypass capacitors for -5.2 volts, two ten resistor networks, and four bypass capacitiors for the resistor networks (for -2.0 volts). See figure l.
B) Determine the number of channels that are needed in the "X" and "Y" directions. The etch connection length between cells is one horizontal and one vertical channel.

1) For 50 mil etch spacing (center-to-center etch spacing), assume that 50% of available channels are usable when routing a PC board. Therefore, from the 50 mil spacing and 50% utilization of available channels, there is 1 channel per 6.1 inch for signal connections.
2) Determine the number of signal connections that must be routed between cells. First, sum up all components (IC's) pins, multiply by 80%, and multiply by $2 / 3$ (equation (1)). This gives you the number of channels or signal connections between cells. For ECL logic which contains terminators, count the number of terminators per cell and divide by two (equation (2)). This converts terminator connections within a cell to equivalent cell to cell connections. Terminators on ECL boards have their source located within the cell. Sum up the IC signal connection count plus the equivalent terminator signal count (equation (3)). This is the number of channels needed in each "X" and "צ" direction.
(1)

$$
\text { Pic * } 0.8 * 0.655=C c
$$

(2)
(3)

$$
\operatorname{Tr} / 2=C r
$$

$$
C c+C r=C t
$$

```
Pic = Total number of IC pins per cell
Cc = Channels per cell for ICs
Tr = Total number of terminators per cell
Cr = equivalent cell to cell channels for
    resistors
Ct = Total number of channels per cell
```

C) From the cell size, you know how many channels are available using a 50% utilization of all channels. Remember that you need the same number of channels in each direction, "X" and "Y".
D) For a given number of signal layers, the following is the process for determining how many components that can be placed on a given board.

1) Determine how many signal layers you have available for each routing direction. This is usally one-half the total number of signal layers for the board being used (equation (4)). Divide the number of layers in a given direction into the number of channels that are needed for routing in each direction (equation(5)). This gives you the number of channels per signal layer. Now figure out how much board real estate is needed (using 50% utilization of expanded cell size) for the new cell size. This procedure must be repeated for the other direction.

$$
\begin{align*}
& \text { Ct } / 2=C l \tag{4}\\
& C t / C l=C p l \\
& C t=
\end{aligned} \begin{aligned}
& \text { Total number of channels per } \\
& \mathrm{Cl}=\begin{array}{l}
\text { cell per routing direction } \\
\text { direction signal layers per given routing } \\
\text { dind }=
\end{array} \\
& \begin{array}{l}
\text { Number of channels per layer for a given } \\
\text { direction }
\end{array}
\end{align*}
$$

2) An extended hex board has 168 square inches of routable real estate. Subtract from the routable area of the board the real estate required for a stiffener and storage capacitors. The remaining board real estate is the area in which components can be placed. Divide the cell size from paragraph $D-1$ into the remaining board real estate, this gives you the number of component that can be place on a given PC board.
$\mathrm{Ra} / \mathrm{Ca}=\mathrm{No}$. of components per board
Ra $=$ Routable area in square inches Ca $=$ Cell are in square inches

For an extended hex module having 4 signal layers, 30 MCAs can be
routed on the board. If the extended hex has 2 signal layers, then only 10 MCAs can be routed on the board.

1

$$
2,2^{\prime \prime}
$$

Channels auailable
Horiz - 32
VERT $=44$
50 mil ceriter-to-Centen $=$ spacing of etch.
50% otilization of chanvels
Hoeiz $=16$
VERT $=22$
Channels veded in Hariz? rekt dreections
(1) $\operatorname{Pic}(-8)(666)=C_{c}$

$$
(64)(.8)(.666)=36.3=C_{c}
$$

(2) $T_{R} / 2=C r$

$$
C_{r}=\frac{20}{2}=10
$$

Fon ulayeres - Chonvels
(3)

$$
\begin{aligned}
& c_{E}+C_{R}=C_{T} \\
& 36.3+10=46.3=C_{T}
\end{aligned}
$$

weoded / Loun

$$
c_{L} \frac{c_{T}}{2}=\frac{46.3}{2}=23.15
$$

Figure 1 cont
Four signal Layers
8 Layer Bd
Need 23.15 channels per Layer in order to Route the meAs \& Resistor networks.
\therefore USING 50 UTILIZAECON of All AUAIABl charuvels, A cell size of $2,3^{\prime \prime} \times 2,3^{\prime \prime}$
is needed per MCA.
For An extendend hex module which contains 168 pq inches of Portable Area.

$$
\begin{aligned}
168-10= & 158 \text { oz niches } \\
& 10 \text { of in for stiffeners is } 5 \text { torose } \\
& \text { cmpcitops }
\end{aligned}
$$

$\frac{158 \mathrm{og} \sin }{2.3 \times 2.3} \approx 30$
30 mess/ Ext. Hex module

Two Signal layers
Here the cell size must be expanded because of less routing Chancels per Board.
(1) $\varepsilon=36.3$
(2) $T_{R} / 4=64$ modified equation $\sin e$ teoneciators $\frac{20}{4}=5$ as in lorain signal lever bounds

CHM Remain stane i stance from IACA
(3)

$$
\begin{aligned}
& C_{T}=36.3+5 \\
& c_{T}=41.3
\end{aligned}
$$

$$
\therefore \text { Glt wigs }=4.1^{\prime \prime} \times 4.1^{\prime \prime}
$$

$$
\frac{1580 q \mathrm{cn}}{41^{11 \times} \times 1}=9.4 \quad \pi \approx 10 \mathrm{mCH} / E X+\text { Hex } B d
$$

DATE: E®D. 3, 199\%
PROA: JOHN HACRENBERS
DEPT: L.C.E.G.
EXT: 3105
LOP: MPI-?/E47
ru: VENUS Technical Distribution List
Subj: Number of Ground Pins Required Per Extended TRI Module for 1JK ECL Logic as used in the VENUS System

Extended TPI board is the sane physical dimension as the comer board which has three finger paddles instead of six as does the extended hex. fie extended TRI will be used in the Venus system.

To determine the number of ground pins needed for each individual board, use the following formulas:

$$
0.25 A+0.5 B=N
$$

$A=$ Number of 50 ohm finger pins mich are switching in the same direction and within 3 rs of asch other.
$3=$ Number of 25 ohm finger pins which are sivitaing in the sane direction and within 3 rs of each other.
$N=$ rotal number of ground pins needed for 59 ard 25 on m finger pins which are switching ir the same direction and within 3 os of asch other.

If N exceeds 59 , then the number of ground pins needed is

$$
N-50=Y
$$

$Y=\begin{aligned} & \text { noe number of additional ground pins needed for a ai ter } \\ & \text { node. }\end{aligned}$

The additional ground pins must be evenly distributed across the Eirjer pins.

For cwo signal layer pe boaras which all contain only trl logic, the Eollowing component density may be used:

A 33 mil grid is used for routing the board with eight mil wide lines.

18 four siznal layer boards are used, then the oomponent density Eor TaL PC boards is as follows:

> package size (WIDTH) Component Densicy (Cerponent area)

14	PIN	DIP	(3.3")	279	(1.)"	\% 3.5")
15	PIN	DIP	(3.3")	248	(1.1"	x 9.5")
20	PIN		(0.3")	175	(1.3"	- $3.5 ")$
24	PIN	DIP	(3.3")	114	(1.5"	人 (0.3")
	PIN	DIP	(0.6")	95	(1.7"	9.3")

NuTE. A routiny test should be done to verify the above component densiey bor a four signal layer board. I have no plans of doing tais routing test unless soneone is going to use a four signal layer Doard for TML.

To decermine somponent density for a mix of aifeerent types of conponents, decermine the amount of necessary real estate from the dorponent area for each package size. The sum of the component ceal ascate areas shall not exceed 150 square inches.

$$
\text { Paye } 3
$$

Eor a single nodule, the slot number is eliminated.
paddle-3

Allocation of finger pins for VENUS modules:

1) 282 finger pins available
2) 12 pins reserved for +5.0 Volts

Standard +5.0 Volt pins are

AO3	A04	A91	A92
303	304	$B 91$	392
C03	C04	$C 91$	$C 92$

3) 33 pins reserved for standard ground pins

Standard ground pins are

A 11	A07	Al 3	A15	A23	+33	A 43
A 51	A51	A 72	A79	432	A9 ${ }^{\text {a }}$	
B 01	313	315	323	333	343	351
351	372	379	332	394		
COl	Cl3	C15	c23	-33	C43	C51
Col	C72	279	232	233	894	

4) One pin is reseryed for +12 volts, AJ2. One pin is reserjed for -12 volts, A93.
5) -5.2 V and -2.0 V are distributed using AMPs power contacts.
6) Fhere are four larye ground distribution contacts, equivalent to 12 ground pins. Therefore, each extended TPI board has an equivalent of 50 ground pins.
7) If no additional ground pins (finger pins) are needed on a gisen module, there are 230 finger pins available for signal $1 / 0$.

It should be notad that the module to be usad in the venjs has a different finger pin nomenclature then the extended hex module, i.e. use DECA instead of DEC in SUDS. The nonenclature is as follows:

Finere are three IDENPICAL "paddles" labeled "A", "B", and "C" each with 94 "finger pins" labeled l thru 94. dd numbered pirs are on side 1 and even numbered pins are on side 2 of module.

Example calculation for component density:
50 RAMS (24 PINS)
Cell size: $\quad 1.5^{\prime \prime} \times .6^{\prime \prime}=45 \mathrm{sq}$ in.
Terminators for RAMS
Assume you need 5 terminator packages
Cell size: $\quad 1.2^{\prime \prime} \times 0.5^{\prime \prime}=3 \mathrm{sq}$ in.
Cell size: $\quad 1.2^{\prime \prime} \times 1.5^{\prime \prime}=9 \mathrm{sq}$ in.
57 sq in.
Available area remaining for MCAs
150 sq in.

- 57 sq in.

93 sq in.
Each MCA requires 5.29 sq inches.
Therefore, $93 / 5.29=17.6$ MCAs

The 17 MCAs is reduced to 15 MCAs when the clock driver and etched delay line are added to the module.

Terminators:
10 per 16 pin DIP
Cell size: 1.2" x Ø.5"
D) 10 K ECL:

> No MCAs or RAMs
> $16 \emptyset$ ICs/module 16 pin DIPS plus bypass capacitor Includes terminators Cell size: $1.2^{\prime \prime} \times 15^{\prime \prime}$
> \quad Includes 2 i6 pin IC (DIPS) plus a lø resistor terminator package
E) Partitioning of logic must allow for a maximum of 230 signal pins/module.
F) Assume that the CLOCK DRIVER and ETCHED DELAY LINE occupy the equivalent space of two MCAS.

Each MCA size equals 2.3" x 2.3".
G) Maximum power per extended hex module is limited to 170 watts.

No more than 35 watts in any one column as air blows across components.
Refer to Cliff Lupien memo on cooling of modules for placements of MCAs and other components on the modules.

MCA $=5$ watts
RAMS = 1 watt
$10 \mathrm{~K}=0.25$ to 0.5 watts

Board Density:
Boards which have MCAs require the module next to it, on the component side, to be on 1.0 inch centers.

Boards which have DIPs require the module next to it, on the component side, to be on a minimum of 0.5 inch centers.

To determine component density for a mix of different types of components, determine the amount of necessary real estate from the cell size given above. The sum of the component real estate shall not exceed 150 square inches.

TO: Distribution List
Subj: Component and Board Density for Venus (ECL)
Component density on a extended hex module with four signal layers, an eight layer board, is as follows:

Assume the the following:
Module size: Extended Hex
Number of signal layers: 4
Routeable area: 150 square inches
A) $\quad 30$ MCAs per Board

No RAMs or jelly bean ICs
Includes bypass capacitors, and two 16 pin (DIP) terminator packages per MCA Each terminator package has 10 resistors

DOES NOT INCLUDE THE CLOCK DRIVER AND ETCHED DELAY LINE
B) RAMS (1 k by 4)

No MCAs or jelly bean ICs
RAMS :

> 24 pin (DIPs) plus bypass capacitors l68 RAMS/Module
> No CLOCK DRIVER OR ETCHED DELAY LINE NO Terminators included
> Cell size: $1.5^{\prime \prime} \times \varnothing .6^{\prime \prime}$

Terminators:
10 per 16 pin DIP
Cell size: 1.2" x $0.5^{\prime \prime}$
C) RAMS (4 k by 1)

No MCAs or jelly bean ICs
RAMS:
18 pin (DIPs) plus bypass capacitors 240 RAMS/Module
No CLOCK DRIVER OR ETCHED DELAY LINE
NO Terminators included
Cell size: $1.2^{\prime \prime} \times$ 0.5"

INTEROFFICEMEMORANDUM
DATE: Jan. 16, 1980
FROM: JOHN HACKENBERG
DEPT: L.C.E.G.
EXT: 6106
LOC: MRI-2/E47
TO: John Belanger
G. Sankar

Subj: Preliminary PC and Backpanels Board Specifcations for Venus and 2ø80

This document specifies the preliminary requirements for multilayer boards for Venus and $2 \emptyset 8 \emptyset$ along with the backpanel specifcation for each system.
I want the Acton Board Technology to comment on the layups of each board type and return the comments to me as soon as possible.

Note: Acton must specify the correct dielectric constant of the core and 'B Stage' material for the backpanels so that more accurate layups can be defined to obtain the correct impedance for the backpanels.

The following layup is for Venus and 2080 PC Boards:

L1 (pads)
L2 (signal)
L3 (signal)

L4 (ground)

L5 (power)

L6 (signal)
L7 (signal)
L8 (pads)
 1 oz Cu FR4 3.5 mils $+/-.5$ 1 oz Cu FR4 $10 \mathrm{mils}+/-1 . \emptyset$ 3 oz Cu

FR4 6 mils $+/-2.0$ 3 oz Cu
FR4 1 \emptyset mils $+/-1 . \emptyset$
1 oz Cu
FR4 3.5 mils $+/-.5$
1 oz Cu FR4 4 mils $+/-1 . \emptyset$ 3 oz Cu

Material: Base material shall meet $U L 94 V 2$ or better requirements. special ground and power distribution pads are used on layers 1 and which need to be gold and nickel plated.
Board Impedance: $55+/-5$ ohms (ECL)

Finished Board Size:
Venus: Extended Hex
2080: Extended Hex
Finished Board thickness: 54 to 70 mils
Plated-thru-hole size: Standard hole size will be $40+/-3$ mils

Dielectric constant: 4.7 +/-Ø. 4 at 50 MHZ
Etch line width: L2 and L7: 18 mils $+/-1$ mil L3 and L6: $12 \mathrm{mils}+/-1 \mathrm{mil}$

MCA PACKAGING FEATURES

CHIP CARRIER

- 68 ITO LEADLESS TYPE "A" (50 MIL \downarrow)
- DESIGNED FOR USE IN SOCKETS
- $\theta_{J c} \simeq 4^{\circ} \mathrm{C} /$ WATT FOR MCI DIE SIZE
- GOLD OVER NICKEL OVER REFRACTORY METAL
- KEYED CORNER FEATURE
- 2 LAYER \& 3 LAYER VERSION
- GLASS FRIT SEAL

SOCKET

- Standard grid pinnout (.1" $\ddagger)$
- SOLDER TAIL
- TOPSIDE PROBING
- 100 gm CONTACT FORCE
- 15 lb. COVER CLOSING FORCE
- KEYED TO CARRIER AND P.C. BOARD
- . 003 F/ 10^{6} hRs, CONTACT FAILURE RATE FOR STRESS RELAXATION a $T_{C}=68^{\circ} \mathrm{C}$

「）：ग玉3n：					


```
Hist the suckut.
```



```
ヒん2 じうに こんI?.
```



```
sockut vi.l was ajlculated or neajured.
Mae spizamodal usad in simalation is ateasmod.
```

MCA WITH SOCKET

	NOISE IN MILLIVOLTS					
	PIN 6		A	B	C	
CONDITION	SIMULATED	MEASURED	SIMULATED	SIMULATED	SIMULATE	MEASURED
PIN 6 LON	105	190	710	680	420	
PIN 6 HIGH	195	195	738	704	407	
PIN 6 SWITCHING	x		115	99	60	
SWITCHING PINS $1,2,4,5,6,7,8$	x		833	777	463	
PINS 1,2 SWITCHING	90		397	383	227	
PINS 1,2 SWITCHING	45		410	379	220	
PINS 1, 2,6 HIGH	75		380	362	199	
PINS 1,2 HIGH, PIN 6 LOW	45		385	352	205	

MEASURED AND SIMULATED NOISE FOR PIN 6 SIMULATED NOISE AT POINTS A,B,C FOR VCLO PIN 3

CCD PIN 3

noise in millivolts and percentages generated BY BONDING WIRE, CHIP-CARRIER AND SOCKET, ON VCCO PIN 3

PIN 60	NOISE IN MILLIVOLTS			
	A	B	C	
CONDITION	SIMULATED	SImulated	SIMULATED	MEASURED
PIN 6 LOW SWITCHING PINS $1,2,4,5,7,8$	149	127	75	
PIN 6 HIGH SWITCHING PINS $1,2,4,5,7,8$	281	224	145	
PING SWITCHING PINS $1,2,4,5,7,8$ HIGH	52	48	32	
SWITCHING PINS $1,2,4,5,6,78$	327	272	170	
PINS 1,2 SWITCHING PINS 4,5,6,7,8 HIGH	147	119	79	
PINS 1,2 SWITCHING PINS 4,5,-7,8 HIGH, PIN 6 LON	146	119	79	
PINS $1,2,6$ HIGH PINS $4,5,7,8$ SWITCHINIG	194	155	86	
PINS 1,2 HIGH, PIN 6 LOW PINS 4, E, 7, B SWITCHJNG	194	155	103	

[^0]Vec PIN 60

	BONDING WIRE		CHIP CARRIER		SOCKET PIN	
CONDITION	A-B (Mv)	\%	B-C (mv)	\%	C (mav)	\%
PIN 6 LOW PINS $1,2,4,5,7,8$ SWITCHING	22	14.8	52	34.9	75	50.3
PIN 6 HIGH PINS $1,2,4,5,7,8$ SWITCHING	57	20.3	79	28.1	145	51.6
PIN 6 SWITCHING PINS $1,2,4,5,7,8$ HIGH	4	7. 6	16	30.8	32	61.6
PINS $1,2,4,5,6,7,8$ SWITCHING	55	16.8	102	31.2	170	60
PINS 1,2 SWITCHING PINS $4,5,6,7,8 \mathrm{HIGH}$	28	19	40	27.2	79	53.8
PINS 1,2 SWITCHING PINS $4,5,7,8$ H2GH, PIN 6 LOW	27	18.5	40	27.4	79	54.1
PINS 1,2,6 HIGH PINS 4,5,7,8 SWITCHING	39	20.1	69	35.6	86	$44 \cdot 3$
PINS 1.2 HIGH, PIN 6 LOW PINS $4,5,7,8$ SWITCHING	39	20.1	52	26.8	103	53.1

NOISE IN MILLIVOLTS AND PERCENTAGES GENERATED
BY BONDING WIRE, CHIP-CARRIER AND SOCKET, FOR VCC PIN 60

VCC PIN 60

CONDITION	NOISE IN MIILLIVOLTS		
A	B		
PIN 6 LOW	SIMULATED SIMULATED	MEASURED	
PINS $1,2,4,5,7,8$ SWITCHING	213	141	
PIN 6 HI6H			
PINS $1,2,4,5,7,8$ SWITCHING	214	141	85

[^1]Veco PIN3

	NOISE IN MILLIVOLTS			
CONDITION	PING	A	B	C
PIN 6 LOW PINS 1,2,4,5,7,8 SWITCHING	105	746	740	440
PIN 6 HIGH PINS $1,2,4,5,7,8$ ScostCHING	210	768	727	437
PIN 6 SWITCHING PINS $1,2,4,5,7,8$ HIGH	x	120	90	45

VCC PIN 60

CC PIN 6O
CONDITION NOISE IN MILLIVOLTS PIN 6 LOW PINS 1,2,4,5,7,8 SWITCHING 105 140 126 72 PIN 6 HIGH PINS 1,2,4,5,7,8 SWITCHING
PIN 6 SWITCHING PINS 1,2,4,5,7,8 HIGH

Vcco PIn 3

	SIMULATED NOISE IN MILLIVOTE			
CONDITION	PIN 6	A	B	c
PIN 6 LOW PINS $1,2,4,5,7,8$＝1，1］TCHING I μ_{f} CAP．BETWEEN $V_{C c} \rightarrow V_{c}$ ．	150	253	215	133
PIN 6 HIGH PINS $1,2,4,5,7,8$ SWI TCHINIG I Mf CAP．BETLLEEN $V_{C C} \rightarrow V_{C C O}$	165	290	258	129
PIN 6 LOW PINS $1,2,4,5,7,8$ SUIITCHING SHORTED $V_{C C} \rightarrow V_{C C O}$	150	254	こころ	134
$\begin{aligned} & \text { PIN } 6 \text { HIGH } \\ & \text { PINS } 1,2,4,5,7,8 \text { GWITCHING } \\ & \text { SHORTED VCC } \rightarrow V_{C C O} \end{aligned}$	165	28.7	255	147

$\left.\begin{array}{l}\text { CAPACITOR BETINEEN POINTC，} 28 \text { AWD } 22 \\ \text { SHORT BETAEEN POINTS } 28 \text { AND } 22\end{array}\right\}$ SEE MCA SPICE MOEEL ATTACHED

$$
V_{c c} \text { PIN } 60
$$

	SIMULATED NOISE IN MILLIVOLTS			
CONDITION	PIN 6	A	B	C
PIN 6 LOW PINS $1,2,4,5,7,8$ SWITCHING I Hf CAP BETWEEN $V_{C L} \rightarrow V_{C C O}$	150	232	228	166
PIN 6 HIGH PINS $1,2,4,5,7,8$ SWITCHING $1 \mu f$ CAP. BETVNEEN $V_{C L} \rightarrow V_{C C O}$	165	260	260	161
PIN 6 LOW PINS $1,2,4,5,7,8$ SUITCHING SHORTED $V C L \rightarrow V C C O$	150	231	231	162
PIN 6 HIGH PINS $1,2,4,5,7,8$ SWITCHING SHORTED V CC \rightarrow VCCO	165	261	245	154

CAPACITOR RETWEEN POINTS 28 AND 22
SHORT RETLSEN POINTS 28 AND 22$\}$ SEE MCA SPICE MODEL ATTACHED

Vaco PIN 3

LEADING-EDGE

	PROPAGATION DELAY TO OUTPUT PINS (NS)						
CONDITION	1	2	4	5	6	7	8
PIN G LOW SWITCHING PINS $1,2,4,5,7,8$	4.3	$4 \cdot 3$	3.4	3.4	\times	3.4	$3 \cdot 4$
PIN 6 HIGH SWITCHING PINS $1,2,4,5,7,8$	$4 \cdot 3$	$4 \cdot 3$	3.4	3.4	\times	3.4	$3 \cdot 4$
PIN 6 SWITCHING PINS $1,2,4,5,7,8$ HIGH	\times	x	\times	\times	2.6	\times	x
SWITCHING PINS $1,2,4,2,6,1,8$	$4 \cdot 4$	4.4	3.5	3.5	3.5	3.5	$3 \cdot 5$
PINS 1,2 SWITCHING PINS 4,5,6,7,8 HIGH	3.7	3.7	\times	\times	\times	\times	\times
PINS 1,2 SWITCHING PINS $4,5,7,8$ HIGH, PIN 6 LOW	3.9	3.9	\times	\times	\boldsymbol{x}	\times	\times
PINS 1,2,6 HIGH PINS 4,5,7,8 SWITCHING	x	x	2.7	2.7	\times	2.7	2.7
PINS 1,2 HIGH, PIN 6 LONN PINS 4,5,7,8 SWITCHING	\times	\times	2.7	2.7	\times	2.7	2.7

THE INDUCTANCE OF THE BONDING-INIRE ANAS CALCULATED RY USING THE FORMULA:-

$$
\begin{aligned}
& L=0.00508 \ell\left\{\left(2.303 \log _{10} \frac{4 l}{d}\right)-0.75\right\} 10^{-6} \text { HENRY } \\
& \text { WHERE } \quad \begin{aligned}
& (=\text { LENGTH IN INCHES } \\
d & =\text { DIAMETER IN INCHES }
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& l=0.1^{\prime \prime} \\
& d=.001^{\prime \prime}
\end{aligned}
$$

$$
\begin{aligned}
L & =.00508(\cdot 1)\left\{\left(2.303 \log _{10} \frac{4(.1)}{.001}\right)-0.75\right\} 10^{-6} \\
& =.000508\left\{\left(2.303 \log _{10}+00\right)-0.75\right\} 10^{-6} \\
& =.000508: 5.99-0.75,10^{-6} \\
& =2.66 \times 10^{-7} H E N E
\end{aligned}
$$

INDUCTANCE MEASUREMENT FOR MA SOCKET PIN:-
$V=L \frac{d i}{d t}$
$L=\frac{V / d t}{d i}$
$d i=\frac{d V}{R}$
$d^{i}=\frac{\equiv V}{50 \Omega}=100 \mathrm{~mA}$
$d t=1.6 \times 10^{-9} \mathrm{sec}$.
$L=\frac{565 \times 10^{-3} \times 1.6 \times 10^{-9}}{100 \times 10^{-3}}$
$L=9.04 \mathrm{NH}$

INTEROFFICE MEMORANDUM

TO: Distribution
DATE:
FROM:
March 7, 1980
John Druke / Roger Scott
DEPT: L.S.E.G.
EXT: \#4588 \#5136
LOC/MAIL STOP: MRI -2/E47
SUBJECT: Study of the Effects of Various Cooling Parameters on Device Die Temperatures.
Introduction
The die temperature of a device and the difference between the die temperature of different devices on a module has significant impact on the performance of the Venus System. By effecting efficient thermal management of this system we will be able to adequately control the die temperatures and the differences between them.

This report expresses the experimental set-up that is being used to study the effects of various cooling parameters on the device die temperatures as well as some initial results used as an example of the data being recorded.

Die Temperature Measurement
To measure the temperature of a single device, a thermal die can be used. The thermal die is placed in the same package as the device being simulated. It has resistors that can be powered to dissipate the required amount of heat and diodes which, with the current passing through, have a temperature sensitive voltage drop and can be calibrated so that the die temperature can be measured.

The schematic of a thermal die used to simulate an MCA chip is shown in Figure 1. The calibration of the diodes is accomplished by applying a 100 amp current across the diode and immersing the device in an inert fluid bath. The temperature of the bath is varied and temperature vs. voltage drop data recorded (See Figure 2.). When the experiments are conducted, the voltage drop across the diode is measured and the temperature can be derived.

Die Placement at Module Level

Thermal dies simulating some different types of DIPs, RAMs, and MCAs will be used to study various configurations of device placement on an extended hex module for the Venus System.

The first set of tests use a module fully loaded with MOAs (Figure 3). From these initial tests, the time required for the system to reach thermal equilibrium was found and the slots in the CPU cage giving the worst thermal characteristics defined (These will be used to reduce the amount of future testing required.)

Future testing will include variations in the device arrangement. A board partially filled with MCA simulators will be tested to see when and what kind of baffles are needed. Then, DIP and RAM simulators will be added with the objective of defining rules for DIP and RAM placement as well as when heat sinks should be added.

Cabinet Mock-up
A mock-up of the Venus Cabinet was constructed to simulate what we expect the final configuration to be. Figures 4 and 5 show the cabinet with the components labeled.

Test Conditions

These tests were conducted in an ambient air temperature of $24^{\circ} \mathrm{C}$.
The current supplied to the blowers was at 50 hz and 193 volts (Future tests will reveal the effects of having the current supplied at 60 hz and 230 volts.) 24.7 volts was supplied to each MCA simulator resulting in a nominal power dissipation of 4.5 watts each. Two modules were packed with resistors, powered to dissipate heat and placed on each side of the thermal board to simulate actual running conditions.

Initial Experimental Results
The first set of data was recorded to determine the length of time required for the system to reach thermal equilibrium. In subsequent experiments the system will be allowed to run this length at time before temperature measurements are recorded.

After the first fifteen minutes the thermal dies were at roughly $90-95 \%$ of the final readings. Over the next fifteen minutes, 21 of the thermal dies increased their temperature readings by $1^{\circ} \mathrm{C}$. After fifteen more minutes 5 of the thermal dies increased their temperature readings by $1^{\circ} \mathrm{C}$. The next fifteen minutes saw 4 of the devices increase by $1^{\circ} \mathrm{C}$. Over the next hour, two devices increased their temperature by $1^{\circ} \mathrm{C}$. (See Fig 6)

The conclusion drawn is that one hour is sufficient to allow thermal equilibrium to be reached.

The next set of data was recorded to find the worst slots in the CPU area. A sample of the data that was recorded is shown in Figures 7 and 8. The parameters used to determine which of the slots were the "worst" were, the average device temperature, the average air temperature rise across the board and the maximum die temperature difference. The results*are summarized in Table 1.

Slot No	Average Device Temp ${ }^{3} \mathrm{C}$	2 Lowest Device Temp ${ }^{\text {z }} \mathrm{C}$	$\begin{aligned} & 2 \text { Highest Device } \\ & \text { Temp }{ }^{\circ} \mathrm{C} \end{aligned}$	Max device "C Die temp diff.	$\text { Av. Air }{ }^{\circ} \mathrm{C}$ Temp diff.
1	100	85, 88	111, 112	27	11.3
2	101	85, 89	113, 114	29	11.5
3	104	88, 90	117, 117	29	12.3
$4<$	107	92, 94	120, 124	32	14.7
5	106	91, 94	118, 118	27	14.1
6	106	90, 93	120, 121	31	12.9
74	107	90, 95	121, 122	32	12.9
$8 \div$	106	90, 94	121, 122	32	12.6
9	103	87, 93	115, 116	29	12.8
10	103	87, 92	115, 116	29	12.9
11	NOT USED				
12	102	87, 92	114, 117	30	11

TABLE 1
Arrows indicate worst slots.

* Data from device \#26 was expelled on grounds of inconsistent performance.

As can be seen in Table 1, slots 4, 7, and 8 result in the greatest average device temperatures and temperature differences. These three slots will be used as further testing is conducted.

Conclusion

Besides setting us up to conduct future testing these initial data indicate some interesting results. First of all, the device die temperature and the rise in air temperature across the module are in the ball park of what we expected. The die to ambient thermal resistances of the MCA simulating devices are close to what had been predicted by the Thermal Engineering Group.

Secondly, for the first time, accurate measurements of the device die temperatures have been made. These temperatures give us an indication of the failure rate of a device. The die temperature difference between various devices can also be calculated. Previously, the average air temperature rise across the board was used to give an indication of the device die temperature difference. The data indicate that the device die temperature difference is actually quite higher, in fact, more than twice as great. This has some impact on the ability of devices to "communicate" with one another.

Future testing will include finding cooling methods for modules extended outside of the card cage being probed, for defects, verification of heat sink optimization, making breadboard preparations and testing various airflow arrangements.

Heating Supply Must Be
Floating Because Leakage
in thermal Die causes errors
in Vie measurements.

Thermal Calibration \# $1<100$ ramp

Fig 3. Extended hex loaded with MCA thermal dies.

Graph of percent of dies reaching final temperature versus time. (Final temperatures refer to

Thermocouple temperature readings.

Therms couple Location number

Note: $A t$ module level, finger \quad ins are on right. At cab bevel, left, right referees are acirif backplane pins.

$$
\begin{aligned}
& \text { High } \sim 4 f_{T} \\
& \text { Low } 2 f_{T}
\end{aligned}
$$

INTEROFFICE MEMORANDUM

TO:

CC:
Jim McElroy, MRI-2/E18
Barbara Donohue, MI 8-3/T13 Rob Hannemann, ML8-3/T13 Bob Lotze, ML8-3/T13

DATE: 18 FEB 80
FROM: N. Chris Paulhus $N R P$
DEPT: Product Acoustics
EXT: 223-6871
LOC/MAIL STOP: ML8-3/T13

SUBJECT: VENUS MUFFLER EVALUATION AND PRELIMINARY NOISE MEASUREMENTS

1. On February 12 and 13,1980 , Steve Weston and I conducted air flow and noise measurements on the VENUS mock-up. The first task was to evaluate the air flow effects of the different mufflers. Steve had cut an inspection hole in the scroll of the center blower and covered it with plastic plate. This allowed us to monitor the rpm of this blower with a stroboscope, which allowed us to go back to the Torin supplied fan curves and determine the operating point of the blower. Table 1 shows the different mufflers, the rpm of the center blower (taken with all three blowers on), and the derived chm and static pressure conditions from the fan curves (the blower was also tested in our air flow chamber - the cfo and s.p. versus rpm relationship agrees with the Morin information within 5%).

TABLE 1: EFFECT OF VARIOUS MUFFLERS ON AIR FLOW

1. S curve muffler $\quad 1640 \mathrm{rpm} \quad 480 \mathrm{cfm} \quad 1.23 \mathrm{in}$. sip.
2. Regular radius with dividers
$1645 \mathrm{rpm} \quad 470 \mathrm{cfm}$
1.27 in. s.p.
3. Regular radius - no dividers
$1625 \mathrm{rpm}: 505 \mathrm{cfm}$
1.15 in. sp.
4. Long muffler

1635 rpm
490 cfo
1.20 in. s.p.
2. We then measured the rear bystander position (1 m out, 1.5 m up from floor) noise levels of each muffler.

TABLE 2: VENUS NOISE LEVELS WITH VARIOUS MUFFLERS

1. S curve muffler 68.8 dBA
2. Regular radius with dividers $\quad 67.8 \mathrm{dBA}$
3. Regular radius - no dividers 67.5 dBA
4. Long muffler
64.0 dBA

Due to the marked superiority of the long muffler, the preliminary noise measurements were made with this muffler installed.
3. I then made 1 m measurements of the untreated unit with the long muffler installed.

TABIE 3: VENUS MOCK-UP, UNTREATED, LONG MUFFTER

$$
\begin{aligned}
& \text { Rear }-64.0 \mathrm{dBA} \\
& \text { Side }-60.2 \mathrm{dBA} \\
& \text { Front }-64.0 \mathrm{dBA}
\end{aligned}
$$

4. I then added absorption to the inside lower portion of the cabinet skins - around the air intake plenum, sealed off the midcabinet front louvers, and taped the door, side, and top gaps. The resulting sound level measurements are:

TABLE 4: VENUS MOCK-UP, TREATED, LONG MUFFIER

$$
\begin{aligned}
& \text { Rear }-61.5 \mathrm{dBA} \\
& \text { Side }-57.0 \mathrm{dBA} \\
& \text { Front - } 59.2 \mathrm{dBA}
\end{aligned}
$$

These average out (four sides) to just below our goal level of 60 dBA . The treatments are crude approximations of what we expect to need in the final design. They do indicate that with the installed blowers and the long muffler, the 60 dBA goal level is attainable.
5. The long muffler is a severe interference with cable space. A shorter muffler would be 3 to 4 dB less effective. It appears that in order to go to the shorter muffler, we need blowers that are 3 to 4 dB quieter. Our tests and calculations of the installed blowers indicate that these units are 7 to 9 dB noisier than we expect them to be. We should easily be able to find replacements that are 5 or 6 dB quieter than the Torin units now installed in the mock-up.

Our rough sound power measurements on the installed blowers indicate that we should be looking for a blower with a sound power output of somewhere between 75 and 80 dBA Ls at the operating point. We will be able to refine this figure this summer when our reverberation chamber is operating, allowing us to make precision sound power measurements on blowers.

VENUS PO'NER SYSTEY AND ENVLRJNMENTAL MONITORING

POVER SUPPLIES

Phere is one power supply for the CPU bay and one po:ser supply for the expansion menory bay. The poner supplies are configured from various elements of the modular Power System (MPS), presently under developinent by the power Supply Engineering Group. The MPS consists of an $A C$ to $D C$ Input module from which several $D C$ to $D C$ output regulators are powered. The Inout module rectifies three phase line voltages into a raw 303 VDC ous. Each output regulator then uses constant Erequency pulse width modulation at $5 \% / 103$ Kizz co conver the 300 VDC to the desired output voltaje.

Mp; units used are:

2533 watt	input module
5 V 203 A	output regulator
5 V 35 A	output regulator
2 V 35 A	output regulator

Fi.f. 1 shows a block diagran of the poner supplies. ECL vultajes of-5.2V and -2.0V are directly tied in parallel whera possible to ainiaize roltage differences between any two ECL gates and this reduce ecl signal noise margin loss. The following DC power requirements were calculated for CPU, 3 memory boards and j I/j devices:

-5.2 V	$@$	340 A
-2.0 V	$@$	119 A
+5.0 V	$@$	250 A
+5.0 V	$@$	42 A
+12.0 V	$@$	1 A
-12.0 V	$@$	1 A

Dptional battery back up will be available for backing up just the dyaanic RAMS and refresh TTL logic of the main storaze boards. A 43 volt battery with built in charger is converted up to 300 VDC to hold up the 303 VDC bus of the input module. All other regulators except the one being backed up, are turned off. Backup times range from 53 minutes for 1 storage board to 5 minutes for 3 storaje boards. A separate 100 hour battery back up will be available for the time-of-year clock. The MPS can maintain proper output voltages for up to 12.5 milliseconds after line to neutral voltage drops below $9 \mathfrak{y}$ VAC RMS.

The input modules are designed to run off three phase power in the U.S. and Canada. For other countries, an optional external transformer will be available to handle the numerous different line voltages. Mechanically, the input modules and output regulators are mounted side by sida above the venus logic boards to be cooled by air axiting from the logic. Estimates of supply costs are MT3F are shown in Fig. 2 .

Visual Aids

```
For the regulators
    module ok - Sreen LED
    overcurrent - Red LED
    overvoltage - Red LED
For the input module
    in addition to the ones for the regulators
    ACOK - jreen LED
    Jvertemp - Mezranically latched colored disc
```


Logical Aids

$$
\begin{aligned}
\text { Logic anable input - } & \text { allows on/off control of } \\
& \text { regulator by consols board } \\
& \text { of the modugnostic. Monitoring } \\
& \text { allows identification of defective } \\
& \text { regulator that is under console } \\
& \text { board control. }
\end{aligned}
$$

nargining

+5\% margining - each regulator has logical inputs for inargining the output voltage under console board control.

DC Power Sequencing

Regulators will be powered on in the following sequence:
first - all + 5 V units for storaje boards, I / O devices and console TrL. These units are not under console board control but are enabled on by the auxiliary $+12 V$ sutput of the input inodules.
second - all - 5.2 V units for ECL logic. These are under console control.
third - all-2.0V units Eor ECL terminators. These are under console control.

Power Modes
no $A C$ power at switched outlets of power controls. All fans off. Battery back up disconnected. Battery not being sharged.
ON normal DC power sequenced on if console board is operational. All fans on. If installed, battery back up available.
STANDBY similar to JN except only RAMS and refresh rFL logic of storage boards are on. All other Voltages are ofe. Rhis allows sariicing of all boards excepr storaze boards and preserves memory data.

DC PONER DISTRIBUTION

The Vands $P C$ Doards have three connection paddles of 94 pins each for a total of 292 pins per board. To maximize the number of pins available for signals in and out of the PC board, ground, $-5.2 V$ and -2.UV are brought into the board through new power connectors atilizing sections of the board that are presently unused. At the two inner notches, special power connactors mate to four pads on the board. Fhese are ground connections. At both ends of the board, additional power connectors mate to four other pads on the board. These are for $-5.2 V$ and $-2.0 V$. Forty of the finger pins are used for additional ground, $+5.0 \mathrm{~V},+12.0 \mathrm{~V}$ and -12.0 V . This scheme results in 230 pins available for signals compared to about 158 for the hex board. Use of these special AMP power connectors require use of an aluminum Erame througn which logic ground surcent flows and a pair of horizontal bars at both the top and botton edges of the logic backpanel for -5.2 V and -2.0 V distribution.

ENVIRONMENTAL MONITJRING

In addition to the electronics for implementing the above features, $D C$ output voltages, anbient temperature, logic board temperature rise and blower rotation will be monitored. Also, should a thermal switch in a regulator be activated, provision will be made for identifying the regulator even after the thermal switch has cooled off and reopened. The electronics and electromechanical devices for all of the abose, will be contained in a unit referred to as the monitor board. This will consist of a PC board plus a front panel on which LEDs and Euses will be mounted. The entire unit will plug into the power supply backpanel and will have dimensions similar to an 35 ampere regulator.

DC Voltages

There will be voltage detectors for sensing when a given output voltage is not within its normal operating range. Two means of implementing the detectors are being considered:

- Analog voltage comparators with Eixed limits determined by a reference voltage and Eixed resistors.
- A/D converter with 16 channel analog multiplexers. Lookup tables for voltage limits and decision-making will be located in the CP'J.

Temperature And Adequate Air Flow
Ambient temperature will be measured. Adequacy of air flow will be indirectly neasured by measuring the rise in temperature of the air flowing through the logic assembly.

Anbient Penperature

A single linear thermistor network is mounted just below the logic assembly to measure incoming air temperature. When 32 degrees C is 42 degrees teletype and a graceful power donn sequaning is put out on the diagnostic control. The yoll sequence is initiated under warning that peripheral devices zone signal is also useful for beyond their recommended maximum temperatures.

Logic Temparature Differential

Taree linear thermistor networks are mounted directly above the logic assenbly, ons network under each blower. They are used in sonjunction with the ambient thermistor network to measure logic air temperature differentals greater than $1 J$ degrees $こ$ such as caused by blower failure, air flow blockaje or dirty air filters. then a lo degrees C differential

3lower Rotation

Due to the wide variation of conditions ander which the system must operate, 3.g. low line to high line and sea level to $303 j$ feet altitude, it may be possible for a blower to fail without causing the logic air temperature differential to be zxeeeded. It is still desirable to identify the failed blower. Hall effect switches are designed to be mounted inside the blower housing. A magnet is usually aounted on the rotating portion of the blower so that it passes close to the dall effect switch mounted on a stationary portion of the blower. Every time the magnet passes the switch, a pulse is amitted from the switch. Timing circuits will be provided on the monitor board to detect minimun blower rotational speed or stoppage.

Therinal Sintiown

A thermal switch is located in each output regulator. Its primary purpose is to close when the heat sink on winch it is mounted exceeds a certain tenperature due to a fault in the rezulator. This temperature may also be exceeded if both yellow zone and red zone warnings do not result in preventive measures being taken. Whan a thermal switch is closed, a bicolored (black/yellow) majnetized disc flips from black to yellow and the power control is turned off through the DEC remote power bus. The disc will renain in the yellow position with power off and even with subsequent power on. A pushbutton is used to manually reset all the discs. There is one disc for each output regulator.

FIGIA VENUS DJUER SUPP:ES

EXPANSION

 MEMORY

```
WEIGHT,NOTINSLUDING RACK= 62 POUNDS
```

SPU
BAY

ESTIMATED SUPPLY COSTS

CPU BAY
2
$3200 A$ UNITS@466 1398

4 85A UNITS@ $280 \quad 1120$
BACKPANEL,FAB ETG $\frac{222}{3300}$

MONITOR BOARD 100
1 BATT PACK AND CONVERTER $\frac{300}{3700}$

EXPANSION MEMORY
1 INPUT MODULE 280
5 85A UNITS@280 1680
BACKPANEL, FAB ETC.
240
2200
MONITOR BOARD
100
3 BATT PACK AND CONVERTERS 900 3200

MTBF

AIR FLOW
LINEAR THERMISTOR NETWORKS - SINGLE UNIT BELOW LOGIC IS USED TO
DETECT INCOMING (AMBIENT) AIR TEMPERATURE GREATER THAN $32^{\circ} \mathrm{C}$ (YELLOW ZONE) AND $42^{\circ} \mathrm{C}$ (RED ZONE). THREE UNITS ABOVE LOGIC ARE USED WITH AMBIENT DETECTING UNIT TO DETECT LOGIC AIR TEMPERATURE RISE GREATER THAN 100 C .

HALL EFFECT SWITCHES - ONE INSIDE EACH BLOWER IS USED TO DETECT BLOWER ROTATION.

THERMAL SWITCHES - ONE IN EACH OUTPUT REGULATOR IS USED FOR FAIL SAFE SHUTDOWN OF AC POWER.

ENVIRONMENTAL MONITORS

```
    I. Introduction
    II. Macracell Array Concept
III. Macrocell Descriotion
    A. Major Cell Description
    B. Interface Cell Description
    C. Dutput Cell Description
    IV. Macrocell Array Design Considerations
    A. Unused inputs
    3. Extarnal Pin Usage
    C. Macro Placement Considerations
    D. VIA Placement Restrictions
    E. Performance Characteristics
    F. 'Wire - ORing
    G. Voitage Levels
    H. Noise Margins
    I. Internal Voltage Levels
    v. CAD Interface
    vI. Packaging
Vib. Applications
    A. Multiplier Design Example
APPENOIX
    A. Macrocell Library
```

The MECL 10,000 Macrocell Array was developed for customers requiring complex high speed custom LSI circuits. A unique $C A D$ interface provides an economical solution for custom circuits while providing fast turn-around time.

The material presented in this manual should enable the reader to determine whether the macrocell array will meet his system requirements. Also the reader will be able to partition his system into blocks using the Macrocell Library. An application example shows the logic implementation of an 8×32 's complement multiplier and a worksheet shows the metal interconnect.

I. INTROOUCTION

The semiconductor industry has previously satisfied the customer's demand for LSI using three approaches:

1) Standard LSI circuits for volume production and lowest cost per function.
2) Custom circuits with high volume in order to lower development cost.
3) Gate arrays with medium volume requiring a metal interconnection mask.

The first approach, using standard LSI, such as the

M10800 family, is a very economical approach. However, many LSI functions that customers require are very complex, specialized, and in some cases proprietary.

The second approach provides the customer with custom circuits but the turn-around time can be 1 to 2 years. The custom approach also means the Semiconductor manufacturer must provide more design people to interface with the customer in developing custom chips requiring high development costs.

The third approach, using gate arrays, provides a quicker turn-around time since the basic array can be fabricated up to metalization. However, designing with gates requires the customer to interconnect simple gates into a common MSI and SSI functions normally used in logic design. This results in a tonger MSI propagation delay compared to building the functions directly using ECL series gating techniques. Also, the interconnecting metal makes the chip larger than a custom designed circuit. Finally, there is the customer interface problem of handing and producing the metal masks and the testing of the packaged arrays.

II. MACROCELL ARRAY CONCEPT

The approach taken by Motorola is the development of the MECL IOK MACROCELL ARRAY with industry standard MECL $10 K$ compatibility. The array is an extension of the gate array concept presently being used in mainframe computers. Instead of gates, each cell in the array contains unconnected transistors and resistors. There are standard logic elements such as a dual D flip flop, dual full adder, quad latch, and many other functions. These macros are interconnected using series gated ECL structures in order to optimize performance. Presently a library of 85 logic functions, called Macros, can be selected. Thus, the designer need only be concerned with interconnecting the logic functions contained in the library. There are a total of 106 cells on each Macrocell Array chip. A CAD (computer aided design) system containing the cell library speeds up the option development while simplifying the designer/Motorola interface. The CAD system is operated via standard time sharing terminals to design the interconnects, to check out the performance of the design, and to generate the custom metal patterns which complete the $I C$ processing sequence.

A new process called MOSAIC I (see figure 1) is used in the Macrocell Array in order to achieve the high performance requirements of .gns (typical) for internal gate
delays. The process forms a non-walled emitter and a walled base. An oxide isolation between devices is accomplished with an isotropic etch. . The peaking of the oxide is controlled and monitored to guarantee flatness during processing. The peaking of the oxide is maintained to less than $4000 \dot{A}$ thick. The first layer metal is $10,000 \dot{A}$ thick which covers the peaking of the oxide reliably. A nitride surface covers the oxide so that the metal system is over nitride which is normal in other MECL processes. The base and emitter diffusions are controlled by ion implantation to a junction depth used in other processes. Also, the oxide isolated process achieves a high packing density while achieving good yields.

The high. packing density of the Macrocell Array lowers system component count, reduces power dissipation (by a factor of 5 over discrete logic), while increasing system speed and reliability. Up to 50 discrete IC logic packages can be replaced by one Macrocell Array. Parts can be developed in a short period of time for a new product. Interconnects remain proprietary to the customer.

Customer product development is speeded up with a 12 week turn-around from the time the customer gives the go ahead for generating the metal mask until he receives the finished parts.

In summary, the MECL $10 K$ Macrocell Array achieves over discrete IC logic:

1) A reduction in part count of up to 50 to 1.
2) A reduction in power of 5 to 1.
3) Fast internal delays of . gns typical.
4) An "equivalent" gate delay of . 6 ns for many macrocells.
5) A large selection of macros.
6) And proprietary custom parts at a relatively low cost.

III. MACROCELL ARRAY DESCRIPTION

There are a total of 106 cells organized on the Macrocell Array chip as shown in Figure 2. There are 48 major cells (M), 32 interface cells (I), and 26 output cells (0). All macrocell array chips are built from a standard semiconductor diffusion set up to metalization. Appendix A contains a cell library of 85 logic functions called macros. A macro (sometimes called macrocell) is a first layer metal intraconnection pattern that interconnects the components of a cell into a specific logic function. There are 54 macros for major cells, 14 macros for interface cells, and 17 macros for output cells. The CAD system contains the required first layer metalization pattern for each macro as well as the $1 / 0$ ports.

Each major cell can be divided into two independent half cells, an upper half and a lower half. As an example, the upper half of a major cell could be designated a D flip flop ($\frac{1}{2}$ of M31 in Appendix A) and the lower half a full adder ($1 / 2$ of M52).

The power, ground, and bias supply lines are not shown in Figure 2. These interconnects are automatically accomplished by the CAD system. Figure 2 shows only the free channels that are used by the designer to interconnect the
cells in the array. The 100° channels in the vertical direction are accomplished on first layer metal while the 130 channels in the horizontal direction are accomplished on second layer metal. Note that the second layer metal can be placed over the cell without interferring with the macro in that cell since all macros are intraconnected on first layer metal. The second layer metal is separated from the first layer by an oxide isolation. Metal runs on the chip have little affect on delay times because of the oxide isolation between metal and active devices. Connections between lst layer and 2nd layer metal are accomplished with VIA's. The interconnecting of cells on the array can be compared to routing signal lines on a two sided PC board.

The important features of the array are listed in figure 3. The array could contain up to 1192 equivalent gates if all the major cells contain dual full adders, M52 (a total of 96 adders at 10 gates per adder) and the interface and output cells contain latches, II4 and 014 (a total of 58 latches at 4 gates per latch). The number of equivalent gates for each macro can be found by counting the number of gates given in the library (Appendix A). Note that a 2 input exclusive $O R$ gate is counted as 3

D. VIA PLACEMENT RESTRICTIONS

In the routing alleys (see figure 2) the only restriction on via's (connection between 1 st and $2 n d$ layer metal) is that adjacent horizontal via's are not allowed. This restriction has very little impact on laying our a circuit. Adjacent vertical and adjacent diagonal via's are allowed.

E. PERFORMANCE CHARACTERISTICS

The Macrocell Library in Appendix A contains the performance characteristics of each macro logic function. The worst case propagation delay is specified for $V_{E E}=$ -5.2 volts $\pm 10 \%$ and a $T_{j} \max =130^{\circ} \mathrm{C}$, the maximum operating junction termperature is $165^{\circ} \mathrm{C}$. A 10% lower power dissipation can be obtained by operating the chip at the lower VEE limit of -4.68 volts. If the array is operated above the $130^{\circ} \mathrm{C}$ junction temperature, a slight degradation of the propagation delay numbers in Appendix A will occur (approximately 15\% when the junction temperature is $165^{\circ} \mathrm{C}$).

In order to maintain a reasonable junction temperature (and adequate noise margins), the customer is required to connect a Motorola recommended heat sink to the package and operate the device with a recommended air flow of 1000 ifpm(linear feet per minute). This combination results in a θ JA (thermal resistance from junction to ambient) of $15^{\circ} \mathrm{C} /$ watt. If the system designer maintains the ambient temperature at $55^{\circ} \mathrm{C}$, then a 5 watt maximum chip dissipation would result in a junction temperature of $130^{\circ} \mathrm{C}$ (thus, there would not be any propagation delay degradation for the numberg given in

Appendix A). For high utilization of the chip (around 90\%), the typical power dissipation will be around four watts.

The performance of the macros specified in Appendix A in regards to fanout and loading is as follows.

For the Major and Interface Cell macros, the maximum values given for propagation delay are for a 1 or 2 ma output follower current driving a fan-out of 3 or a .5 ma output follower current driving a fan-out of 1 . For the output cell macros, the maximum propagation delay for the Y output is specified at 2.2 ns from the 50% point of the input to the 50% point of the output when driving a 50 ohm load (a 25 ohm load for 016 and 017 driver) to -2 volts.

The Output cell macros can be used as interface cells by using the $Y 1$ output. The maximum propagation delay for the Y l output driving a fan-out of three is 1.5 ns when the Y output is not used. (2.2 ns when the Y output is used).

1. Metal Interconnect Length

The metal interconnect between the macros in the array represents a line capacitance (. $005 \mathrm{pf} / \mathrm{mil}$ maximum for both first and second layer metal) to the driving gate. This line capacitance primarily effects the fall time at the gate output and causes a slight degradation in propagation delay. Figure 2 shows the dimensions of the chip so that the metal interconnect length can be closely approximated.

The propagation delay degradation (due to metal length) for the output switching from high to low (Atpd-) for various output follower currents is as follows:

$$
\begin{array}{ll}
\Delta t p d-=.6 \mathrm{ps} / \mathrm{mil} & \begin{array}{l}
\text { for } 2 \mathrm{ma} \text { output follower } \\
\text { current }
\end{array} \\
\Delta t p d-=1.4 \mathrm{ps} / \mathrm{mil} & \begin{array}{l}
\text { for lama output follower } \\
\text { current }
\end{array} \\
\Delta t p d-=3.8 \mathrm{ps} / \mathrm{mil} & \begin{array}{l}
\text { for } .5 \mathrm{ma} \text { output follower } \\
\text { current }
\end{array}
\end{array}
$$

The propagation delay degradation (due to metal length) for the output switching from low to high (tod+) for .5, 1 , or 2 ma output follower current is:

$$
\Delta t p d+=.6 \mathrm{ps} / \mathrm{mil}
$$

For long lines, a $2 m a$ output follower current should be used to minimize delay degradation and skew. A line that is 100 mils long will increase the propagation delay (tpd-) of the driving macro by 60 ps for 2 ma follower current or 380 ps for a . 5ma follower current. These are worst case numbers. The delay degradation due to metal length on the input to the chip and on the output of the chip is negligible and may be ignored. The reason for this is the low impedance drive of the driving gate (normally 50 ohms).

2. Fanout

The propagation delay degradation due to fan-out has been analyzed by computer simulation. The results show that the fan-out delay degradation (for the output going high or 10 w) is $\Delta t p d=60 \mathrm{ps} / \mathrm{fan}$-out for $.5,1$, or 2 ma output follower current.

This equation is good for a fan-out of up to 3 for . 5ma output follower current, a fan-out of 6 for 1 ma output follower current, and a fan-out 12 for $2 m a$ output follower current.

The propagation delay of a macro given in Appendix A must be increased by 60 ps/fan-out for fan-outs of 4 or more with output follower currents of 1 or 2 ma. For a . 5ma output follower current the propagation delay must be increased by 60 ps/fan-out for fan-outs of 2 or more.

```
As an example of delay degradation due to fan-out and
metal length, assume that a 4 - 1 MUX is driving a
fan-out of 5 with a total interconnect lenght of }10
mils. From Appendix A the propagation delay from
data input to output is 1.5ns (tpd). If a lma output
follower is selected, then the increase in delay due
to the fan-out is 120ps and l40ps for the metal length.
Then, the total propagation delay is 1.76ns. If a 2ma
ouput follower current is selected, then the total
delay would be reduced slightly to 1.68ns. A . 5ma
output follower current is normaliy used in non-cri-
tical delay paths in order to save power.
```


3. Rise Time

When external inputs drive the array, the rise and fall times should be 1 ns (20 to 80%) in order to meet the propagation delay specified in Appendix A. Slower
rise and fall times increase the propagation delay. When a-MECL IOK gate with a 3.3 ns max rise and fall. time drive the array, 400 ps delay should be added to the input macro delay time. For a $2 n s$ edge, 175 ps delay should be added.

For each nanosecond increase in rise or fall time, 175ps in delay should be added. The output rise and fall times of the output cell is 1 ns min, 1.5 ns typical. If the maximum output rise and fall time is 2.5 ns then $265 p s$ should be added to the input macro delay time when one macrocell array is driving another.
THESE SAME NUMBERS APPLY WHEN EXTERNAL INPUTS DRIVE INTERNAL CELLS (le major cells) a outputcells
4. Input follower

All the pins that are not used for power can be used as inputs to the array. Inputs from the bonding pad pins can be connected to inputs of major, interface, or output cell macros. However, if the input pin is connected to an input follower (denoted by asterisk, *) of a major cell macro, a maximum of 300 ps should be added to the propagation delay due to possible soft
saturation under worst case conditions. UN TL WE CAN Q ET MOTOROLA TO SPEC THIS WORST CASE DO MOI BRING INPUTS INTORMJOR CELL LOWER NUTS In addition, the THOLE OUTputs (outside the chip) FSTERISK
driving an input follower of a major cell, should be loaded with 50 ohms to -2 volts in order to keep $V_{O H}$ at specified limits (a 510 ohm load would result in a higher $V_{O H}$). The reason for this slight restriction can be seen by comparing the input follower circuit of a major cell macro (Figure 5) and an interface cell macro (Figure 7). The interface cell macro contains an extra diode in order to prevent soft saturation under worst case conditions. The diode and a couple of other components were not added to the major cell in order to reduce chip size. Also the diode adds an extra loops of delay. Since most connections to the input of major cell macros would be internal connections, components were reduced and propagation delay was optimized. No extra delay need be added when circuit inputs to the array are connected to the top portion of the current tree (inputs A and C in Figure 5) of a major cell. Also no extra delay need be added when any circuit input of a major cell macro is connected to the output of other interface or major cell macros in the array.

If the $Y 1$ output of the Output Cell macro is driving the input follower of a Major Cell macro, 300 ps should be added to the propagation delay if the Y output (of the same output macro) is unloaded. If the Y output is on addetional loaded externally with 50 ohms, then 150 ps should be added to the propagation delay. The reason is the same as given above for an external MECL signal driving an input follower of a Major Cell macro. The Yl output has normal 10 K voltage levels instead of the reduced 650 mv internal levels. The internal voltage levels are more fully discussed in Section I.

F. Wire ORing

Outputs of interface and major cells can be tied together to form a wired $O R$ function. The sum total output follower current allowed with wire ored outputs is $2 m A$. Up to four outputs can be tied together for a total output follower current of 2 mA . Up to two outputs can be tied together for a total output follower current of 1 to 2 mA (. 5 mA not allowed).

With wire ORing it is recommended that the output follower current be divided equally among the outputs. For instance, when four outputs are tied together each output should be selected for . 5 mA .

When outputs are tied toqether, current will flow from the output that is "high" to the load resistors located at other outouts. This current causes a small IR droo. which decreases the noise margin. The maximum IR droo allowed is 25 mV . The resistance of first layer metal is .2 ohms/mil while the resistance for second layer metal is . 062 ohms/mil. For instance, assume there is a metal run of 100 mils total between two outputs tied together where 50 mils is on first layer and 50 mils is on second layer.
A 1 mA output follower current at each output would
mean that 1 mA of current would flow from the output that is "high" to the other output when in the "low" state. This could cause a voltage drop of 10 mV on first layer and 3.1mV on second layer for a total drop of 13.1 mV . The wired $O R$ outputs should be physically as close as possible to reduce loss of noise margin.

Wire ORing of internal macro outputs will cause some degradation which should be added to the propagation delay specified in Appendix A. The propagation delay degradation for the output falling, $t_{p d^{-}}$is a maximum of

$$
\Delta t_{p d^{-}}=20 p s / w i r e-0 R
$$

This degradation is small since the delay is due to a very small capacitance associated with the additional output device on the line. The propagation delay for the output rising, $t_{p d^{+}}$, is much larger as shown in the Table 1 below. When two macro outputs are wire ORed and both are in the "low" state, one output could be supplying more current to the load resistors than the other output (called current hogging). When the output that is supplying the
smallest amount of current switches to the "high" state, it must now supply all of the current resulting in the additional delay shown in Table l. The Table also shows the allowable combination of the number of wire $O R$'s versus the required total output follower current.

$$
\begin{aligned}
& \text { Table 1. } \frac{\text { Maximum Delay Degradation for }}{} \\
& \frac{\text { Output Rising, } \Delta t}{\text { Number of Wire OR's and Output }}
\end{aligned}
$$

Follower Current.

Total Output Follower Current (mA)	$\Delta t_{\text {pd }}+$ in ps		
Wired	Wired	Wired	
1.0	150	-	-
1.5	225	275	
2.0	300	350	400

Wire ORing of the output emitter followers of the output macros (Y output) is not allowed on the chip due to voltage drops on the chip. However, a wire OR of two Y output may be connected on the chip when using the bonding pads that have two emitter followers (pins 67, 68, 1, 2, 16, 17, 18, and 19). A wire OR
of two or more Y outputs can be performed outside the package but this reduces the number of bonding pads available for other input signals.

Eight of the 26 bonding pads have two output emitter followers for driving 25 ohms when the driver of the transceiver macros is connected. A ninth 25 ohm driver is possible by connecting the output of the transceiver macro to two adjacent bonding pads that have single emitter followers and connecting these pads outside the package (it is not allowed to connect these pads on the chip).

It should be noted that the delays shown in Table 1 are specified for wire 0 ing of interface and major cell macro outputs as well as the Yl output of the output cell macros.

G. VOLTAGE LEVELS

All input and output levels (including input thresholds) of the Macrocell Array are specified exactly the same as the MECL 10,000, MECL 10800, and MECL III families over the temperature range. In addition, the Macrocell Array is voltage compensated so that it can be operated over a range of $V_{E E}=-4.68$ volts to -5.72 volts with little change in performance. The voltage tracking rates are:

1) $\Delta V_{\mathrm{OHV}}=10 \mathrm{mv} / \mathrm{VOlt}$
2) $\Delta V_{B B V}=45 \mathrm{mv} / \mathrm{VOlt}$
3) $\Delta V_{O L V}=60 \mathrm{mv} / \mathrm{volt}$

The output levels and input thresholds are the same for devices that have the same ambient temperature even though the junction temperature of the devices can be different. This is partly accomplished in the design of the bias driver. The bias driver is designed to automatically adjust the bias voltages according to the current being drawn through the $V_{C C}$ pin. If part A uses one watt (the junction temperature will be $40^{\circ} \mathrm{C}$ at $25^{\circ} \mathrm{C}$ ambient) and part B uses five watts (the junction temperature will be $100^{\circ} \mathrm{C}$ at $25^{\circ} \mathrm{C}$ ambient) the following voltages would result:

	PART	PART
$V_{B B}$	-1.2806	1.2790
$V_{B B} 1$	-2.0639	-1.9701
$V_{C S}$	-3.9812	-4.0468
$V_{O H}$	-0.9296	-0.9146
$V_{O L}$	-1.7343	-1.7466

As can be seen above the voltages remain fairly constant even though the difference in the junction temperature is large. These voltages also remain constant for two identical arrays from different lots. For instance, part 3 of lot 1 may dissipate 3.875 watts minimum and part B from lot 2 may draw 6.125 watts maximum. In conclusion, the junction temperature differentials due to variations in $I_{E E}$ are taken care of as standard design practice in the design of every MECL device. The parametric voltage levels (such as $V_{O H A}, V_{O L A}, V_{I H A}$, and $V_{I L A}$) which specify noise margin are tested and specified over temperature and include variation of junction temperature due to variations in $I_{E E}, \theta_{J A}$, and output power. These levels are guaranteed for the Macrocell Array when using the recommended heat sink and 10001 ppm of air flow. Under these conditions, the $\theta_{J A}$ is $15 \pm 2^{\circ} \mathrm{C} /$ watt.

H. NOISE MARGINS

The worst case noise margins (NM) for the Macrocell Array over temperature (0 to $70^{\circ} \mathrm{C}$ ambient) for a $V_{E E}=$ -5.2 volts in $N M_{H i g h}=125 \mathrm{mv}, N M_{\text {Low }}=155 \mathrm{mv}$. These values assume that the recommended heat sink and 1000 Ifpm is used. The $V_{E E}$ regulation and the ambient temperature differentials between packages will reduce these numbers slightly.

Figure 11 shows a tabulation of noise margins for a $10^{\circ} \mathrm{C}$ ambient temperature differential between packages combined with power supply regulation of $\pm 2 \%$, 0 to 5%, and $\pm 5 \%$. With a 10001 fpm of air flow, a temperature differential of $10^{\circ} \mathrm{C}$ max is realistic.

When the Macrocell Array is used, power supply regulation has a negligible effect on noise margins. It is interesting to note that it is actually possible to gain noise margin when intermixing the voltage compensated Macrocell Array and MECL IOK.

I. INTERNAL VOLTAGE LEVELS

The output voltage levels of the Interface, and Major cell macros (and receivers of Output cell macros) are as follows for inputs at $V_{\text {IHA }}$ min. and $V_{\text {ILA }}$ max.

OUTPUT FOLLOWER Current (ma)	$\begin{gathered} \mathrm{V}_{\mathrm{OH}} \\ (\mathrm{VOlts}) \\ \hline \end{gathered}$	$\begin{gathered} V_{O L} \\ (\text { volts }) \end{gathered}$
2	-1.0	-1.64
1	-. 975	-1.62
. 5	-. 95	-1. 6

Note that the internal output voltage swing is smaller than the external output voltage swing. The input threshold voltage is the same as specified for MECL IOK of $V_{\text {IHA }} \min =-1.105$ volts and $V_{\text {ILA }} \max =-1.475$. The reason for the smaller swing is to maintain high speed operation.

As discussed the previous section, noise margin between chips in a system is determined by the voltage regulation (line drops) and temperature differentials. However on the chip, the temperature is constant with essentially $0^{\circ} \mathrm{C}$ temperature differential. Each of the macro functions on the chip have the same value of power supply voltage (due to common moda on the chip) regardless of the external power supply regulation. Therefore, the noise margin for the internal voltage swings is:
$N M_{H}=1105-1000=105 \mathrm{mv}$
$N M_{L}=1500-1475=125 \mathrm{mv}$
$V_{E E}=-5.2 v$

The noise margins get larger for $V_{E E}>5.2$ volts. If $V_{E E}=-5.2 v \pm 5 \% ~\left(V_{E E}\right.$ will get as low as -4.96 volts), then the internal noise margins will be reduced slightly to $N M_{H}=96 m v$ and $N M_{L}=121 m v$.

The short line length of interconnections internal to the chip eliminates the need for transmission lines. In general, internal noise immunity will be greater than the noise immunity between chips in a system.

The output voltage swing for the Y1 output of the Output Cell macros is larger than the internal voltage swings of the other macros. The reason is that the Y output of the output cell must be lo voltage compatible so the voltage at the base of the output emitter follower has a larger swing. If the Y output is loaded with 50 ohms to -2 volts, the $Y 1$ output levels are $V_{O H}=-.90$ volts and $V_{O L}=-1.7$ volts. If the Y output is unloaded, the Y1 output levels are $V_{O H}=.83$ volts and $V_{O L}=-1.7$ volts.
The noise margin for the $Y 1$ output is larger than the numbers indicated above due to the larger voltage swing.

VI. PACKAGING

A new LSI package is being used for the Macrocell Array as shown in Figure 13. The 68 pin leadless package has been developed in accordance with the "JEDEC LSI package standard". $3 M$ and Kyocera are manufacturers of the package. In high speed systems, long lead frames are not suitable because of the large inductance of the leads. The leadless package improves system reliability by reducing the failure rate due to mechanical features of bending leads and replacement damage. The package has 17 connection terminals per side on $.05^{\prime \prime}$ centers. The IC chip mounts to a ceramic base measuring .95 inches on a side. Gold plated metal on the base piece routes signals and power from the package edge to the IC chip.

The Macrocell Array chip is die attached to the package using a preform which provides an excellent thermal interface between the die and the ceramic. The thermal resistance of the device from the junction to the case is less than $5^{\circ} \mathrm{C} /$ watt. Figure 10 shows the chip wire bonded to the package. A ceramic cover fits on top of package to provide a hermetic seal.

The package is mounted upside down from conventional IC practice with the base of the chip on the top side away from the PC board. A heat sink (such as the

```
Wakefield #4493) is attached (by the customer) to the
package on the same ceramic piece as the IC chip for
very efficient heat transfer. Figure 14 shows the heat
sink attached to the package being mounted in a connec-
tor manufactured by AMP. This connector can be soldered
to the PC board or held in place with a mounting bolt.
The leadless package is held in the connector with a
spring clip. There are 68 package pins in order to
facilitate testing and trouble shooting. The input pin
capacitance of the package going to the
input on the chip has been measured to be around 2.5pf.
```

Another method of mounting the leadless package to the PC board is shown in figure 15. The method consists of mounting stand-off pins or metal clips, manufactured by Berg Electronics, to the package. The metal clips come in strips that are connected to the leadless package by wave soldering. The package can now be connected to the $P C$ board by also using reflow soldering techniques.

The thermal resistance from junction to ambient is $15^{\circ} \mathrm{C} / \mathrm{W}$ with heat sink attached to the package and 10001 fpm of air flow. If the air flow is reduced to $5001 \mathrm{fpm}, \theta_{\mathrm{JA}}$ increases to $19^{\circ} \mathrm{C} /$ watt. Without a heat sink and 1000 lfpm of air flow the $\theta_{J A}$ is $20^{\circ} \mathrm{C} /$ watt.

LIST OF FIGURES

1. Cross Section of MOSAIC I Process
2. MECL Macrocell Array Metal Interconnect Channels
3. Macrocell Array Features
4. Half Cell Schematic
5. Schematic of 4 Input Exclusive OR Gate
6. Interface Cell Schematic
7. Schematic of Interface Macro, I13 Latch
8. Output Cell Schematic
9. Schematic of Output Ce11, 016 Translator
10. Macrocell Array Mounted in 68 Lead Chip Carrier
11. Worse Case Noise Margins
12. Macrocell Array Option Development Flow
13. 68 Pin Leadless Package
14. Leadless Package with Connector
15. Leadless Package with Stand-Off Pins
16. 8 Bit Binary/BCD ALU
17. 16×4 Multi-Port Register File
18. 8×8 Array Multiplier
19. 8×8 Multiplier Logic Drawing
20. Layout Worksheet
21. Power Calculations for 8×8 Multiplier
22. 8×8 Multiplier Channel Interconnect
figure G. Gposssiction of mon : Mporiso

Emitter

$$
\begin{aligned}
& \rho_{s}=12-2 / \square \\
& x_{j}=8000 \dot{i}
\end{aligned}
$$

Base

$$
\begin{aligned}
& \rho_{5}-500 \Omega / \mathrm{ol} \\
& \mathrm{mj}=6000 \mathrm{di}
\end{aligned}
$$

Resistor

$$
\begin{aligned}
& \rho_{s}=100,500(\text { bose }) \text {, high value } \\
& x_{j}=5000-7000 A \text {. }
\end{aligned}
$$

Buried layer

$$
\begin{aligned}
& p_{s}=25-\mathrm{R} / \mathrm{a} \\
& x_{j}=4-6 \mathrm{~mm}
\end{aligned}
$$

NOTE: MOSAIC is THE MPFKEVIATIOIN OF "MOTOROLA OXIDE SELF-ALIGNED IMPLANTED CIRCUIT",

FIGURE 7. Schematic of entejface Macra I $13 \angle A+c$

$$
y=A+3 \quad Z=C+0
$$

Z wh DRIVE ank INTERMAL LOMDS

$$
\begin{array}{ll}
\text { Ted } y=2.2 n \mathrm{~s} & P D(y)=52 \mathrm{mw} \\
\text { Ifd } z=1.5 n \mathrm{~s} & P D(z)=18.2 \mathrm{mw}
\end{array}
$$

FIGURE/2. MACROCELL ARRAY OPTION DEVELOPMENT FLOW

[^0]: SIMULATED NOISE AT POINTS A, B, C FOR VCC PIN 60

[^1]: SIMULATED AND MEASURED NOISE ON PING
 " !. "
 " 1 , $V_{\text {cco }}$ PIN 3, VCC PIN 60 AT POINTS A, B, C

