Company Confidential

Microprogram Level Flow: ADDW3

Now that all of the hardware components and
control signals of the data path module have been
described in detail, this section takes an ADDW3
(add word 3 operand) macroinstruction and
describes the decoding and execution of this
instruction at the microprogram level.

An ADDW3 macroinstruction adds the word (16
bits) at the address specified by the first operand
specifier to the word at the address specified by the
second operand specifier, and stores the sum in the
location specified by the third operand specifier. A
sample ADDW3 instruction is:

ADDW3 B*5(R0O)[R1], @(R5)+, R2

This instruction uses several addressing modes.
The first operand specifier uses byte displacement
indexed addressing; the second operand specifier
uses autoincrement deferred, and the third
operand specifier uses register mode.

At some virtual address in memory, this
instruction looks like this:

52195(05|A0[41|A1|:VA

where Al is the opcode, 41 specifies index mode
using R1, 05A0 is byte displacement mode using
RO (05 is the displacement), 95 is autoincrement
deferred mode using R5, and 52 is register mode
using R2. The 05A0 specifies the base address of a
table of words, and the content of R1 is an index
into this table. Before the microprogram level
description begins, the next few paragraphs




Company Confidential

summarize the steps needed to execute this
ADDW3 instruction.

Step 1. Evaluate the opcode to select the proper
microroutine for this macroinstruction.

Step 2. Evaluate the first operand specifier and
obtain the first operand. This is accomplished as
follows:

a. Add 5 to the contents of RO; the sum is called
the base operand address.

b. Multiply the contents of R1 by 2.

c. Add the result from step b to the base operand
address from step a to get the address of the
first operand.

d. Use the address computed in step c to fetch the
first operand and store it in a register on the
data path chip.

Step 3. Evaluate the second operand specifier,
obtain the second operand, and increment the
contents of R5. This is accomplished as follows:

a. R5 contains a longword address; fetch the data
at this address.

b. The fetched data are the address of the second
operand; fetch the second operand and store it
in a register on the data path chip.

c. Add 4 to the contents of R5.

Step 4. Add the first operand to the second
operand, and store the sum in R2.

The remainder of this chapter describes the
microprogram steps necessary to decode and
execute the ADDW3 macroinstruction. Assume
that the six bytes of the instruction are already in
the prefetch logic, that all physical addresses are

4: Data Path Module 208




Company Confidential

in the translation buffer, and that all requested
data are located in the memory controller cache.
Figure 4-12 at the end of this chapter diagrams all
of the microinstructions.

Evaluating the Opcode: Decode A1

The ADDW3 opcode, Al, is in the IBYTE register
because a decode was already done on the previous
byte in the IBYTE register and the signal LOAD I
BYTE H asserted. The last microinstruction of the
microroutine that decoded and executed the
previous byte in the IBYTE register is the Decode
microinstruction for a macroinstruction opcode.
Whenever a Decode microinstruction is executed,
the data path chip increments the program
counter. So, the PC on the data path chip contains
the virtual address of the first byte (Al) of the
ADDW3 instruction, the microprogram counter
(uPC) contains the microaddress of the Decode
microinstruction that decodes macroinstruction
opcodes (IRD), and the IBYTE register contains
Al.

The contents of uPC are driven onto the NuA bus,
selected by the NuA MUX and latched into the
CSA register at T2 (125 ns into the microcycle).
Control store is accessed with this microaddress
and the IRD microinstruction is the output. (IRD
means the Decode microinstruction that decodes
macroinstruction opcodes.) The microinstruction
bits are sent all over the data path: bits <36:16>
are sent to the data path chip as the DPC
microinstruction; bits <24:23> (the IFUNC field,
see Table 3-4) are sent to the decode ROMs; bits
<15:08> and <24> are sent to the OR MUX
control logic; bits <36:32> (the microopcode) and
bit <24> are sent to the ID bus address decode

209 ADDW3




Company Confidential

logic; bits <28:24> are sent to the IBYTE control
logic.

Bits <24:23> are available at the input to the
decode ROMs 20 ns before the next clock edge (T0).
The IBYTE control logic detects that an IRD is
executing because DAPA CS 24 H is asserted; that
is, bit <24 > of the current microinstruction is set.
The bits in the IBYTE register are accessing the
decode ROMs as soon as the new byte is loaded into
the IBYTE register, but the decode ROMs are not
enabled until the rising edge of DLYD CPU
CLOCK (62.5 ns into the current microcycle). The
decode ROMs are enabled by the signal DAPC EN
ROMS L, which is generated from the OR MUX
control logic. Bits <15:08> and <24> as inputs
to the OR MUX control logic PAL determine that
an [IRD microinstruction is executing and assert
DAPC EN ROMS L as the output.

When the decode ROMs are enabled, the contents
of the location being accessed by the byte in the
IBYTE register are driven onto the NuA bus. The
contents are 12 bits of microaddress (<11:0>)
because this is an opcode decode. The NyA MUX
selects these 12 bits and forces a zero as the high-
order bit, bit <13 > (see Table 4-1). These 13 bits
are the microaddress of the first microinstruction
in the microroutine for ADDW3. This micro-
address is latched into the CSA register at T2 (125
ns).

In addition to 12 bits of microaddress, the output
from the decode ROMs includes 2 bits of condition
code class, and 2 bits of data type. The condition
code class bits are sent to the condition code class
register; the data type bits are sent to the size
register. The data type bits from the decode ROMs

4: Data Path Module 210




Company Confidential

for this IRD are 01 to indicate word. This value is
loaded into the size register at the next T0. Thus,
the size register contains a value of 1, specifying
word.

Meanwhile, the signal DAPR LOAD I BYTE H is
asserted by the IBYTE control logic because a
Decode microinstruction has just been executed.
At the next rising edge of CPU CLOCK, (the next
T0), DAPR CLOCK I BYTE H is generated from
DAPR LOAD I BYTE H and the next byte in the
instruction stream is clocked into the IBYTE
register from the memory control bus. The PC on
the data path chip is incremented by one because a
Decode microinstruction was just executed.

At the next rising edge of DLYD CPU CLK (T1),
the signal DAPR IB TAKEN L is generated from
LOAD I BYTE H. This signal when asserted
informs the memory controller that the next
instruction stream byte is needed, so the memory
controller drives the third byte of the ADDW3
instruction (A0) from the prefetch logic onto the
memory control bus.

At this point, the PC on the data path chip contains
the virtual address of the second byte (41) of
ADDWS3, the IBYTE register contains the second
byte, 41, and the microaddress of the first
microinstruction in the ADDW3 microroutine is
latched in the CSA register.

Step 1 is now complete; the macroinstruction
opcode has been evaluated  and the proper
microroutine selected.

Evaluating the First Operand Specifier

Decode 41

211 ADDW3




Company Confidential

The contents of the CSA register select a
microinstruction in control store; the micro-
instruction selected is the first microinstruction in
the microroutine for ADDWS3. This micro-
instruction is an operand specifier Decode. The
Decode microinstruction bits are distributed to the
proper data path elements. Bits <24:23> of this
microinstruction (the IFUNC field) have the value
0, indicating an operand specifier decode type 1.

The IFUNC field and the contents of the IBYTE
register (41) are used to access the decode ROMs.
Since this is an operand specifier decode, the
output from the ROMs to the NuA bus is the low
eight bits of the microaddress. The high five bits
are driven onto the NpA bus from the jump
register. The NuA MUX selects the bits on the
NupA bus and latches them into the CSA register.

The size register is loaded at TO from the CC/DT
field of the microinstruction when operand
specifier Decodes are executed, unless the CC/DT
field contains the encoding 2 to specify the size
register. Bits <38:37> of this Decode do contain
the value 2, so the size register is unaffected; that
is, the size register still contains the value 01,
specifying word.

Any time an operand specifier decode is executed,
bits <5:0> of the IBYTE register are passed
through the IBYTE buffer, driven onto the ID bus,
then to the data bus, and into one of the two
pointer registers on the data path chip. Bit <26>
(the pointer register select bit) of the Decode
microinstruction just decoded is zero, so bits
<5:0> of the IBYTE register (=000001) are saved
in pointer 1 on the data path chip. Thus, pointer 1
is pointing to R1. Assume that R1 contains the

4: Data Path Module 212




Company Confidential

value 3; that is, the contents of R1 will select the
third entry in the table of words defined by the
base address.

Another result of this operand specifier decode is
that the current microaddress plus 1 is pushed on
the microstack. This happens for every operand
specifier decode when the addressing mode is not
register mode, and the content of the IBYTE
register is valid.

The PC on the data path chip is incremented by
one because a Decode was just executed.

Shift by 2

Next, the 13 microaddress bits latched in the CSA
register select a Shift microinstruction from
control store. Bits <36:16> of this Shift microin-
struction are latched in the control store register
on the data path chip. The CC/DT field of this Shift
is 00, so data path chip pins SIZE1 and SIZEQ are
both zero. This encoding means that the chip
operation (shift) uses data type long. (The data
path chip size pins are determined by the CC/DT
field of the current microinstruction when the
microinstruction is not a Memory Request or an I-
stream Request and the CC/DT field does not
contain the value 3.)

This Shift microinstruction causes the contents of
R1 to be shifted left by two bits, and stores the
result in the RESULT2 register. A left shift by two
effectively multiplies the contents of R1 by 4. This
Shift is executed in case the table to be indexed is a
table of longwords. But the next address control
field of this Shift microinstruction uses the CASE
format; this Shift microinstruction cases on the
contents of the size register. The result is that the

213 ADDW3




Company Confidential

next microaddress is the address of another Shift
microinstruction, but one that multiplies by 2
instead of by 4.

To further explain how this happens, assume that
the first Shift microinstruction is located at control
store address 1903, and that the next address
control field (bits <15:0>) of this Shift micro-
instruction is 7C18, or 0111/1100/0001/1000. Bits
<15:13> have the value 011, which specifies the
CASE format (see Figure 3-3). Bits <9:8> are
defined as the jump control field (JC<1:0>); the
value of 0 in this field specifies that the output of
the OR MUX is to be ORed with the low four bits
on the NuA bus to obtain the next microaddress.
Bits <12:10> are defined as the OR<2:0> field;
the value of 7 in this field selects the OR MUX
input line with these four signals: 0, 0, SIZE1,
SIZEOQ. SIZE1 and SIZEO are signals from the size
register (DAPE SIZE 1 H and DAPE SIZE 0 H) and
have the value 01.

The microsequencer computes the next micro-
address as follows. The control logic determines
from bits <15:13> that the next address control
field format is a CASE, and enables the output of
the OR MUX because of the value in the jump
control field. Bits <7:0> of the Shift micro-
instruction (18 hex) are driven onto the NuA bus
from the jump register. The output from the OR
MUX: 0001 (binary), is ORed with <7:0> (=18
hex) from the jump register; thus, the value of the
low eight bits on the NuA busis 19 (hex). The NuA
MUX selects these eight bits off the NuA bus, and
combines them with the bits in the page register to
generate the next microaddress. The page register
contains the value 19 from the high-order five bits
of the current Shift microinstruction; thus, the

4: Data Path Module 214




Company Confidential

next microaddress is 1919.

Shift by 1

Control store location 1919 contains the second
Shift microinstruction. This Shift microinstruc-
tion shifts the contents of the register pointed to by
pointer 1, left by 1. Pointer 1 is still pointing at R1,
which still contains the value 3. Shifting the value
3 left by one bit effectively multiplies by 2; the
result 6 is stored in the RESULT2 register on the
data path chip. This is now the correct index value
because in the table of words (that is, each table
entry is two bytes wide) that will be accessed
shortly, the sixth byte from the base address of the
table is the address of the third entry.

The CC/DT field of this Shift is also 00, so data
path chip pins SIZE1 and SIZEO are zero, and
therefore the chip operation uses data type long.

While these two Shift microinstructions were
executing, the IBYTE control logic has caused the
third byte (A0) of the ADDW3 instruction to move
off the memory control bus into the IBYTE
register, and the memory controller has driven the
next instruction byte, 05, onto the memory control
bus. Thus, the IBYTE register contains A0, the PC
contains the virtual address of the third byte of
ADDWS3 (A0; the PC was incremented by one when
the Decode for 41 was executed), and the microcode
is ready to compute the base address of the table of

words.

Decode AO

The next microaddress generated from the
execution of the second Shift microinstruction
selects another Decode microinstruction in control

215 ADDW3




Company Confidential

store. This Decode is part of a microroutine used to
calculate base addresses. As this Decode micro-
instruction is evaluated and executed, the same
steps that happened when 41 was decoded are
repeated:

® The IFUNC field and the contents of the
IBYTE register (A0O) are used to access the
decode ROMs.

® The size register is unaffected because the
CC/DT field of this Decode contains the value
2; thus, the contents of the size register is still
01, specifying word.

® Bits <5:0> of the IBYTE register are latched
into the IBYTE buffer, driven onto the ID bus,
then to the data bus, and into pointer 1 on the
data path chip (bit <26> of this Decode
microinstruction is also a zero); pointer 1 now
contains the value 0, that is, pointer 1 now
points to RO.

® The current microaddress plus 1 is pushed on
the microstack. This happens for every
operand specifier decode when the addressing

mode is not register mode, and the content of
the IBYTE register is valid.

® The PC on the data path chip is incremented
by one because a Decode was just executed.

® The microsequencer calculates the address of
the next microinstruction using the low eight
bits from the decode ROMs and the high five
bits from the jump register. The NuA MUX
selects these combined 13 bits off the NuA bus
and latches them into the CSA register.

Since the Decode just completed, LOAD I BYTE H
is asserted, the next instruction byte, 05, is loaded

4: Data Path Module 216



Company Confidential

into the IBYTE register, and the memory
controller drives the fifth byte of ADDW3 (95) onto
the memory control bus. Thus, the IBYTE register
contains 05, the PC contains the virtual address of
05, and the CSA register contains the micro-
address of the next microinstruction.

Add

The microaddress in the CSA register selects an
Add microinstruction in control store. This Add
computes the base operand virtual address. The
short operand of this Add microinstruction
specifies @pointer 1; that is, use the contents of the
register pointed to by pointer 1. The long operand
of the Add specifies IB.BYTE; that is use the
contents of the IBYTE register.

Pointer 1 points to RO; RO contains a virtual
address, say, 0200. The IBYTE register contains
the byte displacement, 05. Any time the long
operand of a microinstruction specifies IB.BYTE,
the byte currently in the IBYTE register is driven
over the ID bus, to the data bus, and into the data
path chip, having been sign-extended on the data
bus. IB.BYTE as the long operand also causes the
data path chip to increment the PC by one.

The CC/DT field of this Add is 00 (binary), so data
path chip pins SIZE1 and SIZEQ are zero, and
therefore the chip operation uses data type long.

The execution of the Add microinstruction within
the data path chip happens as follows. (See Figure
4-4.) The internal data path chip logic decodes the
91 bits of the Add microinstruction stored in the
chip’s CSR. As a result, the contents of the register
pointed to by pointer 1 (00000200) are driven from
the register file (where RO is) over bus A to the

217 ADDW3

L




Company Confidential

ALU. The sign-extended byte displacement (05)
from the IBYTE register is driven from the data
bus over the internal chip bus B, and to the ALU.
The ALU adds 00000200 and 00000005, and stores
the result in the RESULT1 register. The
RESULT1 register stores the sum because bit
< 31> in the Add microinstruction is set.

While the data path chip is executing the Add, the
data path microsequencer uses the next address
control field of the microinstruction to compute the
next microaddress. This field of the Add has the
hex value A601; that is, the next address control
field format is TRAP. The OR MUX condition that
would cause a trap is IB invalid. Since the signal
IBINVALID H is not asserted at this time, no trap
occurs, and the NuA MUX selects the contents of
the wPC (microprogram counter), which is the
microaddress of the Add microinstruction plus 1,
as the next microaddress.

When IB.BYTE is specified as the long operand,
the IBYTE control logic asserts the same series of
signals as when a Decode has just been executed, to
load the next instruction stream byte into the
IBYTE register from the memory control bus. So
at this point, the IBYTE register contains the next
byte of ADDW3: 95, and the PC contains its virtual
address; the last byte of ADDW3 (52) is on the
memory control bus, and the CSA register contains

the microaddress of the Add microinstruction plus
1.

Move

The microinstruction following the Add is a Move.
This Move stores the computed base operand
address in a temporary register. The CC/DT field

4: Data Path Module 218




Company Confidential

of this Move is 10 (binary), so data path chip pins
SIZE1 and SIZEO are 1 and 0, respectively.
Therefore, the chip operation uses data type long.

A Move microinstruction moves the contents of the
location specified by the long operand to the
location specified by the short operand. The long
operand of this Move is RESULT1, and the short
operand specifies a temporary register, TMP(12).
When bits <36:16> of this microinstruction are
clocked into the CSR on the data path chip,
decoded and executed, 00000205 (the contents of
RESULT1), is driven over bus B and stored in
TMP(12) in the register file.

Meanwhile, the data path microsequencer
computes the address of the next microinstruction
from the next address control field of the Move,
which is a return. The microaddress at the top of
the microstack is the address of the last Decode
microinstruction plus 1. So the data path micro-
sequencer pops this microaddress off the stack to
generate the address of the next microinstruction.
The microaddress now at the top of the microstack
is the microaddress plus 1 of the Decode micro-
instruction that decoded 41 (the second byte of
ADDW3).

The IBYTE register still contains 95, 52 is still on
the memory control bus, the PC still contains the
virtual address of 95, and the CSA register
contains the microaddress that was just popped off
the top of the microstack.

Add

The microinstruction following the Move is
another Add. This Add computes the final
effective address of the first operand by adding the

219 ADDW3

L




Company Confidential

base address to the index. The short operand of
this Add microinstruction specifies RESULT?Z,
which contains the value 6 from the second Shift
operation. The long operand specifies TMP(12),
which contains 0205.

The CC/DT field of this Add is 00, so data path chip
pins SIZE1 and SIZEOQ are zero, and therefore the
chip operation uses data type long. The result
registers are all 32 bits wide, so this Add operation
is manipulating longwords of data.

The value 6 (actually 00000006) is driven over bus
A tothe ALU, 00000205 is driven over bus B to the
ALU, and the sum, 0000020B, is stored in
RESULT1 because bit <31> is set in the Add
microinstruction.

The data path microsequencer computes the
address of the next microinstruction using the next
address control field of the Add, which is a branch.
The specified branch condition being tested for is
register mode. Since this condition is not met, the
branch is not taken, and the next microaddress
generated is the current microaddress plus 1.

The IBYTE register still contains 95, 52 is still on
the memory control bus, the PC still contains the
virtual address of 95, and the CSA register latches
the contents of uPC, which is the microaddress of
the Add plus 1.

Memory Request

The microinstruction following the Add is a
Memory Request. This microinstruction sends the
computed address of the first operand to the
memory controller. The memory controller will
then return the data at that address.

4: Data Path Module 220




Company Confidential

The memory function specified in bits <27:23> of
the microinstruction is VREAD.RCHECK. The
data flow bit is a zero (bit <28>) as the data flow
will be from the memory controller to the data path
(a read). Thus, a value of 01 (hex) is assembled in
the low-order six bits of the memory function latch.
The other two latch bits are set by signals from the
size register. The last time the size register was
loaded was during the Decode for Al; the size
register still contains the value 01, which is
therefore also the value of the two high-order
memory function latch bits. Thus, the value of the
output signals BUS MEM CTL <7:0> from the
memory function latch is 41 (hex).

Four additional signals are sent to the memory
controller over the backplane: DAPT MEM REQ
MODE <1:0>, DAPT MODIFY, and DAPT
SECOND PART L. For this Memory Request,
DAPT MEM REQ MODE <1:0> have the value of
the current access mode from the PSL.MODE
register, and neither MODIFY or SECOND PART

is asserted.

The CC/DT field of this Memory Request is 10
(binary). A value of 2 in the CC/DT field of a
Memory Request causes the data path chip size
control pins to carry the encoding from the size
register. Since the size register contains 01
indicating word, the data path chip pins SIZE1 and
SIZEO are 0 and 1, respectively. Therefore, the
memory controller will return a word of data at the

specified address.

The long operand specifies the address of the
RESULT1 register, so the virtual address
0000020B is driven from RESULT1, over bus B,
latched into the MD bus latch, and driven over the

221 ADDW3




Company Confidential

memory data bus as BUS MEM DATA <31:00>
to the memory controller.

The memory controller asserts the signal MCTT
REQ ACK L when it accepts the virtual address
0000020B off the memory data bus and the
memory function request information off the
memory control bus.

The data path microsequencer computes the
address of the next microinstruction using the next
address control field of the Memory Request, which
is a jump; that is, the next microaddress is supplied
in bits <12:0> of the Memory Request micro-
instruction.

The IBYTE register still contains 95, 52 is still on
the memory control bus, the PC still contains the
virtual address of 95, and the CSA register latches
bits <12:0> of the Memory Request micro-
instruction, which were driven onto the NuA bus
from the jump register.

Move

The microinstruction following the Memory
Request is a Move. This Move sets a register
number in pointer 1. The CC/DT field of this Move
is 10 (binary), so data path chip pins SIZE1 and
SIZEO are 1 and 0, respectively. Therefore, the
chip operation uses data type long.

A Move microinstruction moves the contents of the
location specified by the long operand to the
location specified by the short operand. The long
operand of this Move is hex 43, which is a location
in the constants ROM. The contents of location 43
is the value 14 (hex); hex 14 is the address of a
temporary register, TMP(4). The short operand
specifies the address of pointer 1. When bits

4: Data Path Module 222




Company Confidential

<36:16> of this microinstruction are clocked into
the CSR on the data path chip, decoded and
executed, 14 (the contents of location 43), is driven
over bus B and stored in pointer 1. Thus, pointer 1
points to TMP(4).

The data path microsequencer computes the
address of the next microinstruction from the next
address control field of the Move, which is a jump;
that is, the next microaddress is supplied in bits
<12:0> of the Move microinstruction.

The IBYTE register still contains 95, 52 is still on
the memory control bus, the PC still contains the
virtual address of 95, and the CSA register latches
bits <12:0> of the Move microinstruction, which
were driven onto the NuA bus from the jump
register.

Move

Bits <12:0> of the Move microinstruction are the
microaddress of another Move. The previous Move
was the one intervening cycle between the Memory
Request and the availability of the requested data;
this Move microinstruction moves the data
supplied by the memory controller into the data
path chip. The CC/DT field of this Move is 10
(binary), so data path chip pins SIZE1 and SIZEO
are 1 and 0, respectively. Therefore, the chip
operation uses data type long.

The long operand of this Move is MEMORY.DATA
which is essentially the address of the memory
data bus. The requested data (the first operand)
are currently on the memory data bus and latched
in the MD bus input latch. The short operand
specifies TMP(4). When bits <36:16> of this
microinstruction are clocked into the CSR on the

223 ADDW3




Company Confidential

data path chip, decoded and executed, the first
operand is driven onto the data bus, into the data
path chip over bus B, and stored in TMP(4).

The data path microsequencer computes the
address of the next microinstruction from the next
address control field of the Move, which is a return.
The microaddress currently at the top of the
microstack is the one that was stored when the
Decode for 41 was executed, which is the
microaddress of that Decode microinstruction plus
1. (The microaddress that was stored when the
Decode for A0 was executed, was popped for the

return from the Move microinstruction that stored
the base address in TMP(12).)

The data path microsequencer pops the
microaddress off the top of the microstack to
generate the address of the next microinstruction.
The microstack is now empty.

The IBYTE register still contains 95, 52 is still on
the memory control bus, the PC still contains the
virtual address of 95, and the CSA register latches
the microaddress from the top of the microstack.

Step 2 is now complete; the first operand of the
macroinstruction has been evaluated and fetched
from memory.

Evaluating the Second Operand Specifier

Decode 95

The popped microaddress selects an operand
specifier Decode microinstruction. This Decode is
for the current contents of the IBYTE register: 95.
As this Decode microinstruction is evaluated and
executed, the same steps that happened when AQ

4: Data Path Module 224




Company Confidential

was decoded are repeated:

® The IFUNC field and the contents of the
IBYTE register (95) are used to access the
decode ROMs.

® Bits <38:37> of this Decode have the value 2;
that is, use the size register, which still
contains the value 01 for word.

® Bits <5:0> of the IBYTE register are latched
into the IBYTE buffer, driven onto the ID bus,
then to the data bus, and into pointer 2 on the
data path chip (bit <26> of this Decode
microinstruction is a one). Pointer 1 still
points to TMP(4), and pointer 2 points to R5.

® The current microaddress plus 1 is pushed on
the microstack. This happens for every
operand specifier decode when the addressing
mode is not register mode, and the content of
the IBYTE register is valid.

® The PC on the data path chip is incremented
by one because a Decode was just executed.

e The microsequencer calculates the address of
the next microinstruction using the low eight
bits from the decode ROMs and the high five
bits from the jump register. The NyA MUX
selects these combined 13 bits off the NuA bus
and latches them into the CSA register.

Since the Decode just completed, LOAD I BYTE H
is asserted, the next instruction byte, 52, is loaded
into the IBYTE register, and the memory
controller drives the next byte in the instruction
stream onto the memory control bus. (The next
byte is the opcode of the next macroinstruction in
the I-stream.) Thus, the IBYTE register contains
52, the PC contains the virtual address of 52, and

225 ADDW3

e e S




Company Confidential

the CSA register contains the microaddress of the
next microinstruction.

Move

The contents of the CSA register select a Move
microinstruction from control store. This micro-
instruction moves the first operand to a temporary
register. The CC/DT field of this Move is 10
(binary), so data path chip pins SIZE1 and SIZEOQ
are 1 and 0, respectively. Therefore, the chip
operation uses data type long.

The long operand of this Move specifies @pointer
1; that is, use the contents of the register pointed to
by pointer 1. Pointer 1 currently points to TMP(4);
TMP(4) contains the first operand. The short
operand also specifies TMP(4).

When bits <36:16> of this microinstruction are
clocked into the CSR on the data path chip,
decoded and executed, the first operand is moved
from TMP(4) to TMP(4). This register is 32 bits
wide, and 32 bits of data are moved because the
size control pins specified data type long, but only
the low-order word (16 bits) is relevant here.

The data path microsequencer computes the
address of the next microinstruction from the next
address control field of the Move, which is a jump;
that is, the next microaddress is supplied in bits
<12:0> of the Move microinstruction.

The IBYTE register still contains 52 and the PC
still contains its virtual address, the next byte in
the I-stream is still on the memory control bus, and
the CSA register latches bits <12:0> of the Move
microinstruction, which were driven onto the NyA
bus from the jump register.

4: Data Path Module 226




Company Confidential

Move

Bits <12:0> of the Move microinstruction are the
microaddress of another Move. This Move is the
first microinstruction in a microroutine that
computes the effective address of an operand using
the autoincrement deferred addressing mode. The
purpose of the Move is to store a new address in
pointer 1.

The CC/DT field of this Move is 10 (binary), so data
path chip pins SIZE1 and SIZEO are 1 and 0,
respectively. Therefore, the chip operation uses
data type long.

The long operand of this Move is hex 43, which is a
location in the constants ROM on the data path
chip. The contents of location 43 is the value 14
(hex); hex 14 is the address of a temporary register,
TMP(4). The short operand specifies the address of
pointer 1. When bits <36:16> of this
microinstruction are clocked into the CSR on the
data path chip, decoded and executed, 14 (the
contents of location 43), is driven over bus B and
stored in pointer 1. Thus, pointer 1 again points to
TMP(4).

The data path microsequencer computes the
address of the next microinstruction from the next
address control field of the Move, which is a jump;
that is, the next microaddress is supplied in bits
<12:0> of the Move microinstruction.

The IBYTE register still contains 52 and the PC
still contains its virtual address, the next byte in
the I-stream is still on the memory control bus, and
the CSA register latches bits <12:0> of the Move
microinstruction, which were driven onto the NuA
bus from the jump register.

227 ADDW3




Company Confidential

Add

Bits <12:0> of the Move microinstruction are the
microaddress of an Add. This Add handles the
autoincrement for the specified register.

The CC/DT field of this Add is 00, so data path chip
pins SIZE1 and SIZEOQ are zero, and therefore the
chip operation uses data type long.

The short operand of the Add specifies @pointer 2;
that is, use the contents of the register pointed to
by pointer 2. Pointer 2 currently points to R5; R5
contains a virtual address and is located in the
register file (see Figure 4-4). The long operand
specifies address 65 (decimal) which is a location in
the constants ROM on the data path chip. The
contents of location 65 is the value 4; that is, the
literal 4.

When bits <36:16> of this microinstruction are
clocked into the CSR on the data path chip,
decoded and executed, the virtual address in R5 is
driven over bus A to the ALU, the literal 4 is
driven over bus B to the ALU, and the sum is
stored in RESULT1 because bit <31> is set in the
Add microinstruction.

In addition, the register save bit, bit <30>, of the
Add microinstruction is set, so the contents of the
register specified by the short operand, plus the
low 4 bits of the register address, are pushed onto
the register save stack on the data path chip. The
top entry on the register save stack now looks like

this:
35 43 0
longword virtual addressinR5 | 0101
4: Data Path Module 228




Company Confidential

The data path microsequencer computes the
address of the next microinstruction using the next
address control field of the Add, which is a jump;
that is, the next microaddress is supplied in bits
<12:0> of the Add microinstruction.

The IBYTE register still contains 52 and the PC
still contains its virtual address, the next byte in
the I-stream is still on the memory control bus, and
the CSA register latches bits <12:0> of the Add
microinstruction, which were driven onto the NuA
bus from the jump register.

Memory Request

The microinstruction following the Add is a
Memory Request. The virtual address of the
second operand is located at the address contained
in R5. This microinstruction sends the virtual
address in R5 to the memory controller.

The memory function specified in bits <27:23> of
the microinstruction is VREAD.RCHECK. The
data flow bit is a zero (bit <28>) as the data flow
will be from the memory controller to the data path
(aread). Thus, a value of 01 (hex) is assembled in
the low-order six bits of the memory function latch.
The other two latch bits are set by signals from the
size register. The size register still contains the
value 01, which is therefore also the value of the
two high-order memory function latch bits. Thus,
the value of the output signals BUS MEM CTL
<7:0> from the memory function latch is 41 (hex).

Four additional signals are sent to the memory
controller over the backplane: DAPT MEM REQ
MODE <1:0>, DAPT MODIFY, and DAPT
SECOND PART L. For this Memory Request,
DAPT MEM REQ MODE < 1:0> have the value of

229 ADDW3

L




Company Confidential

the current access mode from the PSL.MODE
register, and neither MODIFY or SECOND PART

is asserted.

The CC/DT field of this Memory Request is 11
(binary). A value of 3 in the CC/DT field of a
Memory Request selects a data type of longword, so
data path chip pins SIZE1 and SIZEO are both
ones. Therefore, the chip operation uses data type
longword.

The long operand specifies @pointer 2, so the
longword virtual address contained in R5 is driven
over bus B, latched into the MD bus latch, and
driven over the memory data bus as BUS MEM
DATA <31:00> to the memory controller.

The memory controller asserts the signal MCTT
REQ ACK L when it accepts the virtual address off
the memory data bus and the memory function
request information off the memory control bus.

The data path microsequencer computes the
address of the next microinstruction using the next
address control field of the Memory Request, which
is a jump; that is, the next microaddress is supplied
in bits <12:0> of the Memory Request micro-
instruction.

The IBYTE register still contains 52 and the PC
still contains its virtual address, the next byte in
the I-stream is still on the memory control bus, and
the CSA register latches bits <12:0> of the
Memory Request, which were driven onto the NuA
bus from the jump register.

Move

Bits  <12:0> of the Memory Request
microinstruction are the microaddress of another

4: Data Path Module 230




Company Confidential

Move. The purpose of the Move is to store the
updated address in the register pointed to by
pointer 2.

The CC/DT field of this Move is also 10 (binary), so
data path chip pins SIZE1 and SIZEO are 1 and 0,
respectively. Therefore, the chip operation uses
data type long.

The long operand of this Move specifies RESULT1,
which currently contains the virtual address in R5
plus 4; that is, the incremented address. The short
operand specifies @pointer 2. Pointer 2 is still
pointing to R5. When bits <36:16> of this micro-
instruction are clocked into the CSR on the data
path chip, decoded and executed, the contents of
RESULT1 (the incremented address) are driven
over bus B and stored in the register pointed to by
pointer 2; that is, R5. Thus, R5 now contains the
incremented address.

The data path microsequencer computes the
address of the next microinstruction using the next
address control field of the Move, which is a jump;
that is, the next microaddress is supplied in bits
<12:0> of the Move microinstruction.

The IBYTE register still contains 52 and the PC
still contains its virtual address, the next byte in
the I-stream is still on the memory control bus, and
the CSA register latches bits <12:0> of the Move,
which were driven onto the NuA bus from the jump
register.

Move

Bits <12:0> of the Move microinstruction are the
microaddress of another Move. The previous Move
was the one intervening cycle between the Memory
Request and the availability of the requested data;

231 ADDW3




Company Confidential

this Move microinstruction moves the data
supplied by the memory controller into the data
path chip.

The CC/DT field of this Move is also 10 (binary), so
data path chip pins SIZE1 and SIZEO are 1 and 0,
respectively. Therefore, the chip operation uses
data type long.

The long operand of this Move is MEMORY.DATA
which represents the “address” of the memory data
bus. The requested data (the address of the second
operand) are currently on the memory data bus
and latched in the MD bus input latch. The short
operand specifies TMP(12). When bits <36:16 > of
this microinstruction are clocked into the CSR on
the data path chip, decoded and executed, the
address of the second operand is driven onto the
data bus, into the data path chip over bus B, and
stored in TMP(12).

The next address control field format of this Move
is TRAP. The OR<2:0> field selects the input to
the OR MUX that has the signals memory error,
page crossing, TB miss, and modify refuse (see
Figure 3-3). The JC field of the Move tests for the
condition OR MUX not equal to 0. If any of the
above OR MUX signals are active, a trap occurs to
the microroutine that handles memory errors; this
microroutine is located in page zero of control
store. A trap would also cause the current
microaddress plus 1 to be saved on the microstack.

None of these signals are active at the moment,
however, so the NuA MUX selects the contents of
uPC, which is the current microaddress plus 1.

The IBYTE register still contains 52 and the PC
still contains its virtual address, the next byte in
the I-stream is still on the memory control bus, and

4: Data Path Module 232




Company Confidential

the current microaddress plus 1 is latched in the

CSA register.

Memory Request

The current microaddress plus 1 selects a Memory
Request microinstruction. The last Move
microinstruction moved the address of the second
operand into TMP(12) on the data path chip; this
Memory Request uses this address to fetch the
actual operand.

The memory function specified in bits <27:23> of
the microinstruction is VREAD.RCHECK. The
data flow bit is a zero (bit <28>) as the data flow
will be from the memory controller to the data path
(aread). Thus, a value of 01 (hex) is assembled in
the low-order six bits of the memory function latch.
The size register still contains the value 01, which
is therefore also the value of the two high-order
memory function latch bits. Thus, the value of the
output signals BUS MEM CTL <7:0> from the

memory function latch is 41 (hex).

For this Memory Request, DAPT MEM REQ
MODE < 1:0> have the value of the current access
mode from the PSL.MODE register, and neither
MODIFY or SECOND PART is asserted.

The CC/DT field of this Memory Request is 10
(binary). A value of 2 in the CC/DT field of a
Memory Request causes the data path chip size
control pins to carry the encoding from the size
register. The size register still contains 01 to
indicate word, so data path chip pins SIZE1 and
SIZEO are 0 and 1, respectively. Therefore, the
memory controller Will return a word of data (the
second operand) at the specified address.

The long operand specifies TMP(12), so the virtual

233 ADDW3

e



Company Confidential

address contained in TMP(12) is driven over bus B,
latched into the MD bus latch, and driven over the
memory data bus as BUS MEM DATA <31:00>

to the memory controller.

The memory controller asserts the signal MCTT
REQ ACK L when it accepts the virtual address off
the memory data bus and the memory function
request information off the memory control bus.

The data path microsequencer computes the
address of the next microinstruction using the next
address control field of the Memory Request, which
is a jump; that is, the next microaddress is supplied
in bits <12:0> of the Memory Request micro-
instruction.

The IBYTE register still contains 52 and the PC
still contains its virtual address, the next byte in
the I-stream is still on the memory control bus, and
the CSA register latches bits <12:0> of the
Memory Request, which were driven onto the Ny A
bus from the jump register.

Move

Bits <12:0> of the Memory Request
microinstruction are the microaddress of another
Move. The purpose of the Move is to store a new
address in pointer 2.

The CC/DT field of this Move is also 10 (binary), so
data path chip pins SIZE1 and SIZEO are 1 and 0,
respectively. Therefore, the chip operation uses
data type long.

The long operand of this Move is hex 44, which is a
location in the constants ROM. The contents of
location 44 is the value 16 (hex); hex 16 is the
address of a temporary register, TMP(6). The short

4: Data Path Module 234




Company Confidential

operand specifies pointer 2. When bits <36:16 > of
this microinstruction are clocked into the CSR on
the data path chip, decoded and executed, 16 (the
contents of location 44) is driven over bus B and
stored in pointer 2. Thus, pointer 2 now points to
TMP(6).

The data path microsequencer computes the
address of the next microinstruction using the next
address control field of the Move, which is a jump;
the next microaddress is supplied in bits <12:0>
of the Move microinstruction.

The IBYTE register still contains 52 and the PC
still contains its virtual address, the next byte in
the I-stream is still on the memory control bus, and
the CSA register latches bits <12:0> of the Move,
which were driven onto the NuA bus from the jump
register.

Move

Bits <12:0> of the Move microinstruction select
another Move. The previous Move was the one
intervening cycle between the Memory Request
and the availability of the requested data; this
Move microinstruction moves the data supplied by
the memory controller into the data path chip.

The CC/DT field of this Move is also 10 (binary), so
data path chip pins SIZE1 and SIZEO are 1 and 0,
respectively. Therefore, the chip operation uses

data type long.

The long operand of this Move is MEMORY.DATA
which represents the “address” of the memory data
bus. The requested data (the second operand) are
currently on the memory data bus and latched in
the MD bus input latch. The short operand
specifies TMP(6). When bits <36:16> of this

235 ADDW3




Company Confidential

‘ microinstruction are clocked into the CSR on the
‘ data path chip, decoded and executed, the second
operand is driven onto the data bus, into the data
path chip over bus B, and stored in TMP(6).

| The next address control field format of this Move
is a return. The microaddress currently at the top
of the microstack is the one that was stored when

‘ the Decode for 95 was executed, which is the
microaddress of that Decode microinstruction plus
1.

| The data path microsequencer pops the
microaddress off the top of the microstack to
generate the address of the next microinstruction.
The microstack is now empty.

The IBYTE register still contains 52 and the PC

still contains its virtual address, the next byte in

the I-stream is still on the memory control bus, and

the current microaddress plus 1 is latched in the
| CSA register.

Step 3 is now complete; the second operand of the
macroinstruction has been evaluated and fetched
from memory, and the contents of R5 incremented.

Adding the Operands

Add

The popped microaddress selects an Add
microinstruction. This Add handles the actual
addition of the operands.

The CC/DT field of this Add is 11 (binary). A value
of 3 in the CC/DT field of an Add means use the
data type in the size register. Thus, data path chip
pins SIZE1 and SIZEO reflect the contents of the
size register, which is still 01 to indicate word.

4: Data Path Module 236




S

Company Confidential

Therefore, the chip operation uses data type word,
which is appropriate since this is the add operation
of the Add Word macroinstruction.

The short operand of the Add specifies @pointer 1;
that is, use the contents of the register pointed to
by pointer 1. Pointer 1 is still pointing to TMP(4),
which contains the first operand. The long
operand specifies @pointer 2; that is, use the
contents of the register pointed to by pointer 2.
Pointer 2 is still pointing to TMP(6), which
contains the second operand.

When bits <36:16> of this microinstruction are
clocked into the CSR on the data path chip,
decoded and executed, the first operand is driven
over bus A to the ALU, the second operand is
driven over bus B to the ALU, and the sum is
stored in RESULTO because bit <31> is clear in
the Add microinstruction.

When the opcode for ADDW3 was decoded, the
signals DAPF CC CLASS <1:0> were part of the
output from the decode ROMs; the value of this
field was 1, meaning arithmetic (see Table 4-2).
The CC/DT field value of 3 and CC CLASS value of
1 are combined and encoded in the condition code
PALs to generate the field DAPE CC <F3:F0>.
The result is a value for <F3:F0> that means load
ALU and PSL CCs arithmetic. Consequently,
when this Add microinstruction is executed in the
data path chip, the ALU condition codes are set
depending on the result, and the PSL condition
codes are set from the ALU condition codes.

The data path microsequencer computes the
address of the next microinstruction using the next
address control field of the Add, which is a jump;
the next microaddress is supplied in bits <12:0>

237 ADDW3

e




Company Confidential

of the Add microinstruction.

The IBYTE register still contains 52 and the PC
still contains its virtual address, the next byte in
the [-stream is still on the memory control bus, and
bits <12:0> of the Add microinstruction are
latched in the CSA register.

Decode 52

Bits <12:0> of the Add microinstruction are the
microaddress of an operand specifier Decode. This
Decode is for the current contents of the IBYTE
register: 52. As this Decode microinstruction is
evaluated and executed, the following steps occur:

® The IFUNC field and the contents of the
IBYTE register (52) are used to access the
decode ROMs.

® Bits <38:37> of this Decode have the value 2;
that is, use the size register, which still
contains the value 01 for word.

® Bits <5:0> of the IBYTE register are latched
into the IBYTE buffer, driven onto the ID bus,
then to the data bus, and into pointer 2 on the
data path chip (bit <26> of this Decode
microinstruction is a one). Pointer 1 still

points to TMP(4), and pointer 2 now points to
R2.

® The current microaddress plus 1 is not pushed
on the microstack because the addressing
mode is register mode. Thus, the microstack
remains empty.

® The PC on the data path chip is incremented
by one because a Decode was just executed,
and now contains the virtual address of the
next byte in the instruction stream.

4: Data Path Module 238

O




Company Confidential

® The microsequencer calculates the address of
the next microinstruction as uPC plus 1
because the operand specifier, 52, specifies
register mode. The NuA MUX selects nPC
plus 1 off the NuA bus and latches them into
the CSA register.

Since the Decode just completed, LOAD I BYTE H
is asserted, the next byte in the I-stream is loaded
into the IBYTE register (the opcode of the next
macroinstruction), and the memory controller
drives the next byte in the instruction stream onto
the memory control bus.

Move

The microaddress latched in the CSA register
selects a Move. The purpose of the Move is to move
the sum computed in the Add to the location
specified by the instruction byte, 52.

The CC/DT field of this Move is 11 (binary). A
value of 3 in the CC/DT field of a Move selects the
data type specified in the size register, which is
still 01, indicating word. Therefore, the chip
operation uses data type word.

The long operand of this Move specifies RESULTO,
which is where the sum from the Add
microinstruction is stored. The short operand
specifies @pointer 2; pointer 2 is pointing to R2
because of the operand specifier decode just
executed. When bits <36:16> of this Move micro-
instruction are clocked into the CSR on the data
path chip, decoded and executed, the sum in
RESULTO is driven over bus B and stored in R2.

The data path microsequencer computes the
address of the next microinstruction using the next




Company Confidential

address control field of the Move, which is a jump;
the next microaddress is supplied in bits <12:0>
of the Move microinstruction.

Step 4 is now complete; the first and second
operands of the macroinstruction have been added
together and the sum stored in R2.

The microaddress supplied in bits <12:0> of the
Move selects an opcode Decode microinstruction
(an IRD), and the decoding and execution of the
next macroinstruction in the I-stream begins.

Figure 4-13 summarizes the microinstructions
used to decode and execute the ADDW3 macro-
instruction. It also completes this discussion of the
data path microprogram level flow.

Chapter 3 describes the data path microcode and
this chapter describes the data path hardware.
Similarly, the next two chapters describe the
memory controller microcode and hardware.

4: Data Path Module 240




Company Confidential

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750

IBYTE register contains Al
o < 24:23 > to decode ROMs
Decode Al (IRD) Step 1

@ decode ROMs enabled for IRD

@ CSA register loaded with address of Decode for 41

@ :<24:23> to decode ROMs

® sizeregister loaded

¢ CLOCKI1BYTE H is asserted, 41 loaded into IBYTE register

Decode 41 Step 2

@ decode ROMs enabled for operand specifier decode

@ CSA register loaded with address of Shift :

Q CLOCKIBYTE H is asserted, A0 loaded into IBYTE register
Shift by 2 :

@ CSA register loaded with address of Shift
Shift by 1

@ CSA register loaded with address of Decode for AQ
. <24:23 > todecode ROMs
Decode A0

@ decode ROMs enabled for operand specifier decode
@ CSA register loaded with addressof Add

Q CLOCKIBYTE H is asserted, 05 loaded into IBYTE register

Add computes the base operand address

Figure 4-13. ADDW3 Microinstructions

241 ADDW3 Microinstructions




Company Confidential

1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000

® CSA register loaded with address of Move

:. CLOCK I BYTE H is asserted, 95 loaded into IBYTE register

Move stores the base operand addressina temporary register

@ CSA register loaded with addressof Add

Add computes the effective address of the first operand

@ CSA register loaded with address of Memory Request

Memory Request sends the first operand address to the memory controller
@ CSA register loaded with address of Move

@ virtual address sent to memory controller

Move stores a register number in pointer 1

@ CSA register loaded with address of Move

@® requested data availabletodata path

Move moves the first operand into the data path chip
@ CSA register loaded with address of Decode for 95
® <24:23> todecode ROMs

Decode 95 Step 3

@ decode ROMs enabled for operand specifier decode
@ CSA register loaded with address of Move '

.. CLOCK IBYTE H is asserted, 52 loaded into IBYTE register

Move moves the first operand into
. atemporaryregister.

s : : : : : : ® CSAregister
Figure 4-13. ADDWS3 Microinstructions (continued) : : loaded with

‘ address of Move * : ;

243 ADDWS3 Microinstructions



Company Confidential

Move

@® requested data available to data path

moves the second operand address into the data path chip

@® CSA register loaded with address of Move

’

Fiéure 4-13. ADDW3 Microinstructions (continued)

Memory Request

@ virtual address sent to memory controller

3250 3500 3750 4000 4250 4500 4750 5000 5250 5500 5750 6000 6250
Move . stores a reéister number.in pointer 1 : : : : : :
@ CSA register loaded with address of Add
Add increments.RS
® CSA register loaded with address of Memory Request : : .
Memory Request sends the address of the second operand address to the memory controller
: @ CSA register loaded with addréss of Move : : : »
: @ virtual address sent to memory controller
Move stores a reéister number‘in pointer 2

@ CSA register loaded with address of Memory Request

sends the address of the second operand to the memory controller

@ CSA register loaded with address of Move

Move

® CB5A register loaded with address of Move

stores a register number in pointer 2 :

® requested data available todata path

Move

moves the second operand

@ CSAregister

loaded
of Add

into the data path chip

with address

245

ADDW3 Microinstructions



Company Confidential

5250 5500 5750 6000 6250 6500 6750 7000

Add Step 4 adds the first and second operands

@® CSA register loaded with address of Decode for 95
@ <24:23> todecode ROMs

Decode 52

@ decode ROMs enabled for operand specifier decode

@® CSA register loaded with address of Move :

‘ CLOCKIBYTE H is asserted, IBYTE register loaded with next byte inI-stream (a macroinstruction opcode)

Move stores the sum in R2

@ CSA register loaded with address of Decode for macroinstruction opcode

® :<24:23> to decode ROMs

decodes the next byte inthe I-stream,

Decod S . .
e “ which is a macroinstruction opcode

Figure 4-13. ADDWS3 Microinstructions (continued)

247 ADDW3 Microinstructions




Company Confidential

Chapter 5
Memory Controller Microcode

The memory controller module accepts memory
request commands issued by the data path
micromachine and sequences the necessary
functional blocks to carry out the command. The
memory controller has its own set of microcode,
stored in the MCT control store, to implement the
commands from the data path module. Each
memory controller microinstruction allows
simultaneous activity of several functional blocks.
This chapter describes these memory controller
microinstructions.

Memory Controller Function Parameters

Every memory controller function involves a set of
parameters; that is, the memory controller must
know the following information to carry out the
memory request from the data path module:

® Address A virtual or physical memory
address, or sometimes the actual
data to be written.

® Access The mode used to check if the
Mode operation can be performed. The
access mode is specified as either
the current mode or kernel mode.

e Data Flow The direction thatdata will flow
on the memory data bus during
the memory operation; that is,
whether the operation is aread
or a write.

249




Company Confidential

® Data Type The size of the data to be read or
written. The size is specified as
byte, word, or longword, or
determined by the contents of the
size register.

® Map A memory controller state flag
Enable that specifies whether the
translation buffer is to be used.
It is set via a MTPR instruction
at the macromachine level.

® Modify Indicates whether the data
Intent access is to be checked for read or
write access intent. Modify
intent does not signify whether
data are read or written, but

rather which access intent is
checked.

® Previous  The previously latched memory
Function function, data flow, and data type
bits. These bits are saved in the
second memory function latch
when bit <31 >, the latch bit, of
a Memory Request is set.

® Second A flag that specifies whether the
Part first or second part of a function
Flag is being executed.

When the data path module executes a Memory
Request or I-stream Request microinstruction,
eight bits of information are latched in the memory
function latches and delivered to the memory
controller over the memory control bus: the 5-bit
memory function code, two bits of data type, and
one data flow bit. An additional four bits are
delivered over the backplane: two access mode

5: MCT Microcode 250




Company Confidential

bits, a modify intent bit, and the second part bit.
These twelve bits are recombined on the memory
controller module; the following eight bits are
presented to the MCT control store as the low-
order bits of the 10-bit microaddress:

9 8 7 6 54 0

second | data | memory
1]11] part |type| function
flag code

Figure 5-1. MCT Microaddress Format

The MCT microsequencer forces the two high-
order bits of the microaddress to ones. The
remaining four bits now are the data flow bit, the
two access mode bits (MEM REQ MODE <1:0>),
and the modify intent bit (MODIFY).

The signals generated by the data flow and modify
intent bits are two of the inputs to the MCT branch
MUX. The modify intent bit is also one input to
the access violation logic, and the two access mode
bits are inputs to the access violation logic.

The address (or data) needed by the memory
controller is specified by the long operand of the
data path microinstruction that is making the
memory request. Thus, the address is delivered to
the memory controller over the memory data bus.

The memory controller saves the state of the map
enable flag in a control and status register (CSR);
this bit is cleared and set by the data path.

So for each memory request from the data path, the

251 Function Parameters

e




Company Confidential

memory controller receives the proper function
parameters: four bits from the backplane, eight
bits from the memory control bus, 32 bits of
address or data over the memory data bus, and has
access to the CSR that contains the map enable bit.

When the memory controller receives these
function parameters, the proper bits are presented
to control store as the next microaddress, and the
first microinstruction is accessed in the micro-
routine that handles the requested memory
function.

Microinstruction Format

The memory controller microinstruction is sixty-
four bits wide, but only sixty bits are used. The
bits are divided into three major functional fields:
Q22 bus interface control, functional block control,
and microprogram control.

63 56 55 52 51 18 17 0

MCA Bus | Spare | Functional [ Microprogram
Source Block Control
Field Control

‘ Figure 5-2. MCT Microinstruction Format

-

The spare bits are unused and cause no action in
the memory controller module. The following
sections describe the three major functional fields
in more detail.

MCA Bus Source Field

5: MCT Microcode 252




Company Confidential

Seven of the eight bits in the MCA bus source field
select which MCA bus sources drive the bus; the
eighth bit allows the memory controller module to
communicate with the Q22 bus interface. The
MCA bus source field consists of the Q22 bus
function request bit, the merge register output
enable, the physical address register (PAR) output
enable, the adder output enable, the register file
output enables, and the transceiver control bits:

63 62 61 60 59 58 57 56

Q22 bus |merge | PAR |adder |register file | transceiver
function [ output |output |output| output control
request |enable [enable [enable| enables

Figure 5-3. MCA Bus Source Field

Q22 Bus Function Request

Bit <63 > of each memory controller microinstruc-
tion is the function request bit, active high. This
bit allows the writing of a function code (MCT
microinstruction bits <47:45>) to the Q22 bus
interface. (Referencing Figure 2-1, the Q22 bus
interface is the Q22 bus controller and the Q22 bus
registers.)

If bit <63> is clear, the function code of the
microinstruction must be a zero to indicate no
operation. If bit <63> is set, the Q22 bus
interface latches the function code, and arbitrates
for the Q22 bus. Upon acquiring the bus, the Q22
bus controller asserts the memory function
address, and waits for the go bit. The bus is held

253 Microinstruction Format

L




Company Confidential

until the go bit is asserted to allow the function to
proceed, or until a no operation function code is
received causing the Q22 bus controller to abort
the function.

Merge Register Output Enable

Bit <62> of each memory controller microinstruc-
tion is the merge register output enable bit, active
low. This bit enables the current contents of the
merge register onto the memory controller address
(MCA) bus (see Figure 2-1).

PAR Output Enable

Bit <61> of each memory controller microinstruc-
tion is the physical address register output enable
bit, active low. This bit enables the current
contents of the physical address register (PAR)
onto the memory controller address bus as MCA
<29:28> and MCA <21:09>.

MCA <29> when set indicates that the physical
address is located in I/O space (the high-addressed
half) of physical memory. MCA <28> when set
indicates that the physical address is not to be
saved in the cache because it is an address in a
shared physical memory. MCA <21:09> are the
translated physical address bits after a TB/cache
access. (Seahorse physical addresses are 22 bits
long plus the I/O space flag; the remaining nine
bits—the page offset bits—are supplied from either
the 9-bit adder or the page offset portion of the
register file. See Figure 6-1 for the locations of the
adder and the register file.)

Adder Output Enable

Bit <60> of each memory controller microinstruc-

5: MCT Microcode 254

|



Company Confidential

tion is the adder output enable bit, active low. This
bit enables the current contents of the 9-bit adder
(some previously incremented and saved value)
onto the memory controller address bus as MCA
<8:0>.

Register File Qutput Enables

Bits <59:58> of each memory controller micro-
instruction are the register file output enable bits,
active low. These bits cause the addressed location
of the register file to be driven onto the memory
controller address (MCA) bus.

The register file is divided into a 23-bit page
portion and a 9-bit offset portion. The page
portion, the offset, or both may be driven onto the
MCA bus. Microinstruction bit <59> enables the
offset portion onto the MCA bus; bit <58> enables
the page portion onto the MCA bus.

The register file can be used as the source of
physical and virtual addresses. When addresses
are supplied from the register file to the MCA bus
to access the TB/cache, the register file must be
addressed the cycle before the TB/cache access is
made and the address maintained into the next
cycle.

Microinstruction bit <59> is also the output
enable for the control and status registers (CSRs).
The four CSRs control memory management
functions and reflect error status; they share the
register file address space but are read and written
over the memory controller data (MCD) bus. When
bit <59> is a zero, the CSRs are enabled as well
as the offset portion of the register file.

Transceiver Control

255 Microinstruction Format




Company Confidential

Bit <57> of each memory controller microinstruc-
tion is the transceiver enable bit, and bit <56>
specifies the transceiver direction. These two bits
control the operation of the MCT transceiver,
which isolates the memory data bus (the 32-bit bus
between the two modules) from the MCA bus (the
32-bit bus internal to the MCT; see Figure 2-1).
The MCT transceiver is the data communication
port to the DAP module for all data transfers
except bytes from the I-stream. Table 5-1 shows
the encoding for the transceiver control field of the
MCT microinstruction.

Table 5-1. Transceiver Control Field

Transceiver Transceiver

Enable <57> Direction <56> Result
0 0 DAP to MCT
0 1 MCT to DAP
1 X no operation

Functional Block Control Field

The 34-bit functional block control field provides
clocking and output enables for each functional
block in the memory controller. Figure 5-4 shows
the bit definitions for this field. The following
sections describe these subfields in more detail.

5: MCT Microcode 256

\



Company Confidential

51 50 4943 42 41 40 3936 35343332 31 3029 28 27 26 24 232221 18

prefetch | Q22 PAR reverse | reverse | merge | byte B/ T8/ TB/ adder |adder adder register | register

FIFO bus latch | pass pass register | rotate | cache |cache |cache |latch |subtract | constant |file file

control | control | enable | output | latch selects |select | RAM valid | access | enable | enable |select write address
enable | enable control | bit select enables

Figure 5-4. Functional Block Control Field

257

Functional Block Control Field




Company Confidential

Prefetch FIFO Control

Bits <51:50> of each memory -controller
microinstruction are the instruction prefetch FIFO
control bits, active low. The two FIFO chips and
the associated control logic provide first-in-first-
out storage for up to 16 bytes of prefetched data
from the instruction stream. The control logic
asserts the prefetch enable flag whenever less than
8 bytes of I[-stream data are contained in the
prefetch FIFO.

Prefetch FIFO Clear. Microinstruction bit <51>
causes the entire contents of the I-stream prefetch
FIFO to be cleared. This direct clear function is
used to synchronize the FIFO to the instruction
stream after program flow changes.

Prefetch FIFO Load Clock. Microinstruction bit
< 50> controls the clocking of data from the low
byte of the MCA bus into the I-stream prefetch
FIFO. This clock occurs at the end of the current
MCT microcycle so that data is fetched and written
into the FIFO in one cycle.

Q22 Bus Control

Bits <49:43> of each memory controller microin-
struction are the Q22 bus control field, subdivided
as shown in Figure 5-5.

Figure 5-5. Q22 Bus Control Field

( 49 48 47 45 44 43
|

clear |[Q22bus| Q22bus [Q22busread | Q22 bus
i function| go [function | dataoutput write
| code bit code enable enable
\

259 Microinstruction Format




Company Confidential

Q22 Bus Clear Function Code Enable. Bit <49> is
active high and allows the Q22 bus controller to
clear a function code at the end of a bus cycle,
releasing the Q22 bus. The Q22 bus controller
repeatedly executes the last given function until
this bit is asserted to allow it to return to the
quiescent state.

Q22 Bus Go Bit. Bit <48> is active high. For all
Q22 bus operations, bus arbitration begins with
the posting of a function code. When the Q22 bus
controller acquires the bus, it asserts the address
and waits for the go bit before proceeding with the
bus cycle. The go bit may be posted at the same
time as the function code (<47:45>) and the
function request bit (<63 >) to cause a bus cycle to
begin immediately, or it may be posted during a
later cycle. The go bit is posted immediately for
operations such as I/O space accesses, interrupt
vector reads, and memory writes; it is posted later
for operations such as a Q22 bus read after a cache
miss.

Q22 Bus Function Code. Bits <47:45> select the
type of Q22 bus operation to be performed. The
encoding for this field is shown in Table 5-2. When
bit <63> is a one, the function code in bits
<47:45> is delivered to the Q22 bus controller,
causing the controller to begin arbitration for the
bus. When the controller gains control of the bus,
it drives an address onto the bus and holds the bus
until it receives the go bit or a function code of 000,
which specifies no operation.

Table 5-2. Function Code Field
<47:45> Operation Mnemonic

5: MCT Microcode 260

N




Company Confidential

000 no operation

001 write word DATO
010 write byte DATOB
011 write block DATBO
100 read word DATI
101 read block DATBI
110 read interrupt vector

111 read interlocked DATIO

Q22 Bus Read Data Output Enable. Bit <44 > is
active high and allows data from the Q22 bus
interface to be driven onto the memory controller
data bus as MCD <21:00>. These 22 bits may
represent a 16-bit datum read from the Q22 bus, a
9-bit Q22 bus interrupt vector, or a 22-bit cache
invalidate address.

Q22 Bus Write Enable. Bit <43> is active high
and causes the data stable on MCA <29> and
MCA <21:00> to be written to the Q22 bus write
register (see Figure 6-1). The data written may
represent a 22-bit physical address, a 13-bit I/O
space address (if MCA <29> is a one), or a 16-bit
datum to be written to Q22 bus memory or an [/O
device.

PAR Latch Enable

Bit <42 > of each memory controller microinstruc-
tion is the physical address register (PAR) latch
enable bit, active low. This bit enables the PAR to
latch the PTE information or test data on its
inputs. This signal also latches the 4-bit protection
field and the modify bit. The protect field and the
modify bit are read from the PTE in the translation

261  Microinstruction Format




Company Confidential

buffer (TB) and are used to perform the access
violation and modify refused checks.

Reverse Pass Output Enable

Bit <41> of each memory controller microinstruc-
tion is the reverse pass output enable bit, active
low. This bit causes the current contents of the
reverse pass latch to be enabled onto the MCD bus.
(See Figure 6-1 for the location of the reverse pass
latch.)

Reverse Pass Latch Enable

Bit <40> of each memory controller microinstruc-
tion is the reverse pass latch enable bit, active low.
This bit causes the data on the MCA bus to be
latched into the 32-bit-wide reverse pass latch.
The reverse pass latch is transparent, allowing
data from the merge register to be passed back to
the MCD bus, rotated, and presented to the merge
register inputs in one cycle.

Merge Register Selects

Bits <39:36 > of each memory controller microin-
struction are the merge register select bits, active
low. These bits control the clocking of data into the
four bytes of the rotator and merge register (see
Figure 2-1 or Figure 6-1 for the location of these
components). Since each byte is individually
enabled, bytes from separate sources can be
merged to accomplish nonlongword-aligned reads
and writes to memory.

Bits <39:36> correspond to merge register bytes
3 through 0, respectively; that is, bit 39 controls
the clocking of data into merge register byte 3, and
so on. Byte 3 of the merge register is the most

5: MCT Microcode 262




Company Confidential

significant byte of the output longword. Table 5-3
shows the encoding for the merge register select
field.

Table 5-3. Merge Register Selects

<39:36> Action

1111=0F load no bytes
1110=0E load byte 0
1101=0D load byte 1
1100=0C load bytes 1 and 0
1011=0B load byte 2
1010=0A load bytes 2and 0
1001 =09 load bytes 2 and 1
1000=08 load bytes 2,1,and 0
0111=07 load byte 3

0110=06 load bytes 3 and 0
0101=05 load bytes 3 and 1
0100=04 load bytes 3,1,and 0
0011=03 load bytes 3 and 2
0010=02 load bytes 3, 2,and 0
0001=01 load bytes 3, 2,and 1
0000=00 load all bytes

Byte Rotate Select

Bits <35:34> of each memory controller microin-
struction are the byte rotate select bits. This two
bit field controls the circular byte shift performed
on the data from the MCD bus that are presented
to the merge register. The encoding is shown in

Table 5-4.
Table 5-4. Byte Rotate Select

<35:34> Action
00 circulate longword 0 bytes right
263 Microinstruction Format




Company Confidential

01 circulate longword 1 byte right

10 circulate longword 2 bytes right

11 circulate longword 3 bytes right
TB/Cache RAM Control

Bits <33:32> of each memory controller microin-
struction are the TB/cache RAM control bits. Bit
< 33> is the chip select, and bit <32> isthe write
enable. These two bits control the read and write
operations of the TB/cache RAM. (The translation
buffer and the instruction and data cache share
one RAM.) All data are read to, and written from,
the MCD bus. The encoding is shown in Table 5-5.

Table 5-5. TB/Cache RAM Control
Chip Select Write Enable

<33> <32> Result
1 1 read
1 0 write
0 X no operation

TB/Cache Valid

Bit <31> of each memory controller microinstruc-
tion is the TB/cache valid bit, active high. This bit
directly controls a hardware TB/cache valid bit
that is written into the TB/cache as part of the tag.
If bit <31> is a one, the hardware valid bit is
written high to indicate that the associated
information being stored in the TB or cache is a
valid copy of the same information in memory.

[f the hardware valid bit is written high, it enables
a comparison between the tag for the cached entry

5: MCT Microcode 264




Company Confidential

and the presented address; this comparison may
then produce a TB/cache hit. If the valid bit is
written low, the comparison is disabled and a
TB/cache miss is forced.

TB/Cache Access Select

Bits <30:29> of each memory controller microin-
struction are the TB/cache access select bits, active
high. These bits select the type of TB/cache access
to be performed. The encoding is shown in Table 5-
6.

Table 5-6. TB/Cache Access Select

<30:29> Access Type
00 normal TB access read or write
01 normal cache read or write
10 TB invalidate via adder
11 conditional cacheinvalidate

When <30:29> are 10, the translation buffer (TB)
is accessed by MCA <8:2>, which select one of the
256 entries in the system or process TB. All 256
entries are then accessed by using the adder to
increment the value in MCA <8:2>. The page
crossing flag is set to indicate the end of the TBIA
(translation buffer invalidate all) function. MCA
<31> selects the TB to be accessed: MCA
< 31> =1 selects the system TB; MCA <31>=0
selects the process TB. All other MCA bits
(<30:09> and <1:0>) areignored.

When <30:29> are 11, and the TB/cache RAM
chip select and write enable bits are asserted (bits
<33:32>), the cache is accessed for a conditional
cache invalidate. If a cache hit occurred in the

265 Microinstruction Format




Company Confidential

previous cycle, the hardware valid bit is written as
asserted by bit <31> (the TB/cache valid control
bit), and all other cache entry bits are written to an
undefined state. If a cache hit did not occur in the
previous cycle, this cycle is a no operation.

Adder Latch Enable

Bit <28> of each memory controller microinstruc-
tion is the adder latch enable bit, active low. This
bit enables the adder register to latch the output of
the 9-bit adder. (See Figure 6-1 for the location of
the adder and register.)

Adder Subtract Enable

Bit <27 > of each memory controller microinstruc-
tion is the adder subtract enable bit. This bit
selects whether the 9-bit adder adds or subtracts,
in effect.

If bit <27> is a zero, a value between 0 and +7
inclusive is supplied to the adder by bits <26:24 >
of the microinstruction; the adder adds this
supplied value to MCA <8:0>. (The supplied 3-
bit value is zero-extended to nine bits.)

[fbit <27> is a one, a value between —1 and —8
inclusive is supplied to the adder by bits <26:24 >
of the microinstruction; the adder adds this
supplied value to MCA <3:0>. MCA <8:4> are
unchanged, and the page crossing flag is negated.

Adder Constant Select

Bits <26:24> of each memory controller microin-
struction are the adder constant select bits; that is,
they provide the 9-bit adder with a value between
—8 and +7 (inclusive) to be added to the bits on
the MCA bus. Only a 9-bit value is incremented; a

5: MCT Microcode 266




Company Confidential

carry into the tenth bit is flagged as the page
crossing branch condition. Table 5-7 lists the
effective values added to MCA <8:0> or MCA
<3:0> for the various states of microinstruction
bits <27> and <26:24>.

Table 5-7. Adder Control

Effective
<27> <26:24> Value Added To
0 111 +7 MCA <8:0>
0 110 +6 MCA <8:0>
0 101 +5 MCA <8:0>
0 100 +4 MCA <8:0>
0 011 +3 MCA <8:0>
0 010 +2 MCA <8:0>
0 001 +1 MCA <8:0>
0 000 0 MCA <8:0>
1 111 -1 MCA <3:0>
1 110 -2 MCA <3:0>
1 101 -3 MCA <3:0>
1 100 —4 MCA <3:0>
1 011 -5 MCA <3:0>
1 010 —6 MCA <3:0>
1 001 -7 MCA <3:0>
1 000 -8 MCA <3:0>

Register File Write Enables

Bits <23:22> of each memory controller microin-
struction are the register file write enables, active
low. These bits cause the data that are stable on
the MCA bus to be written into the addressed
location of the register file.

Bit <23> is the offset register file write enable;
bit <22> is the page register file write enable.

267 Microinstruction Format




Company Confidential

When bit <23 > is asserted, data on the MCA bus
are written into the 9-bit offset portion of the
register file. When bit <22> is asserted, data
from the MCA bus are written into the page
portion of the register file.

Additionally, if the register file address is 8
through F inclusive, and the offset write enable is
asserted (<23>), the datum MCD <0> is also
written into the selected control and status
register (CSR).

Register File Address Field

Bits <21:18> of each memory controller microin-
struction are the register file address field, active
high. These bits specify a 4-bit register file address
which defines an address space shared by the
register file and the control and status registers
(CSRs). The encoding is listed in Table 5-8.

Table 5-8. Register File Address Space
<21:18> Register File

(hex) Location Content
00 0 virtual address
01 1 physical address
02 % [-stream PC
03 3 error code
04 4 Zero
05 9 unused
06 6 unused
07 7 unused
08 do not use
09 do not use
0A do not use
0B do not use
0C map enable control register
5: MCT Microcode 268




MR W N M I UE E . TS B Y = =

Company Confidential

0D cache enable control register
OE error flag status register
OF IB.ERROR status register

When a CSR is read, its register file address is
specified in microinstruction bits <21:18 > and its
content enabled onto the memory controller data
bus as MCD <0>. The microcode guarantees that
a CSR read is specified for two adjacent micro-
cycles, and that a dead cycle occurs on the MCD
(that is, no source enabled) in the microcycle
following the read.

Microprogram Control Field

The 18-bit microprogram control field provides the
information for the MCT microsequencer to
determine the address of the next MCT microin-
struction. The generated microaddress is then
used to access control store and retrieve the next
MCT microinstruction.

The control store address space consists of 1,024
locations; each location contains a 64-bit microin-
struction. A 10-bit microaddress is presented to
the MCT control store to access the next microin-

struction.

Figure 5-6 shows the microprogram control field
divided into four subfields: busy control, microse-
quencer control, branch control, and next address.

The following sections describe these subfields in
more detail.

Busy Control

269 Microinstruction Format




Company Confidential

17 16 15 1312 10 9 0

busy |microsequencer| branch next
control | control field control address
| (MCF) (BCF) |field (NAF)
Figure 5-6. Microprogram Control Field

Bits <17:16> of each memory controller microin-
struction are the busy control field bits. These bits
determine the state of the MEM BUSY signal to
the data path module. Together, these bits
synchronize data transfers between the memory
controller module and the data path module. The
encoding is shown in Table 5-9.

Table 5-9. Busy Control Field Encoding
<17:16> Function

00 unconditionally clear busy
01 conditionally clear busy

10 not used

11 no operation

Microsequencer Control

Bits <15:13> of each memory controller microin-
struction are the microsequencer control field bits.
These bits control the next microaddress to be
executed by the MCT micromachine. The three
bits are defined as follows:

<15> enable trap
<14> enable dispatch
<13> return/not jump

where trap is defined as a cache invalidate trap;

5: MCT Microcode 270




Company Confidential

dispatch means dispatch on the memory request
supplied by the data path; jump is the
microaddress created by bits <9:0> of the micro-
instruction, with bits <3:0> modified by branch
conditions. The legal values for the micro-
sequencer control field are shown in Table 5-10.

Branch Control

Bits <12:10> of each memory controller microin-
struction are the branch control field bits. This
field selects one of eight groups of status conditions
that can be ORed with the four least significant
bits of the next address field to cause conditional
microprogram branches. The branch control field
influences the next microaddress in the same way
that the OR <2:0> field does in the data path
microcode. Figure 5-6 shows the encodings for the
branch control field, BCF <2:0>.

Next Address

Bits <9:0> of each memory controller microin-
struction are the next address field. These bits
specify the next microaddress that the micro-
sequencer will execute if no conditional branching,
dispatch, or trap occurs.

The four lowest bits, NAF <3:0>, can be modified
by the branch conditions as selected by the branch
control field. Figure 5-6 shows the branch control
field and corresponding branch conditions. The
result is that two, four, eight, or sixteen-way
branching can occur.

When a two-way branch is coded in a memory
controller microinstruction, one of the four lowest

bits in the microinstruction is zero; when a four-
way branch is coded, two of the four lowest bits in

271 Microinstruction Format

e




Company Confidential

the microinstruction are zero; when an eight-way
branch is coded, three of the four lowest bits in the
microinstruction are zero; when a sixteen-way
branch is coded, the low four bits are all zeros. The
bits that are zeros can be ORed with selected
branch conditions.

Branch Conditions

When a branch condition signal is asserted, it
causes a branch to the address of the memory
controller microroutine that handles that branch
condition. There are sixteen branch conditions
that can influence the address of the next MCT
microinstruction; these branch conditions are
listed in Figure 5-7, and described further in the
following paragraphs.

5: MCT Microcode 272




Company Confidential

Table 5-10. Microsequencer Control Field Encoding
<15:13> Function

000 disable trap, disable dispatch, jump

001 not used

010 not used

011 not used

100 enable trap, disable dispatch, jump

101 enable trap, disable dispatch, return from trap

110 enable trap, enable dispatch, jump

111 not used
12111 10|09 |08 |07 |06 |05 |04 03 02 01 00
0 0 0 <9:4> NO.MAP DATAFLOW MCA <1> MCA <0>
0 0 1 <9:4> PAGE.CROSS MODIFY MCA <1> MCA <0>
0 1 0 <9:4> 0 QBUS.BLOCK QBUS.SYNCH QBUS.BUSY
0 1 1 <9:4> 0 0 TB.ERROR MCA <29 or 28>
1 0 0 <9:4> 0 0 0 0
1 0 1 <9:4> 0 0 QBUS.TIMEOUT QBUS.ERROR
1 1 0 <9:4> 0 0 0 TBC.MISS
1 1 1 <9:4> 0 0 PREFETCH.DIS IB.ERROR

Figure 5-7. Branch Control Field and Next Address Field Formats

273 Microprogram Control Field




Company Confidential

NO.MAP

When this signal is asserted, memory
management is turned off, that is, no address
translation takes place so all addresses are treated
as physical addresses, and no access checking is
performed so there is no memory protection.

The map enable bit is one bit in an internal
processor register (IPR) on the data path chip; this
bit is set and cleared by executing a MTPR macro-
instruction. The data path then places a copy of
the map enable bit in the memory controller map
enable control register (one of the CSRs in the
register file) by executing a Memory Request with
the function WRITE.MCT; the address of the CSR
is specified as part of the function code.

DATAFLOW

This branch condition signal is asserted directly
from bit <28> in the data path microinstruction
that is making the memory request. If bit <28>
is a zero, the requested memory operation is a read;
a one indicates a write.

This bit is latched in the memory function latch on
the data path module, and transmitted to the
memory controller as BUS MEM CTL 5. On the
memory controller module, this signal is one of the
inputs to the branch MUX.

MCA <1> and MCA <0>

These bits are the low two bits of the virtual or
physical address currently on the MCA bus. They
are used to indicate what data alignment must be

performed.

275 Microinstruction Format




Company Confidential

PAGE.CROSS

If the adder is enabled and the add operation
results in a carry into the tenth bit, the page
crossing signal is asserted.

MODIFY

This branch condition signal is asserted directly
from bit <29> in the data path microinstruction
that is making the memory request. If bit <29>
is a zero, the access intent is read; a one indicates
an access intent of write.

The modify intent signal (DAPT MODIFY H) is
transmitted from DAP to MCT over pin DP2 in the
backplane. @ Once on the memory controller

module, this signal is one of the inputs to the
branch MUX.

QBUS.BLOCK

The Q22 bus controller sends this signal to the
memory controller branch condition logic when the
physical memory on the Q22 bus supports block
mode; that is, data can be read or written in blocks
of 1 to 16 words (each word is 16 bits) within one
Q22 bus cycle. The words are transferred one at a
time but the Q22 bus controller only needs to drive
one address onto the bus at the beginning of the
operation, and the cycle does not end until the
desired number of words are transferred.

If the physical memory does not support block
mode, the Q22 bus controller must drive a new

address onto the Q22 bus for each word to be read
or written.

QBUS.SYNCH

5: MCT Microcode 276




Company Confidential

The Q22 bus controller sends this signal to the
memory controller branch condition logic to
indicate Q22 bus controller status.

On a read operation, SYNC/READY means that
the requested data are available and can be driven
onto the memory controller MCD bus. On a write,
SYNC/READY means that the Q22 bus controller
is ready to receive the write-to address or the data
to be written.

QBUS.BUSY

The Q22 bus controller sends this signal to the
memory controller branch condition logic when a
Q22 bus function is in progress. This signal
informs the memory controller that the Q22 bus
controller is busy and not yet ready to receive the
next function request.

TB.ERROR

This signal is asserted when anything goes wrong
during a translation operation. It is actually the
OR of the signals that indicate a page crossing, a
TB miss, an access violation, or modify refused.

MCA <29 o0r 28>

Bit <29> is the high-order bit of the physical
address currently on the MCA bus. Seahorse
physical addresses are 23 bits long, with the
address specified in <22:00> and the [/O space
flag, bit <29>, appended as bit <23>. Bit <29>
becomes part of the physical address in the address
translation procedure.

When bit <23 > of a physical address is a one, that
address is located in I/O space, and is therefore not

277 Microinstruction Format

e




Company Confidential

in the cache. (No I/O space address is cached.)

‘ Bit <28> is one of the fifteen bits latched in the
physical address register after an address
translation operation. When set, it indicates that
the address is located in a physical memory that
can be shared by Q22 bus processors, and
therefore, the address should not be cached.
Although bit <28> is driven on the MCA bus as
MCA <28>, it is an internal flag and is not sent
over the Q22 bus as part of the physical address.

Thus, if either bit <29> or bit <28> is set, the
address should not be cached, and the branch
condition input signal NON CACHE REF H is
generated.

QBUS.TIMEOUT

The Q22 bus controller sends this signal to the
memory controller branch condition logic when a
Q22 bus device does not reply within the allowed
time limit of 10 microseconds. This signal
| generally means that a read or write to a
nonexistent memory location was attempted.

QBUS.ERROR

The Q22 bus controller sends this signal to the
memory controller branch condition logic when
either a timeout or a parity error occurs on the Q22
bus. This signal causes the current memory
request to be aborted.

TBC.MISS

This signal is asserted when an address
translation or cache access fails. Itisnotavailable
until the cycle after the one in which the actual

5: MCT Microcode 278




Company Confidential

translation or cache access took place.

PREFETCH.DIS

This is the disable prefetch signal. It is asserted
when the prefetch FIFO is full. It is deasserted
when the FIFO content falls below the target value
of eight bytes. This deassertion causes the memory
controller to reload the prefetch FIFO from the I-
stream.

IB.ERROR

When a page crossing occurs during prefetch, a bit
is set in the IB.ERROR status register (one of the
CSRs). The IB.ERROR signal is then asserted to
the memory controller branch condition logic. The
assertion of this signal causes the prefetch
operation to halt until the correct page address can
be supplied by the data path module.

Q22 Bus Controller Interface

Just as the memory controller module executes
commands delivered by the data path, the Q22 bus
controller executes commands delivered by the
memory controller. The memory controller
microcode communicates with the Q22 bus
controller via six microcode bits: three control
signals, and three bits of function code. The Q22
bus controller sends back six status flags to
communicate its state to the memory controller
microcode. All of the microcode bits and most of
the status flags are described earlier in this
chapter, but are also summarized here for

convenience.

279 Microinstruction Format

L




Company Confidential

Interface Microcode

The memory controller sends six microcode bits to
the Q22 bus controller. They are:

® the function request bit, which is microin-
struction bit <63>. If this bit is a one, the
Q22 bus controller latches the function code
specified in microinstruction bits <47:45>
and arbitrates for the bus.

® the clear function code enable bit, which is
microinstruction bit <49>. The Q22 bus
controller will execute the function specified
by the last function code it received until bit
<49> (active low) is asserted.

® the go bit, which is microinstruction bit
<48>. After the Q22 bus controller receives
bit <63> and the function code in bits
<47:45>, 1t acquires the bus and asserts an
address. It then waits for the go bit before
proceeding with the bus cycle.

® the function code, microinstruction bits
<47:45>. These bits select the Q22 bus
operation to be performed: no operation, write
word, write byte, write block, read word, read
block, read interrupt vector, or read inter-
locked.  These Q22 bus operations are
described in Chapter 7. See Table 5-2 for the
encoding of the function code field.

The Q22 bus controller has its own control store
and microsequencer. The three bit function code
and the function request bit from the memory
controller microinstruction are latched in the Q22
bus function register (part of the Q22 bus
controller). The three function code bits are then

5: MCT Microcode 280




Company Confidential

used to address the Q22 bus controller control store
and the Q22 bus controller microcode takes over to
carry out the function requested by the memory
controller.

Q22 Bus Controller Status

The Q22 bus controller communicates its state to
the memory controller through six status flags.
They are:

L

QBUS.BLOCK. This signal is asserted during
a write block or read block operation to signify
that the memory will be able to handle the
next data transfer as a block mode transfer.

QBUS.SYNCH. The signal SYNC/READY is
asserted when data are available on a read
from a Q22 bus device, and when data or
address is needed for a write to a Q22 bus
device.

QBUS.BUSY. This signal is asserted when a
Q22 bus function requested by the memory
controller is in progress. As long as thissignal
is asserted, the memory controller cannot
start a new request.

QBUS.TIMEOUT. This signal is asserted

when the address of a nonexistent memory
location is driven on the bus.

QBUS.ERROR. This signal is the OR of the
two error signals, bus timeout and parity
error. [t causes the current memory request to
be aborted.

Cache Invalidate. This signal is asserted
whenever a bus device writes to physical
memory. It alerts the memory controller to

281 Q22 Bus Controller




Company Confidential

invalidate its copy of the written-to memory
location if that address is in the cache.

This chapter describes the memory controller
microcode and the memory controller/Q22 bus
controller interface. The next chapter describes
the hardware that implements the memory
controller microcode.

5: MCT Microcode 282




Company Confidential

Chapter 6
Memory Controller Module

This chapter is a detailed description of the
components on the memory controller module and
how they interact. First, the major logic elements
and their hardware components are described.
Then, the basic transfers of data between the logic
elements are described on a microprogram level.

Overview of MCT Functions
The memory controller module contains hardware
to perform the following eight functions:
® generate clock signals
control MCT microinstruction flow
translate virtual addresses

access the data cache |

transfer data within the memory controller
module

e prefetch instruction stream bytes
® track and report status

® communicate with the Q22 bus controller to
read and write data

The next eight sections describe these functions,
and the hardware components that implement
them, in detail. The hardware components are
illustrated in the MCT block diagram, Figure 6-1.

Generating the Clock Signals

283




Company Confidential

All of the clocks for the Seahorse CPU are
generated from a single 64 MHz clock on the
memory controller module. The clock generator
logic produces clocks for the data path module, the
memory controller module, and the Q22 bus
interface. The major clocks for the memory
controller module are described in the next section.

MCT Clocks

The master clock on the memory controller module
is a 16 MHz clock MCTM BASE CLK (62.5 ns
period). This clock signal goes to the data path
module over backplane pin CN2, and is the source
for all the clock signals on the data path module.
BASE CLK also synchronizes DAPL DCOK L to
generate the DAPL INIT signals. One of the
DAPL INIT signals is DAPL MCT INIT L. DAPL
MCT INIT L initializes the memory controller
module to a known state and synchronizes the
clock signals between the DAP and MCT modules.

MCTM CLK125 is the 125 ns period clock that
controls the memory controller microcycle. Thus,
two memory controller microcycles occur for every
one data path microcycle. (DAPL CPU CLOCK is
the 250 ns period clock that controls the data path
microcycle.)

MCTM CLK62 simply divides the CLK125 signal
in half, providing clocking control for each half of a
memory controller microcycle.

MCTM MEMCLK is asserted for the first 31 ns of a
microcycle, and deasserted for the remaining 94
ns. This clock signal controls TB and cache reads.

6: MCT Module 284




Company Confidential

MCT pull-up P microinstruction ——’I
resistors /3 decode >
2 memory
[ y
7 »| request | >
8 latch 710 i, control // microinstruction |
- store 41 clockgating |
/1 s ¥4
save . 0 / /7
—»| add
memory etz cegister | 19 ’
control . . refetc ~
bus X /1 2 /8 FIFO ] ' 7 10 /
MCB ] Ve
(MCB) 4-bit constant ﬂl 6 o <«
| £ 4 ranch<— branch |4—
FIFO control , Mux [ €| condition |
P 9-bit adder , I 7a < logic ”<_
19 710 ™ ¢
//
register 8 pull-up ‘
resistors Q22 bus
memory XCVR ¢ — + controller
data D p us P2 i
bus 732 732 A4 73 A l l A 723
(MDB) <] v v Y L/
A
index tag TB/cach a2
buffer % \ / \ ache
\ \ MT1s MUX MLIX comparator ’§2
register register > merge Q22 bus
file file register write register
16x23 16x9 write 7y
RAM RAM physical /{2 isolation L 4
| address reverse pass
register
g A I latch Q22 bus
L= Iy
lock >
ge;:rcator _: L/ s o) tag Taicache byte 22b
| 11s 712 RAM | —p{ RAM Y Q22 bus
4K x 16 4K x32 rotator A/ read register
7y 32
V4
access 712 32 //32
access violation violation l€—« latch |€—< P Y 7 A4
4—‘ « R £ V4
modify refuse PAL /s 5 4 MCD bus 7 32 4} 1 723
pull-up resistors
. . control and status registers
Figure 6-1. Memory Controller Block Diagram 9

285 MCT Block Diagram




Company Confidential

MCTM DPC SRC L is sent to the DAP module over
backplane pin CP1. This clock signal is inverted to
generate the signal DAPL DPC CLK H. DPC CLK
H is the input clock signal to the data path chip.

MCTM DLYD CLK125 delays the CLK125 signal
by 31 ns. This delayed clock enables writes to the
register file and latches the reverse pass latch.

MCTM ADV CLK125 advances the CLK125 signal
by 15 ns. This advanced clock is used to clock or
latch data into MCA bus destinations.

Timing

A memory controller microcycle begins at the
rising edge of MCTM CLK125 when the MCT
microinstruction is available as the output of the
control store. At this point, the microinstruction
clock gating logic takes over to distribute the
microinstruction control bits to their respective
functional blocks.

Branch conditions are available to the MCT micro-
sequencer by 50 ns into the current microcycle.

For reads from the translation buffer or the cache,
the access address becomes available on the MCA
bus between 0 and 31 ns into a microcycle, and the
read occurs between 31 and 125 ns.

All MCA bus destinations are written by 110 ns
into the current microcycle. If the bus destination
is a latch part, the latch is open between 47 ns and
110 ns. If the bus destination is an edge sensitive
part, data are clocked into the destination at 110
ns, which is the rising edge of MCTM ADV

CLK125 H.

287 Clock Signals




Company Confidential

Controlling the MCT Microinstruction Flow

The memory controller module has its own set of
hardware components to sequence the flow of
memory controller microinstructions. These
components are the memory request latch, the
CSA bus, pull-up resistors, the control store,
microinstruction clock gating, branch condition
logic, and the microsequencer. The following
paragraphs describe each of these components in
turn.

Memory Request Latch

When the data path module executes a Memory
Request or I-stream Request microinstruction,
eight bits of control information are sent to the
memory controller over the memory control bus,
and four additional bits are sent over the
backplane. These twelve bits are recombined on
the memory controller module and the following
eight bits are latched in the memory request latch:

® the second part flag, bit <7>
® the data type, bits <6:5>
® the memory function code, bits <4:0>.

The CSA PAL in the MCT microsequencer supplies
ones for bits <9:8>.

The memory request latch is a tri-state latch
located at the memory controller end of the
memory control bus. The signal DAPR MEM
REQUEST H is asserted by the data path to inform
the memory controller when a new memory
function code is on the memory control bus. This
signal is synchronized with two clock signals to

6: MCT Module 288




Company Confidential

generate the signal MCTN MRL LE H (memory
request latch latch enable). This signal causes the
proper eight bits to be latched into the memory
request latch. If bit <14> in the current MCT
microinstruction is set, enabling dispatches, the
contents of the memory request latch, plus the two
high-order ones from the microsequencer, are
presented to the control store as the next
microaddress.

CSA Bus

The control store address bus conveys the next
microaddress to be executed to the control store.
The CSA is a tri-state bus passively asserted by
pull-up resistors.

The CSA bus is driven by one of the following four
sources: the next address buffer, the save address
register, the memory request latch, or the pull-up
resistors.

The CSA bus destination is the address inputs to
the control store.

Pull-up Resistors

When no other source is driving the bus, the pull-
up resistors cause the default condition on the bus
to be a logical high; that is, they pull up the bus.
Thus, CSA bus bits <7:0> are all ones when the
next address buffer, the save address register, and
the memory request latch are not enabled.

MCT Control Store

The control store for the memory controller micro-
instructions is 1K deep by 64 bits wide. Each of the
1K locations contains one MCT microinstruction.

289 Microinstruction Control

L




Company Confidential

Only 60 of the 64 bits are used.

The input to the control store is a 10-bit
microaddress, which selects one location, and
therefore one microinstruction.

The output from the control store is a 64-bit micro-
instruction that controls the MCT microsequencer,
the Q22 bus interface, and all functional blocks of
the memory controller. The encoding of the micro-
instruction bits is detailed in Chapter 5, but
basically:

® the eight high-order bits control the MCT
components that source the MCA bus, with
the exception of bit <63> which is the Q22
bus function request bit. The MCA bus
sources are the adder, the register file, the
MDB transceiver, the PAR, and the merge
register.

® microinstruction bits <51:50> and <42:18>
are the clocking and output enables for every
functional block in the memory controller.

® bit <63> and bits <49:43> control the Q22
bus interface.

® bits <17:0> control the memory controller
microsequencer.

| Microinstruction Clock Gating

This block of logic uses 41 of the 64 microinstruc-
tion bits from control store as input, and gates the
appropriate latch and output enables to the proper
functional blocks. Thus, the microinstruction
clock gating logic controls when the various bus
sources are enabled onto the MCA and MCD buses.

Branch Condition Logic

6: MCT Module 290




Company Confidential

The branch condition logic monitors a group of |
conditions that affect the MCT status as reported

to the data path, and can affect the MCT

microprogram flow. Part of the logic is a flip-flop

that acts as a pipeline to save status for one

additional cycle before it is discarded. The signals

saved are:

e¢ MCTL TBC HIT, which indicates a
translation buffer or cache hit,

e MCTE INCR PGXR, a signal from the 9-bit
adder which indicates a page crossing has
occurred,

e MCTN DONE, which is asserted when the
MCT has finished processing the memory
request and is ready to return data or status to
the data path,

e MCTS EN ACC CHECK, which is asserted
when the translation buffer has been accessed,;
after a TB access, the cache is accessed next
and therefore the access check logic is
enabled, and

e DAPR MEM REQUEST, which is the signal
from the data path indicating a new memory
function code is on the memory control bus.

The branch condition logic sends these three
signals to the branch MUX in the MCT micro-
sequencer:

e MCTT MAP ENB, which indicates when

memory mangement is enabled and sets up
the branch condition NO.MAP,

e MCTT PAGE CROSSING, which indicates
when a carry into the tenth bit has occurred in
the 9-bit adder, and sets up the branch

291 Microinstruction Control

e




Company Confidential

condition PAGE.CROSS, and

e MCTT IB ERROR, which indicates to the data
path that the MCT cannot supply the next
instruction stream byte because a page

crossing has occurred, and sets up the branch
condition IB.ERROR.

MCT Microsequencer

The memory controller microsequencer generates
the next 10-bit microaddress every 125 ns. It
provides conditional branching based on MCT

internal and external conditions. Branch
conditions are accepted no later than 75 ns before
the next clock edge.

The MCT microsequencer consists of these
components: the microinstruction decode logic,
CSA PAL, the branch MUX, save address register,
and next address buffer. These components are
described in the following paragraphs. Figure 6-2
is a block diagram of the MCT microsequencer.

Microinstruction Decode Logic

The 10-bit microaddress used to access the control
store comes from one of the following sources: the
memory request latch, the save address register, or
the next address buffer. The next microaddress
can also be 3FF which is the address of the first
microinstruction in the trap microroutine. The
microinstruction decode logic selects which of
these sources provides the next microaddress.

6: MCT Module 292




Company Confidential

MEM REQ DLYD ——» —» SAROE
pull-up ! — SARLE
resistors CACHE INV —i—b microinstraction L B TAKE TRAP

memory . decode —» TAKE DISPATCH
request y . MCF <15:13> 1 . VRL O
»
8 latch |73 SA<7:0> g : ——»

(MRL) 7 ” control | ——» NAB OE
710 bf stose NAF <3:0>
BUS MEM " ;
CTL<6:0> & _ '
Second Part Flag CSA <9:8> NAF <7:4> '
'é NAF <9:8> '

I_._._._._._...._._._._._._._._._._._._._._._._._._._J

save <4— TAKEDISPATCH
address
> yi CSA

" | register |75 > PAL [€—— TAKETRAP
(SAR) NAB <9:8>

SAR <9:8> < a
CSA <9:8> =11 72
on trap & dispatch

next
address

> buffer 78;>

(NAB)

|
|
|
|
! )
| 7a
| inputs
| NAF <7:0> Vs 4:1
< 1
| T
i A 4:1
|
B 1 8:1
|
| T

A

branch
MUX

@
[==]
-

|
|
[
1
I
I
1
I
!
I
I
I
|
I
I
I
I
I
[
I
I
I
I
I
I
I
I
|
l
I
I

I

I
I
I
L

Figure 6-2. MCT Microsequencer Block Diagram

293 MCT MicrosequencerBlock Diagram




Company Confidential

There are basically three inputs to this decode
logic: microinstruction bits <15:13> (the micro-
seqencer control field in Figure 5-5), the signal
MCTT MEM REQ DLYD which is generated from
a pipelined version of DAPR MEM REQUEST H,
and the signal MCTB CACHE INV H which is a
signal from the Q22 bus.

Microinstruction bit <15> enables traps, bit
<14> enables dispatches on memory requests
from the data path, and bit <13> enables returns
from traps. MCTT MEM REQ DLYD is asserted
when the data path drives a new memory function
code onto the memory control bus. MCTB CACHE
INV H is asserted when a Q22 bus device writes to
physical memory.

When bit <14> and MEM REQ DLYD are both
asserted, the microinstruction decode logic asserts
the signals MCTJ TAKE DISPATCH, and MCTJ
MRL OE (memory request latch output enable).
When MCTJ MRL OE is asserted, the eight
memory function bits in the memory request latch
are presented to the control store as the low-order
eight bits of the next microaddress. The high-order
two bits are both ones, and they are driven onto the
CSA bus by the CSA PAL in the microsequencer
whenever the signal TAKE DISPATCH is
asserted.

When bit <15> and CACHE INV H are both
asserted, the microinstruction decode logic asserts
the signals MCTJ TAKE TRAP and MCTJ SAR
LE, and the pull-up resistors control the bus. The
pull-up resistors force next microaddress bits
<T7:0> to ones. TAKE TRAP also causes the CSA
PAL in the microsequencer to force the high-order
two bits of the next microaddress to ones.

295 Microinstruction Control




Company Confidential

Therefore, the next microaddress is 3FF. The
signal MCTJ SAR LE enables the save address
register (SAR). So when a trap is taken, the low
eight bits of the microaddress that would have
been presented to control store next if the trap had
not occurred, are saved in the SAR. The two high-
order bits are saved in the CSA PAL.

Bit <13> is asserted when a return from a trap is
needed. For example, the last microinstruction in
the trap microroutine located at 3FF has bit <13>
set. The signal SAR OE is asserted as the output of
the microinstruction decode logic when bit <13>
is set. SAR OE enables the contents of the save
address register onto the CSA bus to be presented
to the control store as the low eight bits of the next
microaddress. Bit <13> set also causes the CSA
PAL to drive the two high-order bits that it saved
when the trap was taken, onto the CSA bus. Thus,
areturn from trap is executed.

When bit <13> is a zero, and traps and dispatches
are either not enabled or don’t occur, the next
microaddress is bits <9:0> of the current microin-
struction from control store. If any branch
conditions are in effect, they are ORed with the low
four bits <3:0>. This microaddress, modified as
appropriate, is passed through the next address
buffer and presented to control store as the next
microaddress.

CSA PAL

The next address buffer, save address register, and
memory request latch drive microaddress bits
<7:0> onto the CSA bus. The CSA PAL provides
the two high-order bits, MCTN CSA <09:08>.

On a cache invalidate trap or memory request

6: MCT Module 296




Company Confidential

dispatch, the CSA PAL forces bits <09:08> to
ones.

When a trap is taken, the two high-order bits of
what would have been the next microaddress are
saved in the CSA PAL. On a return from trap, the
CSA PAL drives these saved bits onto the CSA bus.
The low eight bits are driven onto the CSA bus
from the save address register, which is enabled by
the microinstruction decode logic.

For a normal operation where the next micro-
address is provided by bits <9:0> of the current
microinstruction, bits <9:8> are driven onto the
CSA bus from the CSA PAL. Bits <T7:0> are
provided by the next address buffer; the low four
bits are modified by any asserted branch
conditions.

Save Address Register

When a trap occurs, the save address register
stores microaddress bits <7:0> of the microin-
struction that would have executed next. The
signal MCTJ SAR LE asserted by the microin-
struction decode logic causes the save address
register to latch the microaddress bits.

When a return from trap is executed, the
microinstruction decode logic asserts the signal
MCTJ SAR OE to enable the save address register
to drive the saved bits onto the CSA bus.

Next Address Buffer

The next address buffer passes bits <7:4> of the
current microinstruction, and bits <3:0> of the
current microinstruction after they have passed
through the branch MUX and been modified by
any asserted branch conditions, to the control

297 Microinstruction Control




Company Confidential

store. These are the low eight bits of the next
microaddress if a trap or a dispatch does not occur.

When trapping and dispatching are not enabled or
do not occur, the microinstruction decode logic
generates the signal MCTJ NAB OE which causes
next microaddress bits <7:0> to be passed
through the next address buffer and presented to
control store.

Branch MUX

The branch MUX consists of two 4:1 multiplexers,
two 8:1 multiplexers, and four OR gates. The
branch conditions described in Chapter 5 and
listed in Figure 5-7 are the inputs to the branch
MUX.

Each 4:1 and 8:1 MUX selects one branch condition
that is ORed with one of the low four bits of the
microinstruction from the control store. The ORed
signals are then passed through the next address
buffer and become the low four bits of the next
microaddress if the next address buffer is enabled
by the microinstruction decode logic.

Translating Virtual Addresses

One of the main functions of the memory controller
is to translate virtual addresses supplied by the
data path module into physical addresses. The
components used to do this are the index MUX, the
tag MUX, the tag RAM, the TB/cache RAM, the
write isolation buffer, the TB/cache comparator,
the physical address register, the register file, and
the 9-bit adder. The following paragraphs describe

each of these components in turn, and the different
kinds of TB accesses.

6: MCT Module 298




Company Confidential

Index MUX

The index MUX selects the correct bits from the
MCA bus to access the TB location that is to be
read, written or invalidated. The twelve bits
selected from the MCA bus by the index MUX form
an address that accesses a location in the tag RAM,;
the same address is used to access a location in the
translation buffer.

If a single translation buffer entry is being read,
written, or invalidated, the index MUX selects
virtual address bits <31> and <16:9> off the
MCA bus. The index MUX supplies zeros for the
high-order three bits, thus selecting the
translation buffer portion of the tag RAM and of
the TB/cache RAM. The address then presented to
the tag RAM and to the TB/cache RAM by the
index MUX is:

1110 9 8 7 0
0{0|0|VA <31>|VA<16:9>

If VA <31> is a zero, the presented address
selects a process space tag entry and translation
buffer entry. If VA <31> is a one, the presented
address selects a system space tag entry and
translation buffer entry.

If the entire translation buffer is being invalidated
by a Memory Request microinstruction with the
INVALID.MULTIPLE function code, the index
MUX selects virtual address bits <31> and
<8:1> off the MCA bus. The index MUX again
supplies zeros for the high-order three bits. The
address then presented to the tag RAM and to the
translation buffer by the index MUX is:

299 Address Translation




Company Confidential

11109 8 7 0
0|0|0|VA <31>|VAB: 1>

Tag MUX

The tag MUX selects virtual address bits
<30:17> from the MCA bus to form the low-order
fourteen tag bits for the translation buffer entry
being read, written or invalidated.

When the data path issues a Memory Request
microinstruction with a function code that requires
a translation buffer read or invalidate, the tag
MUX passes bits <30:17> of the virtual address
on the MCA bus to the TB/cache comparator.

When the data path issues a Memory Request
microinstruction with a function code that requires
a translation buffer write, the tag MUX passes bits
<30:17> of the virtual address on the MCA bus to
the write isolation buffer, which in turn passes
them to the tag RAM, where they are written into
the location accessed by the index MUX.

Tag RAM

The tag RAM is a 4K locations by 16-bit-wide
memory array that stores the address tag bits
associated with each translation buffer and cache
entry. The first 512 locations in the tag RAM
contain the translation buffer tags for process and
system space, the next 1.5K locations are unused,
and the last 2K locations contain the translation
buffer tags for the data and instruction cache.
Figure 6-3 shows the organization of the tag RAM.

6: MCT Module 300




Company Confidential

256 process space tags

2K locations | 256 system space tags

for translation | 512 ynused locations

buffer tags
512 unused locations
512 unused locations
2K locations
for cache cache tags
tags

Figure 6-3. Organization of Tag RAM

Each translation buffer tag is 16 bits wide,
consisting of one valid bit controlled by bit <31>
of every memory controller microinstruction, one
spare bit, and 14 tag bits which are virtual address
bits <30:17>. Figure 6-4 shows the organization
of one tag entry in the translation buffer:

13 14 13 0

valid | spare |virtual address
bit |bit |bits <30:17>

Figure 6-4. Translation Buffer Tag

The tag RAM is written whenever the TB/cache
RAM is written. When a new TB tag is written

301 Address Translation

L




Company Confidential

into the tag RAM, bits <30:17> of the virtual
address on the MCA bus are stripped off by the tag
MUX, passed through the write isolation buffer,
and written into the tag RAM location selected by
the index MUX. Tag bit <15>, the tag valid bit,
is set or cleared by the memory controller
microinstruction executing the write to the
translation buffer, to mark the entry as valid or
invalid.

The tag RAM is read whenever the TB/cache RAM
is read. For a read, the tag MUX passes bits
<30:17> of the virtual address on the MCA bus to
the TB/cache comparator. The tag at the tag RAM
location selected by the index MUX is also sent to
the comparator. If tag bit <15> is clear,
indicating an invalid tag, the comparator
generates a TB miss indication. If tag bit <15> is
set and tag bits <13:0> match virtual address bits
<30:17> stripped off the MCA bus by the tag
MUX, the comparator generates the signal MCTL
TBC HIT.

When a Memory Request microinstruction from
the data path requests a translation buffer
invalidate function, the tag MUX selects virtual
address bits <30:17> from the MCA bus and
passes them through the write isolation buffer to
the tag RAM, where they are written into the tag
RAM location accessed by the index MUX bits. As
the tag is written, the valid bit is cleared marking
the tag invalid.

TB/Cache RAM

The TB/cache RAM is a 4K locations by 32-bit wide
static memory. It is organized the same way the
| tag RAM is organized, with the lower 2K locations

6: MCT Module 302




Company Confidential

containing process and system space page table
entries (PTEs), and the upper 2K locations
containing data and instruction cache entries.
Figure 6-5 shows the organization of the TB/cache
RAM.

000-0FF | 256 process space TB entries

. 100- .
2K lescatiorg 0 IEE 256 system space TB entries

for translation

buffer 200-7FF 1536 unused locations

2K locations

forcache  g4o_frr | data and instruction cache

Figure 6-5. Organization of TB/cache RAM

Each translation buffer location contains a PTE.
Figure 6-6 shows the organization of one page
table entry in the translation buffer:

PTEs are read from or written to the translation
buffer from the MCD bus when a Memory Request
from the data path specifies a function requiring a
translation buffer access. Bits <33:32> of the

303 Address Translation

e




Company Confidential

31 30 27 26 25 21 20 0
valid | protection | modify | reserved | page frame
bit field bit number

Figure 6-6. Translation Buffer PTE

MCT microinstruction that is executed to
implement the requested function, determine
whether the current TB access is a read or a write.
(See Table 5-5 for the encoding of these bits). Bits
<30:29> of the MCT microinstruction determine
whether the current TB access is a normal access
(that is, a read or a write), or a translation buffer
invalidate. (See Table 5-6 for the encoding of these
bits).

The TB/cache RAM address selected by the index
MUX bits on a TB access is the same address
selected in the tag RAM by these same index MUX
bits. For example, if the address presented to the
tag RAM by the index MUX is OCD (hex), then
location OCD in the TB/cache RAM is accessed at
the same time.

Write Isolation Buffer

This 16-bit-wide tri-state isolator allows the tag
portion of a TB entry to be written into the tag
RAM during a translation buffer write access or a
translation buffer invalidate operation. For a read
from the translation buffer, the write isolation
buffer is disabled to allow the tag from the tag
RAM to be read to the comparator.

TB/Cache Comparator

The TB/cache comparator is a 16-bit comparator

6: MCT Module 304




Company Confidential

that asserts a TB/cache hit indication for a
translation buffer read when the stored address
tag from the tag RAM equals the search address
tag supplied by the tag MUX. When the
comparison results in a match, the comparator
asserts the signal MCTL TBC HIT H. If this signal
is not asserted, the compared tags did not match.

Physical Address Register

The physical address register is hard-wired to form
the physical page address from the page frame
number (PFN) of the PTE read during a

translation buffer access.

A total of fifteen bits are latched in the physical
address register (PAR) following an address
translation. Bits <12:0> of the PTE PFN are
latched as the low-order thirteen bits of the PAR,;
these bits form physical address bits <21:09>
when driven onto the MCA bus. Bit <19> from
the PTE is the next highest-order bit in the PAR; it
is driven onto the MCA bus as MCA <28>. This
bit indicates whether the address is located in
shared memory. The logical AND of PFN <20>
and the TB/cache hit signal is latched as the high-
order bit in the PAR; this bit forms physical
address bit <29> when driven onto the MCA bus.
When <29> is a one, the physical address is
located in MicroVAX I/0 space.

When the PAR output enable bit (bit <61>) is a
zero in the currently executing MCT microinstruc-
tion, the PAR contents are driven onto the MCA
bus as MCA <29:28 > and MCA <21:09>.

Register File
The register file is a 16-location by 32-bit-wide

305 Address Translation

e




Company Confidential

block of general storage within the memory
controller. It is organized into a 9-bit-wide offset
address portion and a 23-bit-wide (virtual or
physical) page address portion; that is, the 23 bits
select the memory page, and the 9 bits select the
byte offset within the memory page. The register
file address space is shared with the control and
status registers (CSRs). Table 5-8 shows the
register file address space.

Virtual addresses are stored at register file address
0, which is the first of the sixteen register file
locations, and physical addresses are stored at
address 1, the second location. (These addresses
are assigned by the microprogram, not fixed by the
hardware.) Virtual and physical addresses can be
sourced onto the MCA bus from the register file.
The third location stores the instruction stream
program counter, which always points to the last
instruction stream byte that was stored in the
prefetch FIFO. Location four stores error codes,
location five is zero, and the next seven locations

are not used. The last four locations contain the
CSRs.

The register file is written from the MCA bus when
the register file write enable bits (<23:22>) in the
current MCT microinstruction are asserted; micro-
instruction bits <21:18> determine the register
file location that is written.

The contents of the addressed location in the
register file are driven on the MCA bus when the
register file output enable bits (<59:58>) in the
current MCT microinstruction are asserted; micro-
instruction bits <21:18> determine the register
file location that is addressed. A buffer/isolator
passes the output from the register file to the MCA

6: MCT Module 306

I ——————




Company Confidential

bus. Like the register file, the buffer/isolator is
divided into a 23-bit page portion, and a 9-bit offset
portion.

Adder and Adder Register

The 9-bit adder contains page-crossing detection,
and has a tri-state register associated with it. The
adder and register provide 9-bit counts by
successive increments of —8 through + 7 inclusive,
and the means for modifying virtual or physical
page offset addresses. The adder and register are
controlled by six bits in the MCT microinstruction:
the three adder constant select bits (<26:24 >), the
adder subtract enable bit (<27>), the adder
output enable (<60>), and one latch enable bit
(<28>) for the register.

The source for the adder is always address data
bits <8:0> from the MCA bus. The output from
the adder is the modified address data bits <8:0>
which are driven onto the MCA bus.

The adder is used for generating the multiple
memory addresses required by unaligned data
accesses, and for probing the last bytes of word and
longword data types to insure access privilege for
the entire datum during writes. For translation
buffer accesses, the adder provides successive TB
entry addresses when the entire translation buffer
must be invalidated.

Translation Buffer Operations

Each translation buffer entry can be read, written,
or invalidated. The following paragraphs describe
how these accesses are accomplished.

Address Sources

307 Address Translation




Company Confidential

Virtual addresses for translation buffer operations
can come from any of the following: the data path,
the register file, or the register file modified by the
9-bit adder.

TB Reads

For a TB read operation, the selected PTE is driven
onto the MCD bus and fourteen of the page frame
number (PFN) bits are latched into the physical
address register to form physical address bits
<21:09>. The contents of the PAR are then
driven onto the MCA bus and to the data path via
the memory data bus. The TB hit or miss status is
available to the data path the same cycle and the
data on the memory data bus are used or ignored
accordingly.

TB Writes

For a TB write operation, the PTE is written into
the addressed location in the translation buffer
from the MCD bus. Meanwhile, the corresponding
tag bits are selected from the virtual address on
the MCA bus by the tag MUX and written into the
tag RAM at the same address that the PTE is
written into in the TB/cache RAM.

TB Invalidates

The translation buffer can also be accessed to
invalidate a single entry, or to invalidate the
entire buffer. A TB invalidate function (single or
multiple) writes the valid bit, bit <15>, invalid.
The remaining tag bits and the associated PTE in
the translation buffer are undefined.

For an invalidate multiple operation, the index
MUX selects bits <8:1> from the virtual address

6: MCT Module 308

W




Company Confidential

on the MCA bus because the incremented
addresses are supplied by the 9-bit adder. An
INVALID.MULTIPLE Memory Request
invalidates eight TB entries per request; this
allows interrupts to be processed in between the
series of INVALID.MULTIPLE Memory Requests
required to invalidate the entire translation
buffer. The first INVALID.MULTIPLE request
specifies a virtual address that causes the index
MUX to select the first location in the tag RAM
(and in the translation buffer). The first eight tags
in the tag RAM are then invalidated by clearing
bit <15> in each tag by sequential TB writes.
The MCT microcode enables the 9-bit adder and
supplies it with a constant, and from that point on,
the adder provides the low-order nine bits of the
virtual address on the MCA bus.

Thus, by successive Invalidate Multiple requests,
all of the TB locations are marked invalid.

Accessing the Cache

Another main function of the memory controller is
to supply the data path with the requested data.
The memory controller accesses the data and
instruction cache first to try to supply the
requested data. If the data is not in the cache, the
memory controller initiates a Q22 bus cycle.

A cache access uses much of the same hardware as
an address translation operation: the index MUX,
the tag MUX, the tag RAM, the TB/cache RAM,
the write isolation buffer, and the TB/cache
comparator. The following paragraphs describe
each of these components in turn, and the different

kinds of cache accesses.

309 Address Translation




Company Confidential

Index MUX

The index MUX selects the correct bits from the
MCA bus to access the location in the cache that is
to be read, written or invalidated. The twelve bits
selected from the MCA bus by the index MUX form
an address that accesses a location in the cache
portion of the tag RAM, and the same location in
the cache.

For any cache access, the index MUX selects
physical address bits <12:2> off the MCA bus.
The index MUX supplies a one for the high-order
bit. The address then presented to the tag RAM
and to the cache by the index MUX is:

1110 0
1|PA <12:2>

Tag MUX

The tag MUX selects physical address bits
<21:13> from the MCA bus and supplies zeros for
the five high-order bits to form the low-order
fourteen tag bits for the cache entry being read,
written or invalidated.

When the cache is accessed for a read or an
invalidate operation, the tag MUX passes bits
<21:13> of the physical address on the MCA bus,
plus the five high-order zeros, to the comparator.

For a cache write, the tag MUX passes bits
<21:13> of the physical address on the MCA bus,
plus the five high-order zeros, to the write isolation
buffer. The write isolation buffer in turn passes
them onto the cache portion of the tag RAM, where
they are written into the location accessed by the

6: MCT Module 310




Company Confidential

index MUX.

Tag RAM

The tag RAM stores the address tag bits associated
with each translation buffer and cache entry. The
first 2K locations in the tag RAM contain the tags
for process and system space addresses, and the
last 2K locations contain the tags for the data and
instruction cache. Figure 6-3 shows the
organization of the tag RAM.

Each cache tag is sixteen bits wide, consisting of
one valid bit controlled by bit <31> of every
memory controller microinstruction, one spare bit,
five zeros, and nine tag bits which are physical
address bits <21:13>. Figure 6-7 shows the
organization of one tag entry in the cache portion

of the tag RAM:
15 14 13 9 8 0
valid [spare | 00000 | physical address
bit |bit bits <21:13>
Figure 6-7. Cache Tag

The tag RAM is written whenever the TB/cache
RAM is written. When a new tag is written into
the cache portion of the tag RAM, the tag is
assembled by the tag MUX, passed through the
write isolation buffer, and written into the tag
RAM location selected by the index MUX. Tag bit
<15> is set or cleared by the memory controller
microinstruction executing the write to the cache.

311 Cache Accesses

4 e




Company Confidential

The tag RAM is read whenever the TB/cache RAM
is read. For a read, the cache tag assembled by the
tag MUX is passed to the comparator. The cache
tag at the tag RAM location selected by the index
MUX is also sent to the comparator. If tag bit
<15> is clear, indicating an invalid tag, the
comparator generates a cache miss indication. If
tag bit <15> is set and tag bits <8:0> match
physical address bits <21:13> stripped off the
MCA bus by the tag MUX, the comparator
generates the signal MCTL TBC HIT.

When the cache invalidate signal is sent to the
memory controller from the Q22 bus, the tag MUX
passes physical address bits <21:13> from the
MCA bus to the comparator. The cache tag at the
tag RAM location accessed by the index MUX is
also sent to the comparator. If the two tags match,
the cache tag at the location accessed by the index
MUX is marked invalid by clearing bit <15>.

TB/Cache RAM

The cache portion of the TB/cache RAM is the
upper 2K locations. Figure 6-5 shows the
organization of the TB/cache RAM. Each cache
location contains data or an instruction.

Data are read from or written to the cache from the
MCD bus when a Memory Request from the data
path specifies a function requiring a cache access.
Bits <33:32> of the MCT microinstruction that is
executed to implement the requested function,
determine whether the current cache access is a
read or a write. (See Table 5-5 for the encoding of
these bits). Bits <30:29> of the MCT
microinstruction determine whether the current
cache access is a normal access (that is, a read or a

6: MCT Module 312




Company Confidential

write), or a conditional cache invalidate. (See
Table 5-6 for the encoding of these bits).

Write Isolation Buffer

The write isolation buffer is used the same way for
cache operations as for translation buffer accesses:
it allows the tag portion of a cache entry to be
written into the tag RAM during a cache write,
and is disabled to allow the tag from the tag RAM
to be read into the comparator during a cache read
or a cache invalidate.

TB/Cache Comparator

The TB/cache comparator asserts a TB/cache hit
indication for a cache read or invalidate operation
when the stored address tag from the tag RAM
equals the search address tag supplied by the tag
MUX. When the comparison results in a match,
the comparator asserts the signal MCTL TBC HIT
H. If this signal is not asserted, the compared tags
did not match.

Cache Operations

Each cache entry can be read, written, or

conditionally invalidated. The following
paragraphs describe how these accesses are
accomplished.

Address Sources

Physical addresses for cache operations can come
from any of the following: the data path, the
register file, the register file modified by the adder,

the PAR, or the merge register.

For cache accesses, the adder and its register are
used to supply modified physical addresses for

313 Cache Accesses

e




Company Confidential

unaligned data accesses, and for probes to check
access privilege (RCHECK and WCHECK

Memory Request functions).

Cache Reads

For a cache read operation, the selected data are
driven onto the MCD bus, through the byte rotator,
and latched into the merge register. From the
merge register, the data are driven over the
memory data bus to the data path. The TB/cache
hit or miss status is available to the data path in
the same cycle and the data on the memory data
bus are used or ignored accordingly.

Cache Writes

If the physical address presented to the TB/cache
RAM during a cache read access results in a miss,
the physical address is driven on the Q22 bus, and
the data at that address obtained from physical
memory. The Q22 bus delivers the data to the
MCD bus for a cache write operation, and the data
are written into the addressed location in the
cache. Meanwhile, the corresponding tag bits are
selected from the physical address on the MCA bus
by the tag MUX and written into the tag RAM at
the same address that the data are written into in
the TB/cache RAM.

If either bit <29> or bit <28> is set in the
physical address on the MCA bus, a cache write
does not occur. Bit <29> set means that the
physical address is located in I/O space, and no I/O
space addresses are cached.

Physical address bit <28> is part of the PTE
stored in the translation buffer. It is latched in the
access violation PAL from the MCD bus after a TB

6: MCT Module 314




Company Confidential

cycle (see Figure 6-1). When bit <28> is set, the
physical address is located in that part of physical
memory that can be shared by another processor
on the Q22 bus. The addresses in the shared
portion of physical memory are not cached either.
Thus, no cache write occurs if either bit <29> or
<28> is set.

The cache is a write-through cache with write
allocation: any macroinstruction that causes a
write updates physical memory and also causes a
write to the cache. The write to physical memory
is handled by a Q22 bus cycle. Next, a cache access
is performed. If the cache access results in a hit,
the cached data are driven onto the MCD bus and
latched in the merge register. The data that were
written to memory are also stored in the register
file. From there, the data are driven onto the MCA
bus, through the reverse pass latch and the byte
rotator, and latched in the merge register, writing
over part or all of the data just read from the cache.
The updated data are then written into the cache
at the specified physical address; the cached data
now matches the data in physical memory.

Conditional Cache Invalidates

A cache invalidate operation is conditional: the
addressed data cache location is invalidated if
there is a match between the stored tag and the
search tag. Only one cache entry at a time can be
invalidated. For a cache invalidate operation, the
valid bit, bit <15>, is cleared in the associated
cache tag; the actual data in the cache entry are

undefined.

Since the cache invalidate signal arrives from the
Q22 bus asynchronously, conditional logic 1is

315 Cache Accesses

L




Company Confidential

implemented in hardware to enable the write to
cache as soon as possible after the cache invalidate
signal arrives. The cache invalidate signal is
generated whenever an I/O device on the bus
writes to physical memory and causes a cache
invalidate trap in the memory controller. When
bits <30:29> of the current MCT microinstruc-
tion are both ones, the TB/cache access selected is
conditional cache invalidate (see Table 5-6) and
the signal MCTN COND CINV is asserted. This
signal is ANDed with MCTT TBC HIT DLYD to
enable the cache write.

Transferring Data

Transferring data within the memory controller
module is the fifth of the eight functions that the
memory controller module performs. The
hardware components are the MCA bus, the MCD
bus, the memory data bus transceiver, the memory
control bus, the merge register and byte rotator,
and the reverse pass latch. The following
paragraphs describe each of these components in
turn.

MCA Bus

The memory controller address (MCA) bus is
completely contained on the MCT module. It is a
32-bit, tri-state bus that normally supplies virtual
and physical addresses to the TB/cache and to the
Q22 bus write register. It is also the path used to
transfer read data to the data path module, and
write data from the data path module.

Addresses or data are asserted onto the MCA bus
by 22 ns into the MCT microcycle, and are held
until the end of the microcycle. The MCA bus

6: MCT Module 316




Company Confidential

destinations are clocked or latched by 110 ns into
the microcycle. The MCT microcode guarantees
that only one driver is enabled onto the bus during
every cycle.

Table 6-1 lists the possible MCA bus sources and
destinations. When the physical address register
(PAR) is driving the MCA bus, it only drives bits
MCA <29> and <21:09>. MCA bits <31:30>
and <28:22> are passively asserted by pull-up
resistors, and <8:0> are provided by the offset
register file or the adder.

Table 6-1. MCA Bus Sources and Destinations

Sources Data written to bus:

MDB transceiver MCA<31:00>

page register file MCA<31:09>

offset register file MCA <08:00>

adder MCA<08:00>

PAR MCA<29:28 >, <21:09>
merge register MCA<31:00>

MCA <31:30,27:22>

Data written from bus:

pull-up resistors

Destinations

MDB transceiver MCA<31:.00>
page register file MCA<31:09>
offset register file MCA<08:00>
adder MCA <08:00>
TB/cache MUXs MCA <31:00>
reverse pass latch MCA<31:00>

Q22 bus write register MCA<29>,< 21:00>

317 MCT Data Transfers

L




Company Confidential

prefetch FIFO MCA<07:00>

MCD Bus

The memory controller data (MCD) bus is also
completely contained on the MCT module. It is
normally used to transfer data to and from the
TB/cache RAMs, transfer data from the Q22 bus
read register, and transfer data to the PAR. It is
also passively asserted by pull-up resistors. Table
6-2 lists the possible sources and destinations for
the MCD bus.

Table 6-2. MCD Bus Sources and Destinations

Sources Data written to bus:
TB/cache RAM MCD<31:00>
reverse pass latch MCD<31:00>

Q22 bus read register MCD<15:00> or
MCD<29>, <21:00>

control and status MCD<00> ;
registers (CSRs) ‘
pull-up resistors MCD<31:00>
Destinations Data written from bus:
merge register MCD<31:00>
via rotator
TB/cache RAM MCD<31:00>
control and status MCD<00>
registers (CSRs)
PAR MCD<20:19>,
<12:00>

access violation latch MCD<30:26>

6: MCT Module 318




Company Confidential

Memory Data Bus Transceiver

The MDB transceiver is located between the
memory controller and the data path modules. It
isolates the interboard memory data bus from the
memory controller MCA bus and consists of both
receive and transmit buffers.

Bits <57:56> in the MCT microinstruction
control the transceiver direction, and enable the
output. Table 5-1 shows the transceiver control
field encoding.

Memory Control Bus

This 8-bit bidirectional bus is physically part of the
CD interconnect on the backplane. The memory
control bus conveys memory function requests
from the data path module to the memory
controller. The memory function requests are then
latched in the MCT memory request latch. In
addition, instruction stream bytes from the
memory controller prefetch FIFO are time-
multiplexed over the memory control bus and
latched into the IBYTE register on the DAP
module.

Merge Register and Rotate Logic

The merge register actually consists of four
registers, each one byte wide. Each byte-wide
register is enabled by one bit in the MCT
microinstruction (the merge register selects, bits
<39:36>). The entire 32 bits in the merge
register are driven onto the MCA bus when bit
<62> in the current MCT microinstruction is

asserted.
The byte rotator consists of eight shifters; each

319 MCT Data Transfers




Company Confidential

shifter handles four bits. The 32 bits from the
MCD bus are the inputs to the shifters and are
driven onto the MCD bus from the cache, the
reverse pass latch, or from the Q22 bus read
register. The shifters are controlled by the byte
rotate select field (bits <35:34>) in the MCT
microinstruction. The byte rotator shifts the
longword into the desired alignment (see Table 5-
4).

Data to be read or written across byte or word
boundaries are rotated by 0, 1, 2, or 3 bytes in the
byte rotator, and latched in the merge register.
Since the byte-wide registers in the merge register
are individually enabled, any number and
combination of the rotated bytes can be latched
(see Table 5-3). If data from a previous
rotate/merge operation are still in the selected
register, the data are written over. This is exactly
how data are updated on write-through cache
operations, for example.

Reverse Pass Latch

The reverse pass latch allows data from the MCA
bus to be latched and presented to the MCD bus.
From the MCD bus, the data may be written to the
translation buffer, the cache, or presented to the
rotate/merge logic for alignment.

The input to the reverse pass latch is MCA BUS
<31:00> and the output is MCD bus <31:00>.
The reverse pass latch is controlled by one latch
enable bit (<40>) and one output enable bit
(<41>) in the MCT microinstruction.

Prefetching Instruction Stream Bytes

6: MCT Module 320




Company Confidential

Prefetching bytes from the instruction stream is
the sixth of the eight functions that the memory
controller module performs. Three hardware
components handle the prefetching: the prefetch
FIFO, the FIFO control logic, and the prefetch
program counter. The following paragraphs
describe these components and how the
prefetching operates.

Prefetch FIFO

The prefetch FIFO is a 16-locations-deep by 8-bits-
wide RAM that holds the next 0 to 16 bytes from
the instruction stream. The prefetch FIFO is
loaded from the low byte of the MCA bus. The
FIFO is loaded at the end of the current MCT
microcycle if bit <50>, the prefetch FIFO load
clock bit, is asserted in the current microinstruc-
tion.

The output from the FIFO is the next byte in the
instruction stream; it is sent to the IBYTE register
on the DAP module via the memory control bus.

When a change in the program flow occurs (for
example, because a Memory Request with
IB.REFILL is executed), an MCT microinstruction
with bit <51> asserted is executed to clear the
entire contents of the FIFO.

Prefetch FIFO Control Logic

The control logic is a counter that keeps track of
how many bytes have been loaded into the prefetch
FIFO. When the FIFO contains less than eight
bytes, the control logic asserts the prefetch enable
flag, MCTP PREFETCH EN. This signal is one of
the inputs to the branch MUX in the MCT
microsequencer. When it is asserted, the MCT

321 I-stream Prefetch




Company Confidential

microcode branches to a microroutine that refills
the prefetch FIFO.

Prefetch Program Counter

The I-prefetch program counter is maintained in
location 2 of the register file. This PC always
contains the physical address of the last
instruction stream byte loaded into the FIFO.

The prefetch PC is incremented whenever a byte
from the MCA bus is loaded into the prefetch
FIFO. The PC is also incremented when an I-
stream Request microinstruction is executed by
the data path. When the data path executes a
Memory Request with IB.REFILL, the data path
sends a 32-bit virtual address over the memory
data bus; this address is translated and saved in

location 2 of the register file as the new prefetch
PC.

Prefetch Operation

The IBYTE control logic on the DAP module
asserts the signal DAPR IB TAKEN to inform the
memory controller that the instruction stream
byte that was on the memory control bus is now
latched in the IBYTE register. DAPR IB TAKEN
causes the prefetch control logic to decrement the
count by one, and causes the prefetch FIFO to drive
the next I-stream byte onto the memory control
bus.

When the prefetch FIFO drives another I-stream

byte onto the memory control bus, it asserts the
signal MCTP NXT VALID to inform the DAP

module that a valid I-stream byte is on the memory
control bus.

When the prefetch enable flag is asserted because

6: MCT Module 322




Company Confidential

the prefetch FIFO contains less than eight bytes, a
memory controller microroutine is invoked to refill
the prefetch FIFO. The microroutine uses the
physical address in the prefetch PC and performs a
cache access.

If there is a cache hit, the retrieved data are driven
into the byte rotator via the MCD bus, and rotated
so that the desired byte (that is, the next byte in
the I-stream) is in the low-byte position, and
latched in the merge register. All 32 bits are then
driven onto the MCA bus, but only the low eight
bits are loaded into the prefetch FIFO. The
prefetch PC is incremented by one. The 32 bits are
then driven off the MCA bus, through the reverse
pass latch, to the MCD bus. From there, they are
driven into the rotator and shifted again so that
the next byte in the I-stream is in the low-byte
position, and latched in the merge register. From
the merge register, the rearranged 32 bits are
driven onto the MCA bus, and the low-order eight
bits loaded into the next location in the prefetch
FIFO.

This process continues until the prefetch FIFO
contains more than eight bytes and the prefetch
enable flag is negated. If there is a cache miss
instead of a cache hit, the data are retrieved from
physical memory, written to the cache, and then
the same procedure carried out.

Thus, the prefetching is handled entirely by the
memory controller. The result is that the memory

controller always has the next byte of instruction
stream data ready to be latched into the IBYTE

register from the memory control bus.

323 I-stream Prefetch

e




Company Confidential

Tracking and Reporting Status

Since the memory controller operates essentially
as a slave responding to commands from the data
path module, one of the memory controller’s
functions is to track status and report it to the data
path. The hardware components that are involved
with tracking and reporting status are the four
CSRs (control and status registers), the access
protection latch, and the access violation PAL.
The next paragraphs describe these components
and their activities.

Control and Status Registers

The four single-bit CSRs control memory
management functions performed by the MCT, and
reflect error status. The CSRs share the register

file address space, but they are read and written
over the MCD bus as MCD <0>.

The CSRs are selected by the MCT microinstruc-
tion regis<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>