
Company Confidential

Seahorse
Central Processing Unit
Technical Description

First Draft - May 1983

dita|

May 1983
This manual describes the KD32-AA central

processing unit used in Seahorse.
NOTE: This manual is the property of Digital
Equipment Corporation and is Company
Confidential. It may not be distributed to other

reviewers without authorization.

KD32-AA
Central Processing

Technical Description

Document Order Number: XX-12345-XX
Version: 0.0

digital equipment corporation
maynard, massachusetts

COMPANY CONFIDENTIAL

First Draft Printing, May 1983

Thematerial in thismanual is for informational purposes and is
subject to change without notice. The information in this
document should not be construed as a commitment by Digital
Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for
any errors which may appear in thismanual.

Copyright 1983 by Digital Equipment Corporation
All rights reserved. Printed in U.S.A.
The postage-paid READER'S COMMENTS form on the last
page of this document requests your critical evaluation to assist
us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:
CTI BUS?? DIBOL QBUS?? VMS
DEC [dec logo] Q22 bus?? VT
DECmate MASSBUS Rainbow Work Processor
DECsystem-10 microVAX?? RSTS
DECSYSTEM-20 PDP RSX
DECUS P/OS UNIBUS
DECwriter Professional VAX

COMPANY CONFIDENTIAL

Company Confidential

Contents

Chapter 1: Introduction

System Overview 1

KD32-AA CPU 2

Q22 Bus 2

RQDX1 Controller 5

RX50 Floppy Disk Drive 5

RD51 and RDXX Fixed Disk Drives 5

Memory 6
MSV11-P Memory 6
MSV11-J Memory 7

Console Terminal 7
Front Control Panel 8
Power Supply 8

Backplane 11

Patch Panel Assembly 12

System Architecture 13

System Timing 17

System Bus Summary 21

Chapter 2: Functional Overview
Data Path 25

Contents-1

Company Confidential

Data Path Chip 26
Control Store 26

Microsequencer 29
internal Data Bus 29
Boot PROM 29
Console Interface 29

Memory Controller 30
Cache 31
Translation Buffer 31

Memory Controller Micromachine 31

Q22 Bus Interface Logic 32

Q22 Bus Interface 32

Macroprogram Level Instruction Flow 33
No Operation 33
Move Byte 37
Subtract One and Branch 43

Microcode 50

Chapter 3: Data Path Microcode
Microinstruction Format 53
Parity Field 53
Condition Code/Data Type Field 54
Data Path Control Field 55
Next Address Control Field 59

Jump and Jump to Subroutine 63
Branch 63
Case 64

Contents-2

CompanyConfidential

Branch to Subroutine 64
Trap 64
Return 65
Instruction Register Decode 65
Operand Specifier Decode 66

Data Path Microinstructions 67
ALU Microinstructions 67
Shift Microinstructions 67
Move Microinstructions 68
Other Microinstructions 68

Decode 69
Restore 71

Multiply Step 72

Memory Request 73
I-stream Request 75

Operand Field Encoding 76.

Memory Controller Interface Microcode 79
Memory Function Encoding 79

Memory Functions 82
READ.VECTOR 82
VREAD.RCHECK 82
VREAD.WCHECK 83
VWRITE.WCHECK 83
VREAD.LOCK 84
IB.REFILL 84
PREAD 85
PWRITE 85
XLATE.RCHECK 86

Contents-3

Company Confidential

XLATE.WCHECK 86
IB.READ 87
REPEAT.FIRST 87
REPEAT.SECOND 88
READ.CACHE 89
WRITE.CACHE 90
READ.MCT 90
WRITE.MCT 90
READ.TB 91
WRITE.TB 91
INVALID.SINGLE 91
INVALID.MULTIPLE 92
RCHECK 92
WCHECK 93

Memory Controller Status 93

Microverify 95
Console Microcode 95

Chapter 4: Data Path Module
Overview of DAP Functions 97
Controlling the Microinstruction Flow 97
Clock Signals 98
Control Store 101
Control Store Address Register 103
Parity Checker 103
Index Register 104
Microsequencer 104

Contents-4

Company Confidential

Page Register and Microprogram Counter 107
Conditional Decrementer 107

Jump Register 107
OR MUX 107

Jump Mux 108
Next Microaddress MUX 109

Microstack 111
Microstack Pointer 112

Decoding Macroinstructions 113
IBYTE Register 113
IBYTE Control114
Decode ROMs 121
ALU and PSL Condition Codes 122
Condition Code Control 123
Condition Code Class Register 123
Condition Code PALs 124
Macrolevel Branch Control 129
PSL Enable 130
Size Register 130

Executing Microinstructions 131.
Clock Signal 132
Control Store Register 139
Parity Generator 139
Size Control 139
Data Path Chip Buses 141
Arithmetic and Logic Unit 142
Barrel Shifter 142

Register File 143

Program Counter 147

Contents-5

CompanyConfidential

Result Registers 147
ROM 148
Register Save Stack 148
Pointer Registers 149
Shift Count Register 149
Interval Timer and TMRCSR 149
Condition Codes 150
I/O Port 152

Transferring Data 155
Internal Data Bus 155
Data Bus 156
Sign-Extension 156
ID Bus Latch 157
ID MUX 157
IBYTE Buffer 157
Miscellaneous Register 158
ID Bus Address Decode Logic 159
Zero-Generator 165

Processing Interrupts 165
IPL Register 165
Interrupt Control Logic 166
Priority Encoder 166
interrupt Source Register 167

Communicating with the Console Terminal
168
Console UART 169
Console UART Registers 169

UART Data Register 170
UART Status Register 171

Contents-6

CompanyConfidential

UART Mode Registers 172
UART Command Register 173

Initializing the UART 174
UART Buffer 174
Option Switches 175
~ 12 Volt Generator 176
Break and Halt Detection 176

Powering Up 178
Power Up Signals 178
Power Failure 179

Initialization State 183
Initialization Signals on Power Up 183

Option Switches 187
Boot PROM 187

System Identification Register 188

Communicating with the MCT 189
Data Interface 189
Control Interface 190
Interface Control Signals 191

Stalls 192
MD Bus Latches 193
Memory Function Latches 194

Memory Function Control 195
PSL.MODE Register 197

Sign-Extenders 198
Memory Request Timing 198

Microprogram Level Flow: ADDW3 207
Evaluating the Opcode: Decode A1 209

Evaluating the First Operand Specifier 211

Contents-7

Company Confidential

Decode 41 211
Shift by 2 213
Shift by 1215
Decode AO 215
Add 217
Move 218
Add 219
Memory Request 220
Move 222
Move 223

Evaluating the Second Operand Specifier 224
Decode 95 224
Move 226
Move 227
Add 228
Memory Request 229
Move 230
Move 231

Memory Request 233
Move 234
Move 235

Adding the Operands 236
Add 236
Decode 52 238
Move 239

Chapter 5: Memory Controller Microcode
Memory Controller Function Parameters

Contents-8

Company Confidential

249
Microinstruction Format 252
MCA Bus Source Field 252

Q22 Bus Function Request 253
Merge Register Output Enable 254
PAR Output Enable 254
Adder Output Enable 254
Register File Output Enables 255
Transceiver Control 255

Functional Block Control Field 256
Prefetch FIFO Control 259
Q22 Bus Control 259
PAR Latch Enable 261
Reverse Pass Output Enable 262
Reverse Pass Latch Enable 262

Merge Register Selects 262
Byte Rotate Select 263
TB/Cache RAM Control 264
TB/Cache Valid 264
TB/Cache Access Select 265
Adder Latch Enable 266
Adder Subtract Enable 266
Adder Constant Select 266
Register FileWrite Enables 267

Register File Address Field 268

Microprogram Control Field 269

Busy Control 269
Microsequencer Control 270
Branch Control 271

Contents-9

Company Confidential

Next Address 271
Branch Conditions 272

NO.MAP 275
DATAFLOW 275
MCA <1> and MCA <0> 275
PAGE.CROSS 276
MODIFY 276
QBUS.BLOCK 276
QBUS.SYNCH 276
QBUS.BUSY 277
TB.ERROR 277
MCA <29 or 28> 277
QBUS.TIMEOUT 278
QBUS.ERROR 278
TBC.MISS 278
PREFETCH.DIS 279
IB.LERROR 279

Q22 Bus Controller Interface 279
Interface Microcode 280
Q22 Bus Controller Status 281

Chapter 6: Memory Controller Module
Overview of MCT Functions 283
Generating the Clock Signals 283
MCT Clocks 284
Timing 287

Controlling the MCT Microinstruction Flow

Contents-10

CompanyyConfidential

288
Memory Request Latch 288
CSA Bus 289
Pull-up Resistors 289
MCT Control Store 289
Microinstruction Clock Gating 290
Branch Condition Logic 290
MCT Microsequencer 292

Microinstruction Decode Logic 292
CSA PAL 296
Save Address Register 297
Next Address Buffer 297
Branch MUX 298

Translating Virtual Addresses 298
Index MUX 299
Tag MUX 300
Tag RAM 300
TB/Cache RAM 302
Write Isolation Buffer 304
TB/Cache Comparator 304
Physical Address Register 305
Register File 305
Adder and Adder Register 307
Translation Buffer Operations 307

Address Sources 307
TB Reads 308
TB Writes 308
TB Invalidates 308

Contents-11

CompanyConfidential

Accessing the Cache 309
Index MUX 310
Tag MUX 310
Tag RAM 311
TB/Cache RAM 312
Write Isolation Buffer 313
TB/Cache Comparator 313
Cache Operations 313

Address Sources 313
Cache Reads 314
CacheWrites 314
Conditional Cache Invalidates 315

Transferring Data 316
MCA Bus 316
MCD Bus 318
Memory Data Bus Transceiver 319
Memory Control Bus 319
Merge Register and Rotate Logic 319
Reverse Pass Latch 320

Prefetching Instruction Stream Bytes 320
Prefetch FIFO 321
Prefetch FIFO Control Logic 321
Prefetch Program Counter 322
Prefetch Operation 322

Tracking and Reporting Status 324
Control and Status Registers 324

Map Enable Control Register 325

Contents-12

CompanyConfidential

Cache Enable Control Register 325
Error Flag Status Register 325
IB Error Status Register 326

Access Protection Latch 326
Access Violation PAL 327

Communicating with the Q22 Bus Interface
331
Q22 Bus Controller 331
Q22 BusWrite Register 331

Q22 Bus Read Register 332

Microprogram Level Flow: MOVW 333
Evaluating the Opcode 335

Evaluating the First Operand Specifier 335
Obtaining the Operand 338

TB Access 339
Cache Access 340
Q22 Bus NOP 341
Set Error Code 342
TB Read 343
TB Write 345
TB Access Retried 350
Cache Access Retried 351
Incorrect Data Returned 353

Q22 Bus Go 354
First Block Read 354
Clear Q22 Bus Function 356
Second Block Read 357
Return Correct Data 358

Contents-13

CompanyConfidential

Prepare for CacheWrite 359
CacheWrite 360
Move Data 361

Evaluating the Second Operand Specifier 362

Chapter 7: Q22 Bus Controller
Q22 Bus Controller Function Parameters
365
Control Store Addresses 366
QBUS BUSY Asserted 367

Bus State Field 368
Function Code Field 369
State Bits 369

QBUS BUSY Not Asserted 369

Microinstruction Format 370
Busy 371
Enable Parity 371
SDMGO 371
SSYNC Hold 371
Enable SIAKO 372
SDOUT 372
Enable SDIN 372
Enable SSYNC 375
Enable Data 375
Address OK 376
Request Clear 376
SYNC/READY 377

Contents-14

CompanyConfidential

Microstate Bits 377

Overview of Q22 Bus Controller Functions
377

Controlling the Microinstruction Flow 378

Servicing MCT Function Requests 379
Q22 Bus Control PAL 379
Q22 Bus Transceivers 381

Arbitrating the Q22 Bus 382
Q22 Bus Controller Microsequencer 382
Cache Invalidate Logic 383
Bus Error Logic 384

Communicating with the MCT 385
Block Mode 385
SYNC/READY 386
Q22 Bus Busy 387
Q22 Bus Timeout 387
Q22 Bus Error 387
Cache Invalidate 388

Q22 Bus Operations 388
Write Byte 388
WriteWord 388
Write Block 389
Read Word 389
Read Block 389
Read Interrupt Vector 389
Interlock Request 389

Contents-15

CompanyConfidential

List of Figures

Figure 1-1. Seahorse System 3

Figure 1-2. Seahorse Front Panel 9
Figure 1-3. Seahorse Backplane 12

Figure 1-4. Seahorse Physical Memory 15

Figure 1-5. Microinstruction Timing 19

Figure 2-1. CPU Block Diagram 27

Figure 2-2. NOP Macroinstruction Data Flow
35

Figure 2-3. MOVB Macroinstruction Data
Flow 39

Figure 2-4. SOBGTR Macroinstruction Data
Flow 45

Figure 3-1. DAP Microinstruction Format 53
Figure 3-2. Data Path Control Field 55
Figure 3-3. Next Address Control Field
Formats 61

Figure 3-4. Memory Request Format 81

Contents-16

CompanyConfidential

Figure 4-1. Data Path Block Diagram 99

Figure 4-2. Microsequencer Block Diagram
105

Figure 4-3. IBYTE Register Loading 119

Figure 4-4. Condition Code Setting Timing
Diagram 127

Figure 4-5. Data Path Chip Block Diagram
135

Figure 4-6. Data Path Chip Timing Diagram
137

Figure 4-7. Timing of Read from ID Bus
Register 161

Figure 4-8. Timing of Write to ID Bus
Register 163

Figure 4-9. Power Up/Power Down Timing
181

Figure 4-10. DAP Initialization Signals 185

Figure4-11.Timing of a Read from Memory
201

Figure 4-12. Timing of a Write to Memory
203

Figure 4-13. ADDW3 Microinstructions

Contents-17

Company Confidential

241-247

Figure 5-1. MCT Microaddress Format 251

Figure 5-2. MCT Microinstruction Format
252

Figure 5-3. MCA Bus Source Field 253

Figure 5-4. Functional Block Control Field
257

Figure 5-5. Q22 Bus Control Field 259

Figure 5-6. Microprogram Control Field 270

Figure 5-7. Branch Control Field and Next
Address Field Formats 273

Figure 6-1. Memory Controller Block
Diagram 285

Figure 6-2. MCT Microsequencer Block
Diagram 293

Figure 6-3. Organization of Tag RAM 301

Figure 6-4. Translation Buffer Tag 301

Figure 6-5. Organization of TB/cache RAM
303

Figure 6-6. Translation Buffer PTE 304
Figure 6-7. Cache Tag 311

Contents-18

CompanyConfidential

Figure 7-1. Microaddress Format, BUSY
Asserted 367

Figure 7-2. Microaddress Format, BUSY Not
Asserted 370

Figure 7-3. Q22 Bus Controller
Microinstruction Format 373

List of Tables

Table 1-1. Front Panel Switches 9
Table 1-2. Front Panel Indicators 9

Table 3-1. Opcode Assignments 57
Table 3-2. Jump Control Field 61

Table 3-3. OR <2:0> 61

Table 3-4. Decode Microinstruction Short
Operand 69

Table 3-5. Register Address Organization 77

Table 4-1. Forced Zeros on NuA MUX

Contents-19

CompanyConfidential

Output 110
Table 4-2. Condition Code Class Register
Encoding 124
Table 4-3. CC Function Field Encoding 125
Table 4-4. Barrel Shifter Functions 143
Table 4-5. DPC Registers 145
Table 4-6. Data Path Chip Condition Codes
151

Table 4-7. External Registers 153
Table 4-8. Interrupt Source Register
Encoding 168
Table 4-9. UART Registers 170
Table 4-10. DAP/MCT Interface Signals and
Timing 205

Table 5-1. Transceiver Control Field 256
Table 5-2. Function Code Field 260
Table 5-3. Merge Register Selects 263
Table 5-4. Byte Rotate Select 263
Table 5-5. TB/Cache RAM Control 264
Table 5-6. TB/Cache Access Select 265
Table 5-7. Adder Control 267

Contents-20

CompanyConfidential

Table 5-8. Register File Address Space 268
Table 5-9. Busy Control Field Encoding 270
Table 5-10. Microsequencer Control Field
Encoding 273

Table 6-1. MCA Bus Sources' and
Destinations 317
Table 6-2. MCD Bus Sources and
Destinations 318
Table 6-3. MCT Error Codes 325
Table 6-4. Protection Codes 329

Table 7-1. Bus State Field Encoding 368
Table 7-2. Function Code Field 369

Contents-21

CompanyConfidential

Contents-22

CompanyConfidential

Preface
Manual Scope

This manual is a technical description of the
KD32-AA central processing unit (CPU) used in
the Seahorse system. It is intended as a field
reference for DIGITAL Field Service personnel and
a resource for training programs conducted by
Educational Services and Manufacturing. A
knowledge ofVAX architecture is assumed.

Chapter 1 is a general description of the Seahorse
system. The remaining chapters describe the
microcode and the hardware for the two modules
that make up the CPU board set:

® Data PathModuleM7135

Memory Controller Module M7136

Related Documentation
The Seahorse Central Processing Unit Technical
Description is part of the hardware documentation
set for the Seahorse system. Related manuals that
may be of interest are:

@ Seahorse Owner'sManual. This book contains
site preparation, installation, operation,
diagnostics, and system configuration
information for the Seahorse system.

@ NPMHandbook. This book contains ?
e VAX Architecture Handbook. The Seahorse

Preface-1

Company Confidential

system design is based on the VAX
architecture described in this handbook.
Microcomputer Interfaces Handbook. This
handbook is a reference guide for the interface
and peripheral hardware options that can be
installed on the Extended LSI-11 Bus used in
Seahorse .

Microcomputers and Memories. This manual
contains a detailed description of the
Extended LSI-11 Bus.

@ SeaboardManuals?
@ MicroVMSManuals?

Preface-2

Company Confidential

Chapter 1

Introduction
Chapter 1 is a general description of the Seahorse
system. It contains information about the system
necessary for understanding the Seahorse central
processing unit (CPU). The remaining chapters
provide a detailed technical description of the
KD32-AA CPU.

System Overview
The Seahorse system is a 32-bit, high-performance,
microprogrammed computer. The processor
executes a subset of the native VAX instruction set
and contains an interface to the extended LSI-11
bus (Q22 bus). PDP-11 compatibility mode is not
supported.
The major components of the Seahorse system,
shown in Figure 1-1, are:

@ KD32-AA CPU:
- memory controller (MCT)
- data path (DAP)
Q22 bus

RQDX1 controller
RX50 floppy disk drives
RD51 or RDXX fixed disk
Q22 memory, with block mode capability
console terminal
front control panel

1

Company Confidential

KD32-AA CPU
The KD32-AA CPU implements the MicroVAX
architecture on two quad-height modules, and
provides an interface to the Q22 bus. As such, it
contains:

@ an interface to the Q22 bus which supports
block mode transfers and up to fourmegabytes
ofphysicalmemory
an 8 KB direct-mapped cache
a 512 entry (longword) translation buffer
a 10 ms interval timer
a console serial line unit
an 8 KB boot PROM

Q22 Bus

The Seahorse system backplane uses the extended
LSI-11 bus (also called the Q22 bus), which has 22-
bit addressing. The Q22 bus consists of 42
bidirectional and 2 unidirectional signal lines.
These are the lines along which the processor,
memory, and I/O devices communicate with each
other. Seahorse performs the following Q22 bus
data transfer functions:

DATI read word
DATO write word
DATOB write byte
DATIO read, modify, write word
DATIOB read, modify, write byte
DATBI read block

1: Introduction 2

Company Confidential

memory
control
bus

1

1

Q22 bus a

1

I

I

CPU
RD51 iRX50 or

i memory data busRDXX
512 KB i

console
terminal512 KB

RQDX1 memory MCT DAP i
controller array i

panel
front

Other
Q22 bus

peripherals
(optional)

Figure 1-1. Seahorse System

3 System Overview

Company Confidential

DATBO write block

RQDX1 Controller
The RQDX1 controller (M8639) is a quad-height
module that occupies the last-used slot in the
backplane. It is the interface between the Q22 bus
and the disk drives (floppy and fixed). The
controller is a direct memory access (DMA)
interface and uses mass storage control protocol
(MSCP).

RX50 Floppy Disk Drive
The RX50 is a random access storage device with
two floppy disk drives. It uses single-sided 5.25
inch (13.34 cm) diskettes. The total drive capacity
is 800K bytes of formatted data. Each drive has an
access door and slot for inserting and removing
diskettes. A head load LED for each diskette slot
informs the user when that unit is busy.
The RX50 is a field replaceable unit (FRU) that
mounts in the Seahorse system box. One cable
(part number xxxxx) connects the RX50 to the
RQDX1 controller. Another cable (part number
xxxxx) connects the RX50 to the power supply. See
the Seahorse Owner's Manual for removal and
replacement procedures.

RD51 and RDXX Fixed Disk Drives

The RD51 is a random access storage device which
uses two nonremovable 5.25 inch (13.34 cm) disks
as storage media. One movable head per disk
surface services 153 data tracks. The total
formatted capacity of the four heads and surfaces is
10 megabytes.

5 System Overview

Company Confidential

The RDXX is a random access storage device
which uses one nonremovable 5.25 inch (13.34 cm)
disk as storage media. The total formatted
capacity is 25 MB.
The RD51 and RDXX are field replaceable units
(FRUs) that mount in the Seahorse system box.
One cable (part number xxxxx) connects the RD51
or RDXX drive to the RQDX1 controller. Another
cable (part number xxxxx) connects the RD51 or
RDXX drive to the power supply. See the Seahorse
Owner's Manual for removal and replacement
procedures.

Memory
Seahorse relies on block mode Q22 bus data
transfer functions to realize its performance goals.
Therefore, although the KD32-AA CPU is
compatible with other extended LSI-11 bus
memories, Seahorse systems support only those
Q22 memories that have block mode capability.
Both the MSV11-P and the MSV11-J memory
families offer this capability.
MSV11-P Memory
The MSV11-P family ofmemory modules are quad-
height modules that implement an 18-bit wide
random access memory array (16 data bits and 2
parity bits), parity generation and detection, and
on-board refresh circuitry. There are three
variations:

MSV11-PL 512 KB of storage using 64K
MOS RAMs

MSV11-PK 256 KB of storage using 64K
MOS RAMs

1: Introduction 6

Company Confidential

MSV11-PF 128 KB of storage using 16K
MOS RAMs

MSV11-J Memory
The MSV11-J memory is a quad-height module
that implements two 22-bit blocks of random
access memory (16 data bits and 6 ECC bits). Both
blocks ofmemory are read simultaneously on reads
(so that each access retrieves a longword of data
from the array), and the requested word is
transferred on the bus, while the other word is
latched on the memory module. This provides the
potential for a reduction in access time if this word
is subsequently requested. On a write, only one
block is accessed. The MSV11-J also implements
ECC (single-bit correction) and on-board refresh
logic. There are two variations:

MSV11-JA 512 KB of storage using 64K
RAMs

MSV11-JB 2 MB of storage using 256K
RAMs

AnMSV11-J memory module must be plugged into
a Q22/CD slot in the backplane.

Console Terminal
The console terminal may be any member of the
VT100 or VT200 family of terminals. A cable
connects the terminal to a serial line unit (SLU)
connector on the rear of the Seahorse system box.
A terminal interface UART and an RS232 driver
and receiver pair are located on the data path
module (M7135). The baud rate is set by DIP
switches on the data path module; the choices are
300, 1200, 9600, and 19.2K baud.

7 System Overview

Company Confidential

Front Control Panel
The front panel provides control and status of the
various components of the system. The switches
and indicators are shown in Figure 1-2. The
switches and their functions are listed in Table 1-1.
The indicators and their meanings are listed in
Table 1-2.

Power Supply
The power supply (H7864) is a modular, 230-watt
power supply that supplies from 4.5 amps
minimum to 36 amps maximum at +5 volts, and 0
to 6 amps at +12 volts. There are also two outputs
designed to accommodate DC brushless fans, not
included in the 230-watt power specification.
These outputs supply 0.45 amps at +12 volts and
+9 volts.
Additional power supply features include thermal
shut down, overvoltage and overcurrent
protection, AC input transient suppression, and
three Q22 bus signals (BPOK H, BDCOK H,BEVNT L).
The power supply includes connectors that provide
the necessary power and signal interfaces to the
logic backplane, mass storage units, front panel,
and fans.
The power supply is a field replaceable unit (FRU).
See the Seahorse Owner's Manual for removal and
replacement procedures.

1: Introduction 8

Company Confidential

Table 1-1. Front Panel Switches
Switch Position Function

1,0 1 Turns on the system power.
0 Turns off the system power.

Halt In (LED lit) The processor halts and responds to
0 console commands.

Out Enables the processor to run.

switch) sequence.
When the halt switch is in (LED lit),

Halt Restart this button has no effect.
RD Protect In (LED lit) Write protects the fixed disk.0 Out(LEDoff) Enables writing to the fixed disk.
RD Ready In (LED off) Places the fixed disk off-line.

Fixed Disk Out (LED lit) Places the fixed disk on-line.
Write Protect Ready

6 Table 1-2. Front Panel Indicators
LED Function

Write Protect instructions.

Removable Disk Write Protect

Restart In When the halt switch is out (LED off),Run Dc OK (momentary the processor carries out a power-up

Run The Run LED is on when the processor is operating;Removable Disk the LED goes offwhen the processor is not executing

1 2 DC OK This LED is on when the power supply is generating
correct DC power output voltages

2 When lit indicates the floppy in drive 2 is write protected.
Figure 1-2. Seahorse Front Panel When lit indicates the floppy in drive 1 is write protected1

System Overview9

Company Confidential

Backplane
The backplane (H9278-A) is a four-row by eight
slot backplane capable of accepting either quad- or
double-height modules. The backplane uses the
Q22 bus structure in the A and B connectors of
slots 1 through 8, and in the C and D connectors of
slots 4 through 8. A slot-to-slot interconnection
scheme (referred to as the CD interconnect) is
wired in the C and D connectors of slots 1 through
3. The CD interconnect connects selected side two
pins in rows C and D of a given slot to side one pins
of the slot immediately following. There are 32
such connections per slot.
The backplane receives and distributes two
voltages and ground. Maximum ratings are +5
volts at 36 amps, and +12 volts at 6 amps.
The backplane includes four connectors, Jl
through J4, which are mounted on side two of the
backplane. J1 (eighteen pins), J3 (four pins), and
J4 (four pins), connect power supply outputs to the
backplane. J2 (ten pins) connects the backplane to
the front panel.
-The backplane also includes provision for the
insertion of four resistor packs (p/n 1318110-00)
into positions XZ1, XZ2, XZ3, and XZ4. In a
Seahorse system (single backplane), these resistor
packs are inserted to terminate the Q22 bus lines.
(Characteristic impedance is 220 ohms).

Figure 1-3 shows the backplane organization. The
numbers in the parentheses following the Q22
designations show the path of interrupt and direct
memory access grant continuity for options
installed in the backplane; increasing value
denotes lower priority. The BIAKO L/BIAKI L

11 System Overview

Company Confidential

and BDMGO L/BDMGI 1L signals are daisy-
chained. Therefore, each slot requires the
insertion of a module to pass these grant signals
on, as no jumpers are provided on the backplane for
this purpose.

J1
J3 J4

1

18

10

SLOT 1 Q22 Q22 (P1) CD cD
SLOT 2 Q22 Q22 (P2) CD cD
SLOT 3 Q22 Q22 (P3) CD CD
SLOT 4 Q22 Q22 (P4) Q22 Q22 (P5)
SLOT 5 Q22 Q22 (P7) Q22 Q22 (P6)
SLOT 6 Q22 Q22 (P8) Q22 Q22 (P9)
SLOT 7 Q22 Q22(P11) Q22 Q22 (P10)
SLOT 8 Q22 Q22 (P12) Q22 Q22 (P13)

J2

21

XZ1
|
XZ2 XZ3

|
XZ4

Figure 1-3. Seahorse Backplane

Patch Panel Assembly
External option cables and serial lines connect to
Seahorse through the patch panel assembly. The
patch panel provides shielding for EMI and
accommodates a variety of connectors by providingfour inlay patch panel areas. Connectors are

1: Introduction 12

Company Confidential

mounted to these patch panels, and the patch
panels screw to the back of the patch panel sheet-
metal frame.
The four inlay patch panel areas are configured as
follows:

Patch Panel 1

Patch Panel 2
Patch Panel 3

Patch Panel 4

System Architecture

Two 25-pin EIA connectors
and two rotary switches for
baud rate selection (M8189).
Note: The baud rate select
switches are disabled. Baud
rate is set by DIP switches
on the data pathmodule.
Four 25-pin EIA connectors
The post between two of the
patch panel areas may be
removed to install three 40-
or 50-pin EIA connectors.
Two more cutouts are
present to accommodate one
40- or 50-pin EJA connector
each.

Seahorse implements the MicroVAX architecture
which is a strict subset of the VAX architecture.
TheMicroVAX architecture features are:

@ a4 gigabyte virtual address space
32-bit word size

32 interrupt levels

e
® sixteen 32-bit general purpose registers
e
e vectored hardware and software interrupts

13 System Overview

Company Confidential

@ 21 addressingmodes
@ variable instruction size
@ full memorymanagement
- virtual to physical address translation
- page protectionmechanism

@ stack processing
® emulation support for the full VAX

instruction set (except PDP-11 compatibility
mode)

The differences between the VAX and MicroVAX
architectures are as follows.

@ MicroVAX supports a subset of VAX data
types:
- no D_floating data type
~ no H_floating data type
~ no octaword data type
- nonumeric string data types
~ no packed decimal data type

@ MicroVAX supports a subset of the VAX
instruction set and provides emulation
support for nonimplemented instructions
(except compatibility mode):
~ no decimal string instructions
~no character string instructions (except
LOCC, MOVC3, MOVC5, SCANC, SKPC,
and SPANC)
- no EDITPC or CRC instructions
- no compatibility mode instructions
~ no D-_floating or H_floating instructions

1: Introduction 14

Company Confidential

@ MicroVAX physical addresses can be up to 30
bits long. A physical address on Seahorse is
23 bits long, allowing a physical address space
of eight megabytes; four megabytes are in
memory space (low-addressed half), and four
megabytes are in I/O space (high-addressed
half).

0000 0000:

003F FFFF:
0040 0000:

1FFF FFFF:
2000 0000:

2000 1FFF:

2000 2000:

Installed memory
Memory address space

beyond installed memory

Unused

Q22 bus I/O space

Unused
3FFF FFFF:

Figure 1-4. Seahorse Physical Memory

@ MicroVAX supports a subset ofVAX processor
registers. The following eleven internal
processor registers (IPRs) are not
implemented by the MicroVAX architecture:

ICCS interval clock control/status
register

NICR next interval count register
ICR interval count register
TODR time of year register

15 System Architecture

Company Confidential

RXCS

RXDB
TXCS

TXDB
TBIS

PMR
TBCHK

console receive control
status
console receive data buffer
console transmit control
status
console transmit data buffer
translation buffer invalidate
single
performance monitor enable
translation buffer check

Of these eleven IPRs, Seahorse implements
the following six as defined by the VAX
architecture:

RXCS

RXDB
TXCS

TXDB
TBIS

TBCHK

console receive control
status
console receive data buffer
console transmit control
status
console transmit data buffer
translation buffer invalidate
single
translation buffer check

Seahorse implements the following registers
uniquely:

ICCS

CADR
MCESR

1: Introduction

interval clock control/status
register
cache disable
machine check error
summary

16

Company Confidential

IORESET initialize bus
The differences between the VAX and MicroVAX
architectures have been pointed out here. For
more information about the VAX architecture, see
the VAXArchitectureHandbook, EB-19580-20.

System Timing
The Seahorse system clocks are generated on the
CPU memory controller module (MCT). A basic
clock with a 64 Mhz frequency is generated by a
crystal oscillator. All the other clocks in the data
path (DAP) and memory controller (MCT) modules
are derived from this basic clock.
The system clock (CPU CLOCK H) has a
symmetrical 250 nanosecond period. The start of a
microcycle is defined as occurring on the leading
edge of this clock and is referred to as TO. The
trailing edge of the clock occurs 125 ns later.
Seahorse is a pipelined, microprogrammed
machine. The basic microcycle is 250 ns, and the
pipeline is one deep. A new microinstruction is
accessed every 250 ns, and requires two 250 ns
microcycles to complete. The first 250 ns is
DECODE, and the second 250 ns is EXECUTE.
The EXECUTE microcycle of the first
microinstruction is overlapped with the DECODE
microcycle of the next microinstruction. Thus, one
microinstruction is retired every 250 ns. This
timing is illustrated in Figure 1-5.

17 System Architecture

Company Confidential

1: Introduction 18

Company Confidential

0 125 250 375 500 625 750 875 1000
1

TO: 71 : TO: Tl 72: : TO: T1 T2 : «TO: T1 T2 TB :

: : :

System
Clock
250 ns

CPU CLOCK H

: :
: :

: : :

:
: :

: :
:

micro-
instruction

1

: : :
:

DECODE EXECUTE :
: : :

: :

: :
: : :

micro-
instruction DECODE EXECUTE

: :
: :

: : : :
:

2 : : : :

micro-
instruction

3

: :
: :

DECODE EXECUTE: :
: :

: :

Figure 1-5. Microinstruction Timing

19 System Timing

Company Confidential

System Bus Summary
The system buses which interconnect the modules
in the Seahorse system are the memory data bus
(MDB), the memory control bus (MCB), and the
extended LSI-11 bus (Q22 bus). (Those buses that
are completely contained within a module are not
discussed in this section.)
The memory data bus and the memory control bus
connect the two CPU modules (DAP and MCT).
The memory data bus is implemented using an
over-the-top 50-pin cable. It is a 32-bit
bidirectional data bus. The 8-bit memory control
bus is implemented using the CD interconnect on
the backplane. The remaining lines on the CD
interconnect are used for clock distribution, status,
and miscellaneous control logic. Slots 1 and 2 on
the backplane are reserved for the two CPU
modules as both must be placed in Q22/CD slots
(see Figure 1-3).
The Q22 bus connects the CPU to the system's
peripheral I/O devices. Four basic kinds of
transactions take place on the bus:

power up/down signal sequencing
@ transfer of bus mastership from the CPU toa

direct memory access (DMA) device
+

® transfer of data between a bus master and a
slave

® interrupts to the CPU
Most of the bus interface logic is located on the
memory controller module. The data path module
contains logic to handle power up and down signal
sequencing and interrupts.

21 System Bus

Company Confidential

The 42 signal lines used in the Q22 busare:
@ Sixteen data/address lines-BDAL<15:00>
® Two address/parity lines-BDAL<17:16>
@ Four extended address lines-BDAL <21:18>
e Six data transfer control lines-BBS7, BDIN,

BDOUT, BRPLY, BSYNC, BWTBT
Six system control lines-BHALT, BREF,
BEVNT,BINIT, BDCOK, BPOK

@ Hight interrupt control and direct memory
access control lines-BIAKO/BIAKI, BIRQ4,
BIRQ5, BIRQ6, BIRQ7, BDMGO/BDMGI,
BDMR, BSACK

All Q22 bus signals are asserted low and negated
high, except BPOK and BDCOK, which are
asserted high and negated low to indicate an event
such as impending loss ofpower.
With the exception of DMA grant and interrupt
acknowledge signals, Q22 bus signals are
bidirectional; that is, they can be driven or
received at any point along the signal line. When
driven, bidirectional signals travel from the driver
to the near end terminator, and from the driver to
the far end terminator. The exceptions are BIAKO
L, BIAKI L, BDMGO L, AND BDMGI L.
BIAKI L (interrupt acknowledge) is received by a
bus device on one pin and conditionally
transmitted out on a different pin as BIAKO L to
the next bus device. (The signal is not transmitted
to the next bus device if the receiving bus device
has the highest priority interrupt pending.)
Bus wiring connects BIAKO L as output from one
device to BIAKI L as input to the next device on

1: Introduction 22

Company Confidential

the bus. BDMGI Land BDMGO L form a similar
priority daisy chain for Bus Mastership Grant.
Devices connect to all Q22 bus lines through high
impedance receivers and gated, high current, open-
collector drivers. Receivers and drivers are
considered part of the bus.
For more information about extended LSI-11 bus
signals and protocols, see the Microcomputers and
Memories handbook, EB-20912-20.
This chapter presented a brief overview of the
Seahorse system components. For more detail
about the Seahorse system, see the Seahorse Field
Maintenance Print Set. The remaining chapters
describe the KD32-AA CPU.

23 System Bus

1: Introduction

Company Confidential

24

Company Confidential

Chapter 2
Functional Overview

This chapter is a functional overview of the major
CPU components. The macroprogram flow is
discussed using several instructions as examples.
Figure 2-1 is a high-level block diagram of the
Seahorse CPU.

Data Path
The data path module (M7135) contains the data
path, instruction decode, microsequencer and
miscellaneous logic needed to implement the
MicroVAX instruction set. It is contained on a
single quad-height printed circuit board and has
connectors to interface to the memory controller
and the console terminal.
The major data path components are:

@ a 32-bit-wide data path implemented as a
custom VLSI chip

@ an 8K by 40-bit-wide control store
@ a13-bit-wide microsequencer
@ a byte-wide internal data path which provides
visibility to various processor states

@ an 8K by 8-bit-wide boot PROM
® aconsole interface

Each of these components is discussed briefly in
the following paragraphs.

25

Company Confidential

Data Path Chip
The execution of each microinstruction takes place
in the data path chip. This 68-pin custom VLSI
chip contains the main 32-bit data path. The chip
is controlled by the microprogram. Twenty-one
bits of the 40-bit microword control the chip
operations. The chip consists of:

a 21-bit control store register
a 32-bit bidirectional I/O port
two 32-bit internal buses
a 32-bitALU
a 64-bit barrel shifter (32-bit output)
forty-eight 32-bit registers
thirty-two 32-bit constants
a 10 ms interval timer
two register file pointer registers
hardware to accomplish parallel program
counter and registermaintenance
hardware support formultiply

The chip is pipelined; each microinstruction
requires 500 ns to execute, but microinstructions
are retired every 250 ns (see Figure 1-5).

Control Store
The data path microword is 40 bits wide,
implemented in five 8K by 8 PROMs. This
provides 8K microwords. The control store is used
as follows.

2: Functional Overview 26

Company Confidential

ControlMCT Microsequencer Signals

Instruction Q22 bus
Prefetch controller
Logic

Memory &
Memory Controller Address Bus

Peripherals
4

Memory Memory Physical Translation
Control Data Register Address Buffer/ Merge/ Reverse Q22 bus

File Rotate Pass registers Q22 busBus Bus Register Cache
(MCB) (MDB) t 4access

violation Memory Controlier Data Bus

to Console Terminal

MD bus
Boot PROM Console Interface Interrupt Control Logic Hardware PSL Sign latchExtend

ID ybusInternal Data Bus latch Data BuspMem
Ctir cciBYTE

buffer Logic
Index

IBYTE register Size
register register DATA

Decode pMem
ROMs Ctlr PATH

44 CHIP
CSA Control> Microsequencer register Store

Microstack
DAP

4

and Control Store

Figure 2-1. CPU Blockk Diagram

27 CPU Block Diagram

Company Confidential

0-4K MicroVAX base microcode
46K floating pointmicrocode
6~7K console microcode
7-8K microverify

Microsequencer
The microsequencer controls the execution flow of
the microcode in the CPU. It decodes the
microinstructions, performs condition testing and
branching, and generates the microaddress of the
next microinstruction to be executed. Thus, it
generates a 13-bit microaddress every 250 ns. The
functions provided by the microsequencer are
described further in the next chapter.

Internal Data Bus

The internal data bus is an 8-bit-wide bus
completely contained within the data path module.
This bus is the interface between the main data .

path elements in the data path chip, and control
and status information which must be available to
the remainder of the machine. The internal data
bus is also used during instruction decode to pass
operand specifier information to the data path
chip.

Boot PROM
The boot PROM is 8K by 8-bits-wide, and stores
the VAX macrocode necessary to boot the system.
The boot PROM is accessible only to the microcode.

Console interface
The data path module contains the hardware and
the microcode to provide the interface to a single

29 Data Path

Company Confidential

console terminal. The hardware is a standard EIA
RS232 line interface. The external connection to
this interface is a 10-pin Berg cable mounted on
the data path board.
A UART is connected through a buffer to the
internal data bus and can be read or written
directly by the microcode. The baud rate is
selectable from a switch pack and can be set for
300, 1200, 9600, or 19.2K baud. Both transmitter
and receiver always operate at the same speed.
The microcode reads the switch pack on power up
and programs the UART for the selected baud rate.

Memory Controller
The memory controller module (M7136) is the
interface between the main data path and
micromachine, and the Q22 I/O and memory
subsystem. The memory controller is an
asynchronous subsystem that theprovides
following services to the data path micromachine.

@ The memory controller disguises the 16-bit
Q22 bus data path by implementing
commands that allow memory to be accessed
as byte, word, or longword without regard to
data alignment; I/O devices can also be
accessed for byte and word data transfers
without regard to data alignment.
It controls and maintains a translation buffer
and a data and instruction cache to reduce the
number of memory accesses and increase the
effective speed of those accesses.
It maintains a 16-byte instruction prefetch
buffer to allow data path opcode and operand
specifier decodes to occur rapidly and at the

2: Functional Overview 30

Company Confidential

same time as memory accesses.
The memory controller is contained on a single
quad-height printed circuit board and has
connectors to interface to the data pathmodule and
the Q22 bus. The major memory controller
components are:

@ an8 KB direct-mapped cache
e a 512-entry translation buffer
® a microsequencer and 1K by 64 control store
® Q22 bus interface logic.

Each of these components is discussed briefly in
the following paragraphs.

Cache
The data and instruction cache consists of a 2K by
32-bit-wide data store, and a 2K by 16-bit-wide tag
store. The cache is the main element of the
mechanism that transparently translates 16-bit
data from the Q22 bus into 32-bit data that the
data path micromachine needs. The cache also
provides increased system throughput. The cache
is a direct-mapped, write-through cache, and is
implemented in the same 4K by 4 RAMs that
contain the translation buffer.

Translation Buffer
The translation buffer contains the corresponding
physical addresses for recently used virtual
addresses. It has a total of512 entries: 256 entries
for mapping system space addresses and 256
entries formapping process space addresses.

Memory Controller Micromachine

31 Memory Controller

Company Confidential

The memory controller micromachine consists of a
1K by 64 control store and a simple micro-
sequencer which, in most instances, generates
microaddresses directly from the previous micro-
word. The memory controller microsequencer
accepts memory request commands issued by the
data path micromachine and sequences the
memory controller data path to carry out the
command. A wide, parallel microword allows
several memory controller functions to take place
at the same time.

Q22 Bus Interface Logic
The Q22 bus interface logic allows the Seahorse
CPU to communicate with the Q22 bus. Although
it is physically located on the memory controller
module, it is discussed as a separate controller in
the next section.

Q22 Bus Interface
The Q22 bus interface consists of a state sequencer,
a write register and a read register. The sequencer
handles the bus sequencing and arbitration,
freeing the memory controller from this task.
Interrupts from Q22 bus devices are arbitrated
according to their interrupt priority levels (IPLs),
but reported to the data path module as IPL 17
(hex). Software may subsequently lower the IPL to
the level of the interrupting device.
Seahorse allows only byte and aligned-word
accesses to Q22 I/O space. All other attempted
accesses result in a machine check. Additionally,
aligned-longword writes to memory are atomic;that is, no other bus operations are allowed

2: Functional Overview 32

Company Confidential

between the two 16-bit-writes executed on the Q22
bus to accomplish an aligned longword write.
Seahorse does not check parity on the Q22 bus.
However, memory parity errors are reported to the
CPU via the Q22 bus.

Macroprogram Level Instruction Flow
This section takes three instructions as examples,
and describes the data transfers on a
macroprogram level. This should illustrate how
the major functional components, described above,
interact.

No Operation
A no operation (NOP) macroinstruction is one byte
long; it consists only of an opcode: 01. The
following steps describe the data transfers that
take place as this instruction is fetched and
executed. Figure 2-2 illustrates the data paths
that correspond to the steps.
1. The program counter (PC), located on the

data path chip, contains the virtual address
of the NOP instruction.

2. The virtual address is transferred to the
memory controller along the memory data
bus (MDB).

3. The translation buffer on the memory
controller translates the virtual address to a
physical address.

4. The physical address is sent to the cache. (It
is also copied into a Q22 bus register in case
the address is not in the cache and Q22
memory must be accessed to obtain the

33 Q22 Bus Interface

Company Confidential

data.) Assume a cache hit; that is, the cache
contains the data for that physical address:
the NOP opcode, 01.

5. The cache data (in this case, the instruction
byte, 01) is sent through the merge/rotate
logic to the prefetch logic (see Figure 2-1),
and out onto the memory control bus to the
IBYTE register.

6. From the IBYTE register, the instruction
byte is sent to the decode logic and the data
path microsequencer for decoding. The
proper microinstructions are invoked to
execute the NOP macroinstruction. The
hardware on the data path chip increments
the program counter (PC) by one. This cycle
ends with the PC containing the virtual
address of the next byte in the instruction
stream; in this case, the virtual address of
the next macroinstruction (because NOP is
only one byte long).

2: Functional Overview 34

ee
Company Confidential

memory data bus

El,
disk memory

3 :
:

:

controller afray : :

MCT DAP
PC

Q22 bus
ALU

Hae data

TB :

Cache 5

pathmemory
Q22 bus pseq contro chip4 bus consolecontroller decode

and pseq terminal

6

Figure 2-2. NOP Macroinstruction Data Flow

35 No Operation

Company Confidential

Move Byte
A move byte (MOVB) macroinstruction copies the
byte at the address specified by the first operand
into the location specified by the second operand.
A sample move byte instruction is: MOVB (RO),
R1. This instruction means: locate the byte ofdata
at the address contained in RO (general processor
register 0), and move it to Rl (general processor
register 1). At an assigned virtual address in
memory, say 0200, the instruction looks like this:

51 60} 90] :0200

where 90 is the opcode for move byte, 60 is the
operand specifier for register deferred mode
specifying RO, and 51 is the operand specifier for
register mode specifying Rl. The following steps
describe the data transfers that take place as this
instruction is fetched and executed. Figure 2-3
illustrates the data paths that correspond to the
steps.
1. The program counter (PC), located on the

data path chip, contains the virtual address
of the MOVB opcode (0200).

2. The virtual address is transferred to the
memory controller along the memory data
bus (MDB).

3. The translation buffer on the memory
controller translates the virtual address to a
physical address.

4. The physical address is sent to the cache. (It
is also copied into a Q22 bus register in case
the address is not in the cache and Q22
memory must be accessed to obtain the

37 Move Byte

Company Confidential

data.) Assume a cache hit; that is, the cache
contains the data for that physical address:
the MOVB opcode, 90. The cache actually
contains the entire MOVB instruction plus
some adjacent bytes of data because each
cache entry is 32 bits wide, and the address
is longword-aligned.

5. The cache data (in this case, the entire
MOVB instruction: 516090) is sent through
the merge/rotate logic to the prefetch logic
(see Figure 2-1). The prefetch logic actually
holds up to eleven bytes at a time to
facilitate rapid instruction stream decoding.
From the prefetch logic, the first byte of the
MOVB instruction (the opcode) is sent out
the memory control bus to the IBYTE
register. As the opcode is clocked into the
IBYTE register, the prefetch logic drives the
next instruction byte (60) onto the memory
control bus.

6. From the IBYTE register, the opcode (90) is
sent to the decode logic and the data path
microsequencer for decoding. The proper
microinstructions are invoked to execute the
MOVB opcode.

7. The hardware on the data path chip
increments the program counter (PC) by
one. The PC now contains the virtual
address of the next byte in the instruction
stream; in this case, the virtual address
(0201) of the first operand specifier (60).

2: Functional Overview 38

Company Confidential

2,11
18

\ memory data bus

1,7,10,22
disk memory

3,12 : : :

:
:

:

controller array : : :
:

4,13 TB DAP:
: :

: : :

16 117 5,8,19 : PC: :

Cache
ALU

Q22 bus IBYTE
REG 21

a: : :

: :

data
memory path

bus
15 Q22bus Z control

consolecontroller
and pseqpseq
decode chip

14 6,9,20

terminal

Figure 2-3. MOVB Macroinstruction Data Flow

39 Move Byte

10.

11.

12.

13.

Company Confidential

On the next clock edge, the instruction byte
sitting on the memory control bus (in this
case, 60), is loaded into the IBYTE register
and the prefetch logic drives the next
instruction byte (51) onto the memory
control bus. Since the IBYTE register now
contains the next instruction byte (60),
there is no need to send its virtual address
(0201) from the PC to the memory controller
for translation.

8.

From the IBYTE register, the operand
specifier (60) is sent to the decode logic and
the data path microsequencer. The proper
microinstructions are invoked to execute it.

9.

The hardware on the data path chip
increments the PC so that it now contains
the virtual address (0202) of the second
operand specifier, 51.
Decoding and executing the operand
specifier 60 causes the contents of RO to be
examined. RO is located on the data path
chip and contains some virtual address, say
0100. The 0100 is sent over the memory
data bus to the memory controller for
translation.
The translation buffer on the memory
controller translates the virtual address toa
physical address.
The physical address is sent to the cache. (It
is also copied into a Q22 bus register in case
the address is not in the cache and memory
must be accessed to obtain the data.) This
time, assume a cache miss; that is, the cache
does not contain the data at that physical

41 Move Byte

14.

15.

16.

17.

18.

Company Confidential

address.
The memory controller microsequencer
detects the cache miss condition and informs
the Q22 bus controller that a data transfer
operation is needed.
Since the physical address is already
conveniently stored in a Q22 bus register,
the Q22 bus controller takes over and
initiates two read word data transfers
(DATI), sending the physical address over
the Q22 bus to the memory array. (Two read
word data transfers are necessary to
retrieve the 32 bits needed to fill the cache.)
Two words of data at the physical address
are located in the memory array and sent
over the Q22 bus, one word at a time, to the
Q22 bus read register on the memory
controller module.
From the Q22 bus read register, the data are
sent to the rotate/merge logic (see Figure 2-
1). The Q22 bus read register is 16 bits
wide, so as each word is read, it is passed to
the rotator, rotated, and held in the merge
register (the merge/rotate logic includes a
rotator and a 32-bit-wide merge register).
The purpose of the rotation is to position the
requested byte of data (the first operand) in
the low-order byte of the merge register.
Once both words are latched in the merge
register in the proper order, all 32 bits are
written into the cache.
In parallel with the cache write operation,
the two words are moved from the merge
register over the memory data bus to the
data path chip on the DAP module. Because

2: Functional Overview 42

19.

20.

21.

22.

Company Confidential

this is a move byte instruction, only the low-
order byte on the memory data bus (the first
operand) is saved in the data path chip.
Steps 11 through 18 have all happened as a
result of the microinstructions invoked from
decoding and executing the first operand
specifier, 60.
Now that the byte to be moved into R1 has
been obtained from memory and stored in a
temporary register on the data path chip,
the next instruction byte, 51, which was
sitting on the memory control bus, is clocked
into the IBYTE register.
From the IBYTE register, the second
operand specifier (51) is sent to the decode
logic and the data path microsequencer.
The proper microinstructions are invoked to
execute it.
Decoding and executing the operand
specifier 51 causes the byte of data stored in
the temporary register to be moved into Rl.
The move byte macroinstruction is now
complete.
The hardware on the data path chip
increments the PC to point at the next byte
in the instruction stream (in this case, the
opcode of the next instruction).

Subtract One and Branch

The subtract one and branch on greater (SOBGTR)
macroinstruction maintains a loop count and a
branch address, causing the macroprogram to loop
on a set of instructions a desired number of times.
The loop count is decremented by 1 and a branch
taken to the starting address of the loop until the

43 Move Byte

Company Confidential

loop count is less than or equal to 0. As long as the
loop count is greater than 0, the sign-extended
branch displacement is added to the PC and the PC
replaced by the result to cause the branch to the
first instruction in the loop.
At an assigned virtual address in memory, say
0203, a SOBGTR instructionmight look like this:

E0 52 F5 :0203

where F5 is the opcode for SOBGTR, 52 is the
operand specifier for register mode specifying R2,
and EO is the number -32. R2 contains the loop
count that is decremented each time the loop is
executed. The -32 is sign-extended and added to
the PC to cause the branch back to the start of the
loop. Assume that the SOBGTR instruction
follows right behind the MOVB instruction in the
instruction stream, and that the entire SOBGTR
instruction is also in the prefetch logic.
The following steps describe the data transfers
that now take place as the SOBGTR instruction is
fetched and executed. Figure 2-4 illustrates the
data paths that correspond to the steps.
1. From the prefetch logic, the first byte of the

SOBGTR instruction (the opcode, F5) is sent
out the memory control bus to the IBYTE
register. As the opcode is clocked into the
IBYTE register, the prefetch logic drives the
next instruction byte (52) onto the memorycontrol bus.

2: Functional Overview 44

Company Confidential

11

memory data bus

* 4

2,5,15

disk 12 1,4,6,14,17,20memory :
:

:

controller array :

MCT DAP 3, (6), 10,:

(17), 19
13

PC
TB

REGQ22 bus Cache iBYTE ALU H-H17, 9, 16, 18

data
pathmemory

Q22 bus
controller

pseq contro chipdecode
and yseq console

terminal

Figure 2-4. SOBGTR Macroinstruction Data Flow

45 Subtract One and Branch

Company Confidential

From the IBYTE register, the opcode (F5) is
sent to the decode logic and the data path
microsequencer for decoding. The proper
microinstructions are invoked to execute the

2.

SOBGTR opcode.
The hardware on the data path chip
increments the program counter (PC) by
one. The PC now contains the virtual
address of the next byte in the instruction
stream; in this case, the virtual address
(0204) of the first operand specifier (52).

3

On the next clock edge, the instruction byte
sitting on the memory control bus (in this
case, 52), is driven into the IBYTE register
and the prefetch logic drives the next
instruction byte (E0) onto the memory
control bus. Since the IBYTE register now
contains the next instruction byte (52),
there is no need to send its virtual address
(0204) from the PC to the memory controller
for translation.

4.

From the IBYTE register, the first operand
specifier (52) is sent to the decode logic and
the data path microsequencer. The proper
microinstructions are invoked to execute it.

5.

The hardware on the data path chip
increments the PC to 0205 (the virtual
address of EO, the next instruction byte),
and EO is loaded into the IBYTE register
from the memory control bus.

6.

Decoding operand specifier 52 and executing
its microinstructions causes the contents of
R2 to be decremented by 1, and the condition
codes to be cleared (set to zeros).

47 Subtract One and Branch

10.

11.

12.

13.

14.

Company Confidential

From the IBYTE register, EO is driven over
the internal data bus (see Figure 2-1), and
sign extended on the data bus. From the
data bus, E0 is sent to the data path chip.

8.

The microinstructions invoked from the
opcode decode (step 5) compute the virtual
address for the start of the loop as:
PC+1+E0=01E6. This branch destination
address is stored in a result register on the
data path chip.

9.

Next, the condition codes are tested. Since
condition codes Z and N are clear, the loop
count contained in R2 is still greater than 0.
(Z is set when the loop count equals 0; N is
set when the loop count is less than 0.)
Therefore, the virtual address 01E6 stored
in a result register is moved into the PC to
cause the program to branch back to the
beginning of the loop.
The virtual address 01E6 is sent to the
memory controller over the memory data
bus.
The translation buffer on the memorycontroller translates the virtual adddress to
a physical address.
The physical address is sent to the cache. (It
is also copied into a Q22 bus register in case
the address is not in the cache and memorymust be accessed to obtain the data.)
Assume a cache hit; that is, the cache
contains the instruction bytes at the
physical address for the start of the loop.
The cache data is sent through the merge-rotate logic to the prefetch logic. The first

2: Functional Overview 48

15.

16.

17.

18.

19.

Company Confidential!

instruction byte is then sent out onto the
memory control bus to the IBYTE register.
From the IBYTE register, the instruction
byte is sent to the decode logic and the data
path microsequencer for decoding. The
proper microinstructions are invoked for
executing the instruction byte.
This flow continues: moving the next byte
from the instruction stream into the IBYTE
register, decoding and executing it, until the
opcode for the SOBGTR instruction, F5, is
once again loaded into the IBYTE register.
Steps 2 through 15 are repeated until the
loop count, when decremented at step 7, is
zero. When this occurs, condition code Z is
set.
The hardware on the data path chip
increments the PC to 0205 (the virtual
address of EKO, the next instruction byte),
and EO is driven off the memory control bus
into the IBYTE register.
The microinstructions invoked from the
most recent decode of operand specifier 52
compute the virtual address for the start of
the loop as: PC+1+E0=01E6. This
branch destination address is stored in a
result register on the data path chip.
Next, the condition codes are tested. Since
condition code Z is set, the loop count
contained in R2 is equal to 0. Therefore, the
branch destination address, 01K6, is left in
the result register and not moved into the
PC. Instead, the hardware on the data path
chip increments the PC to 0206. This is the
virtual address of the next byte in the

49 Subtract One and Branch

Company Confidential

instruction stream; in this case, the opcode
of the macroinstruction that follows the
SOBGTR instruction.

20. The opcode is moved off the memory control
bus into the IBYTE register, and the process
ofdecoding and executing continues.

Microcode
The microcode controls all the functions on both
modules. Each macroinstruction in the microVAX
instruction set is implemented by an associated
routine of microinstructions. All of the
macroinstruction data transfers described above,
for example, happen as a result of their associated
microinstructions.
The microinstruction routines are stored in three
places: the control store on the DAP module, the
control store on the MCT module for the memory
controller, and the control store on the MCT
module for the Q22 bus controller. The flow from
one microinstruction to the next is controlled by
three microsequencers, one for each control store:
the data path microsequencer, the memorycontroller microsequencer, and the Q22 bus
microsequencer. Understanding these three
microsequencers and the microinstructions theyexecute is the key to understanding the Seahorse
CPU.
The data path microsequencer and control store
are the master source of control. The
microinstructions in the data path control store are
invoked to execute the decoded macroinstruction.
The data path microsequencer controls the
microinstruction flow.

2: Functional Overview 50

Company Confidential

The memory controller microsequencer acts as a
slave receiving commands from the data path
microsequencer, performing the desired function,
and delivering data or status back to the data path
micromachine. The control store for the MCT
microsequencer contains the microinstructions
that enable the MCT microsequencer to perform
the desired memory control function.
The Q22 bus microsequencer accepts commands for
data from the MCT microsequencer and handles
the bus sequencing and arbitration to get the
requested data. The Q22 bus microsequencer
returns data and status back to the MCT
microsequencer. The control store for the Q22 bus
microsequencer contains the microinstructions
that enable the Q22 bus microsequencer to perform
the desired data transfer functions.
The following chapters describe these three
micromachines, and the hardware that
implements and surrounds them, in detail.

51 Microcode

Company Confidential

2: Functional Overview 52

Company Confidential

Chapter 3
Data PathMicrocode

All of the functions that happen in the KD32-AA
CPU happen as the result of microinstructions.
This chapter describes the microinstructions that
run the data path module.

Microinstruction Format
The data path microinstruction is forty bits wide.
The bits are divided into four fields that
accomplish different functions. These fields are
parity, condition code/size control, data path
control, and next address control. Memory
controller functions are encoded within the data
path control field.

39 38 67 36 16 15 0

P CC/DT Data Path Control Next Address Control

condition code and data type field

microword parity bit

Figure 3-1. DAP Microinstruction Format

The following sections describe each of these fields
in more detail.

Parity Field

53

Company Confidential

The highest order bit (bit 39) of the
microinstruction contains the parity bit. It is used
to detect single bit errors across the entire
microinstruction. Odd parity is used; that is, the
parity bit is rsroa one when the sum of the one bits in
the remainder of the microinstruction is even.

Condition Code/Data Type Field
This field has two functions. It controls the setting
of the condition codes, and it determines the data
type to be used for the current operation. (Data
type is also referred to as size.) Which function
this field is used for in any given microinstruction
depends on the purpose of the microinstruction.
For example, if the microinstruction is raa Move or a
Moveout, bits <38:37> are interpreted as data
type. If the microinstruction is an Add, this field
controls the setting of the condition codes. Table 3-
1 shows all the microinstruction types and which
way the CC/DT field is interpreted for each.
When bits <38:37> are interpreted as the
condition code field, the encoding is as follows:

<38:37> CC FUNCTION
0 condition codes are

unaffected; data type is long
1 set ALU condition codes;

data type is long
2 set ALU and PSL condition

codes; data type is long
3 set ALU and PSL condition

codes; data type is size
dependent

When bits <38:37> are interpreted as the data

3: DAP Microcode 54

Company Confidential

type field, the encoding is as follows:
<38:37> DATA TYPE

0 byte
1 word
2 use size register
3 longword

Data Path Control Field

The data path control field is the 21 bits that are
sent to the data path chip to control its functions.
These 21 bits are also referred to as the data path
chip microinstruction, or DPC microinstruction.
The data path control field for all microinstruc-
tions (except Memory Requests and I-stream
Requests) is divided into six function fields, as
shown in Figure 3-2. (The encoding of the data
path control field for Memory Request and I-
stream Request microinstructions is shown in
Figure 3-4 later in this chapter.)

36 3231 30 29 28 23 22 16

Opcode R1/RS/L Short Operand Long Operand

Figure 3-2. Data Path Control Field

The opcode field, bits <36:32>, defines the
microinstruction type. Table 3-1 shows the
available opcodes and their functions.
The result register bit, bit <31>, selects the
destination result register for the current ALU
operation. The result of any ALU operation is

55 Microinstruction Format

Company Confidential

stored in one of two result registers on the data
path chip: result register 0 or result register 1. If
bit <31> is clear, the result of the current ALU
operation is stored in result register 0. If bit
<31> is set, the result of the current ALU
operation is stored in result register 1.

The register save bit, bit <30>, determines
whether or not a register save operation occurs.
(This is true unless the microinstruction is a NOP,
Decode, Restore, Clear Save Stack, Multiply Step,
I-stream Request, or Memory Request; bit <30>
is ignored in these microinstructions.) The data
path chip contains a register save stack, which is a
pushdown stack capable of holding seven 36-bit
items. When bit <30> is set, the contents of the
register specified by the short operand plus the low
4 bits of the register address are pushed onto the
register save stack. When bit <30> is clear, no
register save operation occurs.
The literal bit, bit <29>, determines the
interpretation of the short operand field. If bit
<29> is clear, the short operand field specifies a
register. Ifbit <29> is set, the short operand field
is literal data. If the short operand is literal data,
the data path chip zero-extends the data to 32 bits
for use inside the chip.
The short operand field, bits <28:23>, is the first
operand of the DPC microinstruction. The short
operand field can specify address locations 0 to 63
and may designate a register directly or indirectly.If the literal bit is set, the short operand field is a 6-
bit literal value.

3: DAPMicrocode 56

Company Confidential

Table 3-1. Opcode Assignments
Opcode CC/DT Function Interpretation

0 CC NOP no operation
1 CC AND dest < short operand AND long operand
2 CC OR dest <- short operand OR long operand
3 CC XOR dest <- short operand XOR long operand
4 CC Mask dest - (NOT short operand) AND long operand
5 CC Reverse Mask dest < short operand AND (NOT long operand)
6 CC NOT dest <- NOT short operand
7 CC Reverse NOT dest NOT long operand
8 cc Add dest < short operand + long operand
9 CC Add+1 dest < short operand + long operand + 1

10 cc Addwe dest - short operand + long operand + carry
11 cc Sub dest - short operand- long operand
12 CC Sub-1 dest <- short operand -long operand -1
13 CC Reverse Sub dest < long operand - short operand
14 CC Reverse Sub-1 dest < short operand- long operand -1
15 CC Compare CCs < short operand - long operand (The result registers are unaffected.)
16 CC Shift Left dest <- long operand shift left logical by shift count register
17 cc Shift Right dest <- long operand shift right logical by shift count register
18 cc Shift Right Arithmetic dest < long operand shift right arithmetic by shift count register
19 cc Double Shift dest _ 32 bits from 64-bit quantity formed from SOP and LOP, shift right by shift count register
20 cc Shift Left Literal dest <- long operand shift left logical by literal
21 CC Shift Right Literal dest < long operand shift right logical by literal
22 Cc Shift Right Arith. Lit. dest - long operand shift right arithmetic by literal
23 reserved undefined
24 DT Decode Decode generates a new microaddress for the currentmacroinstruction opcode or operand specifier.
25 DT Restore The top entry in the register save stack is moved to the register whose address is stored in the entry.
26 DT Clear Save Stack All entries in the register save stack are marked as being empty.
27 DT Multiply Step Multiply Step controls the "shift and add" algorithm for multiplication.
28 DT I-stream Request A memory request in which the long operand specifies IB.BYTE, IB.WORD, IB.LONG, or IB.SIZE.
29 DT Move Move from long operand to short operand.
30 DT Memory Request A memory request in which the long operand is the memory address of the desired data.
31 DT Move Out Move from short operand to an external destination specified by the long operand.

57 Microinstruction Format

Company Confidential

The long operand field, bits <22:16>, is the
second operand of the DPC microinstruction. It
can specify any address location that the short
operand can, and in addition, specify addresses 64
to 127. Thus, the long operand can designate any
internal or external register, or any constant (the
constants are implemented as ROM on the data
path chip).
The encodings for long and short operands are
described further in the section titled "Operand
Field Encoding" in this chapter.

Next Address Control Field
The next address control field determines the next
microinstruction address. As each micro-
instruction is retrieved from control store, the
microsequencer decodes this field and generates
the next microaddress. The next microaddress is
used to access control store to retrieve the next
microinstruction.
The control store address space is divided into 32
pages; each page is 256 words. The next address
control field of some microinstructions specifies an
address within the current page. Other next
address control fields specify a full 13-bit address.
The next address control field always has one of
the nine formats shown in Figure 3-3.
A next address control field must be specified for
every microinstruction. In the microcode listing,
there are microinstructions with no explicit next
address control field given. For these instances, an
unconditional jump to the current microaddress
plus 1 is supplied by default.
Six of the nine formats shown in Figure 3-3 have

59 Microinstruction Format

Company Confidential

jump control fields, either JC<3:0> or JC<1:0>,
corresponding to next address control field bits
<11:83> and <9:8>, respectively. The return
format has a split jump control field, consisting of
JIC<2> (bit 12), and JC<1:0> (bits 9:8). The
jump control field is used to specify conditions
which are being tested by the microcode. If the
condition is not met, the next microaddress is the
current microaddress plus 1. If the condition is
met, the next address is within the current page at
the 256 word offset specified by J<7:0>. The
jump control field encoding is shown in Table 3-2.
A jump control field value of 0 means there are no
jump conditions to. be tested and the next
microaddress is conditioned only by the output of
the OR MUX. (Note: A jump control field value of
0 is meaningless when the next address control
field format is a branch.)
Five of the nine formats shown in Figure 3-3 use
the OR field, either OR<2:0> or OR<1:0>,
corresponding to next address control field bits
<12:10> and <11:10>, respectively. The OR
bits control the OR MUX, one of the hardware
components of the data path microsequencer. The
OR MUX is discussed in Chapter 4, but some
information about it is called for here.
Conceptually, there are eight sets of inputs to the
ORMUX, and each set contains four signals which
are used to conditionally affect the low-order 4 bits
of the microaddress. Table 3-3 shows the eight setsof inputs with four signals in each set. The value of
the OR field selects one set of four signals, thereby
determining the output of the ORMUX.

3: DAP Microcode 60

Company Confidential

JMP

JSB 0 04141

BR 0

CASE

BSB

TRAP

RET

IRD

SPEC DEC

.15 14. 13. 12. 11 10 09. 08 07 06 05 04 03 02 01 00

0 0 0 J<12:0>

J<12: 0>
1 IC<3:0> $<7:0>

a 1 OR<2:0> JC<1:0> J<7:0>
1 0 0 OR<2:0> JC<1:0> J<7:0>
1 a i OR<2:0> [JC<1:0> 1<7:0>
1 1 0 JC2 OR<1:0>IC<1:0> Not Used

1 1 1 OR<2:0> JC<1:0> Not Used

1 1 1 J<12:8> Not Used

1

Table 3-2. Jump Control Field

Figure 3-3. Next Address Control Field Formats

Table 3-3. OR<2:0>
2:0 ORMUX3 ORMUX2 ORMUX1 ORMUX0
0 0 0 0 0
1 0 0 0 IB invalid
2 0 0 1 0
3 MEMERR PageCrossing TB Miss Modify Refuse

or Arithmetic Request Console halt IB invalid
trap request

6 INDEX<3> INDEX<2> INDEX<1> INDEX<0>
0 0 SIZE<1> SIZE<0>

JC Condition Jc Condition
<3:0> Tested <3:0> Tested

0 Use ORMUX 8 Console Halt
1 OR MUX=0 9 Interrupt
2 ORMUX +0 A Stack Register
3 IB OK B Register Dest. (not PC)
4 NOT ALUN C NOT ALU V
5 NOT ALU Z D NOT ALU C
6 ALU N E ALU V
7 ALU Z F ALU C

4 0 0 BR False IB invalid
5 Overflow & Chk Interrupt T Bit or

61 Microinstruction Format

Company Confidential

For example, one of the inputs to the ORMUX has
these four signals on it: MEM ERR, page crossing,
TB miss, and modify refuse (see the fourth row in
Table 3-3). Suppose, at a given point in time, the
MEM ERR signal is set (a one), and the other three
are clear (zeros). This input to the OR MUX, then,
is 1000 binary. Now, if the value of the OR field in
the microinstruction at this same point in time is
3, this input is selected. Therefore, the output from
the ORMUX is 1000 binary.
Given this general information about the next
address control field, each of the nine formats is
described in more detail in the following
paragraphs.

Jump and Jump to Subroutine
The jump (JMP) format causes an unconditional
jump to any address in control store. The 13-bit
control store address is supplied by next address
control field bits, labeled J< <12:0>.
The jump to subroutine (JSB) format causes an
unconditional jump to any address in control store.
The 13-bit control store address is supplied by next
address control field bits, J <<12:0>. A JSB also
saves the current microaddress plus 1 on the
microstack.

Branch

The branch (BR) format causes a jump to a
destination within the current page, if the jump
condition specified is met. The jump condition is
specified in next address control bits <11:8>.
These bits are labeled JC <3:0> in Figure 3-3.

If the jump condition is met, the next microaddress

63 Microinstruction Format

Company Confidential

is constructed from the current page, and next
address control bits <7:0>. Bits <12:8> of the
address come from the current page, and bits
<7:0> specify the address within that page.
If the jump condition is not met, the next
microaddress is the current microaddress plus 1.

Case
The case format causes a branch to a destination
within the current page if the condition specified inJC <1:0> is met. The value of the field OR<2:0>
determines the output of the ORMUX.
If the jump condition is met, the next microaddress
is J<7:4> and the logical sum of the OR MUX
output and J<3:0>. The current page is specified
in bits <12:8>.
If the jump condition is not met, the next
microaddress is the current microaddress plus 1.

Branch to Subroutine
The branch to subroutine format (BSB) causes a
branch to a microaddress within page zero if the
jump condition specified in JC<1:0> is met. The
value of OR<2:0> determines the output of the
OR MUX. A BSB also saves the current
microaddress plus 1 on the microstack.
If the jump condition is met, the next microaddress
is <12:8>=0,J<7:4>, and the logical sum of the
ORMUX output and J<3:0>.
If the jump condition is not met, the next
microaddress is the current microaddress plus 1.

Trap

3: DAP Microcode 64

Company Confidential

The trap format causes a trap to a destination
within page zero if the jump condition specified in
JC<1:0> is met. The value of OR<2:0>
determines the output of the OR MUX. AA trap
also saves the current microaddress on the
microstack.
If the jump condition is met, the next microaddress
is <12:8>=0,J<7:4>, and the logical sum of the
ORMUX output and J<3:0>.
If the jump condition is not met, the next
microaddress is the current microaddress plus 1.

Return
The return format causes a return to the
microaddress at the top of the microstack if the
jump condition specified in JC<2:0> is met. The
JC field is split for the return format: JC<1:0>
correspond to next address control field bits
<9:8>, and JC<2> corresponds to bit <12>.
The value of OR<1:0> determines the output of
the OR MUX (OR<2> is defined as zero for the
return format).
If the jump condition is met, the next microaddress
is the logical sum of the top entry in themicrostack
and the ORMUX output.
If the jump condition is not met, the next
microaddress is the current microaddress plus 1.

Instruction Register Decode
The Decode microinstruction (opcode 24 in Table 3-
1) is used to decode macroinstruction opcodes and
macroinstruction operand specifiers. A macro-
instruction opcode decode is also called an IRD: an
instruction register decode. When the Decode

65 Microinstruction Format

Company Confidential

microinstruction is used for an IRD, its next
address control field has the IRD format shown in
Figure 3-3. A jump condition is specified in
JC<1:0> and the value of OR<2:0> determines
the output of the ORMUX.
If the jump condition is met, the next microaddress
is <12:4>=0 and the OR MUX output as bits
<3:0>. The current microaddress is saved on the
microstack.
If the jump condition is not met, the next
microaddress is <12>=0 and decode ROM
<11:0>.
The decode ROMs (shown in Figure 2-1) are used to
select the proper microcode routine to process the
current contents of the IBYTE register. If the
IBYTE register contains a macroinstruction
opcode, the decode ROMs supply twelve bits of
microaddress. If the IBYTE register contains a
macroinstruction operand specifier, the decode
ROMs supply eight bits of microaddress. Chapter
4 contains more information about the decode
ROMS.

Operand Specifier Decode
When the Decode microinstruction is used to
decode a macroinstruction operand specifier, its
next address control field has the SPEC DEC
(specifier decode) format shown in Figure 3-3.
Operand specifier decode microinstructions have
three possible sources for the next microaddress.
If the content of the IBYTE register is valid and
the operand is not contained in a general register,the next microaddress is J<12:8> and decode
ROM <7:0>. The address of the current
microinstruction plus 1 is pushed on the

3: DAP Microcode 66

Company Confidential

microstack.
If the content of the IBYTE register is valid and
the operand is contained in a general register other
than the PC, the next microaddress is the address
of the current microinstruction plus 1.

If the content of the IBYTE register is not valid,
the next microaddress is <12:4>=0 and OR
MUX <3:0>. The ORMUX encoding is defined as
1 for this condition, so OR MUX <3:0> is 0, 0, 0,
IB invalid, and IB invalid=1 (see Table 3-3).
Thus, a trap to microaddress 00001 occurs. The
address of the current microinstruction is saved on
the microstack.

Data Path Microinstructions
The microinstructions listed in Table 3-1 are
grouped by function and discussed in more detail
in the following paragraphs.

ALU Microinstructions
Data path microinstructions involving the ALU
are those with opcodes 0 through 15. The ALU is
located on the data path chip. The result of an
ALU operation is written into one of two registers
on the data path chip: RESULTO or RESULT1.
Each destination ("dest") listed in Table 3-1 is one
of these two result registers.
When a NOP microinstruction is executed (opcode
0), no operations occur in the data path chip; bits
<31:16> of the microinstruction are ignored. See
Figures 3-1 and 3-2.)

ShiftMicroinstructions

67 Microinstruction Format

Company Confidential

Shift microinstructions are those with opcodes 16
through 22. For these microinstructions, the shift
count can come from either the shift count register
which is located on the data path chip, or from a
literal in the short operand field. The range of the
shift count must be 0:31. Different opcodes are
used to select the type of shift and the source of the
shift count. The result of the shift is always placed
in the RESULT2 register, also located on the data
path chip.
A Double Shift microinstruction (opcode 19)
concatenates the short operand and the long
operand, and selects 32 bits from this 64-bit
quantity. The long operand specifies the lower-
order longword. The shift count comes from the
shift count register. A rotate operation is obtained
by making the long and short operands the same.

MoveMicroinstructions
The two move microinstructions are Move, opcode
29, and Moveout, opcode 31.
Move transfers the contents of the location
specified by the long operand to the location
specified by the short operand. The short operandcannot be a literal. The data transfer takes placewithin the data path chip.
Moveout transfers the contents of the location
specified by the short operand to the external data
pins of the data path chip. The external
destination is specified by the long operand. The
range of the destination address must be 96: 127.

OtherMicroinstructions
The following microinstructions don't fit in any of

3: DAP Microcode 68

Company Confidential

the categories listed above.
23 Reserved
24 Decode
25 Restore
26 Clear Save Stack
27 Multiply Step
28 I-stream Request
30 Memory Request

Reserved is simply an unassigned opcode. Clear
Save Stack causes all of the entries in the register
save stack to be marked as empty. The register
save bit (bit < 14> inthe DPC microinstruction) is
ignored. The remaining microinstructions are
described in the following paragraphs.

Decode
The Decode microinstruction selects the routine of
microinstructions to be executed to process the
macroinstruction opcode or operand specifier in the
IBYTE register. For the Decode microinstruction,
the low five bits of the short operand are redefined
as shown in Table 3-4.

Table 3-4. Decode Microinstruction Short Operand
Bit Function Explanation
27 Enable V bit This bit enables checking

check of the V bit by the OR
MUX.

26 Pointer Register This bit selects which of
the two pointer registers is
loaded from the data bus.

69 Data Path Microinstructions

Company Confidential

25 Register Save When set, this bit resets
Stack Initialize the register save stack to

empty and pushes the old
PC onto the stack.

24 IFUNC1 This bit is used by the
decode ROMs to distin-
guish an opcode decode
from an operand specifier
decode.

23 IFUNC O This bit is used with bit 24
to define the type ofdecode
selected.

Redefining these bits in this manner enables the
following functions to be performed during a
Decode:

@ Bits <5:0> ofthe byte in the IBYTE register
are extracted from the data bus (see Figure 2-
1) and written into one of two 6-bit pointer
registers located on the data path chip:
pointer 1 or pointer 2. These pointers are used
to hold register numbers and literals. Bits
<5:0> are written into pointer 1 if bit <26>
of the microinstruction is a zero, and into
pointer 2 ifbit <26> isaone.

e Ifbit <25> of the Decode microinstruction is
a one, the register save stack is cleared, and
the unincremented content of the PC is
pushed on the register save stack.

@ Bits <24:23> of the Decode microinstruction
form a two-bit control field which is part of the
input to the decode ROMs. (The rest of the
input is the macroinstruction byte from the
IBYTE register.) Bits <24:23> are encoded

3: DAP Microcode 70

Company Confidential

as follows:
24 23 Selected Decode
0 0 operand specifier decode type 1

0 1. operand specifier decode type 2
1 0 IRD for single byte opcodes
1 1 IRD onsecond byte of two byte opcode
Operand specifier decode type 1 and type 2
refer to different ways the short operands are
handled. Basically, type 1 indicates that an
integer macroinstruction operand specifier is
to be decoded. Type 2 indicates that a floating
point macroinstruction operand specifier is to
be decoded.

@ The macroprogram counter (PC) on the data
path chip is incremented by one.

e These microinstruction bits are ignored for
IRDs: <31:28> and <22:16>. For operand
specifier decodes, bits <22:16> specify
IB.BYTE so that the contents of the IBYTE
register are driven onto the internal data bus.

The next address control field of the Decode
microinstruction then generates the next
microaddress, which is the address of the
appropriate microinstruction routine for executing
the current macroinstruction byte.

Restore
The register save stack, located on the data path
chip, is Cca pushdown stack capable of holding seven
36-bit items. When bit <30> of a microinstruc-
tion is set, both the contents of the register
specified by the short operand and the low four bits
of the register address are pushed on the stack in
this format:

71 Data Path Microinstructions

Company Confidential

35 43 0
short operand register contentsjaddress

The following microinstructions are exceptions to
this in that bit <30> (the RS bit) is ignored:
NOP, Decode, Restore, Clear Save Stack, Multiply
Step, I-stream Request, and Memory Request.
The Restore microinstruction pops the top entry off
the register save stack; that is, the top entry in the
register save stack is moved to the register whose
address is stored in bits <<3:0> of the stack.

Multiply Step
The Multiply Step microinstruction performs
multiplication using a "shift and add" approach.
The two ALU result registers, RESULTO and
RESULT1, are combined to form a 64-bit shift
register with RESULT1 the lower order longword.
The required setup conditions are:

@ The positive multiplier is placed in RESULT1.
RESULTO is cleared.

@ The multiplicand is specified by the long
operand (range=0:95).

® The CC/DT field of the microinstruction is
longword.

Multiply Step is actually called a total of thirty-
two times to complete one multiplication of two
longwords. The second and third setup conditions
listed above must be in place for all thirty-two
executions. The first setup condition only occurs
for the first execution. The following functions are
performed for each Multiply Stepmicroinstruction.
a. IfRESULT1<0>=1, add the multiplicand to

3: DAP Microcode 72

Company Confidential

RESULT.
b. Right shift RESULTO and RESULT1 by one

bit, such that RESULT0<0> becomes
RESULT1 <31>.
If the add in step a) was executed, set
RESULT0<31> equal to V XORN, where V
and N are condition code bits from the add

If the add was notexecuted in step a).
executed, RESULT0<31> is unchanged.

d Set the condition code bits according to the
result of the addition of the multiplicand and
RESULTO in part a. (IfRESULT1<0> is not
equal to 1 in part a, the addition does not
actually happen and the Multiply Step
consists ofparts b through d. But as far as the
condition code bits are concerned, the addition
always happens and the CC bits set
accordingly.)

Once these four parts of the Multiply Step micro-
instruction are executed thirty-two times, the
longword multiplication is complete.

Memory Request
The Memory Request microinstruction is an
explicit request from the data path to the memory
controller to read and write instruction operands
and data. The microinstruction supplies a 9-bit
function code and 32 bits of data. The 32 bits of
data are a virtual address, a physical address, or
the actual data to be written.
The 9-bit function code is encoded in bits < <31:23>
of the Memory Request microinstruction. These
nine bits describe the memory function to be
performed. The function code is described in more

73. Data PathMicroinstructions

Company Confidential

detail in the section titled "Memory Function
Encoding" later in this chapter.
The 32 bits of data are contained in a register on
the data path chip. The register address is
specified by the long operand of the Memory
Request microinstruction. The 32 bits of data are
driven from the register onto the data bus, and
sent to the memory controller over the memory
data bus (see Figure 2-1). The 32 bits of data are
also saved in a temporary register on the chip
(TMP(0)]. If the 32 bits of data are a physical or
virtual address, the data located at this address are
the desired instruction operand, or the data to be
read or written.
A Memory Request microinstruction is followed by
one intervening cycle, and then the proper micro-
instruction (either a Move or a Moveout) is
executed to move the requested data to or from the
data path. The long operand of the appropriate
move instruction specifies MEMORY.DATA to
indicate that the data to be moved are the 32 bits
currently on the memory data bus. If the
requested data are not available at this time, the
microsequencer stalls the execution of the
microprogram by continuously repeating the Move
or Moveout microinstruction until the requesteddata are available.
The status of the memory function is available at
the same time the requested data are available,
and remains valid until the next memory function.The memory function status consists of the four
signals on the fourth OR MUX input: MEM ERR,
Page Crossing, TB Miss and Modify Refuse (see
Table 3-3). If a move in or out of the requested data
does not occur in the second cycle after the memory

3: DAP Microcode 74

Company Confidential

function, the data path assumes that status is not
required and proceeds; the requested function is
still carried to completion on the memory
controller module.

l-stream Request
The I-stream Request microinstruction acts as a
command from the data path to the memory
controller to read bytes, sign-extended words, and
longwords from the instruction stream. It can be
thought of as a special case of the Memory Request
microinstruction where the 9-bit function code can
only be an instruction stream read (IB.READ) and
the 32 bits of data are the unincremented contents
of the PC on the data path chip. The data located
at this 32-bit address in the instruction stream are
the data to be read.
The long operand of the I-stream Request
microinstruction specifies IB.BYTE, IB.WORD,
IB.LONG, OR IB.SIZE to indicate the amount of
data to be read from the instruction stream. The
unincremented contents of the PC on the data path
chip are driven onto the data bus, and sent to the
memory controller over the memory data bus. The
PC on the data path chip is then incremented by 1,
2, or 4, depending on the amount of data read from
the instruction stream.
The prefetch logic on the memory controller keeps
the prefetch buffers filled with instruction stream
bytes. An I-stream Request first clears the
prefetch buffers, then reads a byte, word, or
longword from the cache, sends it to the data path
module via the memory data bus, and refills the
prefetch buffers beginning with the next byte in
the instruction stream following this byte, word, or

75 Data Path Microinstructions

Company Confidential

longword.
After the I-stream Request microinstruction, one
intervening microinstruction is executed. Then a
Move microinstruction is executed to return the
byte, word, or longword from the cache to the data
path over the memory data bus. If a word is read
from the cache, it is returned over the memory
data bus and sign-extended on the data bus (see
Figure 2-1).

Operand Field Encoding
The short and long operands of the
microinstructions can specify addresses 0 through
63. The long operand can specify addresses 0
through 127. Figure 3-4 shows the address space
organization. Chapter 4 describes the registers in
more detail.

3: DAP Microcode 76

Company Confidential

Table 3-5. Register Address Organization
ADDR +0 +1 +2 +3
000 GPR(0) GPR(1) GPR(2) GPR(3)
004 GPR(4) GPR(5) GPR(6) GPR(7)
008 GPR(8) GPR(9) GPR(10) GPR(11)
012 GPR(12) GPR(13) GPR(14) PC
016 TMP(0) TMP(1) TMP(2) TMP(3)
020 TMP(4) TMP(5) TMP(6) TMP(7)
024 TMP(8) TMP(10) TMP(11)
028 TMP(12) TMP(13) TMP(14) TMP(15)
032 TMP(16) TMP(17) TMP(18) TMP(19)
036 TMP(20) TMP(21) TMP(22) TMP(23)
040 TMP(24) TMP(25) TMP(26) TMP(27)
044 TMP(28) TMP(29) TMP(30) TMP(31)
048 RESULTO RESULT1 RESULT2 Shift Count
052 Pointer 1 Pointer 2 @Pointer 1 @Pointer 2
056 Timer Control/Status (TMRCSR) Reserved Reserved Reserved
060 Reserved Reserved Reserved Reserved
064 Constants ROM Constants ROM Constants ROM Constants ROM
068 Constants ROM Constants ROM Constants ROM Constants ROM
072 Constants ROM Constants ROM Constants ROM Constants ROM
076 Constants ROM Constants ROM Constants ROM Constants ROM
080 Constants ROM Constants ROM Constants ROM Constants ROM
084 Constants ROM Constants ROM Constants ROM Constants ROM
088 Constants ROM Constants ROM Constants ROM Constants ROM
092 Constants ROM Constants ROM Constants ROM Constants ROM
096 CON.DATA (UART data) CON.STATUS (UART status) CON.MODE (UART mode) CON.CMD (UART command)
100 Reserved Reserved Reserved Reserved
104 Size register Index register PSL.MODE Misc. register, bits <3:0>
108 PSL.EN (write), REQ.ST (read) PSL.IPL (write), INT.SRC (read) PSL.CC ALU.CC
112 System ID Option switches Misc. register, bits < 7:4> Boot ROM
116 Reserved Reserved Reserved Reserved
120 IB.BYTE IB.WORD Reserved IB.LONG
124 MEMORY.DATA MEMORY.DATA MEMORY.DATA

TMP(9)

MEMORY.DATA

77 Operand Field Encoding

Company Confidential

Memory Controller Interface Microcode
The data path has three ways in which it requests
data from the memory controller.
1. The memory controller prefetch logic keeps

the prefetch buffers filled with instruction
stream bytes so there is a valid byte on the
memory control bus as often as possible. The
data path implicitly fills the IBYTE register
from the memory control bus as a side effect of
instruction and operand specifier decodes.

2. The data path executes Memory Request
microinstructions to explicitly read and write
instruction operands and data.

3. The data path executes I-stream Request
microinstructions to explicitly read bytes,
sign-extended words, and longwords from the
instruction stream.

The first item is actually a function of the data
path hardware and is discussed further in Chapter
4. The Memory Request and I-stream Request
microinstructions are described earlier in this
chapter. The memory functions that can be
encoded within these microinstructions are
described in more detail in the following
paragraphs.

Memory Function Encoding
The Memory Request and I-stream Request
microinstructions contain a 9-bit memory function
field which is used by the DAP microsequencer to
specify a function for the memory controller to
perform. The memory function field is bits
<31:23> of the microinstruction and specifies the

79 MCT Interface

Company Confidential

desired memory function. The nine bits are
formatted as follows:
<8>

<7>

<6>

<5>

<4:0>

latch function parameters:
When this bit is set, the micro-
sequencer latches the state of the other
eight bits of the function code in a
register. These eight bits, plus one bit
provided by the microsequencer, are
referred to as the function parameters.
access mode:
When this bit is set, the access mode is
kernel. A zero bit specifies current
mode. The access mode is used to
check that the protection allows the
specified operation to be performed.
modify intent:
When this bit is set, the intended
access is write. A zero bit specifies
read intent. Modify intent does not
signify whether data will be read or
written, but rather which access intent
is to be checked.
data flow:
When this bit is set, data flows from
the data path chip to the memory
controller (write). A zero bit specifies
that data flows from the memory
controller to the data path chip (read).
memory function:
This is a 5-bit encoded value that
specifies which memory function to
execute.

The data size is specified separately in the data
type field (bits<38:37>) of the microinstruction.

3: DAP Microcode 80

Company Confidential

The format ofmemory request microinstructions is
shown in Figure 3-4.

39 38 37 36 1615 0

P| CC/DT Data Path Control
|
Next Address Control

36 3231 30 29 28 27 23 22 16
modify data mem
intent flow fune long operandopcode latch mode

Figure 3-4. Memory Request Format

The data path hardware expands the 9-bit memory
function field from the microinstruction into a 10-
bit function code. This 10-bit function code, plus
two bits specifying the data size, are what is
actually delivered to the memory controller. The
10-bits have the format:
<9:8> access mode: the mode for which all

accesses are to be checked.
<7> modify intent: the intended access

type.
<6> data flow: the direction in which data

will flow on the data bus.
<5:1> memory function code: a 5-bit encoded

value that specifies the memory
function to be performed.

<0> second part: When clear, this bit
specifies that the first part of a
memory function is to be executed.
When set, it specifies that the second

81 Memory Function Encoding

Company Confidential

part of a memory function is to be
executed. This second part bit is one of
the function parameters saved in a
register when the latch function
parameter bit is set. It is used only
during memory management error
recovery for unaligned reads and
writes across page boundaries.

Memory Functions
The following describes each memory function as
specified by microinstruction bits <27:23>. The
descriptions give the values for bits <29:23> (see
Figure 3-4) as the state of the data flow and modify
intent bits is the only difference between some
memory functions.

READ.VECTOR
Memory Request microinstruction bits <29:23>
have the value 00. This memory function grants
bus mastership to the highest level interrupting
device and reads its vector from the Q22 bus. The
memory controller completes the bus grant cycleand transmits the vector address to the data bus on
the data path.
The contents of the register specified by the long
operand are ignored as a physical or virtual
address is meaningless for this memory function.
The microinstruction data type field must specify
byte even though a word ofdata is returned.

VREAD.RCHECK
This is a virtual read with read check Memory
Request microinstruction; bits <29:23> have the
value 01. This memory function requests that a

3: DAP Microcode 82

Company Confidential

virtual read operation, with a check for read
access, be performed. The Size register specifies
the amount of data to be read. The register
specified by the long operand contains a 32-bit
virtual address. Ifmapping is not enabled, then no
access check is performed and the virtual address
is interpreted as a physical address.

VREAD.WCHECK
This is a virtual read with write check Memory
Request microinstruction. Bits <29:23> have the
value 41; that is, the 5-bit memory function code is
the same as for VREAD.RCHECK (a value of 01)
but the modify intent bit is set. This memory
function requests that a virtual read operation,
with a check for write access, be performed. The
Size register specifies the amount of data to be
read. The register specified by the long operand
contains a 32-bit virtual address. Ifmapping is not
enabled, then no access check is performed and the
virtual address is interpreted as a physical
address.
If the resultant physical address has bit <29> set,
it is a reference to I/O space. Only word and byte
references to I/O space are legal, and all word
references must be word aligned. If bit <29> is
set, the memory controller converts the read to an
interlocked read on the Q22 bus (a DATIO-read,
modify, write word, or DATIOB-read, modify,
write byte).

VWRITE.WCHECK
This is a virtual write with write check Memory
Request microinstruction. Bits <29:23> have the
value 61; that is, the 5-bit memory function code

83 Memory Functions

Company Confidential

has the value 01 but the modify intent bit and the
data flow bit are set. This memory function
requests that a virtual write operation, with a
check for write access, be performed. The Size
register specifies the amount of data to be written.
The register specified by the long operand contains
a 32-bit virtual address. Ifmapping is not enabled,
then no access check is performed and the virtual
address is interpreted as a physical address.
If the previous operation was an interlocked read,
this function is effectively a write unlock.

VREAD.LOCK
This is a virtual read with write check interlocked
Memory Request microinstruction. Bits <29:23>
have the value 42; that is, the 5-bit memory
function code has the value of 02 but the modify
intent bit is set. This memory function requeststhat a virtual read operation, with a check for read
access, be performed. The data type field specifies
byte or word. The register specified by the long
operand contains a 32-bit virtual address. [If
mapping is not enabled, then no access check is
performed and the virtual address is interpreted as
a physical address.
This microinstruction causes a byte or word to be
read from memory with a locked Q22 bus cycle;that is, either a DATIOB or a DATIO data transfer
takes place. The memory controller is bus master
and will not release the bus until a write is
performed. The VREAD.LOCK memory function
must be followed by a VWRITE.WCHECK
function or by a PWRITE function.

IB.REFILL

3: DAP Microcode 84

Company Confidential

This is an instruction stream refill Memory
Request microinstruction. Bits <29:23> have the
value 03. This memory function requests that a
new place in the instruction stream be selected.
The data type field specifies byte. The register
specified by the long operand contains a 32-bit
virtual address which is the address of the new
place in the instruction stream. No data are
delivered on the move in from memory.
If mapping is enabled, a read access check is
performed for the specified mode. As subsequent
sequential bytes are read from the instruction
stream, no access check is necessary until a page
boundary crossing. Ifmapping is not enabled, then
no access check is performed.

PREAD
This is a physical read Memory Request
microinstruction. Bits <29:23> have the value
04. This memory function requests a physical read
operation. The amount of data to be read is
specified by the Size register. The register
specified by the long operand contains a 32-bit
physical address that is the address of the data to
be read.

PWRITE
This is a physical write Memory Request
microinstruction. Bits <29:23> have the value
64; that is, the 5-bit memory function code has the
value 04 but the modify intent bit and the data
flow bit are set. This memory function requests a
physical write operation. The amount of data to be
written is specified by the Size register. The
register specified by the long operand contains a

85 Memory Functions

Company Confidential

32-bit physical address that is the address of the
data to be written.
If the previous function was an interlocked read,
this function is effectively a write unlock.

XLATE.RCHECK
This is a translate virtual address with read check
Memory Request microinstruction. Bits <29:23>
have the value 05. This memory function
translates virtual addresses to physical addresses
to check if certain operations such as pushing onto
the stack can be performed without a fault. This
memory function insures that the page is
accessible and that the appropriate entry is in the
translation buffer. The data type is specified by
the Size register. The register specified by the long
operand contains the 32-bit virtual address to be
translated. The data returned to the data path is
the physical address of the first byte corresponding
to the translated virtual address. Both the address
and the address plus the data size-1 are checked
for read access. Ifmapping is not enabled, then no
access check is performed and the virtual address
is treated as a physical address.

XLATE.WCHECK
This is a translate virtual address with write check
Memory Request microinstruction. Bits <29:23>
have the value 45; that is, the 5-bit memoryfunction code has the value 05, the modify intent
bit is set and the data flow bit is clear. (A zero data
flow bit specifies that the data flows from the
memory controller to the data path chip-a read.)This memory function translates virtual addresses
to physical addresses to check if certain operations

3: DAP Microcode 86

Company Confidential

such as pushing onto the stack can be performed
without a fault. This memory function insures
that the page is accessible and that the appropriate
entry is in the translation buffer. The data type is
specified by the Size register. The register
specified by the long operand contains the 32-bit
virtual address to be translated. The data
returned to the data path is the physical address of
the first byte corresponding to the translated
virtual address. Both the address and the address
plus the data size-1 are checked for write access.
Ifmapping is not enabled, then no access check is
performed and the virtual address is treated as a
physical address.

IB.READ
This is the memory function for the I-stream
Request microinstruction. Bits <29:23> have the
value 0D. This memory function reads a byte,
sign-extended word, or longword from the
instruction stream. The instruction stream PC is
implicitly incremented so that the next instruction
stream read addresses the correct data.
The amount of data to be read from the instruction
stream is specified as IB.BYTE, IB.WORD,
IB.SIZE, or IB.LLONG in the long operand. The
data type field also specifies byte, word, size, or
longword and must match the data type specified
in the long operand. The data read from the
instruction stream is returned to the data path
over the memory data bus. (Sign-extended bytes
can also be read via the data path by specifying
IB.BYTE as the long operand specifier.)

REPEAT.FIRST

87 Memory Functions

Company Confidential

This is a Memory Request microinstruction that
repeats a previous memory function.
REPEAT.FIRST is only meaningful when
preceded by an error condition. It is intended for
use in memory management error recovery
microcode that fills the translation buffer and
handles memory modify refuse. Bits <29:23>
have the value 06. When bit <31> of a Memory
Request microinstruction is set, the data path
microsequencer latches the current function
parameters in a register. REPEAT.FIRST
references this register, enabling the previous
Memory Request microinstruction to be repeated.
The data type field in the REPEAT.FIRST
microinstruction is ignored; the data type field
from the previous Memory Request micro-
instruction is used.
When any Memory Request microinstruction is
executed, the 32 bits ofdata it supplies are saved in
the TMP(0) register on the data path chip. The
contents of TMP(0) are copied into TMP(15) for a
REPEAT.FIRST memory function. The long
operand of the REPEAT.FIRST microinstruction
specifies the address ofTMP(15). Therefore, the 32
bits of data supplied by the REPEAT.FIRST
microinstruction are the same 32 bits supplied by
the previous Memory Request microinstruction.
Ifmapping is not enabled, then no access check is
performed and the virtual address is treated as a
physical address. Note that the REPEAT.FIRST
memory function is only meaningful for virtual
functions since the failure of a physical function is
never retried.

REPEAT.SECOND

3: DAP Microcode 88

Company Confidential

This Memory Request microinstruction acts just
like REPEAT.FIRST in that it repeats the
previous memory function. In addition, it sets the
second part flag. REPEAT.SECOND is only
meaningful when preceded by an error condition.
It is intended for use in memory management error
recovery microcode for unaligned reads or writes
across page boundaries. Bits <29:23> have the
value 07. REPEAT.SECOND references the
previous function register, enabling the previous
Memory Request microinstruction to be repeated.
The data type field in the REPEAT.SECOND
microinstruction is ignored. The
REPEAT.SECOND memory function is used
specifically for memory operations that read across
a page boundary.
The virtual address of the first byte in the next
page is stored in the RESULT register on the data
path chip. It is computed by adding 4 to the 32-bit
virtual address supplied by the previous Memory
Requestmicroinstruction, and clearing the two low
order bits. The long operand of the
REPEAT.SECOND microinstruction specifies the
address of RESULTO. Therefore, the 32-bit
address supplied by the REPEAT.SECOND
microinstruction is the virtual address of the first
byte in the next page.
Ifmapping is not enabled, then no access check is
performed and the virtual address is treated as a

REPEAT.SECOND memory function is only
meaningful for virtual functions since the failure
of a physical function is never retried.

physical address. Note that the

READ.CACHE

89 Memory Functions

Company Confidential

This is a Memory Request microinstruction that
reads a cache block entry. Bits <29:23> have the
value 0B. This memory function requests a read
operation. The data type field must specify byte,
even though a longword of data is returned. The
register specified by the long operand contains a
32-bit physical address that is the address of the
data to be read from the cache.

WRITE.CACHE
This is a Memory Request microinstruction that
writes a cache block entry. Bits <29:23> have the
value 2C; that is, the 5-bit memory function code
has the value OC but the data flow bit is set. This
memory function requests a write operation. The
data type field must specify byte, even though a
longword of data is written. The register specified
by the long operand contains a 32-bit physical
address that is the address of the data to be written
to the cache.

READ.MCT
This is Memory Request microinstruction that
reads a memory controller internal register. The
internal register number is supplied as part of the
function code; bits <29:23> have the values 10
through 17. The data type field must specify byte,even though a longword of data is returned. The
contents of the register specified by the long
operand are ignored.

WRITE.MCT
This is a Memory Request microinstruction that
writes data to a memory controller internal
register. The internal register number is supplied

3: DAP Microcode 90

Company Confidential

as part of the function code; bits <29:23> have the
values 38 through 3F. The data type field must
specify byte, even though a longword of data is
written. The register specified by the long operand
contains the actual data to be written.

READ.TB
This Memory Request microinstruction reads a
translation buffer entry. Bits <29:23> have the
value 08. The data type field must specify byte,
even though a longword of data is returned. The
register specified by the long operand contains a
32-bit virtual address. The translation buffer
entry specified by the virtual address is read
regardless ofwhether mapping is enabled or not.

WRITE.TB
This Memory Request microinstruction writes a
translation buffer entry. Bits <29:23> have the
value 29; that is, the 5-bit memory function code
has the value 09 but the data flow bit is set. The
data type field must specify byte, even though a
longword of data is written. The register specified
by the long operand contains a 32-bit virtual
address. The translation buffer entry specified by
the virtual address is written regardless of
whether mapping is enabled or not.

INVALID.SINGLE
This is an invalidate single Memory Request
microinstruction. Bits <29:23> have the value
OE. This memory function invalidates a single
translation buffer entry. The data type field must
specify byte.
The register specified by the long operand contains

91 Memory Functions

Company Confidential

a 32-bit virtual address. If the specified virtual
address is in the translation buffer, then that entry
is set invalid. Otherwise, no operation is
performed. No useful data are returned by the
memory controller on the move in from memory.

INVALID.MULTIPLE
This is an invalidate multiple Memory Request
microinstruction. Bits <29:23> have the value
OF. This memory function invalidates multiple
translation buffer entries. The data type field
must specify byte.
The register specified by the long operand contains
a 32-bit virtual address. Translation buffer entries
are unconditionally invalidated. Bit <31> of the
virtual address selects whether the process or
system translation buffer is invalidated.
Translation buffer entries are invalidated starting
with the specified address and continuing until a
page crossing occurs. No useful data are returned
by the memory controller on the move in from
memory.

RCHECK
This is a read check Memory Request micro-
instruction. Bits <29:23> have the value OA.
This memory function performs a read check to
determine the accessibility of the first byte of a
virtual address. The data type field specifies byte.
The register specified by the long operand contains
the 32-bit virtual address of the byte to be checked.If the byte at this virtual address is not accessible,a translation buffer miss is reported in the error
Summary register as the TB-Check code. If
mapping is not enabled, then no access check is

3: DAP Microcode 92

Company Confidential

performed. No useful data are returned by the
memory controller on the move in from memory.

WCHECK
This is a write check Memory Request micro-
instruction. Bits <29:23> have the value 4A;
that is, the 5-bit memory function code has the
value 0A but the modify intent bit is set. This
memory function performs a write check to
determine the accessibility of the first byte of a
virtual address. The data type field specifies byte.
The register specified by the long operand contains
the 32-bit virtual address of the byte to be checked.
If the byte at this virtual address is not accessible,
a translation buffer miss is reported in the error
summary register as the TB-Check code. If
mapping is not enabled, then no access check is
performed. No useful data are returned by the
memory controller on the move in from memory.

Memory Controller Status
After Cca Memory Request microinstruction and an
intervening microinstruction have been executed,
the next microinstruction executed can test the
results of coa memory function. The status of a
memory function is available at the same time that
the data requested by the memory function are
available ona read. This status remains available
until another memory function is executed.

Memory controller status is returned to the data
path via four bits of status, available as
microsequencer ORMUX inputs:

® TB Miss. The memory controller cannot
complete the current virtual function because
the appropriate page table entry is not in the

93 Memory Functions

Company Confidential

translation buffer.
@ Memory Modify Refuse. The memory

controller cannot complete the current virtual
write function because the modify bit is not set
in the translation buffer copy of the page table
entry.

e Page Crossing. The memory controller cannot
complete the current virtual read/write
function because a page crossing is necessary.
Error Summary. A bit in the memory
controller's error code register has been set,
indicating one of the following errors:
~ Access Violation. The memory controller
cannot complete the current virtual function
because the desired access is not allowed.

- Parity Error. A memory read error that is
not correctable has been detected.

- Nonexistent Memory. An attempt has been
made to access a nonexistent memory
location.

- Illegal Operation. An attempt has been
made to access I/O space as a longword or as
an unaligned word, or an attempt has been
made to execute an interlocked read/write to
a longword or an unaligned word.

- Translation Buffer Check. A read or write
check function encountered a translation
buffer miss.

The DAP microcode determines which of these
errors occurred by reading the error code register.This is accomplished by issuing raa READ.MCT
Memory Request microinstruction with the
number of the error code register specified.

3: DAP Microcode 94

Company Confidential

Microverify

Console Microcode

95 MCT Status

Company Confidential

3: DAP Microcode 96

Company Confidential

Chapter 4
Data Path Module

This chapter is a detailed description of the
components on the data path module and how they
interact. First, the major logic elements and their
hardware components are described. Then, the
basic transfers of data between the logic elements
are described on a microprogram level.

Overview of DAP Functions
The data path module contains hardware to
perform the following eight functions:

@ control microinstruction flow
decode macroinstructions
execute microinstructions
transfer data within the data pathmodule

process interrupts
communicate with the console terminal

power on
® communicate with the memory controller

The next eight sections describe these functions,
and the hardware components that implement
them, in detail. The hardware components are
illustrated in the DAP block diagram, Figure 4-1.

Controlling the Microinstruction Flow

Controlling the microinstruction flow is the main

97

Company Confidential

function of the data path module, and much of the
hardware is dedicated to it. The hardware
components are the CPU clocks, the control store,
the control store address register, the parity
checker, the index register, the microsequencer,
and the microstack and microstack pointer. These
components, plus some control signals, determine
which microinstruction is executed next. The
following paragraphs describe each of these
components in turn.

Clock Signals
The clocks for the system are generated on the
MCT module. A basic clock with a 64 Mhz
frequency is generated by a crystal oscillator and is
used to derive all the other clocks in the system.
The CPU clock (DAPL CPU CLOCK H) consists of
a symmetrical 250 ns period clock. The start of a
microcycle is defined as occurring on the leading
edge of this clock and is referred to as TO. All the
internal data bus registers are written on this
edge. The trailing edge of the clock occurs 125 ns
later.
The signal DAPL CPU PHASE is a clock with the
same timing as CPU CLOCK, but it is not affected
by stall conditions.
The delayed CPU clock (DAPL DLYD CPU CLK
H) is asserted from T62.5 to T187.5. This clock is
used to clock PALs which first decode the
microinstruction and generate discrete control
signals.

4: Data Path Module 98

Company Confidential

memoryRS 232 Q22 IRQ<7:4>
toconsole terminal ™ * power fail

to memory controller via memory control bus data
bus

console timer req interruptUART clocks memory function control
control power up ID bus MD bus

register buffer enable

DATA

Hopcode

R mode
R=SP +

CC function 443 checker

DAP JAM pPC

Misc
reg

boot
ROM

write timeout init 4 <7>
short popcode

<15>

UART opr mp MD bus

zero generate
buffer interrupt source IPL reg sxt control Stgn extend bus nmput

atch datch

(DID
MUX bus

internal data bus latch "8 f databus 32

4 ID bus8 4

ID bus controloption SID n put

buffer t

decode

switches index index PSLswitches latch
IBYTE

size
ID bus
address register 2

memory {BYTE ALU &
control
bus

8 tong opr
PSL CCs

CC function "4 PATH

decode 21 CHIP
ROMs

contro!CC/DT 12
microsequencer CSA

NpA bus register store

cc class
19

microstack 1

parity

Figure 4-1. Data Path Block Diagram

99 DAP Block Diagram

Company Confidential

The complement of the delayed CPU clock is the
load control store signal (LD CSR) required by the
data path chip. When LD CSR is asserted, the 21-
bit DPC microinstruction is stored in the control
store register (CSR) located on the data path chip.
The control store address clock (DAPL CSA
CLOCK H) is asserted from T125 to T250. This
signal clocks the control store address register.

Control Store
The control store consists of five 8K by 8-bit ROMs.
The address space within the control store is
organized as 32 pages, each page containing 256
words. Each word is one data path micro-
instruction and is 40 bits wide. All the data path
microinstructions are stored in this control store.
The input to the control store is a 13-bit
microaddress supplied by the control store address
register (DAPB CSA <12:00> H). The high-order
five bits specify the page, and the low-order eight
bits select the word within the page.
The control store output is a 40-bit micro-
instruction (DAPA CS <39:00> H). The various
microinstruction bits are sent different places.
e Nineteen bits are sent from the control store

to the parity checker: CS <39>, CS
<38:37>, and CS <15:00>.
CS <36:16> are sent to the data path chip as
the DPC microinstruction.
The thirteen low-order bits of the next address
control field, CS <12:00>, are sent to the
jump register in the microsequencer.

@ The eight high-order bits of the next address

101 Microinstruction Control

Company Confidential

control field, CS <15:08>, and CS <24> > are
sent to the jump MUX control logic-and the
OR MUX control logic in the microsequencer.
The logic decodes CS <15:08> and generates
various control signals and selects to govern
the microsequencer elements.

@ Microinstruction bits CS <38:37>, the
CC/DT field, are sent to a flip-flop and then to
the PAL that contains the size register; they
are also sent to the condition code control
logic.

@ Microinstruction bits CS <24:23> are sent to
the decode ROMs to indicate the type of opcode
or operand specifier decode.

@ The microinstruction opcode CS <36:32>,CS
<24>, and the long operand CS <22:16>,
are sent to the block of logic labeled ID bus
address decode. This block of logic controls
the driving of the appropriate data on the
internal data bus when a Move or Moveout
microinstruction is executed, and the long
operand specifies an address external to the
data path chip.

@ The microinstruction memory function bits
CS <31:23> are sent to the block of logic
labeled memory function control in case the
microinstruction is a memory request.
Information about the microinstruction
opcode is sent to the memory function control
logic from the ID bus address decode logic.

® Microinstruction bits CS <28:24> are sent to
the IBYTE control logic. Information about
the microinstruction opcode is sent to theIBYTE control logic from the ID bus address
decode logic. Information about the long

4: Data Path Module 102

Company Confidential

operand is sent to the IBYTE control logic
from the memory function control logic.

Control Store Address Register
The control store address (CSA) register holds the
microaddress used to access the control store.
While the inputs to the control store are held
stable in this register, the outputs can be used to
control the operation of the data path.
The input to the CSA register is the thirteen
microaddress bits from the next microaddress
MUX. The output from the CSA register is the
input to the control store: CSA <12:00>. The
control store address register is clocked at T2.

Parity Checker
The parity checker consists of three chips that
check the parity of the 40-bit microinstruction. Ifa
parity error is found, the next microaddress is
forced "to zero, and a flag is set. The
microinstruction causing the parity error is
executed but produces undefined results. The
microinstruction executed at location zero reads
the flag by reading bit 5 at the same address as the
index register. (The index register itself is four
bits wide.)
The input to the parity checker is bits <39:37>
and <15:0> from the control store, and one parity
bit from the data path chip. When the data path
chip receives control store bits <36:16> (the DPC
microinstruction), it generates a parity bit for
these bits; this DPC parity bit is sent to the parity
checker.
If no parity error is found, there is no output from
the parity checker. If a parity error is detected, the

103 Microinstruction Control

Company Confidential

output is the signal JAM uPC, which forces the
next microaddress to zero.

Index Register
The index register is a four bit register used to
store some of the microcode state. The input to the
index register is the low four bits from the internal
data bus (BUS ID <03:00>). The four bits in the
index register are sent as one of the four-signal
inputs to the OR MUX (INDEX <3:0>, see Table
3-3), or they can be driven back onto the ID bus
through the index buffer (BUS ID <03:00>).

Microsequencer
The microsequencer generates a 13-bit
microaddress every 250 ns. It accomplishes this by
decoding certain bits in the previous micro-
instruction while monitoring certain control and
status lines.
The microsequencer consists of these components:
the page register, the microprogram counter (uPC),
the conditional decrementer, the jump register, the
OR MUX, the jump MUX, and the next
microaddress MUX (NyA MUX). These
components are described briefly in the following
paragraphs. Figure 4-2 is a block diagram of the
data path microsequencer.

4: Data Path Module 104

Company Confidential

Index
reg Memory Size

4 Controller IBYTE
Status Status

I

OR
a MUX

Microstac|
pSP i KK

Figure 4-2. Microsequencer Block Diagram

IBYTE
buffer

T Jump conditions

Jump
MUX

13

Decode 4.
Roms * Jump reg

Control
Store

NpA ™ CSA4.
]MUX

t f 13
NpAbus 713 reg

7

Page13

5 re9

8
-1 pPC
or

j
pass

I Conditional
Decrementer

105 Microsequencer Block Diagram

Company Confidential

Page Register and Microprogram Counter
These two components together hold the next 13-
bit microaddress. The page register contains bits
<12:8>; these form the page address. The yPC
contains bits <7:0>; these form the address of the
word within the page. The uPC is loaded with the
address of the current microinstruction plus one,
and cannot count beyond the end of the current
page. The yPC is clocked at TO of each microcycle.

Conditional Decrementer
The conditional decrementer is an adder located in
the microsequencer logic between the uPC and the
microstack. All eight bits from the yPC run
through the decrementer. When a microtrap is
taken, the decrementer adds a negative one to the
uPC bits. Otherwise, the uPC bits pass through
unaffected.

Jump Register
This register is used to allow the outputs from
control store to be driven onto the next
microaddress bus (NuA bus). The jump register is
open from TO to T125.
The input to the jump register is the micro-
instruction next address control field, CS <12:0>,
from the control store. When enabled, the jump
register drives these same thirteen bits onto the
next microaddress bus (NuA bus).

OR MUX
The OR multiplexer allows the microcode to "case"
on certain signals in the data path, based on the
value of the OR field in the current

107 Microinstruction Control

Company Confidential

microinstruction. Conceptually, there are eight
inputs to the OR MUX, each with four signals.
Some signal values are fixed, others reflect the
microcode state. (See Table 3-3).
The OR MUX is enabled when the micro-
instruction next address control field format is
CASE, BSB, TRAP, RET, IRD, or SPEC DEC.
(Although there is no OR field in the SPEC DEC
next address control field format, the OR MUX is
enabled to test for IB invalid.) The OR MUX logic
decodes the format and OR fields, and enables the
appropriate input. The value of the four signals on
that input then becomes the value of the OR MUX
output. (For an example, see the section titled
"Next Address Control Field" in Chapter 3.) The
OR MUX output is then logically ORed with the
low four bits of the microaddress on the next
microaddress bus (NuA bus). The result is the low
four bits of the address of the next microinstruc-
tion.
The input to the OR MUX logic is bits <24> and
<15:8> of the microinstruction; the input to the
OR MUX itself is the various microcode state
signals listed in Table 3-3. The ORMUX output is
the value of the signals on the selected input line.This value is sent to the NuA bus.

Jump MUX
The jump MUX is part of the jump control logicthat controls the next microaddress multiplexer
(NuA MUX). The jump MUX selects input signals
according to the JC field of the current
microinstruction (see Figure 3-3). The JC field
specifies conditions to be tested (see Table 3-2).
If the specified condition is met, the jump control

4: Data Path Module 108

Company Confidential

logic enables the NNuA MUX to select the address
specified in J<7:0> of the current micro-
instruction as the next microaddress. If the
specified condition is not met, the jump control
logic enables the NuA MUX to select the current
microaddress plus one for the next microaddress.
The input to the jump control logic is next address
control field bits <24> and <15:8> ofthe current
microinstruction, and the current values for the
conditions that could be tested. The output of the
jump control logic is the select lines to the next
microaddress MUX.

Next Microaddress MUX
This multiplexer provides the inputs to the CSA
register. It is used to select either the contents of
the microprogram counter (yPC), or the contents of
the next microaddress bus (NuA bus).
When performing conditional jumps, the desired
jump-to address is driven onto the NuA bus early
in the microcycle. Later in the cycle, the NuA
MUX select lines are changed by the jump control
logic depending on whether the jump is to be
taken.
The NyA MUX actually consists of two 2-to-1
MUXs and three 4-to-1 MUXs. Two of the 4-to-1
MUXs make up the low 4-bit slice of the NyA
MUX. One of following three inputs to the NyA
MUX is selected by the jump control logic as the
NyAMUX output:

@ the current microaddress contained in the
page register and the microprogram counter,
which is the current microaddress plus one, or

the microaddress currently on the NuA bus,

109 Microinstruction Control

Company Confidential

but with the value of the low four bits
determined by the ORMUX output ORed with
NuA bus <3:0>, or

@ microaddress bits <12:4> forced to zero and
the value of the low four bits determined
directly by the output of the ORMUX.

These inputs to the NyuA MUX are stable at
TO+112. The third case described above allows
traps which may be taken during decode
instructions to use the output of the OR MUX
directly. For all other instances, the low four bits
of the NuA MUX input are determined by the OR
MUX output ORed with the address supplied from
the NuA bus (the second case described above), or
by uPC +1 1 (the first case described above).
In short, the inputs to the NuA MUX are: NyA bus
<12:0>, OR MUX <3:0>, and wPC <12:0>.
The output of the NuA MUX is referred to as NuA
<12:0>; these bits have the same value as the bits
of the selected input.
When a microinstruction has a BR or CASE next
address control field format (see Figure 3-3), the
destination microaddress must be within the
current page. The NuA MUX has separate selects
for bits < <12:08> and bits <07:00> so that for BR
and CASE, the select for bits <12:08> is not
changed even if the branch is taken.
During certain microinstructions, it is necessary to
force zeros to be output from the NuA MUX. The
following table lists these conditions.

Table 4-1. Forced Zeros on NuA MUX Output
Bits Conditions
12 IRD

4: Data Path Module 110

Company Confidential

BSB
trap
control store parity error
power up

11:08 BSB
trap
decode and trap
control store parity error
power up

07:04 Decode microinstruction when a trap is
being taken

control store parity error
power up

03:00 control store parity error
power up

Microstack
The microstack is a 16 deep, LIFO (last-in-first-
out) stack used to save return microaddresses
when subroutine calls or microtraps are executed.
The address of the current microinstruction plus 1

is also saved on the microstack when a valid
operand specifier decode is executed and the
operand is not contained in a general register.
If the current microinstruction is a subroutine call
or an operand specifier decode (not register mode),
the conditional decrementer adds zeros to the
address in the microprogram counter, causing the
microaddress of the current instruction plus 1to be
saved in the stack. If the current microinstruction
is a trap, or raa Decode and the ORMUX is not equal
to zero, the conditional decrementer subtracts one
from the address in the microprogram counter,

of the currentcausing the microaddress

111 Microinstruction Control

Company Confidential

instruction to be saved in the stack.
The input to the microstack is supplied by the
conditional decrementer. The decrementer always
supplies a microaddress to the microstack, but the
microaddress does not get written into the
microstack unless the current operation is a
subroutine call, a trap, an operand specifier decode
(not register mode), or an IRD and the OR MUX is
not equal to zero. The microstack is written at
T250 of the microcycle (TO of the next cycle).
The signal DAPC STACK PUSH L is asserted by
the microsequencer control logic when it decodes
microinstruction bits CS<15:08> and <24> and
determines that the next address control field
format is a subroutine call, a trap, or an operand
specifier decode. STACK PUSH L enables writes
to the microstack.
The output from the microstack is the top entry in
the stack which is driven onto the next
microaddress bus when the operation is a return.

Microstack Pointer
The microstack pointer (uSP) always points to the
top entry in the microstack; that is, the microstack
pointer contains the address of the microstack
location that contains the most recently stored
microaddress.
When the operation is a "push" (a subroutine call
or a microtrap), the address of the next location in
the microstack is calculated and used to address
the microstack so that the microaddress from the
conditional decrementer is written into the
microstack at that location. If the branch is taken,
the calculated microstack address is stored in the
microstack pointer. When the operation is a "pop"

4: Data Path Module 112

Company Confidentialy

(a return), the current microstack location address
in the microstack pointer is used to address the
microstack so that the microaddress at that
location is written onto the next microaddress bus.
Then the microstack pointer is updated at the next
TO clock edge to contain the previous microstack
location address.
The inputs to the microstack pointer are signals to
indicate when the current operation is a branch, a
push, ora return. The outputs from the microstack
pointer are four microstack address lines.

Decoding Macroinstructions
Decoding macroinstructions is the second of the
eight functions that the data path module

The hardware components are theperforms.
IBYTE register, IBYTE control, the decode ROMS,
condition code control, condition code class
register, condition code PALs, macrolevel branch
control, PSL enable, and the size register. These
components decode macroinstruction opcodes and
operand specifiers. The following paragraphs
describe each of these components in turn, and the
ALU and PSL condition codes.

IBYTE Register
The instruction byte register is an eight-bit
register that holds the next byte of instruction
stream data to be evaluated at the inputs to the
decode ROMs; that is, it contains the macrolevel
instruction byte currently being processed.
The IBYTE register is read on the internal data
(ID) bus when the long operand of the current
microinstruction specifies the IBYTE register's

113 Microinstruction Control

Company Confidential

unique address. The contents of the IBYTE
register are also driven on the ID bus during
operand specifier decodes and stored in one of the
two pointer registers in the data path chip. If the
operand specifier mode is not short literal, bits
<5:4> of the IBYTE register are forced to zero to
extract the register number. The high two bits
need not be set to zero because the pointer registers
are only six bits wide.
The IBYTE register is loaded at TO from the
memory control bus whenever the signal LOAD I
BYTE H is asserted. LOAD I BYTE H asserted
means that the next byte from the instruction
stream is needed at the end of the current
microcycle. There are two reasons why the next I-
stream byte is needed. The first reason is that the
byte currently in the IBYTE register is valid, but
the current microinstruction uses that byte, so at
the end of this microcycle, the byte in the IBYTE
register will no longer be needed. The second
reason is that the byte currently in the IBYTE
register is not valid. The signal DAPR IB
INVALID H is asserted to indicate when this is the
case.
The input to the IBYTE register is the byte from
the memory control bus, BUS MEM CTL <7:0>.
The output from the IBYTE register is eight bits
labeled DAPF I BYTE <7:0>. These bits go two
places; they are the input to the decode ROMs, and
they are latched in the IBYTE buffer (see Figure 4-
1).

IBYTE Control
The IBYTE register is controlled by the IBYTE
control PAL. The IBYTE control logic informs the

4: Data Path Module 114

Company Confidential

memory controller when the next instruction
stream byte is needed by asserting DAPR LOAD I
BYTE H. The next instruction stream byte is
needed either because the byte currently in the
IBYTE register is valid and is used by the current
microinstruction, or because the byte in the IBYTE
register is not valid.
When DAPR LOAD I BYTE HH is asserted, and
DAPL CPU CLOCK H is asserted, the signal
DAPR CLOCK I BYTE H is generated. DAPR
CLOCK I BYTE H clocks the bits BUS MEM CTL
<7:0> off the memory control bus into the IBYTE
register at TO.
When the IBYTE control logic asserts DAPR
LOAD IBYTE H and DAPL DLYD CPU CLK H is
asserted, the signal DAPR IB TAKEN L is
generated. DAPR IB TAKEN 1L informs the
memory controller that the instruction stream
byte that was on the memory control bus has been
loaded into the IBYTE register, and another
instruction stream byte needs to be sent from the
prefetch logic to the memory control bus. Thus,
DAPR IB TAKEN causes the memory controller
prefetch logic to drive an instruction stream byte
onto the memory control bus. DAPR LOAD I
BYTE H, DAPR CLOCK I BYTE H, AND IB
TAKEN L are the signals asserted when the next
instruction stream byte is needed because the byte
currently in the IBYTE register is valid but is no
longer needed because it was just used by the
current microinstruction.
If the byte in the IBYTE register is not valid, the
IBYTE control logic assserts the signal DAPR IB
INVALID H. The memory controller continues to
send instruction stream bytes to the memory

115 Macroinstruction Decode

Company Confidential

control bus as long as IB INVALID H is asserted;
that is, LOAD I BYTE H is always true when
DAPR IB INVALID H is asserted. When IB
INVALID H is deasserted, this means the byte in
the IBYTE register is valid, and the memory
controller stops sending instruction stream bytes
from the prefetch logic.
The memory controller, meanwhile, generates the
signal MCTP NXT IB VALID H, which when
asserted means that the byte on the memory
control bus is valid data. The memory controller
deasserts MCTP NXT IB VALID H when the byte
on the memory control bus becomes invalid for any
reason; for example, the prefetch buffers become
empty, an I-stream Request microinstruction
(which flushes the prefetch buffers) is executed, a
Memory Request microinstruction with the
IB.REFILL function is executed, or the
microinstruction long operand specifies IB.BYTE.
IB INVALID H is deasserted by the signal MCTP
NXT IB VALID H from the memory controller. As
long as the memory controller can supply valid
instruction stream bytes from the prefetch logic to
the memory control bus, MCTP NXT IB VALID H
remains asserted. IB INVALID H is asserted by
any of the following microinstructions if the MCTP
NXT IB VALID H signal from the memory
controller is deasserted: Decode, I-stream Request,
Memory Request specifying IB.REFILL, a
microinstruction in which the long operand
specifies IB.BYTE.
Figure 4-3 illustrates the timing relationship
between these signals for both cases:
Case 1: The IBYTE register needs to be refilled

because the current byte is valid but a

4: Data Path Module 116

Company Confidential

Decode microinstruction was just
executed.

Case 2: The IBYTE register needs to be refilled
because the current byte is not valid.

117 Macroinstruction Decode

Company Confidential

4: Data Path Module 118

Company Confidential

CASE1
Loading of IBYTE reg;
byte from MCT 1s always

IBYTE reg

BUS MEM CTL <7:0>

LOAD 1BYTEH

NXT iB VALID H

IB INVALID H

IB TAKEN L

CASE 2
Loading of IBYTE reg;
byte from MCT is not

iBYTE reg

BUS MEM CTL <7:0>

LOAD IBYTE H

NXT IB VALID H

IB INVALID H

IBTAKENL

250 375 500 625 750 875 1000 1125 12501250

: : :: : : :
: :

Decode: Add : Decode Decode
: :

available when needed ::

CPU CLOCK H

Xx > AB : cD EFcD: : :
: : : : :

AB : : cD EF EF: :: : : : : :

: : : : : : : :

:: : :: : ::

: : :: : :: :: : : : :
: : : :

:
:

: : : : :: :

: :: : : : : : :

: : : : : : : :

: Decode: Decode: Decode: Decode
: :

:
:

: :

available when needed.
CPU CLOCK H

xx : AB : : XX : Xx : cD: : :
:

AB : XX : xx cD:
: :

: :

: :
:

: : ::

: : :

: : ::
: : : ::

: : : : : : :

: : : : : : :: :

Figure 4-3. IBYTE Register Loading

119 IBYTE Timing

Company Confidential

Decode ROMs
The decode ROMs are logically 1K by 16 bits. They
are used to select the microcode routine to be
executed depending on the current contents of the
IBYTE register.
Conceptually, raa Decode microinstruction is the last
microinstruction of the currently executing micro-
code routine. When the current microinstruction
is a Decode, the output from the decode ROMs is
driven onto the NuA bus.
The inputs to the ROMs are bits <7:0> from the
IBYTE register (DAPF I BYTE <7:0> H), and the
two bit control field from the current Decode
microinstruction, bits <24:23> (DAPA CS
<24:23> H). Bits <24:23> are encoded as
follows:

24 23 Selected Decode
0 0 operand specifier decode type 1

0 1 operand specifier decode type 2
1 0 IRD for single byte opcodes
1 1 IRDonsecond byte of two byte opcode

If the decode operation is an IRD, the outputs from
the ROMs are:

@ two bits of condition code class (DAPF CC
CLASS <1:0> H). For all instructions except
conditional branches, these two bits define
how the PSL condition codes are set. The
encoding is shown in Table 4-2.

@ two bits of data type (DAPF DT1/RMODE H
and DAPF DTO/SP H). For all instructions
except conditional branches, these two bits are
encoded as follows:

121 Macroinstruction Decode

Company Confidential

00 byte 10 not used
01 word 11 longword

@ twelve bits of microaddress (BUS NUA
<11:00> H)
if the instruction is Ccroa macrolevel branch, the
low-order bit of the condition code class (CC
CLASS <0>) and the data type field are
combined to form a code that indicates which
condition codes need to be tested for that
specific branch. The encoding is listed in the
section titled "Macrolevel Branch Control" in
this chapter.

If the decode operation is an operand specifier
decode, the outputs from the ROMs are:

@ eight bits of microaddress (BUS NUA
<07:00> H)

@ one bit to specify register mode and not PC
(DAPF DT1/RMODE H)

@ one bit to indicate that the stack pointer (R14)
is specified (DAPF DTO/SP H)

® one bit to indicate that the operand specifier
being decoded is not a short literal (DAPF CC
CLASS 0 H).

ALU and PSL Condition Codes
There are two separate sets of condition codes
stored in the data path. The first set is the ALU
condition codes which operate at the microprogram
level. These condition codes result from the last
ALU operation in the data path chip. They are
available as jump conditions to the microcode and
are also used to load the PSL condition codes.
The other set of condition codes is the PSL

4: Data Path Module 122

Company Confidential

condition codes. These are part of the PSL and are
available to the macrolevel code. They are used to
determine if a macrobranch should be taken.
Both sets of condition codes (ALU and PSL) can be
read or written on the internal data bus as bits
<3:0>.

Condition Code Control
The setting of the condition codes is controlled by
the CC/DT field of the microinstruction, the
microinstruction opcode, and the condition code
class register.
For microinstruction opcodes Move, Moveout,
Memory Request, I-stream Request, Multiply Step,
Restore, Clear Save Stack, and Decode, the
condition codes are never set and the CC/DT field
is used only for data type.
For all other microinstruction opcodes, the
condition codes are set as follows for the given
values of the CC/DT field:
0 data type is long, CCs not affected
1 data type is long, set ALU CCs
2 data type is long, set ALU and PSLCCs
3 data type is SIZE, set ALU and PSL CCs

Condition Code Class Register
The condition code class register is part of the logic
that sets the condition codes. It is loaded from the
decode ROMs at the end of every macroinstruction
opcode decode (also referred to as an instruction
register decode, or IRD). The bits DAPF CC
CLASS 1 H, DAPF CC CLASS 0 H, and DAPF
DTO/SP H are loaded into this register from the
decode ROMs. The first two, CC CLASS <1:0>,

123 Macroinstruction Decode

Company Confidential

contain an encoded value; the encoding is shown in
Table 4-2. These register encodings are essentially
setup conditions; when the value of the two bits is
as given, the PSL condition codes will be set as
defined in the Function column.

Table 4-2. Condition Code Class Register Encoding
<1:0> CC Class Function

0 Logical ALU N to PSLN
ALU Z to PSLZ
ALU V to PSL V
PSL C to PSL C

1 Arithmetic ALU NtoPSLN
ALU Z to PSL Z
ALU V to PSL V
ALU C to PSLC

2 Compare ALUNtoPSLN
ALU Z to PSLZ
Clear PSL V
ALU C to PSLC

3 Floating ALU N to PSLN
Point ALU Z to PSLZ

ALU V to PSL V
Clear PSL C

The output of the condition code class register is
the same two CC CLASS bits, labeled DAPE CC
CLASS <1:0> H.

Condition Code PALs
The ALU and PSL condition codes are stored in
two 16R4 PALs. One PAL stores the ALU and PSL
N and V bits, and the other stores the ALU and
PSL Z and C bits. PSL <3:0> are contained in

4: Data Path Module 124

Company Confidential

these two PALs; that is, these two PALs contain
the low four bits of the PSL register. The PALs are
controlled by a four-bit condition code function
field, DAPE CC <F3:F0>. This CC function field
is the output of another PAL, called the CC
Function, or CC Pipeline PAL. The CC function
field is generated from the following five bits:
DAPE CC CLASS <1:0> H, DAPC CS REG
<38:37> H, and DAPC NOCC OP (1) L. This last
bit indicates whether the current microinstruction
is one that affects the condition codes. When NO
CC OP is low, the CC function field is 0000. The
encoding of the CC function field is as follows:

Table 4-3. CC Function Field Encoding
DAPE CC
<F3: FO> Function

0000 no operation, CCs unaffected
0100 load ALU CCs logical
0101 load ALU CCs arithmetic
0110 load ALU CCs compare
0111 load ALU CCs floating
1100 load ALU and PSL CCs logical
1101 load ALU and PSL CCs arithmetic
1110 load ALU and PSL CCs compare
1111 load ALU and PSL CCs floating

Because the data path chip is pipelined (that is, the
microcycles overlap; see Figure 1-5), the condition
codes are affected by the previous microinstruction
and not the current one. The first microinstruction
is decoded and the control information (the CC
function field) stored until the following TO. The
stored information is then used to directly control
the PALs that store the condition codes. Figure 4-4

125 Macroinstruction Decode

Company Confidential

shows when the ALU condition codes are available
and when they are loaded into the PALs from the
data path chip for an Add microinstruction.
Condition codes are set as follows. The signals
DAPF CC CLASS <1:0> H are the output from
the decode ROMS during IRDs. These signals are
the input to the condition code class register, and
also the output from the condition code class
register as DAPE CC CLASS<1:0> H. These two
bits, plus DAPC CS REG <38:37> H and DAPC
NO CC OP (1) L generate the CC function field,
labeled DAPE SET CC <F3:FO> H. The CC
function field bits are sent through a flip-flop to
delay them one microcycle. As the output from the
flip-flop, they are labeled DAPE CC <F3:F0> H.
From there, the CC function field bits become part
of the input to the two condition code PALs that
store the ALU and PSL condition codes. The other
inputs to these two PALs are the C, V, Z and N
condition codes themselves from the last data path
chip operation (DAPH DPC <C,V,Z,N> H). The
PSL condition codes that are stored in these PALs
(PSL <3:0>) are set according to the encoding of
the CC function field and the values ofDAPH DPC
<C,V,Z,N> from the data path chip.

4: Data Path Module 126

Company Confidential

0 125 250 375 500 625 750

CPU CLOCK H

t :

:

@ Decode Add microinstruction @ Execute Add microinstruction in ALU condition codes are: ::

opcode in data path chip data path chip : available from data path chip

:
:

@ Generate function code field F3:F0 @ F3:F0 available as DAPE SET CC @ F3:F0 available as DAPE CC: ::

<F3:F0> from CC Pipeline PAL
:

<F3:F0> from flip-flop
: :

:

ALU and PSL condition codes are
loaded into ALU and PSL PALs

Figure 4-4. Condition Code Setting Timing Diagram

127 Timing ofCondition Code Setting

Company Confidential

The ALU condition codes available as the output of
these PALs (DAPE ALU <C,V,Z,N> H) are the
stored ALU condition codes, and are available as
jump conditions to the microcode, along with
DAPH DPC <C,V,Z,N>. These eight signals are
the inputs to a multiplexer (ALU BR MUX) that
allows microbranches to be taken on either the
result of the current data path chip operation
(DAPH DPC <C,V,Z,N,>) or the stored ALU
condition codes (DAPE ALU <C,V,Z,N>). Both
the true and the inverted output of this MUX
(DAPE ALU BRH and DAPE ALU BR L) go to the
jump MUX as part of the microbranch control
logic.

Macrolevel Branch Control
The condition code test for the macrobranch
instructions is performed in the CC Class &
Branch PAL. (This is the same PAL that contains
the condition code class register.) The inputs to
this PAL are:

@ the same three bits from the decode ROMs
used for the condition class register: DAPF
CC CLASS 1 H, DAPF CC CLASS 0 H, and
DAPF DTO/SP H,

@ bit zero from the IBYTE register, and
e the PSL condition code bits, DAPE PSL
<C,V,Z,N> H from the output of the
condition code PALs.

The three bits in the first category of inputs listed
above form a code to indicate what PSL condition
code bits need to be checked:

CCs
Code Checked Opcodes (hex)

129 Macroinstruction Decode

Company Confidential

BGEQ, BLSS (18, 19)
BNEQ/BNEQU, BEQL/BEQLU (12, 13)
BVC, BVS(1C, 1D)
BGEQU, BCC (1E, 1F)

NORZ BGTR, BLEQ(14, 15)
5 CORZ BGTRU, BLEQU(1A, 1B)

Bit zero from the IBYTE register is the low-order
bit of the macroinstruction opcode and indicates
whether or not the branch should be taken if the
tested condition is met.

0
1
2
3
4

The PSL condition code inputs are the current
values of the conditions being checked.
The output from this CC Class & Branch PAL is
the signal DAPE BR FALSE H. This signal is one
of the inputs to the OR MUX, indicating that the
branch is not to be taken. At IRD, this signal is
always true.

PSL Enable
The PSL enable logic is contained in a 16R4 PAL.
This PAL stores PSL bits 5 and 4: the integeroverflow enable bit (IV) and the trace trap bit (T).
These two bits are shown on the DAP block
diagram, Figure 4-1, as PSL enable. The bits are
written at TO with internal data bus <5:4>.

Size Register
The size register is used to control the data type of
operations being performed in the data path chip,or the size of a datum to be transferred during a
memory request operation.
Size Register Value Data Type

0 byte (8 bits)

4: Data Path Module 130

Company Confidential

1 word (16 bits)
2 not used
3 longword (32 bits)

The size register is loaded at TO of the next cycle
from:

@ internal data bus <1:0> when the size
register is explicitly specified in the long
operand of a Moveoutmicroinstruction.

@ the decode ROMs during macroinstruction
opcode decodes (IRDs).

® microinstruction bits <38:37> (the data type
field) during macroinstruction operand
specifier decodes if the data type field specifies
byte, word, or long. If an encoding of 2 is
specified, then the size register is unaffected.

The outputs of the size register are:
e DAPE DPC DT1 H and DAPE DPC DTO H.

These bits are sent to the data path chip.
e DAPE SIZE 1H and DAPE SIZE 0H. These

two signals are two of the ORMUX inputs (see
Table 3-3).

e BUSID 01 Hand BUSID 00 H. These signals
are driven onto the internal data bus.

The size register is controlled by read and write
signals from the ID bus address decode logic.

Executing Microinstructions

Executing microinstructions is the third of the

eight functions that the data path module

performs. The execution phase of almost all
microinstructions takes place in the data path chip
(DPC). The data path chip consists of a 32-bit data

131 Macroinstruction Decode

Company Confidential

path, register file, and ALU, and is implemented in
3 micron NMOS technology. Figure 4-5 is a block
diagram of the data path chip. The chip
components are described in the following
paragraphs.

Clock Signal
Internally, the chip runs on a two-phase clock
system consisting of Phase 1 (PH1) and Phase 2
(PH2). The clock phases are derived by dividing
the clock input signal, DAPL DPC CLK H, by two
internally on the chip. The clock circuitry external
to the chip synchronizes the internal clock phaseswith the signal DAPL DPC RESET L. The low
going edge ofDPC CLK H that occurs immediately
after DPC RESET L is deasserted forces the
internal clock phases to PH1.
DPC RESET is an active low signal which has the
following effects on the data path chip:

® it disables the data bus tri-state drivers,
® it presets the timer, and clears bits 0 and 1 in

the timer control/status register (TMRCSR),and
@ it clears the control store register, so the chipwill execute NOPs.

The DPC RESET L signal is typically used on
power up or testing. Parity and condition code
signals are undefined during this time. The DPCRESET L signal must be active for at least eightclock periods (four microcycles). It can be asserted
asynchronously to DPC CLK H, but is deasserted
synchronously to DPC CLK H. Figure 4-6 shows
the timing relationship between the chip clock
signals, phases, and the signal LD CSR. LD CSR

4: Data Path Module 132

Company Confidential

causes the DPC microinstruction from the data
path control store to be loaded into the control
store register on the data path chip.

133 Microinstruction Execution

4: Data Path Module

Company Confidential

134

Company Confidential

A
internal data bus
A A data bus

size SIZE1 register save stack

1 PTR1 i

1 csr
1

I
y

store
i RESULT2 register > r

I I

CCs ALU 1

I 1

RESULT1 register >

interval timer

L control & status

Figure 4-5. Data Path Chip Block Diagram

VO port

register 1750 bus A 32-entry ROM bus B

ALU & PTR2
CC function PSL CCs

literal busB register file

opcode short long Program counter
operand operand

shift count ibarrel
shifter

control register

parity
check RESULTO register

135 DPC Block Diagram

Company Confidential

0 125 250 375 500 625

CPU CLOCK H

BASE CLOCK H

DPCCLKH

DPCRESETL : f

PH2 PHI - PHI PH2 - PHI

: :
: : :
: : : :
:

LD CSR

Figure 4-6. Data Path Chip Timing Diagram

137 DPC Timing Diagram

Company Confidential

Control Store Register
The control store register (CSR) is the 21-bit
register that holds the DPC microinstruction. (The
DPC microinstruction is bits <36:16> of the
microinstruction from the control store.) A new
DPC microinstruction (DAPA CS <36:16> H) is
loaded into the CSR at the leading edge of every
PH1, when the LD CSR signal (DAPL DLYD CPU
CLK L) is active. If LD CSR is not active, the CSR
is unchanged and the chip executes the same DPC
microinstruction again; the size control pins are
not sampled during this repeatmicrocycle.

Parity Generator
The parity generator on the data path chip
computes parity on the 21-bit DPC micro-
instruction contained in the control store register.
The result is driven on the parity output pin to the
parity checker external to the chip. Odd parity is
generated; the parity output is one if the sum of the
one bits in the DPC microinstruction is even.

Size Control
The chip supports three data types: byte, word,
and longword. The size of the operation performed
in the data path chip is controlled by the CC/DT
field of the current microinstruction and the size
register.
For all microinstructions except Memory Requests
and I-stream Requests, the CC/DT field determines
the size information that is sent to the data path
chip, and is encoded as follows:
0,1,or2 data type is long

139 Microinstruction IExecution

Company Confidential

3 use size register
For Memory Request and I-stream Request micro-
instructions, the CC/DT field determines the size
information that is sent to the data path chip, but
the field encoding is interpreted this way:
0 byte
1 word
2 use size register
3 longword

The size register is loaded during IRDs (macroin-
struction opcode decodes) from the decode ROM
signals DAPF DT1/RMODE H and DAPF DTO/SP
H; the size register may be loaded during operand
specifier decodes from the CC/DT field of the
Decode microinstruction, signal names DAPC CS
REG <38:37> H.
When LD CSR is asserted, the data type for the
current DPC microinstruction is sent to the data
path chip via the size control pins, SIZE1 and
SIZEO. The signals DAPE DPC DT1 H and DAPE
DPC DTO H carry the encoded data type to the
pins. The encoded data type on the size control
pins is long for all microinstructions (except
Memory Requests and I-stream Requests) if the
CC/DT field does not contain the value 3. If the
current microinstruction CC/DT field does contain
the value 3, or the current microinstruction is a
Memory Request or I-stream Request, the data
type on the size control pins is the same as the data
type currently stored in the size register and is
encoded as follows:
Size

4: Data Path Module 140

Company Confidential

Register SIZE1 SIZEO DataType
0 0 0 byte
1 0 1 word
2 1 0 not used
3 1 1 longword

The data type specified by the size control pins
affects the writing of the general purpose registers
and the setting of the ALU condition codes; the
shift microinstructions are not affected.

Data Path Chip Buses

The data path is 32 bits wide and contains two 32-
bit buses called bus A and bus B. The buses are
precharged during PH2 and are selectively
discharged during PH1.
Bus A is used for short operand sources, with the
following exceptions:
e During the Multiply Step microinstruction,

bus A transfers RESULTO back to the ALU.
e During the Decode microinstruction for a

macroinstruction opcode (IRD), bus A
transfers the PC to the register save stack if
bit <30>, the register save bit, is set (see
Figure 3-2).

Bus B is used for long operand sources and short
operand destinations, with the following
exceptions:
e During the Moveout microinstruction, bus B

is used for the short operand source.

e During the Decode microinstruction, bus B
transfers the data on the external data bus to
the pointer registers.

e During the Restore microinstruction, bus B

141 Microinstruction Execution

Company Confidential

transfers the contents of the register save
stack to the specified general purpose register
(GPR).

e During the [-stream Request micro-
instruction, bus B transfers the PC to the
external data bus.

Arithmetic and Logic Unit
The ALU reads two input longwords, one from bus
A and one from bus B, operates on the longwords,
and writes the result into one of the result
registers: either RESULTO or RESULT1. The
ALU microinstructions are those with opcodes 0
through 15 and are defined in Table 3-1.

Barrel Shifter
The barrel shifter provides four primitive
functions: left shift, right shift, arithmetic right
shift, and double shift (extract).
The barrel shifter concatenates two longwords, one
from bus A, bits A<31:0>, and one from bus B,
bits B<31:0>, to form a quadword. The higher-
order longword is B<31:0>. The longword result,
R<31:0>, is extracted as 32 consecutive bits from
the quadword and is written in register RESULT2.
The bit-offset of the 32 consecutive bits extracted
from the quadword is determined by the shift
count, which can come from either the shift count
register, or from a literal in the short operand field.
The range for the shift count is 0-31. Table 4-4
summarizes the input configurations and extract
counts for the four primitive functions of the barrel
shifter. "LOP" means long operand, "SOP" means
short operand, and N represents the shift count.

4: Data Path Module 142

Company Confidential

Table 4-4. Barrel Shifter Functions
Extract

Function B<31:0> A<31:0> Count

left shift LOP zeros 32-N
right shift zeros LOP N
arith. right shift signext. LOP N
double shift SOP LOP N

Register File
The register file is RAM array containing 47
registers, each 32 bits wide. The registers can be
read from bus A and bus B, and can be written
from bus B. The register addresses are 0-14 and
16-47. Registers with addresses 0-14 are general
purpose registers (GPRs) and may be written as
bytes, words, or longwords. When a GPR is written
with a length less than longword, the higher order
portion is not affected. Registers with addresses
16-47 are always written as entire longwords.
Table 4-5 briefly describes the registers contained
on the data path chip. Registers with addresses
48-95 are described in more detail later in this
section.

143 Microinstruction Execution

4: Data Path Module

Company Confidential

144

Company Confidential

Table 4-5. DPC Registers
Address Register Name B bus Abus Description

0-14 GPR(O)-GPR(14) R/W R Macrolevel general purpose registers; writable as B,W, L
15 PC R/W R program counter
16-23 TMP(0)-TMP(7) R/W R General purpose temporary registers; writable as B,W, L
24-47 TMP(8)-TMP(31) R/W R General purpose temporary registers
48 RESULTO R R Result register 0 from ALU
49 RESULT1 R R Result register 1 from ALU
50 RESULT2 R R Result register from barrel shifter
51 SC R/W shift count register
52 R/W R Pointer register for first operand specifier; pointer registers are zero-extended when read
53 PTR2 R/W R register for second operand specifier; pointer registers are zero-extended when

54 @PTR1 indirect indirect Select working register specified by PTR1 register
55 @PTR2 indirect indirect Select working register specified by PTR2 register
56 TMRCSR R/W timer control and status register
57-63 RSVD Reserved internal to chip
64-95 ROM R Constants ROM

Pointer
read

145 DPC Registers

Company Confidential

Program Counter
The macrolevel program counter (PC) is R15; it is
readable from both buses and writable from bus B.
An entire longword must always be written to the
PC,
The PC can be incremented by 1, 2, or 4. It is
incremented by hardware on the data path chip for
each of the following situations:

@ an opcode Decode microinstruction is executed
@ an operand specifier Decode is executed
@ the long operand of the current microinstruc-

tion specifies IB.EBYTE
@ an I[-stream Request microinstruction is

executed.

Result Registers
The result of any ALU operation is stored in one of
two 32-bit ALU result registers, RESULTO or
RESULT1, as specified by the result bit (bit<31>)
in the DPC microinstruction (see Figure 3-2).
RESULTO and RESULTI can be addressed using
the short or long operand, and the register contents
driven onto either bus A or bus B.
RESULTO and RESULT1 combine to form a 64-bit
wide shift register which is used for Multiply Step
microinstructions. RESULTO is the high-order
longword. During a Multiply Step micro-
instruction, RESULTO and RESULT1 are shifted
right so that the least significant bit (LSB) of
RESULTO becomes the most significant bit (MSB)
of RESULT1. The MSB of RESULTO is the
exclusive-OR (XOR) of the V and N condition code
bits from the last add operation. (For more

147 Microinstruction Execution

Company Confidential

information about Multiply Step, see the section
titled "Multiply Step" in chapter 3.)
The result of any barrel shifter operation is stored
in the 32-bit wide shift result register: RESULT2.

ROM
There are 32 constants stored in ROM. ROM
locations are addressed by the long operand and
are read onto bus B. (See Table 3-5, addresses
64-95.)

Register Save Stack
The register save stack is a pushdown stack
capable ofholding seven 36-bit items.
When bit <30> of the DPC microinstruction is
set, both the contents of the register specified by
the short operand, and the low four bits of the
register address are pushed onto the register save
stack in the following format:

35 43 Q

short operand register contents address

The following microinstructions are exceptions to
this: Decode, NOP, Restore, Clear Save Stack,
Multiply Step, I-stream Request, and Memory
Request. During these microinstructions, bit
<30> is ignored, and nothing is saved on the
register save stack.
The register save stack is popped using the Restore
microinstruction, and is initialized by the Clear
Save Stack microinstruction or by setting the

4: Data Path Module 148

CompanyConfidential

register save stack initialize bit (<25>) in a
Decode microinstruction. (For more information
about the register save stack initialize bit, see
Table 3-4.)

Pointer Registers
Two 6-bit pointer registers, PTR1 and PTR2, can
be used to indirectly address registers 0-31.
The pointer registers can also be used directly as
source operands. When this is the case, their
contents are zero-extended.
PTR1 and PTR2 can be written from bus B, and
read on either bus A or bus B. One of the pointer
registers is always written during a Decode
microinstruction with the number of the register
specified in the operand specifier, or with literal
data if the operand specifier is a short literal; bit
<26> of the DPC microinstruction selects which
one (see Table 3-4). During a Decode microinstruc-
tion, data from the DBUS (data bus, Figure 4-1),
are written into PTR1 for bit <26>=0, and into
PTR2 for bit <26>=1.

Shift Count Register
The shift count register is a 5-bit register that
controls the shift amount in a barrel shifter
operation. The shift count register is readable and
writable via bus B, and it is zero-extended when
read.

interval Timer and TMRCSR

The data path chip contains an interval timer that
is available for use by any macrolevel software
running on the system. The interval timer is
controlled by the timer control/status register,

149 Microinstruction Execution

Company Confidential

TMRCSR.
The interval timer is a 16-bit counter which is
clocked once every microcycle. (One microcycle is
250 ns.) The counter is loaded with the constant
40,000, which causes the counter to overflow once
every 10 msec. Every time the counter overflows,
TMRCSR<1> is set, and the counter reloads itself
with the constant. TMRCSR<1>> stays set until it
is written with a zero via software.
TMRCSR<0O> is the Interrupt Enable bit. The
timer interrupt pin of the data path chip is the
logical AND ofTMRCSR<0> and TMRCSR<1>.
When TMRCSR<0> and TMRCSR<1> are both
set, the signal DAPH TIMER REQ L is sent from
the timer interrupt pin to the interrupt control
logic on the external data path, DAPH TIMER
REQ 1 is the signal represented by the label "timer
req" in Figure 4-1.

Writing a zero to TMRCSR<1> clears the
interrupt. Writing the timer control/status
register has no effect on the contents of the
counter. The Reset signal loads the constant into
the counter, and clears TMRCSR<0> and
TMRCSR<1>.

Condition Codes
The condition codes are the N, Z, V, C and S bits.
The N, Z, V and C bits are set only when an ALU
microinstruction (opcodes 1-15) or a Multiply Step
microinstruction (opcode 27) is performed. During
a logical microinstruction (opcodes 1-7), both the V
bit and the C bit are cleared. The S bit is set only
for a Shift microinstruction (opcodes 16-22). The
N, Z, V, and C bits are set according to the size of
the operand as specified by the size control pins.

4: Data Path Module 150

Company Confidential

There are only four output pins assigned to the
condition codes. Since there are five condition
codes, the Z bit and the S bit share the ZS pin;
opcodes 16-22 drive the S bit onto the pin, and all
other opcodes drive the Z bit onto the pin. Table 4-
6 describes how the condition codes are set.

Table 4-6. Data Path Chip Condition Codes

Affected by
CC Opcodes Description

N 1-150r27 Nisset when theMSB of the
result= 1; that is, the result is
negative.

Z 1-150r27 Zisset when the result=0.
V1-150r27

arithmetic operations (opcodes
8-15 and 27) occurs. Overflow
is implemented by taking the
XOR of the carry in and carry
out of theMSB of the ALU.
V is cleared on logical
operations (opcodes 1-7).

Visset when an overflow on

C 1-150r27 Foraddition andmultiplication
(opcodes 8-10 and 27), C is the
carry out from the MSB of the
ALU. For subtraction and
compare (opcodes 11-15), Cis
the complement of the carry
out.
C is cleared on logic operations
(opcodes 1-7).

16-22 S is set when
RESULT2<0>=1.

151 Microinstruction Execution

Company Confidential

/O Port
The external registers (addresses 96-127) are
located outside the data path chip in the external
data path; they can only be referenced in the DPC
microinstruction long operand. The I/O port is the
interface between the external data path and the
data path chip. The I/O port is connected to bus B.
Table 4-7 briefly describes the registers located
outside the data path chip.
There are 32 data path chip pins that connect the
chip to the external data bus (DBUS). These pins
carry the bidirectional tri-state signals labeled
BUS DBUS <31:00> H. The outputs from these
pins are disabled during Reset. The I/O port drives
the DBUS pins only for the Moveout, I-stream
Request, and Memory Requestmicroinstructions.

4: Data Path Module 152

Company Confidential

Table 4-7. External Registers
Address Register Name Read/Write Description

96 CON.DATA R/W UART data register
97 CON.STATUS R/W UART status register
98 CON.MODE R/W UART mode register
99 CON.CMD R/W UART command register
104 size register R/W bits <1:0> only; zero-extended when read
105 index register bits <3:0> are index register, read/write;

bits <7:0> are the low eight address bits of the boot ROM, write only
106 PSL.MODE R/W bits <1:0> only; zero-extended on reads
107 MISC register Write bits<7:5> diagnostic LEDs bit 2 UART receive interrupt enable

bit 4 break detect enable bit 1 request arithmetic trap
bit 3 UART transmit interrupt enable bit 0 send Q22 bus init.

108 PSL.EN Write only writing bits <5:4> to this register sets the PSL IV and T bits, respectively
108 REQ.ST Read only these bits indicate the status of the saved memory request:

bit] when set, the memory request mode is kernel; when clear, the mode is current
bit 0 when set, access type is DAP to MCT (write); when clear, MCT to DAP (read)

109 PSL.IPL Write only bits <4:0>; these bits are also the high five address bits for the boot ROM
109 INT.SRC Read only interrupt source register; encoding:

0 no interrupt 8 write timeout 12 Q22 bus level 5
1-5 reserved 9 Q22 bus level 7 13 console receive
6 Q22 bus level 4 10 timer request 14 console transmit

power failure 11 Q22 bus level 6 15 not used
110 PSL.CC R/W bits <3:0>; zero-extended when read
111 ALU.CC R/W bits <3:0>; zero-extended when read
112 SID Read system ID register switch pack, bits <7:0> only
113 option Read option switch pack, bits <7:0> only
114 MISC register Read see 107
115 boot ROM Read a single byte from the boot ROM
116-119 RSVD reserved
120 IB.BYTE EXT read a byte from the I-stream; PC incremented by one
121 IB.WORD EXT read a wordfrom the I-stream; PC incremented by two
122 not used
123 IB.LONG EXT read a longword from the I-stream; PC incremented by four
124-127 MEMORY.DATA R/W external memory, allocated as a block

153 DPC Registers

Company Confidential

Transferring Data
Transferring data within the data path module is
the fourth of the eight functions that the data path
module performs. The hardware components are
the internal data bus (ID bus) and the data bus
(Dbus), the sign-extension logic, the ID bus latch,
the ID MUX, the IBYTE buffer, the miscellaneous
register, ID bus control, and zero-generator. These
components transfer data within the DAP module.
The following paragraphs describe each of these
components in turn, and the ID bus timing.

internal Data Bus

There is an 8-bit data path on the DAP module
used to access the registers that must be visible to
external hardware, such as the console UART and
the switch packs. This data path is also used
during instruction decode to pass operand specifier
information into the data path chip. The
information transfer portion of this data path is a
tri-state bus called the internal data bus (ID bus).
All of the tri-state enables on the ID bus are
disabled during T1. The control outputs are
changed during this time and the bus re-enabled at
T2. Data are always clocked into the ID bus
destination at TO.
Data may be driven onto the ID bus from one of
several sources, and may be written from the ID
bus to one of several destinations. The following
components can be sources or destinations: size
register, ALU and PSL condition code PALs, index
register, console UART, MISC register, and the
data path chip (via the ID bus latch when it is a

155 Data Transfers

Company Confidential

source and via the ID bus input latch when it is a
destination).
These components can only be sources: ID MUX,
interrupt source register, IBYTE register, and
zero-generator. The hardware PSL, made up of
three separate registers: current mode register
(PSL.MODE), PSL enable, and the IPL register,
can only be destinations.

Data Bus

The DAP module communicates with the MCT
module over a 32-bit tri-state bus called the
memory data bus, implemented in the 50-pin, over-
the-top cable. The extension of this bus on the
DAP module is the data bus, or Dbus. The Dbus
transfers data between the data path chip and the
memory controller, and between the data path chip
and the rest of the DAP module. There is buffering
between the Dbus and the memory data bus (the
MD bus latches in Figure 4-1) to provide the
required drive for the signals transmitted over the
cable.

Sign-Extension
The Dbus may also be driven by the sign-
extenders. The sign-extend logic is used when
displacements from the instruction stream are
read into the data path chip. Word displacements
are read from the memory controller over the
memory data bus, while byte displacements are
read from the IBYTE register directly. The sign-
extension control enables the sign-extenders for a
read from the ID bus, or for a word displacement
read during an I-stream requestmicroinstruction.
The input to the sign-extenders is bit 7 from the

4: Data Path Module 156

Company Confidential

IBYTE register, bit 15 from the memory data bus,
and information about the data type. The output is
data bus bits <31:16> for words (BUS DBUS
<31:16> H) or data bus <31:08> for bytes (BUS
DBUS <31:08> H).

ID Bus Latch
This latch holds data being driven from the low
eight bits of the data path chip. The ID bus latch is
needed because of the data hold times required by
the UART.

ID MUX
The ID bus multiplexer gates one of the following
sets of inputs onto the ID bus:

@ miscellaneous register <7:0>
@ boot PROM <7:0>

option switches <7:0>
@ system ID switches <7:0>

The output of the ID MUX is ID bus bits <7:0>,
labeled BUS ID <07:00> H.

IBYTE Buffer
The IBYTE buffer is a 74F373 latch located
between the IBYTE register and the ID bus. The
contents of the IBYTE register are driven onto the
ID bus through the IBTYE buffer.

The contents of the IBYTE register are read on the
ID bus when the long operand of the current
microinstruction specifies the IBYTE register's
unique address.
The contents of the IBYTE register are also driven
on the ID bus during operand specifier decodes,

157 Data Transfers

Company Confidential

and stored in one of the two pointer registers on the
data path chip. When the operand specifier mode
is not short literal, bits <5:4> of the IBYTE
register are forced to zero to extract the register
number. (Except for literal mode, operand
specifier bits <3:0> always specify a register
number. The register number is always saved for
an operand specifier decode.) The high two bits of
the IBYTE register contents (the operand
specifier) do not need to be set to zero because the
pointer registers are only six bits wide.
The input to the IBYTE buffer is DAPF I BYTE
<7:0> H. The output is BUS ID <07:00> H.

Miscellaneous Register
This is a read/write register that contains various
control bits. When a write to this register is
performed, the register number specified is 107;
when a read from the MISC register is performed,
the register number specified is 114. The register
bit definitions are the same regardless of the
operation.
The input to this register is the ID bus bits: BUS
ID <07:00> H. The output is eight lines to the ID
MUX; some of these lines are also used for various
control functions. The MISC register bit
definitions are as follows.

07:05 LEDbits
Diagnostic LEDs 1, 2, and 3 are lit by
writing zeros to these bits.

04 break detect enable
When this bit is set, Cca break condition
on the serial line causes a HALT.

03 UART transmit interrupt enable

4: Data Path Module 158

Company Confidential

02 UART receive interrupt enable
01 arithmetic trap request

When this bit is set, a trap is taken at
the next instruction decode.

00 send Q22 bus init
This bit is used to initialize the I/O
bus when requested by a MTPR
instruction.

ID Bus Address Decode Logic
The operation of the ID bus is controlled by the
opcode and long operand field of the micro-
instruction. The ID bus address decode logic
receives bits CS <36:32> from control store (the
microinstruction opcode), bits DTI1/RMODE and
CC CLASS 0 from the decode ROMs, and
CS<20:16> from control store (the micro-
instruction long operand). With these inputs, the
ID bus address decode logic generates signals to
control read and write operations on the ID bus.
The microinstruction opcode specifies the direction
of the data transfer, and the long operand is used
as an address to determine if an ID bus register is
the source or the destination of the data to be
transferred.
Because of the pipeline in the data path chip, the
timing on the ID bus is different for reads and
writes. On a read operation, the data is driven
onto the ID bus at T2 of the microinstruction
requesting the read. The difference on write
operations is that the data is not available from the
data path chip until just before T2 of the
microinstruction following the one requesting the
write. The long operand and some of the control
information is stored in a pipeline register which

159 Data Transfers

Company Confidential

then provides the necessary write enable signals to
the destination registers one cycle later. Figure 4-
7 shows the timing for reads from ID bus registers.
Figure 4-8 shows the timing for writes to ID bus
registers.
Logic to decode the microinstruction opcode is part
of the ID bus address decode logic; the microin-
struction opcode needs to be decoded to allow the
data path elements to behave differently
depending on the operation required. For example,
the memory controller needs to detect Memory
Request and I-stream Request opcodes. The inputs
to the microinstruction opcode decode logic are the
microinstruction opcode field CS <36:32>,andCS
<24> to differentiate between operand specifier
and opcode decodes. The outputs are:

@ a signal named NO CC OP HH to inform the
condition code logic that the condition codes
are not changed for this instruction

@ a signal named DECODE 1L to indicate that
the current microinstruction is a Decode

® asignal named MEMORY OP L to inform the
memory controller that the current
microinstruction is memory function

® a signal named MOVEOUT 1 to control the
direction ofdata flow in the data path.

4: Data Path Module 160

Company Confidential

Move microinstruction
25 300

LOP=1D bus register Move :

CPU CLOCK H

DAPL T1 PULSE H
2

DAPK SET MOVEOUTL : / :::

DAPK EN ID READ H

DAPK SEL GROL

any ID bus tri-state enable

DAPK EN ID BUS INL

iD bus data >
Figure 4-7. Timing of Read from ID Bus Register

:

250 375 6250
:

: :
: : : :

: :

:

: : : :

:
: : :
: :

: : :

: : :

: :
:

:
:

: : :

: : : : :

: :

:

161 ID Bus Reads

Company Confidential

Moveout microinstruction 0 125 250 375 500 625LOP = ID bus register :
Moveout : :

: :
:

CPU CLOCK H

DAPL T1 PULSE H ::

DAPK SET MOVEOUT L :
:

:
:

:

ID BUS TRI-STATE ENABLE :

1D bus data

: :

<

DAPK OPEN LATCHES H :

DAPK END TOIDL : :

:: :

: : :
:

:

DAPK SELGROL : :: : ::

DAPS SAVED SELGROL :

any ID bus write enabie: : :

DAPK WRITE INDEX H
: t

DAPK WRITE SIZE L : : : :

: :: :
: :

DAPK WRITE PSL.MODE L : : : :

DAPK WRITE MISC H
DAPK WRITE PSL.EN H
DAPK WRITE PSL.IPL H
DAPK WRITE PSL CCs L
DAPK WRITE ALU CCs L Figure 4-8. Timing ofWrite to ID Bus Register

All writes occur
on this edge.

:

: :
: :

ID Bus Writes163

Zero-Generator

Company Confidential

Several of the readable registers on the ID bus
contain less than eight bits. The microcode
requires that these registers be zero-extended
when read, so a zero generator is connected to the
ID bus. The zero-generator is implemented as a
16L8 PAL. It is enabled when any register
containing less than eight bits is read; the zero-
generator drives zeros on the unimplemented bits
of that register.
The input to the zero-generator is the low-order
three bits of the microinstruction long operand and
some control signals. The output is bits BUS ID
<07:02> H. If the ID bus register being read is
INT.SRC (interrupt source), PSL.CC, or ALU.CC,
BUS ID <07:04> are driven onto the ID bus as
zeros. If the ID bus register being read is the size
register, PSL.MODE (current mode register), or
REQ.ST (memory request status), BUS ID
<07:02> are driven onto the ID bus as zeros.

Processing Interrupts
Processing interrupts is the fifth of the eight
functions that the data path module performs. The
hardware components are the interrupt priority
level (IPL) register, the interrupt control logic, the
priority encoder, and the interrupt source register.
The following paragraphs describe each of these
components in turn.

IPL Register
The interrupt priority level register stores the
current processor priority. This priority is used by

165 Data Transfers

Company Confidential

the interrupt control logic to determine if an
interrupt request is to be granted.
The IPL is changed when an interrupt is taken,
when a MTPR or REI macroinstruction is
executed, or during certain exception conditions.
These instructions use a temporary register on the
data path chip to store the new IPL until it is
written into the IPL register. The IPL register is
written at TO from ID bus bits <4:0>.

Interrupt Control Logic
The interrupt control logic on the data path
module informs the microcode ofpending interrupt
requests. These requests can be generated by local
hardware (for example, power fail) or can come
from the Q22 bus. The priority encoder and the
interrupt source register are actually part of the
interrupt control logic; this logic is always enabled.
The interrupt request lines from the Q22 bus are
received in an 8640 bus receiver, synchronized to
the CPU clock (DAPL CPU CLOCK H) and sent to
the priority encoder. Interrupt request signals
from internal sources are also sent to the priority
encoder.
The hardware compares the IPL of the Q22 bus
device requesting the interrupt with the current
processor IPL. If the IPL of the Q22 bus device is
higher, the interrupt is served at IPL 17 (hex). The
microcode that services Q22 bus interrupts then
reads the interrupt source register to determine
which Q22 bus device actually caused the
interrupt.

Priority Encoder
All active interrupt requests are prioritized in the

4: Data Path Module 166

Company Confidential

priority encoder. The encoded output value is
compared with the interrupt priority level (IPL)
from the hardware PSL. If the priority of the
request is greater than the current IPL, the
interrupt request flag (DAPN INT REQ H) is sent
to the OR MUX and jump control logic in the
microsequencer.
If an interrupt request is pending during an IRD
(macroinstruction opcode decode), it causes a
microtrap. INT REQ H is the third signal in one of
the ORMUX inputs (see Table 3-3). Since the OR
MUX is enabled for an IRD, the ORMUX output is
0100 if an interrupt request is pending and no
other condition is present; the other next
microaddress bits are forced to zeros (see Table 4-
1). Thus, if an interrupt request is pending and an
IRD is executed, a microtrap is taken to control
store address 0004. A microinstruction routine to
handle interrupt requests starts at this address.
The comparison between the encoded output value
from the priority encoder and the current IPL is
done in a 16R4 PAL; this PAL also contains the
interrupt source register (INT.SRC).

Interrupt Source Register
The encoded output value from the priority
encoder is the input to the interrupt source
register. This value is compared with the
processor IPL; the comparison produces a 4-bit
code which is loaded into the interrupt source
register if the request priority is higher than the
current processor IPL. The microcode identifies
the source of an interrupt request by reading this
4-bit code in the interrupt source register. The
register encoding is shown in Table 4-8.

167 Interrupt Processing

Company Confidential

Table 4-8. Interrupt Source Register Encoding
Interrupting IPL INT.SRC
Event (hex) Register

power failure 1E 1111
write timeout 1D 1000

17 1001Q22 bus level 7
timer request 16 1010
Q22 bus level 6 16 1011
Q22 bus level 5 15 1100
console receive 14 1101

14console transmit 1110
Q22 bus level 4 14 0111

When the interrupt source register is read by the
microcode, the following interrupt requests are
cleared by the hardware if they are the highest
priority: write timeout, console receive, and
console transmit.
The output from the interrupt source register is
bits BUS ID <03:00> and the interrupt request
signal to the microsequencer.

Communicating with the Console Terminal
Communicating with the console terminal is the
sixth of the eight functions that the data path
module performs. The console port consists of an
EIA standard RS232 line interface and a 2661
UART. The external connection to this interface is
through a 10-pin Berg cable header mounted on
the DAP board. The hardware components are the
console UART and registers, the UART buffer,
option switches, the charge pump, and break and
halt detection. The following paragraphs describe

4: Data Path Module 168

Company Confidential

each of these components in turn.

Console UART
The console UART and the RS232 line interface
provide the connection to the console terminal.
The UART is connected through the UART buffer
to the ID bus, and can be read or written directly
by the microcode. The baud rate is selected in the
option switches and can be set for 300, 1200, 9600
or 19.2K baud. The RS232 transmitter and
receiver always operate at the same speed. The
microcode reads the option switches during power
up and programs the UART for the selected baud
rate.
The console UART can request interrupts for
either "transmit done" (DAPP XMIT DONE L) or
"input ready" (DAPP REC RDY L).
The UART clock (DAPP UART CLK H) comes
from a 5.0688 Mhz crystal oscillator that is driven
directly into the UART.

Console UART Registers
The UART has programmable mode and status
registers to select different speed and character
length options. There is also a break detect; the
signal DAPP BREAK H is asserted when the
BREAK key on the console terminal is pressed.
The UART mode and status registers are written
by the microcode on power up to allow the UART to
correctly interface with the console terminal. Four
addresses, 96-99, are assigned to the UART in the
long operand address space. On power up, the
microcode initializes the UART to operate in the
mode required. Once the UART is initialized, it is
accessed only to read and write characters to the

169 Console Communication

Company Confidential

console terminal. Table 4-9 gives the UART
register addresses and a briefdescription.

Table 4-9. UART Registers
Address Register Description
96 CON.DATA Contains character

received or to be
transmitted

97 CON.STATUS Contains UART status
98 CON.MODE Consists of two mode

registers that set
operating conditions

99 CON.CMD UART command
register; sets operating
mode

The following paragraphs describe these registers
in more detail.

UART Data Register
CON.DATA is an eight bit register that contains
the ASCII character to be transmitted to the
console terminal, or the ASCII character received
from the console terminal.
If an ASCII character is to be transmitted to the
console terminal, the character written into
CON.DATA is ID bus bits <07:00>; BUS ID
<07:00> H are written into the UART buffer from
the ID bus, then transmitted to CON.DATA in the
console UART.
Similarly, an ASCII character received from the
console terminal and stored in CON.DATA is read
onto the ID bus as BUS ID <07:00> through the

4: Data Path Module 170

Company Confidential

UART buffer.

UART Status Register
CON.STATUS -contains bits that indicate the
status of the RS232 receiver and transmitter. The
bits are defined as follows.

7:6 data set status
Seahorse does not use the modem
control feature of the 2661 UART, so
these bits are ignored by the
microcode.

5 framing error
This bit is set when a stop bit is not
received following the last data bit of
a received character. Bit 5 is cleared
by writing a one to the reset error bit
in the command register (CON.CMD
<4>).

4 overrun error
This bit is set when an incoming
character is received before the
previous received character has been
read by the microcode. This bit is
cleared by writing a one to the reset
error bit in the command register
(CON.CMD <4>).

3 parity error
This bit is not used in Seahorse.

2 data set change
This bit is not used in Seahorse.

1 receiver ready
This bit is set when a character is
received from the serial line. It is
cleared when the UART data register

171 Console Communication

Company Confidential

(CON.DATA) is read.
0 transmit done

This bit is set when the RS232
transmitter has completed trans-
mission of a character. It is cleared
when the UART data register
(CON.DATA) is written.

Bits <1> and <0> of CON.STATUS are read by
reading the same address as the index register.
CON.STATUS <1> is the signal DAPP REC RDY
L; it is stored in bit 6 of the index register asDAPK
REC RDY (1) H. CON.STATUS <O> is the signal
DAPP XMIT DONE L,; it is stored in bit 7 of the
index register as DAPK XMIT DONE (1) H.
The signals DAPK REC RDY (1) H and DAPK
XMIT DONE (1) H generate the interrupt requests
for "input ready" and "transmit done,"
respectively.

UART Mode Registers
Mode registers 1 and 2 define the general
operational characteristics of the UART and are
accessed only during power up. The two mode
registers are accessed by performing either the
read or the write operation at that address twice.
The first operation accesses mode register 1, and
the second accesses mode register 2.
Mode Register 1. This register is initialized to 4E
(hex) in the Seahorse system to define the
following setup conditions:
bits <7:6> stop bit length

This bit is initialized to 01 to define
one stop bit at the end of the eight-bit
character being sent or received.

4: Data Path Module 172

Company Confidential

bits <5:4> parity control
This bit in initialized to 00 to define
no parity checking.

bits <3:2> character length
This bit is initialized to 11 to define 8-
bit characters.

bits <1:0> baud ratemultiplier
This bit is initialized to 10 to define
an asynchronous, 16X clock rate.

Mode Register 2. This register is used to set
operating conditions and the baud rate of the
UART. Only four baud rates are supported. The
bit definitions for mode register 2 are:
bits <7:4> clock source, break detect enable

This bit is initialized to 1111 to define
the internal baud rate generator as
the clock source, and to enable break
detection.

bits <3:0> baud rates:
0101 300 baud
0111 1200 baud
1110 9600 baud
1111 19200 baud

UART Command Register
CON.CMD is used to enable the UART and set the
operating mode to either normal or self-test. The
bits are defined as follows.

7:6 operating mode
00 normal operation
01 not used
10 local loop back

In this mode, a character
written to the transmitter

173 Console Communication

Company Confidential

will be received by the
receiver.

11 not used
5 request to send (RTS)

This bit is initialized to a one.
4 reset error

Writing a one to this bit clears the
receive error flags in the status
register (CON.STATUS).

3 force break
This bit is initialized to zero.

2 receiver enable
This bit is initialized to a one.

1 data terminal ready (DTR)
This bit is initialized to a one.

0 transmitter enable
This bit is initialized to a one.

Initializing the UART
The correct sequence must be used to set up theUART initial conditions. The sequence is:
1. write mode register 1

2. write mode register 2
3. write command register

If the baud rate is to be changed, the UART must
first be disabled by clearing the receiver and
transmitter enable bits in the command register(CON.CMD <2> and <0>). The UART must
then be reset following the above sequence.

UART Buffer

4: Data Path Module 174

Company Confidential

The UART buffer is a 74LS245 bus transceiver.
The input to the UART buffer is bits BUS ID
<07:00> H when a write to CON.DATA occurs.
The eight bits stored in the UART buffer are then
written into CON.DATA.
When a read from CON.DATA occurs, the input to
the UART buffer is the eight bits from the
CON.DATA register. The eight bits stored in the
UART buffer are then driven onto the ID bus as.
BUS ID <07:00>.

Option Switches
The option switches (an eight-switch DIP) select
the UART baud rate, the default boot device, and
the halt recovery action. The output from the
switches is eight data lines to the ID bus MUX.
The switch definitions are as follows; the default
switch settings are in bold.

<7> reserved
<6> break detect enable

This switch determines the state of
bit <4> in theMISC register:
0 break detect disabled

(MISC <4>=0)
1 break detect enabled

(MISC <4>=1)
<5:4> halt recovery action

These switches specify the action to
be taken when the machine halts:
0 halt
1 boot/halt
2 restart/boot/halt
3 restart/halt

<3:2> boot device selection

175 Console Communication

Company Confidential

These switches specify the boot
device:
0 RX50
1 RDXX
2 ?
3 ?

<1:0> baud rate selection
These switches specify the console
terminal baud rate:
0 300
1 1200
2 9600
3 19200

The boot device selection and halt recovery actions
are explained in more detail in the section titled
"Powering Up" in this chapter.

-12 Volt Generator
The RS232 drivers require a -12 volt power
source; -12 volts is not available from the system
power supply. Therefore, the DAP module
contains a charge pump circuit to generate this
voltage. The circuit operates by alternately
charging two capacitors to 12V and using them
to charge a third capacitor; the -12 volt output is
taken from this third capacitor.

Break and Halt Detection
There are three situations in which break or halt
detection needs to occur:

@ the HALT button on the Seahorse system
front panel is pressed

@ the BREAK key on the console terminal is
pressed

4: Data Path Module 176

Company Confidential

@ a Halt macroinstruction is executed in kernel
mode.

Pressing the HALT button on the front panel
asserts the Q22 bus halt line, B HALT L. This is
received by an 8640 bus receiver. The output of the
receiver is the signal DAPP RCVD HALT H.
DAPP RCVD HALT H generates the signal DAPS
HALT REQ H.
Pressing the BREAK key on the console terminal
asserts the signal DAPP BREAK H. If the break
detect enable bit in the MISC register is set (bit
<4>), DAPP BREAK H generates the signal
DAPS HALT REQ H. (The setting of option switch
<6> determines the state ofbit <4> in theMISC
register.)
Once DAPS HALT REQ H is asserted because
either the HALT button or the BREAK key was
pressed, it generates two signals: DAPK
CONSOLE HALT H which is one input to the jump
MUX, and DAPP T BIT OR CON H which is one
input to the OR MUX. When DAPP T BIT OR
CON HAH is asserted, the output from the ORMUX is
0010 (binary). At the next IRD, a decode trap is
taken to address 0002 in control store (see Table 4-
1). From this location, a jump is taken to the
address of the console halt microroutine. The
console halt microroutine checks if the trace bit (T
bit) in the PSL is set. If it is, the microcode
branches to the trace pending fault microroutine.
If the T bit is not set, the microcode branches to the
console stop microroutine. The console stop micro-
routine displays a halt code on the console
terminal, and examines the option switches to
determine the halt recovery action. Thus, pressing
the BREAK key has the same effect as pressing the

177 Console Communication

Company Confidential

HALT button, ifMISC register bit <4> is set. If
MISC <4> is not set, pressing the BREAK key
has no effect.
When a Halt macroinstruction is decoded, the
output from the decode ROMs is the address of a
microroutine that checks if the PSL mode is
kernel. If the mode is not kernel, a jump to the
reserved instruction fault microroutine is taken. If
the mode is kernel, a jump is taken to the address
of the console stop routine. The console stop micro-
routine displays a halt code on the console
terminal, and examines the option switches to
determine the halt recovery action.

Powering Up
Powering up is the seventh of the eight functions
that the data path module performs. This section
describes the power up signals, power failure, the
initialization state of the CPU, initialization
signals on power up, the option switches, the boot
PROM, and the system identification (SID)
register.

Power Up Signals
A power up sequence is usually the result of
turning the Seahorse system power switch on;
however, a power up sequence is also initiated on
the Q22 bus when the RESTART button on the
system front panel is pressed, or when power fails
then returns.
When DC voltages are first supplied to the Q22 bus
from the power supply, the power supply logic
negates the signal BDCOK H, and then asserts it 3
ms after DC voltages have reached their specified

4: Data Path Module 178

Company Confidential

levels.
The signal DAPL INIT L is asserted by the DAP
module as soon as DC voltages appear,
synchronized with the 62.5 ns clock (MCTM BASE
CLOCK 8), and deasserted two clock cycles (125 ns
minimum) after BDCOK H is asserted. DAPL
INIT Lis generated from BDCOK H.
The signal BINIT L is asserted by the DAP board
as soon as any DC voltages appear; it is deasserted
as soon as DAPL INIT 1L is deasserted. BINIT L
initializes the Q22 bus.
Another power supply logic signal, BPOK H, is
negated when DC voltages first appear, and is
asserted 70 ms after BDCOK HA is asserted. If
power does not remain stable for 70 ms, BDCOK H
is negated; therefore, Q22 bus devices must
suspend critical actions until BPOK H is asserted.
BPOK H must remain asserted for ca minimum of 3
ms.

Power Failure
The DAP module monitors the Q22 bus power
status signals: BPOK H and BDCOK H. A power
failure occurs when the AC voltage to the power
supply drops below 75% of the nominal voltage for
one full line cycle (15-24 ms). When a power
failure is detected, BPOK H is negated. Once
BPOK H is negated, the entire power down
sequence, as follows, must be completed.
BPOK Hq is synchronized with the CPU clock (CPU
CLOCK H) to generate the signal DAPK PWR
DWN L; DAPK PWR DWN L is asserted when

interrupt signal generated to inform the
macrolevel software thata power failure has

BPOK H is negated DAPK PWR DWN is the

179 Power Up

Company Confidential

occurred. A power fail interrupt is initiated if the
current IPL is less than 1E (see Table 4-8).
The software executes a MTPR macroinstruction
that sets bit <0> of the MISC register; bit <Q> is
the "send Q22 bus initialization" flag. The MTPR
instruction is executed no later than 3 ms after the
negation of BPOK H. This causes BINIT L to be
asserted for 8-20 us.
Once BPOK H is negated, the power supply
guarantees a minimum of 4 ms before BDCOK H is
negated. This 4 ms allows mass storage and
similar devices to protect themselves against
erasures and erroneous writes during a power
failure.
DAPL INIT L is a synchronized version ofBDCOK
H; it is asserted two clock cycles (125 ns minimum)
after BDCOK HH is deasserted.
The DAP module asserts BINIT L again, no later
than 1 us after the negation ofBDCOK H.
DC power must remain stable for Ccraa minimum of 5
us after BDCOK H is negated.
Figure 4-9 shows the power up and power down
sequences, and the signal states for normal power.

4: Data Path Module 180

HH
Company Confidential

DC power :

(+5, +12)

3ms min
: : :

min : : :

BDCOK H :
:

4msmin. : :

125 ns 125 ns
: :

min : :

min :
:

DAPLINITL 4 :

125 ns :
8-20 ps: 1ps :

: max : :

min :

BINITL 3ms: :
:

max :

Figure 4-9. Power Up/Power Down Timing

181 Power Up/Power Down

> : : :

3 ms min. : :

BPOKH : :

70 ms :

min :

Power Up Normal Down
Sequence Power Sequence.

: : :

Company Confidential

initialization State
The initial state of the KD32-AA CPU is set by the
INIT signals: DAPL INIT L, DAPL INIT A L, and
DAPL MCT INIT L, which are the buffered outputs
of DAPL INIT H. (DAPL INIT H is generated by
the Q22 bus signal BDCOK H.) The initial state of
the CPU is defined as follows.

® The current microaddress is ZERO; that is,
the first microinstruction executed following
the deassertion of DAPL INIT L will be from
location 0000 in control store.
The control store parity error flag is cleared.
No interrupt requests are pending.
The index register is cleared.
The hardware PSL is cleared.
The MISC register is cleared, causing the
three diagnostic LEDs to be lit.

e The memory request signal (DAPR MEM
REQUEST L) is in the deasserted state.

@ Q22 bus signal BINIT L is asserted during the
deassertion ofBDCOK H.

In addition, all of the flip-flops that synchronize
the DAP clock signals are set to a known state.
This guarantees that the clock signals have the
correct relationship to each other.

Initialization Signals on Power Up
When the signal DAPL INIT L is asserted during
power up, it generates the signal JAM UPC L,
which causes the microprogram to jump to the
microinstruction located at control store address

183 Power Up

Company Confidential

0000.
The signal BPOK H is synchronized with the CPU
clock (CPU CLOCK H) to generate the signal
DAPK PWR DWN L. The signal DAPS PUP H is
generated by DAPK PWR DWN L, but is
synchronized with the delayed CPU clock (DLYD
CPU CLK H). DAPS PUP H, when asserted, clears
JAM UPC L.
DAPL INIT L generates the signal DAPL SET
DPC INIT L, which in turn generates the signal
DAPK DPC INIT L. The assertion ofDAPS PUPH
causes the signal DAPK DPC INIT L to be
deasserted on the next leading edge of the delayed
CPU clock. DAPK DPC INIT L generates the
signal DAPL DPC INIT L. The deassertion of
DAPK DPC INIT L causes the signal DAPL DPC
INIT L to be deasserted on the next trailing edge of
the 125 ns data path chip clock (DPC CLK H).
(The assertion of DPC INIT L resets and
synchronizes the data path chip.)
On the next leading edge of the CPU clock
following the deassertion of DPC INIT L, the
microinstruction located at control store address
0000 is executed. Figure 4-10 shows all of these
power up and initialization signals, and their
relationship to the various clock signals.

4: Data Path Module 184

Company Confidential

0 125 250 375 500 625 730 875 1000 1125 1250

MCTM BASE CLOCK H

DC power :

(+5, +12)
: : : : :

: : :

LL7
BDCOK H : :

:

:

: : : : :
: :

DAPLINITL :

BPOKH : : :

70 ms min. :

CPU CLOCK H

DLYD CPU CLOCK H : : : :

wean

DAPK PWROWNL

aps PUPH

DAPK DPC INITL

yamupch

DAPL DPC INITL
Execute microinstruction
at 0000 In control store;

Figure 4-10. DAP Initialization Signals : ;
data path chip set to PH1

:

185 Initialization Sequence

Company Confidential

Option Switches
In addition to specifying the baud rate and
defining the default boot device, the option
switches select the halt recovery action.
When a halt condition is encountered, the console
stop microroutine prints a halt code on the console
terminal. The microcode then examines option
switches <5:4> to determine the halt recovery
action. These switches are also examined during
power up after the successful completion of
microverify to determine the power up action. The
switches select one of four possible strategies:

@ If <5:4>=0, the system enters console mode
and waits for input from the console terminal.
If <5:4>=1, the system attempts to boot
using the default boot device specified in
switches <3:2>. If the boot fails, the system
enters console mode.

e If <5:4>=2, the system attempts to restart.
If restart fails, the system attempts to boot

using the default boot device. If boot fails, the
system enters console mode. This is the
default configuration for the switches.

e If <5:4>=3, the system attempts to restart.
If restart fails, the system enters console
mode.

Boot PROM
This is an 8192 by 8-bit-wide EPROM used to store
the VAX macrocode necessary to boot the Seahorse
system. Four macrocode routines are stored in the
EPROM, one for each possible boot device. Option
switches <3:2> select which of the fourmacrocode

187 Power Up

Company Confidential

routines is addressed. Once the appropriate
macrocode routine is selected, the PROM is
addressed by loading the low eight bits of the
address into the index register and the high five
bits into the PSL.IPL register. The proper address
bits are loaded into the index and PSL.IPL
registers by the initialization microcode routine.
Thus, a byte at a time is accessed in the selected
bootstrap macrocode routine.
As each byte is accessed, it is driven onto the ID
bus and out the memory data bus to the memory
controller. From there, the byte is written into the
Q22 bus memory. In this manner, the entire
bootstrap macrocode from the PROM is copied into
main memory. Once it is copied, the main memory
address of the first byte is loaded into the program
counter, and the bootstrap macrocode executed.
The bootstrap macrocode reads logical block one of
the selected boot device into the second page of
main memory and sets the stack pointer and the
program counter to that address; that is, to the
address of the first byte in the second page. The
program in the second page of main memory is
then executed. It is the responsibility of this
program to complete the bootstrap process.

System Identification Register
The system identification register is a read-only
constant register, four-bytes wide; the high-order
three bytes are built by software and the low-order
byte is set in an eight-switch DIP. The high-order
byte contains a number that uniquely identifies
the processor; Seahorse is identified by the number
7. The next high-order byte (bits <23:16>) is
reserved; bits <15:8> specify the microcode

4: Data Path Module 188

Company Confidential

revision level. The low-order byte specifies the
hardware revision level; this is the hardware part
of the register and is read on the ID bus. A buffer
is located between the switch pack and the ID bus
to drive the data set in the switches onto the ID
bus. (Note: SID is not read on power up; only when
anMFPR is executed. Info in SID is used for error
logs. This info does not belong here and will be
moved somewhere else for second draft.)

Communicating with the MCT
Communicating with the memory controller is the
eighth of the eight functions that the data path
module performs. This section describes the data
interface, the control interface, interface control
signals, stalls, the MD bus latches, memory
function latches, memory function control, the sign
extenders, the PSL.MODE register,and memory
reference timing.

Data Interface
The data interface between the data path and
memory controller modules is the memory data
bus (MDB) which carries 32 tri-state signals. The
memory data bus is part of the 50-pin, over-the-top
cable that connects the two boards. The tri-state
signals are named BUS MEM DATA <31:00>.
The tri-state enables for these data bus signals are
controlled by either the DAP module or the MCT
module, depending on the direction of data
transfer.
The following situation causes BUS MEM DATA
<31:00> to be sent from the memory controller to
the data path module over the memory data bus: a
memory request microinstruction is executed,

189 Power Up

Company Confidential

followed two cycles later by the execution of a
microinstruction that is not a Moveout and that
has MEMORY.DATA specified as the long
operand. (MEMORY.DATA represents addresses
124-127; these addresses are allocated as a block.
MEMORY.DATA can be thought of as the address
of the memory data bus. When the long operand of
a microinstruction specifies MEMORY.DATA, the
data to be operated on are the 32 bits currently on
the memory data bus.)
There are three microinstructions that cause BUS
MEM DATA <31:00> to be sent from the data
path module to the memory controller over the
memory data bus. They are:

@ a Memory Request} BUS MEM DATA
<31:00> represent a virtual address.

@ an I[-stream Request; BUS MEM DATA
<31:00> are the unincremented contents of
the program counter.

@ a Moveout; the long operand specifies
MEMORY.DATA.

Control Interface
The control interface between the data path and
memory controller modules consists of eight
bidirectional signals, seven unidirectional lines
from DAP to MCT, and eleven unidirectional lines
from MCT to DAP, which return the status of the
memory controller to the DAP microsequencer.All of these control signals and the clocks are
carried on the C/D slots of the backplane (see
Figure 1-3). The eight bidirectional signals are the
memory control bus (MCB) and are named BUS
MEM CTL <7:0>.

4: Data Path Module 190

Company Confidential

The memory control bus is a time-multiplexed tri-
state bus which may be driven from either the
DAP or the MCT module. Control information
from the DAP microinstruction is driven in the
first halfof the microcycle (during T1). Instruction
stream bytes are driven from the memory
controller to the IBYTE register during the second
halfof the microcycle (during T3).

Interface Control Signals
When a microinstruction specifying a memory
request function is decoded, the data path module
drives the contents of the register specified by the
long operand (usually a virtual address, but
possibly a physical address or the actual data) out
the data bus and onto the memory data bus. The
encoded memory function is driven onto the
memory control bus. The data path module then
asserts the memory request line, DAPR MEM
REQUEST H. This signal informs the memory
controller that a new function code is on the control
bus.
The memory controller responds by accepting the
32 bits on the memory data bus (a virtual address,
physical address, or data), starting the appropriate
cache or bus cycle, and asserting the request
acknowledge signal, MCTT REQ ACK L. When
the data path sees the request acknowledge signal,
it removes the 32 bits from the data bus. If the
memory function is a read, the data path also
disables the tri-state drivers to allow the data
being read to be driven from the memory controller
to the data path.
The microcode does not expect a response from the
memory controller until the microcycle following

191 MCT Interface

Company Confidential

the next microcycle; the memory controller error
status signals are in an undefined state until then.
After this intervening microcycle, a Move or
Moveout microinstruction to read or write the data
may be executed, and a microbranch taken to test
the status of the operation. (The data to be read or
written are the data currently on the memory data
bus; this is specified by MEMORY.DATA in the
long operand of the Move or Moveout micro-
instruction.)
If the microcode does not execute the Move or
Moveout microinstruction in the second cycle
following the memory request, the data path
assumes that final status is not required and
terminates the memory function sequence.
Byte displacements are read from the instruction
stream by enabling the IBYTE register onto the ID
bus; the Memory Request microinstruction is not
used. For this case, the microcode must always
test whether the byte in the IBYTE register is
valid, to insure that valid data has been read. The
data in the IBYTE register is valid when the signalDAPR IB INVALID H is not asserted.

Stalls
Stalls are caused by one of three situations. If the
microcode executes a Move or Moveout micro-
instruction following a Memory Request or an I-
stream Request and REQ ACK has not been
received from the memory controller, the data path
hardware stalls the operation for one full cycle
(250 ns) by not asserting the LD CSR signal to the
data path chip and by delaying the clock edges to
the data path control logic. At the end of this cycle,
REQ ACK is tested again and the stall repeated if

4: Data Path Module 192

Company Confidential

REQ ACK ss still not asserted. Thus, the DAP
hardware stalls the execution of the microprogram
by continuously repeating the Move or Moveout
microinstruction until REQ ACK is asserted. Note
that this type of stall only occurs when a
microinstruction with MEMORY.DATA specified
in the long operand is executed following a
memory requestmicroinstruction.
The second situation causing a stall occurs when
the memory controller asserts the signal MCTN
MEM BUSY H. Ifthe memory controller is unable
to deliver status or data in the cycle in which the
information is expected, the memory controller
assertsMEM BUSY. Upon receiving MEM BUSY,
the DAP hardware causes a stall until MEM
BUSY is negated.
A stall also occurs when a microinstruction selects
one of the console UART registers. A stall
condition is generated for a single cycle. This is
because of the long write pulse and read time
needed by the 2661 UART.

MD Bus Latches
The 32 signals on the data bus are latched into four
74F373 latches, collectively named the MD bus
latch. From this latch, the signals are driven onto
the memory data bus and then to the memory
controller. Similarly, signals coming into the DAP
module from the memory controller on the memory
data bus are latched into four more 74F373
latches, collectively named the MD bus input
latch. From the MD bus input latch, the signals
are driven onto the data bus.

The MD bus latch and the MD bus input latch are
needed because the memory controller uses a 125

193 MCT Interface

Company Confidential

ns cycle and may not be in the correct half of the
250 ns DAP cycle when data are being sent to the
memory controller or received by the data path.
The signal DAPK OPEN LATCHES H controls the
MD bus latch, opening it to capture the data that
are to be driven from the data bus onto the memory
data bus. The memory controller module controls
the MD bus input latch with the signal MCTN MD
BUS IN LE H, opening it to capture the data that
are to be driven from the memory data bus onto the
data bus.

Memory Function Latches
The memory function latches are part of the
memory function control block shown in Figure 4-
1. There are two 74F373 latches: the first one
holds the current memory function code and the
second holds the previous memory function code.
The bits saved in the first memory function latch
are microinstruction bits DAPA CS <38:37> and
<28:23> when a Memory Request microinstruc-
tion is decoded. Bits <38:37> actually come from
the size register but still represent the data type.Bit <28> is the data flow bit, and <27:23> are
the memory function code (see Figure 3-4).
These eight bits are saved in the first memory
function latch until the memory controller is
available. The latch is normally open and is closed
when a memory request is started. When the
memory controller is ready for the function code,
the latched bits are driven from the first memory
function latch onto the memory control bus as BUS
MEM CTL <7:0>.
If the latch bit, bit <31>, of aa Memory Request
microinstruction is set when the microinstruction

4: Data Path Module 194

Company Confidential

is decoded, bits <38:37> and <28:23> are also
saved in the second memory function latch. Ifa
page crossing or memory management fault occurs
when this microinstruction is executed, the
microcode retries the microinstruction after it fixes
the condition that caused the failure. The memory
request information needed by the microcode to
retry the microinstruction that failed is the
information latched in the second memory function
latch. Thus, when a Memory Request micro-
instruction is repeated, the contents of this second
memory function latch are driven onto the memory
control bus as BUS MEM CTL <7:0> instead of
the contents of the first memory function latch.
(The first memory function latch contains memory
request information from the most recent Memory
Request microinstruction that was executed as
part of the microroutine invoked to fix the
condition that caused the failure.)

Memory Function Control
When a Memory Request or I-stream Request
microinstruction is decoded and executed, twelve
bits of control information are sent to the memory
controller from the data path module. These
twelve bits inform the memory controller about the
requested memory function.

Eight of the twelve bits are the microinstruction
bits latched in the memory function latch and
driven over the memory control bus as BUS MEM
CTL <7:0>. These eight bits consist of the
microinstruction data type field (bits <38:37>),
the 5-bit memory function field (bits <27:23>),
and the data flow bit (0< 28>).
The other four bits of control information are sent

195 MCT Interface

Company Confidential

to the memory controller over the backplane. They
are: DAPT MEM REQ MODE <1:0>, DAPT
MODIFY, and DAPT SECOND PART L.
The two MEM REQ MODE bits indicate the access
mode, which is used for protection checking. If the
access mode bit in the Memory Request
microinstruction (bit <30>) is set, the value of
MEM REQ MODE <1:0> is 0 to indicate kernel.
If the access mode bit in the Memory Request
microinstruction is clear, MEM REQ MODE
<1:0> have the same value as the current mode
bits (DAPR CUR MODE <1:0>) in the current
mode register (PSL.MODE).
The signal DAPT MODIFY H is asserted when the
modify intent is write; that is, bit < 29> in the
Memory Request microinstruction is a one.
The signal DAPT SECOND PART L is the second
part flag. This signal is always part of the control
information sent to the memory controller when
there is a memory function request, but it is
usually not asserted. When the signal is not
asserted, it means that the first part of a memory
request is to be executed; the majority of memory
requests only have one part.
If a page crossing or memory management fault
occurs when a microinstruction is executed, the
microcode jumps to a subroutine to fix the
condition that caused the failure. The
microroutines that fix these conditions contain
Memory. Request microinstructions with
REPEAT.FIRST or REPEAT.SECOND memory
functions.
When a REPEAT.FIRST Memory Request is

When DAPR REPEAT L is not asserted, it means
executed, the signal DAPR REPEAT L is asserted.

4: Data Path Module 196

Company Confidential

that the current memory request is specified in the
current microinstruction and no repeat is
necessary. When DAPR REPEAT L is asserted,
the previous memory function bits latched in the
second memory function latch are driven onto the
memory control bus as BUS MEM CTL <7:0>.
When a REPEAT.SECOND Memory Request is
executed, DAPR REPEAT L is also asserted and
with the same effect. But in addition, the second
part flag is set; that is, the signal DAPT SECOND
PART Lis asserted.
When the memory controller receives these twelve
signals, it reassembles them into a control word
and uses this control word to access its own control
store. The selected memory controller microcode
routine then carries out the requested memory
function.

PSL.MODE Register
PSL.MODE is the current mode register, address
106. The current mode bits of the processor status
longword (PSL bits <25:24>) are stored here. The
current mode register is used to inform the
memory controller of the access mode of the
current memory request.
PSL.MODE can be read or written. The register is
written when an REI (return from exception or

interrupt), a CHM (change mode), or an LDPCTX
(load process context) macroinstruction is
executed. The PSL.MODE register is also written
for interrupts and some exceptions. The new
current mode is computed in the data path chip
and written to the PSL.MODE register from the
low two bits of the internal data bus, BUS ID
<01:00>.

197 MCT Interface

Company Confidential

The output from PSL.MODE is DAPR CUR MODE
<1:0>; these signals are the input toa PAL whose
output is DAPT MEM REQ MODE <1:0>. Thus,
the value of DAPR CUR MODE <1:0> is the
value ofDAPT MEM REQ MODE <1:0>. (This is
true unless the microinstruction is a repeated
memory request; in this case, the value of DAPT
MEM REQ MODE <1:0> is the access mode that
was saved in the second memory function latch.)
The MEM REQ MODE signals tell the memory
controller what access mode to use for the
protection check on the requested memory
function.

Sign-Extenders
If an I-stream Request microinstruction is
executed and the long operand specifies IB.WORD,
a word of data is read from the instruction stream
and returned to the data path module over the
memory data bus. After the word ofdata is latched
in the MD bus input latch, it is driven onto the
data bus. Here, it is extended to 32 bits by the
sign-extension logic, and delivered to the data path
chip.
For more information about sign-extension, see the
paragraphs titled "Sign-Extension" in the "Data
Transfers" section of this chapter.

Memory Request Timing
Figure 4-11 shows the timing of a read from
memory, and Figure 4-12 shows the timing of a
write to memory. Both diagrams assume a cache
hit. The signal DAPK OPEN LATCHES is
asserted to open the MD bus latch. This latch is
opened once for a read, to capture the contents of

4: Data Path Module 198

Company Confidential

the location specified by the long operand before
those contents are driven onto the memory data
bus. (The contents are usually a virtual address,
but can also be a physical address or the actual
data.)
DAPK OPEN LATCHES is asserted twice for a
write to memory; first to capture the virtual
address (or physical address or data) to be driven
onto the memory data bus, and second to capture
the data to be written to memory before the data
are driven onto the memory data bus. The data to
be written appear at the output pins of the data
path chip 80 ns into the EXECUTE cycle of the
Moveout microinstruction.
Table 4-10 summarizes the DAP/MCT interface
signals, lists the time during which the signal is
asserted, and briefly describes the function of the
signal.

199 MCT Interface

4: Data Path Module

Company Confidential

200

Company Confidential

0 125 250 375 500 625 750 875
e

1000

: Memory Request NOP : : Move memoryy data:

CPU CLOCK H

DAPR MEM REQUEST L : :
: : :

MCTT REQ ACK L

DAPK OPEN LATCHES H
:

: :
: :

DAPE DRIVE MD BUS L N vy,: : :

DAPR EN MD BUS IN L : :
:

MCTT MEM BUSY H : :

VA :

Data on memory data bus VA out data in

Figure4-11.Timing of a Read from Memory

201 Read from Memory

Company Confidential

0 125 250 375 500 625 750 875 1000

? Memory Request : NOP Move memory data

CPU CLOCK H

DAPR MEM REQUEST L
: : : : : :

MCTT REQ ACKL : : : :

DAPK OPEN LATCHES H
:

: : :
: : : :

DAPE DRIVE MD BUS L : : :

MCTT MEM BUSY H

: : VA out : data outData on memory data bus

Figure 412. Timing of a Write to Memory

203 Write to Memory

Company Confidential

Table 4-10. DAP/MCT Interface Signals and Timing
Signal Name Timing (at DAP pins) Function

DAPL MCT INIT L Initialize system to a known state; asserted asynchronously, negated 12 ns following
low-high edge of 16 Mhz clock

DAPLMCT 250 L TO+ (0-8) to TO Memory controller copy of the CPU clock
MCTM BASE CLK H Basic clock source used on DAP module
MCTM DPC SRC L
BUSMEM DATA <31:00>

BUSMEM CNTL <07:00>

DAPRMEM REQUEST L
DAPTMEM REQMODE <1:0>
DAPTMODIFY H
DAPT SECOND PART H

MCTT REQ ACK L
MCTT MEM ERROR H
MCTN MEM BUSY H
MCTN MD BUSIN LEH

MCTT TB MISS H
MCTT MOD REF H
MCTP NXT IB VALID H
MCTN PAGE CROSS H
MCTBWRT TMO L
MCTT IB ERROR H
MCTN DATA 15 H
DAPR IB TAKEN L

T0+ 342 ns to 500
T0+730 ns to 790
T0+ 83 ns to 130
T0+ 220 ns to 260
T0+79 ns to 750
T0+90 ns to 750
T0+90 ns to 750
T0+90 ns to 750

T0+ 345 ns to 395
T0O+ 76 ns to 150
T0+ 100 ns to 150

T0+76 ns to 250
T0+76 ns to 250
T0+76 ns to 250
T0+76 ns to 250
T0+ 200 ns to 275
T0+76 ns to 250
T0+200 ns to 250
T0+70 ns to 125

Inverted version of clock needed for data path chip
Data or virtual address from data path to memory controller
Data from memory controller to data path
Memory function code from DAP to MCT
Instruction stream byte from MCT to DAP
Informs memory controller of new function code on control bus
Access mode used for protection check; encoding as defined in PSL
A write will be attempted to the current address.
The first part of this request has already been attempted.
This signal is asserted when a Memory Requestmicroinstruction with the
REPEAT.SECOND function is executed. The signal is deasserted when a Memory
Requestmicroinstruction with the latch bit (<31>) set is executed.
Request acknowledged; the MCT has accepted the command and the virtual address.
A memory error has occurred.
The memory controller is busy.
MD bus input latch control for incoming data; needed to keep the data stable across a
250 ns edge for the data path chip. This signal is asserted as long as the MCT
memory data bus transceivers are directed out.
Translation buffermiss
Modify request refused
IBYTE valid; the IBYTE register may be loaded when this signal is active.
A memory reference across a page boundary has occurred.
A Q22 bus timeout occurred on the last write operation; valid for a single cycle
MCT cannot supply the next byte from the I-stream due to an error or a page crossing
Data bit 15; used for sign extending
The microsequencer has used the current contents of the IBYTE register; asserted
during decode microinstructions, I-stream requests, IB refills and microinstructions
specifying IB.BYTE as the source.

205 DAP/MCT Signals

