DATE October l, 1964
SUBJECT RPI, Troy, New York
TO
FROM Bob Maxcy for George L. Rice

Harlan Anderson Bob Lane
Nick Mazzarese Gerry Moore

The trustees have given President Folsom the go ahead to make his decision as he sees fit.

George has made an appointment with him on October 6th at 10:30.

The major competition is l00K over our price, and they haven't negotiated any better terms as of yet.

The NSF money hasn't been awarded but should be coming shortly.

SUBJECT
TO
Stan Olsen
Bob Beckman
cc: Marlan Anderson

DATE October 1, 1964

FROM Kenneth H. Olsen

The key part of repricing the PDP-7 and PDP-5A will be in restating the warranty. The general suggestion has been that we give warranty only on parts and that we extend it for a period of one year. This has to be very carefully spelled out and considered but it is important that we do it right away so that we are confident of our pricing.

Ken Olsen

KHO:ech

DATE October 1, 1964
SUBJECT Progress Report
$\begin{array}{llll}\text { H. Anderson } & \text { FROM } & \text { Norman Hirst } \\ \text { L. Portner } & & \\ \text { J. Ridgeway } & \end{array}$

We are engaged in the following activities:

1. Software Quality Control
2. Software Documentation and Distribution

Of these, the first is proceeding well. We are receiving documented reports, logging them in, and forwarding them to the people involved. Of the programs going out to MAC, all of the reported bugs--to date-- have been fixed except for those in MACRO6.

It should be emphasized that the mechanism exists and is working to handle software trouble reports. All that remains is to be sure our customers know where to send their complaints.

The second item involves the writing of, control of, and distribution of documents. The system for control and distribution is established and working well. The details of this system will be documented in PM 1175 .

The only distribution problem we have had is getting a sufficient number of copies of such things as listings for maindecs. An arrangement has been worked out with Ralph Wooldridge for getting these reduced and printed quickly and cheaply. All of these are marked preliminary and are intended to give those people who need to check out machines something to work with until the final packages are available. (However, final packages in the old sense may prove unnecessary.) We now have nine maindec programs available for distribution and three partially complete.

The most immediate problem in generating documents is the Project MAC documents. I have collected all of these into a notebook with the expectation of the I/O package write-up. Dave Gross has promised to deliver that today (October 1). I am now going through the documents and revising them vis a vis the MAC system tape.

The MAC system tape will consist of the following:
Field $\phi: \quad$ MACR06
Field 1: DDT/Linking Loader
Field 2: DDT/Monitor IO/Linking Loader
Field 3: For their use (Lisp?)
The tape also contains DEC Dump starting at block 1 plus a DEC tape Loader for DEC Dump format in block \varnothing. The four fields above begin in blocks 4, 204, 404, and 604.

The modus operandi for the system tape is to load block \varnothing by the Shadow Mode Loader. The DEC Tape Loader will then load DEC Dump. The user can then load core from one of the above fields.

To go with this system, we are going to supply the following documents:

```
    6-UP-DEC Shadow Mode Loader-6M
    6 1-SC-DEC System Tape Files-6S-1
    6-TP MAC-DEC Linking Loader Formats-6S-Pre 1
    6-TP MAC-DEC MACR06-0M-Pre 3
    6-TP MAC-DEC Linking Loader-OM-Pre 2
    6-UP-DEC DECdump-UM-Pre 1
    6-UP-DEC DDT6-UM-Pre 3
    6-UP-DEC DEC Tape Loader-GM-Pre 1
```

In addition, we shall supply the non-monitor I/O write-up. This does not have a "crazy number" yet.

The above documents will be suitably printed and inserted in the PDP-6 notebooks, which I ordered and received some weeks ago, along with suitable dividers to allow for future expansion. The silk screen to say "PDP-6 Software" is now being made by the art department.

As of now, we are a couple of days behind on this project. However, it does look as if the books will be ready in time to go out by the time the machine is on the air.

One final topic--the more general and long range documents have been forced to take a back seat during the past few weeks due to the number of immediate and short range requests I have had to attend to. I now have a secretary who is able to handle almost all of the latter. Now I can get to the major documentation work, along with Dave Gross who is going to do the monitor.
$\mathrm{NH}: 1 t$

DATE October 1, 1964
SUBJECT
TO H. Morse
J. Shields
L. Hantman
G. Bell
S. Mikulski
H. Anderson
J. Kilduff
N. Mazzarese

In an analysis of PDP-6 Prototype log reports (8-17-64 through 9-20-64) for average useage time some other statistics fell out which might interest those above.

Be careful about drawing conclusions from the figures below; one person's complaint rate may be because average use is high or because more complex equipment is being used.

User	Times Used	Logged Complaints	$\%$ Complaints	Hours Used	\% used of Total	Average Use (hrs)	Meantime Between Complaints (hrs)
Morse	23	15	65\%	53	12\%	2.3	3.5
Segal	33	3	9\%	37	8\%	1.1	12.3
Frazier	29	3	9\%	24	5\%	0.8	8:0
Samson	19	11	58\%	34	7\%	1.8	3.1
Piner	16	5	31\%	21	5\%	1.3	4.2
Watt	16	2	13\%	32	7\%	2.0	16.0
Hyman	10	0	0	14	3\%	1.4	-
Tape Prep.	15	0	0	18	4\%	1.2	-
Maint .	33	N/A	N/A	87	19\%	2.6	N/A
Outside	33	3	9\%	103	23\%	3.1	34.3
Other	39	7	18\%	33	7\%	0.9	4.7
Total	266	49	19\%	456		1.6	

Equipment
Arithmetic Processor
High Speed Printer
DEC tape
Teleprinter
Other
Total

Complaints
17
14
13

- 9

8
61

Maint. Replies *
I
11
2
5 5
$\overline{24}$

* Because maintenance replies sometimes answer more than one complaint it is difficult to determine from these figures how many complaints were not probed or how many were unanswerable (ie. "Reader loses")

AHH/mro

DATE October 1, 1964
SUBJECT Progress of Applied Programming
TO Computer Guidance Committee FROM Jack Ridgeway

This memo is in response to inquiries about the new programming group by members of the September 29 Computer Guidance Committee meeting.

The Applied Programming Group was established formally by the Computer Guidance Committee about 1 August. Personnel in the group are: Norm Hirst, Martin Thomas (part time $10 \mathrm{hrs} /$ week), Bill Hermistone (summer hire - has gone back to school), Henrey Burkhardt (temporary - leaves August 65), Joan Cowles, and myself.

Our first effort has been software documentation. We have rewritten the following manuals: DDT-4, Canute 4, PDP-4 Assembler and PDP-5 Fortran. We are writing PDP-5 program write-ups, PDP-5 Symbolic Tape Editor, PDP-6 users manual for the monitor, PDP-5 assembler (MACRO-5), DDT-5, PDP-4/7 write-ups and PDP-4/7 Fortran. As soon as these manuals are finished we will write or re-write PDP-6 Fortran, PDP-4/7 programming manual, DDT-6, MACOR-6, PDP-5 floating point, PDP-4/7 floating point, and software installation manuals.

Our programming efforts since 1 August have consisted of a PDP-5 master tape duplicator for the high speed reader punch, a PDP-5 demonstration package, new pulse height analysis programs and we have re-programmed the PDP-5 library in MACRO-5 format.

We have been in-house users all of the software that we have written manuals for to verify that the documents are compatible with the performance features and operating characteristics of the systems we are describing.

The sales support activities take a major percentage of my time. I am continually corresponding with the field offices helping them understand the software, explaining the sales features of the software, and working with them on their customers applications. In most cases I have to determine the number of instructions required to solve their problem and the time required for solution by doing a preliminary program design. In many instances this involves having the salesman or customer send me a description of the application and I forward my
analysis either to the salesman or directly to the customer. However for some applications I have to meet with the customer, help him define the systems requirements and work out the program specs. The most recent examples of this effort are Allied Chemical - Pilot Hybrid System, Naval ordnance Lab - Wind Tunnel Data Collection and Analysis, Friel-Hoffman - Electrical Contract Estimating, Brookhaven National Labs - film reading - data collection - filtering (least squares) formating for 7090, Woods Hole Institute - Oceanographic Data Research, National Radio Astronomy Laboratory - Radio Antenna Directing.

Other miscellaneous activities of the group have included the August Datamation add, a PDP-5 Instruction Card, investigation of statistical analysis techniques (multiple regression, power spectrum, etc).

DATE October 2, 1964
SUBJECT
TO
Harlan Anderson cc: Win Hindle

FROM

Kenneth OIsen

Here's a list of names that I picked up when I was in Boston visiting one afternoon:

```
Mr. Loop, Jr. - West Virginia Pulp and Paper Company
Mr.Land - Polaroid Company
Mr. William McLane - Assistant to the President, Stephen (originally from Murk)
Montgomery Spate - President of Shell Oil
Harold Strickland - President of General Signal in New York City
Harold Lindsay -
```

\qquad

```
Irskine White - retired from New England Telephone and Telegraph
Robert Slater - John Hancock
Milton Higgins - Norton Company
Ed Handley - Allegheny Lydlum
George Divlie
Somebody from Deer Company
```

Check the list of people from MIT, John Hancock, First National and the Shawmut Bank.

Note: Under lined names mean there is doubt about the spelling ...

Ken

DATE October 5, 1964
SUBJECT Miscellany
TO R. Lane
FROM Gordon Bell
N. Mazzarese
H. E. Anderson

1. If we haven't a copy of the report on IBM 360 by Auerbach, we should endeavor to obtain one. (If we have one, l'd like to read it). The report isn't too complimentary.
2. The head of the computation center at AFCRL (ask Charlton Walter of AFCRL to verify this) is shopping for a large machine. J. Gilimore told me of this, and Jack also knows his name.

GB/mro

DATE October 5, 1964
SUBJECT Munich Office
TO J. Fadiman
FROM Gordon Bell
H. Anderson
S. Olsen

Gunther informed me that about 5% of his time was consumed keeping a memory exercisor sold to SEIMEN'S in operation. It had been sold with a clause that read, "Free service forever." This is a bit strange .

GB/mro

del
 INTEROFFICE MEMORANDUM

DATE 0ctoloces 6, 2968

SUBJECT Spaxe Unit Dremes
TO
Worles crommitree

 Dxices ot devices borght Erors vantous vengoxas At this bime oniv approval of the nethod te reguested.

Whe mathot sis as EOLlows:

2. Determine the maxivnup ©o cover taxioub chareyen (1) -

A. Determize the spectal Farading futer by ropalimg ali motion
 spere 2.

6. Determine the Dption Deime fada the spaze Unit Trace pry

Suggested Spare Unit Pxicing Method

A. The DEc Unit pxice contains all of the folloming changes for: the unit orily.

1. Handling
2. Ordering
3. Check-ont
4. 6 month maintenance waxranty
5. Stamdard manuel and prines
6. Investigation
7. Stocining
B. Whe following charges axe not to be included in the Dete unt Exice:
8. Any modifleartons
9. Writemup for modifications
10. Speczal adapters
11. System diagnosties
12. Special handilng
13. Inetallation
C. Option intertacing engincering charges are to be added to interfacing hazdware (special Handling Price or conerol Price) and not to the unit cost.
D. The spare unit price represents the point where the spare ray be most easily interchanged with the oxigina\%. Ghis price will vary for different computers. The psice includes the following charges (Special Haaking Pxice):
14. Mociticetions to basic unit
15. Wxtteups for modifications
16. Spectal Adaptera
E. The spare unit price $i s$ determined by adding DEC unit Price to the Spectal Fandling Erice.
F. The following equations are true:

$G=E+E$	$E=C+D$
$E=G-E$	$C=E-D$
$E=G-E$	$D=E$ or C

$\mathrm{E}=$ Spare mait Price
$\mathbb{E}=G \cdots E$
$D=E \operatorname{Co}$
$E^{2}=$ Control Exice
$G=0$ ontion Price

INTEROFFICE MEMORANDUM

DATE October 7, 1964
SUBJECT Charlie Baker
TO
H. Anderson

FROM Ted Johnson

Charlie Baker is at home, recuperating and doing quite well, I guess. His address is 707 Wildoman Ave., Pacific Palisades. Telephone: 454-9778 Greenwald, with Joe Smith and Ed Bryan, seem to be getting along. Tupac coordinates the effort. TJ/pr

R. L. Lane

FROM N.J. Mazzarese

Ray Lindsay has arranged for a visit to our facility by Bill Kehl and one of his programmers on October 19th. They will be arriving in the afternoon -- about one or two o'clock -- and plan to stay over until Tuesday.

Will you please make the necessary arrangements and act as his host while he is here.

NJM:ML

$$
c c: \frac{H \cdot \text { Anderson }}{\text { G. Bell }}
$$

INTEROFFICE MEMORANDUM

DATE October 12, 1964
SUBJECTSpare Parts and Replacement Items
TO Sales, Sales Offices, Engineering
FROM Ed Simeone and Administration

Attached is an updated copy showing the selling price of spare parts and replacement items. These prices are not to be used in arriving at a total price for a system, peripheral equipment, etc.

Please destroy any existing price list you may now be using as it is obsolete. If there are items on which you desire a price and they do not appear on this list, contact me rather than use any existing price.

SPARE PARTS AND REPLACEMENT ITEMS

(These Items are not subject to Discounts or Commission)

QUANTITY
PART NUMBER
DESCRIPTION
SELLING PRICE

Connectors and Cables:

1	34-115-115S	50 Pin Amphenol (Female)	\$ 28.25
1	34-115-115S (wired)	50 Pin Amphenol (Female)	60.00
1	34-115-114P	50 Pin Amphenol (Male)	26.50
1	12-GDX-MD622S	Connector	3.90
1	12-133-022-21	Male Connector	4.00
1	12-143-022-04	Connector	2.20
1	12-143-022-12	Wire Wrap Amp Connector	2.45
1	12-900-249-2	Mtg. Panel Connector	10.50
1	12-900-309	Male Connector	3.30
1	12-900-249-1	Module Receptacle Plug	4.25
1	12-143-010-04	10 Pin Female Amp Plug	1.65
1	12-143-827-1002	Taper Pin Socket	6.50
1	12-144PCC	144 Pin Contact Connector	$\begin{gathered} 12.00 \\ 6.00 \end{gathered}$
1	12-7900-0049	20 Contact Connector	1.80
1	Type 1031	Connector	72.00
1	Type 1032	Connector	65.00
1	53-2012	Plug	3.00
1	34-26-4100-32S	32 Pin Amphenol Socket	5. 15
1	34-S308CCT	Female Socket	2.70
1	34-P308CCT	Male Socket	2.50

Connectors and Cables (Continued)

1	18 Conductor
1 ft	18 Conductor
1 ft	20 Conductor
1 ft	26 Conductor
1 ft	50 Conductor
1	74-3357
1	74-3358
1	74-3401
1	74-3402
1	74-3403
1	71-Write Cable
1	12-20
1	12-GR-274P
1	34-115-1391
1 ft	Sleeving
1	Clamps
1	12-41649
1	34-480065-6
1	34-3-582411-9
1	34-581173-3
1	53-2010
1	74-2042

Coaxial 1/O Cable w/connectors
Cable \$

$$
1.00 / \mathrm{ft}
$$

$$
1031 \text { Connector }
$$

$$
72.00 / \mathrm{ea}
$$

$$
1032 \text { Connector }
$$

$$
65.00 / \mathrm{ea}
$$

Assemble per connector

$$
22.50
$$

Coaxial Cable 1.00
Ribbon Cable 18
Coaxial Cable 1.30
Cable 1.80
Jumper Cable 12
Jumper Cable 12
Jumper Cable 20
Jumper Cable 15
Jumper Cable 15
Write Cable 10.50
20' AC Power Cord 7.10
Cambion Banana Jack (Male) 26
Shell 5.00
Insulating Sleeving for Strip Cable 30
Cable Clamps for Strip Cable 08
Taper Pin18/each
Taper Pin Connector 5.20
Taper Pin Block 9.45
Taper Pin Block 7.90
Mtg. Panel Terminal Block 11.85
Lettered Terminal Strip Block 2.70/each

QUANTITY PART NUMBER
Connectors and Cables (Continued)

1	$14-2041$
1	$34-581342-3$
1	$74-3289$
1	$74-3290$
1	$74-3433$
1	$34-201-159-1$
1	$34-201-158-1$

34-201-158-1

25 ft
50 Conductor

Fans and Filters:
$134-\times 143$
Filter
2.20
$1 \quad 10^{\prime \prime} \times 10^{\prime \prime} \times 2$
1 34-Rotron Fan
$134-2 R$
EZ Kleen Filter
2.40

Rotron Fan
26.00

Assemble 26 Conductor Housing \&
Plug
50 Conductor Cable w/115/114P Connectors assembled on each end
Connecting Bracket for AC Power Channel (above) 2.95
26 Conductor Housing 19.00
26 Conductor Coaxial Plug - Male 6.50
26 Conductor Coaxial Plug - Female 4.20

Unlettered Terminal Block	2.50/each
Taper Pin Block	$7.90 /$ each
AC Power Channel - Long	17.10
Connecting Bracket for AC Power Channel (above)	2.95
26 Conductor Housing	19.00
26 Conductor Coaxial Plug - Male	6.50
26 Conductor Coaxial Plug -	
Female	
Plug	
50 Conductor Cable w/115/114P	
Connectors assembled on each end	25.00

Conversion Kits:
$1 \quad 12-\mathrm{M} 1906$
Kit for conversion from Haden to Hobbs Meter
20.65

Typewriter:
1
635 C
635D

635E

33KSR Teletype w/o dial 900.00

35KSR Teletype w/o dial w/sprocket feed

2,500.00
33ASR Teletype w/o dial

QUANTITY PART NUMBER
Connectors and Cables (Continued)
1
635F
35ASR Teletype w/o dial $w /$ sprocket feed
\$ 4,000.00

Panels and Cabinet Accessories:

1	852	Relay Panel	35.00
1	901	Mtg. Panel Cabinet for logic kit	112.00
1	35-3220	End Panel	45.00
1	71-3283	Indicator Panel for Type 50 Tape Unit	44.00
1	74-3217	18 Bit Indicator Panel Assy.	82.40
1	74-3229	19" Amphenol Plug Panel	12.35
1	74-2034	Plenum Door Blank 4"	3.65
1	74-2036	Plenum Door Blank 8"	6.15
1	74-2038	Plenum Door Blank 12"	9.70
1	53-100-2005	Power End Plate	23.40
1	53-100-2008	End Plates	7.25
1	53-100-2009	Short End Plate	6.75
1	53-100-2010	Terminal Block	12.00
1	53-1901-2001	Top \& Bottom Set	12.60
1	53-1901-2007	Idiot Strip	2.60
1	53-1903-2001	Top \& Bottom Set	16.80
1	53-1903-2007	Idiot Strip	3.10
1	53-1904-2001	Top \& Bottom Set	20.40
1	53-1905-2001	Top \& Bottom Set	21.60
1	53-1916-2001	Top \& Bottom Set	30.05

QUANTITY PART NUMBER Panels and Cabinet Accessories (Continued)

DESCRIPTION

End Plates

Power End Plate \$ 13.65
1 53-1916-2008
1 53-3465

1 53-1935-2002
1 53-1935-2005
1 53-1935-2009
1 53-1935-2010
1
74-3303
Top \& Bottom Set
13.30

Power End Plate 26.50

End Plate $\quad 7.85$
Terminal End Plate $\quad 14.75$
Cabinet Filler
Unpainted
6.80

Painted
20.40

Power Supplies:

1 MIKROS HV-41 Power Supply (Type 31 Display) 805.00
1 NJE S300RM Power Supply (Type 31 Display) 630.00
1 KROHN HITE UHRT 361R Power Supply (Type 31 Display) 1,190.00
1 NJE-P30-1 Power Supply (Type 31 Display) 139.00
1 PHR-60-5- Trygon Power Supply 553.00

Indicators:
$\begin{array}{lll}12-1762 & \text { Indicator Light } & 3.30\end{array}$
$1 \quad$ 12-39-28-375
Indicator Lamp
1.75

1 34-101 Pilot Light 1.95

Switches:

1	12-7505K3	Switch	1.85
1	$12-6 A T 1 T 2$	Sub Miniature Toggle Switch	5.35
1	$12-2112-A-5$	Time Delay Relay	66.70

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

-6-				
QUANTITY Switches (Con	$\frac{\text { PART NUMBER }}{\text { inued): }}$	DESCRIPTION	SELLING PRIC	
1	12-2122-A-5	Agastat Relay Switch	\$	66.80
1	34-6AT4	Sub-Miniature Toggle Switch		4.90
1	34-16006	Telever Switch		2.70
1	34-DJE-4202-Z2P2	Mossman Switch		9.05
1	34-1PB5	Switch		3.15

Relays:

1	12-HGS 1004	Relay	17.10
1	12-HGS 1009	Mercury Relay	17.25
1	$12-$ HGSM1019	Clare Relay	13.00
1	$12-H G S M 5040$	Relay	13.15
1	$12-72 A O Z$ 10TS-TCP	Sigma Relay	46.00
1	12-72AOZ-160TG-TCP	Sigma Relay	46.00

Relay Lines:
1 13-C25E-330-20-
1
1 13-C25E-330-05-1 Delay Line
14.15

1 13-C25E-330-20
Delay Line
11.35

1
13-C25E-330-05
Delay Line
11.35

1
13-DLD-2
Delay Line 168.00

Eyelets:

1,000	459 S	Eyelet	$3.10 / \mathrm{M}$
1,000	$\mathrm{~S}-5938$	Eyelet	$2.85 / \mathrm{M}$
1,000	A-737	Gold-plated Eyelet	$6.00 / \mathrm{M}$

QUANTITY PART NUMBER Eyelets (Continued):

1,000	A-1733	Gold-plated Eyelet	•
1,000	A-94	Eyelet	$5.60 / \mathrm{M}$
1,000	A-1527	Eyelet	$3.10 / \mathrm{M}$
1,000	A-721	Eyelet	$2.05 / \mathrm{M}$
1,000	A-1090	Eyelet	$3.90 / \mathrm{M}$

Miscellaneous:

1	555	Empty Micro Tape Reel	. 50
1 Reel	34-498-1/2-25 GR-IBM	Magnetic-Tape	41.30
1	145887	Teletype Grease	. 92
1	145867	Grease	. 92
1	KS7470	Teletype Oil	. 80
1	88970	Oil	. 80
1 dozen	7835	Ribbon for Teletype	16.80
1		Friden Paper Tape Gauge	7.00
1 pr	74-3375	Tape Catcher - PDP-1	225.00/pr
1 pr	74-3483	Tape Catcher - PDP-4	225.00/pr
1	53-32-1006	Light Pen Cap	12.00
1	416146	Potter Tube \& Bulb Assy.	21.00
1	53-2016	Module Handle (bent)	1.25
1	53-2016	Module Handle (straight)	1.25
1	$45 / 16 \times 67 / 16$ Copper Clad	Glass Epoxy Printer Circuit Board	2.00
1	13-20K-2W	Potentiometer	5.35
1	10-35000mfd.	Electrolyte Capacitor	17.45

DATE October 12, 1964
SUBJECT
ITT Visit of October 13, 1964.
TO
FROM
H. Anderson
R. Lane
G. Bell
A. Kotok
R. Savell
N. Mazzarese

Mike Lipp, Pete Jurket, and Hirsh Harrison of ITT will be visiting DEC tomorrow, 10-13, at 9:30 a.m. They wish to discuss software and hardware capabilities.

If you will not be available for this meeting, please advise me immediately.

The planning required before undertaking the construction of a multi-programming system is an essential prerequisite to the access of the project.

Programming and software must be considered as a whole and hardware must complement software. It is not sufficient for individually capable people to work independently of one another and without leadership when implementing software for a large system.

Pure procedure systems programs are required for an efficient usage of core and to reduce overhead time as user's become active. For example, without pure procedures, each person at a multiuser station might require his own copy of DDT in core or on the drum.

It is obvious that there are advantages to writing specifications for all systems programs before work is begun.

One of the concepts which project MAC expects to follow is the writing of the supervisor or monitor in MAD language. The system is much easier to understand as for those who might wish to change or improve it. (The system is much easier to document) Professor Dennis's thought here is that other groups may wish to implement similar systems and as project MAC is funded with public funds, their work will become available to everyone. Those interested parties who have written a MAD Compiler for their machines will be in the best position to quickly make use of MAC's work. (Systems programs will have to be pure procedure).

FROM A. Titcomb

Professor Dennis proposes that DEC offer to assist MIT, RLE in some way and thus allow Professor Zimmerman to seek funds of his own.

This system would be large - about $\$ 1,000,000.00$ list price.
Professor Dennis explained that GE will deliver a temporary machine to project MAC in April. The super system will be installed in October 1965. Should we have a MAD Compiler and suitable systems programs (pure procedure), we could be running our system at RLE no later than GE at MAC. Documentation on their software will be available before October according to Dennis.

DIGITAL MAYN		0
DIGITAL NYO	0	0

ATTENTION. . . HARLAN ANDERSON
SUBJECT..... YOUR TWX3925--RE: PDP-S INTEREST

WE HAVE BEEN IN TOUCH WITH

NEVIS LABS RE PDP-6. DRS. TYCKO AND SEVERENS ARE ALSO INVOLVED. THEINTEREST HERE IS SERIOUS, BUT WE DON'T KNOW TO WHAT DEGREE SINCE THEYDON'T WANT TO SEE US FOR ANOTHER 2 WEEKS.WE HAVE NO CONTACT WITH A DR. HAVENS AS MENTIONED IN YOUR TWX OF 10.7;HOWEVER, WILL RUN HIM DOWN.DAVE DENNISTON, NY O

INTEROFFICE MEMORANDUM

DATE October 8, 1964
SUBJECT
Woods Hole Oceanographic Institute

TO
K. Dlsen
H. Anderson
S. Olsen
N. Mazzarese
G. Bell

Woods Hole Oceanographic Institute is an educational institution. They qualified for a 20% educational discount on PDP-5.

The present minimum configuration which I am proposing is $\$ 407,900$. It could expand to $\$ 577,242$. I'm not sure if it will be a purchase, rental or "rental conversion to sale". No discounts are permitted on rentals: (G.E. currently allows them 40% on the 225 rental).

I feel that a "rental conversion to sale" is most likely. As an educational contribution, 20% is about $\$ 80,000$. I am confident that I can persuade them to accept a 346 CRT Display as our contribution rather than a price reduction. As such, I would like permission to pursue this approach - either a new 346 or the MAC Type 30E when it comes back.

DATE October 12, 1964
SUBJECT Plans for Forecast, period October ' 64 thru September ' 65
TO Works Committee
FROM R. Mills
This report attempts to show what I feel will be required by way of additional personnel because of the volume of business which we have forecast for the period October '64 through September '65. The Accounting and Finance areas of the company have seen a constant growth in the use of its services throughout the company. This report attempts to cover two things:

1. Additional requirements to better serve the company in areas which are well established.
2. To show the additional requirements for personnel to handle the growth in the forecast as mentioned above.

The procedure involved in preparing this report was to examine each area in detail in order that areas of operation which have grown beyond the side issue stage with an employee and requires specific assignment were considered. General comments are made under each area oriented towards:

1. Giving better service under current operating conditions.
2. Requirements due to higher volume.

Summary of Additional Personne

Section	Requirement
Data Processing	1
General Accounting	3
Forecasting	2
Business Statistics	1
Foreign Operations	0
Accounts Payable	2
Accounts Receivable	0
Machine Tabulating	5
Cost Accounting	3
Payroll	0
Secretaries	$\underline{0}$
Total Additional Requirement	$\underline{17}$

A basic assumption used throughout this report is a phasing time for the use of the computer for 9-12 months from the present time.

Requirements by Section

Data Processing - At present we have one employee in this section and feel that another programmer is required, even though it is not requested here, hoping that this will be made available from our programming section. Fred MacLean spends a great deal of time pushing a pencil and being a filter center for our labor reporting. The clerk typist would act as a central control point for our computer operations and also clerk typist.

General Accounting - Our General Accounting function has grown substantially and we are now involved with consolidated monthly statements, detailed product line reporting, more complex general and tax accounting, and we require one junior accountant here to bring.us up to strength, and one more to handle more of the general accounting work and to pick up major areas such as capital assets, inventories, and to perform some internal audit functions. The clerk typist appears to be a minimum requirement to service the volume of reports from this area.

Forecasting - The requirement is two. It would appear that in order to do an adequate job here, we need a junior accountant to become thoroughly familiar with the detail of our forecasting procedure in order that we may do more with what we are generating at present in reporting, correlation analysis, and to make more of Bob Dill's time available for me to use. The clerk typist again appears to be a minimum requirement due to the volume of reporting from this section.

Business Statistics - Addition of one. This is a relatively new area of operation for us and Jim Myers is in this slot. We now generate on a regular basis shipment, new orders, backlog, ratios, and so forth, which have proved of real value. The clerk typist requested for this area would be involved in working directly on detailed parts of this program in order to free up Jim's time for the results that we are looking for by way of analysis.

Foreign Operations - No additional. We now.funnel all foreign correspondence for our area through Gerry MacDonnell and believe that this will require additional people at a later time.

Accounts Payable - Additional two. The two people requested here appear to be a minimum for the increased volume that we are expecting. We plan to be running accounts payable checks in the tab room in December and that has been considered.

Accounts Receivable - No Additional. We have one person operating this area, I believe that this is adequate for some time.

Machine Tabulating - Additional five people. This area is going through a major realignment in an effort to make more of the supervisor's time available to analyz the reports to the end of more readily usable reports with much less research on the part of the receiver. We have done some work in this area with startling results. The additional requirements in this area are due primarily to the number of additional people that appear to be called for in the forecast, slightly over 200 with the attendant, labor tickets, and normal reports for this number of people.

Cost Accounting - Additional requirements three. It would appear that we need a junior accountant here in order to pick up the extra work load which has been imposed due to our more refined costing approach. One new area which we have not done too much with is the follow on step from preparing a pricing estimate, manufacturing the goods, and then giving feedback to the individual engineer of how he made out against how he said he was going to make out. This also includes standard pricing analysis for all standard costs. Other area is project analysis which I see is a clearing house for project engineering reports issuing the forecast vs. actual comparison which has become considerably more involved to prepare due to allocations, etc. We require two clerks in this area just to pick up the extra volume in forecast business.

Payroll - No additional. This area now reports to George Breen and with such a high degree of mechanization in this area, the additional 200 people will not be that much additional machine time.

Secretaries - No additional.
Total Additional Requirements: 17
The current strength of this department is 32, and if the report is accepted, this will bring us up to a strength of 49 .

Additional Equipment

We also estimate that for the increased volume due to the higher number of people, we will require one more 407 Accounting Machine, one 026 Keypunch, and one 056 Verifier, offset by the return of the 402 Accounting Machine. The 407 gives us a great deal more flexibility.

INTEROFFICE MEMORANDUM

DATE October 15, 1964

SUBJECT Engineering Planning

$\begin{array}{ll}\text { TO Harlan Anderson } & \\ \text { Jim Hastings } & \\ \text { Dick Best } & \\ \text { Bob Dill } & \\ \text { Gordon Bell } & \end{array}$

The process for engineering planning must be structured and routine. This memo outlines a formal planning process which could serve as the planning routine.

Step 1: Plans for existing projects
Each existing project should be planned for its lifetime. Completion of two formal requirements constitutes a complete plan:

1. A project schedule, via the existing project scheduling system.
2. A project financial plan, via the cost forecasting mechanism currently being designed. The financial plan consists of month-by-month estimates of labor, material, and overhead costs to be incurred by the project in each cost center, plus an estimate of monthly expenditures on outside contracts. Note that labor estimates come directly from the manpower estimates on the project schedule.

Before any new project is accepted, a complete plan should be available; i.e., a copy of the schedule and financial plan should be in a central file for each engineering number.

Step 2: Review of engineering plans -- detailed.
Each individual plan should be reviewed periodically. Both schedule and financial feedback will be available for review. Project engineers should review schedule and financial feedback monthly. Review by the chief engineer should be undertaken if substantial variances between actual and forecast performance (either schedule, financial, or both) exists.

Feedback will take the form of:

1. Detailed reports (Costs by cost center and type versus forecast, schedule update) monthly to project engineers.
2. Summary reports (Total cost versus forecast) for all project to the Chief Engineer.

Step 3: Review of engineering plans -- overall
Quarterly, an overall review of engineering efforts should be made. The review should include an analysis of the future load imposed by existing projects compared to engineering capacity. Such analysis can be drawn both from month by month summation of labor costs for all projects versus payroll and from manpower loads on schedules, if all projects are scheduled. It should show:

1. How much of our resources are committed to existing work.
2. Whether we are understaffed or overstaffed.
3. How current resources will become available in the future for new work.
4. How much existing work will cost over the coming months (from project summation).
5. How much total engineering will cost over the coming months, if no staffing changes are made. (From payroll analysis and materials estimates).

Basically, the review will show the resources we have for future programs and will be the basis for staffing recommendations and longer range engineering plans.

Step 4: Updating Plans

Inevitably, both schedule and financial plans will need revision. Schedules are currently updated monthly. Every six months, financial forecasts should also be updated. This should not be a major task, since it involves only adjusting the original plan to reflect the current status of the project. The original plan should be kept in the project file, however, for it contains the information used to justify the project and will allow project leaders to evaluate actual results versus their initial plans.
D. Packer

DP:ncs INTEROFFICE
MEMORANDUM

DATE October 16, 1964

SUBJECT Semiconductor Price List
TO Sales, Sales Offices, Engineering and Administration

FROM
Ed Someone

Attached is an updated copy showing the selling price of transistors and diodes, as spare parts.

Please destroy any existing price list as it is obsolete.

SEMICONDUCTOR PRICE LIST

TRANSISTORS

PART NUMBER	SELLING PRICE	
15-2N167	\$	4.65
15-2N215		2.60
15-2N398A		2.24
15-2N456A		2.70
15-2N457A		3.98
15-2N522A		2.03
15-2N598A		3.83
15-2N656		6.15
15-2N708		3.09
15-2N709		11.55
15-2N711A		2.18
15-2N744		10.50
15-2N813		9.62
15-2N835		4.05
15-2N979		2.10
15-2N995		8.19
15-2N1065		3.38
15-2N1132		9.45
15-2N1184		6.20
15-2Ni184B		10.40
15-2NI204		8.93
15-2N1304		1.22

5-2N1304
. 22

PART NUMBER	SELLING PRICE	
15-2N1305	\$	1.22
15-2N1308		1.68
15-2N1309		1.68
15-2N1310		6.77
15-2N1472		17.01
15-2N1494		9.56
15-2N1495		10.29
15-2N1754		2.03
15-2N1998		3.83
15-2N2099		7.98
15-2N2100		11.97
15-2N2387		16.17
15-2N2475		8.75
15-2N2480		32.90
15-2N2714		2.48
15-2N2801		18.34
15-2N2804		35.70
15-2N2904		14.35
15-2N2904A		21.42
15-2N3110		8.40
15-3N76		29.40
15-DEC1008		16.80
15-DEC1009		25.20

Transistors (Continued)	-3-	
PART NUMBER		SELLING PRICE
15- DEC2219		8.19
15- DEC2219 2		8.19
15- DEC2894		11.55
15- DEC2894 1		11.55
15- DEC2894 2		11.55
15- DEC2894 3		11.55
15- DEC2894 4		11.55
15- DEC2894 5		11.55
15- DEC3009		1.18
15- FSP24		49.56
15- GA212		5.18
15-MA89		7.28
15-MA90		7.28
15-MD93		7.28
15-MD94		4.43
15-MD95		5.48
15-MD109		5.48
15-MF114		2.03
15- MM999		7.05
15-NS3033 1		36.40
15-NS3033 2		30.80
15-NS3033 3		22.40
15-NS3033 4		32.76

 15- DEC2219 2
 8. 19
 11.55
 11.55
 11.55
 11.55
 11.55
 11.55
 1.18
 49.56
 5.18
 7.28
 7.28
 7.28
 4.43
 5.48
 5.48
 2.03
 7.05
 36.40
 30.80
 32.76

PART NUMBER	SELLING PRICE	
11-1N67A	\$	1.20
11-IN91		1.70
11-1N270		. 70
11-1N429		7.63
11-IN456A		2.70
11-IN469		5.63
11-IN469A		7.13
11-1N648		2.93
11-IN748		3.00
11-IN748A		4.20
11-IN750		3.00
11-IN750A		4.20
11-IN753A		4.13
11-IN756A		4.13
11-IN758A		4.20
11-IN764		3.15
11-IN825		11.13
11-IN964A		3.53
11-IN987B		5.18
11-IN1217		1.36
11-IN1220		1.86
11-IN1227		1.76
11-IN1315		4.88

Diodes (Continued)

PART NUMBER	SELLING PRICE
11-1N1341	\$ 1.68
11-IN1875	5.25
11-IN1971B	10.22
11-IN1982	11.09
11-IN1998	4.88
11-IN2175	16.10
11-IN2970B	10.22
11-IN2974B	10.22
11-IN2976B	10.22
11-1N3030B	7.14
11-1N3031B	7.14
11-1N3156	16.38
11-IN3208	1.73
11-IN3209	1.95
11-IN3210	2.63
11-IN3316	8.47
11-IN3499	26.60
11-2N1600	7.98
11-D001	1.28
11-D003	2.63
11-D007	1.08
11-D662	2.10
11-D664	4.35

Diodes (Continued) -7-

PART NUMBER	SELLING PRICE
${$$} }$	$\$$
11 - D668	3.15
$11-$ D669	3.00
$11-$ D670	4.20
$11-$ G688	2.25
$11-$ L S 400	2.63
$11-$ SV6	18.90
$11-$ SW1250 3	3.00
$11-1 / 4 M 2.4$ AZ5	2.99
$11-1 / 4 M 68$ AZ5	3.15
$11-1 / 4 M 82$ Z5	6.00
$11-.50 M 100$ SZ 10	6.00
$11-10 M 100 Z 10$	11.20
$11-20$ SP484	8.19

[^0]October 20, 1964
subitel A Meeting to Discuss Segmentation and our Quote to BTL.
10
FROM
A. Titcomb

Our system, as outlined in the BTL proposal, is unworkable as memory protection is not provided for.

In discussing this subject with Professor Dennis, I feel, needless to say, at some disadvantage. However, it is clear that about the best we can get is a discussion of the problems (many) and the possible solutions (many and interacting).

It isn't impossible to arrive at a system which will work, but to arrive at the perfect system requires regular and constant effort by DEC.

Our system could be improved by creating the instruction "attach". Attach loads the left half of an index register with a Segment Name. In addition, it would specify that all further use of this index register would take the user to the memory mapping table from which the ultimate effective address would be extracted. (As the fast look-behind registers are not essential to the system but serve to speed it up, reference to them is omitted from this discussion.)

To return the usage of the index register to normal, it would be necessary to give say a MOVEM, (E) where $E=$ index register. (This may be incorrect but it conveys the thought that an instruction would be able to return the usage to normal.

When the "attach" instruction is given, a table must be consulted which would determine whether the segment being loaded is a legal one for the user.

It can be seen that as user's become active, the hash-coded memory mapping table must be reloaded with our present system. This is an overhead item and not desireable. One alternative would be to provide separate tables for each user. Whatever it is that takes one to the proper core location to find the table, would have to be modified by the monitor as each user became active.

Another alternative which Professor Dennis seemed to like is the enlargement of the hash-coded table to 512 locations. By this means, all user segments would be mapped at one time and the table would never be more than 50% full (262 K is full core) (512 x $1024=2 \mathrm{x}$ full core) Keeping the population in the table low reduces the chances of having two separate segment-name - block combinations hash-coded to the same table entry.

One problem which I have not heard much discussion of is the mechanism of changing the "current segment." Probably this would be done by a jump through an index register in which a segment has previously been loaded by an "attach" instruction. The "current segment" would be the one from which instructions are being taken. In addition, there might be a "current segment" for data. Note that subroutines, Fortran, etc. would exist as pure procedures and therefore require that temporary storage be allocated in a user segment for data. The current data segment scheme is not without problems, however. At this point, I felt that I had had enough and I so pleaded.

I have omitted some items discussed however they probably will not affect our SDC quote.

Overall, Jack said that our BTL proposal was superior to most originating at DEC and he would like to have his copy returned after I have finished with it.

Could the notation which we have included citing proprietary information be in any way disregardedz I think he would like to show others our work.

DATE October 20, 1964
SUBJECT
то
Bob Lassen
FROM D. J. Doyle

> cc for Stan 01sen
> Ted Johnson
> Ken O1sen

We have had quite a number of personnel changes up here, and the purpose of this memo is to bring you up to date and to recommend action on your part where necessary.

The major changes are that we have acquired a second field service technician, Mr. Claude Payette, and we will be hiring a Mr. Fred Welton as accountant to replace Mrs. Johansen, effective November 1, 1964. Mrs. Lorna Wright is a temporary employee at the moment, but it looks like she may be necessary and I have asked her to complete an application form. She is handling all customs work and the shipping and receiving of goods including invoicing.

I an also asking you to look up Barbara Angell's background. She has been doing the assembly work for Bill, and we have given her work on a very non-continuous basis. She has wired up a total of three systems, which totalled approximately $\$ 40,000$ in sales. We talked on the phone about her.

You will notice that we have nine people on staff, three of whom are engaged in the handling of goods. Our warehousing operations are therefore using up personnel, but it is returning real dividends in extra sales. Our warehouse not only speeds up delivery, but relieves the customer from doing his own clearance through customs. Some customers have phoned in an order and received it the same day.

As for production, I plan on resting on our oars for a month or so until our new field sexvice man gets some training. We have delivered three systems which were assembled up here; one has proven itself, and I want to wait and see how the others make out. Shortly after the new year, I would like to take on about $\$ 20,000$ per month in special systems work, and this will mean hiring additional people.

In conclusion, Bob, I want you to look up Barbara Angel1's background and see that all of these other people get put on your records. John Mutzeneeik and Bill MacGregor are really doing excellent work. The future looks very good up here as I have a good choice of contracts lined up as far as a year in advance. Canadian Westinghouse want us to assemble a system for delivery in June, costing about

DATE October 20, 1966

SUBJECT

$\begin{array}{rlrl}\text { TO Bob Lassen } & \text { FROM } & \text { D. J. Doyle } \\ \text { ce for Stan Olsen } \\ & \\ & \text { Ted Johnson } & \\ & \end{array}$
$\$ 40,000$. I plan on starting it early in the new year. There is a strong requirement for Canadian content and if we didn't do it for them, it is doubtful if we would even sell them the modules. Westinghouse up here shows real good potential as a customer.

DATE October 21, 1964
SUBJECT
TO
K. Olsen
H. Anderson \leftarrow
S. Olsen
M. Sandler
G. Bell

FROM
J. Smith

What are your feelings on the below?
In the past, there has been a great deal of misunderstanding as to the status of options in process. Most of these misunderstandings arise at Computer Guidance Committee or special status meetings. In order to help clarify this situation, I intend to generate a weekly Status Report on options in process. It is my feeling that this report should be issued to the Computer Guidance Committee on a weekly basis for review. At that time, it should be determined what affect delays have on delivery to customers and what corrective steps should be initiated.

I hope, in most cases, this review will take only a few minutes at each meeting. Indeed, in some cases if there is no controversy or problems, it could be cancelled for that session. I feel that the report should be of the "exception" type, listing only those items that we are having problems with. This should help to cut down on the review time.

What I hope to gain by this report and review is a better understanding of where the true bottle-neck lies. In some cases, this is not always obvious. By reviewing a'report of this type at the Computer Guidance Committee, which has a cross section of DEC departments, bottle-necks can be isolated and the necessary action generated.

It would also help expedite matters if a representative of Production is present when special-scheduiing meetings are held that involve equipment for which Production is responsible.

I hope the proposed report will be of sufficient detail as to minimize the need of special status report meetings.

INTEROFFICE MEMORANDUM

DATE October 21, 1964
SUBJECT
TO
H. Anderson

FROM D. Kuyamjian
S. Olsen
N. Mazzarese
R. Best
G. Bell
H. Crouse
J. Smith

Attached are the particulars of all outstanding major contracts. Schedule dates prior to which actual requirement and specifications for equipment must be established to avoid cancellation charge are indicated.

The delivery cycle noted is the notification the manufacturer requires before delivery of a unit can be made; all are given as worst case. This time period must be kept in mind as the expiration date of the contract approaches.

The cancellation clause and incremental price schedule for each contract are also included.

Terms and Conditions of Purchase

- Anelex Corporation - Digital Equipment Corporation Purchase Order \#39700/Ten Series 5 Printers

Delivery of equipment is to be accomplished over an approximate twelve month period commencing from date of delivery of the first printer or eighteen months after inception of this order, whichever occurs first. Delivery of each unit is to be made only upon a written formal release issued by DEC Purchasing Department.

Anelex agrees to make machines available for delivery within a five month period after release by DEC should DEC require such delivery. Deliveries are contingent upon not only the receipt of this order, but the establishment of firm specifications for the equipment to be delivered. Any unusual amount of time required to resolve specifications after receipt of release shall be cause for extended delivery dates.
VIII. Cancellation: In the event only a partial of this order is filled due to the termination at the convenience of $D E C$, the full extent of DEC's liability will be computed on the basis of a) procurement of parts by Anelex and b) labor effort directed to the assembly of the equipment.
a) Procurement of Parts: Those parts peculiar to DEC's equipment and procured by' Anelex at point of termination of the order, or of a particular release, by DEC will be subject to a cancellation charge of 100% of Anelex's procurement costs with the following exceptions:

Should DEC cancel and/or change specifications for a released unit four months prior to the delivery date scheduled by DEC's release, there will be no parts subject to a cancellation charge. Should the speed requirement (300,600 , or 1250 lpm) of a released unit be changed less than four months prior to DEC's scheduled delivery date, cancellation charges for those parts affecting the speed of the unit will apply.

In the event the character set of a released unit is changed greater than seven weeks prior to DEC's scheduled delivery date, there will be no cancellation charges for this change. Should the character set of a released unit be changed less than seven weeks prior to DEC's scheduled delivery date, cancellation charges for the character drum will apply.

Title for those parts against which a cancellation charge is applied will pass to DEC and the parts may be incorporated into equipment to be released at a later date against this order. Should the order be terminated and no subsequent machines released within the specified time duration of this order, DEC will be liable for these parts.

Page 3 of 6
Signed by

Signed by

Anelex Corporation
b) Labor: Since labor effort directed to the assembly of the equipment by Anelex Corporation is generally confined to the thirty days immediately prior ot the scheduled delivery date for the equipment there will be no labor cancellation charges applicable if point of termination of the order, or particular release, occurs thirty days prior to the scheduled delivery date.

If the order is terminated by Digital Equipment Corporation less than thirty days prior to the scheduled delivery date, cancellation charges for the labor effort will be negotiated by Anelex Corporation and Digital Equipment Corporation, and if demanded by one or both parties, arbitrated by an impartial party mutually agreed upon. In any event, cancellation charges will be commeasurate with the amount of labor effort expended by Anelex Corporation.
IX. Changes, Additions, and Deletions: No changes to this order are authorized unless made by the cognizant buyer or his supervisors and substantiated by a formal, written change notice. However, although this purchase agreement calls for the Anelex Series 5-600 Line Printer, Buffer, and DEC Interface, DEC may substitute a series 5-300 or 5-1250 Line Printer for the former type in any quantity not to exceed the total quantity of this order in any combination of types.

DEC will not pay for additional work or extras unless such additional work or extras have been ordered in writing and the price therefore agreed upon. Anelex shall not substitute other materials or accessories or revise specifications for those specified in the order without written consent of DEC. Changes made by Anelex without an authorized change notice shall be made at the sole risk of Anelex, there being no financial recourse against DEC.
X. Pricing: Equipment delivered to DEC against this order is subject to the price schedule below regardless of the, total quantity of units or the speed of the units delivered.

Signed by

Signed by

-Terms and Conditions of Purchase
Anelex Corporation - Digital Equipment Corporation
Purchase Order \#39700/Ten Series 5 Printers

Series 5	Series 5	Series 5
300 lpm	600 lpm	1250 lpm

Printer	$\$ 10,500.00$	$\$ 12,500.00$	$\$ 18,750.00$
Buffer	$\$ 4,675.00$	$\$ 5,050.00$	$\$ 6,085.00$
Interface	$\$ 425.00$	$\$ 425.00$	$\$ 425.00$

XI. Replacement Parts: Anelex reserves the right to discontinue its products . without notice and make modifications in design at any time without incurring any obligation to make such modifications to products previously supplied.. Anelex does, however, guarantee to supply replacement parts at then current prices for a period of at least five years from date of shipment for any standard products.

A complete set of finished Operation and Maintenance manuals must be delivered, at no charge, within thirty days of delivery of each printer. Additional manuals are to be made available upon request for a charge of $\$ 15.00$ a set.
XII. Patent-Copyright Indemnity: Anelex agrees to defend and hold harmless DEC, its customers, and those for whom DEC may act as agent, from all claims, liability, loss, damage, or expense, including counseling. fees, arising from or by reason of any actual or claimed trademark, patent, or copyright infringements, or any litigation based thereupon, with respect to the articles or'services furnished hereupon, whether by reason of their sale or use, except those for which DEC furnishes complete specifications. Such obligation of Anelex shall survive acceptance of goods and services and payments therefor by DEC.
XIII. Proprietary Information: Anelex agrees that the proprietary interest of DEC in the material it supplies will be respected. All information is transmitted in confidence and may not be disclosed to unauthorized individuals. Any information pertaining to this order which Anelex wishes to release for publication must first be submitted to DEC for approval.

Signed by

Signed by
Anelex Corporation

Digital Equipmen Corporation
Page 5 of 6
area Code bi7 - TWinoaks 7-8822 - TWinbrook 9-0510 • TWX MAYN 753 uX

- Nagne-Hicad Division Comeral Instrument Corp. c/OT. W. Gerrettson Co. 2. O. Box 343 W. Medwey. Mass.
- Ditontion: Mit. I. Gollaghor
to ee deliveréo by
-Sea Dolou See Below
PLEASE SHIP SUBJECT TO THE CONDITIONS ON THE FACE AN

IMPORTANT

Ease send invoice in triplicate to ACCOUNTS PAYABLE DEPARTMENT
dIGITAL EQUIPMENT CORPORAMION

- Nagne-Read Division Conctal instrument Corp. c/0 2. W. Gartetison Company P. O. EOX 3434
W. Modway. Massachusetts
- AScothons Mr Mr ViA Gallagher

See Dolow
PLEASE SHIP SUBJECT TO THE CONDITIONS ON THE FACE AND BACK HEREOF THE FOLLOWING:

IMPORTANT

- Ease send invoice in triplicate to ACCOUNTS PAYABLE DEPARTMENT

 EQUIPMENT CORPORATION MAYNARD•MASSACHUSETTS

area Code 617 - TWinonks $7-8822$ - TWinbrook 9-05io - TWX MAYN 753 UX

- Magre-Hicad Division

Conorai instrument Corp. c/OT. W. Garrattson Co.
P. O. EOx 343
W. Medway, Mass.

- Attention: Mr. 3. Gallagher
\qquad
\qquad
-
-
- ${ }^{\text {F.0.B. }}$

PURCHASE ORDER NO. 37039
OUR PURCHASE ORDER NUMBER MUST APPEAR ON ALL INVOICES, PACKING SLIPS AND SHIPPING DOCUMENTS.

DATE: October 2. 1964

SHIP TO
DIGITAL EQUIPMENT CORPORATION
Thompson Street
Dullding 5 Room 20
Maynard, Mass.

Antent	ship via ${ }^{\text {a }}$	Terms	[7.0.8.	LoVit contract no.
See Dolow	See below	See Below	Hzwhome, Callf.	N/A

please ship subject to the conditions on the face and back hereof the following:

IMPORTANT
Zase send invoice in triplicate to accounts payable department
digital equipment corporation

- Kagne-Eread Division

Conorul Instrument Comp.
c/o T. W. Camettson Company
P. O. Dax 343
W. Nedway. Massachusotes

- Attention: Mr. J. Callaghor

Sae Below

DATE: October 2. 1354
SHIP TO
digital equipment corporation
Thompson Street
Building 5 finom 20
Maynard. Mass.

PLEASE SHIP SUBJECT TO THE CONDITIONS ON THE FACE AND BACK HEREOF THE FOLLOWING:

- IMPORTANT

Ease send invoice in triplicate to aCCOUNTS PAYABLE DEPARTMENT
digital equipment corporation

 EQUIPMENT CORPORATION maynard-massachusetts
area cooe 617 - tWinoaks 7-8822 - TWinbrook 9.0510 - TWX Mayn 753 uX

- Magno-fead Drivicion

Gonord Inctument Conp.
c/0 2. W. Cantetison Company
P. O. Dow 343
W. Medway, Mass.

- Atontions Ne J Culloghon

Seenoloa \qquad Soe Ecion \qquad Soa Belom

PURCHASE ORDER NO. 37030

OUR PURCHASE ORDER NUMEER MUST APPEAR ON ALL INVOICES, PACKING SLIPS AND SHIPPING DOCUMENTS.

DATE: October 2,1904

SHIP TO
digital equipment corporation
Chompson Street
Buacing 5 Room 20
Maynard, Massachusotis
please ship subject to the conditigns on the face and back hereof the following:

CORPORATION MAYNARD•MASSACHUSETTS

TWINOAKS 7.8822 - TWINBROOK 9.0510. TWX MAYN 753 UX

```
*cronst 20comery coyworethon}\mp@subsup{}{}{\circ
*,O.W % 40% 
```


PURCHASE ORDER NO. 2522

OUR PURCHASE ORDER NUMBER MUST APPEAR ON ALL INVOICES, PACKING SLIPS AND SHIPPING DOCUMENTS.

DATE: Whay 23,1950

SHIP TO
DIGITAL EQUIPMENT CORPORATION Frempors Stroot BuIzeing 5. Room 240

PLEASE SHIP SUBJECT TO THE CONDITIONS ON THE FACE AND BACK HEREOF THE FOLLOWING:

PLEASE SHIP SUBJECT TO THE CONDITIONS ON THE FACE AND BACK HEREOF THE FOLLOWING:

IMPORTANT

END INVOICE IN TRIPLICATE TO DUNTS PAYABLE DEPARTMENT

DIGITAL EQUIPMENT

By

EQUIPMENT CORPORATION MAYNARD.MASSACHUSETTS DDE 617. TWINOAKS 7-8822 - TWINarook 9.0510 • TWX MAYN 753 UX

PURCHASE ORDER NO. 2 .
OUR PURCHASE ORDER NUMBER MUST APPEAR ON ALL INVOICES, PACKING SLIPS AND SHIPPING DOCUMENTS.

DATE:

$$
\text { staty } 22.1958
$$

SHIP TO
dIgITAL EQUIPMENT CORPORATION Shatmonar Stuteot

$|$| SHIP VIA TERMS | F.0.8. | |
| :--- | :--- | :--- | :--- | :--- | :--- |

GOV'T
PLEASE SHIP SUBJECT TO THE CONDITIONS ON THE FACE AND BACK HEREOF THE FOLLOWING:

IMPORTANT
GEND. INYOICE IN TRIPLICATE TO OUNTS PAYABLE DEPARTMENT
digital Equiphent corpo

By \qquad

ATRACTMENT 1
DEC PURCHAEE ORDER 29318
Page 4 of 8

APPROVED BY DEC
ACCEPTED BY MI

E. TERMINATION

Digital reserves the right to terminate this order at Digital's convenience, provided, however, that Digital shall, notwithstanding any exercise of such right of temmination, accept delivery of all units scheduled for delivery during the succeeding three months and forecast for the fourth and fifth months, as such deliveries are scheduled and forecast, pursuant to the provisions of the following Paragraph F of this attachment to the order.

Digital may, however, in the event of the exercise of such right of termination, reschedule deliveries for the units previously forecasted for the Fourth and fifth months, so as to provide for the delivery of the aggregate number of units forecasted for said fourth and fifth months during the period ending ninety (90) days beyond said fifth month. Such rescheduling, in the event of such termination, shall be made in the Notice of Termination, which notice shall be in writing and the effective date of such termination shall be the date of receipt by Midwestern. If Digital does not elect to exercise the privilege of such rescheduling for the fourth and fifth months, then and in such event the previous forecast for said months shall then be considered as a firm delivery schedule.

In the event of a termination at the convenience of Digital, the price per unit under this order shall then be the increment price of the total quantity ultimately delivered under this order. in accordance with the prices set forth in attachment 2 hereof. Responsibility for finished goods in process and raw materials purchased by Midwestern and specifically assigned to this order

Midwestern Instruments Contract
M3000 'Tape Transport

APRROVED BY DEC ACCEPMED BY MI
\qquad 60329.
and qualified as unique to this order, shall be negotiatce by the parties hereto lipon such termination and if agreement for the payment of said items cannot be arrived at by mutual agreement between the parties, then the parties agree to submit the same to arbitration.

ATMACTMMENT 2
LEC PURCHASE ORDER 29318
Page I of 1

ADPROVED BY DEC
ACCEPPED BY MI -90322

NET

$$
\begin{array}{cc}
1-9 & \$ 11.500 \\
10-14 & \$ 10,245 \\
15-19 & \$ 9.875 \\
20-24 & \$ 9.450 \\
25-29 & \$ 9.100 \\
30-39 & \$ 8.850 \\
40-49 & \$ 8.450 \\
50-99 & \$ 8,312 \\
100 & \$ 7.930
\end{array}
$$

In addition, the prices in the above table shall not vary over the life of the purchase order. However, in the event of a change in specifications or design, which are mutually agreed upon by both Midwestern and Digital, then consideration shall be given to repricing.

Midwestern Instruments Contract M 3000 Tape Transport

PURCPASE ORDER

OUR PURCHASE ORDER NUMBER MUST APPEAR ON ALL INVOICES, PACKING SLIPS AND SHIPPING DOCUMENTS.

DATE:
August 24. 1964
SHIP TO
digital equipment corporation
Thompson stroet
Building \quad K 5 Room 12
Maynard. Massachusetts

Digitronics Corporation
I Albertson Avenue Alboctson Long Island New York 9

- Actention: Mr. Karlison

SHIP VIA	TERMS
N / A	$\mathrm{~N} / 30$

PLEASE SHIP SUBJECT TO THE CONDITIONS ON THE FAC
STOCK NO./DESCRIPTION
35
Model 2500 Paper Tape Readers with rack adapters (primed only)

Tems and conattions
Delivery is to We accomplished over an approximate twelve month period. Shimments awtito be made by Digitronies corporation onl a pon receipt of a written fommal releaso (GWUed against this purchase order by Diopeal Fquipment Corporation's Purchasjix Dopartment. Shipments are to be made accozsinng to the dolivery schedule indicatition each release.

In the epont Digital Equipmont Corporation releases only a partial of this order due to termination at the convenience of Digital Equipment Corporation: theuntt price for thoso units reebived will revert to the appropriate quantity price per the Incremental Price Schedule below. This is the extent of Digital Equipment Corporation's liability.
\qquad

Area Cooe 617. TWINOAKS 7-8822 - TWINBROOK 9.0510• TWX MAYN 753 UX

PLEASE SHIP SUBJECT TO THE CONDITIONS ON THE FACE AND BACK HEREOF THE FOLLOWING:

COWLEDGE RECEIPT OF AND ACCEPT THIS ORDER SUBJECT TO TERMS AND CONDITIONS SHOWN ON THE FACE AND REVERSE HCREOF, AND RETURN TO ATTENTION OF PURCHASING DEPARTMENT.

SEILER'S ORDER NO \qquad

Purchase Agreement
Datamec Corp. - Digital Equipment Corp.
P. O. \#38815, 51 Transports D2020

Delivery of equipment is to be accomplished over an approximate eighteen month period commencing from inception of this order. Delivery of each unit and labor and materials expended against its delivery is to be made only upon a written formal release issued by DEC Purchasing Department.
IX. Inventory Agreement: At any point in this contract, DEC has the option to release any portion of the outstanding quantity of Transports for manufacture and finished goods inventory by Datamec. This may take the form on one specific quantity or a monthly production quantity. Datamec will produce so as to place released units in finished goods inventory within ni nty days of release. DEC may revise the quantity or production rate at any time provided Datamec is given ninety days notice on the finished goods schedule requirement. As units are completed and added to finished goods, Datamec will furnish certification of same to DEC.
X. Terms of Payment: Invoices for performance against this order may be submitted to DEC for payment upon shipment of system(s) specified. Payment is due thirty days from date of acceptance of equipment by DEC with a $1 / 2 \%$ discount applicable if payment is made within ten days of acceptance of equipment. DEC will accept or reject equipment within three weeks of receival, typically within ten days. F. O. B. Point is Mountain View, California.

In the event DEC exercises the Inventory Agreement option, Datamec may submit billing of 50% of the unit contracted price for each unit completed together with certificate of completion of equipment. Invoices of this instance are due within thirty days of date of invoice and are subject to a $1 / 2 \%$ discount if paid within ten days of date of invoice. Billing for the final 50% of the unit price may be submitted to DEC upon shipment of the equipment and will be due for payment within thirty days of date of invoice.
XI. Cancellation: In the event only a partial of this order is filled due to the termination at the convenience of DEC, the unit price will revert to the appropriate quantity price according to the Incremental Price Schedule. This is the full extent of DEC's liability except for those units, released or built against the Inventory Agreement option, against which Datamec has expended labor effort and/or materials if those units were scheduled by DEC for delivery or completion less than ninety days of notification of cancellation.
Signed by Datamec Corporation
Date

Page 3 of 7
Signed by
Digital Equipment Corporation

In this event, Datamec will be entitled to cancellation charges equal to the total production costs expended on the cancelled unit up to a maximum of $\$ 1,953.00$

DEC may cancel this order in whole or in part at any time by written or telegraphic notice whenever Datamec shall default in performance or shall so fail to make progress so as to endanger performance and provided Datamec shall not remedy such default within ten days after written notice by DEC. After receipt of notice of termination for such default, Datamec may transfer title and deliver to DEC satisfactorily completed work, and such work in process as may be directed by DEC. In the event DEC terminates this order in whole or in part as provided herein, it may procure in such manner as it may deem appropriate, the required supplies or services and Datamec shall not be liable for any excess costs if the failure to perform is caused by the default of the subcontractor, unless the articles to be furnished by the subcontractor were obtainable from other sources in sufficient time to comply with the order. DEC may cancel this order by written or telegraphic notice if Datamec becomes insolvent or makes a general assignment for the benefit of creditors, or if a petition under Chapters X or XI of the Bankruptcy Act is filed by or against Datamec.

> Signed by Date Datamec Corporation Signed by Date

Page 4 of 7

Purchase Agreement
Datamec Corp. - Digital Equipment Corp.
P.O. \#38815, 51 Transports D2020
XII. Pricing: Pricing is subject according to the following:

Incremental Price Schedule

Description of D2020,800 BPI	$1-7$	8-19	$20-30$	$31-50$	51-100
30 ips triple density with triple density head	\$4,340.00	\$4,253.00	\$4,123.00	\$3,906.00	\$3,689.00
30 ips dual density with triple density head	\$4,240.00	\$4,155.00	\$4,028.00.	\$3,816.00	\$3,604.00
30 ips dual density with dual density head	\$4,125.00	\$4,131.00	\$3,919.00	\$3,713.00	\$3,506.00
45 ips triple density with triple density head	\$4,640.00	\$4,547.00	\$4,408.00	\$4,176.00	\$3,944.00
45 ips dual density with triple density head	\$4,540.00	\$4,449.00	\$4,313.00	\$4,086.00	\$3,859.00
45 ips dual density with dual density head	\$4,415.00.	\$4,327.00	\$4,194.00	\$3,973.00	\$3,753.00

Signed by -- Datamec Corporation
Date
Signed by
Date Digital Equipment Corporation

Purchase Agreement
Datamec Corp. - Digital Equipment Corp.
P. O. \#38815, 51 Transports D2020

DEC may release any combination of Transports with varying transfer rates, bit packing densities, power requirements, tape speeds and paint schedules. Prices for transports other than those with a transfer rate of $36,000 \mathrm{cps}, 800 \mathrm{BPI}, 24 \mathrm{ips}$ tape speed, and 60 cycle power will be as specified by Datamec.

> XIII. Communication of Technical Information: The above pricing includes an Instruction and Maintenance Manual furnished with each Transport, a Recommended Spare Parts List, and operation and maintenance instruction classes for DEC personnel. These classes will be free of charge if conducted at Datamec's facilities in Mountain View, California or if conducted at DEC by Instrument Dynamics, Inc. personnel.
XIV. Patent-Copyright Indemnity: Datamec agrees to defend and hold harmless DEC, its customers, and those for whom DEC may act as agent, from all claims, liability, loss, clamage, or expense, including counseling fees, arising from or by reason of any actual or claimed trademark, patent, or copyright infringements, or any Iitigation based thereupon, with respect to the articles or services furnished hereunder, whether by reason of their sale or use, except those for which DEC furnishes complete specifications. Such obligation of Datamec shall survive acceptance of goods and services and payments therefor by DEC.
XV. Proprietary Information: Datamec agrees that the proprietary interest of DEC in the material it supplies will be respected. All information is transmitted in confidence and may not be disclosed to unathorized individuals. Any Information pertaining to this order which Datamec wishes to release for publication must first be submitted to DEC for approval.
XVI. Compliance with Laws: Datamec warrants that in performance of work under this order, it has complied with or will comply with all applicable Federal, State and local laws and ordinances, and all lawfull orders, rules, and regulations thereunder. At the request of $D E C$, Datamec will furnish certificates to the effect that it has complied with the same.

Signed by
Datamec Corporation
Date
Signed by
Digital Equipment Corporation
Page 6 of 7
Date

DATE 22 October 1964

SUBJECT PDP-5 Programing Course
TO
All Sales Personnel
FROM
E. Steinberger
All District Offices
Receptioniat Bldg. 12
K. Olsen
H. Anderson
S. Olsen
N. Mazzareme
R. Beckman
T. Johnson
A. Eiall

The following individuads are scheduled to attend a oneweek PDP-5 Programaing Course convening 2 November 1964:

Consolidated systems Corporation Digitad Equipment Corporation Digitad Equipment Corporation DECA
Dowmonea \& Co., Inc.
Eastman Kociak
Yoxboro Company
Fransdata
Transdata

Mr. H. Hallmark
Mur. F. Hibberd
Mr. S. Maminski
Mr. C. Payette
Mr.A.L. Paulaing
Mr. G. Kittleaon
Mr. R. Davisson
-ー-*

- memen

DATE October 22, 1964
SUBJECT Engineering Programming Committments

| TO K Olsen | FROM L Hantman | |
| :--- | :--- | :--- | :--- |
| G Bell | | |
| W Hindle | | |
| H Anderson | | |
| R Beckman | | |
| J Shields | | |
| J Hastings | | |

1. Things to be done.

PDP-6

1. Changes to card reader test to allow variable rate reading .
2. Console switch and register test.
3. 630 Full Duplex System.
4. 516 Tape Specification Test.
5. Drum Test.
6. 340 Interface and Data Test.
7. DECtog probably should be re-written for the following reasons:
a. It was never fully debugged.
b. Additional tests must be added.
c. Changes to existing tests must be made.
d. Changes must be made for compatibility reasons.
8. Additions to Memory Tests for dynamic testing (timing, etc.)

PDP-1

1. Changes must be made to the DECtape routines for compatibility purposes.
2. 57 A test must be completed.
3. DECtape routines must be revised for compatibility changes.
4. Sort must be completed allowing typed input.

PDP-5

1. Engineering tests for Stockebrand's module line. Both on-line testing, and calculating programs are necessary.

PDP-7

1. Work should begin on analysis of proposed PDP-7 assembler.
2. Outline of PDP-7 iob handling system with possible use for PDP-8.

GENERAL

1. Completion of routines necessary for existing equipment as per J Shields. This includes a great many programs for various pieces of peripheral equipment on all computers.
II. Present Allocation of Manpower
2. L Hantman.
a. Overall supervision of all Engineering Programming requirements including PDP-7 system, Bus-Pak, and flexowriter operations.
b. Completion of PDP-6 time-shared DECtape routines.
c. Completion of 570 acceptance tests and 57 A compiler on PDP-4.
d. Completion of Sort
e. Completion of 57A compiler for PDP-1.

Page 3.

2. Leo Gossel.
a. Updating of instruction test on PDP-6.
b. Instruction test for LINC.
c. PDP-5 Drum Test.
d. PDP-4 Plotter Test.
e. 580 Tape System on PDP-5.
f. Automatic Program Priority Interrupt on PDP-4.
3. R Winslow.
a. Supervision of PDP-5 systems programming .
b. DECtape routines for PDP-5.
c. Liaison with J Pitts on Module Tester.
4. D Brown.
a. Memory tests for PDP-6.
b. 516 tests for PDP-6.
c. 340 tests for PDP-6.
5. D Fellows.
a. Revisions and testing of PDP-4 programs with ASR 33.
b. Magnetic and DECtape system for Assembler and FORTRAN.
c. Teaching necessary for NYU PDP-7 (4).
d. FORTRAN hand-holding for Columbia University.
e. Specifications of PDP-7 system.
6. G Colicelli.
a. Completion of testing and documentation of the Bus-Pak program.
b. Magnetic and DECtape system ability.
c. Job analysis program.
d. Inforrieve:
e. Generalized report writer.
III. Immediate consideration should be given to how we are to get the work done considering present conditions - but what then?

DEC is no longer the small, homey company it was even two years ago. As our product line expands, as sales grow and especially as we become more software oriented (both from an engineering and systems standpoint) we have got to make some long range plans. Such plans should have been made a long time ago, but instead of worrying about the past (or even the present) let's think about the future.

The easy answer is: "Get more programmers". While necessary, this is hardly the complete solution. How many do we need? What will they be doing? When will they be doing it? Who will they be responsible to? etc., etc. Obviously, none of these questions can be answered until we take the time to estimate and control our future committments. First, we need someone to take full responsibility for programming. That person must have the responsibility and facilities for estimating company requirements in all areas, engineering, systems, production, sales, applications, etc. Above all he must have the ability to get (or at least try to get) the people necessary for the job and be able fo define the specific areas of responsibilities of the different programming groups. The individuals responsible for each of the groups must be absolutely sure that they will know just what programs are needed, who they will have available to do it and when the programs must be done. While the shifting of programmers from area to area provides a flexible method of solving instant crises (and no doubt it will always have to be done) it should be kept to a minimum so that some possibility remains for estimating work loads and capabilities. As things stand now, none of the groups (and possibly, especially, the Engineering Programming Group) have been able to fulfill their primary functions in anything like a reasonable manner. For example, one of my primary functions was to provide programming help for projects like Stockebrand's new module line. As a matter of fact, I was hired to do exactly that. However, at this moment, when Tom asks for help, my answer is: "It's impossible." WHY? Equipment is being shipped almost daily without adequate programs. WHY? Changes must be made to existing programs and new programs are needed, but no one is available to do them. WHY? The list can go on for quite awhile.

Page 5.

The answer is simple. In the last analysis it is simply that the company has let me (us) down, not knowingly or willingly, but because no one has taken the time to think of DEC's responsibilities to our customers and our own in-house engineers. They need help, and we're providing hand-to-mouth assistance. It may have worked when we were small but it will not work now. DEC is expanding and to remain competitive our software capability (which in spite of everything is darned good) must expand with it. I think it is about time that we took the time to make time for the future.

In addition, DEC must determine, realistically, the cost of its programming. Compared to other companies, we get our programs comparatively cheap but we still don't know what it costs us. I'm pretty sure faulty estimates are being made as to the cost of programming necessary for computer revisions or additions mainly because, except in rare instances, NOBODY HAS EVER ASKED ME FOR ONE. Construction requisitions come in and in some cases the machine is almost ready to be shipped before any concern for programming is heard. Accounting still does not give me a report concerning the money (hours) charged to EN numbers by members of my group. How can the Project Engineers possibly know what programming is costing them?

Obviously the time has come for a serious re-appraisal of our programming abilities, and I seriously recommend that it not be put off until "later".

LH:ASJ

SUByquc pDP-6 Instruction
Extended PDP-6 List
TO

DATE
October 23. 1964
D. A。Witcrest

FROM

The following instruction is recommended for incorporation in the new POP $=6$.

XCTR Execute relocated. Compute the effective address as normal to obtain the object instruction. Activate memory patection and relocation during execution of object instruction.

In the User Mode this instruction is identical to XCT. In the Executive Mode this instruction allow very convenient access to the user ${ }^{1}$ s area. The operation code of XCT is 256 and code 257 is currently not in use.

DAW:tw

INTEROFFICE MEMORANDUM

DATE 26 October 1964
SUBJECT PDP-6 Maintenance Course Convening 2 Movember 1964
TO
K. Olsen

FROMR. Bernier
H. Anderson
S. Olsen
N. Mazzaxese
R. Beckman
T. Johnson

Receptionist, Blag. 12
All Sales Personnel
All Diatrict offices

The following individuale are scheduled to attend a four-week PDP-6 Maintenance and Familiarization Course convening Monday, 2 November 1964:

Mr. J. Moore Lawrence Radiation Laboritory, Livermore
Mr.J. Noonan
Mr. Welsa
Me. Yonda

Lawrence Radiation Leboratory, Livermore Brookhaven Nationa 2 Laboratory
Brookhaven National Laboratory

INTEROFFICE MEMORANDUM

DATE October 28, 1964
SUBJECT Course - Starting Monday,

FROM Bob Lassen

CC: K. H. Olsen
/H. E. Anderson
R. Best
W. Hindle

Because of the critical company-wide need to step up the training of our new and inexperienced technicians, DEC has established a full time accelerated training course.

The purpose of the course is to prepare inexperienced technicians, who have the equivalent of 2 years advanced electronic schooling, for production job assignments throughout the company as quickly and as effectively as possible. The course is designed primarily for newly hired people. However, qualified and deserving technicians may be selected from within, provided they have the necessary technical qualifications and provided they have not already had equivalent digital electronic training. Employees will be selected from within only after they have been tested and interviewed.

Classes will be held in the training area in building 3 on Monday through Friday from 8:15 A.M. to 5:00 P.M., and will continue on a full time basis for approximately two months.
The first class will start on Monday, November 2, 1964.
This is our first comprehensive technical training effort. and if the "pilot course" proves to be productive, we will conduct these classes four times a year. Course standards will be high and each student will be expected to maintain these standards.

If you wish to recommend a technician whom you feel meets the necessary pre-requisites, please contact me and I will arrange for their technical interview and testing.

NEW TECHNICIAN TRAINING COURSE OUTLINE

Circuits

Numbering Systems
Logic (Boolean)
Test Equipment
DEC Symbols and Prints
Gating
Flip-Flops
Registers
Timing and Synchronization
Counters
Arithmetic Operations
Core Memory
Drums and Disks
A / D and D / A
Card Readers
Displays
Line Printers and Plotters

DATE October 28, 1964
SUBJECT
TO G. Rice
H. Anderson
N. Mazzarese
R. Lane
F. Fortin

On 10-23-64 and 10-24-64 DEC made a very rough test of a PDP-6 at Acton Labs. in order to estimate whether or not the computer will meet the specifications of MIL-I-6181D, a radio frequency interference specification.

CONCLUSION: The PDP-6 almost certainly meets the requirements of MIL-I-6181D/ MIL-I-26600 .

Before the test was started it was known that certification of success or failure was not possible because:

1) The computer selected for test was not functioning properly and did not have a paper tape punch installed. (Therefore all modes of operation could not be tested.)
2) ': Equipment available at Acton Labs. closely approaches but does not quite reach the top frequency required in the specification.

It was also understood at the time of the test that there would not be time to complete all the tests.

There are 4 major equipment classifications mentioned in these mil. specs. From the language used in the Class descriptions it is not clear whether or not the PDP-6's Saunders Assoc. are interested in fall under Class I or Class II. Class I provides for radiated RFI to be measured at 1 ft . while Class II provides for measurement at 25 ft .

The PDP-1 and PDP-4 tested previously as well as the PDP-6 just tested fail to meet the provisions of Class 1. It is not possible to administer the Class II tests because the screen room. is not large enough to put an antenna more than about 2 ft . from the computer.

On the basis of interpolation from preliminary data I believe that all the computers tested up to now will meet the requirements of MIL-I-6181D/MIL-I-26600 if the equipment is judged to belong in Class II. (I will have better, but not conclusive data early next week.)

AH/mro

DATE October 29, 1964
SUBJECT

TO K. H. Olsen	R. Wilson	FROM Arthur Hall
H. Anderson	R. Lane	
N. Mazzarese	G. Belden	
G. Rice	G. Bell	
E. De Castro	R. L. Best	
J. Fadiman	R. Hughes	

Recent general interest in Radio Frequency Interference testing prompts this memo which gives an idea of the-general labor and dollar outlay necessary if DEC were to undertake this testing.

Below are some notes on equipment and measures necessary to qualify equipment under MIL-1-26600. (The number before each paragraph is the MIL-I-26600 paragraph reference.)
4.1.3 "A test report conforming to MIL-T-9107 shall be submitted to the procuring activity prior to submission of the preproduction model for acceptance."
4.1.4.1 Interference measuring equipment will be calibrated periodically with laboratory generators.
4.1.7 "A minimum of three neasurements shall be made in each frequency octave."
4.1.9 A power line stabilization network shall be inserted in each ungrounded power supply lead.
4.2.1 Ambient interference level during testing should be at least 6 db below the allowable specified interference limit.
4.2.2 Equipment to be tested must be on a copper or brass ground plane and must, if it is not in a screen room, rest on a large metal support plane.
4.2.5.2
4.2.5.2.1 Interconnecting leads between bays not connected together will be 3.5 ± 1.5 ft. long.
4.2.8 "The equipment under test shall be loaded with the full mechanical and electrical, or equivalent load, for which it is designed."
"Radiated interference fields in excess of the values given in figures 6, 7, 8 and 9 shall not radiate from any unit, cable, or interconnecting wiring over the frequency range of 150 KC to 10 gc for CW and pulsed CW interference and 150 KC to 400 MC for broadband inpulsive interference."

Xerox copies of MIL-1-6181D (which refers only to electronic equipment intended for installafion in manned aircraft) and MIL-I-26600 are available from Arthur Hall.

Subject: RFI Testing

RFl testing is generally accomplished in a screen room however it can be done in quiet areas away from flourescent lights, rotating electrical machinery, relay equipment or fast rise-time logic.

A quick survey reyealed that we could not test at DEC (without a screen room) except probably in the center of Building 3 after DEC working hours.

Equipment costs known this date are shown on the following pages. The only three companies manufacturing wide range noise testing equipment (to the knowledge of a local testing lab.) are Empire Devices, Stoddart and Polarad. Polarad has declined to quote on equipment due to "prior committment."

Screen room or not, a large metal support for the equipment topped by a $12 \mathrm{sq} . \mathrm{ft}$. copper or brass ground plane is required. Also necessary are the 50A power line stabilization network.

Test results are subject to a great deal of interpretation and it usually takes an experienced person to run the tests properly. (So said a representative of Empire Devices.)

Cost of Equipment to Test per MIL-I-26600

Empire Devices Equipment
A. Frequency range 150 kc to Igc Basic Instrument BA-105 \$1,980 Tuners for various consec. TA 1,500 frequency ranges Tl 980

T2 1,160
T3 1,700
Antenna kit 150 kc to 30 mc . LM-105 335
Antenna kit 20 mc to Igc . 720
Switching unit 60
B. Frequency range 1 gc to 10 gc .

Basic Instrument BA-112 3,790
Tuners for various consec. Tl (Igc to 2gc) 2,790
frequency ranges T2 (2gc to 4 gc$) \quad 2,790$
T3 (4 gc to 7 gc$) \quad 2,790$
T4 (7 gc to 10 gc) 2,790
TOTAL \$23,385
Equipment can be rented for 20% of cost (Tst month)
85% of rental may be applied to cost if purchased.

SUBJECT

TO
K. Olsen
R. L. Best
G. Bell
N. Mazzarese
R. Maxcy
G. Rice
E.T. Johnson
J. Koudela
E. DeCastro

DATE
October 31, 1963

FROM Arthur H. Hall

The following letter represents the formalization of decisions by persons mentioned above in either their private or committee capacities. It is to insure that there is general agreement on prices and specifications before formal quotation that this letter be circulated.

This letter will be mailed Wednesday, November 6th.

MAYNARD, MASSACHUSETTS
TWinoaks 7-8822 TWX MAYN 816

Mr. Roy Fine
Manager of Operations
Foxboro Company
21 Strathmore Road
Natick, Massachusetts
Dear Mr. Fine:

The current situation on magnetic drums is as follows:
Available as standard items:

Type 24E	$(1800 \mathrm{rpm})$	32,768 words	$\$ 36,200$
Type 24F	$(1800 \mathrm{rpm})$	64,536 words	$\$ 38,680$
Type 24G	$(1800 \mathrm{rpm})$	131,072 words	$\$ 43,400$

Type 24E may be expanded in the field to \#24F or \#24G. Number 24F may be expanded in the field to \#24G. Prices and approximate times below apply.
\#24E field conversion to \#24F \$2,288 plus about 25 hours*
\#24E field conversion to \#24G $\$ 6,864$ plus about 60 hours* \#24F field conversion to \#24G \$4,576 plus about 40 hours*

Field installation charges may be applied at the discretion of DEC for in-house drum configuration changes due to changes by Foxboro in the purchase order.

Type 24E and \#24F drums may be obtained in a smaller physical size allowing expansion only to 65,536 words maximum at the following prices.

$$
\begin{array}{llll}
\text { Type 24E } & (1800 \mathrm{rpm}) & 32,768 \text { words } & \$ 33,600 \\
\text { Type 24F } & (1800 \mathrm{rpm}) & 65,536 \text { words } & \$ 36,280
\end{array}
$$

\#24E field conversion to \#24F $\$ 2,288$ plus about 25 hours*

All drums mentioned above are available at no extra charge with a 3600 rpm motor. Drums above equipped with this motor would have one half of the word storage and the average access time would be divided by two.

All drums above are available in 18-bit configuration for PDP-4 and 11 -bit configuration for PDP-5.

A new DEC offering is the Type 250 Drum for PDP-5. These drums are equivalent in features, access time, buffering, instruction etc. to the \#24 except that they are in an 11-bit, 32,768 word maximum size.

Type 250A	$(1800 \mathrm{rpm})$	8,192 words	$\$ 18,800$
Type 250B	$(1800 \mathrm{rpm})$	16,384 words	$\$ 19,500$
Type 250C	$(1800 \mathrm{rpm})$	32,768 words	$\$ 21,500$

\#250A field conversion to \#250B $\$ 530$ plus about 16 hours*
\#250A field conversion to \#250C \$1,674 plus about 18 hours*
\#250B field conversion to \#250C \$1,144 plus about 20 hours*
Discounts are available on \#250 drums on exactly the same basis as for the \#24 drum.

To confirm our telephone conversation, the estimated hours to install additional core memory modules (in the field) on PDP-4 computers ordered from now on are as follows:

First additional 4K 10 hours
Next additional 4K (incl. memory extension 20 hours** control)
Each additional 4K 10 hours
The details of the order numbers for PDP-4 Teleprinters (asked for by your office) are as follows:

Model 28KSR
$\begin{array}{ll}\text { Typing Unit } & \text { LP87RX/AGY } \\ \text { Keyboard } & \text { LK16ARK } \\ \text { Type Box } & 151930 \\ \text { Motor } & \text { LMU3 } \\ \text { Console } & \text { LAC 203AB238 } \\ \text { Gears } & 161295\end{array}$

Page Printer

Also offered at this time is the ${ }^{\# 141 \text { Parity Checking Option for PDP-4 priced }}$ at $\$ 3,200$ for the first 4 K . This option may be included in the regular PDP-4 discount. The $\$ 3,200$ price holds only if the option is included in the original computer order. Field installation is impractical and would be prohibitively expensive in both money and downtime. Price to include addition memory is $\$ 650$ per each additional 4K.

The \#141 Parity Checking Option adds parity bits as necessary on every memory store operation and checks parity on every memory retrieval operation. Odd parity is used. Parity errors would be indicated by a light on the operator console. The parity error flag (which turns the light on) is cleared by a "Begin" pulse or by an IOT. A parity error would cause an interrupt or not under control of a "Parity" switch on the Operator Console.

If you should require more details concerning the subjects mentioned above or about any other matters, I will be glad to help you.

Yours truly,
DIGITAL EQUIPMENT CORPORATION

Arthur H. Hall III
Computer Design Engineer

AHH/lal

* To be charged at DEC Maintenance Prices
** Presuming that the additional memory and extension control are mounted in a new bay and checked out at DEC before installation.

INTEROFFICE MEMORANDUM

DATE September 4, 1964
subject Notes on Production Goals for New Modules
$\begin{array}{lll}\text { TO Maynard Sandler } & \text { FROM Kenneth H. Olsen } \\ \text { Harlan Anderson } & \\ \text { Stan Olsen } & \\ \text { Dick Best } & \\ \text { Loren Prentice } & \\ \text { Bob Hughes } & \\ \text { Tom Stockebrand } & \\ \text { Phil Backholm } & \end{array}$

We have set some approximate production goals which we would like to achieve one or two years from now. This is so that when we purchase equipment and lay out space we'll have some basis to work from. We're not purchasing excessive equipment that will now produce these rates but when we can spend a little more money to obtain these rates we do it. While we're laying out space, we lay it out assuming that we'll later fill in the equipment to accomplish this.

We assume that at that time the modules will be paying about $\$ 10.00$ a piece and to make the big effort worthwhile we should sell a million dollars a month. This will make 100,000 modules per month or, on a 20 day month, it will be 5,000 per day. If we assume 6 ceramic chips per module it is 30,000 per day, and if there are 20 diodes per module it is 100,000 diodes a day and with 5 transistors, it will be 15,000 transistors a day. In chart form it works out the following way:

	Modules	Ceramic Chips	Diodes	Transistors
Year	1.2 million	7.2 million	24 million	3.6
Month	100 thousand	600 thousand	2 million	300 thousand
Day	5 thousand	30 thousand	100 thousand	15 thousand

This is assuming that we get 500 dice per wafer. This is a reasonable guess if the dice are 30 mils square. If the very bit of a $7 / 8$ inch wafer were used, there is enough area to get 660 dice. There will be some rejects and the corners cut off the wafer and so 500 is probably a good number if we get a high yield. If we pay $\$ 5.00$ for the basic wafer we have already invested a penny per dice. If we invest $\$ 10.00$ in the wafer, the materials are two cents per dice. This is a high number considering we haven't started the process of the wafers as yet.

It is interesting to note that if we go from 30 mils square to 20 mils square we get 2.2 times as many dice out and if we go to 10 mils square we get 9 times as many dice. We want to make the chips as large as possible because mechanical handling is the big problem but if we ever get to using 24 million diodes per year, the cost of the material might be high enough to be worth more expensive handling equipment. For now, getting into production is the most important and we'd better use large dice.

There is, however, a way which we could have our cake and eat it too. We can put two diodes on one chip with a common cathode. This would be useful in the bulk of our fast diode applications. The R002, the R111 and the R141 all use diode pairs with common cathodes. In addition, the diode capacitor gate uses five diodes, four of which are pairs with common cathodes. If we do this, it would almost cut in half the number of diode dice we need.

For the non-planer forward biased diode, we might someday make this with integrated circuit techniques to get four in series on one chip with two terminals but for now we might use a similar technique like stacking four wafers together under pressure and heat so that they are thoroughly soldered together like plywood. We then saw them up or cut them out with an ultrasonic cutter and we can then drop them on our ceramic chip and we only have one unit to handle and only one lead to weld. For those applications where just two are needed, we can use the same technique.

Ken Olsen

KHO:ech

Introduction

In considering the reports that would be required for managing, operating and accounting within the company, the objectives of these reports by area within the company have to be considered. This proposal attempts to view the entire reporting problem within the company as only then will we be able to accumulate and disseminate information which will result in the highest return on our investment and concomitantly the highest profits on our product line. I have blocked out a program in five phases as follows:

Phase 1 - To establish the tone of the program with stated objectives.
Phase 2 - An examination by area of the company requirements.
Phase 3 - A detailed program of reports by area of operation.
Phase 4 - A consideration of Phase 3 in the light of computerization vs. manual.
Phase 5 - The generation of these reports and the handling and interpretation and analysis by a report organization.

As will be seen in the following presentation, the basic areas of business flow within the company which are necessary to control 80% to 90% of our dollars are confined to few gross variables, but with the execution within each variable, in some cases quite intricate. From the generation of the order to interpretation into production figures, the accumulation of cost, raw material, direct labor and overhead, to eventual stocking in Finished Goods, out to the customer through Sales and billings, back from the customer Receivables in cash, is the basic framework with pricing, trends in cost, sales, etc. following on from these.

Types of Reports

Report ts fall into three gross categories in order of importance as follows:

1. Action Reports

These are reports to all areas of the company which require action on the part of the Manager in order to correct, institute or expand areas of responsibility.

2. Status Reports

These reports fall in the area of forecasting and reporting of performance against established norms in order that the manager may know how he performs against what is hopefully a known bench-mark base .

3. Historical Reports

These reports are a reflection on past performance of the company used most often in predicting future costs or expected results from a given course of action, performance
of sales territories from one year to the next by customer, by branch, by state, etc. Values to be obtained from these are many if properly followed up.

In a general way, these reports could be disseminated to management, product line coordinators and first line supervisors.

Areas of Reporting
In considering the first major areas of reporting, I would like to discuss the following as a possible approach:

1. General Management
2. Sales
3. Finance and Accounting
4. Sales
5. Production
6. Engineering
7. Technical Publications
8. Administration
9. Purchasing

Control Areas within Functions

1. General Management

An initial list of happenings to be reported might be as follows:
Orders by product vs. Forecast
Production by product Forecast vs. Actual for Profit \& Loss, Balance Sheet, Number of Employees, Inventories, Plant and Equipment, Cash Performance, Financing Requirements, Engineering Project Review, Product Line Performance, Return on Investment, Product Line to Product Review
2. Sales

Sales by Product

Branch, Customer, with emphasis on exception reporting of purchases between years to show customers who have not performed as well as previous years and those that have performed better.
Sales, high to low, primarily to give us an idea of how committed we are to our various customers.
The usual Renegotiation reports and Accounting Reports
Expenses by branch office
Subsidiary Operations
Forecast
Procedures

3. Finance and Accounting

This area will be dealt with in detail under phase 2 of our program, but for the moment these areas look like major ones to consider at this time:

General Accounting
Forecasting
Foreign Operations
Business Statistics
Cost Department
Accounts Payable
Accounts Receivable
Tab Operations
Project Reporting
Report Section

4. Production

Regular reporting of product production
Labor Usage
Material Usage
Overhead Costs, coordinated with pricing considerations
Purchase Requirements
would seem to be major areas of consideration. Inventory balance would be impl ied from requisition and purchase report considerations. I would like to discuss in some detail here under phase 2 the objectives of our reporting by level of supervision.

5. Engineering

The prime item in this area is control of projects with a secondary of employees and overhead expenses. I believe reports for forecast vs. actual by project with strong product line orientation, plus manpower requirements and a regular review will control the bulk of expenditure here. Details of this reporting procedure will be covered in Phase 2.

6. Technical Publications

Reporting of material purchases and accumulation of costs by jobs and overhead expenses with direct charges being made to projects with separate reporting for national advertising will pick up the bulk of expense in this area.
7. Administration

Since this area deals with the highest level of management, this in effect would be reporting of results by area of responsibility to top management. This would seem to involve a grouping of areas of reporting as mentioned above by individual senior manager for consideration by top management. This would include required summaries of cost centers by manager responsibility with correlations to products on a P \& L basis .

8. Purchasing

I would like to discuss our reporting here by material purchased as it reflects the total dollars of annual purchases in order to assist them in regulating quantities
of purchase on those items which are undoubtedly the largest number of items but undoubtedly the lowest value in dollars so that those purchasing considerations come up infrequently. Reports of purchases by vendor, by type of product, with performance factors against required deliveries would seem to be prime considerations.

Required Analysis Work on Reports
I would like to discuss within the framework of (1) what has happened, (2) what is happening, (3) what could happen, on a current trend of an operation or happening which would be covered within a specific report, how much analysis work a manager would like to have done on the report before he receives it. If he would expect to receive a report with conclusions from operational results being drawn, this would call for a different approach to preparing the report.

Timing of Submission of Report Requirements

The following schedule is an attempt to place time factors for accomplishment of the five phases of this program in order to better schedule our departmental time:

Phase 1 - Objectives of program, September 11
Phase 2 - Examination by area, October 9
Phase 3 - Specific Repo ts by Area, October 30
Phase 4 - Computerization vs. Manual, November 20
Phase 5 - Report Organization, December 18
I believe this schedule is extremely tight as a limited number of people will be able to do this job, but with emphasis on the preparation on the departmental level, I believe we can come close to the schedule.

Computerization of Reports
Attached you will find schedules of required reports as currently constituted for the regular recording of happenings within the company, but does not include output reports.

Output reparts will be taken care of in Phase 2 of this program.
Summary
I believe if we follow this program with the objective of generating as few reports as possible with emphasis on action reports within the context of controlling 80% to 90% of the company activity in a firm manner, that the remaining 10 to 20% which are expenditures of an almost stable percentage of departmental expenses, we will continue to make a high return and a high profit.

EALCuChion or Lrmadere payroll taxes
70 DESPRBURE PAYPOLL L RENSES

10 PREPARE VOURNAL EIDKIES, 10 OIST. EXRS.
TO DETERMINE THE OVER ORUNDER AOAP MMEDANCE
10 DREPRKE SCHEDULE FOR FINMOMO SEATCMI.
TO PREPARE FINANCIAC SNMLITS.

 and cast of soces weses.
70 yourdac ReDucFION oy kESEREIE

10 compare foretast is nerunt.
15. FREENSZ IS ACTUAL SALES EXPERIENCE

QuARTERCY
14. COST CENTER REPORTS. TAB FORECRSING MOWTHEY SHLES FORLCRSING WEEKLY

+ +

16. SNat TRM (3 monTHis) CASH TORECRST

SOURCE PRONUCED

DATA
FORCNSTHE

HOW USED

Lictorreys Eovecast
18. ASEEF NEYORT
-HB
PROREREY MONTIUY secrion

END OF SECTRON III
19. ACCOUNTS RECEEVABLE (BY INVOICE\#)
TO ACEONIT RECEUALSLE (Ev cuETOMER)
Y: QNSH PECFENT + DISE.
22. SHIES REGISTER FIGURES

二- AENORDERS, SHIHMENTS, EACKLOE.
?. FACTORy PREDVCIION PROD.CONT:
25. FQEERGAR 5JMTA ANO HOV: NEDCNT

Bi. FLD.GOV NENTALY AND
FAP
A / R

MONTHLY
A / R
MENTHLY
ABrIANTRRCY HIOMO
A / R WEEKLY
A / R
A / R

WEEKCY

WEEKZY
3 \}
ξ

DEFREGHMON - BSODERFY OONTROL

$$
\}
$$

$$
\}
$$

$$
2
$$

$$
S_{p_{s}}^{s_{i}}
$$

$$
3
$$

FINANCIAL STATEMENTS
FILING GAI'S F FED DEP. RECIENT.

END OF SECTION IV

INTEROFFICE MEMORANDUM

September 4. 1964
SUBJECT Rroject MAC \sim MET
TO Ton Whalen
FROM Bob Iane

Project MAC - Mr presently has a PDP-1 consisting of the following items:

2. CRS Display. Type 30z 14.300.
a. Symbol Generator 33
4.900.
b. Intensity Featuxe 250.
3. Light Pen, Type 32 $1,300$.
4. Data Control. Type 131
5. Eigh Speed Chamel Control. yype 19
1.0,500.
6. Micro Tape Control Unit. Type 550

9,000.
7. Micro gape Unit. gype 555

9,400.
motal 219.050 217.050.

Hhey are trading the above system for a popmb configuration consisting of the following:

1. Axithmetic Erocessox. Type $166-626$
2. Data Control. Type 136
3. Micro Tape Control Init
4. Dual Micro Tape Unit
5. Memory type 162
6. Memory. Type 163C
7. Display, Type 346 less char. generator
8. Paper Tape Reader
9. Paper Tape Punch
146.100.

20,000.
24.000.
7.400.
30.000 .

126,000.
32. 300.
9.000.
$\begin{array}{r}3.500 . \\ \hline\end{array}$ 380.300 .

As you can see, the net difference is:
380.300.
$217,000$. 163.250.

Their gurchase ordex number 16284 dated $8-26-64$ is for $\$ 8,800.00$ and covers items 1. 4, 5, \& 6 or the popmi and items 1. 2. 3. 8, \& 9 from the RDP=6 1ist, plus a special interface for the pype 30 F 3cope to the PDPa6 (3) (3,100).

$$
\begin{array}{rr}
\text { i.e. } & \text { \$DP-1 } \\
\$ 160,000 & \$ 146,100 \\
10,500 & 10,000 \\
9,000 & 14,000 \\
9,400 & 9,000 \\
\hline \$ 188,900 & 5,500 \\
& \$ 188,600
\end{array}
$$

There was a \$10,000 error in the REA memo dated March 20, 1964 Which cuoted RDP-6, Item 1 at $\$ 156,100$. I corrected this. but too late to get into their last year ${ }^{\text {s }}$ s budget.

In summaxy:

$$
\begin{aligned}
& \$ 194,600=184,600 \div 10,000 \text { error } \\
& -188,900 \\
& \$ 5,700 \\
& \frac{\$ 3,100}{\$ 8,800} \text { Spectan Intexface to } 30 \text { Gurent P. O. Anount }
\end{aligned}
$$

Now f. Mills has requested funds to puxchase addtional equipment, samely: Ttems 5, 6, \& 7 from the PDP-6 list. Also we have agreed to accept as trade items 2, $22,2 \mathrm{~b}$ \& 3 from the pDP-1 1ist.

$$
\begin{array}{rr}
\text { i.e.: } & \\
\text { pupm } & 1.4,300 \\
& 4,900 \\
& 250 \\
& 1,300 \\
& 20,750
\end{array}
$$

SDP-6 30.000 126,000
32.300

188,300

Also, since they axe tradixg in their $2 D P=1$, 30 Scope they will not have any requirements for the adapter covered on their $p, 0$. 我 16284 dated $8-26-64(3,100$.$) .$
－Consequently，there next $P .0$ ．which R ．Mills will be greparing after he returns from vacation and aftex he secures the necessany approvals is：

```
+ 188,300 Addd'1 items
~20.750 %rade PDP-1 Scope (30:I)
    167.550
- -10,000 error correction
- 3,100
```

Klan Rotok and I have requested a meeting with R．Mills upon his return to discuss this $P .0$ ．advise him of the lateness of the PDP－6 and to assist him in site pregaration exiteria．

CG：Bob Beckman
路．Anderson
A．Katok
艮。Mills
J．shields

DATE September 4, 1964

SUBJECT BIWEEKUY REPORTS

TO

K. Olsen	D. Denniston	K. Larsen
R. Anderson	J. Burley	J. Jones
S. Olsen	E. Harwood	R. Greene
R. Best	G. Huewe	R. Gakley
H. Crouse	L. Prentice	R. Colran
J. Fadiman	G. Bell	G. Rice
T. Johnson	R. Mills	D. Henderson
R. Hughes	R. Savell	T. Quinn
M. Sandler	W. Hindle	R. Lindsay
R. Beckman	N. Mazzarese	J. Leng
D. White	D. Doyle	R. Smart

The Biweekly Report is dead.
Its demise was due partly to its displacement as a commications medium by the Engineering and Sales Newsletters and partly to the fact that contributions to the Biweekly wexe voluntary.

The question to decide is whether the newsletters can now meet our information needs or whether we should have a replacement for the Biweekly.

If we attempt a new type of report, one thing seems obvious. Those who agree to contribute must do so on a regular basis - not just when the spirit moves.

Will you tell me on the accompanying questionnaire how you feel. I would like youx reply by Friday, Septembex llth, so that the results can be summarized for the Works Committee.

$$
J_{0} L_{0} A_{0}
$$

fjd

Please complete and return to Jack Atwood, Tech Pubs, by Friday, September 11th.

I feel that our internal communications needs:
\square Can be satisfied by the Sales and Engineering Newsletters.

Cannot be satisfied unless we have a replacement for the Biweekly Report.

Note: If you think we need a new type of report, please answer the following additional questions.

I think the report should includes
\square Information on activities or developments of general interest from each department, field office and subsidiary.
\square
Summaries of decisions reached at meetings of the various operating committees.
\square other \qquad
\qquad
\qquad
\qquad

I do not think the report should include:

Please complete and return to Jack Atwood, Tech pubs, by Friday. September 11th.

I feel that our internal communications needs:
TCan be satisfied by the Sales and Engineering Newsletters.
\square Cannot be satisfied unless we have a replacement for the Biweekly Report.

Note: If you think we need a new type of report, please answer the following additional questions.

I think the report should include:
\square Information on activities or developments of general interest from each department, field office and subsidiary.
\square
Summaries of decisions reached at meetings of the various operating committees.
\square other \qquad
\qquad
\qquad
\qquad

I do not think the report should include:

I feel the report should be issued:
\square Every other week \square Every week \square once a month
I would be willing to provide a contribution to each issue of the report.
\square Yes
\square No
I would also ask the following people in my group to contribute to the report on a regular basis (R) or periodically (P):

I would probably route my copies of the report to the following people in my group:
\qquad

Signed \qquad

INTEROFFICE MEMORANDUM

DATE
September 4, 1964
SUBJECT MIT Project on Computer-Generated Music.

TO Win Hindle
FROM Bob Lane

H. Anderson

This has been dormant for several weeks now:
Do we take next action?
Could this be part of our comp. center plans?
Please advise: INTEROFFICE
MEMORANDUM

DATE
FORTRAM Demonstrations
SUBJECT R．Lane
G．Moore
H．Anderson
习．Mazzarese

September 8． 1964

気。 B．Eazris

The present status of the FORRRN compiler for PDP－6 is as follows：
（1）Although it has some bugs，a compilation may take place with ingut from either paper tape or punched caxds and outgut in svmbolic language either on paper tape or line printer．it does not seem to be foolproof enough to try without Peter Samson axound to smooth things over．
（2）The assemblex to translate compiler output to binary machine language is not written．＂he symbolic tapeg produced by the compiler may be assembled in three passes b_{y} a version of the Hacrom 6 Assembler．however． severwi of the statements wuch as coaskox as of now cannot be dealt with by this assemblex．The $\overline{1} / 0$ syatem for Fonazan is also not in a useable ztate．

A simple conclucion Eron these facts is that customer gomaran programs may not be compiled and xun on pDr－6．The programing department informs me that this is from two to three months away．

So alleviate the pressures being put on us by customers to see FORGRAN ruming on the PDP－6．I maike the following suggestions：
（1）Peter Samson supply the Sales Dept．with a copy of the compiler that will list the symbolic output on the line printer with a reasonably good reliability．ghis will allow customers at least a look at the kind of code the corgiler is going to produce with their programs．（This has been done with reasonable success with Brookhaven）．
(2) Clark Frazier and Bill Segal have said they will prepare for me a simple FORTRAN program that detours all the pitfalls of the present system and will be able to compile and run. I suggest they go ahead and do this to use as a "stock demo" until the system is useable.
(3) Mnat as much effort as possible be exerted into having a useable FORTRAN in less time than two months. (We have promised systems with FORTRAN before then).

BOR2RAM Demoneteations

DATE
September 8. 1964 SUBJECT

TO
R. Ename
G. Hoore
H. Anderson

FROM R. Re Haxris
W. Mazzarese

The present status of the Forkran compiler for PDP-6 is as follows:
(1) Although it has some bugs, a compilation may take place with ingut from either paper tape or punched cards and output in symbolic lanquage either on paper tare or line printer. 官t does not seem to be foolproof ernough to try without Beter samson around to smooth things over.
(2) Fhe assemoler to txanslate comptier output to binary machine language is not written. Fthe symbolic tapea produced by the compiler may be assembled in three passes by a vergion of the Hacromb Assembler, however. geveral of the statements such as comatom as of now cannot be dealt with by this assemblex. The $1 / 0$ gystem fox PORMRM胃 is also not in a useable state.

A simple conclusion from these facts is that customer forgran programs may not be compiled and sun on pDR-6. The programming department incorms me that this is from two to three months away.

To alleviate the pressures being put on us by customers to see FOMTRAN runaing on the pop-6. I make the following suggestions:
(1) Petex Saxacon supply the Sales Dept. with a copy of the compilez that will 1ist the symbolic outwut on the lime printer with a reasonably good reliability. This will allow custoners at least a look at the kind of code the compiler ing going to produce with their programs. fmhis has been done with reasonable success with Brookhaven).
(2) Clark Fraziex and Bill Segal have said they will prepare for me a simole FORMRAM program that detours all the pitfalls of the present systom and will be able to compile and run. I suggest they go ahead and do this to use as a "stock demo" until the system is useable.
(3) what an much effort as possible be exerted into having a useable FORTRRN in less time than two months. (We have promised systems with Formran before then).

INTEROFFICE MEMORANDUM

40th Meeting of The
DATE September 8, 1964
SUBJECT Test Equipment Committee
TO
Richard L. Best
FROM
Russell Doane
Members of the Committee:
Robert Hughes, Chajman
Russell Doane, Secretary
George Gerelds
Jim Cudnore
Steve Lambert
Larry White
Ed Harwood
Jack Shields
Bill Titeldaum

1. Jim Cudmore asked Dick Tringale and Steve Lambert about sharem ing the 555 between them. Dick is happy without it.
2. We decided to onder 10 Hewlett-Packard 110 A current probes, at $\$ 100$ each, to make it possible for field service and other potential users to get more benefit from our Hewlett-Packard 175 A oscilloscopes. These have been received.
3. Bill Titelbaum will order 3 scope carts.
4. We ordered, and have meceived, two type 581 oscilloscopes with type 82 plug-in units; 1 for Ed Hawwood's group, and 1 for Ron Uilson on the PDP-7. A third was freed for Ed Hanwood by Field Sarvice's purchase of 8 Fairchild 50 mc 'scopes.
5. We have ordered 2 type Lal general purpose high gein fast dual trace plug-in units to offer dual trace operation and special characteristios superion to Tektronix types, $D, E, G, \& H$. We have 10 oscilloscopes, at present, with delaying sweep. For the future, we decided to convert Hewlett-Packand 175A's to the delaying sweeps to fulfill future needs fos oscilloscopes with this featune.
6. Bill Titelbaum will publish, in Engineering News, a list of expendable items that Test Equipment Service will keep in stock For the use of engineers and technicians with oscilloscopes.

Further refinement of plans to collect data on temperature and time drift with metal film resistons in oscilloscopes was established.

$-2-$

8. We have received requests to buy themmometers and variacs. Bill Titelbaum will write, in the engineering news, a list of advanm tages that the Simpson themmometer has over glass themmometers. so that potential users will not be getting along with inferior test equipment, when they could be using the best.

The next meeting of the committee will De on Friday, September 11, at 1:30 P.M, in Bob Hughes office.

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

DATE September 8, 1964
SUbject Standard Module Production
to Harlan Anderson
FROM
Maynard Sandler
Dave Packer

The Works Committee decision on standard module production was referred to us for a proposal. My recommendations follow.

Recommendations

1. 10 weeks of inventory: I suggest we immediately begin to reduce our module inventory for customer orders to ten weeks of average orders. The reduction of inventory should occur over a six month period.

In terms of the module production decision rule, this recommendation means changing inventory desired for customer orders from 20 weeks of demand to 10 weeks of demand. Inventory desired for internal orders should remain at 4 weeks of demand.
2. Use of sales forecast: The rule in operation is based on a past average order rate (which, implicitly, is our best estimate of future demand). The rule will not respond quickly to large changes in demand. Now, after the introduction of the new module line, we expect a substantial decrease in demand for standard modules. We should incorporate this expectation in the rule by using a forecast of future order rate instead of an average of past order rate. I suggest using the average weekly order rate forecast for the next 4 months instead of the average order rate for the past 4 months in the rule.

The forecast should be used for both customer and internal module orders.

Implementation
As before, target production should be computed weekly. The target figure should be us ed as the basis for production planning.

Information requirements and sources are:

1. Forecast of customer orders: A month by month forecast of standard module orders for a 12 month period should be made monthly by Module Sales.
2. Forecast of internal orders: A month by month forecast of internal standard module requirements for a 12 month period should be made monthly by Computer Sales and Sub System Assembly.

New Rule
Target Production (units/week) =
$\begin{aligned} & \text { Average order rate forecast* (units/week) } \\ & \begin{array}{l}\text { Adjustment } \\ \text { Period }\end{array} \\ & \Gamma_{(1 / 24 \text { weeks })}^{(10 \text { weeks })\binom{\text { Customer order }}{\text { rate forecast }}+(4 \text { weeks })\binom{\text { Internal order }}{\text { rate forecast }}}\end{aligned} \frac{\text { Inventory Desired }}{}$

Inventory Actual
$\begin{aligned} & \text { (Actual Finished Goods and Test Inventory) }\end{aligned} \sqrt{(3 \text { weeks })\binom{\text { Average Order }}{\text { rate forecast }}}$
$+\quad \frac{\text { Backlog Actual }}{(\text { Actual order backlog })}$
*Sum of customer and internal forecast over next 16 week period.

INTEROFFICE MEMORANDUM.

September 10, 1964

SUBJECT Initiation of Engineering Projects

TO

Dick Best
FROM
Jim Hastings
Win Hindle
Harlan Anderson

David W. Packer

This memo proposes a mechanism for initiating, changing, and deleting eng ineering projects within the company. The scheme presented here is, in fact, currently followed in most cases now. It aims, however, at insuring that:
a) new projects receive adequate consideration
b) product line coordinators are brought into project decisions
c) the data processing system received adequate information to accumulate and report costs properly.

Project Support

A fundamental concept of the company's product line orientation is that all engineering projects should be "supported" by product lines. "Supported" means that product lines agree to have the costs charged against their development account before the costs are actually incurred. For projects that affect only one product line, gaining support entails only the product line coordinator's agreement that the project is worthwhile. For projects that affect several product lines (less than 15% of the total), an agreeable support arrangement should be negotiated among the project leader and the product lines coordinator involved. It seems desirable that the negotiation process be an informal one. Should the support negotiations prove fruitless, the appropriate Guidance Committee should make the support arrangement decision (or veto the project).

It is, of course, both desirable and proper that some projects should be undertaken that benefit no existing product lines. Such projects can be considered and approved by the Guidance Committees (if small), or the Works Committee (if large).

Formality

Only two written documents appear to be desirable. They are:

1. A proposal, prepared by the project leader and filed in the engineering department, giving:
a) verbal description of project and potentials (what and why)
b) a schedule (per the new engineering scheduling system) c) a cost forecast.
2. A report to accounting after the project has been accepted, giving:
a) a project name, leader, and number
b) total cost forecast
c) monthly cost forecasts for the fiscal year
d) details on other forecasts affected, if any.

A second formality recommended is final consideration of all new projects by either a Guidance Committee (for small projects) or the Works Committee (for large projects). Definition of "large" and "small" is purposely left vague.

Steps in Originating a New Project or Changing an Existing Project

1. Develop proposal.
2. Discuss with the chief engineer.
3. Recommend product line support (\% of costs to be borne by each product line).
4. Send proposal and support recommendations to relevant product line coordinators.
5. Revise support arrangements if necessary.
6. Get approval for expenditures from:
a. Guidance Committee if a small project
b. Works Committee if a large project.
7. Give cost forecasts and project description to Jim Hastings, who will assign a number and relay information to accounting.

Steps in Discontinuing an Existing Project

1. Discuss with chief engineer.
2. Notify product line coordinator.
3. Notify Jim Hastings, who will close number and relay information to accounting.

$$
\text { DATE } \quad \text { September } 10,1964
$$

SUBJICT PDP-6 Program Status
TO H.R.Morse
T. Eggers

FROM Larry Portner
N. Hirst
P. Samson
L. Hantman
S. Piner
B. Segal
C. Frazier
S. Ogard
D. Witcraft
D. Watt
H. Hyman

Copy to: H. Anderson

A meeting has been scheduled for Friday, September 11 , at $11 \mathrm{a} . \mathrm{m}$. in Conference Roon A, Building 12.

The purpose of this meeting is to discuss the status of the I'DP-6 Programs.

INTEROFFICE MEMORANDUM

DATE

SUBJECT SESTEHS BPDEDREAMTOMS
TO
ALL PDP 6 FROGRAMOBMS
Bardan Abderson

Senteaber 10, 396 \%

FROM
I. Fortner, M. Hiss

Th is mow imperatye that we mare a detailen spectrication of the system. To 隹s end ve mat have by Weanerdry, Sept. 26.
the following docurents exom all programpers:
2. A 2ist of all programs writhen, and betige tritsen.
2. For each progran ve nect:
a. A descrivetion of its function.
b. Plow chart (es detalled as posable).
c. Hon to use the programs (inluage, ete.)
in Tuputs to the Program.
Q. Ortputs frow the Prograno
3. Obbez intertioce xecuarenenssobi? there are soxac.
g. Data Pormats
in. Record geyouto

1. Storage xequirenents
J. Other progxams requared for it to operate.

2. When it will be done.
mo etc.
Fevnen though th may be, youx cooperation is ablscutely
accessery and will be appregzated.

FUACY 20% MAM	$\begin{aligned} & \text { BDTR IHSIC } \\ & \text { EUNOTZOR } \end{aligned}$	DET 301T2YOR	NUMBER OF ARGTMENTS	MODE OR ARGUMETSS	MODE OF FumcT20	RESTRECTTOES
XABSTP ABS：	Absolute Falue	2	3	$\begin{aligned} & \text { TMTECER } \\ & \text { THOATING } \end{aligned}$	ERTESER FIOAT HES	Mone
$\begin{gathered} \mathrm{XXTY} \\ \text { XTMT } \end{gathered}$	Truncation	Sign of a timeb Largest Amtegex $\leq\|a\|$	1.	$\begin{aligned} & \text { FLOATTBK } \\ & \text { FLOADEMG } \end{aligned}$	TETEETER TLOATVAG	$\begin{aligned} & 1 \text { a/s2 } \\ & \text { a Hormalesed } \end{aligned}$
$\begin{aligned} & \text { XWDe } \\ & \text { mode } \end{aligned}$	$\begin{aligned} & \text { Renatndez } \\ & \text { ing } \end{aligned}$	$\mathrm{a}_{2}\left(\mathrm{MOCHE} \mathrm{a}_{2}\right)^{2}$	2	$\begin{aligned} & \text { HPLEGER } \\ & \text { HOAT MOG } \end{aligned}$	3FTEGER PLOATETME	$\left\|a_{y} / a_{2}\right\|+e^{\text {None }}$
सMAXGT KHAOTH M480 W07T	Chocsing lurgest velue	Mhx（82， Sa_{2}	22	ITHTMER FIOATIFG 2aUPEGER FLOATLNG	TMTEGER IHTEGE FIOATTHE TIOATTETG	Hone
स M M M201	Croosing smallest च⿴囗十七心	$\operatorname{Mas}\left(a_{1}, a_{2},=0.0\right)$	23	THTEGER PloATIWG TMmetc？ BLOATMET	 IHTEGER ETOATTHC PLOATETV	Wons
FiOATE	F＇2et	Convert to （1axgest integeres a	1	THTEEER	FLAATMU	Hone
XP TXE	$F \mathrm{FS}$	Convergion from TRTEGER to IFOATMER	1	ELnatere		Mone

DATE 14 September 1964

SUBJECT	Spare Unit Prices	
TO Works Committee FROM Don Smith		

Pricing of Spare Units has been and still is, determined on an emotional basis. The purpose of this presentation is to form a concise pattern of determining Spare Unit Prices.

Unfortunately, this method uses one emotional decision, however, once the decision is made it is not required again for a unit. That decision is mark-up.

The method is as follows:

1. Obtain the Unit Cost to DEC (A).
2. Determine the mark-up to cover various charges (B).
3. Determine the Unit Price (mark-up times the Unit Cost, AxB) C.
4. Determine the Special Handling Price by totaling all modifications to the unit so that it is self contained as a spare D.
5. Determine the Spare Unit Price (add the Special Handling Price to the Unit Price, $C+D$) E.
6. Determine the Option Price (add the Spare Unit Price to the Control Price, $\mathrm{E}+\mathrm{F}$) G.

Attached are pages which may be filled in. Arbitrary Unit mark-up values have been suggested, however, a space is available under each if a different value is required.

Attached also, is a sample option sheet for the PDP-5.
If the unit mark-up (B) and thus the Unit Price (C) can be determined by the committee, the option sheet can easily be completed by the designing engineer.

DEC
Unit Cost A

DEC
DEC Unit Price C

1 Teletype Corporation
Model 28 RO

"	"	"
	" KSR	

$"$	$"$	ASR	
$"$	$"$	$\prime \prime$	
$"$	32	RO	
$"$	$"$	$\prime \prime$	
$"$	$"$	KSR	(TG)

Friction Feed
d $\quad 381.00$ 381.00
404.00
(TH)
(TB)

"	"	
"	"	KSR
"	n	

n	$"$	n
$"$	$"$	ASR
$"$	$"$	$\prime \prime$

" 35 RO (AV) Sprocket Feed

| " | $" 1$ | $" 1$ | " |
| :--- | :--- | :--- | :--- | :--- |
| " | 35 | KSR | (AP) |

$"$	$"$	$"$	$"$
$"$	$"$	ASR	(AS)

BRPE-11 PUNCH

2 Soroban
Typewriter IETC - 777-878

3 Digitronics
Model 2500 paper tape reader

$"$	"	"	"	"
$"$	3500	"	"	"

4 Potter Instrument Company
Model M 906 II Tape Trans. 60 cycle

5 Midwestern
Tape Transport

6 Anelex
Series 5
Fio - DEC or ASC II Characters
50 - 60 cycle operation
Digital levels interface
Includes buffer
300 lines/ minute

250 lines/minute (1000 LPM)

600 lines/minute

7 Burroughs
Model B-122 200 cards/minute

Model B-124 800 cards/minute

8 Teckronics

Model RM 503 display

$6,095.00$		
$6,095.00$	1.969	$12,000.00$
$11,900.00$	1.933	$23,000.00$
$11,900.00$		
655.00	1.984	$1,300.00$
655.00		
$1,388.40$	1.998	$2,775.00$
$1,388.40$		
COMPANY COMFDENIIAL		

Calcomp Plotters
Model 563
291/2", 12,000 steps/min, step .01

Model 564
29/2", 18,000 steps $/ \mathrm{min}$, step $.005^{\prime \prime}$

Model 565
11", 18,000 steps/min, step . 01
" "
" "
Model 566
ll", 18,000 steps $/ \mathrm{min}$, step $.005^{\prime \prime}$
rack mounted
"

10 Vermont Research
10" Drum, 320 track capacity
1750 RPM, maximum of 8 Bars Bar (holds 5 Pads)
"
Pad (heads for 8 tracks)

20" Drum, 896 track capacity

1750 RPM, maximum of 8 Bars
Bar (holds 14 pads)

Pad (heads for 8 tracks)

PDP-5

A. The DEC Unit Price contains all of the following changes for the unit only.

1. Handling
2. Ordering
3. Check-out
4. 6 month maintenance warranty
5. Standard manual and prints
6. Investigation
7. Stocking
B. The following charges are not to be included in the DEC Unit Price:
8. Any modifications
9. Write-up for modifications
10. Special adapters
11. System diagnostics
12. Special handling
13. Installation
C. Option interfacing engineering charges are to be added to interfacing hardware (Special Handling Price or Control Price) and not to the unit cost.
D. The spare unit price represents the point where the spare may be most easily interchanged with the original. This price will vary for different computers. The price includes the following charges (Special Handling Price):
14. Modifications to basic unit
15. Write-ups for modifications
16. Special Adapters
E. The spare unit price is determined by adding DEC Unit Price to the Special Handling Price.
F. The following equations are true:
C = DEC Unit Price
$G=E+F$
$E=C+D$
D = Special Handling Cost
$E=G-F$
$C=E-D$
$E=$ Spare Unit Price
$F=G-E$
$D=E-C$
F $=$ Control Price
G = Option Price

DATE September 14, 1964
SUBJECT Module Ad for "Computer Design"
TO Jack Atwood FROM Burt Scudney

Please reserve space on the back cover of "Computer Design" magazine for a series of advertisements on FLIP CHIP modules. This commitment can be made for three consecutive issues (October, November, December) at a cost not to exceed $\$ 980.00$ per insertion.

If we cannot obtain space in these particular issues, or if the cost exceeds the stated amount, please inform me immediately.

In my opinion we have never concisely stated what FLIP CHIPS are, what they do, and what is available. These issued of "Computer Design" provide a perfect opportunity to do so.

BVS:Vg
cc: K. Olsen
\rightarrow H. Anderson
S. Olsen

SUBJECT PDP-6 Programming Course
R. Beckman

FROM
S. Mikulski

Copies: G. Bell
D. Morse
N. Hirst
H. Anderson

1. I am planning to convene a PDP-6 Programming Course on 30 September 1964. It will be a 1.5 week pilot course to determine subject timing, literature needs, and PDP-6 software ability.
2. Enclosed is a schedule of subject material.
3. I am currently producing a course "workbook" which will be nearly completed for use in the course. The first formal course is scheduled for 30 November and is the target date for all class material.
4. I am intending to utilize time sharing in the Bldg. 12 classroom and have made arrangements for two stations in the classroom, and will utilize them for the October class if possible.
5. A summary of PDP-6 computer time is as follows:

Date.	Time	Function
2 Oct.	$11-12$	assembly
2 Oct.	$2-3: 30$	debug
5 Oct.	$3-5$	assemble/debug
6 Oct.	$3-5$	assemble/debug
7 Oct.	$3-4: 30$	assemble/debug
8 Oct.	$1-2$	assemble
8 Oct.	$4-5$	assemble
9 Oct.	$10-12$	debug

If a time-sharing system is available, it should be scheduled to incorporate these times. If a timesharing system is not available, the above times will
R. Beckman

September 16, 1964
Page two
be reserved on the computer.
6. Attendees in the pilot class will be from Brookhaven and possibly Adams. All PDP-6 Programming Classes will be built around time-sharing features for ease of teaching (sharing machine time) and sales viewpoints. When a firm time-sharing schedule is produced, I should be informed in order to reschedule the class labs for future classes.
S. Mikulski

SM:ajc
Attachments: 2

WHO INTEROFFICE

DATE September 15, 1964
SUBJECT Drum Systems
TO Computer Guidance Committee
FROM R. Tringale

There are four drums scheduled for delivery in September. Three drums are the Type 24 for Foxboro, the fourth is a Type 250 drum for Foxboro. Presently one of the Type 24's for Foxboro is ready for acceptance test, a second Type 24 is 90% checked out and the third 24 drum is in Production. The drum for the third 24 system has not arrived.

The 250 Drum is in Production, it was scheduled to be completed in Production by September IT, 1964. The drum for the 250 system has not been delivered. It should be here this week.

There is a Type 24 drum scheduled for delivery the first part of October for Hanscom Field. This system is presently in Production.

The new drum for BBN is scheduled for delivery during the last week in September. There are a few mechanical changes going into the system in order to fit the new drum into the 23 Drum Cabinet.

The 236 Drum Control and 237 Drum unit is still being engineered. The new analog circuits for the 237 Drum have been designed, the special cabinet for the drum has been designed, and we are presently cleaning up the logic. There is still a good amount of final detail and checking to do on the logic and the mechanical layout. Both units are scheduled for Production the end of September.

DT/mro

Here are the ideas that I proposed to the Board of Directors for the Annual Report. It should be very simple andskip all unnecessary details. Above all, we should take every advantage to sell our products.

The first part of the Annual Report will be the history of DEC. This is not a normal entry and we will not do it in future Annual Reports but somewhere we should have the history written down in a form that will be convenient to give to people who ask.

We will have no pictures of the Officers.
The next item is a letter from the President. Some of the best technical writing I have ever seen has been in annual reports. The sentences are short and the ideas are simple. I hope we can do the same.

The next item is products of DEC. This is an area which I think you should work on immediately. I'll try to get the first two sections done but I think your layout people and artists should work on the product area. There are, of course, four areas; the modules, of which should include the A/D converters, the cabinets, and all the other accessories. Then we have the three computers, the core testers, and module testers. Then we should list the financial figures. We will only list the present Balance Sheet and last year's Profit and Loss Statement and the simple and small letter from the auditors. We will not give comparative figures because this implies a more significant interest in the market than what we mean to show. People will think we're interested in selling stock and I'm afraid we'd be bothered to no end.

In addition, we should somewhere list the Board of Directors. We have a rather impressive Board and we should take advantage of it. The picture we took of them is dreadful and we will simply have a list of the Directors with their titles.

It might also be a good idea to list all of the sales offices. I don't think it would be wrong to list our Orlando office and the Huntsville office even though they were started after the end of the fiscal year.

The cover on the Annual Report should really sell one of our products. It should either be the PDP-6 or the new module. We have to turn out a large number of these and we can't make them look too expensive because it will give the wrong impression. So we have a very fine line which we have to follow. We want to give the impression of old line, stable company and really sell our products and yet we don't want to look like we're out selling stock. I would like to see the new module on the cover if we can work out a way in which we can present it effectively.

We also have to get photographs showing our gold plating line, our module line, our automatic component inserting machine, and also our defusion furnace with all of the fancy glassware would be an interesting picture. I would like to see you start laying out everything except the President's letter and the history and maybe if you run into trouble I'll be able to help there too.

There should be another section which shows how the income was spent. This is made mainly for our own employees to know where all the money goes. It is a breakdown different than the Financial Statements. Many people will divide a pie up or divide a silver dollar up into pie slices but this gets rather corny.

One gimmick which might work if it's not too corny would be to use a silhouette of the module to hold the page number on each of the pages of the Annual Report.

Ken Olsen

KHO :ech

INTEROFFICE MEMORANDUM

DATE 16 September 1964
SUBJECT Teletype Model 33
TO
A. Hall

FROM D. Smith

Attached is an extract of the PDP-6 prototype log relating to the console teletype. There are about 73 entries concerning the teletype for the period July 23 through September 5. The majority of the entries are concerned with just 3 problems, duplicating characters, line feeds, and the control key. There were at least 10 persons involved in the making of the entries. I wonder how many are telling other persons about the unreliable, always broken down, Model 33 that causes so many problems. I would like to suggest that you read the log, and see how some felt. A lot of important PDP-6 time must have been lost during the trouble period.

As a closing note, I would like to relate a conversation with a PDP-5 customer of ours. He is planning to install a 630 system and was concerned as to whether he should use the Model 33 because of reliability. He said that he didn't think much of the Model 33 after his experience with the one on his PDP-5. He had so much trouble that he rented one from the Telephone Company. The one he got from the Telephone Company is working very nicely. In fact, he now is open to suggestions that possibly the 33 isn't so bad after all.

Do you suppose we could get more of our PDP-5 cusomters to get in touch with the Telephone Company? Possibly the problem is that Teletype Corporation sends us the bad ones and other people get the good ones.

I hope this memo can slow the stampede of condeming the Model 33 and Teletype Corporation.
cc; K. Olsen
H. Anderson
R. Best
w. Hindle
N. Mazzarese
J. Hastings
R. Savell
E. de Castro
E. Harwood

- H. Crouse
J. Shields

Entries
 Per
 Day

Page

7-23-64
1
2

3
4
5
6
7-26-64 I
7-27-64
1
2
3
7-29-64 I
7-30-64
1
2
7-31-64
1
2
8-1-64 1
2
8-2-64 I
8-3-64 I
2
3
8-5-64 $\quad 1$
8-6-64 1
2
3
4
5
8-9-64 1
8-10-64

Duplicates 5 T
Control key sticks (see method of fix and comment about 33)

5 T,F
Control key sticks
7 F
Duplicates character 7 T
Duplicates character 9 T
Duplicates character 9 F
Comment on TTY test 15 C
Comment on 3317 T
Control key sticks 17 T
Extra line feed 17 T
Front plate sticks (keys?) 25 T
Cover panel fixed 26 F
Bad characters 29 T
Teletype troubles still 35 T
Teletype trouble 35 T
Vertical motion trouble 35 T
Teletype sick 37 T
Teletype sick 39 T
Teletype sick 41 C
Misses characters 41 T
Improperly encodes characters 41 T
Attempt to fix problem unsuccessful 44 F ?
Teleprinter getting worse 47 C
Gets extra and incomplete characters 47 T
Gives estra line feeds 47 T
Control key sticks 47 T
Control key sticks 49 T
Teleprinter shaky 55 C
Teletype adjustments 56 F
Fixed extra line feed 56 F
Fixed sticking control key 56 F
Teletype missing line feeds 57 T
Teletype still missing line feeds 57 T

1
2
3
4
5

$$
\begin{aligned}
& \mathrm{T}=\text { trouble report } \\
& \mathrm{F}=\text { fix } \\
& \mathrm{C}=\text { comment }
\end{aligned}
$$

EXTRACT OF PDP-6 LOG CONCERNING CONSOLE TELETYPE (Continued)

Entries
Per
Day

$$
\begin{aligned}
T & =\text { trouble report } \\
\mathrm{F} & =\text { fix } \\
\mathrm{C} & =\text { comment } \\
* & =\text { teletype changed }
\end{aligned}
$$

INTEROFFICE MEMORANDUM

DATE September 16, 1964
41st Meeting of The
SUBJECT Test Equipment Comnittee
TO
Richard L. Best
FROM Russell Doane

Members of the Committee:
Robert Hughes, Chaimman
Russell Doane, Secretary
Geonge Gerelds
Jim Cudmore
Steve Lambert
Larry White
Ed Harwood
Jack Snields
Bill Titelbaum

1. We have received two 'scope carts, ordered for the two 581 'scopes we bought as a result of the May 22 nd meeting.
2. Bill Titelbaum will publish the following items in Engineering News :
a) A revision of the list of expendable test equipment accessories, stocked by Test Equipment Service, that appeared in the June 8 (\#119) issue of Engineering News.
b) Data on the Simpson Themo-Meter and Variaes that we own.
c) Notice of oscilloscopes that are unassigned; probably two type 543° scopes.
3. We decided to purchase the following Tektronix test equipment:
a) Two 581A 'scopes with dual-trace plugmins for Production Test.
b) Two 547 'scopes with dual-trace plug-ins for Computer Checkout.
c) One 1.05 variable frequency, variable amplitude squarewave generator for Test Equipment Service.
d) One 107 fastwrise squarewave generator for Special Systems and Test Equipment Service.
e) One 180A timemark generator for Test Equipment Service.
f) Four dozen $X 10$ probes to saturate the company with 'scope probes and thereby mitigate the present intensive borrowing and hoarding of probes.
g) One X10 and one X100 passive probe for the 661 sampling 'scope.
4. We decided to buy 10 630-NA-RM multimeters for use in the Model Shop and Quality Control module test stations, with the older 10 630-HA-RM meters (DEC tweed panels) being concentrated in Production Test to preserve the colon scheme there. If any panel-mounted multimeters are left over, they can be added to the burst-generator test setups in module engineering or any other place which requires constant availability of a meter. (Power Supply Test, Special Systems, \& Semiconductor Test should be checked for need).
5. A subcommittee headed by K. Doering, and including W, Titelbaum and R. Doane, will decide how many electrochemical elapsed time meters of what type to onder and install in oscilloscopes. This is to put into effect the plan presented by Bill Titelbaum, and approved by the committee, for reducing the work load of oscilloscope calibration. The plan calls for a regular check of each 'scope, and recalibration at either a fixed period of operation (measured by the meter) on a fixed period of time, whichever is sooner. The present calibration interval for iscopes in noncritical areas will remain on a 6 -weeks schedule. Cost of the plan is expected to total approximately $\$ 1000$. Published data from IBM indicates an early return on this investment can be expected.
6. The following investigations will be made before the next committee meeting:
a) Bill Titelbaum will find out how well the 10 Hewlett-Packard fast-rise clip-on current probes will work on Tektronix and Fairchild 'scopes, so that we may be able to use them everywhere. If they are not interchangeable, we will have to order more Tektronix current probes or transfer HP 175 A 'scopes to current-probe users.
b) Field Service has requested that a second EDC reference voltage source be bought. Bill Titelbaum will first make a close comparison between the EDC device and the recently calibrated Kin Tel source, as a check on the stability of the relatively inexpensive and portable EDC device. We will also find out whether the need for a third source persists now that the Kin Tel is back from calibration.
c) Field Service has 15 pocket multimeters; needs 6 more. We will see whether some scrounging will suffice. If not, the committee decided we should order 10 more meters like those we now have (Triplett 310 meters and 369 leather cases).
d) We will try to establish whether 'scope accessories, now stocked in Test Equipment Service, should be duplicated in the Engineering Stockroom, or perhaps stocked only in the stockroom so as to remove this routine responsibility from Test Equipment Service.
7. The committee decided to try to sell the Telequipment 'scope, whose lack of built-in delay makes it obsolete for the Field Service
purposes for which it was bought.
8. Jim Cudmore will retum the 515 'scope to Power Supply Test to get their present 540 series scope back to a more demanding use.

The next meeting of the Test Equipment Committee will be:
Monday

November 2nd

$$
1: 30 \mathrm{P} . \mathrm{M}^{2}
$$

Bob Hughes office

SUBJECT Systems Product Line Content
TO Harlan Anderson
FROM R.Mills
Stan Olsen
Nick Mazzarese
Pat Greene
Burt Scudney
On our Product Line Profit and Loss statements, we have given credit to the computer line when the systems section was building a computer special system. There are now four (4) computer special systems in process which are being engineered by Special Systems, Princeton, NASA, Remington Arms and Tokyo University. The final resting place of these sales will be in the appropriate Computer Product Line rather than Systems Product Line. This does not properly reflect the effort being made by Systems.

In addition to those special systems, Pat Greene considers the following to be Memory and Core Tester supported:

1. Current Drivers
2. Current Calibrators
3. Current Driver Power Supplies
4. Core Handler Spare Parts

At the present time $\boldsymbol{z}_{\boldsymbol{z}}$ the High Current Pulse Equipment is listed on our Product Line Profit and Loss statement under miscellaneous as a product line. Since the engineering construction and sales effort is contained in the Systems area $\mathrm{I}_{\boldsymbol{z}} \mathrm{am}$ proposing that we transfer the High Current Pulse Equipment to Systems Product Line .

DATE September 17．196\＆
SUBJECT PDPWS Madntenamce and Programmeng clasees
TO
3．Olaen
FROM S．Rikulaki
焯。Anderson
S．Olsem

2．Beckana
F。Jolanzan
Receptionist．Bidg． 12
A11 Sales Paracmnel
A11 District orineen

Reservations for the $2 D P-5$ maintenance and programming classes convering Decerbber 7 and 14 ase clozed．These classes will not be held at the Maynard Plant．

Reaervations are Btill being token for the clasaes scheduled on October 26 ．Movember 2． 9 and 16.

Future PDP -5 claswea will not be scheduled uncil axtex the fixat of the yeaz．Resezvationa will be accepted EOR these clamsem after publication of the schedule which shousld be Bometime before 30 asovember 1964.
ajc

SUBJECT Visit to Brookhaven

DATE

TO
H. R. Morse

FHOM
L. Portner
G. Bell
H. Anderson
B. Lane

Harris Hyman
21 September 1964 following promises:

1. Software System at delivery (Oct. 15 - Nov. 1)

DECtape oriented:
Assembler
Fortran System including
Compiler
Rules
I/O Formatting Subroutines
Arithmetic Subroutines
Editor
I/O Subroutines
Loader with trivial executive.
2. Installation up-date plus two weeks:

Mag-tape I/O subroutines (I'll writeathese on site if necessary)
3. Documentation adequate to use the above routines (at delivery).
4. Dccumentation on the construction of monitor I / O subroutines so that they can build their own for their own devices. (Somewhere after delivery.)

Since they are not ordering a paper tape punch, we must provide a micro--(oops!) DECtape system. They are not now interested in time-sharing. The above software is necessary to allow them to use their machine.

HH: tw

DATE 21 September 1964
SUBJECT LRL PDP-6
то
H. Anderson

FROM R. Beckman
G. Bell
S. Olsen
N. Mazzarese
R. Lane
L. White

On 10 September Larry White and I visited LRL, Livermore. Larry will report on his discussions concerning system details. The following comments cover my discussions with Dr. Fernbach, Budd Wirsching, and Mr. Masson of the LRL Purchasing Department.

The paper work on the additional 16K memory and the fast memory is presently at AEC in Washington. This order will include three extra memory bus interfaces for the new memory and three extra interfaces for the memory that is already on order. I told them we would put the interfaces on the existing memory before delivery of the system and would try to get the additional memory and the fast memory on at that time also.

They agree that they should get a paper tape reader, but don't want to rock the boat at AEC at this time by trying to get it included. I told them that we would have the reader on the system when it was delivered because we will need it for check-out purposes anyway. I agreed to leave the reader in the system on a loan basis, with the understanding that they will come through with a purchase order for it before the end of the warranty period.

Arrangements have been made for two LRL maintenance people to attend the four-week course in November. The programming course in December is too late for them, so they plan to send one man to the pilot course in October.

They are interested in maintenance contracts for the PDP-6 once it is off warranty and the PDP-1 system that they presently have. I pointed out to them that if they were willing to enter into a contract to cover the PDP-1 immediately, and add the PDP-6 at the end of its warranty period, we could then afford to station a man in the immediate area and provide them with what would amount to an on-site man for those systems during normal working hours. I am preparing a letter and detailed breakdown of the costs for the PDP-l system and will send this to Ed LaFranchi.

INTEROFFICE MEMORANDUM

DATE September 22, 1964
SUBJECT Visit To LRL 9/10/64
TO R. Beckman
H. Anderson
N. Mazzarese
G. Bell
R. Lane
K. Larsen
R. Savell

FROM L. White

The trip to LRL was made to meet the LRL people who will be working with the PDP-6 system, discuss hardware and programming questions, and focus attention on Flip-Chip Modules.

Additional hardware was requested by Dr. Von Holdt and Norman Hardy. Dr. Von Holdt wants a machine instruction which will convert a binary fraction, $0.1<\mathrm{F}<1.0$, to its decimal equivalent in BCD. The instruction should be capable of converting the binary fraction to one or more significant decimal digits, by selection, up to a maximum of five digits. Dr. Von Holdt pointed out that another computer manufacturer - I think he specified the SDS 924 - offered a binary-decimal conversion feature as an option for $\$ 2,000$.

A cursory look at the problem indicates that such an instruction could be added with little additional hardware by using the existing multiplication operation within the Arithmetic Processor.

Norman Hardy requested a means of converting between two different sets of 64 characters. He also requested a means of transposing the 36 bits of the PDP-6 word to represent a 6×6 matrix in order to process input from a card reader.

His first problem should probably be handled by Programming. If hardware is to be implemented for the second problem then I think the most suitable location would be in the interface that LRL is building for the Card Reader .

Bob Wyman, who is constructing interfaces with DEC modules to connect onto the I/O and Memory Buses, and I discussed the bus systems and circuits. Bob's principle project is to build a multiplexer to the memory bus through which the following computers will communicate with the memory modules:

1. Two IBM 7094
2. Two CDC 3600
3. One CDC 6600
4. Two other presently undefined devices

The multiplexer will use our Pulsed Bus Transceiver 1665 to drive the Memory Bus Lines.

Page Two

We also discussed the physical layout and installation of the system. We are tentatively planning to connect together all cabinets of the system.

Bob is interested in using Flip-Chip Modules in building future equipment that will be added to the system. For the hardware that he is now constructing he prefers to use our 4000 and 1000 series modules.

Another request was made by Ed La Frankie to change the color of the cabinets to the tan and grey colors of one of the CDC machines. Aside from the problem of obtaining paint and paint chips from CDC, the re-painting of the Arithmetic Processor Cabinet would cost a weeks time in Checkout plus the labor involved to do the job. After further discussion of the situation, Ed seems doubtful that the request will be pushed.

LW/mro

SUBJECT: Installation Manuals and Spare Parts Lists
PO: $\begin{aligned} & \text { PDP-6 Group } \\ & \\ & \text { Sales }\end{aligned}$

An Installation Manual F-68 fop PDP-6 has been prepared and is available from Technical Publications.

Spare Parts Lists are available from Joe Ruischman for Arithmetic Processor 166 and mos? optional devices. The module and power supply portions of the lists will be updated automatically by Drafting. It will be the duty of any person initiating changes to update the other items on the spares lists when necessary by providing Joe Rutschman with a list of changes to be made .

RES/mro

DATE September 23, 1964

SUBJECT , Progress Report

TO
K. Olsen

FROM
J. Smith
H. Anderson \leftarrow
S. Olsen
T. Stockebrand
B. Scudney

Test Run of $500 \mathrm{C}-\mathrm{D}$ Flat Chips
Resistor screening and firing has been completed on all 500 chips.

350 chips have had the below operations completed:
Resistors screened and fired
Conductors screened and fired Diode and capacitors stuck down

Remaining operations on the 350 chips:
Resistor trimming
Diode and capacitor wisker bonding Test wires soldered to the chip Potting

Resistor Trimming:
All mechanical parts required for the trimming machine have arrived. Ulrich is in the process of designing the control logic. He estimates he will have it complete the end of this week. It seems to be a fairly straight forward package, and we should have little trouble wiring and installing it the later part of next week. Phil feels the machine will be de-bugged and operational in three weeks.

In the mean time, I will use a crude mask I have constructed and the present trimmer to trim the above lot of 500 .

Wisker Bonding:

To date we have only bonded a small quantity of diodes to develop our techniques. There does not seem to be any great problem outside of training personnel.

Potting:

This operation is still up in the air. Tom is currently experimenting with a one-dip potting. compound that looks very promising.

Current Plans:

Today we plan on screening the conductor and sticking down components on the remaining 150 chips of the lot of 500 .

We also plan on starting resistor trimming and wisker bonding.

I expect to have all 500 chips complete and ready for life test by the middle of next week. Potting will have to be done by hand.

Test Lot of 500-3 Chips
George Gerelds is presently in the process of laying out the chip. He expects to have the layout complete by the midde of next week. At that time, we will start constructing the -3 chip. We expect to have this lot complete and ready for life test one week from the date the layout is complete.

DATE

SUBJECT $\quad \begin{aligned} & \text { Applied Programming } \\ & \text { Maintenance of MACRO6 }\end{aligned}$
SUBJECT $\quad \begin{aligned} & \text { Applied Programming } \\ & \\ & \text { Maintenance of MACRO6 }\end{aligned}$
TO J. Ridgeway

September 23, 1964

FROM Harris Hyman

As we agreed a couple of weeks ago, on about October l your Applied Programmers Group would begin to assume responsibility for the maintenance of MACRO6.

It has been running with more or less reliability for over $31 / 2$ months and I believe it is fairly well documented, so the job shouldn't be too difficult.

HH: tw
cc to:
G. Bell
H. Morse
L. Portner
N. Mazzarese
R. Beckman
H. Anderson

DATE September 23, 1964
SUBJECT PROPOSAL PROPOSAL
TO S.Olsen
N. Mazzarese
B. Scudney
T. Johnson
J. Fadiman
R. Beckman
F. Kalwell
-
CC: H. Anderson

The purpose of this memo is to establish some degree of planning for producing better proposals at less expense to the company. Specifically we should aim to minimize

> Overtime charges
> Rework
> Duplication of effort
> Disruption of production schedules
> Errors
> Sloppiness of contents and appearance
and to maximize
Technical completeness and accuracy
Good organization
Attractive, business-like appearance
The recommendations that follow add up to a sharpening of responsibilities in Advertising and Sales. At DEC, the good proposals have been the ones where these two departments worked well together. A team effort, starting from the decision to respond to an RFQ, will pay off in a better job, and that difference between excellence and mediocrity does influence decisions to buy.

RECOMMENDATIONS

1. That for each proposal one person in Sales and one person in Advertising be assigned to carry total project responsibility in their respective departments. That means that the Sales project manager provides:
a. Advance notice to Advertising of impending bids (2 weeks is suggested)
b. A standard Tech Pubs Work Order when enough is known to fill one out
c. Draft materials, including typed manuscript, sketches, special enclosures, standard boiler plate, and a copy of the RFQ, if available
d. Answers to questions throughout the production of the proposal
e. Additional technical information as necessary from Engineering, Programming, or Sales
f. Approvals
g. Delivery information, such as address and covering letter

The Advertising project manager is a focal point for all production activities. Through him pass all the draft materials, and he sees that they go through to timely completion and assembly. Specifically he either performs or oversees the following services:
a. Editing and rewriting
b. Final typing
c. Ink rendering of diagrams
d. Selection and printing of photos
e. Typesetting of cover material
f. Printing and binding
g. Mailing or delivery
2. That a file containing one copy of all printed proposals be maintained in Advertising for reference and possible re-use. "I want a photo just like the one they used in the XYZ proposal," says the Sales project manager. For this reason it is important that all printed proposals go through an Advertising project manager and get a place in the file.
3. That a file containing standard proposal materials be set up and maintained in Sales. In this file would be a few copies each of the current Terms and Conditions, Maintenance Contracts, Warranty, Facilities and Services, overseas delivery and service information, and so forth. As needed, these would be incorporated by the Sales project manager in the draft after the usuat modifications were made. It is suggested that one girl be designated the keeper of this file.
4. That a few minimum time allowances be observed in the production of proposals. This suggestion usually brings forth smiles of understanding and nothing more. But the figures given below are really neither unreasonable nor hard to meet. Just a bit of planning ahead and a measure of responsibility on the part of the Sales project manager and it will be easy to give Advertising a chance to perform well.

Example 1: A proposal consisting of
30 pp draft (double spaced) $=20 \mathrm{pp}$ final
2 block diagrams
3 photos (from existing negatives)
5 copies to be sent to prospect

Minimum Allowances:
 Draft to Advertising at H minus 24 working hours (3 days)
 Sketches to Advertising at H minus 16 working hours (2 days)
 Photo requirements to Advertising at H minus 16 working hours (2 days)
 Example 2: A proposal consisting of
 50 pp draft (double spaced) $=35 \mathrm{pp}$ final
 same requirements otherwise
 Minimum Allowances:
 Draft to Advertising at H minus 32 working hours (4 days)
 Drawings to Advertising at H minus 24 working hours (3 days)
 Photo requirements to Advertising at H minus 24 working hours (3 days)

COMMENTS ON THESE RECOMMENDATIONS

The heart of this proposal proposal is the project manager idea. It's not a new idea, certainly, and yet proposals suffer in direct proportion to weakness in the discharge of the PM's responsibility. A common instance of such failing is when a project manager, because of the pressure of other work, passes responsibility for writing the proposal on to an associate. The associate is rarely able to provide the things described under Recommendation 1, and he probably does not have the motivation to do so. If a project manager cannot follow through to completion, it must be that the prospective sale was not important enough in the first place. The decision to propose should not have been made.

Once the decision to propose has been made and the project managers designated, they should be available to each other on short notice throughout the production phase. If a PM has to be out of his office for more than a few minutes, he should leave a phone number where he can be reached.

Finally, the Advertising project manager can be of more help to the Sales PM if he can study the RFQ. Sometimes we aren't responding to a written request, and often we don't respond to everything in a written request. But when we have got an RFQ in the house, it should be in the hands of the Sales project manager who gives a copy to his partner in Advertising.
C.S.G.

DATE September 25, 1964
SUBJECT
Mag Tape and the PDP-6 Monitor
TO
FROM
$\angle \mathrm{H}$. Ander son
B. Lane
H. R. Morse

Magnetic tape is completely compatible with the Monitor system and may be freely interchanged with one file of DECtape.

Thus it may be substituted directly into a Phase $\emptyset, 1$ or 2 time sharing system.
There is a problem, however, the type of time sharing we are implementing presumes on-line debugging and editing. Both of these operations require manipulation of large number of relatively short files. This is impractical on a Phase \emptyset Mag tape system since only one file may reside on one tape. In the Phase 1 or 2 systems (drum or disc), it is practical since the files are carried in the high speed secondary storage and dumped only rarely.

If an installation were to perform editing off line on cards or tape as is the current practice in the Extra-DEC world, a Phase \emptyset Mag tape system is not a bad thing. It will require no more than 2 man weeks to implement this system. The time would be spent in integration and checkout, not programming. The pieces will all be there-they only need be put together and tested.

DATE
September 25, 1964

SUBJECT
PDP-7 Input/Output Control
TO

FIELD SALESMEN

FROM
Rod Belden

Because of the great demand for more information on the PDP-7 from the Field Sales Offices, copies of the typed proofs of the Input/Output Chapter 3 from the PDP-7 Reference N anual are being distributed for your advance information. The 1/0 chapter is by far the longest in the manual, and includes most of the small differences between PDP $=4$ and PDP-7, Care has been taken to have these proofs factually correct, but you will have to excuse a few format inconsisfencies that will be corrected at the last review. Only three figures are included, these are new and are af the end. Other figures will be taken from the PDP-4 manual.

To sove time, I have listed most of the differences between the 1/0 of the 4 and the 7 . Taken together these features give the PDP 7 an 1/0 thrust which is unmaiched by any other computer in its class.

PDP ~ 7
7 Channel IC, easily expandable in multiples of 7 .

Input/Output Control (Re-named to be consisfent with the PDP-5 and PDP-6).

$$
\begin{array}{ll}
\text { 1/0 Trap Mode and instruction ton } & \text { Not available. } \\
\text { (700162) trap-on. Also turns on } \\
\text { program interrupt. }
\end{array} \quad \begin{array}{ll}
\text { Programmed punch control. } & \text { Not available. } \\
\begin{array}{l}
\text { 4 Channel Data Interrupt Nulti- } \\
\text { plexer Type 173 }
\end{array} & \text { 3 Channel equivalent. } \\
\begin{array}{l}
\text { 8-bit ASCII tape cade } 33 \mathrm{KSR} \\
\text { teleprinter }
\end{array} & \begin{array}{l}
\text { 5-bit Baudot tape code } \\
\text { teleprinter }
\end{array}
\end{array}
$$

PDP -7 REFERENCE NANUAL

CHAPTER 3 INPUT/OUTPUT

INPUT/OUTPUT CONTROL
lot Instruction
Program Flags
Device Selector
Information Collector
Information DistributorInput/Output StatusInput/Output SkipInput/Output TrapData Interrupt Control
Real Time Clock
Program Int̂errupt
Automatic Priority Interrupt Type 172 (optional)
1/0 BUFFERING
I/O ROUTINES AND DATA TRANSFER
INPUT/OUTPUT DEVICES
Teletype Model 33 KSR
Perforated Tapa Reader Type 444
Perforated Tape Punch Type 75
Analog-To-Digital Converter Type 138
Analog-To-Digital Mulriplexer Type 139

* * * * *Dascriptions of the remaining options are not includedDECiapein this proof
Automatic Magnetic Tape Control Type 57A
Magnetic Tape Transport Type 570
Precision Incremental CRT Display Type 340
High Speed Light Pen Type 370
Digital Symbol Generator Type 33
Card Readar and Control Type 42IA
Card Punch Control Type 40
Automaric Line Printer and Control Type 64
Serial Drum Type 24
Data Interrupt Mulsiplexer 173
Data Interrupt Control 174
Data Communicarion System Type 630

CHAPTER 3

INPUT/OUTPUT

Functions

Infomation is transferred between the PDP-7 and peripheral equipment by the input/output control. This interface sets up the information path between computer and device, controls the transfer, and mo nitors the state of availability of each device. It also includes facilities for data, clock and program interrupts. Figure I shows in schemaric form the section of the input/output control. The input/output control is itself controlled by the programmed input/ourput transfer (iot) instructions. An iot instruction couses the input/output control to produce pulses. These pulses are the ones which select an 1/0 device and initiate a data transfer. The single iot instruction is microprogrammed to control all input/output devices.

IOT INSTRUCTION

The input/output transfer (iot) instruction causes the input/Oufput Control to produce pulses which select 1/0 devices and transfer information. All iot insfructions are ocial code 70 with a bit assignment shown in figure X.

Mnemonic	Instruction Code
iot 700000	Openation
input/output transfer	

$$
\text { (see figure 7, page } 24 \text { of PDP-4 Manual) }
$$

Figure 2 - Bit Assignment for Input/Output Transfer Instruction (iot).

Bits $0-3$ signify the iot instruction. Bits $4-13$ specify the external device and its mode When bit 14 is a 1 , the accumulator will be cleared prior to the date transfer. Bits $15-17$ salect the pulses sent to the device during event times 1, 2, and 3. For ease of recognition, the IOT pulses are coded according to bits 17 , 16 , and 15 as IOT 1 , IOT 2, and IOT 4 respectively. IOT I is used to check the status of a device. IOT 2 and IOT 4 are intriated by the Device Selector to cause a fransfer of infomation to and from the Infomation Collector and the Information Distributar.

PROGRAN: FIAGS

The stafus of each $1 / C$ device is indicated to the central processor by flag bits. A program can read the flag bits of a device and initiate appropriaie action. In this way, input/output fransfers and program operation may easily be coordinated. Flags may be connected to the program interrupt confrol, status bits, and the input/output skip facility.

A flag may indicate one several things depending upon whore it is connected

1. Connected to the program interrupt a flag may indicate that:
a. /an output transfer has been completed and the device buffer is now available for re-filling.
b. /An input buffer contains information for transfer into the computer.
c. La device operating asyncronous has infomation for input or requires information for oulput.
2. Connected to the input/output skip facility a flag may indicare:
a. Skip the next instruction if the device buffer is full.
b. /Skip the next instruction if an output operation has been completed.
3. Connected to the status register a flag may indicate the
a. loccurrence of an error.
b. /direction of dafa pransfer.
c. /direction device is operating, forward, reverse.
d. /mode of operation in a device.
e. /sub-device connected to a central device.
f. Musy or idle condifion of a device.

DEVICE SELECTOR (DS)

The Device Selector selects an input/output device or sub-device according to the address code of the device in memory buffer bits $4-13$ of the iot instruction. It then generates an IOT pulse of event time 1 if memory buffor bit 17 is a one, event time 2 if memory buffer bit 16 is a one, and at event time 3 if memory buffer bit i5 is a one. The $1 / 0$ event times differ from those of the microprogrommed operate group event times. A complete table of the IOT pulses and corresponding times is given below.

Event Time	Computer Cycle Time	Insfruction Bit	IOT 1
	5	17	Number
2	7	16	1
3	1 (nex $\$$ cycle)	15	2

Upon receipt of an iot instruction the device selector determines which device has been selected then performs one or all of the following functions:

1. IOT I senses the stare of the flag or flags associated with a device.
2. $10 T^{2}$ clears the flog of flags associated with a device.
3. $10 T^{4} 4$ transfers data from the buffer of an input device through the information collector into the accumulator, transfers data from the accumulator through the information distributor into the buffer of an output device, of initiates operations within a peripheral device (ax, a line of perforated tape is read into the tape buifer, or a card is moved to a reading or punching station).

The specific function or functions on IOT performs is selectable and depends on the device, and is fiming requirements. A device may use any number or combinations of the three pulses. Devices requiring mone than three pulses may use multiple device codes. For exiremely expanded mode selection, a device may sense the state of the accumulator bits laaded prior to the iot instruction.

The 6-bit devicesselection numberg memory buffer bits 6 - 11 are decoded by a diode deco der module 177. (See figure). The 6-bit code therefore produces as assertion level for the selacted device. This level, in fum, controls 1/0 pulses through the device selector gates. The device selector amplifiers tronsmir pulses to the selected device according to bits 15,16 , and 17 of the iot insiruction. The DS pulse amplifiers are capable of supplying 2.5 volt (ground reference) posirive or negative p ulses of 70,400 or increments to 1000 nanoseconds. Also available is a 100 nanosecond pulse from -3 volts to ground.

The sfandard device selecior contaiss selector modules for the sfandard devices and has provisions for up to 20 decoders, gates, and amplifiers. When peripheral $1 / 0$ devices are added to the PDP-7 a device code is easily established in the device selector by elipping out the diede of the unasserted level in the BI 7 I module. Figure shows the B171 with the clipping point marked with of (3)

INFORMATION COLLECTOR (IC)

The Information Collector is a seven channel gated mixer which controls the fransfer of 18 -bit words from external devices to the accumulator.' Pulses from the DS control the IC gates according to the device specified by the iot instruction. Because the accumulator must be cleared before a word is fransferred through the IC to the $A C$, the iot instructions are usually microprogrammed to clear the accumulator (bit 14 a one).

In the standard PDP -7 , seven channels of IC are used. The paper tape reader and $1 / 0$ status bits each occupy one 18-bit IC channel. The teleprinter occupies 8 bits of a third channel. The remaining four and one-half channels are available for connection to any peripheral and optional input equipment. All PDP-7 input options connect directly into one chamel of the $1 C$ (ex Exiended Arithmetic Element type 177, A-D Converter type 138 , DEC tape Control Unit type 550A.)

For operation of more than seven input devices, the IC is easily expandable in blocks of seven channels to accomodate any number of channels.

The modules used in the IC are the seven-channel RI4I gates. The RI41 accepts standard levels of 0 and -3 volis or standard 70 -nanosecond or wider pulses. The input load is $1 / 2$ ma. per grounded imputs.

Bits fransferred to the $A C$ correspond to the incoming polarities

0 volis	0	transmitted to $A C$
-3 volts	1	transmitted to $A C$

INFORMATION DISTRIBUTOR (ID)

The Information Distributor is an output bus system through which information is transferred from the accumulator to external devices. Eighteen line drivers buffer and drive the accumulator output through the exiarnal device connection cables. Other drivers and cable slots are used to transfer memory buffer and device control bits. Nine 18-bit ID channels are standard on the PDP-7. The paper tape punch and releprinter use two of the nine channels. A third channel is used for the expanded 10 connection.

Other external devices are easily connected to the Information Distributor. Each device receives pulses from the Device Selector to gate in bits from the bus.

The ID can be expanded to any number of output channels.
The signal polarities presented to the output device by the 10 are:
-3 volts $\quad A C$ bit contains a 0
0 volts $\quad A C$ bit contains a. 1

INPUT/OUTPUT STATUS

The stafus of each 1/0 device, as indicared by its flags may be read into assigned bits of the $A C$. Figure 3 shows the standard assignment for the commonly used devices. An x indicates that the flag is connected po the program interrupt control. The presence of a flag is reflected by a 1 in the corresponding $A C$ bit.
The status of 18 flogs may be read into the $A C$ af one time using the following iot instruction.

Input/output read status. The contents of given flag replaces the contents of its assigned $A C$ bis.

The type 57A Magnetic Tape Conirol has its own status bit word. This is read by the mits instruction with the same format as above. The bit assignment is given in the 57 A control description.

INPUT/OUTPUT SKIP FACILITY (105)

The input/output skip facility enables the program to branch according to the status of an external device. The 105 has eight inpufs and is expandable to any number. When an input/output skip instruction is executed, the DS selects one of the Skip inputs, if the flag connected to that input is set to 0 , the next instruction in the progrem sequence is executed. If the flag status is 1 , the next instruction is skipped. An 1/O pulse for a skip must occur at event time l.

Commonly used skip instructions are:

clsf	70001	Skip if clock has overflowed rsf
psf	700101	Skip if paper tape reader buffer has a character
ksf	700201	Skip if paper tape punch is ready Skip if taleprinfer keyboard buffer has a character
fsf	700301	Skip if teleprinter is ready to output
dsf	700501	Skip on display flag (light pen)
cpsf	706401	Skip if card punch is ready
lpsf	706601	Skip if line printer is ready
Issf	706701	Skip if line printer spacing flag is a I
crsf	Skip if card peader buffer has a characier	

Instructions to clear the flags are listed in the Appendix.

INPUT/OUTPUT TRAP

The PDP-7 1/0 Trap Mode is designed to simplify programming of sophisticated input/ oufput routines and to provide the basic hardware necessary for a time-shared or multiuser system. The affect of the trap is to insert a program break in place of the iof instruction. Two other conditions are also trapped, an xct instruction whose subject instruction is also an xet and the hit portion of an Operate class instruction.

The Trap provides the PDP-7 with the basic hardware necessary to use the PDP-7 in a time-shared mode. With the use of the Exiend and Trap modes, multi-user installations with full memory bank protection are possible. A program operating in one or more independent 3 K (or smaller) memory banks can be protected from aecidental disturbance by a program operaring in other memory banks. All 1/0 operations can be monitored to check for use of restricted 1/0 devicas or restricted memory locations. In this way the PDP-7 can be used for real-fime process centrol and simultaneously be available to share time with other programs in other memory banks without the threat of program inferierrence.

The Trap Mode is enabled by the ton instruction (700162) with the console Trap swisch on. The Trap Mode is disabled by any program break. The ion (700162) also turns on the Progrom Interrupt through a microcoding of the ion insiruction (700042). Since the 1/0 Trap may not be disabled by a program without causing a program break, control over input/oûpû̂ rests entirely with the 1/0 inferrupt routines. Other use of the Program intemupt and Extand mode is controlled by the Trap, for the Extend stafus may not be changsd and the inferrupt mode may not be disabled by a program rurning in the Trap mode.

The trap inisiates a sequence of events depending on the frapped instrucrion.
iot: A program brack in place of the trapped instrucition increments phe Program Counter and stores its contents in location 0, bits 3 to 17 , stores the link in bit 0_{0}, and stores the extend status in bit 1. Control then trensfors to location 2. The Exiend Mode is enabled and the Program Interrupt is turned off. The next instructions are faken from the appropriate 1/0 routine.

xct: An xer instruction is ignored.

hit: A microprogrammed hli of an operator class (740000, and 750000) instruction is ignored. The rest of the instruction is executed.

DATA INTERRUPT CONTROL (DIC)

The Data Interrupt Constrol allows a high-speed input/output device such as a magnetic tape unit or drum, to operate indspendently once the information transfer has been initiated. The data address (15 biss) is transmifred directly to the mamory address register. The dain itself is read directly into the MB, bypassing the AC entirely. Since the dain internpt has priority over all other interrupts, a requess will be granted at the complation of the current instruction. When a data intamupt occurs, the program is delayed for one eycle while the transfer is made; the program then resumes. A transfor rate of 571,000 18 -bir words per second is possible.

The external device must supply 15 eddress lines, 18 data lines, a request line, and a transfer in (out) line. All lines are -3 volts for assertion, ground for 0 . The external device may also request the computer fo slow its cycle to approximately 4 microseconds for the duration of the transfer.

The optional Type 173 Data Interrupt Nultiplexer increases the data intersupt focility fo 4 chamels arpanged in a priority chain. Thus, several high-speed devices such as a type 57 A Tape Control, a fype 24 Drum, etc., may operate simultaneously ầ a maximum com bined transfor rate of 571 KC.

The optional type 174 Data Control controls and buffers high speed transfer between the computar and external devices which do not hava the necessary control facilities. The rype 57A Tape Control and Pype 24 Drum do not require this date control. Maximum transfer rate is $57 / \mathrm{KC}$.

REAL TME CLOCK

The clock produces a pulse every $1 / 60$ second (16.7 milliseconds). When the clock is enabled, every clock pulse causes a clock insemupr. The clock interrupt is similos to a data interupt in that the contents of no active register is changed. This internpt has priority over a program interrupt but is of lower priority than a data interupt. During the interupt the contents of memory location 7 are incremented by 1 . If, the contenss of location 7 overflow, the clock flag is sat to 1. The clock fleg is connecred to the program intemupt system and may cause a program interrupt.

Three ior instructions are associared with the clock:

clsf	700001	Skip the nexp instruction if the clock flog is set to f.
clon	700004	Clear the clock flag and disable the clock.
clof	700044	Clear the clock flag and enable the clock.

Clock frequencies bther than 60 cps can be (optionally) selected for use with the clock inerrupt. Depressing the START key on the operator console clears the clock flag and disublos the clock.

Since the clock register is core memory location 7 , its contents may be loaded or depostred by a program. A standard technique for using the clock is to preset the contents of locaston 7 with the complenent of the desired count and then to enable the program inempp and the clock. An interupt will occur of the end of the destred time. To cause an interupt at the and of I second the following routine can be used

$$
0 /
$$

$$
1 / \quad \text { imp end-ot-stime }
$$

clock lam*-60. /loas-60 into dccumulator (same as law 17720).
dae 7 preser clock to -60 .
clon /umn onclock.
ion /tum on interupl.
/continue with I second worth of progrem.

[^1]
PROGRAM INTERRUPT CONTROL (PIC)

The Program Interrupt Confrol incracses the afficiency of input/output operarions by freeing a progran from the necessity of constantly monitoring program flags. When the PIC is enabled and a peripheral device becomes available, the PIC automatically interupts the program sequence and causes a frap to occur. A subprogram beginaing at the trap location may then sense the program flags to devemine which of the devices caused the inferrupt, service the device, and refurn to the main program.

The PIC may be enabled or disabled by the program. When it is disabled, program inferrupis do not occur, although device flags may be set. Interrupts for these devices occur when the PIC is remenbled. When the computer is operating with intorruptoproducing devices, the PIC is nomally anobled.

The following iot insiructions confrol the PIC.

iot	700002	Interrupt off. Discbles the PIC
ion	700042	Interrupt on. Enables the PIC

Each of the input/outpû devices has associated with it a progran flag which is sot whenever the device has completed a fransfer and is recdy for another. When the interrupt is enabled and the device is ready, the sefring of the device flag (connected to the PIC) causes a progum infervipt. The main instruction sequenee is halred, the Program Counser, Link, and Exiend mode status are stored in location O , and control transfers to location 1 . Thus, a jms 0 has effectively been executad. The interrupt is then disabled and the Extend mode is turned off. The word siored in location 0 has the following format:

If the interrupt was caused by the $1 / 0$ trep, control transfers to location 2 instead of location I and the Exiend mode is rumed on. The routine beginnins in location \mid (or 2) is responsible for finting and servicing the device that caused the interrupt. Whan a progrom intarupt occurs, the PIC is automatically disabled since only single level inferrupting is provided. The inferrupt routine can remable the interrupi mode at any time.

The status of the PIC is displayed on the operato console by the indicator marked PIE, progrem interrupt enabled.

AUTOMATIC PRIORITY INTERRUPT TYPE I72

The Automatic Priority Interrupt Type 172 increases the ceppability of the PDP 7 to handle fransfers of information to and from input-output devices. The 172 identifies an interrupting device directly, without the need for flag searching. Multi-level interrupts are permissable where a device of higher priority supersedes an intarrupt alroady in process. These functions increase the speed of the inpui-outpulsystem and simplify the progromm ing. In this way more and highermpeed devices can be serviced efficiently.

The Type 172 contairs 16 erutomatic infarrupt channals arranged in a priority chain so that channel 0 has the highess priority and channel 15 has the lowest priority. Each channel is assigned a unique fixed $_{n}$ momory location in the range of 408 through 578_{8}; sfarting with channel 0 . When establishing priority, each in-out device is assigned a unique channel. The priority chain guarontees that if two or more in-out devices request an interrupt concurrently, the system grants the inferrupt to the davice with the highest priority. The other interrupt will be serviced afterwards in priority order.

The Automertic Priority Inierrupt is assigned a priority jusz below that of the data interrupt a position held by the resl time clock. The 172 replaces the real time clock. The priority interrupt system may operate in either of two modes, the mulit-instruction subroutine mode of the single instruction subrousine mode. The mode is detemined by the insiruction in the memory locarion assigned to the channel.

The Mulŝi-instruction Subroutine Mode

This mode is generally used to service an in-out device that requises control information from the PDP -7 . Such devices are alams, slow electromechanical devicos, teleprinters ${ }_{n}$ punches otc. Each device requires a servicing subroutine that includes instivctions to manipulate data and give further inatuctionsig such as contirue, halt, eft. "fo the intermpting devies.

An interrupt request from a device is granted if the following conditions are mefs
The 172 is in the enabled condition (by program control).
There is no data interrupt requess present.
The requesing chonnel is in the enabled condition (by program control).
There is no intermpt in progress on channal of higher priosity.
There is no interrupt in progress on the requasting channel.
When an intarrupt is granted, the contents of the channal memory lacation are fransferred to the $M B$ and executed. If the instruction executed is ims γ_{0} the system operates in the multim instruction subroutine mode. The contenis of the progrom counter and the condition of the link are stored in location Y, and the devicemservicing subroutine sparts in Y \& 1 . (Note that it is often useful to stors the contents of the $A C$ before servicing the device and to restore the $A C$ prior to oxiting from the sevvicing poutine).

The interrupt fleg is normally lowered by the 172^{\prime} but can be lowered by an iot instruction if desired. Program control now rests with the servicing poutine.

A return to the main program is accomplished by a restore the AC and link ${ }_{B}$ a debreak iot and a jump indirect to location $Y_{\text {, }}$, where the contents of the PC prior to interrupt are stored. The dabreaking iot requires no channel designator ${ }_{y}$ since the interrupt priority chain automatically releases the coppect chamel and ratums it to the receptive state. This iot normally inhibits all other interrupts for one memory cycle to insure that the jump indirect Y is execured immediately.

The following program example illustrates the action that takes place during the multiinstruction subreutine mode. Assume an interrupt on channel 3.
$\frac{\text { Mem. Loc. }}{1000} \quad \frac{\text { instruction }}{\text { add } 2650}$

0043

3000

3001

3002
3003
3004

3005
3006
3007
3010
3011
1001
iac 3050
dbe
imp : 3000
-

Function

Instruction being executed when interrupt request occurs.

Insiruction execured as a result of interrupt on channel 3. The ims detemines multioinstrucrion mode.

The Link, condition of the Extend Mode "and the PC ape stoped in location 3000 .

Fisst instruction of servicing poutines sîores $A C$.

Instructions servicing the interrupting in-out device

Restoves $A C$ for main progrem
Debreaking iot releases channel.
Roturn to main program sequence.
Next instruction executed from here unless another priority intervept is waiting.

The Single Instruction Subroutine Mode.

In some instonces is is desivable for the PDP-7 to receive information from an external device ${ }_{g}$ but not send control information to the device. Such an application would be the counting of real time clock pulses to detemine elapsed time. The single instruction subroutine mode simplifies programming a counster.

An interrupt request is subject to the same conditions as in the multiminstruction mode, and the appropriate memory locaition is addressed as before. Then the single instruction subroutine mode is entered if the channel memory location does not confain a ims instruction. Normally the insiruction is isz. In any case ${ }_{y}$ since the single-insinuction constitutes the entive subpoutine the interrupt system cutomarically lowers the interrupt flag, debreaks the internpting channel and retums the chennel to the receptive condition.

If the isz instruction is used the 172 acknowledges only the indexing operation and neglects the skip to avoid changing the contents of the progrom counter. If an overflow pesults from the indexing aflag is sst. This flag can bo antered in another charanel of the interupt system to cause a further program internupt.

The following progrem coding illustrates oparation in the single instruction subroutine mode. Assume an interrupt on channel 6.
$\frac{\text { Mem. Loc }}{1200}$
$\frac{\text { Instruction }}{\text { dece } 1600}$
isz 3200
lac 1620

Operation
Operation being execured when infersupt oceurs.

Instruction mexectied as a pesult of broak on Channel 6. If overe flow "flag is ses, PC nor changed.

Nexp instruction in sequence of main program.

Priority Interrupt Instructions.
The following instructions are added to the PDP-7 with the installation of the 172. Some instructions, for example cac and asc, can be microprogrammed.

Octal Code	Mnemonic	Operation
cac	705501	Clear all channels. Yum off all channels.
asc	705502	Enable selected channel(s). AC bits $2-17$ are used to select the channel(s).
dsc	705604	Disable selecied channel(s). AC bits 2-17 are used to select the channel(s).
epi	700004	Enable automatic priority interrupt system. Same as peal time clock "clon".
dpi	700044	Disable automatic priotity inthrupt system. Same as real time clock "clof".
isc	705504	Iniriata break on selecied channel (for mointenance purposes). AC biis 2-17 are used to select the channel.
dbr	705601	Debreak. Reiurrs highest priority channel to receptive state. Used to exit from multiminstruction subroutine mode.

AC bits 0 and I are available for expansion of the basic system to 4 groups of 16 channels.

1/0 BUFFERING

Separate parallel buffers are provided on each input/output device attached to the PDP $\rightarrow 7$. The high-sposd paper tape reader control contains an 18 -bis buffer and binary word assemblar. The high speed papsr tape punch, the teleprinter, and the teloprinter kayboard each contain separate 8-bis buffers. All DEC optional equipment contains separatel/0 buffers. Information is fransferved befween the accumulator and a device buffer during the expecution time of a single cycle iof instruction. Beccuse the maximum time the accumulator is tied to any one external bufer is 1.75 microseconds, meny 1/0 deyices can operate simulianeously under control of the basic PDP-7.

Figure - shows the data path between device buffers and the AC through the Informarion Collector or Information Distributor.

Routines:

Most input/output dara transfer rates are limited by the speeds of the $1 / 0$ peripheral equipment. Routines to transfar data under these conditions can be of two types, those that delay the central processor until the 1/0 device is ready and those that intempt the central processor only when the $1 / C$ device is ready.

The simpliest $1 / 0$ routines are those that delay the cenfral processor until the $1 / 0$ device is ready to transmit or receive the data. The following two routines should serva as examples: (ioff and iots are generalized examples of skip and transfer instructions).

| input iotf | /skip if device ready |
| :--- | :--- | :--- |
| imp | /not ready, refurn to test |
| iots read device buffer into $A C$ | |\quad /continue (using data)

For application when there are heavy time demands on the central processor, it is not practical to delay the CP during each input/output cycle. Instead, the progran or priority interrupts are used. An example of the use of the program interrupt with input-out transferring is given in the following section.

1/0 Data Rate

The maximum speeds at which the PDP-7 can transfer 18-bit data words between one or more devices is the data rate. Examples of data transfer are given for three conditions, direct memory access, program controlled, and program interrupt controlled.

A computer-limitad condition assumed. That is, data is considered to be available from a very high speed source, such as a fast A-D system.

1. Direct Memory Access, bi-directional, single device at a time. The fasfest speed of block data transfer is provided by the Data Interrupt Channel. The Data Interrupt can operate up to
rates of 1.75 microsecond per word. Four input/ouput devices can be connected to the high speed Data Intermpt Channel with the addition of the Type 173 Data Intemupt Multiplexer. The maximum combined transfer rate is 571,000 18-bir words per second, making the Data Intemupt Multiplexer well-suited for use with devices such as multiple magnetic tape systems (a Type 57A Tape Conrol) several magnetic drums (a Type 24. Drum), and expremely high speed analog-to-digital converters. Computer to compuîer direct data transfer can also occur of this rate.
2. Program Controlled, single device, without interrupt. The dera rate is determined by the speed of a program loop to transfer, count, and address the data. No initialization is considered, for only the repetitive loop-stme is desired. A computeralimited condition is assumed.

INPUT

iof	/transfer the next data word; word is already af device buffer before computer calls for it (computer-limised)
dac	istore date in insmory list

Routine sakes 7 machine cycles and loops ap a speed of 81 kilocycles. A similar rourine using a lac instruction could transier daio out at the same spead. This type of loop could also be used, with an iot skip and a imp instruction added, to provide a count and eddresses for blocklike dato bransfer or slightly slower speeds.
3. Progran interrupt Controlled, When the program interrupt is used bo free the central processor between data transfers on a slow 1/0 device, the PDP-7 can do arthmetic or other $1 / 0$ transfers while the slow device is in operation. The following seguence gives the limiting rate at which the PDP -7 could acknowledge pepetitive progran interrupt from the same device. The time available each cycle for other computation is roughly (seconds/word device rateseconds/word computer rate\}.

-			/interupt oceus during a lower priority program, the Line and the PC are saved
das		TEMP	/save AC
ios			/skip on intorupt flag from device
imp		CONTINUE	1
iof			/transfer data from device buffer to AC
dac	i	10	/spore data in memory list

iss	COUNT	/increment and check COUNT
imp	DONE	
lec	TEMP	/reload AC
ion		/iurn on interrupt
imp	i	0

The routine takes 15 machine cycles or 26.25 microsecands per loop. If the data is peady at the $1 / 0$ device buffer each time the interrupt is turned on, the cycle rate is 38 KC . A similar routine can be used for dates outpu?.

TELETYPEN ODEL 33 KSR

The standard Telefype Model 33 KSR (keyboardwend-receive) can be used to type in or print cut information at a rate of up to ten choractors per second. Signals ransferred between the 33 KSR and the keyboard printer control logic are standard serial, 11 unit code Teletype signals. The signals consist of marks and spaces which correspond to idle and bias cutrent in the Telerype and zeros and ones in the control and compurer. The start mark and subsequent eight character bits are one unit of time duration and are followed by the stop mark which is two units.

Each of the 64 type chapccters and 32 control characters are represented by an 8-bit standerd ASCll code. The Teletype eight-level code is listed in Figure. The teleprinter input and output functions are logically separase, and the programmer may think of the printer and keyboard as individual devices.

Keybrard

The keyboard control contains an 8-bit buffer (WI) which assembles and holds the code for the last character struck on the keyboard. The keyboard flag becomes a 1 to signify that a charucter bas been assembled and is ready for transfer to the accumulator. When the flag is a 1 , a pelay contact opens to disable the reades. This flag is connected to the computor program intemupt and input/output skip facility. If is cleared by command. Instructions for use in supplying data to the computer from the keyboard are:
ksf 70030 . Skip if the keyboard flag is set to 1. If the flag is n, the next instruction is executed. If it is 1 , the next irstruction is skipped. The flag is sef only when a complete characier is present in the buffer.
kib
700312
Read keyboard buffer. The contents of the buffer are placed in biss 13-17 of the AC. The keyboard flag is cleared.

Teleprinter

The teleprinter control contains an 8-bit buffer (LUO) which receives a character to be prined from $A C$ bits 10 through 17 . The UUO receives the 8 -ubir code from the $A C$ in parallel and tranmits it to the teleprinter serially. When the last bit has been transmitted, the seleprinter flog is sef to 1. This flag is connected to the computer progrom inferrupt and imput/oupur skip facility, It is cleared by progranmed command. The instructions for printing are:

isf	
its	
700401	Skip if flag is set.
	Load printer buffer and select. The contents of AC The flag is cleared before transmission takes place and is set when the character has been printed.

The rape reader is a timed-transfer device which senses the holes munched in 5,7 , or 8 -channel paper (or Nylar-base) tape. The standard input mediun is 8 -channel tape The maximum reading rate is 300 characters (lines) per second. A power switch is provided on the reader. This switch is usually leff on, however, as the reader power is removed when the computer is turned off.

Operation of the tape reader is controlled entirely by the progran. When the reader is selected, the brake is released and the clurch engages the drive capstan to move the tape past the photocells which sense the holes punched in the tare. For each hole present in a given line of tape, a corresponding bit of the reader buffer is set to 1 .

Information can be read from tape and assembled in the reader ba ffer in one of two modes:

Alphanumeric Mode: Each select instruction causes one line of tape, consisting of eight bits, to be read and placed in the buffer. Blank tape is ignored. The absence of a feed hole causes the character punched in that line to be ignored.

Binary Node: In the binary mode, select instruction causes three lines of tape to be read. The first six bits of each line are cassembled in the buffer, thus three lines form a single 18-bit word. The seventh bit is ignored. However, a character is not read unless the eight bit is punched.

Figure - shows the format of standard ASC1I 8 -channel tape. The corresponding bits of the reader buffer for each mode are also given.

Figure - Perforated Tape Format and Reader Buffer Bit Assignment
In the alphamumeric made. the reader flag is set when a full 8 -bit character is present
in the buffer. In the binary mode, the flag is set when three b-bit characters have been assembled into a word by the buffer. To keep the reader running at its maximum rate, the next select instruction must be given within 400 microseconds after the flag is set. The timing for each mode is shown in Figure - . The reader flag is connected so the PIC.

Figure -. Perforared Tape Reader Timing
The following iot instructions control the tape reader:

isc	700104	Select reader in alphanumeric mode. One 8-bit character is read and placed in the reader buffer. The reader flag is cleared before the character is read. When transmission is complete, the flag is set.
rsb	700144	Select reader in binary mode. Three 6-bir characters are read and assembled in the reader buffer. The flag is immediately cleared and later set when characier assembly is complared.
mb	700112	Read the reader buffer. The contents of the recder buffer are placed in the AC. The reader flag is cleared.
rs?	$7 \mathrm{CO101}$	Skip if readar flag is set.
ref	700102	Clear reader flog and or the reader buffer into the accumulator.

PERFORATED TAPE PUNCH TYPE 75

(standard equipment on the PDP-7)
The Tape Punch is a timed-pransfer device capable of punching 5,7 , or 8 channel tape at a maximum rate of 63.3 characters per second. The siandard input medium is 8 -channe! rape.

Operation of the Tape Punch is controlled by either the program or the computer operator. The operator may punch blank sape (feed hole only punched) by depressing the punch feed button on the console or he may foree on the punch power by turning on the console punch switch. Nomally, the punch is left complefely under program control. An instruction to punch when the punch is turned off causes the punch to be turned on and the actual punching takes place approximately one second later when the punch motor is up to speed. Subsequent punching follows at normal punch'speed. The motor remains on for five seconds after the last punch command is given.

Note that the computer is not tied up by the first turn-on command of the punch cycle. However as would be expected, the second and remaining characters cannot begin a transfer to the punch buffer until the punch-ready flag is set. Two easy means of gaining the effect of automatic punch furn-on and immediate punching are 1) to give the first pa command at least I sec. chead of time in the program, or 2) to give the first psa commend and then use the program interrupt to indicate a punch ready state. The punch flag (connected to the PIC) is cleared by a select punch command and then set when the punching is complete. It may also be cleared by the pcf instruction.

When the punch is salected, the contents of AC10-17 are sent to the punch buffer and then subsequently placed on tape, If a bit in the $A C$ is a $I_{\text {, the corresponding bit in the }}$ bufferis set. Since the punch buffer is automatically cleared after punching a character, it is impossible to $O R$ into is. Information is handled by the punch logic in one of two modes.

ALPHANUMERIC MODE: Each select instruction causes one line of tape, consisting of eight bits, to be punched. A hole is punched in a tapa channel if the correspond-ing punch buffer bir is a one. A feed hole is always punched.

BINARY NODE: Each select instruction causes one line of tape, consisting of eight bits, to be punched. Holes are punched corresponding to bits 12-17 of the punch buffer. Bit 11 is never punched and bit 10 is always punched. This forces the standard formâ for binary infomation on tape.

TAPE PUNCH INSTRUCTIONS

700204

Punch a line of tape in alphanumeric mode. The punch flag is immediately cleared and then set when punching is compiefe.

psb	700244		
poff			
pcf	700201		Punch a line of tape in binary mode。 The
:---			
punch flag is immediately cleared and then			
sef when punching is complete.			

The following inspruction will cause a line of blank tape (except for feed hole) to be punched. The accumulator is also cleared.

psa-10	700214	Clear AC and punch.
pls	700206	Same as psa

The following instruction as used on the PDP-A is also available, but is generally replaced with the more disect PSA.

ANALOG-TO-DIGITAL CONVERTER TYPE 138

The Type 138 A-D Converier provides for the conversion of an analog input voltage into a binary number of from 6 to $l l$ bits. The speed of conversion depends upon the choice of resolufion and accuracy of conversion. The front pansl of the Convarter (Figure -)confains two switches for this purpose. One switch selects the resolurion, from 6 to il bits. The other switch selects the switching-point accuracy in six steps from $\$ 1.6 \% 10 \pm 0.05 \%$.

Figure - Converier Panel

Figure - gives a table of conversion speeds for the various setring of the switches. The numbers along tha diagonal are for mosi general purposes. The seltings below the diagonal are for use where accuracy, repearability, and differential linearity are more imporiant then resolution (e.g., for histograms). The seltings above the diagonal are for the opposite case, where resolution is more important (for example, for averaging).

Figure - Conversion Time for Each Serting of Converter Switches (in use)

When on incoming voltoge is converted, the digital pesult is placed lefradjusted in the converer buffer. When the contents of the buffer are read into the $A C$, only those bits used in the conversion (cs defermined by the switch setfing) are fransmitted. The number is placed in the $A C$ also lefr-adjusted. Thus, o l0-bis result would be placed in $A C_{0,9}$. The remaining $A C$ bits are cleared. Figure - shoves the relation beiween the converted buffer and the $A C$.

ANALOG TO DIGITAL MULTIPLEXER TYPE 139

With the Type 139 Multiplexer, 64 channels of analog input signals can be connected to the analogato-digital converier. A óbir mulpiplexer address register (MAR) specifios a channel number from $0-778$. A channel address may be chosen in one of two ways. It can be specified by the contents of bits $12-17$ of the $A C$, of by indexing the contents of the MAR. The following iof instructions ars used.
adsm $\quad 701103$
Select $M X$ channel. The contents of $A C$ are placed in the M.AR
adim 701201
Index channsl address. The contents of the $M A R$ are incremented by L. Channel 0 follows chamel 778°
The channel address select instructions do not inifiate a conversion. This can be done only by un adsc instruction to the converter.

MB6 (1)

MET (O)

MB7 (1)

MB8 (0)

MB8 (1)

MB9 (0)

MBG(1)

B IO (O)

MBIO(1)

MBII (O)

MB11 (1)

DATE September 28, 1964
SUBJECT Magnetic Drum, Type 236
TO Dick Best FROM R. Lane

We have proposed drums as indicated in the following chart:

Customer	Qty.	Delivery	Probability
Adams Assoc.	1	1-65	100\%
Mich., Univ. of	1	5-65	70\% V
Rensselaer Polytech.	1	4-65	20\%
Rand Corp.	1	6-65	70\%
Oregon state	1	5-65	25\%
BTL	2	12-65	05\%
Lincoln Lab.	1	6-65	05\%
Wash. State Univ.	1	6-65	02\%
Hanford Labs.	3	6-65	02\%
Brookhaven	1	12-65	25\% V
Edinborough	1	5-65	33\% V
Axel Springer	2	8-65	05\%
DEC	1	12-64	99\% \checkmark

In summary only 6 appear worthy of consideration (those checked)
Two are positive
Two are certain
Two are probable
Balance are very, very, uncertain.

Considering some new customers who will show up, considering some that will drop out, I recommend we order 6 with no cost cancellation privileges and that we review our position monthly.

CC: Nick Mazzarese
H. Anderson V
G. Bell

Bob Savell

DATE September 28, 1964
SUBJECT LRL - Extra Memory Interface Modules
то

Larry White

FROM
R. L. Lane

Extra Memory Module interfaces were priced assuming the cable and checkout to be included. For example:

$$
\begin{array}{ll}
1-1664 \text { @ } 230 & =230 \\
3-1665 \text { @ } 550 & =1650 \\
1-\text { set I/O Bus cable } & =500 \\
1-\text { checkout } & =\frac{320}{2700} \text { selling price }
\end{array}
$$

With respect to LRL, they need 6 (a $2700=\$ 16,200$. This includes the cable sets. Can you determine the lengths they need? I want to sell them the additional interfaces but I feel they should wait until they buy the I/O processors to get the additional 2 interfaces. They should go ahead and buy 1 additional set for each memory so they can attach their special disc processor. Consequently, I recommend they only get 1 extra set for each Type $163-\mathrm{C}$ at this time. - Unless they have political reasons such as AEC money is available or they have already requested funds, etc.

Before you take any action, let's discuss this with Nick.

CC:
Nick Mazzarese
H. Anderson
R. Beckman

RE: R. Beckman's Call report 21, September, 1964.
L.R.L. Construction Requisition (Serial No. 1149).

Please add the following information to the LRL Construction Requisition:
(1) Their order number
(2) DEC No.

Please change the delivery date to Nov. 30, 1964.
Please change item 2 from quantity 1 to quantity 2. ($16 \mathrm{~K}, 2 \mu \mathrm{sec}$ core memory).

Please add:
Item 7. Fast Memory (Quantity 1) Type 162
Item 8. Add'l Memory (core) interface (quantity 6)
3 each to each Type 163C Core Memory.
Item 9. Paper Tape Reader (Quantity 1) Type 760.

CC: H. Anderson
Nick Mazzarese
R. Beckman
L. White

DATE September 28, 1964

SUBJECTTime Sharing on Systems Using
TO Magnetic Tape without DECtape

FROM
L. Portner

Systems using standard Mag tapes and no DECtapes or conceptually similar devices, such as disc or drum, will be provided minimum time sharing capabilities through the use of our Phase \emptyset system. This allows users to co-exist in memory but does not provide for the swapping of users from and to various backup devices. In addition to being denied elaborate time sharing capabilities they will not be provided with the facility to edit their Mag tapes, as they will be able to do with DECtape.

The additional programming involved in providing this system is chiefly in writing a minimal loader to load the executive system from Mag tape (if so desired). Alternatively, the executive may be loaded from paper tape.

LP: tw

DATE
9-28-64
SUBJECT
PDP-7 Reference Momal
TO
K. Oisen
A. Anderson
S. Olsen
T. Johnson
N. Mazzarese
R. Wilson
T. Kary
G. Moore
R. Bast
G. Bell
L. Selignan
D. Cotron
J. Arwood
D. Smith
J. Nangle
D. Fellows

PROPOSAL FOR PDP- 7 RERERENCEMANUAL

Tille
Pupose

Format

Covar

Contents

PDP-7 Reference Nanual
To sonve as an instruction and reference manual for all PDP-7 system, designers and operators.
8. $1 / 2 x$ il size.

Single sheets; primed on both sides, numbered by sections (4-1, 4-2 eic.). This is for ease of addition ard corvection.
Console Copy to be supplied with each PDPot in a 3 -ring "digital notebook wim PDP -7 CONSOLE COPY printed or decolled on the cover.

All POP- 7 litereture covats to ba a similap fomes - similar in appeatance po F-61, PDP-6 Systom Description, but with the PDP-7 blue. Also cover shoufód display our mow recognizable "cigifinal" loge in some form.

Artchere is a final dratt of Chapier 3_{0} hpu:/Output, as expended from the PDP-A Manses?
Nota: The 1/O Devicas section should include in one binding substantially all of what has to-tate baen eirculared as separate option bultetins. That is, the detaled hardware and operation description for each opstion would be par of the PDPa 7 Reference Momul?

Other PDP-7
finevarure

System Description
Programming Manual
Fontan II
Maintenance Manual
Course Workbook

DATE September 28, 1964
SUBJECT Plans for Modules
TO Works Committee
FROM Burt Scudney

This is a preliminary report which attempts to summarize....
(1) The short-term (1 year) manpower requirements for the continued success of DEC modules in our traditional module market; and
(2) The initial manpower and organizational requirements for the opening of new market areas to DEC modules.

TRADITIONAL MARKET
Module Sales:
Four additional men.

These are additional people required in various field offices. This requirement represents the needs of the West Coast, Denver, Chicago, and New York areas.

Module Applications: Two additional men.
In order to help fulfill our field office needs, we have completely depleted the Maynard applications staff. This staff must now be rebuilt.

Engineering: One additional man.
The burden being placed on the Engineering Department by the PDP-6, PDP-7, PDP-5A results in intermittent attention to the module line. The requirements of the FLIP CHIP line are such that a more continuous effort must be applied.
Li bet abint Crainertor monnfacture ete.

NEW MARKET AREAS (OEM)

Module Sales:

Five additional men.
In the opinion of the writer, the present field force is neither sufficient nor suitable for the OEM market. We require additional people with suitable backgrounds for serving OEM accounts. Two would be located on the East Coast, two on the West Coast and one in the Mid-West.

Custom Engineering Service:
Three additional men.
It is essential that we develop the capability to design special and unique modules for OEM customers. These additional people should be engineers with circuit design backgrounds.

SUMMARY
The above shows a need for a total of 15 additional men, 7 to continue cur present module business and 8 to expand into new market areas. It is expected that entrance into the OEM market will not significantly affect sales volume for a relay ively long period of time ($1-1 / 2$ to 2 years).
(1)

OED -

$$
\text { fog. A.I. } 1
$$

Critical Thinking
needed here!
(2) Back Panel Wring
(3)
 nodules -

FISCAL 1965 MODULE SALES FORECAST AS REVISED 9/24/64
(thousands of dollars)

SUBJECT "Midnight Acquisition" of Modules in Computer Checkout Area
TO K. H. Olsen
FROM
W. Colburn
H. Anderson
R. Beckman
R. L. Best

For the last two weeks I have been assisting in the checkout of the Central Processor for the Adams Associates PDP-6 System. From this time two and one half days of checkout time has been lost.

This lost time may be directly attributed to the practice of modules being removed from the machine during the night, and either not being replaced at all, or being replaced with a defective one. In either case no note being left to indicate such a transaction.

The score for this "game" now stands at:
a. Modules missing and unaccounted for 7
b. Modules switched - bad one left in machine 5
c. Modules switched - note left or module tagged 5
d. Modules switched leaving an incorrectly jumpered one 3

As part of the 5 modules under " c ", two were borrowed but not replaced and the borrower "could not remember where he took it from!" So a check of every module of that type was required for each one. These were on separate occasions.

The strangest part of this situation is that a key to the Finished Goods Stockroom is available to these nightime checkout people, (a fact related to me by Ed Harwood.)

WC/mro

DATE Sepfember 2, 1964

Harlan Anderson
Stan Olsen
Win Hindle

My proposal is as follows: I will go to Paris at the beginning of March 1965 and stay there for 8 months. My objectives will be as follows:

1. Set up an operating Franch office for DEC. I don't think it matters very much whether we set up the office as a wholly owned subsidiary as we have done in England and Germany (in other words an SARL) or whether it is merely a brunch office of DEC. I think to start off with, it would be easier to have it merely a branch office of DEC and thus, there would not be any problem in the accounting area. Most of my time could be devoted to sales, engineering, and organization and not to the details of office procedure. However, the details of incorporation are not difficult and in the future we would probably want to incorporate as a wholly owned subsidiary. The important thing, however, is that we must have both sales and service available within France. The French computer market is a significant part of the entire European market, probably third in importance to England and Germany, and we cannot expect to sell any significant amount of equipment from our bases in only England and Germany. Of course, we will need the engineering and sales help from these other offices, but no French company will consider buying an installation of any great size unless it is supported by an operation within France, and the fact that England and Germany are only an hour away by plane does not change this fact. It is essential that whoever is working in France speak the language fluently, since for one thing most French engineers speak English either badly or not at all, and secondly even if they do speak English they are automatically prejudiced against a company that cannot communicate in their language. Furthermore, by trying to sell equipment in France without a French base of operations, we are somewhat endangering our whale European operation by not projecting the required image of adequate sales and service background.
2. My second objective will be to hire French personnel for the French office. Obviously we don't intend to run the French office with Americans, but in order to find a really good man to run the office it is necessary to set up operations and have continual contact with people for a fair length of time. It is for this reason that I have so far been unsuccessful in finding anyone to set up the French office. It is necessary to be resident in France for a
while to do that. The French attitude is very coutious, and until an engineer sees a going concern in France he probably will not want to join it. However, by establishing the office there myself, I will be able to interview people and eventually find a good sales engineer with computer experience to do the job for us in France. Additional personnel could then be hired as necessary. If a senior man cannot be found I could hire a more junior engineer who would be able to do muintenance and learn about computers and with sufficient training would be able to sell for us. This alternative would not be ovailable to us unless we had someone like myself stationed in the Paris office for an extended length of time.
3. The third objective of the proposed European trip will be to solve some of our sales problems in our present offices in Germany and Eng land. In Germany we may find it necessary to liire an aggressive computer salesman, and I will be able to look into doing this when I am there. In England the problem is somewhat different. We are doing very well with John Leng, but he will hot be there past April or May. Therefore, I will herve to either hire someone else to be in charge of the English office, or send someone over from the U. S., or possibly have Geoff Finch take it over. At the moment I have no feeling as to just what the proper thing to do is, but there obviously will be some problems when John Leng leaves.
4. A fourth objective will be to do a good deal of sales work in some other parts of Europe which we have not yet had time to touch. It would be worthwhile to look into the situation in Israel for a few days, inasmuch as there is a considerable anount of computer activity both in the universities and in the Atomic Energy Commission of the government. A trip to Italy is certainly called for. Computer activity is growing in Spain and I would want to take a trip there in order to survey the Spanish market and see what we could do there. Although I don't speak Spanish, my wife does so fluently and this would help considerably.

Most important, if we are to establish ourselves firmly in Europe and do the type of aggressive business to which we are accustomed here in the U.S., we must be firmly established in England, France and Germany; in other words, in the three major language areas of Europe. Thus, the establishment of a French office would definitely help us not only for our sales in France, but throughout Europe. I am aware that this will be a fairly expensive operation, but I am also aware that it is an essential one if we are to take advantage of the presently expanding European market.

JF:nlz

OUTLINE OF JOB TO BE DONE IN STARTING THE FRENCH OFFICE

The preliminaries of setting up the office can be disposed of very rapidly. Since we already have an office, we can send literature there ahead of time so there will not be the problem of going out and talking to customers without having the literature available. It will be possible to find a bi-lingual secretary by advertising in the local press. As is usual in a foreign office, a first-rate secretary who can handle both languages and who, with a little training, can run the office while the manager is not there, is essential. Since we do not intend to set up a separate company in France immediately, there will be very few problems having to do with accounting. It will be necessary merely to open a bank account for the company in Paris which I can draw upon and then the secretary can keep the very simple records that are required. Invoicing will be done from Maynard and a record kept in the French office of sales made and commissions due.

I intend to arrange beforehand to have a Telex installed in the office for efficient communication between Germany, England, Paris, and Maynard.

The office is already fumished with a minimum amount of furniture and all that will be necessary is to buy an electric typewriter, an electric adding machine, and a copying machine.

Thus, the preliminary job of setting things up should go quite quickly and allow me to get down to the business of making sales contacts. We have had correspondence with quite a few customers in France already. Most of these have been requests for information which we have given but without sufficient folldw up. By making a careful survey of the correspondence which we already have in our files the first sales contacts should tum out to be more profitable than would be the case if we were just beginning.

Alan Kotok and I will be giving a talk on the PDP-6 before a French computer society on October 21 st. This should help to get the name of Digital Equipment Corporation and the PDP-6 a bit more known in France. Some advertising, particularly on the PDP-5, PDP-7, and FLIP CHIP Modules will be done before I go over. While advertising is not going to bring in any direct sales, it should make it a little easier when we go to talk to customers who will at least have seen our name in print before. We already have installed one computer in France, and this will, of course, make it easier for us to sell more computers. Indeed, Dr. Storey himself who bought the PDP-5 at Meudon, is quite interested in the PDP-6.

The market which I shall first attempt to work on is the educational and scientific market. My contacts at the Institute Blaise Pascal, which is the largest computing center in Paris, have been limited to one man, who, it seems to me, does a great deal of talking and not much acting; but it should not be too difficult to get other contacts there. We already have some contacts at the Universite de Paris and the College de France. I would expect to concentrate quite a bit of sales effort in the early springtime before people start to go on vacation in July and August. Jean Lebel should be of some help in getting to know some more people in the academic circles. We have had several inquiries from the Université de Grenoble and that would be one trip that I would make very near the beginning of my stay in Paris. Another potentially important area is the medical field. Dr. Remon, who seems to be one of the foremost people in France in this field, when he was here talking to Mort Ruderman seemed convinced that there was quite a market for the Linc or possibly PDP-5, but more likely the Linc in France. However, we have not as yet exploited this, since there is no one in France to do the job.

By the time I go to France in March we will have installed the PDP-4 at Harwell, the PDP-5 at Meudon, and the PDP-7 at Delft. I would hope that we will also have sold a PDP-7 at Oxford, a PDP-7 at Karlsruhe, and a PDP-7 at Aachen. There should be some other sales of 5's by that time also. This is a pretty good base upon which to build future sales in Europe and also to hire personnel. However, it is not possible right now for me to give a detailed sales forecast. From past experience in Europe it looks as if the PDP-7 will be the big seller. This may be partly because of its speed, and we don't know what effect the PDP-5A will have upon the European market. I would hope during the eight months that I would spend in Paris to lay the groundwork for the sale of one PDP-6 and possibly two PDP-7's and two PDP-5's. I don't claim that I will have completed the sale of all of these items in eight months, but I should at least have laid the groundwork for them and concluded some. In addition, I feel that our new FLIP CHIP modules ought to sell quite well in France. We have not sold any modules to speak of except for one fairly substantial order for the College de France for "Hough-Powell" device. However, the prices on the FLIP CHIP modules are low enough that we are now competitive with Philips and with French OEM manufacturers.

One of the main reasons for my going to Paris will be to find a competent manager for the Paris office. This man should be a Frenchman with a working knowledge of the English language. He should be familiar with Digital computers preferably from the standpoint of sales, usage, and programming. We would probably have to pay such a man about $\$ 10,000$ to $\$ 12,000$ per year, but this is the type of man that we are looking for. I would hope to find such a person by means of personal
contacts which I will make in the process of doing sales work. I will also be able to advertise for such a man, though I think that this procedure is less likely of success than the personal one. I would hope to have located a person sometime in June who would then be available for work by the first part of August. Depending upon how the sales possibilities work out we will probably also want to hire a maintenance man. Though this man must have a good knowledge of French, it would not be essential that he be a Frenchman. Perhaps we would want to hire someone in Holland who would be responsible for the PDP-7 at Delft and work out of the Paris office for a while.

Cost:

I have not yet had time to work out the detailed costs of this venture. From past experience in foreign offices the cost will probably be in the neighborhood of $\$ 30,000$ for the eight months. I will be able to make out a more detailed budget shortly.

There is also the problem of how to handle the international office here in Maynard while I am away. Being in Europe I will have much closer control of the European business from the Paris office than I am able to have from here. I would also still be involved in the decisions of what is done in Japan and Australia. The more routine correspondence work and filling of information requests for the foreign offices can be handled by Brad Towle here, provided that he has someone else to work with him to do the detailed work of shipping and invoices. Brad will of course need more help on the technical side than I do.

Jonathan Fadiman
Manager, International Marketing

DATE September 2, 1964

SUBJECT

TO Harlan Anderson
Dick Mills
Win Hindle
Stan Olsen

I got a call from Ed Fredkin on Monday, August 31st to say that he is interested in buying old, discounted PDP-1s. He is coming to see me on Thursday, September 3rd at 3:30 to talk this over. While making the appointment, he told of something interesting he found out about renegotiation and thought it might be very significant to us. According to Ed, the law says that when a product has a life of more than five years, that percentage beyond five years is not renegotiable. For example, if a computer lasts for ten years, only half of its cost is renegotiable. I think our computers and our modules have lives longer than five years and this might be a significant factor.

Ken Olsen

KHO:ech

DATE September 3, 1964
SUBJECT KNOX COLLEGE, GALESBURG, ILLINOIS
TO
Harlan Anderson
FROM Tom Quinn
Chicago Office

Thanks for the lead on Burton Squires. This is the first I have heard of Mr. Squires's interest, yet he apparently was expecting our follow-up after SJCC. This leads one to wonder how many other people have been overlooked as a result of the confusion surrounding a trade show or just plain negligence. Since trade shows represent a substantial investment in both time and money and are a valuable source of inquiry, I wonder if we can devise a method of assigning responsibility for the transfer of this informotion. A simple hand written note is all that is required and it should be the responsibility of the person initiating contact to see that these notes are promptly transmitted.

I will contact Mr. Squires immediately. Thank you very much.

DATE September 3, 1964
SUBJECT UNIVERSITY OF MINNESOTA -- DR. OTTO SCHMITI
TO
Harlan Anderson
FROM Tom Quinn Chicago Office

Thank you for your memo of August 28, 1964, regarding Otto Schmitt's PDP-5. I have been aware of his diffculties for the past month and have initiated action so as to tie off the loose ends as soon as possible. Dr. Schmitt's difficulties are small and principally the result of his not having had time to get into the details of his configuration. This situation should be remedied with the addition of Mr . Bill Hart to Schmitt's staff, who will take responsibility for the installation. I met with these gentlemen last week and have brought them up to date on all documentation relating to their system. I am also trying to get Hart to come back to the plant for the $9 / 28 / 64$ PDP-5 course. Finally, I intend to visit Schmitt during the week of 9/14/64 and at regular frequencies thereafter so as to prevent any misconceptions regarding the support and service extended by the Digital Equipment Corporation.

[^0]: E. Simeone - October 1964

[^1]: * Iam is a pseudo-instruction to the essemblor which generaves the equivalenir machine instruction using a law instruction.

