October 30, 1963
DATE
SUBJECT
то

Harlan Andersom	Ken Wakeen	FROM	Kenneth H. Olsen
Winston Hindle	Ed Harwood		
George O'Dea	Robert Beckman		
Richard Mills	Jack Shields		
All Engineers	Stan Olsen		
All Programmers	Nick Mazzarese		
Maynard Sandler	Bob Lassen		

We have been doing programming in many parts of the company. The individuals doing this programming have done a very good job but we now feel there is a lot to be gained if we combine them into one group. Therefore, we are forming an Engineering Programming Group to be headed up by Len Hantman who will report to Gordon Bell.

In forming this group, we hope to eliminate the possibility of doing the same programming jobs several times; first in Engineering, then in Check-Out, and finally in Field Service. In addition, by putting the programmers together in one group we hope that they will help each other in solving particular jobs but even more in developing the capability of each other.

At the present time, the individual programmers are doing a very effective job because they are very closely tied to their individual projects. We feel that we can keep this efficiency and enthusiasm and still gain the advantages of centralization.

Kenneth H. Olsen
KHO :ncs

DATE
SUbJECT Technical News Release - Light Pen
$\begin{array}{lll}\text { TO Jock Ahwood KROM Kemeth Olsen } \\ \text { Derrick Chin } \\ & \\ & \\ & \\ & \\ \text { Herlan Andersen Olsen }\end{array}$

I think we should get a technical news release out on our new light pen. This is one of the few proctical epplications of light pipe principle. A good place for this might be Mechine Design magazine becouse it hes a section of new products which are lorge pictures and a very short amount of text. I think we should, in a single paregreph, explain the use of the light pen end how we are doing it.

In addition, of course, we should send out new product releases to the general merket.

> K. H. Olsen

KHO nes

Ken Wakeen FROM
Kenneth H. Olsen

We have been doing programming in many parts of the company. The individuals doing this programming have done a very good job but we now feel there is a lot to be gained if we combine them into one group. Therefore, we are forming an Engineering Programming Group to be headed up by Len Hantman who will report to Gordon Bell.

In forming this group, we hope to eliminate the possibility of doing the same programming jobs several times; first in Engineering, then in Check-Out, and finally in Field Service. In addition, by putting the programmers together in one group we hope that they will help each other in solving particular jobs but even more in developing the capability of each other.

At the present time, the individual programmers are doing a very effective job because they are very closely tied to their individual projects. We feel that we can keep this efficiency and enthusiasm and still gain the advantages of centralization.

Kenneth H. Olsen
KHO :ncs

PROPOSED ENGINEERING PROGRAMMING GROUP

TO: K H OLSEN

FROM: LM HANTMAN

1. The purpose of this memorandum is to define the Engineering Programming Group and discuss its proposed immediate makeup, its future requirements and methods for fulfilling those requirements.
2. The Engineering Programming Group shall be defined as that group of programmers which will work directly with the engineers, production group, checkout group, and field service personnel during the design, testing, debugging, demonstration and checkout of newly designed and current computer hardware and special systems. The group will produce programs which will be incorporated into checkout, diagnostic, maintenance, and acceptance tests. It will also produce programs for such in house functions as module testing, wiring lists, information retrieval, inventory and production control, and machine-aided design problems.

The group can be distinguished from Harrison Morse's group which will produce systems programs, compilers and utility programs for use of the customer himself.
3. There are at present four main areas of programming which the group should eventually handle. These can be outlined as follows:
A. Production of the backlog of maintenance,checkout, diagnostic and acceptance tests and their writeups for equipment currently in production.
B. The production of maintenance, checkout, diagnostic and acceptance tests and their writeups for newly designed equipment including central processors, peripheral equipment, and special systems. The individual programmer
would be required to do the following:

1. Write any programs necessary to initially test the equipment on line.
2. When the hardware is ready, to work directly with engineer in designing and running simple programs for immediate use in getting the equipment on the air, and working out any design or programming bugs in the larger tests.
3. Write all immediare demonstration programs for various shows and possible customer demonstrations.
4. Upon completion of on-line testing, write the programs necessary for use by the checkout section and the engineering group.
5. Write a complete description of the equipment from a programming standpoint (i.e., an enlargement of the original specifications) including technical information, IOT commands, timing problems and possible examples of simple instruction sequences, or basic subroutines. These writeups should be made available to the checkout section and the Systems Programming Group through an up-to-date program library.
C. In house programming including module testing, wiring lists, automated milling machine, accounting, and production and inventory control.
D. Advanced techiniques including graphical input to the computer, printed circuit design, information retrieval and other machine aided design problems.
6. To implement the four programming areas, I feel that the following allocation of personnel should be made. It is assumed that all those mentioned would be available to the group.
A. To catch up on the backlog of required maintenance type programs with the available manpower would be virtually impossible. 1, therefore, feel that this backlog would be cleared away by some outside consulting organization with the specifications for the programs closely controlled by Dave Brown and Leo Gossel. At the present time Leo is the only one with PDP-1 experience, for example.
B. The programming for equipment currently being designed would be done by Dave Brown and Leo Gossel with an assist from myself and an eventual assist from Bill Kelliker. Note that although Bill has had some field experience he has had no programming experience. One separate area within this group should be devoted to magnetic tape systems. At present Ted Strollo, a part time employee, is helping in this area. It is suggested that he continue his work.
C. The in house programming is currently being done by Russ Winslow. Russ is currently spending most of his time with the Module Tester. However, I think that he can start broadening his horizons. Russ, has had only a few months programming experience, but is familiar with some of the problems in the production area. With help from others, he might profitably work on problems of inventory and production control. Persons in the Company have already expressed an interest in this type of work.
D. Some progress in graphical techniques and information retrieval etc., can probably be made by myself and Charles Stein. Charles is presently working on techniques for the incremental scope and has shown a great deal of interest and ability in this type of work.
E. An overall chart of the proposed group is shown on the following page. Because of the lack of sufficient personnel in any of the four areas, I think it would be unfair and unwise to delegate individual responsibility for any of the particular areas at this time.

Page 5.

5. It should be obvious from a casual glance that the mission of the group, as herein defined, cannot be attained with the group as shown. Though the formal creation of the group is a needed first step in producing greater control, efficiency, and responsibility, I think we should be extremely careful about setting up a "paper" group with lofty ideals. The following points should be considered, for example:
A. Leo Gossel is presently working for Ed Harwood in the Checkout Section. No matter where he is formally assigned, Leo would have to continue giving Ed some support simply because there is nobody else available to do it. This much of Leo's effort, at least for the time being, would be lost to the service pool which the group is attempting to establish.
B. Russ Winslow is currently working for Ken Wakeen, attempting to add more and more production modules to the Automatic Tester. This is an important production job and therefore much of his time will be spent in continuing that type of work. Here again, at least for the present, some of his effort will be lost to the group.
C. Ted Strollo is a part time employee, hired by and for Roland Boisvert. He will, of necessity, have to continue his present work, and therefore his effort is, in effect, lost to the group. Therefore, with the exception of the addition of Dave Brown, the group will remain almost exactly as it is; one which at present is totally incapable of meeting the obligations set forth in Paragraph 2.

$$
\text { Page } 7 .
$$

6. For the above reasons I recommend that a concerted effort be made to hire at least three (3) additional programmers immediately. Two of these would be assigned to the maintenance area, and one would be assigned to in house programming. Additional programmers would probably be needed in the near future in all three of the permanent programming areas I have outlined previously.
7. Almost immediately the amount of key punching and paper work generated by the group will require additional punching and secretarial help. Some thought should be given to the possibility of providing such help as soon as practically possible.

LHM:ASJ

AEC Harvard

Complete with 4 K Memory, Const. Req. calls for Mem. Mod. 17OD (EN 2655)

AEC Yale University

Complete with 4K Memory, Const. Req. calls for Mem. Mod. 170D. (EN 255l)
AECL

1 Memory Module 170B
1 Memory Ext. Control 121C
BBN Cambridge

2 Memory Module 170A
3 Memory Ext. Control 121C
Bell Tel. Labs
1 PDP-5-\#8
Photo Multiplier Light Pen 370
A/D Converter Module 137
EN 2761
12/15/63
EN 2762
12/15/63
EN 2771

Columbia PDP-4
1 Mag. Tape Control 57A
EN 2758
12/15/63
1 Interface Logic 520
EN 2759
12/15/63

Customer Relations

1 Data Control 131
1 Tape Control 510
Foxboro Co. PDP-4
1 Extended Arithmetic Element
ITT
Memory Module Type 12
EN 2768
11/13/63
EN 2586
7/1/63
EN 2587
7/1/63

DEC Los Angeles Office

Portable Display Tester
EN 2583
5/20/63

University of Michigan PDP-4C-\#17

1 Printer Keyboard and Control Type 65
1 Tape Punch \& Control Type 75
3 D/A Converters WD 2311
1 Two Channel Input Multip for Type 138
1 A/D Converters 138

EN 2772
EN 2773
EN 2775
EN 2774
MIT - Mac
1 Memory Module 170D
1 High Speed Channel 19
130 H Display
1 Light Pen Type 32
1 Data Control 131
1 Micro Tape Control 550
1 Micro Tape Transport 555

EN 2540
EN 2727
EN 2474
EN 2728
EN 2730
EN 2731
EN 2732

12/10/63
12/10/63
12/10/63
$12 / 10 / 63$

11/1/63
11/1/63
11/1/63
11/1/63
11/1/63
11/1/63
11/1/63

DEC Production PDP-4B-\#9
Micro Tape Transport 555
EN 2755
12/10/63
Micro Tape Control 550
EN 2756
12/10/63

PDP-4 Prototype

1 Micro Tape Control 550
EN 2719
10/14/63
3 Micro Tape Transports 555
EN 2720
10/14/63

DEC PDP-6 Prototype

Micro Tape Transports 555
EN 1178
9/1/63
Raytheon Wayland PDP-1C-\#38
1 A/D Converter 138
1 Multiplexer \& Control 139
EN 2662
8/28/63
EN 2663
8/28/63
DEC Sales
1 Micro Tape Control 550
EN 2641
6/20/63
1 Micro Tape Unit 555
EN 2642
6/20/63
DEC Sales PDP-4B-\#6
1 A/D Converter 138
EN 2637
9/1/63
1 Micro Tape Control 550
EN 2638
9/1/63
1 Micro Tape Unit 555
EN 2639

DEC Sales Foreign PDP-5\#6

PDP-5-\#6 4K Memory
Display 34 with Tekt and yellow filter 503 for 50 cycle operation
Nuclear Data 160F A/D
Interface for 160 F A/D

EN 2746
$11 / 3 / 63$
EN 2747
EN 2748
EN 2749
11/3/63
$11 / 3 / 63$
$11 / 3 / 63$

DEC Sales for Loan to AECL
1 Memory Module Type 12
EN 2750
$10 / 25 / 63$

Stanford University
1 PDP-1C-\#48
Memory Module 170D
32 Field Drum Sys. with Interface for
Memory Control Type 121
Data Control 131
Memory Control 121B
Memory Control 121C

EN 2692
EN 2764
EN 2695
EN 2694
EN 2766
EN 2767

12/30/63
$12 / 30 / 63$
$12 / 30 / 63$

SUBJECT SUGGESTED NEW MODULES
K. Olsen
H. Anderson
S. O1sen
R. Best
D. White

The following ideas for new modules have resulted mainly from talking to some of our customers in the New York area.
A. Suggested Pulse Amplifiers

CONCEPT: Provide a module with more Pulse Amplifiers per package with less output driving ability (4 or 5 pulse loads) and at a slightly reduced cost.

This would be helpful for clearing, shifting, and reading into our hi-density flip-flops. Such a "reduced output" Pulse Amplifier would probably be psychologically helpful too, since people feel they are wasting the capability of a 4603 Pulse Amplifier when they are only driving a few loads.

I have shown two of the different suggestions people have submitted. (attached)
B. Suggested Delay

CONCEPT: Provide more than one delay per card with only one basic range. Longer periods through use of external capacitors. Flip-Flop outputs-no pulse output.

Bell Labs has been building and using such a module for almost 2 years now using blank cards.

With Flip-Flop type outputs, one delay could trigger the next providing, I am sure, much more economical one-shot timing chains.
K. Olsen
H. Anderson
S. O1sen
R. Best
D. White

c. Suggested Flip-Flop

CONCEPT: Provide a general purpose RST Flip-Flop compatible with quadruple and hi-density packages for use in control and adding that one extra bit to $4215 / 4225$ counters while using the other Flip-Flops elsewhere. Unbuffered outputs. R and S inputs tied together to form trigger input.

Again, I have shown two different ideas. The first is merely a rework of the 4214 to allow it to be used with a wider variety of gates or with Pulse Amplifiers. The second is about the same except that it adds direct set inputs and separates the clear inputs.

DBD: BMP Attach.
(A)

(B)

DBD $10 / 28 / 63$

OUTPUT:

FLPFFLOP TYPE

PERIOD CONTROL:
internal pot. $\$$ CAP.
FOR VARIATION BETWEEN 1 TO 10 us
EXTERNAL R $\& C$ TERM. AUAILABLE FOR LONGER PERIOD OR PANEL ADJUSTMENT.
BOARD JUMPER TO BE
REMOVED WHEN USING EXTERNAL PCT.

LIKE 4214 EXCEPT:

1) INPUTS AC COUPLED TO ALLOW TRISSERIAJG
2) TIE SET \& RESET INPUTS TOGETHER TO
(B)

INPUTS:
AC COUPLED FOR TRIGGERING FROM LEVELS OR PULSES TIE SET \& RESET INPUTS TOGETHER TO COMPLEMENT

OUTPUTS:
LIKE STANDARD QUAD, FFIS

DATE October 29, 1963
SUBJECT
PRIOR NOTIFICATION OF LATE DELIVERIES
To Works Committee FROM Jim Myers

After discussion with Maynard Sandler and Bill Farnham the fol owing outline of procedures to be followed was drawn up:

1. Open orders are checked daily to make up shipping orders.
2. Orders, which are not available in stock one week prior to the scheduled shipping date, will be pulled.

Production will be consulted on the units involved. If the units are likely to be late, the decision to notify the customer will be made.
3. The customer is to be notified by telephone, TWX or letter.

INTEROFFICE MEMORANDUM

DATE 28 October 1963
SUBJECT : PDP-5 Course Convening 28 October 1963
TO
K. Olsen

FROM
R. Bernier
H. Anderson
S. Olsen
N. Mazzarese
R. Beckman
R. Wilson

All Sales Personnel
District Offices

The following individuals are scheduled to attend a one week course on the PDP-5 convening 28 October 1963:

NAME
COMPANY
L. Gefert
F. A. Shallo
S. D. Silliman
D. A. Stackpole
J. F. Sutherland
J. M. Martin
R. F. Maxcy
R. A. Stiver

Westinghouse; R \& D Center, Pittsburg
Westinghouse; R \& D Center, Pittsburg
Westinghouse; R \& D Center, Pittsburg
Westinghouse; R \& D Center, Pittsburg
Westinghouse; R\&D Center, Pittsburg
Digital Equipment Corp; San Francisco
Digital Equipment Corp; Maynard
Digital Equipment Corp; Los Angeles

INTEROFFICE NEN ORANDUM

To:	PDP-6 Group \quad October 28 1963
From:	Robert E. Savell
Subject:	PDP-6 IO Schedule of Ocrober $23_{v} 1963$

Clarification of the reason stated for the delays that have occurred subsequent to the prior revision are in order.

Drafting delays and drafting errors are not all the fault of the Dpafting Depariment. A considerable portion of the delay was due to our request for wiring drawings to be delivered prior so block schemarics.

DATE October 25, 1963
SUBJECT
TO Kenneth Olsen FROM Jack Atwood
cc Harlan Anderson

Those five-year-service-award pins and tie clips are burning a hole in my pocket. Is there any possibility of getting some sort of presentation program going in the near future? The luncheon approach I suggested earlier still seems to be a relatively painless way to accomplish this.

To: PDP-6 Group
October 23 1963
From: Bob Savell

PDP-6 10 Schedule

Revised October 21, 1963
*Actual dates now other are estimated

Changes due to drafting delays and drafting errors.

SUBJECT

TO

K. Olsen	S. Olsen	FROM	Bob Savell
H. Anderson	H. Morse		
R. L. Best	J. Jones		
G. Bell	R. Beckman		
N. Mazzarese	J. Shields		
A. Kotok	E. DeCastro		

Nick Mazzarese expressed concern the other day about the problems that have been arising with Model 33 Teletypewriters on the PDP-5 since he estimates that we will have a dozen PDP-5's in the field by the end of this year and will produce approximately 100 next year. This memo contains my opinion of what we should do about the problem, and will do unless anyone has objections or better ideas.

1. I feel that Teletype will solve the problems that exist, but it may take six months to a year until things really settle down. This feeling is based on our experiences with the Model 28 and the BRPE-11 punch.
2. I may be wrong, however, so I feel it is necessary to keep extremely good track of all troubles that occur and to communicate with Teletype every two weeks to make sure they are aware of the problems and also to make sure that the problem occurrence rate decreases with time. If the problems do not abate we must select another device.
3. Two new Model 33 ASR's will be put on a life test that will check their readers, punches, and printers as soon as we can get our hands on the units.
4. Model 35's will also be tested both on and off line as soon as they are received.

I do not believe the company should commit itself to the use of the Model 33 in any other applications than console use on PDP-5 and PDP-6 at present.

SUBJECT Results of the PDP-1 and PDP-4 Interviews
TO Ken Olsen
Harlan Anderson
Stan Olsen
Wick Mazzarese
Gordon Bell
Jack Atwood
Some time back, as part of the plamning for the PDP-6 Maintenance Manual, I asked Bill English to see if he could find out what our customers'reactions were to the PDP-1 and PDP-4 Maintenance Manuals. Bill contacted as many as he could, explained that he was not a DSC employee, but that he had been involved in the writing of the manuals, and asked for comments and suggestions. Attached is a copy of his report on these interviews.

RESULTS OF THE PDP-1 AND PDP-4 INTERVIEWS

When writing the logic portions of these manuals, I aimed the discission at essentially a middle level - that is, I wrote a fairly detailed an complete description of exactly how the machine works so that an average technician could understand it without any great difficulty. I felt that a very sophisticated engineer having considerable familiarity with digita equipment might find it a little boring, but that such a person would more likely be in charge of a maintenance group rather than maintaining the machine himself. At the other end of the scale, I didn't expect it to satisfy anyone who desired the more military type of approach. Happily the inter views seemed to indicate that the relatively intelligent technician was the proper level to write to. Only one client (Raytheon) suggested that a more detailed manual would be preferred and he admitted that he felt this way because he was more used to military manuals and equipment. On the other hand, people at LRL and AECL said they really didn't need the manual in learning the machine, but they did take the course offered at DEC and do use the manual for reference when working with the machine

Between these two extremes everyone felt that the writing was at approximately the level of the people who were maintaining the equipment. The only remarks concerning any difficulty in the material were in the area of the memory. Both of the people who mentioned this specifically also pointed out that this did not necessarily indicate a failure in the writing but rather that the memory is the most difficult part of the machine to understand. This possibility was reinforced by the people at LRL who claimed to use the manual only for reference but who in fact referred most often to the memory section because this was the hardest part of the machine to remember.

To quote a couple of accolades, Ron Gotch of UA had this to say about the PDP-1 manual: "If something goes wrong we sit down and read for a while and really have very little trouble getting to the source of the problem." He then mentioned that they were modifying various things in the in-out equipment and added, "After going through the manual and looking up how they did their in-out stuff and things like this, we had no trouble.

I can't give very many suggestions on how to improve it because the other equipment is so far out of it in this respect that we think this is the greatest. It looks like an awful lot of work was put into that thing, whereas most of the other manuals look like they were just slapped together with no work." Bill Norris, also of UA: "Well, my impression has always been that it is terrific. It is very unusual compared to most of the manuals that we get with equipment, because most of them are written terribly. This has always been one of my pets because I think it was really.very well written."

Another respondent was a bit more specific and said, "Well, let's put it this way - I couldn't help comparing it with other publications I've seen DEC produce and I was very favorably impressed by it. It seemed to me to be very well organized and quite clear." He singled out the flow charts especially those of the more complicated features such as the automatic multiply and divide - remarking that it was very helpful to be able to follow an accurate and well-organized flow chart along with the verbal description of the equipment.

Considering more specific portions of the manual, everyone was quite pleased with the functional block diagram description of the equipment and was quite opposed to any reduction of the material included in that portion. On the other hand, almost no one read either the instruction list or the operation chapter, instead relying on the little blue book (PDP-1). This was quite a disappointment to me as I edited the blue book instruction list very carefully, adding a missing instruction, correcting wrong ones and making the write-ups of similar instructions consistent with one another - and then no one read it. On the other hand, several people complained about the inadequacy of DEC's programing information, especially in such things as describing the limitations of the sequence break system. For example, Ed Benz of NSA complained that nowhere is the programer told how to return from a sequence break in PDP-1 if the machine has more than one memory. I informed him (and the others) that this and other omissions mentioned were described in detail in the logic part of the maintenance manual, but all my respondents felt that the programer should definitely not have to go there to find them out. It would thus seem that a good, complete programing manual is necessary, and that the maintenance manual
should refer the reader to the programing manual for this information and provide only that additional programing information that is relevant particularly to maintenance (plus perhaps including a short ready reference table of instructions, codes, etc).

Similarly, in the case of the operation information, everyone preferred to use the little blue book, even though it described only the switches and indicators and gave no directions on how to load the reader, punch, etc. This would seem to indicate that the machine operator does not wish to bother with a huge maintenance manual. Perhaps a separate, complete manual specifically for the operator should be printed and the information left out of the maintenance manual. Of course, most of the people with whom I spoke were those in charge. At the very end of my interviews I spoke with a Foxboro technician who had just been assigned to the PDP-4 and had spent the previous four or five days reading the manual for the first time. He read both the instruction list and the operation chapter and was very much against having them removed from the manual. He said he preferred a self-contained manual which presented each part of the information in the order it should be received, and that he hadn't come across anything that he felt he could do without. One other respondent mentioned that people did look things up in the operation section, but did not read it all.

Naturally no one sat down to read the circuit chapter. Whenever a module failure occurred, the technician went first to the schematic and, only if he could not understand the circuit thoroughly from the schematic, referred to the circuit description. Everyone felt that, even though they used the material very little, they all wanted it there so they could use it whenever necessary. Of course the machines are still very new and there have been very few module failures. Many are still on warranty so modules are sent back to DEC for repair, but most people indicated that after the warranties run out they will try to repair most modules themselves. Almost everyone mentioned, however, that even though detailed descriptions of the more difficult circuits are desirable, excessively detailed descriptions of mere inverters, diodes and the like are unnecessary. The people at LRL used the descriptions only of the sophisticated memory circuits, and were familiar enough with the other circuits so that no description would have been necessary.

Lastly the maintenance. Most owners made their initial spare module order from the list provided in the manual. Except in the case of modules introduced after publication (eg the 1538 for PDP-1) no one has been caught without a spare for one that failed. Of course this doesn't mean too much yet since there have been so few failures. There were complaints about other spares, however. In particular, after experience with the equipment, AECL made up its own list of reader spares. In the case of the trouble shooting information, everyone felt that it was aimed primarily at giving a technician a general background in how to troubleshoot digital equipment. Most thought this the best approach, rather than attempting to deal too much in the details and intricacies of any particular part of the machine. Those with considerable background in such work did not bother to read it. All those without such background found it useful. Bill Norris of UA mentioned in particular that he liked the readability of this part of the manual the colloquial way in which it was written, the little bit of humor that crept in. The people at Raytheon and Corning on the other hand indicated that they would prefer more specific information - detailed examples, perhaps tables, indication of voltage levels or waveforms at certain points for probing with a scope, etc. Several suggested that there should be more information for maintaining the temperamental in-out devices and a few mentioned that they knew of certain DEC maintenance memoranda and the like which should be in the maintenance manual but are not there.

In addition to discussing the maintenance manual I also asked about other DEC software. Most people felt the programing information was not adequate - especially that it was not complete. One man insisted that he received DEC programs which were not even well debugged. Apparently, however, this situation could be much worse. Bryan Myles of AECL mentioned that DEC's software was not sensational and remarked on the programing restrictions - receiving programs written for a machine with only one memory and not using the sequence break system, whereas they had two memories and do use sequence break. However he did mention, "We only get the very basic program from the manufacturer but this enables us to get going - to get off the ground. I'm very pleased in this limited context that the program did work, because lots of manufacturers give you programs that are all wrong, cannot possibly be used and never worked."

PDP-1 users to a man praised the MAINDEC programs - insisted that they run them regularly and the MAINDECs have never failed to lead them to the trouble. To quote Glen Strahl of LRL, "The operating instructions lead you step by step - that is, a person doesn't have to remember how to run this thing. He simply has to open the book to do it. I've never before seen write-ups that were this complete." He was referring of course to the operating procedures, error stop tables, etc. I then asked him what he thought of the actual program descriptions and he replied, "The part that describes the theory of the program is useful - especially when you come up with something that really isn't explained in the rest of it. You can't cover all details in the operation section. The other background is necessary then. Also in one or two cases we felt the need to make some change in the program and of course you can't do that unless you know how it works. So the description is really necessary. We don't normally use the write-up but when we do use it we really need the detail." Most of the MAINDECs that are out are for PDP-1 and it is mostly these people that I talked to. However, one PDP-4 user had this to say about CONTEST. "We don't have anything to correlate CONTEST with what goes wrong." He remarked that unless you know the machine pretty thoroughly you don't get too much of an idea what has happened when the program stops.

October 22, 1963

Module Sales Literature

Stan Olsen
Jack Atwood
cc: Dick Best
Harlan Anderson
Howard Painter
Russ Doane

Kenneth H. Olsen

We go to a lot of trouble to put features in our modules but we don't get around to telling people about them. We have a truly sincere desire to make a quality module and yet I don't think that we really get this across to the potential customers at all times. I propose that we have a page in our new catalog which lists these features. This also might be part of a loose brochure and maybe if we do it right, it might even be a one-page ad. Here are a few features which I think we ought to mention and maybe we can add some more:

1. The handle which protects the components and keeps the board from flexing.
2. Machine to male contact.
3. Flexible wires from the male contact to the etched board
4. 20-Fork female contact with high contact pressure
5. Deep fork solder contacts on the socket
6. Conveniently separated solder contacts to make simplified wiring.
7. Eyelet on each transistor lead to simplify replacement.
8. We might mention our inspection tolerances on etched wiring.
9. Glass base board.
10. Filtering on the power leads to the mounting panel.
11. Brute force Power supplies.
12. Wiring on convenient side of mounting panel.
13. Reversible mounting panel.

We are coming out with a new mounting panel which is about ready to be released. This will have a number of features. It will not be painted which will make it much more attractive in most systems. This will also lower the cost. In advertising this mounting panel, we will push the new sockets. We will actually include new sockets in all mounting panels but we will advertise it as a feature of this one. We will not do any wiring of this mounting panel and, therefore, will scantly lower the cost and we feel that this will be reason for people to order this mounting panel.

We will not include the old mounting panels in the catalog but we will sell them as people ask for them. The sides will be a lot narrower so it will be easier to put the modules in place and they will run a lot cooler.

INTEROFFICE MEMORANDUM

DATE October 22, 1963

SUBJECT

Harlan Anderson
Dick Best

FROM

General Doriot asked me to meet with his staff and a few of his directors on November 8th for a long afternoon session in which we will present to them a picture of the products of Digital. They would like to know more of what our product line is and how our techniques compare with the competition and what are our advantages and disadvantages of this in respect with the competition. They would also like to know what our problems are. I'm not sure whether I should do this alone or whether I should ask you people to come in. I would like to hear your ideas and have you think about it because I would like to have your help in preparing for it.

Besides their staff, there will probably be Mr. Elliott from John Hancock and Mr. Lund. They asked if it would be all right to have Mr. Skifter from Airborne Instruments and I suggested that they are, in a sense, competition and therefore, I didn't think it was wise.

DATE October 22, 1963

SUBJECT PDP-5

TO K. Olsen
FROM J. Smith
H. Anderson
S. Olsen
N. Mazzarese
E. Harwood
J. Jones

The 4206 model for PDP-5 was received from Engineering yesterday. First production lots should go into test Monday or Tuesday of next week. They should be tested and ready for installation into PDP-5's the end of the week. Once the 4206 are received, we can start sending PDP-5's to Checkout.

October 22, 1963

SUBJECT

TO
$C C$

BULLETAN NUMBERS FOR PDP-6 LITERATURE
Gordon Bell.
Harlan Anderson V
Nick Mazzarese
Dit Morse
Alan Kotok
Stu Grover
Joe Nangle

Unless there are overwhelming reasons to the contrary, I would like to follow our standard method of bulletin numbering for the PDP-6 literature I feel this would have several important advantages:

1. It would organize the PDP-6 literature in a logical mannex, whether the bulletins are filed independently or incorporated in an eventual DEC Computer Catalog.
2. It would preserve a good working identity across product lines, making it easy to reference all computex system descriptions, for example, as $F-11, F-41, F-51$, and $F-61$; all price lists as $F-12, F-42, F-52$, and $F-62$; etc.
3. It would provide enough alpha-numeric prefixing to avoid any confusion about the proper filing sequence.

The main categories according to our standard system would be:

F-61	System Description
$F-62$	Price List
F-63	Equipment Options
$F-64$	Software
$F-65$	Handbook (Short Form Manual)
F-66	Instruction Cards
F-67	Maintenance Manuals
F-68	Installation Manual
F-69	Log Book
G-600	Applications

Some of these, of course, are not applicable at this time.
The attached sheet illustrates how the system would apply to some of the PDP-6 literature in process and in prospect and the order in which the bulletins would fall.

Initial Designation	Suggested Designation	Subject
F6S*	F-61	System Description
		(Core Memory 8K 161A) (Core Memory 16K 161B) (Fiast Memory 162) (1-O Processor 163)
F6166*	$\mathrm{F}-63$ (166)	Central Processor 166
F610\%	E-63(200)	In-Out Equipment
F6236\%	F-63(236)	Drum Processor and Control 236 (Electrostatic Display 336) Sncremental Display 340) (340 Options 341-345) (Card Punch and Control 460) (Card Reader and Control 461)
F6516\%	F-63(516)	Magnetic Tape Control 516
F6551*	$\underline{F}-63(551 / 555)$	MICRO TAPE Control 551 MICRO TAPE Transport 555 (TTY Printer-Keyboard 626) (Printer and Control 680) (Pexforated Tape Reader and Control 760) (Perforated Tape Punch and Control 761)
E-6PROG*	F-64	Programming Techniques
F6AS*	F-64AS	Assembler
F6DDT*	F-64DDT	DDT
F6EXEC	F-64EXEC	Executive Routines
F6FT\%	F-64FT	FORTRAN
F'6M166	F-671166	Processor 166 Manual
F6M167	F-67(167)	Processor 167 Manual
E6APPS*	G-600	Applications - General
	$\mathrm{C}-610$	Process and Manufacturing Control.
	G-620	Engineering and Scientific Computations
	G-630	Satellite Operations
	C-640	Communications
	G-650	Data Acquisition and Reduction
	G-660	Simulation
	G-670	Medical and Psychological
	G-680	Hybrid Systems
	C-690	Data Processing ara Management Support

*Items left on the board at Friday's meeting

DATE October 21, 1963
SUBJECT MODULE PRODUCTION RELEASE AND CH ANGE NOTICE PRIORITY
TO

All Engineers
FROM
D A White
Draffing
Model Shop
Qualizy Control
Production

Much chaos has arisen with ragard to the priority by which modules are processed. Our system has been somewhat hit or miss and very much based on the squeaking wheel method.

Effective imn ediafely, I will assign priority to all modules being released or changed. If you have any complaints with your priority, please contact me.

DAW:ASJ
Encl

OVERDUE MODULES		PRPORITY ONE
1021	PR3638	
1570	EC3631	
1571	EC3619	
1991	PR3445	
1992	PR3468	
1993	PR3464	
1994	PR3469	
4206	EC3632	
4221	EC3618	
4527	PR3560	
4552	PR3643	
4801	PR4641	
4802	PR4640	
ORDERED BY EXTERNAL CUSTOMERS OR FOR SYSTEMS FOR EXTERNAL CUSTOMERS		PRIORITY TWO
722A	PR3587	
728A	PR3591	
1304	EC3646	
1567	EC3613	
1806	PR3621	
1807		
1989	EC3650	
4220	EC3580	
4222	EC3610	
4227	PR3644	
4551	EC3607	
4704		
4705	PR3381	

IN HOUSE SYSTEMS, PROTOTYPES, MODULES PRIORITY THREE
FOR WHICH NO DELIVERY COMMITMENT HAS
BEEN MADE

DATE October 21， 1963

TO ${ }^{\text {E．}} 018 \mathrm{~m}$
㒾．Anderson
3．Sm4th
S．Iambort
FROM
17．Maszaxeme
S．01sen
G．O＇Dea
W．Hindle
D．Bast
D．R1128
成．Sandiss
E．Baclinan
8．Savall
B．Stephaman
郎．Ba天wood
J．Shialds
D．Satith
J．HeCallp
留．Stockebrand

 completion 1a inducated in each came．

Thom 9	Quanteity	Customex	ENY	Ory Due Date	$\begin{aligned} & \text { Reason } \\ & \text { Roz } \\ & \text { Delay } \end{aligned}$	hecoptance Expected	Brginees Cherese
$\begin{gathered} \text { 3rythplexez } \\ 133 \end{gathered}$	1	JE3	2632	8/25/63	Instalied Wal iffing toz acceptance	Mid. Hov.	R. Beckmen
Tape Control Tyoe 57A	11	JPI	2633	8/15/63	Inswalled Weiting for accoptance	Mid. Nowo	R. Beckmen
$\begin{aligned} & \text { A to D } \\ & \text { Multiplexex } \\ & \text { Switches } \end{aligned}$	$\frac{1}{1}$	Raytheors Fieyland	$\begin{aligned} & 2662 \\ & 2663 \\ & 2664 \end{aligned}$	$\begin{aligned} & 9 / 5 / 53 \\ & 9 / 5 / 63 \\ & 9 / 5 / 63 \end{aligned}$	Installed and gelll W2 twing Por sccoptrnce	Lattar past os Oct.	B. Stephensors B. Stepkenson B. Stephersmon
PDP-1C-41	2	Harvexd Unitarsity	2655	9/25/63	```Cuatomem" % buslemag not``` ```Oc女. 21, 1965```	$11 \text { 11/1/63 : }$	E. Bramuood
Date Comtrol 231	11	Haxviax Tasvarsity	2659	9/15/63	$\begin{aligned} & \text { Customer' } \\ & \text { building not } \\ & \text { availebia until } \\ & \text { Oct. 21. } 1983 \end{aligned}$	$11 / 2 / 63$	E. Hazwood
$\begin{aligned} & \text { Mero mape } \\ & 555 \end{aligned}$	1	Ft. Keade.	2609	8/15/63	Systo Checkout Problem:	21/21/63	T. Stockebrand
Micro Tape Control 550	1	W\% Meade	2604	8/15/63	 Checkout R20010ms	11/21/63	F. Stockebrand
16\% Memory	2	Princeton	2554	9/15/63	Problems	11/29/63	R. Backman

Item quentity		Customer		$\begin{aligned} & \text { Oxis. } \\ & \text { Due } \\ & \text { Data } \end{aligned}$	$\begin{aligned} & \text { Reasor } \\ & \text { por } \\ & \text { Deley } \end{aligned}$	Accentenca 2xpected		$\begin{aligned} & \text { The inear } \\ & \text { ghater } \end{aligned}$
$\begin{gathered} \text { Tape Control } \\ 510 \end{gathered}$	1.	Princeton	2558	9／25／63	Sog fix	11／5／63		R．Becknass
Data Control 131	2	Prinoetor	2559	9／15／63	Problens	11／5163		E．Beckren
Kisk Spoed Chennel Type 29	1	Princoton	2560	9／15／63	Wasting Por Date Contry 231	$21 / 5 / 63$		R．Beckunas
$\begin{aligned} & \text { Tape Control } \\ & 510 \end{aligned}$	2	$\begin{aligned} & \text { MIT, In } \mathrm{Mco} \\ & \text { Lab。 } \end{aligned}$	2580	8／1／63	Dosign Prob	11／6，63		R．Deokran
Data Control 131	1		2579	8／1／63	Dealign Prob．	112／6／63		R．Beckun
Data Speed Chennel 19	1	NITM，Tixnco Lab。	2581	$8 / 1 / 63$	Waiting loz Data Comtrol 131	$12 / 8 / 63$		R．Bockman
Micro Tape Control 550	2		2594	7／20／63	Installod． accepted． heata．	not $10 / 32 / 63$ Over		T．Stockebrand
Macro Tape Transport 555	6	Kie	2595	7／20／63	Instelled． accepted． 4 not wowi上n	$\begin{aligned} & \text { not } 10 / 31 / 63 \\ & \text { nive } \end{aligned}$	T	T．Stootscrend
MuI. \& Div.	1	AECI．	2610	8／15／63	Installac $x 0$ accontad． wire Po O．no completo	ot on Chingem		3．Shialde

Stem $\frac{\text { Quextity }}{}$	Customas	E924	$\begin{aligned} & \text { Orig. } \\ & \text { Dus } \\ & \text { Date } \end{aligned}$	$\begin{aligned} & \text { Resson } \\ & \text { Por } \\ & \text { Dolay } \end{aligned}$	Acceptance Breected	Frigineors Charge
$\begin{aligned} & \text { Mâcro } \\ & \text { Tape } 555 \end{aligned}$	AECI	2612	8/25/63	Treining Checkout Porsonnel : Desten Prola.	10/23/63	T. Stocleobrasad
$\begin{aligned} & \text { Maceo } \\ & \text { Tapo } 550 \end{aligned}$	AECS	2612	8/15/63	Txainiag Checkout Personnel Deaien Pxob.	10/23/63	T. Stockebrant
16 Channel I Saq. Brealc	AECL	2613	8/15/63	Fnstalled not accoytad Fatime P:O. 20\% 00mole	Cont 2 nygent on Mincro Rape	3. Shields
$\operatorname{InM}_{\text {Interpecs }} 1$	JPI	2628	8/15/63	Shipped not accepted - not complete	M他, Tov.	R. Beckmen
$\underbrace{0-32}_{1} \operatorname{lntex-a}$	System Devslopment Coxp.	2624	7/22/63	Waitting Pos Interiace seceptance	Find OE Wovo	D. Smitia
Line Units 56	Systom Development Corp.	2625	7/22/63	Dapendent upon Hoduls E Checrout	Binc os Movo	D. Smith
4 Word Core Momories 2	I29	2721	10/9/63	General Coramic Core Problems	10/22/63	J. Sxatb
Convart Type I 57 Tape Cors ${ }^{\circ} 1$ to Type 57A Cont? WHth 52200 tion IBM Type 729 tren	J2I	2739	10/4/63	Deaim ${ }^{8}$ Checkout	Hid. ${ }^{\text {\% }}$ \%	So Lambert

SUBJECT Australian Computer
TO

Gordon Bell
Harlan Anderson
Nick Mazzarese
Stan Olsen

FROM A. Titcomb

The attached list of exceptions has been prepared after examining the Aeronautical Research Laboratories Specification.

Paragraph 8.1 requests ALGOL 60, however as FORTRAN is being written at M. I. T. for PDP $-1 *$ and PDP-6 will offer FORTRAN, it is hoped that FORTRAN will be acceptable and might be substituted.

The accuracy requirements exceed single precision capability (fixed point) in PDP-1.
*It seems unlikely that we can get their specification to call out DECAL.

Aeronautical Research Laboratories

List of Exceptions

Paragraph No.	Exceptions
2.0	Wiring standards will be our own (USA)
4.1	Accuracy
	PDP-1 5 + decimal figure accuracy PDP-6 OK - no exception
4.7	Error treatment (exception)
	No internal parity PDP-1 or PDP-6
2.1	Character Sets
	PDP-1 FIO-DEC
	PDP-6 Teletype (7 level)
8.1	(a) FORTRAN or ALGOL 60

SUBJECN: JOB AIJOCATION MECHANICAL DESIGN
All Engineers
K。Olsen
S. Olmen
H. Anderson
N. Mazzarese
M. Sandler
J. Smith
R. Maxcy
R. Maroney
K. Peirce
H. Crouse
B. Brackett
W. Hindle

To better acquaint all engineers and management with job responsibility within the mechanical design department, a memo will be issued periodically as required.

ENGINEER

JOB NUMBER OR EN NUMBER

1023

1000

1053

1000

1178

$$
1178
$$

1208

1000

1000

1097
2740

DESCRIPTIO

\% COMPLETE

FitzGerald

DATE: October 18. 1963
FROM: Loren Prentice

Scott Miller

Phil Backholm
1196

1185
1191
2723

555 Tape Unit E.C.O. ${ }^{\circ}$ s 75%
Large Display 10\%

Building layout 75\%

Tape transport type 570 75\%
Quotation - plastic parts 50\%

Engineering standards 0.5\%
555-A tape unit 20\%
Solid State Dev.
Link computer
0\%

Tiltable mounting panel 80\%
Power supply redesign 50\%
Mounting panel redesign 50\%
Package శesign - modules 50\%
PDP -5 85\%
PDP-6 95\%
Trape transport $570 \quad 98 \%$
PM light pen 80\%
Typewriter buffer - 2308 98\%
Product Identification Open

M3000 tape transport 85\% Prototype type 570

Automatic silk screen 0.5%

PDP-5 Prototype 80%

Teletype machine 50\%

ENGINEER

SUBJECT Commission to J. J. Masur on DEC Order 5672, Australian Consultate General
to Harlan Anderson
FROM Dick Mills
We received an order from the Australian Consultate General on October 8, 1963, the ir Order CG63929 in the total amount of $\$ 7,149.58$. On the basis of the discount schedule which we quoted to J. J. Masur, their full commission, if we are to give it on this order, would be $\$ 693.44$.

The order ${ }_{f}$ at present, is be ing held up for 50 cycle transformers to be installed in the 728 Power Supplies. We estimate that the order can be completed and shipped on October 31, 1963, as promised to them. The shipment is to go via air to San Francisco where the Australian government has a consolidating service that will process the shipment from there on. All modules are packed and ready to be shipped.

We wrote the J. J. Masur agreement for a period of October 1, 1963 through September 30, 1964, which puts the order receipt within this time period.

RFM/bl

Programming Note No. 1

There is now available, on the PDP-4 Prototype console LISTER II, a program which will list paper tapes prepared on the Type 33 teletype, on the line printer. For this reason the relations between the ASC II character set and FIO-DEC have been established (de factor) as follows:

$\mathrm{HRM} / \mathrm{nbh}$

DATE October 16, 1963

```
SUBJECT EN 1000 Series
```

TO RAils FROM J Hastings

Please provide Harlan Anderson with the dollar amounts in each of the categories on the attached October 1, 1963 list of EN numbers in the 1000 series.

Andy would like to see the dollar amounts per number for the past six months in each category, and the totals.

I would appreciate a copy of this information also.

JPH:ASJ
Encl
CC
H Anderson

General

EN 1000
EN 1023
EN 1031

EN 1048
EN 1049
EN 1053
EN 1067
EN 1072
EN 1087
EN 1099
EN 1100
EN 1115
EN 1132
EN 1158
EN 1175
EN 1176
EN 1192
EN 1200
EN 1210
EN 1212
EN 1213
EN 1225
EN 1226
EN 1227
EN 1235
EN 1238

General Engineering
R L Best
L B Prentice
Computer Development (See special numbers for PDP-1, PDP-4, PDP-6
New Test Equipment
Engineering Stockroom
Computer Cabinet
Information Int'l (E Fredkin)
Standards
Relay and Switch Investigation
Field Service - General
Power Controls
Repairs to good damaged in shipment
ADX Systems Administration
Production Engineering
Computer Reliability Investigation
Computer Check-Out Administration
Wire Taping Machine
Exhibits
Drafting Automation
Technician Training Classes
Library
Indicator Development
Drafting Dept Administration
Reproduction Dept - Drafting
Obsolete Goods Stockroom
Computer Engineering Administration

G Bell
R Hughes
D A White
L B Prentice
SCOIsen
R L Best
R L Best
R J Beckman
D A White
R L Best
N J Mazzarese
K Wakeen
A H Hall
E Harwood
K Wakeen
H Painter
L Hantman
D A White
R L Best
R L Best
R Melanson
R Melanson
R L Best
A H Hall

CURRENT ENGINEERING NUMBERS

Analog-to-Digital
 Digital-to-Analog

EN 1014
EN 1044
EN 1138
EN 1163
EN 1174
EN 1202
EN 1203
EN 1204
EN 1215
EN 1220
EN 1221
EN 1222
EN 1223
EN 1224
EN 1244

Digital-to-Analog Converter
Analog-to-Digital Converter
Prototype A-D for PDP-4
$6 \mu \mathrm{sec}$ A-D Converter Model 142 Development
Adage A-D Evaluation
General Purpose A-D Model 138 Development
Basic Multiplexer Control Model 139 Development
High-Speed Multiplexer Control Model 141 Development
Type 142 A-D Converter for Sales
138 A-D Prototype
139 Multiplexer Control Prototype
141 High-Speed Multiplexer Control Prototype
142 High-Speed A-D Prototype
$A-D$ and $D-A$ and Multiplexer System Sales
A-D Converter Aperture and Accuracy Checker

October 1, 1963

B W Stephenson
B W Stephenson
B W. Stephenson
B W Stphenson
B W Stephenson

Page 3.

CURRENT ENGINEERING NUMBERS
October 1, 1963
Card Readers \& Punches
EN $1232 \quad 461$ Card Reader and Control, Development and Prototype

RE Savell

EN 1068
41 Card Render and Carol
RESacell

EN $1245 \quad 460$ Card Punch (PDP-6)
Developmato and Potato

R
RESarell

CURRENT ENGINEERING NUMBERS

Drums

EN 1242
EN T243

Drum Circuit Development New Drum Development

Displays

EN 1027
EN 1036
EN 1064
EN 1129
EN 1135
EN 1152
EN 1156
EN 1165
EN 1169
EN 1170
EN 1171
EN 1179
EN 1180
EN 1181
EN 1182
EN 1184
EN 1186
EN 1187
EN 1209
EN 1211
EN 1236

Display 30 Development Light Pen Development Display 31 Development Character Generator Development Display 30-D, Prototype PDP-4 Digital Symbol Generator Curve Drawing Display Projector Display Display, CDC -160A Type 30 Interface IBM 7090 Type 30 Interface IBM 1410 Type 30 Interface Display 30 Cost Reduction Display 30 Camera Equipment Display 31 Camera Equipment Display Development, Electrostatic Variable Field Light Pen Development Display 30G Prototype with Symbol Generator
Display Sales Display Development, General PM Light Pen 340 Display (PDP-6) Development and Prototype Display 34 devalgnint

RE Cavell
RE Cavell
RE Savell
RE Savell
RE Cavell
RE Cavell
TC Stockebrand
RE Savell
RE Savell
RE Cavell
RE Savell
RE Savell
RE Cavell
RE Cavell
RE Savell
RE Savell
RE Cavell
RE Cavell
RE Save ll
RE Savell
RE Cavell
RES

Page 6.

CURRENT ENGINEERING NUMBERS
Mag Tape - Micro Tape
EN 1026
EN 1136
EN 1151
EN 1161
EN 1162
EN 1189
EN 1196
EN 1199
EN 1237

Magnetic Tape Equipment
Relay Micro-Tape Unit Development
Coaxial Tape Transport Development
Type 57A Mag Tape Control Development
Type 57A Mag Tape Control Prototype
Tape Control 510 Development
M-3000 Tape Transport Prototype Type 570
Tape 510 Tape Transport
Solid State Micro-Tape Development and Prototype

October 1, 1963

R Boisvert
T C Stockebrand
T C Stockebrand
S Lambert
S Lamber \dagger
R Boisvert
S Lambert
R Boisvert

TC Stockebrand

CURRENT ENGINEERING NUMBERS
October 1, 1963

Memories

EN 1016
EN 1052
EN 1143
EN 1150
EN 1173
EN 1193
EN 1216

Core Memory Development Memory Stack Assembly Magnetostrictive Delay Line Memory Development Glass Delay Line Memory Development Memory Extension Model 15 Prototype Thin-Film Memory Development Memory Extension Control \& Development

A N Blumenthal A N Blumenthal

D A White
D A White
A H Hall
A N Blumenthal
A H Hall

Page 8.

CURRENT ENGINEERING NUMBERS
October 1, 1963
MISCELLANEOUS IN/OUT

EN 1050
EN 1155
EN 1190

Data Phone
Houston X-Y Plotter
Data Control 131 Development

R E Savell
R E Savell
R Boisvert -

Modules
EN $1010 \quad$ Modules, 5 MC System !
EN 1011 Modules, 500 KC System
EN 1012 Modules, Non-Compatible Low-Speed
EN $1013 \quad$ Current Drivers, Vacuum Tube
EN 1017
EN 1019
EN 1022
EN 1029
Signal Converters
Module Sales
Power Supplies
EN 1030
EN 1039
EN 1042
EN. 1043
EN 1051
EN 1088
EN 1090
EN 1091
EN 1092
EN 1093
EN 1094
EN 1097
EN 1098
EN 1127
EN 1148
EN 1172
EN 1185
EN 1206

Page 10.
CURRENT ENGINEERING NUMBERS
Paper Tape
EN 1025
EN 1028
EN 1153
EN 1217
EN 1230
EN 1231
EN 1233

Paper Tape Punch
DEC Paper Reader Designed and
Prototype
PDP-4 Paper Tape Reader
77 Punch and Control Development
760 Paper Tape Reader and Control
Development and Prototype
761 Paper Tape Punch and Control
Development and Prototype
3-Phase Paper Tape Reader,
Development and Prototype

October 1, 1963

R E Savell
R E Savell
R E Savell
E de Castro
R E Savell
R E Savell
TC Stockebrand

CURRENT ENGINEERING NUMBERS
PDP-4
EN 1062 PDP-4 Development
-EN 1068 PDP-4 Development, Type 41
EN 1095
EN 1096
EN 1157
EN 1159
EN 1160
EN 1164
EN 1195
Card Reader-and Control
PDP-4 Sales
PDP-4 Programming
PDP-4 Automatic Module Tester
PDP-4 Multiply and Divide Prototype
PDP-4 Installation Kit
PDP-4 Data Channel Prototype
PDP-4-10 Operation - Engr

October 1, 1963

AH Hall

Computer

RE Savell
A H Hall
H R Morse
D A White/K Wakeen
A H Hall
A H Hall
A H Hall
A H Hall

CURRENT ENGINEERING NUMBERS
PDP-5 and PDP-6
EN 1177
EN 1178
EN 1191
EN 1205
EN 1219
EN 1240
EN 1241

PDP-5 Development
PDP-6 Development
PDP-5 Prototype
PDP-6 Prototype
PDP-5 Programming
PDP-5-3 DEC Sales
PDP-5-4 Physics Sales

October 1, 1963

E de Castro
G Bell
E de Castro
G Bell
A H HAll
SCOIsen
J Jones

CURRENT ENGINEERING NUMBERS

Printers and Typewriters

EN 1015	PDP-1 Typewriter	R E Savell
EN 1058	Anelex Development	R E Savell
EN 1086	Holly Printer	R E Savell
EN 1134	PDP-4 Flexowriter Prototype	R E Savell
EN 1154	PDP-4 Typewriter	R E Savell
EN 1194	20 Column Line Printer	R E Savell
EN 1228	Printer Keyboard and Control Type 626 Development and Prototype	R E Savell
EN 1229	646 Line Printer and Control (300 lpm)	
	Development and Prototype	R E Savell
EN 1239	680 Line Printer and Control (1000 1pm)	R E Savell

Page 14.

CURRENT ENGINEERING NUMBERS
Programming
EN 1141
Fortran
EN 1167
Decus Program Library Operation
EN 1168

October 1, 1963

HR Morse
HR Morse
HR Morse

Page 15.

CURRENT ENGINEERING NUMBERS
October 1, 1963
Quality Control

EN 1073
EN 1144
EN 1145
EN 1146
EN 1147
EN 1234

Quality Control
Quality Control: Test Equipment-

Quality Control: Model Test
Quality Control: Module Repair Field Failure
Quality Control: Module Repair Salvage
Finished Goods Sampling

R Hughes

R Hughes
R Hughes
R Hughes
R Hughes
R Hughes

CURRENT ENGINEERING NUMBERS
October 1, 1963

Special Systems

EN 1018
EN 1021
EN 1037
EN 1038
EN 1057
EN 1074
EN 1075
EN 1076
EN 1077
EN 1116
EN 1123

Memory Tester Development Core Handler
Core Tester and Memory Tester Sales Special System Sales
Core Tester Development
Memory Tester Field Service
Core Tester Field Service
Memory Exerciser Field Service Misc Spec System Field Service
Memory Tester Field Modification Core Tester 2114 Development

J R Fadiman
J R Fadiman
J R Fadiman
J R Fadiman.
J R Fadiman
JR Fadiman
J R Fadiman
J R Fadiman
J R Fadiman
J R Fadiman
J R Fadiman

INTEROFFICE MEMORANDUM

DATE October 15, 1963
SUBJECT PDP-5 Cónstruction
TO K. Olsen
FROM J. Smith
(H. Anderson
S. Olsen
M. Sandler
N. Mazzarese

There continues to be an Engineering Hold on 1571 and 4206. Our Checkout people will not accept PDP-5's into Checkout without the 4206.

Machines being held up are PDP-5-5, PDP-5-6, PDP-5-7, and PDP-5-8. By the first of next week, PDP-5-9 and PDP-5-10 will also be held up.

DATE October 14, 1963
SUBJECT PRODUCT TDENTIFTCATION
TO Computer Guidance Comittee FROM Loxen Prentice
cc: Scott Miller
Paul Rawson, Van Dyck Associates
Roland Boisvert
Ted Johnson
Harlan Anclerson
Nick Mazzarese
Bob Savell

I am proposing that we use a product identification similar to the type we have chosen for the 570 tape unit to be used on the following new devices: pDp-6 computer. 570 tape unit, 340 display, and the new, as yet unnamed. large drum system that is being proposed for use with the PDP-6.

Will all interested people look at the mock-up of the name plate and product identification for the 570 tape unit and make their comments known at an early date as we will soon be committed on the PDP-6, 570, and the 340 display.

DATE October I4, 1963
SUBJECT
TO Harlan Anderson
Stan Olsen
Win Hindle
George O'Dea
Dick Best

FROM Kenneth H. Olsen
\qquad Dick Best

DuPont Corporation called General Doriot and said they had something very interesting and revolutionary which they can't handle themselves and would like to have a computer company take care of. They are out evaluating companies and they would like to visit us. I agreed to have the company visit us on next Thursday. They will leave Wilmington about 7 A. M. and get in about 9:15 A. M. at the Bedford Airport. I offered to have a car there to pick them up. They will try to leave by $4: 30$ in the afternoon which would mean a rather full day for us and we may want to divide off the responsibilities for the day. I have a visitor in the early afternoon so I would have to excuse myself at that time.

The people coming will be, Mr. J. V. Morris, Mr. V. W. Smith, and Mr. Daniel Friel.

The following items mentioned in the last progress report require further comment:

Sales Tax - Federal

The information given in clause 1.3 on the subject of a wholesaler's licence is slightly inaccurate. A wholesaler's licence is granted only after I have actually done 3 months business and have actually paid sales tax on goods which were eventually sold to tax exempt customers. Since my customers have been clearing their own goods I have suffered no such penalty and therefore have no evidence to present to the Department of Revenue. This is of little consequence to me as I think the present method is working quite well.

The data on the manufacturer's licence as presented in the last report is correct, with the added stipulation that it is in fact mandatory that we obtain such a licence if we increase the value of our goods through extra work on them.

Pricing

I now have a better feel for the elasticity of demand for our equipment as mentioned in 1.5 of last report. I would still prefer to wait until January '64 before modifying price structure.

We have been confronted with the extra problem of the Department of National Defence limiting our markup to 15%, on all sales regardless of volume. Our new discount structure is perhaps more compatible with their buying policies, and perhaps something can be negotiated whereby they are not concerned about my mark-up providing they get the sizeable discounts which their volume warrants.

Sales Activity

The current backlog of orders and future sales prospects will bear out our $\$ 500,000$ prediction for fiscal '63-'64. The overall interest in our product line is very encouraging, but the time delay involved in gaining firm customers is very discouraging. The value of travel, while at first questionable, is now very obvious to me. Extensive travel will be done until such time as I feel it is no longer necessary. A trip to Western Canada is the next big road project - scheduled for about November 1st.

General Comments

Less and less of my time is required for office work as Mrs. Murphy is now capable of handling our accounting problems.

The Company will begin to show a profit towards the turn of the year with the installation of the machines and extra equipment at Chalk River. At the present time we are being carried by accounts payable to parent company, which at this moment stands at approximately $\$ 20,000$. The bank balance as of now is $\$ 11,000$ approximately - a major expense (possibly $\$ 2,000$) is forthcoming in the way of bills for the Toronto show.

As a general statement, our position in the Canadian market is now a strong one - we are steadily licking the problem of not being known. The factors involved are:

1. Trave1
2. Proper listing in trade journals
3. Toronto CEE Show
4. Computer seminar in Ottawa office - visited by over thirty people in key positions.
5. Additions to mailing list - from 400 names to nearly 700.

A very flattering comment by the SDS people at the Toronto show to Nick Mazzarese:
"Everything was nice and quiet up here until DEC showed up on the scene ${ }^{\text {" }}$.

2. Current Backlog of Orders

This refers to orders received by DECAN since May 1, 1963. \$174,289.72

Amount of invoicing done on the above orders $\$ 52,339.82$
Orders which were actually received by DEC (Maynard) but which will be invoiced through DECAN (this includes the PDP-4 computer installation scheduled for Nov./63 and modifications to the PDP-1 installation, part of which has already been done).

This figure is approximate (correct to a few percent) since conversion to Canadian dollars has not been done in all cases $\$ 280,000$

In summary therefore we have a backlog of orders totalling $\$ 450,000$ of which we have invoiced approximately $\$ 50,000-$ the remainder to be invoiced by January 1, 1964 appuric.
3. Sales Prospects in Excess of this $\$ 450,000$

This will include only those prospects which I consider better than 50%. For example, a recent quote to Atomic Energy of Canada for another PDP-4 system in the amount of $\$ 213,000 \mathrm{I}$ do not consider better than 50% sold, and this is not included in this forecast. Also, this forecast covers the period November $1 / 63$ to June $30 / 64$.

Dept. of National Defence $\$ 35,000$
$\begin{array}{c}\text { (PDP-5 + modules) }\end{array}$
Northern Electric, Montreal
$\begin{array}{c}\text { (Memory Test Equipment) }\end{array}$
Atomic Energy of Canada
$\begin{array}{c}\text { (Modules + miscellaneous) }\end{array}$
Various small buyers
$\$ 0,000$

Total sales for fiscal '63-'64 will therefore slightly exceed $\$ 500,000$, and in fact could do much better. I feel that we are still very much in a shakedown process and sales could very easily climb quickly towards the end of the year. The government fiscal year ends on March 31st, and we will therefore experience a serious slump during the winter months. Assuming that the Chalk River people will not buy computers at the same rate next year, we have something like a $\$ 300,000$ vacuum to fill. This is going to be our biggest test up herewhether or not the computer prospects who are still a year or more away will in fact come to us when they do make the move.

My general thoughts on company expansion do not significantly differ from those of the previous report. To further investigate the benefits of a Canadian manufacturing facility, I have taken steps to assess the Commonwealth market. Our

Department of Trade \& Commerce has a Commonwealth Trade Branch - they will do market research and provide information on Commonwealth preferential tariff. I sent a detailed enquiry to them on September 27 and should have their information within a month or so.

Most Commonwealth countries do offer more favourable tariffs to Canadian goods than to U.S. goods, the only stipulation being that over 50% of the value of the goods is Canadian content. This sounds good at first glance, but the Canadian advantage may or may not be a real one, depending on the end use to which the goods are put. For example, I would assume that places like Harwell in England or a University in Australia would import from both Canada and the U.S. under duty free conditions - as does Atomic Energy in Canada. Consequently our only real advantage over the U.S. would come in purely process control work and this sort of thing.

D. J. Doyle.
P.S. Since writing this, I have had a call from the Trade \& Commerce Department regarding the British market only. I gather that all institutions pay a 20% tariff on U.S. computers regardless of end use - there is no tariff on Canadian computers. I would like to see this for myself before becoming too optimistic. John Len should consult with our Trade \& Commerce people before his trip to Britain this fall and I think he could follow this through.

Dick, perhaps John should get a copy of all this - I will send you extra copies by regular mail.

INTEROFFICE MEMORANDUM

DATE October 10, 1963
SUBJECT CDC 3200
TO MR. HARLAN ANDERSON FROM KENNETH LARSEN MR. GORDON BELL

The 3200 is CDC's computer entry for the Business Data Processing Market. It was previously called "Zeta"during the design and prototype phase and was designated 3200 for marketing. It is a 24 -bit machine built with 3600 circuitry with an organization similarity to the 924. Its overall computing speed is about the speed of the 1604. It will be exhibited at the Fall Joint Computer Conference.

CDC is preparing also another machine called the Omega. It will be designated 3400 for marketing and will be between the 3200 and the 3600 in size. The 3400 will be marketed also in the Business Data Processing field.

I learned that they are planning to market similar machines using the 6600 circuitry.

It looks as if CDC is really trying to hit IBM head-on with these new machines, and I am wondering how this will affect the PDP-6.

久. 1.
KL: es
Copy: Mr. S. Olsen

INTEROFFICE MEMORANDUM

33rd Meeting of the
Test Equipment Committee DTE
SUBJECT
TO
Richard L. Best
FROM
Russell Doane
iembers of the Comnittee:
Robert Hughes, Chairman
Russell Doane, Secretary
Georee Gerelds
Dave Dubay
Dick Tringale
Jim Cudmore
Steve Lambert
Larry white
Ed Harwood
Jack Shields

1. The following equipment has been ordered:
A. 1 - Tek type 581 for $?$. C.
B. 1-Tek type 581 for production test
C. 1 - Type 581 for Field Service
D. 1 - Type 585 for Field Service
E. 4 - Type 82 dual trace preamps for above
F. 2 - Type CA dual trace preamplifiers for 551
G. 1 - Type $C A$ dual trace preamp to augment our spare preamp supply
i1. $\quad 1$ - Tek type 661 sampling oscilloscope for VHF, current drivers, and other high-speed-circuit engineering,
I. 1 - Type $4 S 1$ dual trace 1 gipacycle preamplifier for 661
J. $\quad 1$ - Type 5TiA timing plug-in unit for 661
K. 1-Bruel \& Kjaer meter for incoming inspection of passive two-terminal components
L. 1 - Dynatran type 1803 B transistor h -parameter tester including ICO test down to 10 nanoamperes
M. 1 - Ilewlett Packard DC VTVM type 412 A 18 accuracy for test equipment service and all other applications Where high gensitivity, high accuracy DC measurenents must be made
2. 1 - John Fluke type 821A DC potentionetric voltmeter $\pm 0.01 \%$ for andlos modules and systems and assorted other uses where potentionetric DC measurements must De made
3. 1 - liewlett Packard audio oscillator type 200 CD for 10 cycle to 600 KC sinusoidal meneration to bring our total to 3 for may tape, production test, and general purpose audio and low RF frequency sinusoidal generation
4. Jin Cudmore reported thest the now standards laboratory has had boncho; and electrical wiring ordered for it and will be ready by octcber 7.
5. Dave Dubay was asked to determine what modifications are available for oun 531 and 585 Tektronix oscilloscopes and to order all applicable mod. kits and install them. These improvements include DC filaments for the 581's and improved trifgering for all three oscilloscopes.
6. We received our 3 Epply Standard cells, ($\pm 0.01 \%$ certification) as a further step towards traceability.
7. We will buy 16 leather cases for the Triplett meters received for Jack Shields.
b. Jim Cudmore will order a storage cabinet for the storage of equipment in the new standards laboratory area.
8. Je vill borrow a Hewlett packard type 1750 d dual trace plug-in unit from the local rep, until the 4 -trace plug-in we have ordered drrives, so all our IIP 175A 'scopes will be dual trace.
9. A jewlett Packard nc milliameter with clip-on probe has been avajlable in Test Equipment Service for over a year, but is seldom usec. It was orifinally ordered for computer In-out equipment engineering: Dut can measure 1 ma to 10 amps for anybody. It measures $D C$ current easiar and quicker than a VIVM measures voltage.
10. Ne afreed to explore further the possibility of installing elapsed timu meters on our oscilloscopes and possibly on other periodically calibrated equiment as well, so as to detemine the actual use betheer calibrations, both to eliminate unneeded calibrations and to insure that necessary calibrations are performed before equipment is usec cxcessively. listimated purchase and installation costs for each quimont are estimated at about $\$ 6.50$ and $\$ 8$. respectively for a 1000 hr electrochemical elapsed-time meter.

DATE October 9, 1963
SUBJECT PROPOSED ITINERARY FOR PDP-5 PULSE HEIGHT ANALYSER
TO K. Olsen
FROM
Bill Farnham
H. Anderson
G. O'Dea
S. Olsen
N. Mazzarese
J. Fadiman
H. Painter
J. Jones

Jon Fadiman has indicated the following itinerary for the PDP-5 Pulse Height Analyser:
November 12 - 21
November $23-29$
December $1-16$
December 18

MERSUCORA, Paris, France CERN, Geneva, Switzerland AEC, Harwell, Didcot, England DEC, GmbH, Munich, Germany

John Jones has specified that the following equipment is involved:
(1) PDP-5-4 4K Memory
(1) Display Type 34 with Tektronix Scope
(1) Nuclear Data l60F (Analog Digital Converter)
(1) Band - Power Supply, Model 318A
(2) Baird 812B Scintillation Probes
(1) Baird Soduim 22 Source
(1) Spare Parts Kit

27,000.
3,900.
8,100.
410. 990. 50. 1,500. (Est)

Due to export arrangements and the fact that we are dealing with the export-import regulations of five countries, if anyone can see any change to the above arrangements, it would be appreciated that they be brought to my attention.

are with fol Len
Clio ciblestinary te Renter.
We alruld have advance publicity explaining what will be demonstrated
and local arrangements made.
N.G.G.

SUBJECT Industrial Research Magazine
TO Jack Atwood

October 7, 1963

FROM
Harlan E. Anderson

I read in Industrial Research Magazine recently that they plan to publish a directory of organizations that provide research type equipment. The deadline for being included in their categorical listings is November 1st. Would you investigate this further and make sure we get listed?

Harlan Anderson
HEA:ncs

We have completed and returned the necessary forms for the appropriate products.

INTEROFFICE MEMORANDUM

DATE October 9. 1963

SUBJECT Software

то
Sales Personnel
FROMJack Ridgeway

Potential customers that are evaluating DBC hardware systems continually have to be convinced that DBC computers will satisfy theis system requirements, and that our instruction repertoires and programing aids axe extensive enough to perzit expedient prograia implementation.

In many instances to convince customers that ous computers will satisfy their system requirements we will have to do a preliminary program design of their applications and with trial programsning estimate instruction cycle time, storage recuirenent and necessary equipment configuration. In some situations actual codeing and checkout of portions of the program might be necessary to moxe quantitatively demonstrate fulfillment of requirements.

To irapress customers with the relative ease of program implementation on oux computers, we should know what software is available and how to use it as a programming aid, and we should know some programing techniques such as interrupt servicing, teletype conversion, usage of multiply and divide (RAE or subroutines). etc.
One way for individuals involved in corputer sales to become more software oriented is to design, write, and implement a program. In the process you will gain programing experience and be introduced to the software systems and many programaing techniques.

The programs written could be demonstration programs that would display the competence of our processors in various data processing areas (i.e. process control, physics applications, medical applications, etc.). they could demonstrate the use of the interrupt system. or they could be programs that perform tasks that are cypical of our customers applications where some initial research and understanding of an applications would have to be undertaken before the program is written.

I will be available to assist in the program planning (possibly help decide on a program), help with the codeing, arrange for sowe tape punching service and machine time, and help with the debugging. So writing the program can be done on a part-time basis without neglecting sales efforts. The subject of software orientation will be discussed more extensively at our next sales meeting, however. I am available now for anyone who wants to get started.

INTEROFFICE MEMORANDUM

DATE October 7. 1963
SUBJECT Competition - PDPw5 = Technical Mewsuxenent Co. (TMC)
TOK. OLaes FROM J. A. Jones su Les
H. Anclexzon

Engineering
Salea
The following was taken froas sules Call Report daced 9/26/63. It was felt that you should have access to ehis inforwacion.
"We went to see these people to find out the technicsi cetails of interfacing theix noc with our computexe. We faund out, but more important are some impresions we gained.

FHC in going to be the ccamany co boart in the pera gane. ruey probsbly have one of the laxgeat whaxes of the warkev and they don't intend to lose it. Dx. Stone nade it grite claaz thet they would only cooperste with us if they thought oux sales would not affect thedx own.

Since Thc has ao much to lose (they have 300t swoloyess). they nay well try to enter the caputer zarket. My impression of then is auch that I suggast we be mont cautions with may infoxiation we give them also, they could conceivably try to hixe awy Dicc employees. For these raswar witc axployens should no loager be pexal teed wichin the mantiacturing area of chen plant.

INTEROFFICE MEMORANDUM

DATE October 7, 1963
SUBJECT

TO

FROM

Kenneth Olsen

I think it is a good idea to get modules cast in plastic and give them away for Christmas presents, but I think maybe we ought to hold off until we get some new modules. Then we could include a very short but well-written pitch which would say that we, like the Volkswagen, have carefully evaluated our modules and we designed different kinds but have come back to the same ones and made many not very obvious but very significant improvements such as new plugs and new sockets and also tell them about automation which allows us to lower the price or keep it the same when the price of semi-conductors have gone up.

KHO;ib

INTEROFFICE MEMORANDUM

DATE.
Subject Overdue Computer Systems Options
TO
Nick Mazzarese
FROM
cc: K. Olsen
H. Anderson
S. Olsen
R. Beckman

October 7, 1963

Bob Savell

The modification to $31-\mathrm{B}$ Display is not overdue. The system has been completely installed, the acceptance test sheet was signed and the original given to Bob Beckman on September 13, 1963. It was field installed by the Peripheral Equipment Department not by Bob Beckman.

The first item on page two, Symbol Generator 33 for CRC-OAL, EN-2542, was shipped from here according to our records on May 13, 1963 to be installed by Customer Relations. Hence, to the best of our knowledge, it has been installed and completely accepted since sometime in the middle of May.

The second last item on page 2, Perforated Tape Reader for Fort Meade, EN-2590: This entry should read Perforated Tape Reader and Spooler. This unit has never been sent back for replacement. It was due to be delivered to the customer on $8 / 16 / 63$ and was indeed delivered late. It was accepted by Customer Relations on $9 / 26 / 63$ retained by them for delivery to the customer.

Card Reader and Control, Ft. Meade, EN-2457: The due date as stated on the list is wrong. The correct date is $10 / 16 / 63$. The unit is expected to be delivered on time.

I believe that covers all the entries that pertain to me.

TO Olsen
Harlan Anderson FROM Kenneth H. Olsen

We need a new gimmick to sell modules. Ithought that the new design would be it, but as I get closer to it, it doesn't seem as practical as our present design. This is very good because it proves that what we have is really good.

However, we need something to make a splash. Here are a few ideas I have and maybe you might come up with something else.

We could have a 200 kc line.
We could have silicone units but they probably cost more. A new book describing how you can do logic with just a small number of units so that anybody could pick it up and read is and think they understand the whole thing.

Russ Doane thinks he can do everything with the three modules. Well, this may be pushing it too far but the ivea might be geod.

We might have colored boards to add a little flash. Of course, we can always just lower the price and push down like mad. Another possibility, is do all of these things.

KHO: ${ }^{\text {b }}$

DATE October 4, 1963
SUBJECT Commercial Blanket Employee Dishonesty Insurance
tO $\begin{aligned} & \text { Ken Olsen } \\ & \text { Harlan Anderson }\end{aligned} \quad$ FROM R.Mills
Summary
After having received quotes from Liberly Mutual, Insurance Company of North America, Lumbermen's Mutual, Seaboard Surety, and Federal Insurance Company, we conclude that the Liberty Mutual net premium is the lowest.

Present Coverage

> | Dishonesty Blanket Position | - |
| :--- | :--- |
| Burglary of Merchandise | - |
| Theft of Merchandise | - |
| 10,000 | |
| 10,000 | |

Recommended Coverages
Commercial blanket employee dishonesty
Money in securities on premises
Money in securities in transit
Depositors forgery coverage

$$
\begin{array}{r}
\$ 200,000 \\
5,000 \\
5,000 \\
200,000 \\
10,000 \\
25,000
\end{array}
$$

Forgery of rail, air and automobile credit cards
Open stock burglary and theft
Explanations of Coverages
a. Commercial Blanket Employee Dishonesty 200,000

1. Of Money, Securities and other property through fraudulent or dishonest act or acts (including larceny, theft, embezzlement, forgery, misappropriation, wrongful abstraction or willful misapplication) committed by any of the Employees acting alone or in collusion with others.

$$
\text { b. Money and Securities on Premises } \quad 5,000
$$

1. Of Money and Securities by the actual destruction, disappearance or wrongful abstraction thereof (including larceny, theft, burglary, robbery, hold-up, misplacement or damage) within the Premises or within the premises of any bank, trust company or similar recognized place of safe deposit or from within a night depository chute or safe into which such chute shall enter maintained by any bank or trust company.
b. Money and Securities on Premises (Continued)

Of other property by Safe Burglary or by Robbery within the Premises and for damage to other property by such Safe Burglary, Robbery or attempt thereat, and for damage to a locked cash drawer, cash box or cash register by from within the Premises, and for damage to the Premises by such Safe Burglary or Robbery or by or following burglarious entry into the Premises or attempt thereat.
c. Money and Securities in Transit 5,000
I. Of Money and Securities by the actual destruction, disappearance or wrongful abstraction thereof (including larceny, theft, burglary, robbery, hold-up, misplacement or damage) outside the Premises, while being conveyed by the Assured or a partner or Employee thereof or by an armored motor vehicle company or by any other person who is duly authorized by the Assured to have custody thereof (except while in the mail or with a carrier for hire other than an armored motor vehicle company) or while temporarily within the home of the Assured or a partner or Employee thereof or any such other person. Of other property by Robbery outside the Premises or attempt thereat or for damage to other property by such Robbery or attempt thereat while being conveyed by the Assured or a partner or Employee or armored motor vehicle company or by theft of such property while temporarily within the home of the assured or a partner or Employee.
d. Depositors Forgery Coverage

200,000
I. Caused by forgery or alteration of, on or in any check, draft, promissory note, bill of exchange, or similar written promise, order or direction to pay a sum certain in money, made or drawn by, or drawn upon or as a direction to the Assured or purporting to have been made or drawn as herein before set forth including (a) any check or draft made or drawn in the name of the Assured, payable to a fictitious payee and endorsed in the name of such fictitious payee, (b) any check or draft procured in a face-to face transaction with the Assured or with one acting as agent of the Assured by anyone impersonating another and made or drawn payable to the one so impersonated and endorsed by anyone other than the one so impersonated and (c) any payroll check, payroli drart or payroll order made or drawn by the Assured payable to bearer as well as to a named payee and

d. Depositors Forgery Coverage (Continued)

endorsed by anyone other than the named payee without authority from such payee; whether or not any endorsement mentioned in sub-division (a), (b), or (c) of this paragraph be a forgery within the law of the place controlling the construction thereof. Mechanically reproduced facsimile signatures are treated the same as handwritten signatures.
If the Assured or the Assured's bank of deposit, at the request of the Assured, shall refuse to pay any of the foregoing instruments made or drawn as hereinbefore set forth alleging that such instruments are forged or altered, and such refusal shall result in suit being brought against the Assured or bank or enforce such payment and the Company shall give its written consent to the defense of such suit, then any attorney's fees, court costs or similar legal expenses incurred and paid by the Assured or bank in such defense shall be construed to be a loss under this insuring clause, and the liability of the Company for such loss shall be in addition to any other liability under this insuring clause. If the Assured shall so request, the Company agrees to waive any rights (by subrogation orotherwise) against the bank upon which such an instrument shall be drawn; however, the Assured and such bank shall assign to the Company all of their rights against any other person, firm or corporation.
e. Forgery of Railroad, Airline and Automobile Rental Cards 10,000

1. Loss through forgery or alteration of, on or in any request for transportation required in connection with air or railway travel cards issued by or on behalf of an Airline or Railroad to the Insured or to any employee of the Insured.
f. Open Stock Burglary and Theft
I. Burglary or theft of inventory.

Formula for Development of Dishonesty and Forgery Coverage Exposure
5% of inventory value
20\% of the difference between current assets in inventory value
10% of gross annual sales
plotted on an exposure index table.
Current Status

This policy expired October I at midnight but we have requested Liberty Mutual to place a binder on this until we choose our carrier.

SUBJECT: Computer Systems Project Engineers

The following is a list of project engineers and the machine (3) that has been assigned so them.

NM/ is
date 10／2／63

SUBJECT Orerdue Compritar Systan and Optloma．
T，01am
TOK．Andersion

S．01san
G．O＇Dac
W．街ndie
D．Bate
D．断118
M．Sandlez
B．Beokrsan
1．Sawo 11
B．Stophencers
E．Haxiood
む．Shielda
D．Sumit tit
3．撸Celin
S．Stoakebrana

 bongletlon 19 indicated 1×3 osch ceas．

Tem Qua	vantity	Custosez	ETM	$\begin{aligned} & \text { Oxig: } \\ & \text { Dua } \\ & \text { Data } \end{aligned}$	Reasor Soz Deley	Dellvary Expected	$\begin{aligned} & \text { Froginoger } \\ & \text { Cherine } \end{aligned}$
Extended Arthmotic	1	JPL	2631	6／30／63	$\begin{aligned} & \text { Entire P. } 0 . \\ & \text { still } \\ & \text { incomplete } \end{aligned}$	$\begin{aligned} & \text { 1at hay } \\ & \text { october } \end{aligned}$	P。 Beckman
$\frac{\text { Mur }}{\frac{1}{2} 233}$	1	JPE	2632	8／25／63	＂	\％	P．Backrans
$\begin{gathered} \text { Tepe Tnit } \\ \text { 2ype } 50 \end{gathered}$	1	JRL	2634	$8 / 25 / 53$	Suipped wet ing por acm copterios	0	Tis Beckram
$\begin{aligned} & \text { Hodip. to } 31 \mathrm{~B} \\ & \text { dapplay } \end{aligned}$	B 2	$\begin{gathered} \text { MIT } \\ \text { Ih2roln } \end{gathered}$	2603	6／30／63	Completad Nathing Pox Becimen to 2土ald 4netmil	20／22／63	R．Savell
$\begin{aligned} & \text { A to } D \\ & \text { Muntiplexer } \\ & \text { Swhtches } \end{aligned}$	$\frac{1}{1}$	Raytheon Wayland	$\begin{aligned} & 2662 \\ & 2663 \\ & 2664 \end{aligned}$	$\begin{aligned} & 9 / 5 / 63 \\ & 9 / 5 / 63 \\ & 9 / 5 / 63 \end{aligned}$	Now Lnstalled \＆undergoing acceptance	2ヶt Mal 02 October	B．Stophenson B．Stephenoor B．Stepranasor
PDP－16－44	1	Intormstion Tnternat＂I	2644	7／30／63	Shepped accepted paym went deforred until Dec． 30		E．Herwood
PJP－10－42	1	Harvard Unsจตrsity	2655	9／15／65	Waiting Tor accoptance	10／112／63	E．Mextood
Data Control 131	12	Haxvaxd Tniversity	2659	9／15／63	Dessgn Exob 1em	20／11／63	5．Herrood
Mui．${ }_{10}$ Div．	2	CRO	2703	9／9／63	CRC ITMming deworserren108 \＆askod DEC HO hold ope inm atel2ation	20／11／63	3．Sixielde
Tape Tnit sype 50	1	CSI，	2716	9／24／63	Shipped but not acoptod	9／30／63	ग．Shielde

superseded by 2602

Deaigr Prob.
"
n

Shioped not accoptac -
${ }^{\circ}$

A to D
troublea
Adage called
ins
Sent bacir for xeplacement

Burpoughs
delivery
8/18/63
$9 / 16 / 63$

Delivezy Expoczed
Sometime
in Octobez
00t. 11. 163

Pe.ge 2
Engismea in
Crame
R. Beckpen
R. Bectmen
D. Smitw
R. Bocknex
R. Becknan

11/13/63
R. Backmars

11/2/63
ㅇ. Beckman

21/3/63
E. Hexwood

10/11/63
ReSavoll

1st hal.
of Oct.
10/21/63

10/21/63
\square

－am Quentitu		Customers	ENP尊	Orig． Due Date	$\begin{aligned} & \text { Reason } \\ & \text { Rox } \\ & \text { Delay } \end{aligned}$	Dalivery Erpected	Engine日r Cuerge
16，Memozy	1	Princeton	2554	9／15／63	$\begin{gathered} \text { 6/30 Dealgm } \\ \text { Erob. } \end{gathered}$	21／2／63	R．Bechmass
$\begin{aligned} & \text { Tape Control } \\ & 510 \end{aligned}$	1	Princeton	2558	9／25／63	$6 / 30$ m	20／21／63	P．Beckmen
$\begin{gathered} \text { Data Control } \\ 131 \end{gathered}$	1	Princetoon	2559	9／25／63	$6 / 30 \quad n$	10／21／63	R．Beckuan
Hegh Speed Chamel Type 19	1	Prinoeton	2560	9／15／63	Wasting ？or Data Contol 131	10／21／63	R．Backuan
16K Mamory	1		2506	9／1／63	Deargh Prob．	10／12／63	J．MeCalip
$\begin{gathered} \text { Tape control } \\ 510 \end{gathered}$	2	$\begin{gathered} \text { MIT, Innco } \\ \text { Lab. } \end{gathered}$	2580	8／2／63	\cdots	20／11／63	R．Boolmas
Data Control 131	1	$\begin{gathered} \text { MITP Innco } \\ \text { Iab。 } \end{gathered}$	2579	8／2／63		10／11／63	R．Beckmas
Deta Speod Ohannol 19	2	$\begin{gathered} \text { MTM: Linc } \\ \text { Iab。 } \end{gathered}$	2581	$8 / 1 / 63$	Watblug tor Dete Control 131	10／21／63	Roseckran
Micro sape Control 550	2	H2e	2594	7／20／63	Shypped not accopted Deakgr prob．	9／30／63	需．Stockobrand
Maro Hapo 2ransport 555	6	RLe	2595	9／20／63	0	9／30／63	W．Stookebrexd
8－bit Telebype Recetvera	4	BEN	2602	7／8／63	Shipped not accopted－－ oroker part	10／11／63	Do Smith

DATE October 2, 1963
SUBJECT Programing Conventions PDP -6
TO PDP-6 IAst FROM Harrison R. Morse III

On Friday, October 4, 1963 at 1 P.M., in Gordon's office, there will be a meeting of those interested in establishing conventions to be used when writing PDPo6 programs. This meeting will be primarily to determine in what areas conventions need to be established, and what.

HPM / nbh

SUBJECTSomiconductor झrice Lis
TO All Sales Pexbonmel．Tagineacm Ing Parsomnel \＆Admanstreation

FROMBOW Lazay \＆A E Fowtin

H．Andergon
K．OIser
5．01sen
N．Naswaxace
G．Be21
R．Best
A．Blumonthal
Hs Crouso
D．Ch2n
R．Dorne
E Hitaxood
\％．RIchawdeon
\}. Ridgeway
Re Eughea
R．踩118
R．Bolsvart
R．Heonard
Ee Sevell
3．Eutschman
3．Shiolds
3．Koudela
F．Bonnex
B．Beckman

A．Mall

B．Farmham
B．Tow 10
ग．Smoty
C．Ride
E．Lene
H．Pelnter
S．Hiticesak
d． $0^{\circ} \mathrm{Comnel}$
F．Gould
H．Rudexwan
C．Dionece
A．筷高comb
R．ULleou
\％．Eackiran
J．Joners
A．Rese
J．Tseng
R．Coleman Tos Angelee
＊．viantan．\quad＂
盟 Johnecon \＃＂
品 Oatioy＂
H．Leveen．San Esencisco
J．Enxiey Hablingtom
（1）Downistozs．Tew Tork
C．Enewe．Nmatala tis faxmany
7．boyle．Ot＇mus．Cazeda

All DEC Seloc Opices（2 copies）．
 destroy all previous caplea la your posacmsuox．

NOPICE: Prices are subject to change without notice.

TRANSISTORS

A. L. Fortin 10/1/63

NUMBEE	REPTACEMENT TYPE \& MANUFACTURER	PRICE
2iv711A	2N711A Tex. Inst.	\$ 1.45
2N744	2N744 Tex. Inst.	8.25
2 N 813	210813 Ray	6.87
2 N 835	2N835 Motorola	2.90
$2 \pi 994$	A selected 2N964A	3.67
2F1146A	2N1146A Clevite	4.70
2 V 1184	2 W1184 RCA	2.48
$2 \mathrm{N1184B}$	2N1184B RCA	3.47
2N1204	2N1204 Motorola	6.38
2iv1218	$2 N 1218$ Sylvania	7.50
2 N 1304	2N1304 Tex. Inst.	. 61
2N1305	2N1305 Tex. Inst.	. 61
2N1308	2N1308 Tex. Inst.	1.12
2N1309	2N1309 Tex. Inst.	1.12
2 N 1310	2 N1310 Gen. Inst.	4.51
2iv1494	2N1494 Motorola	6.83
2N1495	2N1.495 Motorola	7.35
SF2506	SF2506 Motorola	18.00
2 N 1600	2N1600 Transitron	6.15
2 N 1613	2N1613 Fairchild	3.71
2iv175A	2N175A Philco	1.35
2\%2099	2N2099 Sprague	4.20
2N2218	2N2218 Motorola	5.85
2N2475	2 N 2475 RCA	6.19
4JX1C741	2N527 Gen. Elec.	1.91
- 6B-1	2N2713 Gen. Elec.	1.50
SF2507	SF2507 Motorola	24.00
2N1754(R)	2N175A with BVCES $\geq 40 \mathrm{~V}$ (0)100 uA Philco	1.35

IVUMVER	REPLACEMENT TYPE \& MANUFACTURER	PRICE
2N1304 (R)	2N1304 with VEC Spec. from Digital	\$. 63
2N1305 (R)	2N1305 with VEC Spec. from Digital	.63
2N2100	2N2100 Sprague	7.20
2N2219	$2 N 2219$ Motorola	6.75
3N76	NS-3033-1 thru 8 National Semiconductor	24.75
2 N 2714	$2 N 2714$ Gen. Elec.	1.65
2N2804	2N2804 Tex. Inst.	33.00
2N2904	2N2904 Motorola	11.00
SD4-4	SD4-4 Gen. Elec.	6.30
MDI 14	2N1754 Sprague	1.35

NOTICE: Prices are subject to change without notice DIODES

NUTMBER	REPLACEMENT TYPE \& MANUFACTURER	PRICE
$\frac{1}{4}$ M6.8AZ5	$\frac{1}{4} \mathrm{~N} 6.8 \mathrm{~A} 55$ Motorola	\$ 2.60
$\frac{1}{4} \mathrm{M} 8.2 \mathrm{Z} 5$	$\frac{1}{4}$ M8. 275 Motorola	4.00
6RS215A2D2	6RS215A2D? Gen. Elec.	2.00
CRS20SP4B4	20SP4B4 Gen. Elec.	1.03
IN429	IN429 Transitron	5.70
IN469	IN469 Hoffman	3.75
Iñ469A	INAG9A Hoffman	4.75
IN748	IN745 Transitron	2.07
Iİ748A	IN748A Transitron	2.80
IN750	IN750 Transitron	2.00
III750A	Iiv750A Transitron	2.80
IIN758A	IN7584 Transitron	2. 80
IN762	Iiv762 Transitron	2.00
IN764	IN764 Transitron	2.03
IN964A	IN964A Dickson	2.00
INI315	IN1315 US Semcor	3.25
INI675	IN1875 US Semcor	3.50
IN1982	IN1982 US Semcor	7.92
IN1998	IN1998 US Semcor	3.25
IN2175	LS400 Tex. Inst.	11. 50
(Photo Diode)		
IN2970B	IN2970B Motorola	6.05
IN2974B	IN2974B Motorola	7.60
IN2976B	IN2976B Motorola	7.60
IS400 (Pho A。 Is Fort	LS400 Tex. Inst. $10 / 1 / 63$	13.50

REPLACEMENT TYPE \& MANUFACTURER

PRICE

IN3156 Motorola $\$ 16.85$

IN3316B Dickson 10.80

IN987B Dickson 3.45

IN3496 Transitron 19.00

IN276 Clevite $\quad 64$
IN994 National 1.75

Nat. Trans. 18
IN645 Clevite Tex. Inst. 1. 50

Q-5-100 Int'l Diode Corp. $\quad 1.80$
Q-6-100 Int'l Diode Corp. 1.90
IN67A Clevite $\quad .60$
IN91 Gen. Elec. $\quad 85$
IN270 Clevite $\quad .50$
IN1217 Motorola $\quad .68$
IN1220 Motorola .60
IN1227 Westing

1. 25

INI 227
IN1341
IN3208
III 3209
IN3210
IN648
D-664-3
IN1341 Westing

1. 79

IN3208 Motorola 1. 15

IN3209 Motorola 1.30
IN3210 Motorola I. 75
IN648 Clevite 1. 95

IN3606 Gen. Elec.

DATE September 27, 1963

FIVE-YEAR SERVICE AWARDS
K. H. Olsen
V. E. Anderson
S. C. Olsen
W. R. Hindle
R. T. Lassen

IWould like to suggest that the Five-Year Service Awards, which have finally been delivered, be presented at a series of buffet luncheons to be held semi-annually or quarterly - at least for the next three years. The type of luncheon I have in mind is sti.illar to the annual stockholder buffet.

This approach, it seems to me, has several advantages:

1. It is more relaxed than a formal luncheon or dinner at the Company dining room.
2. On the other hand, it is sufficiently out of the ordinary to mark the presentation as a special occasion.
3. It presents an opportunity for casual conversation between management and employee and for very personal attention to be paid to each recipient.
4. It falls within the work day, so that neither the recipients nor the management representatives are likely to axperience any conflict with personal plans.
5. It gives the recipients an excuse to dress for the occasion to kings or queens for a day in their work areas.
6. The number of people involved would remain at a manageable level - at least through the first quarter of 1966. The distribution of recipients would be approximately as follows if no one were to terminate:

1963	Ist Qtr		2nd Qtr	$\frac{3 r d Q t r}{13}$	$\frac{4 \text { th Qtr }}{5}$
1964	8	8	6	1	
1965	5	13	15	16	
1966	14	30	36	42	
1967	61	54	38	$19+7^{*}$	
1968	37	$34+5^{*}$	$71+1^{*}$		

[^0]DATE September 27, 1963
SUBJECT Proposed Wage Administration Policy--Hourly Employees
FROM Bob Lassen

Attached is a proposed wage administration policy for Wage Class l and 2 employees (hourly - non-exempt). The policy outlines the ground rules for proposing changes in pay rates, job classifications and wage classes for all hourly employees during the annual review and also during interimperiods.

We now have over 400 hourly employees, and it is becoming increasingly difficult to administer their wages in a fair and uniform manner. The proposed policy together with our job and wage class structure wịll primarily serve as a cost center manager's guide for consistent hourly wage administration.

WAGE ADMINISTRATION POLICY--WAGE CLASS 1 AND 2 EMPLOYEES

The normal time for the annual wage review for Wage Class 1 and 2 employees is July l. Company policy considerations may make it necessary to change the normal date of the annual review; therefore, the actual review date will be confirmed at least a month in advance.

Annual Review Procedure

The Personnel Department will initiate the review by providing each cost center manager with necessary instructions and work sheets containing relevant information for conducting the annual review. This information will include the employee's previous quarterly merit scores, current job classification, wage class and pay rate. The work sheets will allow for equitable comparison with other Wage Class 1 and 2 employees in the department.

Each cost center manager will be responsible for reviewing the wage class and job classification of each Wage Class 1 and 2 employee in his department by carefully relating the appropriate job class and wage class descriptions to the employee's actual job responsibilities. Proposed changes in each employee's job classification, wage class, and pay rate must be submitted by the cost center manager in writing to the Personnel Department for review by the Personnel Committee and for subsequent management approval. (Appropriate forms will be provided for this purpose.)

The amount of the recommended increase should be determined first by the quality of the employee's work performance during the preceding year, using the quarterly merit scores as a guide, and secondly by the current rate range assigned to the employee's particular job classification.

The annual wage review for all technical Wage Class 1 and 2 employees will first be monitored by the Technician Review Committee and will then be submitted to the Personnel Committee.

The Personnel Department and the Personnel Committee will then review the combined results of the departmental reviews before submitting them for management approval.

Wage Increases Other than During the Annual Review
Wage Class 1 and 2 employees may be granted wage increases other than during the annual review only if:
a) the increase results from the 3 -month review for new employees.
b) the increase results from the 2 -month inter-departmental transfer review.
c) the employee's current pay rate is below the rate range assigned to his approved current job classification, and his work performance merits the increase.
d) the employee has shown exceptional work performance, and his current pay rate is below the maximum rate assigned to his job classification rate range. Recommendations for exceptional cases will be reviewed by the Personnel Committee.
All proposed changes in pay rates, job classifications, and wage classes must be submitted by the cost. center manager to the Personnel Department on the appropriate forms supplied by the Personnel Office, and the reasons for the requested changes must be clearly stated.

SUBJECT Status of Linc Program

Ken Olsen
Harlan Anderson
Stan Olsen
Nick Mazzarese
Win Hindle
Ed De Castro

DATE September 27, 1963

FROM Mort Ruderman

History to Date

The MIT Center Development Office module purchase order for the first 20 Linc computers was completed as of the middle of July. Also, Center Development Office is anticipating having six (6) to ten (10) more Lincs built before too long, and they have already ordered some of the modules and mounting panels for these systems.

I think it should be noted that DEC has performed better than most other suppliers in the Linc program. The people at Center Development are more than satisfied with the cooperation and the manner in which DEC was able to be of service. All deliveries were made in accordance with a predetermined schedule. DEC remained highly flexible regarding major changes in both types and quantities of modules. DEC was also very helpful in other areas: e.g. production people here at DEC were able to make useful suggestions as to the actual construction of the Linc, purchasing people were able to suggest vendors for various components and materials, a technician was at the Center Development Office for a week changing the jumpers on modules and advertising provided Linc users with schematic booklets of system modules. To make these Linc users even more aware of DEC Products, each users' package further contained literature such as, the catalogue PDP-5 brochure, one megacycle logic brochures and various brochures on DEC I/O equipment.

Other module sales have been made as a result of the Linc program and note should be made of these at this time. Each Linc computer has one console perunit, and this console has 8 blank Amphenol receptacles to allow connection of devices which are unique to the operator's system. A number of modules have already been ordered by Linc users for applications in this area. Staff people at the Center Development Office were, and are still doing work on peripheral equipment to be used with the Linc and more modules have been on order due to their efforts. Furthermore, other agencies and institutes who have applications and needs for Lincs and who also have the funds have placed orders for the full compliment of modules needed for the Linc.

In summary, DEC has performed extremely well and is continuing to do so with all concerned being most appreciative of this.

Future Sales

It is reasonable to assume that due to the above DEC will be asked to do any or all of the following: Supply Linc System Modules, build Linc Computers or sell PDP-4's and PDP-5's instead of Lincs to future custiomers.

Of the three above, the second area warrants particular consideration.

Against DEC marketing the Linc is the presence of the PDP-5 which can satisfactorily meet a portion of potential Linc users computing needs. Also, there is the PDP-4 which"appears to be more powerful than the Linc for those people who need and can afford a larger computer. If it were to decide to market the Linc, DEC might want to do some redesigning and repackaging. This would essentially mean adding another computer which is in many ways similar to an existing product.

The principle argument for DEC to market the Linc is that the development is all done. Thus, it could be marketed exactly as it now exists. There appears to be a market for the Lincs, however, it is not exactly known how large the market for Linc computers is at this time. The below affords some indication of a marketing potential.

There were 75 proposals written to obtain Lincs through Center Development Office. Only 16 Lincs were awarded through center Development Office. It is invalid to assume that all the people that were not awarded Lincs will necessarily buy Lincs. Indications are that not all of the original 75 applicants have sufficient funds available to purchase a computer.

The figure previously stated in paragraph 1 above of six (6) to ten (10) more Lincs is where the indication comes from. Six (6) of these Lincs are being independently financed and there very well could be more. Central Institute for the Deaf is independently building a Linc. Also, Lincoln Laboratory, National Institute of Health, and AFCRL, are also independently financing Lincs. To date at least 10 of the 30 Lincs are independent of MIT and NIH.

Pertinent facts regarding Linc pricing are as follows. I estimate that it is costing CDO approximately $\$ 32,000$ for the Bill of Materials, wiring and assembly of one Linc system. This price includes DEC Modules after a 22% discount. Center Development Office
did not do the wiring or mechanical assembly but rather subcontracted this portion of the system. A preliminary pricing of the Linc has been done using the DEC Pricing Form, with Engineering development being amortized over 25 systems. Preliminary pricing of a Linc indicates that if DEC were to market the system, the selling price would be approximately $\$ 50,000$.

Nevertheless, there is still a market present and the following are of primary consideration.
a) Potential customer feeling about using a PDP-4 or PDP-5 in liew of a Linc (the indication being that a majority would strongly desire purchasing a Linc as opposed to either building a Linc or purchasing a PDP).
b) Production cost of Linc compared to the selling price of Inc.
c) The PDP-5's ability to functionally compete with the Linc.

In summary, it is (my feeling) that a market for Linc computers definitely exists and that DEC would be wise to consider marketing as it presently exists, thus eliminating redesigning efforts.

The final decumentation of the Linc is now taking place. A meeting of potential manufacturers is tentatively scheduled for the end of November.

INTEROFFICE MEMORANDUM

DATE 9/26/63
SUBJECT
DEC \$ypar 50 2ayo kranspore DEC Gype 52 Tape Control Tnit

TO Datz2 buttoz
FROM M. Is Laso
H. Razataxees
S. OMaen
X. OLaen
H. Andeymen
R. Bolavart
D. Bast
G. Ball
S. Lambert
 xavort 1a tworolds
(I) Dotemane why raw ia having so maxy tape yroblems.
 This raport was somt to pereonally and should not be difu
 poins intomally to detornine what actson meth be takon. I an gure we wil be contronsec with theas problems at sone sumar dato.

ITT Data \& Information Systems Division

August 30, 2963

MEMORANDUM

TO:
Mr. J. M. Kolb
FROM: S.Salzman is
J. Panzitta ,

APPROVED: G. P. Panchak $\Omega .8 P$
SUBJECT: Review of ADX-Mod I Magnetic Tape System Specifications

This report is intended to review the ADX-Mod I Magnetic Tape System specifications. It will point out a number of areas in which discrepancies exist between the specifications and actual hardware performance. Corrective measures which must be taken will be outlined.

It should be noted that this report does not cover the complete Tape System Evaluation Schedule submitted July 23, 1963. The items that are covered are listed below:
a.) Loading Specifications
b.) Hardware Location
c.) Control Delays
d.) Diming - Variations 0,1 , and 2
e.) Scatter Gather

LOADING SPECIFICATIONS:

The first item to be covered is the loading specifications. By loading specifications we mean the number of Tape Units (TU) which can be controlled by each Tape control Unit (TCU) and the number of Tape Contiol Units that can be handled by each Multiplexed Message Processor (MMP)。

According to our specifications, the maximum number of whis which can be handled by a TCU is eight。 This figure was initiaily obtained from Digital Equipment Corporation (DEC) specifications.

There is some question as to whether or not DEC has ever checked the systom with 8 tape units on-line. This figure seems to stem from the fact that 8 unit select states are provided for in the $T C U$. There does exist a loading problem due to the excessive amount of cable required when hooking up 8 TU's. Since the Read Signals of each $T U$, per channel, are tied to a common point in the TCU, the Read Electronics of each $M U$ will see its own cable plus the cables of the remaining TU's. The number of TU'S which can be connected per TCU will depend upon the type of Read Amplifier being utilized. DEC has two types of Read Amps, the 1549 and 1536。. It is recommended that for TU's using 1549 cards, that no more than 3 of these TU's be connected per TCU. No more than 6 TU's should be connected per TCU if they use 1536 cards.

The maximum number of TCU's which should be connected per MMP should be one. The limiting factor in'this case is the loading presented to Memory Buffer Bit 10 of the MMP. This condition is a result of the design of the 4127 negative $C-D$ inverter circuit which this output must drive. MBlo must. drive more of the 4127 circuits than any other control signal of the MMP. Two TCU's can be connected to an MMP if an extra cable driver circuit (1685) is incorporated in the MMP。 If an additional cable driver. is incorporated for MBIO, the maximum number of TCU's that can be hooked up to the MMP is two. The limiting factor then, is a programming restriction utilizing the Scatter Gather feature which will be covered later in the report.

HARDWARE LOCATION:
The problem area which exists related to the location of hardware are the location of the Read Electronics. The Read Electronics includes the Read Amplifier (1536 or 1549). Gatable Rectifier and Slicer (1542), and Peak Detector (1539). In the present system, the Read Amplifier, Rectifier and Slicer are located in the TU and the Peak Detectiors in the TCU: There are 7 Peak Detectors, one for each channel of data on tape, and there are 7 Read Amplifiers and Slicers per TU. The read signal supplied to the TCU is a low level, analog signal. Cable length becomes an important factor in keeping distortion and noise susceptibility to a minimum. If the loading specifications as described in the previous two paragraphs are Eollowed, this present location of hardware is satisfactory. If we desire to use $6 \mathrm{TU}^{\prime}$ s per TGU, it is st... \quad I
recommended that the Peak Detectors be placed in each TU. This would allow us to supply the TCU with DC levels instead of analog signals. The driving capabilities of each TU would be increased. The noise susceptibility of the system would be decreased considerably. The modifications of the present system requires the addition of 3 Peak Detector (1539) cards, a Negative C-D Inverter (4127) card and a Cable Drive (1685) card in each TU. These cards would require an additional card rack.

Another area related to the Read Electronics, which has been troublesome, is the First-Bit-oE-Character detection circuitry. Since a clock track is not recorded on tape, a circuit is required to generate a Read strobe. This is accomplished by looking for a "I" bit in cach character. By "or" gating the "set" output of the Read Buffers (7 bits) in the rcu, a read strobe is initiated for each character. Delaying this detection to allow the character to be dumped into the Data Word Buffer (18 bits), a reset pulse is generated to clear the Read Buffer. The Read Buffer is then ready to accept the next character of the word. The time between characters of the same word is 66.67 microseconds. The Read Euffers-are cleared 25 microseconds atter the first "I" bit of the character is detected. The Read Bufrers are collector triggered by the output of a negative C-D Inverter (4127). This C-D gate is controlled by the outputs of the Peak Detectors. Because of collector triggering, the "set" input to these Buffers takes precedence over the "reset" input. If a "set" level is generated due to either noise picked up in the Read Electronics or possibly inter-record trash existing on tape, and this occurs at the same time as a initial reset pulse, the Read Buffers will not be reset. Since the inputs of the "or" gate for First-bit-of-character detection are taken at the output of the Read Buffers, the following data pulses will not generate any reset or strobe pulses. This will cause the TU selected to run away (pass tape without reading in each character). In order to eliminate this condition from occurring, one possible method could be the separate generation of the Read Strobe and reset pulses for the Read Buffers.

CONTROL DELAYS:

The TCU contains 23 control delays and the TU one. Four of these control delays have been changed from the original DEC specification. The delay changes have been picked up on ECR 00210. Delay. card lB2 in the TCU was changed from 2.5 milliseconds to $3.6 \mathrm{milli}-$ seconds. This delay generates part of the inter-record gap. It
was increased to assure a 3/4 inch gap for all tape operations and variations used by programmers. The worst case condition results when a read or forward space is followed by a write command. If this delay is not increased to 3.6 milliseconds, the inter-record gap generated will be less than $3 / 4$ inc aninimum inter-record gap of $3 / 4$ is required for IBM compatibility. .. other delay card which was changed is IBl8 in the TCU. It was changed from 4.6 milliseconds to 5.0 milliseconds. This delay generates part of the inter-record gap and precedes the initiation of stopping tape motion in Variations \varnothing and 1 . The time that the longitudinal parity is written to the time the tape comes to a stop beyond the write head is 6.80 milliseconds . At this time, write enable is dropped. This represents approximately 0.5075 inches of tape that has been erased after writing the longitudinal parity. At the completion of a read, the time from sensing the longitudinal parity to the time tape stop is 2.68 milliseconds. This places the write head 0.4985 inches from the longitudinal parity marker. The position of the write head after a, read operation is 0.50750.4985 or 9 mils before the spot where it would have been after the completion of a write operation. This distance of 9 mils is highly dependent upon mechanical adjustments. By increasing the delay of lBl8, this difference now becomes 39 mils. This setting makes some of the adjustments less critical. Delay card lBl9 in the TCU wals changed from 3.0 milliseconds to 10.0 milliseconds. This delay was increased to assure that the pinch roller comes to rest before another tape command is initiated. This becomes a problem area when you have consecutive forwaṛd or reverse commands. Three milliseconds is not sufficient time to allow the pinch rollers to come to rest. This results in non-uniform inter-record gaps, some of which could be less than $3 / 4$ inch. The fourth delay change was card 2 G 9 in the TU. This was changed from 3.0 to 4.0 mililiseconds to assure that write current flows in the write heads for a sufficient period of time to erase the first part of the interrecord gap when tape motion is terminated.

The load point delays $1 E 1$ and $1 E 2$ are presently set at 50 milliseconds and 24 milliseconds respectively. According to EN-0315, these delays setting are not set to the optimum values. By optimum value is meant the minimum length of tape from load point which can not be utilized before recording or reading the first record. It is recommended that lEl be changed to 21 milliseconds and $1 E 2$ to 42 milliseconds. These delay settings will disable the read lines for 42 milliseconds instead of 24 milliseconds. This
reduces the possibility of read in trash at the load point area of tape. The time that must elapse before writing the first record after load point is the sum of lEl and IE2. This is presently $25+50$ or 75 milliseconds . If the change recommended is incorporated, the sum would be $21+42$ or 63 millistconds. This will result in better tape utilization and still be IBN compatible.

TIMING VARIATIONS $\varnothing, 1$, and 2 :

In reference to timing for Variations $\varnothing, 1$, and 2 there exist two areas which should be cleared up. These areas should be covered in the Programming Manual. When the ru unit selected is anything but zero, a Complete Fape Sequence (cts) instruction should not follow an Initiate Tape Sequence (its) instruction immediately. It is recommended that a (NOP) or any other one-dycle instruction be inserted between the its and cts instruction. This will allow you enough time to clear the Unit Select Register, set the Register to the proper unit desired and receive a ready signal back from the TU selected. This will allow the Local Tape Unit (ITU) register to be set prior to the cts instructions. A similar problem exists when an its imnediately follows a cts instruction. A one cycle delay should be programned to allow the TC sync register to reset. Another area which should be cleared up in the Programming Manual concerns counting the number of records written in Variation 2. If the stop instruction is not programmed, which is normal in Variation 2, when the last record is written an inter-record gap is generated. Before tape does come to a stop, a second interrecord gap is generated immediately following the previous one. This means an additional complete pulse is obtained. If the Programuer counts the number of records he has written by the number of complete pulse he obtains, he will obviously count one more record than he actually wrote. If he now backspaces the number of records he thinks he has written, he will backspace past load point. This will result in tape going off the reel and removing power from the selected ru.

The Scatter Gather feature incorporated in the ADX-Mod I systems allows you to write data on tape from a number of locations in core which may not be sequentially located。 It will also allow you to read data from tape and aump it into various locationsin core. One troublesome area in connection with the Scatter Gather
feature exists on systems which utilize two TCU's per MMP. In order to utilize this feature on both TCU's very tight programming is necessary. This results from the high priority required to change the block parameters within the limited time available.

This investigation has led to the conclusion that the Mod I Tape System will function satisfactorily when the hardware limitations and program restrictions are rerognized and observed. Several hardware changes have already been initiated to guard against certain "worst case" conditions. Additional hardware changes can be made to improve the system and have it meet the loading specifications. The study has also uncovered some program restrictions which were not clearly defined.

Still remaining to be done is the broad area relating to the reliability and maintainability of the system. This includes evaluation of the mechanical components and adjustments, accelerated life testing, failure rate data, maintenance diagnostic program, and revised maintenance procedures based upon this work.

SS/JP:jg

INTEROFFICE MEMORANDUM

DATE September 24, 1963
SUBJECT Cost of Micro Tape Development.
TO K. Olsen
FROM R. Maxcy
H. Anderson
E. Simeone

The attached sheet gives the estimated and actual costs of micro tape development as of June 30, 1963. Pricing was based on the estimated cost.

Total Cost as of June 30, 1963

Actual
Estimated
Labor:

Engineers
Tech.
Overhead
Outside Contracts
Materials:
Raw
Direct
Mfd. Parts
Finished Goods Travel

Total:

$$
\begin{array}{r}
14,804.78 \\
12,309.74 \\
31,270.41 \\
1,268.52
\end{array}
$$

$$
\begin{array}{r}
7,842.91 \\
9,942.01 \\
1,191.35 \\
2,801.39 \\
4.64
\end{array}
$$

$81,435.75$

$$
\begin{array}{r}
7,780.00 \\
8,500.00 \\
22,280.00 \\
4,000.00
\end{array}
$$

September 23, 1963
Preliminary Information on DATE The PDP-6 Programming Systems
PDP-6 Group
Haprison R Moree ITI

This memo states the presently projected schedule fox the ladege pieces of prognaming necessary to make up the basic PDP-6 Programming System. The people presently involved ave Hazyia Hyman, Steve Pinex and myself.

1 will qualify this momo by stating that the estimates on the conservative side. Also, this memo contains onjy a brice description of each program. The preliminary specification of MACROG is now available. A preliminaxy specipication of EKEGI will be available on wednesday. For the time belng (until at least January 1) the PDP-4 PORTMAN Manual (available Monlay) may be safely used as a speciflcation for PDR-6 PORMRAN.TI, as we intend to be compatible at the Fortran II level.

SGHEDULE

The following schedule is based on the following considerutions:
a) the basic computer wlll be avallable to being program checkout about November 1, 1963.
b) Microtape will be available by Januaxy $30,1964$.
c) protect mode will be available by January $30,1954$.

Assuming the above dates, the following target dates have been met:

Program
Assembler I
(Macro Iac1.11ty)
ENTC1
Debug
Ealtos
FORTRAN IT System

ITsable
Nov, 15
Doce 1
Feb. 15
Marei 1
March 15
May 1

Complete
Dec. 1 March 1 Masch 15
May 1
May 1
July 1

The digures under the useable colwn Andicate when each program becomes operntional, and may be used by other than the author. The ${ }^{9}$ complete date Indicates the date on which work should temminate.

The preliminary specification of the basic Assemblax 1 s presently available under the name MACROG.

Speciffcations for the FORTRAN II compilex will not be geperately available for some tyme. However, the language w1ll folude at least that avallable on PDP-4, with the dadition of "EQUIVALANCE", and the PDPo 4 FORTRAN Manual may de used as a weference manual for PDP-6 FORTRAN II.

The debugging program will not be specifited unt11 we become more familiar with the use of the RDP-6. However, it wlil have features which permit aymbolic debugging, as do DDT-1 and DDM-4.

Similarly, the editor will be specifted in detail later. Presently intended features include the abillty to meference any program on the personal microtape by name; add, delete, change and examine lines of text by number or relation to other ifines.

The editor will be an integral part of EXEC $I_{\text {, }}$ and service perfpheral teletypes which a main program is muning.

The inftial RKECUTIVE program will have the ability to set up $I / 0$ transfers when requested by the running program, monstor programmed I / O to insure non-interference with ruming devices, and control a number of teletypes being used for microtape editing.
$\mathrm{HPM} / \mathrm{nbh}$

SUBJECF：ITFE TESHES AND OHHER EQUYPMENT THA工 IS TO BE LEFY RUNNING EOR EXYENDED PERTODS AFWGER HOURS AND SO EORTR

DATE：September 20， 1963

FROM：Joren Prentice

K。Olsen
S．Olsen
H．Anderson
N．Mazzazese
M。Sandlex
J．Smith
R．Maxcy
$R_{\text {，Maroney }}$
K．Peirce
H．Crouse
W．Brackett
W．Hindle

Anyone running equipment on life tests or equipment that is to be left on overnight will post conspicuously，a sign in the vicinity of the equipment os appended thereto noting that the equipment is to be leftt on and notify the Pinkerton cuard On leaving the building that such equipment and its location is on life test or is to be left running for an extended pexiod．Written notes must be signed．
cc：Pinkerton Guaxds

INTEROFFICE MEMORANDUM

DATE September 20, 1963
SUBJECT Status of Mag Tape Control 510 and Data Control 131
тO K. Olsen
FROM J. Smith
d. Anderson
S. Olsen
N. Mazzarese
R. Beckman
J. Shields

LRL (510-131)

This system is currently undergoing its final stages of checkout. Shipping date 9/23/63.

Lincoln Labs
1 - $510 \quad 2$ - 131
Will start off-line checkout 9/23/63. Will be tied on to the computer on $10 / 7 / 63$.

AEC Princeton (510-131)
Wiring 80% complete. Will be completed and delivered to offline checkout on 10/7/63. Will be delivered to Customer Service on or before 10/21/63.

AEC Harvard (131)

Off-line checkout will begin 9/23/63. Installed on to the computer on 9/30/63.

Stanford (Modified 131)
Modification not received to date.

DEC Stock (131-510)
Wiring to be completed on $10 / 14 / 63$.

INTEROFFICE MEMORANDUM

DATE: $9 / 20 / 63$
SUBJECT: Microtapeo-PDP-5
TO: All Sales Personnel PDP-5 Distribusion List

FROM: Nick Mazzarese

Microtape is not presently avcilable on PDP-5. A mistoken impression exists thar PDP -4 Microtcrpe prices can be quoted on PDP-5. THIS IS NOT TRUE.

A control is now being designed by Ed DeCasiro and price infometion will be availeble by November 1, 1963.
$N M / i$

TO: H. Anderson
Stuart Grover
Alan Kotok
Gordon Bell
Bob Lane
Len Hantman
Programming Group

Attached is the first draft of a note which contains some random thoughts about PDP-6. These are not completely developed as yet, and the paper also lacks an intended final section.

There is certainly nothing sacred about the contents, and comments (both critical and extensional) should be freely made.

PDP-6 Hardware Configurations, Corresponding Programming Systems and Machine Use.

1. Common Features

1.1 Hardware

1.1.1 Protect Mode

The Central Process will be able to operate in two modes: normal and protect. The protect mode permits an undebugged program to be run while the executive program is in memory with no fear of the undebugged program destroying any part of the executive. I/O commands given by the main program will be trapped so that the executive can insure none-conflicting use of I / O devices. The hardware will have two boundary registers which indicate the upper and lower core limits of the main program. When in protect mode any memory reference outside the bounded area of memory will trap to the executive program.
1.1.2 Desirable Hardware Features

It is extremely desirable to have no options in the central processor. The reasons for this from the production, checkout, design and software point of view are obvious. An additional desirable feature would be for each system to have the ability to be completely self-contained, i.e., need no support from any off-line equipment. The reasons for this are many fold, in particular it is generally true that the computer is its own best I/O Processor, if one can afford to perform I/O on-line.
1.1.2 Desirable Hardware Features (Cont'd)Off-line equipment is by its very natureundesirable if the computer can perform the normaloff-line functions in an economical way on-line.The last reason for providing self-containedsystems is that a user buying a minimum system notbe required to provide off-line supporting equipment.
2.0 Minimum System
2.1 Configuration
2.1.1 Basic EquipmentCentral processor, 16K memory, 1 type 33 teletype
KSR, 1 dual micro-tape transport and control.
2.1.2 Peripheral ConsolesAdditional consoles consisting of 1 dualmicro-tape and 1 type 33 teletype. The equipmentspecified in 2.1.1 is sufficient for a usable computingsystem. The additional consoles are to replaceoff-line program preparation equipment.
2.2 Operati on
2.2.1 Program Preparation
All program preparation will be done on-line in a simple time sharing mode. This implies that the supplied programming system will contain at least a text editor which works from micro-tape to teletype and teletype to micro-tape, and an executive program which will permit the "peripheral teletypes" to be serviced in a simple time sharing mode while the main program is running. Note particularly that the data rate of the teletypes is extremely slow compared to

2.2.1 Program Preparation (Cont'd)

the central processor speed, and the use of three or four teletypes simultaneously with the operation of main program will not significantly slow down the operation of the main program. It is this feature which makes using the central processor for tape preparation, simultaneous with the running of the main program, attractive

2,2.2 Systems

All systems program and the program library (symbolic and binary) will be stored on micro-tape. In addition all user's program will be on personal reels of micro-tape and each user may have a sufficient number of micro-tapes to contain the information he needs.

Distribution of DEC Systems will be on micro-tape rather than paper tape or punched cards.

2.3 Advantages

2.3.1 Self-contained System

The minimum system so specified is completely self-contained. That is, there is no need to have off-line peripheral gear such as key punches, teletype units, or card to tape equipment. If a printer were added to the system it would be advantageous to add it to the central processor rather than having off-line tape to printer station.

2.3.2 Program Preparation

The full capabilities of the PDP-6 are available for tape preparation. The editing function can be performed in a sophisiticated manner with the output on a device designed for rapid input to the computer.

2.3.3 Program Storage

All program texts will be on rapid access, compact and easily correctable micro-tape. One advantage of this is the elimination of the need to handle paper tape and punched cards. Another advantage is the elimination of tape (or card) readers and punches.

2.4 Disadvantages

The system must be specified, designed and programmed and workable to the customers. In this case, a computer system depends upon software, which is a somewhat touchy circumstance.

3. Large self-contained Systems

A large self-contained system could be defined as a system like that described in Section 2 with the additional feature that it may be advantageous, because of hardware configuration, to perform a program's I/O asynchronously with the operation of the program. In this case 'asynchronously' means that the final I/O operation may be performed well after the program has finished running.

The basic premise is that a computer has facilities to perform I/O more efficiently than special purpose devices, specially those which use magnetic tape for comminication. However, because of the relative speeds of magnetic tape, and devices which produce 'hard output' (line printers, card punches), it has been advantageous to record all output data on magnetic tape for later off-line processing, rather than tie up the computer waiting for a printer or card punch.

However, the actual computer time used during printing using a 1000 lpm printer on PDP-6 is less than 1%. Consequently, if we could 1)stack output data, so as not to delay the main program.
2) print this later after the program has completed, still not disturbing the present main program.
3. Large self-contained Systems
then we should be able to perform I/O at least as satisfactorily as we could with magnetic tape and off-line stations.

We also have the possibility of performing I/O much better if we have a drum or disc available for output data stacking. 3.1 Configuration

The system will contain all equipment specified in Section 2.1 as well as at least one line printer and possibly large magnetic tape units. However, no off-line supporting hardware is required.
3.2 Operation
3.2.1 Program Preparation

Programs will be prepared in the same manner as the systems described in Section 2.
3.2.2 I/O Control System

The executive routine must have the ability to control and direct the I/O operations. This implies that there will be available to the programmer I/O commands such as the following:

Output data visual
Output data retrievable
Output data visual and retrievable
Associated with such commands must be a statements which specify what data, in what format, is to be output, and statements which specify how the data is to be labeled. The I/O routine would then perform the output operation. If the command were 'output visual' then the data will be printed directly on the line printer, if the printer were available. Otherwise, the data will be stacked on the active output tape (if we were using tape; a drum or disc file if we were using either of the latter) for printing when the printer becomes available.

3.2.2 I/O Control System

The executive I/O Control System would need to keep track of which tapes, drum tracks and/or disc tracks were being used for stacking the output data. It would need to switch from one to the other when the printing of one of the files was completed and that file became available for stacking output data. It would need to know that, for example, if some data were to be output in the 'visual and retrievable' mode, then it must be labeled and stored in such a way that the user could recall it at a later time, by name, and not need to know on what particular device the data were stored. There must also be commands available which allow the user to immediately print a message on-line.
4. Programming Systems

4.1 Users Needs

There are three hasic types of users which will have contact with the PDP-6.

1) Systems programmers
2) Numerical problem solver
3) General problem solver

These three types of users have different needs when communicating their problem to the machine.
4.2 Systems programmer

The systems programmer usually needs to be in intimate contact with the machine, and must have available a language which accurately reflects the structure and organization of the computer.

In particular the ability to specify any machine command at any place in the program, and the ability to precisely specify the allocation of storage are necessary when building systems programs. Features which allow
4.2 (Cont'd) such things as the placement of any "quantity" (such as (a) an octal number, (b) a decimal number, (c) the codes for a specified sequence of characters, and (d) and arbitrary part of an arbitrary "expression") in any specified part of a word are also necessary.
4.3 Numerical Problem Solver

This user requires the solution to a problem which is basically arithmetic (or algebriac) in nature. Since the computer is a tool to perform the computation, the closer the problem description (to the computer) can be to the original problem statement, the better this user is able to use the facilities available to him.

This user has no need (nor should he be so burdened) to become closely acquainted with the internal organization of the machine.

The general class of user under "numerical problem solver" can be serviced with a system such as FORTRAN. In addition, this class may be extended to include "logical problem solver", and a large portion of the class "general problem solver"by the use of a good ALGOL Compiler in place of FORTRAN.
4.4 General Problem Solver

The class includes those people who have problems which cannot be expressed well in the algebraic or algorithm languages, yet have problem which do not inherently relate the machine structure.

4.4 General Problem Solver (Cont'd)

In the past, these people have followed one of three paths:
a) Programmed in machine language, even though the detail available at that level did not necessarily facilitate the problem statement.
b) Programmed in FORTRAN, etc., even though it was sometimes excruciating to express the problem.
c) Developed special purpose languages to facilitate problem solution. Examples of this resulted in the development of COMIT, and DYNAMO, which are special purpose languages intended for research type programming in special and restricted areas.
As an aid to the user who falls in the last category, it would be to our advantage to develop a language which has the following properties:

1) There is a one-to-one correspondence between statements in the language, and machine language.
2) The language has an extensive facility to permit the user to define, and specify the meaning of symbols.
3) The commands in the language are simple to learn, use and read.
4) The processor is sophisticated enough to generate the proper instruction, as specified by the statement and the data names, and recognize any errors that arise.
5) The user has the ability to specify virtually any meaningful machine instruction.
6) Machine language is imbedded in the language.
7) The language has a fairly sophisticated I/O control facility.
8) The language has a structure which permits easy understanding of the meaning of statements in the language.
4.4 General Problem Solver (Cont'd)

The lineage of the language should be a very good assembler mated to a poor compiler. The fairly tricky problems of storage allocation, index register and accumulator assignments, and statement parsing are removed, while the trivial problems, such as realizing that a symbol cannot be indexed since it was defined as a simple storage location, may be handled automatically.

Briefly, the problems a compiler can handle simply, will be handled, while the more difficult ones are left to the programmer.
4.5 Summary

It is desirable to provide programming language for (a) the user who must commune with the machine intimately.
(b) The user who must deal with the machine on an instruction by instruction basis, but does not need to be aware of the lowest level of detail about the machine.
(c) The user who has no need nor desire to know any but the grossest level of detail about the machine.
Ideally, all three needs would be satisfied by one language; practically we will need $21 / 2$ or 3 levels of language.

SUBJBCT: \quad RDP-5 Assembler Wxitemp
TO:
pDP Dimtribution List
EROM: John Koudela. Jr.

The attached PDP-5 Assembler Write-Up may be referxed to as operational. Revision A. Tapes for the Assemblex that corxespond to this Revision A Write-Up may be reyuested by the usual means from the Central PDP Program Library.

PDP-5 PROGRAM LIBRARY

```
NUMBER:
    DEC 5-1-S
MAME &
    MAL (Program Assembly Language fur PDP-5)
AURHOR: John Kosdela, Jr. - DEC
DATE:
PURPOSE:
    August 1. 1963 (Revision A。September 20. 1963)
Convert programs from symbolic language to
    machine language
```


Equipment Required

1. Basic EDP-5 with 1024 or 4096- words of core storage and a Conerol Console
2. Teletype Model AsR-33 consisting of:
a) Typewriter (10 cps)
b) Paper Fape Reader (10 cps)
c) Paper tape Punch (10 cps)
(Botes This version of RAL will not operate with the optional Digitronics Model 2500 Paper Tape Reader and/or the Teletype Model BRPE-11 Paper Tape Punch

General Exocedure

Two pass Assembler:
a) Input for pass 1 and 2: symbolic tape in Teletype 8-bit code
b) Output for pass 1: typeout symbol table and error indicatora
c) Output for pass 2: punchout binary tape with origin settings and sum check

Language Detailis

1. Definition of Assembly Language Elements
a) Chasacter: any one of 26 letters, 10 numbers. 27 special characters and 6 non-printing characters (see Attachment I)
b) Words any one or combination of 2 , 3 or 4 consecutive letters or numbers. Words may be symbolic (comsisting of all letters or any combination of letters and numbers) or octal (consisting of octal numbers only)
c) Symbol: a symbol is a special kind of word that specifically represents a memory address.
d) Statement: any one or combination of words preceded and terminated by a Carriage Return Inine Feed combination.
2. Cbaractex Gxoupa: Their Use and Notation
a) Deliniters: terminate characters, words and statements (two or more comsecutive delimiters
 be uned in examplea in thin writemap to indicate⿻ regurxed key strokes for characeers that do not print.
(1) Space (\$ or S/P) charactar ox word dalimieter
(2) Caxriage Return ($\%$ OE C / R) statewent deliniter
(3) Lime Feed (H or L/E) must iwmediately foliow a CR Gor che thatement to be properly delimited: it is not a delimiter by itaclí
b) General Chaxacters: form words

26 Letters
10 (xumbers
c) Control Characters: guide assembly functions

Dollar sign (\$) and of symbolic program		
MLn Sis Sign	(-)	address aritumetic: subtract
		the octal values of two words
Plus Sign	(t)	address axithmetic: add the
		octal values of two words
Period	(0)	Contents of curxent location counter
Asterisk	(\%)	Eollowing symbol resets origin
S1amh	(/)	initiates comment: comment terminated
		by C / R and I / F which also texuinates statement
Lettex i	(i.)	Sets indirect address bit to 1
Jetter z	(2)	Seta page bit to 0
Conuma	(0)	Defines previous symbol as a tag (see below)

d) Special characters: for paper tape editing and formatting:

Rub Out (R / O) all tape channels punched (377)
LeaderwTxailax (4/T) only channel 8 punched (200)
e) I1legal Characters: the following chaxacters will cause error halts in pAL (see section on exror indicators in pay):

Number Sign (*) Code 243
Pexcent (\%) Code 245
At (®) Code 300
A11 codes less than 200
3. Content and Format of a Symbolic Program
a) A symbolic program is a series of statements (one per linel each of which is, in general. translated into 4 octal digita representing an absolute machine ianguage instruction or constant.
b) Each statement consists of 6 fields not all of which need be used to form a valid statement:

Trag	Instruction	i	z	Address	Comment

c) A Tac is one gymbol terminated by comas. It represents the address of a menory location containing the instruction or constant that follows on the same line. A tag may consist. of $1,2.3$, or 4 Characters fxom the General Character Group (except that the letters i or z may not be used alone). mission of a tag generally means that no other instruction in the program refers dixectly to the contents of this mesoory location. Tags cannot be represented by Symbols cowined with plus or minus: cannot conflict with instruction ronemanics; and cannot be the only word on a line.
examples: a.\% symbolic

$$
\begin{aligned}
\text { abcd.jrapg } & \text { symabolic } \\
8977 . \% & \text { symbolic }
\end{aligned}
$$

d) An Instruction is normally one symbolic word terminated by a delimiter and specifically represents one of the machine language instructions defined in the operation rabie (see Attachment II) of the Assemblex. An instruction always consists of 3 lettexs. Two or three instructions separated by apaces can be used and will be combined by the Assemblex with an Inclusive-Or Subroutine fonly the In-outGroup and operate-Group instructions can be so combined). Onisgion of an iastruction generally means that this memory lacation contains constant.
examples:

jrapos	jump
kerb\%	read keyboard buffer
Wiac\%	compl and index AC
tadet	2 s compl add

e) An in ia Control Character terminated by delimiter that directs the Assembler to set the indirect-bit of the lastruction to one (thus the ingtruction specifies indixect addressing). Omission of an 1 causes the Aasembler to get the indixect-bit to zero.
f) $A \underline{z}$ is a Conerol Character cerminated by a delimiter that directs the Assembler to set the page-bit of the instruction to zero (ehus the instruction specifies a reference to core-page zerol. Omission of a z causes the Assembler to set the page-bit to one (thus the instruction spectisies a reference to the current core-page)。
g) An Address is mormally one word terminated by a delimiter and represents the address of a memory location the contents of which is to be used as an operand. An address may consist of 102,3 。 or 4 characters from the General Character Group (except the letter i or z alone). An all-octal address is taken as a right-justified, absolute memory address. A statement may contain two or more addresses separated by plus or minus signs indicating that their octal values are to be combined by addition or subtraction. The Current Location Councer is a memory location in the As sembler, the contents of which specifies the absolute, octal memory address into which the statement currently being processed will be stored. The Current Location Counter may be specified as an address by writing a period (.). Omission of an address generally means that this memory location contains a constant or that the address part of the instruction is formed and inserted by other instructions in the program. Addresses cannot conflict with instruction memonics. Spaces before and after plus and minus signs are optional. If an address appears in a statement without an instruction, it is assigned as an absolute address (i.e.o not as a page address as it is when an instruction also appears). examples:

2\$
abcydx
.+7 (location counter +7
abctrstury
1268
octal $(=0126)$
h) A Comment is any combination of any available characters (except L / F and C / R) occurring between a slash (/) and a c / R and L/E. Such a string of characters is ignored by the Assembler. Comments may continue for two or more lines as long as each comment-string begins with a slash and ends with C / R and L / F.
examples:
/mask to save last 6 bits of ACEX /calling sequence: jms\$subtdy
/ (subtrahend) $\& \downarrow$
/ (return)d
i）A statement may represent an instruction or a constant． A constant may be tagged or untagged and may be formed in any one of the many ways an address is formed． examples： $127+\mathrm{abc}$
. +mapq

100467 CL
octal（ $=0167$ ）
28
octal（ $=0002$ ）

4．The Use of Control Chaxacters
a）Dollar Sign（\＄）signifies the end of the symbolic program and causes the Assembler to terminate the pass in proceas．The Dollar sign need not be delimited．
examples：jmpsabce4
$\$$
nlequ
\＄
b）Minus Sign（ - ）signifies address（or constant）arithmetic and causes the Assembler to subtract the octal values of two words．The Minus Sign need not be delimited．
examples：jwngabc\％－49
dca8．-177 な数
tad\＄xst．p－man98\％
jwps．－$\$ 3.9$
$1777 \$-a b c \$$
．-42%
c）Plug Sign (t) signifies address（or constant）arithmetic and causes the Assembler to add the octal walues of two words．The plus sign need not be delimited．
d）Comen（．）defines the previous word as a tag and causes the Assembler to assign that tag the octal walue found in the Current Location Counter．The Comma need not be delimited．A Tag cannot be the only word in a state－ ment．
examples：rit．andsmask\＄
ctr ghacx
temp．\％d x
e）Pexiod（．）refers to the Current Location counter and causes the Assembler to use the contents of that counter as an address or constant．The Pexiod need not be delimited．
examples j jmp\％。 $+2 \$$
dca\％abcs－．$\$$
tads．$d x$

f) Asterisk (') defines the following symbol as an origin setting and causes the Assembler to reset the Current Location Counter. The Asteriak must not be delimited. An origin declaration must be an independent statesment and may contain two or more words separated by plus or minus signs.

$$
\begin{array}{ll}
\text { examples: } & \# 1200 \not \subset \mathscr{L} \\
& * a b c+17 \not L L
\end{array}
$$

$$
=127 \% \% \quad(=0127)
$$

g) Slash (/) initiates a comment and causes the As~ sembler to ignore all characters following the Slash until a C / R and I / E is found.
h) Letter i (i). The indirect address bit of an instruction is always set to zero unless an i is given. The i must be delimited.
examples: jmp\%i\$abc\$ rst.gis (w0400)
i) Letter $\mathrm{L}(\mathrm{z})$ 。 The core-page bit of an instruction is always set to one unless a \underline{z} is given. The z must be delimited.
examples 8 tad\$zontrix

$$
\begin{aligned}
& \operatorname{conl}_{1} \text { gzs } \\
& \text { jmsgi.gzsabcq }
\end{aligned}
$$

5. Notes about Indirect Addressing
a) It is single-step and adds 6 microseconds to the instruction access-execution time.
b) An instruction on any given core-page can indirectly address any memory location on the same page or on page zero.
c) When an instruction on any given coremage indirectly addresmes one of the memory locations 10 through 17 (on page zero) the contents of that location is first indered then used as the effective address.
d) When a memory location is indixectly addressed the full 12-bits contained in that location are used as the Effective Address (not just the address part).
6. Motes about Rage Addressing
a) An instruction on any given core-page can directly address any memory location on the same page or on page zero.
b) Page addressing is simplified by using progran sheets premumbered with page addresses; a set of 4 sheets represents one core-page:

Sheet 1:	page addresses	$0-37$	(octal)
Sheet 2:	page addresses	$40-77$	(octal)
Sheet 3: page addresses	$100-137$	(octal)	
Sheet 4: page addresses	$140-177$	(octal)	

7. Indirect and Page Addressing Examples
a) Example 1 (A program begins on Page 1 at memory location beg and loads the Accumulator with the contenta of location temp on Page 2).
$\frac{\text { Page } 1}{\text { beg.cla }}$
tad i abc

Page 2
:
temp, $x X X X$
abc, temp
b) Example 2 (same as Zxample 1 except using Page 0)
Page 0
\vdots
bege cla
Page 2
\vdots
abc.temp - temp. $X 2 X X$ -
c) Example 3 (same as Example 1 except using Auto-Indexing Registex 10 on Page 0)

Page 0

0
10, temp-1

Page 1
beg, cla
tad i z $1 \not 0$
:

Page 2
temp, Xxxx

Perforated Tape Formats

1. Symbolic Tape
a) This is a tape that is produced by typing the Symbolic Program (written in assembler language) on a suitable tape typewriter such as a Rlexowriter or Teletype ASR-33. This tape is processed by an assembler which. in turno produces a Binary Tape (see below).
b) The symbolic tape read and processed by PAL must contain standard Teletype 8-bit codes. Such a tape can be directly produced on a Teletype ASR-33. A tape typewriter that generates any other kind of code can be used, but then the resulting symbolic tape must first be translated to weletype 8-bit code before being processed by PAL. A PDP-5 can be programmed to accomplish such a translation.
c) The format of a symbolic tape is as follows:
(1) Leader: about 2 feet of Rub Out codes; see Symbolic rape Preparation in section on operating Procedures.
(2) Chaxaceers representing symbolic program.
(3) Trailer: Same as leader.
d) Rub out codes can occur anywhere in the symbolic tape and are ignored by RAL.

- Two or more consecutive delimiters are taken as one. Spaces, line feeds, and carriage returns maye therefore, be used to format for sypeoin and printout.
f) A statement mnat be terminated by a Carriage Return immediately followed by a Line reed. The absence of a Line Feed results in an exror print-out. Line Feeds alone are not delimiters. Two or more bine Feeds can follow a C / R for formatting purposes $\mathrm{f}_{\text {o }}$ but otherwise hhosld never occur. A statement will not be delimited if it ends with the sequence gitio

2. Bisary Tape

a) This is a Tape that is produced by the Assembler and represents the absolute, nachine language version (object program) of the symbolic program (source prom grame.
b) The format of a binary sape is as follows:
(1) Leader: about 2 feet of Leader-Trailer codes.
(2) Characters representing the absolute, machine language program in easy-tomead binary (or octal) form. This section of tape may contain characters representing instructions (Channels 8 and 7 not punched) or origin resettings (Channel 8 not punched, Channel 7 punched) and is concluded by 2 characters (Channels 8 and 7 not punched) that repreacnt a "check-sum" for the entire gection.
（3）Trailerg same as leader
c）Example of the format of binary tape：

Tape Channel	Memory Location	Contente
876545321		
10000．000	Leader－Txailer Code	
01000．010		
00000.000	Origin etting of 0200	
00111．010		
00000．000	0200	cla
00001．010		
00111.111	0201	tad 277
00011.010		
00111.110	0202	dea 276
00111.100		
00000．010	0203	hle
01000．010		
00111．111	oxigin wetting of 027 ＂	
00000.000		
00101．011	0277	0053
00001．000		
00000． 111	a	
10000．000	Lead－mrailer Cod＊	

Symbol rable
The aymbol table in printed at the and of paxa 1 ．It consint of the list of uniqus mybolic tage and addresses used ix the symbolic program together with theix corresprading abaolute ad－ dreaseag（in octal）as asigned by PAL。

1．Tage munt be uniquig duplicate Taga axe in erxor and moted in the printout by the latter dt（duplicate tag）．

2．Each adiress waut refer to a tagi if auch a tag doas not axist，the address in said to be undefined and is noted in the printout by the intters ua fundefined addrese）．

3．Example of the format of a symbol table primtout：
Syyobol．
Nos．Addr．

ほax

1277
ctr 742
27
22
next
级选

1. Symbolic tape preparation using the ASR-33
(see Attachment III for diagram of ASR-33)
(a) Turn the Line Switch to offm-Line to disconnect the ASR-33 from the PDP-5.
(b) Turn the Power switch On.
(c) Check quantity and positioning of typewriter paper and paper tape for the punch.
(d) Press the Punch on Button.
(e) Generate about 2 feet of Rub Out codes for leader by first pressing and holding down the Rept key and then pressing down the Rub Out key once: continue to hold down the Rept key until the necessary amount of leader has been generated.
(f) Type the symbolic program.
(g) Generate about 2 feet of Rub Ont codes for trailer.
(h) Tear-off tape on cutting edge of punch output slot.
(i) Verify tape as follows (suggested procedure):
(1) Turn Reader Switch to Free
(2) Place tape in Reader
(3) Press Punch Off Button (so the tape read is not duplicated)
(4) Turn Reader switch to Start
(5) The entire contents of the tape is printed for visual verification and the reader stops automatically at the end of the tape.
2. Symbolic tape editing using the ASR-33
(a) An incorrect charactex may be typed while preparing the symbolic tape. Use the following procedure to correct the tapes (the error is detected N characters after typing the incorrect character) press the punch B.SP。Button $N+1$ times to backspace $N+1$ characters. press the Rub Out key $W+1$ timea, and continue.
(b) Characters, words, or statements can be inserted or deleted after the entire symbolic tape has been prepared. Use the following procedures to accomplish such changea:
(1) Insertions: duplicate the tape up to the point at which it is desired to make an insertion by turning the punch on, placing the tape in the reader, starting the reader, and stopping the reader with the reader switch using the printout as a guide). Hext, type the insertion. Continue by pressing the reader switch to start and duplicate the remainder of the tape.
(2) Deletions: duplicate the tape up to the point at which it is desired to make a deletion (see Insertions). Next, turn the punch off, staxt the reader, and using the printout of the information to be deleted as a guide, stop the reader. Continue by turning the punch on and starting the reader to duplicate the remainder of the tape.
3. How to assemble a program with PAL
(a) Computer: turn on computer power: turn off single step and Single Instruction switches.
(b) ASR-33: turn on power; tuxn on line switch to connect ASR-33 to PDP-5; turn ofe punch; set reader switch to Free.
(c) Paper: checks quantity and positioning of typewriter paper and paper tape for the punch.
(d) Set the PAL program gape into the reader and set the reader switch to stop.
(e) Check that the so-called RTM Zoader (see Attachment IV) is, as it always should be, stored in locations 20 through 40.
(f) Load PAL: set switch Register (SR) to 0020; press Load Address, then start. Start the reader. When the entire tape has been read-in, the reader will automatically stop. the Console Run light will be off, and the Accumulator will contain 0200. (Th . s is the starting Addreas. SA_{θ} of PAL) If the loading process ends with other than 0200 in the AC see "Error Indicators in PAL" at the end of this section.
(g) Set the Symbolic tape of the program to be assembled into the reader.
(h) Set Switch Register (SR) ux apecify the assembly pass number and the page-number origin as Eollows:
(1) SR bits 0-1 specify pass i or 2. (these bits must be set before starting each pass; in this way. passes can be repeated or omitted if necessary: if these bits equal zero or three. gax will respond with an exror indicator)
(2) SR bits 7-11 may specify a page-number origin (for a 2024 mord pisem wet these bits for one of the pages 1 through 7: for a 4096 word PDPw 5 set theas bits for one of the pages 1 through 37 : if these bits equal wero, the oxigins will be taken from the symbolic tape: origins on tape specifying page zero cause PAN to ignore these
bits; all page-number origins on tape except the first one, are incremented or decremented by the difference between the first page-number origin on tape and the SR bits 7-11; thus, the same relative positioning of program segments is retained.)
(3) Note that an absolute-address origin on tape in effect consists of a page-number origin and a page-address origin. The latter is always taken from tape; $S \mathbb{R}$ bits $7-11$ only effect the page-number origin。
(4) If SR bits 7-11 are zero and no origins exist on tape. PAL will assume an origin of 0200 .
(i) For pass 1 turn punch off; for pass 2 turn punch on.
(j) Press Continue, wait for the program to get to the reader wait loop (in pass 2, leader will be punched before the program gets to the reader wait loop). then start reader to process the specified pass.
(\%) Repeat mteps $g_{s} h_{\theta} i_{\text {, }}$ and for each pass.
4. srror Indicators in PAL
(a) After loading pAL itself, if the AC is not 0200 , a sun check exror has occurred (the computed sum check is in the AC): try loading again.
(b) The following errors cause the indicated printouts:
(1) ST (then halt): Symbol Table full; use less symbols by using more address arithmetic or divide program into several mall segments and assemble each separately (PAL is get for a 1 K PDP-5 which allows for 60 (decimal) zyrabols each occupying 3 words from 1513 through 1776 (octal)). The location gful (at location 141 absolute) contains 1777 which limaita the size of the symbol table. On a 4 K PDPe 5 gful can manually be changed to 7776 to serve as the upper limit of the table. The printout S_{5}^{5} may also indicate Mewory Limit (i.e.o an attempt has been made to store an asembled atatement in rocation 2000 in a 1 K PDP-5 or Location 0000 in a $4 \mathbb{K}$ pDP-5). Location milm at 133 absolute is set to 2000 in PAI and may be changed manually to 0000 for a $4 K$ PDP 5 .
(2) DTg(t) (and Halt): puplicate Tago $=$
(3) DA\&f (and continue printing symbol tabla): Undefined Addreas.
(4) IF (then halt): No INine Feed code inmediately following a Carriage Return code.
(c) The following exrors cause computer hangup:
(1) paper tape ran-out of reader: reader stops automatically and computer continues to look for a character (e.g. dollar sign not found at end of symbolic tape)
(2) trying to read paper tape with the reader switch in the stop or free position: generally a normal. condition: press start reader.
(3) trying to input or output with ASR- 33 power switch or line switch off.
(d) The following errors can only be visually detected:
(1) paper tape ran-out of punch: it keeps trying to punch.
(2) trying to punch tape with punch off when punching is desired: computer hangup if trying to punch binary tape; printout only if trying to punch. ASR-33 8-bit codes.
(e) Illegal Character codes are 243 (\#), 245 (\%), 300 (@) and all codes less than 200. If any one of these is read by PAL, it will be displayed in the $A C$ and the computer will halt at absolute address 1237.

Useful Mechanical Detaila

1. General Storage Allocation for PAL

Page
0

1
2
3
4
5
5
6

$$
6
$$

$$
7
$$

Abse Addresses

$$
\begin{array}{r}
0 \\
1-7 \\
10-17 \\
20-40 \\
41-177
\end{array}
$$

$$
\left.\begin{array}{r}
200-377 \\
400-577 \\
600-777 \\
1000-1177 \\
1200-1317
\end{array}\right\}
$$

$$
\left.\begin{array}{l}
1320-1377 \\
1400-1512
\end{array}\right\}
$$

$$
\left.\begin{array}{l}
1513-1577 \\
1600-1777
\end{array}\right\}
$$

Contents
Program Counter Reserved for Interrupt Auto-Indexing Registers RIM Loader common Constants

```
Main PAL Routines
(687 10 =12578 Locations)
```


Operation Table

 $\left(123_{10}=173\right.$ Locations: $41_{10}{ }^{18}$ perations)$$
\begin{aligned}
& \text { Symbol Table } \\
& (181=265 \text { Locations: } \\
& \left.60_{10} \text { Symbols }^{2}\right)
\end{aligned}
$$

2. Notes about Octal Addresses
(a) The following table defines the PDP-5 memory organization:

Page Nos. (oct)	$\frac{1 \mathrm{~K} \text { Mem }}{0-7}$	$\frac{4 \mathrm{~K} \text { Mem }}{0-37}$
No. of Pages (dec)	8	32
Page Addresses (oct)	$0-177$	$0-177$
No. of Locations per Page (dec)	128	128
Absolute Addresses (oct)	$0-1777$	$0-7777$
No. of Locations per Memory (dec)	1024	4096

(b) The relations between page numbers, page dddresses, and absolute addresses may be useful in coordinating work with program sheets and the Computer Control Console:
(1) Bits $0-4$ (taken as an integer) of a 12 mit absolute address is the page number.
(2) Bits 5-11 (taken as an integer) of a 12-bit absolute address is the page address.
(3) Given an octal page number and page address. find the octal absolute address:

Octal
$\frac{\text { Page No. }}{26}$

Page Addr.
010110
10110

101100001010
5412

3. AsR-33 8-bit Character Code Trimming and Packing

(a) Normally, 8-bit Characters are trimmed to 6-bits (the 6 least significant) and stored two per word.
(b) The L / F and C / R codes are specially treated:
(1) I / F Code 212 is forced to 43 thus rendering the 性 Character illegal since its code. 243. trimaned would be 43.
(2) C / R code 215 is forced to 45 thus rendering the \% character illegal since its code. 245. trimmed would be 45 .
(c) Deletes and Blanks appear to present problems, but are handled as follows:
(1) Delete code 377 if trimmed would be 77: the ? character, code 277, when trimoed is 77. Delete codes. however, are never trimsued and stored. but occur only in the off-line tape preparation procedure. Deletes are filteredout when read as input to PAL.
(2) The use of a Blank Character for which the code would be 000 is prohibited. Note that the @ Character, code 300, when trimmed is 00 . The @ Character is illegal since 00 is used by PAL to define the end of variable length symbols.

Attachment I

ASR-33 8-Bit Character Set

Character	$\begin{aligned} & \text { 8-Bit Code } \\ & \text { (in actal) } \end{aligned}$	6-Bit Tximmed (in octal)	Remarks
A	301	01	All letters
B	302	02	print as
C	303	03	capitals only
D	304	04	
E	305	05	
F	306	06	
G	307	07	
H	310	10	
I	311	11.	
\pm	312	12	
K	313	13	
L	314	14	
M	315	15	
H	316	16	
0	317	17	
P	320	20	
Q	321	21	
8	322	22	
S	323	23	
\%	324	24	
U	325	25	
V	326	26	
W	327	27	
X	330	30	
\%	331	31	
z	332	32	
\varnothing	260	60	
1	261	61	
2	262	62	
3	263	63	
4	264	64	
5	265	65	
6	266	66	
7	267	67	,
8	270	70	
9	271	71	

```
Attachment I (Continued)
```

Character	8-Bit Code (in octal)	6mBit Trimmed \qquad	Remarks
:	241	41	Hold Shift Key
*	242	42	Hold Shift Key
\#	243	43	Illegal in PAL
\$	244	44	Hold Shift Key
\%	245	45	Inlegal in PAL
\&	246	46	Hold Shift Key
*	247	47	Hold Shift Key
1	250	50	Hold Shift Rey
)	251	51	Hold Shift Key
*	252	52	Hold Shift Key
+	253	53	Hold Shift Key
0	254	54	No Shift
\sim	255	55	No Shift
	256	56	No Shift
1	257	57	No Shift
:	272	72	No Shift
:	273	73	No Shift
$<$	274	74	Hold Shift Key
$=$	275	75	Hold Shift Rey
7	276	76	Hold Shift Key
3	277	77	Hold Shift Key
(2)	300	00	Illegal in PaI
0	333	33	Hold Shift Key
\bigcirc	334	34	Hold Shift Key
-	335	35	Hold Shift Key
\leftarrow	336	36	Hold Shift Rey
\leftarrow	337	37	Hold Shift Key
Leader/trailer	200	Nevex Trimmed	Computer output only
Line Feed	212	43	Forced conversion
Carriage Return	215	45	Forced conversion
Space	240	40	OK
Rub-Out	377	Never Tximmed	Filtered-out
Blank	000	Mevex Trimamed	Inlegal in PAL

Attachment II

PAL Operation Table

and	0000	Logical And
tad	1000	Two's Complement Add
isz	2000	Index and Skip if zero
dea	3000	Deposit and clear AC
-ims	4000	Jump to Subroutine
jmp	5000	Jump
iot	6000	In-Out Transfer
opr	7000	
nop	7000	No Operation
cla	7200	Clear AC
cll	7100	Clear Link
cma	7040	Complement AC
cral	7020	Complement Link
rax	7010	Rotate AC and Link Right One
ral	7004	Rotate AC and Link Left One
rtr	7012	Rotate AC and Link Right Two
rtl	7006	Rotate AC and Link Left Two
Lac	7001	Index AC
sma	7500	Skip on Minus AC
s2a	7440	Skip on Zero AC
spa	7510	Skip on Plus AC
sna	7450	Skip on Non-Zero AC
snl	7420	Skip on Non-Zero Link
sz1	7430	Skip on Zero Link
085	7404	Inclusive or Switch Register to AC
hlt	7402	Elalt
ion	6001	Turn Intexrupt on
106	6002	Turn Interrupt off
ksa	6031	Skip if Keyboard-Reader Prlag $=1$
ksec	6032	Clear AC and Keybeard= Reader Flag
kxa	6034	Read Keyboard-Reader Buffer, Static
1crb	6036	Clear AC, Read Keyboard Buffer Clear Reyboard Flag

Attachment II (Continued)

taf	6041	Sxip if Teleprinter-Punch Flag $=1$
tef	6042	Clear Teleprinterapunch Flag
tpe	6044	Load Teleprinter-Punch Buffer, select and print
t1s	6046	Loed Teleprinter-punch Buffer. select and print, and Clear Teleprintex-Punch Flag
cia	7041	Complement and Index $A C$
las	7604	Load AC with Switch Register
stl	7120	Set Link (to one)
91K	7204	Get Link (put in AC bit il)
skp	7410	Skip Unconditionally

Attachment III

Functional Representation of ASR-33

Punch Buttons

REL. Release to remove tape
B.SP. Backspace one character

Reader Switch
FREE Free-wheeling to set and remove tape Control Switches

LINE On-Line, off-Line to connect or disconnect to PDP-5

RIM and BIN Paper Tape Loadexs

1. RIM Loader (Read-In-Mode Loadex)
a) The RIM Loader is a minimum-length basic paper tape loader for the PDP-5. It is initially stored in memory by way of the Control Console switches. Once stored. it is considered to be a permanent occupant of locations 20 through 40 (absolute octal addresses) and caxe should be taken to keep it from being destroyed.
b) A paper tape to be read-in by the RTM Loader must be in RXM format:

Tape Channel

c) A tape in RXM format is generally concluded with Address $=0000$ and Content $=S A-1$. In this way. the starting eddress (SA) of the routine just loaded is stored into the Program Counter of the PDP-5. The next instruction to be executed will then be taken from the SA. in $_{0} \mathrm{e}_{0}$, the Program Counter is indexed first, then the instruction is accessed). Therefore, the loaded routine can be gaid to be self-gtarting. It is suggeated that this procedure always be uฆed. If it is not desirable for the routine to be self-starting, simply store halt instruction in the SA. Pressing continue could then start the routine.
d) The RTM Loader can only be used in conjunction with the ASR-33. 10cps reader (not the optional Digitronjes Model 2500, 300cps reader). Because a tape in Rm format is, in effect, twice as long as it need be, it is suggested that the RIM Loader only be used to read-in the BTH Loader when using the ASk-33 (see Ttem 2 or this Attachment).
e) The complete PDP-5 RTH Loader (SAM 20) is as follows:

Sos g) To load a tape in RTM format. place the tape in the reader, set the SR to 0020, press Load Address, press start, and start Reader.
2. BIN Loader (Binary Loader)
a) The BIN Loader is used to read-in the machine language tapes (in binary format) produced by PAL. A binary formatted tape is about one half the length of a comparable RIM formatted tape. It can, therefore, be read-in about twice as fast as a RIM tape and is. for this reason, the more desirable format to use with the 10 cps ASR-33 reader.
b) The format of BIN tapes has been described (see pages 8 and 9).
c) After a BIN tape has been read-in, one of the two following conditions exist:
(1) No check sum error: halt with $A C=0$
(2) Check sum error: halt with $A C=$ (computed check sum) - (tape ck sum)
d) The BIN Ioader in no way depends upon or uses the RIM Loader.
e) To load a tape in BIN fomat. place the tape in the reader, set the SR to 1777, press Load Address. press Start. and Start Reader.
f) Remember that PAL produces only a Binary Tape。 the BIN Loader is not punched by PAL.

TO K. Olsen
W. Anderson
S. Olsen
N. Mazzarese
E. Harwood

$$
\begin{aligned}
& 1-9-20-63 \\
& 1-9-30-63 \\
& 1-10-11-63 \\
& 2-10-18-63 \\
& 2-10-25-63 \\
& 2-10-31-63 \\
& 2-11-8-63 \\
& 2-11-15-63
\end{aligned}
$$

DATE September 19, 1963

SUBJECT Turnover Ratio, Major Components

TO

K. Olsen
FROM J. Smith
A. Anderson
S. Olsen
M. Sandler
G. O'Dea

The attached figures denote a rather healthy turnover of major component inventory for the past fiscal year. A turnover rate of five is considered good for our application of this type of equipment.

Memory stacks show an unusually high turnover rate for our type of business. This was mostly due to increasing construction rates throughout the year and the large number of unexpected additional memory orders. A turnover rate as large as this is usually not a very healthy situation. It usually leads to increased manufacturing costs, brought about by the use of overtime to meet slipping schedules caused by delivery delays from component manufacturers. Secondly, increased acquisition costs caused by expanded expediting, air express shipments, etc. Most important of all, increased work-in-process inventories and delivery delays to our customers. We were rather fortunate that Ferroxcube was capable of reacting rapidly to our increased requirements which held delays to a minimum. Arrangements have now been made with Ferroxcube to have a number of stacks on the shelf available for immediate delivery. This will enable fast delivery to our customers while maintaining a desirable turnover rate.

28KSR have the lowest turnover rate due to a decreasing construction schedule for PDP-4. Orders for these printers have been reduced and delivery lengthened out which will result in a more desirable turnover rate.

An overall turnover rate of 15 was maintained over the past fiscal year for all major components with a very minimum of delivery delay. This, I feel, is an extremely healthy situation that I hope can be maintained through our next fiscal year.

DATE September 19, 1963
SUBJECT Status of 16 K Memory Systems
то
K. Olsen
A. Anderson
S. Olsen
M. Sandler
N. Mazzarese

Two systems are completely wired and awaiting modules. Two additional units are approximately 80% wired. Stacks for these systems have been delivered by Ferroxcube. Modules still not available and their status are listed below.

1021	Engineering
1991	Drafting
1992	Drafting
1993	Engineering
1994	Model Shop
4527	Drafting
4552	Engineering Check

INTEROFFICE MEMORANDUM

September 19, 1963

SUBJECT
TO
ce:

MODEL 911 PATCH CORDS
Maynard Sandler
K. Olsen
S. Olsen

FROM Jim Myers

On September 9, 1963, Frank Kalwell and I visited the Component Manufacturing Service.

In response to my inquiry about their late deliveries, I was informed that the difficulties in receiving Ucinite Pins, the difficulties in receiving special wire from Supernant and late ordering from Digital were the main reasons, in that order.

Mr. Owens of Component seems to think that the problem with the pins will be resolved if he has the go-ahead from Digital to manufacture his own. He agreed to stock quantities of wire to resolve that problem.

With respect to the ordering process, I suggest we place larger and more frequent orders, bearing in mind Component's required four week lead time, to avoid our running out of these items and having to wait the minimus four teek pericd for deliveries to begin.

```
VIGITL EQ LA
DIGITL EQ LA
\(v\)
DIGITAL MAYNAD
```


RECEIVED

1963 AUG IS PM 5: 22

DIGITALE EQUPHENT CORP.

MSG 158
TO JILL MEANS FOR BOB OAKLEY
FROM HARAN ANDERSON
IN ANSWER TO MSG 017
LEAVING BOSTON NEWYOTXXXXXXXNEW YORK ON AUG 21 TO JAPAN
LEAVING JAPAN ON AUG 25 TO AUSTRALIA
END GA
OK TU VERY MUCH END JILLV

RECEIVED

I963 AUG I9 PM 2: 52

DIGTTALEQUPMEITCORP. SALES dEPARTMENT

DIGITL EQ LA
8/19/63

MSG. NO. WC-017
TGXMXREAMEXXMWE
MSG. NO. WC-1017
TO HARLAN ANDERSON
FROM JILL MEANS

PLS ADVISE WHENYOU ARE LEAVING FOR AUSTRALIA. BOB OAKLEY WOULD LIKE TO KNOW AND I WILL RELAY MSG TO HIM AT WESCON.

INTEROFFICE MEM ORANDUM

To: R.L, Best
M. Sander
R. Reed
J. Smith
D. Brown
W. Colburn
E. Haywood
A. Koto
J. Myers
A. Hall
R. Savell
B. Scudney
S. Miller
R. Done
R. Cajoler
G. Gerelds
K. FitzGerald
R. Lane
S. Grover
Computer Guidance Committee Members
September 16, 1963
From: Gordon Bell

The PDP-6 prototype is entering final phase of development, and the November 11, 1963 FJCC date for completion may prove tight, In order to display PDP-6 at the conference, the schedule will have to be realized.

I would like to review the schedule, its problems, etc. on Wednesday, September 18,1963 in the engineering conference room at 1:00 pom. This machine is comparable in performance with the IBM 7090 , 7040 series (at . 1 . 3 their selling price) and has been in the design stage for the past six months and is conceptually complete. Now its obsolesence begins. Thus marketing and sales are of the essence. As everyone realizes it is easier to sell a physical product than a well written idea.

LETS GET THE PRODUCT!...

Chererring never hurt anyone.....

From: Bill Long

Type 340 Display Specifications

The following description and preliminary sest of specifications is insanded for internal distribusion and as as basis for a quote to Henry MacDonald of Bell Laboratories. Mr. MacDonald heis already received a verbal description of the Type 340 Display from Alan Tivermb; there hove been no importons changes in the display format or specification since that discussion.

Aplant from PDPabe the input word to the Type 340 Display consists of 18 bits. Input dara is applied to capacitor diode gotes with a selmup time of 2 microseconds, and strobed info a buffer nugister with a pair of clear and set pulses also provided with the inpus data.

This display is cepoble of operatiny in fout modes:

1) Control Word or PoinowPlothing moce. This mode can be used to plor individual points located ar random on the hus face. fu additiong the starting point and various pawamarers for one of the alicmaive modes are ostablished with a control word. With reference to the accomanying skesch emithled Mype 340 Display Insituction Fomat", the display is progiommed with a contral word in the following manner.

A single control word consists of iwo 18:ir halvas. The first half of the control word is ol weys designoped with a 0^{\prime} in bil 6 ; the second half of the control word contuins a 'p in bür b. The second balf of the confrol word establishes the intital storving position in the harizontal axis. Under eernatn cireumstonces in a progrem
is may be desirable to provide a control word to modify a given parameter without altering the horizomial or vertical position of the spot. This can be accomplished by inserving a ' 7 ' in bit 5 of the control word, which serves to Intibit the loading of a new starting position in the horizontal register.

Bits 0 and l in the second half of the control word spacify the mode of operation for the subsequent dafo. These two bits are siored so that all data words following a single control word are interpreted in the mode specified by the previous confrol word. An escape mechanism is provided in each moder in order that the display can be foreed to return to the control word mode for a change in posirion. parameier, or mode.

Bits 2 and 3 of the second half of the control word are used to establish one of four character sizes in the character mode; bit 3 is used for scaling in the vector and incremeni modes.

Bits 8 through 17 in the first half of the control word specify the infricl starting position in the vertictal axis. Bit 5 is again used to prevent loading of the new data in the Y axis regisier only. Bits 2,3, and 4 are used to estoblish one of eight possible intersity levels for displaying of the subsequent data. Bit 1 is celled the Continue bit; this bil is used to simplify the programming of long stroight lines as described under incremens mode below.
2) The increment mode. In the increnent mode an 18 bit dake word will cause the ploring of four successive points. Each poins is specified with 4 birs with the following format. One bit specifies a move in the horizontal direction.

A second bit specifies the ditection of movenent in the horizontal axis. A third bit indicates a move in the verrical directiong while the fourth bit specifies the direction of motion in the vertical axis. Thus with 4 bits one can plot one of eight pessible points immediately adjacent to the present spot location. Four zeros in an increment charccter inhibir motion in either direction and no point will be plotted. In order to increment the spot withour intensifying, the intensity bit ${ }_{z}$ bir i, is made a ?.

Once the display has been progrommed to the increment mode. all incorning date is interpteted as incremen mode date. Escepe from the incrament mode is accomplished by making bit 0 as 'l'. When the ascape bit hes been enabled, the Four specified points are plotted, and an ascape is mede. autometically effected into the control word prior to the next incoming dato cycle.

The Continue feature manfoned above whan used with the increment mode enab les rupid plotring of long straight lines oriented horizontallyg vefically or at 45 degrees. During a Continue cycle, the direstions specified by the first increment data point is mainained unil the edge of the sereen is detected, that is, until either the X or Y registor reads all ones. For example, to draw es horizontal grid line with a single incroment instruction the control word spacifies a given verical pasition, all zeros for a horizontal coordinate, and the continue bit is enabled. The succeeding increment mode dera word specifies move X only to the right and an entive line is displayed across the screen with a single instruction. If is not necessury to enable the
escape bit for a Continue cycle, since escape to control word results necessarily from a Continue cycle.

When the scale bit is enabled, the X and Y registers will be incremented by Iwo. This has the effect of 'double-spacing' the points and is a feature which can be pur to a variety of useful purposes.
3) Vector mode. The vector mode provides a means for displaying sfraight lines belween two points withoun specifying any inwbeiween points. The vecior mode date word consists of 8 bits of DelramX informationg 8 bits of Delfaw-Y informarion, on intensity bis and an oscape bit. Delia X and Deila Y each comprise seven magnitude bits and one direction bit. Since the display area consils of a 1024×1024 point matrix ${ }_{g}$ the maximum length vector which can be drewn with a single instruction is $\pm 1 / 8$ of the display width. There is no limisiasion for a minimum length vector.

The escope and intensity bits are used the same in the vector mode as in the increment mode.

As in the incremen mode the Continue bit in the vector mode enables the drawing of straight lines from any given point within; the matrix to the edge of the screen with a single instivction. However ${ }_{0}$ in the vector mode, any angts, subject to the maximum (or minimum) delfa Yedelia X ratio an be achieved. Here agoing escape to the control word mode is effecied when the edge of the screen is datecred.
4) The Characier mode. We are not prepared at this time to quore specifically on character genertror for the Type 340 Display. Provision will be made for inclusion of a character gemeraror on a modular basis in all dispiays of this type. We expect in the noor future to make fim our plans for the character gonerotor, but dit this time onty the dater format hes been fomally
specified.
Each charucter or symbol will be encoded with 6 bits, packed 3 to an 18 bit word. We shall ultimately provide for a 128 character alphobet, utilizing a pair of case-shifi codes to achieve the required encoding ability. The character genersior also will be capable of perfomingthe space and camiage refurn funcrions upon specific character-like commands. Escaye from the character mode is accomplishedwith another charactermlike code.

The Type 340 is essentially an incremental display, with line generator and character generator available as options. The line generator module contains a highospeed binary rate multiplier and control hardware. One featute of this bincry rate multiplier is iss ability to plot lines at speeds porportional to their lergth; that is, half longth lines require half the plotring fime of full 7 ebif length liness. Each individual poins in the vector or increment mode requires one and one half microsecond ploting fime. There are no firm speed specifications yet derived for the characier generctory however on an incremental basis we should reguire on the order of 30 microseconds per character on the average.

We infend of present to use the standard Type 30 deflection system for the Type 340. The Type 30 will limit us to approximately 35 microseconds per point in the random point-plotting mode; this same detay is initioted whenever a new starting poinf is instructed in the control word. This setmp delay is byopassed when the load inhtbir is ancbled.

Since the Type 340 unllizes the Type 30 deflection system, all repeatabilisyz stability and accuracy speciffications of the Type 30 are applicable to the Type 340. For internal information only, we are curvently working along two fines to increase
plotting speeds over our present capability. We have ordered an electrostatic tube from Thomas Electronics for evaluation; this investigation is proceeding on a relatively low priority basis. In addition ${ }_{y}$ high power ${ }_{\theta}$ high frequency transistors have recently become available which may make possible substantial increases in the plotting speed of our present electromagnetic unit. These transistors should be available to us in the near future for evaluation.

The high-speed photomultiplier light pen will also be available as an option in the near future. Questions regarding light pen should be directed to Derrick Chin.

The system fo: Henry MacDonald consists of the basic Type 340 Incremental Display with line generator and Type 30 deflection system. Alt of the capability described above with the exception of character genasution and light pen will be included in his system. Provision will be made for plugging in a modular character generator when it becomes available. The system price, excluding character generator, for quotation to Bell Labs only is $\$ 28_{z} 600^{\circ}$

This system will be housed in iwo vertical cabinets, with an integrated shelferype table at a comfortable height below the display tube. One cabinet will contain the display hardware ${ }_{0}$ the second the display tube. Apart from PDPa6, the extra space in the second cabinet is available for customer's use. An indicator panel, illustrating the status of all pertinent flipoflops in the display, will be included.

ded
 INTEROFFICE MEMORANDUM

$$
\text { DATE September 12, } 1963
$$

SUBJECT RDP-5 Optiona
TO PDP-5 Diotribution list and FROM R. TTestoy All Seles Pexsonnel.

The 10110 ting options are now available exd will be incliaded on suture eattions of the price $113 t$.

Card Reader end Control Type ${ }^{\prime \prime} 41$
Provides on-Jine weading of up to 200 stendard punched cards per mante in edther alphonumexte ox binexy mode.
$\$ 14.900$
High Speed Perforated Tape Reador and Control Type k750
Reads 8 hole tape at 300 chnmaoters per second.
33.500

Inoremental Plotter and Control Tyoe ish50
Controls the following Calcomp Plotters:

17odel	563	564	565	566
Speed	$\begin{aligned} & 12,000 \\ & \text { steps/min. } \end{aligned}$	$\begin{aligned} & 18,000 \\ & \text { stegs/min. } \end{aligned}$	$\begin{aligned} & 18.000 \\ & \text { steps/min. } \end{aligned}$	$\begin{aligned} & 18,000 \\ & \text { steps/min. } \end{aligned}$
Mrep blze	.01 1n.	. 008 13.	. 01 in.	. 005 sin 。
Peper width	31 in.	32 ins	12 m	12 mb
Price	13.400	25.500	8.900	9.300

TNTERORETCE HEYORAMDRM

DATE: Septexber 13. 1963
SUBJECT: Wew ADA Converakon Equi.paenc Available
10: A11 Cowcermed PROM: I Stephensan

 Prom ous ietailed information prelinimary bullecing ate being made

 Felug Gramselur, SAler Departactis.

BWS/ ©han

Converters and Multivlexers:

Three standard gystens are avinisble for use with PDP° \& or separately, These inchude gereral-purpoge anilog-tomigital coaverter, spechat highomped analog-to-digital convercer, and e general-purpose multipleser.

High-Spesd An Coavertar Model 142:

A Rodel $\frac{142}{} 18$ a vexy higk *peed enit which converts input Foltageg to 10-bic digital informetion 1 n 6 miexoseconds. The aris oparater by waking s surien of simultancous comparisots. Ita belf= correction feature prowides reduced aperture, depeading on the xate of change to che ixpurt.

Specielcarions:

Input Raxige -	0 <0-9 volts (single ended)
Input Cusemat -	± 25 uictomaperes mas.
Oueput -	10 binary bitg. 40° s complemeat regreamtscion for wegaciwe nurabex.
Conversion Time -	6 microseconds
Conemrsion Rate -	asyurioconoxas, up to 166 RC
Accuracy -	. $15 \%+3 / 2 \mathrm{LSE}$
Operstisg meap. -	$70 \pm 5^{8} \mathrm{C}$
Price -	\$16,400.

General Purpose A0 Converter Moded 138
This खmit comverta lmput voitage to a digital number with resolution of six to alawen bics. gwo sixitches convtol the resolution and the Bpeed-accuracy charactexiatic. the table belom shows the total converinion elme ss function of these sutches. The "nusber~of-bLes" swtich controle how msny futormation bits ser available kn che ontput. Thexe will ahso be one adcitiorsh bit read
 a one. so that the quantixacion exrot will be cemened indeperdent of the resolution。 The rasimum coaverston error will be the lue of the maximum skifichtng poire extors shown in the lefehand columa of the

The Model 138 has in input range of 0 co -10 volts, and drives $\ddagger 1$ uicrasmpere. The convarsions are parachronous and may take place iu any rate mp to the inverse of that indicated in the table or the linit of the controlling teqles.

CONTERSLON TIAE
NTMAER OF BITS

MAK STKTCUTM

POINT ERROR	6	7	8	9	10	11
.05\%	60	70	80	90	100	110
. 1\%	30	35	40	45	50	\cdots
. 2%	24	28	32	36	-*	-
-4\%	21	26-1/2	28	$\cdots \infty$	- $-\cdots$	-
. 8%	18	21	-	$=$	\cdots	-0.
1.6\%	15	--	\cdots	--	$\cdots \infty$	-mos

HConversion Erros Mas Suitching Foint Exroz $\pm 1 / 2$ LSS

Gemeral purpoze oultiplexer Conerol Model 139.
This undt is seexgaed cot use with the Model 138。 It will allow up to 6a chamels of infoxmation so be asleiplexad ineo the input of. the ADC. Chanels may be individually sedtessed or sequentially seleceed. Multiplexer ${ }^{0}$ s swicches axe the type 1578 and are purchesed
 contral wrif costs $\$ 3600$.

Modules:
DEG maduleg are acisiable for use in constructing amalogto digitel conversion devices. This sumairy degctibes those sodxles which are specifically designed for Ablapplications.

Lgider fecuorias:
The iadder network is a xesistive divider circuls whick

 berce can be used with nny voltage rasge. The input inpedamen of my of the texminals is at leaset 3,000 ohms, fond the outper iompetance is 900 to 1000 ohms. The mone significant bite bowe sximpast to gujuge
 chsracteristics are shown in the summyy table。

Kguder Metwork Sumary Table

Mredal	20xe	Re. of Clacufts	No. 21 3488	$\begin{aligned} & \text { Th }_{0} \mathrm{D}_{0}{ }^{2} \\ & \text { gra/ } \end{aligned}$	Speed (H2s	Cost
1.363	Bixaxy	2.	8	20	1.0	180
1564	Bitaery	1	1.4	20	8.0	180
1566	${ }^{3} \mathrm{CD}$	2	13	20	2.5	200
1568	bswary	1	12	50	0.3	180
1578	binaty	1	12	84	0.3	

Level amplifiers:
Single ended betage cixcuste switch the precise voleages whick are necessaxy for highosccuxecy coxverelon. The fotput levals

 The asys to the last colum show the resolution with which these units con generally be zeed. Thls mill depend soxwhat om che appliw cationi.

Seqel Ary Lixier Suspagy Tisle

kodel Mo.	Ho. ○8 circuice	\$perc S緆耆	ΔR Cueput	Gencrai Axplica eloza NO_{0} of biess	Cost
4677	4	0, 2	8	spea 8	62
4678	5°	0.3	1.8	ap to 11.	78
4679	4	0.3	5	up te 12	77

 -3 ared -14 ghalcs. Speed viti depend on volcage. The speed shom 18 8or - 3 volts.

Ircerter Agsplif Lex Sumagy Table

Modet No.
1667
4667

No. Ot
Cyrcuatis
6

6

Spered SuB\%
0.05
0.3

31
Cose 78
35
53

Reference Supplies:

The reference supply is used to drive the single-ended bridges or inverter amplifiers, and therefore determines the analog voltage range. These unita are available on a module card and are driven by DEC standard power supplies, +10 and -15 volts.

Reference Supply Summary Table

Output
Modsel No. Voltage
1562
1704
-100
$-10 \mathrm{~V}$

Output Variation
Line, Load, ripple $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$
10 M
20 MV

1. MV

242
0.2 स स

Comperator:
The Model 1572 is a high gain difference amplifier. The Double-ended outputs saturased at 0 and -3 volts. The resolution of the 1572 if sue raillivolt at low frequency. The input voltage range is 0 to -10 wolts, and the input current will not exceed $\ddagger 1$ micrompere. The coman aode rejection ration is less than 5 milivolts equivalent input offisat for a 10 volts comon voltage change at the input and $a 20^{\circ} \mathrm{C}$ temperature change. Potentiometers are awilable for comon mode and offset adjustments.

The switching speed of the comparator circuit depends gtrongly on the driving source, the mode of operation of the unit, and the desired resolution. At least one merosecond should be allowsd. The switching sime as a function of the conersion method and aumber of bits is shows in the table below.

Comparatos Sudtching Times - Type 1572 - Cost $\$ 180$

Counter Converter
Contruous Converter
Successive Approz.

	Time (us)	NO. of Bits
Counter Converter	$0.15 \div 0.05$	$6 \leq \mathbb{N} \leq 9$
Continuous Converをex	$0.15+0.05 \mathrm{~N}$	$6 \leq N \leq 9$
Successive Approz.	0.2 N	$6 \leq$ x ≤ 9
	2.8 нs	N $\times 10$
	9 แ*	- 11

TIme (us) No. of Bite

Malciplexer Switches:
These units cen switch sigmale of up to 12 volts. The speed and offeet voltage are functions of the driving source and method of use. The table below shows typical specificacions whes thess units are used to drive 1572 comparator circuic.

The control aignsis include a 3 -iuput gate per awitcho A 5 magacycle square wew should be provided as a carrier for the gate input to the suitcho

Multiplezer Suitch Summary

Model Ho.	Offzet	On Ressistance	Leakase	Storage cime	Cap.	Cost
1578	200μ *	30 oluas	2 ns	200 \% 38	10 pf	\$425
15781	100μ \%	50 ohan	3 มa	800 228	10 pt	\$425

*ote: The speificstions show bere axe for genern spplicacions. Bulletins mvailable on the individusl modules show detailed specifications for special uses.

Digital Ciscuics:

The Type 4226 is Secial to Parallel sasembler for succesefrl approximation type Aralog-to-Digital converces\%. It contains fous flip-flop stages and sequemce genextior circuit. The two pulse inputs, set and reset, are opezated ire symchronousism. Whenewer the Bet ingut is activated, the mext flip-fiop in line vill be set to the oxtereate. Whenever the clear input is activated. the last flip-ilop so have beer ser will be seset. ghe clear input may be juxpered so that the fixet flip-fiop cun be set or cleared as fiesired.

The module testing is continuing with Don Zereski and Russ Winslow carrying most of the load. This is covered in a separate report (included).

Additional activities in the module assembly have been mainly centered around the soldering and drilling of boards. There are a vast number of problems here that need the attention of a fulltime man.

Briefly, they are in the following areas of activity:

Silk Screening

1. More accurate screening
2. Multiple screening - 8 boards at a time
3. Etching and plating

Drilling

1. Master drilling templates
2. Multiple drilling

Photography

1. Multiple exposures of positive

P.C. Boards

1. Increasing tolerence
2. Handling of large boards
3. Eyeletting
4. Registration of two-sided boards

Component Insertion

1. Hole locations on drilled boards
2. Resistor insertion
3. Diode insertion
4. Other components

Soldering

1. Board solderability
2. Component solderability
3. Fluxing
4. Cleaning - transipads

Mounting Panel Assombly

1. Assembly tolerences
2. Nut driver
3. Strip lugs
4. Screw drivers

Other

1. Wire wrap of panels
2. Wire wrap of bays

The list of modules tested on the Automatic Module Tester is steadily increasing.

In the last four months we tested almost 9,000 modules, 2,755 of which were tested during September.
: We save \$2-5 each time we test a moḍule.
Attached is the most recent list of modules being tested, This includes the first of the flip-flops, 4201.

Future plans include 16 column high speed printer. The logic is built and we expect the printer October 30. This should be a saleable product around December 30 , in the $\$ 15,000$ price range.

Micro tape will also be added March 1.
The addition of these two items to the tester should increase its value to the company as a demonstration tool.

Module types presently being tested:

Flip-flops to be added via keyboard:

1201	4202	4216
1204	4209	4217
1209	4213	4218
1213	4214	

Sequence of module types to be added after flip-flops:
C-D Gates
Pulse Amp.
Pulse Generator
Delays

FROM: Ken Wakeen

Reaction to the concept of testing devices using a computer as the control element has generally been excellent.

There has been some concern over the price compared to the usual methods of testing. It is more expensive; however, the flexibility of computer control makes it attractive to largevolume producers and to those who require data-logging capability.

We feel that a couple of articles in the trade journals will help to "educate" all levels of management to our concept. These articles will be started on October 3, 1963.

Below is the latest status of our Module Tester sales activity:

Resistor and Module Tester Sales

Quotes to Customers

Other Prospects

Burroughs Corporation (Tireman).	Asked for prelimenary information. Anticipating a government contract.
Burroughs Corporation (Plymouth)	Cut back in production, still interested.
Fairchild Semiconductor	Competing here with Fairchild Equipment Division. Chances slim.
Sylvania - (Woburn)	Wakefield Division of Sylvania building something for them. Woburn not confident of their ability to do the job.
RCA, Somerville	Are trying a piece of gear built for micro-module program. If it does not work out, they will look to outside sources.
Motorola	Just starting on solid circuits program. They will be'in a better position to consider equipment requirement January l. Sent specs. to Dan Noble.
Beckman	Q.C. Manager saw our tester 3 weeks ago. Alan Ross says there is a strong interest here.

\therefore INSTALLATION (FRONT VIEU)
1
ORE MEMORY
FAST
CHOE゙2
HUNCH
TTY
CARAR READEV
DISPLAY
o- micro tape control
UNIT

POINT-PLOTTING AND/OR CONTROL WORD MODE

VECTOR MODE

Incremental MoDe

ChARACTER MOOE

DATE Sopiember 12,1963

SUBJECT UPCOMBNG DEADLIWES FOR TECHNICAL CONFERENCE PAPERS
TO
R. Best

FROM Siu Grover
J. Fodiman
G.Bell
H. Morse
T. Srockebrend
R. Doane
R. Savell
A. Blumenthat

CC K.Olsen
H. Anderson
S. Olsen

Paper calls have bean anounced for wo conferences of infesest, with manuscript deadines as follows:

HEEE Mar. $23 \mathrm{~m} 26_{0} 1964$	New York	Deadine Ocr. 18
SICC May $5 \mathrm{~m} 7,1964$	Washington. D.C.	Deadine Oct. 25

As usual I hove the essential informafion on these meesings and will be glad to provide any writing, ediring, or preparation services desired.

DATE September 11. 1963
SUBJECT Midwestern Instrument: " Tape Deck Zyicing
то
K. Olsen
(H. Anderson

FROM R. Boisvert
H. Cxouse
S. Olsen
R. Best
N. Mazzarese
G. Bell
W. Hindle
D. Morse

The price structure of the "tape deck" has been finalized by Midwestern Instruments:

$$
\begin{array}{cc}
2=9 & \$ 12.400 .00 \\
10-14 & \$ 10.145 .00 \\
15-24 & \$ 9.534 .00 \\
25-49 & \$ 9.064 .00 \\
50-99 & \$ 8.302 .00 \\
1004 & \$ 7.936 .00
\end{array}
$$

Mhis price schedule includes M3000 with IBM compatible heac and photo tape sensing and excludes cabinetry.

SUBJECT The development of a program of technical diplomacy for computers.
Nick Mazzarese
FROM Gordon Bell
Computer Guidance Committee Members

Rationale

1. Interaction of technical personnel between Digital and customers is desirable for:
(a) Current sales
(b) Development orientation
(c) Avoidance of insular outlooks
2. Reinforce feedback between Sales-Engineering, which in our smaller days was carried out informally. This is particularly necessary for new-comers in either area. (In fact, an "informal" training program may be necessary.)
3. An efficient training program for both salesmen and engineers is to talk to customers as various teams.

Implementation

1. Organized by Sales.
2. The people below are to be called on to make customer contact in the systems design and or programming areas ten percent of the time. (The average taken over a year.) Perhaps if this figure is not reached, we are not realizing the full potential of the people.

Len Hantman	Robert Savell
Tom Stockebrand	Steve Lambert
Dit Morse	Roland Boisvert
Steve Piner	William Long
Dave Fellows	David Brown
Gino Collecelli	
Alan Kotok	

INTEROFFICE MEMORANDUM

SUbject Casetaria Opezatan
TO Wozks Committee FROM Henry J. Csouse

The Cafeteria has been in operation for one year uncez the management of robin Vending Service.

The Eisst six months of the operation wexe at a losse Digital Equipment Coxporation incurred half of the loss for that period. \$725.00.

Tobin Vending Service has been operating the cafeteria for the past six months on a profit and loss basis. The sales have increased steadily since Amne Staples began supervising the line. A protit of five per cent on $\$ 7,300,00$ sales for an eleven week period, beginning June, 1963, axe an indication that the cafeeseria can stand on its own.

A xeview of equipment needs was discussed with John Tobin. John agreed to accept partial responsibility for the purchase of new equipment.

Tobin Vending Service

Hot Food Warmer	$\$ 110.00$
Sandwich Unit	$\$ 590.00$
Worktable	$\$ 270.00$
Utensils (pots, pans and ss knives	
forkes, spoons)	$\$ 970.00$

Digital Equipment Cosposation

Fryex
Grille
Hood (Kitchen, wixing included)
Plastic Trays $\$ 18.92 / 12$ (300)

$$
\begin{array}{r}
\$ 350.00 \\
\$ 491.70 \\
\$ 1.200 .00 \\
\$ 474.00 \\
\hline \$ 2.715 .70
\end{array}
$$

Paper rrays $\$ 0.065 / \mathrm{ea}$, usage....4. $000 / \mathrm{mo}$.
Digital Equipment Corporation will rainstall the dishwasher.

Vending Operation *
Tobin Vending Service has Eourteen vending machines in operation at Digital Equipment Coxporation, which is a prositable operation.

John Tobin agreed to remit commissions to Digital Equipment Corporation to the extent of five per cent of gross sales of the cigarettes, coffee, candy and soda machines. The average monthly commission is estimated to be $\$ 90.00$. August $\mathrm{I}_{\mathrm{o}} 1963$ is the searting point.

To be paid on a quasterly basis.
The following is the basis for a five per cent comissions

Coffee
\$526.55
Cancy
Cigarettes
soda
\$218.55
\$894.95
\$154.20
$\$ 1.794 .25$
.05
$\$ 89.71$

Benry J. Crouse

SUBJECT: JOB ALLOCATION MECHANICAL DESIGN
TO: All Engineers
K. Olsen
S. Olsen
H. Anderson
N. Mazzazese
M. Sandler
J. Smith
R. Maxcy
R. Maroney
K. Peirce
H. Crouse
W. Brackett
w. Hindle

DATE: September 10, 1963
FROM: Loren Prentice

To better acquaint all engineexs and management with job responsibility within the mechanical design department, a memo will be issued periodically as required.

ENGYMEER

DESCRTPTION
\% COMPLETE
Ken TitrGerald $\quad 1053$
(continued)

1000

1178

1208

1000

1000

Scott 謂iller
1020
1022
1023
1088
1177
1178
3.196

1209
1211

2590

2623
2685 2691

2705
Welding jigs for standard computer cabjnets
Sheet metal, machine cabinet assembly and carpenter shop supervision and administration
popw console mechanical design 85\% and protocype fabricationDEC paper tape reader15%(Stepping motor dxive)
"plastic" doors and end panel 0%researchPrograming tape controlledmilling machine
PDP-1D redesign 90\%
power supply redesign 50\%
Mounting panel redesign 30%
Package design - modules 25\%
PDP- 5 85%
PDP: 6
Tape Transport 570 95\%
Display 30 (cabinet module) 20\%
Light pen (Eibre optics) 75\%
Ausiliary reader spoolex 95\%
Rypewriter buffer "- 2308 75%
Beckman Special Paint 98\%
Punch -- Reelex 90\%
Product rdentification Open

JOB NUMEER OR ERE MUMBER

dec
 INTEROFFICE MEMORANDUM

SUBJECT IO\& Approval 9/9/63
Sop berbue 10, 2965

TO

$\mathbb{E} 02 \mathrm{sem}$
D. 路み"
8. $14 x \mathrm{xy}$
H. Aadereem
C. Bele
S. 01 and
D. Bacs
5. Plossareme
7. RIMND

PDP-1		48	nexaray	Q2,20.000
*	m	88	-	140,000
ต	9	22R	m	150,000.
\cdots	${ }^{6}$	26\%	9	260.000
\cdots	\cdots	20K	9	230,000
9	ω	243	\%	200
9	9	288	ต	210.00
ต	\square	324	!	220,000

Wente to Ade

Exa	4.t	88	12	16	20	288	288	32 x
$\rightarrow 4 E$	35	45	53	65	95	205	12.5	325
$\rightarrow 8 \%$	25.8	35	45	58	85	95	310	120
228	25	3	45	55	95	100	210	120
168	25	35	45	55	90	800	220	120
208	25	35	45	60	90	100	250	220
248	25	35	50	60	90	500	210	320
288	25	40	50	60	90	100	110	270
\%2\%	30	40	50	69	9	100	210	230

[^1]

DATE: September 9, 1963
SUBJECT: Increase of PDP-5 Construction Schedule
TO: K. Olsen FROM: J. Smith
VH. Anderson
S. Olsen
G. O'Dea
N. Mazzarese

Present schedule is two PDP-5 computers per month. Planned increase, four per month starting in October.

Both Teletype and Ferroxcube have been contacted in relation to a step up in delivery of major components to meet the increased schedule. Both suppliers have assured me that they could deliver to a schedule that would enable realization of the increased construction rate. I am just a little leary of Ferroxcube delivery quotes at this time. They have been falling behind on their delivery of 16 K Memory stacks. Teletype, I am sure, will meet the delivery of the ASR 33 teleprinters.

To meet wiring demands for the increased schedule, sub-contracting expenditures will have to increase approximately $\$ 6,500$ per month.

Major components expenditures will increase by $\$ 9.436$ per month.
I am quite confident that we will be capable of producing four PDP-5 computers per month starting in October. The major trouble area will be delivery of stacks from Ferroxcube. This area will be expedited very carefully and you will be notified of any changes.
W. S. Aiken

Date: September 4, 1963
H. J. Henderson
P. Liking
L. B. Perillo .

D, L. Stevens

Subject: Digital Equipment Cooperation PDP-5 Programmed Data Processor Computer

ABSTRACT

This report describes the physical and logical characteristics off the PDP-5 Programmed Data Processor Computer manufactured by Digital Equipment Corporation Maynard, Massachusetts. The results outlined in this report were gathered by the writer from (a) examining a PDP-5 Computer at the Weston Show at San Francisco, (b) discussing characteristics of the computer. with Mr. Stanley C. Ola on, General Sales Manager and Mr. Ed DeCastro; Project Engineer on the PD-5 Computer System 。 (c) perusal of the Computer literature obtained from Digital Equipment Corporation.

GENERAL

The PDP-5 is a single address, 6-wort, stored program computer operating on 12 bit, 2 's complement binary numbers. Wt has a 6 -microsecond memory cycle time and fully parallel processing, which provide a computation rate of 55, 555 additions per second.

2760 interface is extremely flexable, accommodating the wide range of external device a with ample provision for future expansion.

The use of solid state components and provision for margin checking help to azure machine reliability, even under extreme operating conditions - (or so they say>.

The basic PDP-5 system includes the central processor, 1024 (expandable to 4096) words of rindorn access magnetic core memory, perforated tape reader and Input/ Output control (teletype unit). Standard features include a complete order code structure, indexing, indirect addressing, data interrupt and program interrupt.

GENERAL (Contd)

The cost for the above described basic unit is $\$ 24,000$. with one K of core and $\$ 27,000$. with 4097 word core memory.

PDP-5 PROGRAM DATA PROCESSOR

1. MEMORY

The basic memory size of the PDP-5 is 1000 words of core expandable to 4096 worde of core. In addition to this the computer system is capable of connecting to additional block memory such as:
(a) Magnetic Tape Transpori Type 50 (IBM) with a tape transport rate of 15000 sycles per second. A maximum of 8 of the transport type 50 may be added to the system.
(b) Magnetic drum for memories up to 64 K or more.
(c) Dual Micro-Tape system (presentiy under development) which provides a fixed address magnetic tape facility for high-speed loading, read out and program up dating. Key features of the Micro-Tape deaign are:
(1) Phase rather than amplitude recording, and a permanent timing track.
(2) Drive system does not use conventional capstans. pressure pads or mechanical buffering.
(3) Each of the ithree date tracks is redundantly paired with a second, non-adjacent track. A speck of dust on one track will not prevent the normal operation of its altornate.
(4) Search speed 80 inches per second, with eearch in either direction.
(5) Tape transport occupies lesa than two cubic feet.
(6) Bit density is 400 bits per track inch with each $31 / 2^{11}$ reel capable of holding 250 feet of $3 / 4^{\prime \prime}$ tape. Total storage using two reels is approximately eight milion bids.

2. REGISTERS

The basic unit has 6 registers with only one full length register available to the programmer. These registers are:
(a) Accumulator 12 bit available to the programmer.
(b) ivemory Buffer - 12 bit not available to programmer.
(c) Memory Addrese - 12 bit not available to programmer.
(d) Instruction Register - 4 bit not available to programmer.
(o) Switch regiater - available only to the extent that Inputs can be writton into this register from toggles on the maintenance and control panel.
(f) Link Register - 1 bit available to the programmer. The Link Register is an extension of the accumulator. Appendix A shows a block diagram of the registere and Imput/Output blocke of the bazic eystem.

3. DIGITAL INPUTS/OUTPUTS

All digital inputs and outputs are controlled by a "Device Selector". The Device Selector has the capability (by adding elements) of selecting 64 groups of lines. Each group consiats of 3 wires and under programm control a DC pulse will appear on wire one. One microsecond later a pulso will appear on wire two. A microsecond later a pulse will appear on wire three. All puleces axto. 4 microsecond duration. Thus 64×3 unique pulses on 64×3 wires can be given. These pulses can be uged to reset control flip-flops, trigger digital output flip-flopa otc.

(a) Digital Qutputs

Digital outpute utilize the Device Selector and the Information Distributor. The Information Diatributor (12 output lines) distributes static information contained in the accumulator. The control of information transfor from the accumulator to the external would be by the Device Selector pulses.

Example

For a system capable of driving 12 output contact relays. the following control element would be required.

Example (cont'd)

(1) 12 Buffer Flip-flops
(2) 12 relay drivers
(3) 1 delay generator and driver to activate the above output elements. The following would occur using the Device Selector:
(a) A puise on wire one would clear the buffer.
(b) A pulse on wire two would transfar information from the accumulator to the buffer.
(c) A pulse on wire 3 would trigger the delay generator to cause the relay drivers fotransmit information from the flip-flops to the relaya for the time interval of the delay generator timing
(b) Digital Inputs

Digital Inputs uthize the Device Selector and the Input Mixer. The Input Mixer allows static information (on 12 lines) to be read into the accumulator by device selection pulses. The Input Mixer has connections for two groups of 12 bit information inputa, but may be expanded to almost indefinitely.
*.ANALOG INPUTS/OUTPUTS
(a) Analog Inputs

An an optionsl item a 10 bit Analog Digital Convertor can be wired into the computer. The A-D convertor requires a $0-10$ volt input voltage. The convertor makes use of existing regiaters in the computer therefore the computer is not available for normal computation during a convcretion phase. Utilizing a auccessive approximation technique the comvertor requires 44.8 microseconds to convert an analog Input voltage to 10 bimary bita.

The Analog Inputs system doas not have a low-level amplifier or a relay eelection aystem for low-level inputs.

Supposedly any commercial low-level amplifier can be used to accept low-level signals and feed them to the $A D$ convertor.

Relay selection can be accomplished with the digital output system as previously described.
(b) Analog Outputs

Analog Outpute are of the resistance divider type (12 bit) and optional to the standard equipment. In order to add Analog Outputs it is necesaary that memory in the form of flip-flopa and resistor divided networks be provided. The accuracy for Analog Outputs is 0.1%.

6. COMMAND STRUCTURE

The Wommand Stzucture of the PDP-5 has most emphasis on Input/ Oatput capabllity, It is quite limited in arithmetic operations having only the capability of adding. The Command field consista of 3-bits giving 8 possible commands. 6 of these Commands refer to memory and utilize 8 bits for the operand address. The remaining two commands are used for Input/Output control and for various logical commands that do not require a memory address. These latter two commands by utilizing various blts in the operand address portion of the word give a total of 23 instructions.

7. IN/OUT EQUIPMENT and OPERATION

The operation of the Imput/Output Equipment connected to the computer ie handed by various Output select pulees. These pulaes are (a) sample device flag conditions which are fed into the computer, (b) reatexternal registers, (c) readout information to external registers from the A/C Unit, (d) roadin information from the external registers to the A/C Unit, (e) control devices, (i) halt the computer until externa! device has finished its operation. An example of this is during the analog to digital conversion phase where the regiaters of the computer are utilized for conversion. The Input/Output oquipment consiste of:
(a) Punched Paper Tape Reader
(b) Printer Keyboard - teletype model
(c) Analog Digital Convertor
(d) Program Interrupt.

There is only one Interrupt in the systom. However, by moans of the Imput/ Output equipment meny lines can be tied into the one inter rupt system. The Interrupts will record the present instruction address and jump to an asaigned location in the computer.

8. SOFTWARE

The Software library available is quite limited. A sub-routime multiply, has been written howevor, it has not been debugged. The operating time for the multiply is ontimated to be 2.1 milliseconds. No sub-routine is available for the divide, however, one will be completed with probabiy a three to four millisecond operation time.

A syrabolic assembler othree pass type- is available which will work in one K of core. Whether the asembler has debugged or not is not known to the writer at this time.

9. CONCLUSIONS

A. Fabrication

The individual plug-in cards and modules utilized a satisfactory fabricatiag techaique. Each card was connected'to a plug and the plug was connected to a band of motal which completely surrounded the perimeter of each card. The cards were plugged into module assemblies quite aimilar to tho Malco baskets presently utilized on the 330 computer. One aspect that seemed to characterize the system was the lack of intercomecting cables. Each module was electrically conmected to the moxt module if in the same cabinet by wire jumpers rather than cables. The basic unit including the power supplies can be mounted in one cabiner $24^{11} \times 24^{11} \times 72^{12}$. The basic cabluet had one fan mounted on the flocr biowing air up the center of the cabinet, howover mo-oscape vent could be found except for the cracks around the cabinet doors.

Gcrmanium trameletors and silicone diodes were used throughout for all chrcusts.

B. Temperature

The ouly available information on temperature was thet the equipment was toeted in temperatures up to 100 degrees. At that temperature the equipment operated antiafactorily. On inspection of the equipronet the cooling technique did not seem too efficiont in that an opening either the frome or rear doors one feit a vory warm blast of air come out of the cabinets.

One interesting aspect is that deliveries can be made in approximately 6 to 10 weeks. This would include both standard equipment and additional hardware to some extent.

9. RECOMNENDATIONS

The writer feels that the programoning capabilities timewise is heavily complicated by the computer having only one register, namely tho accumulator. The first, and obvious, complication is the time required to do a subtraction, multiply and divide, 2 and 3 milliseconds respectively. Since a rough figure fer the percentage of multiply commands in the normal programming application ia approximately 1 and 20 to 1 and 30 , $1 t$ is men that the multiplying tine considerably reduces the overall speed of the computer. It is strongly suggested that if this computer system be utilized by TRW that an extra register be added to the system. This register should have the capabilities of being linked to the present accumulator register and have available commands to shift information from the accumulator register into the added register either right or left. The availability of such a register would increase the overall speed of the computer by approximately 30% and reduce memory requirements.

Without the additional register the PDP-5 would operate slower than the 330 and with this register the computer would operate faster than the 330 . Scope wise the PDP-5 can presently to justhandie a logging and scanning job smiler to the Colbert or Widows Creek application. less performance calculations.

Perhaps the item that most impressed the writer is the availability from the company of a large variety of registers, flip-flops, clock i, power 'amplifiers and associate circuitry, which can be utilized so bund up the scope of the basic computer unit. To get a better feel for what the overall cost of PDP-5 in regards to handing a simple scan. los. alarm wan mend system would be, to request a cost on by stem having the following characteristics:
(in Add an additional register with commands to shift the cont ones from the existing accumulator register into the added register.
(b) Basic capability to select 12 digital outputs where each output would be required to drive 12 Mercury whetted contract relays. (Type HC-SH 1046). Cost for additional groups of 12 Outputs.

$$
\begin{aligned}
& \text { Dig outs: Up to } 75 \\
& \text { Dig Ins: Up to } 100
\end{aligned}
$$

9. RECOMMENDATIONS (Cont'd)
(c) Capability for driving amalog relaye for low-lovel and high-level input solection. Cost for additional Block of 12 Inputs. Up to 200 mpos An. outs: Up ro 200 owiph as
(d) Cost for adding Roderose or equivalent low-level amplisier to couple into the PDP-5, A-D convertor.
(0) Additional cost for adding memory backup in the form of a magnetic drum, tape, etc.
(1) Wired-in Multiply Command

These could be some of the key items required to give a better view of the overall coat of a system which could be capable in scopo of performing the functions of logging and scannimg presently carfied out on the Colbort and Widowe Creek 8 Unite.

Further consideration should be given this computer both from the point of view of a satelise unit and as an individual unit handliag basic log, alarm scan requirements. The author also feels that some caution should be executed when viowing the basic price (27K) as the cost can probably triple or more, wher the bastc syitern has the scope of a Colbert eystem.

Caution should also be executed in the prostamming of the computer since the command structure is so limited and also the lack of software.

The author does feel that with the avallable modules as buildiag blocks. eycteras can be built that meet the requipemente and only the requirements of a customer with no extra "goodies" thrown in for free.

[^0]: *Ten-Year Award Recipients

[^1]: Pindicates
 memory ertenstion

