SUBJECT: DRAFTING COMMITTEE MEETING MAY 31, 1963
TO:
DRAFTING COMMITTEE
K OLSEN
H ANDERSON
A HALL
K WAKEEN
W HINDIE
ENGINEERING PROJECTS COMMITTEE MEMBERS
BUILDING 4 ENGINEERS
DRAFTING ROOM SECTION CHIEFS

FROM:
 DRAFTING COMMITTEE

This Commitsee was established to smooth the communicarion problems berween Engineering and Drafting foward the end of spending less drafting time per project, filing fewer prints, finding faster those prints that are filed, and keeping srack of projecis in process. It would seem that if she schemes already suggested for use in confrolling drowings and expediting work are explained, thot will be enough to straighten out the problem. The system would then be published.

One of the four topics discussed was "What plan is used or should be used to get drawings into the system?" This discussion ended with the discovery thet often not enough is learned about a drawing or projact to cssign it the proper number at she start of the drawing process. Answers to such questions as "How big a project is this going to be?" "What relation does it hove to other projects?" "Is it a block schomatic assembly ${ }_{g}$ detail, or circuits schematic?" $\ldots . .$. will assure that the right block of numbers will be assigned at the right place in the system to allow for expansion and to see to it that the drawing has the right level of priority and craftsmanship assigned to it . An understanding of the assignment procedure by all those concemed should also give "as a by-product "clearer understanding of a project's "place in the sun^{n} 。

Discussions of print canegories such as "Skerch" "Limised Release" "Full Signature" or "Complete" prints pointed up some fuzziness in understanding of the area of responsibility of the signees and also the procedure of updating and revising prints easily. Somewhat sharper definitions will enable the engineers to be less worried about the Drafting Department and enable Drafting to spend less time on categories of prints which do not need to be of completely finished quality. Drafismen should be able to get on and off cerrain jobs more quickly.

A good deal of time was spent learning about the masser numbering system. It appears adequate but not elearly understood. Mutual understanding by everyone should provide much befter classification and result in the ability to track down elusive prints and avoid duplication of work on related projects by unrelated groups.

A listing of numbers and print titles was discussed with some attention to what should be cross-referenced for easy retrieval of information. The Master Cards and The Book by General Categories can perhaps be expanded a bit by cross-referencing for the benefit of all.

Topics for the next meeting will be as follows:

1. Considaration of a list of what the numbering system is now and how to control properly the assignment of new numbers to various print types.
2. Clarification of the category of "Sketch" prints and other print ciasses as to who can get them and how they can be charged.
3. A discussion of how draftsmen and engineers are assigned to work together on various types of tasks.

TS:ASJ

T Stockebrand
L. Prentice
R Melanson
L. Haniman

SUBJECT PDP-6 Marketing, etc.
To R. Lane
FROM Gordon Bell
A. Hall
A. Kotak

Computer Guidance Committee

I believe we should look at the possibilities of doing some aggressive classical marketing for PDP-6. For the present, however, the following must be considered and co-ordinated.

1. Programming Manual
2. $1 / \bigcirc$ Scheme Finalization
(a) Interrupt definition and write up
(b) Tape Control(s) definition and write up
(c) $1 / \bigcirc$ structure
3. Micro Tape Control and Unit Specifications
(a) Number of controls required
(b) Improved performance of Micro Tapes (eg. automatic rewind)
(c) Programming investigations
(d) Time shared program preparation
(e) Assemble - Compile
(f) Sorting
(g) General data storage
4. Sample Programs Investigating:
(a) $1 / 0$
(b) Matrix Operations
(c) Sample data processing
(d) Half word facilities
(e) Index modification, etc.
5. Decisions regarding importance of future planning of instruction codes
(a) Double precision fixed point
(b) Double precision floating point
(c) Extended character manipulation
6. Consolidate facts on Micro Tape system and schedule meeting regarding the Micro Tape with the Computer Guidance Committee June 13, 1963.

GB/II

INTEROFFICE MEMORANDUM

DATE May 29, 1963

SUBJECT PDP-6 Signal Conventions

L. Hantman

FROM Gordon Bell
S. Lambert
A. Hall
A. Kotok

Engineering Projects Committee

Signal Name Format
A signal name should be brief, but descriptive. The format for various signal types is:

1. Flip-flops

NAME f/f side (0,1) (bit position)
eg. RUN $1 \longrightarrow$, or RUN $0 \longrightarrow$ or
AR1 $(17) \longrightarrow M Q 0(0) \longrightarrow$
2. Logic Levels

NAME $\longrightarrow \equiv \sim$ NAME \longrightarrow (for complement)
NAME $\longrightarrow \equiv \sim$ NAME \longrightarrow (for complement)
2A. The complement symbol
NAME $\longrightarrow \equiv \sim$ NAME $\longrightarrow \equiv \overline{\text { NAME }} \longrightarrow$
3. Pulses

NAME

NAME \longrightarrow
Name may include a T or P to denote a time sampled event or a pulse.
4. TRANSFER PULSE names and symbology
\langle or $\longrightarrow \quad$ The register bits on right (or left) go to left (or right) at the command.

EXAMPLES：

ARく－	MBJ	Jam transer MB to AR
ARく－	MBO	0 ＇s side transfer
AR＜－	MB1	1 ＇s side（inclusion or｜transfer
ARく－	MBJ RT	Jam transfer right side
AR＜－	MBJ LT	Jam transfer left side
AR	SH LT	（shift left）
$A R<-\quad 0 \equiv A R C L \equiv 0 \rightarrow A R$ ，Clear the AR		
$A R+1$ RT		Add one to right side
MBJRT \longrightarrow MBJLT		Exchange left and right parts
IR（XD）	MB1（XD）	Transfer $M B$ ones to $I R$ ，（the X and D parts only）．
AR＜AR	MB	（partial add）
$S C<-M B$	（29－35）	MB bits（one＇s side）29－35 go to SC．

5．Signal names are taken exactly and the two names：
NAME $1 \neq$ NAME 1

Abbreviations：

The following abbreviations are suggested，and if any of these words are used， these abbreviations must be ${ }^{4}$ f f the words are abbreviated．

Words do not have to be abbreviated，but words and their abbreviations may not be intermixed．

If the word＂CLEAR＂and its abbreviation＂CL＂are used on the same print，they refer to two separate signals．

Characters Used For Naming

1．All signal names consist of DEC Line Printer code characters．This included space．

2．There are no lower case letters．
3．There are no superscripts，subscripts or overbars（complement）．
4．Signal names are delimited by at least two spaces．
Print Names
The print name should yield a 1－6 character mnemonic，which will be used as a
prefix on all signals originating on the print.

CP (Central Processor Abbreviations)

AR	Arithmetic Register (the main register of PDP-6)
$M Q$	Multiplier - Quotient Register
MB	Memory Buffered
MA	Memory Address
SC	Step Counter
IR	Instruction Register
PC	Program Counter

ACcumulator
X index
I indirect or defer
CM (Core Memory Abbreviations)

CMB	Core Memory Buffer
CMA	Core Memory Address
CMC	Core Memory Control

FM (Fast Memory Abbreviations)
FMB \quad Fast Memory Buffer
FMA Fast Memory Address
FMC Fast Memory Control
Logic Symbols

\wedge	AND
\sim	INClusion or
\forall	Exclusive or
\sim	NOT (the complement)
+	ADD
-	SUBTRACT
$\langle-$	Goes to Left
\rightarrow	Goes to Right
Jam	
0	zero's side
1	one's side

Page 4

Module Abbreviations

FF	flip flop
SA	Sense amplifier for core memory
PA	
BD	
DEC	
NORE~V	
NAND Or	
INV	
and	

Register Abbreviations

REGister	Register
CL	
SET	
COM	
SH	
ROT	
LT	
RT	
BH	
CRY	
PAD	
IOR	
XOR	
INCR	
DECR	
RESet	

Miscellaneous Signal Abbreviations

ACT	Active
ADRS	Address
BUF	Buffer
CHAR	Character
CHG	Change
CM	Core Memory
COMP	Completion
CTR	Counter
DONE	
FET	Fetch
INH	Inhibit
INTCHG	Interchange
IMM	Immediate
IN	Incoming
LC	Location Counter
MEM	Memory
MISC	Miscellaneous
MODE	
OTG	Outgoing
PROC	Processor
PSE	Pause
PTR	Pointer
PWR	Power
RD	Read
REP	Repeat
RPL	Replace
RS	Restart
RSP	Response
SEL	Select
SK	Skip
STRB	Strobe
SW	Switch
SYNC	Synchronize
T TP P	(Time, time pulse or pulse)
TS	Test
WAIT	
WC	Word Counter
WR	Write

DATE May 29th, 1963
SUBJECT H. Anderson's Memo to S. Olsen re Princeton University dated May 23, 1963
то S. O1sen

FROM. D. Denniston

Could it be possible that Princeton is thinking of replacing the 7090 in their computation center? I have heard nothing to this effect, but I have sent out information on the PDP-6 to the head of Princeton's Computation Center as well as our other contacts there.

Dave Denniston
CC: H. Anderson
N. Mazzarese

TO K. Olsen
FROM K. Wakeen
S. Olsen
H. Anderson
R. Best

EN 1157 AUTOMATIC MODULE TESTER

1. Instruction manual - written by 5/30/63. Printed and distributed by 7/15/63.
2. Install tester in new room by $6 / 1 / 63$.
3. Complete programming for 4201 F.F. by 6/30/63.
4. Add programs for P.A. and C.D. gates $7 / 30 / 63$.
5. Add micro-tape $7 / 30 / 63$.
6. Add high speed printer $8 / 15 / 63$.
7. All programs for testing production modules in by $9 / 1 / 63$.

EN 1206 AUTOMATIC MODULE TESTER SALES

1. Add Burrough's modules 6/7/63.
2. Add Fairchild modules $6 / 30 / 63$.
3. Other contacts which were established during and before EJCC Show will require concentrated follow-up during the next three months. The most active prospects to date are Burrough, Texas Instruments, and Fairchild.
4. Follow-up Weston Instruments 5/29/63 for resistor tester and computor.

INTEROFFICE MEMORANDUM

COMPANY CONFIDENTIAL

DATE May 27, 1963
SUBJECT June Delivery Schedule-Modules
TO
Maynard Sandler
FROM Stan Olsen

The following is a list of modules required for delivery during the month of June. These include the MIT order, the AC Spark Plug and Holloman orders and in-house requirements.

We must determine immediately if there will be any delivery problems as we are counting on delivery of these units to gain and maintain a favorable position for renegotiation.

The first list shows all units ordered by MIT. It also indicates other customer requirements and in-house requirements for the same units. Quantities to be in stock by the twenty-first of June are noted also.

The second listing shows customer and in-house requirements for all other types of modules. (This list shows only internal requirements where they conflict with customer requirements.)

Model No.	Requirements	In Stock	To be Delivered to Stock by 6/21
1304	100	53	47
1561	70	11	59
1669	250	177	73
4102	700	113	587
4112	400	168	232
4113	360	89	273
4114	200	53	147
4115	300	90	110
4123	500	75	425
4127	300	0	300
4143	700	62	638
1151	150	10	140
4204	550	17	533
4205	400	114	286
4303	200	0	200
4407	18	18	0
4604	350	0	350
4677	130	25	105
1571	130	20	110
1914	200	23	177
4221	200	0	200
4410	200	73	127

Model No.	Requirements	$\underline{\text { In Stock }}$	To be Delivered to Stock by 6/21
4606	800	0	800
1001	100	7	93
1954	40	0	40
1607	130	30	100

Other Units

63
201
668
722
730
743
749
765
801
901
1000
1103
1105
1110
1201
1204
1213
1310
1311
1404
1410
1501
1538
1556
1568
1616
1667
1667
1675
1682
1684
1705
1901
1906
1907
1909
25
25
1
10
4
5
2
1
6
7
3
31

102

20
74
30
33
25
213
5
23
12
158
5
1
5
2
2
14
25
48
7
9
1
10
30

25
0
0
1
21
1
27
0
2
0 1
$0 \quad 10$
22
29
429
137
$13 \quad 7$
$62 \quad 12$
62
32
30
56
19
7
29
$0 \quad 158$
0
0
3
8
8
10
0
0
1
21
12
5
0

0
1
0
157
0
16
0 158
5
1
0
0
4
25
25
48
48
6
0
0
5

Model No. Requirements \quad In Stock \quad To be Delivered to Stock by 6/21
$1910 \quad 21$
1913
1918
1972
13
1
131
1976
1978
1982
1961
1963
102
8
27

3101
3110
3201
3301
3401
3410
3602
4105
4106
4110
4111
4117
4125
4126
4128
4150
4151
4201
4209
4213
4214
4215
4216
4218
4220
20
20
12
21
28
7
3
4
6
737
43
88
174
4
7
36
24
28
22
305

4222
4225
4301
4504
4603
4605
4667
155
93
75
399
121
72
15
12
7
7
409

4680
1
152
11

4682
4686
4702
6102
6603
DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

Stan Olsen
Nick Mazzarese
Aarlan Anderson

FROM Kenneth H. Olsen

The sales department is apparently doing a good job in organizing trips. However, I think there is one more service which would be very useful.

I propose that we keep a file of hints on each town. This should include particularly suggestions of how one gets transportation to and from the airport. Someplaces a cab is the only way and someplaces a limousene is the only way. Then there are times when if you take several people on a cab the cab is very worthwhile. The sales should, for example, should warn people not to take the cab from New York to the New York Airport because one has to pay double fare. The distance isn't much farther than to Idlewild but the charge comes to twelve to fourteen dollars because the cabby cannot get a fare in return and therefore, he charges twice the price. However, another hint would be that a trip like that, one first dickers with the cabdriver if he is forced to make the trip. The same thing holds in taking trips from the airport out to the suburbs; one should settle on a price first and a little dickering can help.

We might also do well in keeping a file of good hotels and good places to eat in each of the towns.

DATE May 27, 1963
SUBJECT

TO Dit Morse
cc: Gordon Bell
FROM Kenneth H. Olsen

I spent some time on Tuesday evening talking with Frank Engel, Head of the Computation Center at Harvard. He has rather negative attitudes about our company because our prices are so low. He feels that with low prices you just can't get any software; and therefore, he is trying to discourage our sales to Harvard. However, when I talked to him in some detail, I have concluded that there is a possibility we might some day replace the 7090 at Harvard with our PDP-6.

Engel has very strong feelings that it is necessary to have Fortran II if we were going to work in this market. He not only feels that Fortran IV would be an exceedingly difficult burden on him but he also feels that IBM is going to fail in their development of Fortran IV and lead many smaller companies along with them.

He feels it would cost him one or two hundred thousand dollars to adapt their present programs to Fortran IV and the only advantage in the end would be that they would take longer time to run in the computer.

If we're thinking of doing anything other than Fortran II for our computer, I would like to hear about it and make a very formal decision as to what we're doing.

Berkeley is also fascinated with the idea of replacing their 7090 with a PDP-6 but, of course, they'll wait and see how it develops and see whether or not we have Fortran.

Henry McDonald of Bell Labs., he's one of the department heads that's running their 7090 installation. He and a few of the other people there feel that it would be more efficient to have two 7040's than one 7090 and some day they may go that way. He's also toying with the idea that several PDP-6's might be better than two 7040's. However, he does feel that it will be important to be able to convert 7040 programs to PDP-6 in order to make this worthwhile. He thinks that we might include some hardware which would make this convension a lot easier. I was not in a position to make any contributions.

Bill Papian is fascinated with the possibility of getting the first PDP-6 for his group. They badly need a decent size computer down there for their operation and they want to commit themselves fairly soon. They are also plotting with the idea of making their own.

Dit Morse
May 27, 1963
Page Two

I told Bill that we might give them a discount if he has a group of people who really use the machine well and if he'll take the first one.

Dr. Bruce Waxman, from the National Institute of Health, is fascinated by our PDP-5 because it might make a good consolation prize for all the people who couldn't get LINC computers. However, we have to be able to tell them very soon what software will be available for this.

cc: Harlan E. Anderson
Stan Olsen
Nick Mazzarese

At the SJCC Bob Savell and I talked to Mr. George G. Keyes who was supervisor, Sales and Applications, Teletype Corporation, 5555 Touhy Skokie, Skokie, Illinois. He is very much interested in our applications that are used and I think he would be a good one to direct our questions to.

One of the most significant developments at the Trade Show was the fact that Teletype is developing a competitive spirit. This is truly revolutionary. They are not only feeling competitive with Western Union but with the new IBM system. They know the prices on all these things; they know how their equipment compares.

After careful questioning it turns out that the new Light Duty Page Printers are not really light duty but because of the lack of experience with them they don't want to promise too much. They do, however, say that after 500 hours of use they should be lubricated and after three or four lubrications the thing should be checked over mechanically.

Now it is not the number of hours of use, of course, but it is really the number of characters typed and so we might install a mechanical counter which after so many characters are typed would indicate that a lubrication is necessary.

They gave us inconsistent stories as to the availability of these typewriters and I think that it depends partly on the pressure we give them and how interested they are in our applications. One man said six months, another one said four weeks. Keyes was the man that said four weeks and I think if we challenged him on this, he could deliver in four weeks. I think we should immediately get an automatic send-receive set with Punch and Reader and use this to standardize our paper tape preparation.

They can make a new character set for very little money. If they have the characters engraved already it only costs $\$ 15$ to set up for molding the cylinder and it probably costs very little more to have them engrave new characters. However, I suggest that we use the most standard character set available.

This unit was designed by Mr. Dreyfus who is one of the famous industrial designers. If I remember correctly he is the one who designed the present telephone. They also have their Model 35 unit which is equivalent to the present 23 , redesigned by Dreyfus. It is the

Gordon Bell

May 27, 1963
Page Two
same base and the same general lines as the Type 32; however, it is much heavier and bigger. And also, cost $\$ 1,500$ compared with $\$ 500$ for the Model 32. However, it has more freedom because of the stunt box. It has both vertical and horizontal tab. The vertical tab is programmed in approximately the same way as a line printer and I believe it is used mainly to skip lines when you come to the end and beginning of pages. They have a disc with pins in it to do the vertical tabing. It also has a few other features but I don't think these are very critical.

Because of the low price of the Type 33, people can readily afford to have spares so the relatively short life of the unit isn't as important. However, for continuous long-life applications we might suggest that people use Type 35. I think they might be able to plug it in the same socket.

At the Trade Show the Type 35 had a spocket feed paper and they said it will be available on the Type 32.

Kenneth H. Olsen
cc: Stan Olsen
Harlan Anderson

DATE May 27, 1963
SUBJECT Suggestions for Future Trade Shows
cc:

Howie Painter

FROM Kenneth H. Olsen

Stan Olsen
Jack Atwood

1. Completely set up all booths for shows at least two weeks before the show and leave them set up so that people involved in the show will have their chance to try out things and to make suggestions.
2. You have the responsibility for trade shows and if Jack Atwood's people hold you up, go along without them or let me know and I'll get them going. You are dependent on many people; but, you do have the responsibility and if you aren't getting this service from other people, I want to know immediately so they get things done on schedule.
3. We should schedule and list all work to be done several weeks or months before the show when there is no pressure on them. This way that the second or smaller shows such as the ASME Show will not suffer because of the bigger one. They never did get PDP-5 or 6 literature at New York.
4. Make sure that there are modern and good looking modules for each of the shows. They had ugly and obsolete units in New York.
5. Organize the literature at the show. We had odd collection of miscellaneous piles spread all over the booth in Detroit.
6. You're running this show. You tell people how to organize things and make sure they keep things clean. We want the ashtrays cleaned out, computer table kept neat, and the boxes of tapes put away, and above all keep the competitors literature off the tops of our tables. In New York we still had too many of our people standing around the booth with no job to do.
7. Someone should be at the booth an hour early every day to make sure that things are in shape. Those shows which have technicans to maintain the machines, they should be there one or two or three hours early to check the machines and run margins. There is little point in having them around during the day because we can't troubleshoot the machines during the day anyway. I think one technican is enough because he can only do things that are useful before and after the shows.

Howie Painter
May 27, 1953
Page Two
8. We should have some way of telling people that we have an honest-to-goodness computer. We didn't get that message across at all in New York.
9. We should have an interesting program if we're going to have a computer at the show。 The running contest in New York was deadly. We would have just as well left the machine at home.
10. All tool boxes and cases should have the same lock and every one involved should have a key to the lock. Wednesday morning we were trying to do things at the booth and there was no technicans around and nobody had a key to the tool boxes.
11. I think we should probably send fewer people to these shows. In Detroit many of our people seem to be standing around the booth wondering why there were in Detroit.

Kenneth H. Olsen
cc: Harlan Anderson
Stan Olsen
Nick Mazzarese

DATE 5/24/63

SUBJECT Typical Leuss Rater

K. Olsen

FROM
8. Maxcy
H. Andersen
W. Hindle

All Sales Pensonel

Chonster lecaing has given mat the letest averege retas that we can use in guoting to potantiol cuatomens.

For convenionces, wee the maximum rete for quats under $\$ 100,000$ ond the minimum rale for quotes ovair $\$ 800,000$. Plecse semember that thase should not be queted as fim commitments es thay one just en indication of what is ovailcoble. In mony cases these vaies cean be sharpened up, eppecielly where farge amounts of money are involved, or the customery has an unusuatly good credif foring.

The following toble thould be of some help.

Trim of Leass

1 yaur
2 yeas
3 year
4 yew
5 year

Avaroge Leving Retes
(Menthly Payment Porcent listed below x purchaso price ${ }^{2}$ monthly prymens)
n
$1028.5-\% \%$ - 108
$10^{3} 4.3-9.8 \% \quad 115$
$3.1-3.2 \% \quad 115$
$2.41-2.51 \% \quad 120$
2. $0=2.1 \% \quad 126$
(Parcent listed bolow x purchoue price $=$ ennownt recpuired to purm thace equipment at end of lecse)

$$
\begin{gathered}
4-5 \% \\
8-9 \% \\
10 \% \\
10 \% \\
10 \%
\end{gathered}
$$

Locss ronewal rofess crverage 5% psr yeer for a one (i) year renewol and 4\% per yeer for a fwo (2) or thees (3) yous renewal.

After expiration of wowemfy, mainiencence centract is cwalleble. The

$8 \mathrm{M} / \mathrm{i}$

DATE May 24, 1963
sUBJECT Henry MeDonald of Bell Labs. Murray Mill, New Jersey
Nick Mazzorese
FROM Kenneth H. Olson
ce: Morlen Anderson
582-3000
Stan Olsen

During our conversation with thenry MeDonald he outlined a posslble solution to one of his problems. Me wants a 16 K Momory to which he would tike to tie a large number of typewritiens. This in tum would be fied to a 7090. He doesn't cell this timeshoring because they are basicly against what most of the other people are doing in this orea. The solution he would tike to hear our recetion and price too is a 16 K 12 bit memory with a PDP-6. The PDP-6 would lood up one or two K blocks of memory from a typewritter then dump it into the computer or would unioad the computer and dump it out on to the typewriter. There would be one block of memory which would be programmed to the PDP -4 but the rest of it would be used as temporary storoge.

My nofes are not very complefe on this but I think it would be a good idea if someone would call McDonald and get the complete story from him.

Deve Dennison

IN EROFFICE MEMORANDUM

DATE May 23, 1963
Inspection of Facilities At Mid Western Instruments, Tulsa, Oklahoma
Ken Olsen
FROM
Roland Boisvert
Harlan Anderson
Richard Best
Gordon Bell

Persons Contacted:

R. Morrow	President of Mid Western
S. Keller	Vice President Telex
W. Harrison	Chief Engineer
B. Hall	Production Manager
B. Brown	Marketing Manager

Itenerary of Visit:
A. Plant Tour
B. General Engineering Meeting
C. Marketing Practices Meeting
D. Revisit To Areas Of Interest
E. Seminar On PDP-4
F. Discussion of general nature concerning transports at CDC, and short seminar on all products with emphasis on the PDP-6.

Additions To The Plant Tour:

A. Machine facilities: These are divided into two groups; a model shop approximately the size of our machine shop with approximately the same facilities, and a production facility of 15 to 20 lathes from 10 " to possibly 16 " capacity, although probably only 14 ", and about 25 milling machines. Approximately two-thirds of these are Bridgeports of various ages and sizes and the remainder are ${ }^{\#} 2$ Brown and Sharpe milling machines. They also have at least one Harding horizontal miller for extremely precise work on the magnetic heads. They have surface grinders, but I did not see any other grinding facilities. Their machine facilities are much too crowded to be efficient, and all of their production is stagered through ESF units that is sequentially put through the machine facility. Separate machines or separate groups are not assigned to any particular project. They do a considerable amount of lapping and they have excellent equipment for this work. Production is in charge of Mr. Burl Hall. He not only seems to know their operations but also the short comings of their operations. I am sure that he is aware of what the increase in production of tapes we contemplate would mean to his operation. They can do considerable in-plant manufacturing of details which would have to be sent to outside vendors. The facility for making printed boards is just barely that, and is the minimum that can be gotten along with. The camera facilities are a real jury rig and they are using ammonium sulfate for etching with the barest facilities imaginable.
B. We spent considerable time discussing the tape hub with the personnel directly involved in the assembly of the tape transport and Bruce Brown of the Sales Department. Several sketches were made of the improvements that we felt were necessary. The most difficult thing, I believe, for them to do would be to bring the air through bleeding holes directly over the tape gaps as suggested by Roland. This is not impossible as they use a shear type valve to bring air into the arms at the present time. There is no reason why this same type of nozzle valve could not be used to bring air into the clamp unit that is directly over these heads. This would mean some modification and experimentation to prove its worth, but the feasibility is quite reasonable.
C. I believe our strongest contacts, that is the people most sympathetic to our position and most cognizant of it, are Mr. Steve Keller and Mr. William Brown from Technical Instruments, their representatives in this area. Mr. Keller again raised the question of whether or not they could use our control circuits and our logic and have us manufacture these for them if they felt it was an advantage. They do have an outside source in or about Tulsa that can make printed circuit boards for them but, as mentioned above, they do not have sufficient facilities for in-plant manufacture of these items. Both Mr. Keller and Mr. Brown are well aware of the advantage of putting a working transport in each of our sales offices in this country, and I believe they will bring what prestige they have to bear to bring this about.
D. The welding area is very small and is geared to their five transports per month. Evidently they do not use this area for much other than producing frames for these transports. At present it consists of one National Cylinder Gas Company's 200 amphere heliarc welding machine and associated equipment, very good welding jigs, an experienced welder, and possibly two helpers. I do not believe they would experience any difficulty in expanding the facility or to change it over to steel welding if they decide to go along with our cabinetry and to produce it in that area. They have room for expansion for a reasonably large welding shop. The man in charge seems to be extremely competent. I have seen no report in the biweekly that people from Mid Western called at our booth, but I believe their engineer in charge of marketing and Mr. M. E. Morrow were in Detroit for a directors meeting at the Telex Corporation. Probably both of these people called at our booth. Mr. Keller was in

Detroit later in the week and may have called to look over our set-up at the Eastern Joint Computer show.

Mr. R. G. Morrow is president of Mid Western Instruments Company, Mr. M. E. Morrow is chairman of the board of both the Telex Corporation and Mid Western Instrument, and General Gregory is Mr. M. E. Morrow's first administrative assistant. I believe General Gregory was in the Air Force and was instrumental in the development of the Sikorsky helicopter for use with the Air Force.

Loren Prentice

The plant tour consisted of a visit to the production area, the administrative area, and the engineering area of Mid Western Instruments. In general, we were very impresssed with both the plant and the personnel that we met in all the areas.

The manufacturing of tape units is presently set at five per month, and Mid Western does have the facilities and the man power to expand this production effort to approximately 32 transports per month before taxing either personnel or facilities. In addition, there is, if necessary, approximately 10,000 square feet of expansion space available in the present building.

The traffic flow through Mid Western is somewhat broken. However, sometime in the rext year they plan to correct this factor and give a straight flow to their production lines. The special area of interest to us was the construction of the heads and transports. In both of these areas we saw much improvement over the previous production practices employed by Mid Western. To be specific, one of these areas was the change in the manner of referencing the vacuum column to the main casting.

Roland Boisvert
$\star \star * * * * * * * * * * * * * * * *$

My impression of the plant was that they had no production line of tape transports. There were two completed transports and several empty frames. I felt that the work force looked padded in all areas except head assembly.

Bob Hughes

While walking through the Mid Western plant, I was not impressed by their production line. There seemed to be disorganization of parts flow through the line. Production is accomplished through many departments where each department is scattered randomly throughout the building. I was told that steps are being taken towards smoother production operations.

The standards lab was well equipped with secondary standards and I noticed they have resistor and voltage standards that are better than ours. The scopes are checked every three months against the Tektronix, oven controlled frequency meter.

Static skew tests for the M3000 read/write head are accomplished with an off line testing rig. The read head is used as a write head during these tests. Likewise the write head is used as a read head.

Reliability or life tests are recorded with a pen-graph recorder. Mid Western has accumulated a large amount of reliability data on a few transports and we will receive the data sheets in the near future.

Steve Lambert

B. General Engineering Meeting

The general engineering meeting consisted of discussing with the chief engineer and the production engineers those modifications which we considered necessary to effectively operate the Mid Western transport from the computer. The problems that were involved on Mid Western's part were presented in a general plan of attack which will wait upon our decision to either accept or reject the transport. In addition, we discussed reel hubs. The quick release hub they have designed we found to be unsatisfactory, and we gave them a. short dissertation on what we thought a quick release hub should be. We found that on their 728 Audio Tape Recorder this hub in basic principle existed, and that a slight modification to this hub would readily fit our requirements. We also talked about the possibility of blowing air on the tape such that it would act over the pole tips of the head onto the tape thereby creating what we felt would be very intimate tape contact with the head.

Roland Boisvert
C. Marketing Practices

At the marketing practices meeting we discussed the standard contracts and arrangements that Mid Western has with O.E.M. customers and their favorite customer, the government. Basically, these amount to ordering a certain amount of transports at a particular price and then a re-order would move us into a new discount category. Our account would then be credited on the basis of the total order for the transports in a year's time. We also at this time talked to Steve Keller about buying the transports at CDC and having them retro-fitted for the state purposes both here and the factory and possibly in field offices and for show purposes. Mr. Keller said that he could not speak with authority to actually do this at this time but he would go into it with the president of Telex. He advised us that he felt that Mid Western would be much happier to present to us five transports at cost rather than to see us do anything at all with CDC. He very strongly stated that, "they bought those things, now let them rot with them". He did indicated that he felt that some reasonable agreement as far as transports for display purposes could be reached.

Roland Boisvert
chough
The problem here is not ehemging O.E.M. accounts less than the government. The government does not want a "favored customer" (unless it is the government).

Bob Hughes

Mr. Keller stated catagorically that Mid Western would, "rather give Digital Equipment Corporation units at cost rather than rework those C.D.C. units" and even "give to Digital Equipment Corporation five units on consignment rather than have Digital Equipment Corporation pick up the five C.D.C. machines."

We discussed with Bruce Brown the sequence of negotiations between Mid Western and Digital Equipment Corporation. There seems to be three distinct phases through which we will pass:
A. Prototype - return to Digital Equipment Corporation of prototype after Pierrre Foret completes the rework as defined by Digital Equipment Corporation. Tie to our computer and decide if the tape deck is acceptable. An estimated price of this tape deck is $\$ 11,900$. including Mid Western's hardware and read/write electronics. To be concluded prior to June 15th.
B. Semi Modified Transports: As defined by actual commitments a minimum number of tape transports be ordered as semi modified
units. Bruce Brown feels that a firm pricing structure will not be available at this point in time - estimated to be July 1 - and that the best approach would be to price the transports after this first order is nearly completed. However, on this point I feel we should, as a point of considering Mid Western as a source, have an estimate of pricing in all quantities based on the prototype.
C. Final configuration specifications and pricing: Based upon the prototype as a standard the final specifications are to be written and final pricing structure to be established in quantities to one hundred units and an O. E. M. contract be written.

Mr. J. A. Arrington is sending along a statement of Mid Western's O.E.M. Account Policy for reference in establishing an O.E.M. discount based on accumulated orders over an approximate twelve month period.

Henry Crouse

Interface Meeting

While the marketing practices meeting was being held, Mr. Griffen, Mr. Foret, Loren Prentice and I held a meeting to discuss the mechanical and electrical interface requirements. Mr. Griffen submitted a list of modifications (enclosed) that Mid Western would like to supply. It was decided that if all the specs listed were included in the transport that much of our control logic would be redundant. Therefore, some of the items will be deleted.

PDP-4 Seminar
During Monday afternoon, I gave a one and one half hour seminar to approximately twenty Mid Western employees. A classroom approach was used in describing computer systems in general. Half of the individuals present were not familiar with comput ers. Thus, I purposely took time to familiarize them with computer jargon. I discussed the majority of options available and how they are attached to the computer. Particular emphasis was placed on tape systems describing the use of a computer and options to test tape transports. I emphasized the fact that the same computer may be used by different departments. Also, an explanation of customer service, PDP-4 reliability, quality and sales advantages was pointed out. A note was added on the programming material available.

Everyone seemed to be very attentive throughout the seminar. There were pointed questions on practically all the items I spoke about. It was evident that at this time Mid Western does not feel like buying a PDP-4. However, there was a great deal of interest. Bruce Brown asked if we would rent the PDP-4 to them. I referred him to Harlan Anderson.

Steve Lambert

Mr. T. H. Criffin
Mr. P. G. Foret

Date: May 15, 1963
Subiect:

M3000 (DEC) Signal Definitions

The following signals have been incorporated in the DEC modification in conpliance with their requests and our effort to achieve closer $13 M$ compatibility. There are some departures from IDM in that some addirional status lines are made available, such as Status 20 I LOCAL AND WRITE LOCKOUT, and the prime of SELECT \& LOAD POINT is not made available.

The balance of the standard IDM input/output lines will be inciuded in the 800 BRI program.

All inputs require minus 6 voles ± 1 volt to initiate their respective functions, and zero volts to discomect. iaput inm pedances are on the order of 15 K thus allowing parallel operation of several transperts without appreciable loading on the source.

All outputs supply a low impedance minus 6 volt ± 1 volt level, capable of driving up to a 10 ma load, in the active state and a low inpedance 0 volt level corresponding to the function's logical prine.

All functions require d-c level control with the exception of the RWD operation wich may be initiated by means of a pulse whose "up-time" is sufficiently long to insure relay closure.
The following is a brief description of the proposed nodifications including signal definitions.

SELECT: There are ten (10) machine select lines made available for Ehe purpose of remotely selecting a particular transport for on-line operation. Each of the 10 lines correspends to a particular manual address switch setting such that upon energizing that line corresponding to the preselected setting, the transport will be logically enabled.

If the proper line is not selected, no RWMOTE operation may be performed; however, all LOCAL functions will remain intact. There are no rise time specifications on this line.

SELECT \&REDE: This output says that the machine has been. selecter, the tome is loaded into the vacuum colums, all inter-locks are closed, and the eranspore is under REMOTE control. This line will remain at minus 6 volts (except during RGD) until the select line is dropped, the address selector switch is changed, the nachine is placed in LOCAL control, or any one of the incerlocks are broken.

RUNIND: Upon energizing this Jine, any existing tape motion command is interrupted and inhibited until completion of tho RENIND operation. This line may be pulsed provided that the pulso time duration is sufficient to allow relay closure (approx. 10 ms). The only requirement to initiace the REWIND operation is that there be tape on both reels as sensed by means of the "Broken-tape" optical sensing station.

The operation overrides a nomal fail condition and may be started with tape in or out of the vacuum columns. Once stareed, the operation depends upon the tape distribution on the take-up (machine) reel. If sufficient tape is on the reel. (hich speed zone), tape will be drawn out of the vacuum columns, if it is not already out, and a normal high speed rewind will commence. Upon optically sensing a low tape condition, the high speed operation will terminate and the tape is automatically loaded in the columns. Upon closing the column interlocks, a low speed (normal velocity) rewind begins until LOAD POLN is sensed at which time the transport stops and the REWIND operation terminates.

Had RRWIND boen selected in a low zape zone, the operation would simply drive the tape REVEASE to LOAD POINT.

Once a REWIND has been initiated, it may not be interrupted in ROLOTE until LOAD POINT has been reached or a broken tape condicion occurs.

Switching from ROMOTE to LOCAL, does not affect REWIND; however, tho operation may be manually terminated by depressing the Srof pushbutton. In LOCAL control, the transport will sense and stop on both end-of-tape and load-point reflective markers. Either of these markers may be cleared by depressing the FWD or RVS pushbuttons.
In REAOTE control, the end-of-tape marker is sensed but does not alter machine operation.

If the transport happens to be at LOAD POINT, the REWIND function is inhibiced. The next 00 command will clear the internal interlock in REMOTE whereas depressing either the FWD or REVERSE pushbuttons will clear LOAD POINT in LOCAL pperation.

RENLND GUNOAD: Functionally, this operation is equivalenc to the UumND peration with the exception that LOAD POINT is logically disabled and tape is allowed to completely unload off the machine reel.
The operation may be selected by means of a pulse whose duration is sufficiently long to insure relay closure. This signal may initiate a RWD \& UNLOAD operation or, if encrgized during a normal RWD, it will cause cape to be unloaded.
To: Mx. P. G. Foret May 25, 1963

Subj: M3000 (DEC) Signal Definitions

Both the RWWEND and REWIND \& UNLOAD lines require that the transport be selected, however the SELECT line may bo dropped, after a time sufficiently long to insure the rewind relay to puil in to conserve conputer time.

SCLECT G REWIND: This is an output indicating that tho trensport has started to rewind. This line switches from 0 volts to -6 voles as soon as the rewind relay has been energized. It is hold at this level until either the select line is dropped or the revind operation is completed.

SEEEGT ED: This output indicates that the transport has been selected, the load point reflective marker is photo sensed, and the unit is ready for the next instruction.

This line will remain at 0 volts if a RWD \& UNLOAD is in prom gress even though the load point reflective marker is momentarily photo sensed.

SELECT \& EOT: This output indicates that the transport has been seloctod and the End-of-Tape reflective marker is phote sensed. Tho output is in the form of a minus 6 volt pulse, the duration of which is a function of tape velocity.

Fondarn: This imput requires a minus 6 voly level and if the unit Thas been selected and ready (not in rewind), it will initiate forvard cape motion at the specificd velocity. If in Local operation, forward tape motion will be interrupted upon photo sensing the end-ofotape reflective marker.

REvaRSE: This input requires a minus 6 vole level. and in the bunt has been selected and ready (not in revind), it will initiate reverse tape motion at the specified velocity photo sonsing the load-point reflective mariter will terninate the REVERSE tape drive operation in both LOCAL and KWMOTE operation.
The absence of both FORWARD and REVERSE tape motion commands with the unit solected and ready will result in the sTop tape notion condition.
The unit may be programed without regard to tape motion conmand sequence under automatic control; hovever, each comand must be a minimum of 1 ms in duration in order to allow the cape motion control circuitry to stabilize.
In LOCAL conerol the STOP pushbutton must be depressed prior to changing direction of tape motion in order to clear the previous motion command.

To: Mr. P. © . Foret
Subj: M300 (DEC) Signal Definitions

STATUS LOCAL: All transport output lines are logically disabled (0 veIts) upen selecting LOCAL operation except for this line which switches to minus 6 volts thus indicating the unit is not under automatic control.

STATUS WRITE LOCKOUT: This Ine indicates that the write lockout ring has been mounted on the supply reel thus enabling the transport recording circuitry.
T. H. Griffin

THG:me

DATE May 23, 1963
SUBJECT
то
Harlan Anderson
FROM George O'Dea

Lincoln Barber telephoned today and stated that the bank has a customer known as Industrial Metal Products Co., Inc. at 90 Morse Street in Norwood. This company specializes in the manufacture of precision sheet metal products and their President is one Charles E. Perry.

Linc thought that possibly DEC might have a need for the services of this company which he recommends highly.

He will be calling you next week to see whether or not you feel this is worth pursuing.

George

GTO 'D:ncs

DATE May 21, 1963

SUBJECT Memories for PDP-6
TO A1 Blumentha1 FROM Gordon Bell
Arthur Hall
Computer Guidance Committee

The present schedule for PDP-6 Memory development is:

1. Operational Breadboard of 8,192 word, 36 bit by July 15, 1963. (5 microsecond cycle time)
2. Component count of item 3 for pricing by October 1, 1963.
3. Production Model of 16,384 word $\mathbf{x} 36$ bits by December 1, 1963. (4 microsecond, cycle time)
4. Production model of 16,384 word $x 36$ bits by June 1, 1964. (2 microsecond cycle time).

GB/ 11

DATE 21 May 1963
SUBJECT In House Acceptance Test Procedures; Computer Systems

TO E. Harwood
R. Hughes
K. Fitzgerald

FROM R. Beckman
N. Mazzarese
cc: K. Olsen
H. Anderson
S. Olsen
S. Mikulski
R. Wilson
J. Rutschman

The following procedures have been established for final acceptance testing and shipping of computer systems:

1. Final electrical and mechanical inspections must be signed off before starting acceptance tests.
2. Final shipping arrangements will not be made before completion of acceptance tests.
3. All modifications and wiring on machines must be completed before starting acceptance tests.
4. Any discrepancies during acceptance tests will be corrected as they are discovered before proceding with the testing.
5. After completion of acceptance tests, the system will be moved to the crating area and prepared for shipping with no further inspections or machine operation.
6. Copies of the completed acceptance tests will be furnished to customer with the delivery of the system.

Enclosure - Acceptance Test Form

cammerextos

The followiag foras are to be waed with all carcutter instellations. The progran operation poxtion of the teate will vary depencing wpoa the syster madex test, homever, the genexal roxns will be used for all aystews.

The MACEARICAL ingpection during the test consists of visually inopecting all solder connections tor axcess Rlux, buxnt wires, excess plux, bed joints and general dress of wires. The powsic cords should be expalned for the proper compectors. A clase check should be nade on the internel and external eppearance such as long loose wires, tape on cables between reciss, console agpemence, ett. The final mechanicel inspectiom report should be weviewed.

The object of the test is to viev the systen through the "eyen ${ }^{\text {" }}$ of the custoner to assure that it looks liks a nev plece of equiguant.

The 10 equifmant chould be axntaed very clasely as this equipment is moet orter wed by the customes end under comstant observation. The reeder should be onmined for clemilness, 200 e parts, malled earevs, etc. The typeuritax or teleprinter should be examined for proper conaectorm, wev ribbo and platan, propar ingression setting, ett.
 pooper operstion. The final electrical luspaetion repoxts shouza be revicwed. The sottware Library tapes shovid be tested for proper operation.

Aky discrepancien should be both notelag corrected as they are discovered.

The following prges should be completed hy the customer relstions xepresentative and signed by the ciselicut tochaician. A copy of the foms will be formerded with the myston noler tast to the mutemer.
 \qquad DANE \qquad

MECHANTCAT TWSPESTIOR
FITAL MECHAMICAT TNSEECTIOM RBPORM
WIRTTG ARD SOLDER
TWITEREAL CLEALUTIIESS
EXIVERTAL CLERANLTIESS
FROPRR PCWRR COMNECTION
RUSNTNO HOWR METER COMNECTED
IO EQUIFMENT
READER
PUNCH

TYYFAREMER OR MELEPRZNTEER
OFITONAL EQUIPNETIT (as noted)

ACCEPRANCE TTESTS (page 2)

ELECHRTCAL IMSPECTYOII
CONSOLE INDICATORS
OPTION INDICATORS

STAMDARD ACCEPIANCE TEST
COMPLETED

SORTWARE INSPECTION
MAINTENANCE TAFFS WRITE-UPS

LIBRARY RAFES
WRITE -UPS
other test (as noted)

COMPUIER CHECKOUT REP.
DATE \qquad
ACCEPPAINCE ITEST OPRR.
DANE \qquad
ACCEFPED BY CUST. REL.
DATE \qquad

PDP-1 COMPUTEER SYSTEM

PRE-DELIVERY AND POST-TNSTALLATION TEST PROCEDURE

This test procedure shall be followed for basic PDP-1 computers and installations with central processor options as noted below. part I describes the testing routines that demonstrate hardware operation. Part II is an operational test of the computer utilizing library program tapes furnished in the software package.

Part 5
General: Test procedure consists of operating the following maintenance routines for the length of time specified in the given sequence. Approximate time required for a standard PDPwl is four hours.

1. MATMDEC-3 Address Test Program (F-39-3) Thime: 30 minutes (cotal time) Function: Program detects multiple addressing and failure to address all 4096 locations of each memory tested.
2. MATNDEC-2 Memory Checkerboard ($\mathrm{F}-39-2$)

Time: 30 minutes (one memory module)
15 minutes/module (machines with multiple modules)
Function: Program tests proper memory operation by placing various patterns in adjacent storage locations to induce worst possible "noise" with cross-coupling.
3. MAINDEC-1 Instruction Test (F-39-1) Time: 30 minutes
Function: A sequence of routines which test all PDP-1 instructions except multiply/divide and the IOT group. For deferable instructions indirect addxessing is tested. The augmented instructions are tested with the defer bit both 1 and 0 .
4. Multiply/Divide Yest (DEC-105) وime: 30 minutes Function: The program generates random numbers, and uses them in multiply and divide operations. Sense switch settings allow the program to test both step instructions and automatic instructions.
5. MAINDEC-10 Read Binary Test ($\mathrm{F}-39-10$)
rime: 15 minutes
Function: Test the performance of the photoelectric reader during binary opexation. It detects the picking up or dropping of bits, clutch and brake operation.
6. MAENDEC-11 ReadAlpha Test (F-39-11) Time: 15 minutes Function: Test the performance of the photoelectric reader during alphanumeric operation. It detects picking up or dropping bits, clutch and brake operation.
7. MANDEC-13 Punch Test ($\mathrm{F}-39-13$)

Time: Punch one box of tape (approximately 25 minutes) Function: Test paper tape punch by punching random numbers in all possible variations of punch instruction in both binary and alpha modes. Detects picking up or dropping bits in both binary and alpha modes.
8. Type-in. Type-out Test (DEC-106)

Time: 30 minutes
Function: Exercise all typewriter characters available on the computeriter. Tests for proper coding both typing out and typing in.
9. Sequence Break Test (omitted if Type 120 installed) Time: 15 zainutes Function: Exercise typewriter, reader, and punch through the use of the one channel sequence break system.
10. Optional Equipment (See Appendix A)

Part II
General: Test procedure demonstrates the operation of the computer and the basic programing system. The basic programing system consists of four programs: The MACRO Assembler, Expensive Typewriter, DDT and Compatible Reproduce. The total time of program operation is approximately four hours.

1. Expensive Typewriter

Function: A typewriter control program which allows generation and modification of a MACRO symbolic program.
2. DDT

Function: A debugging program for machine language tapes with added features for tapes assembled by MACRO. It is also useful in preparing new programs.
3. MACRO Assembler

Function: Assemble coded program tapes into machine lanquage tapes.

The tests will include operation of above mentioned tapes. Assembled programs wirll be dmonstrated. Programs assembled by SACRO shall pxoduce recogmizable operations in accordance to the system under test. If desired, the customer may substitute special programs for assembly, however, it is the responsibility of the customer to prepare and test such special programs in advance.

A satisfactory test shall consist of a total of 8 hours of operational time, and a naximum of 45 minutes of down time during the entire period of testing time.

Operational tirne is depined as unattended computer operation without manual intervention unless the operating directions of the program require it. Necessary manual setup operations (i.ee. insertion of paper tape in the reader) are considered part of the operational time

Down time is dePined as the time during which operation of the test is holted for the performance of corrective msintenance.

SYSEFM ACCEPTANCE TEST FOR PDP- 1 COMPURER
EIType 20 Sequence Break 10.25 hz . 1 DExtixa Mernosy

PRE-DELIVERX AND FOST-IMSTALIATION TEEST PROCEDURB

This test proceedure shall be followed for the basic EDP-4 computers and installations with the central processor options as noted below.
Paxt I describes the testing routines that demonstrate hardware operation. Part II is an operational test of the computer utilizing library tages furnished in the software package.

Par'c I

Genere. : Test procedure constists of operating the following maintenance routines for the length of time specified in the given sequence. Approximate time required for a standard PDP.t is four hours.

1. MATMDEC 43 Adaress test program

Time: 30 ginnutes (totsil time)
Function: Program detects multiple addressing and failure to address all 4096 locations of each manory tested.
2. Checkerboera test (digital b-h M)

Time: 30 minutes (one memory modure)
15 minutes/module (machines with multiple menories)
Function: Program tests proper memoxy operation by placing various patterns in adjacent storage locations to induce worst posible "noise" vith crosswcoupling.
3. Instruction test (modified digital 4-15-M) Time: 30 minutes Function: A sequence of routines with test all of the PDPG4 Instructions except the TOT group.
4. ACJ test (sea ontional equigment)
5. Reader and Punch test (digital ho5-M9)

Time: 60 minutes Function: Funch test consists of punching various patterns on paper tape and reader test consists of resding these pattezns. Approximately one box of paper tape should be punched.
6. Telepsinter test (digital 4-6m)

Time: 30 minutes
Function: Test print out and type in of the teleprinter. It can exercize all characters available on the geyboard.
7. Clock interrupt test (aigital $4-14-1$) Time: 30 minutes Function: Tests operation of the clock, reader, punch and teleprinter in the interrugt mode.

PART IT

General: Test procedure demonstrates the operation of the computer and the basic programing syatem. The besic programing system constists of four programs: The Assembler, Edmund the editor (an on-line symbolic editor), DDI and Tape reproducer. The total time of progrem operation is approximately four hours.

1. Edmund the editor

Eunction: A teleprinter control progrem which allows generation and modification on symbolic tapes for the ansembler.
2. DIM

Function: A debugging program for machine language tapes vith added pestures for tapes produced by the assembler. It is also useîul in praparing nev progrems.
3. PDP - 4 Assumbler

Function: Assemble code program teyes into machine language tapes.

The teats willi include operation of the above mentioned tapes. Assembled programs will be demonstrated. Programs assembled by the PDP-h assembler shall produce recogniceble oparations in accordance to the systorn undis test. If desired, the customer may subrititute special programs Lor assmbly, however, it is the reapoasibility of the customer to prepare and test such programs in advance.

A setisfactory test shall consist of a total of 8 hours of operational time, and a maximum of 45 minutes of down time during the entire period of testing time.

Operational time is defined as unattended computer operation without manusl intervention unless the operating directions of the program require it. Necessary manual setup operations (i.e. insertion of papar tape in the reader) are considered part of the operationel time

Noun time is defined as the time during which operation of the test is halted for the performance of corrective raintenance.

DEC SALES PERSOMNES ATTY PING TRADE SHOWS TN 1963

Name	Show	Dates
S. Olsen	suce	May 21-23
	Mescon	Aug. 20-23
	T2ME	sept. 2-7
	IRR-CANADA	Sept. 30-oct. 2
	NEC NEREM	oct. 28-30
	NEREM FJCC	Nov. 4-6 Nov. 12-14
H. Painter	succ	May 21-23
	AFCEA	June 4-6
	APAC	Aug. 29-sept. 4
	TSA	Sept. 9-12
	IRE-CANADA	Sept.30-oct. 2
	NEC	oct. 28-30
	NEREM	Nov. 4-6
	CEM	Nov. 18-20
N. Mazzarese	succ	May 21-23
	acm	Aug. 27-30
	3NEX-BASEL	Sept. 2-7
	ISA	sept. 9-12
	NBC.	oct. 28-30
	VERRM	Nov. 4-6
	wJCC	Nov. 12-14
P. Bonner	NEREM	Nov. 4-6
J. Burley	DES	May 20-23
	AFCEA	June 4-6
	APAC	Aug. 29-Sept. 4
	N.C. IRE	october NOV. 18-20
D. Denniston	DES	May 20-23
T. Johnson	wrescon	Aug. 20-23
	FJCC	Nov. 12-14
J. Koudela	ssec	May 21-23
	NEREM	Nov. 4-6
3. ${ }^{\prime}$ Connell	IRE-CANADA	Sept. 30-oct. 2
	NEC	Oct. 28-30
	NEREM	Nov. 4-6

Name	Show	Dates A
G. Rice	suce	May 21-23
	$\begin{aligned} & \text { ISA } \\ & \text { NEREM } \end{aligned}$	sept. 9-12
A. Titcomb	ISA	Sept. 9-12
	CFRI	Nov. 18-20
D. Sraith	TSA	Sept. 9-12
M. Ruderman	NEC	oct. 28-30
	NEREM	Nlov. 4-6
R. Lane	suce	May 21-23
	PJCC	Nov. 12-14
F. Gould	suce	May 21-23
	ISA	Sept. 9-12
	NEC	oct. 28-30
	NEREM	Nov. 4-6
G. Moore	APAC	Aug. 29-sept. 4
	CW	Nov. 18-20
K. Larsen	WESCON	Aug. 20-23
R. oakley	WEscon	Aug. 20-23
	WUCC	Nov. 12-14
R. Colman	WESCON	Aug. 20-23
	ACM	Aug. 27-30
	ETCC	Nov. 12-14
D. Doyle	succ	May 21-23
	TRE-CANADA	Sept. 30-oct. 2
Gunter Huewe	TNES	Sept. 2-7
Field Service Man - Maynard	DES	May 20-23
	succ	May 21-23
	APAC	aug. 29-sept. 4
	ISA	Sept. 9-12
	$\begin{aligned} & \text { IRE-CANADA } \\ & \text { NEC } \end{aligned}$	$\text { sept. } 30-0 c t .2$
	NEREM	Nov. 4-6
	CEM	Nov. 18-20
	Fuce	Nov. $12-14$

$$
\text { DATE May 22, } 1963
$$

SUBJECT Federal Manufacturers Excise Tax
TO
Stan Olsen
FROM
Dick Mills

Up to the present time we have not as yet included a paragraph in our standard proposal calling out the application of Federal Manufacturers Excise Tax on our computing equipment. The following paragraph is meant to cover this situation:

Federal Manufacturers Excise Tax:
"In addition to the sales price of this equipment, the buyer agrees to pay any Federal Manufacturers Excise Taxes which may be imposed by the United States Government on the seller on the above named equipment".
\# \# \#
cc: K. Olsen
H. Anderson
G. O'Dea
N. Mazzarese

INTEROFFICE MEMORANDUM

DATE May 20, 1963
SUBJECT
TO
K. Olsen

FROM J. Smith
H. Anderson
S. Olsen

Due to an Engineering Change, the 555 Micro tape project has been halted. A new scheme utilizing SRC's is now under test in Engineering. They feel a new model will be available by the middle of next week.

INTEROFFICE MEMORANDUM

DATE $\quad 5 / 17 / 63$
SUBJECT SDS - New Computer
TO Ted Johnson
cc: Lstan Olsen
Nick Mazzarese

FROM Bob Oakley
Rliber

Max Palevsky, President of SDS headed-up a presentation to the Telecommunications Systems Research Group at JPL on May 15. The presentation dealt primarily with the SDS 9300 Computer which will be available next February. The SDS 9300 seems to be designed for the purpose of high speed, real-time data reduction incorporating multiple four thousand word memory modules of which access to and from each can be accomplished simultaneously by either program or external devices.

A program break system will be incorporated which will look similar to the PDP-1 Sequence Break System. The primary exception being that it will not automatically store the contents of registers. The first priority break channel will always be comnected to the power fail circuit to enable re-start of the program when power is re-stored after a momentary power fail. (This is quite important in many applications in the Telemetry processsing stations at tracking stations).

Some otherbasic Apecifications are listed below. (Most are Palevsky's approximations):

1. Memory Cycle Time - 1.75 us.
2. Add time - 3.50 as.
3. Price Basic 9300 (with 4 K memory) $\$ 215 \mathrm{~K}$
4. Price 4 K Memory addition $\$ 30 \mathrm{~K}-40 \mathrm{~K}$
5. Mag Tape - 60KC-800BRI-75ips
6. Basic Machine hardware - 2-6 foot electronic racks and 1 control console.

SUBJECT: VISIT WITH DR。JACK V. KANE BTL。 MURRAY HILL

TO
Stan OIsen
Nick Mazzarese
Dick Best
Gordon. Bell
Bob Savelle
Jerry Moore
Barbera Srephenson

DATE $5 / 16 / 63$

FROM Dave Denniston

I spent the better portion of Tuesday, May 14 th with Jack Kane and his group at Bell Labs. This was a very informal visit since I have known Jack Kane for a couple of years. Jack has been interested in displays for some time, and his group has now interfaced two to the SDS 910. These displays are actually two techtronic scopes controlled by electronics they have constructed the claims about $\$ 2 \mathrm{~K}$ each), including a light pen made out of an eye brow pencil. Although I get the impression that he would like to have a display with a larger screen, Jack did mention that he was quite satisfied with the performance of these displays which he has built, and they are providing him with the quick look at his data that he desires. His objection to one of our displays is price. I might also mention that he has, in the past, inquired about such things as just a light pen with amplifier, and the cost of one of our display cabinets with the CRT and deflection amplifiers only. At this point, I rather doubt that we can do anything to interest him in a display other than by making him an outright gift of one.

Over a year ago when Jack was first thinking about getting a computer for pulse height analysis. I gave him quite a bit of literature on the PDP-4 and talked to him a number of times. His decision to buy the SDS 910 was made solely on the basis of price. He readily admits that as far as he is concerned, the PDPo4 has all of the capabilities that he could desire. I really think that Jack is the sort of person who is willing to spend a year or so trying to make a less expensive piece of equipment perform like the highopriced model.

Jack is now quite interested in the PDP 5 , and I left the preliminary specifications with him, and as a matter of fact, he spent all of lunch time going through them. He feels that this is just the sort of nachine that people in the pulse height analysis business need, and, naturally, the price range is quite impressive to him. This machine has made him reoevaluate his "it has to be much cheaper to do things serially idea.

The one feature of the PDP-5 which Jack is unhappy with is the builtoin $A=t 0-D$ converter. I believe that he has already mentioned this to Gordon. He claims that in the pulse height analysis business or that in any field where a distribution of pulse heights is desired, a feedback type of $A=t 0=D$ converter using a ladder network may not be desirable since the uniformity of channel width is of

Nick Mazzarese
Dick Best
Gordon Bell
Bob Savelle
Jerry Moore
Barbera Stephenson
the utmost importance, and where a large number of channels are desired, say 512, people will not consider this type of converter. He is presently using a fairly straightforward voltage to pulse width A-to-D technique. An input pulse, variable in amplitude, provides a ramp with a negative slope. The initial value of the ramp is proportional to the inpur pulse, and the period of the decaying ramp provides a gating level to a clock which then increments a scaler. In the converters he has, a 20 megacycle clock and scaler are used. Jack mentioned that this technique was very common in the pulse height analysis field. He also claims that the same type of conversion is most applicable to the medical field for histograms.

In Gordon's memo of May 7th to Nick, he mentioned that the "advent of an SDS machine probably means a start of a decline in modules sales there" (at BTL). I don't believe that this will turn out to be so, for in the first place, Jack is using our modules as part of his interface and I spent a short time talking with one of his people, Ed Gere, on Tuesday outlining some logic that he is interested in adding. Ed Gere also mentioned that he really was beginning to wonder about the claim of increased reliability with silicon semi-conductors, due to the experiences they have had. As far as anyone else at the labs is concerned, I have heard no mention of the SDS machine or SDS modules except from one computer prospect who only mentioned the difficulty initially encountered with Jack's machine. Jack and Ed were, in fact, experiencing difficulties during my visit. A program which had rum previously was indicating crrors on read-in. (Paper tape does not stop on error.) They ran several SDS diagnostic routines but could find no machine trouble. At that point, Ed mentioned that for all but about one of there past problems, the diagnostic routines had not brought to light any of the troubles.

There is one area in which SDS really puts us to shame and this is their software write-ups. Although Jack Mentioned that they do not always include everything that is desirable to know about the routine, the writeoups themselves are extremely well done compared to what we have to offer, in my opinion. Jack specifically asked me to bring along some of our program writeoups, and I must say I was somewhat embarassed to show him what ours look like as compared to SDS (even though we may have far better and more exact information in our write-ups).

To：All Below
Date：May 16， 1963
From：Arthur Hall
The following is the distribution list for PDP－6．

All Memos：

In addition to the above ${ }^{\text {s }}$ ，the following should receive all memos which refer to： Sales ${ }_{y}$ Markating，Advertising，Major Configuration Changes or other important policy mafters：
${ }_{\text {K．Olsen，}} \mathrm{H}$ ．GRove Anderson ${ }_{y} \mathrm{~S}$ ．Olsen，No Mazzarese（2 copies），J．Atwood ${ }_{0}$ S，GRover．

Expendifures（outside DEC）for equipment or services exceeding $\$ 1,000$ ：
G．O＇Dea，H．Crouse
Labor and／or Material Accounfing：
R．Mills，F．MacLean
Progremming and Design as it concerns Programming：
H．Morse，S．Piner，N．Hurley，M．Graetz，L．Hantman L．Gossel
10 Equipment and Interfaces
R．Savell（2 copies），R。Boisvert（2 copies），T．Stockebrand，So Lambert， E．T．Johnson．

Production and／or Field Service \＆changes to equipment in Production or in the field：
M．Sandler J．Smith（3 copies）R。Beckmern，J。Shields（3 copies）R。Hughes K，Doering，

Any changes in Physical Configuration or Production Methods：
L．Prentice ${ }_{0}$ K．FitzGerald，S_{0} Miller．

Suggestions for changes to the list above should be directed to Arthur Hall．

INTEROFFICE MEMORANDUM

DATE May 16. 1963
SUBJECT TRCHNICAI MAWUAI PRODUCHION

KO E. Olsen	FROM Jack Atwood
$\sqrt{\text { E. E.Anderson }}$	
S. C. Olsen	
R. L. Best	

Our people working on cechnical manuals met recently with our four principal customers o Bob Savell, Bob Becknan, Roland Boisvert, and Arthur Eall. We discussed in detail ways and means of speeding the production of equipment manuals.

The discussion produced several points of agreement which I think will be most helpful is the future:

1. The level of detail of the text and its accompanying diagrams should stop outside the individual paciages. To go inside the modules in this type of text not only wastes writing and illustrating time: it also tends to confuse the reader by branching too far from the main stream of the explanation.
2. However, there is a place for circuit descriptions in many manuals. This is particularly helpful from a sales standpoint. These descriptions should be somewhat more detailed than the catalog pages, but they do not need to be too extensive. They should be available in prepackaged form for ready inclusion where needed.
3. The biggest saving in technical illustration time can be achieved if engineexing drawings are produced originally in satism factoxy form. Virtually all dxawings produced by Jow Fadiman's group, for example, are readily reproducible in his manuals. Many drawings available from the comprater group, on the other hand, must be both reorganized and redrawn.
4. The project engineer on most peripherel equipment projects should be able to produce a workable outline of his piece of gear in four to eight houxs of dictation. Whis, together with adequate drawings, should enable the technical writer to produce a manual in a matter of days or weeks, rather than months ox years:

Obviously, some pressure for better drawings is forthcoming from the Drawing Standards Comaittee. In addition, people lifee Bob Savell and Bob Beckman are going to apply pressure where it is most useful to upgrade the effort in this direction. this all contributes to a general improvement.

Still. I do feel that some pressure from a higher level would have even more immediate results. Dick, as chief engineex, or Ken, as president, could cextainly apply pressure on the engineering group as a whole to produce better draws and better thought-out diagrams withont waiting for a final report on each detail of technique from the Drawing standards Committee. Any help along this line would be most appreciated.

DEC MAY - DECEMBER 1963 - TRADE SHOW SCHEDULE

Show	Place	Dates	Booth
Design Engineesing Show	New Fosk city	May 20-23	10° self-contained
Spxing Joint Computex Conf.	Detroit	May 21-23	40°
$A_{\circ} F_{0} C_{0} E_{0} A_{0}$	Washingtong D.C.	Sune $4-6$	10' selfocontained
western Electronic Show s Convo	San Francisco	Aug. 20-23	20°
Asscco of Computing Machinesy	Denver	Avg. $27-30$	20^{3}
American psychological Association Convention	philadelphia Ben Franklin Hotel	Aug. 29 - sept. 4	24
INEL	Basel. Switzerland	Sept. 2-7	
Instoument Society of America Annual Instsument Automation conference s Exhibit	chicaga	sept. 9-12	20
ERE - Canadian Electronics Confexence \& Exposition	Tononte	Sept. $30 \sim$ Oct. 2	20^{8}
$N_{0} \mathrm{C}_{0} \mathrm{I}_{0} \mathrm{R}_{0} \mathrm{E}_{0}$	Greansbase. NoC。	october	selfacontained
National slectronics Conference	chicago	oct. 28-30	20°
Northwest Electronics Research \& Engineering Meacing	Boston	Nov. 4×6	20°
16th Anmual conference on Engineexing \& Medicina	Baltimoze	NoV. 18-20	
Amesican Institute of Electrical Engineers Conference on Magnetism and Magnetic Materlais	Atlantic city	Nov. 110-15	20° (8)
Pal1 Joint Computer Conference	Las Vegas	Nov. 12-14	40° a 20°

$$
\text { DATE } \quad 15 \text { May } 1963
$$

SUBJECT PDP-4 for Kie Corporation
TO
Stan Olsen
FROM Bob Beckman
cc: Ken Olsen
Harlan Anderson $>$
Nick Mazzarese

Subject computer was shipped this date without having passed all of the established inspections and tests.

Due to last minute modifications and additions to this machine it was impossible to follow the normal acceptance test prom cedures and still deliver by the promised date. Final repair work was completed and a few of the test programs were run briefly before releasing the machine for shipment. Complete on-site acceptance tests will be run after installation.

May 15, 1863

> 57 Magnefic Tape Confrol Computer Guidenes Comnilo ee

Obviously the 57 Consrol has been ressed through much controversy. The fores of the matier is that I am frying to produce a central that satiffes overybody's needs. Thit is impossible. Whan the 57 control wes concelved there were no thoughts cbout connecing the fleM transporis to if. Howevers after the first modsl was in producition, a meseing war held and the outcome suggested we integrato the BBM srensports onto the control at a latier date. The latber dare hes orrived.

This month I redesigned the 57 odding features bur not chenging the basic control. The reason behtid the chonge was to incopporate the interfices requirements of the LBM and Midiwestern frensports. As a resuls, a new set of drewings, a new (or modified) Progremming Manvel, a new Mainfenanee Manuul and Contral Tesser must be worked on. This seems the a lot of work for me but I feal that I can heve the malosity of the work accomplished by June 15\%

The fransifion thrown into the existing Programming Manual is emall. The menual implies that the Type 50 tronspost is capable of 556 dansity 13 M format. Presenfly we are compering the tranaporis egcainst 1BM ro see if thits sfatemens is true. If wé find that some pransporis work and others ese marginal then en addendun should be afreched to the manuel staring "We done" guarentes 555 when using Type 50 trenerports. My canulysis of the Poster and IBM skew folerance (the problem) Baggestrs to me thas wa ahould never hewe trauble os lang an both fransports are hep to within 50% maximum akew.

To ellminate confusion, the redesigned 57 hes boon exsigned the numbers (520)
 operate IBM Prensponts. The Progremming and Maintencnee manvols will contain (57) as the fitles and each monual will be braken mono sections 520,521 end 522. Any oddlitions or dolations to the existing sales metarial will toke the form of ans addendem.

In the leas month two. I have had a large number of persenal facters to selie care of or get cdjusied to. As a result the maintenases manual hes net been completed on the essigned date. Peut Sciven has helped fremendously in gathering data and writing a ponton of the manual. Of course the manual will have to be madified for Aldwestern end IBM.

What does the new 57 look like as compared to the old?

The new control will be controlled by two crystal clocks and is capable of 200 . 556 and 800 densities. The old contral was clocked by the PDP-4 siming chain. The new control will contain its own Current Address (CA) and Word Count (WC) registers, where the old control used Memory Loccrions 4 and 5 css (CA) and (WC). The reason behind these modificarions is to allow more flexible timing restrictions of 112.5 ips tape speeds, for the programmer. These modifications also allow the 57 to be connected to either the PDP-1, PDP -4 , PDP-5, and possibly the PDP-6.

In addition to the old conivol, the 57 now has a new $10 T$ command for transferring dara to the (CA) and (WC) and reading the (CA) to the AC. The control has rwo addirional tape commends and status flags. The commands are Rewind/Unloend and Dual Level Read (iwo commands for Midwestern and IBM only). The status flags are Dat́a Request Late (DRL) and Taps Miss Characfer (TMC). Everything else remains the same as stated in the Programming Manual with the exceprion that the programmer has more machine thime available.

The physical appearance of the control changes radically in reference to module locations. To facilitate the three interface requirements, the four mounting panels of logic have been broken into a 3-1 combination. Three mounting panels are considered as basic logic where the fourth is the interface logic. Befween the third and fourth panel there are stondoff tie points. This allows us to sfock the basic logic and when a customer orders we solder on the fourth. For the interface befween computer and confrol 3-50 pir Amphenol Plugs will be used. Two of these plugs will be icientical to she Type 24 Drum interface. The third will carry OT's $^{\text {and }}$ antra $A C$ inputs not used by the dum.

Two panels of logic are required in addition to the three basic logic panels to operafe IBM transports. All the specifications outlined for the 57 are true for IBM except 1BM does not produce a stâus for Near Load Point or Near End Point. Mare panal space is required for the IBM rranspor plug (equivalent to addirional mounting panel).
The basic logic consains 2 eightean bir buffers, buffer confrol logic, and rime delays . The basic unit has a data band width of $200,000 \mathrm{kc}$. In realify, any device may be connected to this logic where a time function is required before and after data transfer. Skew folerances are adjustable on dara fransfer-in and up to three data fransfor rates and skew factors may be selected by program. In adilition other davices may utilize one of the eighteen bit buffers without using the cuvallable time delays. To incorporate this last feasure an additional set of gates must be supplied at the Dara Buffer plus priority logic must be added to the (CA) and (WC). This in truth then makes part of the basic logic a Data Channel. It is suggested that only one such device be added if any. All data lines befween the basic logic and inierface panels are 6 dara levels t parity (negarive for a one) out and six data pulsest pariìy (positive for a one) in.

What's new?

Near the end of April I designed two new modules (4304 and 4305). These modules are used with the 4303 integrating delay and cut the cost of tape controls considerably. The purpose of the modules is to make one 4303 look like $n 4303^{\circ}$ s. For every six 4303 's used previously, one 4303 and one 4304 take their place of .3 times the original cost. Before, of cost me $\$ 1910.00$ and now it costs approximately $\$ 630.00$ for delays and logic control.

The module is well on iss way to production through the proper channels. Test data sheets, fester and models are almost complete. The production release is presently in draffing. Tesp procedure and module specificarions will be available shorily.

Midwestern Type 570 Transpori Confrol?

I devoted the majority of my time to the Midwestern transport during the first week in May. After completing the design, I received a memo from Gordon Bell proposing a common buss system. The idsa sounds great between computer and control but NOT BETWEEN CONTROL AND TRANSPORT. Ridiculous. The cost of transport controls would skyrocket. Can one imagine commutasing 30 vo 40 wires?

The basic 570 Control is designed for mulsiplex operation. That is ${ }_{g}$ iwo tape controls may address the same fransport separately. The logic is set up so that when the customer desires multiplex operation, he buys an additional mounting panel called B Control and plugs it into the existing A Control. Each mounting panel carries a maximum of 12 modules. For mulifiplex operation 4-50 pin cannon plugs are required in each fransport. The logic is designed that more transport controls could be added in a priority arrangement. The basic A Confrol with read/write logic uses 22 modules where the B Conirol uses 7 modules.
The first confrol unit will be out of production by the last week in May. Is is planned to have the 521 repe control out approximotely the same time. However ${ }_{\theta}$ drafting has held me back a week and who knows when they will be finished.

I've suggested to Scort Miller that iwo fransport select switches might heve great sales potential for mulriplex or time sharing of transports. There is valid logic reasoning behind this suggestion. If computer A has programs wrimen using fransports 1 and 2 and computer B has a program using the same unit numbers but B wanis fransporis of his own not being used by A_{0} what does B do?

Anything else?

Yes, I'm still hep on wirelisising. How? Refer Lack to a memo that I wrote a month ago. Presently the 570 is on cards with a wiring diagram for backup. I have found a great amount of the problems in the initial slage are amotions, documentation and ease of handing. Errors crop up every time the list changes hands. The key punch operator has frouble reading the scribbles and she finds it difficult to swirch to and from alphe and numerical modes.
I've been doing shis work in my spare sime (What spare rime?) and hope to see results soon.

Type 57 Nay tape Control

Type 57 control
520, 521,522 inferface or other
Devisint Control

infout lines

S. Lambert 5/14/63

Type 570 Transport Control
Computer Midwestern

INTEROFFICE MEMORANDUM

 DATE 5/15/63SUBJECT A to D Prices
K. Olsen

FROM R. F. Maxcy
H. Anderson
W. Hindle
R. Best
S. Olsen
N. Mazzarese
D. Morse
S. Grover
G. Bell
S. Lambert
R. Boisvest
R. Savell

All Sales Personnel

The following isems have been priced and are available on a five month delivery. A wrife-up is enclosed.

General Purpose A to D Converter (up to 11 bits) $\quad \$ 5,000$
General Purpose 64 Channel Nultiplexer and
Control
3,600
Multiplexer Swirch 1578 425

Doscription of our General Purpose A to D Compulers and Multiplexers

The general purpose ancilog to digital converter moy be used po convert input onsiong voltages into digisal rumber of up to 11 bits. The A to D converrer commenicares with the computer via tha 10 . Convarsions are intitated by computer request.

The inpits range on tha ADC is 0 to - 70 volts. The speed of the conversion is prow portional to sthe number of bits and the desired accuracy. The output of the A to D converter is an 11 bit bincry number in iwo's complement notation. A ground ingut correspords to tho largest positive outpuis - 10 vols input corresponds to the largest negrative sumbias. Tha digital output always is transíarsed so the moot sige nificant biss of the compuser wiord.

The A to D canvorter is controllad by two IOT's. One instrucrion requesis that a cosmarsion be made. A second instruction requests that the results of the A to D be sead inso the computer. The time batween chese two insiructions musf be sufe ficient to allaw complofe conversion.

GENERAL PURPOSE 64 CHANNEL MULTHPLEXER CONZROL

The ganeral purpose mulpiplerer costrol was designed so be used with the genceral purpase A to D converteri. "t will allow up fo 64 chansials of information to be multiplazied into the inpers of the ADC.' Muliplauter switches ewe ovailable in groups of four. Muter
 added ut a lcosar date.

The muthiplesser control hes two msdes of operation sequential addressing or individuat oddressing. Individual addressing allows any converfer channol to be solected. by 10 i. After the chanel has been safacted, the canvarser will automasicalty proform a conversion. A variation en this 107 may be used to fell the multiplexer to increase shis chonnal mumbar by ane and stien corvert. When this insiruction is used, the multiploxes will cutomatically peset to ase if an codvince is requestad when is is on its last chanel.

DATE May 15, 1963
SUBJECT
TO K. Olsen
H. Anderson
S. Olsen
N. Mazzarese

Teletype Corporation has halted production and shipment of all BERPE 11 punches. This is due to field complaints in relation to paper tape tearing. A number of complaints have been received over a period of weeks which they feel necessitates an Engineering Change. Shipments from Teletype have been falling behind for a number of weeks but they have been promising they would rectify the situation. It was just yesterday that Purchasing learned the real reason for the delay was the Engineering hold. To date Purchasing has been unsuccessful in their attempts to expedite information as to new shipping dates.

This cutoff of shipments without notification leaves us in a rather poor situation. BERPE $11^{\prime \prime}$ s are used on both our PDP-1 and PDP-4 computers. Our present inventory level is at 0 , with both PDP-1 and PDP-4 computers constructed for May in need of punches. I have contacted our field service people and they do not feel that paper tearing has been a problem here at DEC.

I would suggest that a call to one of their tape people may help expedite this situation. The punch they manufactured prior to the hold has been satisfactory and will be acceptable. If this is not possible, information as to a new shipping schedule will be of great value for our future scheduling.

INTEROFFICE MEMORANDUM

COMPANY CONFIDENTIAL

DATE May 14, 1963
SUBJECT Type 54 Tape Control
TO Computer Guidance Committee FROM Dit Morse

I intend to bring this subject up at the Computer Guidance Committee meeting of 5-15-63 for the purpose of discussing the possibility of (1) obsoleting the tape control or (2) downgrading the responsibility we assume in regard to programming.

The points in favor of some action are:

1. The control is extremely hard to use.
2. We have sold only one.
3. Operation of the in-house control has not been satisfactory.
4. Foxboro is unsatisfied with the programs we have furnished.
5. Type 51 hindsight
6. The type 57 is only (2xtype 54) dollars!

On the other hand, in favor of keeping the present control are

1. It is inexpensive.
2. It is somewhat less restrictive in the formatting of data.
The overall summary is that we presently offer a tape system which consists of the type 54 control and programs. However, I believe we will spend an amount of time and effort maintaining systems containing the type 54 which will be out of proportion to the returns in monetary profits, computers sold or satisfied customers.

There may be a strong case for the control as part of small data collection systems where the number of dollars is especially significant to the user. Perhaps if such a case arises, the type 54 should be sold as a "special option."

INTEROFFICE MEMORANDUM

DATE May 13, 1963

SUBJECT PDP-6

TO Richard Best
Robert Savell
Roland Boisvert
Tom Stockebrand
AI Blumenthal
Burt Scudney
Alan Kotok
Arthur Hall
Roger Melanson
Jack Atwood
Ed Harwood
Nick Mazzarese

Ken Olsen
Harlan Anderson
Win Hindle
Richard Mills
George O'Dea
Henry Crouse
Maynard Sandler
Dit Morse
R. Lane
Stu Grover
R. Beckman

Enclosed is a matrix of sub-system hardware components for the PDP-6 system to provide familiarity.

The component development, sales, testing, etc. will be controlled by Arthur Hall, and includes:

1. Assignment of job numbers and accounting charge systems for any and all PDP-6 projects or expenditures.
2. Assignment of print numbers and print control. (I will cosign all designs initially)
3. Scheduling
4. Print conventions, signal naming, etc.
5. General liasion with all groups.

We are beginning to embark on a development program that will require considerable amounts of time and effort on the part of many in the company. The project will be roughly the size of the PDP-1 development, and includes in addition to the hardware shown in the matrix, equal amounts of effort in the following areas:

1. Programming
2. Marketing and Sales (continuing after the initial development).
3. Programming and Maintenance manuals.

Page II
4. Field service and customer liaison.
5. Production, checkout.

The prototype machine will be shown first at the Fall Joint Computer Conference, November 20, 1963 in Las Vegas.

The marketing effort will be handled by the Computer Sales Department, under R. Lane.

The Sales Department is holding a briefing on the machine on Tuesday, May 14 at 3:00 in the sales conference room.

DATE 䜌 20 。 1963
SUBJECT Attached Arithmetic Ixecution wime winble
TO "PDP DAEtsibution ILst" FROM Pete Bonnes

Due to the anconatered inezeaned cemand sor axithmetic opexating
 pllad. The kiguze cowpriaing this table wexw gatheaced sxod prasently aximelng twolos and "educhtad gremges" me to sunction wercution time.

The trable Is balng ofsculated only withire DEC with the intent of

 bighly denixablo to have shenkum.
 and updeting this thble. wowned ths owd. I wonld appzectere baving all semponsen dixuceed to bes.

Arithmetic Execution Times for PDP-1 (In Microseconds, Including All Access)

Function	Fixed 18	$\begin{aligned} & \text { Float } \\ & 18-18 \end{aligned}$	Fixed 36	$\begin{aligned} & \text { Float } \\ & 36-18 \end{aligned}$
Addition	10	720	180	790
Addition*				
Subtraction	10	750	180	710
Subtraction*				
Multiplication	$\begin{aligned} & 14 \text { min。 } \\ & 25 \text { max. } \\ & 20 \text { ave. } \end{aligned}$	470	795	1.500
Multiplication*				
Division	$\begin{aligned} & 30 \text { min。 } \\ & 40 \text { max. } \\ & 35 \text { ave. } \end{aligned}$	470	950	1.625
Division*				
Sine-Cosine	390			12.000
Sine-Cosine*				
Tangent				
Tangent*				
Arcsine	1,035			
Arcsine*				
Arccosine	965			
Arccosine*				
Arctangent	2,035			
Axctangent*				
Square Root	71.5			3,025
Square Root'				
Exponential		660		
Exponential*				
Iogarithm				
Eogarithm\%				

*Wichou
xtended Arithmetic Unit in PDP-4

Arithmetic Execution Times for PDP-4 (In Microseconds, Including A1l Access)

$\begin{gathered} \text { Fixed } \\ 18 \end{gathered}$	$\begin{gathered} \text { Fixed } \\ 36 \end{gathered}$	$\begin{aligned} & \text { Float } \\ & 36-18 \end{aligned}$
16	96	$\begin{array}{r} \min . \\ 360 \mathrm{mix} \\ 336 \text { ave. } \end{array}$
		1,000
24	128	$\begin{aligned} & 360 \mathrm{man} \text {. } \\ & 336 \text { ave. } \end{aligned}$
$\begin{array}{r} 40 \mathrm{~min} \\ 256 \text { max. } \\ 148 \text { ave. } \end{array}$	700	$\begin{aligned} & \min _{\circ} \\ & 700 \mathrm{max}_{\circ} \\ & 500 \text { mee. } \end{aligned}$
2.500	8,500	10,000
200	$\begin{aligned} & \min \\ & 720 \text { max. } \\ & 650 \text { mve } \end{aligned}$	$\begin{aligned} & \mathrm{min} \\ & 820 \mathrm{max} \\ & 750 \text { ars. } \end{aligned}$
3.100	10,000	10.000
2.550		6,840
1.420		-1,630
		825

DATE May 9, 1963
SUBJECT I/O Equipment for PDP-6
$\begin{array}{llll}\text { Henry Crouse } & \text { FROM } & \text { Gordon Bell } \\ \text { Robert Cavell } & & \\ \text { Arthur Hall } & \\ & \\ & & \end{array}$

The 1/O equipment on PDP-6 Prototype should now include:

1. 200 card/minute Burroughs Card Reader (for PDP-4 initially)
2. Holley 120 column, 300 line/minute line printer (for PDP-4 initially)
3. 3-model 33 Teletypes
4. I BRPE Punch
5. 1 Digitronics 3500 Reader
6. 8-18 bit, 4096 word core stacks

INTEROFFICE MEMORANDUM

DATE May 9, 1963

SUBJECT Rough Price Estimate for PDP-6 Core Memory System

TO Computer Guidance Committee
Richard Best
A| Blumenthal
Maynard Sandler
Arthur Hall
Burt Scudney

There will be a lst pass price on the core memory system for PDP-6 at the Computer Guidance Committee meeting on May 15, 1963. Today we have nearly all unknowns, but the component parts estimates we need, and can estimate are:

1. Price for 4096,8192 and 16,384 word 36 bit memories (4.0 microsecond, and 5.0 microsecond)
2. Circuits:
A. PA Bus drivers modules (special mechanical)
B. Flip-flops
C. Input gating modules (special mechanical)

This estimate will begin to give us an estimate of PDP-6 selling price.

The Computer Guidance Committee has decided against ordering a drum for DEC use.

Niay 9, $1 ; 63$
DATE
SUBJECT
то
Gordon Bell
FROM ${ }^{\text {Stan Olsen }}$
cc: Ken Olsen
Harlan Anderson
Dick Best
Bob Savell
Jon Fadiman
Tom Srockebrand

Intra-sales dejariment communications have been well defined and re-defined over the past couple of years, and at this point are probobly approximately 90 percent effective. The cooperation has been tremendous and at times it seems some of our sales peaple have buils-in dictating machines. The intra-DEC communications, on the other hand, are almost complezely "word-of-mouth." Some exceptions are Barbara Sfephenson, Don White, and Jon Fadiman and his people.

When Sales Call Reports are received, one copy is routed to the appropriaje person or persons and another copy is fut into the permanent Customer File. When we ger so the foint where all sales leads are put on to Sales Call Reports, we can then think about sending out a general acrivity report.

DATE May 9, 1963

SUBJECT

TO K. Olsen
H. Anderson
S. Olsen
W. Hindle
M. Sandler
J. Myers
B. Farnham

Wes Clark is quite concerned about not having received any modules to date for the Linc computers he is building. The main reason that we have not sent any modules to date has been that we were waiting until we had the full complement for two Linc computers before our first delivery. We, however, delivered 50 mounting panels and 250 unassembled 1951 modules as of this date.

I have just checked with Bill Farnham as to what the status is of our first delivery to MIT Center Development Office. The situation is as follows: We will ship by next Wednesday, May 15, the full complement for 2 complete Linc computers with the exception of 3 module types. These are: the 1571, 4604, and 4221. The quantity needed of the 1571 and 4604 will be delivered by May 22, 1963. The 4221 will be delivered by June 1, 1963 - the absolute deadline.

The schedule for the remainder of the MIT order is as follows:

Nodules for 2 Linc Computers - by June 15
Modules for 8 more Linc Computers - by June 30
Modules for 8 more Linc Computers - by July 30

I am attaching the latest confirming letter from Wes clark as to the types and quantities for the entire MIT order.
date May 7, 1962

SUBJECT ADVERTISING DEPARTMENT ORGANIZATION

TO	K. H. Olsen
CC	H. E. Anderson S. C. Olsen

It should be helpful to you in reviewing the personnel requisitions from this department to know how the people we are asking for will fit into our overall operatisi. The ttached exhibits should give you this information。 mey ace:

1. A copy of sekly schedule of moming "work-in-progress" review meet aftertoon planning sessions. The purpose of the mory of the deparent to cneck on the progress of jobs already in the worl. The afternoon sessions, traich include only the persons immediately concemed, are to check on our efforts in the various areas of activity which we should be covering.
2. A list of these acuivities or functions with examples to show what the itles cover.
3. A proposed table of organization for the department, showing the various specialists I feel should eventually be available to service the company's advertising, sales promotion, public relations, and graphic arts requirements. The names of persons already or the staff and assigned to particular jobs are shown in the arropriatelboxes.
4. A list of these specialists by job title together with a brief job description on each.

The table and the descriptions indicate the lines of responsibility I would like to set up in order to assure proper supervision of each person in the department without overloading any one individual with supervisory duties.

Two things are worthy of special mention。 First, the job titles are not necessarily the titles these individuals presently hold, nor are they necessarily the titles we will finally settle on Second, the job list (No. 4 above) is broken down into five groupings based on responsibility, professional requirements and projected salary levels. The maximum and minimum rates for these groups might be: Classification A, \$200 plus; Classification B, \$150 to 200; Classification C, \$100 to 150; Classification D, \$75 to 100 ; and Classification E, \$62 to 75 .

Thme	Mondicy	Tuestoy	Wedrosday	Thursday	Friday
.0830-0.0	Produchion Group:	Guphto Ars Group:	Production Goup:	Direcs Mail Group:	Produchions Grouas:
	Sack Holons serth Ales Buce Im Frark	Jack Heleno Seorge Bob Wemon Bab	Jack Holone A Buce Jm Pank	Jack backie Gor Frem Nan Cavol Stecia Flo	Jack Hetone Alok Bruce Jim Frams
1000-1630	Prombitional Pubitcity	Oourotionas Publicily	Hace: Powesmed	Oparorional Problicantons	Promotional Advesising
1230.1400	Pronotionas Publications	Spectat Evonis	c. 8 Monting	Operahonal Aids	Tochuices Publications
1400-8430	Promotiona! Alds	Plaz inprovenomes	Sooctat Notitos.	Techneat Apricles	Industriol Design
143001800	Employmen Adveriding	House Orgon	Malling	Biweekiy or Depr. Noses ${ }^{\text {B }}$	Trode Shows

Promotional Publications: Module Catalog, PDP-1 Manual, Logic Handbook, Customer Catalogs.

Operational Publications: Plant Facilities Brochure, Employee Handbook, Recruiting Folder.

Promotional Advertising: Space advertising intended to promote the sale of modules, computers andsystems.

Operational Advertising: Employment Ads and Spots.
Operational Publicity: New Space News Release, New Appointment Releases.

Operational Aids: Employee Badges, Employee Orientation Program
Special Events: Armed Forces Day Exhibit, Open Houses, Plant Tours.

Plant Improvements: New In-Plant Direction Signs, Lobby Renovation Program.
Inquiry Processing: Forwarding of requested literature and up-dating of direct mail list.

Customer and Sales Forces Mailings: Mailings of selected material to persons on the customer list and on the sales staff.

Special Mailings: Employee Mailings, Show Mailings, "Opinion Leader" Mailings.

Bulk Mailing: Monthly mailing to all persons on direct mail list.
Promotional Publicity: New Product and New Iiterature Releases, Cooperative Publicity with Customers and Vendors.

Promotional Aids: Product Photographs, Sales Force Binders, Special Displays.

Trade Shows: Promotional Exhibitions.

Technical Publications: PDP-1 Maintenance Manual, Replacement Schematic Books, Input-Output Manual.

Technical Articles: Feature stories on Digital engineering accomplishments.

House Organ: Monthly Employee Publication.
Industrial Design: Carton Designs, Packaging, Labels, Test Data Cards.

Graphic Arts Service: Office Forms, Production Positives, Printing, Collating, Binding.

PROPOSED TABLE OF ORGNIILATION - ADUERTISNG DEPARTMENTT

Job Title

Advertising Manager

Assistant Advertising Manager

Art
Director

Production Manager

Advertising
Specialist

Public
Relations
Specialist

CIASSIFICATION A
Overall responsibility for advertising and public relations effort and supervision of department personnel.

CLASSIFICATION B
Responsible for promotional and operational publications, promotional and operational advertising, and monthly bulk mailings. Supervises advertising and public relations specialists and technical copywriter. Manages department in absence of the advertising manager.

Responsible for layouts, design and finished art and for plant photography. Also responsible for certain industrial design and plant improvement projects. Supervises technical illustrator, art specialist and photographic supervisor.

CLASSIFICATION C

Responsible for production and distribution of advertising material, for certain outside professional services, and for job control and cost accounting. Supervises assistant production manager, printing supervisor, direct mail supervisor, and reproduction typing projects handled by secretary.
Responsible for trade shows, promotional publicity, sales aids, inquiry processing, customer mailings, sales force mailings, and special mailings.
Responsible foremployee publication, operational publicity, technical articles, training aids, and special events.

Job Title
Technical Copywriter

Photographic Supervisor

Technical
Illustrator

Assistant
Production
Manager

Printing
Supervisor

Direct Mail
Supervisor

Art
Specialist

Photographic Specialist

Secretary

Assists in the preparation of technical material by the assistant advertising manager and the advertising and public relations specialists. Supervises preparation of graphics for technical manuals.

Responsible for all in-plant photographic operations. Supervises photographic specialist and laboratory technician.

Responsible for all illustrations of a technical nature for departmental projects. Assists in the preparation of layouts and mechanicals.

CIASSIFICATION D

Responsible for certain supplies and services, departmental inventories, and for oollating, binding,land shipping of printed material. Assists with all phases of advertising production and handles the work in the absence of the production manager. Supervises two clerk-typists。

Responsible for all in-plant printing operations, for the securing of printing supplies and for the maintenance of printing and binding equipment. Supervises advertising trainee and keypunch operator when latter is doing presswork.

Responsible for the processing of inquiries and mailings and maintenance of the mailing list. Supervises three direct mail clerks.

Assists in the preparation of mechanicals for printed material. Handles sign work, special displaysiand other similar assignments.
Assists with all in-plant photography, particularly copy camera work, for advertising and production. Processes departmental correspondence and handles mail distribution. Does reproduction typing.

Job Title
Laboratory
Technician
Direct Mail Clerk

Direct Mail Clerk

Direct Mail
Clerk
Reproduction
Typist
Clerk-
Typists

Advertising
Trainee

CIASSIFICATION E
Operates darkroom. Handles stats, photoprints, photographic typesetting, and photocopying.

Responsible for the packaging and forwarding of all mailings, requested literature and literature for shows.

Responsible for keypunching of all new direct mail information. Also fills in on small offset press when needed.

Assists with the maintenance of the direct mail list and types mailing label sets.

Types material for reproduction and does simple paste-ups.

Assist with typing, filing, collating, binding, and mailing. Are shifted from assignment to assignment as needed.

Responsible for all receiving in Building 12 and for forwarding of completed jobs. Fills in when needed, either on the press or in the darkroom.

INTEROFFICE MEMORANDUM

DATE April 10, 1962
SUBJECT Additional Discounts on Future ITT Orders
TO
K. Olsen
R. Mills
FROM Nick Mazzarese
H. Anderson
M. Sandler
S. Olsen
B. Gurley

A meeting will be held in Mr. Ken Olsen's office today, April 10 at 2:30pm to discuss:

1. Discounts on future ITT orders
2. Subeontracting of module construction and testing to ITT

In order that you may prepare your thoughts before you come to the meeting, a brief outline of the items to be discussed is included.

The present discount system offers 10% off on orders of six or more computers. ITT presently has such an order in effect. In order to act as an inducement to ITT to place firm orders (orders not easily cancelled), it is proposed that a more attractive discount schedule be used.

The proposed system is as follows:

1. An initial order which is subject to cancellation by ITT can be placed for up to 12 computers. This would be similar to their present order.
2. Orders for additional computers would be on a firm basis (cancellation would be subject to a heavy penalty) and would be subject to additional discounts.

The discounts would be as follows:

6	computers	11% discount first 6
12	computers	12% discount 6
18 computers	13% discount next 6	
24 computers	14% discount	
30 computers	15% discount	atc
36 computers	16% discount	
42 computers	17% discount	
48 computers	18% discount	

```
CENTER DEVELOPMENT OFFICE
FOR COMPUTER TECHNOLOGY IN THE BIOMEDICAL SCIENCES
292MAIN STREET, CAMBRIDGE 4?
```

9 May 1963

Mr. Mort Ruderman
Digital Equipment Corporation
Maynard, Massachusetts
Dear Mort:
The list contained in this letter supersedes all earlier lists. It is based on a final count of types required and will not change by more than two or three units per machine. 20 LINCs are assumed; spares have not yet been included.

1 LTNC	20 LINCS	TYPE	
36	720	4143	
6	120	4114	
12	240	4115	
31	620	4102	
16	320	4112	
12	240	4113	
12	240	4127	
22	440	4204	
19	380	4205	
24	480	4123	
8	160	1151	
6	120	4221	
9	180	1669	
5	100	4303	
5	100	4410	
1	20	4407	
2	40	1304	
12	240	4604	
31	620	4606	
3	60	1561	
5	100	4677	
6	120	1571	
14	280	1914	
5	100	1001	
2	40	1954	
2	40	1914	e Retainer
	Very truly,		

WAC:ga

INTEROFFICE MEMORANDUM

DATE May 9, 1963
SUBJECT T.M.C. and Bell Tel Labs.
TO Dave Denniston
FROM Kenneth H. Olsen
cc: S. Olsen
N. Mazzarese
H. Anderson $\sqrt{ }$
G. Bell
B. Savell

We had some visitors on Wednesday, May 8th from Technical Measurement Corporation in North Haven, Connecticut. They are interested in using one of our computers in their pulse height analyzers. They are now running into competition with people who are using computers because computers are so much more in general. One of the people using computers is Mr. J. V. Kane of the Bell Telephone Laboratories who bought the SDS computer. They pointed out that Kane very badly wants a cathode ray display for his computer and I told him that we would follow up on this. I think it would be a good idea if you visited him and tried to sell this display and if necessary we could even send people down from the plant.

Kenneth H. Olsen
$\mathrm{KHO}:$ ncs

DATE May 9, 1962

SUBJECT Required Delivery of TO

ASSIGNED	COLOR
$\frac{A D X-2}{A D X-2}$	Blue
ADX-2	Blue
ADX-2	Blue
JPL	Gray
JPL	Gray
ADX-2	Blue
ADX-2	Blue
ADX-6	Blue
ADX-6	Blue
ADX-6	Blue
ADAMS	Gray
CRC	Gray
ADX-7	Blue
ADX-7	Blue
ADX-7	Blue
PDP-4	Gray
PDP-4	Gray
MIT	Gray
MIT	Gray
ADX-2	Blue
DEC	Gray

FROM Jack Smith

REQ. DEL. DATE Received
$4 / 23762$

4/23/62
4/30/62
Received
5/14/62
5/21/62
5/28/62
5/31/62
6/4/62
6/7/62
6/11/62
6/14/62
6/18/62
6/21/62
6/25/62
6/28/62
7/2/62
7/5/62
7/9/62
7/11/62
7/16/62
7/19/62
7/23/62
7/26/62
7/30/62
8/3/62

2nd of 2 pages

ASSIGNED

COLOR

Gray
DEC
ADX-8
ADX-8

Blue
8/9/62
Blue
8/13/62

8/6/62
REQ. DEL. DATE

-PDTTER INSTRUMENT COMPANY, INC.

ANNUAL AGREEMENT

Agreement: Customer agrees to place an order for an annual nominal quantity of identical units to be delivered at a nominal rate in order to qualify under the terms of this agreement. Minimum quantity that can be ordered is 36 units.

Discounts: All discounts applicable for this contract shall be effective for the units scheduled for delivery in accordance with the rates mutually agreed upon between Potter and the customer or as changed by the customer in accordance with the terms of this agreement under Increases or Decreases clauses. The specific monthly discount rate shall be in accordance with Schedule 1.

Increases:

Decreases: Customer can order increases in rate up to a maximum of double the nominal rate specified for this contract upon 90 days notice to Potter and will be entitled to a higher discount rate, if any, commencing with the month that the higher rate is scheduled for delivery. Customer can order decreases in rate down to a minimum of 3 units per month upon 90 days notice to Potter. Lower discount rate, if applicable, shall be effective commencing with the month that the lower rate is scheduled for delivery.

POTTER INSTRUMENT COMPANY, INC.

Termination with Timely Notice:

If the customer provides Potter with 120 days notice that the rate of delivery is reduced to less than 3 units per month, this agreement shall be terminated effective on the last day of the month for which the delivery rate of 3 units per month is specified.

1. If the initial quantity of the order has been delivered, the discount rate in accordance with schedule 1 will apply.
2. If the initial quantity of the order has not been delivered, a discount schedule in accordance with the standard Potter quantity discounts will apply.

Termination If temaination notice of 120 days is not proWithout TameIy Notice: vided to Potter, then discount rates and termination charges in accordance with standard Potter discount schedules and termination shall apply.

This agreement is available effective 21 January 1963.

SCHEDULE I

FOR MARE 906 II TRANSPORTS

Specified Monthly Contract Schedule Units Per Month	Applicable Discount Rate
	Percentage

DATE May 8, 1963

SUBJECT Progress of Micro Tape 555 (Production Aspect)

TO K. Olsen
FROM J. Smith
H. Anderson
S. Olsen
M. Sandler
G. O'Dea
R. Mills

Target date for a lot of 10, July l, 1963 (tested).
All parts have been ordered and delivery quotes of not later than the end of May have been received on most items. Motors, magnetic heads, and transformers have the longest delivery and will require special expediting attention.

There has been a delay in the release of chassis prints due to the time required by Engineering to evaluate motors and magnetic heads. These problems have been resolved and I have been assured that chassis prints will be released today. I was hoping that this release date would have come much sooner because of its importance to all future operations. Chassis construction involves 95% of all unit wiring.

We should, at this time, break down the remaining time into the various operations to be completed. Remaining time to completion of project (July l, 1963) is 7 weeks. Of this 7 weeks, three weeks must be allocated to testing and inspection. One week is required for chassis construction by our shop and one week for model construction. This leaves only two weeks for the remaining operation which is actual production wiring and construction. Presently, we do have the in-house capability to wire this lot of 10 units in two weeks but many other projects will be delayed. Required production hours can be gained through overtime and sub-contracting. It is my intention at this time, to sub-contract standard PDP-1 and PDP-4 wiring. This will make available in-house production hours that can be allocated to Micro unit construction. Without sub-contracting, the project will be delayed by approximately one month, August 1, 1963. Estimated sub-contracting cost is $\$ 3,000$ payable in July.

DATE May 8, 1963

SUBJECT

TO Ston Olsen George O'Dea, Harlon Anderson
Jack Atwood
Howle Painter

FROM Kenneth H. Olsen

I got a call on Wednesday moming May 8 th from Mr. Harris of the Commerce Department in Washington in answer to a lefter that we had sent to them. They have Electronic Trade Shows in Europe and would like to know if we are interested. It will be several weeks before they have the dates firm and he will send this information to me. They have a show scheduled for London on late November or early December of 1963 and one in Frankfurt in January of '64. This one in Fronkfurt will be timed so thet people can go both to the Paris Conference Show and the Frankfurt show on one trip to Europe.

I told him that we were interested and he pointed out that they are only inferested in showing off sophisticated electronics. He didn't give me a chance to assure him that ours were sophisticated but this will probably be important when we finally pass on an answer to them.

SUBJECT: Sales Trip to Europe
TO: K. Olsen
FROM: N. Mazzarese
H. Anderson
S. Olsen
W. Hindle
G.Bell
D. Morse
G. Rice
J. Fadiman

Summary

1. Wednesday, April 17th
A. College de France, University of Paris

Mr. Bloch - PDP-4, Hough Powell Device
As College de France, we'll start selling modules within about three months and there is about a 40% probability that we'll be able to sell them a computer in the next six months.

As everyone else, they are interested in PEPR and HPD.
2. Thursday, April 18th
A. Instit̂uste Physique Nuclear, University of Geneva

Dr. Maedar - Modules, Displays
We may sell some modules here over the next year, but Guenter is going to have to work extremely hard at ir. Dr. Maeder is convinced that Phillips modules are quite adequate.
B. CERN

Tor Lingiaerde - PEPR
Bogden Maglic ~ Physicist
Richard Keyser - Programmer
Dr. Farley - Computer Expert
Acoustic Spark
Dr. 1. Pizer - Type 31 Display Chamber

There are two distinct computer interests at CERN. One is the PEPR System with Tor Lingjaerde and the other is the Acoustic Spark Chamber Machine. The probability of getting the PEPR System is 40%.

For the spark chomber applicasion, we've come from zero probability up to about 60% probability of getsing a machine. At this point, its pending a timing analysis on our part.

In any case, Dr. Pizer will buy a Display.
C. Societe Electronique Nuclear

Louis Kaluszyner - Wanis to be our representarive
3. Friday, April 19ih
A. Harwell, NIRNS David Lord - Modules

Harwell, AERE
Mr. Kandiah
John Montague
Afnold Jones
Dr. Bretscher - Head of Nuclear Physics Division
Jim Hailstone - Computer Expert
This is a longer term thing, but I feel confident that we will have a computer order from them within the next year. They were somewhat naive but a reasonably dynamic group of people. I also think that one machine here will mean many more. They are warching Chalk River with interest.

Details

Wednesday, April 17, 1963 - College de France, Monsieur Bloch

We definitely have a sale of of least modules here. There are three possible routes that the College de Fronce may take.

1. They may buy a complete system from us including a Hough Powell Device.
2. They may buy just the Hough Powell Device from us and a 160 A computer.
3. They may buy just the modules from us and eisher a PDP-4 or 160A.

They are prompted to buy a 160A because Saclay (French AEC) will be purchasing a CDC 3600 and they wish to be comparible with this 3600 .

I explained theif the PDP-4 would also be comparible, and I think that Jon Fadiman's strip this month will be a terefific follow-up.

His application involves faking data from a Hough Powell Device and putiting it into IBM formar on tape.

Thursday, April 18, 1963 - Instifute Physique Nuclear, Dr. Maeder

Dr. Maeder was formerly ar CERN and now works at this school of the University of Geneva. He is extremely interested in our Display, that is, the Type 30 and has a long fem inferest in our computers. He is poor. We should keep in touch with him in order to be there when he decides he needs a computer definitely.

I promised to get him information on the Display, namely, how do we prevent overshoots on the CRT when we go from all 1 's to all 0^{\prime} 's. We have also promised to send him the price for converting our power supplies to 50 cycles 220 volts.

This meeting was from 9:00 A.M. to 10:00 A.M.
Af 11:00 A.M., we were of CERN where we had a meeting with Bogden Maglic, Richard Keyser, Dr. I. Pizer, and Tor Lingjaerde.

We started off by discussing the PDP-1 but it soon became apparent that the PDP-4 was the machine that best meets their requirementis because of the floating point arithmetic times.

They were interested in the following:

1. How much arithmetic does Martin Deutsch do in his application.
2. They would like to know all of the operation times for our arithmetic prophecies, and I promised to send them a chart for this.
3. They are interested in our drums and they would like more complefe information on them.
4. They would like to know our 36-18 Floating Point times for cosine and sine.

This meesing lasted from 11:00 A.M. until 4:00 PoM. At 4030 Tor Lingiaerde fook us to visis Mr. Louis Kaluszyner who is the manoger of a new Company formed in Swizzerland by a French Company called Societe de Applications Industrielles de la Physique.

They were mainly interested in representing us in Swiszerland, and I indicated that we already had a Munich office to handle this.

In the course of our converscition, some interesting things came up.

1. That TRW is marketing its control computers in Europe shrough a joint venture with a company whose initials are CSF. tis a french Company, and they have already sold ten computers in France alone.
2. CDC may have lost ifs sales of two of it̂s 3600 's which it had in Europe, to 7090^{\prime} s.

Friday, April 19, 1963 - AERE Harwell

While I was here I had a chance to talk to many of the people ar Harwell about our computer. It was rather a unique experience because they were not aware of the speed, Input-Oufput capobility and availability of a computer in the price range of a PDP-1 or PDPmA.

In general many of them are naive, as far as compuser techniques go, but there is a great deal of excitement over the possibility of using computers in on-line applicctions.

They have a high respect for both Marrin Deutsch of MIT and the people at Chalk River. As these people are cilready our customers, we are in pretty good shape here. If's interesting to note that they were not aware of the fact that DEC manufactured a PDP-1 computer or, in fact, that it did exist ar all.

I think we have a lot of work to do here.
The people ralked to were:
Mr. Kandiah (he'll be visiring Chalk River next month to discuss online computer applications). I promised to send him more infomation on the Displays 30 and 31 and our Module Caralogue. Amold Jones, AERE Nuclear Physics Division, John Montague, AERE Nuclear Physics Division, Dr. Bretscher, AERE Nuclear Physics Division (he's the boss here, and I think we made a good impression), Jim Hailstone, AERE NPD (computer expert) he is basically a Ferramti lover, but he listened with interest to the PDP-1 PDP-4 pitch. B. W. Hooton, AERE NPD, and David Lord NIRNS (our module customer who helped set this whole thing up). I promised to send him a new price list for our modules. He also gave me the following fip: that Saclay, the French Govermment Aromic Energy Commission is working with College de France and doing some of their bubble chomber work, and they will probably be spending a good deal of money in the future as France is getring very interested in Atomic Energy developments. Suggested that we drop Dr. A. LeVeque at Saclay, PDP-I and module infomation.

DATE Moy 7. 1963
SUBJECT SDS 910 at BTL with J. V. Kane
то
Nick Mazzarese
FROM Gerdon Bell

Stan Olsen
Harlon Andemsen

These people ordered the computer September, 1962. The computer wes delivered March 1, and operating April 15 with 6 weeks of un-reliable operation. BTL is on important customer, and uses lots of DEC logic.

The advent of an SDS machine probably means the start of a deciline in module sales there. Kone is now happy with SDS.

A poper deseribing this work wes given of the Monterey conference on Pulse Height Analyzers.

With the ability to "Add $1^{1 "}$ to memory as a standard feature of PDP-4, the system performs at leost as well as SDS.

Everyone is looking ot computers-for-analyzers, and people are using SDS, ASI (meybe) and CDC-160, but about the first was a PDP-1 at Chalk River. Our good work on cemputens for Bubble Chamber Analysts should be complemented, and extended to the pulse height analyzers.

If there is anything we can do to get BTL back, I suggest we do so, beceuse the SDS name will undeubtedly spreed there. Kane is quite Impressed that we have a $\$ 27 \mathrm{~K}$ computer, and might be pertuaded to switch to It , given sufficient persuasion. Brookhoven is alse getting an SDS mechine. There is ne question but whot people respect Argonne, Brookhoven, BTL. Berkeley and MIT and these are the key places for computer usage for physies.

INTEROFFICE MEMORANDUM

DATE May 7, 1963
SUBJECT Interesting Displays by J. V. Kane, BTL
to Ken Olsen
FROM Gordon Bell
Marlan Anderson
Richard Best
Robert Savell
Nick Mazzarese
Allan Kotok
Dit Morse

I've seen a new display idea. Kane blasted me about spending \$15K for a DEC display, and also that there are no knobs on our display. He used a Tektronix rack mounted with A to D which is faster, and cheaper than ours (no good for light pen, however).

This was connected to a display that included $Y=$ left half of $M A, X=r i g h t$ half of $M A, Z=$ contents of $M B$. In this manner, one sees a program run, just as a program can be listened to with A-D converters or audio-amplifier connected to various bits. These pictures were fascinating, but I think the thing: maybe of quite limited use, but the important thing was his philosophy regarding displays. This type of display he calls a "Memory Display". For Nuclear Data, this is an excellent display.

Kane's Display Philosophy (interpreted by Gordon Bell)

1. A display is some thing for an experimenter to use, therefore all controls, vertical gain and position, horizontal gain and position, intensity should be available.
2. All displays should be able to monitor anything. X, Y, Z can be connected to any place on the computer to suit the experiment. This he accomplished by a selectro-board.
3. Experimenter needs to photograph the display.
4. Experimenter may sometime want a larger monitor scope, but not very often, and only for the light pen.
5. All variables can be mixed together to provide skewed character plotting (by mixing X and Y).

Summary
If Bob Savell is in the New York area, he should chat with Kane about displays.

DATE May 6, 1963
SUBJECT Results of the Pulse Height Analyzer Conference at Monterey, California sponsored
by the National Academy of Sciences
TO
Computer Guidance Committee Members
George Rice
Jon Fadiman

Summary
Right now computers are being used to do pulse height analysis. There are presently 3 installations:

1. E. Norbeck, CDC-160, then CDC-160A (less than 2 years old).
2. J. Leng, $A E C L, P D P-1$ (less than 1 year old).
3. J.V. Kane, BTL (SDS-910 1 month old).

People are going to switch to computers for this purpose because they are less expensive, and more flexible. It will be a gradual change over the following years.

Computers being used in the very near future include:

1. Argonne (ASI)
2. Brookhaven - Spinrad (SDS)

We might do something now in this field, as it requires no hardware developmont.

The Conference

The principal issue was "Are Computers Better Than Pulse Height Analyzers For Height Analysis?" Since there was obviously considerable arguement, I will only say that more and more computers will be used for this purpose, but there will always remain (and perhaps should too) some special purpose analyzers.

The people attending were quite solid citizens in the instrumentation/usage field. Any outbursts by computer people caused a reaction of defense because the computer people were saying that special purpose work was a waste of time, (or the work of the instrumenters was of negligible value).

People At The Conference

My list of those in aftendance has been given to the Sales Department. This should be a working background for a mailing list. The following institutions/people stood out for one reason or another.

There were people who needed instruments for their work. There were people who felt that they were serving science by piling various special purpose systems together to serve the scientists (poor engineers) and there were some good engineers.

1. BTL-J.V. Kane:

A user, and one of the brightest people there. He is very impatient with incompetance, very slightly egocentric. I'm sorry we are not selling to him. The computer background of Kane and BTL will put them ahead.
2. Brookhaven - R. L. Chase:
R. L. Chase was there, and is very bright, but careful. Spinrad was not there. Spinrad and Chase should be able to help Brookhaven because of their computer background. :
3. lowa - Ed Norbeck:

Ed Norbeck is a good physicist, I believe, and is only mildly impatient with general incompetance.

4. Berkeley

Goulding, I believe, suggested computers for pulse height work in 1958. Goulding is good, quiet, and generally nice to visit. Some of the other people there were average electronics instrumenters. It would be nice to get a PDP there in this group.
5. Harwell - England

Both Drs. Cook - Yarborough and Kandiah are considered to be good in instrumentation. They occasionally spoke too wisely, and too dogmatically to be great. They have a tape system that would rival any poorly designed medical, or telemetry data-gathering'. systems. Only the fact that I was working for an industrial organization that might someday want to sell them equipment made me refrain from commenting on its outstandingly poor design.

We certainly should make a concerted effort for them to buy a PDP-1, 4 or 5 as they will see the BTL and AECL systems. They like our Micro Tape.
6. AECL

John Leng had lots of good comments on analyzer systems, and hopefully if he comes to DEC, his experience can be put to some use.

Specific Information Requests

1. All the people from Bologna, Italy wanted computer information.
2. Dr. L. Katz (University of Saskatchewan, Saskatchewan, Canada) wanted information on PDP-4, 5.
3. Dr. E. Norbeck (University of lowa, lowa City, lowa) wanted information on PDP-5 and Micro Tape.
4. Dr. P. K. Patwardhan (Atomic Energy of Canada, Chalk River, Ontario, Canada) wanted information on PDP-1, 4, and 5 and Micro Tape.
5. Dick A. Mack (LRL Berkeley) wanted information on Micro Tape.
6. Dr. Russel Heath (Phillips Petroleum, Idaho Falls, Idaho) wanted information on Display 7040.
7. Dr. R. L. Chase (Brookhaven National Lab., Upton, Long Island, New York) wanted information on PDP-5.
8. Dr. \qquad at Yale specifically asked for someone to call on him. He is a physicist, wears a mustache, and works near or adjacent to Bromley. He is thinking about a PDP-1, but wants a sales call. The PDP-1 would connect to a Victoreen Analyzer, the 709, and have a display.

What To Do Now In The Pulse Analyzer Field
A package might include:

1. PDP-1, 4 or 5
2. Scope Display (Tektronix is fine)
3. Micro Tape (maybe a drum instead or too)
4. Two A to D converters of ramp generator kind.
5. Some software, or notice that shared software will be distributed.

I think the significant thing is that we provide all the hardware for a fixed price so that there is nothing else to buy for an experimenter.

As a minimum, a sales letter should be sent out now by Sales (co-signed by myself and Nick or George) to all attendees. If someone is available to work on this sales project now, I am certain it will prove profitable.

The general subject of the conference will be placed on the agenda of the Wednesday, May 8, 1963 Computer Guidance Committee meeting.

GB/II

SUBJECT: Numbering System for Computer Options

Attached is a list of the numbers assigned to computer options.
Persons requixing numbers for new options should consult Arthur Hall. A11 such numbers are subject to change by the Computer Guidance Committee.

Options have been and will be assigned two or three digit numbers. The first digit of the number indicates the broad category into which the options fall.

First dicit of

1
2
3
4

5
6
7

Option category

Primarily Logic Drums and Disk Files Hlluminated Displays Caxd Handling Equipment Punches Even \#'s Readers Odd \#'s
Magnetic Tape Equipment
Printers and Typewriters Paper Tape Equipment

Multipurpose equipment which does not naturally fall into a particulax category will be assigned depending upon its primary purpose.

Unlisted numbers and numbers listed but not described are unassigned and may be used.

Option \#	For PDP	Cost	Description
10	1	10,300	Automatic Multiply \& Divide
11	DO NOT	USE	
12	1	30,000	Magnetic Core Memory Module
12A	1		Special (time Sharing) Memory
13	1		Special (Time Sharing) Memory Switch
14	DO NOT	USE	
15	1		Magnetic Core Memory Extension Control
15A	1		Memory Extension Control for Special (Time Sharing) Memory
16	4	9,000	Magnetic Core Memory Extension Control
17	4	24.000	Magnetic Core Memory Module 4K, for 4B only
18	4	9,150	Ertended Arithmetic Control Unit
19	1	9,000	High Speed Channel Control
100 through	119 DO	NOT USE	
120	1	15.300	16 Channel Sequence Break System
123	1	11,000	High Speed Data Channel
125	4		Real Time Option
126	4		Foxboro Real Time Option
130	DO NOT	USE	
131	1		Data Control (R.B.)
132	4		
133	4		Data Interrupt Multiplexer (G.B.)
134	4		Memory Expansion of 4 K to $8 \mathrm{~K}(\mathrm{PDP}-4 \mathrm{C})\left(A_{\circ} B_{\text {。 }}\right.$
135	4		Memory Module, 8K (PDP-4C) (A.B.)
140	1	1.950	Relay Buffer
150	4		IBM 7090 Connection Interface

DRUMS AND DISC FILES

Option \#	For PDP		Cost	Description	
20					
21 -	SAVE FOR		R. Best		
22)					
23	1				Parallel Drum (BBN System)
24A	4		31,600	16,384 Word Block Transfer Drum System	
24B	4		36,300	32,768 Word Block Transfer Drum System	
24C	4		43.400	65,536 Word Block Transfer Drum System	
25				Drum File System	
26					
27	SAVE	FOR	R. Best		
$\left.\begin{array}{l} 28 \\ 29 \end{array}\right\}$					
200 thr	ugh 219	DO N	OT USE		

Option \#	For PDP-	Cost	Description
30	184	14,300	Visual 16-inch CRT Display
31	1	41.200	Ultra-precision Display
31A	1		Ultramprecision Display
31 B	1	41.200	Ultra-precision Display
32	$1 \& 4$	1,300	Light Pen
33	1 \& 4	4,900	Symbol Generator
34		$\begin{aligned} & 3,061 \\ & 3,906 \end{aligned}$	Display w/o Tectronics Scope (\#503) Display with Tectronics Scope (\#503)
35	$1 \& 4$		Variable Field Light Pen
36			
37	SAVE FOR		
38 SAVE FOR R. Best			
39			
300 through 319 DO NOT USE			
330	1 \& 4		Incremental Display

MAGNETIC TAPE RANDLIANG EOUIPMENT

PRINTERS AND TYPEWRITERS

Option \#	For PDP	- Cost	Description
60	SAVE FOR R. Best		
61			
62	$1 \& 4$	72.800	Line Printer and Control
63	SAVE	FOR R. Best	
64	1 \& 4	7,000	(300 lpm) High Speed Printer
65	4		Printer-Keyboard and Control
66	1		Teletype Interface Module
67 -	SAVE FOR R. Best		
68			
69			
600 thro	gh 609	DO NOT USE	
650 thro	gh 679	DO NOT USE	

```
Option N For PDP= Cost Description
70
    SAVE FOR R. Best
75 5,000
76 4 13.900
7 7
7 8
79 
710 through 799 DO NOT USE
```


INTEROFFICE MEMORANDUM

DATE May 3, 1963
SUBJECT NEW DEVELOPMENTS IN A TO D AND D TO A CONVERTER CIECUITS

TO Sales Enginears
FROM B Siephenson

A variefy of now modulas hove been developed which expend our capabilitiss in the ADA line. With thase new modules, is appears that we could build canverfars in house with accurceles comparable with 11 bits. Hewevar, we de not yer have sufficient dota to gwarantee thâ a module customer could take these compone ents and put tham together resulting in a systen of this accuracy. I would, however, feal quite safis in guaranteaing on 11 bit monotinictiy to a module cussomar who has sufficient equipment to adiust and test his converter. He would, of course " heve to be very coreful. It appears thas the speed of an II bla syatem would be in the range of 7 or 8 microseconds per sisp.

The new modules moy clso be used to increcse the syeed of our present 10 ibsh comorters. A new lovel amplifier pesckege which is considerably fasser than our previous high aecuracy untr, is also much fosise and wilt atlow us to run a 10 bls successive approximation convertar 3.4 microseconds per bits with the 4676 end 1574 modules cad approximotely 2.7 microseconds por bit with the 4679 and 1574 modules.

Corvalinly, ct this tiane, if is passible for ess to construcs D to A comerters with a monotinicity of 12 bits. Probably the biggoss dilficuliy in this orea is the fact thet the lacklar nefwork has ca output impedence of 1000 ohwas. Generally, oharee fore, is is destrable to follow the fodder network by an operational amplifier. We are presenasty looking into the possibitily of bringing ous such modules bun they are net yer avaltohle.

The now ledder nefwork hers provisions for bicsing for biapolear curpus. This would cllow en oulgus range of ≥ 5 volis. We do nos heve the power supplies evallable for a blepoler unif. However, these can ba ecsity obiained alnce there ore a variety of mannfacturers who specialize in this aren.

A mulitipleser swifch is presemly going into prodetction. This swich should be cuatlabla in coout a month and a more detoiled brechure on its use, efe., will be avallable berore then. More speclfically, thase new modules are:

TO SALES ENGINEERS

Compararor. A new comparator circuit, Type 1572, is replacing our Type 1547. In foct, the 1547 is no longer being manufactured and 1572 s are baing shipped directly in their place. The new comparator circuit has the same pin connections and is the same with respect to function. However, the new comparator is, in general, a much better unis. It is more stable, has less common mode affect and responds better after having been driven very hard inso saturation. The new comparator has a considerably greater DC resolution. The speed of this circuit is approximately the same "or better than, that shown in the present A to D converier handook for up to 10 bits. When the comparator is asked to resolve less than 10 millivalts, (which the old comparator could not do al all), the transition time increases considerably. For example to discriminate a 5 millivaly signal in a successive approximation converter will require aboû̀ 6 microseconds.

Level Amplifiers. Our Type 4677A level amplifier is no longer being manufacsured since the transistors used in this circuit are not available. A new level ampli= fier Type 4678 " is now available and can be used in high accuracy systams. A new level amplifier contains five circults par package and has a separofe input for analog ground reference which can be isolcted from the digival ground. Therransition time in the new leval amplifier is .8 microseconds (as compared to 1.5 microseconds for she 4677A). The output impedence of this circuit is nominally 2 chms. The variation in outpur impedence beiween the negative and posisive states is less than 1.5 ohrns. The offset voltage for negarive output is .5 to 1.5 millivolts. The offser voltrage for a ground output is zero to 1 millivolt. This circuit is non-isverting. Input is $1 / 2$ unif base load.

Another new module, the Type 4679 " is now in the works. This unit will be a more direct replacement for the 4577A since if will be an inverting circult and will have four circuirs to the package with she same pin comections as the 4677A. The one addition will be a separate tarminal for the chalog ground. This unit will be cone siderably faster than the 4678 and will have the same (or greater) accuracy. More news on this later.

Power Supplies. Type 1704 is a new power supply for use in systems of 9 bits or more. Detailed specificanions on ihisud in systoms for within the company ond have over ${ }_{g}$ several of these units have been used in she 1001 s of microvalt region or betrest). oparated extromely woll. (Most specs are in the 100

Ladder Nehwork. A new metal film ladider nefwork. Type 1574, is now avoilable and is recommended for high accuracy systems. A praliminary dafa shest is cyailable on this module. The effective temparafure coefficient and the resolution of lader Iype potentionefers are betser for this module than our previous high accuracy ladder iype 1564 . It is also faster.

Multiplexer. A multiplexer switch package shousd be available in about one month. The swifch operafes in less than half a microsecond and has been rested in the house with a 10 bll converter and operates quife well. Defailed informarion on the specifications for the switch and how to use the switch will be civailable letrer.

BS:ASJ

TESTING AN A TO D CONVERTER

In a successive approximation analog to digital converter, the swikching band should be as narrow as possible. (The switching band is the area where the digital output may alsernate batween two valuss). This is opposed to the concept in a digital volmeter (or ADC using the continuous conversion meihod), where it is desirable to have a built in hysterisis so that the outpur does not switch unless the input has moved almost a full step. When thase switching bands are narrow, this is a vary good place for tesping the converter. Some very simple checks include the following: All switching points should occur at the correct volloge. An accuracy lest should be run on all swirching points. However, for specialized rests on temperature effect "stability, efc. "th is quite scrinsfactory to use just a few points. For this kind of tests I would recommend the following points be used:

$00 \ldots 001$	$00 \ldots 011 \ldots 1$	$11 \ldots . \ldots 1011 \ldots 1$
$00 \ldots 010$	$00 \ldots 100 \ldots 0$	$11 \ldots .1100 \ldots .0$
$00 \ldots 011$	$00 \ldots 100 \ldots 01$	$11 \ldots 1100 \ldots .01$
$00 \ldots 100$		
$00 \ldots 101$		

Monorinicity Check. When precistion equipment is not available for a datailed fest it is advisable to make af leasi a monorinicity check. This can be done quite easily with a power supply and a potentiometer of less shan IK. With this simple equipment it is possible to start at zero and increase the voltage and check that each state exisfs and thay the states exist in the correct order. For systems of more than 6 or 7 bits, it is, of course, difficult so get a ponmiometer with this kind of resolution and so iwo posientionefers in series could be used or input could be divided down into ranges each one overlapping the oshers and ach one being checked separarely for monotinicily.

Accuracy. The DC accuracy can be measured with a high accuracy volsage reference or with siable, ripplowfee, variable power supply and a high aecuracy meter. When the ADV is run at a rapid rate. the indicaror lights should show foirly well when each switching band siarts. The voltage of this point can be compared to the theoretical voltage to determine the $D C$ accuracy. As well as recording the $D C$ input ar the switching point, the width of the swisching band should be noted and a check should be made to see that the switching paint occurs at the same place when the voltage is appraached in an increasing or decreasing fashion. The switching point should also remein the same when the frem quancy of conversions is varied from DC to the maximum value.

Response to Transients. This is paricularly important if a mulsiplexer input is to be used. If, befween alvernale conversions, the input is swithed befween zero and a given volrage ${ }_{0}$ the indicator lights should record the switching point at the same position as on DC.

If is also advisable to make this check at a low frequency i.e. operating the converier from a push button and manually switching the voliage to a higher value, back to the original value " to a lower value, back to the original value, etc. This ress determines whether or not the comparator circuif is capable of responding to an input signal after having been sawurated very hard in one direction for a long time. If the converter does not operare properly under this test "it usually means that the time per step is not sufficient for the comparator to come out of saturation and resolve the input signal.

Repeatability. This is a test designed to detemine if there is any noise in the system. This rest can be run guite easily when a digital computer is available. The converter input is set at a DC volue and the computer is programmed to repectedly ask for converstons, read out the resulis and print any high or low values which deviate from the first (or the first wo if a swiching point is being examined).

When a computer is not crailable this same test can be implemented with a bank of roggle switches and a sirgle diode gate. Here you set an input voltage, not at switching point, read the ouput in lights, and then set this number into a baink of roggle swirches. The Type 4139 diode gate or two of these gaties, can be used to compare the A to D oufput with the roggle switches and the converier can be run at its maximum rate and stopped whenever the toggle swithes and the A to D do nor agree.

Temperature checks can be made using the same logic as for DC accuracy fests with she temperature being at varied.

BS:ASJ

HINTS ON CONSTRUGTING A HIGH ACCURACY ANALOG-DIGITAL CONVERTER

From: B Siephenson
May 3, 1863

The ladder drivers for the most significant bits should be placed adjacent to the ladder network and for the lesser significant bits adjacent to that efc. The power supply should be placed next to this so that long leads are avoided as much as possible.

A separate analog ground should be used. This means that the separate ground pirs from the ladder drivers and the ground pin from the power supply (and possibly grounding on unused terminals in the ladder network), should be tied fogether through one line only ($\% \theta_{0}$, no ground loops) and then tied to the chassis at only one point. The anclog input or output signal can then be tied to the anolog ground. This is done to reduce as much as possible the effect of pulses and other transients which fond so occur on a digital ground.

The ledder drivers will have a small offser volioge. For the Type 4678 the ofiset is as listed above. For the Type 4677 "the offsef for negative output is approximakely 2 millivolis; for a ground oupur, it is approximaiely 8 millivolts. This may be compensaied for by adding a small amount of positive bias ta one or more of the unused bits of the ladder and by increasing the reference supply by a fow millivolis. As the same fime ${ }_{y}$ it is sometimes desirable to add a positive bias equal to one-half of the least significant bit so that the switching points occur at the midpoint between the stares instead of exactly on the siape ifself, (in digiral serms, this is rounding off a number rather than truncoing). I would recommend adding the bias and adjusting the supply voltrage affer the converter has been fully constructed and the ladder network and comparator circuit have been adjusied. Ladder adjustment is always dons with the unused bits of the leddier newwork grounded. Afrer these adjustmenis have been finished ${ }_{p}$ the positive bias should be added to the least significan bits until the switching poins for the first stote is at she desired point (our +10 volts supply for bias. Remember that on the least signiffccant bit, a one volt change in the input will cause a change in the output of less than $1 / 10 \mathrm{LSB}$. Bias of $1 / 2 \mathrm{LSB}_{g}$ with one volt input change causes an error of $1 / 20$ LSB). The converter should then be sef for the mid-scale point and the segative voltage adjusted so that the outpuit is ct the right value af this point. The midpoint is saken for this last adjustment since the comparator has also been adjusted as this point and the common mode effect should be zero. Also it is preferable to have less error in the smaller numbers shan in the farger numbers.

May 7. 1963
DATE

B Stephenson
FROM

Tharks so much for your letter in regard to the two cuatomers who wanted the 7 bit conversions in 10 microseconds or less. I agree with you completely that we don"t want to introduce them to a combined perallel-feschack sechniqua unless we absolutely hove to. Fortunately, I think we can help them without doing that.

The conversion fime depends on the number of bits in two ways. First, the number of steps are proportional to the number of bits. Second, since the comparator circuit is required to switch on a smaller input voltoge change, the switching time of the converter circult also increases with the number of bits. For the 7 bit case, a standard technique using our regular mockules would toke about 16.5 microseconds. For a 6 bit converter, the sfondard sechniqua would require lass than 12 microseconds. Actually, however, the converston itsalf doesn't take this long. This tima ossumes we teke $N+1$ steps for on N bit converter just so that we can use our stondard clock or delay to time things out. However, the output of the loss flipflop, doesn thove to set up so the last step can be reduced to about 2 of a microsecond. If you are going to read out of the converter right away, you dont even need to use the last flip-flop. In this cass you could read the value of the least significant bit directly off the comparator. This will oliminate an extra dolay for' end of convarsion. If they do this, then the conversion time for a 6 bis system would be 10 microseconds and for a 7 blt $3 y s t e m, 14.5$ mieroeeconds.

If they are not planning to use the multiplexer it is also possible to cut off another step or two by hoving some odditional comparators which are permanantly blesed to the appropriate reforence volioges. Thon, instood of presefting the converter register to 10000 efc. the most significent bits would be jommed immediately to their appropricate value and the other bits would be set to 1000 .

For example, suppose you had one compercter pre-blesed to -5 volts and the oupput of this comporator gated directly to the mesi significant bit in the converter buffer. Then the start pulse would immediataly sat the converter buffer to aither 01000 or to 1100000 . This would reduce the total conversion tims to $\mathrm{N}-1$ staps, for which a 6 bit system would require 8.4 microseconds and for a 7 bir system would require 12.5 microseconds.

Another conversion step could be aliminated if you add two more comperctions so that the second mast significant bit can also be jammed in of the same time as the corvertsp buffer is set up. These two cemporators would be biased to -2.5 and -7.5 aeciest $3 n$ shits case, you would not want to jem in the number in binary because of the possibility of one comporctor being right at the switching point. Instead you would jum the number in in a Gray codes and put a small Gray to blisary code converter on the output of the
second flip-flop (in this case the greater binary converter is just a single exclusive OR). The conversion time for 6 bits would be 6.8 microseconds and for 7 bits would be 10 microseconds

By the way, these numbers assume that you also took advantage of reading directly out of the comparator for the least significant bit.

If they plan to use a mulriplexer with the converter, then shis techn ique of adding comparators onto the most significant bits is not so practical since you then have to allow time for the multiplexer to set up. In a normal successive approximotion converter ${ }_{p}$ with a high speed multiplexer, the setup time from the first step of the conversion can also be the same time that the multiplexer is changing value. Thus the multiplexing doosn't really add anything to the conversion time unless the switching time is longer than the setup time. We have a multiplexer swifch which we will be onnouncing soon and I have been using in on a sysiem here. It switches in less sthan half a microsecond and on a 10 tis system I haventy been able to defect any appreciable error due to 1 it.

If they want io add a mulsiplexer, "and they feel the full 7 bits are necessary, then they will hove to go to some variation on the parallel-feedback scheme in order to complete the conversion in less than 10 microseconds. I have drawn up a rough sketch of a simplified version of this to give you on idea of what it would entall. I have not tried this version out so I can't guaraniee any performance and would also went to double check the logic again if they want to consider it seriously, buf I think this will give you a general idea of the stivation. The converter that 1 illustrated fat a 7 bitt unit which converts two bits per step. Rather than using two full D to A converters, I have used one D to A converter and two smaller ones. The ladder applies biasing voliages of $\pm 1 / 2$ of the trial bit. The number in the D to A converter cortespor the votiage accumulated so far plus a new triai bit; therefore, the point V would corre, nd to the voltage decided on so far plus the trial bit; the voltege ai V corresponds to the voltoge decided upon so for plus $1 / 2$ of the trial bir and the voltage of V^{13} corresponds to the voltage decided upon so far plus $3 / 2$ of the frial bit. This resistor network divides the reference valtages in half so the actual input voitrage range would be zero to -5 volts instead of zero -10 volts. Unfortunately, this means that the converter circuits have to resolve smaller volfoge difference " hence they require an addifional 2 of a microsecond to switch. Also einput capacitance of so many comparators and the large resistor impedence will also slow the individual step time down somewhat. This can be overcome by reducing the inherent impedence of the ladder network. (It could be probably reduces by a factor of three without affecting the accuracy on a 7 bit system. However ${ }_{g}$ I doubs if this will be necesscry os I think the system would prom bably operate well under 10 microssconds without difficulty.)
You may wonder about a few of the things on the sketch "for example ${ }_{g}$ the 1310 delay lines. We have found they go to highor speed systems. If is actually possible for a change in a flip-flop to produce enough of a transiens in the ladder network that, if the compararor circuit is sititing near she edge of switching, it will feed back to the inpur and enable a sufficient part of a . A microsecond pulse to couse the flip-flop to switch which shouldn "r. This may not be necessary to worry about in a 7 bit system ; I really don ${ }^{\circ} \mathrm{b}$ know, but ! have shown the delay lines in case.

Each pair of bits in the converter buffer are coded in Gray code so that if one comparator is in the process of switching when sampled, if will not cause any catastrophic arrors. Thus, the order of increasing counts for a pair of bits is $00,01,11_{0}$ and 10 . Note e_{8} however 18 isn ${ }^{2}$ a full Gray code. The counsing sequence for 4 birs would be as follows:

Every Other Bit in Gray	Binary
0000	0000
0001	0001
0011	0010
0010	0011
0100	0100
0101	0101
0111	0110
0110	0111
1100	1000
1101	1001
1111	1010
1110	1011
1000	1100
1001	1101
1011	1110
1010	1111

To get from this code inso pure binary, you straply complement every othep bit if the bit prew ceding it holds a one. This is what hered done with a pair of diode gares which you see located on the bits with waights $2^{-2}, 2^{-4}, 2^{-0}$.

One other minor desail. This parificular skerch shows $a+10$ bics voliage and posirive level amplifiers. We don's piesently have either a +10 volt, high accuracy supply or posirive amplifier. I am sure the whole thing can be scaled up so that they don'thave to be positive. However ${ }^{0}$ think this is a lor easier to think about.

As I mentioned before ${ }_{8}$ I dont shink you will have to go to such an elaborate sechnique as this but if they do foel they are inserested in something like this, let me know and I will look into the situation some more.

Also on the subject - we have a variety of new A to D converier pacicages (enclosed describes them briefly. I would reconmend these new packages for all A to D converter applications. These are our Type 1574 ladder notwork, our Type 1704-10 refarence supply our Type 4678 and 4679 level amplifiers our Type 1572 comparator. The $1574_{g} 15 / 2$ and 4678 are complafed and you should have or should receive shorsly some product notas on these. The 1704 has been in use quite a bit and we are vary happy with it. We hove had some dalay in geiting the com ponents which would allew us to make a sufficient batch to quote test specs on it so this will be just a liftle while. It is an excellent unit "much betrer than our old 1562. The Type 4679
is a new Level Amplifier which I designed to replace the Type 4677A. We can"t moke any more 4677A's because we can't get the transistors for it. The 4579 will be a high occuracy unit but will switch in a tenth of a microsecond or less, I think. I will ler you know more on that as soon as possible.

Also, while we are on the subjecî̀ we are considering offering some standard A to D^{3} sas computer options for module customers or for anyons else who wants them. So far we are planning just two systems, one is what we call a low speed system which will be about 15 microseconds for 7 bits and 18 for 8 bits, 23 for 9 bits, 30 for 10 bits - something on this order. The other will be our very high speed, 6 microseconds 10 bit unif. Do you think that there is enough inferest in a high speed low accurccy system to warrant offering one? If so how fass and how many biss do you think we would want is to be?

BS:ASJ
Encls

DATE May 3, 1963
SUBJECT GROUP INSURANCE DIVIDEND
TO
Works Committee
FROM Personnel Committee

The Personnel Committee proposes that the employees' share (50\%) of the $\$ 17,700$ group insurance dividend be returned to all group insurance plan participants in the following manner:

1. Reduce the amount of the employee's individual weekly, boenthis opply
contribution by 15%. This is calculated to return the part? employees' share of the dividend in approximately one year.
2. Each participant will be notified by letter (to the home) signed by K. H. Olsen. The letter will clearly state that the contribution reduction was made possible because of our excellent experience rating during the previous year and that continuance of a reduced employee contribution will depend entirely on future experience ratings.
3. Because a reduction of this nature is subject to yearly change, John Hancock strongly suggests that we do not change the amount of employee contribution indicated in the insurance booklet.
4. The proposed reduction to be effective immediately.

DATE May 2. 1963
SUBJECT Upcoming Deadines for rechmical Conference papers
TO Re Best FROM Stu Grover
J. Eadiman
G. Beld
H. Morse
T. Stocisebrand
R. Doane
R. Savell.
A. Blumenthal

CC R. Olsen
V. Anderson
S. Olsen

Again there are two cechnical paper deadines of more than passing interest coming in about a month:

| FJCC NOV. 12-1.4 Las Vegas Deadjine June 3 | |
| :--- | :--- | :--- | :--- |
| MERM NOV. 4,5.6 Boston | Deadline June 7 |

As usual I have the essential information on these meetings and will be pleased to provide any writing, editing, or preparation sexvices requested. MTEROFFICE
MEMIORANDUM

DATE May 1, 1963

SUBJECT Meeting At 11:00 a.m. April 26, 1963 To Discuss Various Display Projects
TO

Ken Olsen	Arthur Hall
Harlan Anderson	Bill Long
Stan Olsen	Nick Mazzarese
Dick Best	Bob Hughes
Gordon Bell	Win Hindle

Following is a list of projects discussed with comments and action status on each project if known.

1. PDP-6 Display

Present plans are that it will be packaged in a standard computer cabinet located in the Central Processor. Gordon would like character generation, vector plotting and as much speed as possible. Ken would like to keep it simple and as inexpensive as possible. First pass at cost reduction does not look very promising. Second pass in progress looks somewhat more promising. Ken Olsen, Robert Savell and William Long will meet during this week to discuss progress. Work is continuing on high priority basis.
2. Less Expensive 16" Display

This may or may not be the same as the PDP-6 Display. No specific conslusions were reached.
3. High Speed Displays Such As Electrostatically Deflected Displays

No immediate full time work, low priority.
4. Character Generators

Possibility of starting on faster character generator was discussed. There was some disagreement as to whether more flicker-free characters were needed than we have at present. If agreement can be reached that they are needed, then faster generators are one way to approach the problem. Low priority.
5. Line Drawing Displays

No real agreement that customers are ready for a combination of incremental display and line and curve generators at the prices we would probably have to charge to sell them. Low priority.
6. Projection Displays

Fairly general agreement that this seems to be a good approach to the large screen problem, however many other projects more pressing. Low priority.
7. Remote Displays

Apparently numbers of people have asked the company for remote display systems recently, although until this meeting I had only heard of one inquiry of this sort. General concensus was that remoting may mean many different things to different people. We will decide how far we can reasonably inexpensively remote a display from the computer and make a definite statement. Priority medium.
8. Multiplex Display

Same comments as in number seven. We will give thought to a proposal for both multiplex and fairly remote operation. Priority medium.
9. Display Adapters For IBM 7090 and 1410, Control Data 160A

Formal decision was made sometime ago to complete these units. They are being completed on a high priority basis since there is much interest in all three of them. Any further display adapters must be considered very carefully before we decide to undertake their design.
10. Ultra-Precision Display

Loose ends on present design will be complted as soon as possible with no further attempt to improve on the specifications at present, at least not on a high priority basis.
11. Color Display

Second unit is installed on one of Customer Relation's PDP-1s. Outside of absolutely necessary loose ends to be cleaned up, no more work will be done on color display.
12. Light Pen and Light Pen Amplifier

There are three problems in this area:

1. Fix the noisy pens and amplifiers.
2. The Electronics Systems Laboratories pen
3. New design, probably Fiber Optics

Item ${ }^{\#} 1$ has highest priority with good prospects for a solution during this week. The ESL light pen will be worked in as soon as possible there after, again on a high priority basis. I believe the Fiber Optics light pipe to be the best permanent solution for a variety of reasons. It will be worked in as soon as possible after the ESL pen.
13. Eyeball \& Camera Equipment $16 \mathrm{~mm}, 35 \mathrm{~mm}, 70 \mathrm{~mm}$, Slide \& Polaroid

No discussion on this project.
A 35 mm camera has been selected for sometime now. It is the Automax Model G-2R distributed by TRAID. Selection of a polaroid unit has been proceeding at an extremely slow pace and by fits and starts primarily due to the reluctance of camera manufacturers to do anything about changing lenses on their cameras. It is beginning to appear that the only solution is for us to buy our own lenses and modify the cameras ourselves.

No work has been done as yet on eyeball systems, however, I believe that work should begin as soon as possible on at least a simple eyeball system for simple film reading systems ie, not PEPR systems.

I would consider both the above items, the eyeball and camera, as medium priority items.
14. Storage Tubes

General consensus was that storage tubes are really not a project, but are a possible method of solution to problems of speed of generation of characters and other flicker-free displays. No action was taken other than to say that we would continue to consider them as a possible solution.
15. TV Type Display Systems

Same comments as for ${ }^{\#} 14$.
16. PEPR Systems

Some diagreement as to whether we should go the whole way and make the eyeball equipment for PEPR Systems or stop at the cathode ray tube face. In any event, the systems would be somewhat different from the 31 System as it now exists. R. Savell, D. Chin, R. Tringale, and G. Rice will visit MIT to learn what we can about the CRT portion of the system. No priority was assigned.

17. Special Display Systems

This includes one of a kind type display systems such as the request for proposal which I recently received from Jack Dennis of MIT. This request asks for a modified Type 33 Symbol Generator, a Line Generator, a Vector Generator, a Light Pen Tracking Cross Generator, logic provisions for slave display scopes, and various other items.

Harlan Anderson feels that we should consider such requests very carefully. He feels that we should as far as possible devote our engergies to developing products which we can sell with quite minor modifications rather than devoting our energies to special systems. I agree with him.

SUBJECT: JOB ALIOCATLON, MECHANICAL DESIGN
TO: All Engineers
Ken Olsen
Stan Olsen
H. Anderson
N_{N}. Mazzarese
M. Sandler
J. Smith
R. Maxcy
R. Maroni
K. Peirce
H. Crouse
W. Brackett
W. Hindle

To better acquaint all engineers and management with job responsibility within the mechanical design department, a memo will be issued periodically as required.

Engineer	Job number or EN number	Description	\% complete
Ron Cajolet	1026	Burroughs Tape	Hold
	1064	Shock Mtg. table \& casting rings for precision adj.	70\%
	100-00	Master template holder \& board holder for second dynasert pantograph	90\%
	1016	Mounting for diode memory	80\%
	1177	14 plug brass bar with 22 pin Amphenol comnectors	80\%
	2523	Remote reader table layout	85\%
	2484	Incremental plotter display	99\%
	2531	Plug Panel	50\%
	1199	Mag Tape Unit 580 Development	1\%

Enqineer $\begin{gathered}\text { Job number or } \\ \text { EN number }\end{gathered}$

2
Scott Miller . 2112
1026
1136

$$
1157
$$

1177
1178
1189
1190 ${ }_{26}^{245}$

1196

Ken FitzGerald 1023

1000

1053

1000

1000

1178
Automatic Module Test Room 95\%
Tape Transport 570 5\%
Micxo Tape "6 Pack" 75\%
Automatic Module Tester Logo 95\%
DC/12 95\%
PDP-6 85%
Tape Control 510 Panel 90\%
Data Control 131 Panel 90\%
Reader - Spooler Comb. 98\%
Midwest Tape Unit Development 5\%
Additional assembly jig for 20\% 1914 mounting panels
Paint adhesion on steel 30%components
Welding jigs for standard 70\% computer cabinetsSheet metal, machine, cabinetassembly and carpenter shopsupervision and administration
Engineering technician tool 90\% bores
pppo6 console mechanical design 25%and prototype fabrication

Job number or Engineer EN number

Description

\% complete

Loren Prentice 113611791000
1097 Mod. development 75%
1065 Iarge display 10\%
1177 PDP-3 computer (24-36 bit) 25\%
1184 Variable field light pen Fixst three units 85\%
95\%
555 Tape Unit
Display 30 cost reduction 95\% surveyBuilding layout50\%
Jobs Pending - UnassignedAssignedBlectronic Eng.
1151
Large Tape Storage - Hold T. Stockebrand 1165
Projection display R. Savel?
1180 1181 1182
1086 Holley princer R. Savell
1064 Eye-ball unit R. Savell

DATE May 1, 1963

SUBJECT Meeting with Dave Packer

TO
Ken OIsen
FROM
George O'Dea
cc: Harlan Anderson
Maynard Sandler

We have made a date for yourself and Harlan to meet with Dave Packer on Monday morning, May 6th at 10:30 to get a sneak preview of the information he wishes to present to the Works Committee on the following day.

If the time is inconvenient, please let me know and I will speak to Dave and rearrange the schedule.

George O^{\prime} Dea
GO 'D:ncs

MODULE STANDARD COST SHEET

Description \qquad
Date Standard Cost Established \qquad April, 1963

Labor:

		Cumulative			
Assemble	Hours	Amount	Labor Overhead Total		
	.350	$\$$.637	$\$.637$	$\$.892$

Plugs	. 060	. 109	. 746	1.044	1.790
Dip	. 020	. 036	. 782	1.095	1.877
Resolder	140	. 255	1.037	1.452	2.489
Transistors	. 030	. 055	1.092	1.529	2.621

Handles	. 030	. 055	T. 147	1.606	2.753
Inspect (Befrul)	.110	200	1.347	1.886	3.233

Raw Materials (see reverse side)
Manufactured Parts (see reverse side)
Outside Contracts
TOTAL STANDARD COST PER UNIT
12.991
3.232
\qquad
\$ 20.062

Raw Materials:

Part Number	Description	Total Units	Standard Cost Per Unit	Total Standard Cost
$68 \mathrm{~K} \frac{1}{4} \mathrm{~W} 10$	Resistor	5	\$. 023	\$. 115
$3 \mathrm{~K} \frac{1}{4} \mathrm{~W} 05$	Resistor	5	. 044	. 220
1.5K $\frac{1}{4} \mathrm{~W} 05$	Resistor	3	. 044	. 132
$56010 \frac{1}{2} \mathrm{~W}$	Resistor	1	. 021	. 021
. 01 GMV	Capacitor	2	. 104	. 208
82MMF 05	Capacitor	5	. 041	. 205
D662	Diode	4	. 160	. 640
D001	Diode	3	. 150	. 450
MA 90	Iransistor	5	2.200	11.000
		Total Raw Materials		\$ 12.991

Manufactured Parts:

Module 1105
 Selling Price $\quad \$ 67.00$
 Standard Cost \$20.06
 Actual Cost $\quad \$ 21.20 \quad$ (latest)

Board
Materials
\$. 55
Labor
. 40
Overhead
. 70
Total Cost
$\$ 1.65$

Board with Resistors, Transistors, etc. and Plug

Materials
Labor
Overhead

Total Cost $\$ 17.76$

Completed Module

Standard	Actua	Variance
\$16.22	\$15.77	\$ (. 45)
1.65	1.55	(..10)
2.19	3.88	1.69
\$20.06	\$21.20	\$1.14

Total Cost
$\$ 20.06$
$\$ 21.20$
$\$ 1.14$

