

Material (mechanical parts)

$$
2,045.00
$$

Mechanical Assembly

$$
600.00
$$

Sub-Assemblies \& Wiring (includes material)
1A to lp Int. Processor
2, 388.
lK-lL-1M In-out Control
325.

2E-2F-2H Real Time Section 735:
Final Construction* 960.
$\begin{aligned} & \text { * (Power wiring \& wiring together } \\ & \text { complete system) }\end{aligned} \quad 4,408.00$
Major Components
Printer 28-C I,097.
Reader 2500779.
Punch 11 739.
Memory System (wiring, stack, modules) 8,101. 10,716.00
Power Supplies

$$
944.00
$$

Modules

$$
\begin{array}{ll}
\text { Real Time Section } & 1,410 . \\
\text { Punch and Teleprinter } & 1,050 . \\
\text { Real-Time-Section } & 3,330 .
\end{array}
$$

Centre Processor + bidet
5,790.00
TOTAL MANUFACTURING COST
(Does not Include Checkout)

$$
\$ 24,503.00
$$

SUBJECTS: 1. Proposed 1963 Company Paid Holiday Schedule
2. Establishing an Age Limit for Group Insurance Eligibility (New Employees)

1. Proposed 1963 Company Paid Holiday Schedule

1. January 1 (Tuesday)	- New Year's Day
2. April 19 (Friday)	- Patriot's Day
3. May 30 (Thursday)	- Memorial Day
4. July 4 (Thursday)	- Independence Day
5. July 5 (Friday)	- Movable Day*
6. September 2 (Monday)	- Labor Day
7. November 28 (Thursday)	- Thanksgiving Day
8. November 29 (Friday)	- Movable Day*
9. December 24 (Tuesday)	- $\frac{1}{2}$ day before Christmas
10. December 25 (Wednesday)	

In addition to the holidays outlined above, we propose the addition of a third company paid movable holiday*. This would make a total of $10 \frac{1}{2}$ DEC paid holidays and would provide a more liberal holiday schedule than the majority of companies in this area.

We feel that the announcement of the additional company paid holiday should be made in conjunction with the recent increase in private room coverage under major medical ($\$ 28$ limit). This would offer a liberal improvement in company benefits which we feel is well timed.

The following is a recent survey of company paid holiday policies in this area:

* Contingent upon obtaining permission to work during SUNDAY LAW holidays.

2. Establishing an Age Limit for Group Insurance Eligibility (New Employees)

The projected effect upon our current life rate of 344 per thousand with the addition of people over age 60 would be as follows:

10 (new employees over age 60) $-45 ¢$ per thousand
25 (new employees over age 60) -48% per thousand
The above figures were derived from a base of 450 employees, and it was assumed that the bulk of this group would be eligible for $\$ 5000$ coverage (hourly). It was assumed also that there would be a concurrent addition of young people as a counterbalance.

We feel that our hiring rate of people in the age 60 bracket will continue to be low and therefore the overall effect on our present life rate will be relatively insignificant. The Personnel Committee therefore recomends that we make no change in our plan with respect to age limitation. We also feel, however, that our rates should be watched carefully and that an age limitation could be introduced at a later date if and when the need arises.

RTLI/jer
CC: K. Olsen
H. Anderson
S. Olsen
M. Sandler
G. O'Dea
R. Best
B. Gurley
W. Hindle
R. Milla

SUBJECT: Repair of Returned Modules

DATE: December 28, 1962
FROM: Jim Cudmore

The following is a list of modules returned for repair during the week of December 17, 1962.

Unit	Serial No.	Customer	Complaint	Defect
1201	66814 P	Western Electric	No Output	Replaced obsolete components
1201	47405 N	" ${ }^{\text {\% }}$	Not Indicated	Replaced Obsolete components
3410	21898	N. Y. Office	Push button doesn't operate	6.8 mfd capacitor was shorted
3410	20664	Ft. Monmouth	Erratic push button operation	Wire from $J 6$ broken causing erratic operation
4110	75358 E	A.P.L.	Customer doesn't have facilities for testing, so sent back for retest.	D001 shorted Replaced obsolete components
4110	75277 E	*	0	Replaced obsolete components
4110	78175 E	n	ต	n
4110	76746 E	*	\cdots	0 "
4110	76787 E	*	*	\cdots -
4110	78165 E	*	*	D001 shorted Replaced obsolete components
4110	78200E	*	"	Replaced obsolete components
4110	78025 E	*	*	" ${ }^{*}$
4110	78179E	*	*	n *
4110	63800 E	${ }^{88}$	${ }^{6}$	T.I. 2N1305 shorted E to B. DOOl open Replaced obsolete Components
4110	63798 E	${ }^{6}$	${ }^{*}$	DOO1 open Replaced obsolete components
4110	75366 E	*	\%	D001 open T.I. 2N1305 shorted emitter to base Replaced obsolete components

Unit	Serial No.	Customer	Complaint	Defect
4110	77981 E	A.P.L.	Customer doesn't have facilities for testing Sent back for retest	D001 shorted Replaced obsolete components
4110	39868 E	n	"	D001 shorted Replaced obsolete components
4110	78177E	"	${ }^{\prime \prime}$	" \quad
4110	76740 E	${ }^{\prime \prime}$	"	" "
4110	75353 E	${ }^{\prime \prime}$	\cdots	"
4201	49842 L	"	\%	" ${ }^{\prime \prime}$
				D001 open
4201	486671	"	*	DOO1 open Replaced obsolete components
4201	49022 L	\cdots	\cdots	D001 shorted Replaced obsolete components
4201	74894M	${ }^{\prime \prime}$	"	D001 shorted Replaced obsolete components
4201	51064L	"	n	D001 open Replaced obsolete components
4201	51849L	${ }^{1}$	"	2N1754 open $\mathrm{B}-\mathrm{E}$ and C Replaced obsolete components
4201	47702 L	n	"	Replaced obsolete components
4201	47705L	n	n	" ${ }^{\prime}$
4201	47706 L	"	"	" 1
4201	47713 L	n	"	"
4201	48002 L	"	"	" "
4201	48064 L	"	"	"

Unit	Serial No.	Customer	Complaint	Defect
4201	48167 L	A.P.L.	Same as before	Replaced obsolete components
4201	481771	n	\cdots	" ${ }^{\prime \prime}$
4201	49006L	"	\%	"
4201	49054L	"	"	"
4201	49071L	*	*	" "
4201	49081 L	"	"	" ${ }^{\text {n }}$
4201	495691	\cdots	\cdots	"
4201	49730 L	\%	ω	"
4201	49792 L	\cdots	\%	\cdots "
4202	49797L	"	"	"
4\%01	49844L	"	n	" \mathbf{n}
4201	50253 L	"	*	" ${ }^{\prime}$
4201	502551	"	"	" "
W_{201}	50317L	10	*	"
4201	503271	"	*	"
4201	508651	"	\%	" ${ }^{\prime \prime}$
4201	51051L	\cdots	*	\% \quad \%
4201	51054 L	-	*	"
4201	51056L	"	"	"
4201	51804 L	"	"	"
4201	51836L	"	${ }^{*}$	\cdots
4201	51842 L	"	"	" \quad \%
4201	51850L	"	${ }^{*}$	\cdots
4201	51996L	"	${ }^{\prime \prime}$	"
4201	61683 M	"	"	" "
4201	64144M	"	"	"

Unit	Serial No.	Customer	Complaint	Defect
4201	65244M	A.P.L.	Retest	Replaced obsolete Components
4201	74290 M	*	\cdots	- 0
4201	75426 M	*	*	\% \quad \%
4201	76815 M	\%	*	*
4201	7682 3M	*	*	\cdots *
4201	76828 M	\%	*	11
4201	77105 M	n	*	$\cdots 0$
4201	78467 M	*	ต	n \quad \%
4201	78472 M	${ }^{9}$	*	n \quad \%
4201	78478 M	*	${ }^{6}$	\% 0
4201	87355 M	*	* \quad	- \quad -
4201	96429 M	*	n	- \quad
4201	96439 M	*	*	\cdots n
4201	$96460 M$	\%	w	* *
4213	74191 D	${ }^{17}$	*	n *
4213	55485 D	${ }^{0}$	*	* *
4213	99122D	\cdots	0	* *
4213	48098 C	"	${ }^{0}$	Wrong transistor 2N1305 instead of 1754. 2N1305's had hot case-wwere shorted against each other. Replaced obsolete components
4215	$69266 F$	*	Retest 6 Inspect possible heat sensitive	No defects Replaced obsolete components
4410	0063518	Bel1 Labs	Plugged in backwards. Believe pulse Xmfr. gone	2 transistors were cut from module.

Out of 91 modules tested, 62 had no defects.

SUBJECT

TO
K. Olsen
FROM J. Smith
H. Anderson

The addition of a PDP-1 console bay to PDP-4 will entail an additional cost of approximately $\$ 490.00$.

INTEROFFICE MEMORANDUM

DATE December 27, 1962
SUBJECT
TO K. Olsen
FROM J. Smith
H. Anderson
M. Sandler

Attached you will find two reports that may be of interest. I have generated these reports to be received on a weekly basis. The reports serve several useful purposes.

1. Production starts
2. Production stops
3. WIP status of all sub-assemblies
4. WIP inventory value
5. In-stock status of options
6. In-stock value of options
7. Status of computers in process
8. Turnover rate of options
9. WIP turnover ratio

Accounting is being sent copies of these reports.

WIP COMPUTERS PLANNED SCHEDULE "62 - 63"
PDP-1

\qquad $12 / 23 / 62$

ORTTON THTENTORE STATOS

DATE December 28, 1962

subject Computer Checkout

TO Ed Harwood
FROM Arthur Hall
cc: K. Olsen
H. Anderson
S. Olsen
G. Bell
N. Mazzarese

Starting on January 2nd, Ed Harwood will be responsible for the checkout of PDP-4 as well as PDP-1 computers and computer systems.

I suggest that computer orders be handled as follows;
Sales will;
Notify Production of the order and establish when Computers and Standard Options will be available to checkout.

Notify Engineering of Special Features and establish when these Special Features will be available to Checkout.

Form the primary contact with the customer. (Any one may talk with the customer but he must realize that no estimate of time $\boldsymbol{p}_{\boldsymbol{z}}$ price or delivery is official unless the information is supplied or confirmed by the primary contact man in Sales.)

Arrange terms, warranty, service, acceptance $_{\boldsymbol{z}}$ delivery time $\boldsymbol{F}_{\boldsymbol{F}}$ etc.
Checkout will;
Assume primary responsibility for the computer system from Final Inspection (following wiring) through installation at the customets plant.

Negotiate a time with Engineering during which Special Features will be checked out by the computer checkout man and the technician responsible for the Special Feature.

Engineering will;
Be responsible for the design, documentation, construction and checkout of all "first-time" or "one-time" peripheral devices or special features.

Approve all modifications to computers:
Exercise drawing control for computers.

DATE December 27, 1962
SUBJECT AEC Type 30A Display
TO Bob Savell
D.J. Chin

The AEC display was shipped along with the rest of the system on Wednesday November 21,1962 by exclusive van. When Ed Harwood and Jack Shields arrived at Chalk River on Wednesday November 28, 1962, they found the display uncrated and the top of the CRT shroud removed. The focus coil mechanism was dangling against the neck of the CRT. Of the three alignment screws fastening down the focus coil mechanism, one was missing and later found by Jack Shields fifteen feet away from the display. The light pen cable was also unscrewed from the light pen amplifier. AEC personnel told Jack Shields they removed the top of the CRT shroud to see was was inside.

The missing screw was replaced but when the display was turned on n_{2} it did not operate properly. A check of the output of the NJE supply by Jack Shields showed -8 volts instead of +50 volts. At my suggestion he removed the supply and checked it under no load conditions. Again the output was $=8$ volts. The NJE power supply manual which should have been sent with the display was not sent. Thus when Jack Shields called later on Wednesday November 28 , the following conditions were

1) the focus coil needed realignment
2) The NJE power supply seemed defective
3) the NJE power supply manual was missing
4) the deflection preamplifiers and amplifiers may have been damaged.

The manual could have been sent by mail to reach AEC within two or three days buty assuming the supply could be fixed ${ }_{z}$ there was also the possibility that the preamplifiers and amplifiers were damaged in which case the display would have to be shipped back to Maynard for repair. It might also have been possible for Jack Shields to realign the focus coil by instructions over the phone. Rather than having the display not completely meeting the specifications we have established $\boldsymbol{I}_{\mathbf{I}}$ I decided to have the display returned to Maynard.

On Thursday D_{e} cember 13_{z} the display was received at DEC. It had been shipped in an enclosed crate and the CRT shroud was properly braced against vertical and lateral movements. One of the cover panels had fallen off but otherwise everything seemed $\mathrm{O}_{4} \mathrm{~K}$ 。 Jack: Shields pointed out the screw that had been missing which, in Ken FitzGerald's opinion, could have fallen out due to vibration. The light pen cable could not have fallen off due to vibration. A quick check of the power supply showed there was nothing wrong with it. The -8 volts output is obtained if the current limiter control knob is reduced to 0% instead of being at the value of 70% to 80% preset at checkout. This know may have been turned down during Final Mechanical Inspection or up in Canada. Since the cover panel had been taped down it does not seem possible that the panel had fallen off and rubbed against the during shipment.

The display was completely checked out by Friday December 4 and shipped on Monday December 17 in the same manner as we have been shipping other displays with one precaution.

The present skid we use was adapted to float on "hair"。 Dennis O'Connor went along with Dave Bjorkgren to Canada for the installation. The display arrived without any apparent mechanical damage. All screws were securely fastened and none seemd to have become loose during shipment. Again the current limiter control know was turned down to 10%. This was reset to 80% and the diplay turned on. One of the muffin fans was inoperative and the trouble traced to an open motor coil. After the fan was replaced, the display operated properly.

The following additional precautions will be taken with each display shipped starting with Prod. No. 6000-7899.

1) All control knobs not having shaft locks will be adapted with shaft locks. The light pen gain adjustment will remain as is.
2) The focus alignment screws will be "nyloc" fastening screws.
3) Electrical and Mechanical Inspection will be requested not to turn control knobs on displays.
4) All prints, schematics, and manuals will be checked by Joe Rutschman $\boldsymbol{I}_{\boldsymbol{I}}$ enclosed in manila envelope and wired wrapped to the neck of the CRT housing.
5) The following sign will be placed in a conspicuous position on the covered display.
"Do not uncrate unless DEC representative is present".
6) The present skids will be adapted to be floating skids (subject to S_{0}. Olsen's approval).
cc:

K. Olsen	K. FitzGerald
H. Anderson	L. Prentice
S. Olsen	S. Miller
R. Beckman	B. Towle
J. Shields	J. Duffy
J. Rutschman	R. Hughes
E. Harwood	R. Gaboury

\#\#\#\#\#
\#\#\#\#\#\#\#

DATE December 26, 1962
SUBJECT PROJECTED TRADE SHOW COSTS FOR 1963.
TO Ken Olsen
FROM H. O. Painter

Attached are the projected trade show costs for 17 shows which we are definitely attending. These figures are guesstimates at best, but will give a fair idea of the money involved.

The costs are based on the following assumptions:

1. Use present 20^{\prime} and 10^{\prime} self contained booths;
2. Build new 40^{\prime} booth for sJCC;
3. Use table-top display in Paris:
4. Build new 10^{\prime} self-contained booth;
5. ACM costs are figured using same people and booths as at WESCON;
6. No air freight shipments are included;
7. Have not included my own nor Advertising's time.
8. Attendants are home office people;
9. Hotel costs based on twin rooms © \$5.25/day.

HOP: vg
cc: H. Anderson
S. Olsen
J. Atwood

	SPACE	$\begin{aligned} & \text { TRANSPOR- } \\ & \text { TATION } \\ & \text { FOR } \\ & \text { MAT'LS } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \text { HOTEL } \\ \text { FOR } \\ \text { PERSONNEL } \\ \hline \end{array}$	$\begin{gathered} \text { AIR } \\ \text { FARES } \end{gathered}$	SERVICES： EL RIC PHONE CARPNTRS DRAYAGE	BOOTH CONSTR．－ REFURB．	CARPNTR SHOP MAN HRS．		PRO－ GRAMMING MAN HRS．	
$\begin{gathered} \text { E. E. E. } \\ \text { N.Y. } \\ 4 \text { days } \\ \hline \end{gathered}$	\＄1200．	$\begin{aligned} & \$ 600 \text { 。 } \\ & 8000 \# \end{aligned}$	\＄100．	\＄52．	\＄550．	$\begin{gathered} \$ 100 . \\ \text { (refurb. }) \\ 20^{\prime} \end{gathered}$	20		none	$\$ 2602$. 84
IEEC Paris 5 days	\＄500．	$\begin{aligned} & \$ 600 \text { 。 } \\ & 1500 \# \\ & 37 \mathrm{c} / 1 \mathrm{~b} \end{aligned}$	\＄100．	\＄385．	\＄300．	$\underset{\substack{\text { (refurb } \\ \text { (rion }}}{\$ 50 .}$	10		none	\$1935.
$\begin{aligned} & \text { IRE } \\ & \text { N.Y. } \\ & 4 \text { days } \end{aligned}$	\＄1100．	$\begin{aligned} & \$ 600 \text { 。 } \\ & 8000 \# \end{aligned}$	\＄600．	\＄312．	$\begin{aligned} & \$ 400 . \\ & \text { (Dray. inc } \\ & \text { in rental) } \end{aligned}$	$\begin{array}{\|c\|} \$ 250 . \\ (\text { refurb } \\ 20^{\prime} \end{array}$	40		40	464
FASEBM Atlantic City，N．J． 6 days	\＄500．	$\begin{aligned} & \$ 525 . \\ & 5000 \end{aligned}$	\＄175．	\＄100．	\＄300．	$\begin{array}{\|c\|} \hline \$ 100 . \\ \text { (refurb.) } \\ 10^{\prime} \\ \hline \end{array}$	20		none	
```AIEE/IRE MAG.CONF. Wash.D.C. 2 days```	\＄ 400 。	$\begin{aligned} & \$ 600 . \\ & 5000 \# \end{aligned}$	\＄ 75.	\＄100．	\＄300．	$\begin{array}{\|c\|} \hline \$ 100 . \\ \text { (refurb.) } \\ 10^{\prime} \\ \hline \end{array}$	20		none	$\$ 1575 \text {. }$   60
SWIRECO   Dallas   3 days	\＄ 150.	$\$ 1300$ 。   5000\＃	\＄100．	\＄325．	\＄300．	$\begin{gathered} \$ 1000 . \\ \text { (new) } \\ 101 \end{gathered}$	20		none	$\$ 3175 .$
DES N．Y．   4 days	\＄955．	$\begin{aligned} & \$ 600 \\ & 8000 \# \end{aligned}$	\＄250．	\＄104．	$\$ 400$ 。 （Dray．incl． in rental	$\begin{array}{\|c} \$ 100 . \\ \text { (refurb. } \\ 12^{\prime} \end{array}$	30		40	$\$ 2409 .$
SJCC   Detroit   3 days	\＄2000．	$\begin{aligned} & \$ 1600 . \\ & 10,000 \# \end{aligned}$	\＄500．	\＄730．	\＄750．	$\$ 4000$ 。 （new） $40^{\prime}$	50		500	$\$ 9580 .$
AFCEA   Wash．D．C．   3 days	\＄350．	$\begin{aligned} & \$ 600 \text { 。 } \\ & 5000 \# \end{aligned}$	\＄100．	\＄100．	\＄300。	$\begin{gathered} \$ 100 . \\ \text { (refurb. } \\ 10^{\prime} \end{gathered}$	20		none	$70$
WESCON   San   Francisco	\＄1000．	$\begin{gathered} \$ 3000 . \\ 8000 \# \end{gathered}$	\＄125．	\＄600．	\＄ 550.	$\underset{20^{\prime}}{\$ 250 .}$	40		100	$\$ 5525 .$   220


Page 2   SHOW   \＆ LOCATION	SPACE	$\begin{aligned} & \text { TRANSPOR- } \\ & \text { TATION } \\ & \text { FOR } \\ & \text { MAT'LS } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { HOTEL } \\ \text { FOR } \\ \text { PERSONNEL } \\ \hline \end{array}$	$\begin{gathered} \text { AIR } \\ \text { FARES } \end{gathered}$	$\begin{aligned} & \text { SERYICES: } \\ & \text { ELE IC IC } \\ & \text { PHONE } \\ & \text { CARPNTRS } \\ & \text { DRAYAGE } \\ & \hline \end{aligned}$	BOOTH CONSTR－ REFURB．	CARPNTR SHOP MAN HRS．	ATTENDNS $\begin{aligned} & \text { \#/ MAN } \\ & \text { HRS. } \end{aligned}$	PRO－ GRAMMING MAN HRS．	
$\begin{gathered} \text { ACM } \\ \text { Denver } \\ 4 \text { days } \\ \hline \end{gathered}$	$\begin{gathered} \$ 400 / 10^{\prime} \\ \text { or } \\ \$ 800 / 20^{\prime} \end{gathered}$	8000\＃	\＄125．	－－	\＄300．	$\begin{gathered} \text { none } \\ 10^{\prime} \text { or } \frac{1}{20} \end{gathered}$	none		none	$\$ 825 . \text { or }$
$\begin{gathered} \text { ISA } \\ \text { Chicago } \\ 4 \text { days } \\ \hline \end{gathered}$	\＄1100．	$\$ 1400$ 。   8000\＃	\＄300．	\＄ 570.	\＄550．	$\begin{array}{\|c\|} \hline \$ 1000 \\ \text { (Refurb.) } \\ 20^{\circ} \\ \hline \end{array}$	20		100	$\$ 4020 \text {. }$ $320$
Canada－ IRE Toronto 3 days	\＄1000．	$\$ 1100$ 。   8000\＃	\＄150．	\＄ 255.	\＄550．	$\begin{array}{\|c\|} \hline \$ 100 . \\ (\text { Refurb } \\ 20^{\prime} \\ \hline \end{array}$	20		none	$\$ 3155$.   120
NEC   Chicago   3 days	\＄1000．	$\$ 1400$ 。   8000\＃	\＄225．	\＄ 570.	\＄550．	$\underset{\substack{\$ 100 . \\ \text { (Refurb. } \\ 20^{\prime}}}{ }$	30		100	$\$ 3845 .$ $305$
NEREM   Boston   3 days．	\＄ 800.	$\$ 100$. 8000\＃	None	－－－－－	\＄400．	$\begin{array}{\|c\|} \hline \$ 100 . \\ \text { (Refurb.) } \\ 20^{\prime} \\ \hline \end{array}$	30	20   100	none	$\$ 1400 \text {. }$ $130$
CMMM   Atlantic City，N．J 4 days	\＄ 400.	$\begin{aligned} & \$ 525 \\ & 5000 \# \end{aligned}$	\＄100．	\＄ 100.	\＄300．	$\begin{gathered} \$ 100 . \\ (\text { Refurb. }) \\ 10^{\prime} \end{gathered}$	20		none	$\$ 1525 \text {. }$   90
FJCC   Las Vegas   3 days   -2 booths－	\＄1000。	$\begin{aligned} & \$ 2200 \text { 。 } \\ & 8000 \# \end{aligned}$	\＄225．	\＄2040．	\＄550．	$\begin{gathered} \$ 200 . \\ \text { (Refurb } \\ 20^{\prime} \end{gathered}$	50		500	$\$ 6215$.   800
Or 4 booths	\＄2000．	$\begin{aligned} & \$ 2800 \text { 。 } \\ & 8000 \# \end{aligned}$	\＄300．	\＄2720．	\＄750．	$\begin{gathered} \$ 300 . \\ \text { (Refurb. } \\ 40^{\prime} \end{gathered}$	50		500	$\$ 8870$.   870
		．								

## DATE

SUBJECT
Decesaber 26. 1962
TO

Ken Olsen Nicic Mazmaxese Eloward Paintex
$\checkmark$ Gaxlan Andexson Jack Atwood
Stan 0lsen Gordon Bell
shere will be a meeting to discuss the TRE Show (Maxch -63) and the sJcc (May -63 ) in Ken's offitce on Priday. December 29. at 2830 m.m.

## INTEROFFICE MEMORANDUM

$$
\text { DATE } 20 \text { Decenves } 1962
$$

SUBJECT RDPal Fideld Service Sumanay
TO PDen Disextbutson rist FROM Jack shuelds

Actached is a sumary of field gervice pestormed on RDP-1 tastallations Eox the wonk of toverbes. 1962

## SUMMARY O F FIELD SARVICE

㽣ovember。 1962
$\begin{array}{lc}\text { Mumber of calls: } & 35 \\ \text { Man howrs: } & 143,3\end{array}$

Mhynard Area		Ca118
Prototype		3
PDP-18	B82	12
PDP-1C-1	LTEK	3
$\begin{aligned} & \text { PDP-1C-3 } \\ & P D P-1 C-4 \end{aligned}$	CRC	8
PDP-1C-5	MTT	0
PDP-1C-6	CRC (OAL)	4
PDP-1C-9	GEOTECEH	0
PDP-1C-17	SRL	0
PDP-16-20	DEC	3
PDP-16-25	MENE. - HOREEY. 0	
PDP-1C-26	Mxt\% (2x)	2
PDP-1C-27	AECL	0

Los Angeles Area
PDP-1C-7 BBH 0
PDP-1C-12 LRL 2
PDP-1C-13 JPL I
PDP-1C-15 BECKMA 0

Calls

PDP-1C-16

## SGMPARY OF FTELD SERVICE

Rovember。 1962

## Prototype

Programs would fall to read in to the prototype. Whe trouble was traced to a weak pulse amplifier module (1607) which generates the pulse to clear the $1=0$ register. Replacement of the pulse anplifier corrected this problem.

Display problems were traced to the display plug where the taper pin for AC3 Elip flop output had broken off. The taper pin was repaired and the display operated properiy.

Reader problems occured when the computer attempted a read paper binary or a read in mode operation. Investigation found that the transfer from AC, to $A C_{0}$ was not talring place. Subsequence checks found the wo. snive level to be incorrect: this was traced to the External Rotate level out of an 1110 module. The input to the 1110 module was good and replacement of the 1110 module corrected the reader problems.

Bolt. Beranek and Mewman, Inc.
Preventacdve Maintenance 3 calls
Programaing Errors 2 calls

Drum Acceptance
Malfunctions

1 call.
5 calls

Intermittent problems with picking up bit 0 in memory on the PDP-18. The trouble was traced to a defective 1982 inhibit driver module. This 1982 failure is a common problem, which is under investigation by Quality Control at this time.

Sexvice was neceswary at Backy on the cowputeriters. Two ledex solenolds and a broken back space actuator spring were replaced. The computeriters were also cleaned and adjusted.

The light pen was inopezative on the gype 30 display. The trouble was found to be an open tramsistor and an open diode on the 1559 light pen amplifter; investigation also found that the 4103 wire on the light pen amplifiex had broken off. Recomnecting the broken wire and replacement of the amplifier corrected the light pea problems.

## Itek

An intermittent trouble had been occuring at Itek for some time. the trouble would occur in a laxge interpseter progran, and all the DEC diagnostic tests would run fine. The falluxe would show itself as randow register changes in core momory. Margins on memory and other related axeas in the computer seemed to have no effect on the program operation. The interpreter program was then broken dow on a step by step basis while checking the registers, which were changed when the faliure occured. This method enabled the program to be xeduced significantly and then it was noticed that a Y27 address had been changed to contain the same word as a corresponding y37 address. With a current probe on address 827 and a 3 mp 837 in $\$ 37$ running: read/write current was detected on addresa Y27. From this point, routine checks rem vealed a defective 1151 module in the $\%$ selection decoding of the menory addreas register. Replacement of the module corrected the problem and the interpreter progran ran perfectiy.

Service was required for the BRPE punch at Itek. Adjustrent of the registration restored the punch to correct operation performeance.

## Cambridge Research Laboratory PDP-1C-4

Memory pick-up of a bit was traced to a 1982 module in the PDP-1C-3. This problem was sitailar to the one mentioned in the section on the PDP-1B. Another memory problem waa traced to the sense amplifier adjustment for memory bit 2 .
peripheral equipment troubles were corrected by replacement of the Soroban decoder unft and the power cam follower on the two CRC computeriters.

Various troubles occured on the PDP-lC-4 following its move to Itek for the fast block transfer modifications.

One problen was that the computer wowld fail to perform amy inatructions. This trouble was traced to a defective 1311 delay module in the basic timang chain. Another problen was the fallure of the typewriter buffer bit 15 tramsfer to the in/out registex via the input mixer. This problem was caused by a "cold" solder connection on the output of typewniter buffer 15 flip flop to the input mixer.

A service call was necessary when the computer was connected to the Itrek logic to check out the fast block transfer systen. The fall time of $10{ }_{17}$ was 200 nanoseconds long. Bormal computer use did not find chis detximental, however, when a fast block trangfer was executed - a shict pulse every 250 namoseconds this was found to be an grea of probable marginal difificulty. The slow fall time of $10_{17}$ was attributed to the load and/or the line length capacitance. The logic was modified so the Elip flop output was comnected to a 1684 bus driver module, and its output was tied to the long line computer logic. Whis modification shortened the $10{ }_{17}$ fall time to approximately 120 sanoseconds.

## Cambridge Research Center (oat)

Preventative Maintemance
Progran Exrors
Malfunctions

1 call
1 call
2 ca11s

The gayden time meter and the reader drive motor were replaced as part of the preventative maintenance program.
sexvice was necessary to adjust the start-stop time on the Mag Tape Type 50, and to replace a bsoken typewsiter decoder seeker.

## DEC

The reader on the PDPa-1C-20 had a history of vaxious problems which were traced to temperature drift in the photo-diode head assembly. : The photomilode head was replaced and the reader ampliflers were adjusted for best mergins.

Memory troubles on the PDP-1C-20 were traced to a defective 1978 module which was the resistive load for bit 7. After this problem, margins were taken on memory and the sense awolifiexs were readjusted for maxgina.

## Massachusetts Institute of pechnology (LMS)

Troubles with the display would occur from time to time at the uss installation. The pxoblem would cause a display shift on both the $x$ and $y$ axis. \%his trouble was txaced to a cold solder comection on the +108 Ifne on the -10 Volt reference module. Resoldering the "cold" connection corrected the display problem.

## Lawrence Radiation Laboratory

Sexvice calls were neceasary at IRL for the Mag rape units. The modifications which were applicable to the Mag Tape Control 52 were perfomed and these modifications cleared up the small problems which IRE had experienced.

## Jet Propulsion Ioboratory

JPL required service on theix mag tape units. Some of the problems found and corrected were:

Dixty contacts on the auto/manual switch
Staxt-stop thme out of adjustment
Worn brushes on the vacrum motor

DATE December 20, 1962
SUBJECT
то

K. Olsen	N. Mazzarese	FROM	J. Smith
H. Anderson	R. Mills		
S. Olsen	G. Bell		
M. Sandler	R. Best		
G. O'Dea			

Pursuant to the Works Committee decision this morning our computer construction program will be reduced. Presently we are construction two PDP-1's and two PDP-4's per month. This program will continue until the month of March. During this month and all subsequent months, we will reduce our program to one PDP-1 and two PDP-4's. This program will eliminate a need for sub-contracting and will be accomplished by our in-house capabilities.

Conversation with Mr. John J. White, JTr. SUBJECT Re: Bid For Logical Analyzer

December 20, 1962

## George O'Dea

TO
Harlan Anderson
FROM
cc: Stan Olsen
Dick Mills

Stan and I hand carried subject bid to the Office of Mr. White and discussed the following points:

1. Base for Application of $G$ \& $A$ : He felt that $G \& A$ rates should be equated to Cost of Manufacture rather than Cost of Sales. We pointed out that at today's level of operations the Cost of Manufacture and Cost of Sales were very similar and the rate evolving from either would be essentially the same.
2. Inclusion of Unallowable Cost in G \& A: We pointed out that the rate of $30 \%$ was derived after removing such costs and that the actual rate had been $35 \%$ for the interval in question.
3. Inclusion of Unallowable Costs in Burden: We pointed out that the rate of $130 \%$ was derived after removing such costs and that the actual book rate for the period in question had been 140\%t.

As regards these three points, he seemed pleased and expressed wonderment as to why there had been ill feeling between CRC and DEC. (Their office had literally shut us off.)

Mr. White was surprised to learn that no government audit agency had been given cognizance over DEC affairs. We pointed out that DEC never handled Cos $\dagger$ Type Contracts and the subject had not previously been of significance.

He indicated a necessity for auditing the present contract. Rather than refuse, we pointed out that only $\$ 8 \mathrm{~K}$, or less than $10 \%$ of this contract price was related to overhead and burden rates. He agreed that this made the request for audit seem a waste from their point of view - but pointed out that the decision was up to "the cost people".

As a final warning he put us on notice that ASPRA was being revised, effective $12 / 1 / 1 / 62$ to give the Government the right to down-price a Fixed Price Contract if the Cost data provided by the Contractor was inaccurate. The exact
text of the new treatment will be in Revision \#12. He did not have a copy of the new regulations but felt it would only apply to Contracts of $\$ 100 \mathrm{~K}$ or more and would probably only be implemented in case of suspected gross misrepresentation. We will follow this up independently.

As to the next step Mr. White will attempt to turn the bid over to what he calls Base Procurement since it is primarily a hardware item (his specialty is R\&D).

Once the channel of letting is established (and he felt he'd probably wind up handling it himself), we will be contacted - in three or four weeks (because of the Christmas rush).

We're going to have to decide where we stand on this bit about audit. We could open the records to an auditor on:
a) actual direct labor charges
b) overheads (for relation to a)
c) Cost of Manufacture (better than cost of Sales)
d) $\quad G \& A($ for relation to $c)$.

I'm afraid were going to have to choose between this and the Contract if he follows the unreasonable course in the matter.

George O 'Dea

GTO'D:ncs

## INTEROFFICE MEMORANDUM

## DATE December 19, 1962

## SUBJECT

TO
H. Anderson

FROM J. Smith

Schedule for shipment of BERPE 11 punches:
2 shipped Dec. 17, 1962
2 to be shipped Dec. 21, 1962
2 to be shipped Jan, 1963
2 to be shipped Feb., 1963
2 to be shipped March, 1963
Present inventory - 1 .

## DATE December 19, 1962

## SUBJECT

TO
K. Olsen

FROM J. Smith
H. Anderson
S. Olsen
G. Bell
A. Hall

PDP-4-7 (8000-7437) was delivered to Checkout 12/17/62. The second PDP-4 for December will be completed on $12 / 21 / 62$.

## INTEROFFICE MEMORANDUM

DATE December 19, 1962
SUBJECT
TO
University of Rochester
Nick Mazzarese
FROM
Win Hindle
cc: Ken Olsen
Harlan Anderson
Stan Olsen
I discussed the ground rules for NSF Grants with Nat Sage, Associate Director of MIT's Division of Sponsored Research who administers these grants for the Institute. He reported that he knew of no rule set down by NSF which required an educational discount on equipment purchases. He suspects that the University of Rochester will request that DEC give them the most favorable educational discount that is given to any educational institution to be sure that we are not doing less for them than we are for other schools. Parenthetically, he added that he would weicome an educational discount for the many modules which we sell to MIT.

Win Hindle
WRHencs

DATE
December 19, 1962
Northeastern University Suburban Campus

TO
Ken Olsen Harlan Anderson

FROM Win Handle

On December 17th I attended a luncheon meeting at the Lexington Inn where Asa S. Knowles, President of Northeaster, presented a preliminary proposal for establishing a Suburban Campus on Route 128. At the present time, Northeastern is offering courses in graduate engineering subjects at Weston High School. The number of students attending these courses has exceeded Northeastern's expectations and has prompted the Northeastern staff to find a better way to serve the Route 128 Companies. About seventy firms were represented at the luncheon.

Northeastern proposes that an organization called the Northeastern Suburban Affiliate Plan be formed and share the cost of financing this new campus. The annual membership fee in this organization would be proportionate to the use made of the suburban campus by each company and would range from an annual fee of $\$ 500 \mathrm{mini}$ mum to a maximum fee of $\$ 15,000$. This fee would be charged for a period of seven years, at which time the building would presumably be completely paid for. The courses offered on the suburban campus would be primarily graduate courses in engineering, physics, and mathematics leading to a master's degree. Other courses would be offered also. At the start, there would be ten classrooms in the building.

At the conclusion of the luncheon meeting a questionnaire was handed to each person to register his initial reactions to the proposal. Answers to the questions were merely an indication of interest and not a commitment to support the effort. I registered a definite interest in the proposal and feel strongly that it would serve DEC's interest to support this venture af the minimum level required. This would fit well with our desire to develop DEC's engineers and I believe would stimulate many more engineers to work on evening studies.

## W. R. Hindle

WRH incs

DATE December 19, 1962
24th Meeting of the
SUBJECT Test Equipment Committee
TO
Richard L. Best
FROM
Russell Doane

Members of the Committee:
Robert Hughes, Chairman
Russell Doane, Secretary
Donald White
George Gerelds
Dave Dubay
Dick Tringale
Jim Cudmore
Larry White
Ken Wakeen

1. Two more current probes with passive terminators were ordered for Ed Harwood and three for Bob Beckman. All five have arrived.
2. We have not yet decided whether to buy a type 290 transistor tester.
3. We had a demonstration of a 10 megacycle portable oscilloscope made by Avnet, which is a British company. We passed a favorable impression on to Jim Burley in Washington, (a representative of Bob Beckman's group was also present).
4. We have had a demonstration of a General Radio limit bridge, a General Radio resistance comparator, and a Terradyne resistance limit checker. No decision has yet been made on purchase of an instrument such as these for incoming inspection of passive come ponents.
5. The Contronics diode tester was delivered, but several serious doubts arose about its functioning and part of it was returned to Contronics for further work. It now seems to be operating satisfactorily on AC tests, but not on DC with the Terradyne DC tester.
6. It came to Bob Hughes' attention that it is now possible to obtain precision zener diodes with National Bureau of Standards traceability. We informed the John Fluke Company of this fact and requested that our .01\% Fluke meter, which is on order, be equipped with such a zener diode. We do not yet know to what extent this may delay delivery of the Fluke meter.
7. While we are investigating the possibility of purchasing a commercial $\mathrm{F}_{\mathrm{t}}$ tester for 100 megacycle operation, Russ Doane will put our present $F_{t}$ tester back in operation at 10,30 , and 50 megacycles.
8. Ken Wakeen will soon need a type 567 sampling oscilloscope for his work in automatic module testing. Jim Cudmore will also require the use of the second type 567, which we now own, for his work in automatic checkout within two to three months. Since delivery is approximately 11 weeks, Ken Wakeen will order a third type 567 immediately, including the necessary sampling plug-in unit and digital readout plug-in unit. These moves will reduce VHF to the Hewlett Packard sampling scope.
9. Ken Wakeen will need a digital voltmeter of approximately . 1 or $.2 \%$ accuracy for $20 \%$ of the time over the next 4 months, after which he will no longer need it, but during this time, the speed of reading digital voltmeter being much faster than that of operating a fluke meter, he recommends that we buy one, adding that its proposed accuracy will lie between that of our dc multimeters which are nominally 1 1/2\% and our fluke meters which are .025 and .05\%, and that other uses would be found for such a digital voltmeter. Jim Cudmore thinks that there are some production applications for such a device where the fluke meter is now employed. Ken Wakeen will investigate further and come up with a more detailed recommendation after discussion with Jim Cudmore to insure the useability of the device in a maximum number of applications.
10. Dave Dubay announced that a new oscilloscope calibration schedule is in effect, as recommended, to lighten his work load. It calls for recalibration of oscilloscopes used in production testing once every six weeks as is done at present. However, oscilloscopes which are used in engineering will be calibrated on a three months" schedule since accuracy is not quite so crucial in most applications.
11. We have been contacted by Acton Labs., who offer oscilloscope calibration services including pickup and delivery, which sounds considerably more attractive than what the Lexington Tektronix field office seems able to offer. We will invite a representative of Acton Labs. in to discuss this possibility.
12. The new Contronics diode tester, when it is finally working, will free two type 541 Tektronix oscilloscopes which are now equipped with type "S" diode recovery time plug-in units and are in fullotime use in component test. Neither of these oscilloscopes are provided with type "CA" plug-in units, and both will be in demand for general purpose engineering work almost immediately. Therefore, we decided to order two type CA dual trace plug-in units. This will maintain our current practice of having one fewer type CA plug-in units than we have oscilloscopes in use.

The next meeting of the Test Equipment Conmittee will be on Tuesday, January 3, at 1:30 PM in Bob Hughes' office.
ce: H. Anderson
B. Beckman
W. Hindle
N. Mazzarese
R. Mills
I. $O^{\prime}$ Connell
G. O'Dea
K. Olsen
S. Olsen
H. Painter
G. Rice

M, Sandier
All Engineers
All Technicians

$$
\text { DATE December 19, } 1962
$$

SUBJECT Digital Equipment Pricing Formulas
to Harlan Anderson
FROM Bob Savell

I believe what you had in mind the other day when we talked about using a multiplier for pricing was that the multiplier should only be used with what is called the "Module Formula" on the company confidential pricing sheet, and that when using the alternate formula, a multiplier should not be used. It is my belief thatit a multiplier can be used in both cases. I will explain below how I use the multiplier and how the multiplier was arrived at for the alternate formula.

The alternate formula is:
list price $=$ installation cost + production cost + engineering cost per unit sales + SGA + profit.

Installation cost, production cost, and engineering cost per unit sales are readily determined. It was your belief, and Dick Mills concurred, that SG\&A is approximately .35 times manufactured cost. I assume :
manufactured cost $=$ installation cost + production cost + engineering
cost per unit sales.
It was your assumption that we should use a figure of approximately $30 \%$ of list price for profit. Dick Mills and I had approximately a two hour discussion on November 21 st during which he determined that profit as a percentage of sales was approximately $41 \%$ for the past year, and that profits as a percentage of manufactured cost, not including SG\&A, were approximately $97 \%$ for the past year. Using these percentages, let us now make some substitutions into the formula.

1. Let us lump installation cost plus production plus engineering cost per unit sales into the abbreviation MC, for manufactured cost. Therefore:
list price $=M C+S G \& A+$ profit.
$S G \& A=.35 M C$ and profit $=$ one of three things;
a. . 3 LP (list price)
b. Profit equals . 41 LP
c. Profit equals . 97 MC

Making three substitutions into the formual

1. List price $=M C+.35 M C+.3 L P$
or $.7 \mathrm{LP}=1.35 \mathrm{MC}$
so $L P=\frac{1.35}{.7 M C}=1.86 \mathrm{MC}$
So there we have a multiplier of 1.86 times the manufactured cost which has been arrived at using your figures for SG\&A, and profit as a $30 \%$ of list. I don't see any reason why one can't arrive at a multiplier in this way and use it for quite a while since the percentages used for SG\&A and profit are long term figures.

Using Dick Mills' figures, we arrive at the following two formulas:
2. $L P=M C+.35 M C+.41 L P$
or $.59 \mathrm{LP}=1.35 \mathrm{MC}$
and $L P=\frac{1.35 \mathrm{MC}}{.59}$
so $L P=2.2 M C$.
3. $L P=M C+.35 M C+.97 M C$
or $L P=2.32 M C$
which is approximately equal to the multiplier that we have been using all along of 2.32 times manufactured cost.

These three formulas were explained on November 21 to Ken and Ben in connection with arriving at a price for the Type 41 Card Reader and Control. They at that time agreed that the 2.3 multiplier looked as if it was still a reasonable figure to use and instructed me to use it for the calculation of the price on the Type 41.
\#\#\#\#\#\# \#\#\#\#\#
P.S. I suggest that we modify our pricing formula to include an allowance for warranty service. Bob Beckman has suggested an addition to the list price of the unit of $5 \%$ of the list price to cover warranty service.

## INTEROFFICE MEMORANDUM

DATE December 19, 1962
SUBJECT
Installation of Standard Cost System for Module Production

## Ken Olsen

FROM $\quad \begin{aligned} & \text { George O'Dea } \\ & \text { Dick Mills }\end{aligned}$
Harlan Anderson
cc: Maynard Sandler

Phase I of subject Installation will appear on the Books in January of 1963. It consists of eliminating from Inventory the difference between the Standards Purchase Price and the Actual Price appearing on the Vendor's Invoice. For now the writing off of the variance will be confined only to new purchases. These acquisitions will be co-mingled with Maynard's 12/31/'62 Raw Materials Inventory (priced at actual cost). His costing of material withdrawals will proceed at F.I.F.O. until all of the non-standard articles have been consumed.

The standard prices to be used are those provided by Henry Crouse in October of this year and have been pegged at quanîities consistent with an overall module production level of 7,500 units per month.

Disposition of the Price Variances will be debited or credited to a new account in the Cost of Sales section of the Profit and Loss Statement called "Purchase Price Variance"

Phase II of the Installation will deal with the various facets of material usage variance and is presently under study with a tentative target date of installation by March First.

Phase III of the Installation will deal with Direct Labor variances and is presently thought of as being applicable by April First.

Phase IV of the Installation will deal with overhead variance. This must be coordinated with Dick's Departmental Budget System. Hopefully, we will have this Phase concluded in time to price our June 30, '63 Physical Inventory at Standard Cost.

## G.T.O'Dea

GTO 'Dencs

FROM
George O'Dea

The aftached abstract of Lybrand's memo on doing business in West Germany may prove helpful in preparation for your trip to Munich. Many of the comments deal with German Corporate Structure. While we do not contemplate such a form for DEC, it is interesting to note the dissimilarities with the American form.

To the extent that it is possible to fores ee trouble from such fragmentary sources, two hazards seem to lurk on the horizon.
a) The equalization phase of tum-over tax. Literally, I could not find any guarantee that we would not be required to pay $4 \%$ on DEC inventory shipped to our Sales Office and then another 4\% when shipped to a customer. Hopefully a consignment treatment on shipments to the Sales Office would eliminate the extra tax.
b) Capital Transaction Tax - there is reference to loans to German subsidiaries as being interpreted as Capital investments for Tax purposes. We would want to make certain that the establishment of a Cash Working Fund for a Munich Branch would not be so regarded.

The whole question of duty is referred to in only the most general way in the abstract. Against the possibility of having to maintain an inventory of Maymardmade commodities in Munich, we would hope that duty could be deferred through the free port concept or some other technique.

To the extent possible we would like to see Munich do their own billing for collection in Maynord. Their day-to-day cash needs could be fulfilled out of a Working Fund - subject to periodic replenishment out of Maynard - on documentation of funds disposed.

We would expect Mr. Huewe would be paid out of here. If local help is needed they would probably have to be paid locally - with the necessary payroll tax reporting done at that end.

We would certainly recommend your approving Huewe's expense reports. I would think this would lend itself to our giving an advance to him (not the branch) and replenishing his account as vouchers are approved by you.

Our first target for treatment of this operation on the books would be to carry his gross profit on the P\&L, the branch expenses in the Sales expense section, the receivables and consigned Inventory as separafe current assets with a Branch Control Account as the clearing house for all transactions. This will make it easy to strike a quick direct P\&L and investment status at the close of each menth's business.

Yesterday, we wrote to the people at the Morgan Guarantee Trust requesting that they recommend a Munich Bank and a reliable local attomey. Another reference which may help in answering questions is that of the Foreign Branch of our Public Accounting Firm.

Cooper's and Lyboronds
Somnenstrasse $33 / V$, Aufgang, B, Munich 15
Telephone: 55.40.06
Resident Managers: E. Burger
H. Leistner
G.T.O'Deo

GTO'Dnes
Atrachment

## Abstract of Lybrand, Ross Brothers and Montgomery Notes

## on Doing Business in West Germany

1. L, RB, \& $M$ may be called upen to provide a list of prominent local Banks, Aftomey's etc.
2. The unit of currency is the German Mark (DM) - Value approximately $25 ¢$.
3. Wages (using ' 53 as the base) ${ }^{1} 61=178 \% ;{ }^{1} 60=161 \% ; \quad 159=148 \%$.
4. Cost of living (using ' 53 as the base) ${ }^{\prime} 61=114 \%$; ${ }^{\prime} 60=111 \% ;{ }^{\prime} 59=110 \%$.
5. Typical Corporate Strueture is the Aktien gisellschaft (A.G.)
a) Ulira Vires acts not recognized as such.
b) Govemed by The Compeny Law dated 1937.
c) Must be formed by 5 or more persons (either natural or Corporate). Need not bu Germans.
d) Minimum Capital of DM 100,$000 ; 25 \%$ of which must be paid up, $(\$ 6,250)$.
e) Share certificates must hove face Value of DM100 (no such thing as No Por.) Niay be either registered or bearer.
1) Board of Directors of at least 3 people.
g) $1 / 3$ rd of the Board must be elected by the employees to act as labor representatives.
h) The Board connot be held responsible for the management.
i) The Board must appoint at least 1 Manager as legal representative w/o restriction.
i) Managers and Directors may be non-resident foreigners and need not be stockholders.
k) The A.G. is subject to Compulsory Audit and Publication of annual Accounts.
6. A Limited Liability Company, characteristic of Smaller Companies of of Subsidiaries is the Gisselschaft mut beschrankter Hoftung (G.m.b.H.)
a) Govemed by the Law on Limited Liability Companies of 1892.
b) Must be formed by at least 2 persons (Natural, partnership, or Corporate.) Need not be Germans.
c) Minimum Capifal of DM 20,$000 ; 25 \%$ of which must be paid up $(\$ 1,250)$.
d) Share certificates must have face value of DM 500 and require documentary authentication for transfer.
e) Stockholders may Vote orally.
f) Board not required if less than 500 employees.
g) $1 / 3$ rd of the Board, If any, must be elected by the employees.
h) There must be at least I Manager appointed by the Stockholders without restriction as to representation of the Company.
i) Managers may be aliens and need not be stockholders.
i) Liability of Stockholders is limited to the unpaid part of stock shares (articles of Incorporation may permit assumption of added responsibility on the part of individual shareholders.)
k) Neither compulsory audit or publication of accounts is required.
I) All shares of G.m.b.H. may be combined under single ownership after registration.
m) Cannot be listed on German Stock Exchanges.
7. Germany has CPA firms with Professional sianding roughly equivalent to that in the U.S.
8. AG Companies are required to Publish Annual Reports. This is the responsibility of the Manager. G.m.b.H. are not required to divulge their operating results, both forms of organization are required to keep books (double entry), take physical inventories.
9. Germen Companies are permitted to take much more liberal position on P\&L as regards minimizing Income Taxes (Inventory Reserves, etc.)
10. Cuirks: Long Term as a Balance Sheet Item is taken to mean four years.
11. All Income both Domestic and Foreign of Corporations having thetr management in Germany is subject to unlimited Corporate Taxation. Foreign Corporations are taxed only on income from German Sources. Corporate tax rates are $51 \%$ on retained earnings and $15 \%$ on distributed profits.
12. Business Taxes on other Than Income Include:
a) Tumover Tax - 4\% an all Transactions in Germany and on imports
b) Trade Tax - $14 \%$ on Taxable Income - levied by some local authorities.
c) Trade Tax - on payroll - in some municipalities
d) General Property Tax - Annually at 1\%
e) Real Estate Tax - 7\% at time of Purchase - annual levy up to $3 \%$.
f) Capital Transaction Taxes of $21 / 2 \%$ are levied at time of issue of Common Stock (This can be interpreted as on loan from Parent to Sub.) Enployment I/ Foreyruns
13. Normally no restrictions here; generally the employer must obtain an authorization from the competent Germen Labor Office.
14. Overtime: Normal $125 \%$, Sunday $150 \%$, religious holiday $200 \%$.
15. Social Benefits:
a) Paid Vacation of 12 to 24 days per year.
b) Special paid days off for family deaths, marriages, moving.
c) Old age and disability insurence - 7\% of first DM 11,400 .
d) Unemployment Insurance - $1 \%$ of first DM 9,000
e) Accident Insurance premiums - up to $2 \%$
f) Health Insurance up to $9 \%$
g) Childrens Allowance $1 \%$ of payroll
16. There are no restrictions on currency exchange or transfer of capital.
17. Normally there are no restrietions on Imports. Some items require licensing. Import declarations required on everything. Export declarations required on commodities having a value of DM 50 or mare.
18. Present customs tariff provides for duty-free entry or very low rates on raw meterials. Rates are subject to constant change - and vary with country of origin. Valuation is on "normal price" including delivery, freight insurance, etc.

# RECEIVED 

1962 DEC 18 PM 2: 40

## DIGITAL EQUIPMENT CORP.

 SALES DEPARTMENTDIGITAL MAYNAD

## DIGITAL WA

TO H. ANDERSON FROM JIM BURLE Y DEC 18
REF URTWX RE GEOL SURVEY IFB.TALKED WITH THESE PEOPLE AND THEY KNEW WHAT I WANTED BEFORE I TOLD THEMSO APPARENTLY EVERYONE IS ASKING FOR IT NOW. THEY IFB IS OUT OF PRINT NOWBUT THEY SAID THEY WOULD SEND A COPY TO MAYNARD TOMORROW IF THEY AREREPRINTED BY THAT TIME. IT HAS ALREADY BEEN REPRINTED TWICE.WE ARE A BIT VULNERABLE HERE IN THE DCO FOR FOLLOWING UP SINCE I AM LEAVULEAVING IN AN HOUR TO CATCH A PLANE AND BARBARA IS IN BED WITH THE FLU.THEREFORE IF YOU WANT TO STAY ON TOP OF THIS I GUESS ILL HAVE TO ASK
YOU TO FOLLOW UP. THE PHONE NUMBER AND EXT ARE AS FOLLOWS
RE7-1820, X2322
SORRY I COULDNT HANDLE IT A BIT MORE EXPEDITIOUSLY.
END OR GA
MIN PLS
THANKS END

# RECEIVED 

## 1962 DEC 18 PM I: 29

## DIGTALEQUIPMENTCORP.

 SALES DEPARTMENTDIGITAL WA
ODIGITAL MAYNARD MSG NO 736
TO JIM BURLEY
FROM HARLAN ANDERSON
WOULD YOU GET A COPY OF IFB 3264 FROM U. S. DEPAT OF INTERIOR
GEOL. SURVEY PURCH. SECT. ROOM TWQE IN GEN. SERVICES BUILDING AT
18 TH AND F ST WASH AND SEND IT TO ME

THANKS H E A
END GA
MORE SECOND LINE ROOM NO SHOULD BE 5213
END GA

TWX

JIM BurLEy
DEC WASHINGTON

WOULD YOU GET A COPY OF IF
3264 FROM USS. DEPT OF INTERIOR, GEOL. SURVEY f PORCH. SECT. ROOM 5213 IN GEN. SERVICES BUILDING AT 18 TH AND F STREET, WASH. AND SEND IT TO ME.

HE. Anderson

SUBJECT: Repair of Returned Modules
T0:

DATE: December 17, 1962
FROM: Jim Cudmore

The following is a list of modules returned for repair during the week of December 10, 1962.

UNIT	SERIAL NO.	CUSTOMER	COMPLAINT	DEFECT
1501	Unreadable	Johns Hopkins University A.P.L.	For retest	Q9-Q8-Q7 missing   Q3 open   2 Bournes trim pots fastened to handles on modules but not connected to circuit
1547	55911 C	Information International	No Output	Q6 (MD94) shorted emitter to collector
1547-C	0033924	Information International	No Output	Q6-Q8 (MD94) shorted emitter to collector
1671	50161B	```Johns Hopkins University A.P.L.```	For Retest	No defects
1684	0028642C	ADX-7	Marginal on Pin L	A 68 K resistor was wrong value (18K)
1706	0014013	Color Display	Bad Output	Proper heat sink washers added
1706	0033828	" $\quad 1$	Bad Output	```GE 167 open base to emitter Proper heat sink washers added```
1706	0014020	" "	Bad Output	Proper heat sink washers added
1706	0033831	$\cdots$	Oscillating Output	Proper heat sink washers added
1706	0033849	$\cdots$ *	Oscillating Output	Wrong value resistors
1706	0033853	" $\quad$	$\begin{aligned} & \text { Oscillating } \\ & \text { Output } \end{aligned}$	Wrong value resistors


UNIT	SERIAL NO.	CUSTOMER		COMPLAINT		DEFECT	
3102	15113A		Navy	For	retest		defects
3112	15648A	${ }^{\prime \prime}$	"	"	n	0	${ }^{\prime \prime}$
3112	14263 A	11	n	0	"	${ }^{\circ}$	"
3112	24027A	\%	n	*	1	n	${ }^{9}$
3112	14747A	"	1	${ }^{\circ}$	${ }^{\prime \prime}$	*	10
3112	14855A	$\cdots$	0	0	$\cdots$	"	n
3112	13943A	"	"	${ }^{0}$	0	$\cdots$	0
3112	14954 A	"	\%	${ }^{\sim}$	10	$\cdots$	$\infty$
3114	13276A	$\cdots$	0	\%	"	n	1
3114	14018A	${ }^{\prime \prime}$	n	"	10	*	0
3114	14877A	"	$\cdots$	$\cdots$	0	0	0
3114	1.4425A	$\cdots$	$\cdots$	\%	"	0	$\cdots$
3114	15774	${ }^{\prime \prime}$	n	"	${ }^{*}$	\%	10
3114	14191A	"	n	$\cdots$	\%	n	10
3114	15141A	*	${ }^{10}$	n	${ }^{\prime \prime}$	w	10
3202	15049A	${ }^{10}$	"	"	*	$\cdots$	$\stackrel{\square}{\square}$
32.02	14453 A	\%	"	0	n	*	${ }^{1}$
3202	14960A	${ }^{\boldsymbol{m}}$	"	$\cdots$	${ }^{\circ}$	${ }^{0}$	$\cdots$
3202	14646 A	n	${ }^{\prime \prime}$	10	0	${ }^{1}$	$\cdots$
3202	14756A	"	$\cdots$	$\because$	0	${ }^{\prime \prime}$	\%
3202	13921A	${ }^{0}$	m	10	$\cdots$	"	*
3202	14883A	0	0	1	10	${ }^{1}$	n
3202	14761A	"	$\cdots$	*	0	${ }^{6}$	n
3202	14124 A	"	0	\%	$n$	"	0
3203	22954 A	"	0	"	${ }^{\prime \prime}$	"	"
3203	14652A	"	"	"	"	"	"

Returned Modules - Cont.

UNIT	SERIAL NO.	CUSTOMER	COMPLAINT	DEFECT
4106	65212 F	Johns Hopkins University A.P.L.	For retest	Updated Obsolete Components
4106	$54226 F$	" $\quad 1$	" 1	" $\quad$ "
4106	65262 F	n $\quad$ (	" 1	" 0
4106	54213 F	" $\quad 1$	" 1	DOO1 diodes open Updated Obsolete components
4106	54202F	$\cdots$	$\cdots$ *	D001 open Updated Obsolete Components
4106	54208 F	$\cdots$ "	$\cdots$ -	Updated Obsolete Components
4106	$65263 F$	$0 \times$	" 0	"
4106	65275 F	is $\quad$	10	$\cdots 0$
4106	74557F	$\cdots$	" $\quad$	D001 diodes open 2N1305 open base to emitter
4106	54702 F	" $\quad$ "	11	Updated Obsolete Components
4106	67420 F	0 "	" "	n $\quad$ *
4106	67423 F	$\infty \quad \infty$	$\cdots 0$	2N1305 open base to emitter   Updated Obsolete Components
4106	54736	$0 \times$	17	D001 open   Updated Obsolete   Components
4106	$67427 F$	$0 \sim$	0 \%	Updated Obsolete Components
4106	85732 F	n $\quad$ "	* "	" $\quad$
4106	54701 F	" 0	0 m	" "
4106	54708 F	" *	" "	" "



Returned Modules - Cont.


DATE December 14, 1962
SUbJECT Trip to NSA
to H. Anderson
FROM
Roland Boisvert
R. Best
B. Gurley
G. Bell
N. Mazzarese

## CONTROL TO RUN THE IBM TAPE UNITS:

The reason for concern shown on our design and development of a control to run the IBM Tape Units was because of the previous experience that NSA has had with CDC in this same type of endeavor. CDC had four engineers assigned to this project. The general feeling at NSA is that the tape control was never checked out off-lin at CDC therefore, for six months after delivery had motion control problems. The main reason for difficulties was that the motion portion was not designed to the actual requirements of the tape unit. In the beginning when they told a unit to rewind, the control did not hold the rewind level up for the required 20 milliseconds and the unit would therefore make a short rewind attempt and come to a roaring halt.

Another thing that they did not do was watch specifically for the condition when a tape unit was in the write status and then told to back space N records. They effectively erased everything that they had written on the tape.

I might add that although the motion control on CDC's control to run the IBM tape units is now working properly, that they are still having problems with realibility with this control. The people at NSA felt that the whole control has been a minimum effort on CDC's part as far as expense is concerned. The read section is single channel reading, and they do not change the slicing level when they write verses when they read. They have a fixed set of values which are for both conditions. Subsequently, NSA has requested CDC to come in and add a redundant read channel such as the IBM scheme employs. However, CDC is still a little bit reluctant to set these levels at different settings for reading and writing. Generally overall in this area, we showed that we anticipated many of these type problems that they experienced with CDC, and NSA appeared confident that we do have the right approach from design to delivery.

## SUBJECT

TO

K. Olsen<br>FROM J. Smith<br>H. Anderson<br>R. Mills<br>G. O'Dea

This is a cost study I made for Gordon Bell. I thought it could be of interest to you.

## PDP-4 Manufacturing Cost Estimate

Material (mechanical parts)

$$
2,045.00
$$

Mechanical Assembly

$$
600.00
$$

Sub-Assemblies \& Wiring (includes material)
1A to IF Int. Processor $2,388$.
$1 \mathrm{~K}-1 \mathrm{~L}-1 \mathrm{M}$ In-out Control 325.
2E-2F-2H Real Time Section 735.
Final Construction* 960.
$\begin{array}{ll}\text { * (Power wiring \& wiring together } & 4,408.00\end{array}$
Major Components
Printer 28-C $\quad$ 1,097.
Reader $2500 \quad 779$.
Punch 11739.
Memory system (wiring, stack, modules) 8,101. 10,716.00
Power Supplies
D)

Modules
$\begin{array}{ll}\text { Real Time Section } & 1,410 . \\ \text { Punch and Teleprinter } & 1,050 . \\ \text { Real Time Section } & 3,330 .\end{array}$

## INTEROFFICE MEMORANDUM

$$
\text { DATE } \quad 12 / 13 / 62
$$

SUBJECT CRC Magnetic Tape Control Exchanges

FROM P. Bonner

Charlton Walter (Dynamic System Simulator) due to future needs is interested in exchanging his Magnetic Tape Control. Type 51 on PDPlC-3 for a Magnetic Tape Control, Type 52. Thus, a $\$ 5,000$ credit for the 51 is applied against the purchase price of the 52 . The $\$ 38,000$ price of the Type 52 is further reduced by $\$ 9,000$ due to the presence of a High Speed Channel, Type 19, thus giving a net purchase price of. . . . . . . . . . . . . . . . . . . . . . . $\$ 24,000$

It is also desired that the following equipment be added:

Two (2) Type 50 Magnetic Tape Units @ \$18,000. . $\$ 36,000$ One (1) Memory Module, Type 12 . . . . . . . . 30,000

Field installation charges figure on $5 \%$ of
$\$ 24,000+\$ 5,000$ (credit for the Type 51)
$+\$ 36,000+\$ 30,000$. . . . . . . . . . . . 4,750
\$94.750
John Mott-Smith of CSL is interested in acquiring a Type 50 and a Type 51 for his upcoming computer which is being purchased in parts (i.e.. Binary Storage Rack, The Logical Connector, and the Logical Analyzer). Thus, CSL will receive the following:

One (1) Type 50 Magnetic Tape Unit @ $\$ 18,000$
One (1) Type 51 Magnetic Tape
Control Unit from Dynamic
System Simulator
Field installation of
(2) 5,000
1.150
\$24,150

Thus, the additional equipment for the Dynamic System Simulator is below their budget ceiling of $\$ 100,000$.

Also, CSL's equipment is below their budget ceiling of $\$ 25,000$.

SUBJECT New Tape Systems
TO Roland Bolsvert FROM Computer Guidance Committee
CC: Computer Guidance Committee Members

$$
\begin{aligned}
& \text { (K. Olsen) } \\
& \text { (S. Olsen) } \\
& \text { (i. Anderson) } \\
& \text { (w. Hindle) } \\
& \text { (N. Mazzarese) } \\
& \text { (G. Bell) }
\end{aligned}
$$

Repeated requests for an inexpensive tape system which will handle IEM 556 bpi or 800 bpi densities may require investigation. We would like to review these on Deceraber 19. 1962, at 8:30.

## Tape Syatems presentily incluci:

200 bpi - IBM

1. Type 50 with 51 (PDP-1)
2. Type 50 with 52 (PDP-1)
3. Type 50 with 54 (PDP-4)
4. Type 50 with 57 (PDP-4) under development for February 15, 1963

## Tape Unit Evaluations

1. Potter 906II, Potter MI12, Potter Low Speed Cosx
2. Ampex (February 1)
3. CDC
4. Burroughs $\approx 7 \mathrm{~K}$ (February 1). Hiperformance 17 K
5. Datamec

## H-Density, HiPerformance System

1. DEC large (2X-2 type Bulk storage)
2. IBM Hyper Tape
3. Information Storage System DK3
4. Potter Bigh-Density

## Paper Tape - Magnetic Tape Replacement:

1. DEC Linc Type

## 工是 High Density Etfort

1. 729 Type using type 56 Control (for delivery May 1)

## Summary

There seem to be many possibilities for tape systerns. Some degree of standardization would be helpful. Two possibilities may exist:
a) Discontinue type 56 and 57 designs and design one control for either PDP-1 or PDP-4 for either density IBM tape using a high performance drive such as the Potter Mrl2.
b) Persuade MSA to buy the above tape aystem.

SUBJECT Programs for PDP-1
то
H. R. Morse

FROM Gordon Bell
ec: $\quad$ K. Olsen
S. Ols en
H. Anderson
W. Hindle
N. Mazzarese

The above committee would like to begin a review of software for PDP-1 on December 19, 1962 at $9: 15$. The present state of the software, together with past devel opments and a libr ary status repor t should be considered.

DATE December 11, 1962 SUBJECT

TO K. Olsen
H. Anderson
S. Olsen
M. Sandler
B. Gurley
G. O'Dea
R. Mills
R. Best
J. Smith

Our present computer construction program of two PDP-1's and two PDP-4's was formulated to maximize use of our available labor without the need of purchasing additional material. To realize this goal, personnel from Module Assembly were transferred to Computer Wiring to increase the capability of this group. This addition of labor hours plus a substantial quantity of wired sub-assemblies in stock has enabled us to construct at a rate of four computers per month. Even with this increased labor supply, the labor hours required for this schedule are not available from our present wiring group. Therefore, there has been a steady drain on cur inventory of wired sub-assemblies. With our present wiring capabilities and inventory of wired sub-assemblies, I can continue to construct four computers per month until the month of March. At this time, my supply of sub-assemblies will be depleted and our present capabilities will force a decrease in construction rate from four to two and a half computers during March and all subsequent months.

I can continue our present schedule of four computers per month and indeed even increase this number by one of two methods. First, the addition of labor hours by increasing the number of personnel in our present wiring group. To keep our present construction rate, I would need an additional seven girls. These girls would have to come from our module assembly group which has depleted to a great degree through transfers and terminations. Transferring this number of girls at this time would hamper our module production to a great degree. The second method would be to realize additional labor hours through sub-contracting. To keep our present schedule, we would have to expend $\$ 4,600$ per month to sub-contractors. This figure is a labor figure and does not include material costs.

It is my recommendation that if we do decide to keep our present program that we sub-contract the additional labor hours needed. As the speed of our present wiring group increases through experience, we will be able to decrease our sub-contracting. On a long range plan we could continue to add to the wiring group until we no longer have a need for sub-contracting. If our sales
program does not require this quantity of computers, we should reduce our schedule. and not increase our expenditures for unnecessary labor and materials.

It is the intent of this memo to point out that our inhouse capabilities are limited. This in turn does not necessarily limit our output of computers. We have a fine group of subcontractors trained to our requirements. With this available labor market, we can keep or even increase our present program by an appreciable amount. It is not a question of whether we can produce, but a question of how much we wish to expend to produce at this time.

I submit this report for your consideration at the next Works Committee meeting.

SUBJECT
TO Andy

DATE December 11, 1962

FROM
Margare†

Bill Pickett, Purchasing Agent of Bolt, Beranek and Newman called and dictated the following message for your attention:

With reference to our telephone conversation this morning, I wish to order the subject equipment in your quote of December 6, Sequence Break System on a direct BBN purchase order rather than lease. Our purchase order number is 9489 and will be sent out as soon as possible.

Thanks very much for expediting this request.

Bill Pickett, Purchasing Agent Bolt, Beranek and Newman

He mentioned that there was some urgency here'.
Margare†

Harlan,
Before making the above call please call Peter Bonner in reference to this.
Nancy

THE FOLLOWING IS A LIST OF MODULES RETURNED FOR REPAIR DURING THE WEEK OF DECEMBER 3RD.

UNI T

1208

1410 C

SERIAL NO.

237140
236640
23848 D
23776 D
23939 D

90174 K
M.I.T.

NO OUTPUT

FOR RETEST
25208 C

00318216 0031813 C 0038819 C 0038903 C

0037668 C

0037666 C

00376956

00376656
MT 52 - HONEYNELL

0037669 C

00594436
0037670 C

0037655 6

0037667 C
0037662 C

COMPLAINT

FOR RETEST
NONE
DEFECT
MITRE CORP.
-
-
$-$

REPAIR OF RETURNED MODULES (CONT.)
D.E.C.

0027118

0038522

0037728

0044318

0038458

0038155

0037616

0025745

0038470

0038473 B

0078516 C

0077610 C

0024848 A

0056251 A

CUSTOMER
COMPLAINT
gETTING OUTPUT AT PIN T. NO INPUT. BELIEVE TRIGGER CKT. NEEDS ADJUSTING

OUTPUT OF R MARGINAL

SOCKET \$24-47 1/2 VOLT OUTPUTS ON PINS N.T.L.R.

THIS WAS A GROUP OF 37 MODULES TO CHECK FOR CUSTOMER RELATIONS \& MAKE SURE THAT THEY WERE WORKING PROPERLY.

2 OUTPUTS NO GOOD

NO OUTPUT PIN "Y"

NO GOOD
NO OUTPUT PIN "X"

NO OUTPUT PIN "X"

NO OUTPUT PIN "X"

NO OUTPUT PIN "Y"

BAD TRANSISTOR NO OUTPUT

NO OUTPUT PIN "Y"
NO OUTPUT PIN "X"
OVERISSUE. NO TEST DATA RETURNED FOR RETEST

NONE

```
*
```

$E$

$\qquad$
$\square$

## 2N1305 REPLACED

T.I. - ALL 1304 'S SHORTED FROM C TO E. DIODES DOOI OPEN

DOOI - 6 INPUT DIODES WERE OPEN TO BASE OF 2N599'S
(2) 2NJ99IS OPEN B TO E MDI 14 SHORTED E TO $C$

MDII4 MIGH LEAKAGE
SPRAGUE-MDI 14 HIGH LEAKAGE

NONE
NONE
SPRAGUE-MDI 14 HIGH LEAKAGE
SPRAGUE-MDI 14 HIGH LEAKAGE

SPRAGUE-MDII4 HIGH LEAKAGE
SPRAGUE-MDII4 HIGH LEAKAGE

SPRAGUE-MDI 14 HIGH LEAKAGE
SPRAGLCE-MDI 14 HIGH LEAKAGE
NONE

NOME

NONE

NO DEfECTS

REPAIR OF RETURNED MODULES(CONT.)

	SERIAL NO.	CUSTOMER	COMPLAINT	DEFEGT
4113	74530 A	D.E.C.	NONE	NONE
	0027449 A			
	0010581 A			
	0027448 A			
	0057449 A			
	0027551 A			
	0010572 A			
	0010034 A			
	0010040 A			
	0048459 A			
	0010029 A			
4113	0024460 A	M.I.T.	NO OUTPUT PIN "L"	SPRAGUE-MDI 14 OPEN B TO E
4203	0035963	PDP-4	Q1 OPEN $B$ TO E	SPRACUT-MDI 14 OPEN E TO E
4203	0029730 D	POP-4	NONE GIVEN	NONE
4213	0023526 E	$A D X-6$	NO OUTPUT ON W-Z PINS	NONE
4213	0046167	MAG TAPE 52	OUTPUT H\& J DIFFICULT TO CLEAR	SPRAGUE-MDI14 SHORTED C TO E
4213	94871 E	1.T.T..ADX-8	NO OUTPUT	2NI 754 OPEN E TO B. SHORTED   C TO B. DOOI OPEN, DOOI SHORTED
4215	690268	PDP 4	DEFEGTIVE OUTPUT	Q1, Q2, Q3, Q4, Q5, Q60. Q70, QA OPEN BASE TO EMITTER. DOOI 'S ALL OPEN
4215	89791 B	M.I.T.	NO OUTPUT FLIP FLOP A	PHILCO 1754 1J4 6220 OPEN 8 TO E (2)DOOI 'S OPEN
4218	0069609	PDP-4	NO OUTPUT	(8)DOOI IS OPEN (2)SPRAGUE 2N1499A SHORTED E TO G   (6)SPRAGUE 2NI499A OPEN B TO E
201	29071 M	UNRNNOWN	NONE GIVEN	IND. LIGHT FAILED MARGIN TEST GE. 4 JX IC74I SHORTED E TO C
201	28962 M	UREKHOWN	NONE GIVEN	NONE
1539	0007841 C	Unenown	NONE GIVEM	NONE
1539	0007834 C	UNKNOWN	NONE GIVEN	NONE
1685	0030833 B	UNKNOWN	NORE GIVEN	NONE
1685	0030831 B	UNKANOWN	NONE GIVEN	NONE
1685	0011765	UNKNOWN	NCNE GIVEN	NONE

REPAIR OF RETURNED MODULES(CONT.

UNIT	SERIAL	NO.	CUSTOMER	COMPLAINT	DEFECT
1685	0011764	B	UNKNOWN	NONE GIVEN	NONE
1685	0031832	B	UNKNOWN	NONE GIVEN	NONE
1685	002063	B	UNKNOWN	NONE GIVEN	NONE
1685	04663	B	UNKNOWN	NONE GIVEN	NONE
1685	0031835	B	UNENOWN	NONE GIVEN	NONE
1685	0031840	B	UNKNOON	MONE GI VEN	NONE
1685	0030361	B	UNKNOWN	NONE GIVEN	NONE
1685	0009338	B	ENKNOOWV	NO TAGS	NONE
1685	0011763	B	LIEKNOWIN	NO TAGS	NONE
1669	0031805	C	UNHENOWN	NONE GIVEN	NONE
	0034374	C			- ,
	0038816	C			
	0031804	C			
1973	91917	C	UNKNOWN	I INOPERATIVE	(4)D662 DIODES WERE ADDED TO CKT.   SPRAGUE ZNZO99 SHORTED E TO C   SPRAGUE 2NZO99 OPEN 8 TO E   2N2O99 OPEN B TO E, SHORTED B TO C MD94 SHORTED E TO C   MD 94 OPEN B TO C   DIODES 003 OPEN
4209	0019650	H	UNKNOWN	NONE GIVEN	OUTPUT OF FLIP-FLOP B BAD T.I. 2NI 305 HIGH LEAKAGE
4209	0018404	H	UNKNOWN	NONE GIVEN	NONE
	0028847				
	0030696				
	0015613	H			
	0015500	H			
	0064803	$J$			
	0064790	J			
	0064793				

OUT OF 97 MODULES RETURNED BY CUSTOMER, 40 HAD NO DISCERNIBLE DEFECTS
OUT OF 30 MODULES UNKNOWN, 27 HAD NO DISCERNIBLE DEFECTS.

## Nu?

DATE December 10, 1962

SUBJECT
TO
K. Olsen
H. Anderson
S. Olsen
B. Gurley
N. Mazzarese
E. Haywood

The first PDP-1 for the month of December, PDP-1-36 (9000-5864), was delivered to Checkout this morning.

CURRENT ENGINEERING DEVELOPMENT AND FIELD SERVICE NUMBERS
FROM: Richard L. Best
DATE: December 7, 1962

EN 1000
EN 1010
EN 1011
EN 1012
EN 1013
EN 1014
EN 1015
EN 1016
EN 1017
EN 1018
EN 1019
EN 1020
EN 1021
EN 1022
EN 1023
EN 1024
EN 1025
EN 1026
EN 1027
EN 1029
EN 1030
EN 1031
EN 1032
EN 1033
EN 1034
EN 1036
EN 1037
EN 1038
EN 1039
EN 1040
EN 1041
EN 1042
EN 1043
EN 1044
EN 1045
EN 1046
EN 1048
EN 1049
EN 1050
EN 1051
EN 1052
EN 1053

General Engineering
5 MC System Modules 500 KC System Modules
Non-Compatible Low Speed B.B.
Current Drivers (vacuum tube)
Digital-to-Analog Converter
PDP-1 Typewriter
Core Memory Development
Signal Converters
Memory Tester Development
Modules Sales
PDP-1 Development
Core Handler
Power Supplies
Mounting Panels
PDP-1 Paper Tape Reader
Paper Tape Punch
Magnetic Tape Equipment
Large Tube Display
10 MC System Modules
Educational Building Blocks
Computer Development
Utility Programming, PDP-1
Sales Programming, PDP-l
PDP-1 Sales
Light Pen Development
Core Tester and Memory Tester Sales
Special System Sales
Solid State Current Drivers
Drum Circuit Development
Drum system Development
Current Driver Power Supply 766
VHF Building Blocks
Analog-to-Digital Converter
Digital Average Response Computer
Punched Card Equipment for PDP-1
Test Equipment Headquarters (RH)
Engineering stockroom
Data Phone
Classroom Modules
Memory Stack Assembly
Computer Cabinet

EN 1055
EN 1057
EN 1058
EN 1062
EN 1064
EN 1067
EN 1068
EN 1069
EN 1072
EN 1073
EN 1074
EN 1075
EN 1076
EN 1077
EN 1078
EN 1086
EN 1087
EN 1088
EN 1089
EN 1090
EN 1091
EN 1092
EN 1093
EN 1094
EN 1095
EN 1096
EN 1097
EN 1098
EN 1099
EN 1100
*EN 1115
EN 1116
EN 1122
EN 1123
EN 1127
EN 1128
EN 1129
EN 1130
EN 1131
EN 1132
EN 1133
EN 1134
EN 1135

PDP-l Production Test Equipment
Core Tester Development
Anelex Development
PDP-4-1 Operation
Display 3l Development
Information International (Ed Fredkin)
Burroughs Card Reader
PDP-l Computer Administration
Standards
Quality Control
Memory Tester Field Service
Core Tester Field Service
Memory Exerciser Field Service
Misc. Special System Field Service
ITT Prototype Rework
Telex Printer (BS)
Relay and Switch Investigation
Module Packaging for Shipment
Line Unit Tester (GB)
4203 Development
4204 Development
lo MC Laboratory Modules
5 MC Laboratory Modules
500 KC Laboratory Modules
PDP-4 Sales
PDP-4 Programming
Modules Construction Development
Module Test Development
Field Service, General
Power Controls
Repairs to goods Damaged in Shipment
Memory Tester Field Modification
3 KC Power System Development
Core Tester 2ll4 Development
Current Calibrator Development
PDP-l Checkout Training
Character Generator Development
l52l Development
Anelex Prototype Construction
ADX Systems Administration
PDP-4 Systems Administration
PDP-4 Flexowriter Prototype
Display 30-D Prototype (PDP-4)
Mal

> Page -3-

EN 1136
EN 1137
EN 1138
EN 1139
EN 1141
EN 1142
EN 1143
EN 1144
EN 1145
EN 1146
EN 1147
EN 1148
*EN 1149
*EN 1150
*EN 1151
*EN 1152
*EN 1153
*EN 1154
*EN 1155
*EN 1156
*EN 1157
*EN 1158
*EN 1159
*EN 1160

Linc Tape Unit
Type 56 Tape Control Development
Prototype A-D for PDP-4-1
Serial Drum System Development
Fortran
Serial Drum Circuit Development
Magnetostrictive Delay Line Memory Development
Quality Control: Test Equipment Labor, Materials
Quality Control: Model Test
Quality Control: Module Repair-field failure
Quality Control: Module Repair-salvage
Teletype Line Unit Modules
Eastern Joint Computer Conference
Glass Delay Line Memory Development
Coaxial Tape Transport Development
Digital Symbol Generator
PDP-4 Paper Tape Reader
PDP-4 Typewriter
Houston X-Y Plotter
Curve Drawing Display
PDP-4 Automatic Module Tester
Production Engineering
PDP-4 Multiply and Divide Prototype
PDP-4 Installation Kit

Supercedes Memo Dated October 26, 1962

[^0]DATE December 7, 1962
SUBJECT Reinspection Trip to $A D X-5$, ITMT, N. J.
TO November 28, 1962

Bob Hughes
FROM
Dave Adams Bob Grey

We arrived at John Hart's office (he is ITT's purchasing agent) where we waited a few minutes until Don Nell, Field Maintenance Mgr., took us out to Gil Slaw, the man in charge of the $A D K-5$ system.

Gil Slaw took us to the machine and pointed out the panels and cabinets that they had added to the computer. We did not officially inspect these areas, but just out of curiosity, a quick look at the wiring on the panels added to the main frame showed poor soldering and wire dress; a large number of resistors soldered together on one end and not insulated; very poor taper pin crimp on some wires (the pins were not crimped on the wire insulation); wires soldered together and not to a pin, and they were not insulated.

As far as our own work is concerned, attached is an inspection form showing what had to be done. They asked us to leave a copy of the inspection report with them which we left with Gil Slaw. Some of this work may have been missed in inspection, and some due to tighter inspection criteria now than when this machine was first inspected, but most of this touch-up was to the modifications done by I.T.T., where wires were added here and there to tie in their equipment.

The general condition of the computer and mag. tape units was pretty good, although they were covered with dust. In some cases we had to blow the dust off the bottom two panels just to see the solder joints. The room in which the ADX:5 is kept, in general, was quite dusty, and we noted that some of the floor fans in the cabinets had their filters removed.
I.T.T. made some modifications to our computer that might be of interest. They put a sheet of plexiglass over all the power supply large capacitors, some transformer terminal strips and power controls. They also cut holes in the air baffled plates, in a few of the bays in the computer, and mago tape cabinets, and put in standard A.C. power outlets so they can plug a scope, or anything else right into the machine instead of using long extension cords.

Reinspection trip to I.T.T.
Bob Hughes/Dave Adams, Bob Grey
Page 2

We finished working on the machine around 3:30 P.M. Don Nell wanted to see us after we were through, so Gil Slaw took us to his office. Don Nell asked us if we had looked at the 1976 and 78 resistor boards to check for cold solder joints. We told him we didn't know anything about them so he took us back out to the computer and pulled out several boards before he found one that he considered very poor. It did not have a sufficient amount of solder on the lug and wire, but it had enough so that neither of us could break the wire loose. He also complained about a hairline crack around the base of the eyelet on the copper side of the board between the soldered eyelet and the board. He could not find one to show us.

He then went over the inspection report and seemed horrified to think that we had found some wires that were not pushed all the way into a pin or that some wires were just tacked with solder. He souldn't picture that some of this might have happened while they were putting in their modifications, but when he came to a list that Gil Slaw had added to their report on things that had to te touched up on their own wiring, he quickly dropped the subject.

He then went on to question us on ourcown inspection procedures on all computers here at the plant. We wanted to know how many of his machines had only received one inspection. We could not answer this. He wanted to know if some were never inspected. He seemed shocked to find that the same person did both intermediate and inal inspection. He also wanted to know if we always got this many rejects on final inspection. He ended by saying that he tlought he would have to come up here to inspect $A D X-8$ before we slipped it down to him.
During this time, Gil Slaw kept telling Mr. Nell that some of the thin.js we found bad on $A D X-5$ were their own fault, and that we are tightening up on our inspection procedure all the time, but Mr. Nell could not understand that anything like this could hap'en in the first place.
cc: Ken Olsen
Harlan Anderson
Stan 01sen Maynard Sandler Dick Best Nick Mazzarese Jack Smith Bob Maxcy Jim Cudmore Klaus Doering Q. C. Manual

CUSTOMER: $\mid T T$
UNIT NAME: ADX-5

INTERMEDIATE
ELECTR. ASSEMBLY INSPECTION AT IT

EN NO.:
SHEET ! !... OF ...?...
DATE: $11-23-62$

FRONT (WIRING SIDE.)


DF-22-14

CUSTOMER: 17 T UNIT NAME: HD $D-5$

INSPECTED BY: DAUE HDAMS
BOB GREY

INTERMEDIATE

ELECTR. ASSEMBLY INSPECTION

```
EN NO.: SHEET ..2 OF . 3 .
DATE: \(11-23-62\)
```

FRONT (WIRING SIDE.)



BACK (POWER SUPPLY SIDE AND OTHER)



CUSTOMER: ITT UNIT NAME: ADX-5

INSPECTED BY: DAUE ADAMS BOB GREY

EN NO.:
SHEET
DATE: $11-23-62$



SUBJECTQuality Audit
TO Bob Hughes

DATE December 7, 1962

Klaus Doering Jim Cudmore

The first Finishea Goods Stockroom Quality Audit took place from October 31 to November 3. AlI modules, power supplies, mounting panels and accessories were inspected. Several problem areas were uncovered and the following is a summary.

Approximately 5,000 modules ware visually inspected. A total of $7 \%$ of the system modules were found to have minor defects. Two hundred of these units were rejected because the amphenol plug was tipped. Ten modules were rejected as a result of excessive flux, solder on the amphenol plug or a missing DEC label. One hundred units were accompanied by test data sheets on which were missing either the date, the tester's number, the inspector ${ }^{0} \mathrm{~s}$ number, or any combination of these. Forty modules had either the wrong test data sheets or no test data sheet at all. Out of 400 laboratory modules inspected, 73 were rejected because the power plugs were drilled out of tolerance. This inspection was done with a special jig made by the machine shop. 35 lab. modules were rejected because the test data sheets werc incomplete. 11 of 200 mounting panels were packed in boxes with incorrect markings. These units were 1909's but had 1901 stamped on the box and on the inspection sheets. One power supply out of the fifty inspected had no serial number. All these defective units were repaired, reinspected and returned to finished goods.

This audit showed definite weak points in the inspection procedures. Most of these weak points may be attributed to a lack of formalized procedures.

The first week of finished goods sampling inspection was completed on November 19. Three units of each type are removed from finished goods, electrically tested and reinspected. Approximately 100 units were sampled during this time. One unit, a 1982 , was found to have an electrical defect. The output transistor was open on serial ${ }^{*} 0056243-$ B. Four units were unacceptable because of poor cleaning and one unit had no DEC label. In all cases sampling inspection showed good correlation with the prior test results.
cc: Ken Olsen
Harlan Anderson Stan Olsen

Maynard Sandler
Dick Best
Q. C. Manual

## い

## DRAFT

DATE
December 6. 1962

FROM Henxy Crouse

PURPOSE: TO establish an operating policy for the Blanket order Procuxement System.
OBJECTIVE: The Blanket Order approach to matexial procurement insures:

1. Lowest possible material cost.
2. Availability of material for a specified time.
3. Shortest possible lead time.
4. Reduction of inventory levels by sharing actual materials with vendor.
5. Effective control over large purchases.

APPLICATION OF SYSTEM: All materials with an expected life of at least six months and adequate volume/to gain either availability or cost advantages shall be examined in light of applying the Blanket Order System. Only those materials with a proven record of acceptance, specifically its quality, shall warrant consideram tion.
ORIRATION: The Inventory Control Section aftex usage analysis establishes the quantity of material to be oxdered. The Purchasing Department then negotiates with a vendor stipulating unusual texms and conditions so that they are definite to the point of making any misunderstanding impossible. Since only weftten provisions are binding to both parties, a blanket order will have an acknowledgement copy signed by the vendor and any revisions of the order signed by the vendor.

The Blanket Purchase Order will states

1. Price of material and any provisions applying to pricing. such as:
A. Price based on market price at date of shipment with reference to method of determining the "Market Price". A maximum price level shall be determined and noted on the face of the purchase order.
B. Sliding scale agreement with a fixed maximum price so that decreasing price structure may be applied.
C. If seller wished to retain a provision that he may increase prices, a thirty day or more period of notification to Digital Equipment Corporation prior to the effective increase for acceptance or termination by Digital Equipment Corporation. This clause should read。 "Digital Equipment Corporation shall have the right to cancel this contract at any time in the event that such price revisions are not satisfactory to Digital Equipment Corporation".
D. Escalator clauses for a price increase based on specific contingencies shall have provision for price decrease if the same or additional contingencies vary differently.
2. Quantity of material ordered with specific notes to acceptable under or overshipments against individual releases. Maximum limits shall be established and noted on the face of the order. Excessive shipments against
releases shall be returned to vendor. The total quantity of the order shall not be exceded unless specifically agreed upon causing a revision of the order. Matexial shall not be accepted from the vendor unless a definite release is issued.
3. The time period the oxder will be effective -o "Whis order will be completed over an approximate twelve month period, beginning "。
4. Description of material shall be clear to the point no misunderstanding is possible. Specific instructions such as Vendor Specifications. Part Number, Prints, Test Reports, Standards. Certifications and Digital Equipment Corporation's Specifications shall accompany the Blanket Order.

PROTECTIVE CLAUSES:
A. Terminktion: The following clause will be included: "In the event only a partial of this order is filled due to the termination at the convenience of Digital Equipment Corporation, the price will revert to the increment price of that quantity received per your quotation dated $\qquad$ "。 The exact price schedule shall be included on the Blanket Order.
B. The vendor will give notice of material availability change thirty days prior to the effective date of change, if possible.
C. Digital Equipment Corporation shall have cancellation privileges for nonperformance except where nonperformance is due to acts beyond the vendors control. ie. Acts of God. etc.
6. Guarantees shall be specifically stated if not covered by general terms and conditions.
7. Cancellation due to any cause shall be discussed with the vendor. Appropriate steps to texminate the contract are:
A. Notification to vendor of pending termination.
B. Discussion of liabilities.
C. Agreement to conditions of termination.
D. Termination in writing acknowledged by vendor.

MECHANICS OF THE SYSTEM: A blanket order is issued to the vendor and individual releases are issued against the order. The releases shall be numbered so that each shipment can be identified. The Inventory Control Section initiates a requisition and a release is issued to the vendor.

FORMAT: A standard Digital Equipment Corporation purchase order form \#DF178 revised shall be used, unless the total dollar value or unique characteristics of the material warrant a "contract"。 A "contract" shall contain all the general terms and conditions of a standard purchase order "the special negotiated terms and conditions and concur by application with the policy established herein.

Henry Crouse

DATE December 6, 1962
SUBJECT Boston Edison Quote for PDP-4 by Foxboro
TO
H. Anderson
FROM
R. Mills
G. Bell
A. Hall III

I had a call from Bob Smith from Foxboro telling us that he was making a quote to Boston Edison and that they have evidenced an interest in whether or not DEC was a good supplier for Foxboro. He stated that he had a list of our installations and wanted to know if we had made any more installations and I told him that we had recently made one at Massachusetts General Hospital.
\# \# \#

STATUS OF PDP-4 - MAJOR COMPONENTS


TO:
K. Olsen
H. Anderson
G. O'Dea
D. Mills

FROM: J. Smith
R. Olsen
H. Arderson
S. Olsen
M. Sardier
G. $0^{\circ}$ Dea
R. Mills
N. Mas\%areae
W. Hindle
E. Haswood
R. Reed
J. Rutschman
R. Beckman
B. Pxichard
A. Hall
J. Myers
G. Bell

FROM: J. Smith
DATE: December 4. 1962

The 4606 Engineering Change has been completed on PDPOA and all wiring diagrams have been released. Thia Engineering hold on wiring diagrams for PDR-4 Central Processors was in effect for nine working days. In effect, the delay causes the second system for November to be completed in Dacember. Three PDP-4 systams will be completed in Dacember. During the month of January and all subsequent months, two syateas per month will be completed. Attached you will find a revised schedule for PDP-4 systems. PDP-1 schedule remaina unchanged. Exact completion dates are listed below.

$P D P-4-7$	$12 / 14 / 62$
$P D P-4-8$	$12 / 18 / 62$
$P D P-4-9$	$12 / 31 / 62$
$P D P-4-10$	$1 / 11 / 63$
$P D P-4-11$	$1 / 25 / 63$
$P D P-1-36$	$12 / 7 / 62$
$P D P-1-37$	$12 / 21 / 62$
$P D P=1-38$	$1 / 4 / 63$
$P D P-1-39$	$1 / 25 / 63$



DATE December 4, 1962
SUBJECT Visif with J. N. Ackley, ITT, Paramus - Wednesdey, November 21, 1962
TO Nick Mazzarese FROM Gondon Bell

I was very Impressed with J. Rckloy's development focillites in Paromus. The rate and direction of their growth is algalficant, and extropoleting, the ADX 7300 II might be into production within the next yeer. Also their other devices ahould be openative teo.

## ADX Circult Line

Cubte modules are used, and a group is connected to a large mother boord. The board power consumption might be one quarter that of DEC logic. The modules run a $\pm 12.5$ supplias end are $.5-1 \mathrm{~m} . \mathrm{c}$. The module nests have three front panel switches on them for marginal checking, and come in stondard 19 and 30 inch widths. The power supplies ore mode for computers and aupply up to 25 amps suing SCR's to avoid frequency dependence. Some of their circuils use a tronge 4 forward biased diode string to generote bles voltoges.

## Memory

J. Ackley mentioned they cen purchase a 4K memory syitem for $\$ 10,000$ from severol manufocfurers, and are concernad abent or arices now.

## Tope Units

They are uting the Potter 906 to devalop a DEC compatible unlt. Thairs will hove 556 and 800 bpi dansily however. Thelr models are now running 556 bpi 75 ipe without skew correction:

## ADX 7300 II

I wetched their prototype computer run checkerboard, and do some printing. It's too eorly to say how ti will perform, but it's roughly one half the physicel size of a PDP-1 (very dense though in a $30^{\circ}$ reck), but ineludes the order cede of the 7300.

They've edded several commands to the order code. These halp process characters and tebles and there is a compare instruction. Ackley likened it to the 704-709 change, necesaltated through progrem ond peripheral equipanent competiblitty. They hove a focility buili in to do lomp checking.

Their stendard $V$ O consists of a Teletype model 28 ASR which they hove trouble getting to fall. Acklay was quite alated whan I mentioned the Taletype 100 cher/sec tope reader thet read chad fess tepe, since the Teletype 28 is slow.

## Drum Syatem

Thoy hove a 1.8 magalit drum on a machlae now which is to shipped shortly. It is a Bryant drum, and works similior to the one for the PDP-4.

## Line Units

Heve bean operoting for 9 months or se.

Gerclon Ball

CC:
Kenneth M. Olsen
Harlan E. Anderson
Richard L. Bent


## SUBJECT Itel Computer Installation

TO Ken Olsen FROM Bob Beckman

As you requested, I have looked into the situation at Itek. Their main complaints at this time concern unreliable computer operation over the last few weeks, lack of maintenance programs and other maintenance information, and incorrect drawings and cable schedules.

In regard to computer reliability, I want to re-emphasize the fact that since August 1 Itek has been maintaining the computer on their own. They claim that they have actually been doing most of their own maintenance work since january, but the fact remains that up until August 1 we were averaging at least one call per week at Itek. Since the first of August we ve had one or two phone calls asking for advice on trouble shooting and one frantic call at fivethirty in the evening, which was cancelled fifteen minutes later because they managed to get hold of their own technician. On August 24 two of my people went over to replace their old style memory power supply with a new 735 power supply. This is a change that we initiated and did at no charge. After changing the power supplies and readjusting memory currents, the machine did not operate properly. My people stayed until about ten o'clock that night getting back on the air, and the trouble was in no way connected with the power supply change they had made. In fact, one of the Itek people mentioned that they had had this same trouble off and on for some time. To me it's rather significant that they were not complaining about "unreliable operation" until three weeks after they informed us that they would maintain the machine themselves.

The next complaint about not having materials from DEC has been a cronic complaint from Itek. No matter how many sets of prints and sets of program tapes and write-ups you send these people they're continually screaming for more and saying that they haven't got anything. I told Norm Taylor that I myself had prepared a set of tapes for John Bala when he came to the course, and that I knew of other tapes and write-ups that had been sent to Earl pughe and other people in the company. Earl Pughe and John Bala said they had never received these items and yet less than twenty minutes later I found the very set of tapes that I had prepared for John Bala in
a file drawer in Earl Pughe's office. By the time we got through looking around we found at least two complete sets of every maintenance tape and write-up that has ever been available. I've attached a copy of a letter that I ran across in our files that bears on this particular subject. I'm beginning to think that I should ask for a signed receipt for every plece of paper I give Earl pughe.

One of Earl's big complaints is that our prints are inaccurate and I must admit that he's right. However, the situation is not as bad as he makes it out to be, and in some cases, it's really his own fault. For instance, while Jack and I were there the other day we started looking for something in the punch control logic. Earl turned to a set of prints on a table in the computer room, obviousiy his trouble shooting working prints. He turned to the print that covers the punch logic and it was immediately obvious that the print did not match what was physically present in the machine. He threw up his hands and said something about "how can you take care of a machine if you don't even have prints for it'. (It seems that his standard trouble shooting practice on the machine is to work until he finds something that doesn't match the print, then he throws up his hands and walks out.) I pointed out that the print he had was for the Tally punch logic and asked him if he didn't have another newer one around. He sent John Bala out and John came back in a moment with a file folder with seven or eight copies of the punch logic prints. One of these in the file folder was a copy of the new logic as it exists in his machine and with a date of April, 1962 compared to the November, 1960 date on the print he was using as a working copy.

Mhis is not to say that we're entirely blameless in this particular area. For one thing, the two prints of the punch logic had exactly the same print number even though they were not identical logic. I have since checked with Roger Melanson and this has been corrected. I am going through the whole 11 st of Itek prints and, if I can get some cooperation instead of Just belly-aching from Itek I think we can get the print aituation straightened out to our mutual benefit.

As far as the imediate situation 18 concerned, I am doing everything $I$ can to get them aquared away. Even though they had all of the routines and write-ups, I collected another set of those useful for maintenance purposes and personally dellvered them to form raylor, along with a copy of the maintenance manual. I also made arrangements
for Jack Shields and, John Bala to get together when John returns, from vacation next week. Jack will go over all of the maintenance programs and help John set up margin check procedures and records. Most of this is covered in the PDP-1 Malntenance Manual, but since Itek's machine is physically different than the newer machines they' 11 have to do some translation of logic locations in order to match the margin check set-up in the book to the Itek computer.

In spite of the way they treat thein machine I think it ${ }^{\prime} s$ actually in fairly good shape right now. I don't think it will stay that way long though, with the kind of maintenance it's getting. John Bala is a good kid, but he needs a lot more experience. Earl Pughe seems to be in charge of maintaining the machine, and I have no confidence in him at all. I know very little about his technical background and qualifications, but from what $I$ saw of him the other day he doesn't strike me as having the patience and comon sense required for this kind of work. He always seems to be more interested in finding a reason why he can't fix the computer than in actually fixing it. It is interesting to note that the prints that are 80 inaccurate that he can't work on the machine are exactly the same prints that our own people use when they go over there. And after that bit about the tapes and write-ups I wouldn't exactly want to call him a 11 ar . but I get the impression that he has only the barest noding aquaintance with the truth.

Again I want to say that we're not completely blameless here. Many of the things that Norm faylor thinks we should have are things that I agree with completely. Some of them are being corrected and others need to be worked on. The new maintenance manual will answer many of the problems. The matter of poor write-ups for maintenance routines is gradually being corrected with our new Maindec series. and with a little time and help from Itek we should be able to correct the existing discrepancies in the documentation of their computer. I will continue to do everything I can to help them keep operating, but I'd feel a little easier in my own mind if they were letting us maintain it 80 I would really know what was being done to the machine.

Mr. Earle W. Pughe
Information Technology Laboratories
10 Maguire Road
Lexington, Massachusetts
Dear Mr. Pughe:
Enclosed are copies of test tapes that our tedhnicians use.
There is no writeup for the PRA Test, 80 I en including instructions for its use in case yon are unfamiliar with the program. With these tapes plus the ones you received Wednesday. May 2, you should have the complete set of maintenance programs.
I am looking forward to the addition of your test programs to our library. I am sure they wily be of great benefit to us.
If you have questions concerning theseprograms or any others in the library, I would oe post happy to hear from you.

Sincerely.
(Mrs.) Beverly A. Clohset Computer sales programmer

## BAC/jr

Enclosures

A list of random numbers is included in the program. After loading the program and pressing "start" these numbers are punched on tape. Upon completion of the punching cycle the new tape is read in by pressing "continue". The bits on the punched tape are compared against the bits in memory with a typeout occurring if there are discrepancies. An example of the typeout format would be:

> p $1-1$ (picked up bit 1 once)
> $p 2-3$ (picked up bit 2 three times)
> d $1-1$ (aropped bit 1 once)
> i $3-4$ (aropped bit 3 four times)

TO: R. Olsen
H. Anderson
E. Barwood

FROM: J. Smith
S. Olsen
M. Sandler
R. Reed
J. Rutschman

DATE: December 3. 1962
G. $0^{\circ}$ Dea
R. Beckman
R. Mills
B. Prichard
N. Mazanese
A. Hall
w. Hindle
J. Ryyers
G. Bell

The 4606 Ingineexing Change has been completed on PDPa4 and all wiring diagrams have been released. This Engineering hold on wixing diagrams for PDP-4 Central Processors was in effect for nine working days. In effect, the delay causes the second syster for November to be completed in December. Three PDPn 4 systems will be completed in December. During the month of January and all subsequent months, two syetems per month will be completed. Attached you will find a revised schedule for PDP-4 systems. PDP-1 schedule remains unchanged. Exact completion dates are listed below.

$P D P=4-7$	$12 / 1.4 / 62$
$P D P=4-8$	$12 / 18 / 62$
$P D P=4-9$	$1 / 11 / 63$
$P D P=4-10$	$1 / 25 / 63$
$P D P=1-36$	$12 / 7 / 62$
$P D P=1-37$	$12 / 21 / 62$
$P D P=1-38$	$1 / 4 / 63$
$P D P=1-39$	$1 / 25 / 63$



[^1]8000 sex mes mumioers is popm 4

SUBJECT: REPAIR OF RETURNED MODULES
Harlan Anderson

DATE: DECEMBER 3, 1962
FROM: JIM CUDMORE

THE FOLLOWING IS A LIST OF MODULES RETURNED FOR REPAIR DURING THE WEEK OF NOVEMBER 26TH.

UNIT	SERIAL NO.	CUSTOMER	COMPLAINT	DEFECT
1310	0039522 F	A.E.C.	FAULTY OUTPUT	MONE
1310	0059342 F	1.T.T.-ADX-3	"H" OUTPUT HAS TwO PULSES	NONE
1976	0040178 C	ADX-6	382 BURNT RES.	R7 REPLACED
1978	0058849 C	I.T.T.	3C9 LOW MARGINS ON PINS L.K.J.	NONE
4113	0048462 A	ADX-8	3H1 Q6 OPEN	SPPRAGUE MDII4 OPEN B. TO EM.
4113	0048461 A	1.T.T.	OUTPUT PIN "T" BAD TRANS. OPEN	SPRAGUE MDII4 OPEN BASE TO C. AND E.
4126	0044704 D	I.T.T.	NO OUTPUT ON PIN "L"	NO DEFECTS BUT CIRCUIT WAS UPDATED
$126$	0045179 D	MAG TAPE 52	no output at PIN "H"	SPRAGUE MDIIS OPEN B. TO C.


1104	03770 D	UNKNOWN	NONE GIVEN	Q1 IN UPSIDE DOWN
1104	0008:78 D	UNKNOWN	NONE GIVEN	NONE
	0010731 D			
	0037647 D			
	0015605 D			
	0037606 D			
	0014444 D			
	0010717 D			
	0010735 D			
	0008167 D			
	0014437			
	00144360			
	00110310			
	0037848			
	0014439 D			
	00144430			
	0037607 D			
	01364 D			
	0037628 D			
	03775			
	0037812 D			
	0014445 D			
	0014433 D			
	03771 D			
	0000172 D			

REPAIR OF RETUPAED MODULES (CONT.)

W1T	SERIAL NO.	Clsmant	Complaint	DEFECT
P104	00144480	Lemenoim	NONE GIVEN	NOME
	0011033 D			
	00144350			
	04836 D			
	COI4442			
	Col44is 0			
	00144510			
	0014488 0			
	coi4nat 0			
	0010719			
	0014447			
	0010737 D			
	0011032 D			
	00144990			
	00384190			
4680	$0007286 \text { F }$	curnovir	NOME GIVEN	Nowe
	$0007432 \text { F }$			
	0007431 F			
	0007881			
	001851 F			
	0007426			
	0008416 F			
	0008143 F			
	0007422 F			
	0007287 F			
	0007281 F			
	0007429 F			
	0007284 F			
	0007419 F			
	0007420 F			

OUT OF a MOOLES RETUNOED BY CUSTOMERS, 3 HAD NO DISCERNIBLE DEFECTS.
OUT OF 55 MODULES UNWNONT, 54 HAD NO DISCERNIBLE DEFECTS.

DATE Becendom: I. 1962


TOTR. Andermon
R. Beckman
G. 3edz
E. Best
A. 32 umbrchas
P. Bormer
E. Crowse
D. Chin
B. Donas

笽. Taxnlaam
E. Comid
B. Gux Ley Ard DBe Sales ofitices (2 copies)

Tha attecind 45 st of agaze pasts and sephacemset itcum has been upditce. Blaws cinctoy all previous copies in your pouncespion.

Ex

DESCRIPTION
PRICE
Connectors and Cables

1	$115-115 \mathrm{~S}$
1	$115-114 \mathrm{P}$
1	54 B 24479
1	54 B 24495
1	$115-114 \mathrm{P}$
1	54 B 24479
1	$113-022-21$
1	$143-022-04$
1	AN-3057-16
1	50 Conductor
1	ft.
1	20 Conductor
25	ft.
1	50 Conductor
1	$\# 2425$
1	$100-F-2041$

## Fans and Filters

1	53E168 Type CFG
1	Rotron Venturi
1	$10^{\prime \prime} \times 10^{\prime \prime} \times 2$
1 pint	418

## Indicators

1 101-5030-975
1 130-34IND-1
1 100-AIND-2

In-Out Equipment

## Punch

1

> Teletype 131-30BPRE-11

50 Pin Amphenol (Female) 22.00
50 Pin Amphenol (Male) 32.00
50 Pin Cinch (Male) 22.00
50 Pin Cinch (Female) 22.00
Assembled on Cable End 78.00
Assembled on Cable End 68.00
Module Connector Plug 3.33
Module Receptacle Plug 1.40
50 Pin Connector Shield. 1.85
Typewriter Cable $\quad 1.75$
Ribbon Cable $.28 / \mathrm{ft}$.
Cable $4.00 / \mathrm{ft}$ 。
Cable with 2 male connectors 256.00
Cambion Banana Jack . 30
Unlettered Terminal Block 2.15
Lettered Terminal Block 3.20

Rotron Fan with \#2R Blade 26.60
Muffin Fan with Mounting Clips 20.00
EZ Kleen Filter 2.50
Super Filter Coat 3.00

Indicator Light 2.35
2 F Indicator Light Circuit Board 23.70
$\begin{array}{lll}18 \text { Bit Indicator Light Circuit } \\ \text { Board } & 33.00\end{array}$

Paper Tape Punch
$12 / 1 / 62$
R. F。Maxcy

In-Out Equipment (continued)

QUANTITY	PART NUMBER	DESCRIPTION	PRICE
1	146177	Link and Bushings	6.10
1	124269	Link	1.90
1	142847	Link Shaft	. 13
1	142896	Feed Wheel Shaft	1.95
1	142888	Feed Wheel	17.95
1	143048	Spring	. $12 / \mathrm{ea}$.
1	82726	Spring	. 20
1	143077	Spring	. 11
1	142876	Spring	. 30
1	119652	Retaining Ring	.01/ea.
1	119648	Retaining Ring	.01/ea.
1	143044	Retaining Ring	. 03
1	142829	Pin	. 80
1	142828	Feed Panel	5.35
1	124311	Punch Feed Pin	1.95
1	124332	Punch Code Pin	1.80
1	124257	Arm Toggle	2.10
1	124284	Arm Toggle	2.85
1	124244	Washer Felt	.03/ea.
1	2191	Lock Washer	. 01
1	124320	Armature	1.05
1	142866	Magnet Assembly 20 volt	5.80
1	143007	Magnetic Pickup	18.35
1	142917	Tape Cutter	. 55
1	143057	Guide \& Die Set Plates	29.95
1	142660	Guide Plate	6.60
1	142987	Tape Guide	1.80
1	142910	Stud Detent Support	1.20
1	142865	2 1/32 Hexscrew	. 20
1	151633	Ball Bearing	1.55
$\begin{array}{r} 1 \\ 12 / 1 / 62 \end{array}$	142807	Bearing	5.50

In-Out Equipment (continued)
Punch

QUANTITY

Reader

1
1

1
1
1

1
1

1

1
1
1

1
1
1

1
1
1

1

1
1
1
1
1 pair $100-Y-3375$

Digitronics 3000
100-Y-3422
131-74-3423
PGF 1106
PSE 1101A
PGE-A-BC 1403
BC 417
BC 412
BC 413
CC 1367
A 1073-1
Al072-2
142866
3500
B-C462
10-6411
A-A2300
B-127
A-B73-1
B-C890
6E4JA411BClBD1
6E4JA411AC1AD1

## DESCRIPTION

Bearing 4.75

Ball Bearing 1.80

Belt

Reader
Reader Handle (ADX)
3,300.00

Brushed Aluminum Reader Trim 10.85
Card
62.25

Card
70.00

SCM Card 39.20
SSA Card 26.32
FRA Card 26.18
SDA Card 38.22
SPA Card 53.20
Bearing 3.00
Bearing 3.75
Solenoid Magnet 7.25
Drive Belt 3.00
Read Head Assembly 460.00
Osram Lamp 1.00
Lens $\quad 7.35$
Capston 26.30
Clutch - Solenoid 13.75
Coil Assembly 67.00
Selinium Rectifier $\quad 7.55$
Selinium Rectifier $\quad 7.55$
Reader Tape Catchers (PDP-1) 206.00

12/1/62
R. F. Maxcy

## Typewriter

UANTITY	PART NUMBER	DESCRIPTION	PRICE
1	Model ETC-777-878	Computerwriter	2,800.00
1	X-5531	Complete Translator	806.00
1	D-5043	Coder Assembly	312.00
1	B-5530-1	Power Cam Assembly	33.38
1	B-4805A-P2	Cam Accelerator	2.85
1	B-4804B	Cam Trip Arm	1.20
1	SS418 FCHH	Bearing (Soroban \#6)	6.90
1	MPB 3332	Bearing \#4	7.30
1	B-4904A	Drive Crank Spring	7.70
1	MP B-5632	CHH Bearing \#44	6.40
1	A-4809	Support Shim	1.90
1	B-3326	T6 Flanged Bushing	1.15
1	A-4853-A	Clevis Pin Bushing	1.65
1	B-4786P2A	Permutation Bar Stop	8.25
1	C-4810T1	Coded Permutation Bar	10.65
1	C-4810T2	Coded Permutation Bar	10.65
1	C-4810T3	Coded Permutation Bar	10.65
1	C-4810T4	Coded Permutation Bar	10.65
1	C-4810T5	Coded Permutation Bar	10.65
1	C-4810T6	coded Permutation Bar	10.65
1	C-4810T7	coded Permutation Bar	10.65
1	C-4810T8	Coded Permutation Bar	10.65
1	C-5041 P2A	Power and Drive Unit Assembly	227.85
1	A-4700A	Seeker	1.50
1	A-4905	Tl Spring	. 50
1	A-4970B	Bracket and Bushing Assembly	7.30
1	B-4969	Latch and Pin Assembly	7.00
1	SS-PHH 418	Bearing \#52	7.30
1	B-4705-B	Actuator Assembly	29.05
1	C-3817C	T4 Pivit Pin Washer	. 56
1	A-4854	Cam Drive Shaft Assembly	11.90
1	J-35EC	A-209895 Relay	8.40

In-Out Equipment (continued)
Typewriter (continued)
QUANTITY PART NUMBER
1 A-4950
1 A-2229B

1 set 3MHA 156
Panels and Cabinets

1 131-74-3217

1
1 131-74-2036 8"
$1 \quad 100-\mathrm{Y}-3317$
1

1
1

1
1
1

1
1

## Power Supplies

1 NJE-EQR-60-6B

1 Mikros HV-41 40 KV 500 mi a

1

1

1

12/1/62
R. F. Maxcy
NJE-P30-1 20V

## DESCRIPTION

Pull Wire Assembly
PRICE

Translator Solenoid Assembly $\quad 26.75$
35 Wire 24 V
Contact Form B
$2.10 /$ set

l-18 Bit Panel Assembly

165.00
(complete)

Mounting Panel w/o connectors 37.50
Plenum Door Blank 4.80
SBS Output Panel (ADX) 18.95
Cabinet (complete including 600.00 fan without end panels)

End Panel 75.00

Front Panel 1906 Card 3.75 wired and lettered

Current Driver Blank Panel 2.70
Mounting Panel w/o Connectors 75.00
741 Power Supply Panel 12.35
19 1/2" Trim Strip for cabinet 3.90
Door Stop Rod 2.70

Power Supply (Type 30 \& 3177.00 Display
Power Supply (Type 31 Display) 805.00

Power Supply (Type 31 Display) 455.00

Power Supply(Type 31 Display) 1,194.00

Power Supply (Type 31 Display) 139.00

PART NUMBER

## DESCRIPTION

## PRICE

$1 \quad 12451$

1 6AT1-T2

1 6AT4
3 Position, 5 pole
Shall Cross Switch (Marginal Check Panel Sw.)
SPDT sub-miniature toggle 5.95 switch (control panel)

DPDT sub-miniature toggle 8.35 switch (control panel)
$\begin{array}{ll}\text { STDP toggle switch } & 2.25 \\ \text { 15A at } 125 \text { VAC } & \\ \text { (Marginal check switches) } & \end{array}$
Telever Switch (Central 4.50 Processor)
19.40

## Conversion Kits

163 to 110 char./sec Conversion Kit for Punch 58.50
$1 \quad$ Hobbs elapsed time meter on 813 power control

Kit for convert from 28.35 Haden Meter

Transistors and Diodes
Diouts

1 1N3208
1.70

1. 65
13.20
.45
1 D001-1
1 D003 .96

1 D664
$1 \quad$ GA-439
.90
Transistors
1
2N744
11.60

1 2N1204 $\quad 7.88$
1 2N1427 (MA89 or 90) 6.60
1 2N1545 4.05
$1-9.45$
2N769 42.14
Miscellaneous
1 reel 498-24R 1/2"
$1 \quad 64 \times 64 \times 19$
1 131-74-3356
Magnetic Tape
43.60

Memory Stack
7.200 .00

Bat Handle
3.70

## Miscellaneous (continued)

QUANTITY		PART NUMBER
1		
1 box		1000 ft.
1 case	14 boxes	
1	$3 A G-5$	
1	$330-25 \mathrm{E}-3$	
1	$330-25 \mathrm{E}-6$	


$\quad$ DESCRIPTION	PRICE
Fanfold Tape Tray	3.25
Fanfold Paper Tape	3.00
Fanfold Paper Tape	40.00
Fuse	.24
Delay Line	8.00
Delay Line	10.00

The Digital Equipment Corporation (DEC) of Maynard, Massachusetts, was founded in 1957 by two former employees of the MIT Lincoln Laboratory. A majority-owned affiliate of American Research and Development Corporation of Boston, Massachusetts, the company produces high quality digital electronic equipment of three general types:

1. Solid-State Digital Circuit Modules
2. Magnetic Core Memory Testers
3. General Purpose Digital Computers

Starting from a handful of people and a minimum plant in 1957, the company entered three highly competitive and hazardous fields and has met with notable success. Today DEC is a leader in each of its fields, employing 420 people in a 210,000 square foot plant, with annual sales substantially in excess of $\$ 6,000,000$. Most significant is the fact that Digital Equipment Corporation is one of the three or four digital computer manufacturers which is operating at a profit.

## MANAGEMENT

The directors of the corporation are:
Vernon Alden, President, Ohio University
Harlan E. Anderson, Vice President, Digital Equipment Corp.
John Barnard, Jr., Attorney and Partner, Gaston, Snow, Motley and Holt (Boston, Mass.)
Wayne P. Brobeck, Vitro Corporation of America
William H. Congleton, Vice President, American Research and Development Corp.
Arnaud de Vitry, Trustee
Jay W. Forrester, Professor of Industrial Management, NIT
Henry W. Hoagland, Vice President, American Research and Development Corp.
Kenneth H. Olsen, President, Digital Equipment Corp.
Dorothy E. Rowe, Treasurer, American Research and Development Corp.

The officers of the corporation are:
Kenneth H. Olsen, President Harlan E. Anderson, Vice President George T. O'Dea, Treasurer Dorothy E. Rowe, Clerk

## KEY PERSONNEL

The company's strength is largely based on the engineering and management talent of its key personnel some of whom are described below:
Kenneth H. Olsen, President and co-founder of DEC, has a long list of achievements in the field of digital computers. Born in 1926, he is a graduate of MIT with B.S. and M.S. degrees in electrical engineering. While employed at MIT Lincoln Laboratory he played major

## KEY PERSONNEL (Continued)

roles in the development of the MIT Whirlwind computer and the SAGE air defense computer. Of more importance, he managed the entire development of the Memory Test Computer, the TX-O Computer, and the TX-2 Computer. The TX-2 Computer was the largest and fastest computer of its time. In 1961, Mr. Olsen was named Outstanding Young Engineer of the Year by Eta Kappa Nu.

Harlan E. Anderson, Vice President and co-founder of DEC, was also active at Lincoln Laboratory on the same computer projects. Born in 1929 he is a graduate of the University of Illinois with B.S. and M.S. degrees in physics.

Richard L. Best, Chief Engineer, has a long background in computer circuit design beginning at the MIT Radiation Laboratory. He held key design and administrative positions with Lincoln Laboratory, frequently serving as a senior consultant in computer circuits.

Benjamin Gurley, Manager of Computer Engineering, played key roles in the development of computers at Lincoln Laboratory and has unique experience in the fields of magnetic core memories and CRT display devices. He has been particularly active in the design of photomultiplier devices, such as light-pens for man-machine communication. At DEC Mr. Gurley was responsible for the development of PDP-1 and PDP-4 Digital Computers.

Gordon Bell, Computer Systems Engineer, has been active in the design and programming of systems for real time control applications. A Fulbright scholar he has studied at MIT and abroad. He was the project engineer and designer of the PDP-4 Computer and several large PDP-I real-time Computer Systems.

## PRODUCTS

1. Digital Circuit Modules DEC System and Laboratory Modules have been designed and sold to leading electronic manufacturers and laboratories. They have found their main application in construction of special purpose data handling systems and custom designed testing systems. This is a well accepted product line and has been very successful. This line provides a broad base of regular business for the company's other operations. Today DEC is the leading manufacturer of digital modules in the industry.
2. Memory Testers DEC Memory Testers are in use by virtually all independent magnetic core memory producers. This product line includes several types, such as laboratory core evaluators, automatic production core testers, coincident current memory testers, word address memory testers, and memory exercisers. These testers have become the standard of the industry.
3. Digital Computers Starting in 1959 DEC has produced medium priced, high performance, general purpose digital computers known as Programmed Data Processors PDP-1 and PDP-4. These products have gained the respect of the industry as ideal machines for real-time operation, scientific calculation, and general data handling.

## PRODUCTS (Continued)

Over 35 complete computer systems (average cost $\$ 250,000$ ) have been put into successful operation, including $30 \mathrm{PDP}-1$ 's and $5 \mathrm{PDP}-4$ 's. Several more of each type are currently on order. A high level of reliability and performance has been experienced on each installation. Some of the users of these systems are:

Bolt, Beranek and Newman, Inc. (2 systems)
Information Technology Laboratories
Massachusetts Institute of Technology
Geotechnical Corporation
Jet Propulsion Laboratory (California Institute of Technology)
System Research Laboratory
Air Force Operations Laboratory
International Telephone \& Telegraph, Inc.
The Foxboro Company
Corning Glass Company
Massachusetts General Hospital

## FACILITIES

The company leases 210,000 square feet of space in the former American Woolen Company plant at Maynard, Massachusetts. The company currently employs over 420 people. Sales are handled directly from the home office in Maynard and from field sales offices in Los Angeles, Washington, and Clifton, New Jersey. Sales in the Southwest and Northwest are handled through representatives in Dallas and Seattle.

## FINANCIAL

The company is controlled by American Research and Development Corporation of Boston, Massachusetts. It is soundly financed and has extensive unsecured bank credit available if needed for abnormally large activities. The DEC Board of Directors includes several distinguished businessmen and educators who provide sound management guidance. AR\&D net assets as of June 30 , 1962, were in excess of $\$ 27,000,000$.

Comparative balance sheets for the last five years are shown. on.the following page.

## Abbreviated Balance Sheets <br> Close of Each Fiscal Year

(Taken from audit reports certified by Lybrand, Ross Brothers, and Montgomery)

	(\$000's Omitted)				
	6/30/162	6/30/161	6/30/160	6/30/159	6/30/158
Cash	\$ 342	\$ 21	\$ 26	\$ 55	\$ 38
Other Current Assets	3,503	1,179	626	335	46
Net Fixed Assets	-332	125	55	48	11
Total Assets	\$ 4,177	\$1,325	\$ 707	\$ 438	\$ 95
Notes Payable	\$ 1,116	\$ 16	\$ $\quad 7$	\$ 4	\$
Other Current Liabilities	1,482	563	280	211	7
Long Term Liabilities	87	103	120	51	30
Total Liabilities	\$ 2,685	\$ 682	\$ 407	\$ 266	\$ 37
Net Worth	1,492	643	300	172	$\underline{58}$

Total of Liabilities and Net Worth
\$4,177 \$1,325 \$ 707 \$ 438 \$ $\quad \underline{-}$
$\qquad$
TO $\qquad$ Harlan FROM $\qquad$
Here is the problem 1 Keno tmuntory Proposal -as eu it. What an your ideas?

DRAFT $11 / 30 / 62$
Some Observations on implementing Ken's Inventory Policy

1. Ken would like to see us keep the Inventory at a workable minimum.
2. To accomplish this, the concepts of Individual Responsibility for Procurement should be brought to bear wherever possible. For example, if a special component is needed and the order quantity is increased for purposes of price or other advantage, the entire lot purchased should be charged against the particular work order calling for the first units. Excess pieces, when and if used would be no charge.
3. Starting with the existing inventory Ken is anxious not to have the balance sheef and earnings statement over stated by ftems in inventory for which there is no forseeable use (or reasonably forseeable use).
4. Writing off costs as described in itoms 2 and 3 is fairly straight forward. The problem arises of how to recognize items so treated at future use.
5. Future valuation of items thus written off requires recognition of the fact that they are not on the books (otherwise it would become literally impossible to confirm our year end balance sheets.)
6. One way to guarantee such recognition would be to move the items so treated into a special storage area.
7. Serious objections to this treatment are as follows:
a) Once having taken the units off, the urgency to recover is eased
b) Individual Cost runs become meaningless (they will depend on the share of charge vs no charge commodities employed.)
8. An alternative solution might be:
a) If excess inventory occurs, charge it against the appropriate Product but credit an inventory valuation Reserve (this leaves the individual commodities on Maynard's Kardex at original price - but reduces Total Inventory to what is believed to be a reasonable level.
b) At Year end adjust the Valuation reserve in light of the facts as they seem then (to make the Costs allowable Income Tax-wise.)
9. In either case Individual Responsibility rules over the procurement. (i.e. If Fadiman wants 20 and Maynard only sees use for 10, Jon knows in advance that he will receive 10 af the Cost of 20.) If Maynard lets someone talk him into buying more than is currently needed he (Maynard) is taking this risk of the write-off.
10. Obviously, if we really feel a given Commodity is worthless we would write it off (charging it against the reserve developed under 8a; The original cost of the obsolescence having already been borne by the appropriate Product Line.)
11. Still another Solution is the periodic review for obsolescence (as is being done today.) It does not preclude the possibility of charging product lines or individuals - its only deterrent is the timing - it does so after the fact - thereby making it more punitive and less rational.

## DATE

November $30_{0} 1962$

K. Olsen<br>H. Anderson:<br>G。O'Dea<br>S. Olsan<br>M. Sondler<br>R.Bast<br>B. Gurley<br>J. Atwood<br>J. Fadiman<br>H. Crouse<br>R. Lassen<br>J. Smith<br>R. Hughes<br>A. Blumenthal<br>$E$. Simeone

In order that we may properly forecast our cash requirements for December, January and February, would you please complete the below for the Capital Equipment you feet you will require for the above mentioned period and return is to me by Monday December 3td. If you do not anticipate any Capital Equipment expenditures. please initial and return this form anywry.


SUBJECT Scientific Data systems
Ted Johnson
Hiarlan Anderson
Stan Olsen

I had an opportunity to visit both locations of SDS in Santa Monica yesterday afternoon. This was very interesting and helped bring into prospective the rumors and speculations that have gone on about sDS. They presently employ approximately 130 people. In the old facilities, they now house manufacturing on the first floor and various offices on the second floor. Their new building houses their executive offices, R\&D, Marketing and Engineering. This new building is built for expansion and they are planning to add another building on the rear. I was most amazed at the size of their production facilities which didn't appear to be much more than 1600 sq ft. The silk screening and printed circuit board manufacturing area is less than the size of our rear office although my friend at SDS indicates that they are able to turn out a considerable wolume of modules. They certainly are not, at this point, in any position to seriously consider marketing commercial digital modules. The assembly and systems test area at the second building (engineering), had one prototype 910, the JPL system due for shipment January 1 (which incorporates a 910 and a 920) and two other computers which I believe were 920's. They also had a 920 in a demonstration window in the lobby which was being used by their programmers. They have 12 filltime programmers. The JPL system was an impressive assembly taking up about 7 racks, three of which were computers. While I was visiting they were using the 910 prototype to check out the mag tapes on their system.

I did get the impression that the people there were quite well organized and moving efficiently toward putting out computers and software support. Certainly in comparison with the tremendous area that we have in the bwildings at Maynard, their facilities would not seem to indicate a capability anywhere in line with what they have announced as their production goals but it does look like they are progressing inan atmosphere indicating fairly solid achievement.

DATE November 29, 1962
SUBJECT Description of the Holley Line Printer as a result of a conversation with Harrison Craig, Sales Manager, on 1l/27/62.
TO Ben Gurley FROM Bob Savell
H. Anderson
G. Bell
A. Hall

## DESCRIPTION OF PRINTER WITH CONTROL ONLY AND NO BUFFER:

The interface is generally described in Holley's bluecovered brochure 62-5M-1 on page 10. The particulars are as follows: The printer prints at a rate of 300 lines per minute. The load time per line is 1 millisecond during which time the column address enable produces a negative signal of -20 volts through 9.1 K and the character sync output produces up to 9 bit coded output where a one equals -20 volts through 7.8 K . The external equipment must then compare the character sync code with the column address/character code stored in the computer and send to the printer control the address of those columns in which the selected character should be printed.

The column address input receives up to 7 bits of information in the form of a single clear pulse which must be a negative pulse which supplies 20 milliamps followed at least .5 microseconds later by up to 7 set pulses, again negative 6 milliamp pulses. Both set and clear pulses must have a flat top time of .5 microseconds exclusive of rise and fall time. A print command must then be supplied to the printer control which consists of a negative 2 milliampere pulse into 500 ohms with a duration of 6 microseconds. The leading edge of this pulse may occur at the same time as the set column address pulse. Column addresses may be given at a rate no faster than 6 to 8 microseconds apart.

The total one millisecond address enable period is used to charge capacitors which are going to be used to turn on the hammer driver thyristors during the following 2 millisecond interval during which printing actually takes place. After a print occurs there is an additional $1 / 8$ millisecond interval during which the thyristors are all reset. The thyristors used are PNPN 3 terminal devices manufactured by RCA.

The start form advance signal is given after all desired characters on the line have been printed and consists of a 7 microsecond 1.2 milliamp negative pulse which must be supplied to the printer control. All 8 format channels can be brought
out channels where a hole output equals 20 volts through 7.8 K . This must be sensed by external circuitry and a stop forms advance signal fed back which consists of a 7 microsecond 1.2 milliamp negative pulse.

The amplifiers for the photo diodes for the 8 format channels and the character sync signals are normally provided only at extra cost on a system consisting only of control without a buffer.

Spacing time for forms advance in terms of number of characters missed on the print drum is 10 characters at 300 lines per minute. For spaces greater than one line, the paper moves at the rate of 6,000 lines per minute after the first line.

## PRINTER SUPPLIED WITH BOTH A CONTROL AND A BUFFER:

When a printer is supplied with both a control and a buffer, the interface as specified on page 10 changes. The forms advance and format control remain as with control only but everything above changes. A basic buffer, which is the one they quoted to us at $\$ 2657$, consists of a magneto-strictive delay line which is separated into two halves which operate independently of each other. The first half is used to receive data from the external equipment. The second half is used to transmit data to the printer control. The basic buffer is either bit serial or character input which can be loaded at a rate of 624 6-bit characters per second, maximum. The basic buffer does not include parity check at the input. Some sort of end of line character must be given to indicate that we have loaded all the characters we desire. At a rate of 200 lines per minute it takes 200 milliseconds per line to print including spacing. Loading the buffer at the maximum rate will take approximately 190 milliseconds so that they just about match.

The contents of the second half of the delay line is being printed out while the first half is being loaded. The second half of the delay line is erased as characters are removed from it and when it becomes empty and the first half becomes full the contents of the first half is shifted into the second half and a signal is sent back to the external equipment saying you may now read in another line of data. The buffer control has a 120 state counter to keep track of the column locations of the data stored in the second half of the delay line. As each character is removed from the delay line, the column counter is advanced by one. The delay line character code is compared with the code presented by the character wheel which contains the code representing the character
now is position to be printed and if these codes are the same, the column address is taken from the column counter and transferred to the printer control.

All one must do in order to print characters on a printer equipped with a buffer is to load characters into this delay line at any rate up to the maximum rate and all synchronizing and column addressing is taken care of by the printer control.

The character input to the buffer must be a 2 milliamp negative level into 3.9 K for a logical one or 0 milliamps through a 3.9 K connected to ground for a logical zero. The buffer in its serial form was designed to be used with Dataphone type input.

When buying a control and buffer together, the character sync amplifiers are included in the price of the entire system as quoted. The amplifiers for the format channel are not. They have had one of these running in the lab for the past two years on life test of their own printers. They are, however, delivering their first one to a customer, GE in Phoenix, in two weeks. GE is going to use it on their data net system.

## GENERAL INFORMATION:

Latest price quotes are as follows:

Print Head (quantities of one)	$\$ 9,498$.
Printer Control	$2,258$.
Buffer	$2,657$.
Cabinet	$1,065$.
Photo Cell Amplifiers - 16 @	76.

Delivery is 3 months and will not be affected by either painting the equipment our color or by specifying our own character set. The extra charge for a new print wheel with our own character set on it is $\$ 680$. This includes the price of the print wheel itself as well as the initial tooling. The total additional cost for the first one is $\$ 680$.

They claim 2,000 hours approximate hammer life, a mean free time between failures of approximately 200 hours, but depending upon maintenance they feel this will go up to about 400 hours.

There is no filtering of the AC power into the system. The entire system with control and buffer draws approximately 5 amps.

Holley claims that both Philco and General Electric are going to offer this printer as standard equipment.

If we will accept a switchable format control selection, in other words select which format channel is applicable by means of a switch on the printer rather than having it under program control, this would be provided for us at no extra cost.

In addition to information on the buffer as a result of a subsequent telephone call to Holley Computer Products, I have found out that the buffer may accept information either as 6-bit parallel words or as true bit serial as was first specified by Holley. In addition to the bit information, we must also provide a print command which is a 7 microsecond duration negative 2 milliamp pulse which strobes the 6 bits into the word. The buffer control takes care of the synchronizing required to get the word into its proper place in the line. Words are loaded from starting with column one proceeding to the right towards column 120. The buffer control sends back a level to us when its ready to load another word. Words may be loaded at any rate up to the maximum rate of 1 word of 624 words per second.

Holley is sending additional specific interface information, upon receipt of which I will prepare a detailed cost estimate. In the meantime, the price quote of $\$ 24,800$ to Itek sounds quite safe.


TENTATIVE INTERFACE R.SAVELL
$11 / 28 / 62$
$x-239$

DATE November 29, 1962
SUBJECT Price Quotations
TO H. Anderson FROM Bob Savell

I've long had some opinions about price quotations which I told people rather informally, and I thought that maybe this was a good time to put them down more formally.

No formal price quotations should be sent out by anyone except authorized quoters. This list would include you, Ken Olsen, Nick Mazzarese, etc. All people on this list should be furnished by the Sales Department with our standard list of established prices and the paragraphs of warranty information and the rest of the form type mumbo-jumbo that goes with every price quote, so that all quotations will be standard in form. These authorized quoters should be allowed to send out only quotations which are made from the established list. Needless to say, no prices should find their way onto this list without a formally submitted price justification form to back them up.

Any price quotations which involve prices not on our published list of standard prices must have a justification submitted by some responsible person in the company on the standard pricing form to the Sales Department before any quotation can go out. The final quotation should be checked by the Sales Department before it is sent out. This would also apply to non-standard items previously quoted but not on our standard price list.

Even when this procedure is followed, practically every price quotation for a non-standard item, no matter how recently it was quoted should then be checked by the Sales Department with the person who submitted the price justification before the quote is sent out.

All personnel in the company should be cautioned about making verbal quotations so that they inform the customer that they are just what they seem to be, educated guesses, and that they are in no way binding. Any firm quotation must be made by the company in writing.

MEhORANDCM

TO:
D.E.C. Works Committee

FROM: Jay W. Forrester

November 21, 1962

SUBJECT: Additional comnents on inventory dynamics

At our last meeting I answered some questions about the relationships of inventories and productica rates, but feel that I did not sufficiently state some underlying assumptions which make many of the comnents inapplicable to the D.E.C. situation.

A situation like that discussed in chapters 17 and 18 of my book includes among other thinge the following assumptions:
(1) It is expected that all incoming orders for the product can and will be accepted.
(2) As a corollary to the preceeding point, there is the assumption that the potential denand is stable and well defined and can not vary greatly. The possibility of potential demand changing by more then $50 \%$ in a period of two years would call for a review of this assumption.

In the above described situation, the purpose of the inventory is to absorb the fluctuations in order rate with a minimum variation in required employment.

The situation at D.E.C. is essentialiy different. The underiying assumptions would seem to be:
(1) The potential demand of the market is far in excess of the
company's present sales rate.
(2) It is not possible for the company to operate under the policy of accepting all avalıable orders.
(3) Demand can vary greatly. It certainly can increase by a factor of 10 and under adverse conditions of poor deliveries and insufficient sales effort, it can fall by a factor of several.
(4) The products are not a long established design for which production time and effort is precisely known.

In a system such as this the purpose of inventories would seem to be:
(1) To absorb variation in productivity and to give a buffer which can compensate for misjudgments of the size and difficulties of various tasks which are undertaken.
(2) To provide a source from which one can fill a certain small, steady, favored section of the market demand. I have in mind here the desirability of an inventory of building blocks to meet the short term need; of former customers who wish equipment in conjunction with systems hey have already purchased.

In a sysicm of the D.E.C. type it is impossible to carry sufficient inventory to stabilize the demand fluctuations which can be created. The average work load on the organization must therefore be controlled in some other way. The most obvious way of doing this is by limiting the acceptance of orders to the rate at which the company on the average can discharge them. Stabilizing the peak demand is accomplished by not accepting more than can be done. Stabilizing the dips is accomplished by perforining well enough so that the average potential demand lies above the company capability.

In such a system inventories are then used to compensate for the misjudgments which inherently will go with products in an area of new technology.

## INTEROFFICE MEMORANDUM

DATE November 21, 1962
SUBJECT Display 31 at FJCC

TO	Ken Olsen
ce:	Harlan Anderson
	Stan Olsen
	Ben Gurley
	Nick Mazzarese

FROM
Bob Savell

I want to register my strong objections at the decision that was apparently made, and which I found out about last week, not to run the Display 31 at the FJCC but simply to take the table holding the cathode ray tube housing as a cold piece of equipment to the show. It was my understanding previous to last week, and as a result of the meeting we all held about three weeks ago, that the Display 31 was to go hot if possible, cold if not. I at that time registered strong objections to taking any cold piece of equipment to a show. Since hearing of this decision we have not continued to try to complete the entire Display for the show, and none of the instructions have been wired into the PDP-1 necessary to run the Display 31.

I simply want to repeat at this time my strong feelings that it is a very poor sales policy to take a cold piece of equipment to a show. I feel that it gives prospective customers the impression that either you brought it to the show and tried to make it work and you couldn't, or that you just plain don't have it running. I really feel, as I have already told Nick, that we would be better off simply not taking it at all rather than to take it and not run it.

DATE November 21, 1962
SUBJECT Obsoleted Transistors
TO K. Olsen
FROM Maynard Sandler
H. Anderson
R. Best
R. Hughes
H. Crouse
G. O'Dea
C. Fuller
J. Trebendis

Transistors which are no longer called out in our products are removed physically from Stock and held in Obsolete Stores. It would be good business to use up these transistors if possible without injury to the quality of our products.

Below is the list of obsoleted transistors and the suggested dispositions:

TRANSISTOR

2N167	485
2N398A	2000
2N674	3992
2N769	616
2N1065	6120
2N1146A	1015
2N1218	1329

2N1301 486

2N1306 495
2N1427
2N1496 62
2N1719 200
FSP-2 9
2N1305 (G.E.) 4760
2N2048 104
2N1499A 685
2N670 3000
2N412 8586
MA-45 1866

## DISPOSITION

Hold in Obsolete Stores
Hold in Obsolete Stores
Sell about 2500-H. Crouse
Sell - H. Crouse
Hold in Obsolete Stores
Hold 300 in Obsolete Stores;
return balance to vendor - H. Crouse Hold 300 in Obsolete Stores; return balance to vendor - H. Crouse Hold in Obsolete Stores
To Bob Hughes for possible use
Give to schools
Hold in Obsolete Stores
Hold in Obsolete Stores
Return to vendor; if not possible,
use up per Bob Hughes
Hold in Obsolete stores; use
in inverter gates per Bob Hughes
Sell - H. Crouse
Tom Whalen will use up
Sell - H. Crouse
Sell - H. Crouse
Sell - H. Crouse
-2-

TRANSISTOR	QUANTITY	DISPOSITION
2N588	312	Sell - H. Crouse
2N393	470	Sell - H. Crouse
MD-27	2120	Sell - H. Crouse
2N224	680	Give to schools - (Done)
NS 628	19	Hold in Obsolete Stores
2N438	525	Sell - H. Crouse
2N1272	134	Hold in Obsolete Stores
2N599	72	To Bob Hughes
2N1370	29	Give to schools
2N522A	264	Hold in Obsolete Stores

DATE November 20, 1962

## SUBJECT

TO
K. Olsen
D. Mills

FROM J. Smith
H. Anderson $\sqrt{ }$
N. Mazzarese
S. Olsen
E. Harwood
M. Sandler
B. Maxey
G. O'Dea

PDP-1-35 (9000-5863) was delivered to Checkout today.
It is a complete machine with $100 \%$ modules. This is the second machine for the month of November and had a scheduled delivery date of $11 / 21 / 62$. Scheduled completion dates for the December machines are December 7 and 21. Both machines are on schedule.

DATE ll-19-62
SUBJECT
TO Ben Gurley

FROM Bob Oakley, wCO

The photo copies of notes I have enclosed were prepared by the 3 C's West Coast Office. They were given to me reluctantly by Kendo Kawano, at JPL, because they should not get back to 3 C's in any way but should be used strictly for our internal information.

These notes were probably prepared exclusively for their (3 C's) salesmen for sales pitches. I personally don't believe in this type of approach but do like to have fast answers when customers question our products in respect to what a 3 C 's salesman has stated; particularly with this degrading type of evaluation.

I hope you find these notes as interesting as I did.
Regards.


September 5, 1962

## NOTES ON UNIVAC 1218 V8 DDP

1. The 1218 has a 4 нsec memory cycle time (DDP: $5 \mu \mathrm{sec}$ ), but it seems very doubfiul if this resulta in faster computations.
a) Minimum execution time of simple instructions is $8 \mu s e c$; the DDP has a number of 5 нsec instructions (when no operand fetch is required).
b) Non-indexed add, subtract take 8 usec in 1218, but if indexed these take $12 \mu s e c$. The DDP add, subtract and all other non-sequential instructions take $10 \mu \mathrm{sec}$, independent of indexing or not.
c) Non-indaxed multiply and divide is 52 piec in the 1218, and if indexed $56 \mu \mathrm{sec}$. In the DDP the average multiply time is $39 \mu \mathrm{sec}$ : divide time is always $56 \mu \mathrm{sec}$. This is valid for both indexed and non-indexed operation.
2. The 1218 hase an 18 bit word length, compared to the DDP 19 to 24 bit word lengths. The 18 bits are not adequate for the addressing of their maximum memory size of 32 k words; and the 7 index registers, therefore inconvenient indirect addressing is used in many cases some what similar to the 160A although not as bad. The 1218 uses one's complement code ve the more convenient sign-magnitude code of the DDP.
3. The 1218 hag 7 index registers, against one (wtandard) index register in the DDP. These 7 index registers are inconveniently stured in memory rather than being separate, directly accessible registers. The optional IXE-command (index expansion) of the DDP is somewhat comparable to the 1218 setup, but it provides for all memory locations to be effectively usable as index registers.
4. The available software package of the 1218 does not include a compiler: but they do wffer an aseambler, arithmetic routines, floating point package, etc. This is compatible to the DDP, except for debugging and diagnostic routines which we have not developed yet.
5. Paper Tape: The 1218 has a 100 cps reader (nlower than DDP), and 100 cps punch (faster than our standard punch).
6. Input-Output: Up to 8 parallel input channely, and 8 parallel output channels. It seems that the DDP has more variety with character, and word buffers in addition to the parallel channels. The 1218 allows for data block transfer for I/O which we do only optionally (FMB, and DMB commands: Fill Memory Block and Dump Memory Block).

There is not enough information available to compare the I/O capabilitiee in detail.

Summarizing the Univac 1218 generally appears less powerful than the DDP, but ite price of 96 k may offeet this. It would be interesting to receive some feedback from customers ay to where the 1218 comes out to be atronger than the DDP.


NOTES ON CDC 160A VS DDP

The CDC 160 was originally built as a satellite computer to the 1604 and not as a g. p. computer. The 160 A was developed as a modified veraion to better meet g.p. requirements. Its basic disadvantages of very omall word length of 12 bita and different addressing modes remain.

The oight addressing modes (ways to specify the address of the operand of the command) make the 160 A awkard to program by providing different. but similar instructions to choose frum in many cases. (With the DDP the only choide of address mode is indexing or not.) Shift commands in the 160 A alfow for shifts of $1.2,3$ or 6 steps only. resulting in miure than one inttruction for moti shift operations. Multiply and divide are available as external options only. Muitiply by subruutine (standard) takes $950 \mu \mathrm{sec}$, divide by suoroutine takes 1800 нsec.

The CDC memory cycle is $6.4 \mu \mathrm{sec}$ compared to our $5 \mu \mathrm{sec}$. Its add time is $12.8 \mu \mathrm{sec}$. Standard memury size in 8 K core. It is used up vary quickly becauce of the short word length and because multiple precision operations are required in most cases. No index registers are provided, although one addressing mode corresponds to relative addreseing, and another one to indrect addresaing.

The 920 is a somewhat slower computer, using serial logic, and an $8 \mu s e c$ memory cycle. (Add command $16 \mu \mathrm{sec}$ compared tu DDP with $10 \mu s e c$.$) Their command atructure is powerful which makes up for$ the machine speed. Specifically a serial-parallel adder has been added to achieve a multiply speed of $32 \mu \mathrm{sec}$.

The 920 hat a 3 Mc clock rate to meet the speed requiremente for esial logic. Although this is certainly no stretching of the art, it presents more probleme of cabling and wiring because atray pulses and rise times become more important, and performance margins emaller. Addition of equipment especially memory will present considerably more problems with the intercabinet cabling required. A two's complement machine code is used which is less convenient than our aign magnitude code:.

Certain options in the input-output area are offered but flexibility is not stressed very much. Reportedly a 4 K memory addition is priced at abput $\$ 30 \mathrm{~K}$. The 920 price has recently been raised from $\$ 89,000$ to 897,000.

Strong advantages of the 920 arc: A smaller, "family related" computer, the 910 is alup offered; a powerful software package being worked on, including a roriran type compiler in the near future. Three index registers and indirect addressing are available.

Silicon circuitry is provided, but its advantage of wide temperature range is only a ales pitch, because the core memory remains temperature sensitive, and this type of equipment normally operates in air conditioned environment.

The SDS command structure is generally compatible with that of the DDP. Several commands make the B register more powerful than ours. Some of the optional DDP instructions are not represented such as BCD, BIN, conditional change of (A) and (EA). The DDP also provides for direct input to and output from the A register to peripheral equipment:

Besides the SDS 920 the PDP-1 ts a strong wompetator fur the DDP
 less up-tu-date, specifically insufar af cummand ytructure is com, ned. The fact that a number of them have been delivered and are workimp. their advantage.

Word lengthis 18 bits, no index registers are proviled, but (has convement and slower) andirect adifessang is. Only ube l/O repistir 10 available which doubles as an arithothe register. This tugether with the absence of a character bulfer keeps $1 / 0$ rificiolly duwn. A
 proper is compatible with DDP (5 nsec metmory a y la, paralie: lugh). Not much flexibality in input-wutput operatans is witiordi tut a radge of peripheral devices can be hooked in.

The standard PDP-I has nu single command waltuply or davide, bat these can be provided as uptions. Traisfter ،apabilitien into or at it the B register are waker, no nurmalize and scale comatands (ampurtant
 routine liakage commands (compared wour JUS and JUR) The Pi)P-I hab olightly more variety in the skip command group.

Although a small version PDP- 4 is uftered, it dues imt appest to be surcessful because capabilities of buth command structure and mpit whtput have been stripped down considerably with a price tap mot bety low. (\$ós K with 4 K memory)

Some PDP. 1 prices (maybe somewhat obsolete by now).
$10:$
PDP. 1: $\$$ tso $\mathrm{K}, 4000$ word memury addation: $\$ 40 \mathrm{~K}$ for first addition, $\$ 30 \mathrm{~K}$ for following additions. Putter $\$ 906$ tape handier, 15 kc transfer rate $\$ 18 \mathrm{~K}$, tape control unit 87,500 .

## NOTES ON CDC 924 VS DDP

The CDC 924 is a strong computer, generally more powerful than the standard DDP-19, particularly insofar as command structure, inputoutput and word length is concerned. However, in comparing the two the question is: What can 3C offer far the same price as the 924? Because of the options available we should be able to offer a computer better adapied to the apecific needs of the customer for less money.

The CDC 924 is a parallel machine, 24 bit word length, with a 15 bit address portion for direct addressing of 32 K of memory (the DDP- 24 can directly addrese up to 16 K , the DDP-19 can address 16 K momory with some exira properly coded OCP commands in the program).

The 924 has 6 index registeris available and indirect addressing. The DDP has optionally up to 7 index registers and indirect addressing option available.) Automatic interrupt is posaible. l/O typewriter is not part of atandard 924, but is available extra.

The average memory cycle is $5.3 \mu \mathrm{sec}$ against 5 нeec in the DDP-19. In the DDP- 24 the average effuctive memory cycle would be shighty more and therefore quite comparable to the 924.

The one's complement code of the 924 is somewhat less convenient than our aign magnitude code.

Input-output is with three 48 bit buffer registers for input and three 48 bit buffer registers for output. Up to 100 kc word rate is possible. This is generally faster than the DDP input-output with character buffers, or parallel channels, but the DDP offers the optional FMB and DMB instructions, and also fully buffered channels for up to 200 kc word rate. The DDP has more $1 / O$ channels available if needed, also more variety of channels.

Nutr on CDC id *! D! !
page 2

The 924 command structure has an edge over the DDP commands including optional ones in the following respects. Their B register (in our notation) is used as a mask for a number of commands, such as selective store and load commands. There are also more instructions for transfer of infurmation into or out of the $B$ register, which makes it very powerful.

The 924 has more variety in conditional jump ur skip commands. They have some sophisticated instructions which are useful in certain cases only. (This is true for any command structure!)

More important instructions which the DDP has over the $9<4$ are SMP, for simple multiple precision operation. This is an important point in our favor. No right shift and increment (of index register contont ) which is useful in floating point operations. The BCD and binary comerni..t instructions of the DDP can be important, e. b. with numerical display pariels.

The DDP Add and Subtract absolute value instructions may sometimes be an advantage, also the optional conditional interchange of (A) and (EA). (the CAM instruction)

DATE November 19, 1962
SUBJECT
TO Nick Mazzar ese
FROM Gordon Bell

## Proposed Ground Support Equipment Checkout System at JPL

While visiting the West Coast Office regarding PDP Sales, I discussed the above subject with the WCO and JPL. The proposal or rather invitation to bid should be available DEcember 1 with bidding closing January 1, 1963. The system is used to do limit checking, log data, and general monitor and assist the checkout of space craft prior to flight. The system includes a PDP-1 with Mag Tapes, etc. and the following special inputs considerations:

1. Approximately 100 analog inputs in ranges of $1,10,100$ volts with the ability to make $1 \%$ measurements at 100 millivolts perhaps. They appear to want $13-14$ bit accuracy in $A-D$ conversion.
2. ALL INPUTS (analog and digital) will be of the DIFFERENTIAL type to avoid disturbing any of the other measuring devices (which are in parallel with this proposed system). This requirement is to avoid grounding problems.

## 3. Telemetry Lines

There are about 200 inputs. JPL was quite concerned about our experience with differential amplifiers, low level signals, A-D multiplexers, etc. They would prefer to buy the system from a company which manufactured all the equipment (A-D included).

PDP -4 Sales at JPL
There appears to be possibilities for 1-4 PDP-4's in the near future at JPL. Hopefully within 2-3 weeks we will have an order for at least 1 computer. We are competing with the SDS 910. The machine seems to be comparable in most respects. They were quite concerned that we do not have a high density, IBM Compatible, tape unit.

SDS
Although the SDS 910 tries hard to sell their I/O Interface, I believe:

1. The $I / O$ Buffering they provide is unnecessary and only serves to tempt people not to buffer the other I/O devices which is disastrous for I/O simultaneity.
2. With the flexibility (lack of definition) only the most straight-forward I/O programs would be able to run between machines. (see PDP-1 serial numbers 1-6 regarding 1/O compatability)
3. To use the Interface requires a fair amount of care and each connection seems to be relatively expensive.

Some other considerations pertinent to SDS are:

1. A 41.7 KC Tape System ( $75 \mathrm{ips}, 556$ bits per inch) at $\$ 18,000$ per tape unit, and a Tape Control at $\$ 15,000$. They appear to use the AMPEX TM4.
2. Complete Analog System
3. Pricing of components just slightly less than DEC's.
4. Appearance (as judged by their literature)
a. Their magazine advertising appear timely and a certain continuity prevails from month to month.
b. Their programming manual is quite good. (We're just finally getting to describe PDP-1's Mag Tape, if the next revision of F15 ever gets out.
c. Their I/O manual doesn't say preliminary. DEC had the first IO Manual (CDC and SDS both use our FORMAT), but yet its illustrations and text leave lots to be desired.
d. There appears to be a continuity of manuals and literature, and each appears to look professional. I count the following manuals:
i General Systems Brochure (general door open)
ii Computers (Similar to F11, F41)
iii Programming Manual (F15, F45)
iv FORTRAN Manual - actually pretty terrible and useless
v I/O Interfacing Manual (similar to DEC's)
vi Computer Applications Manual (a compilations of systems which includes their computers)
vii A to D Systems Manual
viii Module Catalog (not similar to our own module catalog because no one could have 300 modules.
ix IO Equipment Operation Manual
The area which we might most profit is by working on items $5,9,6$, and 1 (perhaps in that order). Maybe the 200 or so people at SDS are all in sales, marketing and advertising.

In summing up, SDS appears to have a plan and goals and judging from the delivery of their first machines they may even realize some of their goals. I'm not stating that we haven't goals, but are only suggesting that we make some of our goals more public.

## Rand Corporation Book

About 2 years ago Fred Gruenberger at Rand wrote a book on the 1620 which would teach computers in the high schools and junior colleges. Gruenberger has written a book with McCraken, and helped with McCraken's FORTRAN Book (which has already sold 40,000 copies). Gruenberger feels there will be a rather large high school market shortly.

Rand now wants to write a similar book teaching binary machine. They want to select a machine, and their criteria are:

1. Price $\$ 2 \mathrm{~K} /$ month maximum rental)
2. Portability
3. Durability (will the design be around in $\mathbf{2}$ years?)
4. Availability of machine for writing the book. Can Rand borrow a machine during the period of December 15, 1962 to July, 1963?
5. The machires from which the selection will be made are:

PDP-4, CDS -160 , Remmington Rand Instructing Computer (15 bit words, 512 word Memory, generally useless) SDS-910.

The computer on loan would be placed on the 5th floor of the Rand Building in Santa Monica The book should be in print by June, 1964.

Presumably some committee at DEC may make the decision regarding this computer loan. Unless any others are suggested, I hereby appoint the above memo receivers as committee delegates who in turn have the power to appoint $1 / 2$ each additional delegates. The first and only committee meeting will be held as soon as possible.

## Data Phone and IBM 1009 Terminal

UCLA and sundry other customers at WCO and United Aircraft are interested in Data Phone. The format should be IBM compatible.

The most obvious first bite might be to make a box to connect with PDP's which will send and receive with an IBM 1009 Terminal. The 1009 connects to a 7090,1401 or a Tape Adapter Buffer unit.

We should use the same messgge format (serial by bit and character using a 4 out of 8 bit code to transmit a 6 bit character). The character rate is 75 or 150 characters $/$ second. The exact format can be found looking at a customer engineer's manual on the 1009. The unit which IBM
probably gets $\$ 30,000$ for looks like about $\$ 10,000$ according to our pricing ( $50 \pm 5$ modules).

ce: Harlan Anderson<br>Stan Olsen<br>Dick Best Ben Gurley Ted Johnson

SUBJECT: Repair of Returned Modules
TO: Clarlan
$\qquad$

DATE: November 19, 1962
From: Jim Cudmore

The following is a list of modules returned for repair during the week of November 12.


Repair of returned modules (cont.)

UNIT	SERIAL NO.	CUSTOMER	COMPLAINT	DEFECT
4213	0015214 E	Bendix Corp.	Flip-flop D   No output	None


4129	0052294 C	Unknown
4129	0052298 C	Unknown
4129	0052297 C	Unknown
4129	0052479 C	Unknown

4129

4129

4129

4129
0021301 C
Unknown

None given
None given
None given
None given

None given

None given

None given

None given

None
None
None
1 M.C. output pulse to narrow Replaced Philco MD114

1 M.C. output pulse too narrow Replaced Sprague MD114

1 M.C. output pulse too narrow Replaced Philco MDIl4

1 M.C. output pulse too narrow
Replaced Philco MDII4
1 M.C. output pulse too narrow
Replaced Philco MDII4

Repair of returned modules (cont.)

UNIT	SERIAL NO.	CUSTOMER	COMPLAINT	DEFECT
4129	0023944 C	Unknown	None given	1 M.C. output pulse   too narrow   Replaced Philco MD114
4129	0021303 C	Unknown	None given	None
4129	0021027 C	Unknown	None given	None
4129	0021051 C	Unknown	None given	None
4129	0023951 C	Unknown	None given	None
4129	0023962 C	Unknown	None given	None
4129	0052064 C	Unknown	None given	None
4129	0023955 C	Unknown	None given	None
4129	0023957 C	Unknown	None given	None
4129	0023950 C	Unknown	None given	None
4129	0023949 C	Unknown	None given	None
4209	0028948 H	Unknown	None given	None
4209	0063052 J	Unknown	No output	Dool shorted

A new column has been added giving the complaints accompanying the returned module. The list has been divided into two categories.

Of a total of 27 returned modules-wwith known customer- 6 had no discernible defects.

Of a total of 21 returned modules-aunknown--14 had no discernible defects.

INTEROFFICE MEMORANDUM

DATE 29 Evember 1962
SUBJECTYDP=-1 Fideld Service Sumaty
TO PDPw Digtribution tist FROM Jack shields

Atcached is a summex of fiela service pexformed on PDP-1 installatione for the months of Augurt. September. and October. 1962.

## SUMHARY OF FTELD SERVICS

Auguat. Septembex. October, 1962


## SUMMARX OF FIELD SERVICE

August, September, October. 1962

## Bole Bexanek and Newman

This summary covers the overhaul and marginal check period on the RDP-IB. The overhaul uncovered some of the more interesting problems which occured in the time covered by this report.

While checking margins on the PDP-1. low negative margins were found on the accumulator during an $A D D$ and $I D X$ instruction. With the use of a module extender, individual margins on the AC 17 flip flop were found to be only -5 volts with a simple IDX ordex. The complement input would cause the flip flop to change states before the complement output pulse occured thereby causing an exroneous computation. Replacement of the flip flop gave $\pm 10$ volt margins on the individual module.

Problems would occur on the Mag rape Type 15 when an octal 75 was written on tape and read check showed an octal 77 was read from the tape unit. Investigation found that positive margins on the input mixer section of the computer would cause the problem to disappear. The problem was traced to a leaky input transistor in a 4603 pulse amplifier in the input mixer.

Installation of the new type 30 display uncovered an interesting problem. While displaying a sexies of points moving from left to xight on the $X$ asis, a sexies of noise lines would be displayed just below the good line as the displayed points passed through zero. Checks showed high frequency noise on the intensity output of the 4688 module. The noise was greatest as the displayed points passed through zero. The cause of the problem was that the switching noise from the left to right deflection coil. was being inducm tively coupled to the -15 volts $D$. C. power line for the modules located in the display shroud. The use of a shielded cable for the -15 volt line to the modules in the display shroud corxected this problem.

Marginal checking the Type 20 Sequence Break System found very low positive margin failures. Checks showed the output of a pulse amplifier, which eventually forms the debreak pulse, to be only 1.9 volts in amplitude. It was noted that this was because the input to the Pulse Amplifier was a 70 nano second pulse and the inverter used to regenerate the pulse was a slow speed inverter. A loyic change wat made, and this is now a modisication to the Type 20 sequence Break.

## Ttek

Peripheral equipment problems required sexvice calls at Itek. Typewriter problems were traced to a worn permutation bar stop in the computeriter. The part was replaced. An open capacitor in the 1701 awitch filter caused exroneous input information into the typewriter buffer. Replacement of the 1701 module corrected this problem.

## Cambridge Research Laboratory (EDP-1C-3, PDP-1C-4)

The Hayden time meters on the PDP-1C-3 and the PDP-1C-A were replaced by Hobbs time meters. This was done as part of the preventative maintemance program.

Depressing the Continue switch would cause ETA $\frac{1}{1}$ EPC to occur on both CRL computers. This problem had also occured on the PDP-18. The solution of the problem was to terminate SP-2 at location $3 X 8 V$ with an $82 \Omega$ resistor and add a load resistor at the collector emittee junction ( $T-u$ ) of $3 Y 8$. The load resistor was for the logical gating of RIM $\operatorname{SP2}=$ ETA $1 \Rightarrow$ EPC.。 The addition of the terminator and load resistor are being checked as a possible modification.

The Divide ingtruction on PDP-1C-3 would cause the computer to stop with Run and a Divide instruction in the instruction register. A quick check showed the mul/div restart pulse to be 1 volt in amplitude. Replacement of the pulse amplifier associated with the restart pulse corrected this problem.

An attempt to assemble a tape using the DECAI compiler showed intermittent errors on the pDP-1C-3. Application of negative margins on the accumulator caused consistant failures at - 2 volts of margin. Subsequent investigation showed that the fallure could be reduced to an $\operatorname{IDX}$ or an ADD instruction. The trouble was characterized by the failure to carry a simulation of ones into the high order 9 bits of the accumulator. With -2 volts of margia it was found that an AC SH/RO R 0-8 pulse was occuring, which would effectively clear the high order bits of the accumulator. A check of the input to the pulse amplifier for AC SE/RO R 0-8 showed the input to be good. Replacement of the pulse amplifier corrected the problem and restored proper margins.

Various computeriter problems occured at CRC. They were traced to the Ledex solenoids, dirty contacts. decoder adjustments, ect.

## Massachusetts Institute of Technology (PDP-1-5)

The computeriter was bound up and it just would not operate. This problem was caused by people striking a series of keys on the typewriter while the power was off. This caused several cams to txip against the power cam. When the computexiter was turned on again the motox could not pull in all the cams at once, so the motor overheated and bound up. The motor was taken apart and a light film of ailicongrease was added to the bushings. The motor wasxeassembled run, an RPM test was made。 and it was reinstalled in the computeriter.

## Cambridge Research Isboratory (OAL)

Service calls were necessary at OAL for reader, punch, and typewriter problems. A defective feed hole amplifier was replaced in the reader, a Ledex solenoid was replaced in the typewriter, and the punch required adjustment.
sew options were added co the OAL installation duxing the three month period covered by this report. The additions were:

A Mag Tape 50/51 combination
Type 20 Sequence Break
A relay register and associated logic

## DEC

Set program flag aix instruction was inoperative on the DEC computer. The trouble was traced to an open transistex in the 1103 module, which is the inverter input to set program flag six.

## Massachusetts Institute of Technology (LNS)

The Lms computer would not transfer from mag tape via the high speed address mixer, into a memory other than zero. The problem was traced to three missing wixea from the high speed address mixer to the extended program counter. This error occuxed because the mag tape diagnostic used for checkout did not check

## Massachusetts Insticute of gechnology (LES)

transfers to memories other than zero. The diagnostic program has been changed and now checks this transfex.

The 811 power control for the Type 30 display was replaced. The defective power control had two shorted mexcury relays. burned relay sockets, a shorted diode and a shorted local. remote switch. This was caused by the grounded $10 \mathrm{~K} . V$. power supply shield, which shorted to the 120 V AC power line on relay K 2 . The new 811 power controls have a back plate on them to protect the power connections on the relays.

Bolt, Beranek and gewnan(PDP-1C-7)
The CRT on the Type 30 display was replaced, and ring magnets were installed on the neck of the tube to reduce pinm-cushion.

The mag tape unit would come to a complete halt for no apparent reason. The trouble was corrected by replacing the 8 uf. capacitor $C_{1}$ across the servo motor.

The sola transformer in the display was replaced as it had been leaking oil for some time.

## Jet Rxopulsion Laboratory

Problems with the Mag Tape Type 50 at JRL. Replacement of the forward pinch rollex solenoid and adjustment of the staxt time corrected these problems.

DATE November 19, 1962
SUBJECT CORNING'S PDP-4
TO Harlan Anderson
FROM George Rice
Dick Mills
Arthur Hall
Ken Fitzgerald
Bill Kellicgher

It is my understanding that Corning plans to settle its account with us for the PDP-4 before actual shipment is made. Therefore, I suggest we proceed as follows:

1. Clean up the computer and put it through Quality Control's final inspection.
2. Crate the machine and its equipment, then store it in the top of Building 5.
3. Wait for Corning's request for shipment. Corning's expected date of installation is December 10.

TO: K。Olsen
H. Andarsen

Engineers \& Technicions

From: Sisve Lamberf

Wednesday, November 14th I artended the Industrial Advisors Commithea Meotingo Wentworth institute. The agenda of the meering was fist year and second yoar subjects for the $E E$ course and the ET courss. The difference between the EEE course and the ET course is the gearing of the subjects. A fellow in the ET course accomglishas in two years whar nomally would be accomplished in one year by the EEE course. Upon graduarion from the ET course a cerpificare is peceived and upon graduation of the EEE an asseciato enginaoring degree is received. It is the opinion at Werrworth that me ET graduate is capable of doing a wipman fob whereas the EER graduate is capable of doing rechnician work under enginears of wok es a junior engineer.

In the past two years moie emphasis has been put on mathenatics and economics of social studies. Also ${ }_{B}$ in addition for next year's course second semester of the EEE group 0 a compurer couvse will be given and the laboratory will probably consiss of using all DEC modules as thay have no othor oquipment availcble. Wa ape presently generatirg a package for Wennworth which consista of iwo mounting panels of the 3000 saries laborarory blocks with a powapsupply and veribut sizes of parch couds.

The course outlined provided with this momo desceibes the subjecis that will be tought nexts yecip. The math course she first semester of EEE will be algebres geonerry trig. The second semesfer will stapt off with differantal equations. The second year of math is all devoied to calculus both semestars. The economic coursa in the second year will consist of the sfudy of social sciences. The rubes and circuits class has bean cut down in the first year and this the has been alloted to more siucly in semioconductop circuits. Macsurements and instrumentation fake yp most of the first semester of the second yeap. This couse has proven to be ane of the most important givea by Wentworth and prepapes the student with the knowledge of most irsinuments used in the eiectronics world plus special mecsueing devices including all of the various types of scopes, beidges and meters that a technician would come in carroce with. The fextbocks for thes courss cre cominnously up for peview and this year it seams thar textbooks pequiting more malyitcal thought will be used.

## Technician:

$\frac{\text { EEE }}{\text { Cousse }}$

## FIRST YEAR SUBJECTS

First Semester
Subi. R L S C No.

5	0	10	5
3	2	7	4
3	0	6	3
4	3	8	5
0	5	1	2
0	3	0	1

$\$$
$\overline{15} \quad \overline{33} \quad \overline{20}$

Second Semester
Subjo R L S C No.

Math	4	0	8	4
Physics	3	2	7	4
English Composinion	3	0	6	3
Oqal Communication				
Electirnic Fundamentals				
Mechanical Dpafing	2	3	4	3
Shop Technicues	3	3	6	4
Electric Cipcuifs	0	3	0	1
Electron Tubes \& Circuits	0	2	1	1
Electronic Componenis \& Materials				

SECOND YEAR SUBJECTS

First Semester
Subio $R$ L. S C No.

2	0	4	2
2	0	4	2
3	0	6	3
2	2	5	3
4	3	8	5
0	3	0	1
2	2	5	3

Second Semestep
Subjo $R \quad L \quad S \quad C$ No.
Math ..... 20042
Economic
Solid State Fundamentals Semiconductor Circuits ..... $3 \quad 3 \quad 6 \quad 4$
Special Tubes and Circuirs
Measupaments \& Electronic Instrumentarion
Elecroonic Drafsing
Electron Tubes \& Circuits
Microwerve Peinciples \& Measupements ..... $2 \quad 2 \quad 5$ ..... 3
Fundomentals of Compuerars ..... 234 ..... 3
Pulse Techniques \& Transients ..... $20 \quad 4$ ..... 2 ..... 20
Electronic Fabricarion Methods
Electronic Fabricarion Methods $\begin{array}{llll}0 & 3 & 0 & 1\end{array}$
$\begin{array}{llll}15 & \overline{13} & \overline{32} & \overline{20}\end{array}$
$R=$ Resitation$L=$ Laborarory$S=$ Siudy ai hame

Wireman:

## FIRST YEAR SUBJECTS

First Semestar

Subio   No.	$R$	$L$	$S$	$C$
	3	0	6	3
	3	2	7	4
4	0	8	4	
0	4	2	2	
	4	2	9	5
		$\overline{14}$	$\overline{32}$	$\overline{20}$

## Second Semester

$$
\begin{aligned}
& \text { Subjo } \\
& \text { No. }
\end{aligned}
$$

English ComposirionOral CommunicationPhysics$\begin{array}{llll}3 & 0 & 4 & 3 \\ 3 & 2 & 7 & 4 \\ 4 & 0 & 8 & 4 \\ 0 & 3 & 0 & 1\end{array}$
Math
Shop TechniquesFundamentals of ElectriciryFundamentals of Electronics$\begin{array}{lll}2 & 2 & 5\end{array}$
Sheer Mefal ShopMechanical DraftingElecrronic Diufring $\quad 0 \quad 3 \begin{array}{llll} & 0 & 1\end{array}$Electric Circuits
SECOND YEAR SUBJECTS
Second Semester
Subjo $\mathbb{R} \quad \mathbf{L} \quad C$ No.

3	0	6	3	Calculus	3	0	6	3
2	0	4	2	Economics	2	0	4	2
0	2	1	1	Welding Processes				
0	3	0	1	Chassis Layout \& Construction				
2	0	4	2	Electronic Componersts 8: Materials				
2	2	5	3	Eloctron Tubes \& Cipcuiss	2	2	5	3
3	4	8	5	Electronic Irsiruments \& Mecisupemenis				
2	0	4	2	Semiconductor Principlas				
				Semiconducior Cipcuîs	2	2	5	3
				Elactrical Machinery	2	2	5	3
				Fabrication Processes \& Design	0	5	1	2
				Electronic Systems	3	0	6	3
				Machine Processes	0	3	0	1
0	3	0	1	Elocironic Dosign				
$\sqrt{4}$	14	32	20		$\sqrt{4}$	$\overline{14}$	$\overline{32}$	20

$R=$ Resitation
$L=$ Laborarory
$S$ = Siudy ar home
Cas Credits

# MAGNETXC MAPE DEPARTMENT 

Bnginear: RoBoisvert

## TRABLE OR CONTENHS

Tape Control 56 Development． 00000000000000000000001
शape Unit Evaluation。 ..... $2-3$
Digital Link Tape Unito000000000000000000000000000004
Future Rrojects ..... 5
Manpower． ..... 6

Ko．Olsen
W。 Eindge
Bo Gurley
D。Best
A。Blumenthal
D．White
R．Doane
J．Fadiman
R．Savell

## Project：Tape contron 56 devencmant

Fintory：The type 56 contro？paoject is the result or a specticic request Exem a custemers deals Brown was given the proso ject on a consultant basis．I toer ovar the project on a Eull time basisoin September．

Sales Outhoos：There has been considerante interest in this cone 6301 Erom both patevions and Euture customerson have besan aslsed to commit musefs to a deldvery two menths atcex the prototypa．I ambieipate the same ot six of more of these convens in 196300

Status：Ny eaxget date Eox cemoterion on this contan is moril 30， 1963．TO date the project is on schedute。 I xomesee Cwo possible trowble spotes in my scheduremProgramming andresed circuitry meduses．

## Schedule：

Dates
SEyt．DEC．
Decomana．
1．Mo Enginear：

mechanical assemblies
R．Bbisvert
rsoesign．redevalument ofMo Axsenaule

Bo Guxitey Ro BOISvant

Production
欮。Axsenamit

R。Boissueris
M。Ansendirlt
R。Boisvert
R．EOHSVERH
Mo Acsanautio

## Function

draw brocse scinematics， wirting diagrams and nacessary meatamicez assembljes basic ideas，checliting OE pximes and design os oef zine testerr

STume session besore construction
construction
construction and chacisont 0 ox monine testar
simple diagnositic programs
Ofswine chectsaut of the contson

> onompae checetcut on protorype

Checrout on MSA computers

Project：Tape miti ovanuation
Hiscory：Arcon ？year of emperience with the potion Tape vint．I decjded that there had to be a machine which may not bo as gaod in the stantrobton charackeristics which would perramm as we use a mapa unit，as werl as the potter． In additiono z nospod that it would not inheremity havo many of the problems we heve encouncened with the potter 0 on sajes，bigineowing，and customex relations level。 Some or thase problems are：
a．tension axm brealkage
b。 Eriction or mechamical type writteloclaom swi．tch
Co inabitity of photosonsing cixcuitry co derectitina difference beibven Itght colored tapes and the zeo Elective strip．
d．the continuat，need soy adjustment of this photom semaing cizcusiczy。

Qo locat inventory ci suare parts by supplios
5o a I year waicunty on the unit，which wougd covar our I year rosponsibinjity。

Go cost on the basic components
Evajuaticn：qhe evatuation with be conducter on chnee tape unics．
 maximy on tine perscamance and remiabiotivo which win be conducted in three stages．
mbe airst stage wity be ofi jine testing with our poztaboe tape unit celjusacom。 the considarations will be mechanican adjustments，electricel calibuation，and component replacem mento

Fhe second sioge with be ast Hine testing with the type 52 controlo The considexations hene are data relitability and mechanical consistancy．

The thixd siege win men on tine testing with the controt 52 and the control 51．gha same considerations as in the second stage will be preademinamto

Status：The project is presembly on schedule and no delays axe empected．

Dates	Manpower	Eunction
Nov．－Dac．	－R．Boisvert   M。Assenauzt   M。Dill	interiface and off ilne cesting
Dac．－Jan．	M．Dill   G。 Fowier	On line testing

Project：Digital Inink Tape Unit
History：Wa as a company must offer an inempensive tape system for present and witure computars．the answer to an inexpensive and reliable tapa sygtem is che tinl Tape Unit．

Salea Cutlook：I don ${ }^{\circ}$ t think there is any question to the sales pessibilities $0: 1$ this unito I personaliy have had many previcus customers visit me aster the Decus meeting to discuss the junls tape unito I have had calis from such places as the Reseatch Department，Uo or Mississippio ino quiring about the link tape unit。 My real Fealing is that we ought io have 25 units on the shelf when we put it forme aly on che maxiset．

Status：The target date for this unit is March 15，2963，so that its grand entrance will take place at the IRE Showo To date，we have been investigating motion and motion control． Aster about a three day session with stodrebrand，I will begin to Eommate control possibilities for uge with the pnpas and the pDP－io Major drawback will be programmingo

Schedula：Date

Nov。－DeC。	R．Best   R。Boisvert   はの Hamiston	control electronics motion and motors
．	T．Stockebrand   I．Prentice   S．Miller	mechanicad problems and design
	B．Guxley   G．Bell   R．Boisvart   T。Stecleabrand	tape control，format，spaci－ fications．logic design and development
Dec．ajan。	R．Boisvert 4 drafismen （2 weeks）	development drawings
小ano - ［eb	Procuuction	
Febomiax。	R．Boisvart Programmer	on line checkout

MARCH 25
IRE SEOW

Future projects: Gordon Bell. Jack Brown, and I are all taking a, serious look at the high speed channel cycle as a means of bookjeeping for data transsexs. In the case or the PDP-1 transfer time becomes 25 microseconds with a maximum time of 55 usec. In the PDRm the minimum is 24 usec. and maximum must be controlled by the programmar to be 64 usec. The booklsooping functions are approximately one-half the cost of the 52 control. thus. a control of this nature would sun in the vicinity or 15 k and be far superior to the type 51 or 54 simple controls. In addition, a ene tape control customer would lose no performance featuses presently offered in the 52.

Where has been some interest in a system that would be approximately the same cost as our present system but of both 200 and 500 characters to the jnch. Ben Gurley and I have tallsed to several tape unit companies about a subsystem to do this. I don ${ }^{\circ}$ 'c EeQl we should spend a great deax of time on this until a fism ordex is placad for such a system.
T. Stockebrand's idea for a reel to reel single motor tape drive intrigues me. I think that this might be seriously considered for a follow-up of the link.

Manpower: In the nest year. I Earesee many more tape systems which will requixe more manpowar. At the present time, I heve managed to talke care of development, trajning, ziald service, consulting to spacial systems, custemex ielations, and a littile thought to the subure。 I hope you are geiting the feeling I am being spread a $2 i t k y$ thino I feel that I donnt have the tine to do anything realiy xight and I am relying heavily upon my techmicians in many areas os zesponsibility。 I Eeel that it is time we began to groom an enginaer in modula design so that by Apxith or March of naxt year I can have some EmFiPo Naturally. I would lile an experienced man right nows however. I find this from the standpoint of availability a very semote possibilityo

DATE November 15, 1962

SUBJECT ${ }^{23}$ 3rd Meeting of the Test L'quipment Committee

Members of the Committee:
Robert Hughes, Chairman
Russell Doane, Secretary
Donaid White
George Gerelds
Dave Dubay
Dick Tringale
Jim Cudmore
Larry White
Ken Wakeen

1. The 545 oscilloscope in use at BBEN is now 8 months out of calibration. Dave Dubay will make a trip down with an exchange oscilloscope.
2. All of our current probes have arrived, but Bob Beckman needs more-mso does Ed Harwood. We will order whatever is required. Ed Harwood needs two current probes and two multimeters for use in a kit to be used for computer installation.
3. The in-circuit transistor tester will be tried out in special systems.
4. Extensive tests with our type 291 Tektronix diode switching time tester show that it is a very useful instrument although it may be difficult to calibrate. However, it is the only method we know of for making recovery time measurements of the order of 1 nanosecond, and therefore, we have ordered one. The price is $\$ 250$.
5. We will consult Dick Best about buying a type 290 transistor tester which costs $\$ 290$, and operates in somewhat similar fashion.
6. Ne will soon get a demonstration of a 10 megacycle, 16 1b, portable oscilloscope made by Avnet, which might be useful for field service.
7. We will soon have a Ceneral Radio Limit Bridge on trial. This is a new bridge which has just been introduced by General Radio, and it would be used for incoming inspection of passive components.
8. The Contronics production diode tester is still not delivered but we still expect delivery shortly.
9. We still have not calibrated either the meter calibrator or one of our flukes. The other flukemeter has been recalibrated at no charge by Technical Instruments as has our new kintel power supply, because of an apparent discrepancy in their readings. After this recalibration some discrepancy still was observed, but apparently this discrepancy was due to thermal potentials which can be avoided by extra care in wiring.
10. Ken Wakeen is our new member of the test equipment committee. He has some experience with calibration setups and will explore our needs in this area. He also knows from experience about production $f_{t}$ testers and will help investigate our needs in that area too.
11. A tabulation of test equipment needs in areas where the committee did not have adequate first-hand information is attached. As a result of this investigation we decided to order a fluke model 821A which has $a .01 \%$ absolute accuracy and also to order a Boonton Electronics Model 95A zero center vacuum tube DC volt meter and DC microammeter. The VTVM has a sensitivity of 10 microvolts full scale which makes it more seasitive by far than even the John Fluke nullmeters, so that it is an excellent bridge balance null indicator as well as being a useful general purpose vacuum tube voltmeter for voltapes to 1 Kv . Fhe Flukemeter is similar to our other meters except for the increased accuracy, and its cost is $\$ 895$. The VTVM will cost $\$ 495$.

The next meeting of the Test Equipment Committee will be on Tuesday, December 11, at 1:30 P.M. in Bob Hughes office,
cc:
H. Anderson
B. Beckman
B. Gurley
W. Hindle
N. Miazzarese
R. Mills
J. O'Connell
G. O'Dea
K. Olsen
S. Olsen
H. Painter
G. Rice
M. Sandler

All Engineers
All Technicians

TEST EQUIPMENT	DAYS PER   MONTH NOW   AVAILABLE	DAYS PER   MONTII   NEEDED	NUMBER   OF   USES	MUTBER OF   PEOPLE   ASKED
Sampling Oscilloscopes	63	44	4	13
Flukemeters	42	$561 / 2$	17	23
Kintel 0.018 Programmed   Power Supply	21	$241 / 2$	5	23
DC VTVM	21	43	5	23
Audio Oscillator	21	10	5	14
Dual-Beam Oscilloscopes	63	21.	8	5
Resistance Bridge	42	40	10	13
Controlled Temperature   Chambers			14	

DATE November 14, 1962
SUBJECT
TO
H. Anderson
E. Harwood

FROM J. Smith

I have contacted Jack Atwood in relation to serial number tags for PDP-1 and PDP-4. The tags will be popriveted onto the 813 control panel.

DATE November 14, 1962
SUBJECT
TO K. Olsen
H. Anderson
N. Mazzarese
G. O'Dea
S. Olsen
D. Mills

Our program for the construction of two standard PDP-1 computers is progressing according to schedule. Schedule delivery for the first computer in November was 11/2. This date was met and the computer was delivered to Checkout on $11 / 2$ with $100 \%$ modules. The second computer for November is scheduled for delivery to Checkout on 11/23. Presently the machine is completely wired minus major components and modules. There will be no problem in meeting the $11 / 23$ schedule date. Computers for December are progressing according to schedule. They will be completed according to schedule on $12 / 7 / 62$ and $12 / 21 / 62$. I am quite satisfied with the progress of the program and cannot forsee any problems that would interfere with the completion of two computers per month. Progress of the program can be readily observed by the number of computers in various stages of construction in Building \#5.

## Routing of PDP-1 and ADX Destan Changes

PDP-1 Distribution List

Ed Harwood

## ABSTRACE

This memorandwn is a deacription of the routing of all PDP-1 design changes. The names of the persons involved in the routing may be changed at a later date. For the prenent time. this memorandur will point out the person or department involved in the routing. A design change to the RDPm1 or ADX system reay be originaced by any person woxking at DEC. A customex may request a design change and it worsld be handled in the normal way.

Anyone wishing to originate a design change for the PDP-1 or ADX Bystem should get a white design changa kheet. Thesse can be obtained from the gechnical Publications Degartment. The originator will maris up all the appropriate colums on the design change sheet. and fill in all necessary informations guch as, nature of change. block schematics involved and effect on programaing. After the originator mas written up the change, and marked up all the necessary block schematics, wiring diagrams, cable lists, block diagrams and whatever other drawings pertain to thds change, he will send then to Nick Mazraxese. Nick will check thie change and decide whether it will be performed or not. If he questions the need for the change he will hold it cemporarily to discuss with someone else, or perhaps return it to the originator with his reasons for disapproving it. If Nict $\mathrm{OK}^{\circ}$ s the design change, he will then give it to his secretary who will hand cazry it to Ed Harwood and Jack Shields for their notification. The reason for this path is so that the computer cineckout and Customer Relations groups can be notified in advance of the change being considered and should vaice their approval or disapproval. If either the Computer Checkout or Customer Relations groups have a question on this change, they will consuit with Nick Mazzarese. If it is $\mathrm{OK}_{0}$ it will either be routed to the Drawing Control center or. if the design change in experimental in nature, will be tried on the protorype before it goes to the Dxawing control center. The person assigned the responsibility of checking out the change on the prototype will see that the deaign change goes on to the prawing Comtrol. Center if it is ok or back to Nick if it does not parform properly.

At the Drawing Comexol Centar. Worm Barryman will mark-up the appropriate nuwher of drawinge and type the dosign change on a formal numbered form. He will gather one complete aet of dxawings. dncluding all block schematics, wixing diagxams and cable 1ists, and present these with the numbered change to Nicor Nassareae for his signatuze. Whan yick Bigns the change, it iss official and 驼wind be cone on ali suachinos designated on the change form. It then goes bacit to the Drawing Control Center and Norsm Petryman Lswaen markedu up drawings to all the people listed on bis 30 mo 1 and Axy deaign changu diatribution 21.54.

Some of the people on this list have tho responsibility fios notifying the brawing conerol center when the deajgn changea have been sone and checked on a particulas machine. Theme grompa are as Eollows:

Earmett Pxitchaxd an Wea the design change has been done on asy machine in the final assemsiy area.

Eob Reed - When a danign change has been done on any matuine in the final test axa.

Eob becknan - When the design clange hae been dowe on amy nachine in the Eicld.

I wast strexs the inpottance of these people aending MRTivisy notisicaition back to the gueawing control Center when a deajga chunge has bean coruplatec and checlsed on any machine fn their areap as the files at the Drawing Control Center cannot ba kept up to ditce without this information feedback. see attwened flow ditagram mowing the design change routimg.


RH2/ak


SUBJECT
TO K. Olsen
FROM J. Smith
H. Anderson
M. Sandler
N. Mazzarese
G. Bell

Attached, you will find a copy of the operation number program introduced into the computer group. This is actually a rough draft and more classifications under each digit will be added as the program progresses. The purpose of the program is outlined below.

1. To gather more realistic operation times for scheduling purposes.
2. To evaluate performance.
3. To point out high cost areas.
4. To set a standard of performance without time study.

Ken's suggestion that we have some way to determine our rework cost has been intergrated into the fourth digit. This digit will also supply information on cost of Engineering changes broken down into two phases, mechanical and electrical. The program has been discussed with Dick Mills.

Since the introduction of our computer construction program, our methods of gathering information on operation times has been rather informal and very time consuming. At first the program was small in volume and these methods wexe adequate. Now that our program has incxeased in volume and complesity. we must sophisticate our procedures and speed up our information processing. our mechanical methods of infoxmation processing matt be abandoned and replaced by data processing through our pop-4. of course, in any such program the information cut is only as accurate as the ino Eommatron Eed in.

In ordex to gather more realistic information, it is necessamy to introduce operation numbers. Most of you are Eamiliar with operathon numbers from working in module assembly. Use of operation numbers will enable us to gather information that will be a source of evaluation performance. They will also greatly aid our scheduling extorts.

It is most important that each person take a pexsonal interest in seeing that he or she is using the correct operation numbex. This in turn will generate accurate and useful incormation. Your cooperation is solicited in helping to make this program a success.

Attached you will find a breakdown on each operation digit and an explanation of how to use the numbers.

The first hali of the job mumer designates the type of system that is being worked on. 9000 is PDP-1, 8000 is ppp-4. etc. A breakdown of the vasious types of systems that will be worked on can be found under Illustration 3 . The second half of the job number is simply a numerical coding. You will always be mupplied with a job number when given a job to do. The job number will continue to be placed in the same block you are currently using. operation numbers will be placed into the space provided under Operation sto. The number will be a four digit number. Below is
an explanation of each digit. Clansisication under each digit can be found in Inlustration II.

1st pigit
Will specify what classification of persomel is doing the work.

2nd and 3xd Digits
will specify what paxticulas section of the system is being worked on.

4th Digit
Will specify whether the work being done is rework. IE so. what type of xework and at what stage of the manufacturing cycle it is taking place. Also, a number is assigned to Engineering Changes.

9000	PDPa1
8000	PDP-4
7000	Magnetic Tape 50
6000	Display 30B
5000	Magnetic Tape 52

1st Digit IIXIX|X
1 Systems wixing gixl:
2 Wiremen
3 Mechasical Assembly (cabinet shop)
4 Inะpectors (1m-process)
5 Inspectors (Quality Control)
6 Test Technicians ( off line checkont
7 Test Techniciams (checkout system)
8 Cable Assemblers (giris)
and Digit and 3rd Digit $x / 3|x|$
$011 \mathrm{IA}-1 \mathrm{~B}-1 \mathrm{C}$
02 1D-IE-IE
03 1H - $1 \mathrm{~J}-1$ 思
04 2A-2B-2C
05 2D-2F
06 2F-2E - 2J
07 11A-11B-11C
08 IOT
09 Memory System
10 Rultiply - Divide
11 Mutiply - Divide Installation
12 High speed Channel (1Y - 1z)
13 High Speed Channel Tnstallation
14 Memory Estension ( $2 \mathrm{Y}-2 Z-3 Y$ )
15 Memory Extension Installation
16 Sequence Break Type 20
17 Sequence Bxeak Iype 20 Installation
18 Operator Control Assembly
19 Intra-Ranel (between mounting panel)
20 IntermPanel (between cabinets)

21 Cabinet Assambly
22 Eimal Construction
23 Quality Control
24 System Checitout
25 Other Special Options

## PDP 4

01 1A to 1F

03 2F - 2F-2F
04 Inter-Panel
05 Cabinet Assembly
06 Final Construction
07 Quality Control
08 System Checkout
09 Intra~Panel

## Magnetic Tape 52

01 1B-IC
02 10-1E-1F
03 1世 - 1H
04 Intra-Panez
05 Iogic Cabling
06 Cabinet Assembly
07 Final Constxuction
08 Quality Control
09 Off Line Checkout
10 On Iine Checkout

## Maqnetic Tape 50 \& 52

01 Logic Sub Assembly with slice Gain Panel
02 Cabinet Assembly
03 Mechanical Assembly
04 Control Panel Assembly
05 Final Construction
06 Quality Control
07 Off Jine Checkout
08 On Line Checkout

Display

4th Digit (Rework) : $x \cdot x \sqrt{814}$
1 Electrical, before Checkout
2 Mechanical, before Checkout
3 Electrical. after Checkout
4 Mechanical. after checkout
5 Engineering Change Mechanical
6 Engineering Change Blectrical
Egamole 률
Girl is wising panals 1 - 10 - $2 \pi$ for $P D P-1$ job numbers $9000-1234$
operation no. ..... 1030

Girl is correcting mistakes made on above panels operation no. 1031
Example : 0
Girl is making engineering changes on above panels oparation no. 1036
Example 44
Gix1 is wixing Memory sxtension option operation no. ..... 1140

# Interview Schedule - Thursday, 11/15/62 

K. Olsen

Personnel--Bob Lassen
H. Anderson
S. Olsen
W. Hindle
N. Mazzarese

Allan Titcomb - will return for a second interview on Thursday, 11/15/62. He will have lunch with Win and Nick and will meet with Ken and/or Andy at 1:30 P. M. Stan has already met him, and we feel he's worth further consideration for Sales Engineering.

Eugene Brandeis - will come in for his first interview on $11 / 15 / 62$ at $2: 30$ P. M. with Stan and myself. If we feel he's a good prospect, we will have him talk with Win, Ken and Andy. He is a high level Sales-Marketing type engineer and is currently Manager. Instrumentation Products Marketing Department, Ampex International Operations, Inc.

RTL/jfr

DATE November 13. 1962
Transistors MD-114. 2N1754 and obsolete stock.
SUBJECT Tran
TO $\sqrt{H}$. Anderson
Cc:
D. Best
R. Hughes
G. O'Dea
M. Sandler
K. Wakeem

A meeting was held last Thursday to decide on the action to be taken regarding MD-114, 2N1754 and obsoleted transistors.

The MD-114 was priced at $\$ 0.85$ from Philco and $\$ 0.92$ from Sprague and was an outgrowth of the standard 2N1499A and 2N1754. Sprague notified Digital Equipment Corporation of the change in demand for MD-114 type transistors going from the TO-9 to the TO-18 package with a subsequent price increase to \$1.25. While negotiating another contract with Sprague, Philco abruptly cut the supply of the TO-9 package. A quantity of 2N1499A's and 2N1754's were ordered to maintain production.

Philco has a stock of fortyoone thousand. five hundred 2N1754 transistors in TO-9 packages available for \$0.75 each.

Maynard indicated MD-114 usage to be approximately one hundred thousand units per year with adequate inventory to last three months at the rate of six thousand transistors per month.

Some fifty per cent of the $2 N 1754$ 's will pass the 20 volt MD-114 specification, ten per cent will be MD-114R at 40 volts and forty per cent less than 20 volts which can be used at 4 volts which is the bulk of applications.

A commitrment for one hundred thousand MD-114's at \$1.25 each from Sprague was contracted on September 29th.

We briefly discussed the transistor pricing structure as used in all modules. The 5 megacycle line has $\$ 2.20$ transistors. 10 megacycle $\$ 1.00$ transistors, and 500 kilocycle a $\$ 0.34$, and
\$0.75-\$1.25 transistors. In light of this the \$0.25 NPN Planar Silicon Epitaxial appears attractive. A price quote on a 2N995. which is the Silicon Epitaxial Planar RNP type came in from Fairchild at $\$ 7.00$ each. Further investigation will be made on a Germanium Epitaxial Mesa transistor as a low cost replacement type.

The direct financial considerations are the increased cost of the MDo 114 to $\$ 1.25$ and the available $2 \mathrm{~N} 1754^{\circ} \mathrm{s}$ at $\$ 0.75$. The $\$ 0.75$ will apply against sixty thousand units since we have received eighteen thousand, five hundred pieces on individual orders. The forty-one thousand. five hundred balance can be scheduled. Savings possible in buying 2 N1754's $-\$ 30,000.00$.

CONCLUSION: Order the balance of 2N1754's from Philco at $\$ 0.75$ with scheduled deliveries against production releases. tentatively to begin in February.

Delay delivery on the Sprague commitment.

Each transistor in Production's obsoleted inventory was discussed and evaluated in light of status, possible usage and quantity. Most will be made available for sale or return to vendors. Maynard is to publish a complete list of all units in surplus stock.

## INTEROFFICE MEMORANDUM

DATE November 13, 1962
SUBJECT
TO K. Olsen
G. O'Dea

FROM J. Smith
H. Anderson
D. Mills
S. Olsen
G. Bell
M. Sandler
A. Hall

I have been notified by A. Hall to stop construction of all logic wiring for PDP-4. An extensive Engineering Change could be generated because of the introduction of the 4606. A new Production Schedule will be issued as soon as the system is again released to Production.

THE FOLLOWING IS A LIST OF MODULES RETURNED FOR REPAIR DURING THE WEEK OF NOVEMBER 5.

UNIT SERIAL NO.

CUSTOMER

UNKNOWN NONE

UNKNOWN NONE

UNKNOWN NONE

UNKNOWN NONE

UNKNOWN NONE

UNKNOWN NONE
I.T.T.
I.T.T.

UNKNOWN

UNKNOWN

UNKNOWN

UNKNOWN

UNKNOWN

UNKNOWN NONE

UNKNOWN NONE

UNKNOWN NONE

UNKNOWN NONE

UNKNOWN NOME

UNKNOWN NONE
UNKNOWN NONE
UNKNOWN NONE
ADX-8 NONE

SPEC. SYSTEMS
I.T.T.

DEFECT

PHILCO MA90 (IK4 6301) OPEN BASE TO EMITTER

PINS X Y 2 NOT SOLDERED SECURELY IN BOARD

NONE

NONE

NONE

NONE

NONE

NONE

NONE
repair of returned modules (cont.)
SERIAL NO,
CUSTOMER
DEFECT
1404
1607

1607
1669
1669
1669

0021233 E 0039055 B

0027149 B
0026040 C
0034467 C
0038832 C

0034475 C
0016619 C
0049270 C
0029182 C

05726 C
0028724

0029283 B

0020765 в
0020630 в
0020635 B

06246 B
00308358
00318368

0020322 B

0009329 8
0035079 B
0035082 B

0035078 B
0020315 B
0035085 8 99341 B
Q.C.
I.T.T.

UNKNOWN
D.E.C.
D.E.C.
D.E.C.
D.E.C.
D.E.C.

30-B DISPLAY

30-B DISPLAY
30-B DISPLAY

ADX-3

MAG. TAPE
MAG. TAPE
MAG. TAPE
MAG. TAPE
MAG. TAPE
MAG. TAPE

MAG. TAPE
MAG. TAPE
MMG. TAPE
MAG. TAPE
MAG. TAPE

MAG. TAPE
D.E.C.
D.E.C.
D.E.C.

RESISTOR OUT OF TOLERANGE
NONE
MD95 HIGH ICBO (SPRACUE 2-07)
NONE

NONE
NONE
NONE
4JX 1 C741 OPEN BASE TO EMITTER(G.E. 239)
NONE
NONE
NONE

MAA90 - SPRAGUE 2-19 OPEN BASE TO EMI TTER
NONE
NONE
NONE
NONE
NONE
NONE
NONE

NONE
NONE
NONE
NONE

NONE
NONE
NONE
NONE

UNIT
1685
1685
1685
1685
1703
1703

SERIAL NO.
0020783 B D.E.C.
D.E.C.

UNKNOWN

PDP-1

UNWNOONS
UNIKNOWN
UNKNOWN
UNKNOWN
UNKNOWM
UNKNOWN
UNKNOWN
UNKNOWN
UNKNOWN
UNKNOWN
ADK-8
$A D X-7$
I.T.T.
I.T.T.
1.T.T.
D.E.C.
D.E.C.
D.E.C.
D.E.C.

NONE
2700 OHM RESISTOR MARKED WRONG. READ 3800 OHM.

NONE
DOO3 OPEN - 2N13O4 SHORTED COLLECTOR TO EMI TTER - DOOI OPEN

NONE
NONE
NONE
NONE

NONE
NONE
NONE
NCNE
NONE

NONE
MD-114 (SPRAGUE 2-38) HIGH LEAKAGE
NONE
MD-114 (Sprague 2-26) hich leakage
MD-114 (SPRAGUE 2-26) HIGH LEAKAGE NO OUTPUT ON Z - ZNIO65 MISSING FROM BD.

MD-114 (SPRAGUE 2-26) HIGH LEAKAGE
NONE
PHILCO 2NI 204 1J56224 OPEN B - E
PHILCO 2NI 204 I 36220 OPEN B - C
WRONG TRANSISTOR PHILCO 2N599
SPRAGUE 2N2099 SHORTED E - C
PHILCO 2N2O99 is46220
PHILCO 2N2099 2K46301 SHORTED EMITTER
TO COLLECTOR
ALL 2N2099 TRANSISTORS MISSING LIFTED COPPER

GUIDED MISSILE SCHOOL
B.B. ${ }^{2}$ N.

0055798 C

0051330 E

0027014 E

0027663 E

0060115 E

0060117 E

0034017 ह

0026637 E
0060120 E

0060146 E
0026634 E

0026783 E
0026780 E

03721 E

0026645 E
03721 E
0010962 G

0046217 H

93290 F

0010956 G

0043102 E
D.E.C.
I.T.T.
M.I.T.

UREKNOWN
UNKNOWN

UNWNOWN

UNKNOWN

UNKNOWN
UNKNOWN

UNKNOWN

UNKNOWN

UNKNOWN

URNKNOWN

UKKNOWNT
UNKNOWAS

PDP-4

PDP-4 FOXBORO

UNKNOWN

UNKNOWN

UNKNOWN

UNUNOON

SPRAGUE 2N2099 SHORTED EMITTER TO COLLEGTOR
"

2NI 204 PHILCO(1J5, IKI, 1 J4)
(6224, 6225, 6220)SHORTED EMITTER TO COLLECTOR -- DOOI DIODE IN PLACE OF DOO3 10 OHM RESISTORS BURNED OUT C6 .OI CAPACITOR SHORTED

NONE
NONE

NONE

NONE
NONE

NONE
NONE
NONE
NONE

NONE

NONE

NONE
NONE
NONE
NONE
NONE

NONE

NONE
NONE
NONE
NONE

REPAIR OF RETURNED MODULES (CONT.)

UNIT	SERIAL NO.	CUSTOMER	DEFECT
4110	0043364 E	UNRNOWN	NONE
4110	00.431/4 E	UNKNOWN	NONE
4110	0043367 E	UNENOWN	NOME
4110	0043108 E	UNHKNOWN	NONE
4110	0050988 E	UNENHOWN	MONE
4110	0043166E	UNHNOWN	NONE
4110	0019891 E	UNKMOWN	NONE
4110	0043171 E	unrunown	NONE
4110	0043105 \%	UNKONOWN	NONE
4110	0043360 E	UNKNOWN	NONE
4110	0035680 E	UNKNOWN	NONE
4810	0050996 E	UNKNOWN	NONE
4110	0051988E	UTKKNOWN	NONEE
4110	0043170 E	UNMNOOWN	NOME
4110	0043366 E	UNONNOWN	NONE
4110	0043351 E	URAKNOWN	NONE
4111	0042863 D	UNKNSOWN	NORE
4111	0042852 D	UNKMNOWN	NONE
4111	0061912 D	UNOKNOWN	NONE
4111	0036472 D	UNNKNOWN	NONE
4111	0035785 D	Un*NOWN	HONE
4111	0027090 D	Unanolial	NONE
4111	0017498 D	UNKNOWN	NONE
4111	0035222 D	URNKNOWN	NONE
4113	0025789 A	UNKNOWN	M-114 REPLACED
4113	0030445 A	UREKNOWN	MD-114 REPLACED
4113	0010030 A	UNKNOWN	MD-114 REPLACED

rtepalr of returned modules (CONT.)

UNIT	SERIAL NO.	CUSTOMER	DEFECT
4113	0010042 A	UNINNOWN	MD-114 REPLACED
4113	0010586 A	UNKNOWN	MD-114 REPLACED
4113	0055937 A	UNHKNOWN	MD-114 REPLACED
4113	0055947 A	UNKNOWN	MD-1 14 REPLACED
4115		1.B.M.	MD-114 OPEN BASE TO EMITTER   MD-114 SHORTED EMITTER TO COLLECTOR
4128	0054416 A	D.E.C.	NONE
4128	0057795 A	UNKKNOWN	NONE
4128	0057348 A	D.E.C.	NONE
4128	0053842 A	D.E.C.	NONE
4128	0057082 A	D.E.C.	NONE
4603	0049695	D.E.C.	G.E. 2NI 305 ID HIGH LEAKAEE
4603	53223	I.T.T.	DOOI IN BACKWARDS
4603	53833	1.T.T.	NONE
4603	0049212 D	D.E.C.	NONE
4603	0062605	D.E.C.	NONE
4603	0049208	D.E.C.	NONE
4603	0062352	D.E.C.	NONE
4604	0008973 A	PDP-4	NONE
4681	0055694 F	D.E.C.	NONE
4681	0057052 F	D.E.C.	NONE
4681	0053363 F	D.E.C.	NONE
4681	0034757 F	D.E.C.	NONE
4681	0034754 F	D.E.C.	NONE
4681	0034756 f	D.E.C.	NONE
4681	0034746	D.E.C.	NONE
4681	0034755 F	D.E.C.	NONE
4681	0035241 F	D.E.C.	NONE

REPAIR OF RETURNED MODULES (CONT.)
UNIT
SERIAL NO.
CUSTONER
DEFECT

4681	0035250 F	D.E.C.	NONE
4681	0035249 F	D.E.C.	NONE
4681	0034759 F	D.E.C.	NONE

Of A TOTAL OF 155 RETURNED, 122 HAD MO DISCERNIBLE DEFECTS.
K. Olsen
R. Maxcy
H. Anderson
$\checkmark$
S. Olsen
G. O'Dea
W. Hindle
R. Mills

The attached list is a composite of the terms and conditions that sales has been using in proposal writing. If this meets with approval, we wish to continue its use in our new "proposal packaging".
A. Prices quoted herein shall remain in effect for 60 (sixiy) days from the date of th is quotation.
B. The prices quoted herein are F.O.B. Digital Equipment Corporation, Maynard, Massachusetts, and do not include Federal excise taxes or any applicable state and local taxes, any insurance costs, or any foreign taxes, including tariffs, customs duties or any exporting or importing taxes.
C. All invoices are due and payable 30 (thirty) days after invoice date. Payment must be in United States dollars.
D. All transportation costs and any special packing or installation costs involved with the delivery of the equipment quoted herein from Maynard, Massachusetts to location of installation will be paid by the customer.
E. Any modifications to the equipment or terms specified herein may cause extensions of the delivery dates and/or increases in the quoted prices.
F. A Digital Equipment Corporation (DEC) computer system is defined as consisting of 1 (one) standard DEC PDP-1 or PDP-4 with one or more pieces of standard peripheral equipment. Such a system can be delivered and installed within approximately 6 (six) months after the award of the contract in the case of a PDP-1. A PDP-4 can be delivered and installed approximately 4 (four) months after the award of the contract. A single contract calling for two or more systems will require an additional 2 (two) months for each additional system.
G. All of the equipment quoted herein which is manufactured by DEC is guaranteed to be free from design and manufacturing defects for a period of 6 (six) months following the date of acceptance and delivery (see below). Any component which fails during this period will be repaired, or at DEC option replaced. This warranty does not cover components which have been modified without DEC approval or which have been subjected to unusual physical or electrical stress. Components which are not manufactured by DEC are limited to the warranty provided by the original manufacturer. Original manufacturer warranties commence upon the date of delivery and acceptance of such subject equipment at Maynard, Massachusetts. The equipment subject to original manufacture warranties are Perforated-Tape Reader, Perforated-Tape Punch, and Automatic Typewriter.
H. The date of acceptance shall become the invoice date and the beginning of the guarantee period described above. Acceptance shall follow the successful operation of the equipment under standard DEC test procedures applicable to the equipment. Subject to approval by DEC, the buyer may include other test procedures. In such case the buyer shall bear the costs of preparing and checking any special programs, and acceptance testing shall not be delayed because of the nonavailability of such programs or of complications arising from their use. Final agreement between the buyer and DEC on test procedures and programs shall be reached no later than 30 (thirty) days before the scheduled acceptance date.

12 Wovember 1952
SUBJECT
TO
EDE 1. Programueng Conzee


The First of a merdes or one week courses on EDEw programaing Wil thazt on Decenber 10. Ettached is a tencative scheduhe HOR this fingt class.

Although the course is Lnterded for custoxezs, DEc cmployees ase welcome or a "space availeble" basis. Almost all of the Studemes for this "pilot" course will be DEC emoloyees.
mhis is pot incencled as baskc progumaning course. it has been layed ont with the asmughtios that the students will be programmers who whas to leasn the speatilcs of PDEal progemmuing.

	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	PRIDAY
0900	CHECK IN   INTRODUCKION	MACRO SYMBOLIC ASSEMBLY	INTRODUCTIG:   TO CODTNG	BASIC   INSTRUCTIONS   OPERATE   GROHP	BASIC   INSTRUCTLIONS   INPUT-OUTPUT
1000	ENTRRANCE   EXAM		BASIC   INSTRUCTTONS   DAgA   HANDIING	BASIC   INSTRUCTIONS   SHIET/ROTATE	
1100	PDP-1   DESCRIPTION	$\downarrow$	$\sqrt{V}$	$\qquad$	$V$
1200	LUNCH	LUNCH	LUNCH	LUNCH	LUNCH
1300	DIGTTAL COMPUTER MATHEMATICS	DEBUGGING TARE ANALYSIS	BASIC INSTRUCTIONS PROGRAM TRANSEER	BASIC   ENSTRUCTIONS   INPUT-OUTPUR	REVIEW
1400	$\downarrow$	PROGRAM   WRITING TAPE ANALYSTS	$V$	$v$	EXAM
1500	OPERATTONA工 ANALYSIS (CYCLES)	PROGRAMMLNG TECHNIQUES	PROGRAMMTNG TEECHNIQUES	PROGRAMMING TECEARIQUES	$\downarrow$
1600 1700	$\downarrow$	$\sqrt{ }$	$V$		CRTTIQUE

## INTEROFFICE MEMORANDUM

DATE November 12, 1962

SUBJECT
TO

FROM Kenneth H. Olsen

Now that we are getting more and more interested in the process control field, I think that we should consider having an exhibit at the Chemical Engineers Show. Will you look up the details of this and put it on the list of shows which we consider for the Trade Show Schedule.

Kenneth H. Olsen
cc: Gordon Bell
Stan Olsen
Harlan Anderson

# DATE November 12, 1962 

SUBJECT PDP-4 Programming Business Schedule
TO Members of PDP=4 FROM R. Mills Programming Group

A discussion was held Friday with Gordon Bell, Dit Morse and myself regarding the short-ferm and long ferm plans for business programming and business operations on our present PDP-4. This is only meant to be an initial report in most content, not going beyond one month on the short-term basis and long range items being of a general nature.

## Short-ferm:

It was decided that Dit Morse will work directly with Fred MacLean and George Breen in programming applications for the PDP-4. Time available in the coming week is November 12, 15 and 16th and we will endeaver to have almost all of Fred MacLean's time avallable to work with Dit Morse during that time. Their project is to finish programming the payroll. The next application is tentatively set as Accounts Payable and the next one, Accounts Receivable, leaving Material and Labor to the end. The problem for the next programming meeting will be to develop a program for use with the Line Prinfer to print out the payroll register and Cost Center listings.

## Long range:

We expect that after the Payroll is completely programmed that the run of 450 employees will take approximately 30 minutes. Gordon Bell and Dit Morse are preparing a permanent schedule of available PDP-4 time and current plans call for assigning blocks of time at $8: 15 \mathrm{c} . \mathrm{m}$. and 1:00 p.m. for Accounting use. Days of this use are not yet known. The weekends are generally free for anyone from Accounting to use the computer. After the payroll program is completed and we get into December for Dit Morse's time, it is expected that one full day weekly, as a minimum, will be available for Accounting use.

The Programming Meetings are off to a good start with interest high and giant steps of progress on an individual basis being made with each meeting.
c.c. KHO, HEA, WH

DATE November 7, 1962
SUBJECT PDP Standard Paper Tape
TO Ben Gurley

FROMKlaus Doering
Frank Kalwell

On our grey fanfold type paper tape, we have experienced a few difficulties:

1. Excessive variation in width
2. Rough edges at the outside
3. Too sharp folds (paper broken)
4. Extra folds close to the main fold (crinkled and crumpled)

On October 30, we had representatives of the Paper Manufacturing Company in and talked to Mr. Charles Weber. He gave us the following information:

1. Tape width specification: $1^{\prime \prime} \pm .005$

This is the closest tolerance they can maintain. As per Mr. Weber, we and two other companies are the only ones being fussy with these tolerances. As they are in a somewhat monopolistic position in this business, they seem to be reluctant or just unable to tighten tolerances. As per Mr. Weber, their processes on tape width is in perfect control. Their paper is supplied to them by a vendor. At acceptance of this paper, they inspect at random $10 \%$ of the received shipments.

This paper comes in $26^{\prime \prime}$ wide rolls and is cut into 26 equally wide ( 1 " $\pm .005$ ) pieces. He says if we have a certain amount oversize, there must be the same amount of undersized pieces because of the certain location of the cutting knives, but we have never complained about undersize. The question is: Can we rather tolerate undersize or oversize (in width) or neither one?

They have a very tight control system at the different production stations. Mr. Weber did not believe (I could not present him any rejected tape) that there were any tapes out of the above tolerances. Ed Fredkin, as well as our engineering department, had formerly rejected quite a few of these tapes as far as I know. They had found the width exceeding the nominal dimensions by more than .012 of an inch. According to Mr . Weber, this excessive width is because of storing these tapes in very humid areas. At excessive humidity the paper tape expands in width ten times more than in length because the grain of the paper goes parallel to the tape length. He claims the relative humidity should be between 45 and $55 \%$ and the temperatures between 65 and $75^{\circ}$ F. He beljeves that during the past summer months we did not maintain this condition. He did not feel responsible for the excessive width under these conditions.

He would like us to check the next shipments carefully right after receiving, and then once more at the point when the tapes are put into computerss in order to find out whether these tapes were too wide in the beginning or only after a certain time of storage under humid conditions.
2. The cutting tools are in very good control, and he cannot understand that we found the outside edges of the tape being rough (due to dull tools). He admitted, however, that they had this problem sometime ago but eliminated it completely.
3. Specification on paper thickness: . $0038^{\prime \prime}$

$$
.0043^{\circ \prime}
$$

This is the closest possible tolerance, but if paper stock is being folded and during a run the thickness varies by .0005 , then the folding tools have to be reset. If this resetting is done too late, and the thickness has increased, the paper can break at the folding edge. This is something difficult to control.
4. Extra folds and crinkles near the main fold were due to too loose unrolling of the paper. This is in control now.

It looks to me as if people from engineering, production, and quality control, should get together to specify the loosest possible tolerance, and purchasing might possibly have to look for an alternate paper tape supplier. Could you please call a meeting?

Incoming paper tape will be inspected from now on. Tape width can only be checked with rather expensive instruments, which we don't have yet.

Enclosed is a list of the specifications available.
cc: B. Beckman
H. Crouse
B. Hughes
D. King
J. Myers
J. Rutschman
Q. C. Manual

```
 DATE November 7, 1962
SUBJECT Computer Tape, Amendment to Memo dated 1l/7/62 from
TO
 Klaus Doering
 Henry Crouse
 Ben Gurley
 Jim Myers
 Bob Hughes
 Bob Savell
 Joe Rutschman
 Bob Beckman
 SPECIFICATIONS ON PERFORATOR COMPUTER TAPE
 Composition........................l00% Chemical Wood Pulp
 Basis Weight........................24 x 36 - 50 Pounds
 Mullen.............................40 - 50 Pounds*
 Densometer............................60 - 80**
 Tensile.. 70 - 75***
 CD 80 - 85****
 Tearing
 MD 70 - 75***
 CD 80 - 85****
 Width
```

$\qquad$

```
 l Inch
```



```
 Thickness
 .0038 - .0043
*Mullen: Is a test performed when a l" diameter ball is used to apply pressure, which determines the ability to fracture the paper.
**Densometer: Is the ability of air to pass through paper.
***MD: Signifies machine direction (Long way)
****CD: Signifies cross direction (Short way)
```

$\mathbb{R}^{1}$. Olsen
EROM: J. Smith
H. Anderson
G. $0^{\circ}$ Dea
M. Sandlex
R. Mil1s

Attached, you will find a composite situation planning chaxt. the purpose of this chart is to decermine what ateps must be taken in order to ship a machine at a given time. It will also point out how much money must be expended to support the program. In order to layout a chart of this type, it is neceswary to know the present status of each major component (see attached copy). We are agsuming that shipments will depend on major components and that all othex items will be available, auch as wiring and modules. The chart does not include the pDPan for production test.

In our present situation, we would be able to ship one PDE-4 in Jamuary and none thereafter. The reason for this is that our present inventory and on order gtatus of Readers is two.

Under plan \#1, Readers would be ordered. The various situations are ghown if the order is placed this month or subsequent months. If the -der is delayed until December, we will not be able to ship a computer vuring the months of February and Rerch. Shippisng time will move out to Maxch and April. Under Plan ill, only three machines can be shipped. At this point, we will run out of Printers.

Plan 荆 will requixe the ordering of Printers.
 add on Blan th. I have assumed the Novembex situation in Plan 湤 and added on the various situations that would arise if Primter orders were delayed until December, January and february. of course, any combination of the two plans can be plotted.

What this chart points out is that in order for us to ahip a pDpo4 duxing. the month of February we will have to expend $\$ 745.00$ for a Reader. If we want to ship another PDPa4 in Maxch, we will have to expend an additional $\$ 745,00$. An additional $\$ 745.00$ will be required for April plus \$1,240.00 for a Rrinter. To gather all these Eigures together, an expenditure of $\$ 3.475 .00$ spread over a three month period will be requixed to ship $3 D P-4$ duxing January. February and March. All months thereafter will require expenditures of $\$ 2.745 .00$ per month, which is the cost of a Reader, Printex and Typewriter.

Assignment of Printer 28－C PDPm4

NUMBER
\＃1
曻2
䛨3
象等

PRESEMT STATHS
In atock（xepairs）
on oxder
on ordex
on order

DELIVRRY DATE

Januaxy
Eeboruary
March

DEC 茾6
DEC 散7
DEC 钓8
DEC \＃9

Current delivery lead time 4 months．

Assignment of Reader 2500 PDP－4

MUMBER
RRaSENT SMATUS
DETTVERY DATY

䋨1
on oxder
November（11／16）
DEC \＃6
半2
on order
Jamuary
DEC 带7
Current delivery lead time $6-8$ weeks．

- JAN FEB MARCH APRIL MAY JUNE JULY AUG SEPT

PLAN\#1 ORDER PLACED |


PLAN\#2


SUBJECT:
TO: REPAIR OF RETURNED MODULES Harlar Anderom

DATE: NOVEMBER 6, 1962
FROM: JIM CUDMORE

THE FOLLOWING IS A LIST OF MODULES RETURNED FOR REPAIR DURING THE WEEK OF OCTOBER 29.

UNIT
SERIAL NO.
CUSTOMER
DEFECT

53

1201 -D

1204

1204

1209

1209

1538

1562

1607

1607

1607

1607

1607

1607

1607

1976

4203

4204

4214

4214

4215

4301

4222

252900

0035194 B

0035208 B

0016233 K

0018271 K

0043389

0049315

0051429 C

0027148 B

00515836
0035771 B

00357798

00271548

0039057 B

0058438 C
00297090

0044177

0043061

0039758

00551518

0020918 E

D,E.C.
R.C.A.

UNKNOWN

UNKNOWN

UNKNOWN
M.I.T.
J.P.L.

DISPLAY $30 B$
UNKNOWN

UNKNOWN
UNKNOWN

LINKNOWN

UNKNOWN

UNKNOWN
I.T.T.
J.P.L.

FOXBORO
D.E.C.-W.C.O.

MAG. TAPE
E.A.
venus
D.E.C.

Q3 SHORTED COLLECTOR TO EMITTER 2NI 204 PHILCO

TRANSISTORS CHANGED FROM SPRAGUE 2N393 TO MAB9 \& 90

NOME

NONE

NONE

SHORTED CAPACI TOR--ELMENCO-1000 PF

NONE

NONE

NONE

NONE

NONE

NONE

NONE
T2 REPLACED -- T2003

MD95 OPEN COLLECTOR TO EMITTER
COLD SOLDER JOINT
TRANS. CHANGED TO 2NI 309 - RESISTOR CHANGED TO 1.5 K

2NI305'S REPLACED WITH 2NI309'S 6-1500 OHM RESISTORS ADDED

NONE
NONE

NONE

NONE
repalr of returned modules (CONT.)
UNIT
4301
0041976 E
D.E.C.

DEFECT

4301
0022165 E
D.E.C.

NONE

4301
0019988 E
D.E.G.

NONE

4301
4301
4301

4301
4301

4301
4301
4410
815876
UNKNOWN
C3. C4, C5 WERE CHANGED FROM AC TO SPRAGUE

4410
4410

4410

4603
81586 G
UNKNOWN
I.T.T.

NONE
NONE
C3, C4, C5 FROM AC TO SPRAGUE

NONE

Of a TOTAL OF 37 MODULES RETURNED, 23 HAD NO DISCERNIBLE DEFECTS.


SUBJECT
TO
K. Olsen

FROM
H. Anderson
G. O'Dea

DATE November 5, 1962
J. Smith

Attached you will find a status report on each major component for computers PDP-1 and PDP-4. The below listed components should be considered for reordering.

1. Model 11 punches will be used on both PDP-1 and PDP-4. There are presently four in stock and none on open order. Delivery lead time is three months.
2. Printers 28C for PDP-4 have a very long delivery lead time of four months. Presently there is one in stock and 3 on open order for delivery in January, February and March.
3. Reader 2500 for PDP-4. Presently there are two in stock, none on open order.

## Recommended actions

Due to the cancellation of the four ITT inventory typewriters plus ADX-9, 10, and 11 we are left with quite a large inventory of $12^{\prime \prime}$ typewriters. Also on open order are seven $16^{\prime \prime}$ typewriters with a delivery of schedule of one per month starting in January. It is my intension to convert the $12^{\prime \prime}$ typewriters currently in stock to $16^{\prime \prime}$ and move out the delivery dates of the typewriters on open order.

At the present time, we have five tape units type 50 wired up and in checkout with dark blue (ITT) potter units. Three are duplex and two are simplex. These units could replace gray type units we have spread throughout the plant and the gray type units in turn could be sold to Customers. With this in mind, we can more or less assume we have five completed tape units Type 50 available for sales. There are ten potter units on open order with a delivery schedule of 2 per month starting in December. Presently there are no customer orders for Mag. Tape units. We should watch this situation very closly because of the large cost of the potter units. It may become necessary to cancel out or move out delivery dates if possible.

## Memory Stacks

NUMBER
PRESENT STATUS
DELIVERY DATE

Ampex \#26
Ampex \#27
RCA \#2
RCA \#3
RCA 争4
RCA \#5
RCA \#6
RCA 7
RCA \#8
BCA \#9
RCA \#10
RCA \#11
RCA \#12
The above average inventory of stacks in stock is due to the cancellation of 14 memory systems by ITF.

## Readers

PRESENT STATUS
DELTVERY DATE
4. 1394
\#1392
\#1391
in stock
on order November
on order December
on order January
on order February
on order March
on order April


IUMBER
in tock
in stock
in stock
in stock
in stock

25 on open order, delivery schedule is for 1 unit per month starting in January.

Typewriter $16^{\prime \prime}$
NUMBER

PRESENT STATUS
on order
on order
on order
on order
on orcer
on order
on order

DELTVERY DATE
January
February
March
April
May
June
July

## NUMBER

## Typewriter $12^{\prime \prime}$

PRESENT STATUS
DELIVERY DATE
in stock

Four of the $12^{\circ}$ typewriters in stock were ordered for ITT inventory. ITT has since cancelled this order. The $12^{\prime \prime}$ typewriters can be converted to $16^{\prime \prime}$ typewriters at a small cost. With this in mind we can assume that we have 8 typewriters in stock.


417
弗18
朋 19
$+20$

## Punches

PRESENT STATUS
in stock
in stock
in stock
in stock

## Potter Units

PRESENT STATUS

## DSLIVERY DATE

in checkout*
in checkout
in checkout
in checkout
in checkout
*All of the units are assembled in cabinets and wired up as tape units Type 50. Three are duplex units. Two units are wired up as simplex units. These units could replace five gray tape units we have spread throughout the plant. With this in mind, we can more or less assume we have five units in stock.
10 on open order with a delivery schedule of 2 per month starting in December.

Assignment of Printer 28-C PDP-4

NUMBER
\#1
\#2
\#3
\#4

PRESENT STATUS
in stock (repairs)
on order January
on order February
on order

DELIVERY DATE

March

DEC \#6
DEC \#7
DEC \#8
DEC \#9

Current delivery lead time 4 months.

Assignment of Reader 2500 PDP-4

SUMBER
4
\#2

PRESENT STATUS
on order
on order

DELIVERY DATE
November ( $11 / 16$ )
DEC \#6
DEC \#7
Current delivery lead time $6-8$ weeks.

DATE November 5, 1962
SUBJECT COMSUMER RANELS
$\begin{array}{cc}\text { K. H. Olsen } & \text { FROM J. L. Atwood } \\ \text { RH. E. Anderson } \\ \text { S. C. Olsen }\end{array}$

I would like to propose the appointment of 10 "consumer panels" to facilitate the flow of work through our group and to make our Works Committee sessions all the more profitable.

These panels would have the authority to: (1) propose advertising and technical publications projects in their stated areas, (2) review any such proposals which we or anyone else might make, (3) recommend to the Works Committee those projects they consider worthwhile, and (4) oversee the completion of the projects approved by the Works Committee. They would be responsible for the appropriateness and accuracy of any material prepared under their supervision, and they would determine a proper apportionment of charges among the various cost centers involved in any given project.

The creation of these panels would allow us to move ahead on many projects which would otherwise be held up for days or even weeks pending high-level decisions on low-level questions. It would also permit the Works Committee to let other responsible persons in the company do much of the initial groundwork and detailed follow-up while the committee concentrates on making the key decisions.

I propose that the panels be organized as outlined below and that their membership be substantially as shown:

SALES PROMOTION
(3000 Series Jobs)

Modules
Stan Olsen
Dick Best
Jack O'Connell

Computers
Nick Mazzarese Bob Savell John Koudela

## Systems

Jon Fadiman Dick Whipple Pat Greene

## TECHNICAL TNFORMATION <br> (5000 Series Jobs)

Modules<br>Barbera Stephenson<br>Russ Doane<br>Don White

Systems
Dick Tringale Ed deCastro Lee Butterworth

PUBLIC RELATIONS
( $0-1000$ Sexies Jobs)
$\quad$ External
Earlan Anderson
George O'Dea
Win Hindle

INDUSTRRIAL DESIGN (6000 Series Jobs)

Ken Olsen
Loren Prentice
Ed. Raswood

In-Plant
Dick Mills
Maynard Sandler
Bob Lassen

GRAPHIC ARTS
(7-8-9000 Series Jobs)
Jack Smith
Henry Crouse Brad Towle

Naturally these panels would not be permitted to infringe on the prerogatives of the officers of the company or of the cost center managers. They would instead serve to assist each of these individuals by weighing possible courses of action and submitting caref̂ully considered and reasonably detailed proposals for final review.

Weither would these panels be in any way committed to employ our group to perform any or all of the projects they undertake. On the contrary, we might often recomend the use of outside sources for reasons of economy, expediency or party harmony.

Nor would they necessarily meet on any set schedule. In many instances, one member or each member individually could take whatever action is required to move a project toward completion.

decd | INTEROFFICE |
| :---: |
| MEMORANDUM |

DATE November 5, 1962
SUBJECT 1959 ETC PROCEEDINGS
TO
H. E. Anderson

FROM
J. L. Atwood

Our first voucher for precanceled stamps used in the mailing of the "Proceedings" was dated March 4, 1960. However, my Day Book indicates that the stamps were actually received on March 8 and that the first mailing was made on March 9.


SUBJECT
TO

K. Olsen	N. Mazzarese	FROM J. Smith	
H. Anderson	E. Harwood		
S. Olsen	G. O'Dea		
M. Sandler	D. Mills		

The first computer in our two computer per month program had a delivery to Checkout schedule date of 11/2/62. This schedule date was met and the system is currently in Checkout. Schedule date of the next computer to checkout will be 11/23/62.

## INTEROFFICE MEMORANDUM

DATE November 5, 1962
SUBJECT Flexowriter - Friden, Inc.
TO/H. Anderson
S. Olsen
N. Mazzaresse
R. Savell
R. Beckman

77 Noventer I ordered a FlODEC Flexowriter for Bob Beckman Friday, Novanhetoker 2, 1962 .

The following proposed modifications should be considered so that an updated specification may be issued to Friden, Inc.

1. Standardize on Friden Flexo Feed Assembly in lieu of Standard Register pin feed platen. Friden Flexo Feed will accept all paper sizes, within sixteen inches.
2. Install slug No. 1082741 in key lever position "U". Quote mark (") over one (1).
3. Standardize on Digital Equipment Corporation blue 5150-S65 for additional $\$ 25.00$ (Digital Equipment Corporation supplies paint).

Frank Cadarella of Friden, Inc. knows of approximately twenty-four FlO-DEC Flexowriters that have been sold to date. He had proposed at an earlier date that Digital Equipment Corporation buy an additional quantity of Flexowriters so that we may rent or loan as a convenience to our customers while they wait the one hundred and fifty day delivery schedule.

The price of the Flexowriter has increased $\$ 450.00$ effective November 1, 1962. We paid the old price for the machine just ordered.

OLD	NEW
\$3,240.00	\$3,690.00
194.40-6\% Tax	221.40
\$3,434.40	\$3,911.40

To keep the delivery within the one hundred and fifty day schedule it's advisable to firm up the specifications as rapidly as possible.

Henry Crouse

DATE November 2, 1962
SUBJECT Anelex
TO G. Bell
H. Morse

I received a call from a Herb Kugell of Anelex. He expressed interest in the pppa4 and his background was mainly from the Adams Report.

I really couldn't get out of him what his interest was and how it would fit into Anelex's needs, but he was talking about how it operated with a line printer and what the guantity discounts were. He would like to have more information as to how we programmed the PDPm4 to operate the line printer and 30 I invited him to come out and also stop to see us at the NEREM Show.

I would suggest that either Gordon or Dit talk to him about the ease or dififculty of operating the line printer which is his main interest at this time.
ce:
M. Mazzarese
H. Anderson
K. Olsen
B. Gurley
R. Savell

## INTEROFFICE MEMORANDUM

DATE November 2, 1962
SUBJECT
Present Delivery Schedule of PDP-4 Major Components TO
G. Bell

FROM J. Smith
A. Hall

Printer 28C

There is one printer in stock in need of repairs. Two printers are on order. One will be delivered during January and one during February.

Current delivery lead time is 4 months.

Reader 2500

Two are currently on open order. The first is due on November 16. The second is due during the month of January.

Current delivery lead time is 8 weeks.

CC: K. Olsen
H. Ancierson
S. Olsen

## DATE November 1, 1962

SUBJECT PDP-4 for Prince Albert Radar Station in Canada
K. Olsen
H. Anderson
G. Bell
B. Gurley
N. Mazzarese

I just called Mr. Seamans at Shirley Bay in Ottawa to verify our position on the PDP-4. Although our machine was very favorable in price there were a few lower priced machines in the same category as ours.

We are very definitely not in the running because they feel they can, for a few dollars more, get a machine with better specifications, more reserve speed. Our machine very definitely met the specifications they called for.

He implied that the computer they are considering is not the DDP 19 but declined to tell me which one it was. He also verified that it is very close to the classification of a paper computer but that this in no way bothered them.

DIGITAL EQUIPMENT COR=
University of Wisconsir Physics Dept.

MASSACHUSETTS

$$
11 / 1 / 62
$$

P. Bonner his
x $\qquad$

Madison
xxx Dr. Myron Good

Wisconsin
$\square$

Dr. Good has read about and thus he called regarding MIT's PEPR system. Specifically he was interested in price, our rental policy, and DEC's discount policy.

I gave him various prices and also DEC's position regarding rental and discourse. Dr. Good felt under these conditions they would be interested -n purchasing a system, and that they would probably apply for discount. They're purchasing a system and the expense inLved did not appear to be a stopping factor.
ce I could not answer all of his questions on $11 / 1$, I sent PDP-I and PDP-4 literature and recontacted him on $11 / 15$, at which time,
after checking with MIT, I referred him to Bernie Wadsworth in the F-15B, F-41B, PDP-1 and PDP-4 Price Lists SENT

$$
11 / 15
$$

$$
\text { AL 5-3311 Ext. } 4513
$$

Nuclear Sciences Lab. for specific information on PEPR. I passed the following information along in my call of ll/l5 to Dr. Good.

3 Parts of the PEPR System

1. PDP-1 System
2. PEPR Control

3. Electrical circuits for CRT, optical equipment and photographic equipment being designed by Dr. Pless. At present, costs not available because work not complete.

Also pointed out PDP-4 too small to be used as computer with PEPR controller.

Whether its good or bad I don't know, however, Dr. Good has been visiting Argone National Labs.

According to Dr. Good they're studying their system needs and also financing.

As a side application, they would like whatever computer they purchased to be able to sense and check their CDC 1604. Also they would like to do miscellaneous calculation with the purchased computer.

Possibly it would be wise for someone to give them a call soon with the idea of possibly visiting them to discuss our machine.


[^0]:    * Indicates New Numbers Added

[^1]:    9000 series numbers o PDPal

