RRADIO CORPORATHON OH ANIFRICA $\mathbb{R} \mathbb{C} A \mathrm{HA} \mathrm{H}_{3} O \mathbb{R} A T O \mathbb{R} I E S$ Tavid damnoff Mesearch benter $\mathbb{P} \mathbb{R}$ IIN $\mathbb{C} \mathbb{E} T \mathbb{N}, \mathbb{N}_{0}$, ato

Harlan E. Anderson EJCC Publication Committee Digital Equipment Corporation Maynard, Massachusetts

Dear Sir:

Enclosed are four copies of the final manuscript of my paper, "Negative Resistance Elements as Digital Computer Components". My biography is also included. The size of the slides I will use in my talk is $31 / 4^{\prime \prime} \times 4^{\prime \prime}$.

Very truly yours,
Moiton 21. Lewin
Morton H. Lewin
MHL: at
Enclosures

NEGATTVEのRESTSTANGE ELEMENTS AS DIGITAL COMPUTER COMPONENTS
 by
 Morton $\mathrm{F}_{\text {. Levin }}$ HCA Laboratories

ABSTRACT I

The use of twouterminal negativeresistance devices as the basic switching elements in a digital system is discussed.虾 fundamental problems analyzed are concemed with:
(1) Achieving logical gain at maximum possible repetition rate.
(2) Providing means to dictate the direction of flow of information in the system. Circuit: performing all the essential logical functions are presented, utilizing the "tunnel (Esaki) diodes" a now high w speed negativemesistance semiconductor device, as the basic element. Singlewended and balanced circuit configurations are discussed. In addition, simple arrangements of a small number of tunnel diodes are derived to realize more complicated logical functions.

Part of the system described is a theeephase pulse power supply. Utilizing such a power source, all storage functions can be realized by dynamic storage techniques.

NEGA TIVE \quad RESISTANCE ELEMENTS
AS DIGITAL COMPUTER COMPONENTS

by
Morton H. Lewin
RCA Laboratories Princeton, N. J.

INTRODUCTION

In determining the maximum repetition rate of a given switching circuit, the response of the switching device and the effect of other circuit parameters (including stray elementa) must be taken into account. Although the switching speed is ultimately limited by the device, in many cases one never reaches this theoretical maximum because circuit limitations play the dominant role. To solve this problem, one is forced to devise extremely simple circuits with few components in order to minimize the effect of stray reactance. The use of twooterminal negative-resistance elements allows one to do thise

Shockley and Mason ${ }^{2}$ have proposed that the ultimate highspeed semiconductor amplifying device is a two-terminal negativee resistance element. They reason that, since the speed of semiconductor componente is basically limited by the transit time of carriers, the physical dimensions of devices operating in the hiphest irequency ranges must be extremely snall. In the limit, fabrication problems dictate two-terminal active elements, where only one dimension need be small.

This paper is first concerned with the general problem of using two-terminal negative-resistance devices as the only active switching elements in a digital system。 Specific circuits are then discussed, using a particular voltage-controlled negativem resistance device as an example. Much of this treatment can be adapted to other negative-resistance elements.

[^0]A combinational switching circuit is defined as a circuit whose outputs depend only on the present inputs. This is to be distinguished from a sequential switching circuit in which the outputs depend not only on the present inputs but also on the past history of inputs. Thus, a combinational circuit, by definition, has no memory.

Consider a system of combinational circuits employing nepative-resistance devices as the active switching elements. The requirement of no memory dictates either monostable operation of the negative-resistance elements or bistable operation with a built-in reset to eliminate storage. (The possibility of combinational circuits composed of sequential sub-circuits is ipnored on the grounds that such complicated circuits will reduce the maximum speed of the system。)

For the case of monostable operation, if one removes any one of the negative-resistance elements from the circuit, measures the static V, I characteristic scen looking into the rest of the circuit from its two terminals and then superimposes this on the negative-resistance characteristic, there is always only one stable intersection, for all input combinations. For an all-passive circuit, such as a conventional diode gate, one intersection (operating point) is assured. Assume that this measured characteristic can be approximated by a straisht load1.ine, in the region of interest. (A design to insure monostability is feasible only if this characteristic is "well-behaved" (1.e.es
monotonic) in the region where it intersects the negative resistance characteristic.) This leads to a simple situation which can be directly analyzed.

Typical voltage-controlled and current-controlled negativeresistance characteristics are shown in Figo la. The two states for each device are most conveniently chosen as operation in the two positive-resistance regions on both sides of the negative resistance region. Thus, for a voltagemcontrolled element, the state is defined by the voltage across the device, and for a current-controlled element by the current through it. Under the conditions described above, the circuits to be analyaed become those shown in Fig. 1 b . The combination of R and the power source represents the Thevenin equivalent of the Linearized measured characteristic.

Monostable operation can be achieved in two ways as indicated by the load-lines in Fig. la. In the first case, labeled "I", $R<R_{n} \mathrm{~min}$. for the voltage-controlled element and $R>R_{n}$ max. for the current-controlled element, where $R_{n}=|d V / d I|$ in the negative resistance region. In the second case, labeled "II", R does not satisfy this incquality but the power supply values are chosen to result in one intersection. Thus, for case I monostable operation results regardless of the power supply parameters (assuming no reactance), while for case II the power supply values must be chosen to avoid bistable operation.

A DC coupled system with no reactive elements will be assumed. The output terminals and equivalent load resistance
R_{L} are shown in Fig. le. Input signal sources are also included. R_{J} represents the load furnished by other gate circuits in the net. R_{1} represents the contribution to R of the internal parameters of the circuit under consideration. The series or parallel combination of R_{1} and R_{L}, as appropriate, yields R. For the voltage controlled casc, R_{L} can vary from © to some minimum value and for the current-controlled case, from 0 to some maximum value. The fact that R_{L} varies as indicated is a direct result of the two-terminal nature of all components. For example, an examination of the possible configurations using voltage-controlled elements reveals that, in general, the output current from a stage in a given state depends on the states of the circuits being driven.

The values of R_{1} and I_{s} or V_{s} must be chosen to assure monostability for all loads. Thus, they must be chosen such that only one intersection (of the type shown in Fig. 1a) occurs for $R_{L}=\infty$ in the voltage-controlled case and $R_{L}=0$ in the current-controlled case. If these conditions are satisfied, monostable operation is assured for all R_{L}.

Recall that any reactance in the circuit is assumed neglisibly small. For case I, looking into the circuit from the output torminals, the load resistor R_{L} sees a net positive resistance for all voltage-current conditions. Hence, there is no possiblity that an increment of energy delivered to the load will be greater than that supplied by the signal source, for any value of R_{L}. For case II, assuming a rectangular
signal pulse which raises the load-line sufficiently to cause the operating point to switch to the other positive-resistance region, a simple calculation ${ }^{2}$ reveals that the input energy is at least as great as the output energy. Thus, the requirement of monostability, in the absence of adequate reactance, leads to a circuit which has no gain.

If one now allows the use of appropriate reactive elements (i.Eo, capacitance in parallel wi th the currenteacontrolled device and inductance in scries with the voltape-controlied device), as shown in Fig. ld, gain can be achleved. Note that the added reactance cannot simply be greater than zero but must be greater than a certain minimum established by stray elements the properties of the negative-resistance device. (For an AC coupled system, the reactive coupling elements must also be taken into accounto) In this case the pain arises from the Pact that eneryy stored in the reactive element is delivered to the load when the negative-resistance device is tripgered by a sma. 11 sipnal. Such circuits have been treated in the 21 terature $3,4,5$. It is shown there that the recovery time associated with the rea actance is a factor which limits the maximum repetition rate of the circuit.

Bistablewwith-reset operation allows one to achievs gain without the use of reactive elements. Since the furnishing of
${ }^{2}$ See Appendix.
3parley, Be Geg MDynamics of Transistor Negative-Resistance Circuits," Proc. IRE, Vol. 40 , Nov. 1952, 1497-1.508.
$4_{\text {Anderson, A. Ee, "Transistors in Suritching Circuits," Proc. }}$ IRE, Vol. 40 Nov. 1952, 1541-1558.
5 Lo, A. Wo, et al, "Transistor Electronics" Prentice Hall 1955.
a reset signal may be considered to be an additional function of the power supply, effectively a time-varying powes source is now beinf considered. One possible arranpement is to leto the power supply (current or voltape) deliver a continuous train of rectangular pulses, such that during eaeh pulse (excitation) the nepative-resistance device can po to either one of its two statesg depending on input conditions. The "reset" is then the termination of the excitation pulse. It can be seen that such a power supply also serves as a master clocke If one now calculates ${ }^{6}$ the transition and recovery times for such a system and compares this to the system writh DC power supplies and reactive elements, itis evident that the former scheme has the higher maximum repetition rate.

DIRECTIONALITY

Anothor fundamental problen is concerned with making the system unilateral. For example, since the negative-resistance element is a two-terminal device, when one terminal is grounded, the other must act as both the input terminal and the output terminal. One must therefore provide some means to dictate the direction of flow of information in the system (i.e.e, to make a circuit directional, so that a signal propagates from input to output). Some possible techniques for achieving directionality include use of passive elements such as Hall effect couplers or gyrators, use of non-linear interstage coupling elements such as conventional diodes, synthesis of ${ }^{6}$ See Appendix.
threesterminal ci reuit configurations with some unilateral properties, and separation of input and output functions in tine using a time-varying power supply. Some of these techniques, as applied to circuits involving voltage-controlled elements, are discussed in more detail following the treatment of basic logic circuits.

POWER SUPPLT
Assuming the bistablewith-reset mode of operation, with the momentary removal of power supply excitation as the method of resetting, the waveform shown in Fig. 2a represents an acceptable source waveform. The sequence of operations performed by each stage is then as follows: After having been reset, a piven circuit is energized to an initial state. If the combination of inputs presented to it is favorable, it will switch to its other state. The state of the circuit is then detected by the next starges. Finally, the circuit is reset, energized again and ready to receive a new combination of inputs.

If the entire system is powered from the same source, all circuits are reset simultaneously. The enorgizing pulses must then be wide enough to allow signals to propagate from the inputs of the systen to its outputs, so that the repetition rate is limited by the longest signal propapation time expected. To increase the repetition rate, the system is broken up into small groups of gates such that each group is reset immediately after it has performed its function. A sequence of resets is
then required in order that information will continue to propagate and will not be erased. These requirements can be satisfied by a multiphase power supply such as, for example, the three-phase waveform shown in Fig. $2 b$. Using this method, a given gate or group of gates is powered by one phase, drives other circuits powered by the next phase and is driven by $s t i l l$ other circuits powered by the previous phase. The excitation pulses overlap in time such that information propagates between two stages during the period When both are energized simultaneously. Considering the block B in Fig. $2 b$, one can see that the beginning of its supply pulse, T_{2}, corresponds to an "input" region and the end of the pulse, T_{2}, to an "output" region. The three-phase arrangement shown is characterized by the fact that there is always a proup of circuits in the deenergized condition at any given moment. As a result, in many cases spurious signals are prevented from propagating. The similarity between this scheme and the multiphase clock systems used in conventional machines is only superficial. Here the clock source is also the power supply.

GENERALIZED ANALYSIS

I. Load-curves:

Consider a two-terminal mblack-box" A whose static $V_{8} I$ characteristic is given by either $I_{A} \& g_{2}\left(V_{A}\right)$ or $V_{A}=\mathcal{F}_{2}\left(I_{A}\right)$.

The box may simply hold a single negativewresistance element or may include a more complicated arrangement of
elements whose composite two-terminal V,I characteristic is given by the above equations. f_{1} (or g_{1}) may be any continuous function and is not single-valued in both V and I if there are any negativeresistance regions. Now consider a second two-terminal "black-box" B whose static V,I characteristic is given by either $I_{B}=g_{2}\left(V_{B}\right)$ or $V_{B}=f_{2}\left(I_{B}\right)$. This will correspond to the device which determines the load-curve. If $g_{2}\left(V_{B}\right)=V_{B} / R$ (i.e., $\left.f_{2}\left(I_{B}\right)=I_{B} R\right)$, then the device is the resistor R, mentioned before, and the load-curve is a straight load-Iine. In peneral, however, both f_{1} and f_{2} are non-linear, negative-resistance characteristics. The two cases of interest are the following configurations:
(a) A constant-voltage source V_{s} across the series combination of elements A and B.
(b) A constant-current source I_{s} feeding the parallel combination of elements A and B.

The pertinent equations are:

$$
\left.\begin{array}{ll}
\frac{\text { CASE }(a)}{I_{A}=I_{B}} & \frac{\text { CASE }(b)}{V_{A}=V_{B}} \\
V_{S}=V_{A}+V_{B} & I_{S}=I_{A}+I_{B} \\
V_{A}=I_{1}\left(I_{A}\right) & {[1]} \\
V_{A}=V_{S}=I_{2}\left(I_{A}\right) & {[2]}
\end{array} I_{A}=I_{S}-V_{A}\right) .
$$

The equilibrium points or quiescent operating points for a circuit are determined by the intersection points of the two curves [1] and [2]. In either case, curve [1] is the characteristic of A and curve [2] is the load-curve detormined by the
power supply and the characteristic of B. For case (a), the loadocurve is the image of $B^{i} s \mathrm{~V}, \mathrm{~T}$ characteristic reflected through the current axis, translated in the positive voltage direction a distance V_{S}. For case (b), the load curve is the image of $\mathrm{B}^{\prime} \mathrm{s} \mathrm{V}, \mathrm{I}$ characteristic reflected through the voltage axis, translated in the positive current direction a distance I_{S}. The only stable operating points are those determined by the intersection of two positive-resistance regions.
II. Composite Characteristics:

The determination of the composite V, I characteristic of two or more two-terminal elements, given their individual characteristics, is important in the analysis of negativeresistance circuits. To rraphically obtain the composite characteristic from the individual curves, one follows these simple rules
(1) For tro elements in series, each point of the composite curve with coordinates V_{1}, I_{1} is obtained by choosing any I_{1} and letting $V_{1}=V_{A_{1}} * V_{B_{1}}$, where $V_{A_{1}}$ is the voltage across element A at the current I_{1} and $V_{B_{1}}$ is the voltage across element B at the current I_{1} 。 Thus, one adds the voltages across the individual elements at the same current。
(2) For two elements in parallel, each point of the composite curve with coordinates V_{1}, I_{1} is obtained by choosing any V_{1} and letting $I_{1}=I_{A_{1}}+I_{B_{1}}$, where $I_{A_{1}}$ is the current through element A at the voltage V_{2} and $I_{B_{1}}$ is the current through element R at the voltage V_{1}. Thus, one adds the current throuph the individual elaants at the saie voltage.

TUNNEL DIODE
The remainder of this discussion is concerned with one particular voltage-controlled negative-resistance element. Similar or "dual" treatment can be given to current-controlled devices.

The device to be considered was first reported by Esaki ${ }^{\text {? }}$ and has since been investigated by others. Since the phenomenon responsible for the unique characteristics of the device is the tunneling phenomenon predicted by Quantum Mechanics, the device has been called the tunnel diode. It holds promise of being an extremely fast element. Units with time constants of a fraction of a millimicrosecond have been fabricated. Preliminary tests verify that the device is capable of very high speed operation。

For the purposes of this analysis, the V, I characteristic of the tunnel diode will be assumed. Descriptions of the physical operation of the device are given by Esaki ${ }^{7}$ and Sommers ${ }^{8}$.
$T_{\text {Esaki, Lo, }}$ NNew Phenomenon in Narrow Germanium pan Junctions," Phys. Rev. 209, Jan. 1958, p. 603.
${ }^{8}$ Sommers, H. S. Jr., "Tunnel Diodes as High-Frequency Devices, ${ }^{n}$ IRE Proce, July 1959, p. 1201.
Chang, K. K. No, "Low-Noise Tunnel Diode Amplifier, " IRE Proce July 1959, p. 1268.

Chang, Nelson, etoal, "Tunnel Diodes for Low Noise Amplificationg" IRE WESCON, San Francisco, Aug. 1959。

Aarons, Holonyak, et al, "Germanium and Silicon Tunnel Diodese Design, Operation and Application," IRE WESCON, San Francisco, Aug. 1959

The static voltage-current (V, I) characteristic for a typical Germanium unit is shown in Fig. 3. Typical values for the critical points are indicated. The inverse slope R_{0} of each positive resistance region is of the order of a few ohms.

Since the tunnel diode is such a lov impedance element, it is not practical to assume that a constant voltage souree is available to supply power to many units. In view of the fact that the source impedance of any realizable voltage source will be of the order of that of its load, it is more practical to assume that the power to individual units is supplied from current sources. In cases where a voltage source is desired, an individual auxiliary device for each circuit is necessary to simulate it. (This is demonstrated later.) Therefore, in line with previous discussions, a three-phese square-weve current source as shown in Fig. 2 b will be assumed.

THRFSHOLD GATE

Consider the circuit shown in Fig. 4. Assume the input terminals are connected to output terminals of other similar circuits. As long as the tunnel diode D is in the 0 (low voltage) state, the current into $D_{\text {, }}$ in addition to I_{S}, is approximately $k\left(V_{1}-V_{0}\right) / R$, where it is the number of driver units which are in the 1 (high voltage) state and I_{s}, V_{1} and ∇_{0} are defined in Fip. 3. D will switch to the 1 state only if $I_{S}+M\left(V_{1}-V_{0}\right) / R>I_{0}$, the high threshold eurrent at which the resistance becomes negative. Once it has switched to the 2 state, it will remain there even though the current into D is substantially less than I_{S} (corresponding to loading),
as is evident from an examination of the characteristic. Thus, the circuit is capable of logical gain, since it can now furnish a number of output current increments $\left(V_{1}-V_{0}\right) / R$ to the next stages. The output of the threshold gate, then, is 1 only if the total number of 1 inputs is greater than or equal to some integer T. I_{g} is adjusted to result in the correct logical function (i.e., the correct T). For an $O R$ gate, T is ones for an AND gate, T equals the number of fnputss to generate the CARRY output in a full adder, for example, the number of inputs is three and T equals two, etc. The circuit must be reset back to the operating point below the throshold in order to be able to perform its function againo

It is evident that the merit of this circuit depends primarily on the uniformitv of diode characteristics and the power supply tolerances involved. The maximum variations in I_{0}, I_{S}, V_{1} and V_{0} dictate the minimum current increments for reliable switching. Advances in fabrication techniques have already resulted in high yialds of diodes matched well enough that a reliable logic systen involving such circuits appears readily realizable。

The operation of the "single-ended" threshold gate, described above, relies on the accurate determination of the operating point on the negative-resistance characteristic. A balanced or symmetrical circuit offers advantages in many applications. Consider the series combination of two tunnel diodes. Their composite characteristic is shown by the solid curve in Fig. 5a. If a voltage V_{X} is applied across the series combination, it
is possible for the circuit to exist in either of two states (i.e., one diode in the high voltage state and the other in the low-voltage state and vice versa). This is depicted in Fig. 5 b where D_{2} and ∇_{1} determine the load-curve across the characteristic of D_{1}. If the voltage V_{1} is applied as a pulse as is done in the proposed system, one can determine to which state the circuit goes by a small signal at the junction of D_{1} and $D_{2}{ }^{9}$. This can be explained by noting that during the rise of the pulse, the current through D_{1} and D_{2} builds up to the point where both are very near the crest of the hill. The small current into the junction is sufficient to determine which diode breaks down. Thus if this current is positive, D_{1} goes to the 1 state and if it is negative D_{2} goes to the 1 state and D_{1} is forced to the 0 state.

The difficulty in obtaining a constant-voltage pulse source to drive a large number of such low impedance circuits has already been mentioned. However, the tunnel diode has another important property in that it can simulate a low impedance voltage source, of megnitude V_{1}, if the current through it is greater than I_{o}, the high threshold current. This property is utilized to arrive at the final form of the balanced circuit, shown in Fig. 5c. As is shown in Fig. 5a, the dotted loadacurve formed by D_{3} and I_{s} intersects the characteristic of the series combination of D_{1} and D_{2} at the appropriate point, if I_{s} is large enough. The circuit is now powered by the more raalizable current source.
9 This scheme was suggested by A. Lo.

The logical functions $O R, A N D$ and THRESHOLD are achieved by requiring that the current into the junction be positive only when at least one, all or some of the inputs are 1^{11} s, depending on the function desired. This requires a reference current or bias as shown. The source of this reference current can be another tunnel diode again acting as a voltage reference.

From the above description one can see that the balanced circuit has several advantages over the single-ended scheme. First, the sensitivity of the circuit depends only on the matching of the two negative-resistance elements and not on the exact values of the critical points of the characteristic. Second, the sensitivity is virtually incependent of reasonable power supply variations.

INVERTER

The composite characteristic of a tunnel diode D_{1} in series with a resistance R_{2} is shown by the solid curve in Fig 6a. R_{1} is chosen to be approximately R_{N}, the magnitude of the linear approximation to the negative-resistance (see Fig. 3). Suppose points "a" and "b" were the only stable points for the circuit (corresponding approximately to a voltage V_{1} applied across the series combination). Taking the voltage across the resistor as the output voltage, we have that point "a" yields a 1 output (high voltages high current through the resistor) and "b" yields a 0 output (low voltages low current through the resistor). Thus, if the circuit is always at na_{a} with an 0 input and at "b" with a 1 input, it would realize the inversion function.

To make "a" and "b" the only stable operating points, one can again use another tunnel diode D_{2} to simulate a voltage source. The inverter circuit is then as shown in Fig. 6 b , and the intersections of the dashed load-curve determined by D_{2} and I_{s} with the composite characteristic of D_{1} and R_{1} in series are shown in Fig. 6a. To clarify the operation further, one can plot the composite V,I characteristic of the entire configuration of D_{1}, D_{2} and R_{1}. It is shown in Fig. 6d. The horizontal (constant-current) load-line formed by I_{s} is indicated. Since the voltage at point x (Fig. 6b) is high for both operating points, one must include some provision for adding a constant to the normal output voltage levels of the driver tunnel diode, in order that 1 driver output can furnish the current necessary to bring the inverter over the "a" hill to "b"o. This can be accomplished for a single-ended gate by the addition of a resistor R_{2} to the circuit, as shown in Fig. 6 c 。 The voltage of terminal T (during excitation) is rreater than the normal output voltage by a constant amount $I_{s} R_{2}$, assuming neglisible loadinp at T. By adjusting R_{2} so that the 0 output voltage is approximately V_{2}, the 1 output voltage is then approximately $2 V_{1}$, and the required operation can be achieved.

Assuming the pulse excitation scheme described before, the operation of the inverter is now clear. Whenever the circuit is excited and the input is a 0 , the inverter moves to point "an".
stays there, and the output is a 1 . If the input is a 1, there is sufficient current input to bring the inverter over the hill in the charactoristic to point "b" and the output is a 0 . Note that for this latter case the output waveform will show a transient high voltage before reaching the low voltage 0 output. The next stage must therefore be powered by the next phase so that it is only interested in the voltage level at the end of the pulse (i.e., the "output function" region). For that case such operation is satisfactory.

Note that the heipht of the "a" hill in Fig. 6d depends on the value of R_{1}. By adjusting I_{s} to lie sufficiently below the crest of this hill and driving the circuit from a number of "elevated" outputs, one can obtain the logical function of a threshold gate whose output is inverted (i.e.e, NOT, OR \quad NOT, AND ${ }^{\text {NNOT }}$ etc.) 。

UNILATERALIZATION

Unilateral operation can be defined as operation in which signals can propagate in one direction only. This is required to insure that spurious signals are not generated in the system. The most obvious way to insure unidirectional operation is to use normal diode rectifiers as coupling elements. Current between stapes can then flow only in one direction. Other methods are possible in which the coupling between stages is resistive. For example, considering the inverter circuit driven by an elevated output, one can see that when the input to the inverter is 0 , there is essentially no current in the coupling resistor. When the input is 1 , there is a relatively high current in the coupling resistor. Thus, again, the current in the coupling resistor flows only in one direction. By reversing
the positions of R_{1} and D_{1} (Fig. 6), so that the output is taken across the tunnel diode, one has a throshold gate with this unilateral property. Another unilateralization method is associated with the ability of the power supply to separate input and output functions in time. This scheme is effective for the balanced type of threshold gate. The circuit is receptive to an input signal only during a very short time (i.e., the rise time of the power supply pulse), after which it mlocks" into one state or the other.

MULTILEVEL CIRCUITS

Consider the inverter configuration (Fig. 6b) in which I_{s} is reduced so that a third stable operating point "c" exists. This is indicated by the dotted curves in Fig. 6 (a and d). Note that point "c" yields a outputo Assume that R_{2} has been reduced sufficiently to make the height of the "a" hill, in Fig. 6d, comparable with the height of the "c" hill. Let the circuit have two inputs, driven from the normal outputs of other tunnel diodes. The circuit operates in the following fashion: If the two inputs are both 0 , "c" is a stable point and each time the circuit is excited the output is a 0 . If one of the inputs is a 1 while the other is a 0 , there is enough current input to make the circuit move over the first hill to point "a" where it is stable and the outputis a 1 . When both inputs are 1, there is sufficient current input to make the circuit move over both hills to point "b", and the output is again 0. Thus, the output is 1 only when the two inputs are different. This is the EXCLUSIVE $-0 R$ (modulo-2 sum) function.

One can also realize the SUM output for a full adder using a slightly different configuration. Consider the circuit shown in Fig. 7a. The operating points can be found by plotting the load-curve, determined by I_{s} and the characteristic of the series combination of D_{2} and D_{3} (Fig. 5a), across the characteristic of D_{1} in series with R_{1} (Fig. 6a). This situation is depicted in Fig. 7b. I_{s} is chosen so that there are four stable inter sections, labeled O_{a}, I_{a}, O_{b} and I_{b}. These correspond to 0 and 1 outputs as explained before. The composite ∇, I characteristic of the whole configuration of three tunnel diodes and the resistor is shown in Fig. 7c. Note the four intersections with the constante current (horizontal) load-line I_{s}. They are also labeled appropriatel

There are three inputs corresponding to two binary digits and the CARRY from the previous digit. The circuit operates in the following manner: When all three inputs are 0 , each time the circuit is excited it moves to point O_{2} and is stable there so that the output is a 0 . Finen one of the inputs is a 1 while the others are 0 , there is enough input current that the circuit moves over the first hill (Fig. 7c) to point la, where it is stable, and the output is a 1 . When two inputs are 1 , the eircuit moves over the first two hills to point O_{b} and the output is again 0 . Fo: three 1 inputs, the circuit moves over all three hills to point 1_{b} and the output is again 1 . Thus we have

Number of 1 inputs	
0	$\frac{\text { SUs output }}{}$
1	0
2	1
3	1

This fulfills the SUM function of a full adder. To realize the CARRY function, one simply uses a threshold gate, of the type described before, which has the same three inputs and which gives a 1 output when the number of 1 inputs is two or greater.

STORAGE

Since any negative-resistance element can exist in twe stable states with the proper DC load-line, it is possible to use such a device to store information. The terin "statie storage" can be applied to this situation (DC load-line), because the voltage or current level of the nepative-resistance device is fixed when it is storing a particular bit. This type of storage might be used in the memory of a digital computer.

Storape is also necessary in the logic section of a computer. Here another means of storage, known as "dynamic storage, n is directly compatible with the three-phase pulse-overlap system. Dynamic circuit techniques are used in the SEAC and DYSEAC computers ${ }^{10}$. The method involves the circulation of information around a closed loop, so that a circulating pulse represents a 1 and no pulse circulating represents a O. In the original circuits using this technique, the pulse is introduced at one end of a delay line. At the other end it is amplified, reshaped and clocked and is then returned to the delay-line input. The delay-time is adjusted so that the pulse. makes one trip around

TOElbourn, ReD. and Witt, R。Po, "Dynamic Circuit Techniques Used in Seac and Dyseac," IRT Trans, on Electronic Computers, March 1953, pp. 2-9.
the loop in one clock period.
Consider the circuit shown in Fig. 8. All blocks under A are powered by phase A, all under B by phase B, etc. The block with the arrow represents a delay gate (one-input or gate). This takes the place of the delay-line. Because of the phase relationship between the three power sources (see Fig. 2), it is possible to close the loop as shown. The circulation of a 1 or a 0 is thus made possible. The circuit hes built-in amplification, reshapinp, and clocking. The particular circuit shown in Fig. 8 is a basic flipoflop, where S is the "set to 2 " input and R is the "reset to 0 " input.

The basic flipoflop can be included in more complicated storage circuits. Fig. 9a shows a binary counter and Fig. 10 shows one stage of a shift repister. Other circuits involving dynamic storape techniques are possible。

Note that no time need be lost in obtaining an output from a dynamic circuit, even though the information stored is in the form of a circulating pulse. For example, the binary counter of Fig. 9a may be represented by a single block powered by the appropriate phase, as far as the input and output terminals are concerned. This is shown in Fig. $9 b$ where the input comes from a circuit powered by phase B, the binary counter is considered powered by phase C and the output goes to a circuit powered by phase A.

EXPERI:IFNTAL VERIFICATION

In order to investigate the operation of tunnel diode logic circuits in a small sub-system, one cell of a simple experimental arithmetic unit was constructed and tested. A block diagram of
the cell is shown in Fig. 11. All of the fundamental logic circuits, including dynamic storage, are evident. The cell contains a storage loop, a full adter and auxiliary read-in and read-out gates for shifting right and left, complementing the input from memory, and reading out to memory.

The schematic diagram for the unit is given in Fig. 12. Fige 13 contains photos of the complete experimental circuit. The unit contains 27 tunnel diodes. Resistive coupling is used throughout. It is powered from a transistorized power supply which delivers a three-phase, $1 \mathrm{mc}, 10$ volt squarewave. This repetition rate was chosen to most easily demonstrate the fundamental principles involved. The inputs to the system are DC levels simulating the output voltages of the tunnel diode (i.e., $0=50 \mathrm{mv}, 1=450 \mathrm{mv}$), with the correct internal impedance.

Typical waveshapes, taken across one of the diodes in the storage loop, are shown in Fig. 1h. (a) shows a circulating $I_{\text {, }}$ after the loop has been set and (b) shows a circulating 0 , after the loop has been reset. One can also make the bit stored in the loop alternate between 0 and 1 as shown in (c). This is accomplished by makinf $A_{r}=1$, so that the storage loop is cleared and the SUM output of the full adder is gated into the loop, by lettinp, $\mathbb{A}_{h}=1$, so that one of the inputs to the adder becomes the bit presently stored in the loop, and by allowing any one of the other inputs to the adder to equal $\boldsymbol{X} \boldsymbol{l}$ (i.e., either C_{i} or A_{c} or $t_{i}=1$), so that the sum output becomes the complement of the bit presently stored. Thus, each cycle the complement of the bit previously stored is read into the loop and the stored bit alternates are showno

The peak currents (I_{0}) of the tunnel diodes used in the experimental cell range from 3.9 to 2.6 ma . The capacity of each diode is of the order of $100 \mu \mu \mathrm{f}$. Peak-to-valley: current ratios vary between 5 and 8. The currents from the power supply to each of the logic circuits were adjusted for proper operationo Observed switching times (see Fig. 14 d and e) are of the order of $50 \mathrm{~m} \mu \mathrm{~s}$.

The experiment demonstrates a number of important facts concerning tunnel diode logic circuits. First, it demonstrates reliable operation of all fundamental logic circuits in a realistic system. These circuits includes $O H$, $A N D$, THRESHOLD, NOT and EXCLUSIVE-OR. Second, it demonstrates that such circuits can supply logical gain. For example the or gate in the dynamic storage loop has a fan-in of 3 and a fan-out of 5o. The circuit contains two tunnel diode in cascade. Third, it demonstrates apreement between rough estimates of switching time, based on the time constant of the device (capacity times magnitude of average ncgative resistance), and the actual switching timeo

ACKNOWLTEDGE:TENTS

The author wishes to thank A. W. Lo, G。B. Herzog, J. Co Niller and A. G. Samusenko of RCA Laboratories and Professors E. J. MeCluskey, Jro and W. H. Surber, Jro of Princeton University for many interesting discussions and helpful suggestions.

This work was supported by the Burcau of Ships under contract with RCA.

APPENDIX

Io DC power supplies, monostable operation, zero reactance,
The voltage controlled case will be considered. Dual treatment can be given to the current-controlled case; Referring to Fig. le, in order to insure monostable operation for all R_{L}, one must choose I_{s} and R_{2} such that only one intersection occurs for $R_{L}=\infty$ 。Assuming R_{L} is very large, a particular limiting case is shown by the solid loadoline in Fig. 15. For a given I_{s}, the negative reciprocal of the slope is $R_{l_{\max }}^{R_{1 \text { max }}}$ for monostable operation. Then, for any finite R_{L}, the load-line changes as shown by the dashed line "a"a For a square pulse of input current of magnitude Δi and width Δt, we have that the energy input = $\Delta v \Delta 1 \Delta t$, where these values are depicted graphically in Fig. 150 The enerpy output is $\Delta v^{2} \Delta t / R_{L}$. Thus, we must compare $\Delta y / R_{L}$ to Δi to determine which increment of energy is greater. These are also found graphically in Fig. 15. An examination of the geometrical constructions involved shows that if the conditions stated above are satisfied, $\Delta \nabla / R_{L} \leqslant \Delta i$ for all R_{L}. Therefore, energy input \geqslant energy output.
II. DC power supplies with reactance ∇. pulse power supply:

Again, the voltage-controlled case will be considered. Comparison is being made between the two circuits shown in Fig. 16. C is the sum of the stray capacity plus the capacity inherent in the negative resistance device. The path of operation
looking into the parallel combination of C and $N R$ is assumed to be approximately the dashed path shown in Fig. 16. This will be true, in the case of circuit (1), if is sufficiently large. Under these conditions, one can assume that the transition times (paths "a" and "c") are comparable for the two circuitso If L is not large enough, the transition time of circuit (1) can be considerably larger than that of circuit (2), and in addition, the path followed is no longer horizontal ${ }^{11}$.

We wish to compare the recovery times (paths "b" and "d") of both circuits. Specifically, let us calculate the time to go from point "l" to point "2" (path "d"). For circuit (2) the rise time is approximately $2.2 R_{0} C_{g}$ since the voltage follows a simple exponential with an $R_{0} C$ time constanto For circuit (1), using Laplace transform techniques, the transform of v is given by

$$
V(s)=
$$

$$
\begin{equation*}
\frac{E_{0} R_{0}}{s\left[R_{0} L C s^{2}+\left(L+R_{0} R C\right) s+R_{0}+R\right]} \tag{1}
\end{equation*}
$$

Assuming that

$$
\begin{equation*}
\frac{4}{\operatorname{LC}\left(\frac{2}{R_{0}^{C}}-\frac{R}{L}\right)^{2}}<\quad \sim 0.40 \tag{2}
\end{equation*}
$$

which is equivalent to assuming that no oscillations occur, one finds that the roots of the characteristic equation are approximately
${ }^{11}$ Cunningham, Wo Jo, "Introduction to NoncLinear Analysis," UcGraw-Hil1, 1958, pp. 106-114。

$$
\begin{align*}
& s_{1}=-\frac{R}{L}-\frac{1}{L / R_{0}-R C} \tag{3}\\
& s_{2}=-\frac{1}{R_{0} C}+\frac{1}{L / R_{0}-R C} .
\end{align*}
$$

The approximate solution is therefore

$$
\begin{equation*}
V(s)=\frac{A}{S}+\left[\frac{A s_{2}}{s_{1} B_{2}}\right] \frac{1}{s-s_{1}}+\left[\frac{A s_{1}}{s_{2} s_{1}}\right] \frac{1}{s-s_{2}} \tag{4}
\end{equation*}
$$

Where

$$
\begin{equation*}
A=\frac{E_{0} R_{0}}{R_{0}+R} \tag{5}
\end{equation*}
$$

An examination of this solution shows that the time constant of the dominant exponential is always greater than $R_{0} C$ for values of L and R consistant with the approximation (2)。

Thus circuit (1) has the lower maximum repetition rate。

CAPTIONS FOR FIGURES

rig. 1. (a) Load-lines for monostable operation
(b) Equivalent circuits
(c) Load and signal source included
(d) Addition of reactive element

Flg. 2. (a) Power supply wave form
(b) Threemphase power source

Fig. 3o Tumal diode static characteristic (Numbers indicated for typical Germanium unit.)

Fig. 4e Singlemended threshold gate
Fig. 5. (a) Characteristic of two tannel diodes in semies and loadmerrve formed by D_{3} and I_{S}
(b) Bistable operation
(c) Balanced threshold gate

Fig. 6. (a) Characteristic of tunnel diode and resistor in series and load-curver formed by D_{2} and I_{S}
(b) Invertor cireult
(c) Provision for obtaining elevated output
(d) Composits characteristic of D_{1}, D_{2} and R_{1}

Figo 7. (a) SUM output circuit for Pull adder
(b) Determination of operating points
(c) Composite characteristic

Fig. 8. Dynamic Ilipmiop
Fig. 9. Dynamic binasy counter
Fig. 10. Shift register stage
FFig. 11. Block diagram of experimental unit
Fig. 12. Schematic diagram of experimental circuit
Fig. 13. Front and sear views of experimental cell (Twnel diodes aso roounted under finger contacts.)

Flg. 14. Typical waveforms
(a) Circulating 1
(b) Cixculating 0
(c) Alternating 1 and 0
(d) RIse time
(e) Fall time

Thme goes from le it to wight. Vertical geales are 0.23 \%/div With basemIne at bottom. Horizontal scales ame $0.5 \mu \mathrm{~s} / \mathrm{div}$ for (a), (b) and (c) and 20 moss/div for (d) and (o).

$$
\because 2=
$$

Fig. 15. Greaphical comparison of Δi and $\Delta v / R_{L}$
Fig. 16. Comparison of monostable and bistable-withweset moces. Assumed path of operation.

(b)

Is

(c)

(d)

$\underbrace{\text { LOAD-Curve }}_{0}$
號

PHASE: A B $\quad \underline{C}$

(a)

PHASE:
C

(b)

LEGEND
CL = CLEAR
R = SHIFT RIGHT -READ SERIAL (NORMAL ORDER)
L = SHIFT LEFT -READ SERIAL (REVERSE ORDER)
P = WRITE PARALLEL
S = WRITE SERIAL
$A_{i}=$ PARALLEL INPUT
B = SERIAL INPUT
$\mathrm{C}_{i}=$ TRANSFER OUTPUT
$C_{n_{R}}=$ SERIAL OUTPUT (NORMAL ORDER)
$C_{L_{L}}=$ SERIAL OUTPUT (REVERSE ORDER)
NOTE
$\begin{array}{ll}C_{-1} & =C_{n} \\ C_{n+1} & =C_{1} \\ \rightarrow-1 & =\text { INHIBIT INPUT }\end{array}$
S ALWAYS ACCOMPANIED BY CL AND R OR L
PALWAYS ACCOMPANIED BY CL

$$
\frac{\Delta v}{R_{L}}=\Delta i_{1}-\Delta i_{2} \leq \Delta i
$$

(1.)

(2.)

p

0

q

D

Norman Lourle

BS in Electrical Engineering Worcester Polytechnic Institute 1948 MS in Electrical Engineering Northeastern University 1956

Circuit Design Engineer at Philco and Tracerlab 1948-1951

Since 1951, he has been with the Raytheon Computer Laboratory, later to be known as the DATAmatic Division of Minneapolis-Honeywell Regulator Company.

Presently, an Assistant Project Manager Por the Honeywell 800 and a Department Manager in charge of Central Processor Equipment Design.

Member of Institute of Radio Engineers and Association for Computing Machinery.

ERRATA SHEET

"CONTROL AND ARITHMETIC TECHNIQUES IN A MULTIPROGRAMMED COMPUTER"

Page 11, line 10
"Bis shifted into from $\mathrm{B}_{\mathrm{i}+4}$ " should read:
" B_{i} shifted into $\mathrm{B}_{\mathrm{i}+\mathrm{L}}$ "

Page 13, line 7

"A block diagram of the type" should read: "A block diagram of this type"

ARITHMETC ABD CONMOO TECHMIQUES
IA A MULTITFROGRAM COMPUTER

17. Lowrie, H, Schrimp, R. Reach and W. Kehn

In the design of a data processor for comercial applications, the designer is constantly striving for better machine performance for lifels Qs mo increase in costo. In the systow design of the Honeywell 800 Transistorized Data Processing System, several design concepts were ukjivised to molp achieve this objective. One of these techniques involves the use of a smoll auriliary memory to oriciently aid in the control of the high speed central processor: A second technique uses a new word organieation that rexults in \mathfrak{e} fastar and less costly arithmetic lement. These desim concepts which wara incorporated into the Honeywell 800 System are discussed in this paper.

In a modern transistorized computer, the spaeds thet are cenomically mehievarble in the Central Procaseor are very often much higher than necessmay to reep up pith paripherel devicee. The concept oit tine shering the central processor anong sovernl prograns in order to utilize otherwise \%atted tima then becomes nttractime. In ordor to achisve this time shaming autometically without tine use of cunbersome gupervisosy routives, at least one sequence counter per progran is required. If a small coinciacont current mevory runing out of phase with the Kain Memory were availabla, a ralativaly liberal muber of prozrams could ocsily be run simultaneously by acisgning these sequence counters to this control mony. Also, since adoitional menory locations becom meoromical, it is now aimplo to assifn exch program tro sequence countars bor groatar lozebility. These are krown as tho sequence ane cosequenca countars respectively. The Honswell 800 has 8 pairs of
sequence counters, thus allowing the simultancous operation of eight indopendent prograns. To illustrate hov this is performed, Table i show a possible state of the various counters. If, upon sterting, the first order is spectified from the sequence counter, 00050 will be read from location 2 of the Control Memory, and the contents of 00050 in the Main Menory will be read and performed as an order. The sequence counter will then be incremented by unity so that COCO will be immediately reinserted into address 2 of the Control Memory as the location of the nest order to be periormed under control of the sequence counter in program 1. If the previous order in program 2 specisied that the cosoquence counter was to be used to obtain the nomt order, the contents of address 35 will then be reac out of the Control Moscory and 03002 will then be used as a Moin Memory sddress to selcet the nemi order performed. SAnilarly the computer will then cyelicly porform one order irom cach program. Som orders that leave uselul iniommeiom in tho Cantral Processor do not relinquish control to another program, so that occasionally, acyaral orders from ons progran will occur besoro way ordars from another progran are pariormed. The mitiply orcer 1 a n emempls of an order that Pequires such treatuent since there is still a low order product that may be required after the complation of the order. Because the Controll Momory 13 ruming simultancously but ouf of phass with the Main Mevory, this moltiple operation not only is estreasly flestble. but is periomed without loss of spend.

Esch of the sequence and cosequence counters in the Horeyrsell 800 hms mssociatad with it in the Control jemory another register know as a history register. Hinenever a sequene or a cosequane countar is modifiled because of a sequence change, tho associated history registar is changed so
that it contains the edruse that the sequence or cosequence comntor would havo contained if thore kare no sequence change. Whth this feature availo abla, the prognomeo can easiny sequence charge into a subscubina end then, at some lator tima, revert back to the main routine. Table 2 gives a manicol erarple of this uee of a history register.
 mation to and Lroan peripheral derices and the Main Memory. Iight inmut registars and efght output ragtsters have been raserwed in the Control Howny for controlling the tranter os data betwoen peripheral devices and Main Hanory. Each of these Control Memory registera is uniquely ascosioted minh an input or output trounti when an input truak signals that it has a rord available, the Central Processor is interrupted at the exi of the next mowny cycle. The bufier control register in the controll Neromy ascociatod with this impat trunk is read, and the contents used to
 bo ineertar. Whe coatents of the burear control register is then increc

 into the nert highest merory location. In the case of a roverse fape reat orter, the contonts of the Control Mrary resister is decremented by unity prior to insertion beck into the Comitoll Memory. so that the information frem trye inll be th correct orcer regardiess of the direction of tape motion.
 in the cese of a mytu order.

To increase the average data rate from tape and inprove the utilization of tape space, it is desirable to place more than one item on a block of tape. When this is done, it would be desirable to be able to place each individual iten in a different section of the memory. In order to accomplish this "distributed reading or writing", a set of address locations that will serve as the starting locations for each of the consecutive items arter the first item, is inserted into the win wamory. The starting location of this group of beginning item addresses is placed into a control memory address called a distributed item counter. There is one distributed item counter for each input trunk and each output trunk. As before, when a block of information is read into the memory, the initial item is placed into main memory locations as specified by the associated buffer control register. However, when a special bit configuration representing an end of item is sensed, the contents of the main memory location as specified by the distributad item counter is read into the buffer control register, thus creating a new starting address for the next item. The distributed item counter is incromented by unity prior to reinsertion into the control memory, to prepare for the next item. When this change of item location occurs, one extra menory cycle is required for all the associated housekeeping. Distributed writing is performed in a similar manner.

A numerical example of the handing of a four item block is shown below: Read Buffer Control Register contains 01400 Distributed Read Item Counter contains 00100 Main Memory Address 00100 contains 01500

Kain Memory Address 00101 contains 01600
Main Memory Address 00102 contains 01700

- With these constant: located as shown, the first item would be placed in consecutive memoxy address locations starting with 01400 , the second item starting with location 01500, the third item starting with location 01600, and the fourth item starting with 01700.

Tvo locations in the control memory are reserved for each of the cight programs to serve as counters for such orders as multiply and multiple transa fer orders between groups of memory locations.

The control memory also functions as an aid to indexing addresses. Referring to Figure 1 , the base address "y" is read out of one of eight ino dex registers that are available for each of the eight programs. An eight bit augmenter "m" specified by the order is either added to or subtracted from this base address to form the indexed address for the main memory. The base address "y" is reinserted into the control memory unnodified. One extra memory cycle tine may be required to perform an order if any of the addresses in that order are indered.

Indirect addressing is another feature that can easily be accomplished by use of a control memory. In this mode of operation, a number "x" is read from a specified control memory location and used as an address in the main memoryo The number "x" is incremented by a constant n_{n} "prior to reo insertion in the control memory, so that next time this control nemory contents is used as a main memory address, a different main memory location will be addressed. Thus, with one order it is possible to operate on a whole series of main memory addresses without the necessity for order modification.

The control memory also serves to store a constant U that will give rise to an unprogramed transfer of control if special situations such as end of tape, addition overflow, or read error occur. When one of these situations axises, the constant U is incremented by n, and an unprogrammed transfer of control to address $U+n$ occurs. The constant " n " is a function of the type of situation that calls for the unprogramed transier of cone trol. Since there is an Unprogrammed Transier Registar for each of the eight programs, eight independent U constants can be stored.

A mask inder register is available for each program, such that any me of 64 mask constants can be called out of main memory by using one of the mask type orders and an incrementing constant.

A sumaxy of the assignment of control memory locations is shown below:

Address	Description
0	AUaCU Control Counter No. 1
1	AU®CU Control Counter No. 2
2	Sequence Counter
3	CooSsquence Counter
4	Sequence Histomy Registor
5	ComSequence History Registier
6	Unprogrammed Transior Register
7	Mask Index Register
$8-15$	Inder Registers 0 through 7
16027	General Purpose and Indirect Addressing Registers

These 28 locations are repeated 8 times so that each of the eight programs has a unique sot of these registers.

In addition, there are eight each of the following registers which are associated with inputooutput. These registers are not uniquely associated with any program, but are available for convenient assignment to any proo gram。

Description

Read Address Counter
Distributed Read Adress Conter
Write Address Counter
Distributed Write Address Counter

When the computer designer inftially considers the specifications of the Arithmetic Unit of a digital computer, one of the prime considerations is the method persorming additiono A good design will be capabie of meeting the speed specifications with a minimy of hardwarso The format of the bits in the Arithretic Unit is on importani factor in fundining this objective. Vamious formats for a 48 bit word are discussed below.

Sozias

A pictoriai ropreseriction is shown in Figuse 2o In this arxangerent, as well as ail others to follow, for the aake of simplicity itt is assumed that the A and B operend each reside in a 48 bit mipoillop register, each stage of which is capable of shifting. At the completion of the addition, the sum will be located in the B register. Since the addition is taking place only one bit at a time, a minimun of equipment is required. Howaver, in order to achisve a reasonably fast add time, relatively high speed sinifting fliposlops would be required. For instance, with 4 MC Ilip-Ilops, 24 microseconds would ba required ion a cosplete addition with ond around carzy.

ParallelaSerial

A pictorial representeltion of a 48 bit paralleloserial accumatator with 4 bits in pasallel and 12 digits in seriel is show in Figure 3. Ocher geometries could be used here, but this one is a vexy inportant one, inasmach as 4 bits in paraliol can be used for a binary coded decimal digit. Since the adder is now a 4 bit adder instead of a 1 bit adder, more time will be. required to propagate carrios in the adder, thus resulting in a slower information shifeing rate por a given circuit capability, than in the serial adder. Using a 125 millimicrosecond carry piopagation per stage and a 1.33 HC shipting rate, the add time winl be 18 microscconds, again including and around carry propagation. the addicion time is not too much Saster than the examgle given in the serial adider, but the spoed requirement of the Rlip flops is recuced.

Paraited

When the uitimate in adifion speed is required, a complete parallel accumalator as shown in Tigure 4 is ofien used. To achieve the fullest speed advantages, the caryy propagation time shculd be conpletely asynchronouse With no "caryy hopping" or "ond of canry" sensing, an equivalont add time with the same circuits and assumptions above would be 6 microseconds. If decimal add were aded, another 3.5 mi.croseconds would be required. Assuming the speedeup techniques suggested previously are used, average add times on the order of 1 to 2 microseconds are Peasible, but the inerease in the nuber of logical statoments is substantial。 The number of logical statements required without these spead-up techniques is about 12 times as many as the parallel serial adder since the full add logic is required for each or the 48 stages.

Upon exemining the requirements of the response time of any adder stage in the pasallal accumulatori, it is noted that although any stage is required to proo pagate a casry in a short time, once that stage has responded, it rosts for the romainder of the carry time, resulting in a very insfficient use of the irherent speed available. If good speedan techniques are usec, then this inefficiency is greatif reduced. This observation then suggests that a parallel accumalator witho out speedoup techniques is an extromely wasteful device. It wes this observation that led to the invention of the paralleleserialaparallel accurniator. The parallelo serial-pasellel accumator is an efficient extension of the paralleloserial accumblator which results in speeds cormarable with that of a perallel accumiator with no speedoup techniques, but with approximately one-fourth the number of logical inputs to the logical axpressions for the adder.

ParalleleSerialeParallol

The parallelaserialaparallel arrangenent described here consists of three parallel 16 bit paralleloseriel registerso Each 16 bit paralleloserial register has the bits of a 4 bit character in parallol, with 4 characters in serial. Each of the three 16 bit groupings is referred to as a major character. A major character is divided into four 4 bbit groups, called minor characters, the bits of which appear in parallel. Major character I contains bits $0=15$, major character 2 contains bits $16-31$, and majos cheracter 3 contains bits 32 - 47. In 4 palse times, the sum within ach major character is computed. Carries generated as a result of these additions are then propagated and added into the next major charactar in the next 4 pulse times. At the end of these 8 pulse times, the probability\% that the carsies (including endoazound) will be finished propagating and the answer will be correct is $1=\frac{3}{2^{7 / 7}}=0.999977$. Carry propagation completion can be sensed by means of a three leg buffer, and as much additional time as necessary (8 pulse periods mavimum) allowed to complete the caryy propagation.

FHgure 5 shows a 48 bit binary $P S P$ accumpator capable of either adition or subtraction. The equations for this are shown below.

$$
\begin{aligned}
& S \quad \text { Subtract: } \mathrm{S} \text { Add } \\
& A_{\mathrm{n}} \text { - Adona } \\
& B_{n} \text { a Initial augend and final result } \\
& C_{n}=\text { Carry functions } \\
& P_{n} \text { - Final sum functions } \\
& \mathrm{CC}_{\mathrm{n}} \text { - Character carmy Pron arch adder } \\
& T_{4 i} \text { - Timing function erary Lith elock time such that } T_{4 n} C_{n} \text { is the } \\
& \text { carry from the highest order minor character in each major } \\
& \text { charectar. }
\end{aligned}
$$

Equations for Major Character 1 Adder

$$
\begin{aligned}
& C_{0}=T_{42} C C_{3}+T_{4 n} C C_{1} \\
& C_{1}-C_{0} B_{0}+\vec{S} A_{0} B_{0}+\vec{S} A_{0} C_{0}+S \bar{A}_{0} B_{0}+S \bar{A}_{0} C_{0} \\
& C_{2} \quad C_{1} B_{1}+\bar{S} A_{1} B_{1} \div \tilde{S} A_{1} C_{1}+S \bar{A}_{1} B_{1} \& S \bar{A}_{1} C_{1} \\
& C_{3}=C_{2} B_{2}+\bar{S} A_{2} B_{2}+\bar{S} A_{2} C_{2}+S \bar{A}_{2} B_{2} \Leftrightarrow S A_{2} C_{2} \\
& C_{2}=C_{3} \quad B_{3}+\vec{S} A_{3} B_{3}+\vec{S} A_{3} C_{3}+S \bar{A}_{3} \quad B_{3}+S \quad \mathbb{R}_{3} \quad C_{3} \\
& B_{12} P_{0} \quad A_{0} B_{0} C_{0}+A_{0} \bar{B}_{0} \bar{C}_{0}+\bar{A}_{0} \bar{B}_{0} \bar{C}_{0}+\bar{A}_{0} \bar{B}_{0} C_{0} \\
& B_{13}=P_{1} \text { \& } A_{1} B_{1} C_{1}+A_{1} \bar{B}_{1} \vec{C}_{1}+\bar{A}_{1} B_{1} \quad \bar{C}_{2}+\bar{A}_{1} \vec{B}_{2} C_{2} . \\
& B_{2}=B_{2}-A_{2} B_{2} C_{2}+A_{2} \bar{B}_{2} \bar{C}_{2}+\bar{A}_{2} B_{2} \overline{\mathrm{C}}_{2}+\tilde{A}_{2} \bar{B}_{2} C_{2} \\
& B_{15}=P_{3}=A_{3} B_{3} C_{3}+A_{3} \vec{B}_{3} C_{3}+\bar{A}_{3} B_{3} C_{3}+\bar{A}_{3} \bar{B}_{3} C_{3} \\
& B_{i} \text { shifitsd into from } B_{i+i} \quad \text { whore } 0 \leq i \leq 11
\end{aligned}
$$

Equations for the major character 2 adder are the same with subscripts on $A_{n} B_{n} C_{n}$ increased by $16, \quad C_{1}$ substituted for $C C_{3}$, and $C C_{2}$ substituted for CC_{2} 。

Equations for the major character 3 adder are the same with subscripts on $A_{n}, B_{n 1}, C_{2 n}$ increased by $32, C C_{2}$ substituted for $C C_{3}$, and $C C_{3}$ substituted for $C C_{1}$ 。 The average add time with $125 \times 10^{\infty 9}$ carry propagate time and 1.33 MC flip flops is approximately 6 microseconds.

This accumalator has been organizad in such a mamer that decimal amithotic using binasy coded decinel rapresentation can be incorporated easily, since each t minor character is a binary coded decimal digit. To includo decimal arithmetic two areas need to be changed. The inirst is involved with rectification of the binary sum where either the binary coded decinal sum is greater than nine, or a major character carry was generated. This can easily be done by inserting the logic bewwen B_{13} and $B_{9 s} B_{14}$ and B_{10}, and B_{15} and B_{11} below.

$$
\begin{aligned}
& \text { D Decimal } \bar{D}=\text { Binary } \\
& B_{8}-B_{12} \\
& \mathrm{~B}_{9}-\overline{\mathrm{D}} \mathrm{~B}_{13}+\overline{\mathrm{CC}}_{2} \overline{\mathrm{~B}}_{15} \mathrm{~B}_{13}+\mathrm{D} \mathrm{~B}_{15} \mathrm{~B}_{14} \overline{\mathrm{~B}}_{13}+\mathrm{DCC} 1 \mathrm{~B}_{13} \\
& \mathrm{~B}_{10}=\tilde{\mathrm{D}} \mathrm{~B}_{44}+\mathrm{CC}_{2} \overrightarrow{\mathrm{~B}}_{15} \mathrm{~B}_{24}+\mathrm{CC}_{1} \mathrm{~B}_{14} \mathrm{~B}_{13}+\mathrm{D} C C_{2} \mathrm{~B}_{25} \mathrm{~B}_{13}
\end{aligned}
$$

$$
\begin{aligned}
& +C_{1} B_{15} B_{14} B_{13}
\end{aligned}
$$

The above can be verified with a simple trite chaito
The second aree that needs change is the genaration of inter digit carcies.
This is accomplished by adding a fev terms to C_{0} to take care of those cases where the decimal. sum or diprezence is between 10 and 25 .

$$
\begin{aligned}
C_{0}= & T_{4 n} C C_{3} * T_{4 n} C C_{2} * T_{4 n} D B_{25} B_{14} * T_{4 n} D B_{25} B_{23} \\
& \Rightarrow T_{4 n} D B_{37} B_{36}+T_{4 n} B B_{37} B_{35}
\end{aligned}
$$

The two corrections required the addition of only $60 \times 3=280$ diodes to the accumatoro No amplifiers vere adced. The probability that the answer will be correct after 8 pulse times is $40 \frac{3}{4000} 80.9985^{\circ}$. For these cases, up to 9 more pulse times may be required for the comect answer.

In addition to allowing a very econonical method of arithmatic, the PSP format allows other mechine simplifications over a parallel format. In particular, it is possible to transmit a. 48 bit word to remote portions of the machine by weans of time sharing 12 lines, resulting in a decreased number of cable drivers. It also allows the use of one flipaflop and 3 pulses of delay line to store 4 bits of in Somation in those cases where the other 3 flipollops are not required for manipulation reasons. A block diagran of the type of storage is shown in Figure 7. Parallel-SerialeParallol Arithmetic Eramole

Figure 8 is an example illustreting two numbers being added together in a parelleloserial parallel adder. The zeros imediataly beneath the operands indicate the initial state of the cazry circuits at the beginning of the addition. All of the numbers on a line with tl indicate the computation being performed during the first pulse pericd. The 11 indicates that the "4" and "7" in the low order position of major character 3 is added to form a 1 sum and a 1 carry, and, simultaneously, the "5" and "4" in the low order portion of major character 2 is added to form a "g" with 0 carsy indicated by the 09 , and, similarly, 1 and 6 are being added to form 07.

Duxing the next pulse period, $t 2$, (and through the same addition circuits which produced the "tel" addition) "2" plus "9" in major character 1, together with the previous carsy, non, forms the 31 on the t2 line. Similarly "1" pius "8n plus no" carry forms 09 and "7" plus m2" plus a "I" carry forms 09.

This process is repeeted until the il. line of word cycle 2. At this point, the carry from the high order position of major character 1 is added to the low oredos digit in the paritial sum of major character 2. The cary is then propagated as shom unitl the 3699 is "corrected" to 3700 . Similarly, the 9991 formed in major character 3 is corrected to 9992.

As seen in this example, the addition is completed after 8 pulse periods.

In summary, the Parallel Serial Parallel format provides a fast arithe metic speed at a relatively oconomic cost of logical circuitry. The addition of the Control Menory to the systom provides a wide range of flexibility in order to achieve an efficient usage of the computer.

The authors of this paper wish to extend credit to all those at the Datamatic Division of Minneapolis Honeywell Regulator Company, whose ideas contributed to the creation of this data processing machine.

Use of Gontroz Ifenory som Smaitencous Progren operation

Progeram	Sequanco Counterar	10eztion	Cosemmen Comser	Locriticn
2	00050	2	00600	3
2	02090	34	03002	35
3	-	66	0	67
4	-	98	-	99
5	-	230	\cdots	232
6	-	262	\cdots	263
?	-	294	\%	195
8	-	228	-	227

2nance 2

Use of Sequance History Register to Relocate after Subroutine

	Sequence Courex	Secuence History Register
Sumoutine200068 C220 O 0200wo 02280	00722	00000
	00223	00000
	02200	00124
	02.202	00124
	\circ	-
	01220	00324
	00224	0288

Tabse 2

FIG.I, CONTROL MEMORY IN A MULTIPROGRAM COMPUTER

FIG.2, 48 BIT SERIAL ACCUMULATOR

USING 1.33 MC CLOCK, $A D D$ TIME $=18$ MICROSECONDS $A+B \longrightarrow B$
FIG.3, 48 BIT PARALLEL SERIAL ACCUMULATOR. 4 BITS ミ I CHARACTER IN PARALLEL, 12 CHARACTERS IN SEPIAL.

USING CARRY PROPOGATE TIME OF 125×10^{-9} SECONDS PER STAGE.

BINARY ADD TIME $=6$ MICROSECONDS
DECIMAL ADD TIME $=7.5$ MICROSECONDS

FIG.4, 48 BIT PARALLEL ACCUMULATOR

FIG. 6, LOGICAL ORGANIZATION FOR MAJOR CHARACTER I OF PARALLEL SERIAL PARALLEL ACCUMULATOR.

FIG.7, USE OF ONE FLIP FLOP AND 3 PULSES OF DELAY TO STORE 4 BITS.

PARALLEL- SERIAL-PARALLEL WITH VARIABLE CYCLE

FIGURE 8

RADIO COFPORATNON OF AMMFIRICA $\mathbb{R} \mathbb{C A} H_{4} A B O R A T O R H E S$ David Sarnoff Research Center $\mathbb{P} \mathbb{R} \mathbb{N} \mathbb{C} \mathbb{E} \mathbb{D} \mathbb{N}, \mathbb{N}$ 。 \mathfrak{J}

November 12, 1959

Mr. Harlan E. Anderson EJCC Publication Committee Digital Equipment Corporation Maynard, Massachusetts

Dear Mr. Anderson:
Please find enclosed four copies of the manuscript and original figures of the paper entitled
"SOLID STATE MICROWAVE HIGH SPEED COMPUTERS"
which I am to present on December 1 at the forthcoming 1959 EJCC.

Trusting it reaches you before the fatefurl Sunday, November 15, 1959.

JAR: at
Enclosures

SOLID STATE MICROWAVE: HIGH SPED COTTERS
by
Jan A. Rajchman
R.G.A. Laboratories, Princeton, No J.

ABSTRACT

Tho types of semiconductor devices offer possibilities to speed computer rates up to thousand megacycles. (1) Variable capacity diodes in parametric subharmonic phase locked oscillators have permitted pumping up to 10 KMC and making of 4 KMG spumed 100 mc logic circuits. Junction type diodes of order of magnitude higher speed capability were developed. (2) Tunnel diodes switching in less than 10^{-9} seconds were developed. Scaled down frequency logic pulse type circuits were demonstrated. Arrays of tunnel diodes promise random access memories with access cycles of 10^{-8} to $10^{-\infty}$? seconds. - Both diodes were developed in microcapsules fitting within micro wave transmission boards and dissipate sufficiently low power to permit neco essary high packing density for ultra fast computers. Special circuit technic ques for use of two terminal single port devices were developed

SOLID STATE MTCROWAVE HIGH SPEFD COMPUTRFS

by
Jen A. Rajchmans
R.C.A. Iraboratories, Princetong. N. J.

I. TAFTRODUCTION

This paper presents results of an effort aimed at developing the principles and technology required to speed the rate of computers up to the order 1 of thousend megacycles. The approach is based on the use of two types of 6 twom terminal semimonductor devicess the varisble capacity diode and the tunnel diode in combination with nicromave techniques for the couplings within the computes.

Both devices provide amplification of binary aignals by meohanisms depending on negative resistance. their speed limitation is prinarily due to tise oapacity of the junction and internal series resistanes and can be two ordera of megnitude higher than that of trensistors which are limitect by to drift time of minority camiers. The variable capacity diode can be used for computer logic in parmetric phasc locked osclilatcors according to concepts deseribed by Goto ${ }^{2}$ and Von Neumenn ${ }^{2}$. The negative resistance of the tunnel diode can provide amplification and gain directly, Both devices have only two terminals, i.es a single port for the input and outputi, so that special methods are required to give direction to information plow. These methods and the means to perionm the other necessary fuctions of storing and gating signais ase described in the following.

1. Principle of Operation

Consider a tumed circuit composed of a ilixed inductance and a cyprom city whose value depmats on the voltage across it。 (i.e. Junction diode) Let the tuned circuit be oxcited by a frequency 29 which is approximately equal to twice the resonant frequeney of the circuito (FIg, 3) This excitation will tend to proo duce oscillations at frequency i in the circuitg and oscillations will actralily be sustained if the oxsitation is sufficiently invenge and the losses in the circuit are sufficiently mall. This eifect is a special "degenerate" case of a broad class 0. paramatric exfitathon effects. The general theories of paramatric oscillations, as well as the parbtcular theory of this degenerate cass have been reported by several authors 3 , $4,5,6,7$?

The reason for the build up of oscillations can readily be understood by a simple physical reasoning. Let us assume that every tine at which the capae city has maximum charge, the value of the eapacity is reduced, as would be the case if the plates were pulled aparte. The work necessary to reduce the capacity ine creases the energy stored in the condenser. The value of the capacity is restored to its initial value at the instant of which the charge in the condensar is zexo. In this way a certain arount of energy is added to the circuits as overy hall cyele of the oscillatione. If this incrase of enorgy is greater than the loss of energy in the hals cycie due to damping in the circuit, the amplitude of osciliations wing growe It is easy to sea that this "punping" of energy occurs at twice the frequenoy of oscillations and therefore can sustain on oscillation of aither of two opposite phases. In the actual case of a variable capacity diode, the change of eapacity is due to the voltage of the punp source applied to it instaad of the mechanical. work
necessaxy to pull the plates apart, but the effect is analogous.
The oscillations are sustained in ofither of two opposite phases which are locked to the phase of the punp and can be used to denote "zerro" and "one" of a binary digit. The phase-lockedwosci7lator, PIO, constitutes thus a storage cell. The steady state phase deponds on the condtions unier which oscillations start. If a small locking signal at the irequency I is present in the tank, oscillations will build up in the phase closest to the phase of the locking signal. The input lociong signal is thus "amplified". (Fig. 2).

Logic cem be performed by aswaying the PLO's in three or more groups, which are soparately activated aither by pump nodulation or diode bias gating. Frexy PTO is loosely coupled to PLOM in other groups, the pattern of couplings determining the logic teak to be pexformed. The groups are clocked in suecession with some overlap, ives a given clock is tumed off after the next one is turned ono This sequance canses information to flow in a given direction despite the bilateral character of the PLO, A PLO will start at the phase detexmined by the phase of the majority of ogcillating PLO's to which it is coupled. The manity decision can be exploited directly in mary circuits or can be reduced to nand" or "ors decisions by the use of a reference signal on one inputo For example with two inputs, and a zererence in phase zero, the output will be in phase Π only when both inputs are in phase T. Negation is easily obtained by phase inversion. In a typical exanple of logic cincuit, figure 2, each PIO may be conneoted to two inputs, tro cutputs and one reference, or to five other PLog. Consequentiyg the imput is at most one fifth of the output of proceding Plopso Thusg a minimum Mlogic gainin of five is required. In a simple shift register, figure 3, ninimm
logic gain is taxo.
There is a certein inorease of ampliturie of ogcillation at each ogele which dopends on the parametric pumpinge ise specific variation of capacity and porrer, and on the losses of the circuit which are made up of the userul $10 a \mathrm{~d}$ Ing and unavoidable circuit dissipations. To build up the amplitude by a factor corresponding to practical logie gatns, about 5 cycles of oscillations or 10 pump cyeles are required intypical Prons. Therefore to obtain 1000 me information rates, Ase. phase suttching in about $3 \times 10^{\infty 10}$ sec, pump sxequectes of about 30 wh or higher ase required.
2. Expeximenta? Rosults

An experimental program ultimately ained at PIO comparters pumped at Irequercies of about 30 MC resulted in the following
A. Macroware Subehamonic Oscillators

Microwave circuits obtained by photographic engreving of copper clad insulating boards, known as strip transmission lines, and point contact diodes in conventional microwave cartridges, wero used for PTO's pumped at 4 KMC. A typicall ©ardy configuration (Fig. 4 and 5) inclucieds, a 2 Wert quarterwave zesonator with diode in shomt at one end, a 4 KNO resonator baw isolating pury and osetivating elrauts, dee return for optimm bias, and one or more loosely coupled inputi nim outputs $8,9,10,11,12$. Outputevs-input powes charracteristics (Fig. 6) ghow broad operating rangey erficiencies of a feiv percent, and requined pump power levels of about 100 nis. Typical more recent configuration utilize a series connected goid bonded diode (Fig. 7) and multiple jupedance natched antennas for couplinge inputs and outputs. The characteristies (tig, 8) show uniform couptings to vapious
antonnas, and broad operating regions.
Fhethods of switching phase, itrgt investigated in Iumped passmeter cincuits pumped et 5 me, ${ }^{23}$ dononstrated great flexibillty of "phase script and Jielded quantitative relatione between logic gain and buitamp cycles under a variety of conditions (Fig. 9) Qualitative confimation of these results was obtained through moze elaborate experiments with PID's pruped at is MXC using mercury wetted relay pulsess and travellingatave occilloscopes. Dypical results: Hise from roise level to saturation in 10 nanoseconds (uanosecond ts $30{ }^{\omega 9} \mathrm{gec}$) and decay $2 n 2.5$ nanoseconds then the diode was pulsed slightiy into conduction.

Be Microwave Computer Hechniques und DyO Logic

Microwave tranmission lins techniques provide methods Lor linesriy combining signals to explott direction of tanemisstono Por oxample a hybuid ming can be used to translate anplitude modrlated to phase modulatod aignels and vissan vexts through eppropxiste combination with a 6 gignal'。 (Figase 10). Anothee example is the use ${ }^{\text {23 }}$ of a hybuid ring fed by two Plo a energived at praps $T / 2$ out of phase, so as to obtain cancellation at one (jxput) teminal and reinforveo nom (output) at anothers (Rygue 21)。 This provides undixectional information Flow end thereby Joxers the recqured horic eain and pernits the use of a two xrathor than theree clocks. Experimentally two Prols have been balancea so thet only 58 of the power appeared in the inputo

A furl stage of a binazy adder with two P10 sis and loum bybzid xing wes mede. 10,12 It operates through Linear combinations of phaseacript signals and Pross acting as a majority dectsion elomants and anpliaters (Figure 12). Opere ation with milses at ropetition of 300 we wes obtained. Other types of addern
were made also.
A 500 me binary scaler was made ${ }^{8}$ using a pro dolibsrataly thned at a Prequency slightly difierent incon haif the pranp frequency so that its phase changed for erexy monentary deactivation of the pump lasting for a time surficient to ajlow the natural oscillations to delft more than T/L in phase。

In gonaral, making of computer subsystems with $\operatorname{PLO}{ }^{\circ} \mathrm{s}$ can take advantage of well developed mjerovave strip twansmiesion techrigues. Hoards with 3 layexs, With ground plames on both sides of transmissions strips, permit ecupact subsystems without delaterious radiation piciroups of 2 layer boascs.

C. PLA Randon Access Memory

The randonn eccess memory made of PIOTs would be particulasily suitable in a mechine with PLO Iogic. Shis possibility was investigated ${ }^{33}$ a a two die mensionel ampay of pmos^{3} contimusly activeted by a pump, the access problem cono sists of (1) selactively establishing the desired phase in a selected PIO without disturbing the phase of any other and (2) of interrogating the phase of any selected PIO without ambinuity due to possible masking signals from all other PLosso

The whiting problem (I) is solved easily by forced switching it is possible to choose the amplitude of locking signals such that each saparately is too small but together the wo signels ave strong enough to change the phase of the PIO.

The reading problem (2) requires a more elebmate axtifice, For axe ample a standoy pLO in addition to the storing PIO can be used for each bitu Fach stantby PIO is loosely coupled to tis associated storing lio and is also loosely
coupled to a reedwout circuit. For reed-out, the standby PLO, normaliy not actico vated, is selectively activated by the coincidence of two bursts of prup onergiesso tione It startis to oscillate at the plase of the associated storing PLO and theree by conveys the sought phase information to the read-out circuite the signals of 211. other storing PLOs ${ }^{9}$ are effectively blocked Irom masking the readeout aignals since their standby sesdmout PID's are not activatedo

Experimental mernories have operated successfully at frequencies of less than 30 me but complextties of technology with early designs of PJo's have made operation at microwave Irequencies difficult。 Recent improved designg would greatly facilitate the memory designo
D. Variable Capacity Diodes 2or PLOss

Microwave carbridge point contact diodes of conmercial type and labosm atory units made by specially developed techniques, as well as gold bonded diodes nounted within the boards in quarter wave series resonant circuits, pernitted the oxperiments reported above but had sexious drawbacks due to limitaitions in speed and wide variations from unitutomunit. A program to develop junction bypes has ree sulted in a cleas understanding of the limiting factoss ${ }^{4}$ and diodes of practical design with an order of magnitude better performance.

The simultaneous reatization of low series resistance $x_{i s}$ within the diode and high variation of capacity. with respect to voltage ($\frac{1}{6}$ d $d \overline{0}$, azound a value C_{0} arbitrarily taken at 1 volt) requires that the impurity concentration be not uniform but have a specially designed profile. this was realized in solutione grown and out-diffused pan germaniumi junctionso High cut-off irequency f_{0} for reasonable impedance and jow power requires that the capacity be low and the area of the junction be of the order of 10^{-6} sq. inchesu

In addition to the constants of the semimeonductor proper it is essemilal to minimize the capacity C_{c}, the semies inductance L_{9} and the resistasce of the contact of the diode encapsulation. A special miero encapsulation was dow veloped (Figure 13, 24) in which the case capscitance is only $05 \mu \mathrm{H}$ and the lead induotance is only $3 \mu \mu \mathrm{H}$. It consists of a cerrance ring of o085 in diameter sealed hermetically between two metal plates with a metal finger entering fros one side. A thin wire contacts the dot on the germanium wafer and is soldered to the finger. The diode is inserted in the printed winding boands and the upper and lower tibs can ba dreatly soldered to the printed lines. The resuiting circuits are not only superior in performance but simple to construct. Typical constants
 $I_{0}=300 \mu \mathrm{H}$ H, and $C_{c}=6 \mu$. Caparity voltage sensitivity, difficult to measure directily, is relatively high as judged by inpmoved PIO performance.

These diodes have permitted the design of 10 KMC prumped PLO's with which gaing of 20 db , rige time of 2 to 3 nanoseconds, and eificiencies of 10% were realized. Corresponding infomation switching rate would be about 300 me as judged from the extrepolation of 100 mo rates of 4 KMC pumpod PLO's.

TII. TUNIEL DIODE COMPUTERS
I. Tunnal Diodes

Abrupt junotion diodes made of very highly doped matertal exhibit a negative resistance at smali forwerd bias. This effect was described by Io Esaki ${ }^{15}$ who interpreted it as due to quantua tumeling. As the negative resistance makes arplification possible and the effect is inherently fast, it was realized that the tumnel diode is particularly suited for high speed computers. The device was

Investigated in detail and a mumber of germanium units especially adspted for this use were made. ${ }^{16}$

The current voltage characteristic (Figure 15) exhibits in the Iowward direction, a meximum, a drop corresponding to negative resistance (AR), a minimun, and a subsequent rise. The regative resistance is well understood by semiconductor theory, and can be thought as due to a diminution in the mumber of eleotrons which can tomnel through a potential barrier as that barrier is lowered, a semingly paradorical. fact masulting from the decrease in electronic states adjacent to the potential baxrier.

The gain bandaiath product as well as the upper frequency of osci17am tion realizable were found ${ }^{36}$ to be inversely proportional to $R G$, where C is the physical capacity of the diode junction. The time constant RC, independent of junction area, can be small despite the large value of 0 (typically $3 \mu / \mathrm{cm}^{2}$). Minis is because the resigtance R can be made vexy small, as it is an inverse exponential function of the impurity concentration. High concentrations are obtainable by suitrable doping techniques. Time constants as low as $5 \times 10^{m .12}$ seconds have been determined by measuring R and C separately. In another experiment a tunnel diode was switchied by means of a mercury wetted relay and the resiulting switching was observed on a sampling oscilloscope. Rise and decay times less than 10^{-9} seconds and a plateau of about 10^{-9} seconds were observed. Tunnel diodes osciliators of 1600 me were made. Recently oscillations as high as 10,000 me were repoxted ${ }^{39}$.,

It is necessary that the sexies resistance r and the inductance L of the diode and its mount be sufficiently small to make the time constants $r C$ and I / R smanl compared to RC. Only very short lead-in oan be tolerated. Mioroencapsue
lations with wide，short，closely spaced terminals have been designed and pernit direct incorporation of diodes in 10w irapedance（typically 10 ohms）transmission lines．It turns out that the cesranic microencapsules originally designed for the variable capacity diodes is particularly suitable for the tunnel diodes（Flgure Ih）． These units have only about 300 ay of series inductance．

Hundreds of tumnel diodes were fabricated on a laboratory scale ${ }^{16}$ ． These were germanium types with impurity concentrations of about $2.5 \times 10^{19} / \mathrm{cm}^{3}$ 。 Vaxious sizes were mude with peak cuxrente varying between 1 and 700 ma．The area of the junotion in these diodes is about $5 \times 10^{-5} \mathrm{~cm}^{2}$ which entails a capacity of about 100 炜

2．Tunnel Diodo Iogic Circuits
Logic switching can be perforned by tumel diodes because their characo terlstics have sharp thresholds permitting gating and nogative resistance permitting signal amplification．Signals are baseond pulses，in contrast to the camries modulated signals of the Plo．Two distinet regions of the characteristic are useds a voltage range below the voltage of the current peak to denote＂${ }^{n}$ and a range above the voltage of the curvent valley to denote＂2＂。（Figure 15）．With germanium tunnel diodas the low＂O＂state is typically Iesa than 50 mand the hifg＂In＂state about 450 Inv．

Gain is obtained through a turiggering action．An operating point $P_{\text {，}}$ with current I_{5} and voltage $\mathbb{F}_{g^{\prime}}$ is established near the naximum of the characteristic （ I_{0}, V_{0} ）through appropriato biasing of the power supply．The inpat signal adds a relestively small increnent of current（or voltage）to go over the＂muxp＂。 This causes the diode to switch to the high state＂I＂．An output current as large as
the difference between the maximun I_{0} and the minivum I_{2} can be obtained without loosing the state "1". The ratio of output-tosinput currents, foeng the gain, cen thus be large if the operating point is vexy near the naximme Practical nearness of bjasing depends on the uniformity of diodes which was found sufficient in experies nerital diode batches to permit logic gains of 4 to 6 . These were observed incirm cuits pulsed at a rate of one megacycle. The excess of the input signal over the value required to reach the meximun has an appreciable effect on the speed of triggering as it determines the rate at which the capacity of the diode is charged to reach the trifgering pointo Therefore some reduction of possible logic gain must be suffered to obtain high switching speeds.

Logic switching can be accomplished by properiy interconnecting simple logic elements. Each such element, mado of one or more tomel diodes, serves as a bitmsture, as an ampifier, and as a threshold gate。 The gating is of the majority type with which simple majority, "2nd", and "ors", decisions are obtained with proper choice of the threshold levels. Three main types of logic elements were investigateds (2) bistable, consistirg of a tunnel diode in series vith a resistance on resistance networy (Fig. 16) (2) bistable, consisting of two tunnel diodes in senies (Fig. 17) (3) monstable, using diodes in series with inductanceso (Figo 18)。
(1) In the first bistable logice element the single port P is coupled resistively to a number of inputs and outputs as well as to a souree of current I_{s} Which oan be pulsed (Fige 16). In the absence of I_{s} the contributions of currents. to the diode are so small that its voltage is small, on the "O" part of the charace teristic. The value of I_{s} is so chosen that when the activating pulse is applied the total current will either be smaller os greater than the maximum I_{0} depending on the sum of the inputs and therefore the voltage will remain amall or will be
switched abruptily to the "I" part of the characteriatic. This change of voltage inf"luences in twrn other logic elements to which it is coupled when these are activated. The logic elemerts are in trree or more groups which are clocked by overlapping pulses, in a manner similar to the PLO clocking. An experimental witit has been made to demonstrate this type of logic. It contains a stoxage 100p, a full adder stage, means to shift the right and left into registers and other tunctions including inversion. The unit contains 27 tunnel diodes with peak currents of 2 ma. Oinserved suitching times with these exfy relatively slow diodes were about 50 namoseconds. The unit was driven by a threemphass clock at 1 megas cycie.

An alternative to the pulsed power supply for energising the bistable elements is the use of a DC supply and resetting pulses. Any element of the netio worlk is set to state "In directly accosding to the combined outputs of preceeding elements and is reset to state " 0 " by a clociong pulse: Setting of the elements of a group occuss immodiately following zesetting.
(2) In the second bistable type the logic element is made of two tunnel diodes in sexies (Fig. 17). To these diodes is applied a voltage from an a.c. source, pulsed or sine wave, of an amplitude sufficient for one diode to be in the high ny" state but insufficient for both to be in that state. The polarity of a relatively small input voltage applied to the millupoint is sufficient to dee termine which diode will trigger. This triggexing will cause a greater voltage swing of the same polarity at that point and in offect will amplify the input signal. Logic networks can be obtained by arranging the logic elenents in three or more groups and resistively coupling the midpoints of the elements of different groups.

The pattern of connections determines the desired logic operations. the groups are energized in succession by overlapping voltage waves in a manner similar to the clocking of the PLO'so A particularly simple system is the use of a 3 phase sine wave power supplyo Negation is obtained by inverting transformers. Practical obtainable logie gains depend on matching of diodes in pairs rather than general uniformity of diodes as in the single-diode logic elemente.
(3) Monostable logic elaments are obtained with a tunnel diode in series with an inductance bissed to a point p near the maximum of the characterise tic (Figo 18). A relatively small voltage can txigerer the diode to the high state and thereby produce a relatively high voltage swing at the same pointo Iogio neto works can bo obtained by resistive couplings between jogio elenents in a manner similas to bistable elements. Resetting to the low state is produced automatically by the voltage induced in the inductance. Asynchronous operation can thus be obtained. Th an experinental 7 stage delay chaing very unifoum auccessive triggering was observed. Synchronous operation is possible also by superimposing clocking pulses on the inputs but it appears that higher speeds are realizaile fors a given lofic gain in bistable circuits in that mode of operations.

All three types of circuits utilize logic elements in which the inputs and outputs are on the same single terminal. To insure separation of input and output functions, 1.ea, direction of information Mlow , several mothods are possible. In the above described systems separation in time was used by mitiple phase clocking, the inputs at any one logic elements being effectiveat a different time than the outputs. Directionality by electrical separation can be obtained through the use of unidirectional couplings. Unfortunately adequate rectifying diodes of speed comparable to that of the tunnel diodes are not available at the present time.

Directionality can be achieved also by making the level of energy of successive logic elements in a chain or the couplings between them progressively weaker so as to insure that the setting influence of the inputs dominates over the backflow inco Iluence of the outputs.

The multiple phase clocking is a simple solution to the directionality problem and the key to the successful use of single port two terminal devices. An increase of speed can be realized if several logic steps instead of a single ome are made at each clock pulse. This is possible by using a cascadod axrangenent of logic elements driving each other asynchronously. In these circuits means for directionality of infomation N1ow other than clocking must be provided.

From the aboveconsilerations it is evident that simple logie circuits of complete generality can be made from tunnel diodes. The signals are direct pulses and require no carrier. Energization can be either by miltiphase sine wave or pulsed ac os by a combination of do and clocking pulses. Experimental circuits have deme onstrated gerneral system flexibility. The speed of the circuit can be vexy higho With early relatively slow experimental diodos having 2 ma peaks, one megacycle repetition rates were demonstrated but switching times were short enough to permit 10 megacycle ratos. With newer faster 20 ma units logic eloments were switched in times permstting 100 megacycie rates. The speed capabiltites of tumel diodes are still being increased dranatically so that there is great promise for realizing Iogic circuits with 3000 megacyele rates.

3. Tumnel Diode Memory

Randon access memories can be made using arrays of tunnel diode and give promise to be very fast. Each bit is stored by a current driven tumel diode
having two stable voltages (Fige 29) R Row and colum buses axe resistively coupled to each diode. (Fig. 20). Any selected diode can be set to one or the other sterte by voltage pulses of appropriate polarity and amplitude on the corresponding buses. the memory can be organized for coincident bit addressing requiring two-tomone selection discrimination or for word addressing needing onky threewtomene itscrimino atiom Tha raxima and the minima of the characteristics provide the necessary thresholds and are sufficientiy uniform to make possible oither of these coincident writewin systems.

Readecut is obtained by dxiving the selected elenent of elements to the high state "In and observing whether or not switching results. In a second following writing cycle the alements which have changed state are reatored by approm priate control of the writing circuite in a manner anklogous to that used in conso ventional core merortes. The readmort signal can be obtained by direct pickoup from a common circuit resistively compled to all elements. Readmout can be obtained elso through inductive or zadiztive pick-up of high irequency which can be generated by the selected diode in several ways. A resonamt circuit, which mey be a simple stub at microwave frequancies, is associated with ach element. In ore method, to read, a write "C" is applied to the selected elemant and thereby switchen it os not. It there is switching the relatively laxge voltage excursion through the negative regions of the characteristio shock excites the taned circuit and the resuliting natural Iree quancy osciliation is sensed on a circuit Loosely goupled to all elamentis. (Fig. 21) In another method, selective readout adidressing circuits impress sigmals at Erequency f_{1} on the selected row bus and s_{2} on the gelected colvan bus. In the high state the curvature of the voltage current characteristic is about 4 times greater than

In the low state, producing a corresponding ratio of amplitudes of the beat frew quency $\varepsilon_{1}-f_{2}$ to which the elemental cireuits are tuned. Erperiments with mmoly arsays and amrey skeletons have demonstrated (I) two-towone coincident writemin with reasonable tolerances of operation despito the use of experinental citodes with relatively wide variations of characteristicn (2) adecquata discrimination dixect read out pulse "signals with wort adaressing (3) inductive reainout signals of high dismerimination with ringing frequenates as hifig as 250 me axd beat frequency of about I kme with bit coincident addreasing Drivers of tunnel diode arrays mast bs able to supply pulses of reo latively large powes. The requised curgant is large because all parallel comented halfoselected slemambs load the solected lanes, and the requirst voltage is lamge because the voltage of the series current regulating resistance must be severvi times greater than the voltage suing of the diode Typically hurireds of railli" amperas and several volis must be provided. It is unlikoly that tramsiatams vill be adaquate to drive large arrays at high speed (although a line of a arrags was driven $2 m$ less than 10^{-8} sece) . The best promise pors soiviag the driver problen lies in the tumel diode itselp. Sufficient voltage can be obtained by comecting 2. number of turnel djodes in series, and adequate currert may be obtained by using sufficiently high curient wnits. Sreh arsangements have been operated and appeas adequate.

Tunnel diode random access memozies offer at the present thme a good and possibly the only pronise for achieving a cycle time of 10^{08} seconde nocessazy of a nemoxy assoctated with 1000 magacycle rate logie: the tumnel diodes theraseivea are or about to be past enough and there does not seom to be any insumnountable
system problem. Experiments to date have demonstrated the essential writemin and rasd-out steps and have indicated a solution for the daivers. Purthernore it appears that propagation delays along addressing lines cas be kept lon enough so as to be Insigntifcantw tinis resmits chiefly from the smail sige of the diode and of the resulting axway.

TV. CONCLUSIOIS
Comprtes Jogic by microwave carsier techmiques and the junction diocie P10 has been domonstratec in elementrxy subsystorns rperating at one hundred megam cycloss and single elements switohing in twas corresponding to 300 megacycles. Microencapsulated improved diodes promise to provide thousand megacyole rates with power supplied at 30 №C. os higher.

Compuber logio by tunnel diodos, aiready demonstrated at low rateg, promises to be possible at thousand megacycles. Sufficiently uniform diodes and dodes capabile of sractional nanosecond switching have been made. Randon access menories with cycic thros of the order of 30 nanoseconds appeas possible using arrays of tumel diodes Aunnel diode computera operate with direct puises asm are pusered by DC ama/or AG at signal frecuenoy.

Twowteminal semiconductos devices provide thus the maniprilative elew ments required to gate, stowe, and amplity binaxy signala in namosecomis. Furthere nore, simplicity, small sies, and poter dissipstion per elencmi of tons of miliwatts pormit packing of 10 ox more elements per cubic jnch Therefore raasongbly comprohonsive compubers with several thousand logic and severnal tens of thousands of memosy elements can be made in a volume of less than two feet in dimater. Uno
avoidable delays cus to signal psopagationg of about 6 to 8 inches per nanosecond In normall transaission lines, are thus leart at sbout one nanoseconte whis precents no sexions difficulty in a "thousand megacycie" machine which can be assuand to have alomentary Iogic functions executed in about one nanosecond and memoxy cycle thime of 10 zanozeconvias

Wh can, theresoreg look forwand to a near exa of billiom-bltmperaeconc Infomation henduing nechines which are likely to produce, as Jarga, if not laegoxs ans Impact on the informatton processing arto as wan producod a dooade ago by the in troduction of prosent millionebithpar-secont machineso

To ACKMOHLEDOAEM2S

The woxk reparted in this papar is the result of the jotnt offomis of a nuber of scientists and angimesrs of the Radio Ccrporation of Arerica in its
 Diplstonso Ths authoe hess attonyted to presemt a sumaxy of theix idess and aquazic nentat results. Devail papern ky various authors have been published alresdy add others are followinge the work wes suppoxted by governnamt contract wolesmo77523.

RAFERENCES

2．Wichi Goto，＂On the Application of Parametrically Excited Nonlinear Resone ator＂，Denki Tsushin Oakkai－shi，（Oct．1955）

2．John von Neumann，＂Nonlinear Capacitence or Inductance Switching，Amplifying， and Memory Organs＂，U．So Patent 2，815，488，（Dec．3，1957），assigned to TEM 0

30 Jo J．Stocker，Nonlinear Vibrations in Mechamical and Electrical Systems， Interscience Publishers，Inco，New York（1950）。

4．Wo Jo Curningham，Nonlinear Analysis，McGram－Hill，Now Yorko
5．Ko I．Kotzebue，＂A SemiconductoraDiode Paremetric Amplifier at Microwave Frequencies＂，Stanford Mectronic Laboratories Technical Report，No． 49 ， （Nov．1958）．

6．A．Unlir，$J x_{0}$ ，＂The Potential of Semiconductor Diodes in High Frequency Commuications＂，Proco of the IRE，Vol． 46 （June 2958），po 1099－1115．

7o J．M．Manley and R．E．Rowe，＂Some Goneral Properties of Nonlinear Elements－ Part 1 －General Enerey Melations＂，Proco of the IRE，44（July 1956）， po 904．0213．

8．W．Mo Beam，D．J．Blatmer and Fo Sterzer，＂ficrowave Garrier Techniques for High Speed Digital Computing＂，Symposium on Microwave Techniques for Conputers，Washington，1，Co，March 12，1959，Transactions of the IRE on Blectronic Computers，Septo 1959。

9。 Fo Steruer and D．Blattner，＂Fast Microwave Logic Gircuits＂，IRE National Convention，March 1959 also Wastem Joint Computer Conference，Doc．${ }^{9} 305,2958$ ．

20．F＇．Sterzer，NMorowave Paranetric Sub－Harmonic Oscillatore for Digital Coro puting＂，Proc．of the IRE，July 1959.

12．FoSterzer，＂RP Circuits Using SuboHamonic Obcillators＂，PGrit National． Symposiun Harvard University，Cambridge，Masso，June 1959．

12．FoSterzor and W．Ro Bem，＂Parametric SuboHarmonic Oscillators＂，Digest of Technical Papers，Solid State Circuits Conference，Philatelphis，Pao，Febo 1959o

13．I．So Onyshkevych，W．Fo Kosonocky and Ao Wo Lo，＂Parametric Phase－Locked Oscillator－Characteristios and Applications to Digital．Systems＂，Symposium on Microwave Techniques for Computers，Washington D。Co，Harch 22，1959。 Transactions of the IRE on Eloctronic Computers，Septi 1959．
14. J. Hilitbrand, G. W. Mueller, C. F. Stocker and R. D. Gold, "Semiconduetor Parametiric Diodes for Micromave Computers" Symposium on Micerowaves Teoiniw ques for Gomputers, Washington, D. Cog March 12, 1959, Transactions of the IRE on Flectronic Ccraputers, Sept. 2959.
15. In. Esaki, Physical Revien, 109 (1958), 60-3.
16. H. S. Sommers, Jx., "Munnel Diodes as High Frequency Devices, "Proce of the IRE, (July 1959), po 1201.
17. R. I_{2} Wigington, MA New Concept in Computing, Proc. of the IRE, Vol. 47 No, 4, (Apris 1959), p. 516-523. (An account of J. von Nenmamn ideas e raference 2).
18. M. Ho Iewing MNegative Resistance Elements as Digital Cosputer Components", Paper of this 1959 EJCC.
29. ReN. Hajr, "Tunnal Diodes", 1959 Electron Devices Meeting, October 29, 1959, Washingtom, $D_{0} \mathrm{C}$.

List of Figures and Capotions

1. Principle of Parametric Phase-IockedunseLilator
2. PIO Ceneral Iogic
3. Shift Register uith Three Thase Pump System
4. Miemowase Subhamonise FhasemiociseduOccillatom
S. Fhotograph of 4 KMC PLO
5. Charactoristio of PLO
6. Phase Locked Subhamonic Oscitlatos Pumped at i ESTG with Fous Coupling Antonnas.
7. Chasecteristic of 4 Astenna PLO.

94 Kumber of Grelos of Butidup as a Function of Togic Gain
10. Hywrid Oxscuit for Translating Anplitudewtowthase Scripts
21. Gavcuit for Separating Invit and Output of Prors
12. Btuary ladas
13. Gross-Section of Variable Capactivy Diode
24. Mitorosmeapalation for Variable Gapactity and Tumel Diodos
15. Tunne2 Diode Characteristics
76. Tunnel Diode Bisteble Logic Memertio Single Diode Type
17. Tunnel Diode Bistable Eogic Element. Symnetuic Type
18. Tunnel Diode Monostable Logic Element
19. Gurrent Coincident Writemin
20. Tunnel Diode Memory Amray
23. Read Out by Sensing Ringing

(b)

(C)

PRINCIPLE OF PARAMETRIC PHASE-LOCKED OSCILLATOR

PLO GENERAL LOGIC

FIG. 2 MICROWAVE SUBHARMONIC PHASE LOCKED OSCILLATOR

PLO CHARACTERISTIC

STATIC CHARACTERISTICS OF DESIGN \#8586-48

$$
R_{b}=1 \mathrm{~K}, V_{\mathrm{b}}=1.62 \mathrm{~V} .
$$

NUMBER OF CYCLES OF BUILD-UP AS A FUNCTION OF LOGIC GAIN

CIRCUIT FOR SEPARATING INPUT AND OUTPUT OF PLO.

BINARY ADDER


```
INDUCTANCE \(=.5 \mathrm{~m} \mu \mathrm{~h}\).
SHUNT CAPACITANCE = . 3 \mu\muf.
    RESISTANCE = . 15 OHM a 2 kmC.
```

CROSS-SECTION OF DIODE

TUNNEL DIODE CHARACTERISTIC

-
TUNNEL DIODE BISTABLE LOGIC ELEMENT SINGLE DIODE TYPE

TUNNEL DIODE BISTABLE LOGIC ELEMENT SYMMETRIC TYPE

TUNNEL DIODE MONOSTABLE LOGIC ELEMENT

CURRENT COINCIDENCE WRITE -IN

TUNNEL DIODE MEMORY ARRAY

READ -OUT BY SENSING RINGING

RAMO-WOOLDRIDGE a division of Thompson Ramo Wooldridge Inc.

```
P.O. BOX 90534 AIRPORT STATION.LOS ANGELES 45, CALIFORNIA. OREGON 8.O511. OSBORNE 5.4651
```

November 18, 1959

Mr. Harlan E. Anderson, Chairman 1959 EJCC Publication Committee Digital Equipment Corporation Maynaird, Massachusetts

Dear Mr. Anderson:
SUBJECT: Presentation of a paper at the EJCC.
We regret that we failed to send you a resume of the engineer reading our paper entitled "A High Speed, Small Size Magnetic Drum Memory Unit for Sub-miniature Digital Computers". Bnclosed you will find a resume relating to Mr. R. A. Howard who will read the paper for us.

We are preparing two sets of slides, size $31 / 4^{\prime \prime} \times 41 / 4^{\prime \prime}$ for use in the presentation.

Enclosures (1)

Roy A. Howard
B.S. in Electrical Engineering at Oregon State College.

Post Graduate work in Mathematical Physics.
Member of Institute of Radio Engineers.
Ten years' experience in Digital Computer Development for Data Processing and Control purposes including Automatic Control of machine tools and semi-conductor test equipment.

While a Naval Officer, Mr. Howard was responsible to the Navy for overseeing a computer development at ERA. Later at the Hughes Aircraft Company he was responsible for system engineering and logical design of parts of a Data Processing System and a line of Automatic Machine Tool Controls.

RAMO-WOOLDRIDGE a division of Thompson Ramo Wooldridge Inc.
P.O. BOX 90534 AIRPORT STATION. LOSANGELES 45, CALIFORNIA. OREGON 8.0511. OSBORNE 5.4651

November 13, 1959

Mr. Harlan E. Anderson, Chairman
1959 EJCC Publication Committee Digital Equipment Corporation
Maynard, Massachusetts
Dear Mr. Anderson:
Enclosed are four copies of the manuscript for our paper entitled "A High Speed, Small Size Magnetic Drum Memory Unit for Subminiature Digital Computers". An abstract is attached to each manuscript.

The illustrations made up as you requested (one complete set) are enclosed. Reproductions of the illustrations are also bound in the four copies of the manuscript. We hope this will make checking the manuscripts more simple.

MM: jhb
Enc.

A High Speed, Small Size Magnetic Drum Memory Unit for Sub-Miniature Digital Computers.

A magnetic drum memory unit has been designed and constructed for use in future subminiature digital computers. The unit has been designed to meet the requirements of MIL-E-5400 Class 2, withstand shock loads of 16 g , and operate under continuous vibration of 10 g peak, from $0-2000 \mathrm{cps}$. Its operating temperature range is $-54^{\circ} \mathrm{C}+125^{\circ} \mathrm{C}$. It will operate up to any altitude as normally packaged. The unit has a memory capacity of 300,000 bits. 122 tracks are provided on a $41 / 2^{\prime \prime}$ long $21 / 2^{\prime \prime}$ diameter recording drum. At the normal speed of $12,000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. , the clock frequency is 546 kc . The unit utilizes four $1.3^{\prime \prime}$ by $1.25^{\prime \prime}$ shoes to hold assemblies of 27 read-record heads, and smaller shoes to hold circulating register heads. Head to drum spacing is maintained by an air film between the shoe and the drum. Recording is achieved with silicon transistor circuits using 6 volts supply and 100 ma peak recording current. The signal level, when reading, is about 12 mv at 546 kc . The size of the unit is $3.7 \times 3.7 \times 7.4^{\prime \prime}$. Its weight is 11.3 lbs including a case for hermetic sealing.

This development was performed under contract for the Wright Air Development Center of the USAF.

A HIGH SPEED, SMALL SIZE MAGNETIC DRUM MEMORY UNIT FOR SUBMINIATURE DIGITAL COMPUTERS M70-9U40

By M. May
G. P. Miller
R. A. Howard
G.A. Shifrin

4 November 1959

RAMO-WOOLDRIDGE

A Division Of
THOMPSON RAMO WOOLDRIDGE INC.
LOS ANGELES 45, CALIFORNIA

CONTENTS

General Description of Memory Unit 2
Recording 5
Reading 5
Selection of Magnetic Coating 7
Determination of Magnetic Properties and Thickness 8
Design of Suitable Read-Record Heads 9
Recording 13
Design of Read Head 18
Construction of Magnetic Head 19
Mechanical Design Details. 24
Principle of Operation of Head Support Mechanism 24
Properties of Lubricating Film Supported Shoe 27
Design Requirements 30
References 38

A HIGH SPEED, SMALL SIZE MAGNETIC DRUM MEMORY UNIT FOR SUBMINIATURE DIGITAL COMPUTERS

A memory with dimensions compatible with microminiature assemblies is required for future computers to be used in missiles and aircraft. A drum memory is described which can fulfill this need. The bit rate of 546 kc makes possible a 20 -bit serial word time of the order of 40 microseconds. For a computer with add and multiply times of 40 microseconds, the drum memory described is adequate. Moreover, the technique described can be extended to provide a 20 -microsecond word time by doubling the rotational speed of the drum, and to 10 microseconds or less by reading out two or more bits in parallel. A memory capacity of 15,000 twenty-bit words is available in the $7.4 \times 3.7 \times 3.7$ inch total unit size, which is adequate for the type of computations usually made in•an aircraft or missile. The advantage of such a drum memory as compared with a ferrite core memory, for example, is in cost, size, and ability to perform over wide temperature ranges. The disadvantage of the lack of immediate access to any address can for the most part be overcome by suitable programming precautions.

The magnetic drum development was performed under contract for Wright Air Development Center of the USAF to determine whether recording densities of 500 to 1000 bits to the inch and more than 30 tracks to the inch could be achieved in a small unit which would meet the requirements of MIL-E-5400, Class 2. The description of the development is broken down as follows:

1. General Description of Memory Unit
2. Selection of Magnetic Coating
3. Design of Suitable Read-Record Heads
4. Mechanical Design Details

GENERAL DESCRIPTION OF MEMORY UNIT

Size	$3.7 \times 3.7 \times 7.4$ inches over-all
Power	$400 \mathrm{cps}, 3$ phase, about 30 watts
Weight	11.3 pounds
Motor	Mounted inside recording drum
Tracks	30 per inch, total of 122 tracks
Recording density	350 bits per inch using Manchester phase modulated recording
Clock frequency	546 kc
Total storage capacity	300,000 bits plus timing tracks and spare tracks
Speed	$12,000 \mathrm{rpm}$ approximately

Figure 2 shows a partly assembled unit. To achieve the high degree of stability required for high density recording over a wide temperature and vibration range, an especially rigid unit was constructed. The framework and most critical parts are made of stainless steel selected to have a coefficient of expansion to match that of the ball bearings. A cross section drawing of the rotating part of the unit is shown in Figure 1.

The recording drum is made up of an internally mounted, $400-\mathrm{cps}, 3$-phase induction motor whose stator (1) is attached to a fixed shaft (3). The squirrel cage type rotor (2) is fixed inside a steel cylinder (8) which provides magnetic shielding and forms a mounting for a nonmagnetic stainless steel cylinder (9). This cylinder is plated with nickel-cobalt by an electroless method to form the recording surface. A shoe holding 27 read-record heads can be seen resting on the recording surface in Figure 2. This shoe is loaded with a $6-10$ pound force against the recording surface when the drum attains full speed. Since the shoe and 27 heads weigh less than 1.5 ounces, accelerations of 10 g 's have little effect

Figure 1. Cross Section of Rotor Assembly

Figure 2. Photograph of Partly Assembled Magnetic Drum
on the head spacing (which is maintained by an air film between the shoe and the drum). The shoe is positioned radially by means of pivoted arms. The pivots are held in V-grooves to eliminate any possible play.

A gear wheel can be seen which turns cam shafts mounted down the length of the four corners of the framework. The cam shafts take the pressure off the shoes for starting or stopping. A very small motor (not shown) will be mounted to turn the gear wheel against a spring when the drum has attained full speed. Upon the removing of the driving power, the spring will turn the large gear wheel and take the load off the shoes.

The shoes are selfaligning and no adjustments other than spring pressure are required. The use of two independent arms loaded by a single cantilevered spring achieves this self-alignment.

Positions for four large sized shoes are visible in Figure 2. On the other faces of the frame similar mounting spaces for smaller shoes are provided. These shoes are intended to hold both read and record heads for circulating registers.

The electrical characteristics are summarized as follows.

Recording。 Peak currents of 100 ma are required for res cording. The current is built up linearly during half a bit time for the Manchester type recording. A silicon transistor push-pull circuit with 6 volts on the collectors is used for the recording amplifiers.

Reading. The read signal is about 10 mv peak-to-peak at 546 kc and about 30 mv at 273 kc . No noise is noticeable on the signal under test conditions. Using Manchester or variable phase type recording, no transients are apparent beyond one recorded bit before and after each word. Pattern sensitivity has been eliminated by the use of narrow pole piece heads described later. Typical read signals made up of single eight-bit words are shown in Figure 3.

RECORDED SIGNAL

RECORDED SIGNAL

Figure 3. Read Signals with Clock Times Indicated

SELECTION OF MAGNETIC COATING

For digital recording the head-to-drum spacing should be of the order of one-tenth or less of the length of the recorded bits to achieve customary margins of operation. For 350 or more bits per inch, a head-to-drum spacing of less than 300 microinches is indicated. For both temperature ranges of -55° to $+125^{\circ} \mathrm{C}$ and high shock and vibration, the small head-to-drum spacing required of 300 microinches cannot be maintained unless the head is made to bear on the recording surface. Gas lubrication is satisfactory for the maintenance of spacing in this range. For practical reasons it is desirable that a small particle of dirt (or accidental mistreatment during assembly or service) not do appreciable harm to the recording surface. This puts a requirement on the durability of the magnetic coating. For this reason magnetic plating is preferred to oxide films. There is an optimum plating thickness (which in practice turns out to be of the order of 100 microinches) for 350 bits per inch as is shown later. Since oxide coatings are usually ground after application, there would be an especially difficult problem in grinding them down to a uniform thickness of 100 microinches. Thus it became necessary to develop a suitable plating. Electroplated nickel-cobalt alloys have been tried and work perfectly well magnetically. They can be plated as thinly as desired and have been tested at thicknesses of 60 microinches and less. Mechanically this plating is not the best that can be obtained since it is not especially hard and has not been made to have both a high coercive force and adhesion strength comparable to the bulk material strength. This type of coating is magnetically satisfactory, but slight damage may put several 0.03 inch wide tracks out of operation due to local peeling of the coating. Nickel deposited by the Brenner electroless process forms a very hard coating which has excellent adhesion and hardness after suitable heat treatment. This coating markedly improves the wear resistance of almost any material that might
be used to make the drum. A modification of the Brenner process to include cobalt produces an alloy which has good recording characteristics. This alloy is satisfactory magnetically without heat treatment but can be made harder with heat treatment.

DETERMINATION OF MAGNETIC PROPERTIES AND THICKNESS

The signal read from the recording surface will be

$$
\begin{equation*}
\text { E peak-to-peak }=2 \phi \omega \cdot \mathrm{n} \times 10^{-8} \text { volts } \tag{1}
\end{equation*}
$$

$\phi=$ maximum number of flux lines in the head
$\mathrm{n}=$ number of turns on head
$\omega=$ frequency in radians per second
This assumes that the readback signal is essentially sinusoidal. The parameter ϕ will be less than the flux lines remaining in the recorded dipoles after magnetization since not all the lines can be made to link the head. It will be proportioned to track width. It will be dependent on B_{r} and H_{C} for the magnetic coating.

For a thin magnet which is very wide, it can be shown that

$$
\begin{equation*}
H=H_{o}-(2 t / \pi L)(B-H) \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{O}}=\text { applied field } \\
& \mathrm{H}=\text { effective magnetizing field } \\
& \mathrm{t}=\text { plating thickness } \\
& \mathrm{L}=\text { length of the recorded dipole } \\
& \mathrm{B}
\end{aligned}
$$

A nickel-cobalt plating having a coercive force of 320 oersteds and a saturation induction of about 6000 gauss was selected. The ratio t / L can be varied so that a demagnetizing H just intersects the corner of the B-H loop for the material. Since L is fixed by
the recording density, t is selected so that the residual induction is near the maximum induction, thus taking advantage of the squareness of the hysteresis loop of the nickel-cobalt alloy. A greater thickness would provide no greater residual flux because of demagnetization, but would require a greater recording magnetomotive force and would magnetize more slowly due to eddy current effects. Thus both magnetic plating material and its thickness can be optimized for the drum memory.

Figure 4a shows an actual B-H loop of a nickel-cobalt plated film to show the effect of thickness on the residual induction due to demagnetization. A line is drawn of slope determined by t / L which intersects the $B-H$ loop at the point of residual induction.

Figure 4b shows a similar B-H loop for a heat-treated, nickel-cobalt alloy chemically deposited by the Brenner process. The squareness is not as good as that obtained by electroplating, but it is expected that this could be improved.

The B-H loops were taken on actual plated 2-1/2 inch diameter by $4-1 / 2$ inch long stainless steel cylinders before they were mounted on the drum assembly. (See Figure 5 for photograph of the $\mathrm{B}-\mathrm{H}$ tester.)

The B-H loops were taken by magnetizing the plating axially in a solenoid whereas recording takes place around the periphery of the drum. There was some doubt as to whether or not anisotropic effects would invalidate this measurement, and so several disks were plated and tested along various axes in the B-H tester. Very little change in $\mathrm{B}-\mathrm{H}$ characteristics was noted as the direction of magnetization was changed. The disks were purposely ground so that the effect of grinding marks would be observed if they set up an easy direction of magnetization.

DESIGN OF SUITABLE READ-RECORD HEADS

The design goals called for 350 bits per inch recording density and at least 30 tracks per inch. Reading resolution of 350 Manchester cells per inch requires coupling as much flux as is

Figure 4a. Actual B-H Loop for Electroplated Nickel Cobalt

Figure 4b. Actual B-H Loop for Heat Treated Electroless Nickel-Cobalt

Figure 5. B-H Loop Tester
possible from a 0.0014 inch long magnetic dipole into a magnetic structure around which are wound a number of turns of wire. Coupling much of the flux requires a head gap of the order of 0.0004 inch and head to recording surface spacing smaller than 0.0001 inch. However, a compromise can be made which will cause a loss of signal but not necessarily loss of operational margins. Recording densities of more than 1000 bits per inch have been obtained in systems using a single floating head assembly. However, this usually is accomplished with very closely spaced heads and wider tracks than 0.025 inch. In the interest of economy and development time a compromise which utilized many heads mounted in a single air floated pad was adopted. To make the construction problem easier, a head-to-drum spacing of 200-300 microinches was adopted. This limits a practical digital recording system to the region of 500 recorded bits to the inch. In the present system a recording density of 350 bits per inch is used, but this does not represent the practical system limit. The floating pads holding about 27 heads are of the order of 1.3 inches by 1.25 inches. Economies in space and cost are achieved by this mass mounting method which at present requires the use of recording densities of 500 bits per inch and less. The problems of recording and reading will be discussed separately although it is highly desirable that a compromise head be used which can both record and read. Apart from economy it greatly relaxes mechanical tolerance problems.

Recording. Figure 6 shows an idealized read-record head at its pole face. If the resistivity of the pole pieces were high so that eddy currents could be neglected, the amp turns required for recording and the read signal obtained per turn of the head winding could be quite closely calculated. Such a head is most difficult to make and the desirable spacing to the recording surface of 50 microinches or less is also most difficult to obtain in multiple head assemblies. The performance of the idealized head is of interest, however, for comparison with the compromise design which has been presently adopted but which clearly could be improved. To determine the recording amp turns required, let the B-H loop (Fig. ure 4 b) be assumed to be the $\mathrm{B}-\mathrm{H}$ loop for the recording surface. For the 0.00015 inch thick plating whose $B-H$ loop is shown on Figure 4b assuming

$$
L=0.0014^{\prime \prime} \text { (350 bits per inch Manchester recording) }
$$

It can be seen from Figure 4 b that 500 oersteds are required to saturate the magnetic plating at 6000 gauss. From Equation (2) we find that

$$
\mathrm{H}_{\mathrm{o}}=90 \begin{gathered}
900 \text { oersteds approximately for } 500 \text { oersteds } \\
\text { effective magnetizing force }
\end{gathered}
$$

Two parallel lines are shown on Figure 4b, whose intersections with the $\mathrm{B}-\mathrm{H}$ curve and H axis give the residual flux density and the recording force required. This gives a flux density after magnetization of 3200 gauss. If the curve of Figure 4 a were used, mag. netizing force of 600 oersteds would give a remnant density of 5500 gauss. However, because the electroplated coating is thinner (80 microinches versus 150 microinches), the remnant flux would be only 90 percent of that obtained for the electroless plating.

The overriding consideration for selecting the electroless plating was its hardness and resistance to wear.

Figure 6. Ideal Geometry for Recording 350 Bits/Inch

The remnant flux for a recorded dipole 0.0014 inch long, 0.025 inch wide and 0.00015 inch thick would be about 7.7×10^{-2} lines for a flux density of 3,200 gauss.

About 2. 5 -amp turns must be provided for magnetizing the plating. In the ideal head (Figure 6) 14.5×10^{-2} lines must be maintained across two gaps in series to saturate the coating at 6,000 gauss. The gap dimensions are 50 microinches in extent, 0.025 inch long and 0.0005 inch wide. This infers an average flux density in the air gap of 1,800 gauss, the maintenance of which will take about 0.36 -amp turns. The maintenance of flux in a very small continuous permalloy or ferrite circuit will take a negligible extra number of amp turns.

In practice, sufficient amp turns must be provided to generate a large number of fringing lines which form closed circuits around the side of the head and under and over the recording surface. If the ideal head as drawn in Figure 6 were made, 3-4 amp turns would be sufficient for recording on the magnetic coating specified.

In practice, allowance has been made for the fact that the air gap may be 300 microinches instead of 50 microinches since this is much more readily achieved in a multiple assembly holding 27 heads. The best compromise for recording also includes making the silver shim gap larger than would appear ideal for small head-to-drum spacings since the flux density drops off rapidly in terms of the head gap dimension. A practical though not very efficient head would utilize 0.001 inch wide pole pieces with a 0.001 inch wide silver shim. (See Figure 7.) Such a head records with 15 -amp turns but gives a slightly greater read signal using $30-\mathrm{amp}$ turns. Since these figures are large compared with the calculated 3-amp turns, it is clear that recording efficiency was sacrificed in order to make the head easier to fabricate and less sensitive to spacing than the ideal head. This inefficiency becomes important only if the recording circuitry becomes large or impractical. A head made to the dimensions shown on Figure 7

Figure 7. Practical Geometry for Recording
has been driven at 546 kc with a silicon transistor circuit using 6 volts on the collectors and 100 to 200 ma peak current. Since this circuit is quite acceptable for a microminiature computer, recording efficiency can be sacrificed if this results in a net savings in manufacturing cost. The practical geometry of Figure 7 clearly looks inefficient magnetically, but economy and ease of manufacture are in its favor. The 0.01 inch long legs are highly desirable for mechanical structure since a clamp holds the permalloy against the silver shim. The silver shim is wide for the size of the recorded dipole, but head spacing is far less critical than if the silver shim were closer to a more reasonable appearing dimension. Laminating the legs of the magnetic structure will improve the performance since penetration of the magnetic field at 546 kc is about 10 percent into either side of the material (assuming nonsaturation) for the half amplitude point. In practice, excess drive is used which causes the penetration to be greater than the 10 percent mentioned above. The penetration is greater because the permeability of the material is lowered as it becomes saturated, resulting in an increased speed of propagation in the saturated region. The final choice of magnetic head is likely to be a compromise between the schemes shown in Figures 6 and 7. For practical reasons, the dimensions shown in Figure 7 make a good starting point for the development of a useful system.

The magnetic head structure is made of 0.001 -inch permalloy rather than ferrite which would be too hard to handle in sufficiently small sizes. Under less than ideal conditions for recording, there are very marked transients where recording starts and stops, since some recording on a minor hysteresis loop takes place under the full region of the magnetic head. As recording density is increased without scaling down the head gap and head-to-recording surface spacing, this problem becomes more marked. For a chosen minimum head-to-drum spacing, the useful recording density can be greatiy increased if the magnetic structure of the
recording head is reduced to the smallest dimensions possible so that its influence does not appreciably extend beyond the recorded dipole. Care must be taken in using legs of small cross sectional area because there is not a large excess of flux over the amount required to saturate the coating. Flux leakage may prevent recording altogether unless the over-all head structure is kept very small.

Design of Read Head。 It was shown earlier that a 150 microinch thick recording surface with the B-H loop characteristic of Figure 4 b would have 7.7×10^{-2} flux lines at the center of a 0.025 inch wide recorded dipole. An ideal head would intercept these lines (and even increase the available flux by reducing the demagnetization). If the flux change were sinusoidal (any other wave form would give greater peak-to-peak volts) the read signal would be

$$
E=\phi \omega \cos \omega t \times 10^{-8}
$$

where ϕ is the total flux in the recorded magnetic dipole and $E=2 \phi \omega \times 10^{-8}$ peak-to-peak volts per turn of the reading head。 At 546 kc which is the maximum frequency used, a signal approaching 5.2 mv per turn could be expected from an idealized structure. With this ideal structure, it would be easy to determine that resolving signals at a much higher density would be possible and thus it would most likely be used at a density where it would give much less than the theoretical maximum signal. The magnetic head tested with the memory system described falls far short in obtaining the maximum obtainable signal at maximum density. In fact the presently used heads develop a signal in the range of 12 mv peak-to-peak at 546 kc as against a possible 780 mv calculated for a 150-turn head. Reference to Figure 7 indicates that unlike the situation in Figure 6 where more than half the flux would couple the head windings, only a small part of the flux will
be useful in generating a read signal. Calculation of the exact magnetic flux coupling in this situation is most difficult, but a glance at a scale drawing makes the finding of $1 / 66$ of the possible signal quite plausible. The fact that the low output is tolerated is a compromise between signal level, and economy and ease of manufacturing the heads. Since an excellent signal-to-noise ratio and margins in clock pulse timing are obtained in this situation, the compromise is quite tolerable.

At 273 kc which represents the pattern 0101 in Manchester recording, the read signal obtained is about 30 millivolts in comparison with a possible 390 millivolts if all the flux in the recorcled poles interlinked the head winding. The loss of signal by a 13 to 1 ratio is explained by the presence of an air gap, which provides a substantial reluctance in series with the head structure, and also by the fact that the head structure itself does not have a zero reluctance. Figure 8 shows the response of the read head versus recording density and indicates that the head shown in Figure 7 is being used beyond its optimum density.

Figure 3 shows signals read by the head with clock times indicated. As can be seen, the signals can be interpreted with adequate reliability since there is no noise or mistiming in evidence.

There is, of course, much room for improvement of the magnetic head; however, each improvement increases the difficulty of making the head and the increased cost must be balanced against the economic benefits of the improvement.

Construction of the Magnetic Head. Figure 9 shows the essential detail of the magnetic head. In assembling these heads the lower part is insulated and slipped into an aluminum tube。 The tube is compressed forming a subassembly which can be tested. The subassembly heads are clamped into a holder (Figure 10)

Figure 8. Typical Response for Magnetic Read-Record Head

Figure 9. Essential Details of the Magnetic Head

Figure 10. Partly Assembled Magnetic Heads
and fixed in place with a suitable high temperature epoxy resin compound. Two such assemblies are made with the heads staggered so that with the assemblies mounted 15 to the inch a track density of 30 per inch is achieved. The assemblies are then mounted in the shoes.

Principle of Operation of Head Support Mechanism. A rotating drum moves a considerable volume of air in its close vicinity even though the drum surface is quite smooth by normal standards. This phenomenon is due to a boundary layer effect. That is, air molecules which are immediately in contact with the drum tend to adhere to that surface. Due to the viscosity of the air, the air molecules immediately about this initial layer are dragged along and as the distance from the drum surface increases, the velocity of the air molecules which are dragged along decreases. With this concept in mind, it is seen that if a stationary surface which is curved to match that of the drum is held near the rotating drum surface, the air will be dragged between the two surfaces. Since the air will also tend to adhere to the second surface, there will be a drag or friction force as shown in Figure 11. If this stationary surface is inclined to the drum surface so that the space decreases in the direction of rotation, the air which is dragged in is squeezed into a progressively smaller space as is shown schematically in Figure 12. This squeezing effect is of course a compression process, and pressure forces normal to the two surfaces develop. If this second surface is held in place by a spring force of proper magnitude, it will be held off the drum to a distance where the fluid pressure force equals the spring load force. When such a condition exists, the layer of fluid which separates the two surfaces is referred to as a hydrodynamic lubricating film and such surfaces which react in this manner are referred to as a self-acting bearing. In the example given, air is used as the lubricating fluid; however, any fluid, liquid, or gas which will adhere to the bearing surfaces without causing damage will perform in this manner.

Figure 11. Schematic View of Drum With Shoe in Parallel Position

Figure 12. Schematic View of Drum with Shoe at Angle to Develop Wedge of Lubricant

The theoretical aspects of this phenomenon were first proposed by O. Reynolds about 75 years ago, and solutions of his equation for the incompressible lubricating films have been well accepted in the literature on bearing lubrication. In recent years considerable attention has been directed toward the case of the compressible or gas lubricating film for many promising advantages such as chemical stability, extremely low friction, the maintenance of close clearance between moving parts, and the use of the ambient gas as a lubricant. The technology of the analysis of the bearing using a compressible fluid as a lubricant as in the example (Figure 12) is quite involved and beyond the scope or purpose of this paper. Work on this phase for use in the design of such bearings for use in memory drums is in progress; and for the technology the reader's attention is directed to the list of references.

Properties of Lubricating Film Supported Shoe. The lubricating film supported shoe possesses certain unique properties which make it a useful device for the support of a recording head. The most important properties will be described below. For the purpose here, let us denote the angle between the drum and shoe surfaces as the attack angle α, the edge farthest from the drum surface as leading edge, and the edge nearest the drum as the trailing edge. Drum rotation is in the direction from the leading edge towards the trailing edge.

Figure 13 shows the typical relationship of the pressure force which can be developed under typical operating conditions. It will be noted that at the operating conditions shown in the figure, a mean pressure of 1.5 psi gage at a trailing edge spacing of 400 microinches is obtained. As the trailing edge spacing is decreased, the mean pressure increases at a rapid rate so that at a spacing of 200 microinches the mean pressure has increased virtually four fold or inversely with the square of the spacing. This characteristic is most desirable from electrical and mechanical points of view for

Figure 13. Mean Pressure vs. Trailing Edge to Drum Spare
recording drum applications. For any fixed design as the load is increased the shoe and hence recording head to drum spacing is decreased. This is, of course, helpful to the electrical performance as far as output signal is concerned. As a greater load is applied to the shoe, the ratio of the applied load to the weight or inertia of the shoe and its associated mechanism is increased. When this ratio is increased, the ability of the shoe to withstand accelerations and run out irregularities of the drum is also increased. In the case of the drum which is the subject of this paper, the effective area of the shoe is 1.6 square inches and its normal operating load is 10 pounds, which gives a mean pressure of about 6 psi. The shoe with recording heads in place has an effective weight of about 1.5 ounces, and so the load-to-weight ratio is slightly over 100. Since at this operating condition, slight changes in the spacing result in a considerable change in the lift force, there is available a large force to restore the proper head to drum spacing。 Let us consider an example at the conditions cited above. In a broad sense, since the curve shown in Figure 13 is one of a force vs displacement, the lubricating film may be regarded as a spring of variable rate. If the displacements are left small, the lubricating film may be approximated by a linear spring and the slope of the curve may be taken as the spring constant. For the conditions cited above, this slope or linear spring constant is about 100,000 pounds per inch for a shoe of the given effective area. The spring rate of the spring used to produce the load force would have to be added to this rate; however, since this spring would have a rate of about 100 pounds per inch, it is virtually insignificant in its effect on the natural frequency of the system of forces acting on the shoe. The spring rates of 100,000 pounds per inch acting on the effective mass of the shoe give a resonant frequency of more than 3000 cycles per second. Thus it follows that such a mechanism is quite capable of withstanding accelerations of 10 g 's up to 2000 cps without seriously affecting the output electrical signal.

Another unique property of the floating shoe is its inherent stability. Figure 14 shows a typical pressure distribution between the trailing and leading edge of the shoe. As the attack angle α is increased, the center of pressure shifts towards the trailing edge, and similarly as the angle α is decreased the center of pressure shifts to the leading edge. Let us fix a certain shoe geometry and allow the shoe to pivot about an axis at the center of pressure and parallel to the drum surfaces. Now if the shoe is tipped so that the angle α is increased, the center of pressure moves toward the trailing edge. This action develops a turning moment on the shoe. The turning moment is in the direction required to return the shoe to the original position. Similarly, when the shoe is tipped to an angle less than the stable angle, a turning moment of opposite sign develops to return the shoe to the original stable position. From experience it has been found that the system has sufficient damping to make it stable. Thus it follows that the location of the pivot axis is not critical, for the shoe will tend to seek a value of the angle α so that the action line of the center of pressure will pass through the pivot axis.

Design Requirements. The design of a mechanism to make use of the lubricating film supported shoe or for keeping a recording head in proper location with respect to the drum recording surface requires careful attention to the precision requirements of the mechanism. The development of a design framework which requires a minimum of very precise parts which are amenable to precision manufacturing techniques is necessary to the successful execution of the task. It is not only necessary to have surfaces which are geometrically true, but it is also required that the proper geometric relationship between the various parts be accurately maintained. The most important of these relationships is the alignment between the shoe and the drum. It is essential that the center of curvature of the shoe be maintained parallel to the axis of rotation of the drum. The limits of accuracy

Figure 14. Typical Pressure Distribution Box Change in Attach Angle α
required are dependent upon the particular design and the performance required. For the design the out-of-parallelism is kept to less than 3 parts in 10,000. The other important requirement is that the load on the shoe be uniformly distributed so that tipping does notoccur. As will be shown later, the load on the shoe of the subject drum is applied at two points. The difference between these forces is kept to a value less than 7 percent. The tolerances given above are those used in the design of the drum with due allowance for possible manufacturing tolerance and also the expected deflections of the mechanical parts.

Figures 2, 15, and 16 show the drum in various stages of assembly. It will be noted that the rotating portion of the drum is set into a very rigid frame, and access to the drum recording surface is through appropriately located cutouts in this frame. A Vgroove is machined into the sides of this frame so that it is accurately parallel to the axis of the drum. Guide slots for radius arms are machined at precise right angles to the V-groove. Each of the radius arms are provided with polished sapphire pivot pins which are cemented in place in an assembly fixture. The centerline distance between the pins is accurately maintained so that it is virtually the same for a given pair of arms associated with a given shoe. One pin of each arm operates in the V-groove of the frame, while the other pin operates in a V-groove in the shoe. The V-groove in the shoe is located in the line of action of the center of pressure, and it is made accurately parallel to the axis of the cylindrical surface of the shoe. To prevent smearing of the pole pieces of the recording heads, the curvature of the shoe is ground by means of a contoured abrasive wheel so that the lay of the grinder marks is parallel to the head gaps. Final finishing is done on a cylindrical lapping tool which has a diameter 0.1 percent greater than the drum. The load for the shoe is supplied by the spring which is adjusted by a single centrally located screw. By this means, equal forces are applied to each side of the shoe. The load forces the pins to seat
\bigcirc

Figure 15. Main Frame

Figure 16. Shoe and Radius Arms
in the V-grooves of the shoe and frame and precisely locate the shoe with respect to the drum so that the axis of the drum and shoe are parallel within the extremely close limits previously cited.

Special consideration must be given to start and stop conditions, for without sufficient drum speed the lubricating wedge or film cannot develop and a high-friction condition will exist. To prevent this, it is necessary to unload the shoe and lift it slightly off the drum surface until sufficient speed for normal operation is attained. For stopping the drum, the procedure is reversed. There are basically two methods by which this may be accomplished. One method involves removing the spring load until operating speed is reached. The second method involves introducing lubricant under pressure through a very small hole in the shoe into the space between the shoe and drum. If sufficient lubricant (in the subject drum it is air) is supplied, the shoe will be lifted off the drum surface. After operating speed is reached, this supply of air may be shut off and normal operation resumed. This latter method requires the use of an air compressor, a fact which makes it some what unattractive for airborne use. The first method is used in this drum design. It will be noted that in Figure 16 the radius arms extend from the side of the frame which has the V -groove to the opposite side. At this side of the frame, the ends of the arm can ride on a simple eccentric cam which is operated by the small gears. During normal operation, these ends of the arms are free of the cam. For offspeed operation the cam is rotated to a position where the ends of the arms are lifted. Since the mechanism is extremely rigid, a movement of less than one mil of the end of the arm is sufficient to transfer the spring load from the shoe to the cam. In this condition, the lubricating film between the drum and shoe must support the weight of the shoe. Since the weight of the shoe is very much less than the operating load, the resulting friction is negligible. If the magnetic coating is very durable, the slight contact between the shoe and drum under these conditions is not serious and may be eliminated completely by operating
the drum with the axis in a vertical position. When the shoe is in this free condition, a state of instability may develop if the cam is inadvertently set to lift the ends of the arm too high. Should this condition develop, serious damage to the drum and shoe surface will occur. To eliminate this possibility, one arm of each pair for a given shoe is provided with a spring-loaded pin as shown in Figure 17. This pin is allowed to act upon the side of a shoe to cause a small amount of friction damping. Since the load at which the shoe is operated is much higher than the weight of the shoe, this damping friction does not affect the operation any noticeable a mount.

The main frame, as almost all other parts of the drum assembly, is made of a precipitation-hardening stainless steel. For the sake of rigidity and precision, it is fabricated from one piece of stock and provided with generous ribs.

Figure 17. Typical Pair of Radius Arms

REFERENCES

(1) W. A. Gross. "A Gas FilmLubrication Study" Part I, "Some Theoretical Analyses of Slider Bearings," IBM Journal of Research and Development, vol. 3, No. 3 (July 1959), pp. 237-255.
(2) W. A. Michael. "A Gas Film Lubrication Study" Part II, "Numerical Solution of the Reynolds Equation for Finite Slider Bearings, " IBM Journal of Research and Development, vol. 3, No. 3 (July 1959), pp. 256-259.
(3) R. K. Brunner, J. M. Harker, K. E. Haughton, and A. G. Osterlund. "A Gas Film Lubrication Study" Part III, "Experimental Investigation of Pivoted Slider Bearings," IBM Journal of Research and Development, vol. 3, No. 3 (July 1959), pp. 260-274.
(4) D. D. Fuller. Theory and Practice of Lubrication for Engineers, John Wiley and Sons, Inc. New York, N. Y. (1956).
(5) A. Kingsbury. "Experiments with an Air-Lubricated Journal" Journal of the American Society of Naval Engineers, vol. 9 (1897), pp. 267-292.
(6) J. S. Ausman and M. Wildman. "How to Design Hydrodynamic Gas Bearings" Product Engineering, (25 November 1957) pp. 21-28; 103-106.
(7) A. Brenner, Grace E. Riddell. U. S. Patent No. 2532283, (5 December 1950).
(8) A. Brenner, Grace E. Riddell. "Deposition of Nickel and Cobalt by Chemical Reduction, "Bureau of Standards Research Paper No. RP 1835, vol. 39 (November 1947).

[^0]: ${ }^{1}$ Shockley, W. and Kason, W. P., MDissected Amplifiers Using Negative Resistance," Journal of Applied Physics, Vol. 25, No - 5, 3ay 1954, p. 677.

