
Data Processing Division
Product Development Laboratory
Box 390, Poughkeepsie, NNew York

International BusinessMachines Corporation Telephone: Globe 4-1000

November 12, 1959

Mr. Harlan E, Anderson, Chairman
EJCC Publication Committee
Digital Equipment Corporation
Maynard, Massachusetts

Dear Mr. Anderson:

Enclosed are four copies of the manuscript by Mr. Leo Hellerman of this
Laboratory, entitled "A Computer Analytic Method for Solving Differential
Equations, "' :

:

Included are a set of the figures for reproduction, with copies, an abstract,
and the author's biographical information. The figures are identified by
number, and a separate sheet contains the captions for all figures.

I trust that this material meets your specifications. If we can supply any
further information, please don't hesitate to let us know.

Sincerely yours,

P. J. Nelson, Editor
Publications Department

PJN:am Laboratory Communications
Enc.
cc: Mr. Leo Hellerman

Leo Hellerman (IRE Member, 1959) was born on February 8, 1924 in

BIOGRAPHY

Brooklyn, N.Y. He received the BEE degree from the College of the City

of New York, N.Y. in 1946, the MA degree in mathematics from George

Washington University, Washington, D. C. in 1952, and the PhD in math-

ematics from Yale University in 1958. His Doctoral thesis was concerned

with minimal sets ona circle, in topological dynamics.

He was an Assistant in Instruction in Mathematics at Yale University

from 1954 to 1946, and a non-resident Instructor in Electrical Engineering,

MIT, in 1957 and 1958. Since 1956 he has been with the Data Systems Division

of IBM, Poughkeepsie, N. ., where he has studied techniques for reliable

design of electronic circuitry, developing some machine programs using

Monte Carlo methods in design and analysis.

He is rsa member of the American Mathematical Society.

A COMPUTER ANALYTIC METHOD FOR SOLVING
DIFFERENTIAL EQUATIONS

by

Leo Hellerman

ABSTRACT

The basic idea in mathematical symbol manipulation on a stored-program

digital computer is the correspondence of symbols with storage locations, and

of functions with computer programs. This principle underlies our analytic

method for finding the derivative of a function. The nature of <a term, whether

constant, the variable, or a dendrite (composed from other terms, its "branches''),

is recognized by the location of the storage cell corresponding to this term. The

derivative found is not a number equal to the quotient of finite differences, as in

numeric methods; it is a program for the derivative function. The method is

a close parallel to differentiation by hand, applying well-known rules of

elementary calculus. It uses the dendritic property of functions to keep track

of results as the differentiation proceeds.

The method described is the heart of an algorithm for obtaining the

formal solutions of ordinary differential equations, by generating their Taylor

series. Such solutions allow many evaluations with different sets of numeric

data without the necessity of solving the differential equation over and over

again. We describe the implementation of this algorithm as an IBM 704

program, and give a simple illustration of its use.

Product Development Laboratory, Data Systems Division
International Business Machines Corporation, Poughkeepsie, New York

A COMPUTER ANALYTIC METHOD FOR SOLVING
DIFFERENTIAL EQUATIONS

Leo Hellerman

INTRODUCTION

In recent years numeric analysis has been claiming an increasing share

of overall mathematical research activity. The reason for this is apparently

the need to have answers - numeric answers - to problems of modern tech-

nology, along with the development of the stored program digital computer

for carrying through the computations of numeric methods. But this emphasis

on numbers is also an indication of the attitude of problem solvers: to use the

computer, use numeric methods. And yet these methods are not always

adequate. It may be more important to know how x depends on other variables

than to know that x = 3.

The inadequacy of numeric techniques for the solution of differential

equations is highlighted by the following engineering problem. In the design

of a transistor switching circuit for a high speed computer we wish to know

the output current level at a particular time after the start of an input pulse.

This information is contained in the solution of a non-linear differential

equation, which can be solved very nicely by numeric methods on a computer

in, say, ten minutes. In evaluating the reliability of this circuit with respect

to component deviation and drift, we want to know the statistical distribution

of outputs. A simple method for finding this is synthetic sampling, or Monte

Carlo! i) 'but at ten minutes per solution this may not be practical. However,

l
L. Hellerman and M. P. Racite, "Reliability Techniques for Electronic
Circuit Design" Transactions I.R.E. PGRQC, September 1958; pp. 9-16.

2 _

Monte Carlo is known to be practical in estimating distributions associated
with analytic expressions. This suggests we first obtain the analytic solution
of the differential equation, and then apply Monte Carlo to the solution. The
methods are compared schematically in Figure 1.

In the numeric method we must solve each case anew, starting with
the data and differential equation. In the analytic method, enough information

is contained in the solution, so that we need solve the differential equation only
once, and evaluate the solution for each case. Since a major portion of machine

time is taken up with solving differential equations, there may be problems in

which (1) is not practical and (2) is,. provided (2) can be carried through by the

computer.

The purpose of this paper is to call attention to a basic principle of

analytic technique on a stored program digital computer, and to illustrate

this principle by a computer algorithm, and "address calculus," for finding

solutions of ordinary differential equations by analysis. We also describe

the implementation of this algorithm in an IBM 704 program. We see no

reason why the same technique might not be applied to a host of other

mathematical problems.

THE PRINCIPLE AND GENERAL APPROACH

The principle of numeric computation in a stored program digital com-

puter is well known: numbers are represented by the contents of storage cells,

and computation is accomplished by arithmetic manipulation on these contents.

Functions are represented by a finite table of numeric values. The principle

of analytic computation may be stated thus: algebraic symbols are represented

-36

by the locations of storage cells, and analysis is accomplished by manipulating

addresses. Functions are represented by machine programs. An algorithm

for the analytic solution of a problem is an assignment of the correspondence

of algebraic symbols with addresses, and a description of the way the addresses

are manipulated.

In the description of the following programs, in referring to the address

of some location corresponding to some symbol S, we will say "address S."'

Address and symbol are equivalent, and we may use the symbol to designate

the address. On the other hand "address of S" refers to some other location

and address, say T, which has the address S as part of its contents. Thus the

address T may be the address of S.

Our approach to the analytic solution of ordinary differential equations

will be to develop the Taylor series expansion of the solution. If the differ-

ential equation is

(x) =f (xsl) (xy, Y Ge)y(k) {k-1) (1)

then the formal solution is

y (x) = y (0) + y(1) (0) x + yl2) (O)x (2)2

2

where the yi3) (0) for j = 0, , k- 1 are assigned initial values, and for

jak, k+1, ... are determined from f and the derivatives of f.

Thus the heart of the problem is to develop analytic differentiation on

a computer. In this connection we mention the work of H. Kahrimanian(2)

and the LISP Programming System'?) . However, our approach is a bit

H. G. Kahrimanian, ''Analytical Differentiation by a Digital Computer, "

M. A. Thesis, Temple University, May 1953.
2

; J. McCarthy, "Recursive Functions of Symbolic Expressions and Their
Computation by Machine" Quarterly Progress Report No. 53, Resear ch
Laboratory of Electronics, M.I.T., April 15, 1959

~4-

different from both of these, being a close parallel to differentiation "by hand".

The SHARE routine PE PARD(4) for differentiation and partial differentiation
of rational functions is a prototype of our present program. Recall that the
function to be differentiated is, in the computer, a stored program. PARD
examines this program as a college sophomore examines a function to be

differentiated, and when it finds it to be the sum of two parts it applies the

rule: the derivative of a sum is the sum of the derivatives. Or, if it finds
a product, it uses D(uv) = uDv + vDu, and similarly for other differentiable

combinations. Eventually the derivative of a function is expressed in this

way in terms of the derivatives of constants and the independent variable,
and the differentiation process is complete. The problem in doing this ona

computer is doing it in a uniform and orderly way, so that the method may

be applied to arbitrary differentiable functions, and so that the results of

the differentiation of each term can be combined in the end to one expression

(program) for the derivative.

THE DENDRITE NATURE OF FUNCTIONS

In this section we examine a stored program aspect of functions. Some

notions will be defined which will facilitate the description of the differentiation

algorithm.

A binary operation is an operation on two quantities. Addition, sub-

traction, multiplication, division and exponentiation are binary. Unary

operators operate ona single quantity. Exp, log, sin, and cos are unary.
c

M. R. Dispensa and L. Hellerman, "Differentiation and Partial Differentiation4

of Rational Functions' PE PARD, SHARE distributed Program D2-445.

5.

Let the symbol a * b have thie meaning: * is a binary or unary operation. If *

is binary it operates on a and b; if unary it operates on a, and b is ignored.

Thus a * b may be, for example, a+b, ab, a>, or log a, or sina. We

will say a mathematical expression is a finite dendrite if it is composed by
and

a finite number of binary / unary operations from a set of starting terms.

We call a starting term an elementary term, or an end: it is not composed

from other terms.

For example, consider the dendrite y = {x + a) b ~ sin x. Its branching

nature is shown in Figure 2.

The elementary terms are a, b, and x. The dendritic terms are, besides

y itself, (x a)b, x +a, and sin x.

Note that the dendritic picture of y may serve as a flow chart for a

program for its computation. First x is added toa, and the result is

multiplied with b. Then x 4s operated on by some sine routine, and the

result of this is combined by subtraction with (x + a) b to give y. Thus a

stored program for evaluating a function is essentially a sequence of binary

and unary operations, starting with operations on elementary terme. That

is, a program is a dendrite.

Blocks of 1's and 2's are a convenient notation for the branches of a

dendrite. If a Xn is such a block representing some dendritic term,

then = 1* of, x, 2. The branch desig-

nations of the above example are shown in Figure 3.

A set of branches of the form %), greees

where the last branch is an elementary term, will be called a chain. All the

_ 6_

chains of the example are

1, 11

1, 12, 121

1, 12, 122

212,
A finite dendrite has a finite number of chains.

THE DIFFERENTIATION ALGORITHM

Let us suppose we are given a y-program, that is, a stored program for

computing y. We wish to extend this to a program for its derivative, a Dy-

program, by adding additional instructions. The block of storage for the Dy -

program will include the block for the y-program, Since y is a dendrite,

y=1%* 2and

Dy = A; D {1) +Ag D (2) (3)

Where A, and A2 are functions determined by the operation * and the branches

4

1, 2. These functions are] and 2. That is, A (*, 1, 2) where4
specified in Table 1. It may happen that an A ig the number 0, or 1, or some

function which is known to exist in the y-program. This is the case fory=utv
and y = exp u, and in these cases it is unnecessary to place any instructions

in the block reserved for the Dy-program. If an Ax is not of this type, say

then we do construct the program for this function and place

it in the first available locations in the Dy-program block. Whether Aye is

constructed or not, we save the addresses Aj and Az ; in locations L (1) and

L (2). Since we can only differentiate one term at a time, we also save the

instruction to find D (2), in a location I (2).

TABLE 1

A, and Ap in Diu * v) =A, Du+A>z Dv

u*v Aj A2
utv 1

u~v 1 -1

u

u", v constant 0

exp u exp u 0

u leu 0

sinu cos u 0

cos u - sinu 0

1

lev 2

1vu

0

0

_8 _

We may now go on to find D (1). Suppose 1 is dendritic and 1 = 11 * 12.

Then

D(l)=A), D(1l) +A,, D (12)
The functions A and A are constructed as A, and A>, again by Table 1,
the addresses A il and A 12 4re stored in L (11) and L (12), and after storing

11 12

in I (12) the instruction to find D(12) we continue to find D (11).

In general, if X,...0€ is dendritic, then

(4)

2
D (of 2)11

4

The coefficients are constructed if necessary, and the addresses A
My

Stored in L Xx, 41); the instruction to find D { XK, . 2) is saved in

1 2); then we go on to D { Kye od.
Eventually, since y is finite, we come to an elementary term, 11.

This will be a constant, the independent variable, or an initial condition

yv) 19), j = 0, ..., k-l. Thus D(11... 11) = A known, and we

store this in L (11... 111).

At this point we have traversed one chain of the dendrite y. We may now

examine the I cells for some deferred differentiation instruction, and proceed

with the differentiation of this new term, until another end is reached. Continu-

ing in this way, all chains will be completed, for there are a finite number.

It is clear from (3) and (4) that Dy is simply the sum of all products of

A's, where the subscripts of the factors of each product range over a complete

isll ...11t

chain. If A ij where i stands for the i-th chain, we may write

9
k i)

Cir Sig SiG (5)Dy = >
j 11

4

where i ranges over the set of chains of y, s in number, and where C ik (i) is

the derivative of the end of the i-th chain.

Thus the Dy-program is completed by construction of a program for

hand in the locations L (XK, .).

The algorithm as it stands requires excessive storage. To differentiate

any function composed with n operations, we should allocate 2" locations for

storing the addresses A Ky for there are as many of these as n-blocks

of 1's and 2's. But consider the situation when the first chain has been com-

pleted.

evaluating (5). This can be done because the addresses A are at

At that point we know

Dy = AyAyyees Arya Aan. .1

+ A ,D{2)
+ A A

1 2D(12)

11

(6)

+A A
1 pul... 12)

11

The addresses of the A's and D's are consecutive cells in three blocks of storage,

called the Ay -block, A> -block, and I-block. The storage arrangement is

shown schematically in Figure 4.

The lines in this figure indicate the formation of the products in (6).

ll

But we do not actually need B in the accumulator, for we do not really intend

to add numbers. The program is used only to recognize that B and C are

composed by the binary operation addition, to form A. Thusa more compact
code is possible, and desirable if the information we need is to be easily
available. The code we use for is

A: PZEB,,C
That is, location A contains the addresses B and C in the address and decrement

portion of the word, and the prefix P Z E is used to indicate that these are com-

posed with the binary operation of addition. The code for other operations is

shown in Table 2.

Table 2 also shows the detailed 704 version of Table 1. When a function

K=u * vis differentiated, the construction of A, and A, and the updating of

certain blocks of storage is specified by this table. After K = u * v is

differentiated, the next step is to find Du. In the flow chart of Figure 6

"new K' refers to u.

The 704 program flow chart is clarified by a description of the roles

played by certain blocks of storage.

(a) Constants block. All constants are given addresses of storage

locations in this block.

{b) Initial conditions block. This contains the locations y (3) (o),

j k.1, as consecutive storage cells. When an end y 9) {o), j< k-l, is

recognized, its derivative is the address y +1) (0).
€

(c) Variable of differentiation. This is a single storage cell.

~12-

{d) Function program block, This contains the sequence of pseudo
instructions defining the function to be differentiated. The last pseudo instruc-
,tion is iny (i) {o). New terms for the construction of A l and A, as shown
in Table 2, are placed in the first available locations following y (k) (o), as
needed. The program of pseudo instructions for formula (5) is also stored
here, when all its terms have been constructed.

{e) Derivative block, D. The derivative of the initial condition y {k- 1)
(o) is y (k) (0), which is not an initial condition but an address in the function

program block. The D-block cells contain addresses of y {j) (o), j k, stored
in order, so that these may be treated in a manner similar to initial conditions.

-1 The roles playedf) ~block, A. -block, and Instruction block2

by these blocks are as described in connection with Figures 4 and 5. In up-dating
we add new terms as prescribed by Table 2. In down-dating we eliminate terms
that are no longer needed.

{g) Factor block, F. This saves all completed non-trivial (no zero

factors) Ay, chains. In transplanting an A, chain into the F~block, all ones
and minus ones are boiled down to a single sign for the entire product. All
ones are omitted from the F-block, unless the particular product contains

nothing but a single one.

In the flow chart of the 704 program, K stands for the address of some

pseudo order of the y-program currently under examination. The program

starts with examination of the last K, y fo). <A tag bit in K will indicate

that Dy") has been found, and is in the D-block, so that it need not be found

over again when constructing higher derivatives.

_ 13 _

TABLE 2

Up-dating of Dy-Program, Aj-Block, A2-Block, and I-Block

Function
K =

utv

exp u

in u

sin u

cos u

Code at
Location K

PZEu,,v
PON Us,V
FIWu,,v
PTilu,,v

MON u,, v

MZEu,, 1

MZEu,, 2

MZEu,, 8

MZEu,, 16

Dy-Program
New Terms for
Construction of
A l and Az

None

None

None

L+Q MONv,, MFLI*

PTs K,, L
L +0: PON v,, FL1*

MONu,, L
Lia: FPTWN,, L+1

None

L:MON u,, MFLI*

L:MZE u,, 16

L: MZEu,, 8

*MFL1 is the address of -1; FL1 is the address of 1.

2

1 1

1 -l
u

-(L+1)

L+2 0

K 0

0

0

-L 0

A, A
1

uev

Vvue. v

Vv

0

0

0

0

0

_ 14 _

The series construction, which involves multiplying each derivative by

the appropriate power of - x, and dividing by factorials, is straight forward,

and igs not shown in the flow chart.

The Taylor series solution of the differential equation which is finally
obtained is in the form of a sequence of pseudo instructions. It is always

possible to convert these and print them on paper using familiar mathematical

symbols, but we do not do this and will hardly ever want to. If a differential

equation is sufficiently complicated to warrant using the program, the chances

are that any significant information in the expression for the solution will be

hidden in its complexity. If wis some complicated function of x, y, and z,

w=f(x, y, Z), and we want to find out how w depends on x, it will do no good

to inspect the expression f. Instead, we picture w versus x by evaluating f

for a range of y values. Similarly, if we wish to study w versus y, we

evaluate f with a range of y values. The point is, we need find the program

for f only once. We may then evaluate it numerically as many times as we

wish, illuminating the dependence on any desired variables.

To evaluate the solution obtained it is necessary to convert the pseudo

code prcgram to a regular machine language code, and to supply numeric data.

This is done by interpretive and output routines. The flow of information is

shown in Figure 7.

An example of the solution of a differential equation, showing the kind

of information that can be obtained from these solutions, is shown in Figures 8,

9, and 10.

CONCLUSION

We have described an analytic method for finding a series solution of

ordinary differential equations on a stored program digital computer. Note,
Note,

however, that the present IBM 704 program for implementing this method

has room for improvement. Indeed, in the present program little attempt

is made to simplify the generated derivative expression. This is a severe

waste of storage capacity, and unduly limits the number of series terms that

can be found. Further, the unsimplified expression, containing redundant

and irrelevant terms, increases the machine time for evaluating a solution.

For this reason we cannot now obtain a significant estimate of the merit of the

analytic method in comparison to conventional numeric techniques.

The method should be useful, in illuminating local properties of solutions.

It also appears to lend itself to extending solutions by analytic continuation,

but this is a problem that has not yet been attacked.

Another needed improvement, if we are to handle the differential equations

of electrical engineering practice, is the capability of handling simultaneous

equations. The obvious modification to do this is to provide a separate function

program and D-block for each differential equation of the system.

N

~16-

ACKNOWLEDGEMENT

The research reported in this paper has been sponsored by the

Electronics Research Directorate of the Air Force Cambridge Research

Center, Air Research and Development Command, under contract

AF 19(604)-4152.

The idea of using the computer to develop the series solution of a

differential equation occurred in conversation with Ramon Alonzo.

The author also wishes to express his gratitude to Albert G. Engelhardt

for substantial help in the planning and development of this work.

CAPTIONS for L. Hellerman, "A Computer Analytic Method for Solving
Differential Equations"

Fig. 1. Comparison of numeric and analytic methods of solving a differential
equation many times.

Fig. 2. The dendrite y= (x +a) b - sin x.

Fig. 3. Branch designations for the dendrite y = (x +a) b - sin x.

Fig. 4. Contents of A, -Block, A,~Block, and I-Block of storage, at completion
of a chain.

Fig. 5. Contents f storage blocks after down-dating of Fig. 4 arrangement.

Fig. 6. Flow chart for successive differentiation of y'*) Ax) = f (x; yx), ry (k-1) (>

Fig. 7. Data flow for solution of differential equation.

Fig. 8. Eight terms of series solution of = y7 +x, 7(= 1, a=2.

Fi2. 9. Bight terms of series solution 2f dy = y* +x, x=1l, a= 2.
dx

Fig.10. Eight terms of series solution of = y* +x, y(o)=1,dy
dx

Data Processing Division
Product Development Laboratory
Box 390, Poughkeepsie, New York

InternationalBusinessMachines Corporation Telephone: Globe 4-1000

November 12, 1959

Dr. Harlan E, Anderson, Chairman
EJCC Publication Committee
Digital Equipment Corporation
Maynard, Massachusetts

Dear Dr. Anderson:

Enclosed are four copies of the manuscript entitled "Use of a Computer
to Design Character Recognition Logic" by Mr. R. J. Evey of this
Laboratory.

Included are a master set of the illustrations, with copies, and an
abstract. The illustrations are identified by figure number, and a
separate sheet lists the captions for all the illustrations.

I trust that this material meets your specifications. Don't hesitate
to let us know if you need any further information or material. Please
direct any such requests directly to me for the speediest handling.

Sincerely yours,

E. F. Boomhower, Editor
Publications Department
Laboratory Communications

EFB:am
Enc.
cc: Mr. R. J. Evey

Dr. J. P. Lazarus

USE OF A COMPUTER TO DESIGN CHARACTER RECOGNITION LOGIC

by

R. J. Evey
International Business Machines Corporation.

Product Development Laboratory
Poughkeepsie, New York

ABSTRACT

Character recognition logic for the IBM 1210 Sorter/Reader was

developed with the aid of an IBM 704 computer. Characters printed with

magnetic ink are quantized by the Sorter's scanning system into a 7 x 10

binary matrix which drives recognition logic of the AND and OR type. To

develop this logic, computer programs which simulated the quantizing and

the logic were used in conjunction with hardware that provided "real-life"

character degradation, These programs and the procedure for developing

the recognition logic are discussed,

USE OF A COMPUTER TO DESIGN
CHARACTER RECOGNITION LOGIC

R. J. Evey
International Business Machines Corporation

Poughkeepsie, New York

I. THE SYSTEM

The IBM 1210 Sorter/Reader recognizes characters printed in a

specified location on paper with magnetic ink, A schematic diagram of

the machine system is given in Fig. 1. The characters first come toa

writing head which induces a magnetic field in the special purpose ink with

which the characters are written. Next this magnetic field is sensed by

a multi-channel reading head. The output of the reading head is a set of

ten time-dependent voltage waves.

Actually (as Fig. 2 shows) there are thirty channels in the- reading

head. However, every tenth channel is ''OR'ed' together (e.g., 1-11-21,

2-12-22, etc.) so there are only ten outputs. These waveforms are time-

sampled and changed into binary pulses by the quantizing circuits. The

output of each quantizer is seven bits of binary information per character.

1

The outputs of the ten quantizers (one per output channel of the reading

head) are stored in a 10 x 7 trigger matrix.

The final section of the system is a set of 14 logical circuits (one

i K. R. Eldredge, F. J. Kamphoefner, P. H. Wendt, "Automatic Input
for Business Data Processing Systems", Proceedings of Eastern
Joint Computer Conference (December 10-12, 1956), p. 69

R. J. EveyZe

for each character of the ABA alphabet") made up of standard digital

computer AND and OR components. These circuits are driven directly

by the trigger matrix and operate in parallel. Ifa pattern in the trigger
matrix satisfies any one of the logical circuits (called logics in the sequel),

the corresponding character trigger is set. Recognition occurs if one

and only one of these character triggers is set; otherwise the pattern is

rejected.

It was mentioned previously that the thirty channels in the reading

head are OR'ed together in groups of three. This means that the regis-

tration of the pattern in the matrix is unknown. So the system looks for

recognition ten times per pattern; that is, it tries to recognize the pattern

in the position in which it first appears in the matrix. Then the whole

pattern is moved up one row at a time, with any bits in the top row being

brought down into the bottom row. Thus each pattern really presents ten

different patterns to the logics. Only after a pattern has "rolled" through

all ten positions are the fourteen character-triggers examined for recog-

nition or rejection.

This paper deals only with the design of the fourteen logics in this

final part of the machine. It will attempt to make clear the problems

which we tried to solve in this design and the methods we used to develop

these circuits.

Bank Management Commission: American Bankers Association, "The
Common Machine Language for Mechanized Check Handling", Bank
Management Publication 147, Automation of Bank Operating Procedure,
12 East 36 Street, N.Y. (April, 1959).

3 _ R. J. Evey

II. THE PROBLEM

The total number of different patterns possible in a 70-bit matrix

is 2
70

70 and the total number of logics that can be designed for this input is

2 The size of these numbers requires that some simplification be2

found to make the logical design tractable. Much of the required simpli-

fication lies in the two-dimensional correlation of bits in the matrix; that

is, most of the logically possible patterns do not look anything like a

possible character pattern. We found that a basic set of about 20 to 30

different patterns are obtained 90% of the time a given character is scanned.

Almost all of the rest of the time a pattern is obtained which differs in one,

two, or three bit positions from one of the patterns in the basic set. If

these noisy bit positions are treated as don't-care positions, logical com-

binations of the common logical characteristics of the patterns in the basic

set can be formed which will recognize virtually all the patterns obtained

from scanning a character. Noisy.bit positions for a given character

account for over half the matrix, but this is not serious because four bits

actually overdetermine the entire set of 14 characters.

The problem is thus reduced to that of finding the stable combinations

of bits for a given character. At this point, however, we must consider

the problem of registration -- a problem which is present in all character

recognition systems. Some are designed from the point of view that this

is the major problem of character sensing and must be eliminated entirely;

that is, an attempt is made to design the system so that once the first

character {s found there is no further problem occasioned by registration.

_4 _ R. J. Evey

In the 1210 system, however, even after the character has been scanned by

the reading heads, the registration of the pattern in the matrix is unknown.

A solution to the horizontal problem is the requirement that the leading edge

of the character be located in the right-hand column of the matrix. The

E13B font, with its strong leading edges, is designed for this.

The problem of vertical registration reduces to the "roll" problem,

and the main problem here is that of cross-recognition. A degraded two,

for example, may "roll" around to make a pretty good five (it should be

noted that in the 1210 system this situation would result in a reject rather

than a substitution, because both the "'two'' and "five" character triggers

would be set). Part of the solution to this problem lies in the fact that

the normal pattern is only eight rows high. Therefore, a condition which

required at least one blank row at the top or at the bottom of the matrix

was made a part of each logic. Once the pattern has been restricted so

that it can move only a few rows vertically in the matrix and cannot roll

completely around, the problem of design of the logics has been reduced

to the required degree.

Tit. SOLU TION

A. Theory

We assumed that the set of patterns to be recognized could be

d by the union of two other sets f patterns which we could

construct. The first of these would be the set of all admissible patterns

assuming ideal printing and machine operation; that is, if the edges of

characters were not ragged, there were no voids and no splatter, the

5 R. J. Evey

magnetic field induced was uniform over the whole character, etc.

This set was generated by a program which we called the Theoretical

Shape Program (TSP). Details of its operation can be found in Appendix 1.

Let us say briefly here that the input to the program was a coding of each

ABA character into binary bits. Each bit represented one square mil of

ink. Hence, El3B characters, which are nominally 117 mile high and 91

mils wide, were entered into the 704 in the form of about 500 36-bit

binary words (allowing for some blank border). This "micro-matrix''

was then ''scanned'' by a program which simulated the operation of the

reading head and quantizers. The output was a set of 10 x 7 ''macro-

matrices" (i.e., simply a set of patterns for each character) which were

written directly onto 704 tape. The program assumed that registration,

variations of magnetic density from character to character, timing

across the character, fringing of the magnetic field, printing tolerances,

etc. (see Appendix 1 for complete list of parameters), cannot be held firm.

Hence, these ''theoretical variables'' were varied in the program and used

to generate a set of different patterns for each character. This set was

called the theoretical shapes.

We resorted to experiment to get a feel for the less systematic

problems (such as voids). A hardware model of the scanning and quantizing

part of the system was constructed and tied into an IBM 519 Reproducing

Punch. This "print tester'' scanned single characters from checks run

at 1210 S/R speed and punched the resulting pattern into anIBM card. A

small sample (about 10, 000 checks per character) of printing chosen to

_ 6_ R. J. Evey

cover the range of ABA printing specifications® was scanned and punched

into one card per pattern. The resulting patterns (called "real-life" shapes)

were transferred from cards to tape and used to indicate the types of "noise!

which might be expected to degrade the theoretical shapes.

We now had two sets of patterns (each stored on its own IBM 704 tape).

Each of these was now reduced to a set which was composed of only the

unique shapes of the original. These patterns were now examined by a

second 704 program called the Logic Processing Program (LPP -- see

Appendix 2 for complete details). This program accepted, as input, logics

(i.e., logic statements) punched into cards in a "Boolean" notation. It

interpreted each logic and stored it in core memory; then one pattern at a

time was read from tape and tested against the logic. If a pattern which

represented a two, say, were being tested against a logic which was sup~

posed to recognize two's (self-test), and if the pattern was not recognized

by the "two logic, but met a preset number of conditions (see Appendix 2),

the pattern was printed. If it met the logic, that fact was simply noted in

summary tables printed at the end of a run. If a two were being tested

against a logic which was supposed to recognize,say, fives (cross-test),

the criteria for printing the pattern or entering the tables were nearly

the reverse of those for self-testing.

B. Method of Designing Logics

With these tools at hand, the following method was used to design

the logics. A simple trial logic consisting of single black (1) or white (0)

bits was tried against the set of theoretical shapes for that character

Bank Management Commission, op. cit.3

_ 7 _ R. J. Evey

(i.e., a self-test was run against theoretical shapes). After several trials

it is possible to determine a set of 10 to 15 positions consisting of single

black bits inside the character outline and single white bits close to the

character outline. It must be emphasized that it is always a set of "sure

bits" which is found. For different criteria a different set will be found.

For example, a program was written which determined the maximal set of

sure bits for each theoretical character. However, in some cases, a

more desirable set of sure bits would be one which distinguished sharply

a given character from that character (or characters) which looked the

most like it. These "sure bits" were then used as a trial logic for running

a cross-test against the rest of the theoretical shapes. The result of this

run would be a reduced set of "sure-bits", which were useful in telling

this character apart from the other theoretical characters. Then these

sure bits' were used as conditions for a trial logic for the given

character.

First, this trial logic would be self-tested against corresponding

real-life shapes. Samples of real-life shapes would not be recognized

because of voids, ink-splatter, skew, etc. By examining the tabulations

and patterns printed by LPP, the designer would attempt to modify the

single-bit trial logic by OR'ing a more complex condition to the sure-bits

which gave trouble. This new logic would again be real-life self-tested.

After a number of trials, a logic would be obtained which would recognize

all of the real-life shapes the designer felt were realistic. Then the

logic was real-life cross-tested and modified using a similar procedure.

Here, however, the criterion for final acceptance was that no character

8. R. J. Evey

should be misrecognized by the logic (this was due, of course, to the

system's more stringent requirements on substitutions than rejections).

A flow-diagram of the above procedure is shown in Fig. 3.

Several modifications of each logic would usually have to be made

at each step in the process before the logic would be considered satisfactory.

Sometimes it was necessary to start from the very beginning with a search

for a new set of useful sure-bits. In all cases a complete, transmissible

record of the design of each trial logic, the results obtained in testing it

against the trial shapes, and the reasons for modification existed in the

summaries kept by LPP.

Iv, CONCLUSION

Only two other methods of designing logics of this type are known

to the author. One of these consists of building hardware which allows

the engineer to shift wires in the model quickly (somewhat like IBM plug

boards for EAM equipment). In this way logics can be wired directly

into the machine and paper can be fed through an actual model of the system.

This method has the advantage that the engineer knows the logics are trying

to recognize patterns which are produced under field conditions. It has the

great disadvantage that there are no records of patterns successfully recog-

nized by the logic. When a change is made in logic wiring and a retest is

run, the engineer has no way of knowing whether the same patterns as

before are being presented to the logic. Hence, he has no assurance that

he ts really comparing the new logic against the old. The new logic may

work better; but it may be because it is seeing more easily recognizable

patterns. This method of designing logics has been tried at IBM and has

R. J. Evey

not been as successful as the subject method in either time, cost of logics,
or reliability. However, using the procedure described in this paper, a

set of statements for each of the fourteen characters was developed with

an expenditure of six man-months for the 704 programs (which are of an

exceedingly general nature and have been used in whole or part for other

applications) and two man-montha for the design of the logics. Further,

it was found that two different designers working independently on the same

statement tended to produce logics that were equivalent in cost, performance,

and the bit positions used (see Fig. 4). The best proof of the method,

however, lies in the fact that the initial set of statements developed through

its use have been wired into models of the 1210 S/R and have remained

there unchanged after more than a year of rigorous testing.

Another method known to the author is that of devising an automatic

procedure to design these logics. Most exhaustive procedures can be ruled

out due to the astronomical number of possible logics, but useful procedures

have been developed by limiting the complexity of the conditions used in the

statements.* However, possibly because of this limitation, statements so

produced have never been as successful in practice as those designed by

people.

There was atime, nevertheless, when we felt that a definite short-

coming of this method was that it was not automatic. In the many areas in

which there is an attempt being made to utilize computers for the solution

of complex decision problems (e.g., theoremproving, language translation,

network analysis and synthesis, etc.), the goal is complete automation.

a P. H. Howard, "A Computer Method of Generating Recognition Logics
for Printed Characters, '' IBM Technical Note, TN 00. 10070. 357 (May 5, 1959)

_ 10 _ R. J. Evey

However, this was not our goal. We needed a reliable set of logics and

we were able to utilize the computer to advantage in completing this task.

It processed a trial logic against a controlled set of input patterns. It ran

tests and tabulated the results of this processing. Under a variety of

sense-switch controls it displayed specific items of interest to the designer.

Finally, it kept accurate records of this continuing iterative process of

logic design, so that previous work could be re-examined. In this way

the human beings in the process were freed from monotonous tasks and

could devote their experience and creative judgment to the actual task of

designing logics that recognize characters.

ACKNOWLEDGEMENTS

It would be impossible to mention all the people who have helped

with this project. But at the risk of omitting equally worthy contributors,

I would like to single out D. R. Andrews, G. E. Bartholomew, P. C.

Murley, and L. O. Nippe, who wrote most of the programs; A. J. Atrubin

and P. H. Howaz2d,; whose constructive criticism and helpful suggestions

contributed both to the writing of the programs and to the design of the

logics; and especially Dr. J. P. Lazarus, without whom neither the

project nor this paper could have been completed.

_ ll _ R. J. Evey
APPENDIX 1 - DETAILS OF TSP

Input to the program consisted of twe sets of IBM cards. The first
set consisted of a coding of the character into one-mil squares. This was

accomplished in this fashion:

A detail drawing of the character was blown up to 50-times life-
size. A grid marked off in squares, which represented one square-mil
to the same scale, was then laid over the character. Each coordinate
on this grid was marked. Hence, a person could quickly see the coordinate
where each row started into black and where it left. One card was then

punched per row -- with first the coordinate when black was started, when

it was left, when it started again (if it did) and so on. Since each ABA
character is 117 mils high nominally, this would result in 117 cards per
character. A further coding was incorporated, however, in that where

the edges of the character are not curving, one card may be the same as

a preceding card. Hence, there is no need to repeat the next card; simply

punch into the first card the number of times it is to be repeated. Fig. 5

gives the listing of the cards required to code the character 2. These

cards were read by the program (actually they were put on tape and read

from there) and interpreted into bits where there was black indicated in

the character and blanks where the character was white.

The second set of cards (an example may be seen in Fig. 6) con-

tained a complete set of the parameters which could be varied in the

program. These parameters (and the card fields in which they were

punched) were:

12- R. J. Evey

1. The dimensions of the macro-matrix (i.e., the output matrix

or trigger matrix of the S/R).
2. The font (this would be varied by changing the first set of

input cards).

3. The width of a reading channel to the nearest mil.

4. The width of the dead space between the channels to the nearest

mil,

5. The horizontal sampling interval in mils.

6. The clipping level of the quantizing circuits (i.e., the height

of the voltage waveform they would have to see to call it above

the noise level.)
7. The integration time of the quantizing circuits.

8. The initial registration of the character (that is, whether its

leading edge were sensed too soon due to magnetic fringing or

other effects, right on time, or late due to missing or low-

density ink),

9. Printing tolerance.

The program would first read a set of character coding input cards,

interpret them, and position the coded character in storage in such a way

that it simulated a character with its bottom edge on the bottom edge of a

reading channel. Then a parameter card would be read and the character

"scanned" in accordance with the parameters punched therein. The result

of this "scan'' would be a pattern (or macromatrix) which was written on

tape immediately. Then the character would be "moved" (or "rolled") up

one mil in its relation to the channel and laud (dead space) and again scanned

_ 13 _ R. J. Evey

in accordance with the same set of parameters. This process would con-

tinue until the character had rolled up to the position in which its bottom

edge just rested on the bottom edge of the next higher channel. At this

point it is obvious that we would begin to see the same set of patterns all

over again. So another parameter card would be read and this process

repeated for that card. This would continue until all the parameter cards

for a given character were read, at which point a new set of character

coding cards for the next character would be read and the whole process

repeated. This process is illustrated in the simplified flow-chart of the

program shown in Fig. 7.

There was one parameter which does not appear in a parameter

card. That is the system of quantizing used. This was varied by re-

programming. That part of the program was made into a closed sub-

routine and reprogrammed whenever the engineers changed their quantizing

circuits. About five different types of quantizers were tried and they had

80 little in common we felt this was better than attempting a general program.

It should be mentioned here that after the program was used a couple of

times, it was so successful in simulating the scanning that the engineers

would try a new idea for quantizing here before they would try it in hardware.

14. R. J. Evey

APPENDIX 2 - DETAILS OF LPP

The input to LPP consisted of two parts also. First, of course,
was a set of cards into which were punched the logic to be tested. These

were punched in this manner:

The character for which the logic was written was punched in

column 1, (A, B, C, D being used for the four special symbols of the ABA

alphabet). The number of conditions was punched in columns 2 and 3. A
condition is a multistaged logical AND'ing and OR'ing of trigger matrix

bits which, when AND'ed with other conditions, forms the logic for the

given character. No assumption of minimal form is made, so that the

same logic may be decomposed in different ways into conditions. For

example, if A and B are two conditions, the total logic consists of A B

and 02 is the number of conditions. AB may be taken as a condition and

the total logic then has one condition. Suppose A = C+D, then there are

two conditions, (C+D). B; or the logic can be written BC+BD, which is only

one condition. Hence reference is most easily made to a logic picture to

see what was constituted as a condition. Fig. 8, which shows a simple

logic and what would be punched into the logic card, may make this clear.

Starting in column 4, a cycle of symbol-row~column started and

kept up until column 72 or until all the logic was punched. If the logic

had to extend over to a second card the same sequence was used; that is,

character, total number of conditions, symbol, row, column, etc., starting

where one left off on the preceding card. The symbols used were numerals

lto 9, "+'' for OR, a comma'"," for AND, and the letter "S", which also

~15- R. J. Evey

symbolized a logical OR but had a larger scope than the plus sign. The

numerals indicated that a new condition was starting and told how many

of the subconditions following it were to be satisfied (2 out of three for

example). A subcondition is one bit specified by the row and column

location. If the bit were to be a blank, a negative sign (X over-punch)

was punched over the row.

These cards were read by the program, interpreted, and stored in

memory. (See Fig. 9 for a flow-chart of LPP.) Then the program reads

one character pattern (the second element of input) from tape. This

pattern was tested against the logic. As we have said, if the character

were being tested against its own logic and met all the conditions this was

noted in a final summary table. Actually more was done with it. The

whole pattern was added, a bit at atime, into a frequency table (Fig. 10).

That is, this table kept track of how many times the characters had bits

in each matrix position when considered in the roll position in which they

were recognized by the logic. Now, if the pattern was not recognized, it

was rolled through all ten roll positions, and the program kept track of

the roll position in which it missed the fewest number of conditions (or

the first position in case of atie). Then the whole pattern would be

printed out (these printouts were called printed patterns, or PRAT's --

Fig. 11). Further, the pattern was added into a table called a best

position frequency table (Fig. 12). Further, a table was made up of the

conditiens which were missed. These were called condition-not-met-maps

(Fig. 13) and told the conditions which kept patterns from recognizing.

_ 16 _ R. J. Evey

If the pattern came within one condition of recognition, the count was printed
on one line; but if it were two or more conditions from recognition, the count

was printed on a different line.

As has been said previously, if a pattern were being tested against
a logic for a different character all the above tables were entered but the

criteria for entrance were simply reversed. Further, entrance was made

in the tables for every roll position. In this way the CNMM (condition-not-

met-maps) told what conditions were actually keeping characters from being

recognized. All of these tables were printed at the end of each character

run. Only a final summary table was printed at the end of the complete

run (Fig. 14). This told for each character how many patterns came within

0 (i.e., complete), 1, or 2 conditions of being met.

Complete control of entrance into each of the summary tables and

printing of the summaries was maintained by using a combination of control

cards and sense switches. The control cards specified whether or not a

certain summary was to be kept and, if so, gave a limit of conditions. Ifa
pattern missed recognition by more than this number of conditions, the

summary table for that character was not entered, Then, as the program

ran, the logic designer could choose to see certain tables (or even change

the course of the program) by a selection of sense-switch settings. In this

way the program displayed only that data the designer thought would be helpful

at any given time.

List of Illustrations

Fig. 1. System Schematic

Fig. 2. Roll Problem

Fig. 3. Statement Writing Procedure

Fig. 4. Two "2" Logics

Fig. 5. Coding for Character 2 for TSP

Fig. 6. Parameter Card for TSP

Fig. 7. TSP Flow Chart

Fig. 8. Simple Logic

Fig. 9. Logic Processing Program

Fig. 10. Frequency Table (FT)
Fig. 11 Printed Pattern (PRAT)

Fig. 12. Best Position Frequency Table (BPFT)

Fig. 13. Condition-Not-Met Map (CNMM)

Fig. 14. Summary

R. J. Evey

LOGIC FOR

LOGIC FOR
"a"

-2

x x
to CLIP'NG
A-C SHAPING &

x x

LOGIC FOR
*"3"A-C

SOURCE

-3
AMPLIFIERS SAMP'NG

10 INFORMATION CHANNELS

10 X 7
TRIGGER
MATRIX

® SINGLE GAP
WRITE HEAD

LOGIC FOR
D"

D

MULTI-TRACK
READ HEAD

MAGNETIC INK
PRINTING

SYSTEM SCHEMATICPAPER
MOTION

2-12-22
3-13-23
4-14-24
5-15-25
6-16-26
7-17-27
8-18-28
9-19-29

9e__ 10-20-30
10

ii
12

3 &

e
I7 2
8

19 fe
20

2

23 &
24e
25
26
27

29
30

ROLL PROBLEM

TRIGGER MATRIX
76543 21

10

x2
8x3
74

AMPLIFIERS
10 CHANNELS

SHAPING

CLIPPING
AND

SAMPLING

x x 6 AA
5

56
< IXIX XX 47

38
2

14
10

X X 2

15

a

7

6
5xx

22 3

28

f

FIND USEFUL SURE BITS
FROM THEORETICAL SHAPES

y
SELF-TEST AGAINST

THEORETICAL SHAPES

v
CROSS-TEST AGAINST
THEORETICAL SHAPES

MODIFY UNTIL THESE
TESTS ARE MET

SELF - TEST AGAINST
REAL-LIFE SHAPES

MODIFY UNTIL MOST OF
REAL LIFE SHAPES ARE RECOGNIZED

Y
CROSS- TEST AGAINST
REAL-LIFE SHAPES

MODIFY UNTIL REJECTS
ALL OTHER PATTERNS

STATEMENT WRITING PROCEDURE

-

W
O

O
O

yn
oo

nN
O

O

7 65 43 2 7 65 43 2

FINAL LOGIC STATEMENT FOR CHARACTER 2

-
N
w

DW
W
O
O

0
7 6 5 4 3 2 | 7 6 5 43 2

w
m

w
hb

oO
w
o

O
o

9
9

HU

9
8

7

ANY TWO
OUT OF
THREE

6

5

4

3

21

765 43 2 T 6 5 43 2 |

FINAL 2 LOGIC BY DIFFERENT DESIGNER

ID

AC
K

ST
AR

TS
2h LA

CK
ST
O
PS

ET
C,

CARD
COLS, 12

-1
4

15
-1
7|

BL
AC

K
ST
AR

TS

fr]

De
END OF DATA FOR GIVEN CHARACTER,

DA 117 001 005
116 001 003

DE 1 111 002
D2 109 005 001

107 002
De 106 ool
D2 105 001
De 104 001
De 103 001

101
De 070 031 001 013
D2 068 002
D2 067 0Ol
De 066 OoL
De 065 001
D2 064 0Ol
D2 062 o0e
De 057 005 001 052
De 055 002
D2 054
De 053
De 052
De 051
D2 049
De 018
D2 016
D2 015
D2 014
De 013

012
010

De 005
D2 003
D2 002

001

ool
001
ool
001
002
031
002
001
ool
001
OOl
002
005
002
001
ool

003 052
005 052
036 052
038 052
39 052

040 052
039 052
038 052
036 052
005 052
003 052
002 052
001 052
002 051
003 050
005 048

N
O
ILVO

L

[sa]

fr]

3
050

002 051
052

D2 001 051
001 050
001 048
001 017
001 015

De 002 001 014

001 o14
001 015
O01 017
001 18
001 050
001

002 052

D2
De

n a

:

a6 a a

a 3
2

4
5
6
7

9

QO O@OOO®
FIELD COLS.

@
@
®

@

@

PARAMETER CARD FOR TSP

|-6
7-l2 NOTE: SEE PAGE I2 FOR FIELD

DEFINITIONS14-15
I7-18
20-2l
23-24
26-27
29 -30
35-37

8

Te

READ MICRO-MATRIX INPUT

READ PARAMETER CARD

PARAMETER
CARD FOR NEW
CHARACTER

MICRO-ROLL =

>
GENERATE SHAPE FOR

CURRENT MICRO-ROLL POSITION

WRITE SHAPE ON TAPE

4
ADVANCE MICRO- ROLL COUNTER

NO LAST YES
POSITION

TSP- FLOW CHART

3
2

NO

FINAL YES
CARD

YES NO

STOP

wl

ANY TWO 0UT
OF THREE 0

VY,

9

8

7

6
5

o 4
3

3 27 6 5 4

207171192 +82273,74S63,64144+33146121+22296,86,76

il

SIMPLE LOGIC

+t

READ LOGIC
STATEMENT CARDS
WRITE LOGICS

ON TAPE

PRINT
CHARACTER
SUMMARY

CHANGE
CHARACTERS

END OFREAD
CHARACTER CHARACTERS
MATRIX
TAPE

PRINT
CHARACTER
AND FINAL
SUMMARIES

STOP

NORMAL

YES SELF
RECOGNITION

INFORMATION MATRIX

MATRIX
SATISFYYES
LOGIC

NO NO

ANOTHER YES ROLL
POSITION

SELF
RECOGNITION

TEST

LOGIC PROCESSING PROGRAM

> CHARACTER
MATRIX

NO

UPDATE PRINT
SUMMARY CHARACTER YES

NO

FREQ, TABLE

8 7

POS / FREQ.

2 LOGIC

6 5

CHAR, 2

93

D9

93

10

69

91 100 100

h

1/ 486,

490 NCR

A

MFC 486 CNML 2

10 54 55 44 9

12 86 96 99 8

0 9 39 100 7

10 56 58 64 100 6

13 92 98 97 9F 5

4 41398 48

13 60 648 3

12 100 2

1

3 1

Q

1 111 8

2 LOGIC 1 7

CHAR, 2 1 6

CNMLXX 111 5

1 CNM / 22 1 4

POS 1 3

27B515051528 111 2

* 040 1

8 765 4321

A

BPFT 1 2 LOGIC CHAR, 2 1000 NCR MFC 3 CNML e

A

100 66 66 66 9

33 33 66 33100 8

100 7

33 66 100 6

33 66 66 66 5

33 4

66 33 33 3

33 33 66 33 2

1

8 7 6 5 4 3 2 1

CNM MAP CNML 2 992 NCR 2 LOGIC CHAR. 7

A
2

9

8

3 7
187

6
48 --- CONDITION 43

1 LOGIC,

2 TIMES WAS THE5

4
KEEPING A 7
ONE CONDITION

PATTERN FROM
SATISFYING
THIS LOGIC,

25 TIMES WAS ONE

TIONS KEEPING

037
32

1037
OF TWO CONDI-

76 2
1104oT A 7 PATTERN

FROM SATISFY-
1 ING THIS 21

4 3 18 7

CNM TABLE
CHAR, 0
CNM

.1
2 LOGIC CARD TOTAL 6482
3 4 5 6 7

1

5 17 48

209 7 186 5 265

8 9

1

3 118

C DA B2

708

1 51

602

CNML 2

Fle

INTERNATIONAL BUSINESS MACHINES CORPORATION
FEDERAL SYSTEMS DIVISION

SYSTEMS ENGINEERING OFFICE
3104 FARNAM STREET
OMAHA 31, NEBRASKA

November 13, 1959

Dr. Harlan E, Anderson
EJCC Publication Committee
Digital Equipment Corporation
Maynard, Massachusetts

Dear Dr. Anderson:

In accordance with the instructions contained in Dr, Felker's letter
of September 21, 1959, Iam enclosing four copies of the manuscript en-
titled, 'The Virtual Memory in the STRETCH Computer", by John Cocke
and Harwood G. Kolsky for inclusion in the Proceedings of the E,J.C.C.
December 1 - 3, 1959.

Also enclosed is a one-hundred word biography of the speaker. For
visual aids I plan to use 35 mm slides.

Sincerely,

H, G KOLSKY
HGK/jiv
Enclosures

HA

:

Biography of Dr. Harwood G. Kolsky

Dr. Kolsky obtained his bachelor's degree from the University of

Kansas and his doctorate in Physics from Harvard University. During

World War Il he did work in cryptography and coramunications in the

U.S. Signal Corps. He spent 7 years on the staf of the Los Alamos

Scietific Laboratory in the field of digital computer epplications as an

Associate Group Leader in the Theoretical Division. }He has at various

times held part-time teaching positions at Kansas, Harvard, and New

Mexico Universities.

In 1957 he joined IBM as & member of the STRETCH Project Pro-

duct Planning group. He was recently made Assiatant Manager of IBM's

:

SAC Intelligence Project in Omaha, Nebraska.

Paper to be printed in the Proceedings of the Eastern Joint
Computer Conference, December 1-3, 1959

The Virtual Memory in the STRETCH Computer

John Cocke
and

Harwood G. Kolsky
International Business Machines Corporation

Poughkeepsie, New York

I. INTRODUCTION

Early in the planning of the Stretch computer it was seen that by

using the latest solid state components in sophisticated circuits it would

be possible to increase the speed of floating point arithmetic by almost two

orders of magnitude over that in existing computers. However, there

seemed to be no possibility of developing on the fame time-scale economic-

ally feasible large memories with more than a factor of ten or perhaps

twenty increase in speed. As a result, the proposed system appeared to

be in danger of being seriously memory-access limited.

Moreover, as the speed of the floating point operations increases, a

larger and larger percentage of the computer's time is spent on "parasitic

operations", i,e., operations whose only function is program control and

data selection. It was obvious that a radically new 'machine
organisation

:

a

was necessary in order to capitalize upon the possibilities opened up by
a a

the high arithmetic speeds in the presence of relatively slow memories.

2:
:

+

4 At this time, a number of persons were considering the possibility
were

f

of a "look-ahead'' device in which an independent indexing arithmetic unit

would prepare the effective addresses of instructions and initiate memory

references to a multiplicity of memory boxes. The data thus fetched would

be held in high-speed buffer registers until needed by the arithmetic unit.

This device would serve two desirable purposes: (1) some of the parasitic
a

operations would be done in parallel and thus not delay the principal cal-

culations, and (2) several memory boxes could be running simultaneously,

giving the effect of higher memory speed.

Since our original work on the virtual memory and simulation in

1957-58, a large number of detailed changes have been made in the actual

hardware design of Stretch. These necessitated several modifications

in the simulation program to estimate their effect on the overall system

performance. In this report we are omitting many of these changes for

expository reasons, since our purpose is to describe the virtual memory

and timing simulation concepts, not to describe the Stretch hardware
:
yr

3

exactly. The result is that the system described below embodies a more

general systern than that found in the simulator, which in turn is more

general than that found in the actual computer,

a

-3. :

Il. GENERAL DESCRIPTION OF THE SYSTEM :

The major logically-independent blocks of the Stretch computer.
v
fare shown in Figure 1, Each of the units pictured may be considered as

operating asynchronously. That is, each does its tasks as fast as possi-

ble independently of the others. In theory, each box could have its own
:

clocking circuits and still operate properly. In practice, for economy's

sake they are all timed by the same master oscillator, but this does not

destroy their logical independence.

4 :

4

4

simultaneously the control unit assigna priorities n the following order: :

(1) High-speed Exchange, (2) Basic Exchange, Q) Virtual Memory; and
a

(4) Indexing Arithmetic Unit.
: :

The Indexing Arithmetic Unit fetches instructions, performs all

necessary indexing operations and sends the instructions to be executed

to the Virtual Memory.

The virtual memory also performs at store operations. It holds the

data generated by the arithmetic unit or iadexing arithmetic unit until

the memory to.which the data must be aent is available. Thus the virtual

arithmetic unit, but also acts asa look-behind" storage buffer.

The actual design of such a "look-ahead" device posed a mumber of

logical problems, particularly in connection with conditional branches.

However, a machine organization ers this complexity requires a
ogaizaton

detailed timing analysis in order to determine the value of adding hard-

ware in the form of the virtual memory , This is especially true since

by increasing the efficiency of other devices. Jt was also felt that the

The Virtual Memory fetches and receives the data required by the

instruction and holds this data until the arithmetic unit is ready for it.
4

:

: :

memory acts not only as a look-ahead" for instructions to be fed to the

4

:

the sole function ofthe virtual memory is to increase machine speed,
: :

:

timing analysis could not be made on the basis of a few trivial examples

75

(e.g. matrix multiply), Machine performance obtained in this fashion can

be extremely deceptive. Since a detailed timing analysis ofa computer of

this complexity is extremely tedious to carry out by hand, it became clear

that if the job were to be done, it would be necessary to simulate the pro-

posed machine on another computer. This prompted us to write the simu-

lation program to be 4described later.

With the above general organization in mind, let us discuss some of

the logical problems posed by such a system. The first problem ig a

sult of the very concept which enables us to obtain such great benefits from

the stored program computer -- the ability to treat instructions as data.

In a system such as we have proposed there is a large amount of simultane-
ous operation. For example, the indexing arithmetic unit may be busy pre-

paring an instruction before previous instructions have been completed or

even atarted by the arithmetic unit. One of these previous instructions

may modify the instruction which is presently being indexed. The virtual

memory must recognize this situation and allow the intervening instructions

to be completed before doing the modified instruction.

A similar problem exists with respect to ordinary data. In order to

operate several memories simultaneously, it is necessary to start obtain-

ing data from these memories before the preceding operations have been

completed. Yet, one of these operations may be a store into one of the

Ay 6 :

data locations. The virtual memory must make provisions to insure that

each instruction obtains the most up-to-date data asrd implied by the order
p

of the program. ™

One of the novel features of the Stretch) "omputer is its elaborate +

7

interrupt system. Under this system, whenever some unexpected occur-

rence arises, the program will be interrupted and control will pass to a

special routine which is designed to take care 'of the case in question, then

return control to the original program. IIn this situation the virtual memory
:

must have provisions to retain enough information so that when an inter-
: :

rupt occurs we can resume the computation exactly where we left off. It

must be able to recognize which of the changes that have been made in ad-
:

vance are not desired and should be obliterated,and which are exact solu

tions that must be restored.

have taken until the preceding instruction is execited. In the case where the

wrong path has been selected, the virtual memory must be prepared to

drop the intermediate results which have been computed and pick up the :

mental rule for the Virtual mcmory ie that it muat make the asynchronous

Another special case arises when a conditional branch on arithmetic

results occurs. Here we will not know which of the two branches we should

correct branch in a way very similar to that of an interrupt

Summing up al these logical problems, we may state that the funda-

r

: :

and non-sequential computer give results identical to those which would

be obtained by performing the program one instuction at a time in the

order in which they are written.

-7

I DETAILED DESCRIPTION OF VIRTUAL MEMORY OPERATION
A. General Conditions to be Considered

The conditions which occur in the following situations must be

considered in some detail:

1, The fetching of instructions by the Indexing Arithmetic

Unit (TAU).

2. The indexing of instructions and modification of Index

registers.

3. The loading of the virtual memory and the setting of

its conditions by the IAU.

4, The action of the virtual memory in fetching
«

data,

5.

6. The communication between the virtual memory and

the main arithmetic unit.

7. Special situations such as conditional branching on

arithmetic results, etc.

:

The action of the virtual memory in storing data.

B. Definitions

Some of the terms we will use are defined as follows: a

1. Operations

Operations are considered to be of three types:

(1) Bring or Fetch Type - <All instructions requiring

data to be transmitted from external memory
:

to the irtual memory
rtual

ternal memory orindex memory.

(Note: We consider al indexing instructions to

be of the store type, although the store

may be to either external memory or

(3) Immediate Type - Al operations not requiring

ata, transmission,
;

Viual Memory Quntities : :

(1) Virtual Memory A number of virtual memory

(or look-ahead) levels (numbered 9 to N-1).

(2) Level of Yirtual Memory - A collection of regis-

a

:

Store Type ~ Instructions requiring the trans-(2)

mission of data from the virtual miemory to ex-

4

:

index memory.)

:

:

2.

:

ters and control bits. The contents of the jth level

are shown in Figure 2 h

:

(3)

a)

(5)

(6)

(7)

(8)

(9)

(10)

2 *)

Instruction Address Register - Contains the :

address of the instruction currently in the jth level

Operation Code Register (OP;) - Contains the ops ra-

tion to be performed by the arithmetic unit, :

Store Bit (S;) - a one-bit trigger which indicates

the level, contains a store type instruction,

Bring Bit (By) - A one-bit trigger which indicates .

the level, contains a fetch type instruction for

which the data access has not been started.

:

Forwarding Bit (F)) - A one-bit trigger which indi- :

cates that the jth level must transmit data to

another level.

Forwarding Address (FA,) - A register which con-

tains the number of the level to which the data must

be sent if F; is set.

O. K. Bit (OKj) - A trigger which when set indicates

that the correct data for the instruction to be executed

is present inthe jth data field.

Data Field (Dj) - A register which contains the

operand data for the instruction.

Data Address (DA)) - The operand data address

{already indexed by the IAU) for Dj.

:

10 ~

(12) Compare Bit (cp; A trigger which if not set. a

in any address comparisons being made.
adres

2

3. Counters +

The virtual memory is controled by a set of counters
é + 4

1

which count mod(N), 'where N js the number of virtual

(1) Counter one (c 1) Indicates the level into which

the next may be placed.

(2) Counter two (C2) - Indicates the level from which

the next bring type instruction may be initiated
v

(3) Counter three (C3) - Indicates the level from which

the arithmetic unit will get its next operation and :

4. Interlocks +

The above counters must be interlocked in'the following
a4 4

manner to assure proper, sequential 'operation of the

computer (seeFigure 3): 2

(1) Interlock one an: 'Cy = N Prevents the
7,

from placing the next operation into the level

A:

:

dicates the address in DA; should not be included

4

a

memory levels. : tRy

:
:

4

the next store type instruction may be initiated. °

(4) . Counter four (C4) Indicates the level from which
4

cry 4 4 1

2 4 ur >
é

1
4

data, aim. +
dé

:

S

a

:

:

7

+
+

e

12.
2

decisions will be made in such a manner as to.

every address simultaneously. DA; is not

used for any level which does not have ite C; bit

_

set. If a comparison exists between a new DA;

being placed in the virtual memory and an old

DA,, the compare bit Cy is turned off and the

address of level j is placed in FA,. This insures

a unique meaning for the comparison. If this

were not done, another instruction address DAg

might compare against two levels and thus cause

an ambiguity.

2. Instruction Fetch Logic

Figure 4 is a flow diagram of the IAU Instruction Fetch

Procedure. The logic is as follows: If the IAU is ready

to fetch another instruction, it compares the instruction

address with all the DA;'s of virtual memory. If there

is no comparison, the instruction fetch is initiated. If

there is a comparison, the IAU must take its instruction

from the virtual memory provided the OK bit is set;

make sure this is the case,

by the IAU(2) Addresses can be

DA

:

hy :

otherwise, it must wait until the OK bit is eet.

AS

13
:

:

4
2

Note: This procedure prevents the logical difficulty men- :

tioned earlier which would occur if the virtual memory

contained a store order into the instruction presently
é

t

being fetched.

For Example: a at2

: /LOADM, i

at2_ ADDN, 1°

at3

t

STORE Address

atl

7

The store to at2 must be done in sequence or the old
4

value N would be used for the address instead of the quan-

tity being set by a.

3. Indexing Logic

:

:

:

Figure-5 shows the flow' for instruction indexing. After
:

determining that an instruction is ready to be indexed,
3

the IAU tests whether or not the index value is available.
a

If it is, the indexing operation is started, if not,the memory

reference is started and the IAU waits until the data re-

turns before proceeding. If the index-fetch has not been

be
+

started, the IAU compares index address against
: :

all the data addresses in Virtual memory. If none com-

pare, the index value is fetched normally. If one does
:

:

i _tn

compare, the index fetch is held up until the 'OK bit ie :

set for the data. This value from the virtual memory

is then used for indexing the instruction.

Logic of Putting Instructions in the Virtual Memory4.

(1)

(2)

* Figures 6, 6A, 6B, 6C represent the logical flow

- for putting instructions into the virtual memory.

If the indexing arithmetic unit has an instruction'

prepared for the virtual memory, it may trans-

mit the instruction into the virtual memory f .

interlocks one and five do not forbid it. These

interlocks prohibit a new instruction from des-

troying an old one which has not been executed
:

as yet, whether an arithmetic operation (15) 'or
7

an unexecuted store (1). : The handling of the in-
varies

struction A depending on whether they are of

the bring type, store type,
«

or immediate type.

The bring type, as described in
n

Figure 6A, pro-

ceeds as follows: If the effective data addresa

of the instruction compares with the DA address

- in some level, 'the instruction, its oP code; and

effective data address are loaded into the level :

16
:

: :

will be required. 'The level's bring bit and for-

warding bit are set to zero, its compare bit is
3

set to one. If on the other hand the addresses do

compare, the game procedure is followedibut in

addition, the compare pit in the level compared-
:

ue :

with is set to zero that future comparisons will
A : :

not use it. :
:

The OK bit has not yet been get. a is cet to one.
a

:

if the operation is an index store and set to zero
+

if it is an ordinary store. .For the ordinary store
4

te

it is clear that the OK bit shoyld be zero since the
+

data must come from the arithmetic unit after the
: :

preceding instruction is executed,
:

As was mentioned in the definition Previously we

treat all indexing instructions as sto re type and

place the new value of the 'indexed quantity into
:

:

: :

the irtual memory...This is done because the
a :

indexing unit is going ahead of the nor-arithmetic

mal order of instruction execution and an interruption
ay

may occur before this indexing instruction should

have been done. In this case, the old value of the

On the otherindex is still in the index register.

:

(4)

«17 - s

hand the indexing arithmetic unit compares with

the virtual memory and extracts the most recent

value of the index for indexing succeeding instruc-

tions. The OK bit is set to one since the appropri-

ate data is in the above level. Both the new and old

index values must be carried along to give logically
correct conditions in the case of an interrupt.

A situation very similar to interrupt occurs in

branches on arithmetic results where the indexing
aithmeti

arithmetic unit guesses" which branch will be

taken and proceeds with fetching and processing

the instructions on this branch, subject to being

wiped out if the guess proves to be wrong. (See

the discussion on "Wrong way Branches" below. }

Immediate t ype instructions are the simplest type

because they essentially carry their data with them.

Figure 6C shows the logic inthis case. The in-

struction is placed in the virtual memory level

:

marked by C,. The address field of the instruction

s placed in the data field of C,, The OK bit is set

to one indicating the data is present. The bring and

18

:

5.

store bits are both set to zero. The compare bit
bit

is set to zero since the DA address field has no

meaning for immediate type ops. (The data

address of the laet instruction which occupied this

level still remains n DA, so it has no relation to

the present D field.)

Logic of Data Fetching

See Figure 7: When an instruction of the bring type has

been placed in the irtual memory 'the data required by

the instruction in general wil not be present (unless a

comparison exists as was described above) and thus the

data must be obtained from core storage. The fetch
ay

cannot be started if interlock 3 holdswhich means all

the fetches correspoding to the Instructions presently

in the virtual memory have been started If a fetch is

possible, the bring bit at level Cz indicates whether or
3

not a fetch is necesgsary
:

started if the memory bus and memory unit correspond-
mmo

If necessary the fetch may be

ing to the data address are not already being used. When7

the fetch is started, the bing bit for level C2 is to

The counter G2 is 'then stepped forward to the nextzero.

level.

- 19 -

:

Logic of Data Storing

Figure 8 shows the Data Store Logic, which is very

similar to that for data fetching just described. The

only significant difference is that the oO. K. bit must

6.

be set before the operation can be started.

Logic for Placing Data into the Virtua Memory7.

Figure 9, we see the logical conditions which must

be satisfied by the data returning from memory

addressed to the Virtual Memory. The return address

which was supplied when the fetch was started selects

the level into which the data will be placed. . The 0. BK,

bit is then set to one,indicating that the proper data is

in the level. The operation is complete at this point

unless the forwarding bit is set. In this case, the

data must be forwarded to the level designated by the

forwarding address. This procedure continues from

level to level as long as the data continues to arrive

into a level whose forwarding bit is set. This proce-

dure automatically supplies all operands present having

identical data addresses with the proper data,without

additional memory references.

20 :

7 :
:

Logic of Removing Instructions from the Virtual Memory

Observing Figure 10, we notice that as the arithmetic
:

unit completes an instruction it checks to see if the next

instruction in the virtual memory {s ready to be executed ;

{indicated by interlock Note: The operation may be

an unconditional branch, 8 conditional branch, or an

index type store,as well as a normal bring or store type

instruction involving the accumulator. Figure 10 shows

only the cases which invelve the universal accumulator.

:

:

7

The index and unconditional branches
and

the index store

operations are merely ignored at this point. They are

carried along only to provide the data for recove ry in
rver

+

the event an interrupt occurs. The execution of the con :

1 4

ditional branches on arithmetic results are described in :

the next section.

If the next instruction marked by counter Gq is ready, it

is fed into the arithmetic unit. fg it ie a store type, the

data is gated from the accumulator into the data field of

:

1

we

level C4, and the OK bit ia set to ne. Ifthe orwarding
:

bit of the level is set, a forwarding procedure in this

case is essential for the proper logical operation of the
: abd

:
: : :

computer, whereas in the bring case it is a time-saver

only. :

?

jer :

:

:

If the inatruction is not a store type, the arithmetic unit

"must hold up until the O. K. bit for the level is eet, When
:

"the O. K. bit is set, the instruction is gated into the

arithmetic unit and executed.

Logic of Interrupt Procedure9
7

if for any 'cause an interrupt (or trap) from a special:

condition occurs, the instruction which is being executed

in the Arithmetic unit is completed, However, 'the next

instruction is not executed in spite of the tact alltthe dat

preparation for it may have been completed. The address

in the IA (instruction address)field will serve as the value.
é

to reset the dnstruction counter if it is desired. :

4

The Virtual Memory is initialized, La 6. to the start-

ing conditions of an interrupt, 'with the exception that

'store orders which have already received data from the

accumulators must be executed firet. Note: if the inter-

rupt is of such a nature that the normal flow of inatruc-

Hons is not resumed, the procedure of storing the 4modi

fied values of the index registers in the Virtual Memory

'gives logically correct results, i.e., the game as if the
interrupt had occurred before the indexing took place. *.

:

23
7

as "black boxes", we greatly simplify the details which must be.con- 7

One of the fundamental concepts in the Stretch design is

that ef asynchronous operation,of the components This means that

there are a large pmber of logcal steps being executed at any one

simulate this flow of many parallel continuous operations, we have

time in the computer, each of them, proceeding at its,
:
tate. fo

1

broken the continuous time variable into finite time steps. The basic
i

time step is taken as 0,] microsecond in the Simulator.
tk 14

By taking 0. 1 microsecond as our quantum of time, we are
a

automatically setting the scale of the smallest circuit entities which

we will nsider as being those which accomplish complete functions

n .0, 1. microsecond or few thereof. Thus, by using this

philosophy and considering many of thecomponente of the computer

sidered without introducing serious inaccuracies. ,
wa

Our experience has indicatedpets more information was gained

by making a large number of fast parameter, tudion 'using different
:

7

configurations and programé than, sould have been obtained by a very"

slow, detailed simulation of a few ryns with more precision per

Even s0,our time scale is to fine to make serious input-output a

cation studies These would require a sim i
simulator having at

least a factor of 10 coarser basic time interval.
: :

:

25 :
:

It is interesting to note that since the simulator Simulates tim-
:

ally would, the loops must be furnished with "wrong way" paths

given for the cases where the computer would take such paths. Also

one must furnish more than enough information along such paths since

it ie difficult to predict in advance how far the computer will get down »

the wrong path before it is. called back.

Parameters are changed from one run to another by use of con-

trol cards. The control cards are set up in such a way that any num-

ber of parameters may be changed between runs. Results are givenive

either as detailed timing charts or as summary listings for each

problem. The usual procedure has been to print only summary Te-

sults while making a series of parameter studies. The detailed timing

charts as printed on the 704 for-most problems would be about 50 feet

long for each run. Since over . 1000 cases have been run, it is clear

that only a few cases could be printed in full detail. These are parti.

cularly useful in seeking the causes of conflicts which slow the com-

puter.

Results of Parameter Studies

series of studies in which the main parameters describing the

ing only, not the arithmetic or indexing functions, the sequence of

instructions to be executed must be furnished as a "string" with al
+

loops unwound. However, to make the computer behave as it actu-

When the Simulator Program was completed, we undertook a

Stretch system were varied one or two at a time in order to get :

"er 26

a measure for the importance of different effects, After this we
: :

began to specialize the studies towards answering specific ques :

tions in the SEKetch design,

The simplified flow @iagram in Figure 11, indicates the

order in which the subroutines for the various logical units are
4

$

executed at each time 'step. Using the types of techniques just
i x

described above, the logical subroutines simulate the action of
1

the components of the computer such as the Virtual hemnory, arith-

metic Unit, etc. : :

:

4

7

a

7

»
3 = 27

sents the cycle time of the memory. 'The number indicates the instruction,

V. SOME RESULTS OF THE SIMULATION STUDIES

Figure 12 shows examples of the type of output listings given by the

simulator. Figure 12 ipa piece of a long timing chart with each ine of
: :

printing representing 0.1 microsecond of time. The columns represent : :

3t 8

the various components of the computer. On the left and right are tming : :

counts subdividing each microsecond, On the far right are conflict indi- :

:

cators ("C" on the charts) waiting indicators, nw", which indicate
:

when interlocks prevent operations from proceeding.
1the

The 2nd column, U1, gives the number of,instruction being indexed.

The 4th column, AU, ives the number of the instruction using the
+ :

arithmetic unit, The next four columns represent the instructions using :

the memory buses. The enlumns labeled X-, F-, and M- represent the
t er

index, fast, and main memories A string of ''X's" in the columns Fepre- : :

:

the : : :

using the memory andjnumber of times which it is repeated gives the read- :

out time of the memory. The columns L- indicate which instruction is
4

located in the virtual mamory levels. The other columns are for details

analysie and need not be considered here,

Five of the test problems used most frequently are deacribed below
r bed

14

Other test problems were used for specific studies but since the results

were similar for al problems of a given type, we g :

selected as being typical of :0 using them. The were
:

:

different classes of problems. 7

+:28

7

Mesh Problem - Part of an hydrodynamics problem from1,
+

Los Alamos, It contains a more or lese "average" mix-
a

ture of inst ructions for scientific problems: , 85% floatingat
* t

point instructions, 14% index modification instructions
7

and 1% VFL, It is usually arithmetic unit limited,
y «

:
hy

Monte Carlo Branching Problem - Part of an actual Monte2.
4

a é

€arlo neutron diffusion code, It represents a chain of

logical decisions with very Little arithmetic in between, It
5 3

contains 47% floating point, 15% index 'modification instruc--
r

+

tions, and 36% branches of the indicator and unconditional+

x 4o

i

4

atypes. It is largely instruction-access limited.
% a

Reactor Problem - The inner loop of a neutron diffusion3.
a

problem, It consists of 90% floating Point arithmetic (39%
:

h a

of which are multiplys) 'and 10% index modification instructions,
:

€ a 4

It is almost entirely arithmetic unit limited,
a i

1

4, Computer Test Problem- The evaluation of a polynominal

using computed indices, . It hag
%

floating point, 10% index
4

71%

modification, 6% VFL and 13% indidator branches, It is ;

usually arithmetic unit limited,but
|

not for all configurations.)
$

:

Simultaneous Equations - The inner loop ofa matrix inver-5.
ta a

f

sion routine 67% f loating 'point ;
+

and 33% index modification,
6 4

A

- 29 -

Arithmetic and logic are about equally irmportant, It is lim-

ited both by arithmetic and instruction-access speeds,

Speed vs Number of Levels of Virtual Memory

Figure 18 shows the effect on compuicy performance of varying

the number of levels of virtual memory, Curves for the Monte Carlo and

Mesh Calculations with two sets of arithmetic and indexing arithmetic

speeds are shown, The AU times given are averages for all operatios,

A number of interesting results are apparent from these curves:

(1) There is a tremendous gain to be had in going to the virtual

memory organization, The point for "0 levels" means that

the arithmetic unit is tied directly to the instruction prepar-

ation unit, although simple Indexing-Execution overlap is

still possible,.

(2) The gain in performance goes up very rapidly for the first

two levels then rises more slowly for the rest of the range.

(3) A large number of levels does the Monte Carlo problem less

good than the Mesh problem because constant branching in the

former spoils the flow of instructions. Notice that the curve

for the Monte Carlo problem actually decreases slightly beyond

six levels, This phenomenom is a result of memory conflicts

A,

caused by extraneous memory references started by the com-

puter running ahead on the wrong-way paths of branches,

30

(4) The computer performance eon a given problem is clearly
less for slowe~ arithmetic speeds, However it is impor-

tant

tant to note that the sensitivity of the performance is also

less for slower arithractic speeds, The virtual Memory

improves the performance in either case, but it is not a

substitute for a fast arithmetic unit,
Goo.

B. Speed vs Narmber of Main Memory Units
1

Figure 14 shows how internal computer performance varies with

the total number of memory units for a particular :problem, The entire

calculation is assumed to be contained in memory for ut cases, The

speed gain from overlapping memories is quite apparent from the graphs.
:

The speed differential between having and 'not having instructions

separated from data arises from delays in instruction fetches caused by

+

a
:

the memory units being busy with data, The size of this effect varies

from problem to problem, being less pronounced for problems which are

arithmetic limited and more for logical problems,

The "X's" on the graph show the effect of replacing the 0,6 usec

memories. 'The resultinginstruction memories by a pair of 2.0

performance change is small for the Mesh Broblem, which is arithmetic
:

limited, but large for the instruction-fetch limited Monte Carlo problem,

:

31

C. Speed vs Arithmetic Unit and Indexing Arithmetic Unit Times

Although everyone realizes the importance of arithmetic spéed on

overal computer performance, it was not until the simulator results be-

came available that the true importance of the indexing arithmetic speeds

waa recognized. Figures 15 and 16 show a two parameter family of

curves giving the computer speed as a function of the AU ami IAU times,

Figure 16, in which the arithmetic time is the abscissa, shows anin-

teresting saturation" effect where the computer performance is independent

of AU apeed below some critical value Thus it make no sense to strain

AU speeds if the IAU is not improved to match, The curves in Figure 15

show the same effect,7 é., the IAU apeed serves as a "ceiling" on per-

formance beyond which the AU speed cannot pass.

D, Arithmetic Unit Efficiency

One fallacy which is frequently quoted is that the goal of improved

computer organization is to increase the arithmetic unit efficiency. Actu-

ally there are two reasons why this is not the goal in itself. The first is

that arithmetic efficiency depends strongly on the mixture of arithmetic

and logic in a given problem so that a general purpose computer cannot

hope to give equally high percentage utility to all. The second reason is

that the simplest wy to increase the arithmetic unit efficiency in any

asynchronous case is to slow down the arithmetic unit

32

:

puter performance for minimum cost, One will tend to increase the

The real goal of improved organization is maximum overall com-
a

arithmetic unit speed as long as its percent efficiency is reasonable for

a variety of problems, One will stop this process when the overall:

per-
formance gain no longer matches the incs

n

in hardware and complexity,
Thus the arithmetic unit efficiency is a by-product of this design process,

not the prime variable,

+:

: :

increase

E. Speed vs Concurrent Input-Output Activity
Because of the relative time.scales of Wo activity and the CPU

p

processing speeds, the s jmulator cannot take in account the availability

or non-availability of data from I/O on 'the program being run, However,

we can observe the effect on the computation of the I/O devices operating
1

at different rates simultaneously with computing. °

:

Using the Stretch . control word philospphy, it is possible to have a

number of input-output units operating at the same time the Central Pro

cessing Unit is running, The Basic Exchange can reach a peak rate of 1

«

word every 10 microseconds, The high sped disk normally operates at

1 word every 4 microseconds, Since the mechanical devices take prioity
over the CPU in addressing memory, the computation slows down. because

of memory-busy conflicts,

F gure speed is slowed

as the Vo word rates are varied continuously, At the theoretical "choke off"

5

:

igure 17 shows an example of how internal computing

:

+

the I/O devices take all the memory cycles available and stop the calculation,

Notice that this condition can never arise for any I/O rates presently attainable,

- 33 -

A Stretch system with only 1 or 2 memory units has leas perform-

is reduced by the loss of memory overlap, (2) it has a larger I/O penalty

when I/O is run concurrently with the computation, and (3) the smaller

amount of data which can be held in the memory at one time increases the

amount of I/O activity needed to do the job. Note, however, that increasing :

the memory size ona computer of conventional organization only iimproves

+

ance than a larger one for three reasons: (1) The top speed of the system

the third area.

F. A Study of Branching on Arithmetic Results in Stretch

One penalty of the non- sequential preparation and execution of instruc-

tions used in STRETCH is that if there is a branch in the problem code it

spoils the smooth flow of instructions to the indexing arithmetic init. Any

branch in a program will cause some delay, but the most serious ones are

the branches on arithmetic results which cannot be detected by the index-

ing arithmetic : init In advance.

There are two fundamental ways in which branches on arithmetic

unit resulta can be handled by the computer.

(1) The computer can stop the flow of instructions until the

arithmetic unit has completed the preceding operation 50

that the result is known, then fetch the next correct instruc
nstru-

tion. This places a delay on every AU result branch whether

taken or not. .

34 7

:

(2) The computer can "guess" which way the branch is going

to go before it is taken and proceed with fetching and pre-

paring the instructions along one path with the understand-

A detailed series of simulator runs were made to study this situation

and to decide which way Stretch should be designed. 'Some of the

ing that if the guess was wrong, these instructions must be

discarded and the correct path taken instead.

4

general observations were:

(1) The performance variation in a problem with considerable
:

ithmetic data branching can vary by approximately 15%

depending on the way in which the branches are handled

(2) Holding-up on every branch seems to be less desirable
:

than any of the guessing procedures. Some time is lost
: : :

whenever a branch is executed rather than proceeding to

the next instruction. Unless there is unusual situation
4

in which there is a very large probability that the branch

will always be taken, the least time will be
>

lost if one

assumes that the branch is not taken.

(3) The theoretically highest performance would be obtained

if each branch had an extra guess bit" which would per-
:

mit the programmer to specify which way he estimates

352

(4)

each branch will most likely go. However this wduld place

a considerable extra burden on the programmer for thé

gains promised. (1 also uses up many valuable OP codes.)

It is realized that there is a "feedback" in such decisions

because the way in which the machine guesses the branches

will influence future programmers to write their codes to

take advantage of the speed gain. The esult is that the

statistics of the future will be biased in favor of the system

chosen for the machine, and thus "prove" that it was the
:

right decision!

wr

a

CAPTIONS for John Cocke and Harwood G. Kolsky, ''The Virtual Memory in the

Fig. 2.

Fig. 3.

Fig. 4 . Instruction fetch procedure

Fig. 5.

Fig. 6.

Fig. 6a. Logical conditions for bring type operations

Fig.

Fig.

6b.

6c.

Fig. 12.

Fig. 1 4

Fig.

Fig.

Fig.

Fig . 13.

8 . Data store procedure

Fig. 11. SIM - 2 simplified flow diagram

STRETCH Computer"!

Fig. 1 . Schematic of stretch computer

Virtual memory - contents of one level

Virtual memory interlocks

Indexing procedure :

Procedure for placing instructions into the virtual memory
+

1

Logical conditions for store type operations

Logical conditions for immediate type operations

7 . Data fetch procedureFig. :

Fig. :

Procedure for placing data into virtual memoryFig.

Fig. 10. Procedure for removing instructions from virtual memory
a

4

:

Listing of simulator print-out

Computer speed vs. no. of levele of Look-'ahead registers: 4 main memes.
2. ys; 2 fast mems. 0.6ps; for two sets of arith. Speeds

&

Computer speed vs. number of main memory boxes: 4 levels LA;
0.6ysT AU time; 0. 64 ys AU time :

15.

16.

17.

Cémputer speed vs.

Computer speed vs. indexing arith.. times for various arithmetic unit
times: 4 main mems. 2. 0 ps; 2 fast mem s 0. 6ps, 4 levels of look-ahead

arithmetic times for various indexing arithmetic unit.
'times: 4main mems. 2.0ps; 2 fast mems. 0. 6 ps; 4 levels of look-ahead

Internal computing speed. Percentage reduction in speed caused by input-
output devices referencing memory at different rates while the calculation .

3

is proceeding.

INSTR INSTR DATA . DATA DATA: DATA
MEM MEM MEMMEM M EM vee

MEMORY BUS :

+

4

INDEXING VIRTUAL HIGH SPEED
ARITH MEMORY EXCHANGE EXCHANGE
UNIT

DISKARITHMETIC FILEUNIT MANY 1/0.

:

:

a :

UNITS

: :

:

7:

:

:

ARE DONE IN A SIMILAR MANNER.
Mey.

INTERLOCKS Ig AND Is ARE AS SHOWN ; THE OTHER INTERLOCKS

:

3

:

DOES IAU WANT INST :

YES NO 'WAIT

DOES ADDRESS
COMPARE WITH VM

1

WAIT

YES NO

IS OK. BIT SET IN START INST FETCH
REGISTER WITH WHICH SET RETURN

1T COMPARES ADDRESS

NO YES

TAKE INST FROM
VIRTUAL MEMORY

HAS INST BEEN
RECEIVED

WAIT
YES NO

PROCEED TO
PROCESS

:

4

{ 4

:

v w : t

IS THERE AN INSTRUCTION|
TO BE INDEXED

:

YES WAITNO

HAS INDEX VALUE
BEEN OBTAINED :

WAIT

YES NO

:

:

INDEX HAS MEM. REF. : :

INSTRUCTION BEEN STARTED
ye 4 :YES :

a te

DOES INDEX ADDRESS
COMPARE WITH AN ADDRESS
IN A VIRTUAL MEMORY

NO VES :

+t

:

START MEMORY REFERENCE
FOR INDEX VALUE + COMPARED WITH LEVEL WAITts BIT SET IN

2 +

.. YES NO

OBTAIN INDEX
FROM VM :

:

aye

ey :

:

:

:

: : : :
:

DOES 1; PREVENTDOES THE INDEXING AU
HAVE AN INST READY FORF-ves OPERATION
THE VIRTUAL MEMORY :

4

DOE$ Is PREVENT
a OPERATION

YES K :
: ::

:

WAIT

NO :
:

a

YES
NO : WAIT

NO

- < WHAT TYPE OF
OPERATION IS ITa

a

a

STORE IMMEDIATE
~

TYPE TYPE OPERATION
BRING
TYPE

TO FIGURE TO FIGURETO FIGURE
6B6A 6C : :

§ G

:

: :

FROM FIGURE 6 :

t

DOES ADDRESS COMPARE
WITH A'LEVEL DA' +

:

YES : NO :

AND THE O.K., BIT TO ERO.

IN THE Cy -LEVEL: -PUT THE INSTRUC- +

TION. ADDRESS IN IA. PUT THE OP CODE
IN oP. PUT. THE DATA ADDRESS IN DA
SET 'THE BRING BIT, TO ONE. SET THE
FORWARDING BIT, - "THE COMPARE. BIT,

y
SET COMPARE BIT TO ONE IN Ci :

LEVEL AND TO ZERO IN COMPARED-.
WITH LEVEL.
IN THE C, LEVEL: PUT THE INSTRUC-
TION ADORESS IN IA PUT THE OP
CODE IN OP. PUT THE DATA ADO-
RESS IN DA. SET THE BRING BIT,
THE STORE BIT,AND THE FORWARD-
ING BIT TO ZERO. :

iS O.K. BIT SET IN
COMPARED-WITH LEVEL

a :

:

be:

: :

:

: a

4:

: :

:

::

NO YES
:

:

:

:

SET THE FORWARDING BIT TO ONE
AND PUT C, IN THE FORWARDING
ADDRESS OF THE COMPAREDWITH
LEVEL.
SET THE O.K. BIT TO ZERO IN

THE Ci LEVEL.

ADVANCE C
TO NEXT LEVEL

SEND DATA FROM THE COMPARED-
WITH LEVEL TO D. OF LEVEL C,
SET OK. BIT, OF. LEVEL C, TO

:

ONE.

:

a
:

RETURN TO TOP OF FIGURE 6
:

7

4

:

FROM FIGURE 6

DOES ADDRESS COMPARE
WITH A LEVEL DA

YES NO

SET COMPARE BIT IN
COMPAREDO-WITH LEVEL

TO ZERO

OP CODE IN OP, PUT THE DATA ADDRESS IN DA.
SET THE STORE BIT TO ONE THE BRING BIT TO
ZERO, THE FORWARDING BIT TO ZERO, AND THE

COMPARE BIT TO ONE :

IS THE STORE TO
AN INDEX

IN THE C, LEVEL: :

PUT THE INSTRUCTION ADDRESS IN IA, PUT THE :

YES NO

PUT THE INDEX VALUE IN
D OF THE C; LEVEL.SET

0.K. BIT TO ONE

-__»RETURN TO TOP OF FIGURE 4

SET 0.K. BIT TO
ZERO

:

F.4,68

3 :

:

:

:

4

4

2
;

: : :

:

:

1

+

+

a:

aan)

"FROM FIGURE.6
x

3

;

INTO D (NOTE THIS). SET O.K.BIT TO ONE.
SET FORWARDING BIT, THE BRING BIT,
AND STORE BIT TO ZERO. SET THE COMPARE

>

yO
* Lack

6 3

o s

x

a

My
a t

if, 4

«

'ere

t

a

4

2

*

.t

>

a
+

4

3
+

4

t

>.
%

i a

a

a

::

t

: >
:

:

< 4

IN THE C, LEVEL: : :

PUT THE INSTRUCTION 'ADDRESS IN IA} PUT :

:

THE OP CODE IN OP. PUT.THE DATA ADORESS
:

:

BIT TO ZERO (NOTE)
3

:

t

ary,RETURN TO TOP OF FIGURE 6
: ra

+

:

:

4 t :
:

t

1ates

+ :

:

1

a :

*

ty 4
:

IS THE MEMORY
CORRESPONDING TO
DA FOR C3 FREE

q
NO

PERFORM DATA STORE AND SET
STORE BIT FOR C3 TO ZERO

r :

DOES Ip PREVENT STORE

WAIT

YES
muNO WAIT

IS THE STORE BIT
SET FOR LEVEL C3,

NOYES
:

IS O.K. BIT SET
FOR LEVEL C3

q

YES NO

og,

COUNTER (C3)
DVANCE STOREa

:

:

:

YES WAIT

A

(q 4

IS DATA COMING FROM
MEMORY BUS

NO YES

PLACE DATA INTO LEVEL
CORRESPONDING TO RETURN
ADDRESS.
SET O.K. BIT TO ONE

Y
IS F BIT SET

IN THAT LEVEL
YES
y

WAIT

NO

SET F BIT TO ZERO
y

PLACE DATA IN LEVEL
INDICATED BY FORWARDING
ADDRESS AND SET O.K.
BIT IN THAT LEVEL TO ONE

y
IS F BIT SET

IN THAT LEVEL

NO YES

N
S

:

:

IS THE ARITHMETIC UNIT BUSY

WAIT
DOING AN INSTRUCTION

:

PLACE DATA IN LEVEL : 4

INDICATED BY FORWARDING
ADDRESS AND SET O.K. BIT
IN THAT LEVEL TO ONE

iS F BIT SET
IN THAT LEVEL ~

YES NO

s

:

DOES INTERLOCK Iq
PREVENT PROCEEDING

WAIT

SEND INSTRUCTION FROM
LEVEL DESIGNATED BY C4
TO ARITHMETIC UNIT

IS THE INSTRUCTIONLA STORE TYPE

vgs N

PLACE ACCUMULATOR .
CONTENTS IN Cq LEVEL IS THE OK. BIT SET WAIT
AND SET 0.K. BIT TO ONE 1 ;

YES NO

IS F BIT SET IN THAT
LEVEL

x

NO
:

:
:

7

YES NO
{

4

EXECUTE THE INSTRUCTION
NO .YES

SET F BIT TO ZERO ADVANCE Cq TO
NEXT LEVEL :

:

: :

F.4, 10

I0 VM

INITIALIZATION
2 ARITHMETIC UNIT
3 DECODE OPERATIONS
4 VIRTUAL MEMORY
5 (NOEXING ARITHMETIC UNIT
6 BUS FROM MEMORY
7 BUS TO MEMORY

I/O REFERENCES TO MEMORY
9 V.M. STORE REFERENCES TO MEMORY

FETCH REFERENCES TO MEMORY
-F.A.U. REFERENCES TO MEMORY

12 INSTRUCTION FETCH REFERENCES TO MEMORY
13 COUNT-DOWN TIME
14 PRINT DETAILED LISTING
15 SUMMARIZE AND PRINT

i

4

PROJECT 7000 SIMULATOR 2 COCKE & KOLSKY NOV 57

Is AU IF IM OF OM X1 X2 FI F2 Fo F4 ML M2 M3 Mt MS M6 M7 MB LI L2 L3 L4 LS LB LI L8 FD MD MC

2 1 Fe as i 3
361 j W41
5 1

5

;1 21X34 1
1 3 1x

93X1 2 10 W
I 3x x10 1

21 2 WwW

2 1 3X
2 3:

3 x
1 4° W41 1 3 X

2 8612
5

1 1

1 7
71 1

18
1 2 992 1

10 2 2
1 10

1 W12 -4 1
J

1 2 2
42 21 6 2 333 + 5 42143 2

53 4 2 .
6 i 5 21 1

474 5X 921 2
2 a84 5X 3°212 3 x

4
4 10 W

10 44 5X
123 2 ix511

4 1413 2 14
512 34q3 2 1

13 422 134414 5 5173 2 14425 5
1X 4X 64 3 2 1

2
1X 4 4X
9X

q23 2 14
4

4% 1134* 4
24

1
4X 96534:

10
4X 25

2
4X 1152 54

741 4X 22 534
12 4x 32954

513 7 4193 6 54x544
x 5X 34

425 q x 5X 284
946 x 5X 16 534
9411 9x X x 574418

9x 5x 926 64x2
18 2 ? x 9X X5X .4 7 65

9X X SX 1
4

4
44 821 2€ 8x142 3164 7xxx513 41xx

6:4 1X 8 6 1 2xx
15 g 1X 8 76 5 ll 1x+4

26 g q57xx 7165 2 8c
8 1 3

54q 9
9

X 8
9 10 6 -11 7, 10

10 10 2 36 LX + 7Xt 9 2 1

i 10 2
1X

q 9 zr 2
2 110 11

cw
7 6 9x11x3 10 .4 1 x al

4 2 yy

Fa
13

8 72109
8 7:101 7 Il x x 18 5 te

5
6

x

Y 4 e

:
: :

+ i

4

:
he

HOF

100

S90F

80

70

a

30F
: 20

lo
>,

t

4
4 :

:

0.64
:

0.967

:

1.28 :
:

7

a 60 1,50 :

:

50
+ MESH CALC

40 : :

:
:

:

} MONTE. CARLO CALC
:

: : :

:

0 0.5 1.0 5. > 20. 2.51

:

INDEXING ARITHMETIC 'TIME (usec) :

(AVERAGE TIME TO INDEX ONE INSTRUCTION INCL. DECODE

Fes &
AND STORING MODIFIED ADDR) :

co
<

VEX,
a
Ta

NonviaaowJOVYZAV,HOSanilNoInD3x3): a4
a

é

mo,(pes)'SWILOLLIWHLISYSOVYSAV
arGoOg.°St.:(O-w+GO:0.:
.

0 4a&mwodweifwe,oPonae|FORleeex
*

on
«

bo 2
a

:
-"Oo}

of
4wy

$:rey
wes

71
at

4

a
a7smeaymv7 :oFoe *z

*,
aca*

*
a

:areecae .me

Ay

"5.OIWDO1WVDSLNOWYOeyet 4-_ae
3--auagua

;7&"oe+0S .éiwt44->+

)DvdHS3WOS.
:

{i
.&

a'4
tm

oe
*20Oo3

toomee
hs

4

2

:1

.
yn

.

;
ay

=

tat
a

'fs
2

',

4
i

i;

4.
a

ry
"A

Lo

+»7?

4

3+

.
cevA

<
:

f :

7
ia?&

4
a*yYtwhe.

?

ia,»hee."38%ter, :

:

:

:

:

:

:

:

:

3

4

x

c 4x 4 :
2

a
a

a
LJ

hd
v

CH
O
KE

-O
FF
"

ee
cu
p

ea
e

"G
D

XN
z

+

a --_
4

x

t

oo
d€

fa
te

sa

St
e

So

*INSTRS MIXED IN 4 MEMSBASE: DATA
4 es

4

a

2

w

Am
a

«
*

»

a

4

DISK RATE eBasic EXCHANGE +

ws4

4 at
44

4

a

> 4 al
4

2 MEMORY, UNITS
a20%

4

:

7
:

30% 7

f

a

440% / 7

: :

a

:
2

350% 4

Ay
:

4

»

| MEMOR
4

460%
7

:

te+

10% 4+ :

3
:

4:

a 2

uw eT80% we sh
:

SPEED 2H

hk : PEAK RATE
y

Ay

FOR. MONTE CARLO 'PRO
90%

a
+ 4

5
WORD RATE-MICROSECONDS BETWEEN CONSECUTIVE WORDS

Data Processing Division
Product Development Laboratory
Box 390, Poughkeepsie, NNew York

International Business Machines Corporation Telephone: Globe 4-1000

November 13, 1959

Dr. Harlan E, Anderson, Chairman
EJCC Publication Committee
Digital Equipment Corporation
Maynard, Massachusetts

Dear Dr. Anderson:

Enclosed are four copies of the manuscript by Mr. Erich Bloch of this
Laboratory, entitled ''The Engineering Design of the Stretch Computer.
Also included are reproduction copies of the figures and photographs, and
an abstract. The figures are identified by number, anda separate sheet
contains all the captions.

I trust this material meets your specifications. If we can furnish any
additional information, please let us know.

Sincerely yours,

P. J. Nelson, Editor
Publications Department
Laboratory CommunicationsEncl.

ec: Mr. Erich Bloch

THE ENGINEERING DESIGN OF THE STRETCH COMPUTER

by

Erich Bloch

ABSTRACT

The Stretch Computer project was started in 1956 in order to achieve two
orders of magnitude of performance improvement over the 704. In order
to achieve this goal, all factors that go into the design of the system must
contribute towards this goal -- the instruction set, the internal organization,
the word length, the circuits and components.

This paper reviews the engineering design of the Stretch System with special
emphasis on the central computer. After discussing the input/output,
memory, and computer overlap operation, the computer is described in
detail. Emphasis is placed on showing the multiplexing of instruction
indexing, and instruction and operand fetching, with the execution in the
arithmetic units. Examples are given to show where this overlap results
in wrong guesses and the resulting difficulties in recovering the information.

The two arithmetic units, namely, a serial eight-bit unit and a parallel
96-bit unit, are described, as well as the algorithm used for the major
floating point operations, such as add, multiply and divide.

Transistor counts and performance speeds for the major computer units
are given and compared to 704 and 705 speeds. A description of the
circuits and packages used in the Stretch System completes the paper.

THE ENGINEERING DESIGN OF THE STRETCH COMPUTER

by

ERICH BLOCH

PAPER TO BE PRESENTED AT

THE EASTERN JOINT COMPUTER CONFERENCE

DECEMBER 1, 1959

BOSTON, MASS.

INTERNATIONAL BUSINESS MACHINES CORP.

DATA SYSTEMS DIVISION

POUGHKEEPSIE, N. Y.

Il.

HI.

Iv.

INDEX

IntroductionI.

The Stretch System

The Stretch Cc Computer

A. The Dataflow

B. The Arithmetic Units

1. The Serial Arithmetic Unit

2. The Floating Point Arithmetic Unit

C. Checking

D. Hardware Count

E, Performance

Circuits

PackagingV.

Summary

ENGINEERING DESIGN OF THE STRETCH COMPUTER

I. INTRODUCTION

The STRETCH Computer 1 project was started in 1956 in order to

achieve two order of magnitudes of improvement in performance over the

then existing 704. Although this computer, like the 704, is aimed at scien-
tific problems such as reactor design, hydrodynamics problems, partial
differential equations etc., its instruction set and organization are such

that it can handle with ease data processing problems normally associated
with commercial applications, such as processing of alphanumeric fields,

sorting, and decimal arithmetic.

In order to achieve the stated goal of performance, all factors that go

into the computer design must contribute towards the performance goal; this

includes the instruction set> the internal system organization, the data and

instruction word length, and auxiliary features such as status monitoring

devices, the circuits, packaging, and component technology. No one of them

by itself can give this hundred-fold increase in speed; only by the combining

and interacting of these contributing factors can this performance be obtained.

This paper reviews the engineering design of the Stretch System with

primary concentration on the central computer as the main contributor to

performance. In it, these new techniques, devices, and instructions have

been pushed to the limit set by the present technology and, therefore, its

analysis will convey best the problems encountered and the solutions employed.

_ 2 _

Il. THE STRETCH SYSTEM

Early in the systems design, it appeared evident that a six times

improvement in memory performance and a ten times improvement in basic

circuit speed over the 704 was the best one could achieve. To meet the

proposed performance criteria, the system had to be organized in such a

way that it took advantage of every possible overlap of systems function,

multiplexing of the major portion of the system, processing of operations

simultaneously, and anticipation of occurrences, wherever possible. The

system had to be capable of making assumptions based on the probability

that certain events might occur, and means had to be provided to retrace

the steps when the assumption proved to be wrong.

This simultaneity and multiplexing of operations reflects itself in the

Stretch System at all levels from the overall systems organization to the type

cycle of specific instruction. In the following description, this will be dis-

cussed in more detail.

If one considers the Stretch System (Fig. 1) from an overall point of

view it becomes apparent that the major parts of the system can operate

simultaneously:

a. The 2-usec, 16, 000-word core memories are self-contained,

with their own clocks, addressing circuits, data registers

and checking circuits. The memories themselves are inter-

leaved so that the first two memories have their addresses

distributed modulo 2 and the other four are interleaved

modulo 4. The modulo 2 interleaved memories are used

~3-

primarily for instruction storage; since, for high performance

instructions, halfword formats are used, the average rate of

obtaining instructions is one per 1/2 usec. Similarly, a.0.5

usec data word rate is achieved by the use of the four modulo 4

organized memories. The addressing of the memories and the

transfer of information from and to the memories by a memory

bus permits new addresses and/or information to pass through

the bus every 200 musec.

b. The simultaneously operating Input/Output units are linked

with the memories and the computer through the Exchange

which, after initial instruction by the computer, coordinates

the starting of the I/O equipment, the checking and error

correction of the information, the arrangement of the infor-

mation into memory words, and the fetching and storing of

the information from and to memory. All these functions

are executed without the use of the computer, so it can in the

meantime continue its data processing and computation.

c. The central computer processes and executes the stored

program. Here, now, the simultaneity and multiplexing of

functions has reached its ultimate.

Before discussing the computer organization, a few general features

must be mentioned for completeness:

Word length: 64 bits plus eight bits for parity checks and errora.

correction codes.

~4-

Memory capacity and addressing: A possible 256,000 words

can be randomly addressed. These storage positions are all

in external memory, except for the 32 first addresses. These

positions consist of the internal registers (accumulators, time

clocks, index registers).
The instructions are single address instructions with the ex-

ception of a number of special codes that imply the second

address explicitly.

The instruction set (Figure 2) is generalized and contains a

full set of single and double precision floating point arithmetic,

a full set of variable field length integer arithmetic (binary

and decimal). It also has a generalized set of index modi-

fication, a branching set as well as a set of I/O instructions.

All told, 765 different types of instructions are used in the

system.

The instruction format (Figure 3) makes use of both half and

full words; halfwords accomodate indexing and floating point

instructions (for optimum performance these two sets of

instructions use a rigid format), and full word formats are

used by the variable field length instructions. Notice that

the latter specifies-the operand field by the address of its left.

most bit, the length of the field, and the byte size, as well as

the starting point (offset) of the implied operand (accumulator).

b.

d.

Both halves of the word are independently indexable (two I fields).

=5-

e. A general monitoring device used for [Important status triggers

is called the Interrupt" System. This system monitors the

flip-flops, which reflect internal malfunctions, result signifi-

cance (exponent range, mantissa zero, overflow, underflow),

program errors {illegal instruction, protected memory area),

and input/output conditions (unit not ready, etc.). The status

of these triggers can cause a break in the normal progression

of the stored program for fix-up purposes. The status of these

triggers is automatically interrogated at all times.

Il. THE STRETCH COMPUTER

If one considers the internal organization of the majority of computers

that have been produced during the last eight years (and the 704 is a case in

point), the organization looks as shown in Fig. 4a. There is a sequential

flow of instructions into the computer, and after due processing and execution

the next instruction is called from memory. Compare this with Fig. 4b,

showing the organization of Stretch, where two instruction words and four

operands can be fetched simultaneously. In addition, the execution of the

instruction is done in parallel and simultaneously with the described fetching

functions.

All the units of the computer are loosely coupled together, each one

controlled by its own clock system, which in turn is synchronized by a

master oscillator. This multiplexing of the units of the computer results

in a large number of registers and adders, since time sharing of the major

computer organs is no longer possible. All in all, the computer has 3, 000

6

register positions and about 450 adder positions.

Despite the multiplexing and simultaneous operation of successive in-

structions, the result appears as if sequential step-by-step internal operation

were utilized. This has made the design of the interlocks quite complex.

A. The Data Flow:

The data flow through the computer is shown in Fig. 5 and is comparable

to a pipeline which ina steady state (namely, once filled) has a large output

rate no matter what its length. The same is true here; after start-up the

execution of the instructions is fast and bears no relation at all to the stages

it must progress through.

The Memory Bus is the communication link between the memories on

one side and the exchanges and the computer on the other. It monitors the

requests for storage to or fetches from memory and sets up a priority scheme.

Since I/O units cannot hold up their requests, the exchange will get highest

priority, followed by the computer. In the computer the operand fetch

mechanism (lookahead) has priority over the instruction fetch mechanism.

All told, the memory bus gets requests from and assigns priority to eight

different channels.

Since memory can be accessed from multiple sources, and once

accessed it is on its own to complete its cycle, a busy condition can exist.

Here again, the memory bus tests for the busy conditions and delays the

requesting unit until memory is ready to be interrogated on data fetches.

The return address is remembered and the requesting unit receives the

information when it becomes available. To accomplish this, from the

time information is requested the receiving data register is in a reserved

status.

_T _

Requests for stores and fetches can be processed at a 200 musec rate.

and the time, if no busy or priority conditions exist, to return the word to the

requesting unit is 1.6 usec, a direct function of the memory read-out time.

The Instruction Unit" is a computer of its own. It has its own in-

struction set, its own small memory for index word storage, and its own

arithmetic unit. During its operation as many as five instructions can be

at various stages of development.

The Instruction Unit fetches the instruction words from memory, it

steps the instruction counter, and performs the indexing of instructions and

the initiation of data fetches. After a preliminary decoding of the class of

instruction, it recognizes its own instructions and executes indexing in~

structions. On branches, conditional or unconditional, the instruction unit

executes these. In the case of unconditional branches, it makes the as-

sumption that the branch will not be successful.

This assumption and the availability of two full-word buffer registers

keep the flow of instruction to the computer continuous. Therefore, the

rate of instructions entering the instruction unit is for all practical purposes

independent of the memory cycle.

Since, for high speed instructions, halfword formats are used, four

of these at any one time can be in buffer storage. As soon as the instruction

unit starts processing an instruction, the game is removed from the buffer,

thus making room for the next memory word access (Fig. 6). Incidentally,

half-word instructions and full-word instructions can be intermixed within

the same word, and therefore the latter can cross a word boundary. This

permits maximum package of instructions in memory and also serves as a

_8 _

facility for automatic program assemblers and compilers,
The adder path, the index registers, and the transfer bus to lookahead

complete the instruction unit system (Fig. 6). It should be noted that the

index registers are part of the instruction unit data path, therefore permitting
fast access (no long transmission lines) to an index word. There are 16

index words available to the programmer. The index registers, consisting
of multiaperture cores, are operated in a nondestructive fashion, since ina rep-
resentative program, the index word is used nine out of ten times without

modifying it. This permits fast operation under these conditions, and

additional time is only applied where modification is involved.

Typical operating speeds in the instruction units are as follows:

Cycle Time: 500 musec

Instr. Preparation Rate: 1 usec/half-word instr.

Index Add Time: 500 musec

ND Read Time: 200 musec
Index Reg.

Time: 400 musec

After processing through the instruction unit, the updated (indexed) in-

struction enters a level of Ipokahead (Fig. 5). Besides the instruction, all

necessary information, its associated instruction counter value, and

certain tag information are also stored in the same level. The operand,

already requested by the instruction unit, will enter this level directly

and will be checked and error corrected while awaiting transfer to the

arithmetic units for execution.

9

An interlocked counter mechanism in the lookahead keeps its four

levels in step, preventing out of sequence execution of instructions, even

if all information for a succeeding one is available, before the previous ine

struction has been started.

The pre-accessing of operands by the lookahead and of instructions

by the instruction unit leads sometimes to embarassing positions, for which

a fix-up routine must be provided. Consider the program

(n) STORE Accumulator m

(n+ 1)ADDm
and assume instruction (n) is in lookahead, waiting for execution. If (n + 1)

now enters the lookahead, a reference to m cannot be made, since the data

stored in that position is subject to change by the STORE instruction. The

lookahead must recognize this and "forward" the result of instruction (n),

when received, to the level where (n + 1) is stored.

Another example is the case where the instruction unit assumed that a

conditional branch would not be executed. This instruction is stored in

lookahead and, when it is recognized that the branch was successful, ail

modifications of addressable registers made by the instruction unit in the

meantime must be restored. Lookahead in this case acts as a recovery

memory for this information. A similar condition exists when interrupts

occur due to arithmetic results. The lookahead here again has the data

stored pertaining to registers which were modified erroneously in the mean-

time. The restoring and recovery routines described break into the in-

struction unit processing, interrupting temporarily the flow of instruction

and their indexing.

_ l]0 _

The arithmetic units described later are slaves to the lookahead,

receiving not only operands and instruction codes but also the start execution

signal. Conversely, the arithmetic units signal to the lookahead the termi-

nation of an operation and, in the case of "fo Memory" operations, place into

the lookahead the result word for transfer to the proper memory position.

Typical operation times in the lookahead are as follows:

Cycle Time: 250 musec

Transfer Data LA - Arith. Unit: 250 musec

The Arithmetic UnitsB.

The design of the arithmetic units was established along lines similar

to the design of lookahead and the instruction. Every attempt was made to

speed up the execution of arithmetic operation by multiplexing techniques

and overlapping of the algorithm, where mathematically permissible.

Unit andThe arithmetic units,consisting of the Serial

the Parallel Unit,use the same arithmetic registers, namely a double-

length accumulator (A, B) consisting of 128 bits and a double-length operand

The reason for the use of the sameregister (C, D) consisting of 128 bits.

arithmetic registers is the fact that at any time a shift from floating point

to variable field length operation or vice versa can be made by the program.

Therefore, the result obtained by a floating point operation can serve as

the starting operand for a variable field length operation. The chief reason

for the double-length registers is the definition of maximum field length to

be 64 bits. The field can start with any bit position, and therefore can cross

the word boundary.

_ ll _
The execution of the floating point mantissa operations and the variable

field length binary multiply and divide operations are performed by the parallel

unit, whereas the execution of the floating point exponent operation and the

variable field length binary and decimal add-type operations are executed by

the serial unit. The square root operation and the binary-to-decimal con-

version algorithm are executed in unison by both units. Salient features of the

two units will now be described.

1. The Serial Arithmetic Unit. The serial arithmetic unit consists of a

switch matrix which can extract 16 consecutive bits from A,B and C, D. These

16 bits then can be aligned in such a way that the low order bit of a field as

specified by the instruction is at the right end of the field. This wrap-around

circuit then feeds into a carry propagate adder or, in case of logical connect

instructions, into the logic unit. At the adder output, a true complement unit

and a binary-to-decimal correction unit are used for subtract and decimal

operations. The inverse process of extracting is used to insert the processed

byte back into the register without disturbing any neighboring positions.

Notice that in one clock cycle of 500 musec duration, the information is extracted, -

the arithmetic is performed and the result inserted back into the registers. In

addition, the arithmetic information is checked by parity checks on the switch

matrices and by duplication and comparison of the arithmetic procedure ina

:

duplicate unit.

2. Parallel Arithmetic Unit. The parallel arithmetic unit (Fig. 8) is designed

to execute floating point operations with a maximum of efficiency. Since both

single and double precision arithmetic are performed, the shifter and adder

exist in a double length format of 96 bits. This insures almost the same performance

for single and double precision arithmetic. The adder is of a carry propagation

type with lookahead over 4 bits at a time to reduce the delay that

13-

The four multiple multiplicand groups and the partial product of the previous

cycle are now fed into carry save adders of the form,

Sum § Av BC
Carry C' AB + AC + BC.

There are four of these adders, two in parallel followed by two more in series

(Fig. 8). The output of Carry Save Adder 4 then results in a double rank partial

product, the product sum and the product carry. For each cycle this is fed into

Carry Save Adder 2, and, during the last cycle, into the carry propagate adder, .
for accumulation of the carries.

Since no propagation of carries is required in the four cycles, where multiple

multiplicands are added, this operation is fast and is the main contributor to

the fast multiply time of Stretch.

The Divide scheme® has a similarity to the multiply scheme. Multiples of the

divisor are used, namely, 2 x Divisor, 4 x Divisor and 1 x Divisor. This

plus the shifting over strings of ones and zeros results in the generation of

the required 48 quotient bits within thirteen machine cycles. Most machines

uSing a nonrestoring divide method require 48 cycles for 48 quotient bits.

3 3

The following example explains this technique. This scheme depends on the

use of normalized divisors:

DIVIDEND (DD) = 101000000000000
DIVISOR (DR) = 1100011

2's COMPDR (DR) = 0011101

= 1001010013/4 DR (3/4DR)

{a) Using skip over 1/0 only:

While the mantissa operations are performed in multiply and divide are performed

by the parallel unit , the serial arithmetic unit executes the exponent arithmetic.
Here again is a case where overlap and similtaneity of operation is used to

special advantage.

3. Checking. The operation of the computer is checked in its entirety and

correction codes are employed where transfers of data from memory input/

output data transfers is involved.

In particular, all information sent to memory has a correction code associated

with it which is checked for accuracy on its way from memory. If a single error
is indicated, then correction is made and the error is recorded via a maintenance

output device. Within the machine all arithmetic operations are checked, either

by parity, duplication, or a casting out three" process. These checks are

overlapped with the execution of the next instruction.

4, Hardware Count. Figure 9 shows the percentage of transistors used in the

various sections of the machine. It becomes obvious that the floating point unit

and the instruction unit use the highest percentage of transistors. In case of the

floating point unit this is due to the extensive circuits for multiply and to the

additional hardware to achieve speed up the divide scheme.

In the instruction unit, the controls consume the majority of the transistors, be-

cause of the high multiplexed operation encountered.

5. Performance. The performance comparisons in Fig. 10 show the in-

crease in speed achieved, especially in the floating point operations, over the

704. It should be noted that for a large number of problems this particular

increase in all arithmetic speeds is almost proportional to the performance

_ 16 _

increase of the problem as a whole, since the instruction execution times

are overlapped to a great extent with the preparation and fetching of instructions.

Simulation of Stretch programs on the 704 proved a performance of 100 x 704

in mesh type calculations. Higher performance figures are achieved where

double or triple precision calculations are required.

- l7 -

IV. CIRCUITS

Having reviewed the systems organization of Stretch, it is now

of interest to discuss briefly the components, circuits, and packaging

techniques used to implement the design.

The basic component used in Stretch is the high-speed drift

transistor which exists in both an NPN and a PNP version. This tran-

sistor has a frequency cut-off of approximately 100 mc and for high-

speed operation must be kept out of saturation at all times. This then

explains why both the PNP and NPN version are used, mainly to avoid

the problem of level translation, which would be required due to the

potential difference of the base and the collector. This difference is

6 volts, an optimum point for this device.

Figure 11 shows the basic circuit configuration. It consists

of a current source represented by the -30 volt supply and resistor R.

The functional operation of the circuits consistsof two possible

paths represented by transistor Aor C. Which path is chosen by the

current depends on the condition existing on base A. If point A is

positive with respect to ground by 0.4 volts, that particular transistor

is cut off, makng the emitter of transistor C positive with respect to

the base and, therefore, making C conducting. The current supplied

by the current source (6 ma) will then flow through transistor C to

the load g. Output , then, is positive by 0.4 volts with respect to the

-6 volt reference. This indicates at the equivalent function impressed

on A. At the same time d is negative with respect to the -6 volt power

supply by 0.4volt, representing, therefore, the inverse of the function

impressed on A. Conversely if A is negative with respect to the ground

- 18 -

reference, transistor A is the conducting one, keeping emitter C

negative with respect to its base. The current flows through transistor

A, making ' positive with respect to -6 and negative with respect to

-6. Again, the output of d reflects the function impressed on A, whereas

represents the inverse of the function.

If an additional transistor now is paralleled with A it becomes

obvious that only if both bases A and B are positive will output be posi-

tive and g negative. If any or none of the bases A and B are positive

then will be negative and é will be positive. In other words, an AND

function is obtained on output .

This principle, which is reflected in all the circuits, is

essentially the principle of current switching or current steering.

Logical functions for the PNP circuits are, therefore, a

+ AND or - OR. Two outputs from each circuit block are available: the

AND function and the inverse of the AND function.

A dual circuit exists for NPN transistors with input levels

at -6 volts and output levels at ground. This circuit will give the + OR

or -AND function.

A thorough investigation of the systems design showed that

the circuits described so far are versatile enough to be wed throughout

the system. However, there are enough special cases (resulting from

the many/datases and registers throughout the machine) that could use a

distributor function or an overriding function. This caused the design

of a circuit which permitted great savings in space and transistors by

adding a third voltage level. Figure 12 shows the PNP version of the

third-level circuit.

=20 _

having a gain less than one, after a number of stages require the use of .

current switching circuits as level setters and gain devices. Both AND and

OR circuit are available for both a ground level and a -6 level input. Change

from a -6 level circuit to a ground level circuit is obtained by applying the

appropriate power supply levels. Due to the variations in inputs and driven

loads, the circuits must be designed so that the load can vary over a wide

range. This resulted in instability which had to be offset by the feedback

capacitor C shown in the circuit.

All functions needed in the computer can be implemented by the use of the

aforementioned circuits, including the flip-flop operation, which is obtained

by tying a PNP current switch block and an NPN current switch block together

with proper feedback.

V. PACKAGING

The circuits described in the last paragraph are packaged in two ways.

(a) A circuit package using the smaller of the two printed circuit boards

shown in Figure 14, called a single card, contains AND or OR circuits. It

should be mentioned that the wiring is one-sided and that besides the com-

ponents and transistors, a rail is added which permits the shorting or addition

of certain loads depending on the use of the circuits. This rail then has the

effect of reducing the different types of circuit boards in the machine. Twenty-

four different boards are used and of these, two types reflect approximately

70% of the total single card population of the machine.

24-

REFERENCES

1. S.W. Dunwell - Design objectives for the IBM Stretch
Computer EJCC Proceedings pg. 20, December 1956.

2. F.P. Brooks Jr. + A Program Controlled Program Inter-
uption Syste, EJCC Proceedings pg. 128, December 1957.

3. W. Buchholz - Selection of an Instruction language,
WJCC Proceedings, page 128, May 1958.

4, F.P. Brooks, Jr. - et al, Processing Data in Bits and

Pieces, IRE Transactions on Electronic Computers, June :

1959.

5. G.A. Blaauw - Indexing and Control - Word Techniques,
IBM Journal July 1959.

6. J.E. Robertson - "A New Class of Digital Division Meth-

ods," IRE Trans. on Electronic Computers, vol. EC-7, pp.

218-222; September, 1958.

25-

Fig . 16:

Fig . LT:

LIST OF ILLUSTRATIONS AND CAPTIONS

The Stretch System

The Instruction Set

Data Word - and Instruction Word Formats

Comparison of Stretch and 704 Organization

Stretch Computer - Units and Dataflow

Instruction Unit

Serial Arithmetic Unit,

Floating Point Arithmetic Unit

Component Count

Comparison of Stretch and 705/704 Operation Times

Current Switching Circuits (+AND)

Third Level Circuit

Emitter Follower Circuit

The Circuit Package

The Backpanel

The Frame (Closed)

Fig. 1 :

Fig. 2:

Fig. 3:

Fig. 4:

Fig. 5:

Fig. 6 :

Fig. 7:

Fig. 8:

Fig. 9 :

Fig. 10:

Fig. 11:

Fig. 12:

Fig. 13:

Fig. 14:

Fig. 15:

The Frame (Extended)

COMPUTER VOCABULARY

INSTRUCTION
CATEGORY CLASS MODIFIER EXAMPLES INST

NUMBER
__

+

VARIABLE FIELD BINARY SIGNED ADD (TO MEMORY):

LENGTH ARITHMETIC ; UNSIGNED LOAD/STOREDECIMAL
SAME SIGN MPY
NEGATIVE SIGN DIVIDE

280CUMULATIVE MPY

RADIX CONVERSION BIN/DEC 32

NORMALIZED SAME SIGN ADD (SINGLE & DOUBLE)
UNNORMALIZED . OPPOSITE SIGN LOAD/STORE

NEGATIVE SIGN MPY/(SINGLE & DOUBLE)
NOISY MODE | DIV (WITH REMAINDER)

; INTERCHANGE DIVIDE
i CUMULATIVE MPY

FLOATING POINT
ARITHMETIC

SQUARE ROOT 240

PROGRESSIVE 43

;
UNCONDITIONAL!
INDEXING

SETO

:

TRANSMIT / SWAP

| / OINSTRUCTION { 24
j

TOTAL 735

Fig.2

LOGIC CONNECTS 16 LOGIC STATEMENT: 48

INDEXING ARITHMETIC. DIRECT
IMMEDIATE

BRANCHES

INDICATOR IF]

BIT 0

LEAVE BIT :

STORE INST CTR INVERT BIT 68:

FR. LOOK-AHEAD

orenano REGISTERSACCUMULATORS b]
0 63 63 0 6363

VY

SWITCH SWITCH
MATRIX MATRIX
(16 OF 128) (16 OF 128)

y y
WRAP WRAP
AROUND AROUND
(8 OF 16) (8 OF 16)

y
8 BIT8 BIT TRUE €/ COMP TRUE/COMP

PASS AROUND (8 BITS) (8 BITS) PASS AROUND

BINARY LOGIC
ADDER UNIT

4

DECIMALTRUE/COMP CORRECT

a
SWITCH
MATRIX
16-16

A/B
WRITE IN

C/D
WRITE IN
MATRIX MATRIX

Fig7 SERIAL ARITHMETIC UNIT

A,B c,D

MPCD MPCD MPCD MPCD
3 BITS 3 BITS 3 BITS 3 BITS

TRUE
COMPLEMENT

PARALLEL
UNIT REGISTER CARRY SAVE

ADDER CSA 2

CARRY PROPAGATE S2
ADDER

100 BITS Ci C2
SHIFTER

CSA 3

bh
CSA 4

S4 C4

SUM REG. CARRY REG.

Fig 8: PARALLEL ARITHMETIC UNIT

OF TRANSISTORS % OF TOTAL |

OF FRAMESUNIT

10, 500 6.0 2MEMORY CONTROLS :

INSTRUCTION UNIT

DATAPATH 17, 700 22.0 2

CONTROLS 19, 500 31/2

LOOK-AHEAD

15.6DATAPATH 17, 900 1

CONTROLS 8, 600 11/2

ARITH. REGISTERS : 10, 000 1
1 5.9

4

SERIAL ARITH. UNIT

DATA PATH 10, 000 10.5 11/2
CONTROLS 8, 700 1

4

t

FLOATING PT. UNIT

21.0DATAPATH 32, 700
CONTROLS 3, 000 :

14.5CHECKING 24, 500

2 1/2
1/2

6, 000 3.5
:

INTERRUPT SYSTEM
f
:

1/2

5 100.0TOTAL 169, 100 18

DOUBLE CARDS 4,025
SINGLE CARDS 18, 747
POWER 21 KW

Fig 9 COMPUTER COMPONENT COUNT

COMPARISON OF STRETCH CHARACTERISTICS
AND OPERATION TIMES WITH 704/705

IBM IBM
OPERATION 704 705 STRETCH

1. FLOATING POINT
+128 + 2048

EXPONENT RANGE +2 +2
MAN TISSA BITS 27 48
FLOATING ADD 84 USEC 1.0 USEC
FLOATING MPY 204 USEC 1.8 USEC
FLOATING DIV 216 USEC 7.0 USEC
LOAD / STORE 24 USEC 26 USEC

2. BINARY VARIABLE

FIELD LENGTH ARITH.
;

* BIT RANGE 1TO 64

FIELD DIVIDE 15.0 USEC

3. DECIMAL

ARITHMETIC

DIGIT RANGE 1 -PMEM CAPACITY : '1TO 21

FOR ADD 119 USEC 1 3.5 USEC

4, MISCELLANEOUS

ERROR CORRECTION NO NO i
+ YES

Fig. 10

16 ADD/LOAD/STORE 2.0 USEC
BIT MPY 10.0 USEC

5 MPY 799 USEC 40.0 USEC
4828 USECDIGITS \ DIVIDE 65.0 USEC

LOAD / STORE 204 USEC .2 USEC3

YESCHECKING NO YES
WORDSIZE 36 BITS 64 BITS

A 6
SYMBOL tAy

oe

@ A-B

An
A 8

TRUTH
TABLE

6(A-B)

OUTPUT

-6.4V

RESPONSE

+ + +
+ +

+ 0 A+
A+B+

An

ACIRCUIT 2

DIAGRAM Oy
8

12
B2 2.15K82

An 187

5ah
P N P 0(A-B)

6MA 24.5K=R 82
+30

INPUT ~5.2V
.5V

MIN - MAX - GV 56V
SIGNAL

VOLTAGES REF OV REF -6V

6.5V
8V

CIRCUIT DELAY~20MU SEC

INPUT OUTPUT

Fig: CURRENT SWITCHING CIRCUITS

An Op
x QA 8

+ + + + ++ + + +
+ + + ++ + +

SYMBOL

CIRCUIT

(An)

MIN - MAX
SIGNAL VOLTAGES

CIRCUIT RESPONSE

An
OR
Op

+ + + ++ + +
+ + ++ +

+ + + ++ + +x
+ + ++ +

+ + +++
+ ++

TRUTH TABLES

-6

82 82 82
-6 l2

1.5 UH
P N P

4.5K=R
CIRCUIT Ay

P 187 2.ISK

82

+30

OUTPUTS
INPUTS -5.2V

A,Bax LZLLLZ: 44 -56
REF GND -6.0V

ONLY
(ALL OUTPUTS)

-1.2
X INPUT
ONLY

-2.0

OUTPUT

INPUT DELAY= 20 MIL SEC

+ .5

-6.44A&B 6.5

NS

Figi2: THIRD LEVEL CIRCUIT

A

CIRCUIT A 0 A+BA

A B +A B

TRUTH TABLES + + ++ + +
OR+

+ ++

6V +6V

CIRCUIT
DIAGRAM

A+B

8.2
ISON

pt

442n 63.40

+6V

N NP
P 8 PN B

An NNP

On

A
6V

6V +6V

+ .95

MIN - MAX
SIGNAL VOLTAGES

+ 6
+.35

REF GNO REF GND

-.35

BEG. OF END OF

CHAIN CHAIN (4)
-6

CIRCUIT RESPONSE 10 MIL SECDELAY

Figi3: EMITTER FOLLOWER LOGIC

Cop

EASTERN JOINT COMPUTER CONFERENCE
Boston, December 2, 1959, 2 P.M.

THE MULTI-SEQUENCE COMPUTER AS A COMMUNICATIONS TOOL

BY

J. N. Ackley
Associate Director oi Engineering Department

INTERNATIONAL ELECTRIC CORPORATION
Paramus, New Jersey

Formerly a Consultant to
ITT Laboratories
Nutley, New Jersey

THE MULTI-SEQUENCE COMPUTER AS A COMMUNICATIONS TOOL

ABSTRACT

This paper describes possible applications, as a communications tool, of a multi-

sequence computer in which more than one sequence or program operates independently,

time-sharing the central processing unit. The computer is made to time-share on an

on-demand basis between all of the input and output devices. Control. and buffering is
provided by the central processing unit. A multi-sequence computer, which permits

integration of a multiplicity of input and output devices economically, becomes a

very rapid and economical message switching center by connecting the communication lines
as the input and output devices.

-1

THE MULTI-SEQUENCE COMPUTER AS A COMMUNICATIONS TOOL

This is a report on the merging of two fields: communication switching and computers.
Recent advances in the computer art make it possible to satisfy the ever increasing
communication switching requirements brought on, in part, by computers themselves

employed in centralized data processing systems.

The present record communication systems have significant delays which are not primarily
caused by the transmission times but by the time required for the operations in the
communication message switching centers.

In the past, most communication has been from human to human. Communication systems
have become more complex and automated to meet the ever increasing needs of commercial

and military activities. We are faced with a revolution. Increasingly, communication

will be between humans and machines and between machines and machines. This transition
will place more stringent requirements on accuracy, reliability, and speed.

Present day electromechanical switching centers are limited in their speed of operation
due to their electromechanical nature and due to limitations of the transmission means,

namely, teletype. Little error detection and correction capability is presently found

in these systems.

Centralized data processing requires the error free transmission of large volumes of data
to a central point. Usually, the commmication with machines or between machines involves

little redundancy such as that found in plain English. The computer, although it can

make validity checks on the data it receives, cannot fill in missing letters or words

as a human can.

Since the present electromechanical systems are special purpose devices, 4].1. messages

routed through the system must adhere to a very rigid format. This leads to difficulty
when trying to integrate data gathering devices and different types of computers with

aifferent codes and formats. Military command control systems, especially, require.

data inputs from varied sources.

Stored program techniques could solve many of these communications probitms. A programmed

switching center could be programmed to provide the error checking and error correction

It could be programmed to translate from one code to another,
procedures as required.

Various speeds and code structures could
indeed, perhaps from one language to another.

easily be accommodated.

2

In addition to improving the features already presently found in some switching centers,
stored program techniques could be used to implement features which are not practicable
with electromechanical or special purpose switching systems. A programmed switching center
could generate,and receive and interpret service messages to and from other machines or
hyman operators. It could test and monitor all of the communication links and reroute
messages if necessary to avoid inoperative links. One of the biggest advantages of
a programmed switching center is its ability to be reprogrammed to account for changes in
operational pfocedures,in routes and changes of equipment.

One of the most important considerations in employing computer techniques to the communica-

tions switching problem is therlarge number of input and output channels required. Also,
all channels must operate simultaneously and independently. Military practice requires
that each message be forwarded as far as possible whenever the communication link is
available. Thus, the communication switching center must accept a message on each

communication line whenever the subscriber wishes to transmit.

For many years the bottleneck on efficient use of computers and on the application of
computers to real-time systems has been the problem of integrating input-output devices.
Most input-output schemes utilized to present, have involved a large amount of equipment

external to the central computer to provide for buffering and control.

Now that the versatility of the high speed random access core memory has been fully
appreciated, an almost limitless number of schemes is possible. Indeed, a single
computer may use several schemes to integrate various input-output devices.

In order to discuss the various schemes and compare their advantages and disadvantages,
it is necessary to establish a classification system. There are four parameters, as

shown in Figure 1, which characterize an input-output scheme. These are:

Assembly
Buffer
Transfer
Control

Assembly refers to the process of packaging or unpackaging information into definite

size units. In order to characterize the assembly (or the disassembly) process, one must

specify how and where the transformation takes place among bits, characters, words, records,

and files.
- 3 -

ASSEMBLY

TRANSFER
INPUT EXTERNAL

BUFFER
INTEGRATED
MEMORY

CONTROL
FIG. |

INPUT- OUTPUT CLASSIFICATION

Buffer refers to the unit external to the central computer which holds information until
it can be transferred. The buffer may also be involved in the assembly process. It is
characterized by its capacity, access time, and assembly features.

Transfer refers to the process of exchanging information with the integrated (addressable)
memory of the central computer. The transfer is characterized by the number of bits
transferred in parallel.

Control refers to the process which determines the sequence of operations of an

input-output channel. In order to carry out the control function, control words must

be supplied to a control device. Typical control words that are usually involved in
input-output are:

Selection code

Number of units of information to be transferred
Address in integrated memory at which the transfer is to begin
Address in external device at which the transfer is to begin
Iocation of next control word

Some or all. of these control words are required for any input-output transfer. The device

which utilizes these control words can be the central computer or a separate input-output

control device. This device provides for the proper sequence of operations.

In designing a system, engineering compromises must be made. Many combinations and

permutations of the above factors can be made. Each permutation will have certain

advantages and disadvantages which must be weighed against the system application. for

example, to take the extremes, a system can be designed like the IBM 709 system which

has an external control device (the Data Synchronizer). This device has a register for

buffering and additional registers for storing the control words. This system requires

only a core memory cycle for a transfer and thus, takes little time away from the central

computer during input~output transfers. However, this scheme requires extensive hardware

for the external control device.

On the other hand, a system may be designed to store all of the control words in integrated

memory and the central computer could supply the control. Such a system would require a

minimum of equipment external to the central computer for control of the input-output

transfers. However, in a system application which requires a large volume of input-output

a large percentage of the capacity of the machine would be tied up in the input-output trans-

fers.* 5 -

A typical communications switching center may have 50 to 100 two-way communication lines.
In order to have a computer perform the functions of a store and forward switching center,
it must have a corresponding number of input and a corresponding number of output channels.
In addition, it must have a sufficient processing capacity to determine distribution
and optimum routing, priority, and perform validity and parity checks if required. Not

only must it provide for these large number of input and output channels, but all channels
must be capable of operating simultaneously. Neither of the extreme systems described
above are satisfactory for this type of operation. However, both of these schemes

can be made practical for this type of application by multiplexing as shown in Table I.
For example, the external control device can be multiplexed, as it is in the AN/FSQ-7A
low speed channel, so that it may service a number of input and output channels simi]-
taneously. However, this also requires that the central computer have a number of
independent memory banks so that the transfer of the control words from storage to the
external control device and back to integrated memory on each input or output transfer
will not saturate the system.

By multiplexing the central computer, it can be used to handle a large mmber of communica-

tion lines. A central computer can be made to time share over a large number of channels

py utilizing the multisequence configuration.? This configuration provides a number of
program counters and a system for switching from one program counter to another, in
response to external stimuli.

In order to select the proper scheme, a detailed study met be made of the particular
commmication switching center requirements. The external control scheme gives a higher

capacity under certain conditions, but it requires more equipment. The study of the
commmication requirements must determine the ratio to the number of core memory cycles
required for input and output transfers. If this ratio is sufficiently high, then the

central computer control scheme is to be preferred, since relieving the central computer

of the burden of input-output transfers would free only a relatively small percentage

of the system capacity. On the other hend, if this ratio is low, then the external control

scheme is to be preferred since a low ratio implies that the main function is that of

input-out transfers.

W. A. Clark "The Lincoln TX-2 Computer Development".

J. W. Forgie "The Lincoln TX-2 Input-Output Systems".

Proceedings of the W.J.C.C., 1957.

6.

TABLE TI
IN-OUT SYSTEMS FOR

COMMUNICATION SWITCHING

ASSEMBLY BUFFER TRANSFER CONTROL
. BITS TO CHARACTER CHARACTER EXTERNAL -
CHARACTER BREAK-IN MULTIPLEXED
EXTERNAL INTERRUPT OR

MULTISEQUENCE
FOR SPECIAL
CASES.

2.BITS TO CHARACTER CHARACTER CENTRAL
CHARACTER PROGRAMMED COMPUTER-
EXTERNAL MULTISEQUENCE

In a system which requires utmost accuracy achieved by the use of redundancy checks,
and which must automatically route and reroute messages to account for commmications
outages and supply other functions such as code translation; this ratio may be in the order
of 2or 3 toil. Thus, only a 33 to 50 percent increase of capacity is the maximm that
could be expected by utilizing an external control device and multiple access integrated
memory - - neglecting memory reference conflicts.

Another significant factor which affects total capacity of.the system is the assembly
process and the capacity of the external buffer. Since mstccommumication is based upon
characters of five, six, seven or eight bits, it is desirable to handle the assembly from
bit to character externally.

Systems have been proposed utilizing only a single bit external buffer, with the assembly
from bit to character to word to message, in integrated memory. However, the capacity is
severely reduced since now a transfer must take place on each and every bit of a message.
Increasing the size of the external buffer on the other hand increases the capacity, but
at the same time increases the amount of equipment. The maximm size buffer to be con-
sidered, of course, is equal to that of the word length. Therefore a compromise must be
reached between the amount of equipment in the external buffers and the capacity of the
system. This compromise is partly influenced by the number of lines to be terminated, by
the speed of the circuitry available to the programmed element, and it is also influenced
somewhat by the nature of the transmission system.

"Those of you who have been through a computer development program will immediately ask, of
course, "Is it necessary to design a special computer for the commumication switching
system"? The question is the most generally phrased, "Can a general purpose computer be

utilized?

This question is not easily answered. The answer must be based on a thorough study of
the commmication system application. Surely, if the only job of the programmed element

is that of communication switching, then there is no need for floating point or even

multiply or divide instructions in the instruction vocabulary. Thus, simplifications can

be made in the design of a programmed element which is to be used solely for communication.

The specialized programmed element can be optimized for communications.

On the other hand, if the computer is to be used for both communications and computations,

it may be desirable to design an external control device which can be adapted to a general

However, the range of applicability of the general purpose computer
~ 8 -

purpose computer.

seems rather limited. If the computational requirements are very great, it may be

profitable to employ the special purpose programmed element for the communications
switching center and also to act as an input-output processor for a much larger data
processor. This philosophy is illustrated in the STRETCH and IARC computers where a
simple input-output processor is used to relieve the complicated, high speed, data processor
of the simple routine tasks associated with input and output editing. The in-out processor
can also be used to operate or schedule the operation of the larger data processing system
to achieve a much higher utilization of the data processor than would be possible with a
human operator.

In selecting a computer or designing a computer for communication system switching
center application, consideration must be given to the peak and average traffic rates.
Generally, the utilization factor of communication lines is approximately 0.1 to 0.2.
This surprisingly low figure is justified because of the queueing problems which would

ensue with a very high utilization of any commmication link. Assuming a Poisson
distribution of message arrivals, a utilization factor approaching unity would result in
& queue approaching infinity. Therefore, to minimize the queueing problems and to assure

rapid transmission of the message, the utilization factor is desirably kept approximately
at 0.2.

The message processing capacity of the switching center must also be designed to exceed

the average traffic load in order to eliminate excessive queues of messages awaiting

processing.

The use of a multisequence computer for a communication message switching center permits

the termination of a number of lines which would saturate the computer with input transfers
all lines were operating at full capacity all of the time. The internal and output

processes can be assigned a lower priority in the multi-sequence scheme and these operations

suspended until the input peak passes. The probability, of course, of such an occurance

is extremely small. Since it also is extremely rare that many of the commmication lines

would be simultaneously busy with input traffic, additional lines may be terminated with

the probability that the switching center would ese an input character. Ina completely

this would be caught by the error detection and correction system and
automated system,
cause only a slight delay in transmission.

-9

The amount of excess message processing capacity required to reduce the processing queue
to satisfactory proportions depends upon the delays permitted and upon the priority
structure of the messages.

A programmed Traffic Control Center is being currently fabricated at ITT Laboratories.
This Traffic Control Center which utilizes the multisequence technique was undertaken
as a study project in 1957 at the Laboratories and was then proposed by this author
as the solution to the communication message switching problem of the SAC Control System,
Project 465L, in July 1958.

The system design resulted in a computer with several distinguishing design characteristics
which make it peculiarly efficient in handling communications. The central computer is
multiplexed by use of the multisequence technique. Separate memory units are provided
to store 256 program counters and 256 index registers. One index register is associated
with each sequence, thus, in essence, 256 separate sequences may time-share the central
computer. Each commmication line is terminated by a simple character buffer. Each

puffer has associated with it a service request flip-flop. As data becomes available,
the service request flip-flop is set and competes for time on the central processing
unit. Each instruction has provision for a break-bit or a dismiss-bit as shown in

Figure and when set indicates that the present sequence may be interrupted in favor of
a higher priority sequence or that the present sequence may be dismissed in which case

the service request flip-flop is cleared and the sequence remaining with the highest
priority is activated.

To take advantage of statistical averaging of the inputs and outputs, an on-demand

scammer shown in Figure 3 does not operate on a fixed cycle, but service is requested

immediately if no other channels are busy at the same time. In order to incorporate

devices of different speeds and to provide an orderly procedure for servicing requests,

if more than one request for service should arrive at a time, the service request

scanner operates on a priority basis. A strobe signal proceeds from one service request

flip-flop to the next until the first one which is set is encountered, at which point

the strobe signal is routed to the coder.

- 10 -

2345 6 7 8 9 10 il 12 13 4 15 16 I7 18 19 20 21 22 23 24 25 26 27 28 29 30 3)rtd
OP CODE

1

B/D

DISMISS
BREAK

it

FIG. 2

INSTRUCTION WORD

-ll-

TO CODER
A

STROBE

0 0 0
SRFF)_| SRFF; SRFFi4,
R S R S R

DISMISS,_, DISMISS; DISMISS; ,,
SERVICE SERVICE SERVICE
REQUEST,_, REQUEST, REQUEST,,,

FIG. 3
SERVICE REQUEST SCANNER

Figure 4 shows a typical input channel. When the strobe signal arrives at the coder,
it is converted into binary code. If the instruction that the central computer is
executing contains a break bit, the output of the coder will be compared with the
number in the sequence register. If they are not equal,a sequence of higher priority
number has requested service. Notice that the number in the sequence register operates
a switch which selects the particular external device to be used at any given time and

routes control signals to the external device, such as the dismiss signal. The dismiss
signal is issued wrenever the present sequence has completed all operations.neggssary to
answer the service request. This signal clears the service request flip-flop amd

prepares it for receiving the next request for service from the external device.

Figure 5 shows the registers involved in changing sequences. If the number from the
coder is found not equal to the number in the sequence register and the current instruction
has a break or dismiss bit, a change of sequence is called for. Since the control must

return eventually to the old sequence whenever that particular channel requests service

again, the program counter must be stored for future reference. Therefore, the first
operation is a transfer of the sequence number from the sequence register to the program

counter memory address register. The program counter is then stored at the location so

specified. After the old program counter has been stored, the new sequence number is
read from the coder into the sequence register and then to the program counter memory

address register. The stored program counter stored at this location is now placed in the

program counter and the computer continues to take instructions specified by the program

counter.

In order that each sequence may have its own index register, the contents of the sequence

register are transferred into the index memory address register and the contents of the

location so specified used for the indexing operation. Since the program counter

memory and the index memory are independent units and can operate concurrently with the

main integrated memory of the computer, changes of sequence can take place without any

loss of time, that is, an instruction with a break or dismiss in one sequence may be

immediately followed by an instruction in some other sequence.

Note that if the contents of the accumulator were stored along with the contents of the

program counter, we would truely have a multiplexed computer. However, this feature

was not necessary for the communication switching center, but care must be taken during

programming in placing break and dismiss bits only at those points in a sequence where

the contents of the arithmetic unit are immaterial.

- 13 -

+
@

8 BITS BUFFER i

OF

SELECT |

FIG. 4

CODER STROBE
READ IN
NEW

EQUAL NUMBER SRFF i
COMPUTERNOT SEQUENCE TO

COMPARATOR R S BUS

SEQUENCE
REGISTER

DISMISS SWITCH
EXTERNAL

DISMISS | BUFFER EMPTY DEVICE j

TYPICAL INPUT CHANNEL

PROGRAM
PCM ADDRESS INDEX

| M ADDRESS

COMPUTER BUS

PROGRAM SEQUENCE
COUNTER REGISTER

CODER

REGISTERCOUNTER

MEMORY
MEMORYREGISTER

SERVICE REQUEST FLIP FLOP
FIG.5

REGISTERS INVOLVED IN CHANGING SEQUENCES

Since most communication and data processing systems have either five, six, seven or

eight bit characters, most instructions are capable of operating in two modes. In the
word mode, the operation applies to the entire computer word of 32 bits. In a character
mode a single 6 bit character is referenced. Since there are four eight-bit characters
in a 32 bit word, an addressing scheme as shown in Figure 6 was devised which permits
addressing of consecutive characters in memory convenient. The two least significant
bits of the address part of an instruction refer to a character position within a word.

In the word mode, these bits are ignored. The instruction vocabulary contains a

liberal quantity of logical instructions, but does not contain multiply or divide or

any other numerical operations other than add and subtract.

Most instructions have a bit to indicate the repeat mode as shown in Figure 7. This

permits most input-output transfers to be accomplished with a single instruction requiring
two core memory cycles. As the characters are transferred in from the external buffer,
a check on parity and a check for a control character is performed by common circuitry.
If either condition prevails, it is indicated to tle program by means of a skip, otherwise

the input-output transfers are handled by a single instruction in the repeat mode with

the dismiss-bit set, which causes the character to be transferred; the index register
to be incremented; and the present sequence dismissed in favor of some other sequence.

The message processing sequence has the lowest priority and processes messages between

transfers.

Figure 8 shows the comparison of the percentage of utilization of the Traffic Control

Center versus the average processing delays. This truely represents an advance in the

communication message switching art. Present switching systems delay each message by

many minutes. Now, the delay is measured in milliseconds.

Most comprehensive communic ation systems require both circuit and message switching.

The progrommed switching center can effect digital circuit switching by associating, by

program meano, a particular input channel with a particular output channel. The

delay under these conditions would be only a few microseconds and would be insignificant

compared to the delays in long transmission lines. However, since the traffic is just

coming in and going out without any processing, the capacity of the programmed element

In a communications system which requires a large amount of eireuitis used unnecessarily.
switching, it will be preferable to terminate all communication lines in an electronic

cross-bar switch, as shown in Figure 9 which has many trunks to the programmed element

and is under tle control of the programmed element. This configuration would permit both

message and circuit switching on an intermixed basis and permit changing from one type of

service to another by simple indications to the stored program.

~ 16 -

6 7 8 9 10 ti 12 13 1415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Bi4 5

BID

WORD
LOCATION

WORD/CHARCTER MODE SELECTION

FIG. 6
INSTRUCTION WORD

CHARACTER
LOCATION

-17-

-
O
T

7

Oo 1 23 4 5 6 7 8 9 1011 1213 1415 16 17 1819 20 21 22 23 24 25 26 27 28 29 30 31

B DDGR C

REPEAT MODE SELECTION
(REPEAT MODE INCREMENTS INDEX
REGISTER AND INHIBITS ADVANCING

INDEX SELECTION
(CAUSES ADDRESS
MODIFICATION)

OF PROGRAM COUNTER UNTIL
REGISTER REACHES ZERO)

FIG.7

INSTRUCTION WORD

INDEX

AV
ER

AG
E

PR
O
CE

SS
IN
G

DE
LA
Y,

M
IL
LI
SE
CO

N
DS

aa
60F iaaaaaa

0 lO 20 30 40 SO 60 10 80 90 lOO

40

20
of

PER CENT UTILIZATION OF TCC

FIG. 8 COMPARISON OF PER CENT UTILIZATION
(OF TCC) VS. AVERAGE PROCESSING DELAY

COMMUNICATION LINES

CONTROL
ELECTRONIC
CROSSBAR
SW ITCH

T R U N K S

STORED
PROGRAM
ELEMENT

FIG. 9

THE ULTIMATE COMMUNICATIONS
SWITCHING CENTER

on

BIOGRAPHY

JOHN N. ACKLEY, Associate Director, Engineering Department, International Electric
Corporation, an ITT associate, responsible for advance planning and research, was a
digital systems consultant principally to ITT Laboratories from 1956 to 1958, a staff
member of Digital Computer Laboratory (Division 6), Lincoln Laboratory, Massachusetts
Institute of Technology from 1952 to 1955, a National Seténce Foundation Fellow att
M.I.T. in 1955, and a Ramo-Wooldridge Fellow at M.I.u. in 1956.

He served in the U. S. Army Signal Corps during the period 1946-1952. He received
the BS in EE, MS in EE, and Electrical degrees from M.I.T.

- 21 -

"om TP
ASSOCIATE

International Electric Corporation

Paramus,New Jersey
COlfax 2-6800

November 11, 1959

Mr. Harlan E. Anderson
Digital Equipment Corporation
Maynard, Mass.

Dear Harlan:

It was a pleasure to run into you at Charlie's cocktail
party and congratulations on your new computer.

Enclosed are four copies of my talk for the Eastern Joint
Computer Conference. The original drawings are available
on request if the mltilith copies are not satisfactory for
reproduction.

I am looking forward to seeing you and the rest of the
crew from the Digital Equipment Corporation at the computer
conference.

Sincerely yours,

John N. Ackley

JNA: jb
Enclosures (4)

INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION

