1NTEROFFICE MEMORANDUM

TO: Ken Sills

DCG POSITION

DATE: November 21, 1977

FROM: Art Massicott

DEPT: Components Group

EXT: 6777 LOC: MR2-2/A52

SUBJ: MASS STORAGE INPUTS

My view of the mass storage needs from the DCG vantage point center around competitive performance with leadership costs. Rather than pushing the edge of technology with the associated high risks, a more conservative first step that leads to a stronger market position due to financial strength, i.e., aggressive pricing with acceptable margins is needed. The second step, pushing technology from a position of market strength, which may require a significant engineering investment, should push us into a leadership product performance position.

For Example

- o Rather than spend effort on the RXOX, first put effort into the RXO4 to make it the most reliable low cost floppy available.
- o A review of all the proposed products to make sure we are not excessively exposed from a technology risk standpoint.
- o Pick technological conservative alternatives in each of the above areas as defined in your matrix, and emphasize these products.
- e Look hard at the system enhancement area as a means of providing product leadership using our strength, ie., 11 ISP. Some level of intelligent disk may be the correct approach to persue.

Ken, as I think about your "Development Alternatives" I am not able to allocate the funds without some discussion in the medium and high end disk.

1sc

INTEROFFICE MEMORANDUM

TO: Distribution

DATE: 14 December 1977

Ken Sills
Disk Products VEC 19 1977 FROM: DEPT:

EXT:

LOC/MAIL STOP: ML 1-3/E58

SUBJ: Marketing Survey to Determine Mass Storage Investment Priorities

1) Introduction

This report contains the results of a marketing survey I recently conducted with key Product Lines to determine priorities that the Storage Systems POT should be factoring into the investment decision process. The level of response and concern by the Product Lines was very high. I thank the participants for their expeditious help. The survey results factored heavily into the FY79 Storage Systems investments recommendation recently presented to the Engineering Board of Directors (EBOD).

The Survey Instrument 2)

The purpose of the survey was to determine relative priorities for major product areas in Storage Systems. Dealing with this question in terms of actual product tactics (schedules, pricing, introduction strategies, etc.) is next to impossible given diverse product line priorities and concerns. It also creates a lot of "smoke" due to nonstrategic issues. This tends to mask basic priorities. To alleviate this problem I created an investment model which is shown in the survey form (Exhibit 1). The model simply describes annual total development investment in FY79 and FY80 to maintain "today's" level of competitiveness, and a hypothetical better "leadership" position. The lower funding level approximates the Spring Beige Book Guideline for FY79 funding of these areas. The higher funding level is about 60% higher and represents an unrealistically large amount of funding in FY79. The question asked of the Product Lines is in which general product areas would they choose to spend incremental dollars and how would they split the dollars among chosen areas. The question was asked for 3 levels of investment between the two modelled funding levels (columns 1-3). It was stipulated that the level of investment for any product area must lie within the two modelled levels of funding. A sample of the raw data (EPG) is shown in Exhibit 2.

The product classifications were described as follows:

A) Floppy - Self explanatory

- B) Disks To cover a capacity range of 150X (5Mb to 750 Mb), 5 disk offerings are necessary if each offering is 2.5X 3.0X the next smaller disk in capacity. Two of these should be "low-end", i.e., one platter devices. The smaller emphasizes entry cost, the larger max density/ 1 platter. Two are probably "medium" disks, i.e., 2-4 platter devices, and the highest capacity is an 8-10 platter "large" disk. Incremental spending on large disks moves us from a buy to a build posture.
- C) System Enhancements This general class of projects was described as encompassing NDS(New Disk System), Massbus Cache, new I/O busses, new standard interfaces, etc. System Enhancements is not limited to Disks as new Mass Storage subsystems will begin integrating disk and tape.
- D) The two tape products are in general agreement with the Tape Products "2-product strategy". The small ½" tape should be thought of as "TS" class products, the large ½" tape as "TU" class products.

3) Data Reduction Method

- A) For each input, the incremental dollars for each product area over the <u>previous</u> lower levels of funding was computed. These incremental dollars were then multiplied by a weighting factor to reflect priority. First priority incremental spending (i.e., within the \$11.0M product development plant was weighted by 4, second priority =2, and third priority =1. These weightings are arbitrary, hopefully reasonable, and chosen by me. Note that there is only \$.8M of first priority spending compared to \$2M of second and third priority spending.
- B) The weighted dollars for each area over all priorities were then added to get a point score. For example, in Exhibit 2, the point score given to large disks by EPG was:

$$(0 \times 4) + (.3 \times 2) + (1.5 \times 1) = 2.1$$

The point score is not a reasonable method of priority ranking since the survey contrained incremental spending on some projects to much lower levels than others. A reasonable ranking method is to compare the point score to the maximum possible score achievable by a product class if it were of absolute highest priority. For example, had EPG given highest priority to large disks, the point score would have been:

$$(.8 \times 4) + (1.2 \times 2) + (0 \times 1) = 5.6$$

The actual rating was therefore 38% of the maximum. This percentage is a fair statistic for ranking purposes.

- D) The composite product line ranking of any product class was derived in two ways:
 - A straight unweighted average (Business Products given 1 vote)
 - 2) A weighted average proportional to percentage projections of FY80 product line NOR for polled product lines.

4) Results of Survey

Exhibit 3 shows composite and product line results. The weighted and unweighted rankings do not differ significantly. The percentage scores indicate a breakdown into four general priority ranking groups. This data is shown in Exhibit 4.

5) Other Data

In addition to the quantitative survey, each product line was asked to submit a written statement of their Mass Storage problems, concerns, etc. These inputs are shown in Exhibit 5.

/ec

EXHIBIT 1 SAMPLE SURVEY SHEET

STORAGE SYSTEMS - DEVELOPMENT ALTERNATIVES (\$MILLIONS/YEAR)

		IVESTMENT TO:	PRODUCT L	INE CHOS	EN ALTERI	NATIVES
	MAINTAIN CURRENT POSITION*	ATTAIN LEADERSHIP POSITION**	1	2	3	4_
FLOPPY	.5	1.0				
LOW DISK #1	1.5	2.0				
LOW DISK #2	1.5	2,0				
MEDIUM DISK #1	2.0	2.5				
MEDIUM DISK #2	2.0	2.5				
LARGE DISK	1.0	3.0				
SYSTEM ENHANCE	.5	1.5				
SMALL ½" TAPE	.4	.7				
LARGE ½" TAPE	. 8	1.2				
	10.2	16.4	11.0	13.0	15.0	
+ 40% ADV DEV PROD MGMT, SUPPOR (NOT POT ALLOCAT		6.6	4.4	5.2	6.0	_
TOTAL	14.3	23.0	15.4	18.2	21.0	=

^{* 5} years behind IBM on build products, 3 years on buys. Prices 20-40% higher than systems competition. Prices much higher than 3rd party vendors.

^{**} Products with price and functionality equal to all competition with the exception of IBM.

STORAGE SYST INVESTMENT ALTERNATIVE		0EM	LDP	1PG	TELCO	EPG-	Bus- OEM	Bus- End-usér	DDP:	LCG	WEIGHTE) TOTAL	UNWELFHTED TOTAL	WEIGHTED RANK	RANK
WEIGHTING F	ACTOR->	.25	.14	,06	.10	.03	.10	.07	,11	,14	1.00		The state of the s	Charles Annual Charle
	MAX POSSIBLE SCORE	\times	\times	\times	\times	\times	\times	\times	\times	\times	\times	X	\times	\times
FLOPPY	2.0	10/50%	,5/2590	.5/2590	_		.8/40%	,5/25%	1.1/55%	_	.586/29%	.469/23%	6	8
LOW DICK 1	2.0	2.0/100%	2.0/100%	1.0/50%	_	1.6/80%	1.6/80%	1.1/55%	.8/4090	_	1.213/6190	1.1/5570	2	3
LOW DISK 2	2.0	1.0/50%	1.2/60%	.9/45%	.5/25%	1.0/50%	1.4/7090	1.0/50%	.7/35%	_	.839/4290	.813/4190	4	5
MEDIUM DISK 1	2.0	1.0/50%	1.0/50%	2.0/100%	_	1.0/50%	.5/25%	1.0/50%	1.6/80%	-	.836/4290	.919/4690	5	4
MEDIUM DISK 2	2.0	2.0/100%	1.0/50%	.5/2590	1.0/50	2.0/100%	.7/35%	1.6/80%	1.6/80%	1.0/5090	1.328/6690	1.275/64%	1	1
LARGE DISK	5.6	_	.8/1490	_	3.0/54%	2.1/38%	2.4/43%	1.5/27%	3.0/54%	2.5/45%	1.50/2790	1.675/30%	8	7
SMALL 1/2" TAPE	1.2		.5/4290	tura	.3/25%	-	_		-	.3/25%	.142/1290	.138/1290	9	9
LARGE YZ" TAPE	1.2	_	.6/5070	.8/6770	.8/67	-	-	.3/25%	_	.7/5890	.331/2894	.375/31%	7	6
SYSTEM ENHANCEMENTS	3.6	1.0/2870	1.6/4490	2.8/78%	3.6/1007	1.5/42%	1.8/50%	22/6170	.4/1190	4.7/131%	2.083/58%	2.200/61%	3	2
					EX	HIBI-	T 3							

EXHIBIT 4

COMPOSITE PRODUCT LINE RANKINGS OF MASS STORAGE PRODUCTS

PRODUCT CLASS	PRIORITY	(1=highest)	SURVEY POINTS
"Large" Mid-range Disks(e.g.R80/81)		1	66
"Small" Low-end Disks (emphasis on entry cost per box)		1	61
System Enhancements (e.g. NDS)	1	1	58
"Large" Low-end Disks (emphasis on max capacity/1 platter)		2	42
"Small" Mid-range Disks (e.g. R80 ₆₀ , RK07, RM03)		2	42
Floppy Disks		3	29
Large ½" Magtape (e.g. "TU")		3	28
Large Disks (build strategy)		3	27
			1
Small ½" Magtape (e.g. "TS")		4	12

OEM POSITION

My position on mass storage development priorities and strategies is based on five considerations

- budget limitations
- evolving OEM business mix by system size
- evolving corporate business mix by system size
- competitive position now and possible in 3 years
- technology possibilities

Each of these is summarized below.

- We do not have the resources to develop all the proposed products in the proposed time frame; a strong case exists to exceed \$14.3 million (the present guideline), but around \$16.5 million is probably as high as we can go. Some projects will have to be slowed or eliminated.
- The OEM business in FY'81 will be concentrated in small (\$0 \$25,000) and mid-range (\$25 \$50,000) systems; 30% and 40%, respectively, is projected to come from these areas. This leads to a priority on the low (RX/RL) and mid-range (R80) disks as the key mass storage products.
- The corporate FY'81 projection is similar to the OEM one, with a smaller portion at the low end (15%) and a greater portion at the very high end (20% in the \$200,000 and up range). This corporate picture supports a high priority emphasis on the RL and R80 programs (covering the remaining 65% of the business).
- Competitively, we are presently closest to achieving a leader-ship position (excluding IBM) in the RX and RL areas; our next closest is the R80. We are farther away in large disks and in tapes. Given limited resources, this perspective once again favors an emphasis on the RX, RL, and R80 programs; the cost of catching up is greater (too great) elsewhere.
- Four issues arise under the heading of technological possibilities. The first is the targetted maximum fixed/removable capacity at the subsystem level. Specifically, if we could (as IBM does) successfully engineer and market on the basis of a 10:1 ratio (versus the 5:1 now being targetted) the RLO2 could be the small R80 companion at FCS, while the RLO4 could be timed to coincide with the R81. This would enable us to conserve FY'79 funds by slowing down the RLO4. The second issue concerns the possibility of the massbus cache becoming a 'mid-life kicker' for the RMO3 and RPO6. If this proves feasible, the RMO4/RKO8 development may not be necessary,

at least not as soon as is presently being targetted. The third issue is the potential of NDS to enable integrated disk and tape subsystems at the higher end of the product spectrum, once again diminishing the need for the RMO4/RKO8 removable companion to our large disks. The fourth issue is the AZTEC development; if this succeeds it eliminates the need for an RXOX. Given this possibility, and the fact that the RLO1 will be competitive at the 5Mb level through FY'79, it makes sense to slow down the RXOX development in FY'79 (current targetted FCS is Q4'79).

Based on these considerations, I have constructed an alternative 4 on your sheet (attached), assuming the current/leadership position trade-offs are the ones shown. Submerged in this set of trade-offs is the Massbus Cache versus RM04 issue. At present, I feel we should commit in FY'79 only to prototyping and testing the MBC and exploring with CDC the possibilities of an RM04 (the RK08 approach should be rejected on both performance and development cost grounds). We should seriously consider, if the MBC performance expectations are met, using it only as a stepping stone to NDS. If these expectations are not met, we should proceed with an RM04 development in FY'80.

It is still an open question in my mind whether a 10:1 fixed/removable ratio makes sense and thereby justifies a slowing of the RL04. With this one possible exception, though, my priorities are clearly on the RL and R80 programs.

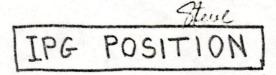
LDP POSITION

The LDP position on Mass Storage development is as follows:

- 1) It is not necessary to attain leadership in floppies.
- 2) We should attain a leadership position in low-end disks (e.g. AZTEC and RLO4). This is the first priority.
- 3) Mid-range disks should be second priority. Removability is an important feature.
- 4) Third priority, of equivalent importance, are NDS and Tapes.
 - a) NDS is too expensive for small systems but would be very attractive for large VAX MUMPS systems.
 - b) We need a good low-end tape. The TSO4 is too expensive.
 - c) Our high performance tape should be a buyout, and not supplied from CSS.

INTEROFFICE MEMORANDUM

TO: KEN SILLS


CC: MIKE MARSHALL CHARLIE SPECTOR DATE, 17 NOVEMBER 1977 FROM. STEVE MIKULSKI

DEPT. INDUSTRIAL PRODUCTS GROUP

EXT. 3820

LOC/MAIL STOP. ML5-2/M11

SUBJ: DISK POT RECOMMENDATIONS

Attached is the priority chart you discussed with me. Fundamentally, I have shown the IPG priorities as <u>incremental</u> spending over your "maintain current position" figures. I would assume the <u>lowest</u> priorities in large disk development and small mag tapes (as shown).

I. IPG'S DISK STRATEGY IS:

- A) Attain leadership products in low cost, low performance drives (i.e., RL series) and expand this posture to mid-range drives (i.e., RK series). Don't use fixed/removable technology, but rather totally removable medias and competitive dual drive subsystems.
- B) Provide high performance, large capacity buyouts vs. in-house developed drives.

II. ADDITIONAL CONCERNS

- A) A low cost standard software distribution media is required. This is floppies on systems selling for under \$30K i.e., RT11 and tape for larger systems (i.e. RSX, RSTS, TPS, VAS/VMS). This is solely for diagnostics and software distributions and must be cheap (i.e., less than \$500).
- B) I would like to see a very aggressive development plan in system enhancements as a <u>single</u> significant enhancement is a \$1M item. I can currently project:
 - Better software (overlap, dual access, efficient failsafe, etc.).
 - Disk caching, error correcting, LSI technology, off-device directories, etc.
 - Packaging: combining backplanes, power supplies, and disks within common sheet metal.
 - Coupling bulk memory technology with disks (i.e., BEAMOS) and segmenting operating system software to be shared over processor and intelligent subsystems.

INTEROFFICE MEMORANDUM

TO: Ken Sills

CC: TELCO Marketing Committee

TELCO Management Committee

Russ Kruger

DATE: November 21, 1977 FROM: Luigi D'Angola

EXT. 246

LOC/MAIL STOP: NT

TELCO POSITION

SUBJ: STORAGE SYSTEMS - DEVELOPMENT ALTERNATIVES

Please find enclosed our answer to your questionnaire.

Please take note of the following facts:

- mass storage devices represent a large part of our budget.
- we are presenting the October price cut on disks as the beginning of a new strategy in this part of the business
- we believe that in a few months we will have again a problem for the disk price
- it is our opinion that the only way to have a good price/performance ratio and a fair profit is to build in-house large mass storage devices
- we need an intelligent controller as soon as possible
- we believe that the disk and tape groups should work in conjunction with the multiprocessor group to introduce high availability features in the mass storage devices.

emw

Enclosure

Telephone Industry Products Group

EPG POSITION

EPG Storage System Philosophy

EPG supports the following general guidelines:

- 1. For small disks, floppies through 20 MB, price is more critical than performance.
- 2. Small low cost (< \$2,000 MLP) hard disks \approx 5 MB are favored over floppies and/or tapes
 - . software distribution on large computer systems
 - useful work in small dual drive configurations not at the expense of pricing.
- 3. Medium disks (up to 100 MB) should be dual, removable and have balance between price and performance. Ten percent higher price for better performance than competition is acceptable.
- 4. Large disks (> 300 MB) are not major concern but will be by '81 with VAX in full swing. Can afford to be behind IBM through '82.
- 5. Disk prices can only be viewed as part of a system price. Typically 20 25% of the system price is disk content.
- 6. Enhanced software back-up techniques should be part of all tape developments.

TO: Pat Mullen

BUS- DEM POSITION

SUBJ:

Disk Development Strategy

INTEROFFICE MEMORANDUM

DATE: 18 November 1977

FROM: Mike Gallup

DEPT: Business Products

EXT: 45657

LOC/MAIL STOP: MK-2/H32

The key to successful distributor products is scope. PL 48 will do 45% of their business in D500s this year and 55% in D300s. It is more important to be mildly competitive across a broad range than to be highly competitive in a narrow range. The reason is that the wider the market base the OEM can compete in, the greater the return he will realize on his software development.

This strategy translates into the following investment levels:

- Continue to bring RX02, 04 and RL01 to market
- RL01 is competitive enough to leapfrog RL01F and go to RL02 at a later date.
- Continue to bring the RKO7 to market and forestall RLO4 in light of limited development dollars.
- Do Mass Bus cache and forestall RP07
- Tape developments are not that important to our market.

/sg

BUS - END USER POSITION

BUS - MANUFACTURING POSITION

As far as Product Line 41 (Manufacturing) is concerned, our main thrust is in the area of large 530's (11/34's) and 570's (11/70). Therefore, our primary needs tend to fall into the mid-range and large disk categories. In the near future, as communications becomes more important on low end systems, there is a need for high density small disk drives, e.g. RXO4. Very few of our systems go out with tape. My main tape need over the next 18 months is for a cost reduced TU16.

BUS - DISTRIBUTOR POSITION

- Low disk #1 to replace RKO5 (or #2 if cost/performance and 1st customer ship is better). Need good entry level price system.
- Medium disk #2 needed to fill gap. RKO7 is desirable as it is the earliest to market. Tradeoff delivery against price.
- 3) System enhancements are important if they will improve COBOL throughput.
- 4) Small ½" tape cost/performance improvement over TU16 is needed to backup small disks.

DDP DISK PHILOSOPHY

- At the low-end we need good, competitive storage products in the FONZ timeframe. The RL disks should provide a good base for this.
- 2) Our major business volumes will be in the mid-range. We need to be most price competitive and profitable in this range.
- 3) Prices are not as sensitive at the high-end. We have been able to successfully market buyout products. We need to be functional leaders (largest capacity) at the high-end.

digitall

INTEROFFICE MEMORANDUM

TO: Ken Sills

CC: Phil Wilson
Franco Previd
George Hoff
Joe Viula
Brian Samuels
John Jorgensen

DATE. 16 NOV 77
FROM. Hap Prindle
DEPT. LCG Product Management
EXT. 6553
LOC/MAIL STOP. MR1-1/M74

LCG POSITION

SUBJ: Storage systems - Development alternatives from LCG

Current Strategy

RP07 - Q3 '79 RP07+ - Q1 '80 R80 - FY '81 T304 - Q4 '79 (2020) TU78 - Q3 '79

T6250 - FY '81

- . Investment in low capacity devices is not of interest to LCG
- . Aggressive early buyout/codevelopment with PCM supplier is a requirement for large disks and tapes.
- LCG would like Mass Storage Development to assume diagnostic and integration responsibility for new devices on TOPS10 and TOPS20.
- . Development of intelligent interface to allow attachment of varied competitive devices is of interest to LCG
- . High Market Demand for high capcity/low cost 1/2" tape
- . Consider 200 ips TU78 with additional funds
- . Current systems in development at LCG provide for flexibility of device interface (MASSBUS, UNIBUS, NOS, AND SMD)
- . Adherence to ANSI and FIPS standards may be requirement for Federal Business

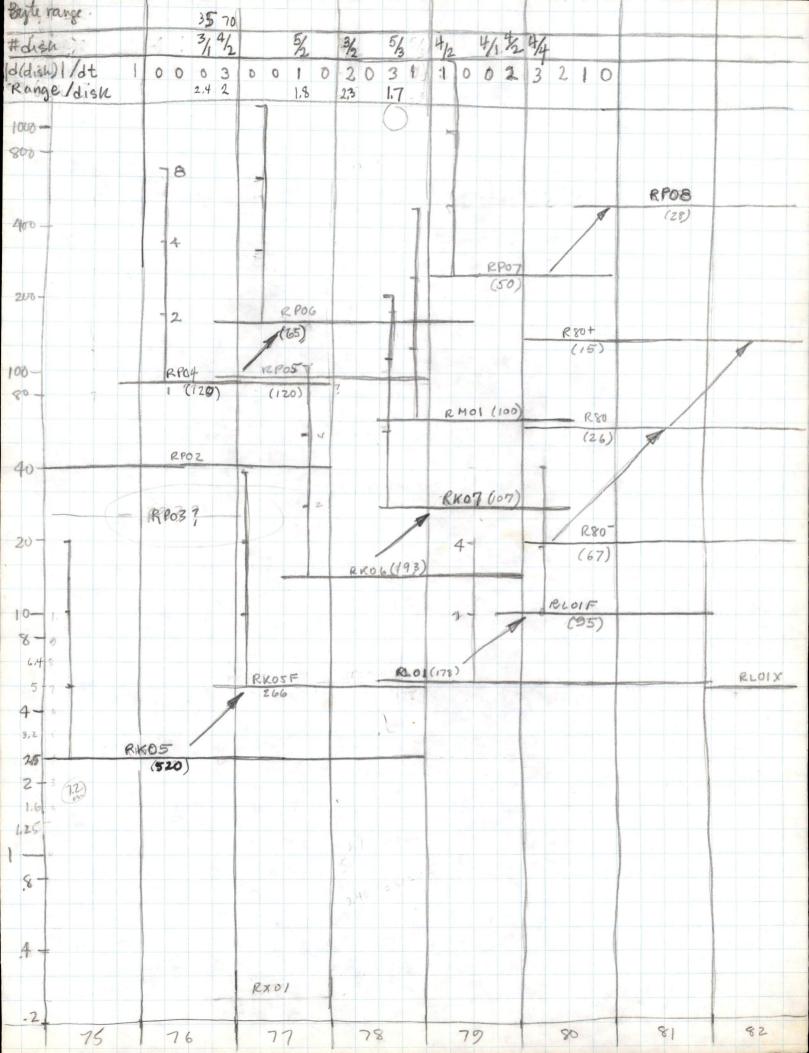
sfa

EPG INPUTS

EXHIBIT 2

STORAGE SYSTEMS - DEVELOPMENT ALTERNATIVES (\$MILLIONS/YEAR)

		NECESSARY IN MAINTAIN CURRENT	PRODUCT I	PRODUCT LINE CHOSEN ALTERNATIVES				
		POSITION*	POSITION**	_1_	2	3	4	
	FLOPPY	.5	1.0	0.5	0.5	0.5		
	LOW DISK #1	1.5	2.0	1.8	2.0	2.0		
	LOW DISK #2	1.5	2,0	1.5	2.0	2.0		
	MEDIUM DISK #1	2.0	2.5	2.0	2.5	2.5		
	MEDIUM DISK #2	2.0	2.5	2.5	2.5	2.5		
	LARGE DISK	1.0	3.0	1.0	1.3	2.8		
	SYSTEM ENHANCE	5	1.5	0.5	1.0	1.5		
	SMALL ½" TAPE	.4	.7	0.4	0.4	0.4		
	LARGE ½" TAPE	.8	1.2	0.8	0.8	0.8		
-		10.2	16.4	11.0	13.0	15.0		
	+ 40% ADV DEV PROD MGMT, SUPPOR	RΤ						
	(NOT POT ALLOCA	TED) 4.1	6.6	4.4	5.2	6.0		
	TOTAL	14.3	23.0	15.4	18.2	21.0	_	


^{* 5} years behind IBM on build products, 3 years on buys. Prices 20-40% higher than systems competition. Prices much higher than 3rd party vendors.

^{**} Products with price and functionality equal to all competition with the exception of IBM.

Indon,

If there is any other data gon'd like, I'll he glad to get it for you. I don't understand your knobes and overlap analysis for CPU'D so I haven't done that one. Overall, I think our product strategy stands up to secuting very well. The biggest risk is IBM migrating technology to small disks much faster than the historical trend thanky forming a new, harder to attain trend line. Can we meet to discuss this?

Ken dills

Marketing Committee why Indlike to allocate

needed (or can be effectively Spent)

DATE: 22 APRIL 1977

FROM: KEN SILLS INTEROFFICE MEMORANDUM

TO: ARNIE GOLDFEIN

PAUL BAUER

ALAN SILVER

CC: DISTRIBUTION

DEPT: DISK PRODUCTS

5805 EXT:

LOC/MAIL STOP: ML1-3/E58

SUBJ: GROWTH OF THE DISK BUSINESS

> A reasonable justification for the Disk Products budget to grow at a faster rate than other engineering groups is that disks are growing at a faster rate than DEC as a whole and have a better potential product contribution. However, this issue has been clouded by the fact that disks are often grouped with floppies. Paul Bauer believes the growth of disk NOR as a percent of total NOR is primarily due to floppies. The attached analysis shows that this is not the case. Hard disk revenues are growing from 15.2% of NOR in FY76 to 24.1% in FY82. Over the same period the product contribution of hard disks grows from 59% to 68%. These potential business results certainly warrant the investment in engineering development to bring our strategy to fruition.

Obviously, the validity of this case is based upon the validity of the data. I have all backup data by product. The forecast compiled recently by Disk Product Management and used as a basis of this analysis was jointly compiled using the Manufacturing forecast, long range Corporate Planning forecast, inputs from Product Lines, etc. It is essentially in agreement with corporate growth plans and perceived Disk Business trends as seen in Corporate Planning data. Other assumptions are explicitly addressed in the analysis. I have tried to be conservative. I will be happy to discuss this with you if more detail or explanation is necessary.

/kmd

DISTRIBUTION:

GORDON BELL BOB PUFFER DICK BECKER GRANT SAVIERS CHET JU KEVIN SMITH STEVE ORR WAYNE GALUSHA

COMPANY CONFIDENTIAL

DISK PRODUCT CONTRIBUTION ANALYSIS (\$Millions except as noted)

				FISCAL	YEAR			•
HARD DISK DATA	76	77	78	79	80	81	82	COMMENTS
Gross Sales Average discount &	124	207	334	471	598	799	1061	From 4/77 Disk Product Management Forecast
Allowance percentage	10%	11%	12%	13%	14%	15%	16%	Increases as new disks become more competitive,
Net Sales	112	184	294	410	514	679	891	OEM sales increase
Mfg. Cost	36	52	89	121	150	190	240	From 4/77 Forecast
Mfg. Startup	2	4	4	4	4	4	4	\$1M for Buyout,\$3M for
Field Service Expens	e 3	5	7	10	13	17	22	Internal 2.5% of Net Sales
Cost of Sales	41	61	100	135	167	211	266	
Gross Margin	71	123	194	275	347	468	625	
Engineering Expense	5	7	10	12	15	19	23	25% growth after FY79
Product Contribution	n 66	116	184	263	332	449	602	
Product Contribution	n 59%	63%	63%	64%	65%	66%	68%	

(continued)

DISK PRODUCT CONTRIBUTION ANALYSIS (\$Millions)

				FISCAL	YEAR			
FLOPPY DATA	76	77	78	79	80	81	82	COMMENTS
Gross Sales	17	39	73	94	117	184	176	From 4/77 Forecast, 10% price cut in FY79 to \$3900 due to RL01 and
Net Sales	14	33	62	80	99	126	150 €	competitive pressure.
								15% average discount
CORPORATE NOR	736	1060	1550	2000	2350	3000	3700	Average of Corp. Plan & Mfg. "high" Plan
Hard Disk %	15.2	17.4	19.0	20.5	21.9	22.6	24.1	
Floppy %	1.9	3.1	4.0	4.2	4.2	4.2	4.0	
	-							
Total disk % of Corporate NOR	17.1	20.5	23.0	24.7	26.1	26.8	28.1	Corporate long range forecast predicts 27.7% in FY81

INTEROFFICE MEMORANDUM

TO:

Product Line Managers

Committee

DATE:

April 27, 1977 FROM: Grant Saviers

DEPT: Disk Products

EXT: 2357

LOC/MAIL STOP: ML1/E58

Gordon Bell

APR 2 9 1977

SUBJ: DISK STRATEGY PRESENTATION

The attached slides represent the Disk Strategy as enhanced by the Disk Review Committee (Irwin Jacobs, Chairman) and reported to the Operations Committee in February.

Our presentation will be structured as follows:

- 1. Presentation of the overall strategy.
- 2. Presentation of the product tactics.
- Testing the strategy and tactics via
 - a. Disk subsystems
 - Competition IBM at low end.

DG at high end.

- Discussion of issues raised since February. 4.
- Discussion of issues raised by Disk Review Committee. 5.

For a comprehensive discussion of the issues, competitive analysis, etc., our latest Beige Book (April 21, 1977) is available upon request.

/nlh

Attachments

DISK STRATEGY

MAKE LOW AND MID-RANGE

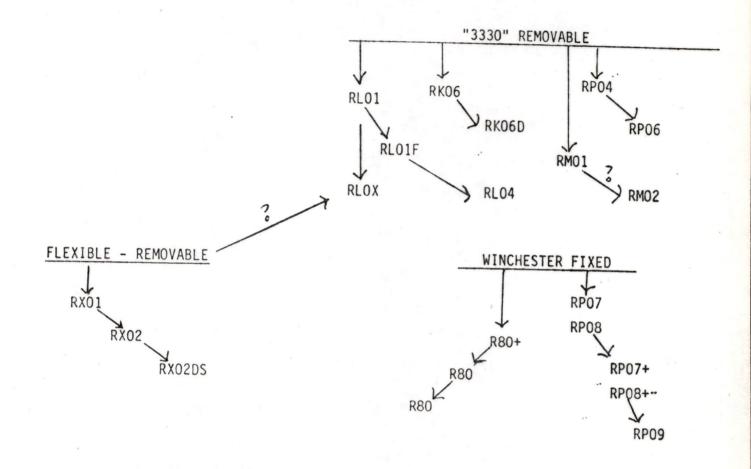
BUY HIGH END

WINCHESTER COMING IN FAST

INCREASE FUNCTIONALITY OF SUBSYSTEMS

NO TAPE REQUIRED ON LOW AND MID-RANGE SYSTEMS

USE A MIXTURE OF REMOVABLE DEVICES (INTERCHANGE, BACKUP, SOFTWARE DISTRIBUTION) AND FIXED DEVICES (CAPACITY, LOW COST, RELIABILITY)


II. SUMMARY PRODUCT DATA

A. PRODUCT DESCRIPTIONS

PRODUCT	CAPACITY (MBYTES)	FIXED/ RMVBL	INTERNAL/ BUYOUT	FCS	COST*	CONCEPTUAL TARGETED SCHEDULED
RK05J RK05F	2.5 5	R F	I I	SHIPPING SHIPPING	1330 1300	· ,
RL01 RL01F RL04 RL0X	5 10 28 5	R F R R	I I I	Q2 FY'78 FY'79 FY'81 FY'82?	890 950G 950G 400G	S T C
RK06 RK07 (was RK06D)	14 28	R R	I	SHIPPING Q3 FY'78	2700 3000	s
RM 03	67	R	В	Q2 FY'78	6700	S .
R 8 0 2 0 R 8 0 6 0 R 8 0 1 4 0	20 60 140	F F	I I	FY'80 FY'80 FY'80	1350G 1600G 2100G	C T
RP04 RP05 RP06 RP07, 7+ RP08, 8+ RP06 Replace	88 88, 176 176 260, 520 * 260, 520 *		B B B B	SHIPPING SHIPPING SHIPPING FY'79, 80 FY'80, 81 FY'80/81	10600 11400 11400 12500G ?	- - - T C C

^{*}Costs are estimated FY'78 transfer cost unless followed by a "G" which indicates high volume cost goal.

^{**}ISS product capacities are 284, 568 Mbytes.

0.1 1.0 10 100 1000

SINGLE SPINDLE FORMATTED CAPACITY - MEGABYTES

E. PRODUCT TIMING

	FY'77	FY'78	FY'79	FY'80	FY'81
SMALL	RK05J/F* (2.5Mb/5Mb)	RL01 (5Mb)	RL01F* (10Mb)		
				R80 ₂₀ *	
	RK06 (14Mb)	RK07 (28Mb)		R80 _{6 0} *	RL04 (28Mb)
MEDIUM		RM03 (67Mb)		R80 *	
					×1
	RP04/05/06 (88Mb/176Mb)		RP07* (260Mb)		RP08* (260Mb)
LARGE			RP07+* (520Mb)		RP08+* (520Mb)

Products encompassed by a dotted line = product family.

^{*}Fixed Media Disks

SUBSYSTEM STRATEGY

COMBINE THE FLEXIBILITY OF REMOVABLE

MEDIA WITH THE INCREASED COST EFFECTIVENESS

AND INCREASED RELIABILITY OF FIXED MEDIA

IN MULTIPLE SPINDLES FOR HIGH SYSTEM

AVAILABILITY AND PERFORMANCE

SYSTEM STRATEGY ALTERNATIVES

	FY'78	FY'79	FY'80	FY'81
SMALL	RK05J + RK05F 2 RL01	RLO1 + RLO1F	RLO1 + RLO1F	
MEDIUM	2 RK06 2 RK06D 2 RM01	2 RK06D 2 RM01	2 RK06D R80 ₆₀ + RK06D	2 RL04 R80 ₆₀ + RL04
LARGE	2 RP06	RP07 + RM01 RP07 + RP06	R80 ₁₄₀ + RK06D RP07 + RM01 RP07 + RP06	R80 ₁₄₀ + RL04 RP08 + RM01 RP08 + RP06

IBM VS. DEC

LOW AND MID-RANGE PRODUCT INTRODUCTIONS

	IBI	M	D	EC
FISCAL YEAR	PRODUCT (MB)	SUBSYSTEM PRICE	PRODUCT (MB)	SUBSYSTEM PRICE
FY'77	10F + FLOPPY	\$10K	2.5R + 5F 14R + 14R	\$17K (5.4X) \$27K (3.8X)
FY'78	75F + CARTR. SYS 34 (1/78) 13F	\$25K \$10K	5R + 5R 28R + 28R 67R + 67R	\$10K (4.8X) \$29K (4.1X) \$38K (3.2X)
FY'79	20F + FLOPPY 20F + CARTR.	\$10K \$20K	5R + 10F	\$10K (4.8X)
FY'80	40F + FLOPPY 40F + CARTR.	\$10K \$20K	60F + 28R	\$25K (4.2X)
FY'81		4	28R + 28R	\$10K (3.1X)

DG VS. DEC
HIGH-END PRODUCT INTRODUCTIONS

	DC		7	
	DG		DEC	
FISCAL YEAR	PRODUCT (MB)	SUBSYSTEM PRICE	PRODUCT (MB)	SUBSYSTEM PRICE
FY'76	92R + 92R	\$57K	88R + 88R 176R + 176R	\$61K (2.8X) \$79K (3.5X)
FY'77	96R + 96R	\$46K	88R + 88R 176R + 176R	\$64K (2.9X) \$83K (3.6X)
FY'78	192R + 192R	\$56K	67R + 67R 176R + 176R	\$44K (3.2X) \$64K (2.7X)
FY'79	288R + 288R ?	\$60K	284F + 67R	\$54K (3.1X)

ISSUES

IBM SERIES/1 & SYSTEM 34

COMPETITION.

BUDGET PROBLEM OF \$500K

\$200K REDUCTION

\$300K OVERCOMMITMENT

RESPONSE

ACCELERATE 10 MB RLO1F

ALT 1: SLOW RP07

SLOW R80

LESS R&D

ALT 2: KILL RMO3

ALT 3: SLIP EVERYTHING 1 MONTH

CURRENT FY'78 PLAN - 4 PRODUCTS (2 DRIVE SUBSYSTEM)

	F/R	2D + C	M.U.	FCS
RL01	2 X 5 MB R	≃ \$10K	4.8	Q2 FY'78
RK07	2 x 28 MB R	≃ \$26K	3.8	Q3 FY'78
RM03	2 X 67 MB R	≃ \$44K	3.2 2.9	Q2 FY'78
RP06	2 X 176 MB R	\$83.4K	3.4	SHIPPING
		\$72K	3.0	
RK07	4 × 28 R	= 44.8	3.45	

ALTERNATIVE - 3 PRODUCTS (2 DRIVE SUBSYSTEM)

			F/R	2D + C	M.U.	FCS
RL01	2	X 5 MB	R	≃ \$10K	4.8	Q2 FY'78
RK07	2	X 28/42 MB	R	≃ \$26K	3.8	Q3/Q4 FY'78
RP06	2	X 176 MB	R	\$66K	2.7	SHIPPING

FY'79 (TARGET)

		F/R	1 D + C	M.U.	FCS
RP07	1 X 284 MB	F	\$34K	3.3	FY'79
RM03 +	1 X 67 MB	R	\$53.5K	3.1	FY'79
RP07	1 X 284 MB	F	400.0K		
	(351 MR)				

ISSUES

- 1) RLO1/RKO5 PHASE IN
- 2) RPO7 & R80 PROJECTS ARE CRITICAL TO STRATEGY (TIMING)
- 3) R80 TECHNICAL RISK AND ALTERNATIVES
- 4) RLO4 & RLOX PRODUCT TIMING
- 5) 18 MONTHS FOR BUY OUT AND 30 MONTHS FOR INHOUSE DEVELOPMENT
- 6) SOME DISK ENGINEERING SHOULD MOVE TO COLORADO, NOW!

B. PRODUCT INTERFACES

PRODUCT	Q-BUS	OMNIBUS	UNIBUS	MASSBUS	NEW(2)
RK05J RK05F	RKV11 RKV11	RK 8A RK 8A	RK11D RK11D		
RL01F RL04 RL0X	RLV11 RLV11 X(1) X(1)	RL 8A RL 8A INTLGNT ?	RL11 RL11 INTLGNT X		INTLGNT
RK06 RK07 (Was RK06D)			RK611,711 RK711		
RM 0 3			RH11	RH10,20,70	
R80 _{2 0} R80 _{6 0} R80 _{1 4 0}	X(1) X(1) X(1)		INTLGNT INTLGNT INTLGNT		INTLGNT INTLGNT INTLGNT
RP04, RP05 RP06 RP07, 7+ RP08, 8+ RP06 Replace		•	RH11 RH11 RH11 INTLGNT X	RH10,20,70 RH10,20,70 RH10,20,70	INTLGNT

- (1) With minimum functionality controller
- (2) Intelligent subsystem with new I/O architecture for interface to existing busses. Intelligent controller also attaches to high speed internal CPU busses (VAX, KL, 11/70, etc.) replacing MASSBUS RH attachments.

C. PRODUCT SOFTWARE SUPPORT

PRODUCT	RT11	V3	<u>V4</u>	IAS	RSTS/E	STARLET	TOPS 10, 20
RK05J RK05F	C	C	P P	C C	C C		
RL01 RL01F RL04 RL0X	P P G G	G G	P P G	P P G G	P P G G	G ?	G ?
RK06 RK07 (Was RK06D)		C G	C G	C G	C G	P G	
RM 03			P	P	P	P	P
R80 ₂₀ R80 ₆₀ R80 ₁₄₀	G G G	G G G	G G G	G G G	G G G	G G	G G G
RP04, RP05 RP06 RP07, 7+ RP08, 8+ RP06 Replace		C(1) C(1)	P P G G	C C G G G	C C G G	P(2) P G G	C C C G G G

⁽¹⁾ V3.1 support will be dropped at V4 FCS.

KEY: Current Planned Goal

⁽²⁾ RP05 only

XIV. DISK PRODUCTS BUDGETS

A. Budget Data (\$000 Omitted)

	Actual FY'77	DEC. FY'		FY'79	FCS
RL Family					
RL01F RL04F RL11 + extensions RL01K/01FK RL0X	1,070 40 - 273 177	1,400 400 - 100 200	830 525 480 250 345	600 300 1,200 200 200 600	Q2 FY'78 FY'79 (Target) FY'81 (Target) Q2 FY'78 Q2 FY'78/79 Undefined
RL Total	1,560	2,100	2,430	3,100	
RK Family					
RK06 RK07 (was RK06D) RK611/711 RK06K/07K/RM03K RK07 (Old) MBA RK06/07 (Old)	1,440 316 318 342 280 58	1,000 100 335 -	470 900 150 375	350 150 300	Shipping Q3 FY'78 Shipping Cancelled Cancelled
RK Total	2,754	1,435	1,895	800	
RM/RP Family	j.				
MBA/RM03 RP05/06 RP07 RP08 RP06 Replacement	724 27 88 - -	250 - 700 - -	480 200 - -	100 - 300 300 300	Q2 FY'78 Shipping FY'79 (Target) FY'81 (Target) FY'80/81
RM/RP Total	839	950	680	1,000	
R80 Family					
R80 & Backup Intelligent Subsystems R80K	34 55	1,500	1,240 390 255	2,000 700 300	FY'80 (Target) FY'80 (Target)
R80 Total	89	1,800	1,885	3,000	
,	- REFERI	ENCE DATA	-	(Cont'd	on Next Page)

	Actual FY'77	DEC. FY'7		FY'79	FCS	
Components	280	325	300	400		
Technology	604	1,500	1,500	1,700	, · -	
Support	276	1,100	460	700	_	
Product Mgmt.	158	250	250	400	-	
Contingency	-	410	400	700	-	
MBA Field Text Box	-	130	-	-	Cancel	led
			-			
TOTAL BUDGET	6,560	10,000	9,800	11,800		
	-	-	-			

B. FY'78 Unresolved Issue

The \$100K expense of bootstrap development is not budgeted for FY'78 or FY'79 by Disk Products. This expense has historically been borne by Dick Clayton's CSD Group. We believe that CSD should continue to fund bootstrap development and have therefore not allocated Disk Products funds for this purpose.

C. Consequences of \$9.8M FY'78 Ceiling

The current Disk Products Strategy was formulated based on a \$10.0M FY'78 funding level. Detailed budgeting revealed \$10.3M was necessary for full implementation of the strategy. It has therefore been necessary to cut back development plans by \$500K in FY'78:

- There will be no video disk advanced development in FY'78 (\$125K).
- The RP07 program is funded at \$150K lower than is required for external manufacturing and development. This very low level of funding adds risks to an FY'79 FCS.
- 3. The R80 is underfunded by \$125K.
- 4. The RL family is underfunded by \$100K.

- D. Consequences of \$11.8M FY'79 Ceiling
 - 1. We will be at an \$11.8M running rate in Q4 FY'78. This implies that FY'79 will be a year of zero growth for Disk Products. Assuming normal inflation (i.e., from salary and service increases), we will have to operate with a total hiring freeze (including college recruiting) and will possibly have to resort to a reduction in manpower levels.
 - Major product developments will proceed at a minimum funding level (e.g., R80, RL04).
 - 3. There will be no growth of our Advanced Development effort in FY'79.
 - 4. No additional projects can be assumed in FY'79 without a reprioritizing of current product tactics and schedules. The contingency is too low to allow for a reasonable margin of error in budget projections.
 - 5. An \$11.8M funding level is at least \$1.5M less than the budget level consistent with earlier disk strategies approved by the Disk Review Committee and Disk Strategy Committee. The consequence is fewer or stretched out programs. The Product Lines should be lowering their expectations as a result.

	05 05F /01	JOIF A	7.64,0	4.05 R	MOI	880	104,0	7 -09	X					10	1	
	2.5 5 5 10	14 28 2	8 88 88	67 20	60 1	40 176	250 520			3	ytes			14	ant, K	en Sills 1
	DP								47		D=1 -	Do.		1	t me re	ruce
	5.1 6.5 3.5 DC	4 9.5 9	1.7 4 27	1.2 31.4	16 5	.4 6.4	8.4 36	5 34	4/		Drive			1 40	it me re	commi
	1.3 1.33 0.1 DP+DC	39 0.95 2	2.7 3 0.	95 10.7	10.6	6.7 1	.35 1.6	2.1 11	.4 12.	5 14.5	- Dri	ve C	ust	1 4	PC to y	jon.
	3.92 4.89 3	93 4.21	3.52 3.2	3 4.21	2.54	2.96 2	39 4 4	4 3.2	2.72	3.24	- m	anhu	P	The second second		
	CP			- 10 11			40 40					10.		l u	me -	We need
	4.4 4.4 2 cc	2 6 6 10	7.5 9.	5 10 10	0 10	10 9.7	10 10			- 05	ntrol	km	~		library	
	0.5 0.5 0.2 CP+CC	75 0.275	1 1 1,8	1.8 1.	8 1	1.6 1.6	5 1.6 1.	65 1	1		- "	Co	1			functions
	8.8 8.8 7.2	7 7.27 6	6 5.56	5.28 5.	28 10	6.25	6.25 6.2	5 5.88	10 1	0 _	- "	ma	ship		g. plot	
													U	PA	n's.	gorden.
	DP:B 2.04 1.3 0.1	7 0 4 0 4	70 0.344	0.143	0.309	0.357	0.239 0.	27 0.10	0.0	6 0.207	0.136 (1.0904	13	תובץ	1 Byta	
	DC+B															
	0.52 0.266	0.178 0.09	5 0.193	0.107 (0.0339	0.122	0.12 0.1	0.0675	5 0.02	67 0.015	0.0648	0.05	0.0279	Cusi	t/Byt	
		(sys.														
1 -	9.5 10			15.5	15.7	14	36.7	40.9	26	15.4	16.4	18.4	46.2	44	57	
-	- 14.6 17	4 9		25	25,4	18	63.9	72.3	42	20.8	22.8	26.8	82.7	78	104	
	- 24.8 30			44 82	83.6	26 42	118 227	135 261	74 138	31.6 53.2	35.6 61.2	43.+6	156 302	146 282	198	
8	- 45.2 56 scr		s. Cust			42	221	201	130	33+2	01.2	77.2	302	282	386	
		.83 1.17		3.7	4	2.75	12.5	12.4	7.7	2,95	3.2	3.7	13.1	13.5	15.5	
		16 2.06		6.4	7	3.7		23	14.4		4.8	5.8	24.5	26	30	
		.82 3.84		11.8	13	5.6	44.6	44.2	27.8 54.6		8	10	47.3	51	59	
		1 7.4 Sys			25	9.4	87.4	86.6	J4+0	12.4	14+4	18.4	92.8	101	117	
	5.28 5.96				2.94	3.3	3.38 5.2	2 5.13	4.97	3.54 3.2	26 3.68					
	4.71 5.51															
	4.35 5.22 4.15 5.06															
	4+10 0+V6		1 Ryl		2+0	3+01	2+33 4+2	7 4.23	4+2	3.25 2.7	7 3+3					
1	2.50E0	5.00E0	5.00E0		1.	40E1	2.80E1	2.80)E1	8.80E1	8.80E1	6.	70E1	2.00E1	6.00E1	
	2.50	5.20	E2			DAE4	E /AF4	E //	E4	1 7/50	1 7/50		7.450	A AAF4	1 0050	
1	5.00E0 5.00	1.00E1 E2 1.04	1.00E1	2.00E1	2.	.80E1	5.60E1	5.60	1-1	1.76E2	1.76E2	1	34E2	4.00E1	1.20E2	
•	1.00E1 1.00	2.00E1	2+00E1	4.00E1	5.	.60E1	1+12E2	1.12	E2	3.52E2	3.52E2	2.0	68E2	8.00E1	2.40E2	
,	2.00E1	4.00E1	4.00E1	8.00E1	1 1	12E2	2.24E2	2.24	E2	7.04E2	7.04E2	5.:	36E2	1.60E2	4.80E2	
	2.00	3 4.16	EJ	-												
	SPT÷BT		P/By	1.11	0.541	0.5	0.417	0.465	0.388	0.77	0.273	0.131	0.263	0.176	0.11	
	3.8 2.1 2.92 1.7		0.5		0.454	0.321	0.363	0.411	0.313	0.52	0.19	0.0957		0.156	0+1	
	2.48 1.5		0.45		0.4	0.232	0.336	0.384	0.276	0.395	0.148	0.0779			0.0952	
	2.26 1.4	1 0.75	0.425	0.732	0.373	0.188	0.323	0.37	0.257	0.333	0.128	0.0689	0.214	0.141	0.0928	
	SCT+BT		C/B	0.264	0.143	0.0000	0.142	0.141	0.115	0.147	0.0533	0.0244	0.0741	0.054	0.0298	1
	0.72 0.3 0.62 0.3		0.123		0.125		0.132	0.131	0.113		0.04		0.0695		0.0288	
	0.57 0.2		0.102		0.116	0.05		0.126	0.104		0.0333				0.0284	
	0.545 0.2		0.0984		0.112	0.042		0.123		0.0775				0.0505		

Grant (Do priorites) - We owe a speeded-up RLOIF plan; RKO7+

Price /voi analysis for RNW3/RNW7/RWO7 move to get it of mit more make buyout out

DISK STRATEGY

7 = 70

· O -> RMOI; O -> RPOY

{RPO5, RPO6} -> Memorex Mfg. (eliminate WF, WM chain)

· RKO7 is highest pronty

· RLOIF is 2nd highest "

R80 is 3nd highest

Eliminate all other projects until these projects are staffed and managed to Schedule.

Project cost project proble

- Budget vishs.

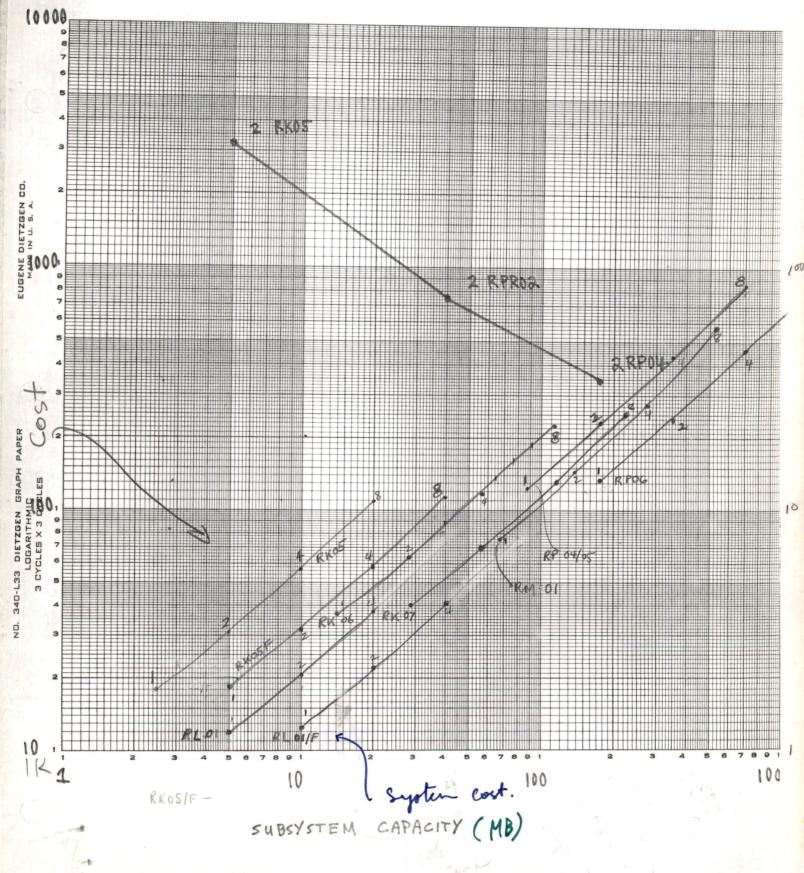
- Competit .

DISK STRATEGY

- · RMOI RMO3; RPO4 O
- · RP05, RP06 -> Memorex Mfg.

(for Field Integ.)

· R80


I WANT STEET THE THE

And betieved they are a wife

March of white of

FY76

R1807 x 4 x 121606

XI. DISK PRODUCTS BUDGETS

A. Budget Data (\$000 Omitted)

	Actual FY'77	DEC. FY '78	Now	FY'79	FCS
RL Family					
RL01 RL01F RL04 RL11 + extensions RL01K/01FK RL0X	1,070 40 - 273 177	1,400 400 - 100 200	1,000 830 550 525 500 480 210 250 300 345	600 300 1,000 200 #200 400 600	Q2 FY'78 FY'79 (Targe FY'81 (Targe Q2 FY'78 Q2 FY'78/79 Undefined
RL Total	1,560	2,100	-2,560 2 430	2,700	
RK Family					
RK06 RK07 (was RK06D) RK611/711 RK06K/07K/RM03K RK07 (pLD) MBA RK06/07 (Old)	1,440 316 318 342 280 58	1,000 100 335	300 470 900 -125 150 335 375	350 150 300	Shipping Q3 FY'78 Shipping
RK Total	2,754	1,435	1,660 1895	800	
RM/RP Family					
MBA/RM03 RP05/06 RP07 RP08 RP06 Replacement	724 27 88 -	250 - 700 - -	470 480 -265 -200	300 300 200 310	Q2 FY'78 Shipping FY'79 (Targe FY'81 (Targe FY'80/81
RM/RP Total	839	950	735 680	1,200 140	9
R80 Family					
R80 & Backup Intelligent Subsystems R80K	34 55	1,500	-300 1240 -300 390 255	2,000 700 300	FY'80 (Targe FY'80 (Targe
R80 Total	89	1,800	1885	2,700 3 000 (Cont'd o	n Next Page)

	Actual FY'77	DEC. 176		FY'79	FCS
Components	280	325	663-300	500	_
Technology	604	1,500	1-332	1,600	_
Support	276	1,100	600480	600	-
Product Mgmt.	158	250	250	400	_
Contingency	-	410	400	1,400	-
MBA Field Text Box	-	130	<u> </u>	_	Cancelled
TOTAL BUDGET	6,560	10,000	9,800	11,800	
		4970	20	70	

B. FY'78 Unresolved Issue

The \$100K expense of bootstrap development is not budgeted for FY'78 or FY'79 by Disk Products. This expense has historically been borne by Dick Clayton's CSD Group. We believe that CSD should continue to fund bootstrap development and have therefore not allocated Disk Products funds for this purpose.

C. Consequences of \$11.8M FY'79 Ceiling

- 1. We will be at an \$11.8M running rate in Q4 FY'78. This implies that FY'79 will be a year of zero growth for Disk Products. Assuming normal inflation (i.e., from salary and service increases), we will have to operate with a total hiring freeze (including college recruiting) and will possibly have to resort to a reduction in manpower levels.
- Major product developments will proceed at a minimum funding level (e.g., R80, RL04).
- There will be no growth of our Advanced Development effort in FY'79.
- 4. No additional projects can be assumed in FY'79 without a reprioritizing of current product tactics and schedules. The contingency is too low to allow for new, as yet undefined, projects.

 a consorable margin of euro in Indget pujetions

GOMPANY CONFIDENTIAL

$\frac{\text{Disk Transfer Cost}}{\text{($Millions)}} \frac{\text{of Goods}}{}$

	FY'76	FY'77	FY'78	FY'79	FY'80	FY'81	FY'82
RK05J RK05F RL01 RL01F RL0X	9.2	13.0	16.9 2.7 2.0	7.8 2.7 15.1 4.8	4.6 2.0 26.7 9.5	2.6 1.3 40.1 14.3	.7 .7 44.5 15.2 7.2
Total	9.2	14.3	21.6	30.4	42.8	58.3	68.3
RP02 RK06 RK07 RL04	1.5	1.2 2.7	.6 14.9 .6	13.5	8.1 18.0	2.7 12.0 7.6	3.0 19.0
Total	1.5	3.9	16.1	25.5	26.1	22.3	22.0
RP03 RP04, 5 RM03 R80 60	1.6	15.9	15.9	12.7	9.5 13.4 2.4	5.3 10.1 12.0	1.1 6.7 24.0
Total	19.6	16.7	19.3	22.8	25.3	27.4	31.8
RP06 RP07/07+ RP08/08+ RP06 replace. R80 ₁₄₀		9.1	18.2	20.5 5.0	19.4 12.5 - 3.2	13.7 - 19.5 8.0 15.8	5.7 -35.5 20.0 31.5
Total	-	9.1	18.2	25.5	35.1	57.0	87.0
RS03, 4 RX Dual Controllers, Media, etc.	1.0 4.0 5.3	1.5 9.0 8.2	1.5 17.0 14.1	1.0 24.0 19.1	.5 30.0 24.0	38.0 30.5	45.0 38.1
Total	10.3	18.7	32.6	44.4	54.5	68.5	83.1
GRAND TOTAL	40.6	62.7	107.8	148.6	183.8	233.5	292.2

@E BLANK ALTMOD RCVSPEED:1200 XMTSPEED:110

NODEBREA NOTIDY NORTCOMP NOSLAVE NOHDX REMOTE Please LOGIN or ATTACH

1. ?\?

LOGIN

MIT TIP 410 #: 12 @1 78 Trying... Open

CMU10A 8.3/DEC 6.02VM 21:01:47 TTY110 Type 'HELP' if you need it. ·lasin n600sb28 JOB 19 CMU10A 8.3/DEC 6.02VM TTY110 Password: sbell

Other Jobs same PPN 2102

0.

Thu 2200...New LISP on SYS:; see DOC:LISP.DOC

Thu 2130...New 'standard' system KSETs. See FONTS.NEWEA730KS00] Wed 0100...Bulletin Board messades. Type HELP BULLETIN or HELP BOARD. ...SYS:NEWS(4-6)

HYDRA: 11-Apr-77 C.mmp down beginning at 2000 for emerg. hardware maint. perations schedule: SCHED.DOC[N810HY97]

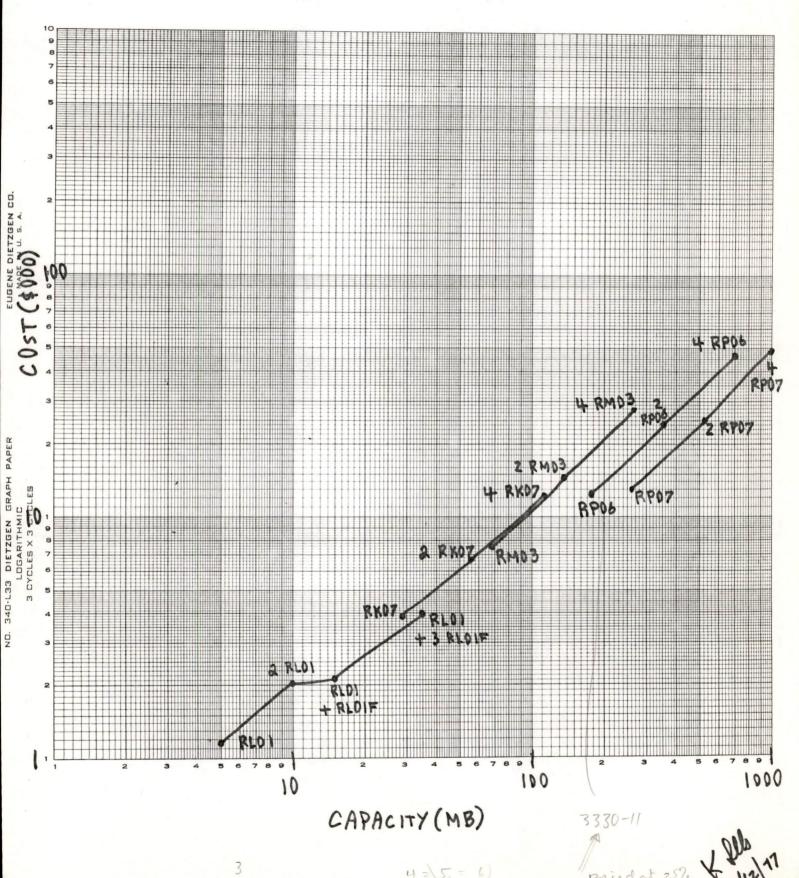
28-Mar-77 Last chance to set your stuff out of OLDMDIR.

ty.mail.box

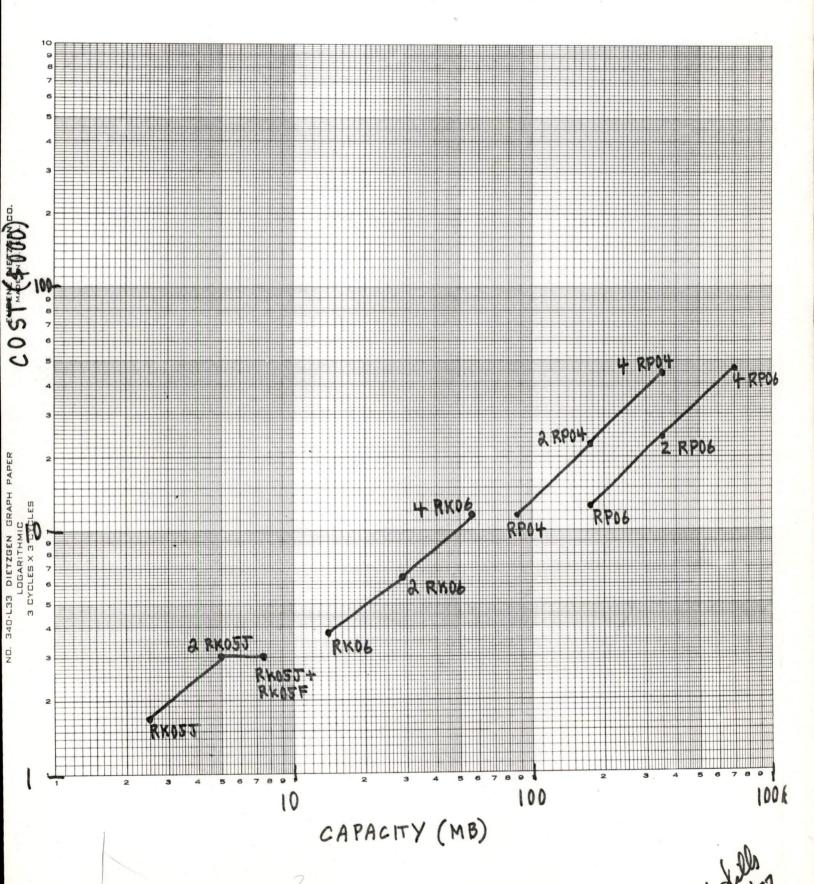
? MAIL.BOX (0) file was not found

+r apl TERMINAL .. key hik) new version, report errors to pollack AT CMUA APL-10 CMU E10(13) TTY4+01 01+07+01 MON

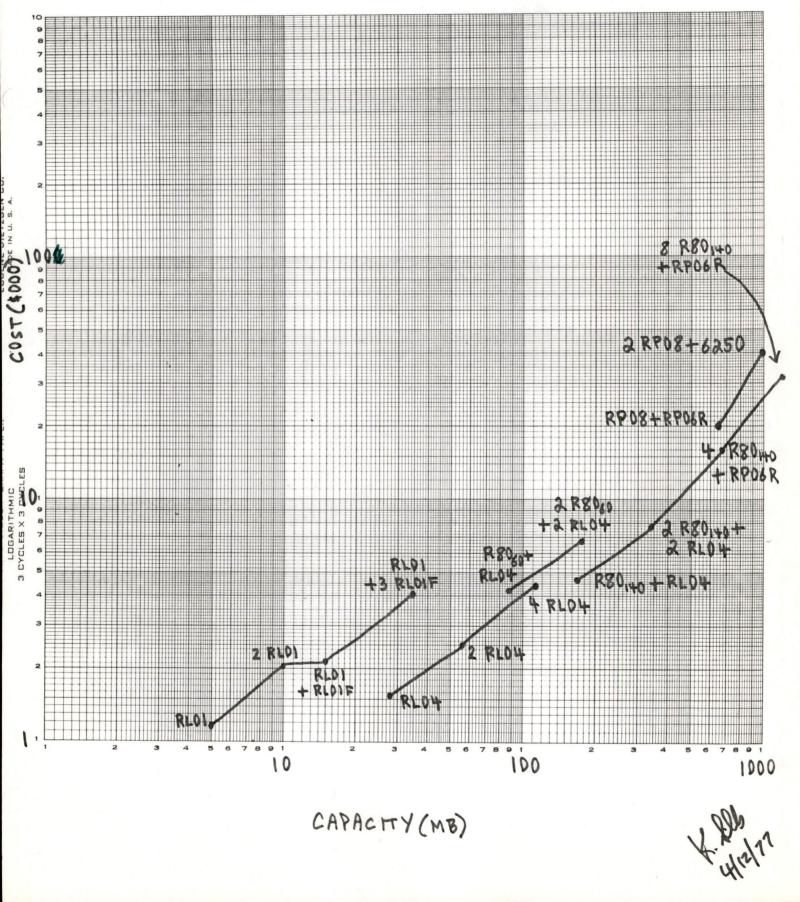
```
CLEAR WS
   )WIDTH
120
     ) WIDTH 150
WAS 120
    DIGITS
VALUE ERROR
     DIGITS
    )DIGITS 3
     DC+ 1.3 1.33 .89 .95 2.7 3 .95 10.7 10.6 6.7 1.35 1.6 2.1 11.4 12.5 14.5
1.3 1.33 0.89 0.95 2.7 3 0.95 10.7 10.6 6.7 1.35 1.6 2.1 11.4 12.5 14.5
     B+ 2.5 5 5 10 14 28 28 88 88 67 20 60 140 176 250 520
1.3 1.33 0.89 0.95 2.7 3 0.95 10.7 10.6 6.7 1.35 1.6 2.1 11.4 12.5 14.5
     DP+ 5.1 6.5 3.5 4 9.5 9.7 4 27.2 31.4 16 5.4 6.4 8.4 36.5 34 47
5.1 6.5 3.5 4 9.5 9.7 4 27.2 31.4 16 5.4 6.4 8.4 36.5 34 47
     cc+ .5 .5 .275 .275 1 1 1.8 1.8 1.8 1 1.6 1.6 1.6 1.65 1 1
0.5 0.5 0.275 0.275 1 1 1.8 1.8 1.8 1 1.6 1.6 1.6 1.65 1 1
    CP+4.4 4.4 2 2 6 6 10 9.5 9.5 10 10 10 10 9.7 10 10
4.4 4.4 2 2 6 6 10 9.5 9.5 10 10 10 10 9.7 10 10.
2.5 5 5 10 14 28 28 88 88 67 20 60 140 176 250 520
5.1 6.5 3.5 4 9.5 9.7 4 27.2 31.4 16 5.4 6.4 8.4 36.5 34 47
     DPXB
12.7 32.5 17.5 40 133 272 112 2.39E3 2.76E3 1.07E3 108 384 1.18E3
                                                                         6.42E3
                                                                                 8.50E3
2.04 1.3 0.7 0.4 0.679 0.346 0.143 0.309 0.357 0.239 0.27 0.107 0.06 0.207 0.136 0.0904
    1000xDP+B
2.04E3 1.30E3 700 400 679 346 143 309 357 239 270 107 60 207 136 90.4
   C
VALUE ERROR
   C
    A
    DC
1.3 1.33 0.89 0.95 2.7 3 0.95 10.7 10.6 6.7 1.35 1.6 2.1 11.4 12.5 14.5
2.5 5 5 10 14 28 28 88 88 67 20 60 140 176 250 520
    DCX1000+B
520 266 178 95 193 107 33.9 122 120 100 67.5 26.7 15 64.8 50 27.9
    DPX1000+B
2.04E3 1.30E3 700 400 679 346 143 309 357 239 270 107 60 207 136 90.4
             DP+DC
3.92 4.89 3.93 4.21 3.52 3.23 4.21 2.54 2.96 2.39 4 4 4 3.2 2.72 3.24
4.4 4.4 2 2 6 6 10 9.5 9.5 10 10 10 10 9.7 10 10
0.5 0.5 0.275 0.275 1 1 1.8 1.8 1.8 1 1.6 1.6 1.6 1.65 1 1
8.8 8.8 7.27 7.27 6 6 5.56 5.28 5.28 10 6.25 6.25 5.88 10 10
```

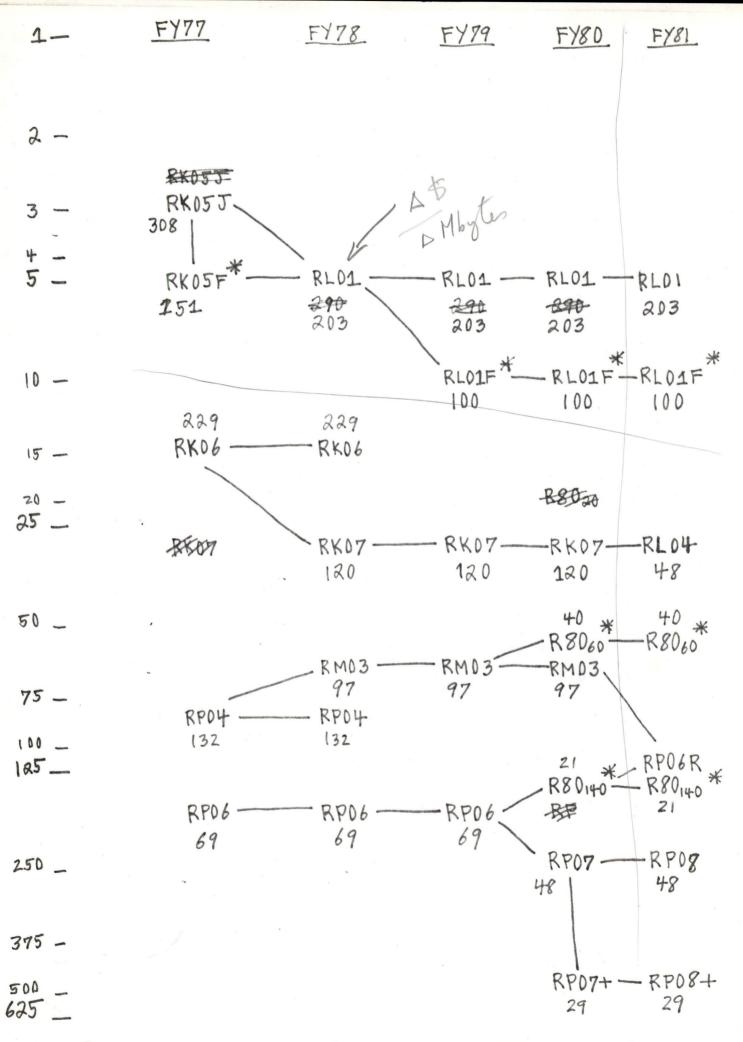

	N+1 2 No. XI																	
		5.00E0	5 2.50E2		1.00E1	1	.40E1	2.80E1	2.8	0E1	8.80E1	8.80	E1	6.70E1	2.00	1	6.00	Εi
	5.00E0	1.00E1	1	.00E1	2.00E1	2	.80E1	5.60E1	5.6	0E1	1.76E2	1.76	E2	1.34E2	4.00	1	1.20	E2
	1.00E1	2.00E1		.00E1	4.00E1	5	+60E1	1.12E2	1.1	2E2	3.52E2	3.52	E2	2.68E2	8.00	1	2.40	E2
	2.00E1	4.00E1		.00E1		1	.12E2	2.24E2	2,2	4E2	7.04E2	7.04	E2	5.36E2	1.60	2	4.80	E2
	Ho, XI		2.00E3	4.16	SE3													
	0.0025		0.005 0.01	0.01	0.014		.028 .056	0.028	0.088	0.088	0.0			0.06 0.12	0.14	0.13		0.25 0.5
	0.01	0.02	0.02	0.04	0.056	0	.112	0.112	0.352	0.352				0.24	0.56	0.70		1 2
	В		0.04	0.08	0.112		1.224	0.224	0.704	0.704	0.5	36 0.1		V+40	1+12	1+7.		-
	5 5 5)WIDT		8 28	88 88	67 20	60 1	40 176	250 52)									
	O)WIDT	TH 164																
WA	s 150																	
	No.x1		0.005	0.01	0.014	(.028	0.028	0.088	0.088				0.06	0.14	0.1		0.25
	0.005		0.01	0.02	0.028		0.056 0.112	0.056	0.176	0.176				0.12	0.28 0.56	0.3		0.5
			0.04	0.08	0.112		.224	0.224	0.704	0.704				0.48	1.12	1.4	1	2
	BT+N																	
	N																	
1	2 4 8 BT+No	, XB																
4	16 BT																	
		5.00E0 50E2			1.00E1	1	.40E1	2.80E1	2.8	30E1	8.80E1	8.80)E1	6.70E	1 2.00	E1	6.0	0E1
	5.00E0	1.00E1		.00E1	2.00E1	2	2.80E1	5.60E1	5.0	0E1	1.76E2	1.70	5E2	1.34E	2 4.00	E1	1.2	0E2
	1.00E1	2.00E1	2	.00E1	4.00E1	5	5.60E1	1.12E2	1.	12E2	3.52E2	3.5	2E2	2.68E	2 8.00	E1	2,4	0E2
		00E3 4.00E1	2.08E3 4		8.00E1	j	.12E2	2.24E2	2+2	24E2	7.04E2	7.0	4E2	5.36E	2 1.60)E2	4.8	0E2
		TEN., xDP	4.16E3															
	5.1		3.5 7	4 8	9.5 19	9.7 19.4	4 8	27.2 54.4	31.4	16 32	5. 10.				36.5 3. 73 6		47 94	
	20.4	26 1	4	16	38	38.8	16	109	126	64	21.	6 25.	6 3	33.6 1	46 13	5	188	
	40.8 DCT+N		8	32	76	77.6	32	218	251	128	43.	2 51.	2 6	57.2 2	92 27	2	376	
	1.3	1.33	0.89				3.	0.95	10.7	10.6			1.35	1.6	2.1		1.4	12 25
	2.6 5.2	2.66 5.32	1.78 3.56		5.4 10.8		6	1.9 3.8	21.4	21.2			2.7 5.4	3.2	4.2 8.4	4	2.8 5.6	50
	10.4 cct+4	10.6 16900	7.12	7.6	21.6		24	7+6	85+6	84.8	3 5.	3.6 1	0.8	12.8	16.8	9	1.2	100
	0.5 0. 0.5 0.		5 0.2		1	1.8			1	1.6	1.6		-	1 1	1			
	0.5 0.	5 0.27	5 0.2	75 1	1	1.8	1.8	1.8	1 1	1.6	1.6	1.6 1	.65	1	1			
	0.5 0.	5 0.27	5 0.2	75 1	1	1.8	1.8	1.8	1	1.6	1.6	1.6 1	+65	1	1			

4.4 4	1.4 2	2	6	6	10	9.5	9.5	10	10	10	10	9.7	10	10		
4.4 4	1.4 2	2	6	6	10	9.5	9.5	10	10	10	10	9.7	10	10		
	1.4 2	2	6	6	10	9.5 9.5	9.5 9.5	10	10	10		9.7 9.7	10	10		
	PT+++T+	-		0	10	7+3	7+3	10	10	10	, 10	7+/	10	10		
	CCT+DCT															
SPT	10.0		,	4F F	45 7	4.4	7/ 7	40		0.	45.4	4/ 4	10 A	44.0	AA	57
	10.9	5.5	6	15.5 25	15.7 25.4	14	36.7 63.9	40 72		26 42	15.4	16.4	26.8	46.2 82.7	78	104
		16	18	44	44.8	26	118	135		74	31.6	35.6	43.6	156	146	198
45.2 sct	56.4	30	34	82	83.6	42	227	261	1	38	53.2	61.2	77.2	302	282	386
1.8	1.83	1.17	1.23	3.7	4	2.75	12.5	12	.4	7.7	2.95	3.2	3.7	13.1	13.5	15.5
3.1	3.16	2.06	2+18	6.4	7	3.7				14.4	4.3	4.8	5.8	24.5	26	30
5.7	5.82	3.84	4.08	11.8	13	5.6	44.6			27.8	7	8	10	47.3	51	59
10.9 SPTXH	11.1 -x-sct	7.4	7.88	22.6	25	9+4	87.4	86	+6	54.6	12.4	14.4	18.4	92.8	101	117
5.28 5.9		4.9	4.19 3	.93 5.09	2.94	3+3	3.38 5	.22 5	.13 4	.97	3.54 3.26	3.68				
4.71 5.5				.63 4.86			2,92 4				3.38 3	3.47				
4.35 5.2 4.15 5.0				45 4.64			2.66 4					3.36				
	TX1000	7002	3100 0	+57 7+7/	2.00	3.01	2100 7	16/ 7	120		0,120 2477	010				
0.0038	0.00218		0011	0.0006	0.	00111	0.0005	61 0	.0005	0	.000417	0.000465	0.00	0388	0.00077	0.000273
0.00292	0.00176			0.0005	0.	000893	0.0004	54 0	.00032	1 0	.000363	0.000411	0.00	0313	0.00052	0.00019
	000156		VVV/	0.0000		VVU70	V+VVV1	07 0	+0000		***************************************	0 1 0 0 0 1 1 1 1				
0,00248				0.00045	0.	000786	0.0004	0	.00023	12 0	.000336	0.000384	0.00	0276	0.000395	0.000148
0.00226		0.00009		0.00042	5 0.	000732	0.0003	73 0	.00018	38 0	.000323	0.00037	0.00	0257	0.000333	0.000128
	000141						0,0000									
	1000÷BT						- (4-		E 0.050		4 4750	A /FED	7 (1050	7.70E2	2.73E2
	2.18E	1.10E2	.10E3	6.00E2	1	.11E3	5.61E	2	5.00E2		4.17E2	4.65E2	3+6	88E2	1114-2	2+/3-2
2.92E3	1.74E			5.00E2	8	.93E2	4.54E	2	3.21E2	2	3.63E2	4.11E2	3.:	13E2	5.20E2	1.90E2
		1.00E2		4 5050	7	0/50	4 005	7	2 725		7 7/50	7 0450	7	76E2	3.95E2	1.48E2
	1.52E	9.52E1		4.50E2	/	.86E2	4.00E	4	2.32E2		3.36E2	3.84E2	2+	/0-2	3473-2	1+40-2
	1.41E			4.25E2	7	.32E2	3.73E	2	1.88E	2	3.23E2	3.70E2	2.	57E2	3.33E2	1.28E2
		9.28E1														
3.8 2	1-18 1.	1	0.6	1.11	0.561	0.5	0.417	0.4	465	0.388	0.77	0.273	0.131	0.263	0.176	0.11
			0.5		0.454	0.321				0.313	0.52	0.19		0.235		0.1
			0.45		0.4	0.232				0.276	0.395			0.221		0.0952 0.0928
2.26 1 CPT÷E		.75	0.425	0.732	0.373	0.188	0.323	5 0	37	0.257	0.333	0.128	V+V687	0.214	0.141	V+V720
		0,4	0.2	0.42	9 0	.214	0.357	0.10	08	0.108	0.149	0.5				.0551 0.04
		0.5	10.1	1	4 0		0.179/			0.054	0.0746		0.0			0276 0.02
	0.22	0.1	0.05		7 0		0.0893	0.02		0.027 0.0135					0.00893 0	
0.22	0.11	0.05	0.02	5 0.05	30 V	.0268	0.0446	0.0	100	A+0195	, 0.010/	V+V0Z	0 0+0	200	TANGOTTO V	. Jugar Vena
V-V(D																
0.72 0.366 pc	0.233	0,123	0.264	0.143 0	.0982	0.142	0.141	0.115	0.14	7 0.0	0.02	64 0.07	41 0.0	154 0.0	0298	
1.3 1.33	0.89 0.	95 2.7	7 3 0.	95 10.7	10.6	6.7 1	.35 1.6	5 2.1	11.4	12.5	5 14.5					
cc																
0.5 0.5 0	1+2/5 0+1	2/5 1	1 1.8	1.8 1.	8 1	1.6 1.	6 1.6	1.65	1 1							
	40 44	00 00	00 00	17 50		40 474	OFO.	-00								


2,5 5 5 10 14 28 28 88 88 67 20 60 140 176 250 520

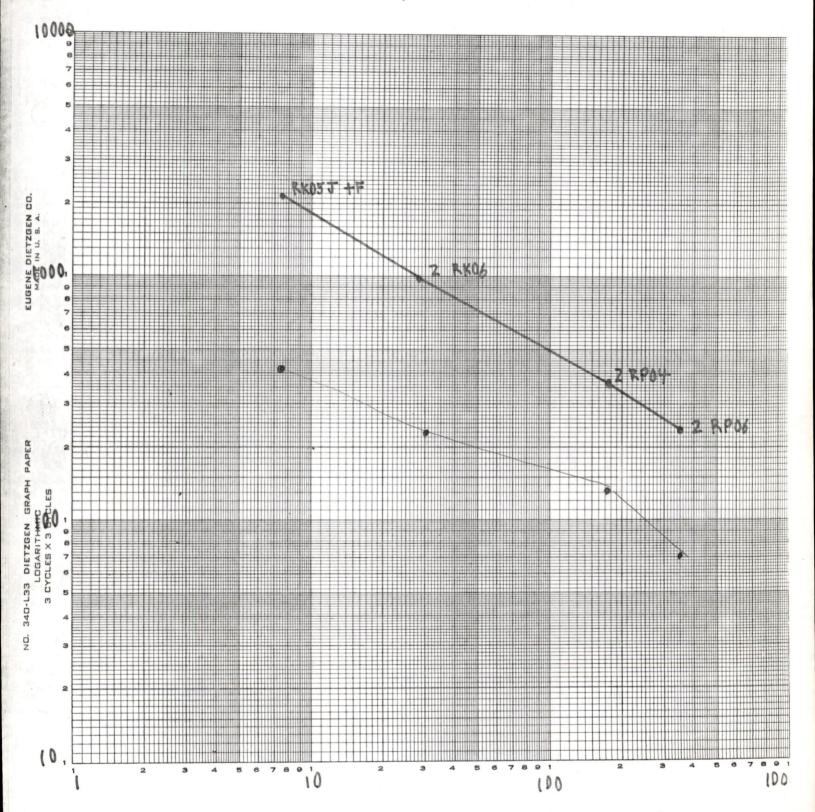
CPT+4 16PCP CPT

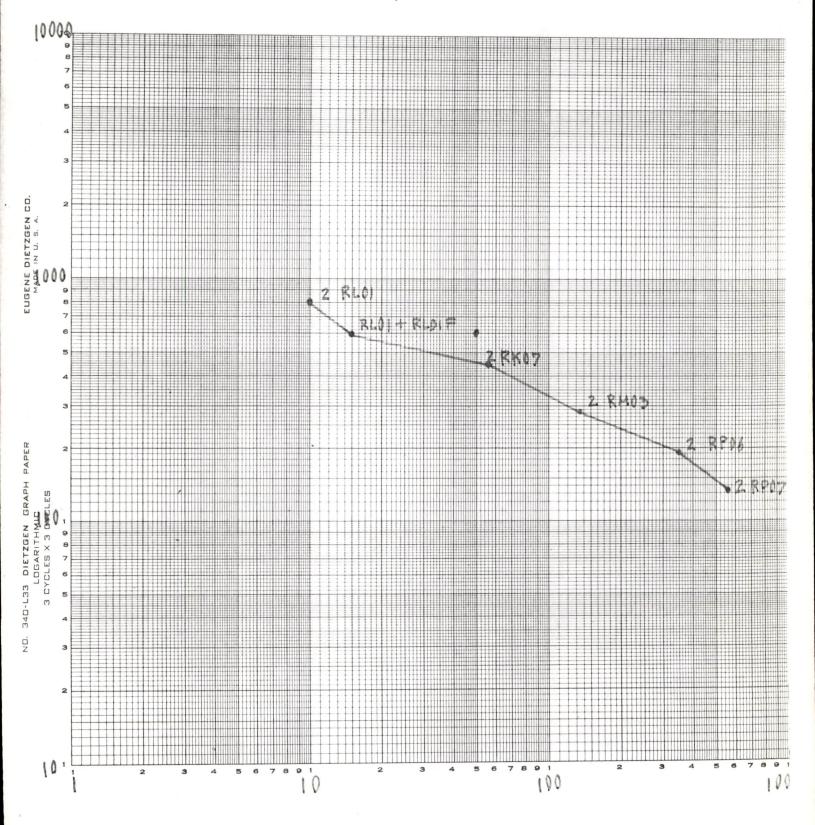

FY79 DISK SUBSYSTEMS

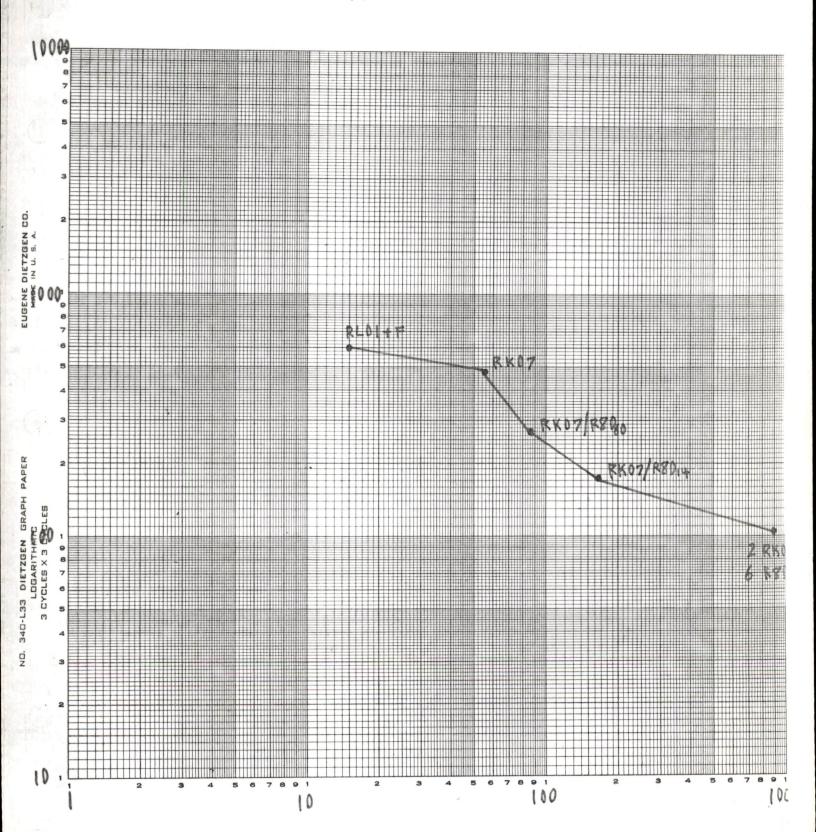

FY77 DISK SUBSYSTEMS

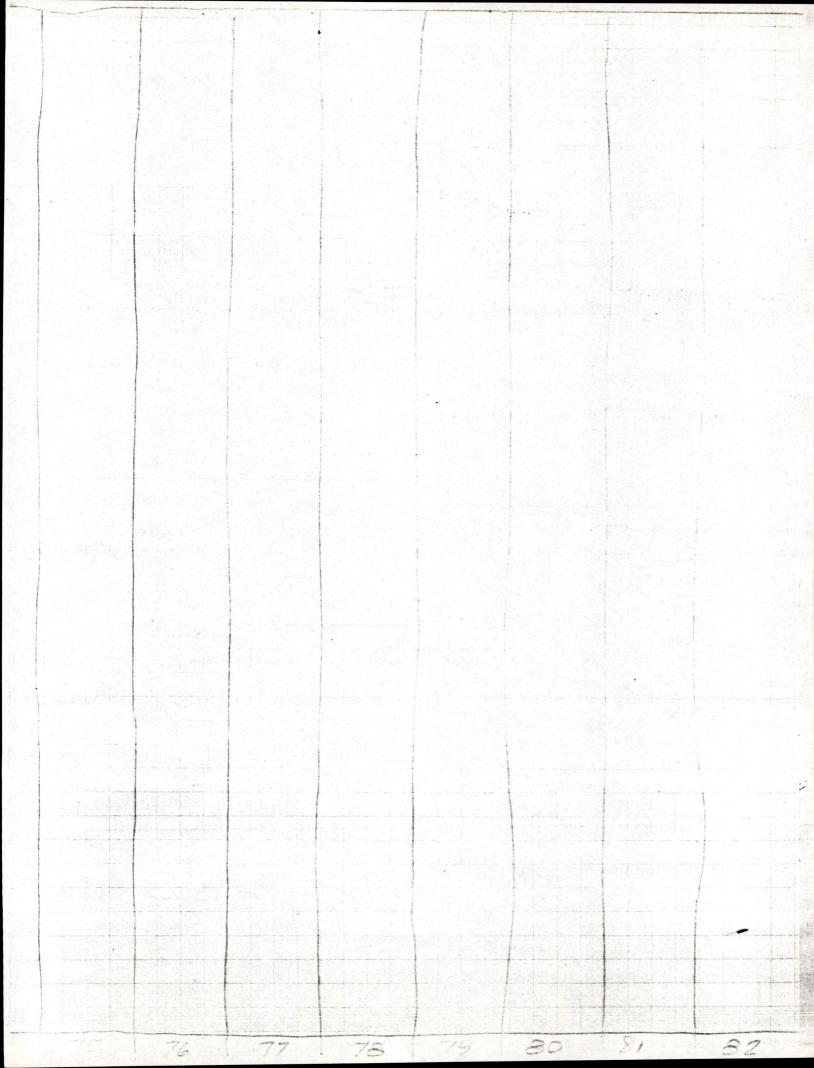
DISK SUBSYSTEMS FY81

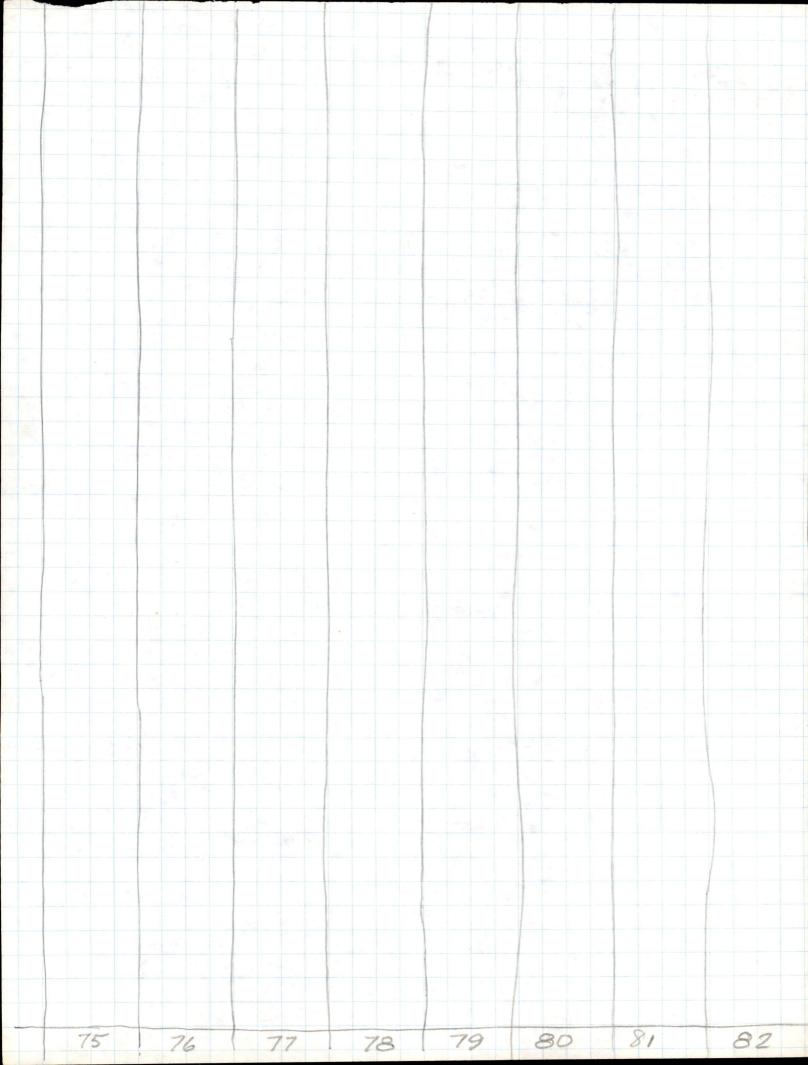
CAPACITY (MB)




* FIXED


mx DEC Big dish (CPO6) 75-150 K worth of Lisks 400# byts /dish 1216


grosch's on.


FY77

	В		DC	DP	CP CC					
	Size /#t/#t/	<i>(</i> -	Drive Coput/	Drive	Contral Pr/cos	t.				
			cont/Mb		186.19					
DF32	7 20					7.7		1000		
OF64								* 30		
RS 256										
RS03		1577 68 30		9.5	5.4) 11/20				264.25	
RSOY				13,8	7.4.42					
					5,40mi					
RX01	34 37			1.05	2.0					
RXD2										
RX04							100			
629										
RK03	y Dr. y				3.50					
05	2.5	7	1.3 520	5.1	44 .5	_	30			
OSF	5	2	1.33 266	6.5	4.4 .5	-	- 7			
RL01	5	3	89 178	3,5	2275	_ 99-	3			
02= 01 F	10	4	95 95	4.	2, 275.		+	100 C		
- XO	5		14 800							THE CO.
RPOZ	20		3 1500		0 0					
K103	14	5	2.7 193	95	6		5	70		
		3			120/20	9.19	C.			
RK 07=06	28	6		9.7	6 1		1912031			
RLOY	28	7	.95 34	4	10 1.8				AT D	
R103	40		8 200		00	- A				
RPO4	<i>88</i>	8	10.7	27.2	9.5 1.8		7		117.21	
RMO1/03	67	10	6.7 100	31.4	10 1		2			
R8020	20	- 11	1.35 67	5.4	10 1.6	. 32				AL ST THE S
60	60	12	1.6 27	6.4	10 1.6		6			
140	140	13	2.1 15	8.4	10 16		10			3.13
ARPO6	176	14	11.4 65	36,5	9.7 1.65	-	9		1-21-1	
RPOT	250 520 THE COOP	15	12.5 50	34	10 1			The state of the s	1 1 1 1 1	
FORM TO	THE COOP	10	14.5	47	10 1					

```
GUIDE TO PRODUCTS 4/5/77 page 1
        Mation qualified: ?--estimated, !--committed, otherwise--proposed)
                            List Price Transfer Cost Product Manager (with annual percentage change) (Group Manager)
                     FCS
                    FY74,Q4 $ 22120 -0% $ 7400 -0%
                               15200 -0 5170 +3
                                                            (Grant Saviers)
    {1024KB fixed head disk }
             FY72,Q4 $ 8300 -0% $ 1656 +4% K. Srivastava
5600 -0 1330 +4 (Grant Saviers)
  {2.5MB removable disk cartridge for the PDP-8}
            FY76,Q4 $ 8900 -0% $ 1626 +4% K. Srivastava
6200 -0 1300 +4 (Grant Saviers)
                                                              K. Srivastava
   {5MB non-removable disk cartridge for the PDP-8}
           FY72,Q4 $ 10450 -0% $ 1750 +4% K. Srivastava
5600 -0 1330 +4 (Grant Saviers)
{2.5MB removable disk cartridge for the PDP-11}
RK05F/11 FY76,Q4 $ 11050 -0% $ 1720 +4% K. Srivastava 6200 -0 1300 +4 (Grant Saviers)
   {5MB non-removable disk cartridge for the PDP-11.}
                                              1150
               FY78,Q2! $ 6400? -0% $ 4600?
                                                              Wayne Galusha
                                                      (Grant Saviers)
RL01
                               4000? -0 1300?
     (5MB removable cartridge disk for $1800 is 5ding dual drives
     (10MB) and controller
RLO1F (RLO2, RSL+) FY79,Q4? $ 7400? -0% $ 1360? -18% Wayne Galusha 5000? -0 -1040? -24 (Grant Saviers)
     {A 10MB fixed media complement to the RL01.} 950
                    FY77,Q2 $ 17000 +2% $ 3750 -0% Steve Orr
10450 +2 2650 -0 (Grant Saviers)
RK06
     {14MB removable cartridge disk}
RK07 (RK06D) FY78,Q3? $ 18000? +2% $ 3900? -0%
                               11500?M +2 2800? -0 (Grant Saviers)
     {28MB removable cartridge disk for $6500 including dual drives
      and controller; budget includes RKO6 support}
                      FY81,Q1? $ 14000? -0% $ 2750? -0% Wayne Galusha 4000? -0 950? -0 (Grant Saviers)
 RL04
      {28MB removable disk companion to the R80 with an intelligent
      (programmable) controller and packaging supporting mixes of up to
      4 £80's and £104's. The controller does automatic error
      recovery, seek and sector optimization, online diagnosis, error
         - FCS " indicates next release of a currently shipping product
         - Prices and costs include controller, formatter, and first drive
         - Second and subsequent drive prices and costs shown on second line
```

GUIDE TO PRODUCTS 4/5/77 dation qualified: ?--estimated, !--committed, otherwise--proposed)

> FCS List Price Transfer Cost Product Manager (with annual percentage change) (Group Manager) List Price Transfer Cost.

logging, performance and statistical logging.}

R80- P000000 FY80,Q2? \$ 15400? -0% \$ 2950? -0% Grant Saviers 5400? -0 1350? -0 (Grant Saviers)

{20MB single platter non-removable disk with intelligent AGE (programmable) controller - 500 CLOCK

R60 FY80,Q2? \$ 16400? -0% \$ 3200? -0% 6400?4 -0 1600? -0 (Grant Saviers)

{60MB dual platter non-removable disk with intelligent (programmable) controller; - cv. Acc.

R80+ FY80,Q2? \$ 18400? -0% \$ 3700? -0% Grant Saviers 8400?# -0 2100? -0 (Grant Saviers) Grant Saviers

140MB four platter non-removable disk with intelligent (programmable) controller - see RUM.

FY78,Q2! \$ 26000 -0% \$ 7000 RM03 (RM01) -2% Kevin Smith 16000 -0 <u>6000</u> -2 (Grant Saviers)

(67MB formatted capacity, removable CDC Mags disk with 28ms average seek and 8.3ms or 12.5ms average latency)

FY75,Q4 \$ 36750 -0% \$ 12600 -0% RP04 27200 -0 10670 -0 buyout disk pack) 9,55 Greater . res. (Grant Saviers) . [88MB ISS buyout disk pack] 9,55

FY76,Q4 \$ 40950 -0% \$ 12500 -0% Kevin Smith 31400 -0 10797 -0 (Grant Saviers)

88MB MRX buyout disk pack upgradable to a RP06} 108

RP06

FY79,Q3 \$ 44000 -0% \$ 13000 -0% Kevin Smith 34000 -0 12000 -0 (Grant Saviers) RP07 {260MB formatted capacity, fixed media, Massbus disk with head

per track option.}

FY79,Q4 \$ 57000 -0% \$ 15500 -0% Kevin Smith 47000 -0 14500 -0 (Grant Saviers) RP07+ {520MB formatted capacity, fixed media, Massbs disk with head per

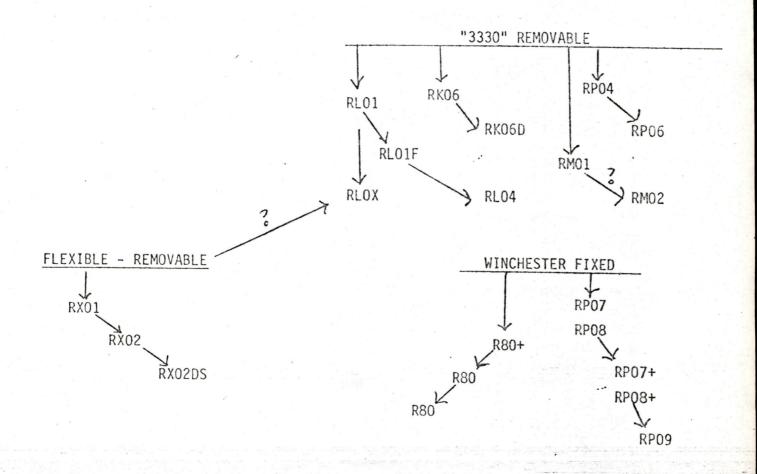
⁻ FCS "#" indicates next release of a currently shipping product

⁻ Prices and costs include controller, formatter, and first drive

⁻ Second and subsequent drive prices and costs shown on second line

SUBSYSTEM STRATEGY

COMBINE THE FLEXIBILITY OF REMOVABLE


MEDIA WITH THE INCREASED COST EFFECTIVENESS

AND INCREASED RELIABILITY OF FIXED MEDIA

IN MULTIPLE SPINDLES FOR HIGH SYSTEM

AVAILABILITY AND PERFORMANCE

COMPANY CONFIDENTIAL

0.1 1.0 10 100 1000

SINGLE SPINDLE FORMATTED CAPACITY - MEGABYTES

COMPANY CONFIDENTIAL

Bell Jordano ML 12-1/15/

Mike I believe you have to get serious and cc: Lemais/ Cloxer fretayton Fruit S INTEROFFICE MEMORANDUM the 16k chip / DATE: TO: high orl.

Mike Gutman

Bob Peyton Grant Saviers

Paul Bauer Gordon Bell

FROM: Stanton Pearson

DEPT: 00D Planning

EXT: 2424

Servicendutor LOC/MAIL DI LOC/MAIL STOP:

ML12-3/E13

he youd useful

SUBJ:

CC:

SUMMARY SECTION FOR STORAGE SYSTEMS BEIGE BOOK

Stop Hogging cores
This Spring Disk, Tape, and Main Memory are scheduled to be put into the same Beige Book.

The title of the Beige Book will be "Storage Systems."

Several people would benefit if we had a summary section, four to

five pages, that described our thinking on how the storage elements

fit together over time.

If you buy the assumption, how would we go about getting the summary?

I have arranged meetings with each of you to exchange ideas on this subject.

SHP:ssc

How's the BEAMOS work coming?

Size, cost (162) price 1

3

RX01 7 - 04 5 - RS64 7 RS256 5

Acton 263 Couldy

RK03

Fault Tolerance

Ornstein, S. M. W. R. Crowther, M. F. Kraley, R. D. Bressler, A. Michel, and F. E. Heart, "Pluribus - A Reliable Multiprocessor," AFIPs Proceedings, National Computer Conference, 1975, pp. 551-559.

Arizienis, A., G. C. Gilley, F. P. Mathur, D. A. Rennels, J. A. Rohr, and D. K. Rubin, "The STAR (Self-Testing and Repairing) Computer: An Investigation of the Theory and Practice of Fault-Tolerant Computer Design," IEEE Transactions on Computers, Vol. C-20, No. 11, November 1971, pp. 1312-1321.

Hamer-Hodges, K. J., "Fault Resistance and Recovery within System 250," International Conference on Computer Communication, Washington, D. C. Oct. 1972.

DN	R KOS	RKOS F	RK06	RR04
DCS	1.3		2,7	10.6
DRR	5.1		9.5	25.9
CCS	1		1	1.8
CPR	4.4		6	9.)
MBY	2.5		14	88

.

i 8

30

Multiprocessors

Heart, F. E., S. M. Ornstein, W. R. Crowther, and W. B. Baker, "A New Minicomputer/Multiprocessor for the ARPA Network," AFIPs Proceedings, National Computer Conference, 1973, pp. 529-537.

Wulf, W. A., and C. G. Bell, "C.mmp - A Multi-Mini-Processor," AFIPs Proceedings, Fall Joint Computer Conference, 1972, pp. 765-777.

RLOI Pirotal in Small Systems <
How could we make a meet. around it?

RPO7

what is RMO3 Controller at 784? page 24 Marshus als?

get rid of WF -> WM-

How do get more coupling among garrduits.

RLO4 => R80 at samo time.

SEMI-LOGARITHMIC
3 CYCLES X 10 DIVISIONS PER INCH @-2RK055'S O FY76 Projucts
O FY77 Problets
△ FY 78 Probucts
□ FY80 Projucts 17 190

MADE IN U. B. A.

DISK PRODUCTS LIST

FY76		RK05J	RPR02	RP04				
	Capacity Price Price/MB	5 \$ 16K \$3200	40 \$ 30K \$750	176 \$ 61K \$346				
FY77		RK05J/F	RK06	RP04	RP	06		
	Capacity Price Price/MB % Change from 1976 Curve	7.5 \$ 16K \$2133 -9%	28 \$27.5K \$ 980 -0-	176 \$ 64K \$363 -0-	\$ \$2	50 83K 37 20%		
FY78		RK05J/F	RL01	RK06	RK07	RM03	RP06	
	Capacity Price Price/MB % Change from 1977	\$ 16K	10 \$ 10K \$1000 -44%	28 \$27.5K \$ 980 -0-	56 \$ 25K(3. \$446 -29%	134 6X)\$ 38K(\$283 -29%	350 3x)\$ 83K \$237	
FY79		PL01	RL01/F	RK07	RM03	RF06	RP07	
	Capacity Price Price/MB % Change from 1978	10 \$ 8K \$800	15 \$ 9K \$600 -40%	56 \$ 25K \$446	134 \$ 38K \$283	350 \$ 69K \$197 -17%	520 \$ 75K \$134 -42%	(3X)
FY80		RL01/F	RK07	RK07/R60	RKO7	/R140	2 RK07 6 -RM03/#R	140
	Capacity Price Price/MB % Change from 1979	15 \$ 9K \$600	56 \$ 27K \$482	88 \$ 24K \$272 -30%	(4X) \$ 22 \$1	97-168 (3.6x) 分(78 13%	93.4 952.5K \$ 127 Same as	23104

- (7) The R60 and R140 have potential to be significant additions to the Product Group. But control of cost objectives will be essential unless we want some ho-hum products. I would put these products in the same category as the LA36 and RL01 in terms of importance of unit cost control as a prerequisite to market success. Another reason why cost reduction of the RK07 is important is to insure that the RK07/R60 combination will have minimal price/MB (\$200 cost reduction on RK07 may be easier than \$200 on R60).
- (8) The RM03 and three R140's fall right next to two RP07's, again highlighting the need for cost control on R140.

 "Replacing" RP07's with RM03 plus three R140's does not appear to be a foregone conclusion. Also, looks like the RP08 effort should start at 520 MB/spindle or better and not even bother with 260 MB/spindle unless a depopulated version of 520 MB is seen as necessary for compatibility, extending smartness downward, etc.

/bca

INTEROFFICE MEMORANDUM

TO: Grant Saviers
Mike Riggle
Kevin Smith
Wayne Galusha

Ken Sills *
Phil Arnold
Bob Jack

DATE: March 24, 1977 July Steve Orr DEPT: Disk Products

EXT: 6439

LOC/MAIL STOP: ML1/E58

10 ROADON BON

SUBJ: PRICE/MB OF DISKS - POSSIBLE MEASURE OF MARKET SUCCESS

NOTE: This is in no way a comment on Pricing or Profit of Disks.

Attached are price/MB point plots of our disk products connected by a curve for a given year.

If we say that (1), a product that fills a gap along the curve in a given year is one (less significant) indicator of a product potential success and that (2), introducing a product below the curve is a second (more significant) indicator of a product's success. Then we may draw some interesting observations.

- (1) The curve has not moved down at all in either FY76 or FY77. The one exception is the RP06 with a 20% price/MB.
- (2) The RLO1, as no surprise to anyone, offers a significant price/MB reduction of 44%.
- (3) The RK06 may appear to the customer only as a gap filler. The RK07 (RK06D) offers a 29% price/MB reduction from previous curve at \$25K for two drive subsystem. Cost reduction of the RK06/RK07 should be undertaken to insure product cost gets to \$2300 (or better) for the RK06 and \$2500 (or better) for the RK07 leaving Westfield to allow aggressive pricing.
- (4) RLOIF and an RLI1/RLO1 subsystem price reduction in FY79 represents another significant contribution to the low end, moving the curve down at that end by 40% from the prior year.
- (5) At \$38K for two drive subsystems, the RM03 falls 29% below the previous curve. This aggressive pricing forces the RK07 price margins down if both are to coexist. Again citing the need for cost reduction effort on the RK06/07.
- (6) The RP07 represents a significant increase in our offering. It moves the curve down by 42% and extends the high end somewhat.

350

Lordon -

something everyone "wants" to forget.

To accurately trace utility and longuage size will take a few hours. The project has started.

We'll need to plug in frim numbers later.

21/2 / N.

Note: original of Grondon Sketch returned

Digital

Interoffice Memo

Subject: COMPLETE FAMILY TREE AND HOW MANY DISKS/TAPES?

To: Bob Puffer, Grant Saviers,

Ken Sills, Kevin Smith

Date: 11 MAY 77

From: Gordon Bell

Dept: OOD

Loc.: ML12-1 Ext.: 2236

F/U 5/18

Could you get the dates to make a tape, fixed head, moving head family tree for cpu's? (It would go back to the PDP-1.) For disks the axis probably should be approximately log (bytes) and tape it would be density.

The tree shows relationships: the start of a branch is the start of a project; the module is FCS; and the terminals its death.

From this figure we should get some understanding about product life, number of disks, time to market, etc.

The attached memo forms the question and presents a metric for cpu's. In looking at the disk strategy another metric {d(disk)}/dt is needed together with the average age/disk. The time disk strategy is also attached and the metrics are given. It's clear we must have more idealistic goals:

- Disks have to be separated > x2 (and preferably x3) in capacity from one another. (See the range/disk)
- A new disk must replace an old one based on a cost/performance metrics of 41% for high end (x2 each 2 yrs.) and at least 26% for low end (x2 each 3 yrs.)
- 3. Disks should have a lifetime of more than 3 years.

Can we plot these metrics?

Mid 79 the picture (from the time line) is, for example:

	Disk	Size	Factors
	RL/RK	5	
	RLO 1F	10	x 2
	RKO6	14	x1.4
•	RK07	28	х2
	RM03	66	x2.4
	RP05	88	x1.33
	RPO6	176	x2

Range/Disk = $2 \times 35.2 = 2.02$

(This doesn't look good! Is it correct?) Is it clear why we shouldn't have so many?

GB:ljp

ejtirange.	35 70	responses and the second second second	The second control of			
dish	3/14/2	弘	3/2 5/3	4 4/24	4	
(dish) 1/dt 1 Range/dish	0 0 0 3	0 0 1 0	2031	10023	3210	
αο-						
300	78					RF08
100	4				A	(28)
			-	(50)		
200	2 _	(65)			R80+	
26-	RP04	/ 12 POST			(15)	
0	1 (129)	(120)		RMO1 (100)	R80	1
40	RPOZ	·			(26)	
	RP03 7	2		RK07 (07)	1/1	
20 7		4.00	RKO6(193	4-1	(67)	
10-		agrammatic francisco			RLOIF	
8-1.					(95)	
5 - 3	9	RKOSF 266	N. C	1 (178)		R L OI X
3,2 R	K05		COLORADOR			
25	(520)					
1.25						
				and a later and a		
8	1					
					1	
4						and the second s
	76	Rx01	78	79	80 .	81 82

Subject: How Big Is the cpu Family?

To: OOD M/C Date: 5 JAN 77
Paul Bauer Janice Carnes From: Gordon Bell

Ed Corell Bruce Delagi Dept: OOD

Howard Fineman John Levy Loc.: ML12-1 Ext.: 2236

Ken Olsen Grant Saviers Steve Teicher Mike Tomasic

This is a suggestion for a presentation to the board presenting our cpu, disk, printer, etc. families in terms of ranges.

Ken has been suggesting we either cut machines or explain why there are so many. Since I can't bear to part with members of the family, I was able to rationalize that we have the right number of machines...as compared with IBM. (And with what I think users need.) Ironically, I took IBM to task in 1970 for having too many models...(7 or 11). I proposed only three by using multiprocessors.

The 04/34 and 45/55 pairs are considered as 1 machine each. The LA36/180/120 is similar. This is a significant innovation in design technology and it may be the best way to approach designs in other areas (e.g., tapes, disks, some software). In this way we get 2 products with 1 effort and set of plans!

IBM's strategy on the 360 was to have a factor of:

-- X 2 gap in price to separate the models X 3 gap in performance

3/2

This means perf = k X cost

See Bell/Newell p587 for analysis/data (attached)

Price (avgs) 1:65

Price (min-min to max of max) 1:125?

20 - 91 Perf 1:300 (probably high)

Models 20, 25*, 30, 40, 44*, 50, 65, 75, 85*, 91, 95**

* later or ** special model

7 or 10 (or 11) models depending how you count

7 125 = 1.99 <--- original plan

10 125 = 1.6 <--- what got sold (neglecting #95)

> 1.36 <--- should be 2 for Grosch's law to hold 65 = 300

Note	we	do	a	better	job	now	then	IBM	did	on	360!		Current	11's
------	----	----	---	--------	-----	-----	------	-----	-----	----	------	--	---------	------

	Range	Issues		Original 20
1.	03	Range 10-20		11/20 - (20-50K)
	04 34	20-30 40-80	6	
	45 55	45 - 75 60 - 100	$1.7 = \frac{250}{10}$	
	70	90-250	or	
			4 2.25 = 25	

6 machines

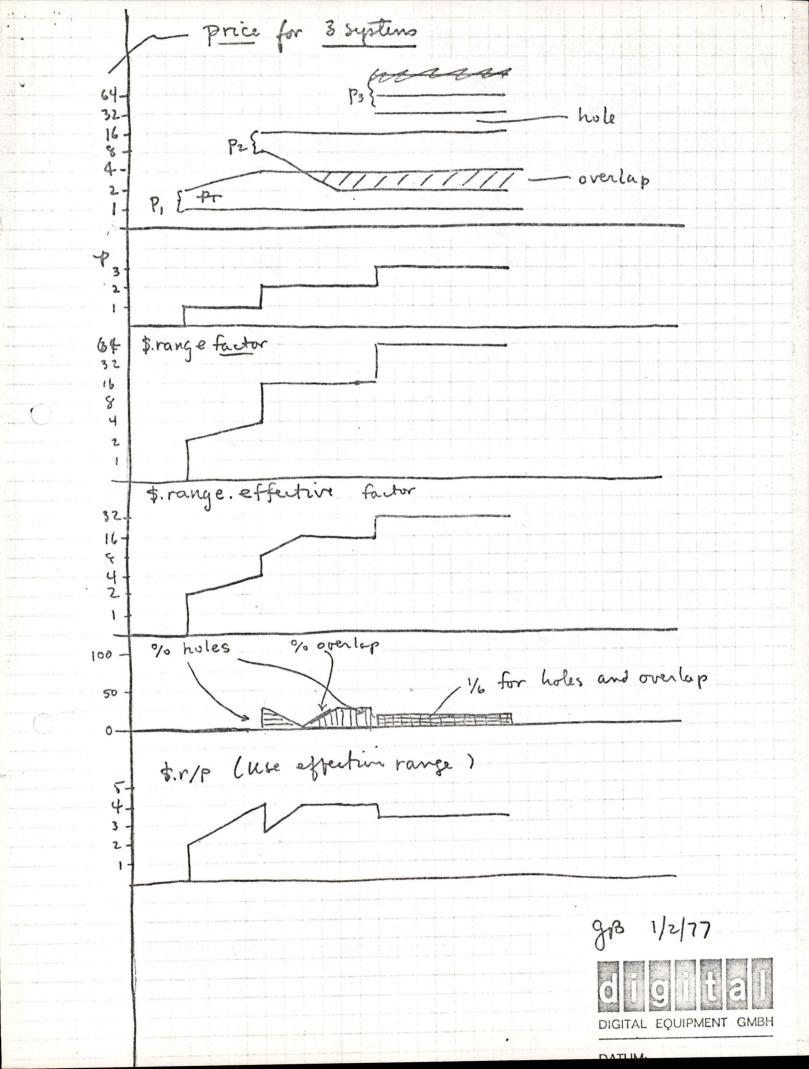
or

4 machines if we count 04/34 and 45/55 as one. The PDQ will replace 45/55.

2. Factor of 2 in price is probably all a single machine can do.

3/2
Therefore 25 = 125 performance factor we should have. We get 70 for plain Fortran...but probably more when it's floppy vs. RPO6.

- 3. Can't do all designs at one time! (This causes more models, less separation.) In essence there always has to be phasing blips.
- 4. Must treat 8, 10, 11 as <u>separate</u>, possible competitive, product lines like Chevy, Olds, Cadillac. Each have a range and a set of customers that move across the range.
- 5. Engineering resources = f(range, volume, # systems).
- Our planning is more complex because we may sell at 2 or 3 levels of integration (i.e., chips, boards, box, box + software).

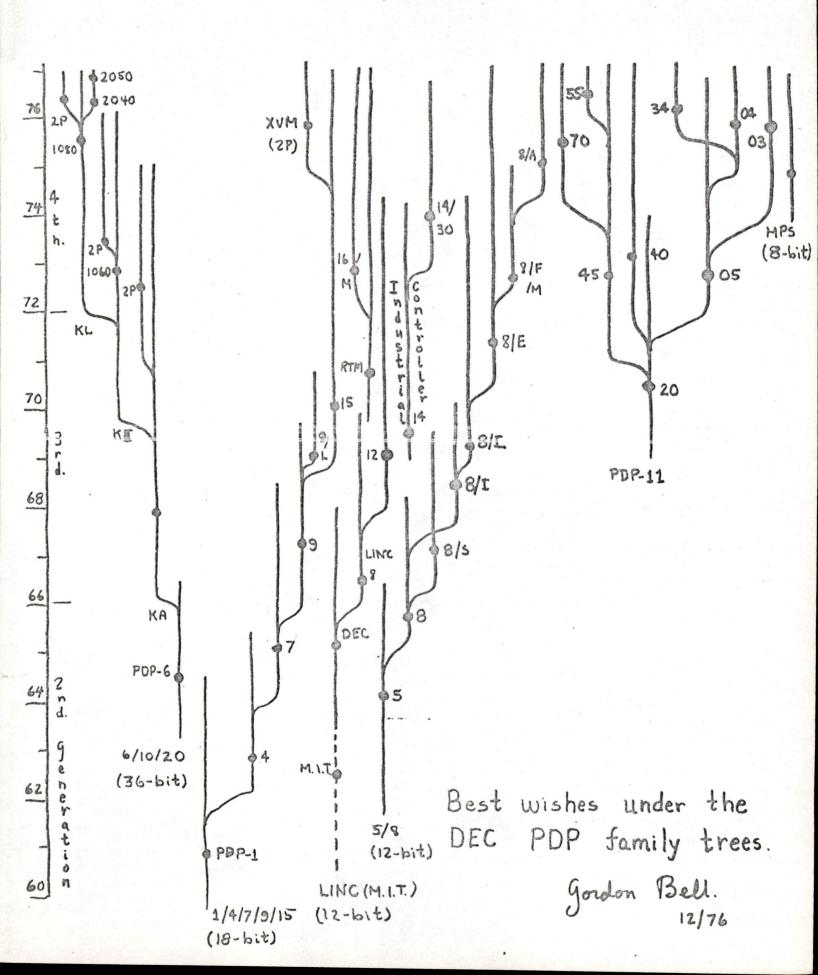

The attached metrics are ones I'd like to use for measuring range(t) for all products - disks, cpu's, printers, etc. We can measure each family and all the machines. Note, we can get >100% overlap.

\$.range - from lowest price to highest price includes holes

p - # of processors or units in catalog

\$.range.effective - subtracts holes (e.g., 11-10 gap) in range to get an
effective coverage

.r/p = .range 1/p


Note, there is a similar set of measures for performance.

%-overlap = log (\$.overlap diff.)/log (\$.range)

%-holes = log (\$.holes)/log (\$.range)

GB:1jp

Attachments

1ble 4 IBM System/360 Pc (power: cost) and an alternative design based on multiprocessors

	Given			Proposed multiproc	cessor alternatives	
model	Pc.power	Pc.cost	Quantity.Pc	Pc.model	Pc.power	Pc.cost
20	1	0.00049	1	25	1.5	0.0005
25	1.5	0.00050	1	25	1.5	0.0005
30	2	0.0013	2	25	3	0.001
			2	20	2	0.00098
40	6	0.003	4	. 25	6	0.002
			6	20	6	0.00294
44	30	0.0041	1	44	30	0.0041
50 .	15	0.012	1	44	30	0.0041
65	63	0.022	2	44	60	0.0082
75	92	0.037	3	44	90	0.012
			2	65	126	0.044
85	252	0.087	8	44	240	0.033
91	314	0.091	11	44	330	0.045

5 between a 4 × 1 power processor and 20 power processor. The largest gap in the System/360 is a factor of 3 between Vodels 30 and 40.

Conclusions

The IBM System/360, by achieving a production record, has fulfilled its principal design objective. The technical goals, however, are of interest to us here. The most interesting aspect of the design is achieving a performance range of 314 to 1 over a series of models, with a primary-memory size range of 2,048 to 1 for various computer configurations. Thus a user is given 3 very large set of configuration alternatives. The SLT technology, though not integrated-circuit, is certainly of the third generation. Using SLT the fabrication of the models is superb.

There is a vast array of secondary-memory and terminal devices to couple with almost any other system. The System/360 is the first computer to make extensive use of microprogramming. Microprogramming is used for the definition of the System/360 instruction-set processor, but, more important, microprograms define previous IBM computers so that a user can operate satisfactorily during the interim period when older programs are being updated to use the System/360. There are provisions for multicomputer structures. Within a single computer structure there is adequate means of peripheral switching so that reliable and high-performance structures can be assembled. Early structures do not provide multiprocessing; we have suggested multiprocessing as a technique to achieve the same performance-range objectives. The io processor, though rather elaborate, provides a certain commonality.

The instruction-set processor for the System/360, based on a general-registers structure, appears to be overly complex, yet incomplete, because there are so many data types. The addressing mechanism and lack of multiprogramming ability make the System/360 a hard machine to appreciate fully. Although we praise microprogramming as a means of accomplishing compatibility with the past, it appears to stand in the way of getting the most performance from the hardware. Perhaps of most significance, the System/360 may have a greater lifetime than any past computer.

Selected Bibliography

Architecture and logical structure: AmdaG64a (TeagH65)1, BlaaG64a2, BlaaG64b2; General implementations: AmdaG64b2, CartW64, PadeA642, StevW642; Microprogramming: GreeJ64, TuckS67, WebeH67; Formal description of Pc5; FalkA642; Performance and reviews: HillJ66, SoloM66; Model 40 modifications for multiprogramming: LindA66; Model 67: ArdeB66, FikeR68, GibsC66, LaueH67; Model 85; ContC683, LiptJ683, PadeA6S3; Model 91 architecture and technology: AndeD674, AndeS674, BolaL674, FlynM674a, LangJ673, LloyR674, SechR674, TomaR674; Model 92 (proposed): ContC64 (GrimR65a), AmdaG64c (GrimR65b), ChenT64 (GrimR65c); Serviceability: CartW64; Other references: AdamC62, CorbF62, GrosH53, SharW69, WilkM65; IBM reference manuals: IBM System, 360 Functional characteristics manuals for each model, IBM System/360 Configurator (diagram) for each model, A22-6821-4 IBM System/360 Principles of Operation, A22-6810-8 IBM System/360 System Summary

^{1()} denotes the review of previous article.

²IBM Systems Journal, vol. 3, nos. 2 and 3, 1964.

³IBM Systems Journal, vol. 7, no. 1, 1968.

¹IBM Journal of Research and Development, vol. 11, no. 1, January, 1967.

⁵Given in A Programming Language/APL [Iverson, 1962].

DISK STRATEGY Change 0 -> RMOI; 0 -> RPOY {RPOS, RPO6} -> Memorex Mfg. (eliminate WF, WM chain) RKO7F is highest pronty RLOIF is 2nd highest " R80 is 3rd highest Eliminate all other projects until these projects are staffed and managed to Schedule.

Spred up?

993

TO:

Gordon Bell Ken Sills Mike Riggle

INTEROFFICE MEMORANDUM

DATE: June 1, 1977 FROM: Grant Saviers DEPT: Disk Products

EXT: 2357

LOC/MAIL STOP: ML1/E58

SUBJ: A SIMPLE MODEL OF MAKE VERSUS BUY DISK ENGINEERING

ASSUMPTIONS:

- 1. We have a goal of being competitive and self-sufficient.
- 2. Consequence to (1), Advanced Development should be about 20% of total spending.
- 3. A <u>competitive</u> "make" product costs \$4 million per year including components, pack, drive, diagnostics and subsystem, and a midlife "kicker" and has a three-year life.
- 4. An innovative, cost competitive "buy" product costs \$1 million per year for vendor selection, diagnostics, and the subsystems.
- 5. If we made everything, three products (small, medium, large) give adequate coverage of the range.
- 6. It takes 1.5 "buys" to cover the range of one "make."
- Administration and Product Management are overheads included in project spending.

ZERO MAKE	START - ANNUALIZED RATE
$1.5 \times 3 \times Buv = $4.5M$	Q3 FY'76

ONE MAKE ONE MAKE Budget assumptions:

1 X Make 1.5 X 2 X Buy Adv. Dev.	=	\$ 4.0M 3.0M 1.7M		FY'78 @ \$9.8M 20% growth in FY'79 25% growth in FY'80
		\$ 8.7M	Q1 FY'78	

TWO MAKE

THREE MAKE

3 X Make	=	\$12.0M	
Adv. Dev.	=	3.0M	
		\$15.0M	Q3 FY'80

COMMENT

"Competitive" is used to imply on-the-heels-of IBM, or better than or equal to Memorex, CDC and ISS.

This model is one way to answer the question "What does it take?"

With the current budget growth guidelines, thinking about making large disks in addition to small and medium, is wishful thinking. We should tell the Product Lines this.

To the extent that our current "make" products are not "competitive," they cost less to develop (e.g., DG's RP04).

Inflation, decentralization, phased programs, increased emphasis on DMT and MTBF will probably continue to escalate development costs at 10 to 20%/year.

Therefore, the START dates are optimistic.

/n1h

funt

TO: Gord

Gordon Bell

CC:

Bob Puffer Ken Sills Kevin Smith INTEROFFICE MEMORANDUM

DATE: May 13, 1977

FROM: Grant Saviers

DEPT: Disk Products

EXT: 2357

LOC/MAIL STOP: ML1/E58

MAY 1 9 10

SUBJ: DISK FAMILY TREE AND RANGE

Your range analysis for our disk products seems inconsistent with the previous analysis that you did in January for the CPU family. I would argue that since "the 04/34 and 45/55 pairs are considered as one machine each," it is unfair to consider the RLO1/RLO1F, RKO6/RKO7, and RPO5/RPO6 as six members as opposed to three. I haven't gone and done it but I think I could show that there are fewer wires, etch changes and parts different between these disk pairs than the CPU pairs. The CPU analysis doesn't consider also all of those options designed to extend the range of a machine. How should one consider EIS, CIS, warm floating points and hot floating points? Some of these are fairly large chunks of hardware certainly bigger than the hardware differential between some of the disk pairs.

I conclude that we have four products in mid-79 covering a capacity range factor of 35%. A factor of 35 is 2.43^4 as compared to our CPU range of 25% or 2.25^4 .

I agree that we need more idealistic goals and should be more aggressive in pursuing technology improvements. Ken Sills will plot the metrics you requested.

/nlh

Grant

Subject: COMPLETE FAMILY TREE AND HOW MANY DISKS/TAPES?

RECEIVED DISK PRODUCTS GRANT SAVIERS

MAY 1 1 1977

To: Bob Puffer, Grant Saviers.

Ken Sills, Kevin Smith

Date: 11 MAY 77

From: Gordon Bell

Dept: OOD

FILE Loc.: ML12-1 Ext.: 2236
REPLY

F/U 5/18

Could you get the dates to make a tape, fixed head, moving head family tree for cpu's? (It would go back to the PDP-1.) For disks the axis probably should be approximately log (bytes) and tape it would be density.

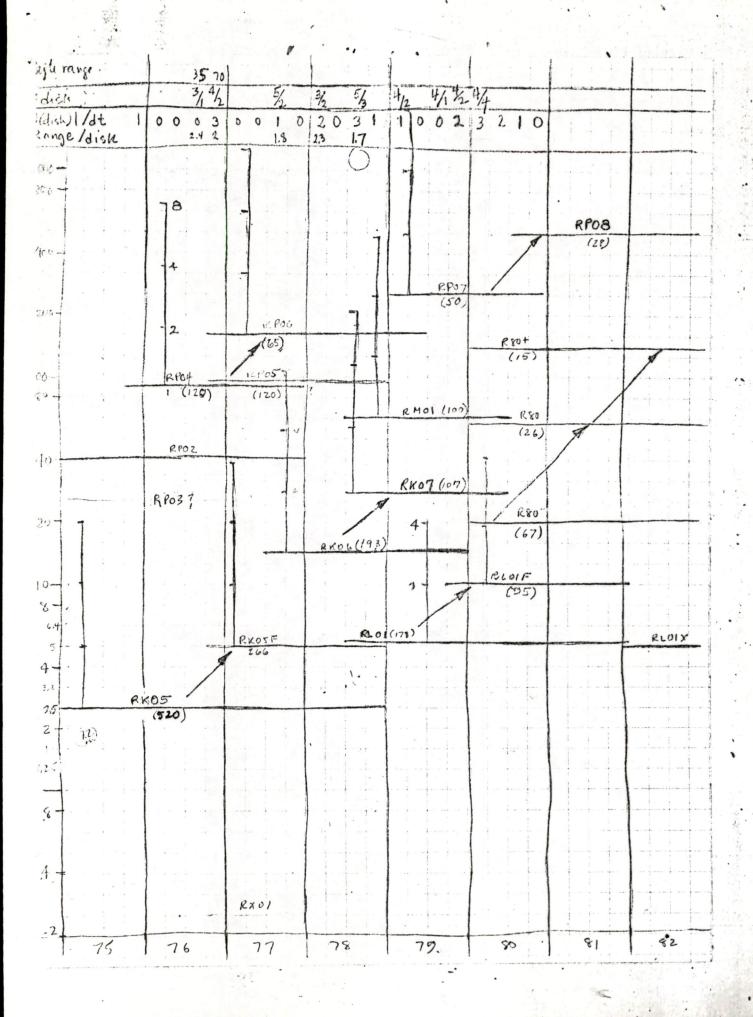
The tree shows relationships: the start of a branch is the start of a project; the module is FCS; and the terminals its death.

From this figure we should get some understanding about product life, number of disks, time to market, etc.

The attached memo forms the question and presents a metric for cpu's. In looking at the disk strategy another metric Id(disk) I/dt is needed together with the average age/disk. The time disk strategy is also attached and the metrics are given. It's clear we must have more idealistic goals:

- ·1. Disks have to be separated > x2 (and preferably x3) in capacity from one another. (See the range/disk)
- A new disk must replace an old one based on a cost/performance metrics of 41% for high end (x2 each 2 yrs.) and at least 26% for low end (x2 each 3 yrs.)
- 3. Disks should have a lifetime of more than 3 years.

Can we plot these metrics?


Mid 79 the picture (from the time line) is, for example:

 Disk	Size	Factors
RL/RK	5	
RLO 1F	10	x2
RKO6	14	x1.4
RKO7	28	x2
		x2.4
RMO3	66	x1.33
RPO5	88	x2
RP06	176	

Range/Disk = $2 \times 35.2 = 2.02$

(This doesn't look good! Is it correct?) Is it clear why we shouldn't have so many?

GB:1jp Httachment

Subject: How Big Is the cpu Family?

To: 00D

M/C

Date: 5 JAN 77

Paul Bauer

Janice Carnes

From: Gordon Bell

Ed Corell

Bruce Delagi

Dept: OOD

Howard Fineman

John Levy

Loc.: ML12-1 Ext.: 2236

Ken Olsen

Grant Saviers

Steve Teicher Mike Tomasic

This is a suggestion for a presentation to the board presenting our cpu. disk, printer, etc. families in terms of ranges.

Ken has been suggesting we either cut machines or explain why there are so many. Since I can't bear to part with members of the family, I was able to rationalize that we have the right number of machines...as compared with IBM. (And with what I think users need.) Ironically, I took IBM to task in 1970 for having too many models... (7 or 11). I proposed only three by using multiprocessors.

The 04/34 and 45/55 pairs are considered as 1 machine each. The LA36/180/120 is similar. This is a significant innovation in design technology and it may be the best way to approach designs in other areas (e.g., tapes, disks, some software). In this way we get 2 products with 1 effort and set of plans!

IBM's strategy on the 360 was to have a factor of:

-- X 2 gap in price

to separate the models

X 3 gap in performance

3/2

This means perf = k X cost

See Bell/Newell p58? for analysis/data (attached)

Note

Models 20 - 91

Price (mins) 1:105

Price (avgs) 1:65

Price (min-min to max of max)

20 - 91

Perf 1:300 (probably high)

Models 20, 25*, 30, 40, 44*, 50, 65, 75, 85*, 91, 95**

* later or ** special model

7 or 10 (or 11) models depending how you count

125 = 1.99 <--- original plan

125 = 1.6 <--- what got sold (neglecting #95)

1.36 <--- should be 2 for Grosch's law to hold

65 = 300 Note we do a better job now then IBM did on 360! Current 11's

	Range	Issues				Original	20
		Range					
1.	03	10-20				11/20 -	(20-50K)
	04	20-30					
	34	40-80					
			6				
	45	45-75	1.7 =	250			
	55	60-100		10	`		
	70	90-250	10	•			
			1	1			
			2.25	= 25			

6 machines

or

4 machines if we count 04/34 and 45/55 as one. The PDQ will replace 45/55.

2. Factor of 2 in price is probably all a single machine can do.

3/2

Therefore 25 = 125 performance factor we should have. We get 70 for plain Fortran...but probably more when it's floppy vs. RPO6.

- 3. Can't do all designs at one time! (This causes more models, less separation.) In essence there always has to be phasing blips.
- 4. Must treat 8, 10, 11 as <u>separate</u>, possible competitive, product lines like Chevy, Olds, Cadillac. Each have a range and a set of customers that move across the range.
- 5. Engineering resources = f(range, volume, # systems).
- Our planning is more complex because we may sell at 2 or 3 levels of integration (i.e., chips, boards, box, box + software).

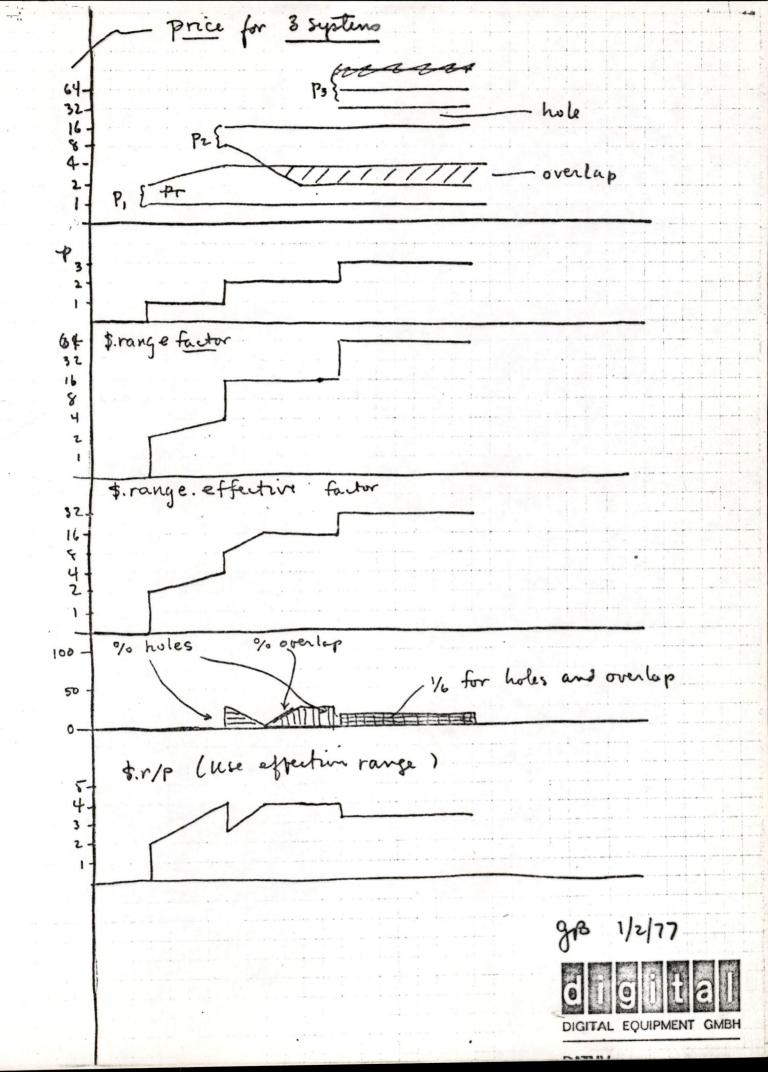
The attached metrics are ones I'd like to use for measuring range(t) for all products - disks, cpu's, printers, etc. We can measure each family and all the machines. Note, we can get >100% overlap.

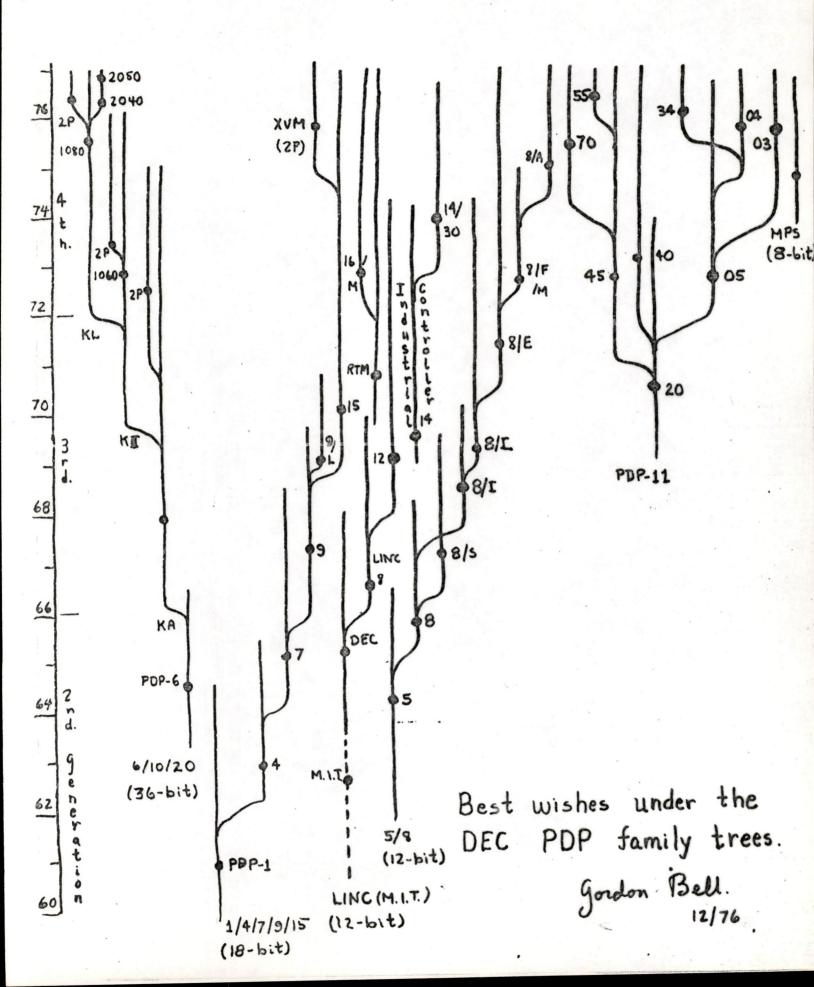
\$.range - from lowest price to highest price includes holes

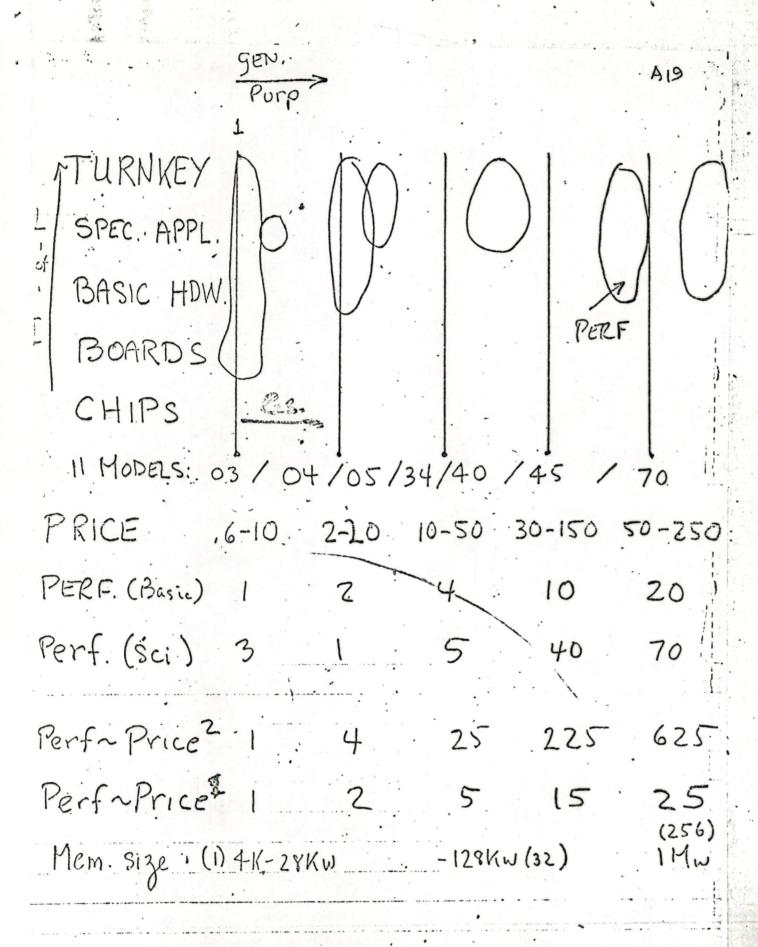
p - # of processors or units in catalog

\$.range.effective - subtracts holes (e.g., 11-10 gap) in range to get an
effective coverage

\$.r/p = \$.range 1/p


Note, there is a similar set of measures for performance.


%-overlap = log (\$.overlap diff.)/log (\$.range)


%-holes = log (\$.holes)/log (\$.range)

GB:1jp

Attachments

136 4 IBM System/360 Pc (power: cost) and an alternative design based on multiprocessors

		Given		Proposed multiprocessor alternatives			
model		Pc.power	Pc.cost	Quantity.Pc	Pc.model	Pc.power	Pc.cost
20		1	0.00049	1	25	1.5	0.0005
25		1.5	0.00050	1	25	1.5	0.0005
30		2	0.0013	2	25	3	0.001
				2	20	2	0.00098
40	•	6	0.003	4	. 25	6	0.002
				6	20	6	0.00294
44		30	0.0041	1	44	30	0.0041
50		15	0.012	1	44	30	0.0041
65		63	0.022	2	44	60	0.0082
75		92	0.037	3	44	90	0.012
				2	65	126	0.044
85		252	0.087	8	44	240	0.033
91		314	0.091	11	44	330	0.045

5 between a 4 \times 1 power processor and 20 power processor. The largest gap in the System/360 is a factor of 3 between Vodels 30 and 40.

Conclusions

The IBM System/360, by achieving a production record, has suffilled its principal design objective. The technical goals, however, are of interest to us here. The most interesting aspect of the design is achieving a performance range of 314 to 1 over a series of models, with a primary-memory size range of 2,048 to 1 for various computer configurations. Thus a user is given a very large set of configuration alternatives. The SLT technology, though not integrated-circuit, is certainly of the third generation. Using SLT the fabrication of the models is superb.

There is a vast array of secondary-memory and terminal fevices to couple with almost any other system. The Sysem/360 is the first computer to make extensive use of micro-regramming. Microprogramming is used for the definition of the System/360 instruction-set processor, but, more important, microprograms define previous IBM computers so that a user an operate satisfactorily during the interim period when older regrams are being updated to use the System/360. There are rovisions for multicomputer structures. Within a single computer structure there is adequate means of peripheral switching that reliable and high-performance structures can be assembled. Early structures do not provide multiprocessing; we save suggested multiprocessing as a technique to achieve the time performance-range objectives. The io processor, though other elaborate, provides a certain commonality.

The instruction-set processor for the System/360, based on a general-registers structure, appears to be overly complex, yet incomplete, because there are so many data types. The addressing mechanism and lack of multiprogramming ability make the System/360 a hard machine to appreciate fully. Although we praise microprogramming as a means of accomplishing compatibility with the past, it appears to stand in the way of getting the most performance from the hardware. Perhaps of most significance, the System/360 may have a greater lifetime than any past computer.

Selected Bibliography

Architecture and logical structure: AmdaG64a (TeagH65)¹, BlaaG64a², BlaaG64b²; General implementations: AmdaG64b², CartW64, PadeA64², StevW64²; Microprogramming: GreeJ64, TuckS67, WebeH67; Formal description of Pc⁵; FalkA64²; Performance and reviews: HillJ66, SoloM66; Model 40 modifications for multiprogramming: LindA66: Model 67: ArdeB66, FikeR65, GibsC66, LaueH67; Model 85: ContC68³, LiptJ68³, PadeA65³; Model 91 architecture and technology: AndeD67⁴, AndeS67⁴, BolaL67⁴, FlynM67⁴a, LangJ67³, LloyR67⁴, SechR67⁴, TomaR67⁴; Model 92 (proposed): ContC64 (GrimR65a), AmdaG64c (GrimR65b), ChenT64 (GrimR65c): Serviceability: CartW64: Other references: AdamC62, CorbF62, Gro-H53, SharW69, WilkM65; IBM reference manuals: IBM System, 360 Functional characteristics manuals for each model, IBM System/360 Configurator (diagram) for each model, A22-6821-4 IBM System/360 Principles of Operation, A22-6810-8 IBM System/360 System Summary

^{1()} denotes the review of previous article.

² IBM Systems Journal, vol. 3, nos. 2 and 3, 1964.

³¹BM Systems Journal, vol. 7, no. 1, 1965.

^{*}IBM Journal of Research and Development, vol. 11, no. 1, January, 1967.
*Given in A Programming Language/APL [Iverson, 1962].

digital

TO: Bob Puffer

COMPANY CONFIDENTIAL

INTEROFFICE MEMORANDUM

DATE: January 29, 1976 FROM: Grant Saviers DEPT: Disk Products

EXT: 2357

LOC/MAIL STOP: ML1/E58

SUBJ: SUMMARY DISK STRATEGY

TECHNICAL POSITION - IBM has improved the areal recording density at 34% per year since 1963. Their large disk products have increased in capacity at this rate while the price has remained essentially flat at \$25K per spindle. DEC's product technology lags IBM by two years for purchased disk products (RP's) and by 4.5 years for manufactured products (RK05 and RK06).

COMPETITION - Currently, 20% of the disks attached to DEC CPU's are not supplied by DEC. The lost business ranges from 40% in the OEM Product Line to 12% in end-user markets.

CURRENT PRODUCT STRATEGY - The current strategy is to build subsystems of multiple removable spindles separated by at least factors of four in capacity and two in cost.

FUTURE STRATEGY - We expect a strong industry wide move towards fixed media for larger capacity on-line storage because of cost and reliability advantages. Removable disk storage will dominate low-end systems for backup, off-line storage, and software distribution. Intermediate and large systems will require limited amounts of removable 70 to 100 Mbyte disk storage mixed with higher capacity fixed media storage.

Our goals are:

- Technologically lag the 1963-1976 IBM technology trend line by less than 18 months with at least one buy product ASAP.
- 2. Manufacture low and medium capacity (≤100 Mbyte) products with costs equal to components suppliers. Technology should lag IBM by less than 2.5 years by late 1979.
- 3. Upgrade our subsystems technology especially in the area of "familiness", upgradability, system performance, and RAS features.
- 4. Reduce corporate dependency on disk profits to permit realistic pricing of disk subsystems.

SHORT TERM PRODUCT TACTICS (<1.5 YEARS)

- LOW END -1. Ship RK05F in Q4 FY76, subject to review of announcement and backlog impact.
 - 2. Ship RSL in Q4 FY77. Stress meeting cost and schedule objectives.
- MID RANGE-1. Ship RK06 in Q1 FY77.
 - 2. Ship RK07 ASAP at 47 or 70 Mbytes.
 - 3. Back up RK07 with a buyout able to ship in Q3 FY77. Defer RK07 versus buyout decision until Q2 FY77.

HIGH END -1. Ship RP06 in Q4 FY76.

INTERMEDIATE TERM PRODUCT DEFINITIONS (1.5 to 3 YEARS)

It is believed that very economical mid to high capacity fixed media products can be designed with 3350 technology (a la Memorex Maverick - an extended S/32 drive). Exploring the product space made practical by this technology is key before defining specifications and placing products.

LONG TERM PRODUCT DEFINITIONS

No meaningful statements can be made about products with an FCS in 1980 or later without substantial fundamental technological investigations.

BUSINESS FORECAST - Disk NOR is growing more rapidly than total NOR due to demand for increased capacity compounded by significant growth of the Commercial Product Lines. Data Base Management Software will add additional impetus that is probably currently underestimated by DEC forecasters.

	DISK	BUSINES	S BY74-	FY79			
	ACTUA	L	FORE	CAST			
	<u>FY74</u>	<u>FY75</u>	<u>FY76</u>	FY77	<u>FY78</u>	FY79	
CORP NOR CORP GROWTH	422	533 26%	730 37%	970 33%	1250 29%	1620 29%	
DISK NOR DISK GROWTH	40.5	71.4 75%	130 82%	197 52%	270 37%	362 34%	
DISK NOR AS % CORP	9.6	13.4%	17.8%	20.3%	21.6%	22.3%	
GROSS MARGIN	62%	60%	60%	60%	60%+	60%+	
5% DISK NOR	2.0	3.57	6.5	9.9	13.5	18.1 <	
All data is estima	ted by	3. 46 Disk P	roduct 1	Managem	ent.		Sn

1/2-Inch TAPE STRATEGY

The 1/2-inch tape objective is to offer a range of magtape commensurate with the disk and system products. This includes two high performance options (1600 and 6250 bpi) to appropriately support RP04, RP06, and RK08 products. Beyond that the 3850 technology will be evaluated from both technological and memory hierarchy standpoints. Below that performance area low-cost, low-performance tape systems will be produced to cover the minimum backup and I/O applications on a cost effective basis.

Strategy to be employed is to buy out technological advances (or joint venture) and develop replacements from the low end progressing as engineering and manufacturing expertise allow attractive financial return opportunities.

Tactics include: combining TU10/TU16 into a common drive (TU16 modified to incorporate common competitive design features) for long-term vacuum column Massbus offering; introducing performance and feature oriented buyout TU47 (75-125 ips with auto load); development of low-cost tension tape system to replace TU10 in low usage applications; buyout or co-venture a 125 ips 6250 bpi system. A three product offering can be achieved with two drives and three controllers only if we manufacture the TU47/TU6250 drive.

SMALL SYSTEM STORAGE STRATEGY

The objective in the small system storage, area is to maintain our leadership position gained in the floppy disk area as the small system range extends.

The strategy is buy or license technological advances in floppies, develop the desk-top storage and explore DS310 successor requirements for larger low-performance storage.

Tactics include: evaluation of double density floppy disks; evaluate "Krypton" type storage requirements and determine viability of Nicoud floppy, cassette, cartridge, CCD, bubbles, and undertake development; evaluate requirements of multi-user Classic-type systems to determine viability of floppies, super-floppies, unfloppy, or RSL.

36,0000

Bob Peyton Tape Engineering January 28, 1976

SECOND SOURCING

Tape Engineering employs second sourcing for common electromechanical components such as motors, solenoids, and brakes as a normal procedure. In addition, critical items, such as tape heads, are sourced in-house and outside. We generally dual source mechanical parts.

We generally do not plan to multiple source major peripherals but rather plan on supplanting them with in-house manufacture if warranted. This decision is based on risk/return analysis both objective and strategic. Risk factors include vendor viability, corporate product impact, cost to qualify or develop, and assets employed. Return factors include margins and profits, control of supply, upside demand safety, development of technology for next generation or unique product development and proprietary position.

The CalComp drive situation was a case in point where their long-term viability was in question, and an in-house development would provide excellent returns in all the above-mentioned categories. There also were no plug replacement vendors at the drive level interface. In the meantime demand forecasts increased above nominal expectations and deliveries got behind schedule. It was determined that the best way of building buffer stock and protect against their internal ploblems was to execute the previously negotiated license, buy kits from them and then from their vendors, and assemble the drives here. However, the primary emphasis was to help them succeed on their catch-up schedule with acceptable quality drives.

To this end we (1) temporarily provided on-site material control support,

- (2) permanently are providing purchasing and QC support,
- (3) provided more sophisticated test equipment for better yields,
- (4) negotiated a large contract (at slightly higher price),
- (5) given them larger firm delivery commitments,
- (6) provided no charge-back repaire of defective drives,
- (7) doing design testing and verification,
- (8) made all levels of CalComp management aware of the critical nature of their success.

Our current plan to back them up (for the long term) is to evaluate the risk/return of either the license route (with reproduction of heavy tooling) or production of our in-house design.

INTEROFFICE MEMORANDUM

TO: OPERATIONS COMMITTEE

DATE: January 29, 1976

FROM: Bob Puffer

DEPT: Hardware Development

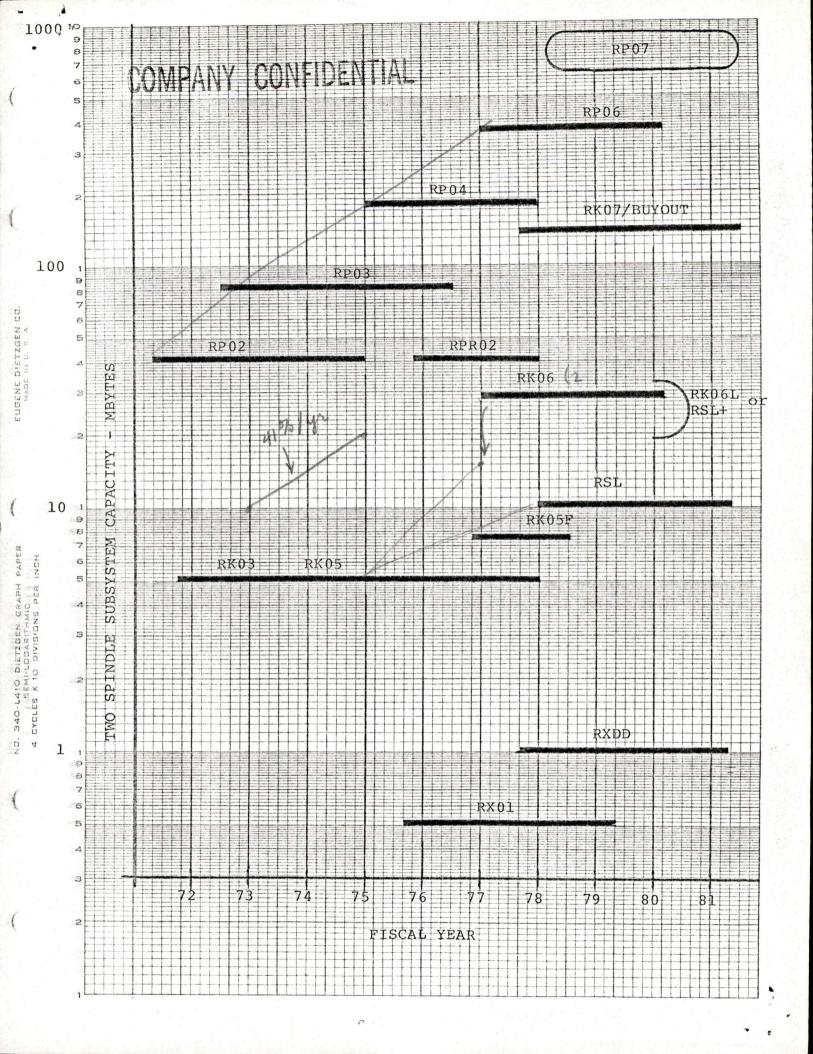
EXT: 2863

LOC/MAIL STOP: ML1/E38

SUBJ: Tape & Disk Family Strategy

Attached is a chart showing our current and proposed disk and tape offerings out through the end of FY79. The chart is organized to show the disks with the tape units that complement them. Also attached are summaries of our disk and 1/2-inch tape strategies, our second sourcing strategy, and a brief report on the efforts we have been making to insure CalComp's success in supplying us the floppies we need while at the same time guarding against their failure via an in-house licensing program.

rml Att.


Bol

DISK & TAPE FAMILIES

TWO DISK CAPACITIES, MBYTES

 FCS	.5-1	5-10	20-40	140-180	210-350	600-1200
1/76	RX01	RK05 / TU10 (TS03)	RPR02/TU16	RP04/-	et bedate dan san	erresters / wewers
7/76	RX01 (license)	RK05F	RK06/TU16	1-	RP06/TU70	-/-
1/77	RX01 (Make)			/TU47		-/-
7/77		RSL/TS04	TS04	Buyout (RK07)		
7/78	RX02 (Double Density)		RSL+		TU6250	RP07 Buyout 2
7/79	•				RK08	1?

Note: - indicates a product gap

STORAGE

ACTION ITEMS FROM LAST REVIEW

- 1. STOP TATE? NOT RECOMMENDED
 - · IMPACT TO 3B RELEASE, NO TASI
 IN TIME FOR CODE FREEZE
 - . 2 TO I PERFORMANCE D
- 2. STOP RXSZ, RXSOH? RECOMMEND CHANGE
 - . WRAP-UP EXSO
 - · BUYOUT 1/2 HEIGHT
 - . EXAMINE HIGH DENSITY + 3"
 - . SHORT MAPPOWER

Impact of FY'83 Funding Plans:

- 1.) The lowest budget growth rate is in the fundamental technology areas. This is inconsistent with the technology gap and expected future competition.
- 2.) The historical trend in underfunding memories continues and will produce uncompetitive memory products during the mid eighties.
- 3.) Recent data shows that Fujitsu will soon cross the IBM technology frontier, causing a probable two year gap for Digital by FY'85, under current plans.
- 4.) We shall miss expected major new markets and growth opportunities in replicated video and audio disks with a major impact to our P.C. plans. This market will be conceded to the leading Japanese suppliers.
- 5.) We are not funded to support lower cost personal and portable computers, strategy of leadership.
- 6.) In SSD's view, Digital is 5 years behind in the development of Data Base Machine Technology. Can we continue to be in this position?

SMALL STORAGE SYSTEMS - P. BAUER

PROJET NAME RE	SPONSIBLE ENGINEER	FY'83 BUDGET (\$K)	FY'85 <u>NOR</u> (\$M)
R X 5 0	Steve Radoff	925	460
R D 5 O	Clint Wooten	175	-
R D 5 1	Clint Wooten	330	580
AZTEC	Carl Blatchley	4,900	246
1/2 Ht. Buyout Disk*	John Glavin	1,150	
RDXX	Ed East	380	183
1/2 Ht. Buyout Flopp	y Steve Radoff	300	
100 MB 5.25" Disk	John Glavin	0	[in CX Budget]
Common Electronics	John Glavin	1,385	•

^{*} The buy-out strategy negates the strategy of low-cost P.C. leadership.

Priority 2

RAINBOW Hard Disk	Duncan Power	300	
Priority 3			
Advanced Floppy	Jenny Ryan	225	163
5.25" Make Disk/Floppy	J.Glavin/S.Radoff	0	
(\$1,000 P.C.)			
AZTEC-II**	Carl Blatchley	50	6

^{**} Minimal FY'83 budget impact. Priority to be re-examined in Q4.

Priority 4:

NONE

Priority 5:

ELECTRONIC STORAGE DEVELOPMENT - P. VAN ROEKENS

		FY'8	3	FY'85
PROJECT NAME	ESPONSIBLE ENGINEER	BUDG	ΕT	NOR (\$M)
		(\$K)	SOURC	<u>E</u>
Priority 1:				
11/780 64K Upgrade	B. Coates	658	SSD	104
MS11-PB 1MB MOS MEM.	R. Given	199	SSD	42
VENUS 4MB Array	D. Ellis	252	LSG	4 1
SCORPIO Memory	R. Given	244	SSD	
		200	32-BI	T
MSV11-JA/JB	R. Given	494	SSD	69
NAUTILUS Memory	R. Given	162	32-BI	T 45
Priority 2				
JUPITER 1MB Array	D. Ellis	170	LSG	12
•				
Priority 3				
DIAG. ASSIST MODULE	R. Given	400	ΤVG	

Priority 4:

NONE

Priority 5:

MID-RANGE & LARGE DISK DEV. - T. BURNIECE

		FY'83	FY'85
PROJECT NAME	RESPONSIBLE ENGINEER	BUDGET	NOR
		(\$K)	(\$M)
<pre>Priority 1:</pre>			
R A 8 1	Mike Hammer	1,208	500
RA60	Bert Miller	3,467	350
HSC50	Ralph Platz	4,519	60
UDA52	Bill Mathrani	448	100
RAXX	Pete Svendsen	1,900	
RAXY*	Pete Svendsen	45	
BSA50	Bill Mathrani	800	
RDZX (100 MB 5.25	") Bert Miller	1,129	20

^{*} Minimal FY'83 budget impact. Priority to be re-examined in Q3/Q4 '83 based on RA60 market acceptance.

Priority 2:

NONE

Priority 3

HSC Cache	Ralph Platz	500 10
	•	
Data Basa Machine	_	

Priority 4:

NONE

Priority 5:

TAPES ENGINEERING - D.W. BROWN

,		FY'83	FY'85
PROJECT NAME	RESPONSIBLE ENGINEER	BUDGET (\$K)	NOR (\$M)
<pre>Priority 1:</pre>			
T A 7 8	M. Cucina/D. Christman	793	62
TU81/TA81	M. Cucina	60'4	112
MAYA	B. Richmond	2,308	116

Priority 2:

NONE

Priority 3:

TU80 M. Cucina 509 38

Priority 4:

NONE

Priority 5:

ATTACHMENTS

A. SMALL STORAGE

- PAUL BAUER

B. ELECTRONIC STORAGE

- PETE VAN ROEKENS

C. MID RANGE STORAGE

- TOM BURNIECE

D. MAGNETEIC TAPE STORAGE

- DAVID W BROWN

BAND

* d i g i t a l *

INTEROFFICE MEMORANDUM

TO: Grant Saviers

DATE: 4 October 1982

cc: SSD

FROM: Paul Bauer

DEPT: SMALL STORAGE SYSTEMS

EXT: 223-6581 LOC: ML01-3/T62

SUBJ: SMALL STORAGE SYSTEMS BUDGET REVIEW

Following is the information requested in Bob Flynn's memo of 9/27/82.

I. High Level Summary of Changes to Plans

The Small Storage System plan was based on an increase in staffing from our present 94 people to 121 at end of year. With zero population growth and the latest inputs from the system groups the following major changes occur:

- 1. Because of people constraints, the Rainbow add on box and the RDXX do not get developed, and Aztec II is deferred 1 Quarter.
- 2. Based on the latest input from the systems groups, we have put projects for an 1/2 height minifloppy (RX26) buyout and an 1/2 height 5 1/4" hard disk ahead of the Rainbow add on. Aztec II and RDXX projects. The revised priority ranking is contained in section D. of this package.
- 3. With these revisions, we are still missing some resources to accomplish all our tasks.
- 4. These changes put us firmly back on a buy out path. It is clear that leadership will not be achieved in floppies or very small disks, and there will be morale problems among the development teams when faced with the prospect of more buyouts.
- 5. The floppy effort is most profoundly hit by the zero population growth. The combination of RX50 project completion and the move to Westboro has left them short many people, and they will have difficulty restaffing under the present people rules. This resource shortage will hamper our efforts to sell the RX50 OEM, since we will have no futures to discuss.

1		T		T		T		T		T		T		-1
1	d	1	i	1	g	1	i	1	t	1	а	1	1	1
1		1		1	_	-		1		1		1		1

INTEROFFICE MEMORANDUM

TO: Grant Saviers MLO3-6/E94

DATE: 10/5/82 Tue 16:21:30

FROM: David W. Brown

DEPT: TAPES ENGINEERING

EXT: 292-2070

CC: SSD STAFF

LOC: YWO/G2

SUBJECT: TA78 VS. TU81

1. Performance Comparison on HSC

The attached graph compares TA81 and TA78 performance on HSC. In summary:

	<u>TA78</u>	TA81
HSC Local Backup	1	.6
VMS Image Backup . @ 200 KBYS	1	.6
VMS File Backup . @ 75 KBYS	1	.7

Comments:

- a. HSC will have a very fast local image backup which is expected to keep the 125 ips TA78 running continuously. The TA81 performance will be limited by the 75 ips speed.
- b. For file-oriented backup routines, the HSC is a data path only and contributes nothing to tape performance. No buffering for streaming tape drives has been provided in HSC.
- c. DECsystem 10 and 20 software routines like Dumper have not been rewritten to provide buffering for streaming tape drives. This will have to be done or the performance of the TA81 will drop far below what is shown above. This will certainly be unacceptable.

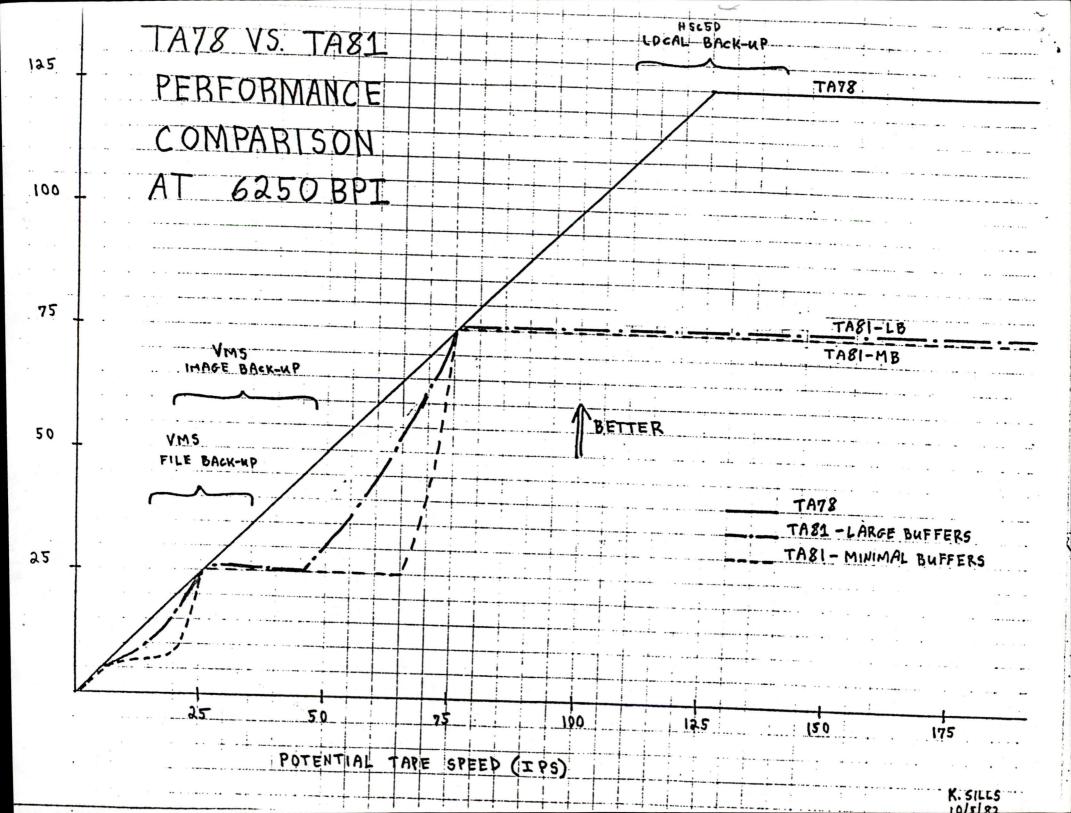
2. FRS Impact

This decision would also leave HSC without any tape until May, 1984, when VMS 3B will be released, because TA81 misses the window for VMS 3.4. Under the current plan, TA78 will be available at HSC FRS in Q4, FY83.

8 months

We have explored the possibility of using TA78 prototypes for software development to permit a Q2, FY84, FRS on TA81 on HSC under VMS 3.4. The VMS people have told us that this is not a workable plan because of the differences between 3B and 3.4 and because extensive field experience with the TA78 will not be generated under this plan.

Budget Impact


If we cancel the TA78 and continue work on the TA81, three people can be freed up for work on MAYA. The FY82 budget impact will be a \$200K transfer to MAYA.

DWB/br

Attachment

DWB: 3

LOOKB 555 = 50 riv

SSD FY83 BUDGET (EX JRDC) ORIGINAL FY83 PLAN \$54321 CURRENT HEADCOUNT (INCL. CONT) 729 DRIGINAL PLAN Y.E. HERDLOUNT ~ 780 BUDGET FORECAST (OFIL PLAN) UNFUPOED MEMORY ENG. (~\$1400) (~ \$1400) PROJ. OVERRUN BAUER, ECO; BROWN, MAYA + ECO (\$2800)

IMPACT OF ZPG + WAGE PREEZE \$ 1800

BTENTIAL OVERROW (\$1000)

CONTINUING TO WORK MEMORY ENG FUNDING + EXPENSE ISSUES.

				SMALL MANPOWER	STORAGE LOADING FY83-FY84	SYSTEMS SCHEDULE				. I.	Pag
ORITIZE	NAME	TECHNICAL SKILL	JOB CODE	Q1FY83	Q2FY83	Q3FY83 /	Q4FY83	01FY84	Q2FY84	Q3FY84	Q4FY84
_					n National A				\ .		
ZTEC II	BLATCHLEY COLE BELLETTIER KIRK LEWIS VESESKIS WALTERS EAGLEY WILDING-WH ZAYAS	ANALOG ANALOG/DIG SERVO/ANAL DIGITAL DIGITAL M-CODE M-CODE	E05 E09 E11 E09 E09 E13 E09 E07					50 50 50 100 50 50 100 50 50	75 75 50 100 75 100 100 100	75 75 50 100 100 100 100 100	75 75 50 100 100 100 100
	*REQ 50520 CUFFY HAMBLEN STRYER	M-CODE MGR ANALOG/CIG ANALOG	509 502 507 E07					100	75 100	100	100

Impact of FY'83 Funding Plans:

- 1.) The lowest budget growth rate is in the fundamental technology areas. This is inconsistent with the technology gap and expected future competition.
- 2.) The historical trend in underfunding memories continues and will produce uncompetitive memory products during the mid eighties.
- 3.) Recent data shows that Fujitsu will soon cross the IBM technology frontier, causing a probable two year gap for Digital by FY'85, under current plans.
- 4.) We shall miss expected major new markets and growth opportunities in replicated video and audio disks with a major impact to our P.C. plans. This market will be conceded to the leading Japanese suppliers.
- 5.) We are not funded to support lower cost personal and portable computers, strategy of leadership.
- 6.) In SSD's view, Digital is 5 years behind in the development of Data Base Machine Technology. Can we continue to be in this position?

SMALL STORAGE SYSTEMS - P. BAUER

		FY'83	FY'85
PROJET NAME RESPO	ONSIBLE ENGINEER	BUDGET	NOR
		(\$K)	(\$M)
Priority 1:			
	g.		
R X 5 0	Steve Radoff	925	460
RD50	Clint Wooten	17.5	, _
RD5 1	Clint Wooten	330	580
AZTEC	Carl Blatchley	4,900	246
1/2 Ht. Buyout Disk*	John Glavin	1,150	
RDXX	Ed East	380	183
1/2 Ht. Buyout Floppy	Steve Radoff	300	
100 MB 5.25" Disk	John Glavin	0	[in CX Budget]
Common Electronics	John Glavin	1,385	

^{*} The buy-out strategy negates the strategy of low-cost P.C. leadership.

Priority 2

RAINBOW Hard Disk	Duncan Power	300	
Priority 3			
Advanced Floppy	Jenny Ryan	225	163
5.25" Make Disk/Floppy	J.Glavin/S.Radoff	0	
(\$1,000 P.C.)			
AZTEC-II**	Carl Blatchley	50	6

^{**} Minimal FY'83 budget impact. Priority to be re-examined in Q4.

Priority 4:

NONE

Priority 5:

ELECTRONIC STORAGE DEVELOPMENT - P. VAN ROEKENS

		FY'83	FY'85
PROJECT NAME RES	PONSIBLE ENGINEER	BUDGET	NOR (\$M)
		(\$K) S(OURCE
Priority 1:			
11/780 64K Upgrade	B. Coates	658 S	SD 104
MS11-PB 1MB MOS MEM.	R. Given	199 S	SD 42
VENUS 4MB Array	D. Ellis	252 LS	SG 41
SCORPIO Memory	R. Given	244 SS	SD
		200 32	2-BIT
MSV11-JA/JB	R. Given	494 SS	SD 69
NAUTILUS Memory	R. Given	162 32	2-BIT 45
Priority 2			
JUPITER 1MB Array	D. Ellis	170 LS	SG 12
Priority 3			
DIAG. ASSIST MODULE	R. Given	400 TV	<i>I</i> G

Priority 4:

NONE

Priority 5:

MID-RANGE & LARGE DISK DEV. - T. BURNIECE

		FY'83	FY'85
PROJECT NAME	RESPONSIBLE ENGINEER	BUDGET	NOR
		(\$K)	(\$M)
<pre>Priority 1:</pre>			
R A 8 1	Mike Hammer	1,208	500
RA60	Bert Miller	3,46.7	350
HSC50	Ralph Platz	4,519	60
UDA52	Bill Mathrani	448	100
RAXX	Pete Svendsen	1,900	
RAXY*	Pete Svendsen	45	
BSA50	Bill Mathrani	800	
RDZX (100 MB 5.25	") Bert Miller	1,129	20

^{*} Minimal FY'83 budget impact. Priority to be re-examined in Q3/Q4 '83 based on RA60 market acceptance.

Priority 2:

NONE

Priority 3

HSC Cache	Ralph Platz	500	10
	. J		
Data Base Machine	-	• -	_

Priority 4:

NONE

Priority 5:

TAPES ENGINEERING - D.W. BROWN

			FY'83	FY'85
PROJECT NAME	RESPONS	IBLE ENGINEER	BUDGET	NOR
			(\$K)	(\$M)
Priority 1:				
TA78	М.	Cucina/D. Christma	n 793	62
TU81/TA81	М.	Cucina	604	112
MAYA	В.	Richmond	2,308	116
Priority 2:				
NONE				
Priority 3:				
TU80	м.	Cucina	509	38

Priority 4:

NONE

Priority 5:

ATTACHMENTS

A. SMALL STORAGE

- PAUL BAUER

B. ELECTRONIC STORAGE

- PETE VAN ROEKENS

C. MID RANGE STORAGE

- TOM BURNIECE

D. MAGNETEIC TAPE STORAGE

- DAVID W BROWN

BAND

INTEROFFICE MEMORANDUM

TO: Grant Saviers

DATE: 4 October 1982

cc: SSD

FROM: Paul Bauer

DEPT: SMALL STORAGE SYSTEMS

EXT: 223-6581 LOC: ML01-3/T62

SUBJ: SMALL STORAGE SYSTEMS BUDGET REVIEW

Following is the information requested in Bob Flynn's memo of 9/27/82.

I. High Level Summary of Changes to Plans

The Small Storage System plan was based on an increase in staffing from our present 94 people to 121 at end of year. With zero population growth and the latest inputs from the system groups the following major changes occur:

- 1. Because of people constraints, the Rainbow add on box and the RDXX do not get developed, and Aztec II is deferred 1 Quarter.
- 2. Based on the latest input from the systems groups, we have put projects for an 1/2 height minifloppy (RX26) buyout and an 1/2 height 5 1/4" hard disk ahead of the Rainbow add on, Aztec II and RDXX projects. The revised priority ranking is contained in section D. of this package.
- 3. With these revisions, we are still missing some resources to accomplish all our tasks.
- 4. These changes put us firmly back on a buy out path. It is clear that leadership will not be achieved in floppies or very small disks, and there will be morale problems among the development teams when faced with the prospect of more buyouts.
- 5. The floppy effort is most profoundly hit by the zero population growth. The combination of RX50 project completion and the move to Westboro has left them short many people, and they will have difficulty restaffing under the present people rules. This resource shortage will hamper our efforts to sell the RX50 OEM, since we will have no futures to discuss.

SMALL	STORAGE	SYSTEMS
DCTOBER	3U70 ET	PASS
	FYE 3	

	्रा ए	TOTAL	PROJECT	PEOPLE	LDADING	3K9	FY83	***************************************	PROJECT	SPENDING	FY93	
PROGRAMS	FYE3		FFUET S	DI AGNOS-	PRODUCT # ENG'S	F TECH'S	COST	Q1FY93	Q2FYB3	93FY 93	04FY83	TOTAL
PRCGRAM OFFICE	Q1 - Q4	4.0										
TOTAL 1K		~.0					320.0	85.0	95.0	105.0	115.0	400.0
PRODUCT SUPPORT	31 - 34				1.0	1.0					*	
RX 02/R KGT	5 K						125.0	37.0	39.0	36.0	38.0	150.0
PX 5 0	21	10.0	5.0 3.0	2.0	1.5	1.0	297.5 175.0					
	33 35	5.0	3.0	2.0	2.0	1.0	51.3					
	24				2.0	1.0	51.3	4.				*
RX50 DEVEL							454.0	340.0	410-0			750.0
RX50 PPCO.	SUFP.						185.0	40.0	40.0	160.0	150.0	400.0
PD 5 0	'01	1.5	1.8	1.0	1.5	1.0	90.9					
	Q2	1.5	1.3	1.0	1.5	1.0	95.3					
ž.	Q3 Q4	1.0	1.0	1.0	1.0	1.0	52.5					
RDSO DEVEL						•	173.0	100.0	40.0	35.0		175.0
RD50 PRCO.	SUFP.	•	e	W 10			135.0	31.0	46.0	56.0	67.0	200.0
							**					
FD5 1	31	2.8	1.8	0.5			74.7 56.3					
	23	2.0	1.0	0.5 1.0	0.5		51.3 32.8					
	4	1.0	V.3	1.0	V.5					200		
ROSI DEVEL ROSI PRCO	SUFP						245.0	100.0	110.0	75.0	45.0	330.0 30.0
AZTEC	Q1	22.0	9.0	5.0			541.3					
	93	22.0	9.0	5.0 5.0	1.5		571.3 571.3					
	Q4	22.0	9.0	3.0	1.5		571.3					¥
FORECAST							2501.0	1100.0	1300.0	1500.0	1600.0	5500.0 4300.0
AZTEC DEVE							90.0	30.0	46.0	49.0	76.0	200.0
						X 9 4 4						
AC MM32	91		1.0	2.5			181.3					3K
ELELTRONIC		14.0	1.0	2.5			291.3 300.9					
SET	93	14.2	2.5	3.2		· was	338.1					,
C.E.S. CEV	ELCP						1279.5	200.0	300.0	400.9	495.0	1395.0
	-											

						-						IIA. Page	2 of 2
PRCJECT	QTR	PROJECT # ENG'S	No. of Concession, Name of Street, or other Desires, Name of Street, Or ot	TICS	PRODUCT PRODUCT	# TECH*	COST	Q1FY81	PROJECT Q2FY83	SPENDING Q2FY83	9K Q4FV83	FY83	
FLOPPY EX-		<u> </u>	* 1.011		4 (110 3	7 10011	403.	411.01		437703	441.103	7103	
TENSIONS				4									
£X50	35	0.5					10.0						
WRAP-UP	Q2 Q4	1.5	0.3				32.8 17.8						
TOTAL	4-	0.0	,003				50.6	10.0	90.0	50.0	25.0	175.0	
1/2 HE IGHT	92	1.5	1.0				41.3 92.5						
5 1/4 °° Floppy	U3 U4	3.0 3.3	2.0				37.5						
BUY-OUT	•												
TOTAL DEV.							211.3	10.0	50.0	110.0	130.0	300.0	
PROD SUFP											20.0	20.0	
RXXX	QZ	2.0	1.0				51.3						
NAAA	93	3.5	1.8				89.7						
	Q4	3.5	1.8			•	89.7						
TOTAL					in the second		230.6	5.0	55.0	90.0	100.0	250.0	
* 1/2 HE IGHT	Q1	1.0	1.0				31.3						
	QZ	9.0	4.0				225.0						
HARD DISK	Q3	9.0	5.0				236.3						
TCTAL	94	9.0	5.0		0.5		251.9 744.4	50.0	225.0	325.0	350.0	950.0	-
TOTAL						•		3000	22300	32300	330.0	750.0	
· ·				•			100 A						
* PX52	92	1.5	C . 5	a a			35.6						•
" # 2	Q3	2.0	1.0		0.5		51.3 66.9						
TOTAL RX52		2.0	. 1.0				153.8		35.0	60.0	130.0	225.0	
	×												
11	2.0		•										
ROXX	10	0.8 3.0	2.3				16.0 85.9						
TI	2 02 - 03	4.5	2.3				115.9						
	94	5.0	2.5				128-1						
TOTAL REXX							345.9	25.0	75.0	125.0	155.0	380.0	
	+>												
*AZTEC IIT	7 04			3.0			50.0				50.0	50.0	
1/2-21.0 11	•												
		Anadri II manari											
RAINBOL	35	0.7	1.8				34.3						
Aulsin) Q3	1.3	1.5				42.9						
O NIZIO	,	4.0	•••				104.4	TO BE	FUNDED	OUTSTOE OF	STORAGE	SYSTEMS	
	-												
				SYSTEMS				GROUP	SPENDING	SUMMARY	FY93		
0.1	94 =	50.5	SUMMARY 19.5	12.0	4.0	3.0	PROD. DEV	1990.0	2690.0	2770.0	3970.0	10520.0	
35		54.5	25.0	12.0	5.5	3.0	PROD. SUPP	139.0	171.0	310.0	391.0	1000.0	
93	117.	0 56.0	25.0	12.0	6.0	3.0	PPOGRAM	85.0	95.0	105.0	115-0	400.0	
24	118.	0 56.5	25.0	12.0	6.5	3.0	OFFICE	2212 6	. 2054 0	210E A	3566.0	11920.0	
				SEC = 5	7356.1		FORECAST	2213.0	" 2956.0 2681.0	3185.0 2710.0	3004.0	10550.0	
		PEDPLE	CUST	•	137511		SHORTFALL	-50.0	-275.0	-475.0	-560.0	-1360.0	

				SMALL MANPOWER,	STORAGE LOADING FY33-FY84	SYSTEMS SCHEDULF				· ·	page 1 of 6
PRIORITIZE PROGRAM	NAME	TECHNICAL SKILL	JOB CODE	Q1FY83	UZFY83 .	Q3FY83	Q4FY93	Q1FY84	QZFY84	Q3FY84	Q4FY84
RX5 0	RYAN EAST	SUPERVISOR SUPERVISOR	E05	100	50						
	CARMAN	M.E.	609	100	50						
	WARREN	M.E.	E11	100	50						
	BERTHIAUME	H.E.	511	100	50						
	EROWN	LOGIC	E09	100	. 50					14	
	ENGLESON	CIR.DES.	E11	100	50						
	CHAUTIN	ANALOG	E03	100	50						
	PACUIN	R/W	E03	100	50						
	*CCLLEGF	E.E.	513								
					••	i i u					
	CRITTENTEN	TECH	E73	100	50				. \		
	MUTNANSKY	TECH	E90 E70	100	50 50						
	KAPENAS	TECH	E72	100	50		·				
	HATHERILL	TECH	£71	100	50						
	AUPREY	1600		100	70						
RD50	POTTON	SUPERVISOR	505	50	50	50					
KU 3 V	NEWFELL	LOSIC	E11	100	100	50			•		
			• • • •				* ** **				
	NICHOLE	TECH	ET1	100	100	100					
	JANUSK	TECH	E62	25	25						
:			•					•	•		
RD5 1	WOTTON	SUPERVISOR		50	50	50	50	**			
	WALLACE	ANALOG	E07	100	50	25					* * * * * * * * * * * * * * * * * * * *
•	STILLMAN	M.E.	E03	25	25	25					
	EVAN	ANALOG	E11	100	100	100	50				
	DEDOUTED			•••	• • • •	• • • •	25				
	BERQUIST	TECH	E72	100 25	100	100	25				
	JANUSK	. TECH	202	23				*			
							•				
			•								
AZTEC	BLATCHLEY	MGR	E02	100	100	100	100	50	25		
	COLE	SERVO/ANAL	. E03					50	25	5.022	
		SUPERVISOR	5 60 5					50	50	25	
	KIPK	ANALOG	E09								
	LEWIS	DIONDEJAMA			1 9 3			50	25		
	AFZEZKIZ	SERVO/ANAL						. 50			
	WALTERS	DIGITAL	509		76.	1					
	PAGLEY	DIGITAL	F13	1000				5 0 5 0			
	MILDING-ME		F09					50	25		
	ZAYAS	M-CODE	507					100	25 50	50	50,
	*REQ 50520	H-CODE	509				w 70	100	30	, ,,	30,
	CUFFY	MGR	E02				,				
	HAMBLEN STRYER	ANAL DG / DIC		1	100			50			
	JIKICK	45 46 00	. 507				-				

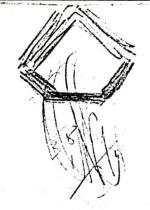
				SMALL MANPOWER	STURAGE LOADING FY83-FY84	SYSTEMS					
PRIORITIZE PROGRAM	NAME	TECHNICAL SKILL	JOB CODE	015483	Q2FYR3	Q3FY83	Q4FY83	01FY84	Q2FY84	. Q3FY84	Q4FY84
					*						
AZTEC	FARIKH	MGR -	502	100	100	100	100	50	25	8 4 4	
WEICC	GIFFORD	M.E.	507					100	50		
	HINLEIN	M.L.	E07					50	25		
	HEARN	M.E.	E07		-			, 75			
9.	HUTNAK	H.E	E03	1				50			
	NEWMAN	ANALYSIS		- 1							
	C CAY	M.t.	F11	1							
	CONDON	EQUIP. DE									
	CITTA	TECH	£71		1 1			100	100		
	PILLEY	TECH	573				, e. 2	50			
	MITCHELL	TECH	590			5					
	LANDIS	TECH	E70				ì				
	FEUERSTEI		E		•					•	
	ERLICHPAN		E70				11 I				
	IVES	TECH	583					50			
	NEWELL	TECH	EBZ			•		100	50		
	D'LEARY	TECH	E82								
;			•							•	
,	POWER	SUPV.	E05		100	100	175	188	188	188	188
CCMMON	POWER	SUPV.	E05	100		100					
EL ECTR ONIC	CLINE	ANALOG	E11	100	100	100	100	100	100	100	100
SET	RCLLINS	ANALOG	. E07	100	100	100	100	100	100	100	100
	*REQ 5370		E03		100	100	100	100	100	100	100
	FILGATE	LOGIC	E07		100	100	100	100	100	100	100
	TTAL	SERVI	. F09		100	100	100	100	100	100	100
	MEINSICH		509 509		100	100	100	100	100	100	100
	SETO	FO21C	511		200		• • • •	50		100	100
	HELLER		EIL			50	100	100	100	Ţijij	ini
•	NEWFELI		E11				50	100	100	100	100
	EVAN	analog			200	200	200	200	200	200	200
	2 - ENG 1 - ENG		E07		200 100	200 100	100	100	100	100	100
		7 60 11	562		25	75	100	100	100	100	100
	JANUSK BEREQUIS	TECH TECH	E90		100	100	100	100	100	100	100

	•			SMALL MANPOWER	STORAGE LOADING FY83-FY84	SYSTEMS Schedule			, 	!	
PRIORITIZE Program	NAME	TECHNICAL SKILL	JOB CODE	Q1FY83	Q2FYR3	Q3FY83	Q4FY83	01FY84	Q2FY84	Q3FY84	Q4FY84
FLOPPY EXTENSI	ONS										ě
RH50 WRAP-UP	RYAN CARMAN WARREN CRITTENDE	Superyisor M.E. M.E. N Tech	E05 E09 E11 E73		25 25	25 50 50 25	25 25 25 25	•			*
1/2 HEIGHT 5 1	/4"							x 44 · ·			
	RADOFF BROWN WARREN AUTIN-REPLA. CRITTENDEN	MGR. LOGIC M.E. E.E. TECH.	E02 E09 E11 E09 E73 E70		50 50 50 50	100 100 50 50 75 100	100 100 75 50 75 100	5 0 100 50 100 100	30 100 50 100	25 50 100	
	PENAS-REPLA. BREY-REPLA.	TECH	E71	2	-	25	25	100	100	•	
*14	RYAN *NEED R/W CARMEN IAUTIN-REPLA. ENGLESON INNANSKY-REPL. IBREY-REPL.	SUPERVISOR R/W M.E. E.E. C.R.DES. TECH	E05. E09 E09 E09 E11 E09 E71		25 50 25 50 50 50	50 100 50 50 100 100	50 100 50 50 100 100	100 100 100 100 100 100	100 100 100 100 100 100	100 100 100 100 100 100	100 100 100 100 100 100

				SMALL , Manpower	STORAGE LOADING FY83-FY84	SYSTEMS		·		• •	
PRIORITIZE PROGRAM	NAME	TECHNICAL SKILL	JOB CODE	Q1FY83	Q2FYR3	Q3FY83	Q4FY83	01FY84	Q2FY84	Q3FY84	Q4FY84
AZTEC II.											
(Cont.)	PARIKH GIFFORD THINLEIN HEARNHINLE HUTNAK NEWMAN O'DAY CONDODN CITTA MILLEY MITCHELL LANDIS ERLICHMAN IVES NEWELL O'LEARY	M.E. ANALYSIS M.E. Equip. TECH TECH	E02 E07 E07 E07 E09 E11 N09 E71 E73 E90 E70 E70 E83 E82 E82					50 100 50 50 100 100 50	75 50 50 100 50 100 100 100 50	100 100 50 100 50 100 100 100 100 100	100 100 50 - 100 50 100 100 100 100 100
RAINBOW	POWER HELLER JANUSK *OPEN	SUPV LOGIC TECH TECH	E05 E11 E62 E62		40 50 75 100	40 100 50 100	25 50 50 100	•			:

				MANPOWER	LOADING FY83-FY84	SCHEDULE	•	+		, , , , ,	
ORITIZE DGRAM	NAME	TECHNICAL	JOB CODE	Q1FY83	Q2FY83	Q3FY83	Q4FY83	01FY84	Q2FY84	Q3FY84	Q4FY84
GNO STIC	GRAY MOSCARILLO	SUPERVISOR LIGR. REL.	510 J61	100 100	100	100	100 100	100 100	100	100	100
x 5 0	CUADRI CHESTER	DIAG	J13 J11	100 100	100 100				* 1		
5 6.3	CUADRI CHESTER	•	J13 J11			100	100	50	50	50	50
ZTE C.	FOWERS CHEN CHIN DCUCETTE NEALE DCYD NICKEL*G		J11 J11 J13 CONTR	100 100 100 100 100 100	100 100 100 100 100	100 100 100 100 100	50 100	50 100	50	,	
ON ELE	ROSS		J13	1∞	100	100	100			402.0	
TEC 11	FOWERS NICKEL'G CHIN		J15 J11 J15 J13	100	100	100	100 50 100	100 100 50 100	100 100 50 100		100 100 100
	CHESTER		J11 J11					100	100	100	100 100 100
PORT	SFITHER	MGR	E 0 2	100	100	100	100	100	100	100	100
/RKC7/	GREEN	PS ENG	E07	100	100	100	100	5 0 5 0	5 0 5 0	50 50	5 0 5 0
x 5 Q	HILDERPANT CHAUTIN MCLAUGHLIN	PS ENG PS ENG PS TECH	E07 E07 E62	100	100	100 100 100	100 100 100	100 100 100	100 100 100	100	100 100 100
050	PUZZY -	PS ENG PS TECH	E07	100	100 100	100 100	100 100	100 100	100 100		100 100
TEC	HAMBLEN BETHLAUME FELERSTEIN	AZTEC-ENG AZTEC-ENG AZTEC-TECH		100	100	100 100	100 100	100 100	100	100	100
x 5 2	*OPEN*	PS ENG PS TECH	E 0 7 E 9 0				50	100			100
EC II	*3956*	PS ENG	507					50			00
DXX	# OP = N *	PS EYG	€07			50	100	100	100		0.0

SYSTEMS


STORAGE

SMALL

SMALL STORAGE SYSTEMS MANPOWER NEEDS

b/.

PROJECT	TECHNICAL SKILLS	JOB CODE	QTR NEEDED
AZTEC	M-Code Eng.	E09	Q2
Floppies	East Replacement-Supervisor Berthiaume Replacement - Mech. Chautin Replacement - Elec.R/W Read Write	E05 E11 E09 E09	Q2 Q2 Q3 Q3
Common Elect.	Analog Eng. Analog Eng. Logic Eng. Logic Eng.	E09 E09 E07 E07	05 05 05 05
1/2 Hgt. 5 1/4" Hard Disk	Mech. Eng. Mech. Design Tooling Eng. Heads/Media R/W U Code + Devic. Logic Stepper Algorithm Technician Technician Technician	E09 E09 E09 E07 E09 E07 E72 E72 E72	92 92 92 92 92 92 92
RDXX	Analog Eng. Logic Eng. Technician	E09 E09 E72	02 02
RAINBOW	Technician	E62	Q2
Prod. Support			
- Floppy Extension	ns Prod. Support Eng.	E07'	Q4
- 1/2 Heig 5 1/4" Hard Dis		E07	Q3

IV. PROJECT INVESTMENT PRIORITY AND RESPONSIBLE ENGINEERS LIST

7505

Priority 1 - Absolutely critical to Strategy

		1		
	PROJECT	ENGINEER	FY83 BUDGET (\$K)	FY85 NOR (\$M)
	RX50 OF SOR RD50 OF SOR RD51 OF SOR RD51 OF SOR RD52 Common Elec. Set Drive Floppy Extension RX50 Wrap Up 1/2 Hgt. buy out Advanced Floppy	Steve Radoff Clint Wotton Clint Wotton Carl Blatchley John Glavin Steve Radoff Steve Radoff Jenny Ryan	750+175 175 330 4900 6155 1385 754 0	460 -0- 580 246 NA NA
P.	1/2 Hgt. low cost hard disk		725 1150 nt 1150	N A
	Priority 2 - Substantes RX52 RDXX Chical Roxell Aztec II	Jenny Ryan Ed East Carl Blatchley	225 380 50	163 183 6
	Priority 3 - Suppor Rainbow	ts Base Strategy Duncan Power	655 95 300 /037	5 - Suppl Ros
			.1	7

/4/82 G.								•
STEM ICE ND	DEC FY81	BEST COMPETITION FY81	DEC FY83	BEST COMPETITION FY83	DEC FY85	BEST COMPETITION FY85	DEC FY87	BEST COMPETITION FY87
5K	.TU58 .25MB DC100 CARTRIDGE TAPE				RX50 2 x 400KB \$175 DRIVE			
					1/2 RX52 800KB REM. \$150 DRIVE PORTABLE PERSONAL COMPUTER	TANDON'S 1-2MB 1/2 HT 5 1/4" FLOPPY REM. \$150 DRIVE OR TANDON'S 3.5" UFLOPPY (SONY COMPATIBLE)		
5K 25K	RXØ2 2 x .5MB REMOVABLE QBUS, UBUS \$975 SUBSYS. \$3900 MLP	DSD 480 2 x 1.0MB REMOVABLE \$4000 MLP	RX50 2 x 400 KB REMOVABLE \$350 SUBSYS. \$995 MLP(1)	TEAC FD55E 1/2 HT 5 1/4" FLOP. 400KB REM. \$150 DRIVE	1/2 RX52/ 1/2 HT RD50 800KB/5MB REM./FIXED \$150/\$225 DRIVES	TANDON'S 1-2MB 1/2 HT 5 1/4" FLOPPY - REM. \$150 DRIVE + TANDON'S 5MB 1/2 HT 5 1/4" FIXED DISK \$300 DRIVE		
	WPS78		PC100 PC200 PC300		RX50 2 x 400KB \$175 DRIVE PC100+ PC200+ PC300+	SEE NOTE 2		
25K	RX02 2 x .5MB REMOVABLE	DSD 480 2 x 1.0MB REMOVABLE	RD50/RX50 10MB/ 2 x 400KB	BUYOUT (5) 10-20MB 5 1/4"	RD52/MAYA 50-100MB/50MB FIXED/TAPE	BUYOUT 50-100MB 5 1/4" FIXED		

.6K	REMOVABLE QBUS, UBUS \$975 SUBSYS. \$3900 MLP	REMOVABLE \$4000 MLP	2 x 400KB FIXED/REM. CT, QBUS, UBUS \$625(4)/\$250	5 1/4" FIXED + 800KB 5 1/4" FLOPPY	FIXED/TAPE CT, QBUS, UBUS \$650/\$350 DRIVES	50-100MB 5 1/4" FIXED + TANDON CARTRIDGE TAPE \$1000 + \$350
			DRIVES \$3000 MLP(3)			
	D7040770 -	•	RD51/RX5Ø 10MB/ 2 x 400KB			
	DECMATE I		FIXED/REM. \$600-\$700(4)/ \$250 PC350, LCP-5		PC350+, LCP-5+	
5K	RLØ2/RLØ2 1ØMB/1ØMB REM./REM.	DSD 880x/30 32MB/1MB FIXED/FLOP.	RC25 (AZTEC) 25MBF+25MBR	LARK II 20.4MBF + 20.4MBR	AZTEC II 75MBF+75MBR	HITACHI 812 128MB FIXED + TAPE
ВK	QBUS, Q-22 \$1400/\$1100 \$6.9K/\$5.6K	\$9200 MLP	QBUS, UBUS \$2972 \$9900 MLP	\$4931	QBUS, UBUS \$2300	\$6450
		* # * * #	12MBITS/IN2	5MBITS/IN2 or LYNX/PUMA 10MB/42MB	24MBITS/IN2	
	11/23, 11/23+, 11/24, 11/34, 11/44, WPS 200		11/730, ORION, LCP-8 11/23+	REM./FIXED \$4300	LOW COST 11/730 SCORPIO, ORION LCP-8	

ES:

PC300 - Includes Controller
Any number of 1/2 HT 5 1/4" floppies and micro floppies
Imputed hardware MLP for PC350 - priced at \$3500 which includes CTAB-10 software
Buyout price
Many vendors will begin delivering 10-20MB drives in FY83

INTEROFFICE MEMORANDUM

TO: Grant Saviers

DATE: 4 October 1982

cc: SSD

FROM: Paul Bauer

DEPT: SMALL STORAGE SYSTEMS

EXT: 223-6581 LOC: ML01-3/T62

SUBJ: PROJECT PROPOSALS IN RESPONSE TO LAST SSD WOODS MTG.

Attached are proposals from the Small Storage group in response to the product needs identified at the last SSD Woods meeting.

1/2 Height 5 1/4" Floppy Buyout 1/2 Height 5 1/4" 10MB Hard Disk

The budget and manpower consequences of these proposals have been incorporated into the latest budget review and analysis.

/mpc

DOUBLE-SIDED HALF-HEIGHT FLOPPY BUYOUT

GETS: DOUBLE SIDED CAPACITY (818Kb/DISK)

PRODUCT QUAL IN MAYNARD SHORTEST TIME TO MARKET

LOW COST

RX50 CONTROLLER INTERFACE

DON'T GETS: COMPETITIVE TECHNOLOGY BASE

1.2Mb/DISK NEW MEDIA

		1				FY83								FY84				
	•	1	01		02		83		84	į	Q1		62	F107	83		94	i
	DRIVE VENDOR SURVEY	, 	·	,	۸.	^	.			1 1			++	1	-++-		++	
	DRIVE EVALUATION	1				۸		^	l.	1								1
	MEDIA QUALIFICATION	1				۸							Α .					1
	VENDOR SELECTION	. 1						•		1								1
	ECO ACTIVITY	1						۸			_^							1
	DMT PREPARATION	1			*					ľ	AA		1/3				•	1
	DHT									1	۸		^_		. ^			1
	PMT	1					K (4)			1					A			-
	FVS	1	a d							1								1
1 .	ENGINEERS	1 0		1		3		3		1 2		2		1		0		1
,	2 ×	1 .	Q		20		60		60	1	40		40		20		0	1.
2	TECHNICIANS	1.0		0		2		2		1 2		i		. 1		. 0		1
		1	0		0		23		23	ł	23		11		11		0	1
3	P.C.DESIGN	i	0		0		0		0	1	C		0		0		0	I
4	MECH.DRAFTING	1	0	*	0		0		10	- 1	5		5		0		0	I
5	DIAGNOSTIC ENG.	1	0		0		6		5	1	3		3		0		0	.1
8	TEE	1	0		0		0		0	ı	0		0		0		0	. 1
7	MTA	ì	0		0		0		0	1	0		0		0		0	1
8	ENPP	1	0		0		0		0	I	0		0		0		0	1
3	COMP.ENG.	ì	0		0		0		3	1	3		5		0		0	1
10	UL & DEC102	1	0		0		10		5	1	10		5		0		0	1
11	RELIABILITY	1	0		0		0		0	i	8		24		. 8		0	•
12	MODEL SHOP	1 .	0		0		5		10	1	0		0		0		0	. [
13	TOOLING	i	0		0	v	0		0	i	0		9		0		0	- 1
14	MATERIAL	1.	0		0		15		15	I	20		0		0		0	1
15	ECO	i	Ö		Ö		0		0	1	0		0		0		0	
15	CONTINGENCY	i	0		0		10		10	1	10		10		0	7	0	
10	GOM I ZNACHO!	٠.						-							•			
140	TOTALS	1	0		20		129		141	1	122		103		39	•	· 0	. 1
			FIR	RST YEA	AR PRO	JECT T	OTAL -	- \$289X			SEC	COND Y	EAR PE	ROJECT	TOTAL	- \$26	4K	
								PROJECT	GRAN	ם דסד	AL - \$3	553K				*	• •	
,-	HEADO (VEDTA		۸.		^		20		35	1	20		10		5		n	. ,
17	HEADS/MEDIA	1	0		0		30 20		10	i	0		0		ő		ŏ	i
18	CAPITAL	,	V		U		20		••	•	•		٠		•		٠	

- 1. ENGINEERS: 4.50 EE- DEVELOPE A TEST AND EVALUATION PROGRAM TO ACCESS THE MATURITY OF THE DRIVE BY MEASURING IT AGAINST ITS SPEC. DEVELOPE TEST TECHNIQUES AND HARDWARE AND CARRY OUT THE TEST PROGRAM.
 - 2.00 ME- EVALUATE THE MECHANICAL MATURITY OF DRIVES
 AND DEVELOPE VENDOR IMPLIMENTED ECO'S
 - 5.50 SUPERVISOR- COST, SCHEDULE, AND TECHNICAL MANAGEMENT OF PRODUCT QUALIFICATION, MANAGE THE INTERFACE WITH THE VENDOR.
- 2. TECHNICIANS: 8.00 TECH(4)- SUPPORT ELECT. AND MECH. TEST AND EVALUATION, DEVELOP AND CONFIGURE TEST HARDWARE, SUPPORT QUALIFICATION OF THE PRODUCT.
- 4. MECH.DRAFTNG:20K DEVELOPE VENDOR ECO DOCUMENTATION AND RELEASE DRIVE AND MEDIA PACKAGE.
- 5. DIAG.ENG.: 17K MODIFY DIAGNOSTIC SOFTWARE FOR PRODUCT QUAL.
- 9. COMP.ENG.: 11K EVAL. AND LIFE TEST OF SELECTED CRITICAL COMPONENTS AND COMPONENT FAILURE ANALYSIS
- 10. UL&DEC102: 30K SHOCK AND VIBRATION (8K), PACKAGING SHOCK (6K),
 UL & PRODUCT SAFETY (4K), THERMAL (8K),
 EMI/RFI/FCC (4K).
- 11. RELIABILITY: 40K 20 WEEK DMT TO EVALUATE MTBF, DATA RELIABILITY, INTERCHANGE, AND MEDIA WEAR AT 2K PER WEEK.
- 12. MODEL SHOP: 15K TOOLING TO EVALUATE MECHANISM AND ACCELERATE WEAR (DOOR AND COLLET CLAMP).
- 14. MATERIAL: 50K 70 DRIVES AT \$500 EACH (25K), VARIOUS TEST HARDWARE, FIXTURING, AND CABLING (5K).
- 16. CONTINGENCY: 40K NEEDED FOR UNCERTAINTY OF OFF-SHORE VENDOR'S COST AND SCHEDULE RISK.
- 17. HEADS/MEDIA: 100K SPECIFY AND QUALIFY VENDORS FOR DOUBLE SIDED MEDIA. SUPPLY QUALIFIED AND TESTED MEDIA FOR DVT AND DMT. DEVELOPE PROCEEDURES AND TEST EQUIPMENT FOR MANUFACTURING TO VERIFY MEDIA QUALITY.
- 18. CAPITAL: 30K VT103 TEST SYSTEMS (20K), POWER SUPPLIES AND TEST CONTROLLERS (10K).

many this they plant the

PROPOSAL LOW COST WINCHESTER AND FLOPPY SUBSYSTEM

J. Glavin 8/30/82

1.0	Intro	duction
	1.1	Purpose
	1.2	Scope
2.0	Produ	act Goals and Priorities
	2.1	System Goals
	2.2	Winchester Goals
	2.3	Floppy Goals
	2.4	Controller Goals
	2.5	Priorities
3.0	Produ	act Description/Specfication
	3.1	Drives
4.0	Alter	natives
	4.1	Drives
	4.1	.1 Buyouts
e 9	4.1	1.2 DEC Designed and Built
	4.2	Controller
	4.3	Advantages/Disadvantages
	4.3	3.1 Drives
	4.3	3.2 Controller
5.0	Produ	uet Cost
	5.1	Present Hardware Cost
	5.2	Drive Costs
	5.	2.1 Drive Costs for Seperate Mechanisms
	5.	2.2 Integrated RD/RX Costs
	5.3	Controller Costs
6.0	Deve	lopment Tasks

7.0 Schedule/Development Cost

8.0 Issues/Concerns

1.0 INTRODUCTION

1.1 PURPOSE

The purpose of this proposal is to examaine the alternatives and feasibility for attaining the lowest cost, 5 1/4 inch, half (1/2) height winchester + floppy subsystem.

The goal is to maintain RD50/RX50 performance at minimum cost.

1.2 SCOPE

Areas which will be studied under this proposal are:

- 1. Examination and comparison with present subsystem costs.
- 2. Development of a low cost controller capable of supporting
 - (1) RX50
 - (1) RD50 and/or (1) removable disk.
- 3. Examine make/buy for 1/2 height RX50 and 1/2 height RD50.

The details for the 1/2 height RX50 will not be addressed under this proposal and can be found under the appropriate proposal from the Floppy Development Group.

2.0 PRODUCT GOALS AND PRIORITIES

2.1 SYSTEM GOALS

- * Low cost entry level system.
- * System will always be configured with hard disk.
- * System transportable media must be RX50 compatible.
- * Storage power requirements < RD50 +RX50.
- * Form factor cannot exceed one full option slot.
- * Subsystem transfer cost \$700 \$850.
- * FVS H2:FY'84.

2.2 WINCHESTER GOALS

- * Minimum RD50 capacity and performance.
 - 5MB formatted capacity
 - 170 ms Avg. access time
- # Interface = RD50.
- * RD51 capacity and performance ASAP.
 - 10MB formatted capacity
 - 85 ms Avg. access time

2.3 FLOPPY GOALS

- * Media backwards compatible to RX50.
- * Capacity: 400KB minimum.
- * Reliability = RX50
- * Interface = RX50.
- * Performance: Not an issue; don't sacrifice cost for performance.

2.4 CONTROLLER GOALS

- * Supports
 - Single RX50
 - Single RD50 and/or single removable disk.
- * CT bus.
- * Single CT option Slot (5.2" X 12").
- * Power ≤ RCD50 controller.

2.5 PRIORITIES

- 1. Time to market @ \$800.
- 2. Lower cost.
- 3. Removable disk.
- 4. RD51 capacity and performance.

Note: These are the PC350 priorities.

3.0 PRODUCT DESCRIPTION/SPECIFICATIONS

3.1 DRIVES

DUTAED	Winchester	Floppy
Configuration	5MB fixed	Single removable
Formatted capacity	5MB/drive	400KB/drive
Avg. latency	8.33MS	100MS
Avg. access time	≤ 170MS	264MS
Functional Specifications		
Recording density	10K bpi	
Track density	345 tpi	96 tpi
Disks	1	1
RPM	3600	300
MTBF	11000 P.O.H. 50% duty cycle	2000 P.O.H 30% duty cycle
Error rates		
Soft Hard Seeks	10 ¹⁰ 10 ¹² 10 ⁶	10 ⁹ 10 ¹² 10 ⁶
Transfer rate	5MB/sec.	250Kb/sec.
Power	25W TYP (+5; +12)	17W TYP (+5; +12)
Environmental	DEC STD 102 class B	DEC STD 102 media class A
Dimensions Height Width Length Weight	1.625" 5.75" 8.0" 5#	1.625" 5.75" 8.5"
Interfaces	ST506 (RD50)	RX50

4.0 ALTERNATIVES

4.1 DRIVES

4.1.1 BUYOUTS

- TEAC; 1/2 height, 96tpi
- Tandon

1/2 height, 5 1/4" fixed disk

- Seagate

4.1.2 DEC DESIGNED AND BUILT

Two seperate mechanisms

- 1/2 RX50
- 1/2 RD50
- Common controller

Integrated RD/RX

- Shared spin and/or positioner motor
- Shared electronics
- Common controller

4.2 CONTROLLER

- * Multiple disk controller and PLL chips
 - AMD
 - Signetics
 - Western Digital
- * WD1010 winchester controller ship + WD1793 floppy disk controller chip.

.- 4.3 ADVANTAGES/DISADVANTAGES

4.3.1 DRIVES

•	•	N
Šeperate Mechanisims	Advantages	Disadvantages
In-house	- Develop in-house expertise in 5 1/4 inch disks.	- Higher development costs Requires more DEC resources.
	 Design with extensibility as a goal. Leverage off in-house heads media expertise. 	
Buyout	- Lower development cost requires less DEC resources.	 Solves vendor's technical problems and puts him in business. 1/2 height products are not in volume production yet, making product a high risk. Higher product cost. Extensibility unkown. Single sourced.
Integrated mechanism	- Lower product cost - High MTBF	- Requires full option slot; limiting packaging flexibility. - More intricate mechanism; increased assembly time. - Eliminates 1/2 height RX50 product. - Longer development time (1 qtr).

	Advantages	Disadvantages
Multiple disk controller + P11 chips	- Lower product cost - Lower power consumption - Smaller size	 Chips availability (9 - 12 months away). Specs not firm. High risk. Performance of PLL and data seperator chip unknown.
WD1010 + 1793	- Chips available sooner. (3 months) - Specs not as volatile	- Higher cost. - Higher power consumption. - Real estate risk for 5.2" X 12" board.

5.0 HARDWARE COSTS

5.1 PRESENT HARDWARE COSTS

	FY'83	FY'84	FY'85
RD50	*	*	
Drive (1)	\$641 (\$564)	\$590 (\$513)	\$539 (\$487)
Controller			
Mat'l. Assy & Test	\$200 \$ 60	\$148 \$ 37	\$169
Cables	\$ 12	\$12	\$ 12
Subtotal	\$913 (\$836)	\$787 (\$710)	\$720 (\$668)
RX50			
Drive	\$234 - 1	\$200	\$175
Controller			
Mat'l. Assy. & Test	\$ 71 \$ 38	\$ 63 \$ 28	\$ 78
Cables	\$ 6	\$ 6	\$ 6
Subtotal	\$349	\$297_	\$259
Subsystem total	\$1262 (\$1185)	\$1084 (\$1007)	\$979 (\$927)

(1.) Parenthetical numbers represent targeted RD50 costs.

5.2.2 INTEGRATED RD/RX COSTS

SEPERATE MECHANISMS

Material

Floppy \$118 Hard disk \$195 ----\$313

Assy. & Test

	Domestic	Far East
Floppy	\$ 40	\$ 20
Hard disk	\$ 96	\$ 30
	\$136	\$ 50

Maximum savings obtainable using integrated mechanism.

Material:

Floppy spin motor - \$12 Floppy positioner motor - \$11

Transfer mechanism + \$5

Net mat'l. savings - '\$18

Labor: \$ 30 \$ 20

Total Savings \$48/\$426 = 11% Domestic \$38/\$339 = 11% Far East

Conclusion: Doesn't appear that an 11% saving in transfer cost is worth sacrificing the packaging flexibility of seperate mechanisms.

5.3 CONTROLLER COSTS (FY'84 \$)

MULTI DISK CONTROLLER CHIP + PLL

Mat'l. \$115 Assy. & Test \$ 40 ----

WD1010 + WD1793

Mat'l. \$179 Assy. & Test \$ 60 ---\$239

5.2 DRIVE COSTS

5.2.1 DRIVE COSTS FOR SEPERATE MECHANISMS

FY'84\$

Buyout

RD50

Tandon \$300 Seagate \$400

Floppy

TEAC (\$125 + 15% landed) \$144

DEC Designed/Built

RD50

Heads 2 @ \$19	\$ 38
Media 1 disk	27
Stepper/pulley	. 19
Spindle mtr.	20
Casting/frame	. 15.
Sensors	6
Connectors	2
Flex cable	5
Filter	3.50
Misc.	10
electronics	60
	\$195

Assv & test

1.5hrs.	67.85/hr.	\$ 96
725% OH		

Far East 1.5/hrs \$ 30 @ \$20/hr

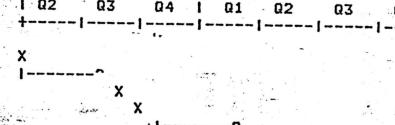
Total \$291 Domestic

Floppy

\$135 Domestic \$114 Far East

Subsystem Total \$339 - \$426 * \$87 savings in Far East.

BUYOUT


EVALUATIO	צדואט א
EVALUATIO	N/ECO
QUALIFICA	TION
FVS	
FRS	

Q3'83 Q4'84 Q1 - Q2'84 Q2'84 Q3'83

DEC DESIGN/BUILD

STA	RT			
DES:	IGN	CO	MPLET	TE.
FUN	CTIN	IAL	B.B.	
FUNC	CTIN	IAL	PROT	8
DVT	PHA	SE	I	
DVT	PHA	SE	II	
DMT	STA	RT		
DHT	COM	PLE	ETE	
FUS				

START DESIGN COMPLETE FUNCTIOANAL BB FUNCTINAL PROTO DVT PHASE I DVT PHASE II DMT PMT FVS

Q4 I

Q3

CONTROLLER

CHIPS: SAMPLES DESIGN FUNCTIONAL BB 1'st PASS PROTO DVT 2nd PASS PROTO DHT . RELEASE PMT **FVS**

FY'84

	Q2	Q3	Q4	Q1	Q2	Q3	· Q4	Q1 _	Q2
INTERNAL				1				·. ,	
Engineers									
Supervisors Mech. Eng. Mech. Design Tooling Eng. Heads/Media R/W u Code+Devic. Logic Stepper Algorithm	1 2 1 1 1 1 1	1 2 1 1 1 1 1	1 2 1 1 1 1 1	1 2 1 1 1 1 1	1 2 1 1 1 1 1	1 2 1 1 1 1 1	1 2 1 1 1 1 1 1 1 1	1 1 .5 .5 .5 1 .5	.5 .5 .5
	9	9	9	9	9	9	9	5.5	2.5
Eng. \$	180	180	180	203	203	203	203	138	63
Techs.					2 -		1.7		
Elect. Mech.	2 2	3 2	3 2	3 2	3 2	3 2	3 2	1.5	1.5 1
	4	- 5	5	5	5	5	5	2.5	**2.5
Tech. \$	45	56	56 ·	63	63	63	.63	34	34
		-	-						
<u>Other</u>						**************************************			
Labor Material Tooling ECO	225 5	241 15 10	241 20 20	266 30 20	266 40 15	266 15 10 10	266 10 25	172 5 75	97 2 - 25
Total Internal	230	266	281	316	321	301	291	252	124
External				-7					
Reliability	~		100	35	35				1000
Model Shop	5	10 30	15 40	15 20	10 15	5	1. 7%		3
Design Services Comp. Eng.	10	5	10	15	15	10	5		
Test Equip.	· A · · · · · · · · · · · · · · · · · ·			10	45	45 20	20	-	e a constant
Tech. Writing Heads/Media	5	15	30	10 30	20 30	15		-5	
Total External	20	60	95	135	170	95	60	5	35.5
Proejct Total	250	326	376	451	491	396	351	257	124
		952			46	89		381	
	il Sayan	· News				-		The make Will	-

*								• • •
		FY'83		,	F	Y 184		FY'85
	Q2	Q3	Q4	Q1	Q2	.Q3	Q4	Q1
	[T .			T	
Internal								
Engineers	,			,*				
Elect. Engineers		1	2 -	2	1	1	1	5
u Code		. 1		1	1	1	1	· •5
Diagnostic		.5	1,	1	1	1	.5	
			1,					
		2.5	4	4	3	3 :-	2.5	1
Techs	- 32							
200115								
Elect.		1	2	2 .	2	2	2	1
								. B
Total Labor \$		62	103	140	118	118	106	39
Materials		3	5 .	110	5	5	2	2
ECO							15	50
Internal Total		65	108	150	123	123	123 -	91
	e i	4			÷			
External								~
			¥.			,		`.÷
Design Services	: :		15	10	.5			
Model Shop Component	••		2	2 5 15				
Test Equip.		*56		15	15	15	15	7.
LSI Comp. Eng.		7.		10	35	35		
Tech. Writing			ر ان د سون	10	15 35 15	35 15	10_	200
	7 2	J. 32 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						(
External Total		1	22	52	71	65	25-	
	1-13.00 1-15.0	ر الموادية الموادية الموادية الموادية ال	\$ is l					125-
Project Total		65 .,	130	202	194	188	148	91
	+							4 6-
	-	195			73	32	***	91-
	- 21 -			j : .				750
			· · · · · · · · · · · · · · · · · · ·	• •	1018 🗻	***		3 5
The state of the s	-		•					

1 1 1 : | d | i | g | i | t | a | 1 |

INTEROFFICE MEMORANDUM

To : Bob Flynn

Date: 7 October 1982 From: Peter van Roekens

Dept: Electronic Storage

Ext : 223-1965 Loc : ML21-2 E64

Enet: KRYPTN:: VANROEKENS

cc : SSD Staff

Subj: Information Package

The following package contains the five items requested by yourself and Rick Corben.

CHANGES TO PLAN

There are no changes to the plans to bring them into conformance with EMC suidelines because the plans were submitted after the suidelines were developed. The one major issue that ESD has been working is funding.

With our manpower frozen, we still have a problem covering our run rate. This situation was caused by a rapid fall off of the indirect and external funds that the group had received in previous years. The problem has been eased by setting 200K from Scorpio and an expected 417K from TVG. My current estimate of the deficit at the end of FY '83 is about 1M. We are continuing to look for ways to bring in additional funding.

The remaining items are attached. Item 3 has been updated to reflect the increased funding. Items 2, 4, and 5 are being submitted for the first time.

E	C	n
C	S	ν

OTHER

PROJECT NAME AND SUMMARY		r		
AND OUTBART	FY'83	\$K ENGINEERING BUDGET FY'84	FY'85	
TOOLS AND TESTERS	464.5	613.2	795.0	
ENGINEERING SUPPORT	201.7	252.6	316.0	
ADVANCED DEVELOPMENT	192.0	250.0	312.5	
PRODUCT MANAGEMENT	244.0	285.0	330.0	

ESD PRODUCT DEVELOPMENT

Product Name		urrent	EDG	IRR	Lifetime		NPSUC	SERV		ENGINEERING EXPENSE				
And Summary Description		hase	FRS	1 KK	\$B	\$M	\$M	Summary \$M		'83	\$K '84	185		
11/780		2	Q4/83	N/A	*•3	1.914	.142	N/A		658.3				
MS11-PB		3	Q2/83	N/AA	\$.1	.762	.116	N/A		189.5				
VENUS		2	Q2/84	57%	\$.2	.961	.207	N/A		251.7	128.7			
SCORPIO		1 ,	Q1/85	n/a ^B	\$1.1	.783	.114	N/A		444.0	400.0	• .		
ORION		1	Q4/84 ·	N/AB	\$. 5	\$.800	.149	N/A	• .	494.0	250.0			
NAUTILUS		0	N/A	N/A	N/A	.470	N/A	N/A		162.0	297.0			
JUPITER		2	Q3/83	51%	\$.1	.979	. 157	N/A		168.5	223.3			
DIAGNOSTIC A MODULE	ssist ⁱ	0	N/A	N/A	N/A	.889	N/A	N/A		417.0	472.0			

ATo Be Completed for Phase 3 Business Plan October 1983

 $^{^{\}mathrm{B}}$ To Be Completed for Phase 1 Business Plan October 1983

^CIncludes Original RAM Designed Into Original Board - Not Subsequent RAM Upgrades

D_{Not} Formally Committed from TVG

PROGRAM MANPOWER PLAN (ELECTRONIC STORAGE DEVELOPMENT)

GROUP MANAGER: PETER VAN ROEKENS

ASSUMPTIONS:

- 1. REFERENCE (NOTE A). MS78ØE HAS OVERRUN AND FUNDING IS NOT AVAILABLE FROM TW. THIS PROJECT CONSTITUTES A MAJOR PART OF ESD'S
 FY83 BUDGET VARIANCE.
- 2. REFERENCE (NOTE B). SCORPIO FUNDING FOR FY84 IS BEING NEGOTIATED.
- 3. REFERENCE (NOTE C). NAUTILUS FUNDING FOR FY84 IS BEING NEGOTIATED.
- 4. REFERENCE (NOTE D). THE DAM MODULE PROGRAM IS NOT PRESENTLY FUNDED; HOWEVER, WE EXPECT FULL FUNDING TO BE FURNISHED BY TVG.

 (PRESENTLY WE ARE WORKING IN AN INVESTIGATIVE PHASE FUNDED BY TVG.
- 5. REFERENCE (NOTE E). SEVERAL HARDWARE/SOFTWARE PROGRAMS ARE BEING SOUGHT FOR THE LAST HALF OF FY83 AND ARE: MA780, CT 100 ADD-ON, HSC 50, AND VENUS TCY. THESE PROGRAMS, IF SECURED, WOULD DIMINISH THE UNASSIGNED HEADCOUNT.

	× ,	and the control of the second			10 10 10				Constitute (1)			-
				1 ,.								
		P. **			•				,			
					,				,			
	PRIORITIZED PROGRAM	NAME	00.01	TECHNICAL .	JOB		FY83	3		EV	784	
		NAME	CC SITE	SKILL	CODE	Q1			4 Q1	Q2 1	Q3	Q4
1.	DYNAMIC RAM EVAL	D. MORENO		DEVICE ENG.	E09 EFT	1 .5	1 .5 1	.5 1 .	5 .5	1 .5		
		i and the second	393 ML 393 ML		E09 EFT E11 EFT	•	1 1	1	1 1 1	1 1	1 1	1 .5
		P. CASEY	1393 ML	TEST TECH.	E70 TFT		1 1 1	1	1 1 5	1 1	1 1	1 1
		P. RAYMOND/	1393 ML	DEVICE ENG.	Ellieft		1.25 1.	25 .2	5 1	1 .5	1 • 5	1 .5
	•	!	i i i			2.5/.5			75/1 3.5/	3.5/	3.5/	3.57
2.	DRAM MULTIVENDOR	D. MORENO	13031411	DEUTOR BUO	i i i	i	i • i		5 .5	1 .5	1 5	1 .5
		D. EIDENS	393 ML 393 ML	DEVICE ENG. TEST EQUIP TECH	EØ9 EFT E73 TFT	-5		.5 .		1 .5	.5	1 .5
		P. CASEY	[393 ML]	TEST OPERATOR	E50 TFT	.5		.5 .		1 .5	1 .5	1 .5
	•				!!!!	.5/.5		5/1 1.5		1.5/1	1.5/1	1.5/1
3.	LIFE TEST SYSTEMS	l D Gmovin	ii_i					1	!	1	1	1.3/1
٠.	DILE LEST STREMS	D. STONE D. EIDENS	393 ML 393 ML		EØ9 EFT	1	1 1	1	1 1 1	1 1	1 1	1 1
		K. LYSETH	393 ML	TEST EQUIP TECH TEST EQUIP TECH	E73 TFT E70 TFT	1	•5	.5 .5	5 .5	.5	.5	•5
		D. KENDALL S. GORDON	1393 ML	TEST OPERATOR	E50 TFT	ī	1	1 1 1	1 1 1	1 1	1 1	1 1
		1	1 1 1	SOFTWARE DESIGN	J13 EFT	272	2/2 5 5	1 1	<u> </u>	_ i	1	i
		*	!!!		iii	2/2	2/2.5 2,	/2.5 2/2	2.5 2/2.5	2/2.5	2/2.5	2/2.5
4.	VAX 11/78Ø (64K)	T. ZACCONI	 392 ML	MANAGE	1	. !		i	i	i		-
		J. OBBARD	1392 ML	SUPERVISE	E02 EFT E07 EFT	1 1	1 1	·3 .3 1 .3		!!!	ı i	i
		J. STEGEMAN J. LYNCH	392 ML 392 ML	LOGIC DESIGN LOGIC DESIGN	EØ7 EFT	•2 .	i	- "	,			- 1
			1392 ML	COORDINATE	E11 EFT E07 EFT	1 1	1	1 .5	. !	į	į	i
		L. DERENNE L. REID-SIRACO	392 ML 392 ML	BUILD/DEBUG DOCUMENT	E90 TFT	īį	īi	1 .5				!
		I'J. MELOSKI	392 ML	BUILD/DOCUMENT	E71 TFT E72 TFT	1 1	1 !	!	!	i	i	i
			392 ML 392 ML	BUILD	B44 NCP	1	i	I (RE	TURNS TO	SCHOOL	, !	!
	i		392 ML	ADMINISTRATOR BUILD	AFT EFT	1 1	1 1	1	1 1	1	" ¦	i
		*	1 1			5.2/5		371 1.1	, 	!	!	!
	i	· .				!	. [.5				- 1
5.	MS11-P	T TAMPERO	1			1	. 1	1	1 1	!	į	į
	1011-6	J. JANETOS J. SANGERMANO	392 ML 392 ML	LOGIC DESIGN LOGIC DESIGN	E11 EFT	1 1	.3 į	i		ì	ļ	!
				BUILD/DEBUG	E09 EFT E73 TFT	.3 1	. !	TRANCRE	1 1	· i	, * i	i i
		S a l	1 - 1			1-3/1-	-3-1	I KANSFE	R TO CC 3	93)		
										•		

A

1. 1

				•							
	PRIORITIZED PROGRAM	NAME	CC SITE	TECHNICAL SKILL	JOB CODE	Q1	FY83 Q2 Q3	Q4 Q1	FY84 Q2	1 Q3 Q4	
6.	VENUS .	J. PARE B. KENDALL R. STANLEY S. HARRINGTON	392 ML E	LOGIC DESIGN ELECTRONIC TECH ELECTRONIC TECH SOFTWARE DESIGN	E09 EFT E71 TFT E73 TFT J95 EFT 	1 -5	.8 .5 .7 .25 .5 .25	.5 .5	.5	.3 .3	1
7.	SCORPIO	V. TRIOLO	392 ML I 392 ML I 392 ML G 392 ML E	LOGIC DESIGN LOGIC DESIGN JATE ARRAY DESIGN BUILD/DEBUG		.7	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	
8.	JUPITER .	R. STANLEY	392 ML E	ELECTRONIC TECH		1/1.5 1	1 1 2 1 .5 1 .25 1 .5/.5	.5 .5	1 .5	.5 .7	
9.	ORION	L. CHISVIN G. DONOGHUE B. DUPRE	392 ML G 392 ML T 392 ML B 392 ML S	GATE ARRAY DESIGN TESTER/SOFTWARE BUILD/DEBUG GOFTWARE DESIGN		1 1 1 1	1 1 1 1 1 1 1 1 1 1		1 1	1 1	
10.	MXV11-B	H. COLLINS	 	OGIC DESIGN	E72 TFT	.5	.3/2 3.3/2	2/2 2/2	1/1	1/1 0/1	-

В

			.*									
PRIORITIZED			MECHNICAL.	700		ъ.,						
PRIORITIZED	NAME	CC SITE	TECHNICAL SKILL	JOB CODE	Q1	FY Q2	83 Q3	04	01	FY Q2	84 Q3	Q4
11. MRV11-D	D. MANION		SUPERVISE	LECGITE	m1 =							
II. MRVII-D	J. LAVRANCHUK			E11 EF		1 .5	ł	1	1	!		
i	K. CLEVELAND	1392 ML		E90 TF		i -	i	i	i	i	1	i i
	J. DINOPOLOUS			E90 TF		1	ĺ	İ	İ	i	i	i
	K. CHINNASWAMY B. DUPRE	The second secon	BUILD/DOCUMENT SOFTWARE DESIGN	B43 NC J15 EF		! 1	(RET	URNS T	о ѕсно	OL)	1	1
	D. DOLKE	1 1	DOLLMAND DEDICA	1 1	12/2.8	1/1.5	ì	1	1	1	1	
		1 1 1		i i	1	1	i	i	i	i	i	i
12. NAUTILUS	P. NATUSCH	1 1 392 ML	LOGIC DESIGN	 E09 EF	ri 1	! ,	! .	! .	!	!	1	
12. NAUTILUS	N. RIEGELHAUPT			EØ7 EF		1 1	1 1	1 1	1 1	1 1	1 1	
6	B. KENDALL	1392 ML	BUILD/DEBUG	E90 TF	•	i	.5	î	ii	i	i	iii
	K. CLEVELAND	392 ML	SOFTWARE DESIGN	E90 TF		1		1_1_	1_1	i	i	
		1 1 1	•		1/0	1/0	2/.5	2/2	2/2	2/1	2/1	2/1
		i i i		i i	i	i	i	i	i	i		
13. VIDEO RAM	P. RAYMOND/	393 ML	DEVICE ENG.	E11 EF	T! .75	1 .75	1 .75	1 .75	1	i	i i	i
	NEW HIRE				1	1		1	!	!	!!!	!
14. STATIC RAM EVALUATION	F. QUADRI/	1393 ML	DEVICE ENG.	EØ7 EF	ri 1	1.1	1	1	1	1 1	1 1	1 1
•	NEW HIRE			1. 1	i	1	i -	i -	i -	i	1	1
	J. TESSARI B. HUNT	393 ML		E11 EF		1 1	1 1	1 1	1 1	1 1	1 1	1 !
	1	1 1 1		1 1	1 2/1	2/1	2/1	2/1	2/1	2/1	2/1	2/1
al	!	!!!		1 1	1 -/-	-/-	i -/-	i -/-	1 -/ -	2/1	2/1	2/1
15. DAM	I I J. JANETOS	1 1 1 13921ML	LOGIC DESIGN		T 1	1 .7			! .	! .		. 1
13. 5	S. ROCHEFORT	392 ML		B43 NC		• ′	1 1	1 1 (1	I I RETURN:	TO S	CHOOF)	
	D. MANION	392 ML		E90 TF	T I	1 -4	1 .5	.5	1 .5	1 .5	1 .5	i
	H. COLLINS	1392 ML	LOGIC DESIGN BUILD/DEBUG	EØ9 EF		1 -1	1 1	1	1 1	1 1		1
	M. KAKKAD	1392 ML		E72 TF		1 .5	1 1	1 1	1 1	1 1	1 1 1	!
	!				1.9/0	12.7/	3/2.5	3/2.5	3/1.5	3/1.5	3/1.5	
	1	1 1 1		1 1	1	1 .9	1					i

D

				TECHNICAL	JOB		FY83			FY	84		
ř	OTHER	NAME	CC SITE	SKILL	CODE	Q1 Q2	2 Q3	Q4	Q1	Q2	Q3	Q4	
•	PROJECT MANAGEMENT	T. ZACCONI R. GIVEN D. DUTTON B. MURPHY	392 ML 392 ML 393 ML 392 ML 392 ML	LG. SYST. DEV. MAN MED. SYST. DEV. MAN SM. SYST. DEV. MAN DEVICE TECH DEV MAN MEM. DIAG. DEV. MAN SM. SYST SUPERVISOR ENGINEERING MANAGER	E02 EFT E05 EFT E05 EFT J11 EFT E05 EFT	1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 .7 1 1 1		1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1	1 1 1
•	PRODUCT MANAGEMENT	D. HALEY J. AUSTIN P. DURANT D. RICE	 392 ML 392 ML 392 ML	SM SYST PRODUCT MAN MED/LG SYST PRO MAN PROD. MANAGEMENT	 E23	1 1 1 1 1 1 1 1 1 1		1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1
٠	CONSULTANT	D. SMELSER J. STEGEMAN			 E03 EFT E07 EFT	1 1	. 1	 1 	1 .5	 1 •5	 1 1	1 1	1
•	ASSEMBLY .	P. MIKELS D. GAGE			 E50 TFT E50 TFT	1 1	1 1	1 1	1 1	 1 1	 1 1	 1 1	1
•	TOOL SUPPORT		392 ML 392 ML	TESTERS DATA ENTRY SPECIAL.	E36 TFT	1 1	1 1	1 1		 	. 		
•	2224 UPGRADE	D. CARUSO	392 ML	SOFTWARE DESIGN	J15 EFT	1	. 1	1 1	a	1	1	!	1
•	MD407	I. CHAVIS	392 ML	SOFTWARE DESIGN	J13 EFT	.2	. 1 .2	.5			i I	į	İ
•	TEST STRATEGY	I. CHAVIS	392 ML	SOFTWARE DESIGN	J13 EFT	.3	1 .3	.5		1	1		į.
•	MS11-P 2228	. M. KAKKAD	392 ML	SOFTWARE DESIGN	J13 EFT	1 .		l 1		1	l . I	1 1	1
•	CT100/2226C				 J15 EFT J13 EFT	1 .5	1 .5		2	! !		! ! ! .!	1

PERMANENT PART-TIME

	OTHER	NAME	CC SITE	SKILL SKILL	JOB CODE	Q1	Q2	783 03	Q4	01	FY			
•	JUPITER TCY	K. LANGLAIS	392 ML	SOFTWARE DESIGN	J11 EFT	1	1 .7	1 .3	1	Q1	Q2	Q3	Q4	
•	RAINBOW 2224	S. HARRINGTON	392 ML	SOFTWARE DESIGN	 J95 EFT		1 .5		ί,	į			1	1
•	CT ADD ON	K. CLEVELAND	392 ML	SOFTWARE DESIGN	 E90 TST			1	.3	!) 		1
•	VENUS TCY	S. HARRINGTON	392 ML	SOFTWARE DESIGN	 J95 EFT			į				.•	1 .	1
•	SECRETARIAL	S. BARNARD M. POCHINI S. GOGUEN D. DUVARNEY	392 ML 392 ML	SECRETARIAL SECRETARIAL SECRETARIAL SECRETARIAL	 G49 GFT G48 GFT G47 GFT	1 1 1	1 1 1 1 1	 1 1 1	•7 1 1		1	1	! ! ! 1 ! 1	1
•	OTHER		1 1 1		G54 GFT 	1	1 1	1 1	1 1 1	1 1	1	i	1	

					TECHNICAL	JOB			FY	8.3						**
			NAME	CC SITE	SKILL	CODE	3	Q1	Q2	Q3	Q4	Q1	O2			
						-	_	~-	•	45	4.	QI	Q2	Q3	Q4	
١	J			1392 ML	LOGIC DESIGN	EØ9	EFT			1	ı	1				
1	1	7.	TRIOLO	1392 ML1	LOGIC DESIGN		EFT	ĺ				i	1 1	1 1	1 1	!
١	J		DINOPOLOUS	1392 ML	ELECTRONIC TECH	E96	TFT	. 1		1	I	i			1 1	!
1	E	· F	COLLINS	1392 ML	LOGIC DESIGN	EØ9	EFT	i				i	i	1 1	! 1	!
1	I).	SOVIE	1392 ML	ELECTRONIC TECH	E72	TFT	i		1		i	i		1 1	!
1		J.	JANETOS	1392 ML	LOGIC DESIGN		EFT	í				i	;	! 1	1 1	!
1		J.	LAVRANCHUK	1392 ML	LOGIC DESIGN	E11	EFT	ì		1	1	1	1	1	1 1	ļ
1	5			1392 ML	COOP ELEC.	B43	NCP	1		_		i	i •		1 1	!
1	F	₹.	ELY	1392 ML	LOGIC DESIGN	EØ9	EFT	Ì		i 1		i	;		1	!
١	(3.		1392 ML	ELECTRONIC TECH	E72	TFT	i				i	i			!
1	ì	١.	RIEGELHAUPT	1392 ML	LOGIC DESIGN	EØ7	EFT!	1			2.0		•	i	;	1
1		J.	PARE	1392 ML	LOGIC DESIGN	EØ9	EFT	<i>i</i> 1				i	i			. 1
1	1	R.	STANLEY	1392 ML	ELECTRONIC TECH	E73	TFT	Ì		i		i	.2	1 . 3	1 . 7	!
1	1	В.	KENDALL	1392 ML	ELECTRONIC TECH	E71	TFT	i	.3	.5		i	• • •		1 1	!
1		J.	OBBARD	1392 ML	LOGIC DESIGN	EØ7	EFT	i			.7	1	1	1	1 1	!
- 1		D.	WHITEHOUSE	1392 ML	LOGIC DESIGN		EFT	i		i	•5	ī	ii	1	1 I	!
1	١,	J.	MELOSKI	1392 ML	ELECTRONIC TECH	E72	TFT	ì		1 1	-1	i î	1 1	1 1	1 1	!
	1	D.	CARUSO	1392 ML	SOFTWARE DESIGN	J15	EFT	i			-	i	1 1	1	1 1	!
- 1	1	I.	CHAVIS	1392 ML		J13	EFT	i			* 100	i	1 1	1 1	1 1	ļ
	1	К.	CLEVELAND	1392 ML	SOFTWARE DESIGN	E9Ø	TFT	i				•	1 1	1	1 1	!
	1	в.	DUPRE	1392 ML	SOFTWARE DESIGN	J15	EFT	Ì			1	1	i i '	i	1 1	!
	1	s.	GORDON	1392 ML	SOFTWARE DESIGN	J13	EFT	1	i		_	-		•		!
	1	s.	HARRINGTON	1392 ML			EFT	i				1	1	1	, ,	ŗ
	1	М.	KAKKAD	1392 ML	SOFTWARE DESIGN	J13	EFT	i	i			•		1	1 1	!
	1	Κ.	LANGLAIS	1392 ML			EFT	i		.4	1	1	1	1	1 1	!
	1	R.	SIRACO	1392 ML	SOFTWARE DESIGN	E36	TFT	i	i		-	î	î	1	1 1	!
1	١,	J.	STEGEMAN	[392 ML]			EFT	· i		i		•		1	1 1	,
	1	J.	RANTALA	1392 ML			EFT	i	. i	i			1	1	1 1	!
	1	L.	CHISVIN	1392 ML	TESTER/SOFTWARE	E9Ø	TFT	ì		i			1	i	1 1	!
	1	D.	MANION	1392 ML			TFT	i	i	.5	.5	•5	.5.	•5	1 1.	!
	1	р.	RAYMOND	1393 ML	DEVICE ENGINEER	Ell	EFT	-25	i	1		• 5	• 5,	. 5	-	!
	1	J.	LYNCH	1392 ML			EFT	· · · i	i	i	1	1	. ,	,	,	!
	1.	L.	DERENNE	1392 ML	BUILD/DEBUG	1E90	TFT	i		i	.5	ī	1	1	1	!
	1	L.	REID-SIRACO	1392 ML	BUILD		TFT	i	1 i	1 1	1	i	1 1	1	1	!
	1	D.	SENERCHIA	1392 ML	DESIGN	1	EFT	i	_	ı i	ĩ	ī	1	1	i	!
	1	s.	LIGHT	1392 ML	ADMINISTRATOR		AFT	i	1	îi	î	î	1	1	1	1
*	1	L.	PEARCE	1392 ML	DATA ENGRY SPECIAL.		JPT	i	i	- 1	- 1	î	1 1	1		:
	1	P.	GREENAWAY/	1392 ML	BUILD/DOCUMENT		NCPI	. i	i	i		ī	1	1	1	!
	1	Κ.	CHINNASWAMY	1 1 1		1	i	i	i	1	1	•	-	_	1	1
	1	s.	ROCHEFORT/	1392 ML	BUILD/DOCUMENT	B43	NCP	i	i	- 1	- 1	1	,	,	,	!
	1	R.	CROUSE	1 1 1		1	1 1	i	ì	1	1	*	!	-	1	Ī
	•					•			'	_ 1	т 1	_	, ,	1		ı

^{*} PERMANENT PART-TIME

UNASSIGNED

ESD/SSD

APPENDIX C - PROJECT INVESTMENT PRIORITY AND RESPONSIBLE ENGINEER LIST

PRIORITY 1 - ABSOLU	TELY CRITICAL TO BASE S	STRATEGY		
FUNDING GROUP	PROJECT NAME	RESP. ENG.	FY'83 BUDGET	FY'85 NOR
SSD	11/780 64K UPGRADE	B. COATES	.658	\$104m
SSD	MS11-PB 1MB UNIBUS MOS MEMORY	R. GIVEN	.199	\$41.8m
LSG	VENUS 4MB ARRAY	D. ELLIS	.252	\$40.8m
SSD 32-BIT SYSTEM	SCORPIO	R. GIVEN	.244	
			.444	\$6.9m
SSD	ORION	R. GIVEN	.494	\$69.1m
32-BIT SYS.	NAUTILUS	R. GIVEN	.162	\$45.0m
PRIORITY 2 - SUBSTA	NTIAL EXISTING CUSTOMER	COMMITTMENT		
FUNDING GROUP	PROJECT NAME	RESP. ENG.	FY'83 BUDGET	FY'85 NOR
LSG	JUPITER 1MB ARRAY	D. ELLIS	.169	\$12.2M
	•			
PRIORITY 3 - SUPPOR	TS BASE STRATEGY			
FUNDING GROUP	PROJECT NAME	RESP. ENG.	FY'83 BUDGET	FY'85 NOR

DIAGNOSTIC ASSIST R. GIVEN

MODULE

TVG

N/A

.417

MEMORY PRODUCT PRICE BAND CHART

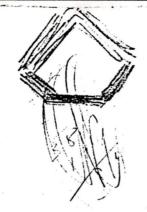
PRICE BAND		FY'83	COMPETITION		FY'85	COMPETITION		FY'87	COMPETITION
625K - 1.6M	1	PDP-10, 256KB \$24K/MB	512KB \$15K/MB	1	JUPITER, 4MB \$3.5K/MB	4MB \$1.6K/MB	1	JUPITER 4MB \$2.5K/MB	8MB \$1.2K/MB
250K - 625K	!	 11780, 1MB \$3.2K/MB	1MB \$2K/MB		VENUS 4MB \$3.0K/MB 11780 4MB \$2.1K/MB	4MB \$1.6K/MB 4MB \$1.6K/MB		VENUS 4MB \$2.0K/MB 11780 4MB \$1.5K/MB	8MB \$1.2K/MB 8MB \$1.2K/MB
100 - 250K	1	11750, 1MB \$3.2K/MB	1MB \$2K/MB		11750, 1MB \$2.1K/MB	4MB \$1.6K/MB	:	NAUTILUS 8MB \$1.5K/MB	8MB \$1.2K/MB
40 - 100K	!!!!	11730, 1MB \$3.2K/MB 1144, 1MB \$3.5K/MB	1MB \$2K/MB 1MB \$3K/MB		11730, 1MB \$2.1K/MB	4MB \$1.5K/MB		SCORPIO, 2MB \$2.0K/MB	4MB \$1.2K/MB
1 16 - 40K	!	1123B, 1/2MB \$5.4K/MB	1/2MB \$2.8K/MB	1	ORION Q/U 2MB \$3.3K/MB	2MB \$1.6K/MB	1	ORION 2MB \$2.0/MB	4MB : \$1.2K/MB :
2.5 - 16K		LSI-11, 256KB \$3.8K/MB	1/2MB \$2.6K/MB	1	ORION, 2MB \$3.3K/MB	2MB \$1.6K/MB	;	NOT DEFINED	4MB \$1.2K/MB

¹⁾ THIS CHART IS FOR ADD-ON MEMORY ONLY. PRICES REFLECT OUR MOST COMPETITIVE PRICE. MEMORY REVENUE/MB IN PACKAGED SYSTEMS WILL BE HIGHER.

²⁾ DEC PRICES ARE ACTUAL FOR '83; ASSUMED COMPETITIVE AT THAT POINT. DEC PRODUCTS EASY TO PLUG ARE DECREASED IN PRICE FASTER THAN THOSE WITH CUSTOM LSI OR COMPLEX GATE ARRAYS.

³⁾ COMPETITION IS ASSUMED TO BE U.S. AND JAPANESE SEMICONDUCTOR MANUFACTURERS.

⁴⁾ THIS REFLECTS ESD'S CURRENT PLAN AND BUDGET. PLANS TO GET HIGHER DENSITY IN FY'87 NEED TO BE DEVELOPED.


				SMALL . Manpower	STORAGE LOADING FY83-FY84	SCHEDULE				• •	• ,
PRIORITIZE PROGRAM	NAME	TECHNICAL SKILL	JOB CODE	Q1FY83	Q2FYR3	Q3FY83	Q4FY83	01FY84	Q2FY84	Q3FY84	Q4FY84
AZTEC II.											
(Cont.)	PARIKH GIFFORD HINLEIN HEARNHINLE HUTNAK NEWMAN O'DAY CONDODN CITTA MILLEY MITCHELL LANDIS ERLICHMAN IVES NEWELL O'LEARY	M.E. ANALYSIS M.E. Equip. TECH TECH	E02 E07 E07 E07 E09 E11 N09 E71 E73 E90 E70 E70 E83 E82					50 100 50 100 100 50	75 50 50 100 50 100 100 100	100 100 50 - 100 50 - 100 100 100	100 100 50 - 100 50 100 100 100 100
RAINBOW	POWER HELLER JANUSK *OPEN	SUPV,., LOGIC TECH TECH	E05 E11 E62 E62		40 50 75 100	40 100 50 100	25 50 50 100				•

				SMALL MANPOWER	STORAGE LOADING FY83-FY84	SYSTEMS SCHEDULE				· · · · · · · · · · · · · · · · · · ·		
RITIZE	NAME	TECHNICAL SKILL	JOB CODE	Q1FY83	Q2FY83	Q3FY83	Q4FY83	01FY84	Q2FY84	Q3FY84	Q4FY84	
										•		
NO STIC	GRAY	SUPERVISOR	510	100	100	100	100	100	100	100	100	
	MOSCAPILLO	LIGR. REL.	J61	100	100	100	100	100	100	100	100	
						v						
x 5 0	CUADRI	DIAG	J13	100	100			× .				
	CHESTER		J11	100	100			e. ,, e.•				
x 3 2	CUADRI CHESTER		J13		<u>.</u> .	100 100	100	50	50	50	50	
TEC.	FOWERS		J11	100	100	100	50	50	50			
	CHER		J11 J13	100	100 100	100 100	100	100				
	DCUCETTE		CONTR	100	100	100				• -, ,		
	DCYD		COOP	100	100	100	100		•			
	NICKEL "G		J15		100	100						
ON ELE	ROSS		J13	100	100	100	100	100	100	100	100	
EC II	FEELEY			100	100	100	100	100	100 -	100	100 100	
ec ir	FOWERS NICKEL "G		J11 J15				50	50	50	100	100	
	CHIN		J13				100	100	100	100	100	
	CHEN		J11					100	100	100	100	
	CHESTER		J11					100	100	100	100	
v v v v				· · · · · · · · · · · · · · · · · · ·								
PORT	SPITHER	MGR	E 0 2	100	100	100	100	100	100	100	100	
PKC7/	CHCHYAR	PS ENG	507	100	100	100	100	50	50	50		
	GREEN	PS TECH	E61	100	100		100	50	50	50	50 50	
x 5 0	HILDEBPANT	PS ENG	E07	100	100	100	100	100	100	100	100	
	CHAUTIN MCLAUGHLIN	PS ENG	E07	100		100	100	100	100		100	
		PS TECH	562	100	100	100	100	100	100		100	
050	PUZZY	PS ENG	E07	100	100	100	100	100	100	100	100	
	HOWELL	PS TECH	E70	100	100	100	190	100	100		100	
TEC	HAMBLEN	AZTES-ENG		100	100	100	100	100 .	100	100	100	
	BETHLAUME	AZTEC-ENG		5 u	100 .	100	100	100	100		100	
	FELERSTEIN	-ZIEC-TECH										
(52	*OPEN*	PS ENG	E07				50	190	100	100	100	
	OFEN#	PS TECH	E90					100000			100	
C 11	* JPER*	PS ENG	FO7					50	50	100	100	
xx	* DPENS	PS EYG	107			50	100	100	100		100	
The second second second	AGRENL				the mark marks are a				• • •		LUU	

SMALL STORAGE SYSTEMS MANPOWER NEEDS

PROJECT	TECHNICAL SKILLS	JOB CODE	QTR NEEDED
AZTEC	M-Code Eng.	E09	Q2
Floppies	East Replacement-Supervisor Berthiaume Replacement - Mech. Chautin Replacement - Elec.R/W Read Write	E05 E11 E09 E09	Q2 Q2 Q3 Q3
Common Elect.	Analog Eng. Analog Eng. Logic Eng. Logic Eng.	E09 E09 E07 E07	Q2 Q2 Q2 Q2
1/2 Hgt. 5 1/4" Hard Disk	Mech. Eng. Mech. Design Tooling Eng. Heads/Media R/W U Code + Devic. Logic Stepper Algorithm Technician Technician Technician	E09 E09 E09 E07 E07 E07 E72 E72	Q2 Q2 Q2 Q2 Q2 Q2 Q2 Q2 Q2
RDXX	Analog Eng. Logic Eng. Technician	E09 E09 E72	Q2 Q2 Q2
RAINBOW	Technician	E62	Q2
Prod. Support			
- Floppy Extension	ns Prod. Support Eng.	E07'	Q4
- 1/2 Height 5 1/4" Hard Dis		E07	Q3

IV. PROJECT INVESTMENT PRIORITY AND RESPONSIBLE ENGINEERS LIST

7575

Priority 1 - Absolutely critical to Strategy

	PROJECT	ENGINEER	FY83 BUDGET (\$K)	FY85 NOR (\$M)
	RX50 OK OR RD50 OK OR AZtec OK OR RD52	Steve Radoff Clint Wotton Clint Wotton Carl Blatchley	750+175 175 330 4900 6155	460 -0- 580 246
1	Common Elec. Set Drive Floppy Extension	John Glavin	7540	N A
, [RX50 Wrap Up 1/2 Hgt. buy out Advanced Floppy	Steve Radoff Constant Ryan	175 300 250	N A N A N A
)	1/2 Hgt. low cost hard disk MM	Fine y 3 2 John Glavin	7 ² S 1150	N A
P		antial Existing Comm	×4.1	5
P	RX52 (4) RDXX CHICAL PROPERTY Aztec II	Jenny Ryan Ed East Carl Blatchley	225 380 50	163 183 6
	Priority 3 - Suppo	rts Base Strategy	655	75. 55 - week Ro
	Rainbow	Duncan Power	300 /53	

4/82 G. STEM ICE ID	DEC FY81	BEST COMPETITION FY81	DEC FY83	BEST COMPETITION FY83	DEC FY85	BEST COMPETITION FY85	DEC FY87	BEST COMPETITION FY87
5K	TU58 .25MB DC100 CARTRIDGE TAPE				RX50 2 x 400KB \$175 DRIVE 1/2 RX52 800KB REM. \$150 DRIVE PORTABLE PERSONAL COMPUTER	TANDON'S 1-2MB 1/2 HT 5 1/4" FLOPPY REM. \$150 DRIVE OR TANDON'S 3.5" UFLOPPY (SONY COMPATIBLE)		
5K 25K	RXØ2 2 x .5MB REMOVABLE QBUS, UBUS \$975 SUBSYS. \$3900 MLP	DSD 480 2 x 1.0MB REMOVABLE \$4000 MLP	RX50 2 x 400 KB REMOVABLE \$350 SUBSYS. \$995 MLP(1) PC100 PC200 PC300	TEAC FD55E 1/2 HT 5 1/4" FLOP. 400KB REM. \$150 DRIVE	1/2 RX52/ 1/2 HT RD50 800KB/5MB REM./FIXED \$150/\$225 DRIVES RX50 2 x 400KB \$175 DRIVE PC100+ PC200+ PC300+	TANDON'S 1-2MB 1/2 HT 5 1/4" FLOPPY - REM. \$150 DRIVE + TANDON'S 5MB 1/2 HT 5 1/4" FIXED DISK \$300 DRIVE SEE NOTE 2		
25K	RXØ2 2 x .5MB REMOVABLE	DSD 480 2 x 1.0MB REMOVABLE	RD50/RX50 10MB/ 2 x 400KB	BUYOUT (5) 10-20MB 5 1/4"	RD52/MAYA 50-100MB/50MB FIXED/TAPE	BUYOUT 50-100MB 5 1/4" FIXED		

6 K	REMOVABLE QBUS, UBUS \$975 SUBSYS. \$3900 MLP	REMOVABLE \$4000 MLP	2 x 400KB FIXED/REM. CT, QBUS, UBUS \$625(4)/\$250 DRIVES \$3000 MLP(3)	5 1/4" FIXED + 800KB 5 1/4" FLOPPY	FIXED/TAPE CT, QBUS, UBUS \$650/\$350 DRIVES	50-100MB 5 1/4" FIXED + TANDON CARTRIDGE TAPE \$1000 + \$350
	DECMATE I		RD51/RX50 10MB/ 2 x 400KB FIXED/REM. \$600-\$700(4)/ \$250 PC350, LCP-5		PC350+, LCP-5+	
5K	RLØ2/RLØ2 10MB/10MB REM./REM.	DSD 880x/30 32MB/1MB FIXED/FLOP.	RC25 (AZTEC) 25MBF+25MBR	LARK II 20.4MBF + 20.4MBR	AZTEC II 75MBF+75MBR	HITACHI 812 128MB FIXED + TAPE
ik	QBUS, Q-22 \$1400/\$1100 \$6.9K/\$5.6K	\$9200 MLP	QBUS, UBUS \$2972 \$9900 MLP 12MBITS/IN2	\$4931 5MBITS/IN2 or LYNX/PUMA	QBUS, UBUS \$2300 24MBITS/IN2	\$6450
	11/23, 11/23+, 11/24, 11/34, 11/44, WPS 200		11/730, ORION, LCP-8 11/23+	10MB/42MB REM./FIXED \$4300	LOW COST 11/730 SCORPIO, ORION LCP-8	

ES:

PC300 - Includes Controller
Any number of 1/2 HT 5 1/4" floppies and micro floppies
Imputed hardware MLP for PC350 - priced at \$3500 which includes CTAB-10 software
Buyout price
Many vendors will begin delivering 10-20MB drives in FY83

INTEROFFICE MEMORANDUM

TO: Grant Saviers

DATE: 4 October 1982

cc: SSD

FROM: Paul Bauer

DEPT: SMALL STORAGE SYSTEMS

EXT: 223-6581 LOC: ML01-3/T62

SUBJ: PROJECT PROPOSALS IN RESPONSE TO LAST SSD WOODS MTG.

Attached are proposals from the Small Storage group in response to the product needs identified at the last SSD Woods meeting.

1/2 Height 5 1/4" Floppy Buyout 1/2 Height 5 1/4" 10MB Hard Disk

The budget and manpower consequences of these proposals have been incorporated into the latest budget review and analysis.

/mpc

DOUBLE-SIDED HALF-HEIGHT FLOPPY BUYOUT

GETS: DOUBLE SIDED CAPACITY (818Kb/DISK)
PRODUCT GUAL IN MAYNARD

SHORTEST TIME TO MARKET

LOW COST

RX50 CONTROLLER INTERFACE

DON'T GETS: COMPETITIVE TECHNOLOGY BASE

1.2Mb/DISK NEW MEDIA

		i				FY83		1		FY	74		
		1	01		02	83	84	!	91	02	63		04
	DRIVE VENDOR SURVEY	1	77-	,	^_	^		 				+-	+-
	DRIVE EVALUATION	1				^	^	i					
	MEDIA BUALIFICATION VENDOR SELECTION	1				^	A			^			
	ECO ACTIVITY	i				W 12	A		^				
	DMT PREPARATION	1						ľ	AA	1/3			•
	THE	1						1	٨	^	A		
	PMT	1									^	^	
1	FVS	1	*					Ĭ			. •		
		(40)											
	ENGINEERS	10		1		3	3	1 2	2	2	1	0	
		1 .	0		20	60	60	. [40	40	20		0
	TECHNICIANS	1.0		0		2	2	1 2		1	i	. 0	
		1	0	vi.	0	23	23	ł	23	11	11		0
	P.C.DESIGN	1	0		0	0	0	i	C	0	0		0
	MECH.DRAFTING	1	0		0	0	10	1	5	5	0		0
	DIAGNOSTIC ENG.	1	0		0	. 6	5	1	3	3	0		0
	TEE	i	0		0	0	0	ı	0	0	0		0
	MTA	1	0		0	0	0	1	0	0	0		0
	ENPP	1	0		0	0	0	ı	0	0	0		0
	COMP.ENG.	ı	0	*	0	. 0	3	- 1	3	5	0		0
	UL & DEC102	1	0		0	10	5	. !	10	5	0		0
	RELIABILITY	1.	0		0	0	0	1	8	24	, 8		0
	MODEL SHOP	1 .	0		0.	5	10	1	0	0	0		0
	TOOLING	. !	0		0	. 0	0	1	. 0	y	0		Ü
	MATERIAL	1	0		0	15	15	!	20	0	0		0
	ECO	1	0		0	0	0		0	0	, 0		0
	CONTINGENCY	ı	0		0	10	10	1	10	10	0	/	0
	TOTALS	ł	0		20	129	141	1	122	103	39		0
	,												
			FI	RST YE	EAR PRO.	IECT TOTAL -	\$289X		SEC	OND YEAR PROJE	CI IUIAL -	\$264X	
							PROJECT GRAN	D TOT	AL - \$5	53K	•	, ,	٠,
	HEADS/MEDIA	ı	0 -		0	30	35	1	20	10	5		0
	CAPITAL	i	ŏ		Ö	20	10	1	0	0	0		^

- 1. ENGINEERS: 4.50 EE- DEVELOPE A TEST AND EVALUATION PROGRAM TO ACCESS THE MATURITY OF THE DRIVE BY MEASURING IT AGAINST ITS SPEC. DEVELOPE TEST TECHNIQUES AND HARDWARE AND CARRY OUT THE TEST PROGRAM.
 - 2.00 ME- EVALUATE THE MECHANICAL MATURITY OF DRIVES AND DEVELOPE VENDOR IMPLIMENTED ECO'S
 - 5.50 SUPERVISOR- COST, SCHEDULE, AND TECHNICAL MANAGEMENT OF PRODUCT QUALIFICATION, MANAGE THE INTERFACE WITH THE VENDOR.
- 2. TECHNICIANS: 8.00 TECH(4)- SUPPORT ELECT. AND MECH. TEST AND EVALUATION, DEVELOP AND CONFIGURE TEST HARDWARE, SUPPORT QUALIFICATION OF THE PRODUCT.
- 4. MECH.DRAFTNG:20K DEVELOPE VENDOR ECO DOCUMENTATION AND RELEASE DRIVE AND MEDIA PACKAGE.
- 5. DIAG.ENG.: 17K MODIFY DIAGNOSTIC SOFTWARE FOR PRODUCT QUAL.
- 9. COMP.ENG.: 11K EVAL. AND LIFE TEST OF SELECTED CRITICAL COMPONENTS AND COMPONENT FAILURE ANALYSIS
- 10. UL&DEC102: 30K SHOCK AND VIBRATION (8K), PACKAGING SHOCK (6K),
 UL & PRODUCT SAFETY (4K), THERMAL (8K),
 EMI/RFI/FCC (4K).
- 11. RELIABILITY: 40K 20 WEEK DMT TO EVALUATE MTBF, DATA RELIABILITY, INTERCHANGE, AND MEDIA WEAR AT 2K PER WEEK.
- 12. MODEL SHOP: 15K TOOLING TO EVALUATE MECHANISM AND ACCELERATE WEAR (DOOR AND COLLET CLAMP).
- 14. MATERIAL: 50K 70 DRIVES AT \$500 EACH (25K), VARIOUS TEST HARDWARE, FIXTURING, AND CABLING (5K).
- 16. CONTINGENCY: 40K NEEDED FOR UNCERTAINTY OF OFF-SHORE VENDOR'S COST AND SCHEDULE RISK.
- 17. HEADS/MEDIA: 100K SPECIFY AND QUALIFY VENDORS FOR DOUBLE SIDED

 MEDIA. SUPPLY QUALIFIED AND TESTED MEDIA FOR

 DVT AND DMT. DEVELOPE PROCEEDURES AND TEST

 EQUIPMENT FOR MANUFACTURING TO VERIFY MEDIA

 QUALITY.
- 18. CAPITAL: 30K VT103 TEST SYSTEMS (20K), POWER SUPPLIES AND TEST CONTROLLERS (10K).

many that the state

PROPOSAL LOW COST WINCHESTER AND FLOPPY SUBSYSTEM

J. Glavin 8/30/82

1.0	Introduction
	1.1 Purpose
	1.2 Scope
2.0	Product Goals and Priorities
	2.1 System Goals
	2.2 Winchester Goals
	2.3 Floppy Goals
	2.4 Controller Goals
	2.5 Priorities
3.0	Product Description/Specfication
	3.1 Drives
4.0	Alternatives
	4.1 Drives
	4.1.1 Buyouts
i.	4.1.2 DEC Designed and Built
	4.2 Controller
	4.3 Advantages/Disadvantages
	4.3.1 Drives -
	4.3.2 Controller
5.0	Product Cost
	5.1 Present Hardware Cost
	5.2 Drive Costs
	5.2.1 Drive Costs for Seperate Mechanisms
	5.2.2 Integrated RD/RX Costs
	5.3 Controller Costs
6.0	Development Tasks

7.0 Schedule/Development Cost

Issues/Concerns

8.0

1.0 INTRODUCTION

1.1 PURPOSE

The purpose of this proposal is to examaine the alternatives and feasibility for attaining the lowest cost, 5 1/4 inch, half (1/2) height winchester + floppy subsystem.

The goal is to maintain RD50/RX50 performance at minimum cost.

1.2 SCOPE

Areas which will be studied under this proposal are:

- 1. Examination and comparison with present subsystem costs.
- 2. Development of a low cost controller capable of supporting
 - (1) RX50
 - (1) RD50 and/or (1) removable disk.
- 3. Examine make/buy for 1/2 height RX50 and 1/2 height RD50.

The details for the 1/2 height RX50 will not be addressed under this proposal and can be found under the appropriate proposal from the Floppy Development Group.

2.0 PRODUCT GOALS AND PRIORITIES

2.1 SYSTEM GOALS

- * Low cost entry level system.
- * System will always be configured with hard disk.
- * System transportable media must be RX50 compatible.
- * Storage power requirements ≤ RD50 +RX50.
- * Form factor cannot exceed one full option slot.
- * Subsystem transfer cost \$700 \$850.
- * FVS H2; FY'84.

2.2 WINCHESTER GOALS

- * Minimum RD50 capacity and performance.
 - 5MB formatted capacity
 - 170 ms Avg. access time
- # Interface = RD50.
- * RD51 capacity and performance ASAP.
 - 10MB formatted capacity
 - 85 ms Avg. access time

2.3 FLOPPY GOALS

- * Media backwards compatible to RX50.
- * Capacity: 400KB minimum.
- * Reliability = RX50
- * Interface = RX50.
- * Performance: Not an issue; don't sacrifice cost for performance.

2.4 CONTROLLER GOALS

- * Supports
 - Single RX50
 - Single RD50 and/or single removable disk.
- * CT bus.
- * Single CT option Slot (5.2" X 12").
- * Power ≤ RCD50 controller.

2.5 PRIORITIES

- 1. Time to market @ \$800.
- 2. Lower cost.
- 3. Removable disk.
- 4. RD51 capacity and performance.

Note: These are the PC350 priorities.

3.0 PRODUCT DESCRIPTION/SPECIFICATIONS

3.1 DRIVES

	Winchester	Floppy
Configuration	5MB fixed	Single removable diskette
Formatted capacity	5MB/drive	400KB/drive
Avg. latency	8.33MS	100MS
Avg. access time	≤ 170MS	264MS
Functional Specifications		
Recording density	10K bpi	
Track density	345 tpi	96 tpi
Disks	1	1
RPM	3600	300
MTBF	11000 P.O.H. 50% duty cycle	2000 P.O.H 30% duty cycle
Error rates		
Soft Hard Seeks	10 ¹⁰ 10 ¹² 10 ⁶	10 ⁹ 1012 10 ⁶
Transfer rate	5MB/sec.	250Kb/sec.
Power	25W TYP (+5; +12)	17W TYP (+5; +12)
Environmental	DEC STD 102 class B	DEC STD 102 media class A
Dimensions Height Width Length Weight	1.625" 5.75" 8.0" 5#	1.625" 5.75" 8.5"
Interfaces	ST506 (RD50)	RX50
-	· .	· · · · · · · · · · · · · · · · · · ·

4.0 ALTERNATIVES

4.1 DRIVES

4.1.1 BUYOUTS

- TEAC; 1/2 height, 96tpi
- Tandon

1/2 height, 5 1/4" fixed disk

- Seagate

4.1.2 DEC DESIGNED AND BUILT

Two seperate mechanisms

- 1/2 RX50
- 1/2 RD50
- Common controller

Integrated RD/RX

- Shared spin and/or positioner motor
- Shared electronics
- Common controller

4.2 CONTROLLER

- * Multiple disk controller and PLL chips
 - AMD
 - Signetics
 - Western Digital
- * WD1010 winchester controller ship + WD1793 floppy disk controller chip.

. 4.3 ADVANTAGES/DISADVANTAGES

4.3.1 DRIVES

Seperate Mechanisims	Advantages	Disadvantages
In-house	- Develop in-house expertise in 5 1/4 inch disks.	- Higher development costs Requires more DEC resources.
	 Design with extensibility as a goal. Leverage off in-house heads media expertise. 	
Buyout	- Lower development cost requires less DEC resources.	 Solves vendor's technical problems and puts him in business. 1/2 height products are not in volume production yet, making product a high risk. Higher product cost. Extensibility unkown. Single sourced.
Integrated mechanism	- Lower product cost - High MTBF	- Requires full option slot; limiting packaging flexibility More intricate mechanism; increased assembly time Eliminates 1/2 height RX50 product Longer development time (1 qtr).

	Advantages	Disadvantages
Multiple disk controller + P11 chips	- Lower product cost - Lower power consumption - Smaller size	 Chips availability (9 - 12 months away). Specs not firm. High risk. Performance of PLL and data seperator chip unknown.
WD1010 + 1793	- Chips available sooner. (3 months) - Specs not as volatile	 Higher cost. Higher power consumption. Real estate risk for 5.2" X 12" board.

5.0 HARDWARE COSTS

5.1 PRESENT HARDWARE COSTS

	FY'83	FY'84	FY'85
RD50			
Drive (1)	\$641 (\$564)	\$590 (\$513)	\$539 (\$487)
Controller			
Mat'l. Assy & Test	\$200 \$ 60	\$148 \$ 37	\$169
Cables	\$ 12	\$12	\$ 12
Subtotal	\$913 (\$836)	\$787 (\$710)	\$720 (\$668)
RX50			
Drive	\$234 - •	\$200	\$175
Controller			
Mat'l. Assy. & Test	\$ 71 \$ 38	\$ 63 \$ 28	\$ 78
Cables	\$ 6	\$ 6	\$ 6
Subtotal	\$349	\$297_	\$259
Subsystem total	\$1262 (\$1185)	\$1084 (\$1007)	\$979 (\$927)

^(1.) Parenthetical numbers represent targeted RD50 costs.

5.2.2 INTEGRATED RD/RX COSTS

SEPERATE MECHANISMS

Material

Floppy	\$118
Hard disk	\$195
	\$313

Assy. & Test

		***	Domestic	Far	East
Flop			\$ 40		20
Hard	disk		\$ 96	\$	30
•					
•			\$136	\$	50

Maximum savings obtainable using integrated mechanism.

Material:

Floppy spin motor - \$12 Floppy positioner motor - \$11 Transfer mechanism + \$5

Net mat'l. savings - '\$18

Labor: \$ 30 \$ 2

Total Savings \$48/\$426 = 11% Domestic \$38/\$339 = 11% Far East

Conclusion: Doesn't appear that an 11% saving in transfer cost is worth sacrificing the packaging flexibility of seperate mechanisms.

5.3 CONTROLLER COSTS (FY'84 \$)

MULTI DISK CONTROLLER CHIP + PLL

Mat'l. \$115 Assy. & Test \$ 40 ----\$155

WD1010 + WD1793

Mat'l. \$179 Assy. & Test \$ 60 ---\$239

5.2 DRIVE COSTS

5.2.1 DRIVE COSTS FOR SEPERATE MECHANISMS

FY'84\$

Buyout

RD50

Tandon \$300 Seagate \$400

Floppy

TEAC (\$125 + 15% landed) \$144

DEC Designed/Built

RD50

Heads 2 @ \$19	\$ 38
Media 1 disk	27
Stepper/pulley	19
Spindle mtr.	20
Casting/frame	. 15
Sensors	6
Connectors	2
Flex cable	5
Filter	3.50
Misc.	10
electronics	60
	\$195

Assv & test

1.5hrs. @7.85/hr. \$ 96 725% OH

Far East 1.5/hrs \$ 30 @ \$20/hr

Total \$291 Domestic \$225 Far East

Floppy

\$135 Domestic \$114 Far East

Subsystem Total \$339 - \$426 * \$87 savings in Far East

BUYOUT

EVALUATION UNITS EVALUATION/ECO QUALIFICATION FVS FRS

83'83 Q4'84 Q1 - Q2'84 Q2'84 03'83

DEC DESIGN/BUILD

START DESIGN COMPLETE FUNCTINAL B.B. FUNCTINAL PROTO. DVT PHASE I DVT PHASE II DMT START DAT COMPLETE **FVS**

Q2'83 03'83 · Q3'83 Q3'83 Q4'83 Q1'84 SOFT TOOLED PARTS Q1'84 Q3'84 Q4'84

START DESIGN COMPLETE FUNCTIOANAL BB FUNCTINAL PROTO DVT PHASE I DVT PHASE II DMT PMT

FVS

FY'83 1 02 04 1 01 02

CONTROLLER

FVS

CHIPS: SAMPLES PRODUCTION DESIGN FUNCTIONAL BB 1'st PASS PROTO DUT 2nd PASS PROTO DMT . RELEASE PHT

RD DEVELOPMENT BUDGET	· •								
		FY'83			FY'84				1'85
	. Q2	Q3	Q4	Q1	Q2	Q3	· Q4	Q1	Q2
INTERNAL									1
Engineers									
Supervisors Mech. Eng. Mech. Design Tooling Eng.	1 2 1 1	1 2 1 1	1 2 1	1 2 1	1 2 1	1 2- 1	1 2 1	1 1 •5	•5 •5
Heads/Media R/W u Code+Devic. Logic Stepper Algorithm	1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1	.5 .5 1 .5	•5 •5 •5
	9	9	9	9	9	9	9	5.5	2.5
Eng. \$	180	180	180	203	203	203	203	138	63
Techs.								* 1	
Elect. Mech.	2 2	3 2 .	3 2	3 2	3 2	3 2	3 2	1.5	1.5
	ħ	- 5	5	5	5	5	5 ,	2.5	**2.5
Tech. \$	45	56	56	63	63	63	.63	34	34
Other				8					
Labor Material Tooling ECO	225 5	241 15 10	241 20 20	266 30 20	266 40 15	266 15 10 10	266 10 25	172 5 75	97 2 - 25
Total Internal	230	266	281	316	321	301	291	252	124
xternal								£	
Reliability Model Shop Design Services Comp. Eng. Test Equip. Tech. Writing Heads/Media	5 10 5	10 30 5	15 40 10	35 15 20 15 10 10	35 10 15 15 45 20 30	5 10 45 20 15	5 20 20	-5	
Total External	20	60	95	135	170	95	60	5	
Proejct Total	250	326	376	451	491		351	257	124
		952			16	89		381	
	in the second	There a			3022		1	The second second	
						The second of the			Sand Promised

	-							
e grande de la companya de la compan		FY'83			F	Y'84	•	FY'85
	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
Internal								
Engineers .								
Elect. Engineers u Code Diagnostic		1 1 .5	2 1 1	2 1 1	1 1 1	1 1	15	.5
Techs		2.5	4	4	3	3 -	2.5	1
Elect.		1	2	2 .	2	2	2	-1
Total Labor \$		62	103	140	118	118	106	39
Materials ECO		3	5	110	5	5	2 15	2 50
Internal Total	 *.	65	108	150	123	123	123 -	91
External Design Services Model Shop			15 2	10 2	5 1			
Component Test Equip. LSI Comp. Eng. Tech. Writing			2 5	5 15 10 10	15 35 15	15 35 15	15 10	
External Total	7 7 		22	52	71	65	25	
		الموليد الموليد الموليد	\$	भर्गाः पृ श् रे				
Project Total		65 .,	130	202	194	188	148	91
		195	ξ: Δ, *=		7: 7:	32		91
	**				1018			

: 1 . 1

INTEROFFICE MEMORANDUM

To : Bob Flynn

cc : SSD Staff

Date: 7 October 1982 From: Peter van Roekens

Dept: Electronic Storage

Ext : 223-1965 Loc : ML21-2 E64

KRYPTN:: VANROEKENS Enet:

Subj: Information Package

The following package contains the five items requested by yourself and Rick Corben.

CHANGES TO PLAN

There are no changes to the plans to bring them into conformance with EMC guidelines because the plans were submitted after the guidelines were developed. The one major issue that ESD has been working is funding.

With our manpower frozen, we still have a problem covering our rate. This situation was caused by a rapid fall off of the indirect and external funds that the group had received in previous years. The problem has been eased by setting 200K from Scorpio and an expected 417K from TVG. My current estimate of the deficit at the end of FY '83 is about 1M. We are continuing to look for ways to bring in additional funding.

The remaining items are attached. Item 3 has been updated to reflect the increased funding. Items 2, 4, and 5 are being submitted for the first time.

CHART II

<u>ESD</u>

OTHER

AND SUMMARY	FY'83	\$K ENGINEERING BUDGET FY'84	FY'85
TOOLS AND TESTERS	464.5	613.2	795.0
ENGINEERING SUPPORT	201.7	252.6	316.0
ADVANCED DEVELOPMENT	192.0	250.0	312.5
PRODUCT MANAGEMENT	244.0	285.0	330.0

ESD PRODUCT DEVELOPMENT

Product Name	Current	FRS	IRR	NOR Lifetime	ENG. EXP. Lifetime	NPSUC	SERV		ENGI	NEERING EX	PENSE
And Summary Description	Phase		7 %	\$B	\$M	\$M	Summary \$M	*	'83	\$K '84	185
11/780	2	Q4/83	N/A	\$.3	1.914	.142	N/A		658.3		
MS11-PB	3	Q2/83	N/A ^A	\$.1	.762	.116	N/A		189.5		
VENUS	2	Q2/84	57%	\$.2	.961	.207	N/A		251.7	128.7	'
SCORPIO	1	Q1/85	N/AB	\$1.1	.783	.114	N/A		444.0	400.0	
ORION	1	Q4/84 ·	N/AB	\$. 5	\$.800	.149	N/A	•	494.0	250.0	
NAUTILUS	0	N/A	N/A	N/A	.470	N/A	N/A		162.0	297.0	
JUPITER	2	Q3/83	51%	\$.1	.979	. 157	N/A		168.5	223.3	
DIAGNOSTIC ASSIST	c _D o	N/A	N/A	N/A	.889	N/A	N/A		417.0	472.0	

ATo Be Completed for Phase 3 Business Plan October 1983

^BTo Be Completed for Phase 1 Business Plan October 1983

CIncludes Original RAM Designed Into Original Board - Not Subsequent RAM Upgrades

DNot Formally Committed from TVG

PROGRAM MANPOWER PLAN (ELECTRONIC STORAGE DEVELOPMENT)

GROUP MANAGER: PETER VAN ROEKENS

SUMPTIONS:

- REFERENCE (NOTE A). MS78ØE HAS OVERRUN AND FUNDING IS NOT AVAILABLE FROM TW. THIS PROJECT CONSTITUTES A MAJOR PART OF ESD'S FY83 BUDGET VARIANCE.
- REFERENCE (NOTE B). SCORPIO FUNDING FOR FY84 IS BEING NEGOTIATED.
- REFERENCE (NOTE C). NAUTILUS FUNDING FOR FY84 IS BEING NEGOTIATED.
- REFERENCE (NOTE D). THE DAM MODULE PROGRAM IS NOT PRESENTLY FUNDED; HOWEVER, WE EXPECT FULL FUNDING TO BE FURNISHED BY TVG. (PRESENTLY WE ARE WORKING IN AN INVESTIGATIVE PHASE FUNDED BY TVG.
- REFERENCE (NOTE E). SEVERAL HARDWARE/SOFTWARE PROGRAMS ARE BEING SOUGHT FOR THE LAST HALF OF FY83 AND ARE: MA780, CT 100 ADD-ON, HSC 50, AND VENUS TCY. THESE PROGRAMS, IF SECURED, WOULD DIMINISH THE UNASSIGNED HEADCOUNT.

				1						
				•		•				
				*				Service Service		
	PRIORITIZED PROGRAM	NAME	CC SITE	TECHNICAL SKILL	JOB CODE	Ql	FY83 Q2 Q3	Q4 Q1	FY84 Q2 Q3	Q4
1.	DYNAMIC RAM EVAL	D. MORENO K. YEE B. O'HALLORAN P. CASEY P. RAYMOND/ NEW HIRE	393 ML 393 ML 393 ML 393 ML 393 ML	TEST EQUIP ENG. TEST ENG.	E09 EFT E09 EFT E11 EFT E70 TFT E11 EFT	1 1 1 .5	.5 .5 .1 1 1 1 1 1 1 1 1	.5 .5 1 1 1 1 .5 .5 .25 1 2.75/ 3.	5 .5 .5 .1 1 1 1 1 1 1 1 1	.5 1 1 .5 1 3.57
2.	DRAM MULTIVENDOR	D. MORENO D. EIDENS P. CASEY	 393 ML 393 ML 393 ML 	DEVICE ENG. TEST EQUIP TECH TEST OPERATOR			.5 .5 .5 .5 .5 .5 .5 .5	.5 .5 .5 .5 .5 .5 .5 .5		.5 .5 .5 .5
3.	LIFE TEST SYSTEMS	D. EIDENS	393 ML 393 ML 393 ML 393 ML 392 ML	TEST EQUIP TECH TEST EQUIP TECH TEST OPERATOR		1 1 1 2/2		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4.	VAX 11/78Ø (64K)	J. OBBARD J. STEGEMAN J. LYNCH D. WHITEHOUSE L. DERENNE L. REID-SIRACO J. MELOSKI R. CROUSE S. LIGHT	392 ML 392 ML 392 ML 392 ML 392 ML	SUPERVISE LOGIC DESIGN LOGIC DESIGN COORDINATE BUILD/DEBUG DOCUMENT BUILD/DOCUMENT		1 1 1 1 1 1 1 1 1 1	1	.3 .3 .5 .5 .5 .5 .5 .5	O SCHOOL)	
. 5.	MS11-P	J. SANGERMANO !	392 ML	LOGIC DESIGN LOGIC DESIGN BUILD/DEBUG		1 .3 1-3/1	.3 (TRAN	ISFER TO CC	393)	
		-								
				× 1.						
	*,				**					

							8 18		14	10 /			
•					•								
	PRIORITIZED PROGRAM	NAME	CC SITE	TECHNICAL SKILL	JOB CCDE	Q1	FY83 Q2 Q3	Q4	Ql	FY Q2	84 Q3	04	
6.	VENUS	J. PARE B. KENDALL R. STANLEY S. HARRINGTON	392 ML 392 ML 392 ML 392 ML	ELECTRONIC TECH ELECTRONIC TECH	E09 EFT E71 TFT E73 TFT	1	.8 .5 .7	1.5	1.5	1 .5	1 .3	1 .3	
				SOFTWARE DESIGN	J95 EFT 		.25 1.057 .7	5/.5	1.5/.5	1	· 3 · 3	-3	
7.	SCORPIO	K. MAMAYEK J. STEGEMAN J. SANGERMANO V. TRIOLO J. DINOPOLOUS K. CLEVELAND	392 ML 392 ML 392 ML 392 ML 392 ML 392 ML	LOGIC DESIGN LOGIC DESIGN LOGIC DESIGN GATE ARRAY DESIGN BUILD/DEBUG SOFTWARE DIAG		1 1	1 1 1 1 1 1 1 1 1 1		1 .5 1 1	1 .5 1	1	1	1
						3.5/.7	4/1 4/2	471	3.571	2.5/1	171	171	
8.	JUPITER .	N. RIEGELHAUPT J. PARE R. STANLEY S. HARRINGTON	1392 ML	LOGIC DESIGN LOGIC DESIGN ELECTRONIC TECH SOFTWARE DESIGN		1 1 .5 1/1.5	1 .5 1 .5 -25 1.45/ .5/.5	.5	.5	.5 .5	.5 .7	-	
9.	ORION	R. ELY J. RANTALA L. CHISVIN G. DONOGHUE B. DUPRE K. LANGLAIS	392 ML 392 ML 392 ML 392 ML	LOGIC DESIGN GATE ARRAY DESIGN TESTER/SOFTWARE BUILD/DEBUG SOFTWARE DESIGN SOFTWARE DESIGN		1 1 1 1 1 2/2 3	1 1 1 1 1 1 1 1 1 1 1 1 3 .3 3.3/2 3.3/2	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1	1	1	
10.	MXV11-B	D. MANION H. COLLINS D. SOVIE	1392 ML1	SUPERVISE LOGIC DESIGN BUILD/DEBUG		.5	.1				-, -		

PRIORITIZED PROGRAM	NAME	CC SITE	TECHNICAL SKILL	JOB CODE	Q1 Q2	783 Q3 Q4	Q1 Q2 FY	84 Q3	Q4
11. MRV11-D	J. LAVRANCHUK K. CLEVELAND J. DINOPOLOUS K. CHINNASWAMY	392 ML 392 ML 392 ML 392 ML	SOFTWARE DESIGN BUILD/DEBUG	E20 TFT E11 EFT E90 TFT E90 TFT B43 NCP J15 EFT	1 1 1 .3 1 1	1 1	TO SCHOOL)		
12. NAUTILUS	N. RIEGELHAUPT B. KENDALL	392 ML 392 ML 392 ML 392 ML	LOGIC DESIGN BUILD/DEBUG	E09 EFT E07 EFT E90 TFT E90 TFT		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1	1 -
•					1/0 1/0	2/.5 2/2	2/2 2/1	2/1	2/1
13. VIDEO RAM	P. RAYMOND/	393 ML	DEVICE ENG.	Elleft	.75 .75	.75 .75			!
14. STATIC RAM EVALUATION	F. QUADRI/	393 ML	DEVICE ENG.	EØ7 EFT	1 1	1 1	1 1	1	1
,		393 ML 393 ML 	TEST ENG. TEST TECH.	E11 EFT E73 TFT 	$\begin{array}{c c} 1 & 1 \\ \hline 1 & 2/1 \end{array}$	$\begin{array}{c c} 1 & 1 \\ 1 & 2/1 \\ \hline \end{array}$	$\begin{array}{c c} 1 & 1 \\ 1 & 2/1 \\ \hline \end{array}$	$\frac{1}{2/1}$	1/1/2/1
15. DAM	S. ROCHEFORT D. MANION H. COLLINS D. SOVIE		LOGIC DESIGN BUILD/DEBUG		1 -4	.5 .5 1 1 1 1 1 1	1	1 .5	

				TECHNICAL	JOB		FY83			FY	84		
	OTHER	NAME	CC SITE	SKILL	CODE	Ql	Q2 Q3	Q4	Q1	Q2	Q3	Q4	
	PROJECT MANAGEMENT	T. ZACCONI R. GIVEN D. DUTTON B. MURPHY D. HURLBUT	392 ML 392 ML 393 ML 392 ML 392 ML	SM. SYST. DEV. MAN	E02 EFT E05 EFT E05 EFT J11 EFT E05 EFT	1	1 1 .7 1 1 1 1 1 1	1 .7 1 1 1	1 1 1 1	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	
	PRODUCT MANAGEMENT	D. HALEY J. AUSTIN	 392 ML 392 ML 392 ML	SM SYST PRODUCT MAN MED/LG SYST PRO MAN PROD. MANAGEMENT	 E23	1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1			1 1 1 1	1 1 1 1	
	CONSULTANT	D. SMELSER J. STEGEMAN	 392 ML 392 ML		EØ3 EFT	1	1 1	1	1	1 1	 1 1	1 1	1
	ASSEMBLY	P. MIKELS D. GAGE			E50 TFT E50 TFT	1	1 1 1	1 1	1	! ! 1 ! 1	1	1 1	1
	TOOL SUPPORT	R. SIRACO L. PEARCE *	392 ML 392 ML		E36 TFT	1	1 1 1	1 1		 			1
	2224 UPGRADE	D. CARUSO	392 ML	SOFTWARE DESIGN	J15 EFT		1 1	1				1	1
	MD407	I. CHAVIS	392 ML	SOFTWARE DESIGN	J13 EFT	- 1	.2 .2	1 .5		1			1
•	TEST STRATEGY	I. CHAVIS	 392 ML 	SOFTWARE DESIGN	J13 EFT	. :	.3 .3	1 .5		1			
•	MS11-P 2228	. M. KAKKAD	392 ML	SOFTWARE DESIGN	J13 EFT	1 .	-	1 1					i
•	CT100/2226C				J15 EFT J13 EFT	1	.5 .5						

PERMANENT PART-TIME

	OTHER	NAME	CC SITE	TECHNICAL SKILL	JOB CODE	Q1	Q2 FY	83 Q3	Q4	Q1	FY			
•	JUPITER TCY	K. LANGLAIS	392 ML	SOFTWARE DESIGN	J11 EFT	1	1 .7	1 .3	1	, VI	. Q2	Q3	Q4	
•	RAINBOW 2224	S. HARRINGTON	392 ML	SOFTWARE DESIGN	 J95 EFT		1 .5	1 1	.3		!		1	1
•	CT ADD ON	K. CLEVELAND	392 ML	SOFTWARE DESIGN	 E90 TST		1	i •			!		"	1
•	VENUS TCY	S. HARRINGTON	392 ML	SOFTWARE DESIGN	 J95 EFT	ÿ 	i -	į	.7					1
	SECRETARIAL OTHER	S. BARNARD M. POCHINI S. GOGUEN D. DUVARNEY R. GOODWIN	392 ML 392 ML 392 ML 	SECRETARIAL SECRETARIAL SECRETARIAL SECRETARIAL MATERIAL EXPEDITER	 G49 GFT G48 GFT G47 GFT G54 GFT 	1 1 1 1		1 1 1 1		1 1 1	1 1 1 1 1 1 1 1	1 1 1	 1 1 1	
					LOGINCE	1	1 1	1	1 1	1 1	1 1	1	i 1	

															+
				TECHNICAL	JOB			FYE	33			FY	8.4		
		NAME	CC SITE	SKILL	CODE	3	Q1	Q2	Q3	04	01	02	03	04	
						-					•-	82	QJ	Q4	
1	J	. SANGERMANO	[392 ML]	LOGIC DESIGN	EØ9	EFT	1		Y .	1		4	1 1		
1	V	. TRIOLO	1392 ML			EFT	ĺ			i	i	1	1 1	1 1	!
1	J	 DINOPOLOUS 	13921ML1	ELECTRONIC TECH	1E96	TFTI		1		i					!
1	Н	. COLLINS	1392 ML1		•	EFT	i	' '		•	ŀ]		!	!
i	D	. SOVIE	13921ML1	the state of the s		TFT	1					!	1	1 1	1
i		. JANETOS	1392 ML		•	EFT	i i	' ;		1	!	!	!	1	1
i	J		1392 ML		•	EFT	i	. 'i	1	1	,	!	!	1 1	1
i		. ROCHEFORT	1392 ML			NCPI		'	1	1	1 1	1 1	1	1	1
i	_	. ELY	1392 ML			EFT		. !				! '		1	1
i		. DONOGHUE	1392 ML	ELECTRONIC TECH		TFT					1	!		1	1
;		. RIEGELHAUPT				EFT	!	. !					ł	1	1
- :	_		The second result is a second of		•							1	1	1	1
!			392 ML 392 ML	LOGIC DESIGN		EFT	, i					1	. 2	1 .7	1
!						TFT		. !			1	.2	1 .3	1	i
!		. KENDALL	392 ML			TFT	Į.	.3 1	•5			1		1	i
!		. OBBARD	392 ML	LOGIC DESIGN		EFT	ļ			.7	1	1 1	1	1	i
. !		. WHITEHOUSE	392 ML	LOGIC DESIGN		EFT		1		•5	1	1	1	1	i
- 1		. MELOSKI	[392 ML]		·	TFT	ı	1	1	1	1	1	1 1	ī	i
- 1		. CARUSO	392 ML	SOFTWARE DESIGN	•	EFT	1	1	1		1	1	1	ī	i
- 1		. CHAVIS	[392 ML]		J 13	EFT	1	1			1	ī	ī	î	ì
-		. CLEVELAND	392 ML			TFT	1	1				ī	ī	î	ŀ
	E	B. DUPRE	[392 ML]	SOFTWARE DESIGN	J15	EFT	1	ĺ		1	1	ī	î	i	١.
	1 5	G. GORDON	1392 ML	SOFTWARE DESIGN	IJ13	EFT	1	1	1			_	_	•	
	1 5	. HARRINGTON	1392 ML	SOFTWARE DESIGN	J95	EFT!		İ			1	1	1	1	
	1	1. KAKKAD	1392 ML	SOFTWARE DESIGN	J 13	EFT	i	1			-	•	1	1	!
	1	. LANGLAIS	1392 ML	SOFTWARE DESIGN	J11	EFT	i	i	.4	1 1	1	1	1	1	!
	1 F	R. SIRACO	1392 ML	SOFTWARE DESIGN	1E36	TFT	i	i		- 1	ī	1	1	1	!
	1 3	. STEGEMAN	1392 ML			EFT		i			•	•	1	1	!
	1	. RANTALA	1392 ML			EFT	i	' - i				1	1	1	!
	1	. CHISVIN	13921ML1		•	TFT	j				'		1	1	!
	i	. MANION	1392 ML			TFT	i	i	•5	•5	•5	.5.	.5	1.	!
	1 1	. RAYMOND	13931ML1	DEVICE ENGINEER		EFT	.25	i	• 5	• 5	• 5	• 5,	• 5	1	!
	•	J. LYNCH	1392 ML			EFT	•25	1		1	1		,	,	!
	1. 1	. DERENNE	1392 ML	BUILD/DEBUG		TFT	1 1	. :				1	1 1	1	!
	i	L. REID-SIRAC		BUILD		TFT		1 1	1	1 1	1	1	1 1	1	!
	•	. SENERCHIA	[392 ML]	DESIGN		EFT	1		1 1	- ,	1	1 1	1	. 1	
	•	S. LIGHT	1392 ML	ADMINISTRATOR		AFT			1	1 1	1	1	1	1	!
÷	•	L. PEARCE	13921ML1	DATA ENGRY SPECIAL.	•	JPTI	1	. !	1	1	1	1 1	T	1	l
	•	P. GREENAWAY/	The second contract of the second second			NCPI		!	,	!	1	1	1 1	1	ı
	•	K. CHINNASWAM		ESTED/ BOCOMENT	1 244	MCP		!		!	1	1	1	1	l
	•	S. ROCHEFORT/		BUILD/DOCUMENT	1842	NCPI	!		1	1		. !	_		•
	•		1 1 1	DOLLD/ DOCUMENT	1043	MCP		. !	. !		1 1	1 (1 1	1	l
	1	R. CROUSE	1 1 1		ì	1	ı	1	1	1		- 1	. 1		t

^{*} PERMANENT PART-TIME

UNASSIGNED

ESD/SSD

APPENDIX C - PROJECT INVESTMENT PRIORITY AND RESPONSIBLE ENGINEER LIST

PRIORITY 1 - ABSOLUTELY CRITICAL TO BASE STRATEGY	PRIORITY	1 -	<u>ABSOLUTELY</u>	CRITICAL	TO	BASE	STRATEGY	
---	----------	-----	-------------------	----------	----	------	----------	--

FUNDING GROUP	PROJECT NAME	RESP. ENG.	FY'83 BUDGET	FY'85 NOR
SSD	11/780 64K UPGRADE	B. COATES	.658	\$104m
SSD	MS11-PB 1MB UNIBUS MOS MEMORY	R. GIVEN	.199	\$41.8m
LSG	VENUS 4MB ARRAY	D. ELLIS	.252	\$40.8m
SSD 32-BIT SYSTEM	SCORPIO	R. GIVEN	.244	
			. 444	\$6.9m
SSD	ORION	R. GIVEN	.494	\$69.1m
32-BIT SYS.	NAUTILUS	R. GIVEN	.162	\$45.0m

PRIORITY 2 - SUBSTANTIAL EXISTING CUSTOMER COMMITTMENT

FUNDING	PROJECT	RESP.	FY'83	FY'85
GROUP	NAME	ENG.	BUDGET	NOR
LSG	JUPITER 1MB ARRAY	D. ELLIS	.169	\$12.2M

PRIORITY 3 - SUPPORTS BASE STRATEGY

FUNDING	PROJECT	RESP.	FY'83	FY'85
GROUP	NAME	ENG.	BUDGET	NOR
T VG	DIAGNOSTIC ASSIST	R. GIVEN	.417	N/A

MEMORY PRODUCT PRICE BAND CHART

PRICE BAND		DEC FY'83	COMPETITION		FY'85 DEC	C	OMPETITION		DEC FY'87	COMPETITION
625K - 1.6M		PDP-10, 256KB \$24K/MB	512KB \$15K/MB		JUPITER, 4MB \$3.5K/MB		4MB \$1.6K/MB	-	JUPITER 4MB \$2.5K/MB	8MB \$1.2K/MB
: 250K - 625K	:	 11780, 1MB \$3.2K/MB	1MB \$2K/MB		VENUS 4MB \$3.0K/MB 11780 4MB \$2.1K/MB		4MB \$1.6K/MB 4MB \$1.6K/MB	1	VENUS 4MB \$2.0K/MB 11780 4MB \$1.5K/MB	8MB \$1.2K/MB 8MB \$1.2K/MB
100 - 250K	1	11750, 1MB \$3.2K/MB	1MB \$2K/MB		11750, 1MB \$2.1K/MB		4MB \$1.6K/MB	•	NAUTILUS 8MB \$1.5K/MB	8MB \$1.2K/MB
40 - 100K	:	11730, 1MB \$3.2K/MB 1144, 1MB \$3.5K/MB	1MB \$2K/MB 1MB \$3K/MB		11730, 1MB \$2.1K/MB		4MB \$1.5K/MB		SCORPIO, 2MB \$2.0K/MB	4MB \$1.2K/MB
16 - 40K	;	1123B, 1/2MB \$5.4K/MB	1/2MB \$2.8K/MB	-	ORION Q/U 2MB \$3.3K/MB	ę	2MB \$1.6K/MB		ORION 2MB \$2.0/MB	4MB : \$1.2K/MB :
2.5 - 16K		LSI-11, 256KB \$3.8K/MB	1/2MB \$2.6K/MB	!	ORION, 2MB \$3.3K/MB		2MB \$1.6K/MB	1	NOT DEFINED	4MB \$1.2K/MB

¹⁾ THIS CHART IS FOR ADD-ON MEMORY ONLY. PRICES REFLECT OUR MOST COMPETITIVE PRICE. MEMORY REVENUE/MB IN PACKAGED SYSTEMS WILL BE HIGHER.

²⁾ DEC PRICES ARE ACTUAL FOR '83; ASSUMED COMPETITIVE AT THAT POINT. DEC PRODUCTS EASY TO PLUG ARE DECREASED IN PRICE FASTER THAN THOSE WITH CUSTOM LSI OR COMPLEX GATE ARRAYS.

³⁾ COMPETITION IS ASSUMED TO BE U.S. AND JAPANESE SEMICONDUCTOR MANUFACTURERS.

⁴⁾ THIS REFLECTS ESD'S CURRENT PLAN AND BUDGET. PLANS TO GET HIGHER DENSITY IN FY'87 NEED TO BE DEVELOPED.

INTEROFFICE MEMO

TO: BOB FLYNN
CC: GRANT SAVIERS
DAVE BROWN
PAUL BAUER
PETE VAN ROEKENS
MIKE RIGGLE
CX ENG STAFF

DATE: 4 OCT 1982
FROM: TOM BURNIECE
DEPT: STORAGE SYSTEMS ENGINEERING
EXT: 522-2100

LOC/MAIL STOP: CXO1-1/Q21

SUBJ: RICK CORBEN'S 5 ADDITIONAL ITEMS FOR OC WOODS

I've attached the following per your 9/27 EMS:

- (1) Summary of Changes -- We have combined the RAXX/XY program under the funding previously earmarked for RAXX only and started the 100-MB, 5-1/4" project (RDZX) under the funds previously earmarked for RAXY only, but otherwise the EMC process has not affected our FY83 plans (see attached Beige Book Chart 3.1).
 - (2) Revised Budget and Deliveries -- | See attached Project Alternatives Chart and revised 5-year budget (I don't know what charts I and II from June 14 are).
- (3) List of People Freed Up -- None, since none of the CX projects have been cancelled or redirected, except as in (1) above. As a matter of fact, we are going to be in serious trouble soon if we continue to not replace our losses (e.g. Bill Glover, Tony, Perlick, etc.).
- (4) Priority Listing of All Projects see attached.
 - (5) Price Band Charts for FY83-87 Products see attached. (I have not heard from Eli Glazer.)

Note that we do not have any funding or available resources for our "OEM" plans and with the current headcount freeze, I'm afraid we may have to "forget it".

3 1 BASEPLAN INDEX

ORG: SSD/CX PAGE 1 OF 1	PAG	DA ES	TE: 9/	4/82	_ PREP	ARED E	Y· TOM	BURNI	ECE	-
PRODUCT NAME & DESCRIPTION	CURR PHAS		COST*	EST. SPENDING THRUFY82 (\$K)	BUD	GET (\$ FY84 	K) FY85 	FY86 	ITOTT. I	RESP PROG OFF.
RA60 205MB REMOVABLE MEDIA SDI DRIVE	2	_	•		 3467a 	İ	 1400b	 850b	 11641a 	CX
RA81 456MB FIXED MEDIA SDI DRIVE	3	[Q183	\$4800 (C,84) 		1	1	 615b	 414b	5219a 	CX
RAXX 1000 MB FIXED MEDIA SDI DRIVE/RAXY-REMOV- ABLE COMPANION		Q485 (T) 	 <\$2500 (T) 	208a 	 1945a 	 4873a 	 6204a 	 4741a 	 20000a 	l cx
RDZX - 100+MB 5-1/4" FIXED MEDIA DRIVE		Q484 (T)		0	 1129a 	4469a	7296a	5000a	18000a	cx
HSC50 - HIGH PER- FORMANCE/FUNCTION- ALITY CI TO SDI/ STI CONTROLLER	6	6/83 (C)	\$8400 (C)	7369 	4519		720b		14.000	CX
HSC CACHE - 4MB CACHE FOR HSC50		Q4 FY84 (T)	\$6600 (T)	100	500	950	900	200b	2,450	СХ
UDA52 UPGRADE TO UDA50	2 1	2/821	\$1500 (C)		448	150		-	877	CX
BSA50 BI TO SDI/ STI CONTROLLER FOR SCORPIO & NAUTILUS	:	FY86 (T)	\$1400 (T)		800	3058 	3000 j	1500	8,358	cx
DATABASE MACHINE - BACK END PROCESSOR FOR DATA BASE SEARCHING ON SDI DISKS		FY86 (T)	\$10-20F (T)	(NOT FUNDED	NOT FUNDED		- !		TBD	CX
	i	i			i	i	i	i	'i	

3 9 COMPANY CONFIDENTIAL RESTRICTED DISTRIBUTION

^{*}INDICATE WHETHER FRS AND TRANSFER COST ARE TARGET (T) OR COMMITTED (C)

NOTES: a. ACTUAL DEVELOPMENT COSTS.

b. ENGINEERING CONTINUATION NOT COUNTED IN DEVELOPMENT COSTS.

	FY82	FY83	FY84	FY85	FY86
	ACTUAL	PLAN	FCST	FCST	FCST
DEVELOPMENT:					
UDA/RA80	2802	0		•	
RA81 & SWFT	3335	1208.1	0	0	0
RA60 & SWFT	3731	3467	1000	0	0
SDI	135	55	0	0	0
SUPERCAB	82	130	Ŏ	0	0
HSC50	3007	4518.7	3326	0	0
RAXX/RAXY & SWFT	177	1945	4873	6204	4741
RDZX	0	1129	4469	7296	5000
BSA 50	0	800	3058	3000	1500
UDA 52	251	447.8	150	0	0
HSC CACHE	0	500	950	900	200
HSC ENHANCE	0	0	0-	600	2810
CONTINGENCY	0	135.8	0	4114	16095
FCC	N/A	211.7	0	0	0
DIAG. RELEASE	0	25.3	0	0	0
SUBTOTAL	13520	14573.7	17826	22114	30346
CONTINUATION:					
RL/RK CART & SWFT	42	62.6	1.00		
RL01/02	316	62.6	128	64	40
RM'S/RP06	453	341.1 517.5	250	200	200
RP07	80	83	200 111	150	100
RM/RA80/RA81	1280	936	1624	110	0
UDA	0	565	160	1275	1014
RA60 & SWFT	Ö	0	819	1400	100 850
HSC50	Ö	Ö	0	720	360
	,			720	300
SUBTOTAL	2171	2505.2	3292	4019	2664
momas	15505				
TOTAL	15691	17078.9	21118	26133	33010
OTHER:					
CX ADMIN	726	654	834	1014	1194
PROD MGM'T	325	578.1	651	729	949
LSI DEVEL	623	931	1072	1255	1244
CAD TOOLS	176	596	750	1000	1250
DES. ASSUR.	0	100	200	300	400
CTLR. COMPET.	0	0	0	150	170
DRIVE COMPET.	0	0	0	200	250
PERSONNEL	N/A	148	175	200	225
			-		
SUBTOTAL	1850	3007.1	3682	4848	5682
CDAND MODAL	17541	20096	24900	20003	20602
GRAND TOTAL	17541	20086	24800	30981	38692

NOTES: UDA52, HSC CACHE & RK07 CART WERE NOT IN ORIGINAL FY82 BUDGET OR BASEPLAN. RAXX/XY AND RDZX REPLACE RA65/85/90 IN FY82 BASEPLAN. THE CONTINGENCY FUNDS FOR FY83 COULD BE USED FOR DBM BUT ARE CURRENTLY EARMARKED FOR ECO'S PERSONNEL FUNDING WAS NOT IN ORIGINAL FY83 BUDGET SUBMITTAL, BUT HAS NOW BEEN INCLUDED FOR FY83 86

CX 1183 PROJECT PRIORITIES

Project Name	Responsible Eng.		Y83 UDGET		Y85 OR		
PRIORITY 1 - ABSOLUTELY CRIT	TICAL TO STRATEGY						
RA81 (FRS achieved)	Mike Hammer	\$	1208.1K	\$	500M		
RA60 (announced)	Bert Miller	\$	3467	\$	350M		
HSC50 (will announce 12/6)	Ralph Platz	\$	4518.7	\$	60M		
UDA52 (released)	Bill Mathrani	\$	447.8	\$	100M		
RAXX/XY (FRS (T) IS Q4FY85)	Pete Svendsen	\$	1945		0		
BSA50 (FY85 FRS TBD)	Bill Mathrani .	\$	800		TBD		
PRIORITY	1 SUBTOTAL	\$]	2386.6K	\$1	.010M+		
PRIORITY 2 SUBSTANTIAL EXI	STING COMMITMENT						
PRIORITY 3 - SUPPORTS BASE S	TRATEGY						
RDZX (FRS (T) IS Q4FY84)	Bert Miller	\$	1129K	\$	20M*		
HSC Cache (FRS(T)IS Q4FY84)	Ralph Platz	\$	500	\$	10M*		
DBM (currently A/D only)	None		0		N/A		
Dotootan	2. GUDDON -			_			
	3 SUBTOTAL		1529K				
PRIORITY 4 - GOOD BUSINESS, NOT STRATEGIC AT CORPORATE LEVEL							
OEM Disks (not funded)	None		0	\$	29M		
PRIORITY	4 SUBTOTAL		0	Ś	29M		
		(*)	U	Þ	25M		

^{*(}Rough estimate, business plan not complete)

CX FY83 PROJECT PRICE BAND CHARTS

SYSTEM PRICE	 FY83	FY85	PY87
\$100K-500K	UDA5Ø RA81 RA6Ø	HSC50 HSC Cache RA81 RA60 UDA50	DBM HSC5Ø HSC Cache RAXX/XY BSA5Ø
\$ 50K-100K	UDA50 RA81 RA60	UDA5Ø RA81 RA6Ø	UDA5Ø BSA5Ø RAXX/XY
9 10K- 50K	N/A	RDZX	BSA5Ø RAXX/XY RDZX
\$ 5K- 1ØK	N/A	N/A	N/A
\$ 1K- 5K	N/A	N/A	N/A
	;		

A section of the sect	A HAZZELENZIA	a the state of the state of the	J. W. W. W. W. W. W. W.	Children or a service of the contract of the c
4	-	*		

PRODUCT	BEST ALTERNATIVE	Consequences of TECHNICAL	SYSTEMS	Undiscounte Cash Flow (Delta \$)	CONSEQUENCES OF "NO PRODUCT"	CONSEQUENCES OF	BEST PRODUCT
RA60	Youn, already	N/A	N/A	N/A	h/A	X/A	RA60
BASI	None, stready -	N/A.	A/A	N/A	A/K	n/A	XAB1
	No Product (CI dies stay with Mass- hus & Unibus.	Less Competitive	Poor maintainability in field. Stay w/MB disks (buyonts) and MB tapes (TM78) or use SI drives w/UDA & TS tapes on	(\$173M)*	development depending on HSC50 device.	Hiss VMS v-38 support of HSC50, This is the clusters release so clusters would ship	HSC
	Possibly find a buyout for CI to SI attachments.	lose arch. momentum (future cache, NHB, file servers, etc.) lose people.	Performance on highend systems suffers if use MB. Lower per-		High Availibility goals of VAX COMPLEX SYSTEMS eliminated.	formance disk sub- systems.	
			formance hackup. Requires more software (drive) development.		No replacement for the high performance controller. Give up market share.	disks at FRS. It is solely dependent on HSC50 for disk stor- age.	
						Increased MSC50 pro-	
HSC CACH	E Ho Product - put Cache in CPU or main memory.	Lower performance (Increase access time). Increase performance requirements for Adv. disks.	Not competitive with IBM, etc.	(>\$25H) #	Cache should be a money maker It is targeted a a relative price insensitive market 6 will be required for clusters 5 the next generation of VAX 6 LCG processors.	Delayed Competitive-	HSC Cache
 BAXX/RAX	T Buyont	"Co out of Engineering business" at state-of-	Probably higher cost (1.6 times	(280 H):	Lose competitive position with IBM & Japan & highend and mid-range (heart of DEC system business).		

*Note: The above cash flows do not account for the impact that will be felt on Digital's high-end processors or the loss of storage device sales. This leveraged amount should be in excess of (\$500M).

PRUDUCT	BEST ALTERNATIVE	TECHNICAL		CASH FLOW (DELTA \$)	CONSEQUENCES OF "NO PRODUCT"	CONSEQUENCES OF SLOWDOWN	TODAY
RDZX 00 MB. Si vini)	Buyout	husiness at state-of-art	Lose competitive position at highend of 5 % disk business (lowend of 32-bit systems business).	(1001)		Will delay intro- duction at least 6 mo no longer be on tech- pology leading edge	None, may be some in FY85
BSA	I. Assume no BI (1) If on VAX, develop new bus, need BSA equivalent for this bus. (2) stay w/Unibus		Possibly use industry SID microbus; Advantage: allows disksubsystem OEM business. Disadvantage: loses unique I/O (plugable).	(\$25H)	No disk attachment to BI. If no BI then we will have to address the performance issues that surround the UNIBUS controller space. Won't have competitive	No disk subsystem for BJ Scorpio systems at FRS. Due to early Scorpio board-level announce ment, we need to speed up, not slow down, to have controllers when third-party vendors	None
	(1) LSI-VDA (11) Stay w/UDA (3) Use Q-bus- develop QDA	Cost reduced & size re- duced UDA. Possibly have to re- package. Major development program.	Allows future systems to use Adv. packages. No parity checking. Performance not as good. Packaging incompatibility (cooling, size, connector) with future smaller systems. Consequence: constrains packaging on those systems. Future VAX stay w/Unibus or add Q-bus.		mid-range disk from a performance point. Currently have a product gap between UDA50 and HSC50. Que not good enough.	will.	
	(1) limit to lowend, but use BI AZIEC.		Cost too high for low end. Less system flexibility. Systems also need Unibus to get other SI devices of use NI - requires BSA development				
DBM	Buyout	May not gain key strategic technology knowledge to compete w/ Japanese 5th generation	Will require SDI interface & MSCP protocol to attach our disks. DEC host interfaces will also have to be accommodated. Costs will be higher. Hisk that avail. buyouts will be competfitive.	1	If never have a DBM could lose significant competitive position. If delay DBM to Intermarket window & lose sales, including system	fund to acheive an FY85 product.	Britton-Lee shipping. Servio is best new design.

PROJECT INVESTMENT PRIORITY

FUNDING GROUP PROJECT NAME	RESPONSIBLE ENGINEER	FY83 BUDGET	FY85 NOR
PRIORITY 1-ABSOL			
Tape Engineering TU81/TA81 MAYA TA78	Mike Cucina/ Dave Christman	\$604K	\$112 Million
MAYA	Bob Richmond	\$2308L	\$116 Million
TA78	Dave Christman	\$793K	\$62 Million
PRIORITY 2-SUBST	ANTIAL EXIST	ING COM	мітмект
Tape Engineering TU80	Mike Cucina	\$509K	\$38.4 Million
			* .
PRIORITY 3-SUPPO	RTS BASE STRA	ATEGY	
> MANUEE	Bob Richmond	40.00	
Tape Ensineering YANKEE	BOD KICHMOHO, Washington		
Digital Andia Played	Charlie Smith		TBD
Digital Andia Player - Ocitillo bay	ant		

-	FY83-[EC	FY83-C OMP	FY85-D EC	FY85-C OMP	FY87-D EC	FYB7-C OMP
> 625K	TU78 Industry Compatible Start/Stop Tame 1600/6250 BPI 125 ips \$14,300/ \$48,000 H-Bus VAX DECSYSTEM-20	IBM 3420-6 Industry Compatible Start/Stop Tape 1600/6250 BPI 125 ips \$11,500/ \$57,300	TA78 Industry Compatible Start/Stop Tape 1600/6250 BPI 125 ips \$14,500/ \$52,000 HSC50 VAX DECSYSTEM-20 DECSYSTEM-40	OCOTILLO High density/ performance Cartridge Tame 20,000 - 32,000 BPI \$15,000/ 60,000 (est.)	TA78 Industry Compatible Start/Stop Tame 1600/6250 BPI 125 ims \$14,500/ \$52,000 HSC50 VAX DECSYSTEM-20 DECSYSTEM-40	OCOTILLO High density/ performance Cartridge Tare 20,000 - 32,000 BPI \$15,000/ 60,000 (est
250 – 625K	TU78 Industry Compatible Start/Stop Tape 1600/6250 BPI 125 ips \$14,300/ \$48,000 H-Bus VAX DECSYSTEM-20	IBM 3420-6 Industry Compatible Start/Stop Tape 1600/6250 BPI 125 ips \$11,500/ \$57,300	TA78 Industry Compatible Start/Stop Tape 1600/6250 BPI 125 ips \$14,500/ \$52,000 HSC50 VAX DECSYSTEM-20 DECSYSTEM-40	OCOTILLO High density/ performance Cartridge Tape 20,000 - 32,000 BPI \$15,000/ 60,000 (est.)	TA78 Industry Compatible Start/Stop Tape 1600/6250 BPI 125 ips \$14,500/ \$52,000 HSC50 VAX DECSYSTEM-20 DECSYSTEM-40	OCOTILLO High density/ performance Cartridge Tare 20,000 - 32,000 BPI \$15,000/ 60,000 (est
			TAB1 Industry Compatible 1600/6250 BPI 25/75 ips \$7,100/ \$22,000 HSC VAX	TELEX Industry Compatible 800/1600/ 6250 BPI 45 ips \$8,000	TA81 Industry Compatible 1600/6250 BPI 25/75 ips \$7,100/ \$22,000 HCS VAX	
	TU77 Industry Compatible Start/Stop Tape 800/1600 BPI 125 ips \$12,500/ \$36,800 H-Bus PDP-11/VAX DECSYSTEM-10/20	IBM 3420-5 Industry Compatible Start/Stop Tame 800/1600 BPI 125 ips \$11,200/ \$56,100	TUB1 Industry Compatible 1600/6250 BPI 25/75 ips \$6,600/ \$18,000 Unibus VAX	STC Avalanche Industru Compatible 1600/6250 BPI 50 ips \$9,000	TU81 Industry Compatible 1600/6250 RPI 25/75 ips \$6,600/ \$18,000 Unibus VAX	
			•	YANKEE Leadership Hish density Cartridse tape 15,000 BIP 200 ips \$1,400/\$5,000 S.I. Interface VAX Family	OCOTILLO High density/ performance Cartridge Tape 20,000 - 32,000 BPI \$15,000 - 60,000 (est.)	

	FY83-DEC	FY83-COMP	FY85-DEC	FY85-COMP	FY87-DEC	FY87-COMP
100 - 250K	TU78 Industry Compatible Start/Stop Tape 1600/6250 BPI 125 ips \$14,300/ \$48,000 H-Bus VAX DECSYSTEM-20	IBM 3420-6 Industru Compatible Start/Stor Tare 1600/6250 BPI 125 ips \$11,500/ \$57,300	TU81 Industry Compatible 1600/6250 BPI 25/75 ips \$6,600/ \$18,000 Unibus VAX	STC Avalanche Industry Compatible 1600/6250 BPI 50 ips 15,000	TU81 Industry Compatible 1600/6250 BPI 25/75 ips \$6,600/ \$18,000 Unibus VAX	STC Avalanche Industry Compatible 1600/6250 BPI 50 ips \$9,000
	TU77 Industry Compatible Start/Stop Tape 800/1600 BPI 125 ips \$4,400/ .\$36,800 M-Bus PDP-11/VAX DECSYSTEM-10/20	IBM 3420-5 Industry Compatible Start/Stor Tare B00/1600 BPI 125 irs \$11,200/ \$56,100	xxx	xxx	xxx	xxx
	TUBO Industry Compatible 1600 BPI Tare 25/100 irs \$3,900/ \$10,000 Unibus PDP-11/VAX	IBM 8809 Industry Compatible 1600 BPI 12.5/100 ips \$4,000/ \$12,000	TUBO Industry Compatible 1600 BPI Tare 25/100 irs \$3:900/ \$10:000 Unibus PDP-11/VAX	IBM 8809 Industry Compatible 1600 BPI 12.5/100 ips \$4,000/ \$12,000	TUBO Industry Compatible 1600 BPI Tape 25/100 ips \$3,900/ \$10,000 Unibus PDP-11/VAX	IBH 8809 Industry Compatible 1600 BPI 12.5/100 ips \$4,000/ \$12,000
					YANKEE Hish density Cartridse tape 15,000 BPI 200 ips \$1,400/\$5,000 S.I. Interface VAX Family	OCOTILLO High density/ Performance Cartridge Tape 20,000 - 32,000 BPI \$15,000/ 60,000 (est.
			MAYA Leadership Low-end Cartridse Tape 8,000 BPI 75 ips \$500/\$2,000 Q-Bus, CT PDP-11, VAX	3M HCD75 1/4 inch Cartridse Streamer 67 MB Caracity \$3,500	MAYA Leadership Low-end Cartridse Tape 8,000 BPI 75 ips \$500/\$2,000 Q-Bus, CT PDP-11, VAX	

	FY83-DEC	FYB3-COMP	FY85-DEC	FY85-COMP	FY87-DEC	FY87-COMP
40 - 100K	TUBO Industru Compatible 1600 BPI Tame 25/100 ips \$3,900/ \$10,000 Unibus PDP-11/VAX	IRM 8809 Industry Commatible 1600 BPI 12.5/100 irs \$4,000/ \$12,000	TUBO Industry Compatible 1600 BPI Tame 25/100 ims \$3,900/ \$10,000 Unibus PDP-11/VAX	IBM 8809 Industru Compatible 1600 BPI 12.5/100 ips \$4,000/ \$12,000	TUBO Industry Commatible 1600 BPI Tame 25/100 irs \$3.900/ \$10.000 Unibus PDP-11/VAX	IBM 8809 Industry Commatible 1600 BPI 12.5/100 irs \$4,000/ \$12,000
		DEI 1/4 inch Cartridge Streamer 20 HB Caracity \$2,500	MAYA Leadership Low-end Cartridde Tape 8,000 BPI 75 ips \$500/\$2,000 Q-Bus, CT PDP-11, VAX	DEI 1/4 inch Cartridde Streamer 20 MB Caracitu \$2,500	HAYA Leadership Low-end Cartridde Tare 8,000 BPI 75 ips \$500/\$2,000 Q-Bus, CT PDP-11, VAX	DEI 1/4 inch Cartridde Streamer 20 MB Caracity \$2,500
16 - 40K		DEI 1/4 inch Cartridge Streamer 20 MB Caracity \$2,500	MAYA Leadership Low-end Cartridse Tape 8,000 BPI 75 ips \$500/\$2,000 Q-Bus, CT PDP-11, VAX	DEI 1/4 inch Cartridde Streamer 20 MB Caracity \$2,500	MAYA Leadership Low-end Cartridde Tape 8,000 BPI 75 ips \$500/\$2,000 Q-Bus, CT PDP-11, VAX	DEI 1/4 inch Cartridse Streamer 20 MB Caracity \$2,500

i

************** * digital * ***************

TO: GRANT SAVIERS

cc: see "CC" DISTRIBUTION

DATE: FRI 1 OCT 1982 10:33 AM EDT

FROM: DAVID W BROWN

DEPT: STORAGE SYS. ENG.

EXT: 292-2070

LOC/MAIL STOP: YWO/YWO

MESSAGE ID: 5177308090

SUBJECT: EMC ACTION ITEMS - YOUR EMS OF 9/21/82

								 -		 	-	-		
1	1		1		1		- 1		1		1			1
l d	İ	ì	İ	g	i	i	. i	t	i	a	i		1	i
1	1		1		1		١		1		1			1

INTEROFFICE MEMORANDUM

TO: Grant Saviers

cc:

DATE: 1 October 1982

SSD Staff
Ray Ochester

FROM: David W. Brown
DEPT: Tape Engineering
EXT: 292-2070

Ken Sills Alan White LOC: YWO/G2

Bill Munson

SUBJ: EMC ACTION ITEMS - YOUR EMS OF 9/21/82

- 1. Regarding cancellation of TA78 and the use of TA81 in its place in order to solve the Maya FY83 funding short-fall:
 - a. If we decide to do this, it will free up 3 people who can be assigned immediately to Maya. The remaining 2 will continue HSC tape development so that TA81 can be shipped on schedule Q2, FY84. This would solve half of our FY83 Maya funding shortfall of \$500K.
 - b. I am forwarding to you Ray Ochester's summary of the LCG problem with this decision. He states that it puts the Jupiter program revenue of \$1.6B at risk, and that TA81 will not solve their problem.
 - c. In addition to the LCG problem with TA81 performance, there is a \$100M gross margin problem with this decision.

	TA78	TA81
MLP Per Unit Cost Per Unit	\$52K 14K	\$25K 7K
Gross Margin	\$38K	\$18K

g harfarman Riff.

Per Unit If we converted all 5000 units of TA78 to TA81, we would leave \$100M gross margin on the table. See Ken Sills' memo also forwarded today. d. This decision also would leave HSC without any tape until May 84 when VMS 3B will be released because TA81 misses the window for VMS 3.4. Under the current plan, TA78 will be available at HSC FRS in Q4, FY83. There is a serious question about whether HSC is viable without a tape for the first year of shipments, in view of the recent loss of cluster support until 3B is released. This decision also makes Klipa less attractive, since e. one of the Klipa strategies is to permit migration of TU78 massbus drives to HSC TA78's. Alan White estimates that there would be a \$10.8M LDP f. revenue impact if we made this decision. His memo also is being forwarded. Bill Munson's summary of the TIG impact emphasizes g. the importance of TA81 benchmarking compared with TA78. Bill's memo will be forwarded. There is \$400K of manufacturing capital in place for h. TA78 that will have to be written off or redeployed. Rough cut is a \$250K P&L write-off. In view of these problems, I recommend that we solve i. the Maya funding shortfall in some other way. The \$200 - \$250K benefit to Maya isn't worth the cost. Regarding a Maya joint venture, we will add TEAC to the 2. candidate list. I do not believe that it is in our best interest to disclose Maya to Tandon because it is unlikely that we could put together a joint venture. We are actively discussing joint venture possibilities with a number of potential partners as you know. The impact of a joint venture on Maya looks to me as follows: By establishing a joint venture with a cartridge a. vendor, we can earn cartridge license revenue of \$500K to \$2.5M, starting in FY84 or 85. We could elect to use some of this revenue to offset tooling expenses which are expected to be as follows: **FY84** FY83 \$30K \$100K Tooling Expenses I doubt that we could realize any of this help in FY83. Licensing the drive should earn us license revenues

of \$1M to \$5M, probably again starting in FY84 or FY85 147

3. Paul Bauer has indicated that if he cancels RX52 but retains floppy advanced development, he could make available engineering resources in the 2H FY83 time frame that would be very useful for Maya. I believe that Paul is working up a more detailed impact statement.

Memos forwarded today:

et 4.7.

- l. Grant Saviers, Sept. 21, 1982 -- EMC Action Items
- 2. Ray Ochester, Sept. 30, 1982 -- LCG Need for TA78
- Bill Munson, Sept. 30, 1982 -- TA78 Requirements for TIG Alan White, Sept. 30, 1982 -- TA78 Forecast Impact 3.
- 4.
- 5. Ken Sills, Sept. 30, 1982 -- Further Arguments for Continuing TA78

1-OCT-82 11:35:03 S 01574 CLEM MESSAGE ID: 5177310933

"CÇ" DISTRIBUTION:

BILL MUNSON SSD STAFF:

RAY OCHESTER ALAN WHITE

TO: JOHN SWAN

cc: HAP PRINDLE

JON ROULEAU

DATE: THU 30 SEP 1982 2:55 PM EDT

FROM: ALAN WHITE

DEPT: LDP BUSINESS PLANNING

EXT: 231-6517

LOC/MAIL STOP: MRO2-2/D13

MESSAGE ID: 5177230639

SUBJECT: TA78 FORECAST IMPACT

THE FOLLOWING ARE MY COMMENTS RE: THE POTENTIAL ELIMINATION OF THE TA78 PRODUCT WITH RESPECT TO THE LDP MARKET FORECAST. HAP WILL YOU PLEASE REVIEW AND CONFIRM/COMMENT TO PRODUCT MANAGEMENT?

THE CURRENT SHIP FORECAST (U.S. & GIA ONLY) FOR TA78 PRODUCT IS:

(UNITS)	Ql	Q2	Q3	Q4	TOTAL FY'84
SYSTEMS	5	7	13	10	35
AFTER MAR	KET 5	6	7	7	25
TOTAL	10	13	20	17	60

- THE PROBABLE IMPACT BECAUSE OF THE LOSS OF THIS PRODUCT WILL BE 80% OF SYSTEM SALES AND 100% OF THE INSTALLED BASE MARKETING SALES. IN TERMS OF DOLLARS THIS MEANS:
 - 28 SYSTEMS X \$305K (AVERAGE SYSTEM PRICE) = \$8.5M
 - 25 INSTALLED BASE SALES X \$90K (TRANSPORT, HSC50, DATA CHANNEL) = \$2.3M
 - TOTAL IMPACT FY'84 = \$10.8M
- THERE ARE SEVERAL ISSUES WHICH SHOULD BE NOTED WHICH SUBSTANTIATE THIS POSITION.
 - 1. THERE IS NO REASONABLE ALTERNATIVE WITHIN DEC'S TAPE PRODUCT MIX WHICH ADDRESSES THE NEEDS OF REAL TIME HIGH AVAILABILITY (I.E., CLUSTER ARCHITECTURE) SYSTEMS. LDP HAS BEEN VERY SUCCESSFUL IN THE TU78 VAX SYSTEM SPACE BECAUSE OF THE 125 IPS/6250 BPI OFFERING. CONTINUED SUCCESS IS CONTINGENT ON HAVING BOTH DISK AND TAPE IN THIS SYSTEM SPACE.
 - 2. THE TA81 TIME TO MARKET IS TOO LONG (Q3 FY'84). THE LOSS OF THE TA78 WOULD MEAN NO TAPE PRODUCT IN THE HSC50 SPACE FOR 6-8 MONTHS.
 - 3. ALTHOUGH CHEAPER, THE TA81 OFFERS ONLY 25/75 IPS AT 1600/5250 BPI WHICH AT BEST CASE REPRESENTS A MINIMUM 40% PERFORMANCE LOSS FROM THE TA78 PRODUCT. 468KB/SEC PEAK TRANSFER SPEED FOR THE TA81 IS TOO SLOW.

3 -

- 4. THE USE OF DISK AS BACK-UP (I.E. RA60) IS NOT A COST EFFECTIVE ALTERNATIVE FOR ARCHIVING DUE TO THE RELATIVE COST OF MEDIA. THIS ASSUMES WE HAVE SUCCESSFULLY MOVED AWAY FROM MASSBUS TECHNOLOGY.
- 5. TAPES HAVE THE BENEFIT OF SYSTEM INDEPENDENCE AS THEY CONFORM TO ANSI/INDUSTRY STANDARDS. NOTE THAT OUR DISKS ARE DEC UNIQUE, A FEATURE WHICH IS BOTH A RISK AND AN OPPORTUNITY.
- 6. THE TA78'S SOLD TO THE INSTALLED BASE WILL BE INCREMENTAL BUSINESS DRIVEN BY A MARKETING STRATEGY WHICH PROMOTES MIGRATION. NO PRODUCT MEANS NO MIGRATIONS.

CONCLUSION:

- GIVEN THE DIRECTION OF THE 32 BIT SYSTEM MANAGEMENT AND INCREASED PRESSURE BY THIRD PARTY PLUG COMPATIBLES IN THE AFTERMARKET, I SUPPORT THE CONTINUED EFFORT REQUIRED TO BRING THE TA78 TO MARKET.

30-SEP-82 15:25:19 S 03539 MR16 MR16 MESSAGE ID: 5177268220

1-OCT-82 10:29:55 S 01088 MLCG MLCG MESSAGE ID: 5177331278

1 OCT-82 11:44:50 S 01684 CLEM CLEM MESSAGE ID: 5177311021

"CC" DISTRIBUTION:

BILL MUNSON SSD STAFF:

RAY OCHESTER ALAN WHITE

TO. DAVID W BROWN

cc: JOHN SWAN

. V.

LARRY TASHBOOK

DATE: THU 30 SEP 1982 3:18 PM EDT

FROM: KEN SILLS

DEPT: STORAGE SYSTEMS

EXT: 292-2149

LOC/MAIL STOP: YWO/YWO

MESSAGE ID: 5177210195

SUBJECT: FURTHER ARGUMENTS FOR CONTINUING TA78

1. The TA78 sales forecast is for approx. 5000 units over 4 years. The concensus of management opinion is that there is very little price elasticity of demand for this class of tape device on large systems. Therefore, if TA81's were to be substituted on a one for one basis for TA78's, Digital would incur a \$135M NOR loss, and a \$100M gross margin loss over this 4 year period:

	TA78	TA81	LOSS	
MLP	\$52K	\$25K	\$27K X 5000 = \$135M	
COST	14K	7K		
GROSS MARGIN	\$38K	\$18K	\$20K X 5000 = \$100M	

Assuming that price elasticity is present, then more than two TA81's would have to be sold for every forecasted TA78 unit replaced to achieve a breakeven gross margin. This is unrealistic for two reasons:

- a. Additional tape units on a system add little, if any, functionality to the system.
- b. The TA78 forecast has already been impacted by TA81 in the forecast. Where price sensitivity was present, the forecast already reflects TA81 preference.

One way the above loss could be mitigated is if the cutomer chose to spend the "saved" dollars by enhancing the system in some other way - more disks, terminals, etc. This is a dubious argument since most customers buy to satisfy an applications need, not to spend a prescribed amount of money.

- 2. A further NOR loss would occur from lost high-end system sales. Incremental system sales due to a \$27K lower system price would be more than offset by lost system sales due to the lower functionality of the TA81 (see following re: functionality). Jupiter engineering and marketing have strongly stated that they "have no system" without the TA78 and will have to re-examine announcement plans.
- 3. The TA81 will not be available for VMS V3.4 field test in 2/83. VMS V3.5 will not support any new hardware. The next opportunity

for software support is VMS V3B. Hardware for this release must be available for field test in 7/83. This is very risky for TA81 since first protos will be available in 2/83. Even assuming this date is met, the implication is still that HSC50 has no tape until 5/84, nearly a year after HSC50 FRS. HSC50 Product Management and Development feel that this will make HSC50 an unviable product. particularly after recently losing cluster support until a year after FRS.

4. TA81 does not exhibit robust performance in all environments like the TA78 start/stop drive. When the customer uses Digital supplied tape utilities, sufficient buffering, asynchronous I/O command queuing, etc. will all be intact to assure reasonable performance. However, no performance guarantee can be made for previously written private applications programs. Running these programs may cause severe performance degradation of the TA81 tape. This is particularly true for GCR mode of the TA81 where there is no start/stop fall-back like PE. The TA81 is not a generalized tape solution for the high-end system. It is a low end interchange and back-up device for the system that is specifically non-tape intensive.

Tape performance robustness on a high-end system is a marketing necessity. ALL applications must perform reasonably. A situation where, for example, 90% of customers are satisfied and 10% are extremely dissatisfied is unacceptable.

30-SEP-82 20:30:47 S 03698 MLEM MLEM MESSAGE ID: 5177278481

1-OCT-82 11:42:25 S 01656 CLEM CLEM MESSAGE ID: 5177311014

"CC" DISTRIBUTION:

BILL MUNSON SSD STAFF:

RAY OCHESTER ALAN WHITE

********** *digital* *******

٠ - ١

TO LARRY TASHBOOK

cc: see "CC" DISTRIBUTION

DATE: THU 30 SEP 1982 2:00 PM EDT

FROM: BILL MUNSON

DEPT: TIG

EXT: 264-7436

LOC/MAIL STOP: MK1-1/D29

MESSAGE ID: 5177210130

SUBJECT: TA78 REQUIREMENTS FOR TIG

The TA78 continues to be a high impact product for TIG. Given the large configuration, transaction-orientation of major segments of our business, our customers clearly need high-performance, high-quality, high-density tape products to configure "balanced" systems with large (huge?) amounts of non-removable disk storage.

Until proven under "system operation" (i.e., effective OS and/or subsystem functionality) and demonstrated device/technology maturity, streaming tape products should not serve as our sole tape offering. Of special concern may be the effectiveness they demonstrate in transaction/journal/roll-back/ roll-forward/etc applications, versus the proven capabilities of the proven TA78-like functionality.

30-SEP-82 20:08:22 S 03339 MKEM

MKEM MESSAGE ID: 5177049134

"CC" DISTRIBUTION:

DAVID W BROWN TIG MKTG COMM:

JOHN SWAN

TIG MGMT COMM:

1 OCT-82 11:41:13 S 01646 CLEM

CLEM MESSAGE ID: 5177311012

"CC" DISTRIBUTION:

BILL MUNSON SSD STAFF:

RAY OCHESTER ALAN WHITE

********** * digital * *******

TO: DAVID W BROWN

JOHN SWAN

cc: BRUCE CAMPELIA

PER HJERPPE

DATE: THU 30 SEP 1982 11:19 AM EDT

FROM: RAY OCHESTER DEPT: LCG MARKETING

EXT: 231-4117

LOC/MAIL STOP: MR2-2/C2

MESSAGE ID: 5177209923

SUBJECT: LCG NEED FOR TA78

The TA78 is the only tape drive to be supported on the Jupiter (DECsystem-4050). A tape drive is required for backup, archiving and data interchange - not only with the RA81 on an HSC, but also in standard mainframe computer tape applications. The requirement is for a medium to heavy duty start-stop tape drive.

The TA81 IS NOT an acceptable substitute due to its lack of performance and functionality to support our product needs.

Other potential alternatives for the Jupiter (ie., a block mux or massbus interface) have been ruled out by Gordon Bell unless they are done as a part of the HSC-50 project, and therefore done as a corporate implementation. Colorado Springs has rejected these alternatives as non-viable. Other options are unavailable because the Jupiter only has a CI/NI interconnect capability.

Therefore, there is no alternative available to replace the TA78 as the Jupiter tape subsystem. We are reviewing the Jupiter pricing and announcement proposal at PPC and the Operations Committee on 4 Oct 82. Our present forecast for TA78 is approximately 1650 units over a four year period. Without the TA78, we do not have a complete Jupiter System to announce or deliver. projected revenue for the Jupiter system is \$1,615 Million, and is at risk without the TA78.

30-SEP-82 19:09:23 S 02337 MLCG

MLCG MESSAGE ID: 5177230201

1 OCT-82 11:40:37 S 01633 CLEM CLEM MESSAGE ID: 5177311005

"CC" DISTRIBUTION:

BILL MUNSON SSD STAFF:

RAY OCHESTER ALAN WHITE

i		T		T		T		T		T		T		-1
1	đ	1	i	1	g	1	i	1	t	İ	а	İ	1	İ
1		1		1		1		1		1		1		1

INTEROFFICE MEMORANDUM

TO: Grant Saviers MLO3-6/E94

DATE: 10/5/82 Tue 16:21:30

FROM: David W. Brown

DEPT: TAPES ENGINEERING

EXT: 292-2070

LOC: YWO/G2

CC: SSD STAFF

SUBJECT: TA78 VS. TU81

1. Performance Comparison on HSC

The attached graph compares TA81 and TA78 performance on HSC. In summary:

		TA78	TA81
HSC	Local Backup	1	.6
	Image Backup 200 KBYS	1	.6
	File Backup 75 KBYS	1	.7

Comments:

- a. HSC will have a very fast local image backup which is expected to keep the 125 ips TA78 running continuously. The TA81 performance will be limited by the 75 ips speed.
- b. For file-oriented backup routines, the HSC is a data path only and contributes nothing to tape performance. No buffering for streaming tape drives has been provided in HSC.
- c. DECsystem 10 and 20 software routines like Dumper have not been rewritten to provide buffering for streaming tape drives. This will have to be done or the performance of the TA81 will drop far below what is shown above. This will certainly be unacceptable.

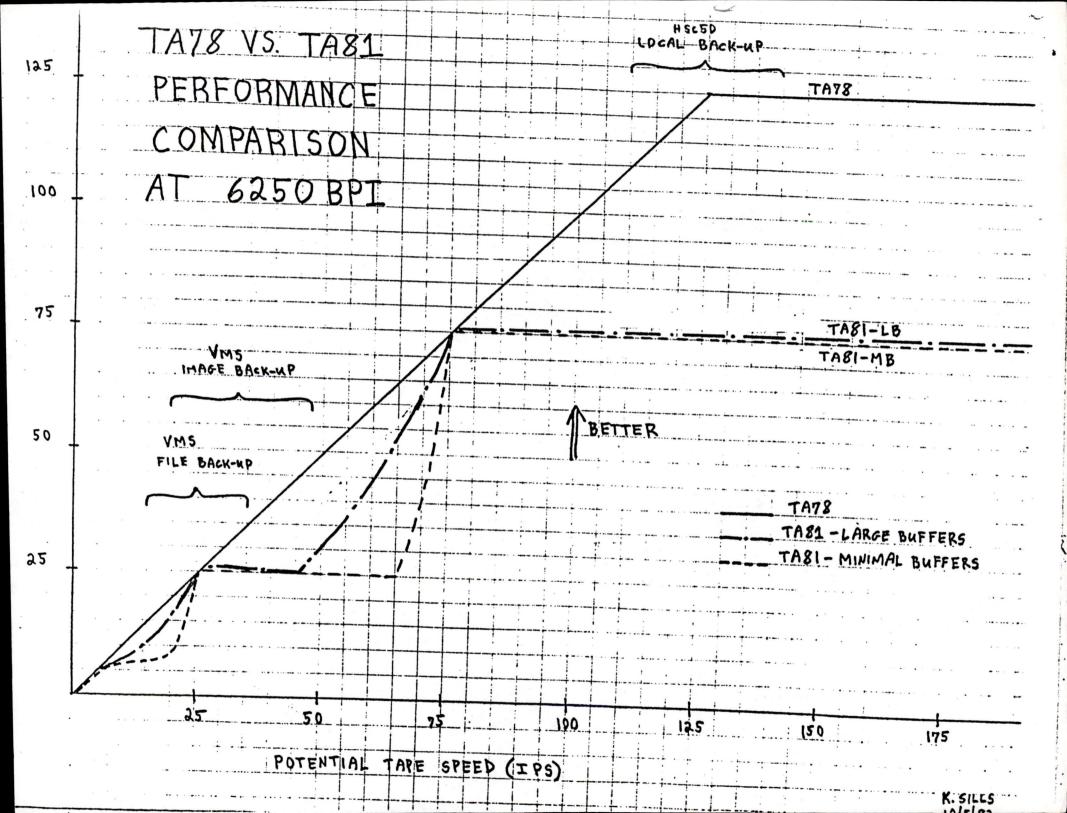
FRS Impact

This decision would also leave HSC without any tape until May, 1984, when VMS 3B will be released, because TA81 misses the window for VMS 3.4. Under the current plan, TA78 will be available at HSC FRS in Q4, FY83.

s-witho

We have explored the possibility of using TA78 prototypes for software development to permit a Q2, FY84, FRS on TA81 on HSC under VMS 3.4. The VMS people have told us that this is not a workable plan because of the differences between 3B and 3.4 and because extensive field experience with the TA78 will not be generated under this plan.

Budget Impact


If we cancel the TA78 and continue work on the TA81, three people can be freed up for work on MAYA. The FY82 budget impact will be a \$200K transfer to MAYA.

DWB/br

Attachment

DWB: 3

LOOKS 555 2 50 riv

