
*74JA373-0216 :

Ode INTEROFFICE MEMORANDUM
TO: Dragon PSG Members DATE: October 24, 1974 0402.

Dick Clayton
cc: Gordon Bell FROM: Jega Arulpragasam :

Bruce DelagiBill Demmer
Ext: 5545 Loc: ML5/E54

DEPT: 11 Engineering
:

SUBJ: 11/VAX Proposal.

Attached is a proposal for a Linear Extension to 11 Virtual
Addressing.
This was drafted by a group consisting of Ron Brender, Mike
Garry, Craig Mudge, Dave Nelson, Bill Strecker and myself.It meets the objective of being the best proposal that
could be generated by November 1. While it will doubtless
be changed (improvements only are permitted!) if ever im-
plemented it brings out all the issues for making a mean-
ingful comparison with Craig's segmented proposal. It
also meets, of course, some basic criteria of implementa-bility and performance.
Refinement of performance evaluation is still proceeding andwill be reported on at or before the next PSG session.

/br

Jega Arulpragasam
October 23, 1974

a :

11/VAX (Linear) Proposal
0403

Summary

l.
2.

We define a 28-bit Virtual Address Space.
A mapping mechanism is provided for which allows smaller.
page sizes (1K bytes) but is still compatible with the
existing KT. Double mapping is needed to accomplish this.

3. Register extensions are defined to enable extended add-
ressing (and for no other purpose).
New instructions are defined for operating on the Regis-ter extensions. The set is limited, but both complete
and efficient for manipulating addressing entities, in-
cluding subscripts.
None of the existing instructions affects the Register
extensions, nor are their effects redefined in anyway.
Means are provided for distinguishing between 16 and 28
bit entities in memory for use as either "pointers" or
"index constants", so that existing programs may run
unmodified.
Means are also provided for distinguishing between 16
and 28 bit address stacking and unstacking on status
switching whether synchronous (Subroutine Calls and
Traps) or asynchronous (Interrupts).

:

:
:

4.

5.

6.

The Virtual Address Space.
A 28-bit Virtual Address is formed, in general, in one of
three ways:
l.
2. By picking up
3.

By using the contents of a register R, concatenated with

By picking up a l6-bit entity in Memory and concatenating
it with the extension of that particular Register that
was used to reference the 16-bit pointer itself.

its extension or
or28-bit entity from Memory.

The externally generated addresses are assumed to be extended
by leading zeros.

THE MAPPING MECHANISM.

The Virtual Address is conceived of as having three elements.
They are a Chapter,a Page and a Displacement. The page, and
displacement within the page, together constitute the low 16
bits of the Virtual Address. The high order 12 bits give the

We define the page size to be optionally compatible with the
present KT (i.e. 4K words) or alternatively 512 words.
Chapter Number.

:-2 - 0404
Linearity of the 4K page with respect to the 1/2K page is
effected by double mapping. In order to save serial double
accesses to KT tables, and to reduce the context switch time
by keeping the number of table entries (per Chapter) small,
we define the following traslation mechanism.
The high order 12 bits, or Chapter Number, defines the pagetables to be used. For each Chapter Number there are two
sets of page tables which are used together. One set has
eight entries and corresponds to the present KT tables exact-
ly. The other set has 64 entries, one of which is selected
by the high order 6 bits of the low order 16 bits of theVirtual Address. The Address Translation is effected by a
3~way Adder.
The bit alignments are indicated in the diagram.

IS alia se & s o V4 Addvess
:

:

KTX
64

loN

KT. a
KRESS

Entries

If we call the 8-entry table the KT table and the 64-entry
table the KTX table, it will be noted that provided the
entries in the KTX tables were all zeros, the whole mechanism
is exactly equivalent to todays KT's in its action.
There is a certain degree of inelegance in the contents of
the KTX entries being modified by their own addresses. The
KTX can effectively provide the base addresses of 512 word
pages in such a manner as to preserve linearity, either this
way or with additional hardware to remove this inelegance
from the ken of the systems programmer.

Register Extensions and New Instructions.

Reserving the Register Extensions for Addressing entities only
has two significant benefits. First, it allows an efficient
but small set of instructions to be defined that is complete
for Address and subscript manipulation. Secondly, it allows
the kind of clean implementation that Craig's scheme permitted,
(outlined in the Appendix to his Summary 9/13/74).

3 0405
The new instrucions are Load Address (LDA), Store Address
(STA), Add Address (ADA), Multiply Address (MPA), Subtract
Address (SBA) and Compare Address (CPA). They are of the
format OP R} S2 S2- With the obvious exception of the Store
Instruction, these Long instructions always have a Registeras their destination. Furthermore, the modes permitted for
the "Source" are restricted to four: Direct, Deferred, Auto- :

increment and Indexed. The Index is always assumed to be28-bits in these cases,
The Multiply is treated as an unsigned 28 x 16 bit operation,
optimized for 12 leading zeros in the Multiplier, and yield-
ing a 28-bit result in RnX/R (with overflow indication).
Today in forming the address of A(I,J) we have

MOV
MUL
ADD
ASL
ASL
ADD

This will be replaced by
LDA
MPA
ADA
MPA (by Data Type length, less than 4 bits of

Multiplier)
ADA

Only these instructions may affect the Register Extensions.
Thus, using the existing 11 instructions will cause wrapping
around 16 bits, thus maintaining compatibility with existing
programs in the unextended architecture.
DISTINCTION BETWEEN LONG AND SHORT ENTITIES.
As in Craig's Chapter Scheme an Extended Mode (X-Mode) is de-
fined when PS <087 = 1.
In X-Mode, the pointers in memory that are implied by all add-
ressing Modes except @ (Direct), 2(Autoincrement), 4(Autode-
crement) and 6(Indexed) may be either 16 or 28 bits.
When they are 16 bits, the Effective Virtual Address is formed
by concatenating these 16 bits with the Register Extension
that was used to obtain the pointer itself. This case signi-
fies intra-Chapter references and are considered normal.
Therefore, the current modes of existing instructions will
have this sense.If we require indexing across a Chapter boundary, or we need
28 bit pointers for inter-Chapter references we define a Mode
5 escape sequence.
In X-Mode (only) the meaning of Mode 5 is redefined. The use
of Mode 5 (for either one of the Operand Addresses) implies
that the instruction is extended by one or two words and is
to reference 28-bit pointers and indexing constants exclusive~
ly for that operand address. The leading 4 bits of the one
or two word extension define the Addressing Mode.

:

:
: :

: : :

~4-

It is suggested that the 4 New Mode bits have the followingbit significance. 0406
1. Increment or Decrement (by the absolute value of the re-

maining 12 bits of the word).
2. Before or After Use as a Memory Address.
3. Deferred.
4. IndexedIf, and only if the Index Bit is on, is a two rather than one
word extension of the instruction implied. Full length index-
ing capability is essential if linearity is to be provided.
in X-Mode too, short indexing 1 s carried out with 16 bit enti-
ties that are considered to be 2's complement numbers to
permit "negative" indexing.
This is consistent with current definitions, and permits in-
dexing across 32K Virtual Address boundaries with up to 15-
bit index constants.
Note also that 28-bit indexing and the use of 28-bit pointers
in memory can result in access to a Chapter not defined by
any of the currently held Register extensions. Therefore a
KTX caching mechanism must be defined to provide an efficient

:

implementation.

STACKING AND UNSTACKING.

No modification to Craig's proposal is required. The mechanismwill be identical in all respects with the segmented Chapter
scheme in this regard, which does not infringe on linearity at
all. This includes the use of PS bits 8 and 9, Subroutine
Calling (including JSX) etc.
MEMORY PROTECTION.

On a linear proposal, clearly memory protection has to be pro-
vided at the page level.
The protection mechanism will therefore most appropriately be
similar to that provided in the present KT.
However, the Page Address Registers for the KTX will be of the
following format. > 2Io

bit
Read AL Lowea ;

trite ALheced

bilPAFX Extension

:

NOTES:

1. Without the PAFX Extension (normal case) the Physical
Addressability is 22 bits (12 + 10) or 2 megawords.

2. Resident, Altered (Written Into) and Protection bits are
provided to allow this resolution down to 1/2K page size
level.

3. Access Rights etc., are therefore determined by the "AND"
of those described in the KT entries and KTX entries
(except when one or the other is disabled).

:

04075

4. There will be limited encoding on the Access Rights bits.
The "Write Only" case is not useful and will be re-inter-
preted to indicate that this is a pointer to a Page Table.

5. If an "Execute Only" mode is required further encoding is
possible. E.g. Non-Resident AND Altered.

COMMENTARY.

Both the Mapping and Protection mechanism described in this
document are fully compatible with the present KT.
However, there is some question as to how important this ob-
jective is.
We could gain tremendous simplification by eliminating the
current PDR and PAR, if we abandoned KT compatibility.
The KTX Mapping Mechanism would then be as follows,

V Addve ss

KTX

Note that this is the same as the previous case with the KT
disabled.
There is a loss in granularity from 32 words to 512 words.
For this we get simgle word KTX entries (PDR's and PAR's
effectively) for 22 bit Physical Addressability.If granularity is deemed to be important, we could have a
length field of up to 1@ bits in the high order part of the
PAFX Extension. This would give us granularity down to 1

byte at the cost of always needing 2 words for KTX entries,
and limiting Physical Addressability to "only" 28 bits. The
length field would be compared with the displacement.

0360

cachusetts

THE SVGUTION OF VIATUAL :

by J.P. Buzen and

Honeywell
Billerica, Mas

and

d University
Caabridge, Ma ssachusette

rig, manscom Fieic, bears Ta,
G-C-02L7.

cad 2 Te

:
4

Chis paper will be presented at the AFIPS National Computer

Conference, June 4-8,1973, New York, New Yor. en

:

a LON

carly 1960's two

0361

with

SOMputing systeme Thoge were the emergence of

and the use of BULK : to improve resource

ng systems became ce. where none
and overall er ts: AS 2 ::

:

~
Subs

oh 4:

"he Sucond step resuited an

€ Grocessor on 4 tame-maliislesxed

ommon peol of resources,

Soth these developments introduced very serieus

1/0 xrocessor exceuting

s or to the nuclecs of the software system.

an "ineorrect™ procedure could cause samiler arise

on a

approach.

The aonveach chosen was to sevarate the

&
coce

Ie, CAE

syste was sq aii

inte

CORSE4

Bw. we

"incorrect" channel
tegrity. An

:

YChLam could Gite' arecs Nein COUPESa:

A
4

~ ecrrectness" of 7 software, tne multi~proveising 4:

completely now
of the third generation Fo

ae
CWO :

:

wt ~

:

debe

4~ as ~ a

>

~
r

to.

? :

0363

Ore : :

:

:

> &3 Le:: :

:

+
+ he 5

he :

:

4

0364

ea era: :

ye € baste macnice

os OD

hed >

ed

>.

4 t 7
4

ACOIE ::: :

en @ach of the ir* faces

emg ns proceding eect! a coxld

begets andinterface is +

pettors that atrectiv « + a 1a

we

ifrectiv or baremachine unter

ansteed suppo Go

virtua 4 aaching.LS <TOWwn do Leu e t :
7

: .

:

:
:

iPorc .

>

0365

OCences.

But rar :

no

:

a :

:

:4: :
: :

0 : :

:

:

ry : :

preceding must

factor Wa, :

onal aapat:
:

fo :

:

+ +
:

: NEaz

:
:

de:

: :

0366

a: :

we *
: +:

:
:

1
3

er a:

ye :

: :

acti + they ac 7%, they aur n
:

he

HAR nm dat4 : :

Model 65

distin:

agit 4 tet an er 1

'cea fran > ».vely miner

machine: tr4

:

often v : trede

y:
: :

4

2

:

0367

eee thac ther +

oi, : of

a virtual machine n

of te Tye me or

design.

Sy contra? basic yom of cre

the basic amd neve

meine a

upports onis
+ deag to aes

: : : :

: :

nes + the:

+

then Cee

:: :

gan & :a: :

of : :

77

:

W
o ey

ave Supp
As

: :

a

+

4 +
:

ve ver?

+

a

+ :

+

0368:

we :

och gevatems ge aye

re

: :

2+e 3 :

: pay 7.

:

orava

m

beer

:

:

tes, : :

: ne sy
+

ides:

>

X

of " athe

virtua :

an
a

4
t

0370
o:

or

a

ging techni ved 1, 2ce emo oved in LY

VEM A pet

ad

the ae

~ ef arot- *

a SsVstem

2Se scat : en run neer at a4 fiec: e:

way ave be

sas beer. collectec by us ne mt

2

sc

4 noe ok FF : -

the mic were ra B >:

+controlled the Ke Paar Atg, main

/0 operat:4005 tae virtuel mach.

analys:

4 aprocessor r feat

Prue priv 4

4 :

: :

at Wali
4

4

a 0371

: : : :

WahlUa

6 mod. or the . or' . woud be

feo. >
on the pece

ngensitive of ae

2. .1e dare

r va fe A ~

b yvircual eyetem so

; BOP.

co be

to machine, but general id tet

Uae types of dr or which be

TS:

Fu7

:

ular Wile. he heve :

ry : : : :

ea and most
4 &

ahd :

"ta 2 of

:

pre!h is :

'eo. have be

tai states of . system are not 7 y 2

: : :

2 :

0372
why

g :

9 >

7 form of addrr ts vecuired arder te run

A : :

a Ler.. 4:

machines .3 time

t reasor for addres. =pping is that certain locetions

en interrupt a

machine from obrainimg access By

'cations used b

Pur of entire system.

:
7.

velied on puging te 4 : "hele
Far t

an were handled .

processes running -

causeCb, greferences

f waere co

t processors
+2 following an interrupt pencee

prevent a procese executing

tr' ard address

can santrol over

o oO :

:

:

:
:

b :

'ardware and thus safeguard the

:

renerated ": te rags
VMM eo ard ally:

qt :

:
:

: memocy, but this taec

tual

: rtua7 : :
:

wt wr

: : : :

0374

gery rsOty. when: :
:

a : +: :

n which gover

: After

CY of dea& ay

me manner that 1

the drawbacks of ying channel

+

UF eg
:

on the virtual
ng are.

d executing th con: moe ::

moaity themsel..s ac rot

Hence it certaln seaf~

ore, "nea phe pt

we Famed

OT For". Cp Des

ann'

CF :
: : :

v be toler:

prop

*

wpthout serious incon~

x ep ce MELT

asince an ter
ws

rt
:

>

0375

:

congo e+

ais :

.Sbe requests te a y and srovide
~

:

€ a

certain42VG@ SEOs valuable by-products:

0376
:

+ : :
:

us De on the 22.4 mac

that Sree testing2 Tecuruly

mad ts be carried out a dedicated precesaer. In onder

come this diff cuts i.c to achieve u mo.2 34 logica
was modified could be 38re 7

29,25aw VMM

problem in tive note early : tsed page tables
In Mac "it memory fate addresses in tithe real

grr 8 Scr men " virtual memory address 4 might be mapoed 'ntoTHOT »

ys 5 Memory a A". Howp,av, processes running on paged virtual mochnes

w TOt dea. addresses co the virtual

way address A' does. : an ered by a veocers

K2ped into an a "Te tne

a "ual Teo 6

'la a wrt L racnine +

:

:

Th@c avec A tus. 4

* by the virtual machine's table, and then A' must be map ints a teal

oy the YMM's page table.ar

:

~ table (ins VALVE.

:

~brane at lon

+t

an Ge

0377
4

ats, e FS) :

& on that

les. 4 ue 4ond :

3 Dass cables memory Loca?

at ges toula go by

yage table must in prac a fellowed

ordinary :

a te a va tne a memory lice che

ot out memor, in o

> ae4erence. ane : suction which lears theue

wemory Wa. 2 tran shen side
. * thus aliow the VMM to page Teerefore,

ac the privileged software nucleus ia

MACHINES

>

gye Tony

wedmachine wit. ce das et

ang Fees. msenine

ory after page

proper cannot be guaranreed in either case.

: fare ae or :

Bere " ian Ga: +

wher

0375
to,

e virtual machdser

mappin

'ape virtual as lad

face protected be MMPS tog' MMS

56 Kee 47,
0

'adve * the

priv& leged traps the

should not be

: :
: :

+ He
7

+ :

on dire: :

erred te the VMM for

mapping
ra

re page aslesg

Sas been

"7 tha YMM is eceupy 2

% fon.inter'

tual mic' tne alas

Fheet

ihe me cere44

the:

From che

ama vers tha

reauL ine

thy

the : fer or

?age:virtual meching

iM and

: :
rt

co x
Soy :

4
as

: : :

n

0379

: :
:

4 t

4ther te eack:

4

w : aos wom

execution,

maid, :
.t7 . Lf-medifying nel

virrual Machen has

Tang modification «

ittual machine t
f

te thee the virtualno ty. Wa 2

OL eaer [oar fae a tre neeimimatas
char

€ ACY
4 ™ fer anv 4

time ar ct channel a

: had te mr overcome when making tris
:

a 3 thot ves1

: ax3
2

4 y at

0380
: :

priviloe. :2 eta! +

whe 4 nrimary - ~thi

protect

7 248 mapping 3sddrese ma>cing mechan-

"the basic + sotails

thei.

TL at

ate} need for p :

ar _« mechanism for

1d addresses "rete
: : : : :

traneslatiny 'hese ive addressesS8e6: :

yx ah ealed. "hat fe, oftware ar fealwave
0 ce eneee of some A aise and no way af deter-

orally to real memory

they are MET] fashion, Stree ail tddraseics 4

«4 in this : :xt thece + no nead for software

and ose no generality is lost.

'ature of the neener which soft-

ode space rev N'L, >
1 "toe > 29 Carel TL,

MAJ : 7 thug spectfiied fr terme

defrosing 7 Fas

gi

coanges f°. address : a addr 4 be

: :

:

:

aliv

€

:

re
: : : :

:: :

:

:

a

0381
he

4

:

space

be slice:

:
: he Tesources 1t already

2 cave with

frum ewel Nel ty tle

: evel N+] so does not aneompase any

wishes to kee « the addregs tap that

:

tr. - > crom level *+i's addresa srace,

fault occurs, the traps bee' the

7 ana adjusts tre addross mip the svatem

a maps ard

when This ts relative y casy to do

7

ermitmaps but sore diffice! when
:

>
involved

Lave machine interface axcant toy

crags each te a new maebine,

State of memory i. defined

v gs tr: :4

: : 4

: :

:
:

€

+ae :

0382
a Can ws

MACHINE

state be

environmen For the dyn

: : the bagi: * -aoetawed
with this archic: 3 muinber of
w

26 several late gener- COMP 'Le vetems,

:

luce descr

arie

Vt. protection
:

'cuss swnehronirs :

\ recent of machine : more

an

of : Tae :

features of 4 interface such as

csolas, ete. These *

which rune that tncerfe-

tacit appears only in virtue 2 cine ee tere ane

gr6cess attempt a resource mar that the

attemy @ fe

the 3) fe.g., a virtual ar Sine mesory

ehac met in : art seialy
«

ond compl tre

ce vere ot

being rees ere beaed

24

:

:

:

f°

5

oo Map per' Lypeas

cota, : : :

e uses In aon~privilezed Toe : theras ong at anita te
oe 4 : back

th re i$
) '2 ie
)

ro
r ty o te zs $a La
d ie 13 oa Go t
at

ps G ot m
h rt i) virtual

trovemernc ts 18 :

recognizes and supports hoth : A

€v ces gn for machi with 4

a .4dad osed stati A

MACS afd he leged

aiter eftvare

tnetion withi. ts

fave Me

(e.g., Brecessor state}
MAT Valu? desler fa cnet 2 can ee in "tort on

7 ovly a relatively smal)

? oriv leged TOC * "are:

modifications.

MAL GMPC MAE

hd :: :

Laonaep"sce by the privileged :

:

4 t

0384
: > :

mrdvileged state are completely eliminated and only

SYSTEM.

sees 2 Sault each

oon a virtual me 2 safeware

sac, Thus the a virtual machine fauit

: :

:

ar

erence: ::

+roe that is not present in +a higher : real machine,

ces

ns the mar .
Te includes & eriotion of

the supporting control mechanisms, t

wievual machine creation, and che various fauic handa ling

: 4 :

' :

re'.a will not be ccnatdered here since they are treateddé

in. a sempanion paper
25

ting te "ae + rk on single stete archttect re

48 case of the preceding analysis in which process: specia

ayre lions re :

faults n, Samtlariv, the lier work oc Gagllerdi and

another special case fa which mai compo tion is

ne VMM and where sdittional vi machine

:

tatically
ma a the composite man ir moleonerated :

t4

74 involvec : :
later

fey

ure. and
: : : : :

é +

0389

the 3

:

and :

: Theee
:

:

rGsvources among : :
: : :

won : :

on :
: : :

s Venter :

Thorders

ne : :

ir go tne :
: :

. ot:

ES

7 ::
:

:

0386
ogran-67/Canbridne monitor system

5

Yorme

RP a

for improving § oftware
Sympoo

i Art : rt: :

6 w

emulation under OS and DOS
e 197

nes: semantics and examp.ies+

:
+ Os. Mas

"aio mactines
ter: :

:

en o

BS

ge Magsacausetts

t virtual hardware monitor
ings ACM SIGOPS~SIGARCH Wor

»

+

a

2cge Magsachusetts

ae Usher
1973

'rien $/-tom aie isolatioc

1975

OR. Virrtual Computer

Vir tual Computerrkshop oz

"ar for a time-sharing system _

1973lity wey York

a ate
CY

é

tow

:

4

™
: o>

the

038%

Ben
Cr a

:: All :

supervisor state necéssarv?
Venice Italy 1°72

AS

: itive

waics harry 3

Heights 1966SOM
:

Virtual storage and virtual machine conceptsi3M Systems Journal Vol 11 No 2 1972

BANS
ge Las

:

et de Recherche e Vol 15Ne R 268:

in 3
Report No MS-2687 (also 281-0036) Lexingtonans)

Sew o fake a
Ve CORE of 4_chivan

Canter inmcerna.

b ev A
nine implementation

luter Conte unee

::
:

:

re

3:

VirtualOE

4

4

:

: : :3

a

: :
~

:
:

0388
t

oo 7

:

ual machine facilic 379:-cation Number GCl6- lannin
1972 ulde

PROGRAM

gq

0385

Any at

:

EX
: : :

ay

Cad:
:

: :
: :

A :

jANS
ae

4

Tee
TN!

hth

ACBONSIxa

FAAOS

SNIROUIA
:

SeAL

AVAwas? 454:

7

:

hsAy

06E0

T6E0

1

:

Leepoeow
a

a!

rs: AUSOCoo
aq

:

>
&

€
:

3
:

xr
:

:
:

ts
SE

::
:

:

:
:

;
:

et
wyud0ud

495K
Se

-486373-0224 0408
INTEROFFICE MEMORANDUM

TO:
ce:

SUBJ:

Dragon PSG DATE: October 25, 1974

Dave Nelson DEPT: 11 Engineering

Bill Strecker FROM: Bob Gray
Craig Mudge

:

Ron Brender
EXT: 3444 Loc: ML5/E54

Considerations in Recommending "Linear".

fhe 11/VAX subcommittee (Bill Strecker, Ron Brender, Craig
Mudge, Mike Garry, Jega Arulpragasam and Dave Nelson), met
October 24 to reach concensus on a recommendation between
the Seqmented VAX scheme proposed earlier by Craig Mudge
and a Linear scheme developed by the sub-committee.

The result was a unanimous recommendation for the Linear
scheme. The recommendation was offered with the under-
standing that refinement of the Linear proposal would con-
tinue.
In stating their preferences the following considerations
were expressed:
Mike Garry: Linear is more favorable "in a practical

sense?
Ron Brender: For individual COMMON blocks greater than

32K words, there would be a 5~20 times penalty to
try to simulate Linear with a Segmented scheme.

Bill Strecker: FORTRAN drives toward Linear. Also we are
unlikely to utilize the superior name space man-
agement capability of a Segmented scheme. The
Segmented approach is cleaner and simpler to do
in hardware.

Dave Nelson: In theory, the Segmented scheme has more po~
tential in the operating system.

Craig Mudge: FORTRAN demands a linear space. We are un-
likely to utilize the name space management cap-
ability of a Segmented scheme. The Linear
scheme is not as efficiently implementable at
the low end. Introducing a second addressing
architecture adds to uncleanliness. However,
increased FORTRAN capability of Linear scheme
overrides benefits of Segmented scheme.

Jega Arulpragasam: All VAX schemes based on the PDP11 are
unclean. We don't have option to wait for "PDP
next" Concerned somewhat whether the Linear
scheme is as efficiently implementable at the
low end.

In summary the pros and cons of the two approaches are
stated on the next page.

Bob Gray
~-2- 10/25/74

0409
PRO CON

Linear

FORTRAN demands it.
Easier to explain at Harder to explain at
High Level Language. assembly lanquade level.

No name space management.
New Addressing architecture.
Less amenable to low-cost
(11A85) implementation.

Segmented

Name space management Name space capability un-
Capability (protection, likely to be supported in
sharing). DEC software.
No new addressing modes. FORTRAN COMMON data areas

limited to 32K.

Easy to explain at assen-
bly language level.

Note: Software costs (Mike Garry's Memo 10/3/74)
are $680K Linear and $720K Segmented.

for

:

INTEROFFICE MEMORANDUM
0410

+

SUBJ:

Robin Frith DATE: October 25, 1974

Distribution FROM: Craig maage

DEPT: 11

EXT: 5064 LOC: ML5S/E54

11/VAX - The Removal of the 32K Boundaries.
The segmented version of 11/VAX placed some constraints on

ce:
:

the storage of individual large data arrays. These con-
straints would have been seen by the FORTRAN user as 32K-
'word limits on individual COMMON areas (Memo 10/8/74: 11/
VAX - A User's View of the 32K Boundaries - revision of 9/
27/74 memo, Ron Brender and Craig Mudge).

11/VAX. This version was approved by the 11/VAX subcommittee
(Jega Arulpragasam, Ron Brender, Mike Garry, Craig Mudge,
Dave Nelson and Bill Strecker).

These constraints have been removed by a linear version of

The answers to your questions on 32K boundaries are new re-
vised as follows:
1. Yes, the user can run a sequential program greater than

32K words without explicitly recognizing the 32K boun-
dary.

2. Yes, the user can directly address a data array occupying
greater than 32K words.

3. Yes, the user can call multiple subroutines outside a
32K boundary without explicit address manipulation.

In summary the user sees a directly addressable address
space of 228 bytes into which he can fit program and data
without regard to 32K word boundaries.

The bulk of the segmented 11/VAX proposal, namely those prop-
erties which ensure compatibility at both the user program
and interrupt structure levels, has been carried over to the
linear 11/VAX proposal. Removing the 32K boundary has been
done at the cost of 1) some cleanliness in the 11/VAX archi-
tecture, and 2) some efficiency in implementation on very
small (11A05 - type - cost) machines. However, we firmly
believe that it is a worthwhile tradeoff to get the increased
FORTRAN capability.
Jor
Distribution:

Ron Brender John Jones). Larry Wade
John Buckley Bill McBride Dave Nelson

Dragon PSG Janice Carnes Bill Strecker
Gordon Bell Len Hughes Pete Van Roekens

Prod. Line Mgrs.

,-T4CMRB373-0182
Oddat

INTEROFFICE MEMORANDUM
TO: Robin Frith DATE: October 8, 1974
CC: Distribution FROM: Ron Brender/Craig Mudge

DEPT: Engineering

suBg; 11/VAX - a user's view of the 32K boundaries revision of
EXT: 2520/5064,0C: 3-5/5-5

9/27/74 Memo.

We have done more work on the implications of a segmentedaddress space for FORTRAN EQUIVALENCE. We have found that
the constraints on storage of large data: areas are more severe
than stated in the Mudge memo of 9/27/74. This follows from
the observation that COMMON areas are in fact an implied
EQUIVALENCE relationship on data between subroutines.
The 32-bit address in 11/VAX is a two-component address (c,d).c, the chapter number, and d, the displacement within chapter,are each 16 bits. I11/VAX purposely treats each 32-bit address
as a two-component entity, principally with
today's 11. Thus the total address chapters of
216 bytes each, rather than 232 pytes.
What does this mean to the programmer?
1. "Can the user run a sequential program greater tnan 32K
words without explicitly recognizing the 32K boundary?"
If a routine (subroutine or main program) in a program is 32K
then it must explicitly recognize the boundary. It must jump
over it. Thus, if we have a 50K subroutine, SUBA, i.e. 50K of
instructions, (no data - data are outside of the program chap-ter), we have

CASE A r
32K

SUBA \
32K This is the programmer's

bx address space.
virtual (or logical)

a

and there must be a JMPX to perform the interchapter jump.

Craig Mudge/Ron Brender
a October 8, 19742
é

In practice, however, good programming practice (modularity)excludes this case. Based on data from FORTRAN IV-PLUS,over 5f pages of uncommented FORTRAN source statements are
required to generate 32K of code.

0412

A programmer writes his program as one main program and manysubroutines. Thus his logical address space will be:
CASE B

32K

32K

32K

MACRO and FORTRAN:

Case A: The FORTRAN programmer does not concern nimself with
the boundary. The compiler will not handle the problem sinceit is too rare to be worth even understanding how to do. The
MACRO programmer must know about the boundary and use JMPX.

Case B: The FTN programmer knows nothing about the boundary.
The compiler generates either JSR's or JSRX's.
The MACRO programmer writes JSR for intra-chapter subroutine
calls, JSRX for inter-chapter calls.
2. "Can the user program directly address a data array occu-
pying greater than 32K words?"

A FORTRAN compiler would allocate storage across chapter.
boundaries as needed. The chapter size, however, constrains
the maximum size of a dimension. For example, the one-dimen-
sion array (a vector) declared in FORTRAN as

INTEGER J(10562)
would be stored in one chapter. Integer K(100000) could not
be. Although a compiler could handle this case transparently,
compiler designers would probably choose not to. They would
constrain a vector to fit in one chapter. Thus the vector k
would have to be split by the programmer into, say,

INTEGER Kl (25000)
INTEGER K2 (25000)
INTEGER K3 (25000)
INTEGER K4 (25000)

and he would write his program to deal explicitly with the
four parts of the vector.
For 16-bit integers and 32-bit floating point numbers the
maximum vector sizes would be

Craig Mudge/Ron Brender
- 3 - October 8, 1974

INTEGER BIGVI (32768)
and REAL BIGVR (16384) 04138

The vector,
DOUBLE PRECISION D (3021), a vector of 64-bit entities would
be stored in one chapter. The limit would be 8096.
The following variables would be stored together in one
chapter

INTEGER K (3021)
INTEGER I (10)
REAL A1(50,100)

Implementation strategies for large matrices are considered in
two categories: 1) local arrays satisfying certain constraints,
and 2) all other arrays.
For arrays local to a program unit, that is arrays that are
not in COMMON and which are not passed as an argument in a call
(and also ara not part of an EQUIVALENCE relationship) there
are simple and efficient accessing techniques that would permit
such arrays to be stored in multiple chapters.
For example, consider a matrix A which satisfies the constraints
and is dimensioned as REAL A(503,3021). It would be stored in
203 chapters, one row per chapter. This storage structure can
be exploited in the subscript calculation of the element A.(I,J). In a linear space the calculation is,

I x column dimension + J,
giving a one-componenet address. In a segmented space the two
component address (c,d) is calculated as

This improvement is estimated to be a 20% reduction in instruc-
tion stream words in the inner loop of a matrix multiplication
subroutine.

+ I, J
gaSO avoi multiplication.

However, most of the time at least one of the above require--
ments would not be met. In particular, large arrays are in
practice almost always declared to be in COMMON for ease of
access by multiple subroutines.
The net effect is that most of the time a compiler would be
forced to make worst case assumptions about the location and
Size of any array.
Moreover, thérf compiled code costs, both in size and performance,
for nandling arrays which potentially exceed 32K words, is con-
sidered to be so high that it would not be acceptable in prac-
tice or in the marketplace. Consequently, given a chapter
oriented address, the following rule would be imposed on the
FORTRAN programmer:

NO single COMMON area, no group of arrays wnich are
EQUIVALENCED together, and no one dimension of a local
array may exceed. 32K words.

Craig Mudge/Ron Brender
-4 _ October 8, 1974

0414
Summarizing the numbers cited earlier, 32K words can contain

32K 16-bit integers
16K 32-bit integers or real numbers
8K 64-bit double precision or complex numbers

We emphasize that this constraint is a major relaxation of the
constraint in the existing PDP-1l family where the total ofall code and data may not exceed 32K. Without violating the
rule above, the programmer would have available as many COMMON
areas, equivalence groups, or local arrays as one can conceive
of keeping track of, i.e., 32768 chapters worth.
Note that, in practice, for reasons other than machine address
Space size, a compiler will often put constraints on tne max-
imum size of a dimension. For IBM's PL/I implementations, the
maximum subscript on a dimension is 32K. This is because sub-
scripts are held internally as 16-bit signed integers to con-
serve table space and to exploit the half word instructions
of the 360. In Multics PL/I the limit is 24 bits.
3. "If the individual program segment is limited to 32K words,
can he call multiple subroutines outside the 32K boundary with-
out any explicit address manipulation*
This is case B under question 1 above, i.e., the compiler or
the macro programmer issue JSR and RTS for intra-chapter calls
and returns, and JSRX and RTSX for inter-chapter calls and
routines.
Summary

1. The FORTRAN programmer would not be aware of the 32K word
limit on subroutine size since it would, in practice, be absurd
to write a single subroutine that large. He would not be aware
of any limit on total code size.
2. The MACRO programmer must be aware of the 32K limit on sub-
routine size if he is implementing a program that might exceed
32K total.
3. The FORTRAN programmer must be aware of limits on the
sizes of individual COMMON areas, equivalence groups, and
dimensions of local arrays, but need not be concerned witn
now they are implemented,

4. The MACRO programmer must be aware of limits of the size
of single storage areas, but has available a variety of effi-
cient programming techniques for handling logically conerent
very large data areas that can be adapted to the particular
application.
/br

Len Hugues Pete VanRoekensDistribution: Janice Carnes Bill Strecker
Dradon PSC

Ron Brender Bill Mciride bave welsonGordon Bell John Jones uarry Wade

John Buckley Frith Prod. Line Mgrs.

a?
>

ERT TE
3 3 8

INTEROFFICE
TO:

SUBJ:

0415
Distribution DATE: October 8, 1974

FROM: Jega Arulpragasam
DEPT: 11 Engineering UC; ,

EXT: 5545 Loc: 5-5 "ag
Linear Virtual Space Extension.
OBJECTIVE

The purpose of tnis document is to present a proposal that meets
tne preference of Compiler Writers and Marketeers for a Linear
Virtual Address space, while capitalizing on the extensive work
already done by Craig 4udge on uis VAX sroposal.
SUMMARY

This proposal is identical in all respects but one with Craig's
proposal. That exception is that additional ways in whicn the
Register extensions may be modified are defined, with the sole
purpose of renoving the watertight logical partitioning of
Craig's chapters.
The more obvious limitations (at least) of the linearity thus
obtained are identified, and their implications discussed. 'The
potential of these three alternatives is addressed with particu-
lar thought to how much of this potential is likely to be real-
izable in practical terms.

THE BASIC PROPOSAL

First, three things abcut Cralc s are recognized.
A. The ways in which the Register extensions are manipulated
are totally independent of the sulk of tne work put into Craig's
proposal. I.g. Subroutine linkage, Interruot and Trap procedures
and other related "stacking a

B. The rigid logical separation cnapters is dependent onl
on the ways in which the Register Extensions may be modified,
and in no way on the otner components of tne total Cnapter
Scneme.

Craig made the significant decision to effectively limit
the use of the Register extensions to addressing entities only.
I believe that not compromising or confusing the VAX scneme by
trying to devise a general pursose schene that would facilitate
32-nit arithmetic was a wise one (despite my earlier efforts to
pusn Craig in the opposite direction).

'Jega Arulpragasam~2- October 8, 1974
0416

This proposal is different from Craig's Chapter scheme solelyin that seven additional ways in wnich RyX (Craig's notation)may be modified are defined
They are;
A. On Autoincrementing Conditionally on "Carry"B. On Autodecrementing) out of 16 bits.C. By the Increment instruction
D. By the Decrement instructionE. By the Add instructionF. By the Subtract instruction

and
G. By the Multiply instruction (for subscript handling)
Notes:
A. The instructions can modify only 16 bits unless Destination
Mode is zero (i.e. in memory, not more than 16 bits areaffected).
B. The instructions do not imply 32-bit Arithmetic. In parti-cular ADD Ryn, results in (Rn)' = (Ry) + (Rn) and (RpX)' =
(RnX) + °C, where C is the "carry" out of the Operation (Ry) +
(Rn). RmX does not participate in the operation.
The other instructions except Multiply act analogously.
The Multiply instruction places the most significant half of
the 32-bit product in the extension of the Destination Register(wherever else it may also be placed under current 11 defini--tions).
C. This set is sufficient for Address manipulation.
D. Since the Multiply in the 11 Instruction set is signed, itis meaningful for subscript handling only if the range of sub-
scripts is limited to 15 bits (in 2-dimensional arrays).
E. Condition Code settings etc. are independent of what happensto the register extensions and are identical with current 1l
definitions.
This proposal. achieves linearity but has three important limi-
tations.
A. Address manipulation can only take place in Registers,andtherefore an additional Store Address (32-bit) instruction needs
to be defined.
B. The subscyipt limitation is more stringent for multi-dimen-
sional Arrays,
The rigorous statement is that while any n-space may have more
'elements than may be counted in a 16-bit register, ever (n-1)-
spacemay have no more elements than may be counted in a 15-pit
register.

Jega Arulpragasam 0417~q- October 8, 1974

B. All the limitations of Limited Alternative 1 except for that
relating to I-stream bit density still apply.
OUTSTANDING ISSUES

It is not clear to me whether in any of the above 3 proposals,
the address located in memory on a Double Indirect such as Auto-
increment Deferred should be treated as a 16-bit entity or a
32-bit entity in X-Mode.

I personally favor regarding this as a 32-bit entity, altnoughit would be possible to concatenate a 16-bit entity with the
Register Extension that was used to reference it. The latter
would limit Autoincrement Deferred to operating with pointers
and data in the same chapter. This seems an arbitrary limita-
tion with an inadequate return in savings. However, I would
solicit inputs on this question.
This issue arises on all of Addressing Modes 1,3,5 and 7 albeit
in X-Mode only (PS€00g= 1), and I trust the same requirement
will be imposed on all of them!

IMPLEMENTATION

General
The implementation technigue described in the Appendix to
Craig's "VAX Summary" of 9/27/74 would no longer be appropriate.
Since x may change and then never be used as an address,
changing the KT page tables at the time of R x change would be
premature. The KT would therefore be loaded when a new value
of any R,X was used to reference memory for the first time.

Such a cache-like scheme would increase the cost of the "KT
option" itself.
Also Address translation would take longer when an operand was
accessed in a "Chapter" whose KT tables were not in hardware
'at the time. But it can be seen that the total number of Mem-

ory cycles, including those for loading KT tables, is the same
as in the segmented Chapter scheme. But these memory cycles
will no longer be cleanly collected within the Load Address in-
Struction.
DRAGON Specific
The impact on schedule if it is decided to implement the Basic
proposal will be relatively small. While I have not sized it
accurately, I would be quite comfortable with one month.

However, Alternatives 1 or 2 impact both the I-Box design and
the microcode itself. ity guess is that the implication to the
schedule would be 3 to 4 months. Ilopefully in this case, we

would use this time to co-ordinate co-requisite software plans.

Jega Arulpragasam3- Jctober 8, 1974 0418
Displacements appearing in the I-stream, and used in

Addressing Modes 6 and 7 are restricted to 16 bits. Thisis the same limitation as exists in the Chapter scheme, andthe extra MOV instruction required to effect A(I)=B(I) appearshere too.
This is because the Effective Address will naturally be formed
by "High Base Address concatenated with Index in a RegisterPLUS Low Base Address in the I-stream" Hence two registersare required to hold A-Base and B-Base.
Given only 8 Registers this can make life rather painful.
LIMITED ALTERNATIVE 1

In X-mode i.e. when PS<087= 1, make the displacements in theI-stream 32 bits.
This removes all the objections springing from limitation C
above, at the cost of introducing some of its own:

A. Now we do have 32-bit arithmetic at least in Address for-
mation in Modes 6 or 7, which means putting cost into the Basic
machine, contrary to Basic Medium or Small machine philosophy.
B. We pay a penalty on bit density in the I-stream witn the
concomitant loss in performance implied in additional memoryaccesses when 16 bits would have sufficed: i.e. most of the
time.
C. Note that the subscript limitation still holds unless we
permit 32X16 multiplies with further implications to perfor-
mance and/or cost.
LIMITED ALTERNATIVE 2

It is to be noted that if. the 8 present Addressing Modes were
to remain as they are, the limitation of bit density in the
I-stream would be answered by 2 additional modes indicating"32-bit Index" and "32-bit Index deferred?
These additional modes may be obtained as follows:
In X-Mode, i.e. when PS<087= 1, Mode 5 is reinterpreted as 32-
bit Index! Djrect or indirect addressing is specified by one
of the 32-bits itself.
Limitations
A. Only 31 ts are available for indexing and presumable for

if Mode 5 is fo be demanded in X-Mode as well. While I do not
consider this a real limitation it is listed here for complete-
ness. (In fact, I would propose a 28-bit Virtual Address with

be availableall Virtual Indeed only 30 bits would

a 4-bit Extended Mode).

Jega Arulpragasam 0419October 8, 19745

These schedule guesses are not meant to be commitments, butrather qualitative inputs to help in the decision makingprocess. They are "ballpark" but will be refined if and when
11 Strategy Committee or Dragon PSG decisions demand it.

for

DISTRIBUTION

Al Avery
Gordon Bell
Frank Bicchieri
Ron Brender
Dick Clayton
Dave Cutler
Jim Davis
Bruce DelagiBill Demmer
Robin Frith
Bob Gray
Mike Garry
Wayne GrundyBrian FitzgeraldFrank Hassett
Irwin Jacobs
Andy Knowles
Ed Kramer
Tony Lauck
John LevyBill LongJulius Marcus
Mike Mensh
Craig Mudge
Dave Nelson
Bob Misner
Don StreetBill Planas
John Misialek
Steve Teicher
Brad Vachon
Pete VanRoekens
Garth Wolfendale

24CM373~0179
a

fi g 0 INTEROFFICE MEMORANDUM
TO:

ce:

SUBJ:

Robin Frith DATE: September 27, 1974 0420
Distribution + FROM: Craig Mudge

EXT: 5064 LOC: 5/854

DEPT: 11 Engineering
Se

:

11/VAX - a user's view of the 32K boundaries.

This documents our discussion yesterday on the questions youraised in your memo of 9/20/74.
The 32-bit address in 11/VAX is a two-component address (c,d),c, the chapter number, and d, the displacement within chapter,are each 16 bits. 11/VAX purposely treats each 32-bit ad-dress aS a two-component entity, principally forwith s 11. Thus the total gddress space is 2 chaptersof bytes éach, ratner than 23 bytes

patibility

what does. this mean to the programmer?
1. "Can the user run a sequential program greater than 32K
words without explicityly recognizing the 32K boundary?"
If a routine (subroutine or main program) in a program is

732K then it must explicitly recognize the boundary. I must
jump over it. Thus, if we have a 50K subroutine, SUBA, i.e.
-50K of instructions, (no data - data are outside of the pro-
gram chapter), we have

CASE A

SuBA 32K

logical) address space.

This is the pro-32k grammer's virtual (or

32k

and there must be a JMPX to perform the interchapter jump.

In practice, however, good programming practice (modularity)
eXcludes this case. A programmer writes his program as one
main program and many subroutines. Thus his logical address
space will be:

:ue Bt

Craig Mudge
:

:
: : : :

:
:

CASE B

32k

32K

52k

MACRO and FORTRAN:

Case A: The FORTRAN programmer does not concern himself with
the boundary. The compiler will insert the JMPX.

The MACRO programmer must know about the boundary and use
JMPX.

Case B: The FIN programmer knows nothing about the boundary.
The compiler generates either JSR's or JSRX's.
The MACRO programmer writes JSR for intra-chapter subroutine-

2. "Can the user program directly address a data array occu-
pying greater than 32K words?"
A FORTRAN compiler would allocate storage acress chapter
boundaries as needed. The chapter size, however, con-:
strains the maximum size of a dimension. For example,
the one-dimension array (a vector) declared in FORTRAN as

INTEGER J(10562)
would be stored in one chapter. INTEGER K(100,000) could not.
be. Although a compiler could handle this case transparently,
compiler designers would probably choose not to. They would
constrain a vector to fit in one chapter. Thus the vector K
would have to be split by the programmer into, say,

INTEGER Kl (25000)
INTEGER K2 (25000)
INTEGER. K3 (25000)
INTEGER. K4 (25000)

and he would write his program to explicitly deal with the
four parts of the vector.
For 16-bit integers and 32-bit floating point numbers the
maximum vector sizes would be

INTEGER BIGVI (32768)
and REAL BIGVR (16384).

-2~ 9/27/74
:
:

0421

:
:

: :

calls, JSRX for inter-chapter calls.

:

::
:

:

Craig Mudge
- 3 - 9/27/74a

The vector: 0422
DOUBLE PRECISION D (3021), a vector of 64-bit entities would
be stored in one chaper. The limit would be 8096. :

:

The following variables would be stored together in one
chaper

INTEGER K (3021)
INTEGER I (10)
REAL Al (50,100)For a matrix if the toal matrix is over 32K, e.g.,
REAL A2 (503,3021)

then it would be stored one row per chapter (503 chapters in
this example). (Since FORTRAN stores by columns, it would
allocate one chapter per column.)

:
:

+

:

Note that, in practice, for reasons other than machine
address space size,a compiler will often put constraints
on the maximum size of a dimension. For IBM's PL/I imple-
mentations, the maximum subscript on a dimension is 32K.
This is because subscripts are held internally as 16-bit
signed integers to conserve table space and to exploit the
half word instructions of the 360. In Multics PL/I the limit
is 24 bits.
3. "If the individual program segment is limited to 32K
words, can he call multiple subroutines outside the 32K
boundary without any. explicit address manipulation®

This is case B under question 1 above, i.e., the compiler
or the macro programmer issue JSR and RTS for intra-chapter
calls and returns, and JSRX and RTSX for inter-chapter calls
and routines.
Summary

1. The FORTRAN programmer is not aware of the 32K word
boundary in data arrays or subroutine length.

2. The MACRO programmer must be aware of the boundary.
3. For point 1 to hold, the FORTRAN compiler must put

constraints on the dimension limits on arrays. I feel
these constraints are reasonable.

4. Constraints must also be put on FORTRAN EQUIVALENCE
statements. I need to do more work with Ron Brender
(FORTRAN IV PLUS) to assess the reasonableness of these
constraints.

/br
Distribution:
Dragon PSC Janice Carnes Bill Strecker

f

Ron Brender John Jones Larry WadeGordon Bell Len Hughes Pete Van Roekens

Dave NelsonJohn Buckley Bill McBride Product Line Managers

t NOTES
+

7. (Interrupt Structure 4

2

4

All trap and interrupt vectors are in the p address space.Kernel mode is implied The page table for this address space 0423is always loaded in a dedicated part of the KT11 and is selected
by the interrupt sequence.

a. Interrups and traps:
11/45 11/VAX

(CM = current mode map) (M = Po map)

temp, PS temp) PCX
temp2 PC temp? PS

PC vector temp3 PC
PS vector + 2 PCX 0

PC vector
PS vector + 2

if PS€097 then $(S#)4 temp,
4(SP) CM temp,

Y(SP)y - temp;
A (SP) � temp -2

or, léss rigorously:
@ 4(sP)

+

PS (SP) @- PCX only if the new
pS€oy is one

(SP) PC
PCX #- 0
Pc vector
PS vector +

4 (SP) PC $ (SP) PS
PC - vector
PS vector + 2

b. RPI and RTT

11/45 11/VAX

pc (sp)f 7PC @- (SP)

if PS€09D then PCx-(sP)4PS (SP)PS

Jote that the unstacking of PCX on an RTI or RIT is conditional
on the setting of PS€09y. This is so that existing code containing
"fake RTI's" will run unmodified on 11/VAX. A fake RTI is a common

@ 11 programming technique used to transfer control.

King NokesN.2
cm

:

: Craig Mudge

RTI
It is "fake" in the sense that the RTI in the se-
quence has no matching interrupt.
The conditional (according to PS 09?) unstacking
during RTI on 11/VAX satisfies the two situations
which follow:
a. The RTI is a true return from interrupt
The interrupted process's PCX is on the stack having
been put there during the hardware interrupt sequence,
and because PS 209? is set it will be unstacked.
b. The RTI is a fake RTI

On 11/VAX this will be an intra-chapter jump, i.e.,
PCX must remain unchanged and we must unstack no more
than PC and PS.
Wotice that on 11/VAX, extended fake RTI's are
possible:

MOV NEWPCX, - (SP)
MOV NEWPS , - (SP)
MOV NEWPC , ~ (SP)
RTI

In the first version of the working notes, PS<08>
served to control the conditional unstacking during
an RTI as well as its usual function. It cannot do
both functions: in the case where the interrupted
process is non-X, PS 4087 will be 0 and yet a PCX
will have been stacked (all interrupts whether in-
terrupting an X or non-X mode program must stack
PCX) and must be unstacked.

Warning: the conditional unstacking of PCX depends
on the assumption that old programs load
a PS with a.zero in PS A097. How realis-
tic is this assumption?

: v2.>

CM alteCer et pe

ae :

0424a

The following sequence of instructions is executed.
MOV NEWPS, - (SP)
MOV NEWPC, - (SP)

:

0444
dj ilo}

:INTEROFFICE MEM@RANDUM
TO: Distribution DATE: 573/74

FROM: Craig mage
DEPT: 4] Engineering
EXT: 5964 LOC: 4.9

SUBJ:

Attached are my working notes (as of May 2, 1974) on the chapter
scheme for extending the virtual address space.
I would greatly appreciate your comments.

DISTRIBUTION

Jega Arulpragasam
Ron Brender
Dave Cutler
Bruce DelagiBill Demmer
Lloyd Dickman
Bob Gray
Tom Hastings
Len Hughes
John Levy
Ed Marison
Dave Rodgers
Bob StewartBill Strecker
Nate Teichholtz

pl

EXTENDING THE PDP-11 VIRTUAL ADDRESS SPACE
- Working Notes on the Chapter Scheme -

Craig Mudge

CONTENTS

I. Terminology
II Introduction
III. Summary of the Chapter Scheme

IV. The Chapter Scheme

1. The Address Space
2. Motivation for Segmentation
3. 11/VX Registers
4. Address Mapping
5. .X Mode
6. New Instructions
7. Interrupt Structure
8. Process Dispatching and Context Switching
39. New Error Conditions

V. Compatibility
Vi. KT11-X--An Implementation

VII Design Decisions

VIII. Programming Examples

iX. Systems Software

Previous Work

0445

May 2, 1974

Nees VIA

0446-
T. Terminology

11/VX - A machine architecture; PDP-11 architecture with an extended
virtual address space using the chapter scheme.

11/44 with - A particular implementation of 11/VX; the principal design
KT11X goal of the KT11X option is to provide an extended VAS with

minimum impact on the cost of the base 11/44 CPU.

Process - Informal definition: "the execution of a program." The
distinction between a process and a program becomes clearerif one thinks about a reentrant program with several
concurrent activations.
Formal definition (Dennis and van Horn): "a locus of
control within an instruction sequence. That is, a processis that abstract entity which moves through the instructions
of a. procedure as the procedure is executed by a processor."

- Task is a synonym used by RSX11-D, RSX11-M, and 0S/360.

States of a process:

running
active< runnable

'known< . waitinginactive

Known ~ All processes known to the system.

Active - All processes known to the process manager (or task dispatcher)

Running A process in control of a CPU. At any one instant in time

e

there is just one running process; it is the process whose
context block is loaded in the processor registers.

Runnable - Process able to run but blocked because some higher priority
task is running.

Waiting + Blocked awaiting the occurrence of some event; e.g., I/0
completion, timer interrupt.

3

II. Introduction 0447
Why extend the virtual address Space?

1. Today's pressure.

11/45 market pressure leading to supporting I & D space
in RSX11-D.

Trends which will increase the pressure.2.

a. More programming in higher level languages to
increase programmer productivity.
~ Compilers, being rich in function, are large
programs.

~ Compiled object code is larger than hand code.

b. Increased physical address space.

c. Cheaper main memory.

d. CCD's.

Design philosophy, assumptions.

1. Changing such a fundamental architectural parameter as
virtual address length is justifiable from a DEC business
point of view, not necessarily from an aesthetic view.

The market needs justify extensive design effort and some
(optionable) hardware to affect a clean, compatible address
space extension. Similarly, the work to generate a clear

2.

definition of interfaces to run existing code is justified.
The extension should be a big jump (not just an extra bit
or two) so that

3.

a. New uses are possible; e.g., those that follow from
true segmentation;

b. It will survive pressures (memory technology and
programming trends) for several years.

IT.
1.

10.

Summary of the Chapter Scheme

0448A program's VAS is a set of 64K-byte chapters.
A VA is of the form2.

16 16 c = chapter number
d = displacemnt withinc d chapter

giving a 32-bit VAS. Today's 11 VAS is 16 bits.
The space is a segménted address space; segments (called chapters)
are independent.

3.

A VA is always mapped to a physical memory address. The physical
address space is of the order of 24 bits in the class of machines
considered.

Each general register, RO-R7, is extended to 32 bits, so exploiting
the fact that a register always takes part in an address formation
on the 11.

4,

5.

New instructions are added to the 11 instruction set to load and
store 32-bit addresses and to transfer control between chapters.

6.

Address specification is efficient. Full 32-bit addresses will
appear in the instruction stream much less frequently than 16-bit
addresses, which, in turn, appear much less frequently than 3-bit
register addresses (specifying address-holding registers).

7

A CTBR (Chapter Table Base Register) tied to process # facilitates
map loading, hence context switch time is improved.

8.

The chapter scheme is compatible with today's 11. This has two
aspects:

9.

a. The extensions are compatible

(i) Existing instructions are not redefined.

(ii) New instructions are consistent with 11 style.

b. Code written for today's 11/45 will run unmodified.

The compatibility, even at the assembler level, follows from

a. A mode bit, PS<08> , to distinguish X-mode from non-X mode.
Its principal function is to indicate that PCX is the
chapter number for any (16-bit) address generated by a
non-X mode program.

5

11.

12.

bo. A set of software conventions to be followed when an X-mode
program calls a non-X mode prorram.

c. Existing instructions have not been redefined.

d. The structure placed on a chapter is identical to the
KT11 MMU (3 7).

Quite general sharing/protection mechanisms (at the chapter level)
are possible,

Although existing software, both user and system, will run on 11/VX,
to exploit its capabilities, e.g., dynamic linking and demand paging,
a new executive would be required.

0449

6

6

IV. The Chapter Scheme

1. The Address Space

Each process has a 32-bit virtual address space.
an address specifies a chapter number and adispiavement within a chapter:

16 16
c d

0450

The chapters are independent (a carry out of the displacement field does not
propagate into the chapter field).
An address space so structured is usually called a segmented address space.
I have used the term chapter instead of segment because DEC documentation has
sometimes misused the term segmentation and has sometimes used the terms
segment and page interchangeably.

The best known example of a segmented address space is in the Multics system.

The maximum VA on 11/VX is 4096 Mbytes -- 916 chapters of 26 bytes each.

The structure on a chapter is that defined by the KT11 Memory Management Unit,
namely

2. Motivation

Denning nicely motivated the concept:
Segmentation

Programmers nornually require the ability
to group their information into content-
related or funetion-related bloeks, and the

ubility to refer to these blocks by name.
Modern CONDUC systems have four objee-
tives, each of which forces the system to

provide tie programmer with means of

handing the named blocks of his address

Space:

module constitutes a named block whieh a
subject 10 1 c and change uo any

Fach progranl

1 {ine
data sthuctiacs The size of

certain data tructures (eg stacks) may

vary danny use, and it may be necessary to

assign cach such structure to its Own, Vara
ble size block

e Protection Program modules must: be

e Sharing. Programmer A ray wish to
S from programmer B, evenborrow module

A hos
though S occupies adie sscs which
reac. reserved other purposes.

These four objectives, together with
machine independence and list processing,
are not peculiar to virtual memory
They were fought for in physical storage
during the late 1950s [W5]. Dynamic storage
allocation, linking and relocatable loaders
[M3], relocation and base registers [D1],
and now virtual memory, all result from the
fivht's having been won.

The segnented address space achieves these
objectives Address space is reg uded asa
collection of named seauents, each bemg t

nnear array or addresses, Ino a seginented
address spiec, the programmer references
an information by fire component

ind « a word mame within s (Lor example,
the (3, 3) to the 3th word am

the jrd segment) We shall discuss shortly
low the 1 mip must be constructed
to implement this.

ACM Comp Suvveys Sept 7D

'so
na

m
e
an

d
in
te
rn

By
al
lo
ca
tin

g
ca
ch

pr
og
ra
m

m
od

ul
e
to

its
ow

h
se
gm

en
t,

a
m
od

ul
e

ge
s
in

ot
he

r
tw
o
ob

je
ct
iv
es

m
ay

w
dd

re
ss
es

ue
un

af
fe
ct
ed

by
eh

m
od

ul
es
,
th
us

th
e

fir
st

m
en

t
AS

SO
C

ge
w
ith

ea
ch

se
g-

re
ad

be
cn
fo
rc
ed

Bs
cn
ab

lin
g

th
e
sa
m
e
se
gm

en
t

to
be

kn
ow

n
in

di
ffe

re
nt

na
m
es
,
th
e
fo
ur
th

ob
je
ct
iv
e
m
ay

be
nd

dr
es
s
sp

This space is two dimensional -

673

page block disp

i ror t

(s, am which

protects or 1 t

7

formation process. For example, @ (R3) +

04513. 11/VX Registers
Each general register is 32 bits wide. The low order 16 bits is called Ri,
the high order RiX. Thus, if R2 has been loaded with an address (done by a
new instruction, LA, load address),

R2X R2

then R2X holds the chapter number.

16 16

Once the extended address has been loaded, then operand addresses are formed

For example, to sum a vector of 16-bit integers, use
way:), € dt, -€), D+,) > x(),@x().through it in the standard i1

LA # VEC, R3
ADD (R3) +, SUM
SOB

The standard 11 code for this is
MOV # VEC, R3

P ADD (R3) +, SUM

That is, when an address is being loaded by a standard 11 instruction, it is
a Within-chapter address and fills Ri. Rix holds the current chapter number.

Deferred and index modes are defined to use 16-bit quantities in the address--

ROX R3

operand
>

table

16 bits >

Cd

Tf 32-bit quantities were allowed in the table, or 32-bit index constants
were allowed, we would face the problem of disambiguating 16 and 32-bit
quantities in memory. Constraining these quantities to 16 bits is no loss
because the long address is needed only as the base; i.e. in the register.

The program counter PC is, of course, also extended; PCX= R7X.

8

04524, Address Mapping

Page tables and chapter tables are stored in memory. Each active process has
a process # which locates the first entry of the chapter table for that process.For the running process, this chapter table base is held in the CTBR (ChapterTable Base Register).
See Figures 1 and 2.

CTBR is an 11/VX register whose address is in the I/O page.

5. X-Mode

PS €089 holds the mode bit of the running process. When zero, PCX is used as
the chapter number for any (16-bit) address generated by a non-X mode program.It is used to obtain compatibility. An example of its use is given in
Section V. below.

6. New Instructions

LA Load Address
loads 32-bit address into specified
destination register

LA SS, R

STA Store Address
stores the 32-bit address at the
specified destinationSTA R, DD

JSL Jump and Stack Link
(Interchapter JSR PC with PC implied)JSL ODD

§(SP) + PC

y(SP) - PCX
PCX - dest
PC dest

RET Return and Unstack Link
PCX (sP)t
PC

RET
(sp)t

JMPX Jump Extended
For inter-chapter jumps; an assembler
macro which generatesJMPK SS

LA SS, R7

pn
fmt

jo
f,

CT B -list
(index is
process *°)

FIG 4
Ba

MAP TABLES IN MEMORY

0453

3

,

Co

PAOe TABLESCHAPTER TABLES
(Each table has @ PAR/PDR's

Format ef +able entries.
:

chapter table entry

entry
:

Bb
FIG 2

process #15

CTBR
x PRE TABLE

PAR PDR

CHAPTER
TABLE for

ADDRESS TRANSLATION EXAMPLE
0454+o 22-bit Physica}

e 3 7 6VIRTUAL ADDRESS 4. beg 7 for

Pis

ae SLE
PHYSICAL ADDRESS } 7

\6 6

0455
7. Interrupt Structure

All trap and interrupt vectors are in the address space. Kernel mode is
implied. The page table for this address space is always loaded in a
dedicated part of the KT11 and is selected by the interrupt sequence.

a. Interrupt:
41/45 11/Vx
(CM = current mode map) (M = pocy map)

temp, temp,
- PCX

temps PC tempy PS
PC vector temp3 PC
PS vector + 2 PCX 0

PC vector
PS vector + 2

(SP) + temp, (SP)y @-- temp,

V(SP)oy «= temps V(SP), temps

V(SP)y = temp,

or, less rigorously:

(SP) = PS. { (SP) PCX
&(SP) # PC 4 (SP) # PS
PC vector (SP) # PC
PS _ vector + 2 PCX «.0

PS

CM

PC @ vector
PS vector + 2

RTI/RIT:

"X mode (as determined by current PS)

'free (sp)t
(SP)4

Thus, RTI/RTT is an intra-chapter return.

X mode

Pc « (SP)f
PS # (SP)#
PCX (SP)*

10

(04568. Process Dispatching and Context Switching
a. Select

P>
the process to be run next

b. Restore RO-R5 for p jRestore R6
Restore FPP

c. Load CTBR with CTB(p5)

d. Stack PCX(p.)
Stack PS (p?)
Stack PC (p3)

e RTI

Note that this sequence has less instructions than today's RSX11-D sequence;
althcugh stage d has one more instruction, stage c has 17 instructions less.

9. New Trap Conditions

a. Chapter # bounds

b. Null chapter # (for dynamic linking)
c. Access control.

a

1.
Vv. Compatibility

Introduction 0457
Typical problems encountered in extending the virtual

address space are (1) specifying extended addresses in
instructions, and (2) passing extended addresses
between subroutines and between processes. It is
necessary to examine where addresses are manipulated
aS Operands - explicitly by program instructions, e.g.,
(Rn)+, and implicitly, e.g., when addresses are
stacked on an interrupt.

These manipulations occur in

-loading an address into a register
-storing an address
-incrementing and decrementing an address in
a register.deferred addressing
«pushing and popping of addresses on 'the stack:

~ instructions
JSR, RTS, MARK, MTPI, MTPD, MFPI, MFPD

- interrupts
I/O interrupts.
EMT, TRAP, BPT, IOT,RTI, RTT

As well as the 16-bit length of an address, the
structure placed on the 11's 16-bit address space must be
considered. Two examples are the KTll memory management
scheme's structure

established by users, for example, register-usage
conventions in operating systems and compilers.

31 7 16
and the wrap around from 177777 to 0. Other structure is

Because an address space is so fundamental to an
architecture, an extension to it must be strictly
compatible; the extension must subset to an ll.

11 instructions and behaviour can be classified into:
instructions whose domain is one 32K-word
address space, @.g., arithmetic and t/0
instructions.

Class A:

instructions whose domain is a multiple address
Space machine, e.g., MFPI.

Class B :

Behaviour which is K, S$, U-mode deriv ed fall into Class B.
So also do interrupts - in a multi-chapter address space
machine, implementation efficiency demands that some part
of the total address space be reserved. For example, process
0, chapter 0 for the interrupt vectors.

~12-

2. Class A instructions
These instructions remain unchanged - they 0458Specify 16-bit addresses, in particular the dis-

placement field, d, in the full 32-bit space
16 16

A program which knows about the existence of Rixis o.k. It issues existing 11 instructions for
most of its work and occasionally uses LA to set
up a full 32-bit address in a register.

However, a program written for today's machine
does not know about RiX. The X-mode bit in the PS
takes care of this - it forces the program to run
as it was intended, i.e., as a one-chapter program.The remaining question is how does an X-mode programuse an existing non-X routine, say SUBNX, to work on
data outside of SUBNX's chapter. Appendix A shows how
the X-mode bit, together with the general mapping
concept, effects this.

INote that the case of non-X calling X is a non-problem
- for a non-X program to issue a JSL or JMPX it must know

about 32-bit addresses and would no longer bea non-X program.

- 13 -

3. Class B instructions
been solved but text not yet written.)
(This is a topic list only - most problems have 0459
a. K,S,U-mode derived address space selection is

subsumed by chaptered space structure, exceptfor Kernel space holding interrupt vectors.
PoKCy is explicitly recognized; page table
always loaded; only place K-notion acknowledged.

b. MFPI and MTPI
supported

c. I and D space
Not supported on 11/VX
Unnatural notion
Very bad decision to put it into 11/45,
unclean, bought very little, cost much.
DEC software does not support it.If we have to put it in, then one way is

to use bito of the chapter field to
indicate it.

d. Questions
K,S,U-mode forces hierarchy on SPL, RESET,
HALT

- implications for 11/VX?
e. Running existing operating systems -

If RSXLID (say) occupies Chapter 0, then PCX*0 is o.k., but if it
is in some other chapter then a nonzero PCX is required to get to
the ISR (interrupt service routine) in that chapter. Rather than
"burden 11/VX with an extended interrupt vector pair, the nonzero
chapter will be reached by one level of indirection, i.e., the
interrupt vector PC transfers control to a chapter g connection
section which loads PCX with the right chapter #.

-~14~

Example 1

RSX11D exec in Cs 0460

RSX exec

>aPx CS

A Pe- 2

RSX a/O DEVICE VECTOR
PS

EMT VECTOR30 pes.
Ps

N CSEMTSR

e

*

v

y

a

N

Poto

PANSICAL MEMORY

Example 2.

RSX1ID exec in CpRSTS exec in C7
No shared i/o devices simplification (more for resource
management)
Sync traps, e.g., EMT, require the connection code in chapter
g to use process # of interrupted process to decide which
opsys to direct interrupt to.
If RSX RSTS need to have access to the same system stack then
map them that way.

- 15 -

vi. KT11-X -- an implementation 046]
Figure 3 presents a tentative implementation. It is a

Starting point; we will modify it as we work on the
partitioning of function and registers between the 11/44basic CPU and the KT11-x.

A more expensive implementation would have a largerresident page table store and the « and4 stores would be
replaced by an associative memory.

A cheaper implementation would delete process # from
the 4 store and hold only the, running process's chapter
"numbers. & store could then be the actual Rix, i=1,...8.Since LA causes preloading, this scheme would never fault.
However, it would not have the nice context slavingproperties of the Figure 3 scheme which decreases contextswitch time by retaining page tables for processes other
than the running process,

Simulation with 11/VX programs must be done to test
the effectiveness of the4 store predictor . scheme.

KTMX

virtual aololyesS From processor 0462
process3 a thopiey p 6 db

3

Resident
73 STORE

3

ASTORE 3

0 case. chaphy MAR

MAR

3

mar

COMPARATOR 7

PROK.

poke

tries to oA et cuvrent

Gee STORE pescvibes Contents of vesident pageable store.
V/ STORE baseg on pr m Stn

p)Comparator owtpus :

= PA Loymaton toe proceco

physical addvess + memoryng
of page table and

6

pane

allow
4 : Fseavch of stove for match on >chape;

it found then ser stove 5
else lo;

update storey

loa .

% Stove >
ge table From memory;

repeat trang

8, Questions:
T not necessary if we pay. time penalty ont wee (50)+LA.

~16 -

Vit. Design Decisions 0463
"Linear" vs. ""symbolic". ("two--dimensional") address spaceand d myst be independent!

Only way to enforce one chapter programsfor compatibility.b. better for programming.

hence need ita.

Qe Relation to integer 32 data type
Since c and a independent can't use addressing mechanism
to. give 32-bit arithmetic for free,

3. Instruction format of new instructions
No 3-bit opcodes left, hence can't have MOVA SS, DD whichwould subsume LA and STA,

4. Chapter (0

Making it special justified on grounds of interrupt responce.
5. Mode bit

6. 32-16
7. Process management (using process #) not to be assisted.

€.g. ATUEScan, Insertion deletion of nodes notte be assisted

VIII. Programming examples
1.

2.

3.

FORTRAN array addressing
array 932K words

passing parameters
a la old 11 style ok

dynamic linking
Linktime: a. chapter # allocated

b. chapter table entry:
PTB set to nully
access rights set as required

Execution time: if null PTB then search system-
wide Link table)else ok

5

~17 -

0464

~18-

Xx. Previous Work 0465
1. Atlas, Dennis, 360/67, Multics
2. (DEC) Strecker, Rodgers, Mudge, Burness

Acknowledgement: Ed Marison's contribution to 11/vx

o

19

APrenny A 0466

X- - X

2 ofofCokin" PROCK and anol
PROCX anol Hhe Hack

Cy
access D

call Sugux

TER.
Thad

a

PCOK -hook ban
7

PROCK fo OEC

X
7

Teg -

a rhe ca lers Ltn
DFR Svan mea

FIG 4 20:

MAPPING OR PROCK CALLING SUBNX EXAMPLE 0467
PHYSICAL MEMORY

Cx
I

P
+

Ro

:

S AK

> ra

4K
1

9
ts
Cy SVBNX AK

Stack

x
Chapter table

Gov the process

pree

Anta,

I

age tables
Ly the ChapiersoF 1invest

0468

+

Ce PROC

q (spe RA 3 Strack (Stuvn addvess
Ser up pays
y(sP) & addy (svenx)
mex TER, yinterchapwr jump

1
Mode a 1%
Sse ecytsP)*

SUGNXHodee x
Tmex (se)+

4

RTS PC

lon chapter
SYONX need,

7 »

a

1" :

MEMORANDUM
TO: Creag Muage DATE: May 13, °974

CC: Jega Arulpruygasam FROM: Bruce Delag1 04694

Bill Demmer
John Levy DEPT: Engineering

EXT: 3563 Loc: 1-2

SUBJ :

I've some uncerLainties aoout the 5/3/74 chapter scheme:

1. Why is it "no loss" to prohibit index constants to be used as base
addresses e.g. OPR TABLE (R2) where R2 holds a 16-bit disptacement
and TABLE is a 32-bit base address?

2. How the assembler expand "JMPX K(RN)"
Possibly: STA RN, -(SP)

ADD #K, 2 (SP)
ADC (SP)
{DEC (SP);
LA (SP) +

Note that JMP K(RN) # MOV K(RN), PC

3. Soes "X-MODE" refer to the state of a bit in the PS word? If suo,
is it changed on interrupts and traps. If it is changed, che

can't tell from the PS word whether to pop 3 words and
restores PCK or not. If it is not changed, then interrupt and
trap service routines must be rewritten and take proper action
for botn 16-bit and 32-bit pre-interrupt environments.

4. tras service routines sometimes expect arguments on tne stack at
a tixad position relative to the top-of-stack. If PCX is pushed,
the ol€ relationships between top-of-stack and arguements is messed
up anc the old trap service routines must be rewritten. If PCX is
not pushed, then the old trap service routines have to be rewritten
to handle 16-bit and 32-bit calling environments.

5. A call to a 16-bit subroutine from a 32-bit environment requires a
call to the operating system to map a segment of the chapter holding
an argument into a segment of the subroutine's chapter.
a. seoms to take 1 page entry per argument. What happens for

subroutines that require more than 6 arguments?

6. If an argument is a pointer, then must the page holding the pointer
and the page holding the data both be mapped. Suppose the pointer
ooints to a pointer. Does the call site have to trace down the
chain and call the operating system at each level? Suppose che sub-
routine uses arguments in address calculations (Like adding 2

yruuments) what can be done at the call site then?

: +

:
:

:
: : : :

: : :

XE - Kept; Brine 0470

Yes

op
2

:

a (€,A

R2xX wetk C,
op a, (R2)

toast)
A canta He. [ee CEA

ACL) = 8(z)

b.
> » Yhe code

anol 6 ane

No2

IMPX KR) = LA K (Ru) 5
PC.

:
:

7
: :

:
:

2

0471 :

Wo

ko :

4
:

Le,

Yes no

A (
Yon vho map

So

6/28/

Ay oe a 4 ef
t

thy

INTEROFFICE
0472

TO: Distribution List DATE: 5/9/74 :

FROM: Ed Marison :

DEPT: Software Engineerin
EXT: LOC: 3-54868 :

7

SUB: SOFTWARE PLAN FOR THE 11/44 4
:

:

. This is not a "Plan" in the usual sense, but a statement of concerns
and assumptions 'about system software support for the PDP-11/44.'It is based upon my knowledge, conceptions, and misconceptions of
the PDP-11/44, and the software systems which will run on it.

:

:

Uni-Processor Systems:
Time to Market goal Q2 or Q3 of FY76 :

t

The PDP~11/44 comes in three basic configurations which the following
adjectives describe, Small, Medium, and Large. The characteristics .
.which differentiate: the configurations are memory size and management,:: >

:

t

SMALL - no KT :

:

. MEDIUM 124K with KT

. LARGE >124K with KT and Uni-bus Map

Small Systems:

:

. Direct replacement for the PDP-11/40

. EIS maybe standard

. FIS optional

. Parity non PDP-11/40 compatible
As can be seen from the above the RT-11 and RSX-11M unmapped systems

Medium Systems: :
7

KT - program compatible with PDP-11/40, but may have "D" space.
Also, all bits in the PAR's will be implemented (ala the .
PDP-11/55).

should run without modifications if parity 1s disabled. New code
will be needed to support the '44's parity option. :

:

:
: :

Same features as small systems plus

e Null Uni-bus map (ie. transparent to software)
FPP Program compatible with the PDP-11/45's FPP, but maybe :

synchronous (also, may never happen).

:

J
ta

>

0473 :

Given the above and the assumption that the PDP-11/55 is supportedfully then all systems supporting the 11/55 will run unmodified,
except for parity, on the 11/44. RSX~11D and TSOS should fall into

With the exception of parity as noted in Small Systems the followingsoftware systems should run without modification, :

RSX~LIM
* RSX-1ID : :

TSOS : : :

:
:

However in systems of this size memory parity should be supported
:

:

to allow gracefull system degradation. :
:

Large Systems: b :

: :

. Same features of Medium Systems plus
:

:

map = program compatible with the PDP-11/55 : :

:

this category.
:

In effect, given the above, all uni-processor PDP-11/44 systems can
*

4

be supported with minimal system software effort.
Multi-Processor Systems:

+

4

. Time to Market goal Q4 FY77 - Ql FY78

Only medium and large systems are considered here with the following
goal being explicitly stated

- No new Operating System should be written to support multi-
processors, only modifications to existing OS's should be
done.

Given the appropriate hardware support to prevent race conditions
in the software between processors the following systems should be
considered candidates for multi-processors.

. RSX-11M

. RSX-11D
- TSOS

To meet increased reliability requirements the goal should he
produce symmetric multi-processor systems. However, if we intro :

duce "USER" micro-code then we may get systems with processors
having different capabilities. Therefore, we will need the software
capability for a Task to declare which processor it requires, and
the hardware capability (processor number) to differentiate between

:

processors (ie. asymmetric systems).
Firmware ("USER" micro~code) options for High Level languages:

. Time to Market goal - ?
7

This is an area where a high degree of cooperation between the hard-
ware and software, groups is a must. Just what languages should be

:
:

:

4 Ny 4 My soy faeA ta

3- 0474
+

+

aided by firmware is a marketing concern. The 'following is a list.of possible candidates:
F4+

e F4S
BASIC
COBOL (the CIP Commercial Instruction Set Processor) :

Notes:
1. The areas of online error-logging, and diagnostics are

ones which the various operating systems must address
independently of the 11/44.

2. Networks - This is also an independent concern. However,since the PDP-11/44 is a PDP-11 it should fit very nicely
of introduction.

a into a DEMOS net with available 11 software at its time

3. Virtual address Space extension (VAS) is not covered in
an extended virtual address (chapter scheme) would requireextensive software effort in the order of five (5) to
seven (7) man~years per system and 18: to 24 months of

:this plan. However, it should be noted that to support : :

:

calendar time.
aml

wha aay

:

a oP 4

- MEMORANOUM

FROM: Garth Wol fendale
8

DEPT

fh :

BRT s 3959 3*5

a

4

scheme for achieving.a greatly expanded task (process)

processes and atthe same time
handle

d And
+

ay

a
are being

é

200-200-029-00
047bINTEROFFICE MEMORANDUM

TO: Extended Addressing Review List DATE: March 18, 1975
Attendees

FROM: Tom Hastings
DEPT: -19 Software Engineering
EXT: 6512 LOC: MR 1-2/E37

SUBJ: Minutes of 11 March Review of
Extended Addressing

We finished the wide review of Extended Addressing from the user
programmers point of view. Most everyone is generally satisfied
with the concepts and the details of the specification. Only
the monitor interface (PXCT) specification remains. Only one
ECO for the 198 is required. Four or five boards will have to
be relayed out for the 2@ series. These can be phased into
subsequent 198%s, so that we can achieve the goal of the 1989
being a strict subset of the 2919 in function and hardware.

Minutes: The agenda items are indicated in parenthesis.
1. Problem: (1@v) The items Local and Global address will be
confused with software use of these terms.

Solution: Use terms Short and Extended address instead.

Why: These terms are almost self explanatory. We are not
inventing new jargon.

2. Problem: Should the spec be changed to say that KI
compatible effective address computation is determined by PC bits
6-17, instead of VMA bits 6-17?

(1@b) There are multiple uses of zero: They are: (1) Short
address in XRs, (2) KI-compatible section in EFIWs, and (3) hardware
ACs on UUOs and MOVXA.

Solution: Leave KI-compatible test on VMA rather than PC.

Why: Effective address computation works the way the caller
expects. Once an effective address computation gets
into section §, it remains there.

Solution: Make the section independent extended address of
the hardware ACs be ?,,AC instead of 9,,AC. Effectively section
1 must be a code section in the extended machine with the first
29 locations always being the hardware ACs. Sections 2 and greater
can be useé Zor code or data. Hardwaré ACs (in all sections) are
used if MMM 6-31 = 1,,% or (VMA 18-31 = @ and SA = 1). (SA isVMA

Page 2
Tom Hastings
March 18, 04775

Short Address flag). When the Pc is in a non-zero section,MOVXA will generate 1,,AC whenever a hardware AC is specified(whether Short or Extended effective address). An EFIW of
@,,AC will reference memory in section @. When the PC is insection 9, MOVXA will follow the KI rule: the LH will alwaysbe @ e

Why: Then th2 monitor and user code can generate an
address with MOVXA which will uniquely specify a
section independent address for all locations in
the nachine. This address can be copied to othersections (except from 9 to non-zero sections) andit will mean the same location.

Solution: We decided to leave the double use of @ to
mean Short indexing in XRs and KI compatible section in EFIWs.

Why: We are not anticipating code in Extended sections
referencing code in KI compatible sections, especially not
general purpose subroutines. Exceptions will be speciallywritten code, such as debuggers and compatibility packageswhich will be written to run in a non-zero section and operate
on programs in section @ only. They must reference section @with indirection (EFIWs) rather than indexing or with indexingin which the program has set bits 1-5 non-zero. The monitor
has the same problem. The solution will be worked out during
PXCT review.
3. Problem: (1%b) Double Word Byte pointer is too complicated.

Solution: If bit 12=1 (when byte is in non-zero sections,
not PC) the 2nd word is an indirect word (EFIW or IFIW). Bits
13-17 of the first word must be zero and are reserved for future
hardware. However the hardware will not trap. Bits 18-35 are
reserved for software forever (in DWBP with bits 18-35 when bits
13-17 zero). We will decide for future machines what happens
to bits 18-35 when bits 13-17 are non-zero. Overflow into bits
Q-5 in EFIW, or @-17 in IFIWs can occur and no trap will occur.
Since section 7777 will be illegal by software convention,
accidental overflow seems unlikely.

Why: Software can use RH for counters, pointers while leaving
a hook for future hardware.

4, Problem: (1fc) Should incrementing a byte pointer with in-
direction be fixed to increment the last word in the indirect
chain, instead of the first word of an SWBP or the second word
of a DWBP?

Solution: No.

Why: Subroutine argument which are byte pointers which point
to other sections should always be DWBPs. Then callee can pickup.
Don't introduce a potential incompatibility with KI if don't need
to.

Page 3
Tom HastingsMarch 18, 1975 0478

5. Problem: (18a) Is there any solution to the problem thata byte pointer with an Extended Address in the XR, wants theRH of the byte pointer to be unsigned, instead of signed?
Solution: No. All Extended Indexing is restricted to a+217 offset.

6. Problem: (19) Should BLT backwards be decomitted? Itis breaking KI programs. The manual says what happens ifdestination is greater than termination address.
Solution: Decommit it. Put it in EXTEND-BLT.

7. Problem: If effective address of a BLT is extended, canit cross ore section boundary, or should it always wrap aroundin a section?
Solution: Doesn't matter for software, so wrap around.If easier to do the other way, we will change it.

8. Problem: (19h) ADJSP how can we make it check for over-flow and underflow with an Extended Stack pointer?
Solution: After adjusting the stack pointer, ADJSP willpretend to do a write into the top of the stack. This meansthat the stack can be completely protected by having 256 non-existent or read-only pages at either end of the stack.

9. (19k) What is effect of spec on 1989 ship date? Only oneECO is needed (to access 6 ACs for EXTEND).
10. (18m) What shoulc hardware/micro-code do with unused fields?There are 3 chcices:

SOFT Give to software (forever)
MBZ 2. Must be zero. Reserve for future hardware,but not trap if non-zero.
MBZ (T) 3. Must be zero. Reserve for future hardware

1

and trap if non-zero.
a. Double Word Byte PointerBits 13-17 of 2nd word - MBZ, reserved for future hardware

but does not trap. When 13-17=%, bits 18-35 of 2nd word
are available to software forever (for counts, pointers,etc).

b. Bits 1-5 of Index Register
When bit @=9, bits 1-5 are available to software forever.
However the proyrammer must be aware that if these bits
are non-zero, "xtended Indexing is called for (instead of
Short Indexing even though bits 6-17 are zero). Also if
the programmer wishes to indirect through the index register,

Page 4

0479Tom Hastings
March 18, 1975

bits 1-5 will be interpreted by the hardware.
c. Unimplemented section number (bits 6-12 in KL).

(My notes are hazy for item c. The following is results
of discussion with R. Reid and D. Murphy). In the KL
whenever the hardware fetches a word from memory, a
trap will occur if VMA bits 6-12 are non-zero. The
trap is the same as for unallocated section number.
Thus the hardware appears to implement all 4996 sections.
(Since the VMA is only 23 bits long on the KL, therewill probably be a flag saying whether VMA 6-12 are @
or not).

ad. Bits 6-i2 in index registers.
Not looked at when index register is fetched. Instead
checked as in c above. When XR contains an Extended
Address programmers must keep bits 6-12 zero for future
hardware which may implement more than 32 sections.

:

e. Bits 2-35 in IFIW when bits 9-1 = 11. MBZ(T). Micro-
code will give illegal instruction trap.

f. Bits 9-5 in EXTEND-BLT pointers. Available to software
forever (like index register bits 1-5).

g. Bits g-5 when restoring PC in POPJ, and RPCF.
There was no agreement. Some said reserved to software,
as with bits 1-5 in XRs. Some said reserved for future
hardware. Some said hardware should trap.
Since then the proper goal for PC words has been found.
A PC word must be the same as an EFIW in KL and in all
future mechines, since programs indirect through PC
words. Therefore the hardware cannot ever use bits 9-5
in future machines. Furthermore software is warned not
to use them, unless the indirection property is not needed.
Therefore the hardware will not check bits 9-5 on restora-
tion of the Pc.

ll. Review of opcode names

The new opcodes will de:

RPCF Restore PC and Flags
Restore PC and Flags then DismissRPCFD

EPCF Exchange PC and Flags
SFM Save Flags in Memory

Move Extended AddressMOVXA

Page 5
naTom

0480
March 18, 1975

12. The following items were deferred:
a. (19i, 18}) EXT-BLT specification (needs a separate spec)b. (19g) Rules for writing section-independent subroutines

(T. Hastings will write-up)c. (1@r) Rules for writing subroutines which will run insection 9, extended sections, and KA and KI.
d. (1fs) PXCT
e. (lft) User interface to the monitor (do with PXCT

renew).

Attendees:

Tony Fong Paul Guglielmi
Gordon Benedict Walt Luse
Mary Cole Dan Murphy
Lloyd Dickman Dave Rodgers
Bob Stewart Robert Reid
Al Kotok Jud Leonard
Tom Hastings

/lo

0481

me M. TRAPNELL, JR. Computer Systems Consultant

6321 Hariley Drive
La Jolla, Calif. 92037

(714) 459-5536

THE NEED FOR EXTENDED MEMORY ADDRESSING IN THE PDP-11

The Reason for the Need

The principle change in the mini-computer market over the next

several years will be the broad realization by users and manu

facturers alike that the mini-computer technology is applicable
to business problems which are in no sense "small". Indeed the

embodiinent of that .technology in the PDP-11, the Interdata 7/32

and the Hewlett-Packard 3000 yield capabilities which cannot be

matched by the 360 series below the level of the model 50. The

PDP-11 family offers instruction execution rates which range from

206K te nearly 1 million instructions per second and memory band-

widths from 18 to 40 megabits per second. By standards of five

years Ago this is not a "sinall" computer. The man who needed an'

BY 260 model 50 at model 30 prices to do a job now has something

even b te

Thus, this new market will arise in the traditicnal business appli-
cation area. But, it will provide for the automation of applicaticns

f gt The ttmitii':which are no now done on cemputer for reasons

computer will change all that; it will open to system designers

that could not be considered five years ago! It will make

the broad use of on-line, real time business contro 7

donee whicn COUau only be justifies tu Gases m the past
prac i Ce

;

(e.g. airline reservations systems). Thus, machines like the
PDP-11 make practical what might be described as the dedicated,

w

system.on-line business application

These applications are both sensitive to and demanding of system
-performance, which is measured by the speed with which transactions
can be processed. They are sensitive to performance because it is
directiy visible to the system operators in turnaround time. They
are demanding of performance because they are always highly
sensitive to the cost per terminal. Hence, the user wants to
attach as many terminals as possible to a given system. This
maximum number is usually limited by system performance.

The PDP-11 has most of the attributes to perform well-in this role.
Its principle hardware limitation is the size of addressable memory,
and particularly that which is addressable by a single user.
Curiously, the need for this larger memory arises from the require-
ment for increased system performance.

Large applications can be implemented on Systems with a small memory.
This is done by dividing the programs into pieces and overlaying
(or paging) them into core as required. Almost without exception,
such applications are limited in performance by disk access time.
An Cus 4 : : +: :

2

0482
used programs. resident to main memory. Ideally the main thread

of these applications should not require disk access to any pro-
This has the dual benefit of increasing performance by

doing away with all but essential disk accesses to data and of

reducing overhead by eliminating the need for complex overlay
control mechanisms. This requires a large memory which ean be

grams.

accessed directly by the user.

This reason for increasing memory size is markedly different from
the

the conditions which led-to ever larger memories on commercial

data processors during the past decade. This came about by users.

trying to get the least job cost out of a given system. The

availability of advanced operating systems allowed them to buy

the largest core memory for the system and to multiprogram a
mbe

number of separate jobs on one computer. The end result is that

today most data processing users run as many multiprogrammed batch

applications as possible on their computer, and most small-inter-

mediate D.P. computers (e.g. 360, models 30, 40, 50) use the largest

available memory.

Mini-computer costs today are such that there is much less to be

gotten from multiprogramming unrelated jobs on one computer; it
is nearly as cheap to have two dedicated ones. Thus, time sharing

of unrelated applications will become increasingly unattractive.

To be more relevant, the need for address extension on the PDP-11

3

OVFAY. «

does not arise from the need to increase the number of independent
tasks which can time share system resources. It comes from the
need for. he system to handle in main store application programs
which themselves are larger, more complex and highly performance
sensitive. Thus, we arrive ata key guideline for development of
PDP-1l memory extensions:
1) The scheme chosen for extending memory must permit the individual
user (task) to directly benefit from the newly available memory with
little or no overhead. This means that any one user should be able
-to directly address the entire available memory. If this addressing
cannot always be direct, then it should be nearly so. For example,
user directed changing of a page register would be an acceptable but
not ideal solution. (Not ideal because it is not as fast as

generating the address at execution time.)

Memory Protection, Relocation and Segmentation
We have asserted that the requirement for the user to address all

memory arises from the market for dedicated application
computers. This does not, however, obviate the need for memory
protection. For, even in these applications the operating system
should be protected from the user program to the extent that
(1) the latter cannot inadvertantly destroy the former and (2) user
errors in communicating with the system can be gracefully detected
and reported. Furthermore, the concept of multiprogrammed jobs 'is
so deeply ingrained in users today that to prohibit it in a new
product would be wnwise market Strategy. For these reasons, pro-

main

tection of one progran from another must be provided.

4

0483
Likewise, a facility for relocating programs must be considered.

The key question is whether or-not rélocation at Load time is
sufficient. . If it is, then relocation can be left as a software

problem; if not, then additional hardware will be required. My

own feeling is that for this kind of system, load-time relocation

by software is adequate. But, it cumbersome, and it mayvery
be an uphill selling job against a product which provides it.

However, there is a far more important point related to these

issues of extended addressing, protection and relocation. It is
the second design guideline:
2) From the viewpoing of system architecture (and hence the user)

extended addressing, protection and relocation are three separate
issues. A mechanism that provides one of these facilities (like
page registers to provide extended addressing) may also be used

to provide others (like protection and relocation). The extent

to which this is done confuses these issues and diminishes the

usefulness of the system; the decision to do this is adesign

compromise.

Impact on Existing Programs

Another constraint on the design of an extended addressing mechanism

comes from the impact these changes will have on the investment in

DEC's and user's existing programs for the PDP-1l. The next guide-

tine is:
3) The solution to extended addressing will be better to the extent

5

that it does not require: (listed in order of importance) 0484
A, DEC to rewrite assemblers , compilers, and operating systems-

1) to run existing programs in the environment of the new

facilities.
2) to take advantage of the new facilitiés.

B. Users to rewrite code-

1) to run existing programs in the environment of the new

facilities.
2) to take advantage of the new facilities.

In addition, some marketing benefitcan obtained if users. arebe

not required to re-link or recompile programs.

Ease of Use

Whatever mechanism is provided in. hardware for memory extension,
the user must be given the facility to be sure that his programs

contain no addressing errors by the time the linking process is
done. For example, if DEC were able to extend the address length
in some magic way from 16 to say 32 bits, then the user could

simply use the new "magic" addresses and be sure that his program

would work. However, if the address extension scheme involves

dynamic user management of memory pages, then this may not be the

case: If not, this is not an acceptable solution. This gives us

the fourth guideline:
u) At assembly and/or link time the user must be able to code

instructions and declarations which define the paging dynamics well

enough so that errors can be detected by the assembler and linker.

The rules for this coding shculd easy to understand and simpiebe

6

0485
to follow. It is not enough to Have a clean technical solution
to the problem. It must also be a good solution for a garden

variety assembly language programmer. Perhaps mone importantly,
the compilers

compiles

must be able to use it ina way which is totally
transparent to the programmer! High level language programmers
will not grasp complex addressing schemes.

Size of Memory Required
-How big a memory should the extended addressing cover? Obviously,
there is no simple answer to this; however, I think there are

some bounding conditions. First, the addressing range should be

at least as big as that of the Interdata 7/32, namely one megabyte
or 512K words. On the other hand, it is hard to justify a maximum

memory size bigger than 16 megabytes (ala IBM 260). On this
basis, I feel if a small change will achieve at least a one megabyte
range, then DEC should do it. If, on the other hand, a big change is
required to achieve it, then a solution should be found which permits
a 16 megabyte memory.

Timing of Introduction
The key factor influencing the time of product introduction of ex-
tended addressing is the recent announcement of the Interdata 7/32.
From inspection cf the manuals for the computers , it appears to
compete in performance with the PDP-11/49. Some comparable instructions
are faster on the PDP-11; for example an Add from a labled store
location to a register is 2.45 microseconds vs 3.25 on the 7/32?

7

0486
Others are faster on the Tnterdata machine; for example, the JSR
takes 3.5 microseconds while the branch and link on the 7/32 takes
2.0 microseconds. Memory bandwidth of the PDP-11740 is 17.8

megabits per second, while that of the 7/32 is either 16 or 21.3

megabits per second. The Interdata 7/32 can directly address

1,048,576 bytes or 512K words. This means that users who find
either 32K words per user or 128K total memory. words a limitation
now have an alternative.

Thus the first mini+computer with this capability is now on the

market ; others will surely follow. When these machines will impact

DEC busiess, I cannot say. Suffice it to say that announcing

extended addressing on the PDP-1l today would not make DEC first
in the market place with such a product.

g

a

tedimete

14

then
%

4

alertedmera
5

dye

i

P] a

Pa

+

51é

+
af4

ay
4

x{a4t
*4

4

4

&4
ina

4
+é

ye

4

f

g
44

+ff
4

t
}

*

tet

aed
5

ge
+

i

rE.
prota

#x

Ade

%

4

?

{

*

+

Se

4

e Leon
1

+

a

?aal' t

why?

t

bog

My

wots,

t

+ 4

4

ae

+

t

a

u

Lig

wef

t

nay i
4 ? t

*

t

hat

«

&
4

r

?
fe 4

+

+

+ tt v

»

r

+
q

ns f

4

4

give

q 4

~ td

4

+

A gate 9 wee 4.

i4%

+

a

A a

!
t

a

i

gt
"

Be,

E

Fi +

t

4

24

>

®

a4+
»

»rf
4tae

hoe

4

fryt

t

>

oy
vhs

wt

us th1
bat

tay

Az

1
4

4
my

>

gu wy

t

4

ann
a

»

t
+

4

+

ve

4
ae 7

S

2

ag

ar}

t 4a

i

4

4

v

4

a

:
h

+

4

Pinter nce,

é
«

vy wb y

7

i é

a

4 4. ?
+

4 Bir
eng I

al prt teed
come]

a

ah

+

4

*

«ior4
anty 2>

mhmeinWmegceegee
tte

teamedeteTnerox

Cita
ot

Ft
;2hreort +

4

ooosFt
Adweatabegarda'

{

M
thq
Rew
oy

vf ara
ieseetd, le itd

ty
+
are ief4s

.r

:
Geibopeow:

oa
yew?

+>xg

we

onnteena"4knnsdnsecreAEM
F

aeteamegine
te

eg
me

age
ennataS

zt
4Sarrnag 7te 4pomvtSeas

2Gog;

vtdeyhoe rrr"- tPaarot etoy
4

yeake

9

medet oo

"oe
*

awvn
a

4

Cabe
.*a

st ULV
FpProng Spmwanga

VPAOY tnee

1

ohleeaefens

S$ a4%14Ne Baggt4ty
ALN

+te a
tehperkeeeewotweiwemaga

beeat4
co? areee

atoeeyroaokaf le?
ub

fa
\r3fy,4;

hewd
4wlgbayephereaeee

*
{ons

Plat Tarare*

bGrOL

4

toa
ayavs

thue

3

+

t7tows
Aetx

pear
~

8
aeat

rt

Pe

=wt

faa

F

ay
day

7a+

stone

+1

tru

aot

t

iv

a
feyte

*+

t1

é

ind
m
eet

2.

+

4

iw

Cane

Nery

+

a

*
a

r
4

t

i
t

« wy

i +

h a
a

4 +

Ae 1
1

tty ae,
4

q

yee,

t er

wey a

ae

L

4

t

ewe bk creat

4 >
aw Rea

*

*
a

wi

« x

"pat mete eh

Re
yooh

ds

wt

4 »

4

6

1

4%

nee

4

ir)A

a

1tal re 14 tm

tos
4 a

i <
tl

4

es
av

Mt

a a

®

* yo t

oe » Ue a - Hp dn kg or med

~

e

ge

~

4

r hate fod

2st

t

TM howe ok
1

i

a

q

4
r

5 e a { 2

tt7

4 4

f

y a
whe

ue

eee 2
rk

4
hen: bape ~ ict, Cmte

ane
4 a

9

5 é

a

4

«

+
at

7

q

t

ee a

ihoas
*&

4

~
-+ves'. he

4gery
14

'4

#

4We

!

4
y

+4

+

a

sent_

ade

~~

2vel
He

ad

.414

Ae
t

4

ae

ah

t
a

1

é

oy
a

ve{4

a,

a

»
7

+

t

deer pend
4

1
6

+ ets
4

4

a 4

a
x

4

ro tne

+

§ 4

®

3
t

abo AIA

A

ag €

fey +

tay

ey
a

mi

a
ew

* 4

4

ae

5

+

4

»

+

t

t

wort

1 pe bee

L

a

7

i

Vii

i

4 t *

4

»

4

3

dggs

reg
we +

We

I

of

ar

Mw

ae

t

« "tea"
€

+

wd

» I

nid why 4

ALP PLE...

w

y

6 ot he

5

t

x

Hemel

4ea

t
3 te

t

t

be

*

hoe
ahem

»

te

x

t +

3
Wt

4

+
f

af

Tiprety
i
oy2

1

ts.

y

wee

4

a
+,

ae

r

5

+

t

-1

At
44

4

hghhn

1

g

4

al

ary

aa

hyn

4

ge ph

ah,

}
4sue 4

1 «

t

af, 24

+ A a _ prong

+

t

Bes
yr

Y

+ t
a

a wed bem wy

pers
te

5 Y + 4

a
t

4

t

é4

r
A

mahhyp4whut

1

oe

1

1

yY

t
4

ear
4

deb-

q

wy

t

pte
yMs

hans

1

6 +

f t

"-

al *

a

*

4

a
Sor q

a

ody

an went

a t t

t

Koo

+ r

x

a
a

t

at

+ ~

+

+ e
* e

4

i

sh
e

an
o

=
ca
e

as
*>
7 iy 4 a

ot
hs

ye

2

d "ha,

A

*

f 4, r

4 t

bane mp ye pe
dae

+

v

Mp
ast

k

path

*

at
a

3

4 7
5

4

+

Pah he heey * tha

f b
wos

4 a ay
1

Ase

+ t
j : ;

:

ay!

u

a

a

t

4

~

x

we * bem ~ ~

+ 4woawd

ty

d *

ty24
4 +

1

t

+ 1

4

a
o~

4 *

*

wayf
ad ~

a hon

+
'abe

+Fis

1

4

+

4

poner

5
+

a

he o

>

Party

+s e

s 4 i $

2

he,
'ete bag ye Ben end

vr rife

pun Maye

yf

ry

i) +

?

+

1
+

L 1

+

~

4

1 &

1

~

+

e
+

rt

+ t
yo.

4

piste og lal a

2

a

Bivens yl

fe

* C

xt

tat

4

ie at 4

4

?
™

f

4 4

+ §
1 "4

Pay i

2 t
3

a +

4 wpe

ive
«on

4

a

t

5

ty d

BR ys 1

ry be

gf
7

q

i

y
@ 4

~ 0512
INTEROFFICE MEMORANDUM

TO: Jega Arulpragasam DATE: October 25, 1974

SUBJ:

Group yy

Summary

Based on making the worst case assumptions about the de-
Sign of the 11/VAXL extension and its use by F4P tae 11/

FROM: Bill Strecker
R & DDEPT:

EXT: 4207 Loc: 3-4

F4P Degradation on 11/VAXL By

VAXL extension appears to increase, for the program
measured, the program static size by 40% and the number
of I-Stream references by 36%. By being more careful
about the design of 11/VAXL and its use by F4P I be-
lieve that the percentages for both cases can easily be
reduced to the range of 10% to 20%. Since the function
of this memo is neither to design 11/VAXL or redesign
F4P, I have not documented this here, although I will be
happy to do so.

Program Details
The program analyzed is a matrix multiply subroutine given.
in Figure 1. The symbolic object code produced by F4P is
given in Figure 2 and Figure 3. It consists of 4 PSECTs.
PSECT SIDATA contain the array descriptor block (ADB) tem-
plates for the arrays A, B, and C. Bytes 0 - 73 of PSECT
SCODE1 contain code to build the ADBs. Bytes 74 - 322
contain the matrix multiply code. PSECT SVARS contains
a.partial address calculation which is invariant across
the innermost loop. The current size of these PSECTS is
given at the end of Figure 3. The number of I-Stream
references of the innermost loop (bytes 110 - 233 of
PSECT $CODE1) are written in the first column to the right
Of each instruction.
VAXL Considerations
A slightly modified 11/VAXL proposal (as I understand it)
is assumed. In particular there are 5 address operators;
Load Address, Store Address, Add 28 bit Address, Multiply
Address, and Add 16 bit Address. The first three use a :

28 bit operand and a 28 bit register while the last two
use a 16 bit operand and a 28 bit register. Indexing and
indirection is 28 bits for these instructions. The -instruc
tion memonics are LDA STP, ADA28, MPA, ADA16 respectively.
For all current instructions there is a mode 5 escape se~
quence which provides a 28 bit index and a 28 bit indirect.

4
7

2- 10/25/74 0513Bill Strecker

For the code examples that follow I use
[sou

or destinsource
each use of [J adds one static program word. It alsotion] to indicate the mode 5 escape. clear that
adds one I-Stream reference and two in the case of indir-ection.
Static Program Analysis
Since the three ADBs must now contain a double word base
PSECT S$IDATA is increased by three words. The code which
generates the ADBs must be modified to pass double word
addresses : The code to do this would replace bytes 0°+' a3
af PSECT $CODE1 and would look something like this:

Additional inline words
MOV @2(R5) , -(SP) +
MOV ,. -(SP) +1.
MOV 6(R5), -(SP) +f
MOV 10(R5), -(SP) +2
MOV # , -(SP) +9

7

(R5)

MOV +2(SP
JSX +1pc,

Since this must be done three times it adds 21 additional
program words. The additional words for the remainder of
$CODE1 are indicated in the second comumn to the right of
each instruction in Figure 2 and Figure 3. The total word
increase for $CODE1 is 55. PSECT $VARS is. unaffected
while PSECT $TEMPS is increased by one word to hold a dou-
ble word address. The summary of the incrases is given in
Figure 3: The program size goes from 144 to 203 words - a
40% increase.
Dynamic Program Analysis
The inner loop of the program would look as follows:

Additional I-Stream
Word References

LSFAAL: MOV {k] , Rl +1
MPA C2, Rl +1
ADA16 {13 , RL +1
MPA. #4 , RI +9
LDA cl , Rg +2
ADA16 CK] , RG
MPA #4 RG +7
ADA28 C3 , Rl +2
ADA28 c2 , Rp +2
LDF @R1, FP +9
MULF @Rg, FG +2
ADDF , Fg +1
STF +1Cs}
INC +1
CMP fx] , Ce2(R5)]

CK
+3

BLE LSFAAL +9

16

: : : :

Bill Strecker
-3 - 10/25/74

The number of additional I-Stream references is given to
the right of each instruction. Comparing this to the I-
Stream references in the original program, the numberfoes from 45 to 61 - a 36% increase.

for

0914

:re FL os
§ :1

:

FORTRAN
veChie
UNRE ASED SYSTEM, SUPPORTED FOR FIELD TEST PURPOSES ONLY

SUBROUTINE MATMUL(N,A,B,O)
9202 REAL ACN»»N),BINSN) , CON)ND

PRA po § Katyn
_ SeSeall,K)eBCK, J)

B00;

A0e3 a
OO 18 fet,N

0804 DD W
4085 BR

2008 12 CCT, J)08
4009 RETURN
"ele ENN

wt a

a

t
~

t

ye

ceca

1

Lt,G :

--

4

7

Ya 3 ker te:
7

WEEE
0516.

vor a

UNRELEASED SYSTEM, SUPPORTED FOR FIELO TEST PURPOSES ONLY

eIDENT 29aus

eaeede a WORD 1,0,1,8

agears WORD @,0
aone2d eWORD 31000,0,0

_gWORD $,8,1,0

gonare »WORD 8,9
noeeTa 2WORD 31904,0,@

@oeaae

ngepia MOV O(R5),=(SP)
MOV WSIDATAS{G,6(SP)

Aeaeda JSR PC,MKA2S
MOV #2 (RS) p= CSP) _..

avecsa MOV #2(RS5)pn (SP)
geaaea MOV 1W(R5),e(SP)

MOV" #STDATASTO,@(SP)

LSFAGG!
Ae0182

eTITLE MATMUL

eanaee PSECT SIDATA

»WORD 129006
008128 WORD a

» WORD A
WORD 120400

aapaae eWORD Oy
200056 31006,48,9

» WORD 1,8,1,9
~

100064 e WORD
AGBZHS 120200

Qaagee gPSECT SCODE}

MOV @20R35),0(SP)AGAGAS
gacaad MOV

PC,MKAaS
MOV @2(R5),e(SP) 2/ -

JSR

800102

aaai1e
neayi2
@80116
peaiad
aparse
@BB136
agaiag
AbS14a
ACA158
Q00194

288160
200164

A081

A001S6

catLes
:

5SHVAS
PE%70098

azIsNOILI3S

ASLOSTeot9*
Sha

99vs87
(SHleefy

ONT

(14)'g

4

fINT
A
AOW

i4

2S20a0

PAN
S SL

ein
ey YS

IV 4

ete088
ataLae F +

}

HAZ0R8
OQ2u9e
watoan
Bi3000
Rdtooe

@a'tue404

Bau

aay
aay

~

encigeasWess
Tayi t a4

a

