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11/VAX Proposal.

Attached is a proposal for a Linear Extension to 11 Virtual
Addressing.

This was drafted by a group consisting of Ron Brender, Mike
Garry, Craig Mudge, Dave Nelson, Bill Strecker and myself.
It meets the objective of being the best proposal that
could be generated by November 1. While it will doubtless
be changed (improvements only are permitted!) if ever im-
plemented it brings out all the issues for making a mean-
ingful comparison with Craig's segmented proposal. It

also meets, of course, some basic criteria of implementa-
bility and performance.

Refinement of performance evaluation is still proceeding and
will be reported on at or before the next PSG session.
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11/VAX (Linear) Proposal

0403
Summary

l. We define a 28-bit Virtual Address Space.

2. A mapping mechanism is provided for which allows smaller
page sizes (1K bytes) but is still compatible with the
existing KT. Double mapping is needed to accomplish this.

3. Register extensions are defined to enable extended add-
ressing (and for no other purpose).

4. New instructions are defined for operating on the Regis-
ter extensions. The set is limited, but both complete
and efficient for manipulating addressing entities, in-
cluding subscripts.

None of the existing instructions affects the Register
extensions, nor are their effects redefined in anyway.

5. Means are provided for distinguishing between 16 and 28
bit entities in memory for use as either "pointers" or
"index constants", so that existing programs may run
unmodified.

6. Means are also provided for distinguishing between 16
and 28 bit address stacking and unstacking on status
switching whether synchronous (Subroutine Calls and
Traps) or asynchronous (Interrupts).

The Virtual Address Space.

A 28-bit Virtual Address is formed, in general, in one of
three ways:

1. By using the contents of a register R, concatenated with
its extension R,X. or

By picking up a 28-bit entity from Memory. or

By picking up a 16-bit entity in Memory and concatenating
it with the extension of that particular Register that
was used to reference the 16-bit pointer itself.

2'
3

The externally generated addresses are assumed to be extended
by leading zeros.

THE MAPPING MECHANISM.

The Virtual Address is conceived of as having three elements.
They are a Chapter,a Page and a Displacement: The page, and

displacement within the page, together constltute.the }ow 16

bits of the Virtual Address. The high order 12 bits give the
Chapter Number. : '

We define the page size to be optionally compatible with the

present KT (i.e. 4K words) or alternatively 512 words.
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Linearity of the 4K page with respect to the 1/2K page is
effected by double mapping. In order to save serial double
accesses to KT tables, and to reduce the context switch time
by keeping the number of table entries (per Chapter) small,
we define the following traslation mechanism.

The high order 12 bits, or Chapter Number, defines the page
tables to be used. For each Chapter Number there are two
sets of page tables which are used together. One set has
eight entries and corresponds to the present KT tables exact-
ly. The other set has 64 entries, one of which is selected

by the high order 6 bits of the low order 16 bits of the |
Virtual Address. The Address Translation is effected by a {
3-way Adder.

?h?hE}; alignments are indicated in the diagram.
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If we call the 8-entry table the KT table and the 64-entry
table the KTX table, it will be noted that provided the
entries in the KTX tables were all zeros, the whole mechanism
is exactly equivalent to todays KT's in its action.

There is a certain degree of inelegance in the contents of
the KTX entries being modified by their own addresses. The
KTX can effectively provide the base addresses of 512 word
pages in such a manner as to preserve linearity, either this
way or with additional hardware to remove this inelegance
from the ken of the systems programmer.

Register Extensions and New Instructions.

Reserving the Register Extensions for Addressing entities only
has two significant benefits. First, it allows an efficient
but small set of instructions to be defined that is complete
for Address and subscript manipulation. Secondly, it allows
the kind of clean implementation that Craig's scheme permitted,
(outlined in the Appendix to his Summary 9/13/74).
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The new instrucions are Load Address (LDA), Store Address
(STA) , Add Address (ADA), Multiply Address (MPA), Subtract
Address (SBA) and Compare Address (CPA). They are of the
format OP Ry S, Sp. With the obvious exception of the Store
Instruction, these Long instructions always have a Register
as their destination. Furthermore, the modes permitted for
;he "Source" are restricted to four: Direct, Deferred, Auto-
increment and Indexed. The Index is always assumed to be
28-bits in these cases.

The.Mgltiply is treated as an unsigned 28 x 16 bit operation,
optimized for 12 leading zeros in the Multiplier, and yield-
ing a 28-bit result in RpX/R, (with overflow indication).

Today in forming the address of A(I,J) we have

MOV

MUL

ADD

ASL

ASL

ADD
This will be replaced by

LDA

MPA

ADA

MPA (by Data Type length, less than 4 bits of

Multiplier)

ADA
Only these instructions may affect the Register Extensions.
Thus, using the existing 11 instructions will cause wrapping
around 16 bits, thus maintaining compatibility with existing
programs in the unextended architecture.

DISTINCTION BETWEEN LONG AND SHORT ENTITIES.

As in Craig's Chapter Scheme an Extended Mode (X-Mode) is de-
fined when PS £08y = 1.

In X-Mode, the pointers in memory that are implied by all add-
ressing Modes except § (Direct), 2 (Autoincrement), 4 (Autode-
crement) and 6(Indexed) may be either 16 or 28 bits.

When they are 16 bits, the Effective Virtual Address is formed
by concatenating these 16 bits with the Register Extension
that was used to obtain the pointer itself. This case signi-
fies intra-Chapter references and are considered normal.
Therefore, the current modes of existing instructions will
have this sense.

If we require indexing across a Chapter boundary, or we need
28 bit pointers for inter-Chapter references we define a Mode
5 escape sequence.

In X-Mode (only) the meaning of Mode 5 is redefined. The use
of Mode 5 (for either one of the Operand Addresses) implies
that the instruction is extended by one or two words and ig

to reference 28-bit pointers and indexing constants exclusive-
ly for that operand address. The leading 4 bits of the one
or two word extension define the Addressing Mode.
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It is suggested that the 4 New Mode bits have the following
bit significance. ()4()6

1. Increment or Decrement (by the absolute value of the re-
maining 12 bits of the word).

2. Before or After Use as a Memory Address.

3. Deferred.

4. Indexed.
If, and only if the Index Bit is on, is a two rather than one

word extension of the instruction implied. Full length index-
ing capability is essential if linearity is to be provided.

In X-Mode too, short indexing is carried out with 16 bit enti-
ties that are considered to be 2's complement numbers to
permit "negative" indexing.

This is consistent with current definitions, and permits in-
dexing across 32K Virtual Address boundaries with up to 15~
bit index constants.

Note also that 28-bit indexing and the use of 28-bit pointers
in memory can result in access to a Chapter not defined by
any of the currently held Register extensions. Therefore a
KTX caching mechanism must be defined to provide an efficient

implementation.

STACKING AND UNSTACKING.

No modification to Craig's proposal is required. The mechanism
will be identical in all respects with the segmented Chapter
scheme in this regard, which does not infringe on linearity at
all. This includes the use of PS bits 8 and 9, Subroutine
Calling (including JSX) etc.

MEMORY PROTECTION.

On a linear proposal, clearly memory protection has to be pro-
vided at the page level.

The protection mechanism will therefore most appropriately be
similar to that provided in the present KT.

However, the Page Address Registers for the KTX will be of the
following format. ' ;

21 16
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NOTES:

i Without the PAFX Extension (normal case) the thsical
Addressability is 22 bits (12 + 10) or 2 megawords.

2. Resident, Altered (Written Into) and Protection bits are
provided to allow this resolution down to 1/2K page slze

level.
3. Access Rights etc., are therefore determined by the "AND"

of those described in the KT entries and KTX entries
(except when one or the other is disabled).

S
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4, There will be limited encoding on the Access Rights bits.
The "Write Only" case is not useful and will be re-inter-
preted to indicate that this is a pointer to a Page Table.

5. If an "Execute Only" mode is required further encoding is
possible. E.g. Non-Resident AND Altered.

COMMENTARY.

Both the Mapping and Protection mechanism described in this
document are fully compatible with the present KT.

However, there is some question as to how important this ob-
jective is.

We could gain tremendous simplification by eliminating the
current PDR and PAR, if we abandoned KT compatibility.

The KTX Mapping Mechanism would then be as follows.

oi&(ﬁ#drebs

SN A

fo) i 23

Note that this is the same as the previous case with the KT
disabled.

There is a loss in granularity from 32 words to 512 words.
For this we get simgle word KTX entries (PDR's and PAR's
effectively) for 22 bit Physical Addressability.

If granularity is deemed to be important, we could have a
length field of up to 1f bits in the high order part of the
PAFX Extension. This would give us granularity down to 1
byte at the cost of always needing 2 words for KTX entries,
and limiting Physical Addressability to "only" 23 bits. The
length field would be compared with the displacement.
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out hefore @ complete system-can be defined.
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§ H""«E VIu;UAh MACHINE FAULT

"1Tb¢'ﬁ1ngle;state architecture discussed in the preceding section

s

sprovides a hip rhily efficient environment for the creation of recursive

virtual machine systems, =wever, the baaic w&r“’”e ‘ﬂ*#*’ECﬁ vssoci#ted
wifh'this afchiteckurﬁ lacks a number of features which ars ‘seful when
. writing avprivileSed softiware aucleus. - These features, whi : are sresent
to varying degrees in several late third generation computex ﬁystems,
include deacriptor based memory addressing, multimlayeted riugg of protéct;oﬁ

and avucess synchronizatluﬂ primitives.'_

L : s ; e
A recent analysis._ of virtual machine arghj*ectures ‘wv *hese unre el
tcmﬁlax'systéms .., /18 based on an important a\utinction b&*dﬁrw tme

different types of faults, The first type is associate" with softwere |

+ yisibzc'féaﬁures of .a besic machine interface such as privil--ad/none |

privileged stétus, address mapping tables, etc.' These faults drve handled:

'bY>the T;ﬁviicr?l soFtware nucleus which rung that inLerfana, ‘The'sécgﬁd".
'tvpe of fault appears only in virtual machine systems and ig gfaéfaéeé'j }
‘when a protess attempts to alter a reSOurce mapvthat the 7&#‘&E‘ﬂsih—
taining or attempts to reference‘a resqu&e thch is available oﬁ a

‘virtuadl machine but' not the real system (e.g., a8 virtual machine memory

ation that is not in real memory). These faults are handled solely

: y : P ik " : ‘ . & : *
by the VMM and are completely invisible to the virtual machine itself.

*Fayles aed by: 1e‘ﬂ es to: unavailable real resources were not clearly =

: Ldanéifié& in bhis paper. The di&tinc;iond‘being drawn here are based .
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Considerations in Recommending "Linear".

The 11/VAX subcommittee (B8ill Strecker, Ron Brender, Craig
Mudge, Mike Garry, Jega Arulpragasam and Dave Nelson), met
October 24 to reach concensus on a recommendation between
the Segmented VAX scheme proposed earlier by Craig Mudge
and a Linear scheme developed by the sub-committee.

The result was a unanimous recommendation for the Linear
schene. The recommendation was offered with the under-
standing that refinement of the Linear proposal would con-
tinue.

In stating their preferences the following considerations
were expressed:

Mike Garry: Linear is more favorable "in a practical
sense.

Ron Brender: For individual COMMON blocks greater than
32K words, there would be a 5-20 times penalty to
try to simulate Linear with a Segmented scheme.

Bill Strecker: FORTRAN drives toward Linear. Also we are
unlikely to utilize the superior name space man-
agement capability of a Segmented scheme. The
Segmented approach is cleaner and simpler to do
in hardware.

Dave Nelson: In theory, the Segmented scheme has more po-
tential in the operating system.

Craig Mudge: FORTRAN demands a linear space. ¥We are un-
likely to utilize the name space management cap-
ability of a Segmented scheme. The Linear
scheme is not as efficiently implementable at
the low end. Introducing a second addressing
architecture adds to uncleanliness. However,
increased FORTRAN capability of Linear scheme
overrides benefits of Segmented scheme.

Jega Arulpragasam: All VAX schemes based on the PDPll are
unclean. We don't have option to wait for "PDP
next" Concerned somewhat whether the Linear
scheme is as efficiently implementable at the

low end.

Iﬁ summary the pros and cons of the two approaches are
stated on the next page.




PRO

Linear

FORTRAN demands it.

Easier to explain at
High Level Language.

Segmentqg

Name space management
capability (protection,
sharing) .

No new addressing modes.

Easy to explain at assem-
bly language level.

Note:

/br

Bob Gray
10/25/74

0403

CON

Harder to explain at
assembly lanquage level.

No name space management.
New Addressing architecture.

Less amenable to low-cost
(11A@5) implementation.

Name space capability un-
likely to be supported in
DEC software.

FORTRAN COMMON data areas
limited to 32K.

Software costs (Mike Garry's Memo 10/3/74)
are $680K Linear and $720K Segmented.
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11/VAX - The Removal of the 32K Boundaries.

The segmented version of 11/VAX placed some constraints on
the storage of individual large data arrays. These con-
straints would have been seen by the FORTRAN user as 32K-
word limits on individual COMMON areas (Memo 10/8/74: 11/
VAX - A User's View of the 32K Boundaries - revision of 9/
27/74 memo, Ron Brender and Craig Mudge) .

These constraints have been removed by a linear version of
11/VAX. This version was approved by the 1l1/VAX subcommittee
(Jega Arulpragasam, Ron Brender, Mike Garry, Craig Mudge,
Dave Nelson and Bill Strecker).

The answers to your questions on 32K boundaries are new re-
vised as follows:

1. Yes, the user can run a sequential program greater than
32K words without explicitly recognizing the 32K boun-
dary.

2. Yes, the user can directly address a data array occupying
greater than 32K words.

3. Yes, the user can call multiple subroutines outside a
32K boundary without explicit address manipulation.

In summary the user sees a directly addressable address
space of 228 pytes into which he can fit program and data
without regard to 32K word boundaries.

The bulk of the segmented 11/VAX proposal, namely those prop-
erties which ensure compatibility at both the user program
and interrupt structure levels, has been carried over to the
linear 11/VAX proposal. Removing the 32K boundary has been
done at the cost of 1) some cleanliness in the 11/VAX archi-
tecture, and 2) some efficiency in implementation on very -
small (11A05 - type - cost) machines. However, we firmly
believe that it is a worthwhile tradeoff to get the increased

FORTRAN capability.

/ot

Distribution:

Dragon PSG Janice Carnes Bill Strecker
Gordon Bell Len Hughes Pete Van Roekens
Ron Brender John Jones Larry Wade

John Buckley Bill McBride Dave Nelson

Prod. Line Mgrs.
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suBJ: 11/VAX - a user's view of the 32K boundaries - revision of
9/27/74 Memo.

We have done more work on the implications of a segmented
address space for FORTRAN EQUIVALENCE. e have found that

the constraints on storage of large data areas are more severe
than stated in the Mudge memo of 9/27/74. This follows from
the observation that COMION areas are in fact an implied
EQUIVALENCE relationship on data between subroutines.

The 32-pit address in 11/VAX is a two-component address (c,d).
¢, the chapter number, and d, the displacement within chapter,
are each 16 bits. 11/VAX purposely treats each 32-bit address
as a two-component entity, principally for comigtioility with
today's 11. Thus the total address space is 2+°chapters of
216 Lytes each, rather than 232 bytes.

What does this mean to the programmer?

1. "Can the user run a sequential program greater tnan 32K
words without explicitly recognizing the 32K boundary?"

If a routine (subroutine or main program) in a program is 32K
then it must explicitly recognize the boundary. It must jump
over it. Thus, if we have a 50K subroutine, SUBA, i.e. 50K of
instructions, (no data - data are outside of the program chap-
ter), we have

CASE A T
32Kk
$U$P\ ___._‘):—r\f_x.}____- %‘
32K This is the programmer's
_________ o virtual (or logical)
LK address space.

e e e o wn — v w— co—r—

and there must be a JMPX to perform the interchapter jump.
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In practice, however,good programming practice (modularity)
excludes this case. Based on data from FORTRAN IV-PLUS,
over 5@ pages of uncommented FORTRAN source statements are
required to generate 32K of code.

A programmer writes his program as one main program and many
subroutines. Thus his logical address space will be:

CASE B

g e
32K

32k

MACRO and FORTRAN:

Case A: The FORTRAN programmer does not concern nimself with
the boundary. The compiler will not handle the problem since
it is too rare to we worth even understanding how to do. The
MACRO programmer must know about the boundary and use JMPX.

Case B: The FTN programmer knows nothing about the boundary.
The compiler generates either JSR's or JSRX's.

The MACRO programmer writes JSR for intra-chapter subroutine
calls, JSRX for inter-chapter calls.

2. "Can the user program directly address a data array occu-
pying greater than 32K words?"

A FORTRAN compiler would allocate storage across chapter
boundaries as needed. The chapter size, however, constrains
the maximum size of a dimension. For example, the one-dimen-
sion array (a vector) declared in FORTRAN as

INTEGER J(10562)
would be stored in one chapter. Integer K(100000) could not
be. Although a compiler could handle this case transparently,
compiler designers would probably choose not to. They would
constrain a vector to fit in one chapter. Thus the vector K
would have to be split by the programmer into, say,

INTEGER K1 (25000)

INTEGER K2 (25000)

INTEGER K3 (25000)

INTEGER K4 (25000)
and he would write his program to deal explicitly with the
four parts of the vector.

For 1l6-bit integers and 32-bit floating point numbers the
maximum vector sizes would be
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INTEGER BIGVI (32768) o
and REAL BIGVR (16384). 0413

The vector,
DOUBLLE PREQISION D (3021), a vector of 64-bit entities would
be stored in one chapter. The limit would be 8096.

The following variables would be stored together in one
chapter

INTEGER K (3021)

INTEGER I (10)

REAL Al(50,100)

Implementat%on strategies for large matrices are considered in
two categories: 1) local arrays satisfying certain constraints,
and 2) all other arrays.

For arrays local to a program unit, that is arrays that are

not in COMMON and which are not passed as an argument in a call
(and also are not part of an EQUIVALENCE relationship) tnere
are simple and efficient accessing techniques that would permit
such arrays to be stored in multiple chapters.

For example, consider a matrix A which satisfies the constraints
and is dimensioned as REAL A(503,3021). It would be stored in
503 chapters, one row per chapter. This storage structure can
be exploited in the subscript calculation of the element A
(I,3).  In a linear space the calculation 'is,

I x column dimension + J,
giving a one-componenet address. In a segmented space the two
component address (c,d) is calculated as
SR(L
so avoiding a multiplication.
This improvement is estimated to be a 20% reduction in instruc-
tion stream words in the inner loop of a matrix multiplication
subroutine.

However, most of the time at least one of the above require-
ments would not be met. In particular, large arrays are in
practice almost always declared to be in COMMON for ease of
access by multiple subroutines.

The net effect is that most of the time a compiler would be
forced to make worst case assumptions about the location and

size of any array.

Mdoreover, the compiled code costs, botli in size and performance,
for handling arrays which potentially exceed 32K words, is con-
sidered to be so high that it would not be acceptable in ‘prac-
tice or in the marketplace. Consequently, given a ciaapter
oriented address, the following rule would be imposed on tae

FORTRAN programmer:

Ho singlé COMION area, no group of arrays waich are
EQUIVALENCED together, and no one dimension of a local
array may exceed 32K words.

A4—___;_______________:---i---i-IIIIll-lllIll-l.l....-.llll.ll.l-llllll..
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Summarizing the numbers cited earlier, 32K words can contain

32K 1lé6-bit integers
16K 32-bit integers or real numbers
8K 64-bit double precision or complex numbers

We emphasize that this constraint is a major relaxation of the
constraint in the existing PDP-11 family where the total of
all code and data may not exceed 32K. Without violating the
rule above, the programmer would have available as many COMMON
areas, equivalence groups, or local arrays as one can conceive
of keeping track vf, i.e., 32768 chapters worth.

Note that, in practice, for reasons other than machine address
space size, a compiler will often put constraints on the max-
imum size of a dimension. For IBM's PL/I implementations, the
maximum subscript on a dimension is 32K. This is because sub-
scripts are held internally as 16-bit signed integers to con-
serve table space and to exploit the half word instructions

of the 360. In Multics PL/I the limit is 24 bits.

3. "If the individual program segment is limited to 32K words,
can he call multiple subroutines outside the 32K boundary with-
out any explicit address manipulation!

This is case B under question 1 above, i.e., the compiler or
the macro programmer issue JSR and RTS for intra-chapter calls
and returns, and JSRX and RTSX for inter-chapter calls and
routines.

Summary

1. The FORTRAN programmer would not be aware of the 32K word
limit on subroutine size since it would, in practice, be absurd
to write a single subroutine that large. He would not be aware
of any limit on total ‘code size.

2. The MACRO programmer must be aware of the 32K limit on sub-
routine size if he is implementing a program that might exceed
32K total.

3. The FORTRAN programmer must be aware of limits on the

sizes of individual COMMON areas, eguivalence groups, and

dimensions of local arrays, but need not be concerned witn
aow they are implemented.

4. The MACRO programmer must be aware of limits of the sizg
of single storage areas, but has available a yariety of effi-
cient programming techniques for handling logically conerent
very large data areas that can be adapted to the particular

application.
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Linear Virtual Space Lxtension.

OBJECTIVL

The purpose of tiis document is to present a proposal that meets
the preference of Compiler Writercs and larketeers for a Linear
Virtual Address space, while cavnitalizing on the extensive work
already done by Craig .iudge on iis VAX proposal.

SUAMARY
This proposal is identical in all respects but one with Craig's
proposal. That exception is that additional ways in whicn the
Register extensions may be modified are defined, with the sole

purgooe of removing the watertlgnt logical partitioning of
Craiq's ¢hapters.

The more obvious limitations (at least) of the linearity thus
obtained are identified, and their implications discussed. ' The
potential of these tihree alternatives is addressed with particu-
lar thought to how much of this potential is likely to Dbe real-
izable in practical terns.

THE BASIC PROPOSAL

First, three things abcut Craig s proposal are recognized.

A. The ways in which the Register “xtensions are manipulated
are totallv lndependant of the culk of tae work put into Craig's
proposal. L.g. Subroutine linkage, Interrupt and Trap procedures

and other related "stacking PIOJMEHS:

B. The rigid logical separation of chapters is dependent only
on the ways in which the Register Extensions may be modified,
and in no way on the other components of the total Chapter
Scheme.

C. Craig made the significant decision to effectively limit
the use of the Register cxtensions to addressing entities only.
I believe taat not compromising >r confusing the VAX scheme Dy
Eyiving-to devise a general purpose schene that would facilitate
32-pit arithmetic was a wise one (despite my earlier efforts to
pusin Craig in the opposite direction) .
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?his proposal is different from Craiq's Chapter scheme solely
in that seven additional ways in winich RhX (Craig's notation)
may be modified are defined.

They are;

A. On Autoincrementing ) Conditionally on "Carry"
B. On Autodecrementing ) out of 16 bits.

C. By the Increment instruction

D. By the Decrement instruction

E. By the Add instruction

I'. By the Subtract instruction

- By the Multiply instruction (for subscript handling)

@

Notes:

A. The instructions can modify only 16 bits unless Destination
Mode 1is zero (i.e. in memory, not more than 16 bits are
affected).

B. The instructions do not imply 32-bit Arithmetic. 1In parti-

cular ADD Ry, R, results in (Rp)' = (Rp) + (Ry) and (RpX)' =
(RpX) + C, where C is the "carry" out of the operation (Ry) +
(Rn) . RpX does not participate in the operation.

The other instructions except Multiply act analogously.

The HMultiply instruction places the most significant half of
the 32-bit product in the extension of the Destination Register
(wherever else it may also be placed under current 11 defini-
tions).

C. This set is sufficient for Address manipulation.

D. Since the Multiply in the 11 Instruction set is signed, it
is meaningful for subscript handling only if the range of sub-
scripts is limited to 15 bits (in 2-dimensional arrays).

E. Condition Code settings etc. are independent of what happens
to the register extensions and are identical with current 11

definitions.

This proposal achieves linearity but has three important limi-
tations.

A. Address manipulation can only take place in Registe;s,and
therefore an additional Store Address (32-bit) instruction needs

to be defined.

B. The subscript limitation is more stringent for multi-dimen-
sional Arrays.

The rigorous statement is that while any n-space may have more

elements than may be counted in a 16-bit register, every (n-1)-
space may have no more elements than may be counted in a 15-bit

register.
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B. All the limitations of Limited Alternative 1 except for that
relating to I-stream bit density still apply.

OUTSTANDING ISSUES

It is not clear to me whether in any of the above 3 proposals,
Fhe address located in memory on a Double Indirect such as Auto-
increment Deferred should be treated as a 1l6-bit entity or a
32-bit entity in X-Mode.

I personally favor regarding this as a 32-bit entity, altaough
it would be possible to concatenate a 1l6-bit entity with the
Register Extension that was used to reference it. The latter
would limit Autoincrement Deferred to operating with pointers
and data in the same chapter. This seems an arbitrary limita-
tion with an inadequate return in savings. However, I would
solicit inputs on this question.

This issue arises on all of Addressing Modes 1,3,5 and 7 albeit
in X-Mode only (PS€0&= 1), and I trust the same requirement
will be imposed on all of them!

IMPLEMENTATION

General

The implementation technique described in the Appendix to
Craig's "VAX Summary" of 9/27/74 would no longer be appropriate.

Since RpX may change and tnen never be used as an address,
changing the KT page tables at the time of RpX change would be
premature. The KT would therefore be loaded when a new value
of any RyX was used to reference memory for the first time.

Such a cache-like scheme would increase the cost of the "KT
option" itself.

Also Address translation would take longer when an operand was
accessed in a "Chapter" whose KT tables were not in hardware

at the time. But it can be seen that the total number of Mem-
ory cycles, including those for loading KT tables, is the same
as in the segmented Chapter scheme. But these memory cycles
will no longer be cleanly collected within the Load Address in-

struction.

DRAGON Specific

The impact on schedule if it is decided to implement tine Basic
proposal will be relatively small. While I have not sized it
accurately, I would be quite comfortable with one month.

However, Alternatives 1 or 2 impact both the I-Box design and
the microcode itself. Ily guess is that the implication to the
schedule would be 3 to 4 months. ilopefully in this case, we
would use this time to co-ordinate co-requisite software plans.
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C. Displacements appearing in tihe I-stream, and used in
Addressing Modes 6 and 7 are restricted to 16 bits. This
1s the same limitation as exists in the Chapter scheme, and

the extra MOV instruction required to effect A (I)=B(I) appears
here too.

This is because the Effective Address will naturally be formed
by "High Base Address concatenated with Index in a Register
PLUS Low Base Address in the I-stream! Hence two registers
are required to hold A-Base and B-Base.

Given only 8 Registers this can nake life rather painful.

LIMITED ALTERNATIVE 1

In X-mode i.e. when PS{08= 1, make the displacements in the
I-stream 32 bits.

This removes all the objections springing from limitation C
above, at the cost of introducing some of its own:

A. Now we do have 32-bit arithmetic at least in Address for-
mation in Modes 6 or 7, which means putting cost into the Basic
machine, contrary to Basic Medium or Small machine philosophy.

B. We pay a penalty on bit density in the I-stream witn the
concomitant loss in performance implied in additional memory
accesses when 16 bits would have sufficed: i.e. most of the

time. 3

C. Note that the subscript limitation still holds unless we
permit 32X16 multiplies with further implications to perfor-
mance and/or cost.

LIMITED ALTERNATIVE 2

It is to be noted that if the 8 present Addressing odes were
to remain as they are, the limitation of bit density in the
I-stream would be answered by 2 additional modes indicating
"32-bit Index" and "32-bit Index deferred:

These additiohal modes may be obtained as follows:
In X-Mode, i.e. when PS{08>= 1, Mode 5 is reinterpreted as 32-
bit Index! Djrect or indirect addressing is specified by one

of the 32-bitg itself.

Limitations

A. Only 31 bjts are available for indexing and presumab}e for
all Virtual Addresses. Indeed only 30 bits would be available
if Mode 5 is o be demanded in X-Mode as well. While I do not
consider this a real limitation it is listed here for complete-
ness. (In fact, I would propose a 28-bit Virtual Address with

a 4-bit Extended Mode) .
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These schedule guesses are not meant to be commitments, but
rather gqualitative inputs to help in the decision making
process. They are "ballpark" but will be refined if and when
1l Strategy Committee or Dragon PSG decisions demand it.

)
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J i

DEPT: 11 Engineering
EXT: 5064 LOC: 5/E54
SUBJ: 1l1/VAX - a user's view of the 32K boundaries.

This documents our discussion yesterday on the questions you
raised in your memo of 9/20/74.

The 32-bit address in 11/VAX is a two-component address (c,d).
¢, the chapter number, and d, the displacement within chapter,
are each 16 bits. 11/VAX purposely treats each 32-bit ad-
dress as a two-component entity, principally for comgatibility
with Eoday's 11. Thus the total_ gddress space is 21® chapters
of 21 bytes éach, rather than 23% bytes

What does this mean to the programmer?

1. "Can the user run a sequential program greater than 32K
words without explicityly recognizing the 32X boundary?"

If a routine (subroutine or main program) in a program is

? 32K then it must explicitly ' recognize the boundary. I must
jump over it. Thus, if we have a 50K subroutine, SUBA, i.e.
S0K of instructions, (no data - data are outside of the pro-
gram chapter), we have

CASE A

P e oee————

SUBA oy
Bk PSS —_

This is the pro-
32x grammer's virtual (or

logical) address space.

oo > - - — - - - e -

32

and there must be a JMPX to perform the interchapter jump.

In practice, however, good programming practice (modularity)

eXxcludes this case. A programmer writes his program as one
main program and many subroutines. Thus his logical address

space will be:
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MACRO and FORTRAN:

Case A: The FORTRAN programmer does not concern himself with
the boundary. The compiler will insert the JMPX.

The MACRO programmer must know about the boundary and use
JMPX.

Case B: The FTN programmer knows nothing about the boundary.
The compiler generates either JSR's or JSRX's.

The MACRO programmer writes JSR for intra-chapter subroutine-
calls, JSRX for inter-chapter calls.

2. "Can the user program directly address a data array occu-
pying greater than 32K words?"

A FORTRAN compiler would allocate storage acress chapter
boundaries as needed. The chapter size, however, con-
strains the maximum size of a dimension. For example,
the one-dimension array (a vector) declared in FORTRAN as

INTEGER J(10562)
would be stored in one chapter. INTEGER K(100,000) could not
be. Although a compiler could handle this case transparently,
compiler designers would probably choose not to. They would
constrain a vector to fit in one chapter. Thus the vector K
would have to be split by the programmer into, say,

INTEGER K1 (25000)

INTEGER K2 (25000)

INTEGER . K3 (25000)

INTEGER K4 (25000)
and he would write his program to explicitly deal with the
four parts of the vector.

For 16-bit integers and 32-bit floating point numbers the
maximum vector sizes would be

INTEGER BIGVI (32768)
and REAL BIGVR (16384).
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The wvector:

DOUBLE PRECISION D (3021), a vector of 64-bit entities would
be stored in one chaper. The limit would be 8096.

The following variables would be stored together in one
chaper

INTEGER K (3021)

INTEGER I (10)

REAL Al1(50,100)
For a matrix if the toal matrix is over 32K, e.q.,

! REAL A2 (503,3021)

thgn it would be stored one row per chapter (503 chapters in
this example). (Since FORTRAN stores by columns, it would
allocate one chapter per column.)

Note that, in practice, for reasons other than machine
address space size,a compiler will often put constraints

on the maximum size of a dimension. For IBM's PL/I imple-
mentations, the maximum subscript on a dimension is 32K.

This is because subscripts are held internally as l6-bit
signed integers to conserve table space and to exploit the
half word instructions of the 360. In Multics PL/I the limit
is 24 bits.

3. "If the individual program segment is limited to 32K
words, can he call multiple subroutines outside tne 32K
boundary without any explicit address manipulation!

This is case B under question 1 above, i.e., the compiler
or the macro programmer issue JSR and RTS for intra-chapter
calls and returns, and JSRX and RTSX for inter-chapter calls

and routines.

Summarz

1. The FORTRAN programmer is not aware of the 32K word
boundary in data arrays or subroutine length.

2. The MACRO programmer must be aware of the boundary.

3. For point 1 to hold, the FORTRAN compiler must put
constraints on the dimension limits on arrays. I feel
these constraints are reasonable.

4. Constraints must also be put on FORTRAN EQUIVALENCE
statements. I need to do more work with Ron Brender
(FORTRAN IV PLUS) to assess the reasonableness of these

constraints.
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7. Interrupt Structure /xy Q/Y : alTu
e ————— —— ] . b |
‘ 7§ll trap and interrupt vectors are in the p, ¢, address space.
Kernel mode is implied. The page tawle for tnis address space 0412(3

is a;ways loaded in a dedicated part of the KT1l and is selected
by the interrupt' sequence.

a. Interrups and traps:

_At/4s b AM/VRX
(CM = current mode map) (M = PoCo Map)
Lempy | e PG temp; &= PCX
tempyg @ PC tempy &— PS
PC «—— vector tempy e— PC
PS «— vector + 2 PCX e— O

pC «— vector
PS 4— vector + 2

if ps€09y then & (5F) & temp,

y(sP) oM @==— tempj
.1,(513)0,I *— temp, J (SP)y .+— temp,

or, léss rigorously:

. d(sp) &— PS J(5P) = PCX only if the new
pS€0Y) is one

Y(sp) «— PC $(5p) &= PS

PC o vector d(5P) & pC

PS 4 vector + 2 PCX &—
PC — vector

PS «— vector + 2

b. RTI and RTT

Ligak.. 0 o - 11/VAX i
pc +— (sp)f pc «— (sp)?
S a— (SP)g PS & (spP) %
if ps{09y then pCX @ (sP)¥

nstacking of PCX on an RTI or RTT is conditional
on the setting of psd09Y. This is so that exis ting code containing
"fake RPI's" will run unmodified on 11/VAX. A fake RTI is a common

. 11 programming technigue used to transfer control.

Jote that the

HAVAX WevKimg Noes Vo2
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The following sequence of instructions is executed.

‘ MOV NEWPS, - (S5P)

MOV 'NEWPC, = (SP)
RTIT

It is "fake" in the sense that the RTI in the se-
quence has no matching interrupt.

The conditional (according to PS £097 ) unstacking
du;lnq RTI on 11/VAX satisfies the two situations
which follow:

a. 'The RTI is a true return from interrupt

The interrupted process's PCX is on the stack having
been put there during the hardware interrupt sequence,
and because PS L0977 is set it will be unstacked.

b. . The RTI {§>a fake RTI

On 11/VAX this will be an intra-chapter jump, i.e.,
PCX must remain unchanged and we must unstack no more
than PC and PS.

Hotice that on 11/VAX, extended fake RTI's are
possible: :

' MOV NEWPCX, - (SP)
MOV NEWPS , - (SP)
MOV NEWPC , -~ (SP)
RTI

In the first version of the working notes, ps<08Y
served to control the conditional unstacking during
an RTI as well as its usual function. It cannot do
Loth functions: in the case where the interrupted
process is non-X, PS L4087 will be 0 and yet a PCX
will have been stacked (all interrupts whether in-
terrupting an X or non-X mode program must stack
PCX) and must be unstacked.

WJarning: the conditional unstacking of PCX depends
on the assumption that old programs load
a PS with a zero in PS £097. How realis-

tic is this assumption?

Fal
i P
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I. Terminology

11/VX - A machine architecture; PDP-11 architecture with an extended
virtual address space using the chapter scheme,

2 11/44 with - A particular implementation of 11/VX; the principal design
KT11X goal of the KT11X option is to provide an extended VAS with
minimum impact on the cost of the base 11/u4u4 CPU.

Process - Informal definition: ''the execution of a program.'" The
distinction between a process and a program becomes clearer
if one thinks about a reentrant program with several
concurrent activations.

- Formal definition (Dennis and van Horn): "a locus of
control within an instruction sequence. That is, a process
is that abstract entity which moves through the instructions
of a procedure as the procedure is executed by a processor."

- Task is a synonym used by RSX11-D, RSX11-M, and 0S/360.

States of a process:

running
active < runnable
known <::::

: . waiting

lnactive
Known - All processes known to the system.
Active - All processes known to the process manager (or task dispatcher)
Running - A process in control of a CPU. At any one instant in time

there is just one running process; it is the process whose
context block is loaded in the processor registers.

Process able to run but blocked because some higher priority

Runnable -
task is running.

Waiting - Blocked awaiting the occurrence of some event; e.g., I/0
completion, timer interrupt.
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[I. Introduction /
Why extend the virtual address space?

1. Today's pressure.

11/45 market pressure leading to supporting I & D space
in RSX11-D.

2. Trends which will increase the pressure.

a. More programming in higher level languages to
increase programmer productivity.

- Compilers, being rich in function, are large
programs.

- Compiled object code is larger than hand code.
b. Increased physical address space.
c. Cheaper main memory.
d. .- ECDYs.
Design philosophy, assumptions.
1. Changing such a fundamental architectural parameter as

virtual address length is justifiable from a DEC business
point of view, not necessarily from an aesthetic view.

N
.

The market needs justify extensive design effort and some
(optionable) hardware to affect a clean, compatible address
space extension. Similarly, the work to generate a clear
definition of interfaces to run existing code is justified.

3. The extension should be a big jump (not just an extra bit
or two) so that

a. New uses are possible; e.g., those that follow from
true segmentation;

b. It will survive pressures (memory technology and
programming trends) for several years.




ITL. Summary of the Chapter Scheme

0445

1. A program's VAS is a set of 64K-byte chapters.

2. A VA is of the form

16 16 ¢ = chapter number
d = displacemnt within
% c d
chapter

giving a 32-bit VAS. Today's 11 VAS is 16 bits.

3. The space is a segmented address space; segments (called chapters)
are independent.

4. A VA is always mapped to a physical memory address. The physical
address space is of the order of 24 bits in the class of machines
considered.

5. Each general register, RO-R7, is extended to 32 bits, so exploiting
the fact that a register always takes part in an address formation
on the 11,

6. New instructions are added to the 11 instruction set to load and
store 32-bit addresses and to transfer control between chapters.

7. Address specification is efficient. Full 32-bit addresses will
appear in the instruction stream much less frequently than 16-bit
addresses, which, in turn, appear much less frequently than 3-bit
register addresses (specifying address-holding registers).

8. A CTBR (Chapter Table Base Register) tied to process # facilitates
map loading, hence context switch time is improved.

9. The chapter scheme is compatible with today's 11. This has two
aspects:

a. The extensions are compatible

(i) Existing instructions are not redefined.

(ii) New instructions are consistent with 11 style.
b. Code written for today's 11/45 will run unmodified.

10. The compatibility, even at the assembler level, follows from

A mode bit, PS€08» , to distinguish X-mode from non-X mode.
Its principal function is to indicate that PCX is the
chapter number for any (16-bit) address generated by a

non-¥X mode program.
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b. A set of software conventions to be followed when an X-mode ()449
program calls a non-X mode program.

c. Existing instructions have not been redefined.

d. The structure placed on a chapter is identical to the
K141 Mo (7315 J8°] ).

Quite general sharing/protection mechanisms (at the chapter level)
are possible.

Although existing software, both user and system, will run on 11/VX,
to exploit its capabilities, e.g., dynamic linking and demand paging,
a new executive would be required.
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1. The Address Space

Each process has a 32-bit virtual address space. This space is two dimensional -
an address specifies a chapter number and adispiacement within a chapter:

16 16

c d

The chapters are independent (a carry out of the displacement field does not
propagate into the chapter field).

An address space so structured is usually called a segmented address space.

I have used the term chapter instead of segment because DEC documentation has
sometimes misused the term segmentation and has sometimes used the terms
segment and page interchangeably.

The best known example of a segmented address space is in the Multics system.
The maximum VA on 11/VX is 4096 Mbytes -- 016 chapters of 216 bytes each.

The structure on a chapter is that defined by the KT11l Memory Management Unit,
namely

3 7 6
page| block |disp

2. Motivation

Denning nicely motivated the concept:
Angmimie : ST These four objectives,  together  with
Programmers normally require the ability . ot
to group their information into content-
related or function-related blocks, and the
4bility to refer to these blocks by name.
Modern computen<vstems have four objce-
tives, each of which forces the system to
provide the  programmer with means of

machine independence and list processing,
are not peeuliar to virtual memory systems.
They were fought for in physical storage
during the late 1950s [W5]. Dynamice storage
allocation, linking and relocatable loaders
[M3], reloeation and base registers [D11]
and now virtual memory, all result from the

ay he
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By associating with cuach seg-
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handiing the named blocks of his address bl
fight’s having been won.
space: .
The sequented address space achiceves these
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objectives. Address space isx regarded ax o
colleetion of named seqments, cach being «
fnear arrayv of addresses. In a segmented
address space, the programmer referenees
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module constitut
cubjeet to recompilation and change at any

access  privileqges

time.
o Varying data structures. The =s1ze
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e o J.04 inthe Srd seement.) We shall diseuss shortly
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3. 11/VX Registers

Each %eneral register is 32 bits wide. The low order 16 bits is called Ri,
the high order RiX. Thus, if R2 has been loaded with an address (done by a
new instruction, LA, load address),

R2X R2
16 16

then R2X holds the chapter number.

Once the extended address has been loaded, then operand addresses are formed
through it in the standard 11 way: ( ), ( )+, -( ), ®( )+, @-( ), =x( ), 2ax( ).
For example, to sum a vector of 16-bit integers, use

LA # VEC, R3
ADD (R3) +, SUM
SOB

The standard 11 code for this is
MOV # VEC, R3
EADD (R3) +, SUM
SOB

That is, when an address is being loaded by a standard 11 instruction, it is
a within-chapter address and fills Ri. RiX holds the current chapter number.

Deferpred and index modes are defined to use 16-bit quantities in the address-
formation process. For example, @ (R3) +:

R3X R3
¢ d
16 16 : operand
>
table ’/////’——
= B 00
—
16 bits > J

Tf 32-bit quantities were allowed in the table, or 32-bit index constants
wepe allowed, we would face the problem of disambiguating 16 and 32-bit
quantities in memory. Constraining these quantities to 16 bits is no.loss
because the long address is needed only as the base; i.e., in the register.

The program counter PC is, of course, also extended; PCX= R7X.
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4. Address Mapping

Page tables and chapter tables are stored in memory. Each active process has

a process # which locates the first entry of the chapter table for that process.
For the running process, this chapter table base is held in the CTBR (Chapter
Table Base Register).

See Figures 1 and 2.

CTBR is an 11/VX register whose address is in the I/0 page.

5. X-Mode

PS £08) holds the mode bit of the running process. When zero, PCX is used as
the chapter number for any (16-bit) address generated by a non-X mode program.
It is used to obtain compatibility. An example of its use is given in

Section V. below.

6. New Instructions

LA Load Address
LA 85, “R loads 32-bit address into specified
destination register
STA Store Address
STA R, DD storgs.the 32—§1t éddress at the
specified destination

JSL  Jump and Stack Link

1SL DD (Interchapter JSR PC with PC implied)

Y(sp) =« pC '

y(SP) «— PCX
PCX < dest
PC 4— dest

RET Return and Unstack Link
pcx <— (sp)f
RET
PC «— (sp)}

JMPX Jump Extended
JMPX SS

For inter-chapter jumps; an assembler
macro which generates

LA SS, R7
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Fa }p_t; errupt Structure

All trapand interrupt vectors are in the PaCo address space.
The page table for this address space is always loaded in a

implied.
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Kernel mode is

dedicated part of the KT11 and is selected by the interrupt sequence.

a. Interrupt:

11/45 11/VX
(CM = current mode map) (M = 1.8, map )
tempy ' = PG temp, <= PCX
tempay. . - - DL temp,. *= ' PS
PC &= vector tempg . *T PC
PS e vector t+ 2 PEX e N0
PC 4 vector
PS = & vector + 2
l(SP)CM &« tempy L8Py temp,
$(SP)oy e temp, V(SP)y &— temp,
¥(SP)y < temp,
or, less rigorously:
V(3P) « PS 4 (SP) & PCX
V(SP) « PC '} (SP) « PS
PC & vector v (SP) «~ PC
PS e vector + 2 PCX & O
PC < vector
PS & vector + 2
b REL/RIT:

-X mode (as determined by current PS)

pc « (sp)t
] ps « (sp)?

Thus, RTI/RTT is an intra-chapter return.

X mode

pC « (sp)f
PS & (Sp)?
PCX *— (SP)%




10

0450

8. Process Dispatching and Context Switching

a. - Select Pys the process to be run next

b. Restore RO-R5 for pj
Restore R6
Restore FPP

c. Load CTBR with CTB(pi)

d. Stack PCX(p:)
Stack PS (p3)
Stack . ‘BC (p%)

ey | RTL

Note that this sequence has less instructions than today's RSX11-D sequence;
although stage d has one more instruction, stage c¢ has 17 instructions less.

9. New Trap Conditions

a. Chapter # bounds

b. Null chapter # (for dynamic linking)

c. Access control.
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V: Compatibility
1. Introduction . ()4557

Typical problems encountered in extending the virtual
address space are (1) specifying extended addresses in
instructions, and (2) passing extended addresses
between subroutines and between processes. It is
necessary to examine where addresses are manipulated
as operands - explicitly by program instructions, e.g.,
(Rn)+, and implicitly, e.g., when addresses are
stacked on an interrupt.

These manipulations occur in

.loading an address into a register

.storing an address

.incrementing and decrementing an address in

a register _

.deferred addressing

.pushing and popping of addresses on the stack:

- instructions
JSR, RTS, MARK, MTpPI, MTPD, MFPI, MFPD

- interrupts
I/0 interrupts
EMT, TRAP, BPT, IOT,RTI, RTT

As well as the 16-bit length of an address, the
structure placed on the 1ll's 16-bit address space must be
considered. Two examples are the KT1ll memory management
scheme's structure

R
and the wrap around from 177777 to 0. ' Other structure is
established by users, for example, register-usage
conventions in operating systems and compilers.

Because an address space is so fundamental to an
architecture, an extension to it must be strictly
compatible; the extension must subset to an 11.

11 instructions and behaviour can be classified into:

Class A: instructions whose domain is one 32K-word
address space, €.9., arithmetic and I/O
instructions.

Class B: instructions whose domain is a multiple address
space machine, e.g., MFPI.

Behaviour which is K, S, U-mode deriv ed fall into Class B.

So also do interrupts - in a multi-chapter address space
machine, implementation efficiency demands that some part

of the total address space be reserved. For example, process
0, chapter 0 for the interrupt vectors.
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2. Class A instructions
These instructions remain unchanged - they ()4558
specify 16-bit addresses, in particular the dis-
placement field, d, in the full 32-bit space
16 16
AEE TR e R
A program which knows about the existence of RiX
is o.k. It issues existing 11 instructions for
most of its work and occasionally uses LA to set
up a full 32-bit address in a register.

However, a program written for today's machine
does not know about RiX. The X-mode bit in the PS
takes care of this - it forces the program to run
as it was intended, i.e., as a one-chapter program.
The remaining question is how does an X-mode program
use an existing non-X routine, say SUBNX, to work on
data outside of SUBNX's chapter. Appendix A shows how
the X-mode bit, togethfr with the general mapping
concept, effects this.

INote that the case of non-X calling X is a nop-problem
- for a non-X program to issue a JSL or JMPX it must know :
about 32-bit addresses and would no longer be a non-X program.
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3 C1a§s B instructions
(This is a topic list only - most problems have 0459
been solved but text not yet written.)

a. K,S,U-mode derived address space selection is
subsumed by chaptered space structure, except
for Kernel space holding interrupt vectors.
PoKCy is explicitly recognized; page table
always loaded; only place K-notion acknowledged.

b. MFPI and MTPI
swppovied
c. I and D space
Not supported on 11/VX
Unnatural notion
Very bad decision to put it into 11/45,
unclean, bought very little, cost much.
DEC software does not support it.
If we have to put it in, then one way is
to use bit0 of the chapter field to
indicate it. :

d. Questions
K,S,U-mode forces hierarchy on SPL, RESET,
HALT
- implications for 11/VX?

e. Running existing operating systems {=—

If RSX11D (say) occupies Chapter 0, then PCX«0 is o.k., but if it
is in some other chapter then a nonzero PCX is required to get to
the ISR (interrupt service routine) in that chapter. Rather than
burden 11/VX with an extended interrupt vector pair, the nonzero
chapter will be reached by one level of indirection, i.e., the
interrupt vector PC transfers control to a chapter @ connection
section which loads PCX with the right chapter #.
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Example 1
RSX11D exec in C5 ()4(30

RSX exec

2 IMPX  CSISRY

-~ wds ~

pc -’ RSY 1[0 DEVICE VECTOR
PS

EMT VECTOR

304" P&
Ps )
/

g i \

P

—

—

4
N \'3fo CHEMTSR

-~

toto ™ o

PHYSICAL M™MEMORY

Example 2

RSX11D exec in Cg

RSTS exec in C7

No shared i/o devices simplification (more for resource
management)

Sync traps, e.g., EMT, require the connection code in chapter

g to use process # of interrupted process to decide which
opsys to direct interrupt to.
If RSX RSTS need to have access
map them that way.

to the same system stack then




VI.

KTll-X -- an implementation

Figure 3 presents a tentative implementation. It is a

starting point; we will modify it as we work on the
partitioning of function and registers between the 11/44
basic CPU and the KT11l-X.

A more expensive implementation would have a larger
resident page table store and the « and 3 stores would be
replaced by an associative memory.

A cheaper implementation would delete process # from
the & store and hold only the running process's chapter
numbers. & store could then be the actual RiX, i=1,...8.
Since LA causes preloading, this scheme would never fault.
However, it would not have the nice context slaving
properties of the Figure 3 scheme which decreases context
switch time by retaining page tables for processes other
than the running process,

Simulation with 11/VX programs must be done to test
the effectiveness of the 43 store predictor . scheme.

] B
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VII. Design Decisions 0463
1. "Linear" vs. "symbolic" ("two-dimensional") address space

c and d must be independent!

a. Only way to enforce one chapter programs - hence need it
for compatibility.

b. better for programming.

2. Relation to integer 32 data type.

Since ¢ and d independent can't use addressing mechanism
to give 32-bit arithmetic for free.

3. Instruction format of new instructions.

No 3-bit opcodes left, hence can't have MOVA SS, DD which
would subsume LA and STA.

4. Chapter: 0

Making it special justified on grounds of interrupt responce.

5. Mode bit

6, 22516

7. Process management (using process #) not to be assisted.
€9. ATLScan, IMSev+ion deletion of nolles v 10 he assistel

8. Questions:
JSL, RET not necessary if we pay time penalty ems wse “Gﬂ"’

o LA




VIII.

Programming examples

Lo

2.

34

FORTRAN array addressing
array > 32K words

passing parameters
a‘la old 11 style ok

dynamic linking

Linktime: a. chapter # allocated
b. chapter table entry:
PTB set to null)
access rights set as required

Execution time: if null PTB then search system-
wide link tablej
else oks

w ]

0464
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X Previous Work ()4(35

1. Atlas, Dennis, 360/67, Multics

2. (DEC) ‘Strecker, Rodgers, Mudge, Burness
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Ed Marison's contribution to 11/vXx
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TO: Craig Mudge DATE: May 13, 1974

CC nga Arulpragasam FROM: Bruce Delagi ';’ ()4(38
B1ll Demmer
John Levy DEPT: 1l Engineering

EXT: 3563. L 1H0 Led

I've some uncertainties about the 5/3/74 chapter scheme:

L Why is 1t "no loss" to prohibit index constants to be used as base
addresses ¢.g. OPR TABLE (R2) where R2 holds a 16-bit displacement
and TABLE is a 32-bilt base address? -

2. How * 111 the assembler expand "JMPX K(RN)"

Possibly: STA RN, -(SP)
ADD #K, 2 (SP)
ADC (SP)
CDEC (SP); if K< P
LA (SP) +

Note that JMP K(RN) ¥ MOV K{RN) , «PC

3. Does "X-MODE" refer to the state of a bit in the PS5 word? 1If
is it changed on interrupts and traps. If it is changed, the
RTI/RTT can't tell from the PS word whether to pop 3 words and
restore PEX ©r not:. . If it is hot changéd, then -interrupt and
trap service routines must be rewritten and take proper acticn
for botn 16-bit and 32-bit pre-interrupt environments.

4. Trap sarvice. routines sometimes expect arguments on the stack at
a fixed position relative to the top-of-stack. If PCX is pusHed
fhﬂ olc relatlonshlps between top-of-stack and arguements 1s messed
up -and the '0ld trap service routines must be rewritten. . If PCX is

not pushgd, then the old trap service routines have to be rewritten
to handle 16-bit and 32-bit calling environments.

5 A call to a 16-bit subroutine from a 32-bit environment requires a
call to the operating system to map a segment of the chapter holding
an argument into a segment of the subroutine's chapter.

5. Thic seems to take 1 page entry per argument. What happens feor
subroutines that require more than 6 arguments?

6. If an argument is a pointer, then must the page holding the pointer

and the page holding the data both be mapped. Suppose the pointer
ooints to a pointer. Does the call site have to trace down the
chain and call the operating system at each level? Suppose the sub-
routine uses arguments in address cal 2
a

culations (like adding 2
sraguments) what can be done at the call site then?

,44__________________;:------lllllllllIllIIIIllllllllllllllllllllllllllll.lllllll
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{Eﬂ@ﬂﬂn INTEROFFICE MEMORANDUM
e 0472

s
TO: Distribution List DATE: 5/9/74 M

FROM: Ed Marison
DEPT: 11 Software Engineering
EXT: 4868 LOC: 3-5 4
SUBJ: SOFTWARE PLAN FOR THE 11/44
‘This is not a "Plan" in the usual sense, but a statement of concerns
and assumptions about system software support for the PDP-11/44.
It is based upon my knowledge, conceptions, and misconceptions of

‘the PDP-11/44, and the software systems which will run on it.

Uni-Processor Systems:

Time to Market goal Q2 or Q3 of FY76

TthPDP-ll/44 comes in three basic configurations which the following ;
adjectives describe, Small, Medium, and Large. The characteristics

.

which differentiate the configurations are memory size and managementil
. SMALL £ 28K no KT / v
& . MEDIUM £ 124K with KT
. LARGE > 124K with KT and Uni-bus Map

Small Systems:

. Direct replacement for the PDP-11/40
. EIS maybe standard

. FIS optional

. Parity non PDP-11/40 compatible

As can be seen from the above the RT-11 and RSX-11M unmapped systems
should run without modifications if parity is disabled. New code
will be needed to support the '44's parity option.

Medium Systems:.

. Same features as small systems plus :
. KT - program compatible with PDP-11/40, but may have "D" space.
Also, all bits in the PAR's will be implemented (ala the |
PDP~11/55) .
Null Uni-bus map (ie. transparent to software) .
FPP - Program compatible with the PDP-11/45's FPP, but maybe
synchronous (also, may never happen) . ;

(.
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With the exception of parity as noted in Small Systems the following
| software systems should run without modification.

. RSX~11M
+ RSX-11D
.. TSOS

However, in systems of this size memory parity should be supported
to allow gracefull system degradation. : 3

Large Systems: f ‘ | iy i | | ‘ t1;1:y

i Saye features of Medium Systems plus ‘ ‘
. Uni-bus map - program compatible with the PDP-11/55

Given the above and the assumption that the PDP-11/55 is supported
fully then all systems supporting the 11/55 will run unmodified,
except for parity, on the 11/44. RSX~11D and TSOS should fall into
this category. ; :

In effect, given the above, all uni-processor PDP-11/44 systems can
be supported with minimal system software effort.

Multi-Processor Systems:

. Time to Market goal 04 FY77 - Q1 FY78

Only medium and large systems are considered here with the following
goal being explicitly stated -

. No new Operating System should be written to support multi-
processors, only modifications to existing 0S's should be
done. ;

Given the appropriate hardware support to prevent race conditions
in the software between processors the following systems should be
considered candidates for multi-processors.
RSX-11M
RSX-11D
. TSOS

To meet increased reliability requirements the goal should be to
produce symmetric multi-processor systems.  However, if we intro-
duce "USER" micro-code then we may get systems with processors
having different capabilities. Therefore, we will need the software
capability for a Task to declare which processor it requires, and
the hardware capability (processor number) to differentiate between

processors (ie. asymmetric systems).

Firmware ("USER" micro-code) options for High Level languages:

ﬁ;&- . Time to Market goal - ?

This is an area where a high degree of cooperation between the hard-
ware and software groups is a must. Just what languages should be
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aided by firmware is a marketing concern. The following is a list
of possible candidates :

. F4+
. F45

. BASIC
COBOL (the CIP - Commercial Instruction Set Processor)

1. The areas of online error-logging, and diagnostics are
ones which the various operating systems must address
independently of the 11/44.

2. Networks - This is also an independent‘concern However,
since the PDP-11/44 is a PDP-11 it should fit very nicely
into a DEMOS net with available 11 software at its tlme

of introduction.

3. Virtual Address Space extension (VAS) is not covered in
this plan. However, it should be noted that to support
an extended virtual address (chapter scheme) would require
extensive software effort in the order of five (5) to
seven (7) man-years per system and 18 to 24 months of

calendar time.
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4 T0: Distribution ve ‘ : DATE:  August 21, 1974 \,L);)
FROM: Gaxtﬁf Wolfendale &l _

' DEPT: nsxlln Development ;3'?ifgﬁ

i EXT: 3959 LOCS s i ﬁ

|/ 8UBJ: RSX11D Group s Position/Thoughts/Concerns‘v
eiy cynon VK Propos&l i

SUMMARY

The mapplng scheme proposed is a good cost—effectlve
scheme for achieving a greatly expanded task (process)
‘addressablllty_. .

We could support such a ‘scheme for a cost’ of approx1mately
RO £ $150K for executive and . related developmentﬂf(e g. task/
:y;fk;,-‘ process bullde“).b~~' v o i ;

+ i LU 7 # i g, i )
it This cost does.ﬁot fhclude that 1nvolved in’ upgradlng
£ compilers, etc.o

HOWEVER W

In order to supp0rt larger processes and at the same time
maintain an effective operating system which' can ‘handle
multi-users with effective response times, we are concerned
that the chapter and segment handling will present possibly
grave limitations on the number of "large" processes that
the system can*handle and alsd maintaln respon51veness.

The blggest PTOblems here are: i ﬂ :

' Real memory manaﬁement...the ablllty ‘to
fxnd and allocate real memory fori ,1oad1ng

Fragmented process loadlng and rebordlng
‘lnvolv1ng many segments. :

Specific prOposa}s for alleviating these. problems are belng ki
discussed and: the correspondlng trade—offs a:eustill belng Ry
evaluated. L Tk : : i E T e 8
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TO: Extended Addressing Review List DATE: March 18, 1975 %kﬂ
Attendees s
FROM: Tom Hastings e ,9%3
DEPT: -1g Software Engineering

EXT: 512 LOC: MR 1-2/E37

SUBJ: Minutes of 11 March Review of
Extended Addressing

We finished the wide review of Extended Addressing from the user
programmers point of view. Most everyone is generally satisfied
with the concepts and the details of the specification. Only
the monitor interface (PXCT) specification remains. Only one
ECO for the 198§ is required. Four or five boards will have to
be relayed out for the 2@ series. These can be phased into
subsequent 1@8@s, so that we can achieve the goal of the 1088
being a strict subset of the 2@1f in function and hardware.

Minutes: The agenda items are indicated in parenthesis.

| 1. Problem: (1¢v) The items Local and Global address will be
| confused with software use of these terms.

Solution: Use terms Short and Extended address instead.

Why: These terms are almost self explanatory. We are not
inventing new jargon.

2. Problem: (l@a) Should the spec be changed to say that KI
compatible effective address computation is determined by PC bits
6-17, instead of VMA bits 6-177

(1¢b) There are multiple uses of zero: They are : (1) Short
address in XRs, (2) KI-compatible section in EFIWs, and (3) hardware
ACs on UUOs and MOVXA.

Solution: Leave KI-compatible test on VMA rather than PC.

Why: Effective address computation works the way the caller
expects. Once an effective address computation gets
into section #, it remains there.

Solution: Make the section independent extended address of
the hardware ACs be 1,,AC instead of #,,AC. Effectively section
1 must be a code section in the extended machine with the first
2¢ locations always being the hardware ACs. Sections 2 and dgreater
can be used For code or data. Hardwaré ACs (in all sections) are
used if VMA 6-31 = 1,,7 or (VMA 18-31 = § and SA = 1). (sa is
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Short Address f£lag). When the PC is in a non-zero section,
MOVXA will generate 1,,AC whenever a hardware AC is specified
(whether Short or Extended effective address). An EFIW of
d,,AC will reference memory in section . When the PC is in

;ec;ion @, MOVXA will follow the KI rule: the LH will always
e g.

Why: Then th: monitor and user code can generate an
address with MOVXA which will uniquely specify a
section independent address for all locations in
the nachine. This address can be copied to other
sections (except from @ to non-zeroc sections) and
it will mean the same location.

Solution: We decided to leave the double use of @ to
mean Short indexing in XRs and KI compatible section in EFIWs.

Why: We are not anticipating code in Extended sections
referencing code in KI compatible sections, especially not
general purpose subroutines. Exceptions will be specially |
written code, such as debuggers and compatibility packages
which will be written to run in a non-zero section and operate
on programs in section @ only. They must reference section ¢
with indirection (EFIWs) rather than indexing or with indexing
in which the program has set bits 1-5 non-zero. The monitor
has the same problem. The solution will be worked out during
PXCT review.

\

3. Problem: (1@b) Double Word Byte pointer is too complicated.

Solution: If bit 12=1 (when byte is in non-zero sections,
not PC) the 2nd word is an indirect word (EFIW or IFIW). Bits
13-17 of the first word must be zero and are reserved for future
hardware. However the hardware will not trap. Bits 18-35 are
reserved for software forever (in DWBP with bits 18-35 when bits
13-17 zero). We will decide for future machines what happens
to bits 18-35 when bits 13-17 are non-zero. Overflow into bits
@-5 in EFIW, or @-17 in IFIWs can occur and no trap will occur.
Since section 7777 will be illegal by software convention,
accidental overflow secems unlikely.

Why: Software can use RH for counters, pointers while leaving
a hook for future hardware.

4. Problem: (1l@c) Should incrementing a byte pointer with in-
direction be fixed to increment the last word in the indirect
chain, instead of the first word of an SWBP or the second word
of a DWBP?

Solution: No.
Why: Subroutine argument which are byte pointers which point
to other sections should always be DWBPs. Then callee can pickup.

Don't introduce a potential incompatibility with KI if don't need
to.

—<_
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5. Problgm: (1¢d) Is there any solution to the problem that
a byte pointer wi;h an Extended Address in the XR, wants the
RH of the byte pointer to be unsigned, instead of signed?

Solution: No. All Extended Indexing is restricted to a
+217  offset.

§. Prob}em: (19f) sShould BLT backwards be decomitted? It
is b;eaklng KI programs. The manual says what happens if
destination is greater than termination address.

Solution: Decommit it. Put it in EXTEND-BLT.

7. Problem: If effective address of a BLT is extended, can
1t cross ore section boundary, or should it always wrap around
in a section?

Solution: Doesn't matter for software, so wrap around.
If easier to do the other way, we will change it.

8. Problem: (1gh) ADJSP - how can we make it check for over-
flow and underflow with an Extended Stack pointer?

Solution: After adjusting the stack pointer, ADJSP will
pretend to do a write into the top of the stack. This means
that the stack can be completely protected by having 256 non-
existent or read-only pages at either end of the stack.

9. (1gk) What is effect of spec on 1980 ship date? Only one
ECO is needed (to access 6 ACs for EXTEND).

06 (1Pm) What shoulc hardware/micro-code do with unused fields?
There are 3 choices:

SOFT 1. Give to software (forever)

MB?Z 2. Must be zero. Reserve for future hardware,
but not trap if non-zero.

MBZ (T) 3. Must be zero. Reserve for future hardware

and trap if non-zero.

a. Double Word Byte Pointer
Bits 13-17 of 2nd word - MBZ, reserved for future hardware

but does not trap. When 13-17=f, bits 18-35 of 2nd word
are aveilable to software forever (for counts, pointers,
etc).

b. Bits 1-5 of Index Register
When bit @=@, bits 1-5 are available to software forever.
However the programmer must be aware that if these bits
are non-zero, Extended Indexing is called for (instead of
Short Indexing even though bits 6-17 are zero). Also if
the programmer wishes to indirect through the index register,
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bits 1-5 will be interpreted by the hardware.

C. Unimplemented section number (bits 6-12 in KL).
(My notes are hazy for item c. The following is results
of discussion with R. Reid and D. Murphy). In the KL
whenever the hardware fetches a word from memory, a
trap will occur if VMA bits 6-12 are non-zero. The
trap is the same as for unallocated section number.
Thus the hardware appears to implement all 4096 sections.
(Since the VMA is only 23 bits long on the KL, there
will probably be a flag saying whether VMA 6-12 are ¢
or ‘not) .

d. Bits 6-12 in index registers.
Not looked at when index register is fetched. Instead
checked as in c above. When XR contains an Extended
Address programmers must keep bits 6-12 zero for future
hardware which may implement more than 32 sections.

e. Bits 2-35 in IFIW when bits @#-1 = 11. MBZ(T). Micro-
code will give illegal instruction trap.

f. Bits @¢-5 in EXTEND-BLT pointers. Available to software
forever (like index register bits 1-5).

g. Bits @g-5 when restoring PC in POPJ, and RPCF.
There was no agreement. Some said reserved to software,
as with bits 1-5 in XRs. Some said reserved for future
hardware. Some said hardware should trap.

Since then the proper goal for PC words has been found.

A PC word must be the same as an EFIW in KL and in all
future mechines, since programs indirect through PC

words. Therefore the hardware cannot ever use bits @-5

in future machines. Furthermore software is warned not

to use them, unless the indirection property is not needed.
Therefore the hardware will not check bits @#-5 on restora-
tion ‘of the 'PCA

11. Review of opcode names

The new opcodes will be:

RPCF Restore PC and Flags

RPCFD Restore PC and Flags then Dismiss
EPCF Exchange PC and Flags

SFM Save Flags in Memory

MOVXA Move Extended Address
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12. The following items were deferred:

(191, 1¢j) EXT-BLT specification (needs a separate spec)

a.
b, (199)
Cra (19r)

'S iR (1@s)
e. - (lgt)

Attendees:

Tony Fong
Gordon Benedict
Mary Cole

Lloyd Dickman
Bob Stewart

Al Kotok

Tom Hastings

/1o

Rules for writing section-independent subroutines
(T. Hastings will write-up)

Rules for writing subroutines which will run in
section @, extended sections, and KA and KI.

PXET

User interface to the monitor (do with PXCT
renewvw) .

Paul Guglielmi
Walt Luse

Dan Murphy
Dave Rodgers
Robert Reid
Jud Leonard
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FREDFERICK M. TRAPNELL, JR. © Computer Systems Consultant

6321 Hariley Drive
La Jolla, Calif. 92037
(714) 459-5530

THE NEED FOR EXTENDED MEMORY ADDRESSING IN THE PDP-11

The Reason for the Need

The principle change in the ﬁini—compufer‘market over the next
several years will be the broad realization by users and mand»
facturers alike that the mini-computer technology is applicable
to business problems whiéh are in no sense '"small". Indeed the
embodiment of that.teohﬁology in the PDP-11, the Interdata 7/32
and the Hewlett-Packard 3000 yield capabilities which cannot be

matched by the 360 series below the level of the model 50. The

PDP-

ey

1 family offers instruction execution rates which range from
200K tc nearly 1 million instructions per second and memory band-
widths from 18 to 40 megabits per second. By standards of five

years ago this is not a "small" computer. The man who needed an’

TBM 260 model 50 at model 30 prices to do a job now has something

even better.

N

Thus, this new market will arise in the traditiocnal business appli- |
cation area. But, it will provide for the automation of applications

. Fig ~ ) 5 Y Mo vy o I8
which are not now done on a ccmputer IOr reasons of cost. The "mini

3 o 1 - . * 4 . ~ v Ao e O TS
computer will change all that; it will open to system designers

b >
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vistas that could not be considered Ilve yedrs ago. It will make

3 : . o g g o iy
practical the broad use of on-line, real time business contro.

Justified in raré cases 1n the pas
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(e.g. airline reservations systems). Thus, machines like the
PDP-11 make practiéal what might be described as the dedicated,

.

on-line business application system.

These applications are both sensitive to and demanding of system
performance, which is measured by the speed with which transactions
can be processed. They are sensitive to performance because it is
directly visible to the system operators in turnaround time. They
are demandjng of performance because they are always highly
sensitive to the cost per terminal. Hence, the user wants to
attach as many terminals as possible to a given syétem. This

maximum number is usually limited by systemn performance.

The PDP-11 has most of the attributes to perform well in this role.
Its principle hardware limitdtion is the size of addressable memory ,
and particularly that which is addressable by a single user.
Curiously, the need for this larger memory arises from the require-

ment for increased system performance.

Large applications can be implemented on systems with a small memory .
This 1s done by dividing the programs into pleces and overlaying

( agtmagY FRarm S rdee s | sy e ol le. ; i . .
\Or paging) them into core as reguilred. Almost without exception,

]

such applications are limited in performance by disk access time.

i v
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used programs resident to main memory. Ideally  the main thread
of these applications Should.not,fequire'disk access to any pro-

grams. This has the dual benefit of increasing performance by

doing away with all but essential disk accesses to data and of

reducing overhead by eliminating the need for‘complex overlay

control mechanisms. This requires a large memory which can be

accessed directly by the user;

This reason for increasing memory size is markedly different from
the conditions which led to ever larger memories on commercial
data processors during the past decade. This came about by users

trying to get the least Jjob cost out of a given system. The

availability of advanced operating systems allowed them to buy

the largest core memory for the syétem and to multiprogram a

ﬁumbér of separate jobs on one computer. The end result is that
today most data processing.users run as many multiprogrammed batch
applications.as possible on theif computer, and most small-inter-
mediate D.P. computers (e.g. 360, models 30, 40, 50) use the largest

available memory.

he
De

Mini-computer costs today are such that there is much less to
gotten from multiprogramming unrelated jobs on one computer; it
is nearly as cheap to have two dedicated ones. ‘'Thus, time sharing

of unrelated applicaticns will become increasingly unattractive.

To be more relevant, the need for address extension on the

PDP-11

<
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does not arise from the need to increase'the number of'indepe§dent .
tasks which can time share system resources. It comes from the

need for. the system to handle in main store application programs
which themselves are larger, more complex and‘highly performance
sensitive. Thus, we arrive at a key guideline fof development of
PDP-11 memory extensions: .

1) The scheme chosen for extending memory must permit the individual
user (task) to directly bengfit from the newly available memory with
little or no overhead. This means that any one user should be able
to directly address the entire available memory. If this addressing
cannot always be di:ect, then it should be nearly so. For example,
user directed changing of. a page register would be an acceptable but
not ideal solution. (Not ideal because it is not as fast as

generating the address at execution time.)

Memory Protection, Relocation and Segmentation

We haye»&éserted that the requirement for the user to address all
main memory arises from the market for dedicated application
computers. This does not, however, obviate the need for memory
protection. For, even in these applications the operating system
should be protected from the user program to the extent that

(1) the latter cannot inadvertantly destroy the former and (2) user
errors in communiéating with the system caﬁ be gracefully detected
and reported. Furthermore, the concept of multiprogrammed jobs 'is
so deeply ingrained in users today that to prohibit it in a new
product would be unwise market strategy. For these reasons, pro-

tection of one program from another .must be »rovided.
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Likewise, a facility for relocating programs mgét be considered.
The key question is whether or.not relocation at load time is
sufficient. . If it is, then relocation can be left as a software

.'prdblem; if not, .then additional hardware will be required. My

own feeling is that for this kind of system, load-time relocation

by software is adequate. But, it is vefy cumbersome, and it may

be an uphill selling job against a product which provides it.

However, there is a far more important point related to these
issues of extended addressing, protection and relocation. It is
the second design guideline:

2) From the viewpoing of system architecture (and hence the user)

extended addressing, protection and relocation are three separate

issues. A mechanism that provides one of these facilities (like

page registers to provide extended addressing) may also be used
to provide others (like protection and relocation). The extent
to which this is done confuses these issues and diminishes the

usefulness of the system; the decision to do this is a design

compromise.

Impact on Existing Programs

Another constraint on the design of an extended addressing mechanism
comes from the impact these changes will have on the investment in

DEC's and user's existing programs for the PDP-11. The next guide-

3) The solution to extended addressing will be better to the extent

5

——————_




"Ease of Use

that it does not require: .(1isted.in ordef.of importance)
A. DEC to rewrite assgmblers, compi}ers, and operating systems-
1) to run existing programs in the envifonmentvof the new
facilities. e '
2) to take advantage of the new facilitiés.
B. Users to rewrite code-
1) to run existing programs in the énvironment of the new
facilities. |
25 to take advantage of the new facilitigsl

In addition, some marketing benefit can be obtained if users are

not required to re-link or recompile programs(

Whatever mechanism is provided in.hardware for memory extension,
the user must be given the facility to be sure that his programs
contain no addressing errors by the time the linking process is

done. For,ekample, if DEC were able to extend the address length

in some magic way from 16 to say 32 bits, then the user could

simply use the new "magic" addresses and be sure that his program

would work. However, if the address extension scheme involves

dynamic user management of memory pages, then this may not be the

This gives us

case: If not, this is not an acceptable solution.

.

the fourth guideline:

4) At assembly and/or link time the user must be able to code

.

nstructi which define the paging dynamics well

*_l

enough so thdt errors can be detected by the assembler and linker. |

g |

)]

to understand and simple

ea

r

The

rules
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tb follow. It is not enough to ﬁave a élean technical'soiution
to the problem. It must also be a good solution for a garden:
variety assembly language programmer. Perhaps more importantly,
the comﬁilers must be able to use it in é way which is totally
transparent to the programmeri High level language programmers

will not grasp complex addressing schemes,

Size of Memory Required

How big a memory should the extended addressing cover? Obviously, -
there is no simple'answer to this; however, I think there are

some bounding conditions. First, the addressing range should be
atlleast as big as that of thé Interdata 7/32, namely one megabyte
or 512K words. On the other hand, it is hard tb justify a maximum
memory size bigger than 16 megabytes ( a la IBM.SBC). On this
basis, I feel if a small change will achieve at ieast a one megabyte

range, then DEC should do it. If, on the other hand, a big change is

required to achieve it, then a solution should be found which permits

a 16 megabyte memory.

Timing of Introduction

The key factor influencing the time of product introduction of ex-
tended addressing is the recent announcemént of the Interdata L3232
From inspection cof the manuals for the computers, it appears to

compete in performance with the PDP-11/u0.

are faster on the PDP-11; for example an Add from a labled s

location to a register is 2.45 microseconds vs 3.25 on the 7/32.

Some comparable instructions
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Others are faster on the Interdata machinej; for example, the JSR
takes 3.5 microseconds while the branch and link on the 7/32 fakes
2.0 microseconds. Memory bandwidth of the PDP-117/40 is 17.8
megabits per second, while that of the 7/32 is either 16 or 21.3
megabits per second. The Interdata 7/32 can direétly address
1,048,576 bytes or 512K words. This means that users who find
either 32K words per user or 128K total'memory words a limitation

now have an alternative.

Thus the first mini=-computer with this capability is now on the
market; others will surely follow. When thesé machines will impact
DEC business, I cannot say. Suffice it to say that announcing

extended addressing on the PDP-11 today would not make DEC first

in the market place with such a product.
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Jega Arulpragasam DATE: October 25, 1974 ;) /T;/’
i t/

FROM: Bill Strecker é'
,\ﬂp
DEPT: R & D Group /

EXT: 4207  poc: 3-4 '75'}’:~’(,;5

: (.
F4P Degradation on 11/VAXL '@E?
Summary

Based on making the worst case assumptions about the de-
sign of the 11/VAXL extension and its use by F4P tne 11/
VAXL extension appears to increase, for the program
measured, the program static size by 40% and the number
of I-Stream references by 36%. By being more careful
about the design of 11/VAXL and its use by F4P I be-
lieve that the percentages for both cases can easily be
reduced to the range of 10% to 20%. Since the function
of this memo is neither to design 11/VAXL or redesign
F4P, I have not documented this here, although I will be
happy to do so.

Program Details

The program analyzed is a matrix multiply subroutine given
in Figure 1. The symbolic object code produced by F4P is
given in Figure 2 and Figure 3. It consists of 4 PSECTs.
PSECT S$IDATA contain the array descriptor block (ADB) tem-
plates for the arrays A, B, and C. Bytes 0 - 73 of PSECT
SCODE1l contain code to build the ADBs. Bytes 74 - 322
contain the matrix multiply code. PSECT $VARS contains
a.partial address calculation which is invariagnt across
the innermost loop. The current size of these PSECTS is
given at the end of Figure 3. The number of I-Stream
references of the innermost loop (bytes 110 - 233 of

PSECT $CODEl) are written in the first column to the right
of each instruction.

VAXL Considerations

A slightly modified 11/VAXL proposal (as I understand it)
is assumed. 1In particular there are 5 address operators;
Load Address, Store Address, Add 28 bit Address, Multiply
Address, and Add 16 bit Address. The first three use a

28 bit operand and a 28 bit register while the last two

use a 16 bit operand and a 28 bit register. Indexing and
indirection is 28 bits for these instructions. The ‘instruc-
tion memonics are LDA STP, ADA28, MPA, ADAl6 respectively.
For all current instructions there is a mode 5 escape se-
guence which provides a 28 bit index and a 28 bit dindirect.
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For the code examples that follow I usei%ource or destin-
ation’] to indicate the mode 5 escape. t is clear that
each use of [ ] adds one static program word. It also

adds one I-Stream reference and two in the case of indir-
ection.

Static Program Analysis

Since the three ADBs must now contain a double word base
PSECT $IDATA is increased by three words. The code which
generates the ADBs must be modified to pass double word
addresses: The code to do this would replace bytes 0 < 23
of PSECT $CODEl and would look something like this:
Additional inline words

MOV @2(RrR5)] , -(sp) F1
MOV @2(R5)] , -(SP) *1
MOV 6 (R5), —-(SP) +g
MOV 10(R5), -(SP) +2
MOV # , -(sp) +
MOV # , -(sp +2
JSX pc, [MKa2s ¥1

s

Since this must be done three times it adds 21 additional
program words. The additional words for the remainder of
$CODEl are indicated in the second comumn to the right of
each instruction in Figure 2 and Figure 3. The total word
increase for $CODEl is 55. PSECT $VARS is unaffected
while PSECT $TEMPS is increased by one word to hold a dou-
ble word address. The summary of the incrases is given in
Figure 3: The program size goes from 144 to 203 words - a
40% increase. :

Dynamic Program Analysis

The inner loop of the program would look as follows:
Additional I-Stream
Word References

LSFAAL: MOV EX] -, R1 F1
MPA Fog o R +1
ADAlG6 €11, RE +1
MPA #4 , Rl +4
LDA 1 5 RP +2
ADAl6 [x] , RY Al
MPA #4 , RP +f
ADA28 B R +2
ADA28 L3 , RO +2
LDF @R1l, Fg +g
MULF @RP, FQ +#
ADDF sl , Fg 1
STF F%, (s] +1
INC LK +1
CMP [x] , (e2(rs)] +3
BRI LS$SFAAL +9

i
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The number of additional I-Stream references is given to
the right of each instruction. Comparing this to the I-

Stream references in the original program, the number
foes from 45 to 61 - a 36% increase.

/br
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VECMUL, o
>

UNRELEASED SYSTEM, SUPPORTED FOR FIELD TEST PURPOSES ONLY

s - s A 0 A AN 010 9 s

PEOL SURROUTINE MATMUL(N,A,B,C)

--,jiﬁépw. - REAL ‘ (N N) B (N N) c tN N) e b BRI ST S s, COPPRBIE U PN SNSRIV 15 AP~ VSRERETI - SN 1o AR i, A4S
oUey o DO 10 fEL,N sl S

g@es DO 10 Jsi,N
peas S8

peee DO S5 Kei,N
BT 8 o BWSEACRIOIABONG ) o i AR
oepe 10 C(T,J)n8 S T
_ewey  RETURN , e
oete END

IR GRUSIS R S IS oS r AR e T

sl (ot LEBRT ey e g b SO R
‘ o LR R e RS SRR
; SO WL A S LAY N k » Bt les
P 5 G T SRR AT R o LTI sot ot ects s Wi
“ -t < s ok beeartl S e By i
& : il
;: /45, ..Z,
: REVCY 3 e

R T




Lo AN B i e res S Y g it YR

vhc_ﬁ?i.;qw..f °~....ﬁ_i_u_s "y’g,"g,, 1 1 BTN TR W 1b , 1 i_;.l,a.i . :m x4 Fa:;) 0_.3_._ 7. .a._ BLAUMIF ML L9 WEa . AR -’.A..G.E w § i ds SO

>
UNRELEASED SYSTEM, SUPPORTED FOR FIELD TEST PUKPOSES ONLY

e bbb e e o s - APOS ogAbrm Vlgo bt ey bt v ety L

LTITLE MATMUL ' ,:/ra,h:; /m/e’as‘.e.

009820  PSECT SIDATA , ]
CILILL] TWORD 1 0,1,0 T 4
eaeQ1l .NORG

IR . NORD xeawaa
ppeotd LWORD 2,0

n00e20 wono 31004,0,0 ! o 2
aaoeRs _";“ORD 140,1,0 2 i
a0pase JHORD @ R SRS R
P8040 LNORD  12pP00 "

onpu4e JWORD 0,0 i
GQEEAA,WWMMAH.”._WORD _ 31004,0,0 . ) |
e0PRS4 LJWORD  1,2,1,0 Uy
ﬂ@@ﬁﬁﬁwh“M_“me_MWQRPp_ Bt gt o ‘
ool T M E R N
0p0R70 GRBRD o Pl e vt el e s R gl

foeRT4 LWORD  31704,n,0

a0000@ +PSECT SCODEY HE

200022 MATMULS

aepeee MOV #2(RS),w=(SP) R KL A0 TATR i P e IS L TR BTN VG BUR L oW M 6 1 o
poeoad MOV #2(R5),»(8P)
ngenpin MOV 4(R3),=(SP)
foeBid MOV #SIDATA+14,=(8P)
ootbeg -’ .. . JOR. - PLMKARS -
200024 MOV €2(RS),=(5P)
osee3p . . MOV ... @R(RS5),=(SP)
Poeo34 MOV 6 (R5),=(SP)
A0Re4n MOV #S5IDATA+42, =(SP)
Agnedd JSR PC,MKAZS

LIRS MOV #2(R3),=(SP)

pe@es4 MOV #2(R5),=(SP) :
reaasn : MOV 10(R5),=(SP) 7.

QePe64 MOV #3IDATA+70G,~(SP)

LI JSR PC,MKARS
000074 MOV 01,1
ee@ie2 LSFAGGS

N

n0n102 ' MOV w1, NSRRI Ty JEnr
0R118 LSFAFIL e AT WY 1R S R i

pen110 SETF

L LERY CLRF S

LT ERE) MOV #1,K
fe@A124 o RGN o JyR1 i SIS LR R I g

002138~ MUL  S1DATA+S0,R1 / :
00R134 MOV Ry, STEMPS .MJZ?fﬁﬁﬁﬂff(?in

a0M14¢ LSFAALS

202160 MOV K, RY
Auoi4d4 MUL, ST0ATA$22, A1

3
2

!

3

3

f**ka t\hq“;k‘

200194 ASL Rl

PNB1S6 chpsn s B SR R L

P00160 MOV STEMPS,RA

200164 ADD . R R SN & P

%NsN

- /”
Y esi
& /,ﬁ ¢
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VECHUL!

UNRELE*SED SYBTE

di?fa& TrePLUS

My

Yoee1t

mmw:ra e

neagvre
LR

ASL

ASL
ADD

RQ
Rid
SIDATA+16,RY

RIS RY ) |

SUPPQQTED”FOR FIELD TEST PURPOSES ONLY

bl %
7
ADD - e S X

2001200 ADD "SIDATA¢44,RD 3 A . G
200204 LOF ARy, FR L Ehy 2 i
200206 MULF ORD,FD 8 T TE G
Q@a24® . ADDF 8, rn 58 o ‘
LT EERT 8TF FR,8 i 4 S
ogn2z2e OENG Lt e 3 W
PenzR4 CMP K,82(RS) T& T A e
2082232 BLE LSFAAL ] / N 3

000R34 MOV Ji R

097288 MUL  SIDATA#Té,Ry 45 TN

TLELT ADD TRy i
PQoRaR (oL o ASL o RY : e
penasa ASL Ry iy
n02R%4 ADD SIDATA+72,RY e G fi e
TLELY MOV $)(R1)+

peNR64 MOV S+2,6RY : e
PeA2TR ‘ INC 2l ¢ %
ORORTE: o s S oCMP s R MBCRS) i
20n3B2 BLE L8FAFI ¢
a0e3R4 _INC 1 :
oen31p CMP 1,62(RS)

RS, oo BLE L LSPAGR: Ay - : s
LUEKEY) RTS PC

e S _+GLOBL SOTSV
<END

SECTION SIZE ,

SQODEY. .. . 105 + 55 = [é0 i :
SIDATA 33 - 5 = 34

INARY . v i ¢ = 3 ‘,
STEMPS Lo shaiigh oty = -

i — &

yWPI/LT3aVECMUL /=T R 203 ; ot








