
.
veypryiacl,

«

20

G2shila

4
1J
4

:

beeSA

\p

1(hoy)
arydo

:5

9Gaysaap}
A

a
yxo+acy ATHISpaypy

da)'@
{
odyvA

)

"y
DVYA(5)POW

oper
moby

-

0

Chg)
ep
-

POH

a%

é a
Coak te boy

A (

Tots Oki, BLT
Chl.

of
Cotte i}
Lodi cal ar

~ Jo yes
- JOT!

@ Ark. Otte (tse)

Hae fw S peel.:

US$

- Prous s
x

Bo ve KeoOSM Ki

P

dy
Cost ty 4 x.

{ Age
-

athe

Wve th

17 Boggy

()

PMs
Mus, -

_ Aigo

Mu

(0:20

D. ALTERNATIVES CONSIDERED (Contd)

2. Expansion at Northbrook - It is possible to continue the approach of
obtaining satellite space around the present location at Northbrook.
This would be the low cost solution for the short-term if only the fan-
gible costs of real estate are considered. These cost savings would
occur primarily because we would not be carrying any excess space.
It appears that a better approach is to provide for at least two and one

half to three years growth in a new facility. The Rolling Meadows

facility does this, Northbrook would not

Operationally, separate office buildings housing different functions
does not favor operation of a coordinated field team. The Team Concept
of field management has been actively pushed by Ted Johnson. We

3. Design Alternatives

First Proposal: Office Building - 42, 168 sq.ft.
Logistics Depot-12,800 sq.ft.
Training Center - 12, 800 sq.ft.

Advantages: less expensive than multi-story by approximately
$300 K. The opportunity cost of the higher
land usage has not been deducted from this ($72K)

easy for expansion

Disadvantages: less visibility than multi-story

higher land usage

longer walking distances

Second Proposal : One 3 story building of 70,500 sq.ft

higher visibilityAdvantages:

lower land usage

expandable

short walking distances and good communications.

good land usage

should not inhibit this by short-term considerations in our real estate

planning.

:

with xfatedo 6

f

GwmELL {
> Modes

te

Cah dt, 6, iat 1ty le

Exchanc4

\ fed {

y

le y
AM, :

é Sof
H, + r {

ust 20 tun A

d

* Comm. a

{

>

{ ast nW
:

t

Ty
~

wed6
f } u nab wy

o ylAb
1 4

:

+ v

f

__-
fla

Ma A

*T/o a

1

stoi Brad A

Us? n
VA

f.

Distribution October 20, 1971

FROM: Peter van Roekens

DEPT: Programming

SUBJ: 06/45 Proposal Meeting

There will be a meeting on October 28 at 9: 30 a.m. in
conference room 12-2 to discuss the attached proposal.
It is being circulated for your review and comments.

Attachment: Proposal

Distribution
L. Wade P. Conkiin

B. Delagi

7 ATV

INTEROFFICE MEMORANDUM
0278

:
:

Oz DATE

H. Spencer J. Hitteil
D. Stone 08/45 Group

R. Clayton cC: A. Ryder
R. Frith b. Schroeder
J. Lombardo G. Thissell
A. Devault PDP-11 Coordinating Committee

130-101-909~06

0S/45 - A Proposal 0279

Introduction
On 17 Sept 71 Dick Clayton and Robin Frith presentedviews on 0S/45 to the 0S/45 group.
Since that time we have reviewed the notes of the 17 Sept71 meeting, added new inputs, and have investiaated com-petitive systems. As a result, we have begun toa bias as to the ordanization of 08/45. This parer bre-Sents the market that has resulted from thisbias and details the most current definition of OS/45.

Tl.
0280

Overview of the PDP-11/45
The system programmer contemplating the design of an
operating system for the 11/45 has two classes of

to resolve:
1) the price range of possible configurations, and
2) several new hardware capabilities

The 11/45 has a remarkable range of potential prices:
$20,000-$300,000. We cannot ianore the low end

because we can expect competition in this range fron
IBM's first mini-computer, the System/7. At the upoer
end, even though our price/performance ratie humbles our
competitors, we must deal with the IBM 1130 and 1800
and their immense software library. In addition to the
chailenge of devising a system which has upward compat-ability cver a price range whic! varies by an order of
magnitude, the tems designer must contend with three
new hardware options?

*Memory hierarchies (memories with different speeds};
*Independence of instruction and data space, and
*Segmentation.

Complete understanding of how to properly use these
features has barely emerged from a research environment,
yet we must make intelligent use of them in a production
system.
To provide reasonable solution to these challenges will
require a design phase pursued to an unustal depth of
detail; else we run the risk of rendering the new hardware
features either unuseable or not cost effective. Pro~
viding a software system whose facilities compliment those
of the machine itself will depend on development of a

design which demonstrates we have indeed mastered the
requirements of configuration flexibility and innovative
hardware.

0281
The 11/45 Marketplace - Developing a Workable Imageof our Customers

itl.

A designer of any product must have prior to any designactivity a distinct image of the individuals to whom heexpects te sell his product. The data processing market-place has five identifiable concentrations which reflectmarket needs*,
1) Real Time
2) Scientific Batch
3) Time Sharing
4) Commercial Batch
5) Number Crunching

Let us eliminate item 5) from consideration immediatelyaS inappropriate to the 11/45. The remaining four itemsrepresent the order of market priorities as specified byDick Clayton and Robin Frith during our 17 Sept 71 meeting.During the same meeting Dick Clayton specified the follow-ung framework within which we should define 0S/45:
1) Software support for the floating point unit andthe segmentation unit should exist by July 1972.2) We should announce os/45 by June 1972 and deliverit during the second quarter of calender year 1973.3) OS/45 should unify PDP-il software.

In addition, we have assumed that 05/45 will consumebetween 18 and 25 man-years of effort. Using the assumed
manpower estimates it does not seem possible to attemptto satisfy the needs of the time sharing or commercialbatch marketplace.
In commercial batch, DEC must compete directly againstIBM and in a marketplace where IBM has no peer. We
simply do not have the time or resources to design and
implement an operating system for the 11/45 that would
compete effectively against IBMS offerings. And even if
we could produce such a system, does DEC presently havethe sales and system force necessary to sell and servicethe commercial market? Current inputs indicate in the
negative, and, hence, we recommend rejection of orienting
OS/45 toward commercial batch.

Identifiable in the sense that their overlap does notresult in a complete merging of the end user needs.

0284
From the above we can extract the followna LTEof the OS/45 customer population:

He either already uses or has under considerationan IBM System/7, 1130, or 1800. His applicationrequires only a subset of IBM's software for thesemachines. And finally, the existence of competi-tive equipment which has between three and fivetimes the cost performance of the equivalent IBMsystem provides our hypothetical customer withsufficient reason not to remain with or choose
1BM,

Of course, the computer marketplace does not existentirely under the aegis of IBM and DEC, but we contendthat if we can produce a software system which signi-ficantly impacts System/7, 1130, and 1800 sales, then
we will have more than nullified the offerings of XDS,Hewlett-Packard, Data General, SEL, EMR, Varian, andInterdata all of whom offer real-time systems in the
16 bit class.

6

0283
All these facts lead us to one inevitable conclusion:make sure provides a set of Sclentific batchfacilities that makes it possible for us to capturelO: of the potential 1130 market.

Time. As with the 1130, we will confine ourselves toIn real time, IBM offers the system/7, tne 1800,and the 360/44. The 360/44 really belongs in a differ-ent class of equipment iDecsystem 10) so we will coacen-trate on System/7 and the 1800. First the 1800.

This brings us to the top priority on the list - Real

IBM has a total of 563 1800's installed or on Order atan average system price of $300,000. The 1800 hardwarerepresents little or no competition for the 11/45. IBMdoes, however, tend to overwhelm their competition withsoftware, which includes two systems (MPX and TSX) capakleOf running, Simultaneously, real time in the foregroundand batch in the background. As with the 1130, even thcuchwe can't hope to provide all the software IBM does, thetask of selecting a competitive subset appears achievab.e.And even 10% of a $200,000,000 market would handsomelyrepay Our investment (and hopefully we would capture muchmore than 10% of this market).
Unlike the 1800, System/? represents an insidious ratherthan a direct challenge to the 11/45. Only the smallestSystem/7 configurations offer any competition for the11/45. In most of these small configurations, we suspecc,an 11/20 would provide a more cost effective solution.Regardless of how DEC counters the threat of System/7,counter-it it must. IBMs track record for customerloyalty provides little comfort to the DEC salesmen
attempting to replace a System/7* with a PDP-ll. Oncein the door with a system/7, add-on equipment and growthto larger systems will go to IBM by default; System/7will lead to 1130's and 1800's. (Indeed, the initial
System/7 marketing thrust practically requires that theuser already have an 1130, 1800 or 360}.
To compete with IBM in the real time market we suggestthat OS/45 provide a real time capability that spans theentire price range of the 11/45 with upward compatibilityof object programs provided across the entire range of
possible configurations.

* We should not delude ourselves regarding the potential of
System/7. IBM has consistently enhanced products to meet
the threat of competition - How about segmentation registers
on System/7?

5

0282
A time sharing orientation also seems unachievable on
schedule with available resources. The pursuit of an
11/45 time sharing system also seems unadvisable if
DEC decides to produce a small version of the 10. Any
attempt to provide a multi-language time sharing systemfor the 11/45 (we already have a single language systemin RSTS) runs the risk of colliding with the introducticnof the small 10. Software production costs continue tcrise and hardware costs continue to cecline. And we havelittle assurance that the total cost of an 11/45 tine
sharing system (hardware plus software) will not exceed
the total cost of the small 10.

The existence cf RSTS and the relativel modest costinvolved in altering RSTS to take advantage of the Frp
and segmentation provides additional reason for avoiding
a time sharing orientation for 0S/45. If the future ot
time sharing depends on applications packages, and if BASIC
Plus has sufficient language constructs to build most ap-
plications packages suited to the 11/45, then what incre-
mental gain can we expect by producing a multi-languade
system? We cannot answer this question factually, but
doubt that the incremental gain can offset the software
development costs. Thus, we recommend rejection of a
multi~language time sharing organization for 05/45.
We now arrive at scientific batch. We define this as
batch streaming of FORTRAN programs and cite the 1130
Disk Monitor as the type of facility against which we
can expect to compete.
IBM has installed or on order 3800 1130s at an average
price of $90,000.* It would not surprise us if the 11/45
has a cost/performance ratio five times that of the
equivalent 1130.

Dick Clayton projects 1000 11/45 sales over the life
of the system. If we can capture 10% of IBM's 1130s
as a result of providing a competitive scientific batch
system,then we would help him achieve 1/3 of his goal.
Furthermore, the 1130 customer does not need the prac-tically dimensionless volumes of software of the commercial

market. These users rely on FORTRAN heavily (making it
possible for him to convert at modest cost). And the size
and cost of the 1130 itself places a practical limit on
type of applications it can support.

*September 1971 issue of Computer and Automation.

0286
marketing will have :

t 4 not: m+> by July 7

:

will haveChona1 software prolife
of OS40 bv '72, andaple definition

wil take 1 Pps toward7 16 : :

software.:

turn now to a more explicit definition of
3

8

0285
IV. Satisfying Marketing's Reguirements

Dick Clayton and Robin Frith specified three requirementsfor OS/45
1) Software support for FPP & Segmentation Unit

by July 1972.
2) Announcement of OS/45 by June '72 for deliveryduring the second quarter of 1973,
3) Unification of PDP-11 software.

Before discussing details of OS/45 (in section III weestablished a customer profile; we have yet to describe
how we inti ad to satisfy their requirements) let's exemineeach of these points and how we can satisfy them.

1) Local modification to existing software representsthe most reasonable approach to meeting this re-
quivement. RSTS can at modest cost make use of
bot the Segmentation Unit and the FPP. DOS plansals. exist to make use of the segmentation unit.
At'mpting to rush the design and implementation of
the OS/45 Kernel in order to permit DOS & RSTS to
convert in time to meet the July '72 deadline seems
unvarranted; such haste will] jeopardize both the July'72 date and the consistency and coherence of 0S/45
over the longer term. Of course, by making 11/45or.ented modifications to DOS and RSTS, we pay the
pr.ce of continuing the proliferation of software
systems for the 11 line.

2) Wichout a doubt the 0S/45 group wil have a systemdeiined for announcement by June '72, but the scopeof the system depends on available resources (Dick
Clayton has already specified delivery reauirements)

3) Initially the objective of unifying PDP-11 softwarewill not happen. DOS and RSTS will evolve independ-tly, and it does not seem advisable to attempt to
prevent this.
e:

But as we will describe shortly, OS/45 as it evolves
will make every attempt to reclaim as much existing
11 software as possible. The OS/45 design will provide
users with a system covering a broad range of configure-
iions, programming facilities for real time and batch,
and will disrupt existing user interfaces only where
ansolutely essential.

Having Identified our Customers, How do we Satisfy
0287Their Needs?

We have identified our users in Section III. They havereal time requirements and scientific batch requirements.At the low end we must block the purchase of a System/7;at the high end we must overcome the presumed user benefitsof IBM's vast software library.
We believe we can satisfy these requirements, by offeringa system which provides upward compatibility across theentire price range which is available on the 11/45 (20,000-300,000). This IBM cannot do; movement within Systen/7,1800, and 1130 requires a conversion effort; 0S/45 willnot.
Now, it turns out, that Segmentation provides an efficienthardware mechanism for implementing a system which cancover the configuration range under discussion. With seg-mentation hardware and a set of software standards, we canspecify a cascade of hardware configurations each of which
requires additional hardware, in order to acquire moreelaborate services; all the while we guarantee complete
upward compatibility. The success of this approach dependson a careful definition of the user virtual machine. :

Basically this means that the user of an 0S/45 system has
a well defined set of facilities he may use. These facil-ities consist of a subset of the PDP-11 instruction set
and a collection of service routines. As configurations
grow in complexity, the set of services expands corres=
pondingly, but we always provide complete upward compati-

classes and in every case appears transparent to the user.Let's examine some possible configurations*Hardware
1)

bility This scheme implies that every 08/45 configuration
operates with a set of supervisory code. This code, of
course, will vary considerably on different configuration

4K-12K
TTY
Software

t

4

prepare your programs on a larger system often
4K suffices to meet the needs of the application.IBM has solved this problem for System/?7 by providing host

vide a Macro system called MSP/7. We see no
reason why we cannot do the same. Indeed, if we

aration facilities seem essential. ;

:

Foreground only.Small systems suffer from the lack of adequate
program preparation facilities. If you can

preparation facilities on larger equipment
(1130, 1800, 360) With this technique they pro-

intend to meet the threat of System/7, host prep-

These represent examples of possible configurations; the reader

memo describing our conclusions.
720 compatibility and issue a

should not accept them literall
We intend to investigate tull

:

2)

3)

4)

Hardware

12K-16K
TTY
Software
Disk, tape, etc.
DOS subset
INDAC/11
Overlay FacilitiesFortran
Host preparation eliminatedForeground only.
Hardware

L6K~24K .

TTY
Disk, tape
Segmentation
Software
Same as 2, plus:
Foreground single background stream. Systemmaintains complete isolation between foregroundand background.
Foreground and background Operate in fixedpartitions.
Hardware
Same hardware as3)but with 28K
Software
Same as 3) plus
Support of backgroundjobs whose size ex-ceeds that of physicallyavailable core.

0288

Hardware
5) same as but with 32K

Software
plus

shared code
Multiple background jobs.Index Sequential file system.
Hardware

6) ut with 40K

Software
p us

Multiple Foreground jobs (Individually protected).

0285

Once we define the basic user virtual machine we can
determine exactly which particular configuration classes
availabie resources permit us to produce, Furthermore,
witn well defined configuration classes the product
Managex has available to him a shopping list that en-
ables him to make cost trade-offs far more reasonably
than née can at present. It also makes the programming
department more aware or the incremental costs involved
as you move up the seale in system complexity.

VI.
0290

Summary and Conclusions
If DEC continues to grow it must eventually increase its
business at the expense of IBM. To accomplish this
traditionally unaccomplishable feat, we have sugyestedc
a software plan for OS/45 which confronts IBM where they
appear most vulnerable - real time and scientific batch.
IBM, with present offerings, provides zero hardware com-
petition for the 11/45. To counter IBM's software
libraries, OS/45 takes an approach IBM cannot easilycounter: upward compatibility within a price range that
completely covers IBM's real time offerings in the 16bit class.

12

iNet

0263Subject: Memory Protection and Relocation Scheme for the 11/25 and 11/40

To: Jim Bell, Roger Cady, Bruce Nelagi, Ad van de Goor, Hank Spencer, Larry Wade

cc: Dick Clayton, Andy Knowles, Nick Mazaresse From: Cordon Rell
Attached is a very rough description of the scheme that I hone can he

used for protection and relocation on both of the ahove machines. It seems

crucial that we use such asee or continue to look for such a scheme in order

to minimize the possible proliferation of unborn, mnspecified inevitahle monitors

that will result. As T have indicated hefore, the decision on this scheme is only

ahout 20 times more imortant than the instruction set, and a floating noint

format, so T hone we can all stav loose for the search.

Right now, the meeting on the scheme is to take place on next "ridav, Yet

9 at Carnegie. It is imperative that renresentatives feo, Pruce, Ad, Larry

Wad perhaps Roger and Hank if they can spare the time) of the various grows attend.

Bill "ulf, Nave Parnas, T and perhaps Nico "ahermann will attend from here.

The Scheme

The attached scheme is a pronosal] hy Navid Parnas. It isn't out of the blue,

since he's heen concerned with operating system design for the last 4% vears, so it
reflects these ideas, plus more recent concern hased on work he did with the

company last year. I'm attracted to the scheme hecause:

1. It has a small amount of hardware (routh ly the amount nronosed bv Rruce).

Phil

(It has no associative registers)
2. It does not rely on paging or need it, although nossiblv a verv larpe machine

might want it.
3, It has a clean method for allowing a program overatine in one address space to

communicate easily with a program operating in another address space.

A. The complete system and user programs use it. Amone other things it has a means

of letting users control i/o,...devices if necessary.

and subsequent machines.5. Since it is basically simle, it can he used on hoth,

D. L. Parnas
q

(Rough Draft)

Sept. 30,1970

ADDRESSING SCHEME PROPOSAL

0270.
Inteoduation and Motivation

After a serious study of some of the difficulties involved in the
construction of software systems in general and hardware systems in particular,
I have reached the concluston that the construction of highly secure and highly
reliable software systems is greatly mht aided by a memory mapping device thetwhic,
allows a program m and its data to be divided into many segmentaywith the

access of a program strictly limited to those segments which it is expected to use.

The memory mapping devices now coming into vogue for automated memory management

have thie property as a side effect of their memory management purposes, but

atk times they have other properties kt which make them difficult to use for this

purpose. Yor the purposes that I have noted however automated memory mangement

ie not essenttal and a device designed for x such a purpose can be much simpler
than the usual "paging box". In particular it is not necessary to resort to

anys use of an associative memory or hardware initiated references to core

4

4

seguent tables.

The particular scheme that I wish to describe here is designed specifically
for the problems of protection and reliability and has the following unusual

characteristics:
1. There is never any need for restricting a subset of the instructions

are completely isolated from each other and the completeness of that

isolation apes does not depend on the correctness of any software.

In otherm words there does not exist a software module which, if it
failed, would result in programs from one system having access to data

or programs from the other. {Note: there is of course a price,-in such

a complete fsolation no resource sharing is possible on a dynamic basis.

One can always find a less extreme case in which some resource sharing

fs possible and a small amount of code must be trusted. However the

ability to provide such complete, software independant isolation is
in my opinfon an essential measure of the power of the

scheme.

;

a
4

3

and calling them a privileged instruction
2. It is possible to share a machine subsystems xm which

4

4

D. L. Parnas

0271
The scheme was orfiginally designed in order to make it efficient to

operate programs consisting of small segments of both code and data. However,
given a machine with a 16 bit address size relatively large segments are also
possible. Although the use of such segments is contrary to the principles
which I belteve should be followed in software design, their availability
leaves the programmer unrestricted. In fact, by making all of yt his segments

:

:

the maximum possible size, the programmer may completely ignore the existance
of the device.

I developed this acheme without specific interest in a particular machine.
It ts act fairly special case of a far more general scheme which I have
been con dering over a period of years. This rather generalized scheme was
highly parameterized for adjusting to the size of the machine and the memory
size. At the request of C.G. Bell , I am presenting only that subset
of the rather large class of maxkines xheex schemes which appear to be suitable
for application to a PDP 11. This particular version of the scheme is still
rather rough in that a number of the essential details remain to be worked
out for this apectal case. I have available several tables from which I
believe I can derfve the appropriate values of the parameters for this case,
but there are at least several days of work to be done, and I hesitabe to
spend such time without =m some assurance that there is interest in seeing
the results. Purther, I should have some additional information about the
processors in order to do a good job of finding the appropriate solutions.

I belteve that in the following, I have developed sufficient information
to allow the scheme to be evaluated and a preliminary decision about the
value of the scheme to be made.

The fact that I have not provided the additional"gratis does not mean

are a number of detatis with the property that-if an incorrect value is chosen»
the value of the mechaniam is sharply degraded. It is the importance of these

remaining detatle which cause their derivation to recquire careful thought
and time. On the other hand I believe the fottewtgét-tnfemraten following
descriptionm a makes it clear that appropriate values for the remaining parameters

:

:

that they are unimportant. The scheme is sensitive in the sense that there
:

:

as well as appropriate encodings for certain status bits can be found.

yp. Le Yarns
:

on :

3
:

: 0272
:

:
:

:

There are howevr
Nose Gf sepedte ef the system are highly

arat atau fiarvese T balirre are essential

: &

The. gechantom preetdes fox programe which operate in two name spaces
3
4

os vigtual mempry spaces, ha. the tnfoumation in one being a subset of the

wn 11 the other. Programs wey move freely about in the emaller

of these teo space' eject to the 'restrictions placed on the use of each

data or pregran the larger space is possible unless it is also in

the space. Tha moving of segments between the two spaces is not

under direct program control. The movement of

:

of them sgnents. Programs may aleo pass segments of dats or pro from

No
the large to the of these spaces and vice versa access

segneates of's opsical memory is independant of the movement betweeo

the two spares, and is invisible to the program except for

Although the most basic versions of this scheme

de net mht we.Wf thts independance, ie possible to concieve of larger

whieh do 5 te = segnent atgration without any lese

7

reel tite

:
a

to tha pregrans ability to move about within the anni ler

addsene space and to move items from its larger space into the omaller one)
the progres hes the ability te call other programe which are not in the address

apace end operate tm an address space which is distinct from that of the

The set of programs which may be called in this way can

be such « way chat they ere predefined and the program may not alter

the list. On the ether hand, where desired, it is possible to have this list

extendable and alteradie by the program iteelf. If destred two lists, one

fixed and one gitereble any be set up.

Tha effect of tite feature is to allow programs to be called in such a way

that the calling program has no access to the code or private data of the

ealled program and further that the called program has only restricted access

to the code ed data ef the calling x program, exactly that access which the

:

calling progres choses te allew. I consider this feature highly important

in gl]reg >h- afftotegt m
of highly secure and reliable software.

4 "et

D. L. Parnas

0273

Fer future use we now define the following names

Program Virtual Memory (PVM) the large apace mentioned above

Program Working Virtual Memory PWM= the small space mentioned above.

Program Segment Table (PST) =the table defining the PVM, kept in core.

PST base register =a register containing the location of the base of the

current PST. NOT DIRECTLY ADDRESSABLE

e

Working Segment Table = the table defining the PWM stored in spectal registers
(NST) mentioned below.

Working Segment Registers = a set of apm registers containing the WST+

(WSR) Fhey are not addressable by normal instructions. *
:

Extended Call Space the set of programs operating in other spaces which

may be called by a given program. This may be seen

to considt of three sub spaces
Fixed ECS = an Extended call space which may not be modified by

the program itself.
Feee ECS an extended call space which the program may modify

using programs and address spaces which it itself has

constructed. THIS IS OPTIONAL AND OF QUESTIONABBE

IN MY MIND(for a machine of this size).
Return ECS an extended address space which is defined by a calling

program for the called program. - As arule it
conteins 1 entry. f CCL

In k the sequel I will desertbe the charactersitcs of these vardous itens

as I expect them for the PRP 11. & 'the numbera gtven are rough

estimates based on inadequate procedures and I would expect them to be seriously

reconsidered since there are methods of determining appropriate values

which could be used. Other figures are minimum figures xp appropriate for

a relatively small machine. I can imagine changeing them considerably for

larger processors, but would require muxk more time to calchiate appropriate

values. I will try to point out the variablility of these figures as

I givex them. I provide them mainly as a guide to the size of the hardware

2

:
:

:

:

ECS regs z ten,
:

:

that I have in mind.

:

D.L. Parnas

0274 :
:

The PVM is a segmented address space. Each segment would have a maximum
size of allie bytes to-be Tec but I would expect
the average size to be much smaller. possibly on the order of 256 bytes.
The segments would be identified by an integer between ® and ak. The most
efficient use would keep this the maximum sggment number muchh lower ,perhaps
under 256 or 128, If segment I is of the maximum possible size then the
highest byte in the segment is considered virtually adjacent to the lowest byte
of segment I+l. In all other cases indexing or other operations refering past
the end of a segment would be considered errors. Each segment is characterized
by a state (readonly, write only,etc.) the number of states must yet bex

&

:

studies and a precise definition of their meaning made up.

The PST is a table with a maximum length of 1 segment containing bytes
for each Segment. It is kept in core when in use and is then pointed to by
the PSTx base register. Under normal usage the segment containing the
PST is not in the PVMofthatprogram.There is.ofcourse no reason why

the PWM. is a segmented address space. The characteristics of the segments
are exactly those of the PVM segments. In fact every segment in the PWM

is chosen then the maximum size of the PWM is
is in the PVM. I expect that 7 or 8 segments is a reasonable size for the

PVM for this machine. If
the current core size. For this reason axpxugxam with suitable segment definitions,

a current program could be run without change entirely in the PWM.

The calling tables should probably contain 256 entries. Each entry
would indicate a value for the PST base register, and an address in the

BWMx PVM defining the first segment to be executed and the first location in
that segment.

ESSENTIALS
The registers and tables mentioned 2 above will max contain

physical addresses. The following conditions are necessary for the success of

the scheme.
1. There must exist no instruction which refers directly to one of

the above tables and reg isters and places the values contained in a place
accessable to the program.

this cannot be done if desired. Se great C 4 hese i

:

CON
thin coon he

bD. L. Parnas
w

0275
2. The only way to access or modify these tables and registers is
either by means of the special instructions to be described below or
if the tables or registers are placed in the PVM of the program.

3. It must be possible to place the PST in a segment included ina
PVM. This is no problem since the P®x PST is in core. This is also
true for the ECS lists.

and the ECS registersxxxxkex in a segment which may be included in
a PVM. For example a facillity which allowed a given segment

K to contain the PST base register in the first word or two,

must be possible to place the PST base register , the WSR registers,

the WSR xexk registers in the next 16 words and the ECS registers
afterward.b. An alternative to 4 a above is a complete facilfity for loading
all the registers by a single hardware instruction using
information in fixed format core tables. I believe this is
a better alternative. THis % Dow

SPECIAL INSTRUCTIONS

they are not needed without the mechanism we are describing.

1. Load Working Memory (i,j) segment i from the PVM becomes segment
j fxamxkhe PWM. The old segment j is forgotten.

2. Save Working Memory (I,j). Segment j from the PWM is made segment
i in the PVM. If theee already was a segment there it is
forgotten.

NOTE THAT these instructions shift infomration between the two tables but
never change or alter the contents and never reveal the co)

These instructions are not privileged. They are specialan only in that
4

2

2. Ey tended arty on
C 2.05

6 eanin

Ge ber ele! coll

ing AtAw Cc{ by *
Het come &

Oo
Oa) S tA LE:

11
a t

D. L, Parnas 7

Expected NORMAL USAGE,

In the expected normal usage a program is setfup by system programs (or by

initial load) so that the tables defining its address space are inaccessable to it,
"a wrcare \

0276

It then operates primarily within the PWM THEREBY making all references to core

using the PWR as base registers, never using the PST. Only the load and save

memory instructions use the PST; qnly these go through the core tables. In proper

usage these instructions should be rare compared to the normal instructions. All

references out of the PWM by normal instructions are considered errors and trapped.

All references out of the PVM by load and store memory instructions are simillarly

trapped. Simillarly an attempted to use an extended call with the parameter too

hggh is trapped,

The PST will contain bits indicating if a segment is not in core

and the address in either case. If the segment is not in core a load working

memory or an Extended Call will trap.

The ECS may contain routines with add access to the tables

7

defining the address space of the calling routine. Through these tables extentions

or contractions to the PVM may be made by 1 or more ECS programs,

3

Hidden Information.

I expect that hidden from all users will be the fact that the segment tables

contain a number of extra bits such as an indirect bit allowing the entry to refer

elsewhere for the actual entry. Note that the indérect bit is only used during

a load working memory instruction sequence, not in the normal use of the segment. The

number and interpretation of the statas bits are essential information which must be

carefully worked out, but which, as I mentioned earlier I have a basis for., in that

1 have some more general tables from which they can be derived.

Larger Devices.
If in the load working memory instruction we specify more than the segment to be

loaded by indicaténg ® an address or locality within the segment, a later, larger
The number

compete blé

of bits available for this must yet be worked out.device which partially loads segments can be made ompabable with this one,

The possibilitypf having portions of the PWM not in core might also be adde to
his

device for large processor that is still compatable. expect list4

is not worth it, but it is worthwhile noting for a future investigation.

- s »

Appendix: Address interpretation

Physical Address:= WSR[Address<o: 2>] + Address <3:45>;

u277

:

:
:

INTEROFFICE MEMORANDUM
TO:

SUBJ:

Enclosed is. the report you requested.

Dick Clayton DATE:
Jega. Arulpragasam

September 13, 1974

FROM: Craig Mudge

DEPT: 11 Engineering
EXT: 5064 LOC: 5=5

Summary of 11/VAX Architecture.

'Detailed schedule
for VAX is the following:
Overall Summary 9/13
Architectural Spec 9/27
Software & other

Implications 10/15
Effect of Implementation

on 11/44 9/27

Roger CadyDick Clayton
Bruce DelagiBill Demmer
Robin Frith
Andy KnowlesPhil Laut
Al Sharon
Steve Teicher
DRAGON Engrs.
Sas Durvasula
Bab Giggi
Bob Gray
Kent Griggs
Dave Ives
John Levy

Product Line ManagersIrwin Jacobs
Ed Kramer

cc: Engineering Mgrs.Bel
Bill LongJulius Marcus
Brad Vachon

Software
Ron Brender
Dave Cutler
Frank Hassett
Pete Van Roekens
Garth Wolfendale
Denhy Pavlock

Craig Mudge
9/13/74

SUMMARY OF 11/VAX ARCHITECTURE

I. DESIGN GOALS

1. Implementable over a range.
The architecture must be efficiently implementable overa cost and performance range. The range should span from an11/05-type-cost machine to an 11/55-successor-type-performancemachine. In addition the hooks necessary on the Basic Machineshould be minimal - no more than a few IC's. The option itself

may exceed the current KT in cost.
2. A substantial increase in virtual address. Yb

The new address length should be between 24 and 32 bits,not just an extra bit or two over today's 16

3. Use known art.
Segmentation, whose strengths and limitations are known,should be used. New methods, domains and capabilities, for ex-

ample, should not be explored.
4. Compatible with today's PDP-11

a) Existing user programs must run unmodified.
C b) Existing user subroutines must be callable from new

programs which exploit extended addressing.
c) Existing system code, except for the code that loads

the KT11 mapping registers, must run unmodified.
d) The scheme must be compatible with the KT11- memory

Management unit.
The goal of running most system code as well as all user

code is unusually strong..
5. No loss of performance.

a) I-stream
Within a loop, the number of I-stream bits passed
must be no more than in today's 11. Extra I-stream
bits for loop set up are allowed.

No more time added above conventional dynamic address
translation schemes.

b) Address translation

6. Flexible name space (program space). management.

The following programming needs must be met:
a) Program modularity.
b) Varying-size data structures,
d) Sharing, without the conflict which derives from thec) Protection.

8-segment

the 64K bytes of today's 11 virtual address space.

1 1

Craig Mudge
- 2 - 9/13/74

II. THE 11/VAX ARCHITECTURE

1. Extended addresses.
In today's 11 a processor generates a 16-bit virtualaddress. A register always takes part in this address calculat-

mode is 2 (auto-increment) and the contents of R4 is the operandaddress. In MOV B, ~(SP), the source operand addressing is bymode 6, register 7 and the destination operand addressing is bymode 4, register 6.

, the addresstion. For example, in the instruction CLR (R4) +

11/VAX exploits this fact that a general register alwaystakes part in address formation and simply extends each registerto 32 bits. The 32-bit address has two components:
16 16
Cc a
c= chapter number
d= displacement with chapter

A single chapter is exactly equivalent in size and structure to

The 16 bit register extension of register Ri is calledRiX. The definition of the address mode is as in today's 1l.
Now consider the 11/VAX instructions needed to manipulate32-bit addresses. The instructions to manipulate the d part of

the address (c,d) are exactly today's 11 instructions. New in-structions to load and store Rix, i.e., load and store chapter
number, have been added. There are also new instructions to do
interchapter jumps (JMPX), and JSRX and RTSX for subroutine invo-cation and return.

The virtual, address space presented to the programmer isa classic segmented? address space: 216 chapters of 21o bytes.
The two component addressing will be exploited by programmers:logically related entities will be grouped and assigned separate
chapter numbers. For example, a separate chapter number could be
assigned to each of a) a matrix, b) a row of a large matrix, c) a

thus the logical unit of allocation for modularity, sharing, and
protection in the programmer's logical address space.

large main program, d) a object time system. The chapter islarge subroutine, and e) a group of sub-
routines e.g., the FORTRN

Address specification is efficient. Full 32-bit addresseswill appear in the instruction stream much less frequently than
16-bit addresses, which, in turn, appear much less frequently than
3-bit register addresses (specifying address-holding registers).

:

:

1. I have used. the term chapter instead of segment because KT11
documentation has sometimes used the terms segment and page inter-
changeably.

Craig Mudge~3- 9/13/74

2. Mapping.

Every address generated by the processor is mapped to a
physical address. Map tables in memory define the mapping for
each process, or task,-.known to the operating system. See Figure
1. Suppose process x 'bxecutes the instruction INC (R3) and that
R3 holds c=4 d=4100 - Then. Figure 2 shows the addresstranslation.

This address translation takes 4 memory references. Be-
cause it is a serial delay which must occur before the processorcan issue a memory reference, it must be speeded up(to about 150
nsec. on an 11/44 type of machine). Thus a "DAT box" for dynamicaddress translation will be used in each implementation of 11/VAX.This will hold a subset of the map table in fast registers. The
goal of a DAT box is to make this subset the most frequently used
parts of the total map.

A range of implementation of DAT is possible: from a one-
register implementation(slow, cheap - 11/05) to one that has many
registers, associative look-up, and elaborate replacement alging (fast, expensive -11/95) such as the "translation buffer
memory" on the $/370.
III. COMPATIBILITY...

To ensure that user programs will run unmodified, a spare
PS bit, PS <087, is used to indicate X or non-X mode. A program
written for today's machine does not know about RiX. The mode
bit when zero forces the program to run as it was intended, i.e.,
as a one-chapter program, by using R7X (PCX) as the value for R1X
through R6X. With this mechanism an extended program may call a
"16-bit" subroutine by a normal JSR ,as-fettews.

fhe call itself is issued from a chapter whose page table
is identical with that required by the subroutine. This is
possible since by definition the subroutine was written to exist
in a 16-bit VAS, and there is no restriction against different
chapters having identical pages.

Note that with a normal JSR the PCX is not stacked and
the called program, therefore, faces no ambiguity.

The 11/VAX working notes (Version 1, 5/2/74) gives full
details of how the X-mode bit, together with the general mapping
concept works for all calls, including examples with the appro-
priate "linking cede" (a couple of instructions), where necessary.

To ensure that our compatibility goals for. system programs
are met, another spare bit PS €097, is used to control the stack-
ing and unstacking of PCX on interrupts and RTI, return from inter~
upt. All interrupts are returned to Process g, Chapter g The

stacking and unstacking of PCX.
controls theinterrupt vector here, in particular PS

Craig Mudge
- 4 - 9/13/74

This allows the placing of a current 16-bit supervisor in PC,or allows a 5uper Supervisor,0SX,to reside here and forward inter-
ruptions to several different "V6-bit" Supervisors existing simul-
taneously in different individual chapters.

Re ference is again made to the Working Notes for full de-tails of how this actually works. Note that Version 2 of the
Working Notes eliminates a deficiency/limitation in this area,
which had been caused by attempting to get by with a single modebit. Version 2 recognizes that adding a second mode bit to re-
move that deficiency is a trade-off with a high payback.
Iv. WEAKNESSES the c hapte 3c heme. we wu ol

prep oP ese

If we were des ng PDP next, i.e., designing the size
and structure of a 32-$it virtual address space from scratch,
we would not proposexa classic segmentation scheme, but the
segment size would be 24, not 16. Other less-than-ideal proper-ties of the chapter scheme. jwhich derive from our strict compati-bility goal are:

a) Access rights appear at two levels - at the chapterlevel and the page level - the latter is not only re-
dundant, but is the wrong place because a page is the
unit of allocation in the physical space.

b) The page size dictated by the KT11 is 4K words, gen-
erally accepted to be too large.

c) 32-bit index words and 32-bit indirect addresses in
memory are not provided.

The only one of concern is the KTll-derived page size.
Operating systems which support 11/VAX on large systems will re-
quire hardware assistance for physical memory mangement. -In that
case the page size should be changed. The RSX11-D group claim
that that part of the KT11 compatibility could be sacrificed at
little cost. The other part of KT11 compatibility is the Kernel/
User privilege structure. We could not change that without a
large rewriting effort. We are currently getting a new set of
figures to quantify "little" and "large".

ty PALL
teFIG 4

: :
:

:
: : ::

:

MAP TASLES IN MEMORY :

:

:

i

'Ck Table base kist

CTB-list
process

;

1

tr,
4

t i

x

ty
:

1

2

t

be
1,1

4 4

4 wg
4

1

7

(index : :

: : : :
h a #

:

e, :

bo

(Eachtable has @ 'aslooe's)
Cnarrem TABLES pace TASLES

Format of table entries.
CTB-\ist CT B boundn+vy

dable base

Penge table base
table entry

access vie
PTB ahts

page table entry PAR POR :

jdentica)

:

:

::
:

:

Ric,ay 2.
ADDRESS TRANSL ATION EX AMPLE

3 Yo

Cay dib=7

CTBR

+Ab \y
dew process IS

@ feo.

enR POR

83

7

Page table lookup

61

1G bAS

TYAN slate (as fev KT-11)

SC4
:

:

:

9/13/74

Appendix 1

Possible Implementation on a Medium Scale 11.
It will be noted that each RiX corresponds to a single

chapter which will each have a set of Page Tables correspondingto it, identical in form to todays set of KT11 registers.
Therefore an implementation could be such that the KTX

option itself would hold RiX and a limited set of KT type Regis-ter sets. Instead of 6 sets for Kernel/Supervisor/User times 1/D
space, we would have at most 16 sets (probably only 9) which
would be Kernel/User times one for each of the Rix. (9 if the
Kernel was essentially single chapter).

The "hooks" required can be seen to be only the provisionof the Register used on each memory reference (4 lines: 8 registers
plus Kernel/User) and the mechanism for setting Rix on a Load
Address instruction. The latter hook can also be made simple if
integrated at initial design time,

With these hooks accessing the required page table is
clearly of the same order of speed as for the present KT. Further,
replacement of the page tables could be driven from the KTX itself
and would run "blinding fast" on a high bandwidth 32-bit wide
memory bus, as loading/storing would be from/to contiguous memorylocations. In particular, the DRAGON bus would be appropriate.
The extra cost of the hooks on the basic DRAGON is estimated to
be <$25, if it is specifically designed to shift the cost burden
on to the KTX option itself, wherever possible.

;

/er

+4

(tow om

yAa+

ea és

») wc the

ba

aA Cow

4) Reo va b wh 7

C

U

[9

CarnegieMellon University Department of Computer Science
Schenley Park
Pittsburgh, Pennsylvania 15213
[412] 621-2600
[412] 683-7000

October 21, 1970

Mr. Ad van de Goor
Digital Equipment Corporation
Maynard, Massachusetts

Dear Ad:

Since the busy schedule of meetings at Maynard yesterday
did not provide me with an adequate chance to communicate my
current opinions on the segmenting mechanism that we were
discussing, I would like to place some observations on paper.

First, I wish to make it clear that, with some exceptions
which are mentioned below, the scheme that we have discussed
is well represented by your memorandum dated October 14, 1970.
The mechanism appears to be sufficient to allow all system and
user code to run in a virtual address space. Further, if the
appropriate instruction capabilities are provided, it will
allow the assignment of an input-output device to a specific
program without allowing that program to access other devices
or to be physical address dependent in any way. My recent
studies have indicated that these features are essential to
the development of highly reliable software systems. In this
connection I wish to emphasize that the instructions for ad-
justing the working segment registers must be carefully speci-
fied so that these properties are maintained. At least one
of the current proposals allows the construction of programs
whose behavior may vary if the physical address assigned to a

segment varies. I believe that it will be highly valuable if
such an arrangement is avoided,

With respect to the general contents of your memorandum,
I believe that any rewrite should clearly separate the two

types of information provided therein. Your memorandum con-
tains both a description of some hardware features and a

description of one way in which they may be used. I believe
it to be dangerous in that, in further work, some of the assump-
tions about possible usage may be confused with restrictions
imposed by the scheme. The result could be that the final
product would be unnecessarily restricted in its manner of use,
This is especially important since, in my own opinion, the
method of use assumed in your paper does not make maximum use
of the capabilities of the mechanism to provide highly reliable
software. The method of use which you assume appears to be

4
:

-2

perfectly feasible and is quite likely to be the optimal method
under some circumstances. On the other hand, it would be un-
fortunate if later decisions made other forms of use impossible.

I am of the opinion that the major rough edges left on the
scheme are consequences of the fact that we have not yet provided
a convenient means of passing parameters when transferring control
to another virtual memory space. The current scheme in which
parameters must be passed either in a shared segment or by use of
an intermediary imposes restrictions on the form of address spaces
and introduces the possibility of timing problems in the event of
simultaneous calls to some shared routine. You will recall that
in my original discussions of the subject I had an "ECS" mechanism
which is now a UUO but which provided for parameter passing. It
now appears that the decision to leave out that feature causes
more problems than it saves. I had an extended discussion withBill Wulf on this matter on the trip home and he now agrees that
some form of parameter passing on UUO or ECS is highly desirable.

The scheme as it is now described provides for a Working
Address Space of up to eight 8k segments. Thus it is possible to
imitate exactly the current 64k core. If necessary this can be
reduced to 7 to provide an extra bit combination for special
address space oriented operations, such as adjusting the WSRs or
referring outside the Working Address Space for brief periods
without loading one of the registers. Each of these effects can
equivalently be gained by means of a new instruction code (at
least for the larger machines). I believe that, where possible,
the second type of solution is preferable. An assymetry in the way
that one segment (7) is handled can lead to a number of difficulties
(e.g., strange effects on the occurrence of program errors).

We have specified that the smaller segments must be in low core.
I am told that in some cases the i/o devices, trap vectors, etc. will
be elsewhere. There is no doubt that in such a case smaller segments
should be restricted to an area of the same size as specified, but
including that "external" segment of physical core. In other words,
we should shift the area.

It is important to specify that the use bit is only changed
on completion of a segment usage. In the indirect referencing cases
a segment may be referenced but the use not completed if one of the
segments referenced is not in core. In that case the use bit should
remain unchanged. The 360/67 suffers from this error and prevented
a perfect "holiness" state as a result.

The remarks on the SUF are incorrect and unnecessary.

0193

:

:

3a
0194

With respect to the validity states: First it is important
to note that the "valid copy" need not be on backup store; it can
also be in core (not a very common case but one that will occur).
The motivation for the choice of the eight states is twofold.
First we wish to prevent reads and writes in cases where segment
swapping has made such actions impossible or incorrect. Second
we wish to have sufficient information about a segment to know if it
must be swapped out or not when space is needed. These states were
derived by reducing a larger table (combining all states which were
equivalent for these two purposes). The only cases which are not
obvious are, for some people 4 and 5, but for others 6 and 7. All
four of these are cases in which the write action makes the "valid"
copy invalid. When that happens there are three possibilities:

1, the action was an error
2. the action was correct, the backup space may now be

released, but we are in a hurry and will take care
of that later

3, the action was correct, backup store is scarce and
we want to release it immediately.

In states 4 and 5 we assume that condition 2 holds. In states
6 and 7 we assume either 1 or 3, or that it takes software to find
out which case holds. In state 7 possibility 1 above is irrelevant.
In considering 4 and 6 we find that 6 is the "normal" case with 4
being reserved for the situation in which a relatively small segment
is being completely rewritten. The choice between 5 and 7 depends
on the availability of backup store space. Choose 7 if it is a
scarce resource.

With regard to the state transitions: For the multiprocessor
case only it is important that the state changes be determined
finally on the basis of the core copy and not the WSR copy. How-
ever, the core need not be consulted each time because all hardware
produced transitions move to a stable state. Actually it is only
necessary that the"change possibilities" for the destination state
are a subset of those for the original state. The diagram given
has this property.

The incompatability in the trap vectors Has to be studied care-
fully. I think it correct to say that the difficulty arose because
the current PDP-11 is wrong in this area. I will justify that state-
ment by claiming that the current scheme assumes a "last to be inter-
rupted is the first to be reawakened" discipline for processes in an

operating system. There are numerous situations in which such a

discipline is inappropriate and in those cases the assumption of LIFO
or stack behavior leads to inefficiencies and a more complex interrupt
handler than should be needed. You will find those difficulties in
the MULTICS interrupt handler for just those reasons. The stack assump-
tion could have been avoided by stacking PC and PS and then using
R6 (SP) in the dope vector or scheduling tables. Instead PC and PS

are used in the dope vector and the stack is common. One resultof this will be unnecessary stacking and popping for real time
systems, but, more important, in the old scheme the probability ofStack overflows will be greatly increased over the scheme we proposebecause all processes in the old scheme use the same stack.believe that this type of arrangement is incorrect even when thereis no segmenting scheme. In our case the extra stack operationsare even more important because there is extra state to deal with.It is perfectly feasible to keep the PC and PS in the dope vectoras Delagi suggested, but the price will definitely be decreased
performance because we are carrying an earlier mistake forward.I believe that Wulf and Bell now agree on this.

In this regard we must be aware that by keeping R6 and WO-W7in the ST as shown we eliminate the possibility of sharing a seg-ment table for several processes which operate in the same address
space. Note that we can do that now with a physical space. To
avoid duplicate tables we can separate the values of WO through
W10 from the segment table. Since they represent addressable data
they can be kept and used in the Virtual Address Space. In particularthe values of these registers + the base of a segment table determine
a "process" (term used for lack of a better one). I see very little
cost resulting from moving this data out of the PST.

With the exception of one paragraph on page 13, the material on
13 to 16 should be eliminated on the basis of my remark about treat-
ing a possible use as the "only way".

The trap vectors must be fixed by convention in virtual address
space, the external interrupt vectors must be tied to physical space.

I believe it would be nice if the UUO interpreted the extra
eight bits as an index into an array of names. This is done now in
software anyway. We could then eliminate the intermediary program
easily.

Steps 1 and 3 of the restore sequence on page 21 are highly
questionable. A minor matter is that you never use or refer to W12
and Wi3 elsewhere. That is probably just an oversight. On the
other hand, this decision assumes the same "last interrupted,first
awoken" discipline which we criticized the current 11 for. I believe
that in most cases we must rely on the routine which first awoke the
interrupted process (scheduler) to have retained a VMD or process
pointer and to use it again at the appropriate time. This should be
thought out very carefully. The parameter passing possibility will
help in many cases,

Above all we must resist the tendency to follow some suggestions
and try to make the mechanism a "cure all". It allows all code to

0195

:

:

5

run in virtual space. That
of them. It alleviates the
vide a magic complete cure;
be able to ignore the fact that memory is not a random access memory.If we follow the MULTICS rou te and try to take all the special casesinto account, the thing will
MULTICS did for its designers).

DLP/dmj

solves a lot of problems but not allstack overflow problem but will not pro-it will not allow a FORTRAN compiler to

get beyond our understanding (just as

Yours truly,

D. L. Parnas
Associate Professor
Computer Science

cc: same mailing list as your memo.

0196
N

:

::: :

MBN :

INTEROFFICE MEMORANDUM
0442

TO: Distribution DATE: March 21, 1974

FROM: Craig Mudge

DEPT: 11 Engineering
EXT: 5064 LOC: 1-2

SUBJ: Initial Feedback on Chapter Scheme VAS MEMO #2

1. Problems

(1)

(2)

External representation of a process's loaded image will
need.to be an encoding of the internal representationbecause of the tagged stack. Needed, for example, in
swapping out a process.
References to : the tagged stack will not necessarily be
through R6, e.g.,
MOV SP, RO
ADD (RO)+, B

Hence, the implementation must be able. to recognize this.
Suggestions2.

(1)

(2)

(3)

The tag needed for stack entries could be bit 0 (Pc <O>is redundant on the stack).
Allow 32-bit addresses in indirect addressing and use bit
0 as tag.
Make mode 5 do something useful.

Clarifications3.

(1)

(2)

Index mode, X(R6) goes through the stack entries one by
one to the X'th one.

Rules for addresses in the registers:
a. registers always hold 32 bit address
b. loading a register always fills 32 bits
(a) Memory to register

i. MOV: c current chapterii. LA: c €--high 16 bits of operand

:

:

(b) Stack to register
i. MOV when stack entry is short: .

C

(c) Register to register
Long address to long

Distribution
Bruce DelagiBill Strecker
Dave Rodgers
Ron Brender
Ed Marison
Jega ArulpragasamJohn LevyBill Demmer
Len Hughes
Bob Gray

é

04432

te

current chapter" long: 16 bits of entry
uw long:short: error

ii. LA

address

4

0198
INTEROFFICE MEMORANDUM

SUBIECT: Protection and Relocation for the DATE: September 28, 1970

11/25

TO: FROM:
PDP-11 Coordinating Committee Gordon Bel]

cc: Bruce Delagi DEPARTMENT:

Let me thank Bruce for getting this proposal memo out into the open. Three comments (so far):

1. This subject (I believe) is a lot more important than an issue like floating point data format

or a calling sequence for subroutines because it affects all software (monitor, I/O, trans-

lators, utilities, and all user-written programs). Therefore, can we hurry and get a small

group together to really consider it and make sure it's right in the same way the two committees

worked on floating point? Getting a group together won't harm the 11/25 schedule if, say

they're given the guideline of having about the same amount of hardware (4 2 registers). In

fact, I believe it will speed up the 11/25's by about 6 months, because it will force the

monitor structure to be outlined - and thus the software will be able to use the hardware

instead of having to be written in spite of it.

2. At least make the 3 segments (register pairs) have control bits to indicate whether a segment

is read-only, read-write, execute-only, or stack. In this way you aren't stuck with the

program organization Bruce is dictating by his hardware registers. Since Bruce's comments

deal with time-sharing, I assume that's the program structure on the PDP-10. We've gone

through a fair amount of pain to modify the structure to allow several independent programs

to access common data. Also, I would hope the problems on the 10, like not being able

fo swap a program doing I/O,are solved with this organization. (For process control this

seems very important because it allows programs to be brought into core and executed only

when there's data ready in an I/O area.) Finally, the biggest single problem of the 10

monitor is its size. This is partially caused by the fact that I/O can only be done in the

monitor (in monitor mode). Therefore I would hope that user written I/O control programs

(e.q., disk, special 1/0) are permitted. These routines do work for other user programs,

placing results in the calling user's area.

3. I hope to have an extensive alternative proposal which uses the same amount of hardware.

bwf

1043 (4-70)BC 5

SUBJECT: Protection and Relocation for the 11/25

TO: Gordon Be11

I am very
above subject,
monitor we wil1 be writing for the PDP-11/25.
time multiprogramming system with background- foreground capabilities
that does not
any task or executive from being destroyed by the running task and
at the same time does allow a good management of Common's and
Global Common

The subject of data queuing in a multitask system is also a

very important
exclusion perhaps of the IBM-1800 MPX.

Because
that we are pr
I will like v e
we are going Ln the right direction.

Q197
INTEROFFICE MEMORANDUM

1970DATE: October 14,

FROM: Van Diehl
Bruce Delagi
PDP-1l Coordinating Committee

Stapleford

much in favor to get together and discuss the
fundamental for the structure of the real-time

In fact, a real-

have a good hardware protection scheme, i.e., protects

has very restricted market potentials.

subject that has not been solved by the competition,

he architecture of the PDP-11/25 real time monitor
esently specifying is so dependent in these ideas,
ry much that we get together ASAP to make sure

Ken

WD: cs

DIGITAL EGU

: :

0342
JUL 17 1973

::

/%8
Avery Ac1S PROM::

DEPT: Marketing
7 :

+3OR AS A AL MACHINE

tach J is a from the
tne of the

CSS, was comittachea is
Nelson of UCLA.ue

)
CQ

)

w
a 9 uy 2 t Q cmeeting witn Dr. Poa:

vestion You see
Digital interestec some Kind

to what (financial) exten We snould reaily consider
programming as weli as standpoint Po-

Nex Tew Laat the modification which they have proposed wil
sreatly aid in the vrogramming of such a system.

your as 5

late have a slot rese.vec with
ne oducts Line so

disWeir has been canceiled ard

tne time they W:

chine is minim1zed.

ac
Attachments

rt
4

w

OF Nt BERING AND APPLILD
LUS ANGELES, igCALIFORNIA 96024

0343
+

:

3532 Boeiter Hall:

July 12. 1973

.sachusetts

material cegarding our recent discussions
- of the 15 a general digsuss-

we proposed. The note con-
ona virtuai machines will, T
anternal mark eting discussions.

7

7 :

AN
discusses a number of the

ne architectures that are
upon ia my n:

nt poin
at am a:

newiy arrived Deing initially funded
2 c

AS a * s Ganmn be justified until we have
shown prog submit new fuading recucets. So for

ven of your quotation would greacly straiz.

limited 4

Feel quite we are providing vou with
er weil viable ideas. A not

c gture cn the pant ppropriate in return.
9658 paid cost, plus a

a de: aa. Toon for esampie, extra
alow > the teaching avplication

my note.
a fortunate if must 100k elsewnere, si

> of
W apport with

lout

ccs

Ver, at
gnifican

le
ation:

+

7
4.

:

conen

t

A omg

.0344
a ty

*
7

4,

:
~ a

: :

1 : aw.

JEPT/APG/CONTACT 3 3:a
'om ShermanSALESMAN

OTHER

ne per
Od, Mies

: Nedgon of UCLA ana ont Engineeri aie
: :bs:

aan
:

:

: :

Qeldvearv Deseeber 19°3:

&

be ut CSS by November 16,1973.

+

the
:

: : : :

:: :

Puy roe
: Bu 4a bo::

: as ust:

thay ea by . moo
tA

J

*

0345

:
1i ::

:

l. A pros foi

Wibt jie t te special features are

(e
n

{ 3: : :

1

vi 7

:

2

7

:
1 : : :

dispatch to the proper service
:

bbs t :

:

0346

AN oi t for vectors GAG from
user mode wiil be provider, : a eek traps and interrupts
from or : Goda WLLL crap to the ncrmal
vectors and traps and Pave Trom user mode will trap
to mortal vector wie offset. The oftset will be
set at i989 : : : twise Spec. Flog, axampeLe;
the supervisor trie. woo : Lee o Privileage@ instruction
and Su will trap in kernal A user
Program trying to execute ne seme instruction would trap
Using @ vector ut 4 Kernal space.

A "User Stack Limit" rogster will be provided to onerate
+

Similacly to the kernal : limit Any user~
Mode stack ine Limit will be to
complete but will cause a "Memory Manacement"

a

trap (as OPposed tO aN

2 OF tneOs

ure 2,

Chas dh

0347
l t

NN USL TRO] VMX
ENB ENB} ENB

VMA ENE

TKO : :Nis

USI, ENB

PRV ERR

USL ERR

VMX CONTROL

vescription

Set, enables the oft the
k speciticd in 2 above.

Enable : wat the
user trap OF e

User stack Limit Enable

Instruction Error -~

O

ions cuused the trap

Limit Error --
User stack Limit caused segmentation

FIGURE 1

Is

mnes Extensions Enable

*

i > + ables
rset.

7

tr +

:

4 a

PRV
4 CODE

Instruction Code*

RESET a
Wai? z
RTZ 3
RTT 4
SPL 5
MTPT

7
MPPT LO
MEYD
Unessioned

* (Assignments Tentative)

PRIVILEDGED INSTRUCTION BNCODING REGISTER

:

71

Re

SPEO

0349

1973UCLA, June 29,

(The following discussion assumes 34the reader Pam t
A

the introductory material presented in "Part of a Proposal Tor the

a wvCe bow : :

remarks onosea

fications to tae
Na noa ificat ons are necessary u the+ -

sensitive thatin order to make it virtualizable.
rust trap are the following:

RTI

R retET
wei

MFPD
MTPD

nat an attempt to execute nese instructions

snou d cause a privileged trad to

locations, le to:

cations are absolutely necessary tn order to construcs
:

a
+

yiew of e Tic ce: :

a stack Limit register VE 4- ana

simsiy

existence essen

1

of the

ay

state

new

or

the

the

.. r active

Lng

rd mod

bu

when

thi

"nere be a second set

in one ofnateod

ea

atCEL

~

tmplies

">

That is, the state of the processor

(user,
trap occ

+ there is no way tnat the n

ou

ut

le
n

as

exe)

a

ne third
eS,

0351
2,

av Least 50C- nave already been usec for trans. ence

tnay Pixea beundary should probably double the old.
Tne last aspect of these ts the fol lowing.

be activatd 3 a bit pevhans

that is located in a ate where it can te simply protected. Tepend-
in, Avca, the ater

modi* od the modifications are either disabled
or active.

MMe possibi ity of a manual toggle switch override was men.ioned

at the meeting. We that it be a three position switch:
ma e > extendec machine, under control.

in this fashion, for standard macnines. ineludins test
ang diagnostics, can be run without any changes to them. It also

allows us to run vane Ware during the develooment of the

and
To

useful to set down more > in everone's mind our

posai as we see it. I hove that the preced'ng discussicn helrs to

serve that
vwine rerar . to motivate some ci -

A Peshion by : the inter

of the coftware te be

on or

noteé in the A the 18 2 secure :

:

Ve wis 23 a"

745 :

modivien'* of the 3

ual

: :

74

:

5

widaka porvach ot ins syster

0352

2 7ae

environments, in which standard software can be run. uses

anclude ANTS, Digital's DOS, and otner operating svstems. "he

practicalsti e S making virtual machines available Students

av UCLA for teaching purposes has also be reise.
here "virtual machine" is ceinz uscd in the sense of che nvper-

Visor monitors THM 7 to

PDP-11/40s rather than PDP-li/i5s 25 Cased o7 relative ease of

forme tasx compared we the latter. The

tively simple architecture, with two states ("kernel" and "oser")

and no Segmentation hardware for the time being. In concrast, the

PDP-11/45 has three states and rather complex memory manarement harc-

ware. Just switching from one user to another in order to

Example, Saving aeal of

in order to virtualize the memory manarement nardware, in

oO to having facilities to save virtual memory management

information, it is necessary for the sake of efficitencv to have

acuuel hardware contain the result of the composition of two memory

aa

maps: one performed by the VMM and the otner by the currentivwad

running operating system. Mara ine these fair.y formidasie

was consicered +to bs @ relatively priority iten

anc desirable, it is not necessary at first, since en-

mronments aree acceptable Yor the

TAOS.
tne to yielu

can

: Ne

:

:

Later "ne Pecusicidate. + :

0353
: +: : :

a +a st
Q
u

la
n rs c ry 'co
m
e

Sa
ad

ra
s

oO KS fo ct a 3 a) 13 ae O
s

is ry on io
e) ch oe
)

ca
) 3 ie
)

ie
]

Le
a] % oe f/f oO Le
)

(9
9) ct Ly Q
O < b
w
t ue

of a finer division of srotec v now runningsince he

in a given VM, and can in a reliable fashion divide up and contre.
the information units allocatec to it by # kernel wh : above iv.

The structure is illustratec in the accompanying figure.
The three states of tne usr.

"he kernel program will run in xernel state, the +VMM in supervisor

state, and all other pprograms in user state.
The kernel program will be the object of a great deal of

attention if it is to be proven correct. It is critical that the

Kernel be as small as possible if a reliable correctness proof is
to be consvructed. As much as possible then the xernes

code relevant only to protect on. Cther concerns will be relegave

to the VMM.

Por this reason for nov nant

go to the kernel. out rabner only those to access contro?

I " our system, practically ali t
(running in real user node) will be herdled

a4:

Xai acs:

aDy overatin
3 1 Fy On&

mri: view motivates the desirabi + ity of having the 3

a trap depena on its origin. separate sets of vectors we

availiable, then ali trans

pram, and it would then be necessary to have xernél code

Wewt
2

va au Coue ca 82
Ne Nee

Maceo the Cas ot PDPOVANE ore rv 24.09

as tne of whee

03804
:

: :

ney a :

virtual michine
monitor

:

e
7

:

Q3855
NOES O

7 iL 2973

in other notes a effort to sroduce « provanl

correct operating system subnucieus has been proposed at

Briefly, the goal of that vésearch is «

the task of constructing secure nultzuse svstem OC

short term, this view is much "more specific: Qe 4

Simple multiuser computer system with @lementary sharing faci

ties that can be certified secure. The approach 13

elsewhere, ci but basically che idea is to desion and prove

correct an opexyating System subnucleus, called a kernel. Then

a virtual machine monitor will be layered over it. this

rasnion, the amount of code to oe and verified smell

relative to an operating Svstcem, and hence a practical

21

DSTO

Since the virtual machines can systems,: :

of the functionalities providea by such servi

ana the like, are also availeble. Hence tne resuit is

be @ veliatively inexpensive, highlv secure,

The virtual machine approach has values apa

impiicity, however. General veiues such as allow
its

egevelopment of operating systems;

running of multipie operating svstems, of many test

4

:

ns

:

these OF

a
to tne

0356

wee a NASA Ames Center+

2Xpress an wad systems
4 (tae ARPA Network ir One macnine

~and the sottware for gray Leus station anotner. A

machine approach would ailow nim to do so without expensive
ns of ANTS or : con~

Ti NA ba

environments, as

1S a Teacning interest. Because costs7

ls géneraliy not possibileand the Like, i

cf

The the goal
virtual macnine in the current UCLA oocsal, has essentially
chose characteristics. It is a mul machine, to whicn

son form memory Management is easily edded. Bence tne

machine system could be madé avaiiable
cf teaching operating systems ideas for exemdie, at

tne same time that other production operations are going on.

example, both ANTS and student appiications are expected

ctotection voroble

give students ds on" experience with real hardware of

signizic :

hda adOnt

Tox wae e

Loci

0357
+

cost

ride virtual machi.' is likely to

some terminals are like the necessary. It might be

as
)

oO W o rte ae + m) ie
) FS > 0 Yais2 the mocestDiu ment

sum necessary the of

any complete system reno is

si This ao .. the computerou h

fering may

allow several costs, who coula

+

not have justified that wouid other-

dav. The

cain

commercail viabiiity or aachine

emphasized vy IBM's Vie for VMITO.

However, : tnd the UCLA research is

not prime WM security.
7 :

v aa

rown Ficantiy
terest ar

years academic

a

LOW ; ed4

:

A Madox

e
5

0358
:

y SEg.ninlege y cor Leaks) are

an the broader aspects of our research,
Secucity kernel et UCLA is intended to be fair
for t > time being some of that generality wiil not

tre virtuai machine monitor. Hopefully, it wili

:

on anc pe

note that hardware

Rae dae Virtuaiigation, not security,although in our Casé the

two are ciosely tied.

: :

opex, G. J, Part o the Design a
vCLA, May 1973

+yY Secure multiuser 'Computer

Popek, G,
ACM National conte \Atlanta, GeorgJUST 7

Buzen, J., na Gagliara: 4

Conference, June 197 National
a Néw York)uw a @ = Hw K w

Architect ure'

LN

:

«DRAFT - Interoffice Memorandum

1, {0248:

(2) :

SUBJECT: SEGMENTATION DATE: October 14, 1970

TO: Gordon Bell FROM: Ad van de Goor
Dick Clayton Larry Wade
Bruce. Delagi
Dave Parnas
Bill Wulf

This memo contains a very preliminary description of a segmentation

scheme for the PDP-11 family.

The scheme attempts to accomplish the following:
1) Increase the user's virtual address space to 2f24 bytes =

4 million bytes.

2) Give a hardware definition of the "working set" model.

3) Implement "sharing" and"protection".
4) Allow processes to handle private I/O devices.

5) The scheme is usable with or without paging.

6) Provide efficient protection between processes and different
~

segments in a process.

7) Provide storage efficiency by allowing a large range of

segment sizes.
8) Allow the user to work in virtual space only.

9) Provide a physical. address space of 2725 bytes =

8 million bytes.

}

-2

1.0 Basic Solutions 0244
The address generated by the PDP-11/20 is a 16-bit byte address.

The bigger members of the PDP=11 family will interpret this
address (now a virtual address) as a two dimensional (segmented)

»address as shown in Figure 1. The 16-bit virtual address "VA"

is divided into two fields. "fe

1) The Working Segment Field "WSF". This 3-bit field determines

which of the 8 working segment registers "WSR's" has to be

used to form the physical address. of the data or instruction
The WSR's contain, among other things, pointers to the be-

Ginning (i.e. word 0) of a segment. Appendix A lists some

reasons for considering 8 WSR's adequate.

2) The Displacement Field "DF". This isa 13-bit field which

contains an address relative to the beginning of a segment.

This allows for segment sizes of up to 8K bytes.

virtual address "VA"

3 13

Working
Segment Displacement
Field "WSF" Field "DF"

:

~

FIGURE 1. Intepretation of a Virtual Address.

2a 0245

The formation of a Physical Address "PA" is shown in Figure lA.
The (WSF) of.the VA is used to address one of the WSR's. The

Segment Address Field "SAF" of the addressed WSR is used together,
with the (DF)! -to form the PA. The PA is, as will be shown

later, a 25-bit byte address.

The 8 WSR's can be loaded with Segment Descriptor Words "SDW's"

from the Segment Table "ST" under control of the process.

1 Note: (%) means "the contents of x".

a

WSF DF
VA 3 13

b

SAF :

WSRo 16 16 :

WSR
1

om

WSRJ

VA = Virtual Address
PA = Physical Address
WSF = Working Segment Field
DF = Displacement Field

>
25PA

WSR; Working Segment Register i
Figure 1A. Formation of a Physical Address. o>SAF Segment Address Field

3

0247

1.1 The Segment Descriptor Word

The Segment. Descriptor Word is a double word (32 bits) containing

information relevant to a particular segment. It contains 5

fields 'as shown in Figure 2. Detailed descriptions are given in
subsequent sections.
1). Use and Validity Field "UVF", This 4-bit field is the

only field which is subject to change during execution of .

a segment
2 The UVF consists of two sub-fields:

a) The Use Field "UF". This is a l-bit field
which indicates whether the segment has ever

been used.

b) The Validity Field "VF". This is a.3-bit field des-

cribing the validity state of segment.These states

will be discussed further on.

2) Software Use Field "SUF". This 4-bit field allows for

16 encoded states four of which are assigned already

and describe the movability and size flexibility ofa
segment.
a) Move Freely (can be swapped out).
b) Move in core only (cannot be swapped out).
c) Do not move (specifically for segments containing

:

I/O addresses).
d) Do allow size changes (e.g. for the stack segment).

3) Access Control Field' "ACF".

This is a 3-bit field describing whether Read, Write and

Execute are allowed.

1 all changes are done under hardware control.

4

1.1.1
The 8 possible validity states are encoded in the validity

0248
4) Segment Length Field "SLF". This is a 5-bit field

describing the length

5) Segment Address Field
a pointer to physical word 0 of the segment.

The Validity States

field VF. These 8 states

of the segment.

"SAR" This 16-bit field contains

are listed in Table 1 below. The

column "core assigned" indicates whether any physical core has

been reserved The column "core valid" indicates whether the

assigned section of core contains valid information. The

column "valid copy" indicates whether a backup copy (on the

disk/drum) is available

SDW =
UVF
SUF
ACF
SLF
SAF

In order to get a better understanding of Table 1, the state

transitions of Table 2 should be consulted.
SDW

4 4 3 5 16
UVF SUF ACF SLF.-

Segment Descriptor Word
Use and Validity Field
Software Use Field
Access Control Field
Segment Length Field
Segment Address Field

Figure 2.

SAF

Layout of a Segment Descriptor Word.

>

02495

CORE CORE VALID TRAP AFTER
ASSIGNED VALID COPY WRITE COMMENT

Core copy,
2 Yes Yes No No only

Core reserved
3 Yes No No No for segment

Core reserved
4 Yes No Yes No & backup copy

available
State after

5 Yes Yes Yes No transfer from
backup

6 Yes No Yes -

7 Yes Yes Yes Yes

Empty
. No

Segment on
No . Yes backup stora e1

Table 1. -The8 Validity States

0250-6

READ OR
EXECUTE WRITE

0
Trap Trap

1 1
L Trap Trap

3 Trap 2

4 Trap 2

6 Trap Trap

Trap

yR/W

R/W

R/W
:

32 2 2

3
4

TRAP

4

"65 5 2

6 2

7

7 7 2
7

NOTE: R = Read or 'Execute
W Write
Trap is an ACTION - not
a state.

Table 2. Validity State Transition Table &

Flow Diagram

02517

1.1.2 The Access Control States

The access control state of a segment is described in the 3-bit
access control .field "ACF". Table 3, below, shows the 8 states.

x

READ WRITE EXECUTE COMMENT
This state allows
for passing segments
Execute only

1 x segment
Write only

2 W segment
Useful?

e Read only data
4 R segment

"Normal" shared
5 R x segment

R/W Data
6 R W Segment

"Garden Variety"
7 R X Segment

3 Wa x

<

Table 3. -Access Control States

0252-8

1.1.3 The Segment Length

This is described in the 5-bit segment length field "SLF".
Small segments are incorporated for storage efficiency and to

allow for "private'I/o", e.g. to, rsallow users in a time-sharing

system to have their own 1/0 devices. The meaning of the encoded

bits is as shown in Table 4 below.

(SLF) = 0 means that the segment descriptor word.is void,

i.e. it does not describe a segment.

(SLF) = 15 indicating a shared segment, means that the SDW

points toa string of SDW's .(of length 1 or more) the last
one of which contains the actual length of the segment.

For the smaller segments the length 1Ss a power of 2. The bigger

A

segments, however, have a size which is a multiple of 256 words

for storage efficiency reasons. (See Section 5.0)

The maximum size of a segment can be derived from the 13-bit displace-
ment field of Figure 1. By requiring that any item in the segment

be direct, byte addressable the 13-bit displacement has to be in-
A 4

terpreted as a 13-bit, byte address, limiting the maximum segment

size to 2i2 = 4096 words.

9

0253

The numbers 16-31 in the
SLF indicate the following 5

lengths:

(X-15 * 256 where 165 x 31
$

This allows for 256 word pages.

LENGTH OF SEGMENT
(SLF) "IN WORDS

0 invalid segment

2

5 16

6 32

7 64

8 128

10

li
12

USED

13

14

15 shared segment

1

3

4

9

7

Table 4. Interpretation of the Segment Length.

0254

1.1.4 The Segment Address

The physical address of the first word (i.e word 0) 'of the

segment is contained in the 16-bit. segment address field
"SAF". The interpretation of this 16-bit quantity is as

follows.

1) 1 1(SuF) $8 then the 16-bit quantity is interpreted
s

as a word address. This means that "small" segments

(i.e. those with a length between 1 and128 words) have

to be located in the first 65K words of core memory.

2) «If (SLF) 15 then the 16-bit quantity is interpreted as

a "page address", i.e. an address of a 256 word quantity.

-10

This allows for a maximum physical word address of 2% 16 *

278 = 2724 words or 2425 bytes.

2.0 Layout of the Seqment Table

The Segment Table "ST" contains all the segment descriptor

words "SDW's" belonging to a certain process.

The ST, itself, is a segment and its maximum size, therefore, is

limited to 2113 bytes = 4K words. Considering the length of

a SDW (4 bytes) the ST can contain 2411=2K SDW's maximally.

This gives a maximum virtual memory per process of: (max. segment

size) * (max. # of segments) = 2713 * 2711 = 2724 bytes.

- ll -

The layout of the is shown in Figure 3. The top 16 words

of the ST are not used to store sDW's for reasons to be ex-

plained later. Currently
l.

these words are used as follows.

1) The first 8 words (WO-W7) are used to contain

Segment Numbers "S#'s". A S# of j in Wi of Figure 3

indicates that WSRi, is loaded with SDWHj. So the

S#'s loaded into WO-W7 of the ST indicate the SDW's

the WSR's are loaded with. the maximum

of SDW's in a ST is 27 11 a S# does not have to be

bigger than 11 bits.

2) Word #10g (W10) contains the stack pointer (R6) when
o

the process is inactive.

3) The remainder of the words (w11-W17) are reserved

for software use.

0255

4

:

Because

- 12 -

32 bits
11 bits 4 16 bits

a

Figure 3. Layout of Segment Table

0256

wo wl
S# o S#

W2 W3
S# S#

w4 ws o

S# S#
W6 W7

S# S#
W10 R6 Wil

W12 W13 :

w14 wi5

w16 W17

Seament Descriptor Word #0

Segment Descriptor
Word #1 44

4 4 3 16

SDW #N-2

SDW #N-1

Segment Descriptor Word #N

>

4

10

ax
14

24

30

34

40

3.0

- 13 -

0257
Master Control Process "MCP"

This process has the authority to allocate and de-allocate
4

resources in the system: Core management and the creation.and

xdeletion of segments belong to its responsibility. This is the o

only process which is allowéd to add, delete, or modify ST's
and SDW's." Other processes have no control over their ST and

SDW's.

Every process in the system is completely specified by its ST.°

When a process is in control, a hardware register, the Segment

Table Pointer "STP", points to the ST of the process. The STP

is a 21-bit register (see Figure 4) and has the same layout as

the low order 21 bits of the SDW of Figure 2.

5 16STP

SLF SAF

SLF Segment Length Field
STP = Segment Table Pointer
SAF = Segment Address Field

Figure 4. Layout of the Segment Table Pointer "STP"

The MCP has a special segment, called the Segment-Segment

Table, "SST", which contains Segment Table Descriptor Words

"STpw's" pointing to all processes in the system, including

the MCP. The location of the SST is known to the MCP because

é

0208
- 14 -

it is one of its segments. Figure 5 shows the layouts of the

different tables,' The SST contains M STDW's indicating that

there are M processes in the system.

Process is the MCP. Note that the SST is the first

segment in the MCP's ST and is therefore under complete control"
of the MCP. It is quite obvious that the SST should not be a

s
4

shared segment. The process in control is Pr. because the

STP (Segment Table Pointer) points to it.

-14 Oe 09

it is one of its segments. Figure 5 shows the layouts of the

different tables "The SST contains M STDW's indicating that

there are M processes in the system.

Process 0 "Pr.0" is the MCP. Note that the SST is the first
4

segment in the MCP's ST and is therefore under complete control,

of the MCP It is quite obvious that the SST should not be a

shared segment. The process in control is Pr. because the

STP (Segment Table Pointer) points to it.

ST of Pr. 0SST
--xY STDW #0

STDW #1

:
é

a

STP.

SST =
STDW=

Word
MCP = Master Control Process
ST = Segment Table
SDW =
STP =

16 reserved
words

SDW #0
SDW #1

>

e

Seg
#1

STDW #M :

NoSDW
: Seg..

#No.

ST of Pr. 1
:

Segment Segment Table
Segment Table Descriptor

Segment Descriptor Word
Segment Table Pointer

Figure 5. Layout of SST and ST Tables.

Seg.
#0

SDW #0
SDW #1

Seg.
#1

Seg
#Ny

DW # Ni

ST of Pr. M

Seg.1

#0
Seg
#1

SDW #0
SDW #1

Seg
+NM 0260SDW # NM

-16 - 0261

4.0 Interruptability
Fast interrupt response is a requirement especially .because the.
machine might be used in real-time applications. The state of a

running process is determined by the following:
1) The program counter "pt"

2) The. stack pointer
3) The program status word "Ps"

4) The location of the ST which is the (sTP)

5) The contents of the 8 WSR'S

6) The contents of the accumulators "AC's"

The interrupt response time can be divided into two groups:
1) The time needed to save the current status, called

"Save Time".

2) The time needed to set up the new status, called
the "Restore Time".

4.1 Reduce Save Time

In order to reduce the Save Time, the following two facilities
are introduced:

1) The saving of the AC's is done optionally through

Save AC's bit "SAC" in the PS word (see Figure)

026<

2) The saving of the WSR's is made not necessary because

of the scheme discussed below. In order to allow for

this, two requirements have to be satisfied.
a) Duplicate. copies of the contents of the WSR's

have to be available in core memory. 4

4

b) Knowledge as to which spw's are 'loaded in

which WSR's has to be available to 'allow for

a correct restore operation.

that the (WSR's) arePart a) is satisfied by guaranteeing

always the same as the corresponding SDW's in the ST. This

can be done relatively easily.at the
e

expense of very little
overhead becausé the SDW's do not change very often when they

are loaded in the WSR's. only 4 bits of the SDW can change

Thesewhile a "segment is working" (i.e. loaded in a WSR).

are the Use and Validity bits (see Section 1.1)

al) The Use bit. changes,at most, once while the segment

is working, namely when it is used the first time.

a2) The validity bits can change only a few times after

which they end up in a stable state or cause a trap

(see Table 2).
Because the changes mentioned under al and a2 are so in-

frequent, they are made in the WSR and the corresponding

SDW simultaneously (i.e. in a non-interruptable sequence) .

The

Q263

Part b) is satisfied by reserving in the ST 8 words which

contain. the SDW #'s loaded in the corresponding WSR's

(see Figure 3).

-18

The additional requirement ,in loading a WSR is that the

SDW # has to be loaded in the corresponding entry in the

st.

Reduce the Restore Time

restore time can be reduced by

1) Conditionally restore the AC's. This is done through

the Restore AC bit "RAC" in the PS word (see Figure 4).
2) Selectively restore the WSR's* This is done through

an 8-bit mask, the Restore WSR mask "RWSR", in the

Virtual Memory Descriptor "VMD" of Figure 5.

3) Conditionally Change Address Space.

This is done through the change address space bit
"CAS" in the VMD. The exact operation of this bit

4.2

needs some more work. .

0264
- 19 -

PS

1 6

rac P TNZVC
SAC

SAC = Save AC's

RAC = Restore AC's

P = Priority
= Trace

N = Negative
Z = Zero

V = Overflow

c = Carry
PS = Program Status Word

3

a x

A

Figure a. Layout of the Program Status Word

5.0

026520

Interrupts and Traps

The interrupt and trap vectors, as currently exist on the PDP~11/20,

have to be redefined in order to guarantee efficient operation.

Instead of the ""old" interrupt/trap vectors consisting of a

PC and a PS word, we will now have a Virtual Memory Descriptor

"VMD", see Figure 5. These M's are located in physical core,

they are also 2 words. long, and can therefore replace the

interrupt/trap vectors.

The VMD contains all the information necessary to start a process

operating in virtual memory, rather than interrupt/trap handlers

operating in physical address space. The above feature allows

processes to handle their own interrupts/traps.

VMD

8 2 1 16

RWSR STAF
CASF STLF

Y

VMD = Virtual,Memory Descriptor
RWSR = Restore Working Segment Register Mask
CASF = Change Address Space Field
STLF = Segment Table Léngth Field
STAF = Segment Table Address Field -

Note: The STLF is similar to the SLF.
The STAF is similar to the SAF.

Figure 5. Layout of the Virtual Memory Descriptor

9266

The saving of the state of an interrupted process consists

of.the following steps.

1) Test the SAC bit in the PS (see Figure 4) and

conditionally push the AC's on the stack of the

interrupted process.

2) Push the Pc and PS on the stack of the interrupted

process. ;

3) SP in W10g of the st of the interrupted process.

4) Invalidate the WSR's by clearing them. This is to

safeguard the interrupting process from accidentally

being able to access the interrupted, process's VM

Store

e

space.

Restoring the state of the interrupting process consists

of the following €steps.

1) Store (STP) in a temporary location "TSTP".

2) Pick up VMD from interrupt/trap ector and store it
in the STP.

3) Store (TSTP) in W12 and W13 of the ST of the

interrupting VM space.

4) Restore R6 from W10 of the ST of. the interrupting

process.

0267
- 22 -

Pop PS and Pc.

Test RAC bit of popped PS and conditionally restore

the AC's by popping them from the stack.

7) Selectively restore the WSR's under control of the

5)

6)

RWSR mask in the W.

6.0 Indirect Addressing and Shared Segments

Instruction as well as data addresses are virtual 'addresses
"VA's". Because the (WSF's) 1 can be different for instructions

and data, instructions and addresses can come from different

segments The two possible cases for direct addressing are

shown in Figure 6.

6.1 Indirect Addressing

Indirect Addressing is handled in a way very similar to direct

addressing. Now, however, three VA's are generated: 1 for the

instruction; 1 for the indirect address; and 1 for the data.

This leads to the five possible addressing cases shown in

Figure 7.

1 See Figure 1 and 1A. :

- 23 -

0265
Seg. bSeq. a Se

Instruction Instruction Data
Data

Case 1 Case 2
Instruction & Instruction & Data in
Data in same. different Segments
Segment

a

Figure 6. Direct Addressing Cases

Seg. a
Instr.
ind.ptr

Seg. b Seg. a Seg. bSe
Instr. Instr. Ptr.Ind

ind.ptr » data
Data

Case 1 Case 2 Case 3

aSeq. a Seq. Se Seq. b Se
Instr. nd.Ptr.+. Instr. Ind.Ptr.

data
data

Case 4 5Case

Figure 7. Indirect Addressing Cases

€

4
:

TITLE: Protection & Relocation for the POP-11/42 U291
PDP#11/48 Technical Memo #29

AUTHOR: Ad Van de Goor
Robert Gray
K.C. 4uang

DATE: March 4514972

REVISION: OBSOLETE! Memo #29 Feb 24, 1971

INDEX KEY: Relocate/Protect
Segnentatton

DISTRIBUTION: POP*11/42 Group
Van Dlahi
Ken Stapleford
Hank Spencer
Jonn sl[ttel
Gordon Bell:
David Parnas: OMU :

Nick Pappas

ABSTRACT

The memory 'maDoing or relocate protect scheme proposed for the
11/48 Is esSantlajly a segmentation scheme, yt Is designei In
such a way that It [s upwards compatioie with the 11/68 scieme
and does mot Presume or dictate a particular use,

The scheme provides for a phySical address space of 2918 bytes
and a maximum active virtual address space of 2946 bytes, The
total virtual address space (!,e, the length of the segnant
table) Is determined under software control,

The active virtual addres& space can be divided into 8 s@gments,

& 256 words), Protection and relocation are provided on the
Segment jevel,

An implementation of the Felocate/protect option Is proposed, It
wil] on two QUAD boards, 16 ACTIVE SEGMENT registers and 4
STATUS registers wil| be Provided. A hardware ald | S proRosed to
help recover from NON=RESIDENT faults, Appendices contain
suggested recovery routines, :

The? size of each segment oan vary from 4 16 Pages (1
4

:

0292
Protection & Rejecatian for the PAGE 2
implementation proposal: Mafch 8.1972

PREFACE

This document Is Intended to Provide a detailed dsscription of
the relocate/protect scheme being designed for the POP#4i/42, Itfurther ts being used a8 a "working" set of angineeringspecifications, AS such It will ultimately become the text for
the Nenainaer ing Specifications"® and the "Maintenance Manual",
New In Revision are:
1. Segment Length Field and Segment Address Fleid deSeriPtions,
2. Seetion 1.2 "Segment Fauit Aotion

:

:

a

3. Use of SSRI bIt 7 to enable/disable Memory MaNagement
Trapping,. :

4, Storing of Trap Vectors In SSR2

5. Section 7,2 Addeass bits 16 and 17

6, Sestlons 9,14 and 9,45 Console communication

:

:

7, Section 7,3 Address Assignments

0293
Protaction & Relocation for the POP-11/48 PACE $

Implementation proposal Mafeh 68,1971

4,0 INTROGUCTION

:

This memo Is !mtended to be a Preiiminary description, Many
detalls have Yat to be worked out, It 18 ovr [ntention to revise
this document from time tO time with the additional] detall,

Because this Is a living documents It Is extremely [mportant that
We KnoW about errors In Writings, details, of most Importantly, tn
pian. we expect thare wil| be questions and contentions ralsed
by this teohn(cal -desorintion,, We remain always ready to listen
and try to understand questions you may ralse. jf we are going a

wrong direetion, NOW Is the time to change} We earnsstiy request
your cfiticishs ang suggestion, all deserve am horest reply,

1,2 BASIC SOLUTION
:

The addresses generated by the PDP-11/2? are byte
addresses, On the 11/748 with Segmentation these addreSses are
considered Vittual Address "yA's", A yA [8 considered tC be a

two dimenslona| address aS shown In Figure 4, [Jt consists of:

1. The Active Segment Fleld "ASF", This 3ebit fleid determines
Which of 8 Active Segment Registers "ASR'sS" has tO be used to
form the Physical Address "PA",

2. The Olsplacement Fleid "OF", This Is a 13-b 1 t which
contains an address relative to the beginning of a Segment.
This allows for segment glzes of 291328k bytes,

The formatian of a physical address shown Figure 2

The Active Segment Field "ASF" of the Virtual Address "VA" Is
uSed to address one of the elght Active Seament Registers
"ASR's", The Sagment Address Fleld fof the agaressed ASR Is
used together with the OlSplacement Fleid "OF" to form the Pa.

The ASR'S can be loaded with Segment Descrintor Words "SOW's"
under program contrel.

1,4 THE SEGMENT DESCRIPTOR WORD "SOw"

A SDW 1s a d6"bit word containing Information relevant to a

particuiar segment, A SOW consists of 3 fleids, see Figure 3,
which are described below.

4, The Access Contro! Fleld "ACF", This Sebit field Contains
the access rights, called KEYS, of a process witn PeSpect to

a partioular Seament. The follewlne keys have Deen assigned :

already,
a. Non Resident "NR" (key3@). Any access to sucn B segment

will cause an abort, The reasons why a Segment Is
:

: 1

0294 :
+

;
Protection & Relocation for the PAGE 4

Matoh 8,1974Implementation proposal

noneresident can be many fold,» e.9, "ot SwapPed In yet,
segment does not exist, etc,

b. Resident Read Only and Trap "RROT" (keys4). Inls Is :

essentially a fread Only segment, a trap upon read could
be deSired to gather Statistics about the use of the 5

segment, ete,
c. Resident Read WRROW Ckey=5). An attempt to write fnn y

an RRO segment will cause an abort,
d. Resident Read Write and Trap "RRWT" (keysl). in this

Segment essentialjy Read and Write operations are
allowed, tha trap upoM a fread or a write access could te
desired for statistics gathering (see b above),

:

:

e. Resident Read Krite and Trap when Write "RRWIW" (key=2),
This Is a Segment where essentially read and write
operations are allowed, When a write operation IS done,
a trap wilt! occur, This could be used to indicate that
no valld baekup copy exists any more,

:

:

Resident Read Write and Written [nto
Th! segment which read and wr te overations are

f :

:

allowad. The "written Into" could Indicate that no
backup copy Is avallabie,

:

:

2. SEGMENT-LENGTH FIELD (SLF) 4

Note that "o" In the SLF Specifles 1 page and 15 Im the SLF a

four b fle q spegl f les the number of 256 word Dages inThi :

the seqment, From to 16 pages may be spec! ied th
Ffieid :

Specifles 15 pages,

The four bits of the SLF are compared with the four high
order address bits Im the DISPLACEMENT FIELD ftom the
processor to detect SEGMENT LENGTH errors. A SEGMENT LENGTH
error exists If the SLF is Smaller than the four nigh order
bits of the OISPLACEMENT FIELD,

:

3, SEGMENT ADQRESS FIELD (SAF)

This fleld of 9 bits [In combination with the 13 bit th

the i8 bit
+al y inDISPLACEMENT FIELD from the processor form

physica| address, This process shown
Figure $,

Since the 11/48 segmentation scheme aj lows Segments of
different sizes (256 Word to 4096 words In 226 Word
Increments), a method must be provided for creating segment
boundries at 256 word ImterVais rather than at 4K intervals

0295
PAGE 5

Protection & Rejceatian for the PoP-11749
Imp lamentation praposal Maron 8,1974

if memory }s to be fully used. This Ig Implemented by addingthe 4 hich order address bits In the DISPLACEMENT FIEL? Intothe SAF aS shown' In Figure 3, This technique allows aVIRTJAL address 2 of a 256 to 4K word segment to hePhysically tocated at any 256 word boundry tne memorySystem, This ajlows Segments of varying lengths to be placedIn ohystca] core with no "gaps" betwaen them,
1.2 SEGMENTATION FAULT ACTION

If the processor sends an address that Is! non=rasident, exceedsSegment fength or violates "read only" restrictions, the

Processor, No further memory references can occur until! theProcessor acknowledges the ABORT Signal with a segmentation faylt

operat) on abortad before the mamory operation Occurs, No
sent to theonalmemory referénca aqccurs and an ABORT

acknow|edge (SEGACK) Signal, Thisautomatically in tha 411742 hardware,
process handled :

:

If a segment access is made that requires a memory managementtrap, the processor is motified by a signal (MEM MGMT FLAG). The

Instruction, The aeknowledgement is signal SEG ACKe See section6.6 for a full dlseussion of this operation,
anf lag only

Processor acknowledges this at the end of

The MEM MGMT FLAG has priority over "T bit" traps,
DEGREE OF HARDWARE AIDS ON SEGMENTATION FAULTS

:

2,9
when a segment fau{t occurs, If It Is a "non-resident" faujt, the
System must bring the miSsing segment into core than restart thetask. Slnee@ such faults can occur withinIntructions,» some means of either restart[ng the Instruction tn
the middie or backing the Instruction up and restarting at the
beginning must 5e@ provided,

:

:

:

Restarting the Instruction In the mladie is rejected as there are
a number af Internal IMaccessible registers whosa Valu@ can be
nelther saved nor restored for "middie of Instruction" reStarts,

An investigation of backing yp the effects of a partially
executed InstructTon shows that only aytoe|[ncramént and
auto-decrement operations effect thea registers and that to
restart, It Js sufficient to reverse the affects of any auto
decrement/ineremanting done by the partlaily cOmpleted
instructicn before restarting at the "instruction address."
Further It has been determined that a maximum of two registers :

:

are changed during a given Instruction,

0296
fPAGE

Implementation proanos,!
Protection § Relocation for the POP -41/4

Maro 8,1974

ine Mext decision must determine the cegree of help opraideg by
the segmentation hardware In correcting register values, Claarty
&@ range of help [s possibiesfrom fully automatic correction to
merely Indicating how far the
SOURCE/NESTINATION galcylations,

[nStruction got in

Previous @xperlence with the KT41 (11/22 Paging option) Cwhich
merely provided the EXEC With a t {naleatins whether theb

SRC/OST had eeen completed.) indicated additional! nelo was
needed,

A fully automatic soheme was rejected because t was regarded as
"overki ii" ang the intimate connaction to the processor KOM that
WOU/d Mave heen required Was Mot thougnt desirabie,

TRe prososed Sgheme is Implemented in Segment Status Register
"SSR #1". {t allows the EXEC to correct all pegisters Modified
in less than 49 nemery references, It's hardware {mplementation
is Straight forward and dees not control the processor Rom.
Appendix A [8 a Sample recovery routine. Basicaily it Provides
the

SEGMENT STATUS REGISTER #8 (Segmentation status and error
Indicators)

SSR@ will contain error flags and the "virtuaj Segment number"
causing the error as well as other status fiags, fhe register

be organized as In Figure 4,wild

bits 15-12 are the error fiags, They may ba considered tO be In
a "orjiority queue" In that "flags to the right" are ignored} That

a "nen pesidgnt™ fault service routina would Ignore sagmentis

EXEC with the regiSter number changed and a deScriftion of
how much and In what direction [t was changed.

3 a :

4s

:

:

:

jength, access, and memory Management flags. A jengath"
service routine would Ignore access ang memory management faults.gnent

ate.
"BRANCH" breakout sequences,

Bits 11-8 are presentiy spares, Thay may be assigned ugeS [In a

"Depugging Option" allowing "hardware breakpoints."

Note tnat the word format Is convenlent fori "ROTATE" and 5

4

Bit 7 snableS MEMORY: MANAGEMENT trapping. If bit 7 IS Bs Segment :

Status Register 3 witli keep track of which secment references
requested memory management tfanss but the "trap Signal (MGIT
TRAP FLAG) Is made +83 not sent to the prosessor, When b t 7

the next time a segment whose ACF calis for a MEM MGMT trap Is

0297

Protection & Relocation for the PpP#41/4Q PAGE 7

Implementation profkesa Mafch 8,1971

345

referenced, MGMT TRAP FLAG [$ Sent to the processor,

Bit 6 specifies a MAINTENANCE mode In which only the DESTINATION
fetch/store Is felocated and Protected, lt 18 exPegtag to be
useful for diagnastle program development.

Blt % Indicates that the Ingstuction fas completed, Ie wil! be
Set When noneinstpuction (traps) memory references ate made.
This prevides the error handilng routine a way of finding that
the last. Imetruqtion wi not have to be repeatad on restart,

Bits 4=4 give the virtual segment number of the reference causing
a fault, Bit 4 on @ "4" Indloates USER segments, Note that tnis
field ts positloneg for conveniant relative addressing on the
Segment number,

Blt @ this bIt controls whether virtual addresses are Operated
upon by the segmentation haltdware, This bit wil] be ol@ared by
the processor signai INIT.

SSR2@ blts 8,56,42845 can be Written into as a words. Other bits
(194) will mot contain valld Information after writing into SSRG :

until the next Trap occurs,

DESTINATION ONLY SEGMENTATION

Experience with depuaging KT11 diagnostics has shown that a

DESTINATICN MODE GNLY relocation & protection js deSjrabje, It
is proposed that SSR1 bit 6 be ysed for that purpose» and that
Segmentation Se controlied by the foliowing Boolean equation: :

The amount of loglc reguired to implemant destination only
segmentation {s estimated to be one 44 pin oh |

SEGMENT STATUS REGISTER4,2 #1
:

This register kegps track of any AUTO INCREMENTING/UEGREMENTING

of the general ragisterss PUSHES and POPS. Tne register Is

cleared at the beginning of each Instruction fetch, Whenever a

genetal register 3 elther pushed or popped, the register mumber

and the 2's complement number of bytes tha register got Modified
are written Into SSR1. The |ow order byte s writtan first. See

:

:

:

0298
Protection & Relocation for the POP=11/40 PAGE 8
Implementation proposal! Match 8.1972

Figyre 4.

5.8

When tne Instruction 1S cOmpjeted, there IS no need to restart
the Instructlon even !f there may be segment faujts before next
instruction fatch, The register SSR1 is cleared and any stack
modification from that time tlil mext Instruction tetch Is
recorded.

Register mumbers wili be tecorded "MOD 6", Jt will be Yp to the
recovery service reutina to determine which Set of registers was
modifled by the state of the Processor Statys word at the time of
trapping.

The ex{[stence of SSR1 will sp@ed up the recevery from a non-fatal
segment faylt py 293 times (a saving 188-c02 uS) and requires
only 1/3 to i/4 of core (75 Words) of the case where tne only
information avaijaole to the EXEC are the SRC/DST bits, Although
non-resident segment faults are not expected to occur at a rate
more than one per two mlijl=seconds, thus making the 402-298 WS

saving {n overhead perhaps eeem Insignificant; tne [mp qmentation
of SSRi cam Probably be Justifled jn terms of the amount of core
saved (582 words) and the smal! amount of Nardware that has to be
added. It Mow seems that the 4#256 ROM is required n any case
to eliminate Some of the !ogle needed to decode the feleVant CP
states, The register Itself requires nothing extfa and the

only memory (ROM) will be used to detect processor states during

"track" tha processor Control Memory ROM, That |S, tne address
belng sent to the processr ROM wil! be bussed to the
segmentation modules», Where It wil! be used to the same
numbered jocatian In a 80M jocated In the segmentation option,
One bit of the ROM will Indicate that an "AUTO" change Is
occuring. Another bit will IMdicate the direction CINC/WEC) of

A readcontro] jogic {s estimated to be five 14-16 pin GhiDS,
The ROM willwhieh AUTO INCREMENTING of DECREMENTING occur

:

:

the change.

SSR1 16 READ ONLY, It cannot be written Intec.

STATUS REGISTER #2

{tItSSR2 contain the 16 rtual instruction address,

wilt be leaded with the Trap Vector (TV) address at the beginningbe joaced at the beginning of each Instruction fetch.
:

of an |mterrupt ar @ "rT bIt" trap.

SSR2 18 READ ONLY. It cannot be written Into.

0299 :

Protection & Relocation for the POP-11/40 PAGE 3
Implementation proposa | March 844974

:

64% MEMORY MANAGEMENT AND SSR #3

Thres of the ACF keys cauSe a trad under the condition that the
Segmant was referenced, This wil{| be used for SwapP{[mg cantro}
and Other memory management functions, Singe theSe area not
"error" faults, there 18 no feason to "abort" the aperation When
a MEMORY MANAGEMENT trap Occurs, It [8 auffictent to merely
"note" that the trap Occuled, A convenient ""unjt Samplingperiod" Is the "{nstrugtion," ouring a single Instruction several
(5 max In an indirect BINARY Instruction) different Segments may
cause STATISTICAL traps. Each of these must be retajned until!
the trap Js serviced. In addition since the move to Yser anc
move from user jnstructions operate in poth USER and EXEC virtual
address Space, Soms combination of 16 different segmants can be
at fault. A MEMORY MANAGEMENT trap causes a bjt In tne SSR3 to
be set, EXEC Segment' 2 wi{i set bit @, YSER segment 7 will set
bit 15 of the registe#., See Figure 4,

7

Once a bit Is set In SSR3.slgnal MEMORY MANAGEMENT TRAP wlll send
MEM MGMT TRAP to the processer. This Wij! cause a tpad at the
end of the current Instruction, The request will pe gnifled by
bit #42 Im SSRZ becoming a "1", During the service routine the
olts In the SSR3 must be reset, (Note additional bitS may be set
during the Service routine,) At the end of the service roytine,
SSRY bIt 12 must be cleared, This "rearms" the MEMORY MANGEMENT
error jogic and enabjes The "T" bits to be set again, An "ABORT"
error oecur{ng on a fetch or the location belng a reg|ster that
is Internal to the segmentation option prevent a Memory
Management bit from being set, even if the access key calls for a
MEM, MGMT, TRAP, SSR3 can be written Into as a word,

:

Note that {f blt 7 In SSRB Is "@" LCENABLE MEMORY MANAGEMENT
TRAPS], no flag {8 sent to the processor when the MEM MGM] access
keys ara datested. The proper bit In SSR3 [s set however, This
allows "periodic" EXEC memery use checking at EXEC discression :

rather than checking forced by hardware, :

DETAILED SYSTEM SPECIFICATIONS

CLEARING SEGMENT STATUS REGISTERS FOLLOWING TRAP
7,2
741

At the end of the segmentation fault service routine certain bits
in SSRYZ must be cleared to "raarm" the segmentation trap logic,

3ite 12-15 and 1-5 must be cleared to resume segmentation error

bits the other SSR's will centinue montoring the Computer
operation, SSR2 will be loaded with the next Instruction

on the next memory reference fo| owingchecking, learing these

address, a newIfSSRL will get register Information,

0300
G negProtect

PASE lgRelocation for the POP-11/49prodosa Match 8,4971

Statistlce! tras were detected, SSR3 will be ioaded,
7,2 ADDRESS BITS 16 4Nm 17

:

a. 16 and 17 afro Speclfied by the contents of theActive Segment Register, (Max Memoryti28K)
SEGMENTED bits

G. - S-slts 16 and 17 are equal to Un|@SS 15414,15 are1, then blts 16 and 47 are automatically made 4, (Max Memory= 32K)

moh an

C. CONSOLE ACCESS -when cansale ADDRESS SELECT switch Is tn"PHYSICAL" position, bits 46 and 17 are contrajied expiigitiyDy switches 16 and 17 respectively, (examines and depositsoniy.)
7,3 REGISTER ADDRESS ASSIGNMENTS

77783 SSRp
777459 SSRL
777534 SSR2
7776356 SSR3

777646 USER ASR 3
777852 USER ASR 4
777682 USER ASR 5
777954 USER ASR 6
777656 YSER ASR 7
777662 EXEC ASR @
777562 EXEC ASR 1
777664 EXEC ASR 2
777666 EXEC ASR 3

EXEC ASR 4
777E72 EXEC ASR 5
777674 EXEC ASR 6
777876 EXEC ASR. 7

777644 USER ASR @
777542 YSER ASR 1777844 USER ASR 2

:

777678

8,8 FLOATING POINT PROCESSOR

Several considerations tegarding the Interaction With theFloating Pofnt Unit (FPU) remain unresolved,

Floating polnt instructions cause general ragisters to be autoInc/cec by 4 of 8 bytes, The8e values Will be stored [nm 3SR1,

0301
$sProteétion & Relocation for the POP=11/42 PAGE 14

Implementation prorosal Match 84971

9,68 INTERFACE SIGNAL SPECIFICATIONS

Introduction

9,1
9,1,1

The Internal fegisters of the sagmentation aptien will Interface
with the processor through the "fast bus", In add/[tlon a number
of other signais will be Passed between the two units. It Is
Intendad that agreements on the characteristics of these
Interfacing Signals wlll boa catalogued In this section,
PROCESSOR/SEGMENTATION INTERFACE

Fast Hus Interface
1, VIRTUAL ADDRESS LINES = [VA® through VA451(16 ines) :

16 lines Sending the Viretal address from the processor or
floating polnt processor to the segmentset}on option, A true
stanal wll] 02 ground, These signals wii! begin and @ng with
the leading edge of "TL",

:

2. BUS START » BUST (1 line)
A pulse Indicating an address is on the VA'S, A true
conditlen willl be ground, This signa] wl|| begin at the
leading edge of "T2",

3, FAST (4 IIne)
A signal coming from "memory" that can respond In 198Ns from
BUS START at procesSor (258ns im segmented Mode), The
Segnentation will "pass" FAST from the Semicondctor memory
and generate FAST When one of tne 26 Internal registers of
the segmentation option | $ addrassed by the proaesSor, A

true condition will be ground. The pulse wil! have a neminal :

width of M.S.

4. CONTROL (C1) (1 Line)
:

This wlll be used to differentiate READ and WRITE memory
cyclas, [No byte Operations will be lowed In registers
internal to this option,

5, INTERNAL BUS DATA (16 Ines)

Data to be read from the 4 status registers In the
segmentation option .wll! be placed on thesa ijnmes, True
vaive is ground,

:

:

6, BBR DATA (16 lines)
These are used by the processor to transfer data to one of
tha 23 Internal registers, True value Is ground, Signals

0302

PAGE 12Imp | ementation PPODosa |

Re | ecatjon for the POP :

MAPCh 81,1974

are mage Valig at leading edge of wry",
7. BUS END * BEND {i tine)

Within 125ns (225ns with segmentation) after susT, Thigtells to Stop Processing the address, No flagverror pitsShould be set when BEND [8 decoded as It Indicated an abortedfeteh, True value [S$ ground,
&. PHYSICAL ADDRESS OUT (418 lines)

The physica address generated by segmentation gption,
9, BUST OUT

errar occured om the access attempt,
9,1,2 PROCESSOR SIGNALS NEEDED BY SEGMENTATION

1. ROM ADDRESS (8 lines)

:

:

A delayed (192 NS) and
from the anabied

Only lf noprogessor, This Version of Bus Start
Jenerated

:

ADDRESS wilThe 8 bit Rom endecode ops" tO registers for SSR
be Needed by Segmentat to :

Le

Signals wlll be true On a #3V logic level,
be used to deegde DESTINATION FETCH, INSTRUCTION

also

2. REGISTER NUMBER (3 lites)
The 3 bit register NUMbeF Of the register being PuShed or
Popped,

3. CONSTANT (4 |Ines)
A 4 bit pos{tive number that Is to be added Or Subteactecfrom the register,

4. USER/EXEC Address (1 lina)
Not Status Register bit 45, but a sionai that indicates

:

:

Whether the address on the fast bus [s a USER op EXEC
address, Required because of INTERmode Instructions!
CLOCK = (Several j}nes)

w

To be used for various timing and Syncronizing fUnctlonswithin the segmentation ePtion,
:

6, LOAD IR signal Indicating this Is an INSTRUCTION FEICH,
7. SEG ACK (4 IIne)

0303

A pulse from the precessor that jowers the ABORT and MEM MGMT
trap fjagS, Ones ABORT of MEM MGNT iS true no further memory
references can occur unt SEG ACK Is received,

8, INIT (2 [Ine)
A power clear slgnal that occurs during nowarup and when the
console START switch ia depressed,

9,1,% SIGNALS NEEDED BY THE PROCESSOR

1. ABORT (1 Ine)

Made trye when gegmentation fauit occurs, Wil| be Gl@ared by
SEG ACK,

2, MEM MGMT TRAP (1 line)
A tavel will be used for MEM MGMT traps, It wili b@ cleared
by SEG ACK,

3. SEGMENTED/UNSEGMENTED

TRUE LEVEL SIGNAL WHEN SEGMENTATION OPTION IS IN PLACE AND

BIT @ OF SSR 1 Is al
9,1,4 CONSOLE SIGNALS REQUIRED BY SEGMENTATION

1. EX ADDRESS 16 and 17 (2 IInes)
Those ate the output of cansole swithces 16 and 17,

2. CONSOLE INHIBIT SEGMENTATION (4 line)
Telis the Segmentation option to use the Values of EX ADORESS
16 and 47 to form the high order physical address pits,

3. VIRTUAL (1 [ned

When True Sends the VIRTUAL address to the conso|/@ ADDRESS
lames, When false sends the physical address,

9,1.3 SEGMENTATION SIGNALS REQUIRED BY CONSOLE

CONSOLE ADDRESS (18 |Ines)

Output of a multiplexer which provides the con8ole with
either the PHYSICAL or VIRTUAL address,

40.2 LOGIC REQUIREMENTS FOR SEGMENTATION

pProtection & Relocation for the POP 411/42 PAGE 13
Impfementation proposal Match 8,1971

:

:

4

4

:

:

:

0304 :

Protectl on & Relocation for the PAGE 14
Impiementation proposal Match 8.1971

Our astimate Is that the RELQCATION/PROTECTION can fit on two
"QUAD" boards, The follow]ng chips are preSently planned to be
used:

DEc# DEV PINS DESC QUANTITY GOST TOTAL

49-2993G 7485 44 Hex INVT OPEN COL 3 122
49-19155 7428 14 Quad AND 4
49-12091 7437 14 Quad NAND Buf 1

74457 16 Quad 2 to 4 Mux 3
74474 16 Hex D Filip Flop 2
74475 46 Quad 0 Flie Flep 3
74487 16 ROM 1

74504 44 INVT 8

19-2925@ 7475 14 4 1,89Quad D FLIP FLOP
{9-G9937 74153 16 Qual 4 te 4 Mux 8 97
49-69814 74454 16 4 to 16 1 4,71

19-09256 7486 14 4 2IN NAND 4 .24
19-69931 744 14 6 INVT 8 128
19-69057 74H12 14 3 3IN NAND 2 124

44 3 3IN AND 3 .24
19-@5058 74H24 44 2 4IN AND 4 12419-29267

49-5059 74H3 44 24IN NANO
19~25586 74H4 44 2 4IN NAND BUF 6

{9-B9263 7455 44 AND OR JNV 1 024

74803 14 INVT OPER COL 1
19-99667 74H74 14 FLIP FLOPS »48

:

74845 14 3 3 IN NAND OPER COL 4

AND OR [NYT74864 44
748156 16 Quad 2 to 4 Mux :

748184 24 ALU 4

74482 16 LOOK AHEAD 4

1919287 415 16 4 bit 0 With Set 187
BiAZiCintes 16 35 ne Max 4

"seu

Tota| 84

2

:

Protection & Relocation for the PAGE 45

APPENDIX At

TRAPVECTOR:

EXAMPLE OF "NONWRESIDENT" RECOVERY PROGRAM

EXEC,REGSET=d,NONINTERRUPTIBLE
HERE: BIT

BEQ
BIS

MOV
AUTOCK: BIT

BEG
MOVB

MOVB
ASL

gIc
ASH

ADD

ADD
CLRB
SWABR

ERRTYP: MOV
BIT
BEQ
JSR
BIT
BEO
JSR

TBIT: BIT

EMUL: MOV

INST: MOV

#B14,2SP)
PUSHLOS
#BI4,STATUS

SSR2,R2
#B7,6,5,4,35,R2
DONE
R2.R1

RL

#377741,R1
RO,#3

R6eR1

RBr (Ri)

SSRE,RB
B15,R2
+2
R7,NONRES
#B14,R2
+2
R7,PROTECT
R7,ACCESS

#B5,RA
INST
#12,R5
R6,R5
"R5)+,RG
(R5)+,R4
@#16,«(R5)
@#14,=(R5)
#12,R5
R6AR5
@=(R5)
@=(R5)

#,R5
R6sR5
SSR2,(R5)

/WHICH REG WAS IN USE?
fWAS NORMAL
WAS DEDICATEDs ACTIVATE
/DECIOATED
/PUT OLD REG ON STACK

/TEST FOR A REGISTER
/AUTO INC/DEC
NONE CHANGED

7WAS CHANGED, GET
/PARAMETERS
SAVE ADDITIONAL COFY
/MOVE REG# TC WORD
/BOUNDRY
7GLEAR OYT OTHER BITS &,
MOVE CONSTANT INTO
/PROPER POSITION
/RL GETS LOC IN STACK
/WITH REG, VALUE
/CORRECT DLO REG VALUE

/SETUP FOR SECOND TS?

NONRESIDENT ROUTINE

/BOUNDRY ROUTINE
/WRITE ERROR ROUTINE

7 INSTRUCTION COMPLETED
/TRAP OLON'T COMPLETE,
/EMULATE,
/OLD USER PC
/OLO USER PS
/PUT TRAP VECTOR
MONITOR STACK
/,0C OF USER R6

/PUSH PC TO USER STACK
7PUSH PS TO USER STACK

7INST TO COMPLETE
/SET PROPER STARTING
/ADORESS IN STACK

0305
:

Match 8,197impjementatlon proposal :

R2
R2
AUTOCK

JSR

BEQ

ADD
MOV
MOV
MOV :

MOV 7

MOV
ADD
MTU
MTU

ACD
MOV

2

0306

a

Maroh 8,4974.
for the PAGE 1

BIS #AL0GB1,SSR0
POPM R6 /MACRO REG RESTORE

/REARM SEG CHECKINGRT1

3 13 0307
Active Displacement The DF contains a
Segment Field "DF" 13-bit positive
Field "ASF" number.

FIGURE | . Interpretation of a Virtual Address

ASF DF
VA 3

ACF SLF SAF

ASR0
ASR1

N

ASR6
ASR7

7 DE.

ACE = Access Control Field
ASF = Active Segment Field fos A SAF
ASR = Active Segment Register
DF = Displacement Field

SAF = Segment Address Field
PA

VA = Virtual Address

FIGURE 2. Formation of a Physical Address

sDW
y

A SA

ACF = Access Control Field

SDW Segment Descriptor Word
SLF = Segment Length Field

:

PA 9
= Physical Address

3

SAF Segment Address Field

FIGURE 3. Layout of a Segment

0308

5 1413 12 1 a 10 9 8 7 6 5 4
SSR#O

023

3
4

o

3

=. :

8 7 615 14 13 12 11 9 0235

SSR#I

Reg. # Reg. #

2's complement

> - interested in 1, 2, 4, 8

15 14 1312 1110 9 8 7 6 5 4 3 2

ssR#2

'Virtual Instruction/Trap Vector Address

"16 14 13 12 11 0 9 8 7 6 5 4°3 2

SSR#3

01

:

t 0

user segments 7 ~ 0 exec segments 7 - 0

FIGURE 4. Segment Status Register Formats

x

if:

Auftnors: Ac van Ce Goor, "ughes

Date:

Revision: No. 2 Obsolete: Z3 and 234,

Index Key: Fleating Poiat instructions
Virtual Address Space

cal Address Space
: ion

Invemnal Option

o.G

1.0

ASSTRACT

@umo 6 Geceribe sng Gru of rhe Fioaring Poine Unie "FPU". The FPU is
Unibus ourion for tha 1 /05 and tne 11/20. For the 11/40, the FPU is planned

s FPU iy of executing single and dousle precision (i.e. SZ and 64-bit) floating point
instructions anc is casabic of reading and wi ing iis own operanas from and into memory.

INTRODUCTION

The position of the PDP~11 in the market is such that some f:
+oating point arithmetic capa=

are very Gesiragie, if not necessary. Considering ine complexity, and therefore
the orice of a floating point unit "FPU", it should be availasias an option only.

og answered concerningCi the FPU option are listed below end elaborated
on in the foisowing sections.

i) interna: versus 5us Option
2) FPU - ii

3) The FPU's Instruction and Data Formats
4) The FPU's Instruction Set

INTEXNAL VinsuS BUS OPTION

The FPU is thought of as a Fairly indepencens processor, i.e. when started it is supposed to

and into memory. Therefore, the FPU has to be connected to the ous.

& 4
dow : : AY 32j 0309

poge:

i971

PDP

Oo Ou OM Hera. GOT.

Once
boonan me d, it can centinve without CPU intervention, ieaving the CPU:

free TO Execute Wt

:

Dis da

ingtruction indesocndeni of the t his reading and writing data from

?

paler
+

A

snows The configuration win operating inor physical address
Virtua: cacress

address space is defined as the sev of core
which does not heve mapsing (e.g. relocate provect) the virtual address space
is identical to the physical address space.

Looking of solution of Figure 1-2, the following comments can be made:

1) ine adarasses of the operands have 70 be passed fo tie FRU as paysicel aadresses.

requires specie contreis anc data gaths In tha relocate arovect

eryhem. incroud,

vanr TO Useef

In cage 0
with diffic

the modes (R)+ or -(R) address violations can occur which can be detected

ity by the Relocate/?rotvet option.

ai GSS
7 can be stated That rhe should operate

in virtual space

A

+

0311

;

CPU 7

a

Operating in Aderess Soace
(Precuming an openmcoiecior interna: ous.)

H

F PU

Figure 1-2 Configuration with FPU Opevating in
PHYSICAL Adaress Space

NOTE: -#
- = Virtual Address Lines

- - = Physical Address Lines

a

:

Fast Bus

Relocate

UnibusProcect

Fast Bus

7

2v
:

Uni

>

0312:a.

Cru. Tris adows ise Crd to be In either
of two WaYS

mw Nos out its 7 nas ine aavani~
age point opera-

time). Ii aiso prohibits the CPU from4

ing, instructions.ofner, i.e. non-fioaii

2) Ailow the CPU fo continue executing non-fiocrting instructions once the FPU is set up

a

(i.e. ready to start executing). This allows the CPU to carry out subscript computation,
instruction thus improving the:

iot
wi a G davantages

Ned hem seve fo Se transferred to the FFU. The FPU-CPU interaction tokes
10 fs, for, CAG 4 we IA ine Next sections.

he and theDus3

App A, Rx > compute aadrass

MOV save 7C

MOV Rx, FIR+FOCTAC ; move operand address and start FPU

The cbov€ sequence takes words and hes to be repeated for every FPU insiruction of the

instruction Gike: MULF AiR2), AC}) is preceded

"35R RZ, FPU" where FPU is an address
f utayion, pointer aa

e SSR i nstruction has pe the foiiowing,
in the 1/O area. An example of th this is given below. (next page)

2. i NG

oy OF MOV instruc=

TOAS . Dea : iecnnicai Mamos 26 anc ypical jooked like the

loner) ACow for ne case or me instruction MuULI

"o
e test for FPU usy (FBR)=4 when FPU busy else 2Mod

7

above :

v ine FPU uses the CPUNEw sci that every
contro: over fhe CFb.

Tor aa : ders

preter.

4

+

JSR R7, FPU

MULF A(R2), ACI

typical call sequence inx

0313
user's program

BRe

"MOV.(R6) + FRA*

@XFRA) > FIR*

(FRA) FRA

MOV 2, FDA

(FRA) + (FRA FDA*

(FRA) +2. >FRA

2 or 4 data fetches

MOV FRA, PC

* FRA means Floating Return Address

f

the 1/O address FPU contains

"BReo when the FPU is busy
FPU

otherwise it contains "MOV (R6) + , FRA"

» When the latter instruction is executed

the return address is popped off

the stack into the FPU's FRA register

The instruction is fetched, under

hardwere control, and loaded in the

FiR register and FRA is incremented

The CPU's register R2 is read

; The index computation "A+(R2)"

is done under hardware control

and FRA is incremented

Depends on the mode of the FPU

Control is transferred back to the

CPU while the FPU does the

:

required operation

* FIR means Floating Instruction Register

* FDA means Floating Data Address

-5

+

0314A suMING: yu. ay
:

hi & a conrrei 5~ : naer
Yee

oT meaf PU TO. cution cycie can be:

divided STOW! its Pag Nard Ne pciow.
RFR?

A

SEQUENCE FOR MOST INSTRUCTIONS
2227

4

A B D

t +

SEQUENCE FOR CERTAIN CONVERT INSTRUCT aONS

A = instruction Fatch

pum. Ee ag on

= Date

D = Coarre! from FPU bcex to CPU

Maccution FIGURE 2-1, FPU instrucrion Subsequences

Below ie ac FPU actions waich are required for the address

and: most instructions. ins the sections

correspond to tne subsequences of Figure 2-1.

issued:

7s

A: « ; FPU ousy locg

MOV (86) +, FRA ; Get return address

SR

(FRA) FIR Get instruction, both parts

"e
o done by FPU hardware(FRA) 42

MODE 0315

\e
:

* DA)-, FEA
7 & A(R) ERA) FDA

*(ERAj tomy FRA
*(FRA) + (FDA)-» FDA

*@XFDA)-» FDA

New oCN tw ae whe
: :

ee 7

MOV «A, fronster convroi wack to CPU
; tO execute non FPU initiated
?

ine insivuction, i.. perform the actuai muitipiication, etc.

ws CON CODES

are Gestroysa. This is caused :

py the insivuctions the FPU issues to the CPU.
:ras V waien xisted just oricr to the FPU instruction,

The owe ser of condition code pits, "FC, FN, @Z, and FV". These can be trans=-
's condition code bits under coniroi of a special instruction Copy Floating

:

on

Zz tome fn a
:we :

:
:

On tha and the 11/20 the FPU will be a Unibus cation. The sriority level of the FPU
wili be 7.

In order not to increase NPR latency, the FPU wiii monitor the NPR iine and give up the bus
between memory cycles.

The 13/26 bus arlority arbitrator recuires coa MSYN signal to transfer Bus Mastership between
periphara. In cavtain speciai cases this could lead to the execution of an instruction be-
fore Toe DUS wet jid be rearbitratec to another requesting device (e.g. the FPU). The execu-
ton of an cut of secuence instruction would be in conflict with the correct eperation of the
FPU, as wil. bs c.ear from Section 3.0. This is prevented by "feeding" the CPU a "BR."

:

instruction when rhe above condition occurs and the Feu in control,

-3-

cus easter, oe-than
+

3 ALTERNATIVE FRU-11/20 UBBeiN

aiternctive methed is to issue the FPU ingiruction "as is" and have a tras service routine
to to the FPU. An exarmpie such a routine is given below. (It should

SUS #2, @Rs ;
CMP (RS)

SG

a

MOV 4{R6), 2(R6) > FRU, PS and PC
MOV R6, 4(R6)
MOV # @RS
Ril ; end of FPU wap nandier

NOT FPU: ADD #2, @Ré

2.1.4 iINTERRUPTASILITY

condition arise when the CPU is executing FPU susslied instructions

the

inverzupting device wouid go off end use the FPU witnout testing, the CPU would start an

his sos executes at the priority level of the Inferrusiing device. in opder for the FPU

calied the Fioatiing Interrupt Vector "FINTV" and a bit cailed the Floating Interrupt CPU
Dismissed "FICD" in the Floating Program Status "FPS" word. The FICD bit is set when

the

cause an interrupt using as interrupt vector (FINTY).

A possible routine preventing the deadlock making use of the above hardwere, is shown

device which wants to use the FFU.
This cede is part of the interrupt service routine of the interrupting

72 :
0317

PU;Koc

MOV FINTV, TEM? ; save old
MOV NEW. NTV, 5 sot up new i vector

save oid PS
instali new PS

MOV MPI
*MOV NEW.PS,2(R6)

Gismiss current interrupt
and start FPU

*

ue
"N

eRi i

PU ATUS
:

MOVE i Givi FINTV 7 restore oid FINTV

*MOVE 2(R6) } restore cig PS

RTI ; Gismiss Interrups

any GaGa OSthat for exempie,
F NTV, then upon the first:me ini

RTi in FPU has dismissed theMAN? ine imverrsr wi 13980 Ui :

Cru. tan idterrupi with rne interrupt vector of the

Gevies,sthus simulating the

2 INTERACTION

The use of the FPU with the 11/65 is essenriaily the sare as with the 11/20 except for

the JSX areceding an FPU instruction, which is not required with the 11/05. The 11/05

will execute code making use of the JSR, however, for compatibility reasons.

When the 77/C5 forshes an instruction which starvs with a "17" (i.e. an FPU OP code) it

will not trap, dur execute the following sequence.

test is FPU is busyTST FPUOS ;
BEQ .~4 ; ioop is busy

MOV PC, FPU005+2
MOV IR, FPU05+4

This aliows the FPU instructionsThe above secuence i$. not execuied with PD2-11 instructions as shown above, but in

11/05 micro code which is done ai a much greaver speed.

to be given without a JSR, thus ciiminating the space and time consuming JSR and the

*These instructions are only necessary when the FPU has to proceed with the interrupted

instruction at a different priority iavel.

- 10-

N

MOV FrUGS+6, PC + start fetching instructions from the FPU

Instruction Fetch subsequence or Figure 2

i

0318at2.3 :

VIG :

wat see

Section 1.0.

The reouired comouration whi be done sy tre 11/40 hardware. The read to have

the FPU suagiy with jnarucrions is Aareoy eliminarea. The condition
: : :

codes wiil not be aftecied by the FPU unigm the instruction is a CFCC.

When the it rests reat ED iS Dusy while ii aliows for

higher priority bus requests. Once rhe F?U is free, the 11/40 wii do the required

address computation and notify the FPU. The FPU w ll then sirobe in the required data
IR os.), do me reevired oata fetches

tO de the FPU
(store. :TOM) ING Manes
instruction.

INSTRUCTION & BATA FORMATS
We ::

ine PU has for $ 2 (eS t: purpose date

ACT iney are ACY through ACS and are inter
rec ishers iadws

tong aesencine ony : insir case of S2-pit instruce
preva fa

ace Used remaining (i é. fight 32-
mon ony :

i$) oi f ns
See rigure

0319

:

:

ACL

:

:

* ACS area

AC7!

ACJ are reserved for internal use.ALO

d to contain the following status registers:use
"Floating PC" - points to the word following the

ficst word of the FPU instruction.

uction to be
executed.2) Return
executed.

3) Vector" - a 16 bit interrupt
se@ by the FPUU uoon completion of the addressvector

This is only used on the 11/05 and 11/20.
40.of am anscr ce

FEC "Floating Exception Code" - A number which identifies
the cause of the interrupt.

4)

FIGURE 3-1 Accumulator Layout

-12-

0320
The FPU SEER Ori Sec is aivided in five formats as shown in Pigure
3-2. Format is used by the binary instructions. Format

mat F5 is used by some special instructions like Copy Ficating Condition
Code.

F2 is used DV wis unary used
by the load For-

The fields of tne formats of Figure 3-2 are interpreted in the follow-
ing way.

oc "Operation Code"

and contains a "17".
abe> LUC Sits wong

FOC "Floating Cperation Code"
This field of the format specifies the specific
floating point operation.

FSRC "Floating Source"
The floating source che source operand of
the instruction. The interpretation of the addressing
modes is as shown below:

MODE INTERPRETATION
0 AC@-Ac5 contain the data. The "data" is considered 32

or 64 bits depending on the mode of the FPU (i.e. Float-
ing or Extended).

When AC6 or AC7 are specified, an OP code error will
je given unless the instruction is a STX instruction.

1 Rg-R7 contain the adéress of the data. When R=R7 the
data is to be oniy L word long (i.e. 16 bits).

2 Rg-R7 contain the address of the data. Aftex one
ata nas been fetched ave incremented with 4 or

8 depending on the mode of the FPU. When R= Rly the
data is considered to be 1 word Long and therefore,
R7 will be incremented with 2.

3 R@-R7 contains the address of the address of the data.
R@-R7 are incremented by 2.

4 R@-R6 are decremented by 4 or 8, depending on the FPU

mode. After that they contain the address of the data.
When R=R7, R7 is decremented by 2 and contains the
address o a 1 word data item.

13-

032i

Pi ib 7 o 5 U

oc POC Ac ESRC
FOS?

F2 15 12 11 56
17 :

oc Foc

F3 15 12 8 7
:

Oc FOC AC SRC
DST

F4 15 12 L 56
17 :

oc FOC SRC
DST

F5 15 12 il
oc FOC

FIGURE 3-2. FPU INSTRUCTION FORMATS

14-

0322
MODE
5 2. chat they contain the

Goo Of che Gara.

6 of the data is determined by che vegular
computation.

deferredindex computation.

FDST "Floating Destination"
The interpretation of this field is identical to that

gource.

This is a 2 bit field specifying ACJ-Ac3.

SRC "Source"
Regular PDP-11 source field.

Regular PDP-1li destination field.

5.1 SER DATA FORMATS

GLESS

7 The adéress of theseo data is determined by the regular

Ac

DST WEScination

two types of floating data: Floating "F"
long, and Extended "E" which is 64 bits long.

Botn assume normalized numbers only. The fraction is
represenced in sign-magnitude notation with the binary radix
point co the left. The most significant bit of the fraction

because + is redundant. This bit os always a

except when the exponent is 0, then the number is deciared
be zero. The F and E format are shown in Figure 3-3 below.

iS

WORD N WORD

F Format 31 306 23 22
CUTONEXE

i 8 23

E Format WORD N WORD N+2 WORD Nt4 WORD N+6
8 47 32 31 4 6 1563 62 55 54

oi EXP ER ON1AC j

1 8
55

S=Sign of fract on

FRACTION=23 or 55 bit fraction in ign-magnitude
to the left

FIGURE 3-3 Floating Point Data Format

radix =2
notation, radix pointEXP=8 bit exponent, in excess 200 notation8

0328
:4

44

x A itApp :

Or as sone
& ecucion

PROGRAM STATUS REGISTER

The FPU's program status register in shown in Figure 4-1. It
has four mode bits:

FP, tne FPU's Truncate Mode Bit. This bit, when
set, causes the resuit of any floating point operation
to be truncecad rather than rounded.

Dousie Precision Integer Mode Bit.
active in comversion between integer ana

format. When on,tne integer format
Gouble precision 2's complement (i.e. 32

the integer format that is assumed
precisLon 2' complement (i.e. 16 bits).

i)

FD
ry "te :

Single
FE, the Bxtended Precision Mode Bit.

DLt cetermines the precision tha i

This
usea ror floating

calculations. extended recision is
assumed - when reset, normal precision is used

iM, che FRU's Maintenance Mode Bit. The FMM
specLai maintenance logic. The exact nature

pbe detailed in a Later memo.

at)

Or this logic Willi

Along wicn che four mode bits, the status register contains
four condition codes, FC, FV, FZ and FN. These are loaded
into the CPU's C, V, Z, and N condition codes by the Copy
Floating Condition Codes instruction.
The way which cach instruction affects the floacing condition
codes is detailed in the instruction definitions. Tne FC condi-
tion code bit has two meanings:

1) For the STCXJ instruction, which converts a floating
point number to an integer, the FC bit is set if the
resulting integer. is too large to be stored in the
specified register.
2) In all other cases, the FC bit indicates that the
absolute value of the floating point resuit was larger
than the largest integer that can be represented in
M bits, where M is the width of the fraction. In the

0324
fs

2)

5)

7 wm = 36 bits and in floating mode M =

with 24 and 56 bits of precision, not inciuding the
sign bit, to be performed with the FPU.

24. intecez

The FPU's Program Status Register also contains six interrupt
enabie bits. The FPU interrupt vector is at core location 240,.

Wnen FIC is set, and cne STCKT instruction causes FC to be set,
a trap will occur. If the interrupt occurs, the instruction
is aborted leaving the contents of ail the registers untouched,

FIV FLOATING INTERRUPT ON OVERFI OW

Waen this bic is set, floacing overflows will cause an interrupt.
The result of the operation causing the interrupt will be correct
except for the exponent which will be off by 400 (octal). If
the bit is off, the resuit of the operation will be the same
as detailed above and no interrupt will occur.

FIU FLOATING INTERRUPT ON UNDERSLOW3)

When this bit is on, floating underflow will cause an interrupt.
The result of the operation, causing the interrupt, will be
correct except for the exponent which will be off by 400 (octai).
If the bit is off and underflow occurs, the result will be set
to zero.

FIOR FLOATING INTERRUPT ON OUT OF RANGE4)

When this bit is on, and the FC bit is set because the result
is out of integer vange, an interrupt occurs. Our of integer
range means that the absolute value of the result is greater
than or equal to 2XL where XL=24 if floating mode,or 56 if
extended mode.

FIUV FLOATING INTERRUPT ON UNDEFINED

When this bit is on and a -Y is obtained from memory, an

and used in any arithmetic operation. The result of such
operation is undefined.

g can be joadedpt will occur. When this bit is ort

-17-

0325

6) FICD

7)

L

The bit, when on, cause an interrupt occux whenthe address computation performed by the 11/20 and 11/05 isdone. On the 11/40 this bit will be ignored. For a completedescription of the use of this enabie, see Section 2.1.4.
o

FIE FLOATING INTERRUPT ENABLE

All interrupts by the FPU are disabled whan this bit is off.

Fe ;Floating Carry
FV ;Floating Overflow
FZ ;Floating Zero
FN Negative
FMM Maintenance Mode
FP ;Pioatiag Truncate Mode
FD Double Precision Mode
FE ;Floating Extended Mode
FIC Interrupt on Conversion Error
FIV ;Floating Interrupt on Overflow Error
FIU ;Floating Interrupt on Underflow Error
FIOR Interrupt on Out of Range Error

Interrupt on Undefined Variable
FICD ;Floating Interrupt on CPU Dismissed
FIE : Floating Interrupt Enable
RUN Run Status

BIT

2

FIGURE 4-1. Layout of FPU Program Status Register

- 18-

3
4
5

7

9

12
13
4

15 : FPU's

MNEMONZ Ce
OPERATION:
FORMAT:

INSTRUCTION:

OPERATION:
FORMAT:

sNSTRUCTION:
MNEMONIC:
OPERATION:

FORMAT :

({FSRC) is the integer part of (FSRC) e. {FSRC) is
fixed and then floated.
by u n i.e. 5.9 becomes 5.
Note that the fractional part of (FSRC)

INSTRUCTION
:

OPERATION:

FORMAT:

* XL = 24 if

0326
: MOGE

SEP F:

Set Extended Mode
SETE
FE ~1

MNEMONTC:

d

FSRC
Ac4 : GRC} J (FSRC)A

FCy-L if PSRCIZ 244 else FCe-p*

FZg L o (FSRC) =p Devas Mord

FN (FSRC @ise FN

3 FSRC

is stored in ACS.

Note tnat the ohnoe

[FSRC |
Z2 i (FSRC) =(FSRC)

:

Clear
CLR FDST

FCS-0

1 7 fo 4

FE mode = g
= 56 if FE mode =i

20-

#

INSTRUCTION:
MNEMONTC:
OPERATION:

FORMAT:

INSTRUCTION:
MNEMONIC:

INSTRUCTION:

OPERATION:

FORMAT:

INSTRUCTION:
MNEMONIC:
OPERATION:

FORMAT:

*XL=24 if FE mode =1
56 if FE mode=l

0327 :

Oa
NEGA FDS?
FDST2~ (FDS)

if (FDST)=9 else FZJ
FN@ 1 if (FDST) <@ else FNC

1 7 o 15

Make Absolute
ABSK FDST

FV<-0 if (FDST) =0 else FZ 9
FN-9

-(FDST) :
ony :

FCe 1 if [(FDST)1Z2AL g*

FORMAT:

Test Floating/Extended
TST Fost

FVé-0 if (FDST)=9 else
FN€1 if (FPDST)<O else FN<-O

MNEMONIC:
FDS?&~(FDST)
PCe1 if @ise

1707

Load
LDX FSRC, AC

FCL (rsre)jz2"5 else Fc-0*
FVe-0

ACg-(FSRC)

FZ-L if (FSRC)=% else FZ-9
FN-L if (FSRC)<O else FN-9

0326
INSTRUCTION:

OPERATION:

Store
STX AC,

FV

FORMAT:
2 7421 4+ac post

~22-

0329 :

INSTRUCTION: :

MNEMONTC : ADDX FSRC, AC

OPERATION: + (PSRC) 13 (AC) + OR

if (AC) : XUL eise FV g***
if (Ac) else

FN1 if (AC)< @ else FN

INSTRUCTION: Subtract dea

MNEMONIC: SUBX FSRC, AC

OPERATION: ACG-(AC) - (FSRC) if (AC) - (FSRC)} Z XLL OR FIU=1

elise Ac
if

|
(ac) 122 du else FC ~p*

x

FORMAT:
1

else AC Gee
(Ac) iZ 2

FV@-1 if (AC) XUL else FV-O***
FZ€-1 if (AC)= else
FN< L if (AC}< eise

FCg-i if else FC < g*

FORMAT :
:

7 44+AC: FSRC2

* XL = 24 if FE=
= 56 if FH=1

**XLL = smaliest number that is not identically zero
=2 128

**k*XUL =_largest number that can be represented

-23-

INSTRUCTION:

MNEMONIC :

OPERATION:

FORMAT:

MNEMONIC:

OPERATION:

FORMAT :

0330Multiply: aa
:

MULX .FSRC, AC

AC-(AC)*(FSRC) Gf
+ (AC)*(FSRC) 7XLL OR FIU=4

b if (AC)} 7XUL else FVE-g***if (Ac) else FZ
FNe1 if (AC) @ else FN€-G

else ACKG**if (Ac) XL else FCY-g*

7 :

Divide

DIVA FSRC,AC

NSTRUCTION:

Case i (psec)
ACe-(AC)/(FSRC) if (AC) /(PSRC) ZXLL OR FIU=1

@Lése. ACK B**

if IAC) 7 XUL else FV --gx**if {(AC)=% else We

FNGl if (AC) < % else FNYY
tase 2 (FSRC) = g

FCe-i if {(acj| Z 2 else FC
FV
FZ

AC@{AC)
FCO-(FC)
FV (FV)
PZ (PZ)
FNCHFN)

7 83 FSRC :

:

~24-

INSTRUCTION :

MNEMONIC :

OPERATION:

FORMAT :

INSTRUCTION:

MNEMONIC :

OPERATION:

FORMAT :

* XL -24 if FE=
= 56 if FE=L

Meverse Subtract Floating/Sxtended
RSUBA #SRC,AC

else
if (Ac)) 72%" else Fce-g*

FV-1 if (AC); #XUL else FVE-g**#
FZ-l if (AC)=9 else F2g

Compare Floating/Extended

FV if
{ (AC); 7 XUL else FV

FZ if (Ac)=@ else

**XLL = smallest number that is not identically zero

-25~

aw

1 7 4 AC EFSRC

xi

ja 7 4 4+aC! Fpst

0331 :
:

fom
: C)-(AC; : A

PDST

AC é (AC)
1- if (AC) FC

i if else

128-2
***XUL = largest that can be represented

(1-22 127

0332
INSTRUCTION: Reverse Divide

MNEMONIC : RDIVX FSC ,AC

OPERATION: Case 1 (AC)=9
AC (FSRC)/(AC) af] (FSRC) / (AC); XLL or

Fiv=1 else ACCif [(AC) 2 else
if (AC); 7 XUL else FVG-f***if (AC) = @ else FZ€-G

FN-~1 if (AC) eise FNE-%

2 (Ac)=0Case

AC
(FC)

FV (FV)
FZ -(FZ)
FN FN)

Load & convert from Extended Floating to

FORMAT :
2 7 5 ACAC .FSRC

INSTRUCTION:

MNEMONIC : LDCYX FSRC,AC

OPERATION: : AC (FSRC) 2 or BLUsl else ACwg**
FO if (AC) 7, 2%4 elise
FV--L if {(Ac)| 7 XUL else FV-Q***if (AC)=% else
FN< lif (AC) elise FNC2

FORMAT :
1 7 A+AC FSRC.

* XL = 24 if FE=(
= 56 if

**XLL = smallest number that is not identically zero
= 2 7128

***XUL = lar number that can be represented
(1-2Lzgest

~26-

if X=F.

INSTRUCTION:

MNEMONIC:

OPBRATION:

FORMAT :

* XL = 24 if PL
= 56 if FE

= 2

assumed to be opposite to the current mode. Specificaily, if the
current mode is and the is set, then FSRC (63: 327 are

mode is E, AC 63: 32> are loaded from and AC <31:%) are
cleared. Similarly, A r (FSRC) converts (FSRC) from X to -X mode by
truncating or rounding (FT=i or @ when X=E or loading trailing zeros

Cyx(FSRC) is as aj wae

the current 0333

loaded into Ac wero, tne tesuit is rounded
using FSKC a w e : unaffected, ene current

t

Store & Convert from Floating/Extended to
Extended/Pleating

a

FO--1 f (AC); Z 2 else FC B*
FVe-1i if (AC)1 7 XUL else FV-g***
FZe~ if Ac)=9 else

if (AC)<% else FNC-Z

1

4 number that is not identically zero

larcest number that can be represented

STCKY Ac

FDSTe- (AC) OF

7 4C iPDST

KK XUL =
2+ (1-25

~27-

INSTRUCTION: Load loating/Extended 0334 :

MNEMONIC: LDCGX SRC,AC

OPERATION:

FORMAT :

else FCCox (SRC) XL:

.if (AC)=9 else FZ~-H
FN -1 if (AC) else Te

:

7 6 +AC j
i

4 SRC

antecer with precision specifiedom mn

by J to @ L floating point number with precision specified by X, i.e. if
ang a= the source is assumed to be a 2's complement integer

which is converted to @ sign magnitude floating point number with a
24 bit fraction. the case of Cpr (SRC), the fraction is truncated,
i.e, oniy the highest 24 significant digits are used.

the abe

wo

INSTRUCTION:

MNEMONIC :

Store Converted from Floating/Extended to Integer/Double

OPERATION :

FORMAT :

*JL=15 if FD mode
=31 if FD mode

k*XL=24 if PE=g
=56 if FE=L

AC, DST

DST (AC) I a eise

x (DST) =@ else g
if (DST) & B elisehy

Hj
Rj

hy
N t

c if ? (AC} >2
AC) 3 2 DST_(DST) *

else FC *

FN

AC i; DST7i 7

~ZB-

0335 :

INSTRUCTION: Load FrRU's Lan Status
MNEMONIC : SRC

OPERATION:

FORMAT :

INSTRUCTION:

MNEMONTIC

INSTRUCTION:

OPERATION:

FORMAT :

FPSZ-(SRC)
177

Store FPU's Progran Status
STFPS DST

DSTé-(FPS)OPERATION :

:7 ; 7
FORMAT:

:

Store FPU's

STFEC DSTMNSMONIC :

DST (FEC) *?
7 7

INSTRUCTION: LOAD Counter

MNEMONIC :

OPERATION: MC

The ROM cycie counter (RCC) decrements each ROM eycle. maintenance *

0336

FORMAT:
a 7 g :

mode the next ROM word will not be fetched if the RcC=@.

Store A register inINSTRUCTION:

MNEMONIC: STAG

OPERATION: ACT (AR)

FORMAT:
7 i yi

INSTRUCTION : Store B register in ace
MNEMONTC : STBY

OPERATION:

:

AC (BR)

17g2FORMAT :

- 30-

033

MIN :

sa

FORMAT 7

~3i-

INSTRUCTION

Copy Floating

Sat Floating Mode

zhanded Mode

Lord Maintenance
Counter

Stora AR Regiuter
in
shoao Register
in acwg

store QR
ACS

Floating/

Clear Floating/
Extended

SUMMARY OF FPU INSTRUCTION SET

MN &MONTC

CFCC

SETE

SERVE

INTX FSC)

CLRX FDST

APPENDIX A

QP CODE

170000

170001

170002

170010

170011

170012

170013

170400 tFDST

JESCRTPTLON

CC #- FCC

FE-O

x. LOM Codes

: :

MC .(RO)

ACS %--- (A

ACE .-(BR)

(QR)
ACH -- (BR)
BR

AC4 «integer partanda 170300+FSRC
of (PSRC); AC5.2~ fractional
part of (FSRC)

FDST

A (1)

rte)

03
39

XNS'TRUCTLION

Nagate Floating/
Extonded

Malco Absolate
Floating/Rxhended
Gash

Load Floating/

Stora Floating/

ex ieandad

I

Divide Floating/

Compace Floating/
. Extended

MNEMON

NEGX FDST

AB SK FDST

TSX FDST

iFSRC,AC

SYX AC, YNST

ADUX FSRC,AC

SUBX FSRC, AC

MULX FSRC,AC

DIVX FSRC,AC

RSUBK FSRC,AC

CMPX AC, FDST

APPENDIX A (continued)

OP CODE

170500+FDST

170600 +FDS'T

L70700+FDST

171000+AC*100+FSRC

171400+AC*LOO+FDST

172000+AC*LOO+FSRC

172300-+AC*1O00+FSRC

173000+AC*LOO+FSRC

174000+ACLOO+FSRC

174400 +AC*LOO+FSRC

DESCRIPTION_

FDST - (FDST)

FDST

FcCé-condition of (FDST)

AC --(FSRC)

FDST <--AC

AC ~-- (AC) +(FSRC)

AC -(AC) -(FSRC)

AC

ac

AC (AC)

1 Ldg/
1 € 1

::

:

3 ly Floating/
(AC) * (FSRC) :

: : L

: :rhe d:

173400 (Ac) / (FSRC)
N : Versa ic

(FSRC)

ECCe-- condition of
(FDST) - (AC)

(2)A

03
40

INSTRUCT LON MNEMONTC

Reverse Divide

Lend & Convert from
to

Floating/*ctonded LDCYX FSRC,AC

Shova & Convert from

SECKY AC, tFOST

:q & Cony Tateger/
Dovble to

LOCIX SRC, Ac

Stoca & Convert Floating/
> Integer/

SYVCkT AC, DST

rogram
LDFPS SRC

FRU's Program
STEPS DST

stove F&U's Inception
Coda SuUsic DST

APPENDIX A (continued)

OPCODE

L75000+AC*1004+FSRC

175400+AC*1LOO+FSRC

176400

177000+AC*100+SRC

177400+8RC

177500+DST

177600+DsST

DESCRIPTION

AC «-(FSRC) / (AC)

AC converted (FSRC)

FDST --converted (AC)

AC 4..convertad (SRC)

RDIVX FSRC,AC

7

:

:

DST «converted (AC)

FPS<- (SRC)

: 7

43

DST .-FPSt :

DST (FEC)

a(3)
a

a

0341

NDIA b
5

An initial anaivsis of Our point algorithms
in the executicn times of the table below. These

Ws a2 :

to AC to AC operations.
to find the execution
Take time

The following approximation can be used
time for memoxy referencing operations:

resuited
times apply

of table
numer of memory reaferences This time nas to be corrected

for possible memory eve Low the address computation
(e.g. add 1 wemory access time for mode 6 ""A(R)").

OAT OPERATIONS:

:

MAX:

SUBA

MULA

+

j
{
i

5

;

H

:

ADDX L.8 3.5 24% 5.1

2.4 5.11.8 Oe 5

2.7 5.5 4.8 i0.0
0 6.0 5.0 12.0

:

B (i)

