

/ p A
‘ Ve
| (™ (
o 16
§ o -

. wabe)

U ucQu

-«

- CopoFin vvilandn
QLL"f\f‘\“

[

w sjrwdw,J\ W od) 3‘1S7 whd-dos ure wpnk 7

P <
“} A D
‘//EZ s
\ Tofr Bk, BLT
Av:,\\ G 5
M

PMs. =2

({anfg .L'/>$pu? S_\
/ v
FE % .\‘\)
ats, ?{) & e : Juwﬂ‘-
;). o ve K" VS S Vo V\i, ((,‘w(,.)

n"'-/\ ,»\)‘lh’ 1&‘\ A { :4

Vol
=
l{o‘i'f\wuw — /hm mlw" [Jo‘,\s?> = Q«M s ¥

= ’ s |]; ”t
cen's | bbb g Tnentrldy - M W ot/
NM SermAa M.\’V'W wlm,f /’22@1, — MZ[I/L[ADLG — 2

Wae ‘ a
/\‘((A WD o *L\ - jL\ULO‘:-g~‘«i v, E_{"’.ﬁtt‘ 2eg r'\}f.rk\ YWLLE AAALA i\'g‘,\,\ ’() L.V,_»> wa e M

”a/z.\/
; :
77 E}n 1 O /| . (F {'J» (‘ -
l J J | a'
(. 0 !"fl | A NANVT.
’\ ' 4 / \
W% "~ J eea d Stovage (oo ¥ >
vf‘t .o) (% St {l
SO ol A
T/0 v eens
M s
b v?
Vi A g7
\ /

jﬁww mMuda A + J (Jf"«\g\hCmt;

f’()'?k)

1!

‘B,

ALTERNATIVES CONSIDERED (Contd)

2. Expansion at Northbrook = It is possible to continue the approach of
obtaining satellite space around the present location at Northbrook.
This would be the low cost solution for the short-term if only the tan-
gible costs of real estate are considered. These cost savings would
occur primarily because we would not be carrying any excess space.
It appears that a better approach is to provide for at least two and one
half to three years growth in a new facility. The Rolling Meadows
facility does this, Northbrook would not.

Operationally, separate office buildings housing different functions
does not favor operaiion of a coordinated field team. The Team Concept
of field management has been actively pushed by Ted Johnson. We
should not inhibit this by shori-term considerations in our real estafe
planning. ., b 8 s

‘

3. Design Alternatives

First Proposal: Office Building - 42,168 sq.ft.

Logistics Depot = 12,800 sq.ft.
Training Center = 12,800 sq.ft.

Advanfages: - less expensive than multi-story by approximately
$300 K. The opportunity cost of the higher
land usage has not been deducted from this ($72K)
easy for expansion

Disadvantages: less visibility than multi-story.
higher land usage

longer walking distances

S.écon;i Proposal: One 3 story building of 70,500 sq.ft.

Advantages: higher visibility
lower land usage
expandable

short walking distances and good communications.

good land usage

o €C g b '(’?((‘gvfw";(,
| ’[\‘\l

A

- \ e o

, — — = 07 \ /Y
- | Tafew £ B SH

4 T o
. <ol '\
‘ . | ™M\ N\
Nec \
(e

*T/0 watwetuns ¢ ‘
o | inetruehion v?wfmwlzb B/
* Comm.

g 55—

\g wosde,

~-Ts¥ ’he‘{'{vﬁﬁm Yo slirne '
i %h,w a‘}) C guw e |
- VA wad *

~ Shrachual cor ol 1

- s,

SUBJ:

n () {

o

Distribution DATE: October 20, 1971
FROM: Peter wvan Roekens

DEPT: Programming
0S/45 Proposal Meeting
There will be a meeting on October 28 at 9:30 a.m. in
conference room 12-2 to discuss the attached proposal.

It is being circulated for your review and comments.

Attachment: Proposal

Distribution
L. Wade P. Conklin
H. Spencer J. Hittell
D. Stone 08/45 Group
B. Delagi
R. Clayton CC: A. Ryder
R. Fxith D. Schroeder
J. Lombardo G. Thissell

A. Devault PDP~11 Coordinating Committee

~ R-1A411—-1043N—R271

INTEROQOFFICE MEMORANDUM

“‘L"

0278

0S/45 - A Proposal 0278

Introduction

On 17 Sept 71 Dick Clayton and Robin Frith presented thoeir
views on 0S/45 to the 0S/45 group.

Q3

Since that time we have reviewed the notes of the 17

54_‘1"1
71 meeting, added new inputs, and have investigated com-
retitive systems. As a result, we have begun to acauire
a bias as to the organization of 0S/45. This parer vre-
sents the market orientation that has resulted from this
bias and details the most current definition of 0S/45.

11

0280

Programmers Overview of the PDP-11/45

The system programmer contemplating the design of an
opeyatlng system for the 11/45 has two classes of
problems to resolve:

1) the price range of possible configurations, and
2) several new hardware capabilities

The 11/45 has a remarkable range of potential prices:

$20,000-$300,000. We cannot ignore the low cnd
because we can expect competition in this range frem
IBM's first mini-computer, the System/7. At the upver
end, even though our price/performance ratic humbles our
competitors, we must deal with the IBM 1130 and 1800
and their immense software library. In addition %o the
challenge of devising a system which has upward compat-
ability cver a price range which varies by an order of
magnitude, the cv-tems designer must contend with three
new hardware options:

*Memory hierarchies (memories with different speeds):
*Independence of instruction and data space, and
*Sagmentation.

Complete understanding of how to properly use these
features has barely emerged from a research environment,
yet we must make intelligent use of them in a production

system. '

To provide reasonable solution to these chal lenges will
require a design phase pursued to an unusual depth of
detail; else we run the risk of rendering the new hardware
features either unuseable or not cost effective. Pro-
viding a software system whose facilities compliment those
of the machine itself will depend on development of a
design which demonstrates we have indeed mastered the
requirements of configuration flexibility and innovative

hardware.

1l

-

0281

The 11/45 Marketplace - Developing a Workable Image
of our Customers

A designer of any product must have prior to any design
activity a distinct image of the individuals to whom he
expects te sell his product. The data processing market -
place has five identifiable concentrations which reflect
market needs*.

1) Real Time

2) Scientific Batch
3) Time Sharing

4) Commercial Batch
5) Number Crunching

Let us eliminate item 5) from consideration immediately _
as inappropriate to the 11/45. The remaining four items
represent the order of market priorities as specified by
Dick Clayton and Robin Frith during our 17 Sept 71 meeting.
During the same meeting Dick Clayton specified the follow-
ing framework within which we should define 0S8/45:

1) Software support for the floating point unit and
the segmentation unit should exist by July 19872.

2) We should announce 0S/45 by June 1972 and deliver
it during the second quarter of calender year 1973.

3) 0S/45 should unify PDP-11 software.

In addition, we have assumed that 05/45 will consume
between 18 and 25 man-years of effort. Using the assumed
manpower estimates it does not seem possible to attempt
to satisfy the needs of the time sharing or commercial
batch marketplace.

In commercial batch, DEC must compete directly against
IBM and in a marketplace where IBM has no peer. We
simply do not have the time or resources to design and
implement an operating system for the 11/45 that would
compete effectively against IBMt offerings. And even if
we could produce such a system, does DEC presently haye
the sales and system force necessary to sell and service
the commercial market? Current inputs indicate in the
negative, and, hence, we recommend rejection of orienting

08/45 toward commercial batch.

*Identifiable in the sense that their overlap does not
result in a complete merging of the end user needs.

0284

From the above we can extract the followina comrosite
of the 0S/45 customer population:

He either already uses or has under consideration
an IBM System/7, 1130, or 1800. His applicaticn
requires only a subset of IBM's software for these
machines. And finally, the existence of competi-
tive equipment which has between three and five
times the cost performance of the equivalent IBM
system provides our hypothetical customer with
sufficient reason not to remain with or choose
iBM,

Of course, the computer marketplace does not exist
entirely under the aegis of IBM and DEC, but we contend
that if we can produce a software system which signi-
ficantly impacts System/7, 1130, and 1800 sales, then
we will have more than nullified the offerings of XDS,
Hewlett-Packard, Data General, SEL, EMR, Varian, and
Interdata all of whom offer real-time systems in the

16 bit class.

0283

All these facts lead us to one irevitakble conclusion:
make sure 0OS,/45 provides a set of scientific batch
facilities that makes it possible for us to capture
10: of the potential 1130 market.

This brings us to the top priority on the list - Real
Time. As with the 1130, we will confine ourselves to
IB¥. In real time, IBM offers the system/7, the 1800,
and the 360,/44. The 360/44 really belongs in a differ-
ent class of equipment (Decsystem 10) so we will concen-
trate on System/7 and the 1800. First the 1800.

IBM has a total of 563 1800's installed or on order at

an average system price of $300,000. The 1800 hardware
represents little or no competition for the 11/45. 1BM
does, however, tend to overwhelm their competition with
software, which includes two systems (MPX and TSX) capatle
of running, simultanecusly, real time in the foreground
and batch in the background. As with the 1130, even thcugh
we can't hope to provide all the software IBM does, the
task of selecting a competitive subset appears achievable.
And even 10% of a $200,000,000 market would handsomely
repay our investment (and hopefully we would capture much
more than 10% of this market).

Unlike the 1800, System/7 represents an insidious rather
than a direct challenge to the 11/45. Only the smallest
System/7 configurations offer any competition for the
11/45. 1In most of these small configurations, we suspec:,
an 11/20 would provide a more cost effective solution.
Regardless of how DEC counters the threat of System/7,
counter-it it must. IBMs track record for customer
loyalty provides little comfort to the DEC salesmen
attempting to replace a System/7* with a PDP-11. Once
in the door with a system/7, add-on equipment and growth
to larger systems will go to IBM by default; System/7
will lead to 1130's and 1800's. (Indeed, the initial
System/7 marketing thrust practically requires that the
user already have an 1130, 1800 or 360).

To compete with IBM in the real time market we suggest
that 0S/45 provide a real time capability that spans the
entire price range of the 11/45 with upward compatibility
of object programs provided across the entire range of
possible configqurations.

* We should not delude ourselves regarding the potential of
System/7. 1IBM has consistently enhanced produc;s to meet
the threat of competition - How about segmentation reg.isters

on System/7?

. | 0282

A time sharing orientation also seems unachievable on
schedule with available resources. The pursuit of an
11/45 time sharing system also seems unadvisable if

DEC decides to pioduce a small version of the 10. Aany
attempt to provide a multi-language time sharing system
for the 11/45 (we already have a single language systenm
in RSTS) runs the risk of colliding with the introducticn
of the small 10. Software production costs zontinue tc
rise and hardware costs continue to decline. And we have
little assurance that the total cost of an 11/45 tine
sharing system (hardware plus software) will not exceed
the total cost of the small 10.

The existence cof RSTS and the relatively modest cost
involved in altering RSTS to take advantage of the Frp
and segmentation provides additional reason for avoiding
a time sharing orientation for 0S/45. If the future ot
time sharing depends on applications packages, and if BASIC
Plus has sufficient language constructs to build most ap-
plications packages suited to the 11/45, then what incre-
mental gain can we expect by producing a multi-language
system? We cannot answer this question factually, but
doubt that the incremental gain can offset the software
development costs. Thus, we recommend rejection of a
multi~language time sharing organization for 0S/45.

We now arrive at scientific batch. We define this as
batch streaming of FORTRAN programs and cite the 1130
Disk Monitor as the type of facility against which we
can expect to compete.

IBM has installed or on order 3800 1130s at an average
price of $90,000.* It would not surprise us if the 11/45
has a cost/performance ratio five times that of the
equivalent 1130.

Dick Clayton projects 1000 11/45 sales over the life

of the system. If we can capture 10% of IBM's 1130s

as a result of providing a competitive scientific batch

system, then we would help him achieve 1/3 of his goal.
Furthermore, the 1130 customer does not need the prac-
tically dimensionless volumes of software of the commercial

market. These users rely on FORTRAN heavily (making it
possible for him to convert at modest cost). And the sizec
and cost of the 1130 itself places a practical limit on
type of applications it can support.

*September 1971 issue of Computer and Automation.

o+ "y L 1

- L4 ~ A

0L tw ¢ Y
1 M

now tc a more exp

rIinition ot

1V.

0285

Satisfying Marketing's Requirements

Dick Clayton and Robin Frith specified three requirements
for 0S/45:

1) Software support for FPP & Segmentation Unit

by July 1972.

2) Announcement of 0S/45 by June '72 for delivery

during the second quarter of 1973,

3) Unification of PDP-11 software.

Before discussing details of 0S/45 (in section III we
established a customer profile; we have yet to describe
how we intend to satisfy their requirements) let's excmine
each of these points and how we can satisfy them.

1)

2)

3)

Local modification to existing software represents
the most reasonable approach to meeting this re-
quirement. RSTS can at modest cost make use of
bot: the Segmentation Unit and the FPP, DOS plans
also exist to make use of the segmentation unit.

Attempting to rush the design and implementation of
the 05/45 Kernel in order to permit DOS & RSTS to
convert in time to meet the July '72 deadline seems
unwarranted; such haste will jeopardize both the July
'72 date and the consistency and coherence of 0S/45
over the longer term. Of course, by making 11/45
oriented modifications to DOS and RSTS, we pay the
pr.ce of continuing the proliferation of software
systems for the 11 line.

Wizhout a doubt the 0S/45 group will have a system
deiined for announcement by June '72, but the scope
of the system depends on available resources (Dick
Clayton has already specified delivery reaquirements)

Initially the objective of unifying PDP-11l software
will not happen. DOS and RSTS will evolve independ-
ently, and it does not seem advisable to attempt to
p-event this.

But as we will describe shortly, 0S/45 as it evolves
will make every attempt to reclaim as much existing

11 software as possible. The 0S/45 design will provide
\wsers with a system covering a broad range of configura-
tions, programming facilities for real time and batch,
and will disrupt existing user interfaces only where

ibsolutely essential.

Having Identified our Customers, How do we Satisfy

T 1 . re.
heilir Needs? 028 /

We have identified our users in Section III. They have
real time requirements and scientific batch requirements.
At the low end we must block the purchase of a System/7;

at the high end we must overcome the presumed user benefits
of IBM's vast software library.

We believe we can satisfy these requirements, by offering

a system which provides upward compatibility across the
entire price range which is available on the 11/45 (20,000~
300,000). This IBM cannot do; movement within System/7,
1800, and 1130 requires a conversion effort; 0S/45 will
not. ¢

Now, it turns out, that Segmentation provides an efficient
hardware mechanism for implementing a system which can
cover the configuration range under discussion. With seg-
mentation hardware and a set of software standards, we can
specify a cascade of hardware configurations each of which
requires additional hardware, in order to acquire more
elaborate services; all the while we guarantee complete
upward compatibility. The success of this approach depends
on a careful definition of the user virtual machine.

Basically this means that the user of an 0S/45 system has
a well defined set of facilities he may use. These facil-
ities consist of a subset of the PDP-11 instruction set
and a collection of service routines. As configurations
grow in complexity, the set of services expands corres-
pondingly, but we always provide complete upward compati-
bility. This scheme implies that every 0S/45 configuration
operates with a set of supervisory code. This code, of
course, will vary considerably on different configuration
classes and in every case appears transparent to the user.
Let's examine some possible configurations:*

Hardware
1)

4K~-12K

TTY

Sbftuaré

Foreground only. i
Small systems suffer from the lack of adequate
program preparation facilities. If you can
prepare your programs on a larger system often
4K suffices to meet the needs of the apglicatxon.
IBM has solved this problem for System/7 by providing host
preparation facilities on larger equipment
(1130, 1800, 360). With this technique they pro-
vide a Macro system called MSP/7. We see no
reason why we cannot do the same. Indeed, if we
intend to meet the threat of System/7, host prep-~
aration facilities seem essential.

*These represent examples of possible configurations; the reader

should not accept them literally. . .
**je intend to investigate full I*/zo compatibility and issue a

memo describing our conclusions.

B R e

U S e a—— R S

02885

Hardware
2)

12K-16K

Y

Software
Disk, tape, etc.

DOS subset

INDAC/11

Overlay Facilities

Fortran

Host preparation eliminated
Foreground only.

Hardware

3)
16K-~-24K .
TTY '
Disk, tape
Segmentation

Software
Same as 2, plus:

Foreground single background stream. System
maintains complete isolation between foreground
and background.

Foreground and background Operate in fixed

partitions.

Hardware
4) Same hardware as
3)but with 28k

Software

same as 3) plus

Support of background
jobs whose size ex-
ceeds that of physically
available core.

Hardware
5) same as but with 32K

Software
plus
shared code
Multiple background jobs.
Index Sequential file system.

Hardware
6) ut with 40K

Software
plus
Multiple Foreground jobs (Individually protected) .

0285

Once we define the basic user virtual machine we can
determine exactly which particular configuration classes
available rasources permit us to produce, Furthermore,
with well defined configuration classes the product
manager has available to him a shopping list that en~-
ables him to make cost trade-offs far more reasonably
than he can at present. It also makes the programming
department more aware of the incremental costs involved
as you move up the seale in system complexity.

VI.

- 0290

Summary and Conclusions

If DEC continues to grow it must eventually increase 1its
business at the expense of IBM. To accomplish this
traditionally unaccomplishable feat, we have suggested

a software plan for 0S/45 which confronts IBM where they
appear most vulnerable - real time and scientific batch.

IBM, with present offerings, provides zero hardware com-
petition for the 11/45. To counter IBM's software
libraries, 0S/45 takes an approach IBM cannot easily
counter:upward compatibility within a price range that
completely covers IBM's real time offerings in the 16
bit class.

L] s e &

Subject: Memory Protection and Relocation Scheme for the 11/25 and 11/40
To: Jim Bell, Roger Cady, Bruce Delagi, Ad van de Goor, !lank Spencer, Larry Wade
cc: Dick Clayton, Andy Knowles, Nick Mazaresse From: CGordon Bell

Attached is a very rough description of the scheme that I hope can be
used for protection and relocation on both of the ahove machines. It seems
crucial that we use such a ségme, or continue to look for such a scheme in order
to minimize the possible nroliferation of unborn, unspecified inevitahle monitors
that will result. As T have indicated heFére, the decision on this scheme is only
ahout 20 times more important than the instruction set, and a floating point
format, so T hope we can all stay loose for the search.

Right now, the meeting on the scheme is to take place on next Friday, Oct
0 at Carnegie. It is imperative that representatives (ec. Rruce, Ad, Larry
Had perhaps Roger and Hank if they can spare the time) of the various eroups attend.
Bill Wulf, Dave Parnas, T and perhpps Nico Wahermann will attend from here.
The Scheme

The attached scheme is a proposal by David Parnas. It isn't out of the blue,
since he's heen concerned with operating system design for the last 4 vears, so it
reflects these ideas, plus more recent concern hased on work he did with the

-

Phikuﬁns company last year. I'm attracted to the scheme hecause:
1. It has a small amount of hardware (roughly the amount proposed bv Rruce).

(Tt has no associative registers)
2. It does not rely on paging or need it, although possibly a verv large machine

might want it.
3. It has a clean method for allowing a program onerating in one address space to

communicate easily with a program operating in another address space.

4. The complete system and user programs usc it. Among other things it has a means

of letting users control i/o,...devices if necessary.

5. Since it is hasically simple, it can be used on hoth, and subsequent machines.

U264

S T LR 5 P RIS b SRR AN N

ol BN NN S

;
H

RS R BRI NS

D. L. Parnas

(Rough Dr;f;)
Sept, 30,1970

ADDRESSING SCHEME PROPOSAL

Intpoduution and Motivation 02 iU

After a serious study of some of the difficulties involved in the

construction of software systems in general and hardware systems in particular

W h:ve reached the conclusion that the construction of highly secure and highly

reliable software systems is greatly mid aided by a memory mapping device &ha-ewznc
allows a program xm and its data to be divided into many segmentsy with the

access of a program strictly limited to those segments which it is expected to use.
The memory mapping devices now coming into vogue for automated memory management

have this property as a side effect of their memory management purposes, but |
atx times they have other properties kt which make them difficult to use for this |
purpose. FYor the purposes that I have noted however automated memory mangement

is not essentfal and a device designed for x such a purpose can be much simpler

than the usual "paging.box". In particular it is not necessary to resort to ‘
anyy use of an associatéve memory or hardware initiated references to core

segment tables.

The particular scheme that I wish to describe here is designed specifically
for the problems of protection and reliability and has the following unusual
characteristics:

1. There is never any need for restricting a subset of the instructions
B ahd calling them a privileged = instruction s
2. It is possible to share a machine M&yam =s which
are completely isolated from each other and the completeness of that
isolation i" does not depend on the correctness of any software.
' In others words there does not exist a software module which, if it

failed,
or programs from the other. [Note: there is of course a price,~in such

would result in programs from one system having access to data

a complete isolation no resource sharing is possible on a dynamic basis.
One can always find a less extreme case in which some resource sharing
is possible and a small amount of code must be trusted. However the
ability to provide such complete, software independant isolation is

in my opinton an essential famkuxexaf measure of the power of the

scheme.

" ‘ D. L. Parnas

; 0271

The scheme was ortiginally designed in order to make it efficient to
operate programs consisting of small segments of both code and data. Howevet,
given a machine with a 16 bit address size) relatively large segments are also
possible. Although the use of such segments is contrary to the principles

which I believe should be followed in software design, their availability

2
S

e

&

leaves the programmer unrestricted. In fact, by making all of yt his segments

the maximum possible size, the programmer may completely ignore the existance
of the device.

R RSP TN e O Y

B oAt T

I developed this scheme without specific interest in a particular machine.
Jt is,i%iact)a fairly special case of a far more general scheme which I have
been considering over a period of years. This rather generalized scheme was
highly parameterized for adjusting to the size of the machine and the memory
size. At the request of EKXMK C.G. Bell , I am presenting only that subset
of the rather large class of maxiiwes xkzmx schemes which appear to be suitable
for application to a PDP 11. This particular version of the scheme is still
rather rough in that a number of the essential details remain to be worked
out for this specfal case. I have available several tables from which L
believe I can derfve the appropriate values of the parameters for this case,
but there are at least several days of work to be done, and I hesitabe to
spend such time vttﬂout xm some assurance that there is interest in seeing
the results. Further, I should have some additional information about the
processors in order to do a good job of finding the appropriate solutions.

I believe that in the following, I have developed sufficient information
to allow the scheme to be evaluated and a preliminary decision about the
value of the scheme to be made.

'The fact that I have not provided the additional Qaﬁsils does not mean

that they are unimportant. The scheme is sensitive?&n the sense that there

are a number of details with the property that—if an incorrect value 1s chosen)
the value of the mechanism is sharply degraded. It is the importance of these
remaining details which cause their derivation to recquire careful thought

and time, ‘ On the other hand I believe the feliewigf-infemraten following
descriptionm = makes it clear that appropriate values for the remaining parameters

as well as appropriate encodings for certain status bits can be found.

s o T i e :
. SRR ot . o gt 3

0275

jar. There are however

Ik 2 “ %
;“ m QMQR the system are highly fami
A , mwmm I believe are essential.

‘IM m W fox programs which operate in two name spaces

- 3 mﬂ. WNOTY SPOLES, %a the infossation in one being 2 subset of the

sz information 48 the other. Programs may move freely about in the smaller
of these m ”Ol!a w-at ‘only to the restrictions placed on the use of each
of M w * Programs may also pass segments of data or prograd from
the W to the m&llt 0! these spaces and vice versa. No aceu?z: any
data ot M‘M 4u the larger space is possible unless it 1is also in
the mﬂn w The- m of segments between the two spaces is not
QMM ht&c under direct program control.

' “”tl m of'n ”tcll memory is independant of the
ey u-pw uuu. and is iovisible to the program except for

:tﬁl tine ce Although the most basic versions of. this scheme

éo net wolka m u Ml Wc., tt is possible to concieve of larger
W Mb ii ei -umto m segment migratiom without any loss

-amm

The movement of
movement between

Il % ﬂ th Wm ability to move about within the saaller
larger space into the smaller one 5

m Mﬁm -vn ttems from its
the program has the M!‘!ty to call other programs vhich are not in the address.

apace and MW‘ tn an address space whi
calitng M ' The set of programs which may be called in this way can
be set up: fa such & way that they are predefined and the program may not alter

the 1ist. O the ﬁw hand, vhere desired, it ts possible to have this list

extendable and ﬂt.uﬂc by the program itaelf.
fixed a_nd one q&;.zﬂlo m be set up.
™ du!t of this festure is to allow programs t
that the cdlm progren has no access to the code or private data of the
pml- ad fuﬂ.hr that the called program has only restricted access

to the eodo and data d the calling x program, exactly that access which the
T consider this feature highly important
1iable software

ch 1is distinct from that of the

1f desired two lists, one

o be called in such a way

implementation of highly secure and re

For future use we now define the following names

Program Virtual Memory (PVM) = the large space mentioned above
Program Working Virtual Memory PWM= the small space mentioned above.
Program Segment Table (PST) =the table defining the PVM, kept in core.
PST base register =a register containing the location of the base of the
current PST. NOT DIRECTLY ADDRESSABLE
Working Segment Table = the table defining the PWM stored in special registers
(NST) mentioned below.
Working Segment Registers = a set of =mm registers containing the WST»
(WSR) “fhey are not addressable by normal instructions.

Extended Call Space = the set of programs operating in other spaces which
may be called by a given program. This may be seen
to considt of three sub spaces

Fixed ECS = an Extended call space which may not be modified by

the program itself.

Free ECS = an extended call space which the program may modify
using programs and address spaces which it itself has
genottucted. THIS IS OPTIONAL AND OF QUESTIONABRE

UTIL‘.ITY IN MY MIND(for a machine of this size).
Return ECS an extended address space which is defined by a calling
program for the called program. . As a rule it
contains 1 entry.

ECS registes = Yehs fons com biiriny base0) of GCS

In & the sequel I will deseribe the charactersitcs of these vardous items

as I expect them for the Pﬂ 11. & <Severztiof The numbers given are rough
estimates bﬁued on inadequate procedures and I would expect them to be seriously
reconsidered aiuge there are mppxm methods of determining appropriate values
which could be used. Other figures are minimum figures =xg appropriate for

a relatively small machine. I can imagine changg¢ing them considerably for

larger processors, but would require mmgh more time to calciilate appropriate
values. I will try to point out the variablility of these figures as

1 givex them. I provide them mainly as a guide to the size of the hardware

that I have in mind.

5

D.L. Parnas
L U274

The&PVM is a segmented address space. Fach segment would have a maximum
size of 825; bytes C“@pitig}/figure’fbub34rechEuated)ibut I would expect
the average size to be much smaller. possibly on the order of 256 bytes.

The segments would be identified by an integer between 6 and iﬁ. The most
efficient use would keep xhis the maximum sggment number muchk lower)perhaps
under 256 or 128. If segment I is of the maximum possible size then the

highest byte in the segment is considered virtually adjacent to the lowest byte
of segment I+1. In all other cases indesing or other operations refering past
the end of a segment would be considered errors. Each segment is characterized
by a state (readbnly, write only,etc.) the number of states must yet bex

studies and a precise definition of their meaning made up.

¢
The PST is a table with a maximum length of 1 segment containing ‘ bytes

segment.

for each It is kept in core when in use and is then pointed to by

the PSThz base register. Under normal usage the segment containing the

PST is not in the PVM of that program.
Sebwﬂwf ¢ & oeoce

There is of course no reason why

‘jq/ by Ho (% @by 1m Ko h”ﬁef

this cannot be done if desired.

The PWM. is a segmented address space. The characteristics of the segments
are exactly those of the PVM segments. In fact every segment in the PWM
is in the PVM. I expect t}at

PVM for this machine. 1 is chosen then the maximum size of the PWM is

7 or 8 segments is a reasonable size for the

the current core size. For this reason axpragxam with suitable segment definitions,

e@utdx a current program could be run without change entirely in the PWM.
The calling tables should probably contain 256 entries. Each entry
would indicate a value for the PST base register, and an address in the

R¥Mx PVM defining the first segment to be executed and the first location in

that segment.

ESSENTIALS
The registers and tables mentioned xhahpxn above will mmx contain

physical addresses. The following conditions are necessary for the success of

the scheme.
ik There must exist no instruction which refers directly to one of

the above tables and reg isters and places the values contained in a place

accessable to the program.

"é
iy
lf'

R o O R T

o oy

oA e o

3 ' 6

sk D L. Parnas

U275
2. The only way to access or modify these tables and registers is

either by means of the special instructions to be described below or

if the tables or registers are placed in the PVM of the program.

4 3. It must be possible to place the PST in a segment included in a
PVM. This is no problem since the REx PST is in core. This is also

N true for the ECS lists.

4.%:It must be possible to place the PST base register , the WSR registers,
M and the ECS registersxxxxEmx in a segment which may be included in

a PVM. For example a facillity which allowed a given segment

EaR E to contain the PST base register in the first word or two,

the WSR xmmx registers in the next 16 words and the ECS registers

afterward‘
b. An alternative to 4 a above is a complete facilfity for loading

all the registers by a single hardware instruction using
information in fixed format core tables. I believe this is

i a better alternative. Thios oehwaden % hedew

SPECIAL INSTRUCTIONS

i These instructions are not privileged. They are specidlam only in that
g they are not needed without the mechanism we are describing.
% 1. Load Working Memory (i,j) segment i from the PVM becomes segment

j Exemxkhke PWM. The old segment j is forgotten.
2. Save Working Memory (I,j). Segment j from the PWM is made segment

o i in the PVM. If theee already was a segment there it is |

forgotten.

RIS AT

NOTE THAT these instructions shift infomration between the two tables but 1

never change or alter the contents and never reveal the c¢»>

|
'% Gy 4641[1ﬂ/ CLLK(Z C ‘) e ¢ i ﬂ'ﬂ¢ét)0>x e e.cy ,éZLJ/ |
sl /Qﬁvf ,,(CL«.;/(j’é SG/L&&/UJ %/w.// XY 7oy fcon k"r_aqvéej |

Ay ing . R /V\(}';/ ‘
OB An g C)({—/\m A\ o) aT) YRecA (\4) x ge %W«J

< ; L'n }-L‘,J cone. @ M hust ookl a. T‘L?h\(\(\"’”t"q W
: a5 | 65(Le"\ l[l-"J Co(/@?((’_)t

q . o) / 18 k74 A e /)
C’C{/&-{.) ‘:)j\.'(‘,l.é‘,) (‘,{_J l\,ﬂ,&.t‘\ (\’\Z }“’ (il CC~-) %‘z/é.

.‘L.fun O hl

; 4‘ i 5;,«—5(P o vevwme \‘-’~

¥ odett

—<_

e | D. L. Parnas "7

Expected NORMAL USAGE.

In the expected normal usage a program is settup by system programs (or by 2 76
{nitial load) so that the tables defining its address space are inaccessable to it.

It then operates primarily within the PWH fﬁ%%i%?& making all references to core
using the PWR as base registers, never using the PST. Only the load and save
memory instructions use the PST; qnly these g0 through the core tables. In proper
usage these instructions should be rare compared to the normal instructions. All
references out of the PWM by normal instructions are considered errors and trapped.
All references out of the PVM by load and store memory instructions are simillarly

tgapped. Simillarly an attempted to use an extended call with the parameter to©

hkgh is trapped.

_ The PST will contain bits indicating if a segment is not in core
and the address in either case. If the segment is mnot in core a load working

memory Or an Extended Call will trap.

f The ECS may contain routines with ZREXEEEXKE access to the tables
defining the address space of the calling routine. Through these tables exmnentions

£l
E or contractions to the PVM may be made by 1 or more ECS programs.

Hidden Information.

1 expect that hidden from all users will be the fact that the segment tables
contain a number of extra bits such as an indirect bit allowing the entry to refer
elsewhere for the actual entry. Note that the indérect bit is only used during

a load working memory instruction sequence, not in the normal use of the segment. The

the states bits are essential information which must be
in that

¢ number and interpretation of
3 carefully worked out, but which, as 1 mentioned earlier I have & basis fore

1 have some moré general tables from which they can be derived.

Larger Devices.
1f in the load working memory instruction we Spec
loaded by indicaténg & suh an address OT locality within the segment, & later, larger

device which partially loads segments can be made compdgibtfzwith this one. The number
CL‘""P» @

of bits available for this must yet be worked out.

ify more than the segment to be

The possibilitﬂLf having portions of the PWM not in core might also be add?g to

et Cdne St

a device for a large processor that is still compatable. I PERSONALLY expect /~‘;his o

is not worth it, but it is worthwhile noting for a future investigation.

T e e

; 0277

Appendix: Address interpretation

i Physical Address:= WSR[Address<p:2>] + Address <3:15>;

R DT D

., 74CM373-0141

ﬁﬂﬁﬂﬂﬁﬂ INTEROFFICE MEMORANDUM

TO: Dick Clayton DATE: September 13, 1974
Jega Arulpragasam
FROM: Craig Mudge
DEPT: 11 Engineering

EXT: 5064 LOC: 5-5
SUBJ: Summary of 11/VAX Architecture.

Enclosed is the report you requested. Detailed schedule

for VAX is the following:

Overall Summary 9/13
Architectural Spec 8/27
Software & other

Implications 10/15
Effect of Implementation

on 11/44 8/27

cC: Engineerin%,Mggg. ; Product Line Managers
ordon Be Irwin Jacobs
Roger Cady : Ed Kramer
Dick Clayton Bill Long
Bruce Delagi Julius Marcus
Bill Demmer Brad Vachon
Robin Frith
Andy Knowles . Software
Phil Laut Ron Brender
Al Sharon Dave Cutler
Steve Teicher Frank Hassett
Pete Van Roekens

DRAGON Engrs. Garth Wolfendale
Sas Durvasula Denny Pavlock
Bab Giggi
Bob Gray

Kent Griggs
Dave Ives
John Levy

[l

8

5 y ¥
DY e

1, YW

Craig Mudge
9/13/74

SUMMARY OF 11/VAX ARCHITECTURE

I. DESIGN GOALS
1. Implementable over a range.

The architecture must be efficiently implementable over
a cost and performance range. The range should span from an
11/05-type-cost machine to an 11/55-successor-type-performance
machine. 1In addition the hooks necessary on the Basic Machine
should be minimal - no more than a few IC's. The option itself
may exceed the current KT in cost.
2. A substantial increase in virtual address. /m“*“f: Y L lliom

T gt
e

The new address length should be between 24 and 32;bits,
fnot just an ‘extra bit or two over today's 16 bitsi——

3. Use known art.

Segmentation, whose strengths and limitations are known,
should be used. New methods, domains and capabilities, for ex-
ample, should not be explored.

4. Compatible with today's PDP-11.
\ﬂwgﬁ Existing user programs must run unmodified.
~ b) Existing user subroutines must be callable from new
programs which exploit extended addressing.
c) Existing system code, except for the code that loads
- the KT1ll mapping registers, must run unmodified.
d) The scheme must be compatible with the KTll memory
management unit.
The goal of running most system code as well as all user
code is unusually strong.

A \”;?(‘ '

5. No loss of performance.

a) I-stream
wWithin a loop, the number of I-stream bits passed
must be no more than in today's 1l. Extra I-stream
bits for loop set up are allowed.

b) Address translation _ .
No more time added above conventional dynamic address

translation schemes.
6. Flexible name space (program space) management.

The following programming needs must be met:

a) Program modularity.
b) Varying-size data structures.

c) ~Protection. ; . :
d) Sharing, without the conflict which derives from the

8-segment KT11l.

Craig Mudge
o 9/13/74

II. THE 11/VAX ARCHITECTURE
l. Extended addresses.

In today's 1l a processor generates a 16-bit virtual
address. A register always takes part in this address calculat-
tion. For example, in the instruction CLR (R4) + , the address
mode is 2 (auto-increment) and the contents of R4 is the operand
address. In MOV B, -(SP), the source operand addressing is by
mode 6, register 7 and the destination operand addressing is by
mode 4, register 6.

ll/VAx exploits this fact that a general register always
takes part in address formation and simply extends each register
to 32 bits. The 32-bit address has two components:

16 16
c d

c= chapter number
d= displacement with chapter

A single chapter is exactly equivalent in size and structure to
the 64K bytes of today's 11 virtual address space.

The 16 bit register extension of register Ri is called
RiX. The definition of the address mode is as in today's 11.

Now consider the 11/VAX instructions needed to manipulate
32-bit addresses. The instructions to manipulate the d part of
the address (c,d) are exactly today's 1l instructions. New in-
structions to load and store RiX, i.e., load and store chapter
number, have been added. There are also new instructions to do
interchapter jumps (JMPX), and JSRX and RTSX for subroutine invo-
cation and return.

The virtual. address space presented to the programmer is
a classic segmentedl address space: 2 chapters of 21 bytes.
The two component addressing will be exploited by programmers:
logically related entities will be grouped and assigned separate
chapter numbers. For example, a separate chapter number could be
assigned to each of a) a matrix, b) a row of a large matrix, c) a
large main program, d) a large subroutine, and e) a group of sub-
routines e.g., the FORTRN object time system. The chapter is
thus the logical unit of allocation for modularity, sharing, and
protection in the programmer's logical address space.

Address specification is efficient. Full 32-bit addresses
will appear in the instruction stream much less frequently than
16-bit addresses, which, in turn, appear much less frequently than
3-bit register addresses (specifying address-holding registers).

1. I have used the term chapter instead of segment because ETll
documentation has sometimes used the terms segment and page inter-

|
changeably. g

Craig Mudge
fi g 9/13/74

2. Mapping.

Every address generated by the processor is mapped to a
physical address. Map tables in memory define the mapping for
each process, or task,_ known to the operating system. See Figure
1. Suppose process K 'executes the instruction INC (R3) and that
R3 holds |_c=4 | d=41007] . Then Figure 2 shows the address
translation.

This address translation takes 4 memory references. Be-
cause it is a serial delay which must occur before the processor
can issue a memory reference, it must be speeded up(to about 150
nsec. on an 11/44 type of machine). Thus a "DAT box" for dynamic
address translation will be used in each implementation of 11/VAX.
This will hold a subset of the map table in fast registers. The
goal of a DAT box is to make this subset the most frequently used
parts of the total map.

: A range of implementation of DAT is possible: from a one-
register implementation(slow, cheap - 11/05) to one that has many
registers, associative look-up, and elaborate replacement addew— ala o thes
ing (fast, expensive -11/95) such as the "translation buffer J
memory" on the $/370.

ITI. COMPATIBILITY .

To ensure that user programs will run unmodified, a spare
PS bit, PS €087, is used to indicate X or non-X mode. A program
written for today's machine does not know about RiX. The mode
bit when zero forces the program to run as it was intended, i.e.,
as a one-chapter program, by using R7X (PCX) as the value for R1X
through R6X. With this mechanism an extended program may call a
"16-hit" subroutine by a normal JSR, as—feiiews.

The call itself is issued from a chapter whose page table
is identical with that required by the subroutine. This is
possible since by definition the subroutine was written to exist
in a 16-bit VAS, and there is no restriction against different
chapters having identical pages.

Note that with a normal JSR the PCX is not stacked and
the called program, therefore, faces no ambiguity.

The 11/VAX working notes (Version 1, 5/2/74) gives full
details of how the X-mode bit, together with the general mapping
concept works for all calls, including examples with the appro-
priate "linking cede" (a couple of instructions), where necessary.

To ensure that our compatibility goals for system programs
are met, another spare bit PS €097, is used to control the stgck—
ing and unstacking of PCX on interrupts and RTI, return from inter-
upt. All interrupts are returned to Process g, Chapter @. The

interrupt vector here, in particular PS <§92 , controls the
stacking and unstacking of PCX.

Craig Mudge
-4~ 9/13/74

This allows the placing of a current 16-bit supervisor in P_C,,
or allows a super supervisor,0SX,to reside here and forward inter-
ruptions to several different "16-bit" Supervisors existing simul-
taneously in different individual chapters. 5
Reference is again made to the Working Notes for full de-
tails of how this actually works. Note that Version 2 of the
Working Notes eliminates a deficiency/limitation in this area,
w@ich had been caused by attempting to get by with a single mode
bit. Version 2 recognizes that adding a second mode bit to re-
move that deficiency is a trade-off with a high payback.

IV. WEAKNESSES the Chaphev ot g 7 BB F‘Ic]-)c:.‘.(.

If we were designing PDP next, i.e., designing the size
and structure of a 32-pit virtual address space from scratch,
we would not proposefa classic segmentation scheme, but the
segment size would be 24, not 16. Other less-than-ideal proper-
ties of the chapter scheme which derive from our strict compati-
bility goal are: E

a) Access rights appear at two levels - at the chapter
level and the page level - the latter is not only re-
dundant, but is the wrong place because a page is the
unit of allocation in the physical space.

b) The page size dictated by the KT1ll is 4K words, gen-
erally accepted to be too large.

c) 32-bit index words and 32-bit indirect addresses in
memory are not provided.

The only one of concern is the KTll-derived page size.
Operating systems which support 11/VAX on large systems will re-
quire hardware assistance for physical memory mangement. -In that
case the page size should be changed. The RSX1l-D group claim
that that part of the KT1ll compatibility could be sacrificed at
little cost. The other part of KT1ll compatibility is the Kernel/
User privilege structure. We could not change that without a
large rewriting effort. We are currently getting a new set of
figures to guantify "little" and "large".

=t

I X i Y
D bedippigf AR TRl A b i
i LR R G b e
1

EeL L e e
MAP TABLES 1IN MEMORY

T P
N e Sl R R
¥ :
-
-

e

»
o

[A’yk/ 7@6/(, &15(!."(_./'57"

1]

CTR-list
(o ex 'S
process &)

PALE TABLES

CHAPTER TABLES
CEach'\'&Me has 3 PM/P»Q'S)-L

Forvat of +able entvies '

CTR-list entvy CTB bound X

< ’\c\.\;kv dable baye

" eSS Y \‘c:)'k‘r_s

chu‘ﬂ-er +oble ew\-VJ oo P

page toble bage

\-uw-msw
TPR B — - S
1dentica) y0
KT

poge +o.ble C"V\'*"j PAR

Feani

: ADDRESS T RANSUANTION EX AMPLE

S2-bb Viakual yo 20540 F.cu?.mwj/

=4 p=2 | <h=% dib =7
CT % R‘ ?(‘M‘j(‘, tabie
~ b-,%'ql PAR__POR
Choenpie $ably
fov petess IS
Q |fw & \
oo I >
s ot
| TRTE i
iCbAs Ebors
\ | ‘ '
\ Chc\\a% v +able \oo\m)) Pacc ¢ +ebie [cokw N |)

tvoonslate (O«.S '\CC-V KT“’D

\7(’,(7

sH 2

9/13/74

Appendix 1

Possible Implementation on a Medium Scale 11.

It will be noted that each RiX corresponds to a single
chapter which will each have a set of Page Tables corresponding
to it, identical in form to todays set of KTll registers.

Therefore an implementation could be such that the KTX
option itself would hold RiX and a limited set of KT type Regis-
ter sets. Instead of 6 sets for Kernel/Supervisor/User times I/D
space, we would have at most 16 sets (probably only 9) which
would be Kernel/User times one for each of the RiX. (9 if the
Kernel was essentially single chapter).

The "hooks" required can be seen to be only the provision
of the Register used on each memory reference (4 lines: 8 registers
plus Kernel/User) and the mechanism for setting RiX on a Load
Address instruction. The latter hook can also be made simple if
integrated at initial design time,

With these hooks accessing the required page table is
clearly of the same order of speed as for the present KT. Further,
replacement of the page tables could be driven from the KTX itself
and would run "blinding fast" on a high bandwidth 32-bit wide
memory bus, as loading/storing would be from/to contiguous memory
locations. In particular, the DRAGON bus would be appropriate.

The extra cost of the hooks on the basic DRAGON is estimated to
be <$25, if it is specifically designed to shift the cost burden
on to the KTX option itself, wherever possible.

/

/
/

J

/br

Mo Colliws o

) Shareel Sefments

, Wcré
}) Ex_&ya /%ma(ww é “"’oj

Lile easier” [ohe Ehe
MULTics L& emd (ED
s wek Lo |

L,) Nabivat ¢ qn o NAy Sﬁééhuﬂsﬂ:

-

0|92

Carnegle -Mellon UnIVel'Slty Department of Computer Science
Schenley Park
Pittsburgh, Pennsylvania 156213
[412] 621-2600
[412] 683-7000

October 21, 1970

Mr. Ad van de Goor
Digital Equipment Corporation
Maynard, Massachusetts

Dear Ad:

Since the busy schedule of meetings at Maynard yesterday
did not provide me with an adequate chance to communicate my
current opinions on the segmenting mechanism that we were
discussing, I would like to place some observations on paper,

First, I wish to make it clear that, with some exceptions
which are mentioned below, the scheme that we have discussed
is well represented by your memorandum dated October 14, 1970.
The mechanism appears to be sufficient to allow all system and
user code to run in a virtual address space. Further, if the
appropriate instruction capabilities are provided, it will
allow the assignment of an input-output device to a specific
program without allowing that program to access other devices
or to be physical address dependent in any way. My recent
studies have indicated that these features are essential to
the development of highly reliable software systems. In this
connection I wish to emphasize that the instructions for ad-
justing the working segment registers must be carefully speci-
fied so that these properties are maintained. At least one
of the current proposals allows the construction of programs
whose behavior may vary if the physical address assigned to a
segment varies. I believe that it will be highly valuable if
such an arrangement is avoided.

With respect to the general contents of your memorandum,
I believe that any rewrite should clearly separate the two
types of information provided therein. Your memorandum con-
tains both a description of some hardware features and a
description of one way in which they may be used. I believe
it to be dangerous in that, in further work, some of the assump-
tions about possible usage may be confused with restrictions
imposed by the scheme. The result could be that the final
product would be unnecessarily restricted in its manner of use.
This is especially important since, in my own opinion, the
method of use assumed in your paper does not make maximum use
of the capabilities of the mechanism to provide highly reliable
software. The method of use which you assume appears to be

perfectly feasible and is quite likely to be the optimal method
under some circumstances. On the other hand, it would be un-
fortunate if later decisions made other forms of use impossible.

I am of the opinion that the major rough edges left on the
scheme are consequences of the fact that we have not yet provided
a convenient means of passing parameters when transferring control
to another virtual memory space. The current scheme in which
parameters must be passed either in a shared segment or by use of
an intermediary imposes restrictions on the form of address spaces
and introduces the possibility of timing problems in the event of
simultaneous calls to some shared routine. You will recall that
in my original discussions of the subject I had an "ECS'" mechanism
which is now a UUO but which provided for parameter passing. It
now appears that the decision to leave out that feature causes
more problems than it saves. I had an extended discussion with
Bill Wulf on this matter on the trip home and he now agrees that
some form of parameter passing on UUO or ECS is highly desirable.

The scheme as it is now described provides for a Working
Address Space of up to eight 8k segments. Thus it is possible to
imitate exactly the current 64k core. If necessary this can be
reduced to 7 to provide an extra bit combination for special
address space oriented operations, such as adjusting the WSRs or
referring outside the Working Address Space for brief periods
without loading one of the registers. Each of these effects can
equivalently be gained by means of a new instruction code (at
least for the larger machines). I believe that, where possible,
the second type of solution is preferable. An assymetry in the way
that one segment (7) is handled can lead to a number of difficulties
(e.g., strange effects on the occurrence of program errors).

We have specified that the smaller segments must be in low core.
I am told that in some cases the i/o devices, trap vectors, etc. will
be elsewhere. There is no doubt that in such a case smaller segments
should be restricted to an area of the same size as specified, but
including that "external' segment of physical core. In other words,
we should shift the area.

It is important to specify that the use bit is only changed
on completion of a segment usage. In the indirect referencing cases
a segment may be referenced but the use not completed if one of the
segments referenced is not in core. In that case the use bit should
remain unchanged. The 360/67 suffers from this error and prevented
a perfect "holiness'" state as a result.

The remarks on the SUF are incorrect and unnecessary.

0193

T

With respect to the validity states: First it is important
to note that the ''valid copy" need not be on backup store; it can
also be in core (not a very common case but one that will occur).
The motivation for the choice of the eight states is twofold.
First we wish to prevent reads and writes in cases where segment
swapping has made such actions impossible or incorrect. Second
we wish to have sufficient information about a segment to know if it
must be swapped out or not when space is needed. These states were
derived by reducing a larger table (combining all states which were
equivalent for these two purposes). The only cases which are not
obvious are, for some people 4 and 5, but for others 6 and 7. All
four of these are cases in which the write action makes the '"valid"
copy invalid. When that happens there are three possibilities:

1. the action was an error

2, the action was correct, the backup space may now be
released, but we are in a hurry and will take care
of that later

3. the action was correct, backup store is scarce and
we want to release it immediately.

In states 4 and 5 we assume that condition 2 holds. In states
6 and 7 we assume either 1 or 3, or that it takes software to find
out which case holds. In state 7 possibility 1 above is irrelevant.
In considering 4 and 6 we find that 6 is the '"'normal" case with 4
being reserved for the situation in which a relatively small segment
is being completely rewritten. The choice between 5 and 7 depends
on the availability of backup store space. Choose 7 if it is a
scarce resource.

With regard to the state transitions: For the multiprocessor
case only it is important that the state changes be determined
finally on the basis of the core copy and not the WSR copy. How-
ever, the core need not be consulted each time because all hardware
produced transitions move to a stable state. Actually it is only
necessary that the'change possibilities" for the destination state
are a subset of those for the original state. The diagram given

has this property.

The incompatability in the trap vectors Has to be studied care-
fully. I think it correct to say that the difficulty arose because
the current PDP-11 is wrong in this area. I will justify that state-
ment by claiming that the current scheme assumes a "last to be inter-
rupted is the first to be reawakened" discipline for processes in an
operating system. There are numerous situations in which such a
discipline is inappropriate and in those cases the assumption of LIFO
or stack behavior leads to inefficiencies and a more complex interrupt
handler than should be needed. You will find those difficulties in
the MULTICS interrupt handler for just those reasons. The stack assump-
tion could have been avoided by stacking PC and PS and then using
R6 (SP) in the dope vector or scheduling tables. Instead PC and PS

0195

are used in the dope vector and the stack is common, One result
of this will be unnecessary stacking and popping for real time
systems, but, more important, in the old scheme the probability of
stack overflows will be greatly increased over the scheme we propose
because all processes in the old scheme use the same stack. I
believe that this type of arrangement is incorrecf even when there
is no segmenting scheme. In our case the extra stack operations
are even more important because there is extra state to deal with.
It is perfectly feasible to keep the PC and PS in the dope vector
as Delagi suggested, but the price will definitely be decreased
performance because we are carrying an earlier mistake forward.

I believe that Wulf and Bell now agree on this.

In this regard we must be aware that by keeping R6 and WO0-W7
in the ST as shown we eliminate the possibility of sharing a seg-
ment table for several processes which operate in the same address
space. Note that we can do that now with a physical space. To
avoid duplicate tables we can separate the values of W0 through
W10 from the segment table. Since they represent addressable data
they can be kept and used in the Virtual Address Space. In particular
the values of these registers + the base of a segment table determine
a "process" (term used for lack of a better one). I see very little
cost resulting from moving this data out of the PST.

With the exception of one paragraph on page 13, the material on
13 to 16 should be eliminated on the basis of my remark about treat-
ing a possible use as the "only way".

The trap vectors must be fixed by convention in virtual address |
space; the external interrupt vectors must be tied to physical space. :

I believe it would be nice if the UUO interpreted the extra |
eight bits as an index into an array of names. This is done now in ;
software anyway. We could then eliminate the intermediary program
easily,

Steps 1 and 3 of the restore sequence on page 21 are highly ;
questionable. A minor matter is that you never use or refer to W12
and W13 elsewhere. That is probably just an oversight. On the i
other hand, this decision assumes the same ''last interrupted,first '
awoken' discipline which we criticized the current 11 for. I believe
that in most cases we must rely on the routine which first awoke the
interrupted process (scheduler) to have retained a VMD or process
pointer and to use it again at the appropriate time. This should be
thought out very carefully., The parameter passing possibility will

help in many cases.

Above all we must resist the tendency to follow some suggestions
and try to make the mechanism a "cure all'". It allows all code to

run in virtual space. That solves a lot of problems but not all

of them. It alleviates the stack overflow problem but will not pro-
vide a magic complete cure; it will not allow a FORTRAN compiler to
be able to ignore the fact that memory is not a random access memory.
If we follow the MULTICS route and try to take all the special cases

into account, the thing will get beyond our understanding (just as
MULTICS did for its designers).

Yours truly,

D. L. Parnas
Associate Professor
Computer Science
DLP/dm j
cc: same mailing list as your memo.

0196

a4
ok

2080030 ~rerorrice MEMoRANDUN

' TO: Distribution . DATE: March 21, 1974

‘ | 0442
; ‘ FROM: Craig Mudge /

DEPT: 11 Engineering

EXT: 5064 LOC: 1-2

SUBJ: 1Initial Feedback on Chapter Scheme VAS MEMO #2

1. Problems

(1) External representation of a process's loaded image will
need to be an encoding of the internal representation
because of the tagged stack. Needed, for example, in
swapping out a process.

(2) References to the tagged stack will not necessarily be
through R6, e.g.,

MOV SP, RO
ADD (RO)+, B

Hence, the implementation must be able to recognize this.

. 2. Suggestions

(1) The tag needed for stack entries could be bit 0 (PC 0>
is redundant on the stack).

(2) Allow 32-bit addresses in indirect addressing and use bit
0 as tag.

(3) Make mode 5 do something useful.

3. Clarifications

(1) Index mode, X(R6) goes through the stack entries one by
one to the X'th one.

(2) Rules for addresses in the registers:

a. registers always hold 32 bit address
b. loading a register always fills 32 bits

(a) Memory to register

i. MoV: ¢ ¢&——current chapter
ii. LA: ¢ &——high 16 bits of operand

At 0443

(b) stack to régister

i. MoV wﬁfn stack entry is short: Cé—current chapter
! " " rlongs C €—high 16 bits of entry

ii. LA v 11 " n 11 long: n
£ short: error

(c) Register to register
Long address to long address

Distribution

Bruce Delagi

Bill Strecker
Dave Rodgers

Ron Brender

Ed Marison

Jega Arulpragasam
John Levy

Bill Demmer

Len Hughes

Bob Gray

L e I &

INTEROFFICE MEMORANDUM
SUBJECT: Protection and Relocation for the DATE: September 28, 1970

11/25

TO: ‘ 4
PDP-11 Coordinating Committee FROM:

Gordon Bell

Gen Bruce Delagi DEPARTMENT:

Let me thank Bruce for getting this proposal memo out into the open. Three comments (so far):

1. This subject (I believe) is_o__l_o_f more important than an issue like floating point data format
or a calling sequence for subroutines because it affects all software (monitor, 1/O, trans-
lators, utilities, and all user-written programs). Therefore, can we hurry and get a small ‘
group together to really consider it and make sure it's right in the same way the two committees
worked on floating point? Getting a group together won't harm the 11/25 schedule if, say
they're given the guideline of having about the same amount of hardware (£ 2 registers). In
fact, I believe it will speed up the 11/25's by about 6 months, because it will force the
monitor structure fo be outlined - and thus the software will be able to use the hardware
instead of having to be written in spite of it. ‘

|

2. At least make the 3 segments (register pairs) have control bits to indicate whether a segment
is read-only, read-write, execute-only, or stack. In this way you aren't stuck with the
program organization Bruce is dictating by his hardware registers. Since Bruce's comments
deal with time-sharing, I assume that's the program structure on the PDP-10. We've gone
through a fair amount of pain to modify the structure to allow several independent programs
to access common data. Also, T would hope the problems on the 10, like not being able
to swap a program doing 1/O,are solved with this organization. (For process control this
seems very important because it allows programs to be brought into core and executed only
when there's data ready in an 1/O area.) Finally, the biggest single problem of the 10
monitor is its size. This is partially caused by the fact that 1/O can only be done in the
monitor (in monitor mode). Therefore 1 would hope that user writfen /O control programs
(e.q. . disk, special 1/0) are permitted. These routines do work for other user programs,

placing results in the calling user's area.

3. I hope to have an extensive alternative proposal which uses the same amount of hardware.

bwf

DEC S5 -1043-C (4-70)

£ 0197
Eﬂ@ﬂﬂn INTEROFFICE MENMORANDUM

DATE: October 14, 1970

SUBJECT: Protection and Relocation for the 11/25

TO: Gordon Bell L~ FROM: Van Diehl
Bruce Delagi
PDP-11 Coordinating Committee

' Ken Stapleford

I am very much in favor to get together and discuss the
above subject, fundamental for the structure of the real-time
monitor we will be writing for the PDP-11/25. 1In fact, a real-
time multiprogramming system with background-foreground capabilities
that does not have a good hardware protection scheme, i.e., protects
any task or executive from being destroyed by the running task and
at the same time does allow a good management of Common's and
Global Common has very restricted market potentials.

The subject of data queuing in a multitask system is also a
very important subject that has not been solved by the competition,
exclusion perhaps of the IBM-1800 MPX.

Because the architecture of the PDP-11/25 real time monitor
that we are presently specifying is so dependent in these ideas,
I will like very much that we get together ASAP to make sure

we are going in the right direction.

WD: cCs

DIGITAL EGL 1 EN CORPRPO

0342
V4
JUL 171973
/58

PpP-) \

t Wom e Lo

|
%ﬂl\, L C_/':_ \G.C A (
' Q)

[P
Y

\‘/q<

0340

0344

03495

0346

8VE0

030<

0353

e bare machine

7 security kernel ...

virtual machine
monitor

Firtual o et R
machine % e L
machine

environment = e : e 4 ‘ yiptualm £.;
A e R 8 e I) security kernel’ ..

- yirtual machine
,-monitor

03506

0357

0359

©

. ' sDRAFT | - Interoffice Memorandum -
5 “‘\ () ‘ - S g 'a\/ “ vy 0243
_ (2)] ruv bas W|20 /.
SUBJECT: SEGMENTATION { DATE: October 14, 1970
TO: Gordon Bell FROM: Ad van de Goor

Dick Clayton
Bruce. Delagi
Dave Parnas
Bill wulf

Larry Wade

v

This memo contains a very preliminary description of a segmentation

"o At

scheme for the PDP-11 family. - - "

The scheme attempts to accomplish the following:

1) Increase the user's virtual address space to 2 T 24 bytes =
4 million bytes.

2) Give a hardware definitidn Qf the "working set" model.

3) Implement "sharing” and"protection". ’

4) Allow processes to handle private I/0 devices.

. 5) The scheme is usable with or without paging.

6) Provide efficient protection between processes and different
segments in a process:

7) Provide storage efficiency by allowing a large range of
segment sizes.

8) Allow the user to work in ;irtual spéce only.

9)

Provide a physical address space of 21 25 bytes =

8 million bytes. ' . .

1.0

Basic Solutions 0244

The address generated by the PDP-11/20 is a lé—bit byte address.
The bigger members of the PDP-11 family will interpret this

address (no&la virtual éddféés) as a two dimensional (segmented)
address as shown in Figure 1. The 16-bit virtual address "VA" >
is divided inté two fieldé:

1) The Wofking Segment Field "WSF". This 3;bit field determines

which of the 8 working segment registers "W§R's" has to be
used to form the physical address of the data‘or instructiénh
The WSR's contain, among other things, pointers to the be-
ginning (i.e. word 0) of a segﬁent. Appendix A lists some
reasons for considering é WSR's adequate.

2) The Displacement Field "DF". This is a i3—bit field which
contains an addréss relative to the beginning of a segment.

This allows for segment sizes of up to 8K bytes.

virtual address "VA"
S — e —
s

3 ' 13

. ~N e

Working
Segment Displacement

Field "WSF" Field "DF"

FIGURE 1. Intepretation of a Virtual Address.

2a 0245

The formation of a Physical Address "PA" is shown in Figure 1lA. -
 The (WSf) of,tﬁe VA is used to address one of the WSR's. The

Segment Address Field "SAF" of the addressed WSR is used together,‘
with the'(DF)l'to form the PA. The PA is, as will be shown

later, a 25-bit byte addreés: ‘ !

The 8 WSR's can be loaded with Segment Descriptqy Words "SDW's"

from the Segment Table "ST" under control of the process.

Note: (X) means "the contents of X".

WSF DF
VA 3 13
Va—d \
L
SAF
WSRq 16 16
W
SRl

oo

WSR-
PA 25
VA = Virtual Address
PA = Physical Address
WSF = Working Segment Field
DF = Displacement Field

WSR; = Working Segment Register i =,
SAF = Segment Address Field . o B
Figure 1A. Formation of a Physical Address.

Y30

0247

1.1 The Segment Descriptor Word -

The Segment Descriptor Word is a double word (32 bits) containing

information relevant to a particular segment. It contains 5

]
\
~

fields as shown in Figure'z,Detailed descriptions are given in

subsequent sections. R
1) . Use and Validity Field "UVF". This 4-bit field is the .

? A b

only field which is subject to chanée‘dufing execution of .
1 ; N

a segment. The UVF consists of two sub—flelds:' '

a) The Use Field "UF". This is a l-bit field
which indicates whether the segment has ever
been used.

b) The Validity Field "VF". This is a.3-bit field des-
cribing the validity state of segment.These states
will be discussed further on.

2) Software Use Field "SUF". This 4-bit field allows for

16 encoded states four of which are assigned already

and describe the movability and size flexibility of a

segment.

a) Move Freely (can be swapped out).

b) Move in core only (cannot be swapped out) .

c) Do not move (specifically for segments containing

I/0 addresses) .
d) Do allow size changes (e.g. for the stack segment) .

3) Access Control Field "ACF".

This is a 3-bit field describing whether Read, Write and

Execute are allowed.

1 All changes are done under hardware control.

[T

024

4) Segment Length Field "SLF". This is a 5-bit field

describing the length

5) Segment Address Fieid

a pointer to physical

1.1.1 . The Validity States

SDW =

UVF
SUF
ACF
SLF
SAF

1l

The 8 possible validity states are encoded in the validity

field VF. These 8 states

of the segment.
SAF". This 16-bit field contains
word O of the segment.

"o A

are listed in Table 1 below. The ‘

column "core assigned" indicates whether any physical core has

been reserveds The column "core valid" indicates whether the

assigned section of core contains valid information. The

column "valid copy" indicates whether a backup copy (on the

disk/drum) is available.

In order to get a better understanding of Table 1, the state

transitions of Table 2 should be consulted.

SDW

r ———— ,k \
a4 a3 ls 18

UVF SUF ACF SLF .- SAF

Segment Descriptor Word
Use and Validity Field -
Software Use Field '
Access Control Field
Segment Length Field
Segment Address Field:

Figure 2.

Layout of a Segment Descriptor word.

O

S

CORE " CORE VALID TRAP AFTER

_ ASSIGNED VALID COPY WRITE COMMENT
_ Empty A
No "”" ' __No - Segment
; s mi o Segment on
No f”’ . Yes /”" backup storageé
" .ot Core copy .
Yes Yes No No only .
. Core reserved
Yes { No . No No . for segment
, Core reserved
4 Yes No Yes No & backup copy
available
. State after
5 Yes Yes Yes ~ No transfer from
backup
6 Yes No Yes Yes -
7 Yes Yes Yes " Yes

-

Table 1. The 8 Vvalidity States

READ OR .
EXECUTE WRITE
0 0
Trap Trap
1 « i
Trap Trap
2 2

3
Trap 2
4
Trap 2
S 2
6 2
Trap Trap
7 2
Trap

NOTE: R

Read or 'Execute

W = Write

Trap is an ACTION - not
a state.

Table 2. Validity State Transition Table &

Flow Diagram

-

5

Lo died

-7 0251

The Access Control States

The access control state of a segment is described in the 3-bit

access control field "ACF". Table 3, below, shows the 8 states.

WRITE EXECUTE COMMENT
" This state allows
~ - for passing segments

Execute only
segment

X
Write only
~ segment

Useful?

. | Read only data
segment

"Normal" shared

W

W X
- : ~
- segment

R/W Data

X
(” Segment

w;um;c\\\\%

"Garden Variety"
W X Segment

N ¢

Table 3. Access Control States

(_____*4_4444444444444444444444444444f44444444444444444444“““““““““““*
025

1.1.3 The Segment Length

This ié déscfibed)in the 5-bit segment length field "SLF".
Small segments are incorporated for storage efficiency and to l .
allow for "private-I1/0", e.g.}to_allow users in a time-sharing
system to have‘their own I/O dé?icé;. The meaning of the encoded
bits is as shown in Table 4 below. . S “.
(SLF) = 0 means that the segment descriptor ward,is void,)
i.e. it does not describe a segment.
(SLF) = 15 indicating a shared segment, means that the SDW
points to a string of SDW's . (of length 1 or more) the last
one of which contains the actual length of the segment. |
For the smaller segments#the length is'a pbwer of 2. The bigger

segments, however, have a size which is a multiple of 256 words

for storage efficiency reasons. (See Section 5.0)

The maximum size of a segment can be derived from the 13-bit displace-
ment field of Figure 1. By requiring that any item in the segment
be direct, byte addressable the 13-bit displacement has to be in-

Al

terpreted as a 13-bit, byte address, limiting the maximum segment

size to 212 = 4096 words.

LENGTH OF SEGMENT

The numbers 16-31 in the

SLF indicate the following‘
lengths:

BT

(SLF) "IN _WORDS

0 invalid segment
1 ;

2 2

3 4

4 8

- 16

6 32

7 64

8 128

9 ™\
10)
o |

NOT USED

12 Z
s |
w |)
15 shared segment |

Al)

Table. 4. Interpretation of the Segment Length.

0253

(X-15) * 256 where 165 X €31
H

)
~

. . This allows for 256 word pagés.

0254

= 10 =~

1.1.4 The Segment Address

The physical address of the first word (i.e; word 0) 'of the
segment is contained in the 16-bit segment address field
"SAF". 'The interpretatioh of this 16-bit quantity is as

P

follows.

1) If 1=(SLF) £8 then the l6;bi£ quantify'i;iinterpreted ‘I-
as a word address. This means that "small"\segments '
(i.e. those with a length between 1 and 128 words) havé

to be located in the first 65K words of core memory .

2) If (SLF) > 15 then the 1l6-bit quantity is interpreted as
a "page address", i.e. an address of a 256 word quantity.

This allows for a maximum physicai word address of 2% 16 *

278 = 2724 words or 2/ 25 bytes.

2.0 Layout of the Segment Table

The Segment Table "ST" contains all the segment descriptor

words "SDW's" belonging to a certain process.

The ST, itself, is a segment and its maximum size, therefore, is
limited to 21T 13 bytes = 4K words. Considering the length of
a SDW (4 bytes) the ST can contain 2M11=2K SDW's maximally.

This gives a maximum virtual memory per process of: (max. segment

size) * (max. # of segments) = 2M13 * 21711 = 21 24 bytes.

“ 11 =

The layout of the ST is shown in Figure 3. The top 16 words

of the ST are not used to store SDW's for reasons to be ex-

1

plained later. Currently these words are used as follows.

1)

2)

3)

The first 8 words (WO-W7) are used to contain

‘Segment Numbers "S#H's". A S# of j in Wi of Figure 3

indicafes that WSRi is‘Ioaded with SDW#j. So the
S#'s loaded into WO-W7 of‘the ST.ind;éate the SDW's
the WSR's are loaded with. Because the\maximum

4 of SDW's in a ST is 27 11 a S# does not have to be
bigger than 11 bits.

Word #10g (WL0) contains the stack pointer (R6) when

-~

the process is inactive.

The remainder of the words (W1ll-Wl7) are reserved

for software use.

0255

0256
2 32 bits .
, 11 bits > ¢ 16 bits .
o NE) N R y o
wo . . "Wl -
T S# . S# 0 ,
W2 . W3 i LY
: s . S# ‘_ . S# 4
w4 ¢ W5 .
. s# R S# 10
w6 - W7 : , 3
- S# * s# 14 o
» 20
W12 W13 ' !
_ ' 24 :
wl4 wWl5
. 30
wle ‘ wWl7
34
Segment Descriptor Word #0 40
Segment Descriptor Word #1 44
4 fa |5 13 ' 16
SDW #N-2
SDW #N-1
Segment Descriptor Word #N

A}

Figure 3. Layout of Segment Table

Master Control Process "MCP"

This process has the authority to allocate and de-allocate

resources in the system. <TCore management and the creation.and

deletion of segments belong to its responsibility. This is the '

~

only process which is allowed to add, delete, or modify ST's

9

and SDW's. Other processes have no control over their ST and

n At

{

SDW's.

Every process in the system is completely specified by its ST.°
When a process is in control, a hardware register, the Segment
Table Pointer "STP", points to the ST of the process. The STP
is a 21-bit register (see Figure 4) and has the same layout as

the low order 21 bits of the SDW of Figure 2.

STP 5 16
SLF SAF
SLF = Segment Length Field
STP = Segment Table Pointer
SAF = Segment Address Field

Figure 4. Layout of the Segment;Table Pointer "STP"

The MCP has a special segment, called the Segment-Segment
Table, "SST", which contains Segment Table Descriptor Words

"STDW's" pointing to all processes in the system, including

the MCP. The location of the SST is known to the MCP because

02585

-l =

it is one of its segments. Figure 5 shows the layouts of the
different tables. The SST contains M STDW's indicating that

there are M processes in the system.

Process 0 "Pr,0" is the MCP; Note that the SST is the first

!

segment in the MCP's ST and is therefore under complete controif
ot ° N LY Y]

of the MCP. It is quite obvious that the SST should not be a

\

shared segment. The process in control is Pr. 1 because the

STP (Segment Table Pointer) points to it.

- 14 - 0259

it is one of its segments. Figure 5 shows the layouts of the
different tables.) The SST contains M STDW's indicating that

there are M processes in the system.

Process 0 "Pr.0" is the MCP. Note that the SST is the first
segment in the MCP's ST and is therefore under complete control[

of the MCP. It is quite obvious that the SST should not be a

shared segment. The process in control is Pr. 1 because the

STP (Segment Table Pointer) points to ik

SsT ST of Pr. O N
\ . . D — \
-~/ STDW #O — ? 16 reserved
1 3 ‘
STDW #1 e eEes /
» ' SDW #0 .
» L 4 rp— ~‘ r WESGE—
. ¢ SDW | —
; i s l o Li Seg.]
S — , #1
L4 “
STDW #M) . A
{ ‘ i B r,ﬁ_ — :
\ 3 | SDW # No .| Seg..
. | L . > | #No.
- " ST of Pr. 1
L- S TP ‘ e \’iv‘,. N TR ‘9 \i . ; Mﬁ—_—.:A--'—"
!) -1 |Seg- |
SDW #0 ~
SST = Segment Segment Table SDW #1 e
STDW= Segment Table Descriptor =« '
Word | . ' '
MCP = Master Control Process T ’ ///77
ST = Segment Table. ““‘gﬁﬁ“#“ﬁi T
SDW = Segment Descriptor Word —— {
STP = Segment Table Pointer ;
’ ST of Pr. M
|
\ i
g |
'SDW #0 ;/
SDW #1 L — /‘:” '
r SDW # NM],/7 I

Figure 5. Layout of SST and ST Tables.

0960

- 16 - 0261

4.0 Interruptability

Fast interrupt response is a requirement especially because the

machine might be used in real-time applications. The state of a.

‘ A
.

running process is determined by the following:
1) The program counter "pC"
2) The stack pointerv”SP"
3) The program status word "PS" >
4) The location of the ST which is the (STP)
5) The contents of the 8 WSRfs

6) The contents of thelaccumulators "AC's"

The interrupt response time can be divided into two groups:

.

1) The time needed to save the current status, called

"Save Time".
2) The time needed to set up the new status, called

the "Restore Time".

4.1 Reduce Save Time

In order to reduce the SaVe Time, the following two facilities

are introduced:

1) The saving of the AC's is done optionally through

Save AC's bit "SAC" in the PS word (see Figure).

= dd = U26<

2) The saving of the WSR's is made not necessary because
of the scheme discussed below. In order to allow for
this,.two requirements have to be satisfied.

-a) Duplicate coQies of the contents of the WSR's
have to be avdilable in core memory. x

b) Knowledge as to which SDW's are loaded in
which WSR's has to be available to\al;ow‘for

a correct restore operation.

Part a) is satisfied by guaranteeing that the (WSR's) are
always the same as the éorresponding SDW's in the ST. This
can be done relatively easily at the exﬁenSe of very little
overhead becausé the SDW's do not change very often when they
are loaded in the WSR's. Only 4 bits of the SDW can change
while a "segment is working" (i.e. loaded in a WSR). These
are the Use and Validity bits (see Section l:l)
al) The Use bit changes,at most, once while the segment
is working,'naﬁely when it is used the first time.
a2) The validity bits can change'only a few times after
which they end up in a stable state or cause a trap
(see Téble 25. . | 2
Because the changes mentioned under al and a2 are so in-

frequent, they are made in the WSR and the corresponding

SDW simultaneously (i.e. in a non-interruptable sequence) .

The

U263

J
- 18 -

Part b) is satisfied by reserving in the ST 8 words which

contaih;the SDW #'s loaded in the correéponding WSR's

(see Figure 3). | 5

The additional requirement in loading a WSR is that the

H

SDW # has to be loaded'in the corresponding entry in the l{

ST,

Reduce the Restore Time

restore time can be reduced by

1) Conditionally restore the AC's. This is done through
the Restore AC bit "RAC" in the PS word (see Figure 4).

2) selectively restore the WéR'si This is done through
an 8-bit mask, the Restore WSR mask "RWSR", in the
Virtual Memory Descriptor "VMﬁ" of Figure 5.

3) Conditionally Change Address Space.
This is‘done through the change address space bit
"CAS" in the VMD. The exact operation of this bit

needs some more work. . .

0264

- 19 -
PS
. i {1 6 3 11111}l
Lrac P TNZVC o
'SAC
: b ,‘ !
SAC = Save AC's -
RAC = Restore AC's \ .o, !
P = Priority | | ‘
T = Trace
N = Negative
Z = Zero - -
Y = Overflow ‘
& = Carry
PS = Program Status Word

Al [

Figure 4. Layout of the Program Status Word

0260

Interrupts ahd Traps

The interrupt and trap vectors, as currently exist on the PDP-11/20,

have to be redefined in order to guarantee efficient operation.

\
A)

Instead of the-"old" intenrupt/trap vectors consisting of a

PC and a PS“word, we will ﬁoﬁ have a Virtual Memory Descriptor

'
+

"VMD", see Figure 5. These VMD's are locétéd‘in physical core, .

they are also 2 words long, and can therefore réblace the '

interrupt/trap vectors.

The VMD contains all the information necessary to start a process
operating in virtual memory, rather than interrupt/trap handlers

operating in physical address space. The above'feature allows

processes to handle their own interrupts/traps.

VMD
8 2 |1 5 ‘ 16 ‘
RWSR L J STAF
CASF STLF

N}

VMD = Virtual. Memory Descriptor)
RWSR = Restore Working Segment Register Mash\
CASF = Change Address Space Field

STLF = Segment Table Length Field

STAF = Segment Table Address Field - -

Note: The STLF is similar to the SLF.
The STAF is similar to the SAF.

Figure 5. Layout of the Virtual Memory Descriptor

o | 0266

The saving of the state of an interrupted process consists

of the following steps.

1) Test ﬁhe SAC bit in the PS (see Figure 4) and
“conditionally push the AC's on the stack of the
interrhpted proceés: h

2) Push the PC and PS on thé stack 6f't%; interrupted .
process. A ' ;

3) Store SP in W1l0g of the ST of the interrupted process.

4) Invalidate the WSR's by clearing them. This is to
safeguard the interrupting process from accidentally
being able to access the interrupted. process's VM

space.

Restoring the state of the interrqpting procéss consists

of the following steps.

1) Store (STP) in a temporary location "TSTP".

2) Pick up VMD from interrupt/trap vector and store it
in the STP.

3) Store (TSTP) in W12 and‘Wl3 of tﬂe ST of the
interrupting VM space.

4) Restore R6 from W10 of the ST of. the interrupting

process.

026/

5) Pop PS and PC.

6) Test RAC bit of popped PS and conditionally restore
the AC's by popping them from the stack.
7) . Selectively restore the WSR's under control of the

RWSR mask in the VMD. " *

Indirect Addressing and Shared Segments

b

Instruction as well as data addresses are virtual ‘addresses

4

1

"WA's". Because the (WSF's)™ can be different for instructions

and data, instructions and addresses can come from different
segments The two possible cases for direct addressing are

-~

shown in Figure 6.

Indirect Addressing

Indirect Addressing is handled in a way very similar to direct
addressing. Now, however, three VA's are generated: 1 for the
instruction; 1 for the indirect address; and 1 for the data.
This leads to the five possible addressing cases shown in

Figure 7.

1

See Figure 1 and lA.

0265

Seg. a) Seg. a A Seg. b
\Instruction Instruction | Data

Data ' 1 : \\\\$

Case 1 Case 2 \
Instruction & L Instruction & Data in
Data in same different Segments
Segment ' o o

b

Figure 6. Direct Addressing Cases

Seg. b Seg. a Seg. b
? Instr.
data
Case 1 Case 2
Seg. a Seg. b | Seg. a Seg. b |
Instr. [Ind.Ptr.o Instr. _ﬂInd.Ptr.}
O |
data # ' \
(N - a N
Case 4 ' Case 5

Figure 7. Indirect Addressing Cases

Cnnnqnnu/ nnruwnr“qjﬂl ;
L:p B

Lt

0291

TITLE: Protection & Relocatlon for the PIP-11/42
PDP=11/40 Technica! Memo #29
AUTHOR: Agd van deg Goor

Rebert Gray

K.C. Huang

DATE: March 83,1971

REVISION: ¢ OBSOLETE! Memo %29 Feb 24, 1971
INDEX KEY! Relocate/Protect

Segmentation

DISTRIBUTION: PDP=11/48 Group
Van Diehl
Ken Stapleford
Hank Spencer

John Hittel .
Gordon Be|l: CMy+~—
David Parnas: CMU :

Nick Pappas

ABSTRACT

The memory ‘mabPping or relocate protect scheme proposeg for the
11740 Is essantlally a segmentation scheme. [t Is deslignei In
such a way that |t [s upwards compatible with the 11/68 scieme
and does not Presume or dictate a particular use,

The scheme provides for a physic¢al address space of 2t18 bytes
and a maximum agtive virtyal address space of 2+¢16 bytes, The
total virtual address space (!,a, the length of the segnent
table) |Is determined under software control,

The active virtual address space can be divided intoc 8 segments. 4
The :size of each =egment ocan vary from 1 tC 10 Pages (1 ¥
pager= 256 words), Protection and relocatian are provided on the :

-

segment fevel,

An Implementation of the relocate/protect option Is oropoSed, It
will f1t en two QUAD boards, 16 ACTIVE SEGMENT registers and 4
STATUS registers wil| be provided. A hardware ald |s proRosed to
help recover from NON~RESIDENT faults, Appendices contain

suggested recovery routines,

- el : : 0292_

Protection & Relocation for the PPP=11/40 PAGE 2 :%
impiementation proposal . Marfch 8,1971 ;
PREFACE

the rejocate/protect scheme being designed for the POP=31742, It
further 18 being used a8 a "working" set of anglneering
specifications, As such [t will uitimate|y become the text for
the "Englineering Specifications® and the "Maintenance Manual",

This document Is Intended to Provide a detailed description of

New In Revision C are:

1. Segment Length Field and Segment Address Fleld desgriptions.

N

Seetion 1,2 "Segment Fault Action

3, Use of &SRO kit 7 o enablesdisable MemoPy MaNagement
Trapping,.

4, Storing c% Trap Vectors |n SSR2
5, Section 7,2 Address bits 16 and 17
6, Septlions 9,14 and 9.15 Console communication

7. Section 7,3 Address ASsignments 4

protection & Relocation for the POP=-11/40 PACGE 3
Implementation proRosal Mareh B8,1971
1,8 INTRODUCTION

This memo Is Intended to be a Preiiminary description, Many
detalls have yet to be worked ouwt, It is ouyr [ntention 10 revise
this document from time to time with the additional detail,

Because this |s a |l1ving document, It Is extremely important that
We Kknow about grrors In Writing, detail., of most Importantiy, In
pian., ue expect there wil| be questions and contentions raised
by this teghnlcal 'desecription,, We remain ajways reaady to |isten
and try to understand guestlons you may ralse. |f we are going a
wrong direetlon, NOW is the time to changej We earnsstly request
your criticishs and suggestlon, all deserve an horeSt reply.

BASIC SOQLUTION

The addresses generated by the pPDP-11/2¢ are 16-0i%t byte
addresses, on the 11/42 with segmentation these addreSses are
consldered Virtual Address "yA's". A VA Is considered tC¢ be a
two dimensiena| address as shown In Figure 1. 1t consists of:

1. The Active Segment Field "ASF", 7Tnis 3opit fleid delermines
which of 8 Active Segmant Reg!sters "ASR’s" has 10 Dbe used to
form the Physical Address "PA",

2. The Dlsplacement Fleld "DF"., This Is a 13~bit fleld which
contalns an address relative to the beginning of a Segment.
This allows for segment slzes of 2+13=28k bytes,

The formatien of a physical address "PA"™ is shown in Figure 2.
The Active Segment Field "ASF" of the Virtual Acdress "VA" Is
used to address one of the glght Active Seament Reglisgters
"ASR’s", The Ssegment Address Fleld "SAF"jof the agdressed ASR I's
used together with the Displacement Fleld "OF" to form the PA.

The ASR’S can be loaded with Segment nescriptor wWords "SDW’s"
under program contrel.

THE SEGMENT DESCRIPTOR WORD "SpW"

A SDW |5 a 16=bit word containing information rejevant to a
partigylar segment, A SDW consists of 3 fleids, S€e Flaure 3,
which are descriped below.

1.. The Access Control Fleld "ACF"., This 3-bIlt field contains
the acecass rights, called KEYS, of a process with respect to
a partieular spement, The followine keys have Deen assjgned

already,

a. Non Resident "NR" (key=@), Any accassS to such a segment
will cause an abort, " The reasaons why 2 segment is

0293

*E

faty « =

Protection & Rejocation for thé POP=44/40

| : . PAGE 4
i Implementation prorosal Mareh 88,1971
noneresident can be many foldg, 2.9, not swapbPed In vet,

segment does not exlst, etc,

b. Resldent Read Only and Trap YRROT" (key=%4). This Is
essentially a read only segment, a trap uRon read ¢ould
be desired to gather 8tatistics about the uUse of the
segment, ete,

¢. Resldent Read Gnly "RRO"™ (key=5). An attempt to Write In
an RRO segment wil| cause an abort,

d. Resldent Read Write and Trap "RRWT"™ (key=l). In this
segment essential |y Read and Wrlite operations are
allowed, the trap upon g read or a write acceSs could te
deslreg for statistles gathering (see b above),

e. Reslident Read Write and Trap when Write "RRWIWM (key=2),
This J|s a segment where essentfal|y read anhnd wrjte
cperations are alliowed, When a write cperation IS done,
a trap wil|l occur, This couid be used to iNndicate that 3
no valld baskup copy exists any more, i

f, Resident Read Write andg Written [nte "RRWW"™ (key=3), o
This |s a segment In which read and write eperations are :
allowad. The "written Into" coujd Indicate tThat nro
backup copy |s avaljabie,

2., SEGMENT LENGTH FIELD (SLF) A

This four bit fleld spegifles the number of 256 word Pages in
the seament, From 1 to 16 pages may be specitied Im this
fileld,

Note that "g" |m the SLF Specifles 1 page and 12 in the SLF
specifles 15 pages,

The four blts of the SLF are compared with the foldr high
order address bits In the DISPLACEMENT FIELD from the
processor to detect SEGMENT LENGTH errors. A SEGMENT LENGTH
error exlsts 1f the SLF is smaller than the four nigh orger
bits of the DISPLACEMENT FIELD,

3, SEGMENT ADDRESS FIELD (SAF)

This fleld of 9 bits In combinatien with The 13 bit
DISPLACEMENT FIELD from the processer form the 18 plt :
physical address, This process Is shown schematicajly In £
Figure 3, - &

Sirnse the 11,47 segmentation scheme a|iows segments of
Gifferent sizes (256 Word to 4996 words In 226 wWord
increments), a method myst be provided for creating segment
boundrles at 256 word Intervals rather than at 4K intervals

Protection 8 Rejecation for the POP«11/40
Implamentation proposal March 88,1971

142

o]
>
D]
™
k3

if memory ls to be fully used., This is impiemented by adding
tﬁe 4 high ordet address bits In the DISPLACEMENT FIELD into
the SAF as shown: In Flgure 3, Thls ‘technjque allows a
VIRTUAL 2ddress 2 of a 256 to 4K word Segment to be
physically located at any 256 word boundry [n tne memory
system, This a|lows Segments of varying lengths te be placed
In chysical core with no "gaps" between them, '

SEGMENTATION FAULT ACTION

If the processor sends an address that Is: non=resident, eaxceeds
Segment length or viojates “read only" restrictions, the
operation |s abortsd before the memory operation occurs, No
memory reference gccurs and an ABORT sional |s sent to the
proecessar, No further memory references can occur until the
Processor acknow|edges the ABORT Signa| with & seumentation fault
acknow|edge (SEGACK) sigmaj, This process is hend|ed

automatlcg!ly in the 11/49 hardware,

If a saegment accegs is made that requires a memary maNagement
trap, the processor s motified by a signal (MEM MGMT FLAG). The
pProcessor acknowledges this flag only at the eng of an
instruetion, The agknowiedgement |s signal SEG ACK, Ses section
6.6 for a full discussion of this operation,

The MEM MGMT FLAG has priority over "T bit" traps,
DEGREE OF HARDWARE AIDS ON SEGMENTATION FAULTS

when a segment fau|t occurs, [f It |s a "non~resident” fault, the
system must bring the missing segment into core then restart the
task. Since such "non-reslident" faults can eccur within
instrugtions, some means of e[ther restarting the Instruction In
the middie or backing the instruction up and restarting at the
beginnirg myst 8 provided,

Restarting the Instpuction |n the mlddle is rejected as there are
a numper of Internal Inacc@ssible registers whosa value ecan be
nelther saved nor restored for "middie of instruction” restarts,

An investligation of backing uyp the effacts of a partially
exeouted Instructlon Shows that only auto~|ncrement and
auto~decrement operations effect the registers and that to
restart, [t |s syfficlient to reverse the effects of any auto
decrement/incremsnting done by the partliaily cOmpieted
instructicn before restarting at the "instruction address."
Further It has been determined that a maximum of Two reglisters
are changed during a glven Instruction,

0296

Protection § Reloecation for the PDP=311/4¢ PAGE 6
Impiementat|on pronosal Mafch 8,1971

The next decision myst detepmine the decree of help orGvided by
the Segmentat!On hardware [n correcting reglster values, ‘C!eariy
z range of help |s possiblesfrom fully autamatic correctien to
merely Indicating how far the [nstructlon got in
SOURCE/DESTINATION ogalcylatijons, "

Previous experlence wlth the KT1il (11/22 Paging option) [which
merely provided the EXEC wWith a blt Incjeating whether the
SRC/DST had been complieted.,] indicated acdditional heln was
needed,

A fully autemzt|c seheme Was rejected because |t waS regarded as
"overk| i l" and the intimate connsction to the processSof hKOM that
would have been required Wwas not thought desirable,

The proposed Soheme is implemented in Segment Status Register
HSER - #1M It allows the EXEC to correct ali reglsters mod|fiec
in {ess than 47 memery references, It’s hardware |mP|ementation
's straiaght forward and does not control the procesSor R{M,
Appendix A |8 a sample recovery routine, Basically 1% Provides
the EXFC with the register number changed and a deScription of
how much and In whgt directjon [t was changed.

SEGMENT STATUS REGISTER #@ (Segmentation status and arror
Indicators)

SSRE wlll contain error flags and the "virtua| segment nymber™
causing the error as wel| as other status flags, [he regjster
will be organized as In Flgure 4,

Gits 15-12 are the arror flags, They may be censldered 1O ha in
a "priority queus" In that "flags to the right" are ignored] That
is a "nen resldent” fault service routine woujd lgnore sagmant
length, aceess, and memory Management flags. A n"sgment jenatnh"®
sepvice routine woyld ignore access ang memory management faults.
ste. Jote that the word fofmat Is convenlent fori "ROTATE" and

"BRANCH"™ breaxout sequences,

Bits 11-8 are presently spares, Thay may be gssigned uses in a
"Depugging Optlon" allowing "hardware preakpoints,"

4
Bit 7 enables MEMORY:MANAGEMENT trapping. If bit 7 is ¢, Segment
Status Reglster 3 wiill Kkeep track of which seecment references
requested memory management traps, but the "trap signal (MEMT
TRAP FLAG) 18 not sent to the processor. when bjt /7 Is made 1,
the next time a segment whose ACF calls for a MEM MGMY Trap |Is

A f
A

protection & Relecation for the PPP«11/40 PAGE 7
tmplementation progosal March 8,1971

refarenced, MGMT TRAP FLAG |8 sent to the processor,

Blit 6 specifies a MAINTENANCE mode fn which onjy the DESTINATION
fetch/store Is rejocated aNnd protected, 1t i3 expegteég to be
useful for diegnostic program development,

‘Bit 5 Indicates that the: Ingtfuyctlion has completed, It will be

set when noneinstpuction (traps) memory references afe made,.
This prevides the error handling routine a waV¥ of finding that
the last Instruction witl not have %o be repeated on restart,

Bitg 4=1 glve the virtual sagment number of the reference causing
a fault, BIt 4 on g "1" Ind|cates USER segments. Note that tnis
field is positloned for convenient relative addressing on the
segment numper,

Bit 2 thls blt controle whether virtual addresses are operatsed
upon by the segmemtation hardware, This bit will|] be cieared by
the proecesser signal INIT.

SSRE blts B,5:6,12=45 can be Written into as & word., gther bits
(1=4) wi}| not contain vajld Information after writing Into SSR@

unti! the next Trap occurs,

DESTINATION ONLY SEGMENTATION

Experisnce wlth depuoging KT11 dlagnostics has Shown that a
DESTINATION MODE ONLY rejecation 8 protection is desjrabje, It
is propnsed that SSR1 bit 6 be ysed for that opurpose, and that
segmentation be controlled by the fo|lowing Boolean eauatlon:

segmentat]on=SSR1CP> (1) +SSR1ILE> (1) #DST

The amount of loglec regulred to implemant destination only
segmentation I8 estimated to be one 14 pin ehip.

SEGMENT STATUS REGISTERﬁ#l

This register keaps track of any AUTO INCREMENTING/UEGREMENTING
of the general registers. j,8» PUSHES and POFS, Tne register |s
cleared at the beginning of each Instruction faetech, WneNaver a
general reglister g elther pushed or poppPed, the register number
and the 2‘'s complement numbar of bytes tnhe reglster got modified
are written Into SSRi. The |ow order byte ls written first, See

Protection & Relocation for the POP=11/40

Implementation prorasal March 8,1971

Figure 4.

When tme instructiom Is compieteds there IS no need to restart
the lns?ruct!cn even |f there may be segment fau|ts before next
instruction fetech The reglster SSRY is cleared and &anyY stack

modificetion from that time t1l] next Instruction tetch Is
recorded,
Register mumbers wili be recorded "MOD 8", It wil| be yp to the

recavery service routine to determine which set of reglistars was
modified by the state of the precessor Statys Weard at the time of
trapping.

The ex|stence of SSRL1 wiil speed up the recovery from a non-fataj
segment faylt by 2=3 timeS (a saving 102=207 uS) and requires
only 1/% to 1/1¢ of core (75 words) of the caSe where the only
information available to the EXEC are the SRC/DST blts, Ajthough
non-resident segment faults are not expected to occur at a rate
more than onhe per twe mll|l=seconds, thus making the 1@0-2@@ uS
saving In overhead perhaps seem insignificant; the [mpjementation
of SSR1 can Probably he Justifled In terms of the amount of core
saved (580 words) and the small amount of hardware that has to be
added. 1t now seems that the 4256 ROM is requlired |n any case
to eliminate Some of the loglic needed to decode the rslevant CP
states, The register Itself reaqulires nothing eXtra and the
contro| lcglc |s estimated to be five 14-16 pin chipS, A read
only memory (ROM) will be used to detect processor stateS during
whieh AUTO INCREMENTING or DECREMENTING oecur, The RUM will
"tpack® the processor Control Memory ROM, That [S, the address
beimg sent to the processer ROM wlll be bussed to the
segmentation modules, where [t will be used to salegt the same
numbered laeation ip a ROM |ocated in the segmentation ortion,
One bit of the ROM wlhill indlcate that an "AUTO" change Is
occurimao. Another bit will [ndicate the dlrection (INC/UEC) of

the change,

SSR1 1§ READ ONLY, It cannot be written into,

STATUS REGISTER #2

SSR2 wll) contain the 16 bit virtual instructlion addreSs., [t
will be |ocaded at the beginning of gach |nstruction felch, 1t
will be loaded wlth the Trap Vector (Ty) address at the beginning

of an interrupt or a "T bItY trap,

SSR2 18 READ QNLY. It cannot be wrltten into.

Protectlon & Relocatieon for the PDP«11/40 PAGE g
Impiementation proposal March 8,197%

6.7

7.2

7.1

B

MEMORY MANAGEMENT AND SSR #3

Thres of the ACF keys caUsSe a trap under the condition thgt the
segment was referenced, This wi|| be used for swapP|nmg cantro|
and other memory management functlons, Singe theSe are not
"error® faults, there 18 no rgasSon to "abort" the operatlion When
a MEMORY MANAGEMENT trap ogcours, [t Is asufficlent %o merely
"note" that the trap Occufed, A convenlent "un|t Sgmpling
period" I1s the "Instrugtion,” puring a single [nstryction several
(5 max In an indlrect BINARY Instruction) different Segments may
cause STATISTICAL traps, Each of these must be retajmed untl|
the trap I|s serviced. In addition sincs the move to Wser anc
move frem user instructions operate in both USER and tXEC virtyal
address space, Some combinatioen of 16 different segments can be
at fault. A MEMORY MANAGEMENT trap causes a bjt In the ©SSR3 to
be set, EXEC Segment 2 wl|!l set bit @, USER segment 7 Wil| set
bit 15 of the registep., See Figure 4,

L

Once 2 bit I3 set In SSR3 glghal MEMORY MANAGEMENT TRAP wil| send
MEM MGMT TRAP to the processer. Th|s wi|l cause a traP at the
eng of the current Instruction, The request w||| pe signlfled by
bit #12 In SSRZ becoming a "i", Durimg the service routine the
bits In the SSR3 must be reset, (Note additional bjits may be set
during the Service routine,) At the end of the servioce routine,
SSR# blt 12 must be cleared, This "rearms™ the MEMORY MANGEMENT
error jeglec and enables The "T" bhits to be set agajn, An "ABORT"
error oecuring on a fetch or the location being a regjster that
is Internal to the segmentation option wl|| ppevent a Memory
Management blt from beling set, even if the access key calls for a
MEM, MGMT, TRAP, SSR3 can be written Into as a ward,

Note that I|f blt 7 In SSRP s "g" L[ENABLE MEMORY MANAGEMENT
TRAPS], no flag |s sent to the processor when the MEM MGMI access
keys are detected., The propef pbit In SSR3 [s set however, This

" allows "periodie" EXEC memery use checking at EXEC discression

rather %than checkling forcsd by hardware,

DETAILED SYSTEM SPECIFICATIONS ‘

CLEARING SEGMENT STATUS REGISTERS FOLLOWING TRAP

At the end of the segmentation fault service roytine certain bits

in 8SRY must be cleared to "rearm" the segmentation trap loglc,

Bitg 12«15 and 1=5 must be cjeared to resume segmantation error
checking, On the next memory reference foliowing clearing these

bits the other SSR’s wll|l centinue monltoring the Computer
operatien, SSR2 wWill be loaded with the next Instruction
address, SSR1 will get register (Information, If a2 new

Protection 8§ Relocation for the POP=-11/49
Implementation prooosal Mafch 8,1971

8,0

statistlice| trap were detected, SSR3 wil| be ioaded,

ADDRESS BITS 16 AND 17

a. OSEGMENTED=nbits 16 and 17 arg speclfied by the contents of the
Active Segment Reglster, (Max Memory=128K)

O. UNSEZOMENTED-51ts 16 and 17 are equal to ¢ Uniess 13,14,15 are
1, then blts 16 and 17 are adtomatically made 1, (MaXx Mgmory
= 32k)

c CONSOLE ACCESS-when canstie ADDRESS SELECT switeh Is in
"PRYSICAL" position, bits 16 and 17 are contro|jed explilicitly
by switehes 16 and 17 respectively, (examl|nes and depopsits
only.)

REGISTER ADDRESS ASSIGNMENTS

777630 SSRp

777632 S8Ry,

7775834 SSR2

777636 SSR3

777644 USER ASR @
777642 USER ASR 1
777644 USER ASR 2
777646 USER ASR 3
777650 USER ASR ¢4
777652 USER ASR 5
7770584 USER ASR 6
7776564 USER ASR 7
777660 EXEC ASR @
777662 EXEC ASR 1
777664 EXEC ASR 2
777666 EXEC ASR 3
777670 EXEC ASR 4
777672 EXEC ASR 5
777674 EXEC ASR 6
777676 EXEC ASR 7

FLOATING PQINT PROCESSOR

Severa| consfiderations regarding the Interaction Wilh the
Floating Polnt Unit (FPU) remain unresolved,

Floating polnt instructions gause genera! registers to ©bte autp

o

Inc/cec by 4 or & pytes, These values will be stored |n SSRy.

Erotectlcn & Relocation for the PDP=11/40 PAGE 11
implementation protosal March 8,1971)

9,

9,1

9,1,1

INTERFACE SIGNAL SPECIFICATIONS

Introdugtion

The Internal reglsters of the sagmentation aptien will Interface
With the processor through the "fast pus", In addltion a numper
of other signals will be Passed hetween the two unlits, It Is

intended that agreemsnts on the characterist{cs of these
Interfacing slgnals will be catglogued In this sectlon,

PROCESSOR/SEGMENTATION INTERFACE
Fast Bus Interface
1. VIETUAL ADDRESS LINES » [VAZ through VAL53(16 |In8s)

16 lings sending the VirtWal address froem the proceSsor or
floating polint processor to the segmentstjon ortlon, A true
signal wil| oe ground, These signals wiil begln and eng with
the leading edge of "Ti",

2. BUS START = BUST (1 line)

A pulse indicatlng an address 1is on the VA'S, A true
conditlen will be ground, This signa) wl|| begin at the
leadlng edge oOf "T2",

3, FAST (1 line)

A slgnal coming from "memory" that can respond [n 12@ns from
BUS START at processgor (258ns |nm segmented mode), The
segmentation wi|| "pass” FAST from the Semicondctor memory
and generate FAST when one of the 2@ Interna| regiSters of
the segmentatlion option |8 gddressed by fthe nrocesSor, A
true condltion will be ground, The pulse will have a neminal

wldth of NeS,

4, CONTROL (C1) (1 line)

This will be used to dlfferentlate READ and WR]TE memory
cycles, [No byte operations will be ajlowed In reglisters

internal to this option,

5, INTERNAL BUS DATA (16 |Ines)

Data to be read from the 4 status regl!sters In the
segmentation option .wlll be placed on these |[nes, True
vajye |s ground,

6, BBR DATA (16 l|ines)

These are used by the processor to transfer data t0 one oOf
ths 23 Internsl reglsters, Trus valuye Is ground, Slignals

0302

Protection & Relgcation for the POP=41/40 PACE 12
Impjementatjen prorosa March 8,1971

8re made Valid at leading egge of "T1",

7. BUS END ~ BEND (1 Iine)
Within 125ns (225ns wlth' seamentation) after BYST, This
teils to stop processing the address, No flagszerror bjits
should he set when BEND |s decoded as |t indicated an aborted
feteh, True value Is grovnd,

| 8. PHYSICAL ADDRESS 0UT (18 lines)

The physica| address generated by segmentation ¢ptjen,

9. BUST oUT
A delaved (102 mns) and enabled‘version of Bys Start recejved
from the oprogessor. This slgnal Is generated only If no
érrar occlred on the access attempt,

9.1,2 PROCESSOR SIGNALS NEEDED BY SEGMENTATION

1. ROM ADDRESS (8 |ines)

The 8 plt ROM ADDRESS will be needed by segmentatljoen to
decode "pushes",+"pops" to registers for SSR 2, It wi|| aiso
be uysed to decode DESTINAT]ON FETCHM, INSTRUCTION DONE, Al
Signals will be true on a +3V logic level,

2. REGISTER NUMBER (3 Iines)

The 3 bit reglster number of the reglster belng puShed or
popped,

3. CONSTANT (4 |Iines)

A 4 blt pos{tive number that Is to be added or Subtracteci
from the reglster.

4. USER/EXEC Address (I Iing)
Not Status Reglister bit 15, but a sjgnal that indicates

whether the address on the fast bys |[s a USER or EXEC
address, Required because of INTERmode Instructions!

CLOCK = (several |llnes)

Ul

To pe used for varjous timing and syncronlizing functlioms
Within the segmentation gption,

6. LOAD IR =~ signal Indlcating this Is an [NSTRUCTJON FEICH,

7. SEG ACK (1 ||ne?

0303

Protection & Relocation for the POP=11/40 PAGE 13 &
implementatjon proposal Marfch 8,1971 : y

A pulse from the processor that jowers the ABORT and MEM MGMT
irap flags, Onecs ABORT orf MEM MGMT is true no furtiner memory
references can occur until SEG ACK (s recelived,

8. INIT (4 Ilne)

A power clear slgnal that occurs during powerup and when the
console START switch i@ depressed,

9,1,2 SIGNALS NEEDED BY THE PROCESSOR
1. ABQORT (1 Iine)

Made trye when segmentation faylt occurs, Wil] be cieared by
SEG ACK,

2. MEM MGMT TRAP (4 Iine)

A level w!ll be used for MEM MGMT traps, [t will ba cleared
by SEG ACK,

3. SEGMENTED/UNSEGMENTED

TRUE LEVEL SIGNAL WHEN SEGMENTATION OPTION 1S [N PLACE AND :
BIT @ OF SSR 1 Is a 1.

9,1,4 CONSOLE SIGNALS REQUIRED BY SEGMENTATION
1. EX ADDRESS 16 amd 17 (2 |Ines)
Those are the output of console swithces 16 and 17,
2. CONSOLE INHIBIT SEGMENTATION (1 |lIne)

i

Telis the segmantation option to use the values of gx ADDRESS
16 and 17 te form the high order physloca| address pits,

3. VIRTUAL (1 ilne)

Whem True sends the VIRTUAL address to the consoje ADDRESS
lamps, When false sends the physical address,

9,1.5 SEGMENTATION SIGNALS REQUIRED BY CONSOLE

1. CONSOLE ADDRESS (18 Ilnes)

Output of a multipleXer which provides the conSole wilth
elthar the PHYSICAL or VIRTUAL address,

10.2 LOGIC REQUIREMENTS FOR SEGMENTATION

Protection & Relocation for the POP=11/47
Mafch 8,1971

Impiementation proposal

o

pur estimate |ls that the RE|LQCATIGN/PRQTECTION

PAGE

can

"QUAD"™ bogrds,
used:

DECH DEV. PINS DESC QUANTITY
19-99938 74#5 14 Hex INVT OPEN COL '3
19-12155 7408 14 Quad AND 2
19=-172091 7437 14 Quad NAND Byf 1
19-29258 7475 14 Quad D FLIP FLOP 4
19-~49937 74153 16 Dual 4 te 31 Mux 8
19-79814 744154 16 4 to 16 1

74157 16 Quad 2 to 1 Mux 3
74174 16 Hex D Filp Flop 2
744175 16 Quad D Flip Flep $
74187 16 ROM 1
19-09856 74HBE 14 4 2IN NAND 4
19-49931 74HD4 14 6 INVT 8
19-p%9457 T74W1¥ 14 3 ZIN NAND 2
19-29267 7411 14 3 3IN AND 3
19-0%458 74421 14 2 4IN AND 1
19-8%359 74438 14 8 IN NAND i
19-05586 74H4L 14 2 4IN NAND BUF 6
19-09263 74455 14 AND OR [NV 1
19~09667 74174 14 2 D FLIP FLOPS 1
74883 i4 INVT OPER COL 1
74804 14 INVT 8
74515 14 3 3 IN NAND OPER COL 1
74564 14 AND OR INVT 2
745158 16 Quad 2 to 41 Mux 4
748181 24 ALU 4
74382 16 LOOK AHEAD 1
19~19287 4415 16 4 hit D Wlth Set 3

J121(inte |16

35 ns MaXx

Total

14

fi1t on
The following chips are present]y planned to bpe

CosT

' 22

124

84

TOoTAL

two

. .

Protection & Relocation for the POP=11/47 PAGE 15
impjementaticn provosal ‘

APPENDIX A:

March 8,1971

EXAMPLE OF "NON~-RESIDENT" RECOVERY PROGRAM

SEXEC,REGSET=4, NONINTERRUPTIBLE

TRAPVECTOR:
HERE BIT
BEQ
8IS

PUSHLDSIPLODM

MOV
AUTOCK: BIT

BEG
MOVB

MOVE
ASL

giC
ASH

ADD

ADD
CLRB
SWAD
BR
ERRTYP: MOV
BIT
BEQ
JSR
BIT
BEQ
JSR
JSR

TBIT: BIT
BEQ
EMUL: MOV
ADD
MOV
MOV
MOV
MOV
MOV
ADD
MTU
MTU

INST: MOV
ADD
MOV

#B14,2(SP)
PUSHLDS

#B14,STATUS

SSRZ,R2

#B7,6,5,4,3,R2

DONE
R2,R1

R1,R?
R1

#377741,R1
RO, #3

R6:R1

Rds(RL)
R2

R2

AUTQOCK
SSR@,Re
¥B15,R0
W

R7 s NONRES
#B1l4,Ri
 +2
R7:PROTECT
R7,ACCESS

#B5,R%
INST
#12,R5
Ré:R5
'R5)+JRG
(R5)+,;R1
@#161”(R5)
@#14,~(R5)
#19,R5
R6:R5
@=(R5)
@=(R%)

#.R5
R6:R5
SSR2, (R5)

/WHICH REG WAS IN USE?
/WAS NORMAL

/WAS DEDICATED, ACTIVATE
/DECIDATED

/PUT OLD REG ON STACK

/TEST FOR A REGISTER
/AUTO INC/DEC

/NONE CHANGED

/WAS CHANGED, GET
/PARAMETERS

/SAVE ADDITIONAL CORY
/MOVE REG# TC WQRD
/BOUNDRY |

/CLEAR OUT OTHER BITS 8,
/MOVE CONSTANT INTO
/PROPER POSITION

/R1 GETS LOC IN STACK
/WITH REG, VALUE
/CORRECT DLD REG VALUE

/SETUP FOR SECOND TE?

/NONRESTOENT ROUTINE

/BOUNDRY RCUTINE
/ZWRITE ERROR ROUTINE

/

ZINSTRUCTION COMPLETED
/TRARP DIDN’T COMPLETE,
/JEMULATE,

/0LD USER PC

/0LD USER PS

/PUT TRAP VECTOR
/MONITOR STACK

/L0C OF USER R6

V4 "

/PUSH PC TO USER STACK
/PUSH PS TO USER STACK

ZINST TO COMPLETE
/SET PROPER STARTING
/ADDRESS IN STACK

o

Protaction & Relocation for the PDP=11/4p PAGE 1o

Implementatian proposal

RESTRT: POPM R2=Re
BIS #A20031,5SRg
RT1

*C

March 88,1971

/MACRO REG RESTORE
/REARM SEG CHECKING

\.....\.v/,_..___/ _______,_\ e e or e

Active Displacement The DF contains a
Segment Field "DF" 13-bit positive
Field "ASF" number.

FIGURE 1. Interpretation of a Virtual Address

ASF DF ,‘
VA [3] 13 | ., .
\v/-/ b, _-NY,,.__..,..»__.J "i
| ‘ ‘
1
R ACF SLF SAF .i
| ASRg 3 4 9 ?
ASR; |
{ N l
- |
ASRg |
AS R'7 i

_‘;L [A 9 DF

Access Control Field '§ Wi F 1%

ACF = _
ASF = Active Segment Field S D 4] SAF
ASR = Active Segment Register
DF = Displacement Field
PA = Physical Address
SAF = Segment Address Field 5 > 9 | PA
VA = Virtual Address
FIGURE 2. Formation of a Physical Address
SDW

s e s o o =

B P i [_’r i

A it SA
ACF = Access Control Field .
SAF = Segment Address Field '
SDW = Segment Descripfor Word
SLF = Segment Length Field

FIGURE 3. Layout of a Segment

SSR#0

SSR#1

SSR#2

SSR#3

15 14 13;12 11 10 9 8 .7, 76. 83 02 0150

1 ! oy
>\ \ / ! g |
/ N, { {
! !
/ /N | |
| i
Py <t gz s G '
\ .

3
\ 32 \or
2 \ ek
P Ze ©
A e A ’6
a & o
\8 %

2's complement

o . inferestedin 1,2,4,8

15 .14 133229 0 9 & 7 6 i5y4 3,:2 .1 -0

% ¥ [

T

Virtual Instruction/Trap Vector Address

95 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N
s N\v'ra—-——- - e TS

user segments 7 - 0 exec segments 7 - 0

FIGURE 4. Segment Status Register Formats

Y s
i SS9 pOges
Authors: Ad van.des (Gaae Lon H
WTNnors: M Van G Wwoor, Len i

Date: . February 1971

Revision: No. 2 . Obsolete:
Index Key: Floating Point Instructions
Virtual Address Space
2)
DL 3)
Physical Address Space

POP-11 /"U \1(51‘\; g List

)

hUS S C-n-

he FPU is
pfcnned

3 £t me Paing 1Y
ribe fhe nature of the Floating Point U
~J
e AR bl T LD R R /A0 Y s arEl
ha 11/05 and thie 11/40, For the 11 4V, The r U

U is capable of executing single and doudle precision (3.u. 32 and 64~bit) floating point
i its own operands from and info memory. Once

we without CPLJ infervention, ieaving the CPU

¥

G § e
instructions and is capabie of reading and wrif

N o
VeV
in the market is such that some floating poini‘ arithmetfic copa=
bilities are very desirable, if not necessary. Considering the complexity, and therefore
the price of a floating point unit "FPU", it should be availabie as an option only.
Some questions io be answered concerning the FPU optton are listed below and elaborated
on in the foliowing sections.
1) rnal versus Bus Option
a\ ~i3 L
F4 bl € R 1 ion
3) The FPU's Instruction and Data Formats
4) The FPU's Instruction Set
] 0
.V

{."7
PAA £ o QZLL_,

4=

afg 1
0 Wi nQyv

ey g g o g o oA o a0
WO memory

if

e

n crder to mak

; UNIDUS 1

PRRES

o}
1 s s

Il

o

5 4 G oy, o
SIS W

g

3
)
3
2

elivVwiv W

- .1 s
Yo G dm e e
i e

}

b emtvinld
g 0IVvEd

o

quesiio

T} N Es
i N€ NEeXi

i

°

¢
g

2
2
3

[}

o GueH

T

~

on witn

i
.

nrigurar

hyv
ny

-
i ')J

[P |
S1CGH

virtuai

o~ i
~

<

e

-~
il

S adea

<3

cai
hine

.
'
1

hys
For @ mac

the ph
riual address space

-~ s
1,

2) .M
gl =
s B

9w

Ei
= n

=
.
U+]
> O
S

the p

tical to

is iden

-
.

s can be made

da

s

owing commen

F

L=

(]
e

ze certain

ni

(93]
Q

nis Med

é“
i

¢ data

b

e ivira}

LNSYEUG,

{

on in

oy
NN

SnGuid ¥a

3
i

8

52
b
2
D
[
-3
79
¥
-
D

dultm

ile

v

Arain

ge rele-

ght have fo
owied

.
i

-

]

ave K

i

s which

fo h

ek
P

oC

i
n
&

ig

g
U - »
ihe &

yon !
!

d

an be defecte

-~
A

-~
i

)
i

ons can Gocur whic

Ry+ or -

&

(=8

!

& mod
ity

L
AN
‘

~
i

0O

locate/!

e Re

th

by

e cbove
. the Relocare/

s none of th

1

ie
wnic

v}
-
)

U fo

memory, h
>

i

way as the Ci

in Vvievudi

o E
o 2
3 o
O..C

Jo
;1' 'y

oD
1

the b

el

ing

e

ad ¢
&

¢ operdie

1

novi

Us

»
‘z'

the r

T o~

e e
o MGai

ned.

)

-

optic

8

ed.

de
.

iemen

&m un

p ey Bl -~ o S
no more fhan one sys

fake up

FPU

0311

Bus

ast Bus
u

12

i3]

4

it
ous
F
?
Un

[Iy
N p
W A
« S S St .
.w 43 a &
(T 0 =
]
s
w 0 &
qQ & B
A R
25 o O
9 g T3 i Q. Q.
4_ il ‘rm .w AU %)
. | £.2 - 8
=10 . a
_v.u ﬁr -b { 1 N \m
- = [o)
o} = g =< 3
= A L 4
= v Q W 1.»_ <
ke o -2 e
gL o 0 u e
ool a1 = 9
m o & | S B
: et , ST 5
o * > .m.. b { %]
o AT . <
o 9 { R
_ a. 2 w
z i Q= !
| | e “ i
| ~ ! | (ST
' 0 , . | i
i | feg }
| 5 m 1
| > |
e < | R L
1
.)
u;l

. L

-~y

-

12 om o gne Y A f wrtt N T Tty
WOULUWUGWE 1 1 1 I Wik Wo Wi e e

Gl pdens tmedier s abel moam T \ o I o g e s e
QLT IO eIVl il u.umig“.,)i’.ru..a A
.{.'
i

two WaYs .,

“ =t b N g ;
} thea 9 e ~ i opemen i dacion g waginiim s B Amrrtoc-mith $ PR 5 o b g g M £ s
i) e LIFU I8 GQeCidred SUsy whlic ne iy Caivias oul ifs Qpr;.us iO0 inig NGs Tne aavaai-

age thatr Ir wouid dergriorare e mrc::upr raesponse fime (um..‘..u.u, .;aui‘mg f;“Olni' apera- &

tions tend to take a relatively iong e rion fime). It also prohibits the CPU from
executing ofher, i.e. non-fioating, instructions.

non-floating instructions once the FPU is set up
a?.ows the CPU fo carry ouf subscnpr compufatfion,

2) Allow the CPU fo contin

(i.e. rs.c.dy to start exe

@

¥ o P -~ s ‘

Jo i eSO el o [P SR & 5 sl -~ 2 sbinis & Lh

efC., ;. in l-‘m’.;.wv. With ‘he Tiog i":,‘ soint insfruction .3“.\}.. iulDFOVan e
3 - £ . {4 1 " e

OVErdli eXeCurion Tifna., 1§ 3€I1&CT80 DECAUsE OF S descr ‘L«VC uavam $es.

s e g

e RSB e a6 bt
pEecause tThe r‘u is d dus
PIGCe for t h e

m pmimy A pewam o

Al -'\J =\

i

y the /_u h:wugn o secuence of MOV instruc=
é and 23-A. yp‘i‘ccn seguence |

, ooked iike the

.n below for the case of the instruction MULF /—'\‘\.\X), ACI

&
Tl
(]
(8]
=3
[&)
¢]
(&l
()
[e)
2\
&

"

C ; test for FPU busy (FBR)=4 when FPU busy else §

p——

B o3 %
The above sequence takes 8 werds and has

ACY) is preceded

control over the CPU. The FPU uses the CPU
erc., and acts ike o herdwired inter-

#JSR R7, FPU" where FPU is an address

\

(next page)

-
b

instruction has |
in the /O area. An example of

JSR R7, FPU

MULF AR2Z), ACI

0313

user's program

—————————————————————————————————— v S e v B 0 B et B B A s 2 B B e

BRo
FPUZ
T~—MOV (R6) +,FRA*

@(FRA)—» FIR*
(FRA) +2— FRA
MOV R2, FDA
(FRA) + (FRA)~FDA*

(FRA) + 2—FRA

2 or 4 data fetches

MOV FRA, PC

* FRA means Floating Refurn Address

7

14

EX)

~e

the 1/O address FPU contains
"BRo when the FPU is busy

otherwise it contains "MOV (R6) + ,FRA"

. When the lafter instruction is executed

the stack info the FPU's FRA register
The instruction is fetched, under
hardware conirel, and loaded in the
FIR register and FRA is incremented
The CPU's register R2 is read

; The index computaiion "A+R2)"
is done under hardware confrol
and FRA is incremented
Dapends on the mode of the FPU
Control is transferred back to the

CPU while the FPU does the

required operafion

* FIR means Floating Instruction Register

* FEDA means Floating Data Address

&

~ -~ " " y 11 AT ;
2 ¢ T & DY e i N ne TE I < B S Dt 3 .
. /A sumimdry o CPU INgrruerions ssued oy [l & ’J\. N OSICW.,
/

L s, 4 o,! o i
i (334 EERRSTRICEY STOrgs aone vt lu‘(.‘s‘ CONTIo:

P SRSV H

12t e T el A
i Figure L1 DeIOW.

A B c D '

ts

SEQUENCE rOm MOS; INSTRUCTIONS

CEN] e e R 1CTD
SEQUENCE ¢ FOR CERTA

A = Instruction retch

0 — Aecennd Addrase Camautation. fwo paths desending on R=R7 R=/R7
B = Uperand Auurces Lompuranion, WO PUThG aeDal WGin nR=N/NFN
~ = M = b oo /QRenrac

“ = W retches/ srores

N = Tremmetar ¢ antees o o DL v DY

U = ransver Loniivd n.ua.’t i \.) C\-.Cu{ O LV

I
|

uctions and | i for the address

.
eguired
i

most FPU instruciions. | sival letters preceding The sections

Below is

sansat ol e d D nrl E2nml avarurion o

compurarion and TinG: SRELCUTION ©
-
£
i

.~
‘Jun\.. o ine .au.-w.n.?.m_.n.-u. &)

e
~

; Get instruction, both parfs

——

N
l
T
—
=

. done by FPU hardware

- . i o) ’
. FOSEIDIE Qard TeIChas/STores

I NGSe NCpoen O privy 1Ty 1evel 7
o s ot - e 1 e S P e 8 O e 2 e 0 e

D] AL /! ERA T - L. oo 12 3 ~m
D. MOV FRA, BC ; transfer controi back to CPU
; fo execute non FPU initiated
; Instructions
AR e e g e g e o 0 5 1 s e e
B Fyaciidta the DY b e S A—-_— i o
E. E£xecute the FPU instruction, i.e. perform the actual muitiplication 1, efc.
L M ANRNITTTIOAND 2~ NEe
Laolal G Gl -u.;n‘.n' ‘W\Ju:'.:b

ode birs \,, N, .7_, and V which ¢ x fcd ‘
is caused by the insiructions the |

d FV". These can be frans=
| instruction Copy Fioating

The wrioriiy level of the FPU

el e

In order not to incr
between memory cycles

ease NPR latency, ihe FPU wiii monitor the NPR line and give up the bus

& NS \ ,w..‘ﬂ fo transfer bus Mastership between
, the execution of an instruction be-
another requesting device (e.g. the FPU). The execu-
nstruction would be in conflici wif v-. the correc%- cperafion of the
ection 3.0. This is prevented by "feeding" the CPU a "BR M
ondition occurs and the FPU is in controi.

o s

a1t

\J\} K»L L] l_l 7 .“".Y 2

v e 1
o b g
v’ PRALS

execute an FPU .‘:-,.ruc‘:icn.
2.1.3 ALTERI

RS T (R JRCATY) Y Lasiidcas s EBLE Bey L

The method of Section 2.1 requires every FPU instruction to be preceded by a JSR. An
1. e 3 § 55 . % =~ o . L. . i 8

alternative method is to issue the FPU instruction "as is" and have a e service routine

] o Y H H s » 03 o
to transfer ~control fo the FPU. An exampia of such a routine is given below. (It shouid

7
CMP #1700000,@0 (R8) ; test-for FPU OP code
BLO NOTFPU
MOV @RS, =(R6) ; make 3 top words of stack
MOV 4{Ré), 2(R6) ; FPU, PS and PC
MOV Ré, 4(Ré)
MOV #FPU, @RS
RTI ; end of FPU trap handler

NOT FPU: ADD #2, @Ré

(

idition can aris

instructions because the FPU w

e when the CPU is ex ‘cwing rPUs

upe siied instructions
of the er At the time

¢ device which also wanis to make u

PU supplied insiructions, it was conﬁé’emd "busy". The CPU is
because ?’r is ='unn§ng at a priority level lower than 7. If the
d go off and use the FPU without testing, the CPU would start an

as busy

it the priority level of the inferrupting device. In order for the FPU
to continue eu,s,;“/ ng CPU instructions until subsequence D of Figure
i.e. when the FPU dismisses the CPU.

ot
Fis

.y

ne

1imdeen
hiuw

-

A special hardware aid is bu
called the Floating Interrupt Ve
Dismissed "FICD" in the Floati

ting Program Status
ever a non-zero vaiuve is iog

,d into r'*'N"'V The operaf

subsequence D of Figure 2-1 is executed, and the FICD bit of the FPS iss

cause an inferrupt using as inferrupt vector (FII

Tv).

A possible routine pie vgn.lrg the deadlock making use of §
on the next page. This code is part of the interrupt servi
device which wants to use the FPU.

FPU to discover this srafe.
cior "FINTV" and a bit called the Floating Interrupt CPU
"EPSY word.
ation is as follows: Whenever the

U has a register

[

The FP

.

The FICD bit is set when

et, the FPU wiil

he above hardware, is shown
ce roufine of the inferrupting

~Ary g - ~ -
2 . iy

U IVAL h{ep /L ;ooGIG PG PO VO U

n B I L

& IR

.u.o i LJA \CC

-f'gu.‘

MOV FINTV, TEMP ; save old FINTV

MOV NEW.INTV, FINTV ; set up new inierrupt vecior
*MOV 2(R6), TEMP1 ; sove old PS
*MOV NEW.PS,2(R6) ; install new PS

dismiss current n%errupf

and start FPU

"

RTI :
7

MOVE TE =INIT STNT
MOVE TEMP, FINTV ; restore oid FINTV
* MOVE TEMP1, 2(R6) ; restore oid PS
RTI ; dismiss inferrupi
:d that any interrupt vecior can be loaded into FINTV. I, for exampie,
f the interrupting device is loaded into FINTV, then upon the first
the interrupt will be dismissed until the FPU has di smissed the
j wiil request an interrupt wiih ‘;m, interrupt vector of the

1/05 INTERACTION

N
N\
'n

th the 11/20 except for
b the 11/05. The 11/05

will execute coc'e mak'ing use of the JSR, however, for compatibility reasons.

When the ”’/\.»5 fatches an jrstruction which starss with a "17" (i.e. an FPU OP code) it
will not trap, buf execute the following sequence.

(}

test is FPU is busy
ioop is busy

U_;"
gu
i
B
Qs e

I
MOV IR, FPU05+4 :
\OV FPUO5+6, PC ; start fetching instructions from the FPU

The above sequence is not ex cecute d with PDP-11 instructions as shown above, buf in
i

ode done & G much greaier spi =d. This aliows the FPU instructions

to be given without a JSR, thus eéiminaﬁng the space and time consuming JSR and the

. | o !: ™= P yoR
Instruction Fetch subsequence “A" or Figure £ 2-1.

*These instruciions are only necessary when the FPU has to proceed with ihe interrupted

‘nstruction af a different priority fevel.

-10=-

AR,

WA BN N O 3 1 8

st ol . . ia g 2o 4 e :
Tha FP ait B g i e i e i) e m Atea Al emd b wiree rathar Fhan ALY Sy
Ine IFru wili ot Cuiii i) VIS O GIreCY 8T OF WilGs rarnege Thdn vid ™
UNious . i NS 18 el 8@
Cn ot s

SECViIon Ve

The nead to have
11 /40 candition

20 aaaress L&.'w.,u-unu“ wiii be dong ¢
.
-

. 3 the -EPRPY SR 2
Py the /-‘-u« Wuh & INStructions

not be u-'a:&;. ted by m FPU unless the

the FPU is busy while it allows for

the 11/40 wili do the required

ill then sirobe in the required data

do the requir cg data fetches
cd while it exacutes the FPU

Srocea ‘."I;a.».u iy

N

THE FPU's INSTRUCTION & DATA FORMATS

a-*erai purpose data
d are inter=
a ;:2-oa‘r insfruc=

5 3 3 § s 2

0319

tifies

the
r
address
den

& () !
q) M. -r{
(o)} 13 —~
(X} n ﬂ....“ ¥

S
L
-
s
LCch

@D

Yy = ® 3 g

O O E o 4.3 .mu

g P ISP B TS A T S e S S A, O E3] s | -
0 e O U4

- O O (o) 4

Rt
)~
£
<
e
<G

Y - 47 0 O g
0 ¥ 1 @ - 3
Fry n 0 ot 1 o
5 2 ord {res o
“ k¥] X 0 ~ O o =4
o O o o = (@t 1
m O NS . 2 el SNSRI CRCros, SOUSI CH—— @ 43 0 . 4 & i
i @ [7) QR 1 'C QO 0 Uin
0 3] Q U 30O =
3 o0 O = P) g~ N
o 4.3 0w =3 D I e~ ;,.w R
P | o s w Q g [B | Q 4
I 0] u O O e .w_ o O O
ol oOum HX DIAD 3
1] ~ O q g 0 0, e oM
o v erd el 3 = . QO N
a3 0 Q a4 O &y w1 Q)
e U Oy Q & 2 4
N = IR R (B | 0y] 1)} o9
T P S B0 S A O 1.y ¥ N g»
§ £ 3 4) s
- 3 9: 0o B & 20
uq €y o o =G
g A e (o) +

a
i
4

g

! =y D) a o) ! gt
‘ 4] v 5> 2.0 o0 13 - O
1) 2% (9 o - - 3 I3 S L
» @ OWT N g O
(X) 0O o Y4 Qg 43 o0
O g 0 0 O 0 e
SR (T) 0 ¥ 0~ = ~ o fny ©
W IR RO e R e 43 Iy fry - - 0O
= 4 =
e} m 1 Q
OV N x]
(O IATIETY |) 53]
O ™S 3 My [=
(AT})
(&) =¥ :w
e e e S e Jocmis % S owse: TS [RRM .ﬁM o | (9] ™M 4
— N ™ 3 N (o) r~ o ~

Q) ®) Q @) @ Q)
g <G <G M &4 < SN <Y

*

032U

ilune ;\PJ 9w o e i - on S M e AT ASd B e I -~ R ol S TN DR, q e
B instructicn sSet 18 diviaed in Live IoLa as snown 1n rigure
A . A
Lo DR AR SR 4 o W | S anles il T o s = L $
=D Forma m7 de nead by the 2oy et e SO SR VR ol DA sty e e ;
C Il LS uUsStcl LDy & prnalky rLloadilny Lidtao uctionss rormac
i o PRl 1 |

oL &

1S \ i af BY

like Copy Flo

(“ (‘)
w
i
t‘!
o
Q
Q
0
J
[o]
o
%
’.X
C
pee

O iz 4 tits iong
o om A oy o e w00
nd contains a "L/".
— i o~ e o - = e <o o o oy b
FOC "Floating Operation Code”
o 8 s ; s :
This fiel ‘ £ i

¥

£ dnlm ¥ - - ! iy A gy o A fo 5 £
of the format speciries tae specrrIic
3

W?Sf{c ii'g""l".O:’.g_-;_ ne S o v oy o 83
& I B I e i | ource
¥/ £% P B e I =T e S] -, P - - el e T 8 e st
The floating source specifies tThe. source ope grand of
the instruction. The interpretation of rhe addressing
modes is as shown below:

MODE RPRETATION
0 AC@~-AC5 contain the data. The vdata" is coasidered 32
% A~
“

-
nding on the mode of the FPU {i.e. Float-

wharn ACA “m L IR B 3 P <73
When AC6 or AC7 are specified, an OP code error will
be given unless the instruction 18 a STX instruction.

1 R@F-R7 contai
data is cons s
2 RF=-R7 contain address of r the
data has been asd RE-RG6 ar rith 4 orx
8 depending mode of the =R7, the
\:&

ata is considered to be 1 word long and therefore,
11 be incremented with 2.

o
~
)
l_l.

3 RF-R7 contains the address of the address of the data.
RF-R7 are incremented by 2.

oo e s o 3 gAY w A
4 F-R6 are acr«munvea by 4 or ©

the data.

depending on the FPU
b a he ’ £

R7 is dQCLenbﬁted by 2 and contalns the
a

mode. A
When R=R
address of

wl B

e}
0

o~
—

©~
-

F2

Q

jEd)

I}
O

o0

Q)
(a4
W

0

o

i
(43}
(]

0
—

=

62

b

@

[N

M wm

[OREA]

Q)

O

2]
wni_
_.\.~
N
»(L

®) Te}

(@] v
n
My

0

fu

Q

o
Y ©
1n = + o
fu . z |4 Q
£ = ! 3 O
= 4 84 G G4 X Q0T 0 8
A 3 © S w0 A0 O %
a ~ P 3 oo gdn Yy o n =
H 3 3 A 0 ®@Y >NE.Q = 4| | g
e o o 0 R T e I W S) w @
O U) 4 S S | g 2 O™ ol J Y
O ¥ 1 9] O« 0O >N~ O 1 -
1 4.0 6 4H 8T G .
0} 0] iy (I e o ,
K] O PWH g O wan o < Q
43 - O £ o o Wy + ~ 0]
) . » © s} = 4 &
> o (58] @ 0o Ly h - i oy g Y
Q 0] &) 13 e [B o~ oy ,@ £ IS O
o] 0 @ .,Mw fy + n O (£
g rl _ = & Z O o
D = 0 - 5o 2]
51 [0} Q 1 - Dy [| (5] 43
- e <G o e e - "= G
& : . o =6 g O £ =)
9 o]) o] 1) 0 0= = @) o J
@ - 9 i~ Q= W0 %) 49
M] % © = W o]
0] i S -l W= M g w g =
3 Uy € . iy I o 0} 7 O o}
. - o e} - Y G 10 Y @ jo7]
n o 0 0 - RS = A1)t - | m
e - J}] o G @) 2
s R Oy - 0 - 1) O ™~ o]
] £ 4 i Uy = a ©) «b (4] W <3 r_ i . ".»,MD
% Y = ERENY] ¢ . o W 1
g 43 9 [0} » n £ g - w1
T 3 0 0 U4 (] 4 O @ 0
D, A g o 0 o e e
o oog W = g 0w Py
2 S0 o 9 = .
] 40] 0 i ™
-1 - 6 o 1
g 0® u -~ Fra
1) s 1} 1 i1
o3 n o 0 o) fa
Oy [ORES 0 & < N
= 0] o ny o - A
0 S 0] e = S s » =
U g O - QY %) 1o} 1
o ¥ P 0O © = o 20 tH
G N £ P | [AF] 0y [0}
v 0 5 9 pl ® g o e
L B o = | B
2 O fy v Q O o~ Q
£ g = = M C) 2 K
- — D
] =il U] i (Sl R
T N (% \O Q
Iy o S ey
jeal =]
- 0 Q) el 8] B)
Q) ©~ 0 (@] & 0! © @
2 Fry < n o) = &
. ¥ M
. o} o]
=i 3 sy
' 88} [y Mm

4 - o TON
L 0 S O
n T oo e e oy e e 2 om o doe - . o o v - < - - ie - ¥
o TR O B0 W R 5 i £ Livil gL ekt Uk “_u_\.u..‘. SOk, & aescr LPLlO-ﬂ.
ig given balew. Annandiss B 15 gl RN S, S N R T s
18 given Deliow. s +25C8 sOle maxXimum ana minimum

execucion times,

) FT, the FPU's Truncate Mode Bit. This bit, when
set, causes the result of any Lloa 1n3 point operation

2\ L]) TSTY b TN on o ooy o7 o S - - T A e 1 Wia o o
3} PE, the PPU's Extended Precision Mode Bit. This

bit determines the precision that is used for floating
oint calculatioas. When set X ied precision is

paak o
The FMM

4) FMM, the FPU's Maintenance Mode Bit.
enables special maintenance logic. The exact natur
of this logic will be detailed in a later memo.

bits, the status register contains

Along with the four mod
F Lﬁ@be a“e loaded

four con

The way the floating condition
codes i tions. The FC condi-

Tlon code

1) For the STCXJ instruction, which converts a floating
point number to an integer, the FC bit is set if the
resulting integer is too large to be stored in the
specified register.

2) In all other cases, the FC bit indicates that the

e of the floating point result was larger

er that can be represented in
ction. In the

2)

3)

5)

QMAIITTC DTV T O i 2o o e pm 2N
. ; { COi

7T DR O A A {)
PU PROGRAM STATUS ' 'REGISTER

~ G e L e A e <5 —_— ol o4 - - . . ¢ ~
exXgcended mecae, M = S50 LitTs ana in rigacing mecde M =
/4 a5 o - 9 e - - < i > S
24, nls allows sign-magnitude integer arithmetic
P B et
with 24 and 56 bi 1

0

2 G ts of precision, not including the
sign bit,” to be performed with the F

e F s Program Status Register also contains six interrupt
enable bits. The FPU interrupt vector is at core location 2408.

{ T.0O \i/
L AlC O UAL LN

e T P e e

ion causes FC to be set,
the instruction

rupt ¥
& contents of all the registers untouchad.

TaT o T
winen »o

C
a trap wi
is aborted leaving t

FIV FLOATING INTERRUPT ON OVERFLOW

Wnen this bit is set, floating overflows will cause an interrupt.
The result of the operation causing the interrupt will be correct
i e exponent w NEER ££ 1

o
hich will be off by 400 (octal). 1If

the £ e operation will be the same
as detailed above and no interrupt will occur.

. ™)

FIU FLOATING INTERRUPT ON UNDERFLOW

’hen this bit is on, floating underflow will cause an interxrupt.
upt, wi
£
oo do

v‘via
The result of the operation, causing the inter 1 be

by 400 (octal).
1

r
correct except for the exponent which will be o
S be set

Tf the bit is off and underflow occurs, the re
z

bitc is on, and the PC bit is set because the result
t© of integer

f integer range, an interrupt occurs. Ou
range means that the absolute value of the result is greater
than or equal to 2XL where XL=24 if floating mode,or 56 if

extended mode.

NE

FIUV FLOATING INTERRUPT ON UNDEFINE

is bit is on and a =% is obtained from memory, an
interrupt will occur. When this bit is of
and used in any arithmetic operation. The result or suc

operation is undefined.

:Yl
b.

T

03235

TR

£ G QYT
v deidS

N

ola AILYE 2 LD

en

i
43

W
d 11/05 is

O 10l ek b
SN ta,

<o

L
[

interrupt
e 11/20

1X

= T
(=P &)

.
-

a.

by th

complete

=3

rOX

see Section 2.1.4.

e

-

th

On

done.

enable,

£ this

use oc

description of the

LE

”"‘L

BTN AT
Faliy

FIE FLOATING INTERRUPT

7)

E+
-
m

;Floating Ove

flow

g Zero

8
<

loatir

‘.

-
7

fy

(9]

)

Lo

Q

=

@

(8}

m.L
(] &
> oo
-~ @
KK Y |
[
(o) s |
[0]
AN
Q o
g5 o
..:* ;ww—,
D P
g
O 0
e |
By Iy

gt
o>
ey
|55 I]
™M <

[}
Lo
9
=
G
O
‘._L
Q 0
Do IRt |
QO O
5y @
M
[N
13
@ 4
0
£F
w m
4 0
s
o O
L= &1
T B |
2D
g ©
O O
e
fo My
ELN LAY
H N0
Iy
0N W0

ode

LW
!

ed

g

]
-

loat

e

£3)
=

Extend

e

oy

1CSrrunt Ol

Ad

N

low Error

o
o

o afo¥

P
e

Range

L ST

FIOR

i
4

upt on oOut o

=
L

Variab

smiss

efined

<

gna

n

ad

FICD

o)

4

ce

;.

in

loating
;FPU's Run S

F

©
i

cacus

15

ister

us Reg

&

=
ca

FPU Program St

of

-18~

INSTRUCTIO

MNEMONIC:
OPERATION:

FPORMAT®

INSTRUCTION

MNEMONIC:
OPERATION:
FORMAT:

INSTRUCT
MNEMONIC:
OPERATION:

< (FSRC) is the integer part of (FSRC)
fixed and then Ifloated.

ION

N s

s
-

3w TR o y de sl pm e MO e
oSC FLOaTLLG MOGe
SET F

Ledl &
TN/ P
erkaly

e B ol

Integerize Floating/Extended

INTX FSRC

AC4 ¢ J (FSRO) ;
rey

.......

FZ¢—1 if (FSRC)=§ else FZ&P
FNé&1 if (FSRC){ ¥ else FN&F

i.e. {FSRC) is

Note that the integerxis'obtained

by truncation i.e.-5.9 becomes 5. If ‘FSRCIZ&Z ~, J (FSRC) =(FSRC) .
Note that the fractional part of (FSRC) is stored in ACS.

INSTRUCTION:

MNEMONIC:
OPERATION:

FORMAT:

*
>
o

[

SN

oy >

P. '..l.
Hh Fh

node = @
mode =1
20
3‘

N
N
90
N
N—
% %
o o ®
“ ‘ (@]
sl b, o
Q) . lﬁ.ﬂ) ,u\ .
Foy =, _ Iy WO T =™
1o} /_\ WVM o _\ _\ & ,.A_w ;_\
D) N Iy 9] N G N =
3 4 e e~ oy m oy Iy
o @) -
d M w o] © O ") 0 O
™ + 0) e 0w 0 Q n M
D) b - O e} 5 i 3 1 s
%) &N) o 5 (5 0 < ¥ o o
B SN . o, @ 0 . fw N, T s
E . - S, = R
= TV orE = m, = v [H ; NSRS R
it I~ s wn #3] =] [~ —~ (3] 1] o~ o~ o~ (92
0N H) [~N 93} R I N Q Q0 Iy
nh A3) = & R aa = & B oBa |
I ” ~— 3 P [y —~ I { - @
[92] a.\\l Iy ,..v“ £ lu o ..am Q ey m ©
A = o 0 43 1)) PR A T .m < G L S 1R
Moy et 3 @ I+ C] I » = e
0~ Uy Uy Yy «.u 5} wu_ Uy Wy Yy a0 Y4 W
Al A O o) e 0 el e o 0 et o i
O ~ -) ki I _ Lol AT ¢) B PR | 51
.w. \ﬂ O | 2 Bt © ot oo QF(\ a_O.Hl
D pq & ™ 0} ™~ 49 34 B ™~ K ; o~
M.,w K ,r.,u. Q./_.,v_\ M\ .@ = M o 0 % mb ,_\ W\,_\ ,.V\ N, G mw. _nV_. = w._\ .3
AL ; 2 I O wnAov N & Q 9] =]
7 M B B R B |e] = al BB R f Bl By [ARRERE |l
=
o
i
..\o\- es e ce % ~m
P 2 i Pt
O& Lid ﬂv:w (2] m (1] m e o O
oo 7 e 13 Moo 3 e 2 g B
£ OO B OO £+ OO B 0O
Do E 5. BHE 5 SEE & 95t 5 BE
D.& E > Dz 2 B £ - D3 S
% O S 5 % O e 2 8 24 %O g 5
SR S B o s B o 5 o2 o 3 -
M & m W & % % [m DRCRS mu e
a3 8 M iz 2=y Z 7 M Z 7 N
H S o o 4 S o o H S o o HS o = 0
ﬂ_ N
®

0325

)
4

C&<F

N<.Q

b g

11711 |4+ac | FpsT |

0329

<

=

. g
e STt
oy Ul B =

LS A ».:;._.;.'\:J

Tl A
g8 =

Add

OR FIU=1

) +'(ES”

i ‘l’l
\ i

’
ke Vol
o AN

i

g/Ex

Fi0a]ctin

4 LU

T

“ e
_—
°
-

NIC

I

i

el

N

uC

1
m
NI
4 o

AL
N T
LIN
J
me.

MO

M1
MA!

o

)
4
p)
L~
{

H

pa]

KU

VN
FOR
-
VN

1

i

PA

1!

me
&

Q
i

Iy

e

liaentically zero

is not

at

Clia

A

est number

(S
™
o
=

3 P> [

S s /’./«Ur _

// 0} i~
OB B A~

ed

j e} o~ -~ 0N
= @ Q. 0
g J b)

o ~— V| @ v
o b > INL - e
o] [e R I

= W L)

/4_ Xt

o o] ~ -~ ~
e 3] S e R R =
5 ~ ERNE

0 o i T P T
1 B O | e

.,u B e ~ 4 b n.w LY -~
o 43 VWY g O
—ﬁ Iy v mu“n et N et e (Y]
{xy ¢

s =Xy | 1)

ty

Uy

IVX FSRC,AC
&
>

o~ @) U4 U St

0} e EH e =y, o~ 3 N W M m

.,ﬂu o N.L m:* i .,_ + L T i Nt Na

_ gl il tlaildid
A A JR.REREJRLERE

A
®) 20 ,\U ot
b " 2z 4 e =4
B O O - s
g B H ‘ 0 A
- Z Ed £ 5 £
A .AL =y =M I P
S st £ o,
" N H 3 o 0 fr]
A~ o

L
OP1
O]
IN

24—

-

033

a

ER -y

S

s

~ e ,.‘/~
OaiLLily

nhe

1Cs

MNEMON

X

e WS LN

TDRDAM TN
PERAL

DR

~
v

N
-

°
-

FORMAT

FORMAT :

represented

1]
N

L - o

e\ 5
(3] *
(am) B
o)
Q
<
Q
0]
2 4
O V]
] —
+ 0 b1
ko] 2]
- %
./.w X (o)) fry %
e ,.. N . NI IR
= s » 0 M_
o =Y _\ _ _O] N VW
() ~ VNS - [=
Q. 0> Oy N CT e)
& ™ fu y &dﬁ \ ﬁ~_
a I N oo
1 ~ 0oV 0 I e
4 g saxy g —a AN
f i ¢ 2 Enl B - —~ N
s N x OO 0! i
o % Q Q) 19 E/4™ I | 0]
<) —®] Ju o MoK nwx P o
- X b w| ™m fy N B @ e
1 : [B) I | fry o i Q@
i uy o n . =] — NN\ o
0 A0 NMNS 0 2
=4 < <K @) (Sl H e -
fr o @ N & woQ Rl 4
. o~ e~ 7 i Q) O~~~
) . ISHERO BN O I @ RPN ' T o~ s
¢y \|-Aa K00 O — L8 g QZZ22
ol N N 0~~~ il D P [A S
> £ Py Trin e N o~ 1y > R a)
R R Q o I S T -
M [EA [/ | I ST R U T T o 1 oN ~ Uy Ug Ug Uy
0 L) B> Ts N B | — VOPNGZ O o W Ao o et et
0] 4 b H LN TR PR L P £ QM el
a < A= Em A A A N = /_\ ~ | .4 O
'3 KT
N IO BEER) L]
WV 4 wml ™ /‘\ o mw N b eV L ¥ M.W amw m /_\ :_\ N N
@ = 0 Q) O P> N3 1] WO >N 3 O T 0L >NF
a4 m O} <4 (ETRN C TN = P < Y Q P TR T c ?».__ — ¢ T | M TR R mm..
O v AW .
- o Z - o G
£ ®) O ™ @) [®)
(@) - £ o (@) - |
H 2 (55} =) 2 B4
| % 9 A $ & O
= - (= = = M
th W.D k= _\m n] €3
»] et 04 @) Z iz Ny
b4 = @] My — = @]

SRC -

3

| &

11

ne

that can

number tl

~ad
est
o
(o]

FORMAT :

Yy
zeros

-X mode

co

X

) 7>
3 ™ O T |
g w 409 E
in ¢) 3 G -4
i g 0 % w0
S 0 Q0P O »
~ O = oM mMm
O 4 -~ N0 ® -
M4 g P g P
n S5 0 g7 - Q@
W . m 0O F 0 0 O 18]
~ 83 4uT”E Q=
.- FA Dy ©®-A T
" AL N 30 MmO Yy
* OHPYP B U3 EU P

trailing

a to

-

"

G

v
T~
il

Gl

rom Floating/Extende

g ’ &

e e > |

b=

Store & Convert

[NSTRUCTION

i

R’

«©
£ X
FS W
,_\ /_\
0 >
Ty I

. ®

- (IR BRa=Y _
& n n _ Ny
[SH o~ d.

~ Q@ @ N

.

NS W

Q- D9 0

- AN 4 Ul
)
NN O

—~e Y

e~k DU~ e~
Ok &4 0O
G R~ <G

S~ “ N e = L

H.(_ZJI,I,I
i4

[TJ et S R

A
_ 5 PO s B I B |
g
) _\ _
0n Vv v Ve
N0 P> NEZ
ETINO) B TR ¢ TR & PO 2

«3

4
Q
o

3

T, R .
Lyia [

ober

. -~
A4 VAL

42
“.J

-

T SMRITO™ TN = o, g . -~ - P A =
INSTRUCTION: Load & Convert Integer/Double to Floating/Extended
i i S 3
MNEMONIC: LDCJX SRC,AC
OPERATION: AC
FC FC ¢—f@% *
FV
FZ
FN

FORMA

=

recision specified
itied by 'X; 'i.e, 1if

e
number with a
i is truncated,

INSTRUCTION: Store Converted from Floating/Extended to Integer/Double
MNEMONIC: STCXJ AC, DsST
- o - p ';.. (% -~ 'JL Z ~ oy i JL - - ™
OPERATION: DST¢ gXJ\AC;Tlr -2 2 'JJAAC;;__ -1 eise DSTG_(DSL)*
. - - e I - "
FC¢—1 if =27 >Cyy(AC) >2 -1 else FC&—8 *
FV&—0
FZ&—1 if (DST) =f else FZ2&- P
e, .) s v T A
FN &1 if (DST) & ¥ else FN&P

FORMAT :

TS

o,

if FD mode
¥
i -

FD mode =

**X[=24 if FE=§
i

=56 if FE=I

——

Te
2
4
b

7]

i
~4

IC

s~

4

NLMIVINLC

N
m
4

LU

T

RA

)

'L
p o
AT T
N\

N

Vi

!
i

oP

=

\O

TADM AM
RMAT

L

. a
TNCTRITOTTON - TOAD MOt md-mmamma e de o OBJ
INSTRUCTION: LUAD Madacellance ounter 0
MNETMAOANT T o T NN

MNEMONIC: LDNMC

ADTDR AT TR N g~ Iy AN

OPERATION: MC '.:---\ D.,../I/

-
-
G
s

N;“
RS

) decrements each ROM cycle. In maintenance
L1 not be fetched if the RCC=§.

TATQMDTTIAIM TN S b - - 7 - " ™ .’7)
INSTRUCTION: oSTcore A in ACY
MINTEN AT T o mon o
MNBMONIC ¢ S-‘.‘.‘.}’)
b, ey A }
ADTD AMTAN o Nalr P { ARy
UPERATION @ AP \AR)
TORMAM : g
FORMAT ¢ { - T T o pr - ! 3
1 o S A (o BCR ' Y el S
H i H { § |
gl i
. A
AT TV T T T T A T Qd ™ = v Cade - Y
INSTRUCTION: oTtore B register 1in ACY

aram G

STBY
i gk i e il e
OPERATION: ACPE— (BR)

T
LS8
[

INSTRUCTTON

Copy Floating

Condition Codes
Sat Floating Mode

Sat ixztended Mode

~ _ T e T . e
L.oad Maintenance

Clear Floating/

Extended

-iza Fleating/

SUMMARY OF ¥PU INSTRUCTION SET

LDMC

CLRX

FSEC)

APPENDIX A

QP CODE

170000
170001

170002

170010

170011

170012

170013

L70400+FDST

BR <— (QR)
ACH ¢ (BR)

AC4 «-integexr part

of . (FSRC); ACS
part of (FSRC)

FDST &

A (1)

~

- fractional

APPENDIX A {continued)

JINSTRUCTION MNEMONIC OP_CODE DESCRIPTION

Nagate Floating/
Fxtonded NEGX FDST 1.70500+FDST FDST ¢~ — (FDBST)

-~

5 5 O oy crms]
ABSX FDST 170600 +FDST FDST é«ﬂ(beT”

TSTY FDST 170700-+EDST ~condition of (FDST)

=
Q
O

Load Fleoating/
Extended DX FSRC,AC 171000+AC*LO0+FSRC AC ¢—(FSRC)

Store Floating/
Extended STX AC, FDST 171400+AC*100+FDST FDST, ¢—-AC

Add -Float .i_s.zg/
Extended ADDX FSRC,AC 172000+AC*100+FSRC AC 4 (AC) +(FSRC)
SUBX FSRC,AC 172300+AC*LO0+FSRC AC ¢—(AC) - (FSRC)

MUT.X FSRC, AC 173000+AC*1LO0+FSRC AC ¢—(AC) * (FSRC)

DIVX FSRC,AC 173400+AC%*1L00+FSRC AC ¢ (AC) / (FSRC)

RSUBX FSRC, AC 174000+AC* LOO+FSRC —. (FSRC) - (AC)

l._l

Compare F

oating/
. Extended CMPX AC, FBST 174400-+AC*1L00+FSRC FCC¢~ condition of
o’ . (FDST) ~ (AC)

INSTRUCTION

Reverse Divide
Fleating/Frtended RDIVX
Leoad & Convert from

Ext ﬂﬂﬂﬂﬂGﬁtﬁﬂth
Floating/Fxtended LDCYX

& Convert from
ing/Extended to
d/floating

Converti
to Flo:

ded LDeIxX

& Convert Floating/
ended to Integer/ :

STCKT

I PU's Program
Sta ILDEPS

va FPU's Program

Status STEPS

Store FPU's Inception
Code STFEC

MNEMONIC

FSRC, AC

FSRC, AC

ACFDST

S5RC,

Pay

o]

3

AC,DST

e
5
@

DsT

ST

APPENDIX A (continued)

OP_CODE

175000+AC*100+FSR

175400+AC*1L0O0+FSRC

176000+AC*100+FDST

176400+AC*100+SRC

177000+AC*100+SRC

177400+5RC

1775004DST

177600+DST

DESCRIPTION

AC ¢ (FSRC) /(AC)

AC @~converFed (FSRC)
FDST ¢—converted (AC)
AC ¢—converted (SRC)
DST ¢--converted (AC)

FPS¢—(SRC)

.

DST ¢-FPS

D 8T ¢~ {FEC)*d

a(3)

s Beey 0341

1. Vol el
CO="AC~ CO- {45

The following o & can be used
- T P Rt e T e o S v - - -
time for memory referencing operations:
: ety
b |

- ASmOTV
v PASL AR N A

PO

PRECISION

MAS
M

1A o

o R S / 5 L
= 3 1
- ~ e &~ oo Cx o o

SUBX 1.8 3.5 b g 5.1
oUDA de o« © 7o~ i - . -
H
= - - \ A ok an A
W] - - i l, = [
MU LA 2.7 2 e t ‘.0 LUV

(%)
O
o
(@]
W
O
-
o
o

Lv3]
~
i
f

