```
TO:
    Andy Knowles
DATE: February 27, 1976
FROM: Ken Olsen
DEPT: Administration
EXT: }230
EOC/MAIL STOP: ML12-1/A50
```


SUBJ: MARKETING THE LSL-11

```
The Marketing Seminar was very good. I think it opened up the whole idea of marketing for the Company. It showed us that we do not have to invent everything ourselves but that the outside world has done many of these things and we can get help.
What do you think about asking one of these professors to come in and help us review the alternative ways of marketing the LSI-11? We have the best product and the customers need it and we have them available. We ought to list all the ways of marketing it, and take advantage of the best ideas.
```

DATE: December 26, 1973
FROM: Steve Teicher
DEPT: Smal 11 Engineering
EXT: 3175 LOC: 1-3

SUBJ: New Products in Less Than 6 Months
, During the PDP-ll Woods Meeting, Ken suggested that we consider new products which could be shipped in less than 6 months in anticipation of increased competition due to U.S. economic conditions becoming less lucrative than present. I suggest that we put some intense effort into examining the technical and marketing aspects of multi-processor $11 / 05^{\prime}$ s.

Facts:

1. PDPll/05 processors shipped after $11 / 73$ are capable of being changed from bus masters to bus slaves by the addition of a single number.
2. Slave ll/05's perform DATI's, DATIP's, and DATI's by requesting NPR's. A slave does not arbitrate bus requests except those from its own serial line or line clock.
3. A slaves serial line or line clock can be used as a method of communication between master and slaves.
4. A slaves vectors can be altered by rather simple microprogram changes and in some cases by the addition of a chip which was provided for in the layout.
5. A slaves memory map can also be altered by simple module ECO's.
6. It has been predicted that when $3,11 / 05 \mathrm{CPU}$'s are added to the bus there is a theoretical gain of 2.7 in processing power. The gain is liable to be much more for some specific tasks involving real time processes. RTll background foreground might really benefit from a multi-processor configuration.
7. OEM's such as Applicon might really be turned on by a multiprocessor system.

A two processor PDPll/05 has been set up for programming use on 1-3. The configuration is as follows:

PC(11/05 MASTER)	$\begin{aligned} & \text { - KI/O(DLII) } \\ & \text { PC(SLAVE } \varnothing 5) \end{aligned}$
Teletype-	-Mp(28K core)
	-M (DISK BOOTSTRAP)
Line	-Ms (DUAL DECTAPE)
clock	Ms (DUAL RF DRIVES)
	continued to next pa

New Products in Less Than 6 Months

- Stewe Teicher

Page Two

$$
\begin{aligned}
& \mid \text { Ms }(\text { RKllD-RKO }) ~ \longleftrightarrow \text { being added } \\
& \mathrm{K}_{\mathrm{I}} / \mathrm{O}^{-\mathrm{T}} \mathrm{~L} \mathrm{Pl} 1 \\
& \text { P(KE11) } \\
& \mathrm{K}_{\mathrm{I}} / \mathrm{O}^{-\mathrm{T}} \mathrm{PCll}
\end{aligned}
$$

How about some discussion on this and some more ideas now.

Distribution List:
, Bill Dimmer
Bob Puffer
Bruce Delagi
Gordon Bell
Dick Clayton
Andy Knowles
Bill Long
Mike Tomasic
Dave Peters
Nate Teichholz
Ed Kramer
Ralph Platz
George Thissell
Ken Olsen
Brad Vachon
Stu Wecker
Art Cambell
Ted Johnson
Win Hindle
Steve Rothman
Ken Ellson
Jim Bell
Dave Stone
Bob Savell
Bob Armstrong
Dick Spencer
Charlie Spector
John Holz
Jaga Aralpragasam
/kj

Will you assign one Engineering Committee meeting to question how we can make a PDP8 or an $11 / 05$ most reliable. One time we looked into this and concluded that by slowing down the machine slightly we could increase the reliability enormously. People are catching this idea now, and 1 would like to have their plans reviewed by a critical Engineering Committee. We should do this soon because the 8 and 11/05 are well under way and we should force them to organize their thoughts.
It would be good also to ask them what they are doing to make testing easier. Testing should be thought out during the design of the machine and not turned over to a professional test maker afterward. If it is thought out during the design, points can be brought out, maybe extra equipment included to make testing possible and easy.

Products Committee
cc: Dick Best Bob Armstrong John Fisher Gordon Bell

DATE: November 20, 1973
FROM: Steve Teicher $\delta \%$.
DEPT: Small 11 Systems Engineering
EXT: 3175 LOC: $1-3$

I have been informed by Dick Best that we can never production release the ll/05 CPU modules because they are tested on an XOR tester which is operated by a different cost center than the cost center which builds the module.

I am willing to write any reasonable procedures or to take any other action to complete the $11 / 05$ documentation if it is not satisfactory. However, I cannot cure this administrative problem without a ruling on the meaning of production release. I believe that we should not continue to ignore the production release mechanism; but today I have no choice given that we desire to build and to ship computers.

I suggest that the phases of production buildup be defined as follows:

1. Evaluation Run - First units built by production employees in facilities that are identical to those which will be used for the first units to be shipped. Evaluation run units must not be shipped to customers for consideration. All engineering documentation should be available and under ECO control including specifications, test, and acceptance procedures. It will be understood that changes to the test and acceptance procedures will occur as a result of the evaluation run. It is further understood that design engineers will closely monitor the evaluation units and will specify test procedures by which evaluation units will be exercised.
2. Release for Shipment - Products released for shipment must conform to the appropriate DEC standards for workmanship, reliability, and general appearance. All documentation including manuals must be printed according to DEC standards. It will be understood that products released for shipment may not be produced at the projected price because the production procedures may not have been debugged and the appropriate tooling may not be effectively used.
3. Production Release - Production release occurs when the product manager, the project engineer, the production engineer, and key line supervisors agree that the product performance, cost, and quality meet agreed upon goals. Furthermore, for products produced in a quantity of greater. than 100 per month and/or which represent greater than $\$ 2 \mathrm{M}$

Production Release Page Two
in sales revenue per year a plan must be submitted to the MFG/ENG Committee listing the manufacturing goals. The MFG/ENG Committee may request personal appearances of the appropriate people to defend the plan.

For products which account for 2% or greater of company revenue or which ship in excess of 300 units/month a presentation must be scheduled before the MFG/ENG Committee in which the product manufacturing plans are discussed.

The MFG/ENG Committee must establish rules for production release. However, these rules may be amended case-by-case with the approval of the committee of a product manufacturing plan.

TO：Andy Knowles
Cc：Gordon Bell

DATE：March 12， 1974
FROM：Ken Olsen
DEPT：Administration
EXT： 2300 LOC：12－1

SUBJ：CHEAP，SIMPLE 101 ${ }^{\prime \prime}$＇CABINET FOR 11／05

For three years I have been trying to get people to make cheap，simple $10 \frac{1}{2}$＂cabinets to take the $11 / 05$ ．I feel that by making the $11 / 0510 \frac{1}{2}{ }^{\prime \prime}$ high and being sloppy with space one could make it a lot cheaper and make the power supply wide open for main－ tenace．No one was interested because if they had a $10 \frac{1}{2}$＂panel they wanted to put twice as many modules in it and they always wanted to get just one more module than could be cooled well and the cost was much higher instead of much cheaper．

With your new Product Lines it might be worth doing a quick job of engineering a simple，straightforward，fast，inexpensive，ugly cabinet for the 11／05 as we know it today．If you put it into the normal mechanical engineering shop，it might take forever and take a lower priority because there is only a small number of guys doing all the projects and they can do only a little work on every one each week．But if it is important，and if it really can be done cheaply and quickly，one way or another， we could subcontract it or draft someone to get it done．

If it is as cheap as I dream about，it could make a significant contribution to your Product Line and it．would leave an open pan for power supplies that would be easy to maintain．
／a
attached，Demo of Lee．4，1973）

DATE: February 6, 1974
FROM: Steve Teicher
DEPT: \&mall Systems 11 Engineering
EXT: 3175 LOC: 1-3

SUBJ: Problems with 11/05's in Japan

- The problems with $11 / 05$'s shipped to Japan were two or more fold:

1. In order to ship machines to Japan, it is necessary to disassemble them into pieces and reassemble them in Japan. At first, this was done without the knowledge of engineering or anyone else that I have spoken with in Maynard. We have since developed, in conjunction with Field Service, the attached manuals, and this has helped quite a bit.
2. Our Japanese customers apparently use the machine at the high temperature end of our specification and we experience a higher than normal failure rate between $40^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$. This is a general problem everywhere, but is worse in 50 Hz countries where the fans run slower. We are instituting a special screening procedure for Japan and intend to monitor the effect on failures there. See attached note from Don Zeresky. No 11/05's will be shipped to Japan until we are satisfied that they will work (or at least we'll loose sleep trying.)
3. We have been having general quality problems and test problems with the 11/05's recently. I believe these are due to a misunderstanding on the part of engineering of the type of tools needed by manufacturing. I believe that a closer tie between manufacturing and engineering would be useful and will attempt to achieve this.

PS: Motorola is happy now. Ask Andy Knowles.
/ssb

TO:
CC: WAYNE GRUNDY
$\bar{Y} U$ HATA
KOJI KANEKO
RON SMART
ART ZINS

DATE: • JANUARY 30, 1974
FROM: DON ZERESKI
DEPT: GIR \& SERVICES ADMIN
EXT :
2479

SUBJ: $11 / 05$ TESTING FOR JAPAN

- The purpose of this memo is to document our conclusions and action items concerning the $11 / 05$ reliability problems for Japan.
The $11 / 05$ reliability problem in Japan has been very difficult to pin down due to the constant changes in procedure, the lack of quality control in Puerto Rico, and the communication problems. As a result, the following plan was devised:

1. All $11 / 05^{\prime} s$ for Japan will undergo additional testing after Puerto Rico Manufacturing. The specifics of the test will be defined by Wayne Grundy and Kaneko-san. The basic test flow is as follows:

2. The procedure defined in Step 1 will be reviewed by $11 / 05$ Engineering and implemented by them. Product Support (Wayne Grundy et al) will help monitor the testing but cannot be responsible
for implementing it.
3. It should be noted that we already have a precedent for establishing the extended testing in that Motorola is currently receiving a similar test on all 11/05's with good results. In addition, we should try to dispel any rumors or notions of destructive testing. $70^{\circ} \mathrm{C}$ case temperature components to a minimum specification of $70^{\circ} \mathrm{C}$ case temperature ambient in free air. That means any component with additional cooling should be able to exceed the $70^{\circ} \mathrm{C}$ spec. Since we only test to $55^{\circ} \mathrm{C}$, we should not be damaging any
components.
4. The reporting procedure for future data collection will be explicitly defined by Wayne Grundy and Kaneko-san. Kaneko-san will insure the system is understood and implemented 100% in Japan. Harry Dugas will insure that the system is followed and, with Hata-san's help, insure that the OEM's maintain consistent serial numbers.
5. All future $11 / 05$ knockdown systems will be shipped directly to DEC Japan for assembly and test. They will not go to the OEM. Harry Dugas will insure proper facilities for the assembly and test, and the author will get the funds from the product line.
6. Customers that can use the new $10^{\prime \prime}$ box should be encouraged to place future orders for the $11 / 05$ in the $10^{\prime \prime}$ box. It will be far easier to install additional cooling in this unit if it is later deemed necessary. We will not convert current systems to the $10^{\prime \prime}$ box unless it is proven absolutely necessary. The new super $10^{\prime \prime}$ box will not be available until Q1 with the new supply and fans.
7. The knockdown procedures are at the printers. Wayne Grundy will insure that Hata-san has copies to take back to Japan by Tuesday, February 5.
8. The general $11 / 05$ reliability/manufacturing meeting is held on Mondays at 10:30 A.M. in the $1 / 2$ conference room. Wayne Grundy and Kaneko-san will attend to monitor our situation and present any relevant data.
9. The $11 / 05$ hold will not be released until machines have successfully completed the extended testing by Engineering as defined in Step 1.

Regards,

Don
DZ :ml

digital

digital equipment corporation • maynard. massachusetts

11/05
disassembly procedure

Copyright © 1974 by Digital Equipment Corporation

The material in this manual is for informational purposes and is subject to change without notice.

Digital Equipment Corporation assumes no responsibility for any errors which may appear in this manual.

Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation, Maynard, Massachusetts:

DEC	PDP
FLIP CHIP	FOCAL
DIGITAL	COMPUTER LAB

CONTENTS

Page
SCOPE 1
PREREQUISITES TO DISASSEMBLY 1
BASIC 11/05 BREAKDOWN PROCEDURES 2
PACKING REFERENCE CHART 8
LABELS NEEDED FOR ONE UNIT 9
11/05 PARTS BREAKDOWN 10
BACK PANEL POWER WIRING CHART 11

SCOPE

To provide total information for the disassembly of PDP-11/05's for shipment to Japan. This includes list of labels needed, part numbers for packing materials, and detailed instructions with pictures.

PREREQUISITES TO DISASSEMBLY
All ll/05's that are to be broke down, must be accepted, ready to ship units. If they have been out of acceptance for more than 48 hours, then they must be "Quick Verified" before disassembly. This can be done either of two ways. Using the Quick Verify of a DAUGHTER STATION or by running the following tapes:

1. T17 w/core expanded 2 passes
2. T15
3. $0-124 \mathrm{~K}$ Exerciser

2 passes
2 passes

No $11 / 05$ w/o cooling \#46 installed, shall be part of a Japan shipment. Do not substitute packing materials or alter any part of procedure w/o permission of Engineering or Product Support.

1.0 SCOPE

1.1 This specification established the minimum procedures which must be performed to breakdown a basic $11 / 05$ into pieces suitable for shipment and reassembly. The procedure has been written specifically for one set of shipping regulations and may not apply in the general case.
2.0 SET-UP
2.1 Locate the allocated quantity of fully accepted 11/05's in the breakdown area providing enough space to disassemble and pack each individual piece.
2.2 Packing material should be forcast and ordered in advance of breakdown. For quantity and type of materials see section 5.0. Labels for parts should be no wider than $3.8^{\prime \prime}$.
2.3 Assign a unique "allocation number" to each computer. The DEC serial number should be used as the allocation number. Two labels must be made for each part. One showing the designated name of the part, i.e., BJlla, MBJlla, etc. The other showing the allocation number. These labels shall be placed in the appropriate position as shown in the photos included in the breakdown procedure. The labels should be typed or printed. They must be legible. If slot is indicated, include on label with allocation number.
2.4 Each step of the procedure shall be performed on all machines in the breakdown group before progression to the next step.
3.0 BREAKDOWN PROCEDURE

NOTF: All pieces must be marked so that they need not be unwrapped to determine the designation and allocation number (See photos in breakdown procedure).
3.1 Remove G727 modules, label (designation, allocation number, and slot number) and pack in mailite envelope.
3.2 Remove M930 modules, label, (designation, allocation number, and slot number), and pack in mailite envelope.

ENGINEERING SPECIFICATION

TITLE BASIC $11 / 05$ BREAKDOWN PROCEDURES

3.3 Remove H214 stack, label (designation, allocation number) $\boldsymbol{q}^{\mathrm{pack}}$ in individual stack module box. (bookpack)

NOTE: When attaching labels to modules do not place label over numbers that may be stamped on module handle.
3.4 Remove G231 module, label and pack with first electomagnetic shield in standard module box. If two or less units use bookpack. (see packing reference chart)
3.5 Remove G110 module, 1 abel and pack with second shield in module box.
3.6 Remove M7261 module, label and pack in module box.
3.7 Unplug console cable from $M 7260$ module carefully. Remove M7260 module, label and pack in module box.
3.8 Remove KYllJ as follows: (console assy)

CAUTION --Do not allow console to hang by wires while removing etch board.
3.8.1 Unscrew 4 mounting screws, separate console from chassis, replace screws in console (note location of spacers). For reassembly see photo of spacers.
3.8.2 Remove 6 screws mounting console etch board to bezel. Separate etch board from bezel, disconnect console हable from console etch.board.
3.8.3 Remove red/black console power wires from console etch boards, red transformer wires and blue/black power control wires from key switch. Replace module and 6 screws.
3.8.4 Remove $11 / 05$ silk-screened panel, replace with plain unmarked panel.
3.8.5 Label and pack two per compresso carton. Plastic console protectors can be discarded.
3.9 Remove BCO5 as follows:
3.9.1 Unplug BC05 MAT-N-LOK
3.9.2 Cut tie wraps holding power cord, remove TTY cable, put cable aside, coil power cord and secure with one tie wrap.

\qquad
3.9.3 Remove BC05, replace 2 mounting screws, label and pack in mailite envelope. Pack all BCO5's in same cardboard box if possible.
3.10 Remove 5409728 as follows: (regulator board)
3.10.1 Unscrew 6 mounting screws, note different lengths to replace.
3.10.2 Lift each board sufficient to unplug the two MAT-N-LOK connectors on bottom of board.
3.10.3 Remove 5409728
3.10.4 Replace 6 screws in mounting box.
3.10.5 Label and place in sleeve being careful not to bend any of the components, wrap in bubble pack. Pack in cardboard box.

CAUTION When removing power dist.harness from logic, be sure that small orange wire and small brown wire do not have broken connectors. Replace if broken, before packing chassis.
3.11 Disconnect power distribution harness from logic. nisconnect double +5 V and Gad tabs as units. Remove power control connectors from slots in rear of chassis. Be sure to restore male part of power control connectors after removal from slot. Remove transformer AC harness from guides along chassis wall.

NOTE Depending on type of fan used, the rear fan grill may have to be removed in order to disconnect fan.

Unplug rear chassis fan $A C$ wires. The short ground wire going from the backplane mounting screw to the ground lug on backplane should be unplugged at logic.
3.12 Remove power supply chassis as a subassembly (5309816, transformer, harness, fan), label, and wrap in bubble pack. Several may be packed in one cardboard box. (Mounting screws should be replaced in chassis).
3.13 Unplug 5409949 TTY cable from logic pins, leave stuck to chassis floor.
3.14 Remove logic assembly. Replace mounting screws in chassis. The short black ground wire attached to one of the backplane mounting screws should be left with chassis.

DEC FORM NO DEC $16-(381)-1022-\mathrm{N}$ डेरी DRA 108

SHEET \qquad OF \qquad

ENGINEERING SPECIFICATION

TITLE

BASIC $11 / 05$ BREAKDOWN PROCEDURES
4.4 Software kits for $11 / 05^{\prime} s$ may be returned to stock room all but one, This one should be shipped under separate cover, as part of the disassembled 11/05 shipment.
5.0 PACKING MATERIALS FOR ONE $11 / 05$

Part Description
Power supply chassis
11/05 Chassis Box
TTY cable
Logic Assy
Power Reg Board
Power Reg Board
Console
AC Input box
M7260 *
M7261
G231 *
G110 *
M9 30
G 727
Bolts \& Plates

Material
Bubble Pack
Shipping Rox Bubble Pack Compresso carton $\frac{1}{2} \quad 99-05016-4$ Cardboard tube Bubble pack Compresso carton Mailite envelope Module box Module box
Module box Module box
Mailite envel. Mailite envel.
Bookpack
Bubble pack

Qty. Part No.
-- ----------
1 09-05185

1 99-05202
1/2 99-05016-4
$1 \quad 7^{\prime \prime} \times 8^{\prime \prime}$
1/18 See note 1
1/18 "
$1 / 18 \quad$ "
$1 / 18$
$4^{\prime \prime} \times 6^{\prime \prime}$
$4^{\prime \prime} \times 6^{\prime \prime}$
99-05072
(These are the module guides)

* If disassembling two or less units use 99-05241 (bookpack) for modules instead of module box.

NOTE 1 Module Box is made up of: $1-99-05114$ Box
1-99-05113 Pad
1-99-05115 18 Module divider
NOTE 2 One roll of bubble pack will pack about 12-15 units
NOTE 3 Also needed are cardboard boxes to hold parts wrapped in bubble pack or mailite envelopes. Parts of same kind should be packed together in one box. See section 4.1 (final packing)

Packing Reference Chart

11/05 Part Description	Packing Material		Number of Units				
	Material	Number	1	2	3	4	5
Power Supply Chassis	Bubblepack	-	-	-	-	-	-
11/05 Chassis Box	Shipping Box	99-05185	1 Box	2 Box	3 Box	4 Box	5 Box
TTY Cable	Bubblepack	-	-	-	—	\longrightarrow	-
Logic Panel	Compresso Box	99-05016-4	1 Box	1 Box	2 Box	2 Box	3 Box
Regulator Board	Cardboard Tube	99-05202	1 Tube	2 Tube	3 Tube	4 Tube	5 Tube
Regulator Board	Bubblepack	-	\square	-	-	-	
Console	Compresso Box	99-05016-4	1 Box	1 Box	2 Box	2 Box	3 Box
AC Input Box	Mailite Envelope	$7 \mathrm{in}. \times 8 \mathrm{in}$.	1 Envelope	2 Envelope	3 Envelope	4 Envelope	5 Envelope
M7260	Bookpack Module Box	$99-05241$ See Note 1	1 Bookpack	2 Bookpack	1 Module Box	1 Module Box	1 Module Box and 2 Bookpacks
M7261	Same as M7260		1 Bookpack	2 Bookpack	Pack in M7260 Box	Pack in M7260 Box	Pack in M7260 Box
G231	Same as M7260		1 Bookpack	2 Bookpack	Pack in M7260 Box	Pack in M7260 Box	Pack in M7260 Box
G110	Same as M7260		1 Bookpack	2 Bookpack	Pack in M7260 Box	Pack in M7260 Box	Pack in M7260 Box
M930	Mailite Envelope	$4 \mathrm{in} . \times 6 \mathrm{in}$.	1 Envelope	2 Envelope	3 Envelope	4 Envelope	5 Envelope
G727	Mailite Envelope	4 in. $\times 6$ in.	1 Envelope	2 Envelope	3 Envelope	4 Envelope	5 Envelope
H214	Bookpack	99-05072	1 Bookpack	2 Bookpack	3 Bookpack	4 Bookpack	5 Bookpack
Module Guides	Bubblepack	-	\square	\square	\square	—	\square

Note 1
Module Box is made up of:
1-99-05114 Box
1-99-05113 Pad
1-99-05115 18 Module Divider

* The slot number must be included with the allocation number on these 7 labels only.

BJ11A	Power Supply chassis w/transformer fan \& harness
MBJ11A	11/05 Box w/tty cable (flat grey) \& console cable
$5409949 J A$	TTy cable (berg to mate-n-lok)
7008843JA	Wired logic assy.
K409728	Power regulator board
BC05H	Front console w/blank logo
M7260JA	A/C power input box w/power cord
M7261JA	Data path board
M930JA	Register \& control
G727JA	Bus terminator
H214 JA	Grant continuity
G231 JA	Mere Memory Stack
G110 JA	Memory Control
HJ11A	

BACK PANEL POWER WIRING CHART

BACK PANEL LOOKING AT PINS
(A) SHORT BLACK WIRE GOES FROM THIS TERMINAL TO ONE OF THE MOUNTING SCREWS OF THE BACK PANEL

2. H214JA \& QUAD BOOKPACK

3. G231 JA \& STANDARD MODULE BOX

4. POSITION OF CONSOLE SPACER

5. POSITION OF LABELS ON CONSOLE

6. CONSOLE IN COMPRESSO CARTON

7. $\mathrm{BC}(5 \mathrm{H}$ \& 7 x 8 MAILITE ENVELOPE

8. REG BOARD IN CARDBOARD SLEEVE

9. REG BOARD IN BUBBLE PACK AND MARKED

10. REMOVAL OF FAN AC WIRES

11. P/S CHASSIS ASSY

12. POSITION OF LABELS ON BACK PANEL

13. BACK PANEL IN COMPRESSO CARTON

14. LEFT \& RIGHT MODULE GUIDES (BOLTS \& PLATES)

15. POSITION OF LABEL ON TTY CABLE

16. POSITION OF LABELS ON $11 / 05$ CHASSIS

d
 i g i t a 1

digital equipment corporation • maynard. massachusetts

11/05

reassembly
procedure

Copyright © 1974 by Digital Equipment Corporation

The material in this manual is for informational purposes and is subject to change without notice.

Digital Equipment Corporation assumes no responsibility for any errors which may appear in this manual.

Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation, Maynard, Massachusetts:

DEC	PDP
FLIP CHIP	FOCAL
DIGITAL	COMPUTER LAB

DIGITAL
COMPUTER LAB
UNIBUS

Page	
1	Scope
1	Set Up
2	Reassembly Procedure
3	Logic Assembly (70088434 JA)
3	Power Supply Chassis (BJlla)
4	Power Supply Regulator (5409728 JA)
4	AC Power Input Box ($\mathrm{BC} \square 5 \mathrm{H}$)
4	Console (KYJ11JA)
5	M7260JA
5	M7261JA
5	G110JA
5	G231JA
5	Memory Core Stack (H214JA)
5	M930JA
5	G727JA
6	Final Check Before Power Up
7	Parts Required Chart (One CPU)
8	Pictures

1.1 This reassembly procedure gives all necessary information to enable the reader to reassemble a PDP11/05 that has been dissembled, using the document titled "11/05 DISASSEMBLY PROCEDURE WITH PICTURES (written 12-12-73)".
2.0 Set Up
2.1 Locate the required parts for reassembly using the "PARTS REQUIRED CHART".
2.2 All bundles of parts have been marked with a DESIGNATION and an allocation number (serial number). The designation identifies the part or subassembly i.e. KYJllJA is the $11 / 05$ console w/blank logo.

The allocation number is the CPU serial number and assures that each CPU is reassembled exactly as it was accepted in the U. S. A. An example of a bundle marked with both designation and allocation number is shown in the picture titled REG BOARD IN BUBBLE PACK AND MARKED.
2.3 The CPU and memory modules may come packed in one of two ways or a combination of both ways. If two or less CPU's were sent in one shipment then the modules will be packed in individual bookpack cartons (see picture titled H2l4JA \& Quad BOOKPACK).

If more than two CPU's were sent in one shipment, then modules will be packed in a STANDARD module box. (See picture titled "G231JA \& STANDARD MODULE BOX). The standard module box holds 18 modules. If enough CPU's are shipped at once, some overflow of modules may be packed in individual bookpacks.
2.4 All parts are individually marked with two stick-on labels. One with the part designation and the other with the CPU serial number or allocation number. Note that modules have the slot number included on the serial number label. (See picture titled "Grant CARDS \& BUS TERMINATORS IN 4 x 6 MAILITE ENVELOPES").
2.0 Set Up (continued)
2.5 Two items for each CPU are sent separate from the CPU's.

1. Configuration sticker

This is the square white sticker normally attached to the rear of the top cover listing what is included in the CPU box.
2. Metal serial number plate

This is the metal stickon plate normally attached to the rear of the CPU chassis just to the right of the fan grill.

These two items are removed during disassembly and are shipped in a separate container.
2.6 Compresso cartons and Bookpacks are reusable and should not be discarded. (See picture titled "Position of labels on back panel' to identify the compresso carton.)
2.7 The following list is the order in which the Large D type container was packed in the U. S. A. The first items are on the bottom of the container.
2.7.1 11/05 Chassis (shipping box)
2.7.2 Power Supply Chassis (cardboard box)
2.7.3 Module Boxes (M7260, M7261, G110, G231)
2.7.4 BCO5s (cardboard box)
2.7.5 $5409728 \mathrm{P} / \mathrm{S}$ Regulators (cardboard box)
2.7.6 Module Guides (bolts \& plates) (cardboard box)
2.7.7 5409949 JA TTY Cable (cardboard box)
2.7.8 KYJ11-JA Consoles (compresso cartons)
2.7.9 7008843 JA Wired Logic Assy (compresso carton)
2.7.10 H214 Core stack (bookpack)
2.7.11 Module envelopes (G727, M930)
3.0 Reassembly Procedure
3.1 Remove the $11 / 05$ chassis (MBJ11A) from packing box and install the metal serial number plate and configuration sticker in their proper place on the chassis.

Note
Be sure that the number on the metal tag and configuration sticker match the serial number on label as shown in picture titled "Position of labels on $11 / 05$ chassis".
3.1.1 The configuration sticker and metal serial number plate will be sent to Field Service separate from the hardware.
3.1.2 The serial number plate should be located just to the right of the rear fan on the back of chassis.
3.1.3 The white configuration sticker should be located at the rear of the top cover in the middle.
3.2 Install the module guides in the $11 / 05$ chassis. Note that there is a left and a right guide. Guides should be packed one set to a bubblepack bundle, and marked HJllA (Bolts \& Plates).

Note
Always match serial numbers of all parts to $11 / 05$ chassis serial number. This will insure reassembly exactly as accepted in U. S. A.
3.3 Logic Assembly (70088434JA)
3.3.1 Remove back panel logic assembly from compresso carton and install in chassis. Note that there is a short black wire attached to one of the logic assembly mounting screws. This wire will attach to a faston tab on the logic assembly as shown in the "Back panel power wiring chart".
3.3.2 Plug the gray tty cable, that is stuck to the floor of the chassis, into the logic assembly.
3.4 Power supply chassis (BJllA)
3.4.1 Remove the P / S chassis subassembly and install in 11/05 chassis.
3.4.2 Connect the power distribution harness to the logic. See back panel power wiring chart. Install the two power control connectors in the slots provided in the rear of $11 / 05$ chassis.

Note
The power control connectors are shown just to the left of the hand in the picture titled "Removal of fan AC wires".
3.4.3 Place transformer AC harness in plastic retainers attached to side wall of $11 / 05$ chassis.
3.4.4 Attach the AC wires for the rear fan. Depending on the type of fan used, the fan may have to be removed in order to connect AC wires. (See picture titled "Removal of fan $A C$ wires".)
3.5 Power supply regulator (5409728 JA)
3.5.1 Remove from bubblepack and cardboard sleeve the P / s regulator board. Mount regulator board in power supply chassis. The two mat-n-lok connectors located on bottom of board must be connected before board is lowered into $\mathrm{P} / 5$ chassis. Note that the six mounting screws are not all the same length.
3.6 AC Power Input Box (BCø5H)
3.6.1 Remove the $A C$ power input box from mailite envelope and install in ll/O5 chassis. Connect the $B C O 5 H$ to the mat-n-lok from the power supply.
3.7 Console (KYJllJA)
3.7.1 Remove the console from compresso carton. Remove the etch board from console casting (6 screws). Connect the console cable to console etch board. Replace etch board on console casting and attach wires. Lower two faston tabs on etch board are for red and black power wires. The wires with square plastic connectors attach to the console switch.

The top two switch terminals that are nearest to the front of the console take the black wire on the top and the violet wire on the next down terminal. The top two switch terminals toward the rear of the console take the two red wires. The bottom terminals are not used.
3.7.2 Attach the console to the $11 / 05$ chassis (4 screws). Install the two spacers as shown in picqure titled "Position of console spacer".

3.8 M7260JA

3.8.1 Remove module from packing material. Inspect for physical damage and clean the pins if necessary.

Note
Inspect and clean if necessary the pins of all modules.
3.8.2 Plug the console cable into the M7260JA module and install module in slot called out on label attached to module.
3.9 M7261JA

Inspect and install module in proper slot in back panel. An electromagnetic shield goes between M7261 and Gllo. This shield will be packed with the Gllo module.
3.10 G110JA

Inspect and install module in proper slot in back panel.

3.11 G231JA

Inspect and install module in proper slot in back panel. An electrpmagnetic shield will be packed with this module. Place it on top of the core stack H214JA.
3.12 Memory core stack (H214JA)

Remove the stack from bookpack and install in proper slot in back panel.
3.13 M930JA

Remove bus terminators from mailite envelopes and install in proper slot in back panel.
3.14 G727JA

Remove Grant cards from mailite envelopes and install in proper slots in back panel.
4.0 Final Check Before Power Up

4.1 | Recheck all power wiring on logic assembly (back |
| :--- |
| panel) using Back Panel Power Wiring Chart. |
| Double check the pin numbers for the orange wire |
| and brown wire going to logic pins on the back |
| panel. |

$4.2 \quad$| Inspect logic assembly for bent and shorting pins. |
| :--- |
| Check that tty cable is firmly in socket on pack |
| plane. |

4.3 Power up machine. Quickly check that both fans
are turning.
(ALL) $=$ All of specified parts needed for one CPU

PARTS REQUIRED CHART (ONE CPU)

Part \#	Description	How Packed Needed	for 1 CPU
G727JA	Grant Card	(ALL) packed in one 4×6 mailite	1 to 4
M930JA	Bus Terminator	(ALL) packed in one 4×6 mailite	2
H214JA	Core Stack	One per bookpack	1
G231JA	Memory Driver	Standard Module Box or Bookpack	1
G110JA	Memory Control	Standard Module Box or Bookpack	1
M7261JA	CPU Control	Standard Module Box or Bookpack	1
M7260JA	Data Paths	Standard Module Box or Bookpack	1
KYJ11JA	Console	Packed 2 in a compresso carton	1
BCø5 H	AC Input Box	Packed one in a 7×8 mailite	1
5409728 JA	P/S Regulator	One per sleeve wrapped in Bubblepack	1
BJ 11 A	P/5 Chassis	Each one wrapped in Bubblepack	1
7008843 JA	Wired Logic Assembly	Packed 2 in a compresso carton	1
5409949 JA	TTY Cable	Several packed in bubblepack	1
HJ 11 A	Module Guides (Bolts \& Plates)	(ALL) packed in one bubblepack	
MBJ11A	11/05 Chassis Box	Packed In Std. $11 / 05$ shipping box	1

NOTE: All basic bundles of parts are marked on outside of bundle with CPU serial number and part designation.

1. GRANT CARDS \& BUS TERMINATORS IN 4×6 MAILITE ENVELOPES

2. H214JA \& QUAD BOOKPACK

3. G231 JA \& STANDARD MODULE BOX

4. POSITION OF CONSOLE SPACER

5. POSITION OF LABELS ON CONSOLE

6. CONSOLE IN COMPRESSO CARTON

7. $\mathrm{BC} 05 \mathrm{H} \& 7 \times 8$ MAILITE ENVELOPE

8. REG BOARD IN CARDBOARD SLEEVE

9. REG BOARD IN BUBBLE PACK AND MARKED

10. REMOVAL OF FAN AC WIRES

11. P/S CHASSIS ASSY

12. POSITION OF LABELS ON BACK PANEL

13. BACK PANEL IN COMPRESSO CARTON

14. LEFT \& RIGHT MODULE GUIDES (BOLTS \& PLATES)

15. POSITION OF LABEL ON TTY CABLE

16. POSITION OF LABELS ON $11 / 05$ CHASSIS

1105 grant hail Cost Dietal

AUG 151973

TO: Gordon Bell
DATE: September 18, 1973
FROM: Ken Olsen
DEPT: Administration
EXT : 2300

SUBJ: CHEAP 11/05

I would suggest that the first job you put Roger Lady on is to propose the cheapest, safest, quickest $11 / 05$ that we can build without any new developments.

It seems to me that if we build the cheap, simple sheet metal box that Dave Nevala has been talking about and put into it only the number of modules that conveniently fit into it and the cheapest, simplest power supply, we should make a useful improvement in the price of the 11/05.
/a

INTERDFFICE MEMDRANDUM

TO: Joe St. Amour	DATE :	August 10, 1973
	FROM :	Ken Olsen
	DEPT:	Administration
	EXT :	2300

SUBJ :

What has happened to the printed circuit backpanel wiring with inserted pin contacts that we were looking at a year ago to replace the Sylvania connectors in the $11 / 05$?

TO: Jack Smith	DATE :	August 10, 1973
	FROM :	Ken Olsen
	DEPT:	Administration
	EXT :	2300

On a basic 11/05, do we have to take the cables out the side of the module in the same way that we take them out the top of the module in the $11 / 45$? I am thinking of putting the modules crosswise in the cabinet. Taking the cables out the side is a chore, but taking them out the top is very convenient.

How many slots should an 11/05 have to take all the standard options? At what point do slots become useless because the options teke those aluminum castings in order to put in options?

If we are able to get the PDP-8 on one hex board and maybe put 8 K on a hex board, how many slots should an 8 have? Could we get by with 12 slots?

DATE:
FROM:
DEPT:

September 21, 1972

Jack Smith

Computer Production

Attached is an outline of the basic llo5 test line concept. Cosmetrically we're not quite there on 1-5 due to space constraints. We have a straight line layout for installation at Puerto Rico that should be quite impressive.

Systems line flow is currently being documented and will be available this week. Current thoughts are to produce three to five standard configurations off this line which should just about cover our total OEM business in this area. Complex integration will be separated from this line.

Is it possible for a computer to be kicked down two flights of stairs, dropped 8 feet on its nose and come up running? Come on up, select a random unit from the line and let us demonstrate a solid machine.
pis
Attachments

TO: Manufacturing Committee cc: Andy Knowles Roger Cady

DATE: September 21, 1972
FROM: Jack Smith
DEPT: Computer Production

SUBJ: 1105

Attached is Jim Black's summary of the basic 1105 concept of isolation testing. We are currently running two 10 hour shifts. The line as outlined has a potential capacity of 15 units per day per 8 hour shift once we get over the normal start up problems.

Would appreciate you comments and invite you to tour the line.

[^0]

TO: Jack Smith
Dick Bradley
cc: George Bundy

DATE: September 18, 1972
FROM: Jim Black

DEPT: 1105 Production

SUBJ: 1105

Attached is a copy of how the 1105 is organized today. This memo is meant as a brief outline to explain what is done in each area. Also attached is a copy of the 1105 checkout procedure as it exists today.

By the end of this week, I should have the assembly procedure complete and the only documentation left to finish will be the Xor tester.

Now that the line flow has settled down and our isolation concept of flow testing has been proven successful we must fine tune line flow and operation. Each work station will be analyzed for methods improvement; ie. power tools, carrier improvement, operation work convenience, etc.
pjs
Attachment

ASSEMBLY	Builds basic 8 K and 16K boxes. One wireman is capable of 5 boxes per day.
BOX TEST	In this area a good set of modules is plugged into an assembled box and the box should run! The following areas are tested: a. Power Supply b. Console c. Logic d. TTY Interconnection
	To accomplish this task takes one wireman 20 minutes per box.
M7260/M7261 Power Check	A power to gnd. check is run on the modules after assembly; approximate time 70 minutes.
M7260/M7261 Xor Test	The modules are subjected to Xor test; approximate test and repair time 1 hour.
$\begin{gathered} \text { M7260/M7261 } \\ \text { Verify } \end{gathered}$	- The modules are run on a daughter station and repaired as required to insure a 100% tested module; approximately test time 2 hours.
CPU TEST	The box is shipped from box test with no modules and a known good set is installed. This step checks the previous one performed by the box test area. Next the known good CPU boards are replaced one at a time to create a new CPU. The approximately test time is 20 minutes per CPU.
MEMORY TEST	-- The box is received from CPU Test with modules. A known good memory is plugged in and the CPU test is verified. Next an unknown memory from Memory Test is put in and tested. We now have a running 1105 and memory. Approximate test time 20 minutes.
VIBRATION TEST	The CPU memory is subjected to vibration as specified in the acceptance test procedure. Approximately test time 10 minutes.
BUS TEST	Using a PDP-ll bus tester the 1105 bus timing is verified. Approximate test time 30 minutes.
QUICK VERIFY	Prior to being placed in heat the 1105 is placed on a daughter station and runs all PDP-1105 diagnostics. Approximate test time 30 minutes.
HEAT TEST	- This is a 48 hour enviromental test at $50^{\circ} \mathrm{F}$ to 120 F running test 17 .
QUICK VERIFY	The 1105 is removed from the heat test and checked to insure that the machine will run all PDP-ll diagnostics. Approximate test time 30 minutes.

-- The 1105 is subjected to Q.C. and operational checks to insure that the machine will pass all specifications. Approximate test time 4 hours.

TOUCH UP

RECYCLES
-- The machine is mechanically touched up - Tl7 is run and the machine is boxed in its shipping container. Approximate test time 2 hours.
-- This area repairs boxes that are complete and have failures; such as, heat failures, intermittent failures, etc.

PDP 1105 AREA FLOW

* PDP 1105 Checkout Procedure
** Included in the Acceptance Procedure

7260/7261 CHECKOUT PROCEDURE

1.0 Visual inspection
2.0 Check power and gnd. for shorts
3.0 Adjust +5 V to +5.1 V

Adjust -15 V to -15.0 V
4.0 M7261 set clock to 3l0ns @ E5504
5.0 Check console initialize
6.0 Check load address
7.0 Check deposit and examine
8.0 Run a branch dot
9.0 Run Tø - Tl3
10.0 Ballpark adjust teletype clock
11.0 Check teletype printer
12.0 Run Tl4 (2 passes)
13.0 Run Tl5 with bit 11 set (2 passes)
14.0 Fine adjust teletype clock using Tl7
15.0 Checkout low speed reader
17.0 Checkout power fail
18.0 Checkout power fail
19.0 Run quick verify

II $\quad 11 / 05$ TEST BOX
1.0 Purpose
2.0 Equipment required for testing
3.0 Basic station setup
4.0 Visual inspection
5.0 Basic power on check
6.0 Logic test and checkout

III \quad CPU CHECKOUT
1.0 Equipment required
2.0 Basic checkout station
3.0 Checkout of PDP-11/05 CPU
4.0 M7260 checkout
5.0 M7261 checkout

IV $11 / 05$ MEMORY TEST

$$
\begin{array}{ll}
1.0 & \text { Purpose } \\
2.0 & \text { Equipment required for testing } \\
3.0 & \text { Memory test }
\end{array}
$$

V 11/05 VIBRATION TEST
1.0 Purpose
2.0 Test equipment required
3.0 Verification test
4.0 Vibration test
VI 11/05 BUS TEST
1.0 Purpose
2.0 Equipment required
3.0 Test and checkout
VII QUICK VERIFY (PRIOR TO HEAT)
1.0 Purpose
2.0 Equipment required
3.0 Quick verify
VIII HEAT TEST
1.0 Purpose
2.0 Test equipment required
3.0 Heat test of the PDP-11/05
4.0 Pass fail criteria
5.0 At the completion of 48 hours, remove the ll/05 from the heat chamber and fill out all applicable logs.
IX QUICK VERIFY (AFTER HEAT)
X APPENDIX
1.0 Processor clock adjustment
2.0 TTY connection to 11/05
3.0 Teletype clock adjustment
4.0 Power supply adjustment
5.0 The patch to run only the factory bus tester portionof the bus tester.

1.0 VISUAL INSPECTION

a. Inspect board for solder shorts, etc. In high density etch areas use an ohmeter to check for shorts between adjacent etch runs. These may not be visible.
NOTE: Each minute spent on this step may save hours later.

2.0 POWER CHECKS

a. Using an ohmeter insure there are no shorts between A2 and B2, B2 and C2 and A2 and C2. This must be done on each slot.

3.0 VOLTAGE ADJUSTMENTS

a. With the M7260 and M7261 inserted adjust the +5 V supply to 5.1V.
b. Insure the voltage @ F01B2 is -15 V .
4.0 AT E5504 SET THE CPU CLOCK @ 310 ns. (Not required on M7260)

5.0 CONSOLE INITIALIZE

a. Press start with the halt switch depressed. The MPC lights on the maintenance board should indicate 302.

6.0 LOAD ADDRESS

a. Depress the load address key and one by one lift up SR 0-15 insuring that only the correct leds light.

7.0 DEPOSIT AND EXAMINE

a. Deposit 177777 into 177700 and 177701 and examine.
b. Deposit 177777 into memory location 0000 and examine.
c. Repeat a and b with all zeros deposited instead of ones.
8.0 RUN A BRANCH DOT
a. Deposit 777 into location 0. Press start
9.0 Run TO through T13. Since these programs make a complete pass in seconds it is sufficient to run each one ≈ 15 secs.

10.0 BALLPARK ADJUST TELETYPE CLOCK

a. The clock can be accessed at $8 \sim$ resistor located below the pot.
b. With the scope set at $.1 \mathrm{~ms} / \mathrm{cm}$ insure the pot can adjust the period from 200μ s to $650 \mu \mathrm{~s}$.
c. Adjust the clock to $568 \mu \mathrm{~s}$.

a. Deposit 101 into 177566. This should print an "A".
b. Deposit 077 into 177566 and a "?" should be printed.
c. Examine 177564 and insure only bit 7 is set.
12.0 RUN Tl4 2 passes
13.0 RUN Tl5 WITH SR $=14000$ (2 passes)

NOTE: The second pass of Tl5 will differ from the first in that the trace trap will be set after each instruction.
14.0 TELETYPE CLOCK FINE ADJUST
a. Run Tl7 with only teletype selected ($\mathrm{SR}=$ 177776) . Turn the teletype clock pot clockwise until the printout starts failing. Note number of turns counterclockwise it takes to fail, then set the pot midway between the failure settings.

15.0 TELETYPE READER

a. Put the absolute loader into the reader with the leader code over the pins.
b. Press start with the halt switch down to generate a machine initialize.
c. Examine reader status (177560) and insure it is cleared.
d. Deposit 00001 into 177560 , the absolute loader should advance one character.
e. Examine 177560. It should contain 200. (Done bit set)
f. Examine l77562, it should contain 351.
9. Examine 177560 and insure examining 177562 cleared bit 7.
16.0 RUN TI7 WITH READER AND PRINTER
a. With the teletype in local, punch a foot of blank leader and place in reader.
b. Place punch off-line before putting teletype back on-line to avoid punching an extraneous character.
c. Put reader on start.
d. Set $S R=4000$ and run 1 pass.
17.0 REPEATED DUMP/POWER FAIL FROM MOTHER
a. Setup test station type $=1105-1$
mode $=$ processor repeat set function $=$ dump switch register $=1016$
b. Press initialize
c. Mother will repeatedly dump and start Tl5.
d. Let run ≈ 30 secs. then release the repeat switch and allow Tl5 to complete a pass.

18.0 POWER FAIL DIAGNOSTIC

a. Start each test and turn the power off/on as indicated.

TEST	START ADDRESS	OFF/ON	PC AT NORMAL HALT
1	200	5	Should not halt
2	204	1	1024 press continue - halt 1064
3	210	1	1142
4	220	1	1560
5	224	1	1754
6	230	1	2144

19.0 RUN 1 PASS OF QUICK VERIFY

II $11 / 05$ BOX TEST

1.0 PURPOSE

To test the basic ll/05 box and insure the proper operation of the following areas:
a. Power supply
b. Console
c. CPU - backpanel
d. TTY cable
e. AC input boxes
f. Fans
g. ACLO-DCLO
h. On-off panel lock assembly
2.0 EQUIPMENT REQUIRED FOR TESTING
a. Multimeter
b. M7260
c. M7261
d. 4-G727's
e. 2-M930's
f. TTY
g. MMllK, or MM1lL
h. Known good 11/05 CPU box

3.0 BASIC STATION SETUP

a. The known good ll/05 CPU box is used for the control memory system, the MM1l is plugged into the appropriate slots and bussed to the box under test by a 5 foot cable.
b. The diagnostic used during box test is Tl7.

4.0 VISUAL INSPECTION

Inspect the box for the following:
a. Proper key alignment (on-off)
b. Switch register alignment
c. Proper routing of power harnesses
d. All mechanical connections to chassis
e. Cracked or broken logic blocks
f. Metal filings in the box

5.0 BASIC POWER ON CHECK

a. + 5V power FOlA2 $\pm .05 \mathrm{VDC}$
b. -15 V power FOlB2 \pm.1VDC
c. +15V power COlUl $\pm .1 \mathrm{VDC}$
d. Fans rotate in proper direction
e. All leds should be lit with no modules installed
f. Power on-off switch is not loose or misaligned in the power on position

6.0 LOGIC TEST AND CHECKOUT

a. With the box powered down plug in the following modules in the proper slots for configuration \#l or configuration \#2 as required. (Fig. \# 1, 2 \& 3)

1. M7260
2. M7261
3. 4-G727's
4. l-M930
5. Unibus cable from test memory to the box under test.
b. With the halt switch enabled, preform the following checks:
6. Apply power to the CPU.
7. Load address $\varnothing \varnothing \varnothing \varnothing \varnothing$.
8. Deposit l25252.
9. Examine should equal Loc 0, 125252.
10. Load address 200 .
11. With the halt switch still enabled, depress continue. The indicators should show 202.
12. Disable halt, all data switches equal to \varnothing, depress continue, the program should run.
13. The program will run for 55 sec , stop typing for 5 seconds and continue.
14. Panel lock -- while the program is running out the power switch in the panel lock position, now depress halt, the program should continue.
15. Power down the unit, remove the M7260, M7261 and unibus test cable; tag the unit box OK.
16. Complete the log on any problems encountered.

Computer Backplane Connector and Pin Designarions

PERIPHERAL CONTROLLER OR GRANT CONTINUITY CARD G727 (SLOT D4)

\square

\square

Module Utilization Diagram For Configuration 2 (8K)

The purpose of the CPU test is to integrate CPU boards into a known good box and insure the proper operation of the basic.

1.0 EQUIPMENT REQUIRED

a. Good basic 11/05 box
b. PC05
c. PCll
d. 453 O'scope
e. Known good M7260
f. Known good M7261
g. Memory (MM1lL, MMIlK)
h. Teletype
2.0 BASIC CHECKOUT STATION
a. Basic setup of the CPU station is identical to the box station. In addition, a PCO and control is included in the station test stand for read-in.

3.0 CHECKOUT OF PDP-11/05 CPU

a. Buss the box under test to the $11 / 05$ test stand.
b. Plug in the known good $11 / 05 \mathrm{CPU}$ modules into the box under test.
c. Check the $+5 \mathrm{~V},-15 \mathrm{~V},+15 \mathrm{~V}$, power supplies and adjust as required:

$$
\begin{array}{lll}
+5 \mathrm{VDC} & \text { FolA2 } & \pm .05 \mathrm{VDC} \\
-15 \mathrm{VDC} & \text { FolB2 } & \pm .1 \mathrm{VDC} \\
+15 \mathrm{VDC} & \text { C01D1 } & \pm .1 \mathrm{VDC}
\end{array}
$$

d. Load in test 17, start address 200/ switch register should be set for 004354 .
e. The CPU should run error free for 3 minutes.

4.0 M7260 CHECKOUT

a. Power down the $11 / 05$ system, remove the known good M7260 and replace with a new M7260. Perform the following tests:

1. Deposit ALT. l's and O's in location \varnothing.
2. Examine location \varnothing for correct data.
3. Load address 200 and start test 17, the switch register should equal 004354. Allow the 1l/05 to run for 3 minutes error free.
4. Read punch test.
A. Using Tl7 as described above, run the reader and punch and adjust the TTY clock as required for error free operation. This test should run 5 minutes error free.
a. Power down the $11 / 05$ system and remove the known good M7261 and replace with a new M7261. Repeat the tests performed previously during the M7260 checkout.
b. Power Fail Test
5. After the $11 / 05$ has run for a minimum of 3 minutes, with the halt switch disabled, power down the 11/05 and power back up. The $11 / 05$ should continue to run after power up. The error report on the TTY should correlate with the diagnostic write up for Tl7 and indicate a power fail has occurred. (I.O. is not restarted till the end of the pass). The TTY may report errors on the next pass due to the TTY paper tape reader not being restarted on blank leader. Power down, and disconnect the unit under test. Complete all logs and mark the unit CPU test OK.

11/05 MEMORY TEST

1.0 PURPOSE

To integrate a memory system into a checked out PDP-11/05 CPU box.

2.0 EQUIPMENT REQUIRED FOR TESTING

a. Multimeter
b. PC05
c. PCll
d. Known good memory

3.0 MEMORY TEST

a. Insert a know good memory into the $11 / 05$ to be tested.
b. Insert the PCll control in the DDll slot at the top of the 1l/05 logic.
c. Power up the $11 / 05$ system.
d. Toggle in the $11 / 05$ bootstrap loader for the high speed reader.
e. Load in absolute loader from the PC05.
f. Load in PDP-ll memory diagnostic "RANDAT" using the PCO.
g. Load address 200 and start; the $11 / 05$ should run error free for 5 minutes.
h. Power the $11 / 05$ down and insert a new memory into the 11/05.
i. Repeat steps C to G.
j. Using absolute loader, read in Tl7, load and start at address 200. The switch register should equal 004354.
k . Allow the $11 / 05$ to run for 3 minutes and power down and back up. The computer should continue to run and report only the power failure typeout at the end of pass.

1. Enable the halt switch and power down the 11/05.
m. Complete all checkout logs and mark the system memory test OK.

V
 11/05 VIBRATION TEST

1.0 PURPOSE

To insure that the $11 / 05$ is mechanically secure and can reasonably withstand damage in shipping.
2.0 TEST EQUIPMENT REQUIRED
a. Vibration table -- Model, SECO \#860D

3.0 VERIFICATION TEST

a. Mount the PDP-1l/05 on the vibration table.
b. Plug in and power up the 11/05 CPU.
c. The $11 / 05$ switch register should be 104000 .
d. The $11 / 05$ should run error free for 4 minutes.

4.0 VIBRATION TEST

a. After verifying the proper operation of the PDP-11/05 perform vibration as follows:

1. Main circuit breaker on.
2. Shaker power on.
3. Sweep control on.
4. Mode control to sweep.
5. Speed control 5.5
b. The vibration test is a 2 minute test of the $11 / 05$ as follows:
6. 0 to 60 cycles, sweep, 1 minute 2. 60 to 0 cycles, sweep, 1 minute
c. Depress start on the vibration table. The 1l/05 should run the vibration cycle with no failures.
d. Power down the vibration table as follows:
7. Shaker power off.
8. Sweep control off.
9. Main circuit breaker off.
e. Remove the ll/05 from the vibration table and complete all applicable logs and data sheets.

11/05 BUS TEST
1.0 PURPOSE

To test that the basic PDP-11/05 is capable of error free bus operation.
a. PDP-11 bus tester
b. Bus tester diagnostic
c. TTY
d. PCO 5
e. PCll

3.0 TEST AND CHECKOUT

a. The $11 / 05$ as received from vibration test should be loaded with Tl7.
b. Cable the $11 / 05$ up to the bus tester.
c. Plug the PCll control into the PDP-ll/05。
d. Power up the system and insure that the ll/05 runs Tl7 error free.
e. Load in the bootstrap and absolute loaders.
f. Load in the bus tester.
g. Load address 200, and start the $11 / 05$, should run this test for 15 minutes error free.
h. Upon completion of step 7, load in Tl7 diagnostic and insure it runs error free from 15 minutes with data switch 11 on a one.
i. Load in Tl7 and insure error free operation for 3 minutes.
j. Halt the CPU and power the system down. Disconnect the PCll and bus tester from the 11/05.
k. Fill out all required paperwork and system logs.

VII QUICK VERIFY (PRIOR TO HEAT)

1.0 PURPOSE

To insure that the PDP-1l/05 will pass all CPU and memory tests.
2.0 EQUIPMENT REQUIRED
a. PDP-11/05 daughter station
3.0 QUICK VERIFY
a. Bus the PDP-11/05 to be tested to a daughter station.
b. Power up the $11 / 05$, insure the halt switch is 0.
c. Set the switches on the daughter station as follows:

1. Switch register as required
2. Function switch - quick verify
3. Type switch - 11/05
4. Mode - processor
5. Repeat switch - repeat
6. Online switch - on line

d. Depress the initialize switch. The machine will now run quick verify and type out upon a pass complete.
e. Using dump mode, load Tl7 into the ll/05 under test.
f. Fill out all applicable paperwork and disconnect the ll/05 system from the test stand.

VIII HEAT TEST

1.0 PURPOSE

To verify that the ll/05 will pass all enviromental specifications.
2.0 TEST EQUIPMENT REQUIRED
a. Heat box capable of being cycled from $50^{\circ} \mathrm{F}$ to $120^{\circ} \mathrm{F}$ and timed for 6 hour cycles.
3.0 HEAT TEST OF THE PDP-11/05
a. The PDP-ll/05 should contain test 17.
b. The test cycle for heat is 48 hours of heat and cold

c. The PDP-11/05 is placed in the heat chamber with the the following switch settings

SWITCH
15
0
1

PURPOSE
Halt on error
Inhibit TTY input
Inhibit TTY output

4.0 PASS FAIL CRITERIA

a. The $11 / 05$ system under test may be restarted as required if the program has not been destroyed.
b. If the diagnostic is destroyed, one reload of the diagnostic is allowed.
C. The ll/05 must run the last 24 hours of the enviromental test error free (type error, component failure, blown program, etc.)
5.0 At the completion of 48 hours, remove the ll/05 from the heat chamber and fill out all applicable logs.

QUICK VERIFY (AFTER HEAT)

This test is a repeat of section 7 of the ll/05 checkout procedure. In addition, the bus test as outlined in section VI is also repeated. Upon completion, sign off all applicable logs and submit the computer to acceptance.

APPENDIX

1.0 PROCESSOR CLOCK ADJUSTMENT

Location E55-08 (M7261) adjust the clock for 3l0NX (E55 is the fifth chip counted from the pot along the handle). This adjustment can be checked without the use of extenders.
2.0 TTY CONNECTION TO 11/05

The MATE-N-LOC to Berg teletype cable is inserted into the Berg connector at the rear of the cabinet, with the lettering facing up.

3.0 TELETYPE CLOCK ADJUSTMENT

Load and start $T 17$ with switch reg $=177776$. Turn the pot on the M7260 clockwise until the print out fails. Turn the pot counter clockwise (noting the number of turns between failing points.
4.0 POWER SUPPLY ADJUSTMENTS

5.0 The patch to run only the factory bus tester portion of the bus tester.
Diagnostic is

$$
\begin{array}{rr}
\text { LOC } & \frac{\text { DATA }}{137} \\
11416 & 11136
\end{array}
$$

Load and start at address 11136 .

BADGE NO. DATE

1. BOX TEST
2. CPU TEST

3. MEMORY TEST
4. VIBRATION TEST
5. BUS TEST
6. QUICK VERIFY
7. HEAT TEST
8. QUICK VERIFY
9. BUS TEST
10. ACCEPTANCE TEST
11. TOUCH UP

TO: Manufacturing Committee Andy Knowles Roger Cady Joe Meany

DATE: September 22, 1972
FROM: Jack Smith

DEPT: Computer Production

Attached are our current thoughts on systems flow for the 1105. We have carried over into the systems area our concept of straight line flow isolation testing. As with the basic line we anticipate work stations will be staffed with operators and not technicians. Procedures are currently being documented and will be available for review withir a couple of weeks. Multi-shift operation would seem to be quite feasible.

Would appreciate your comments, especially in the area of planned configurations and station assignments, we are thinking of combining some of the stations. Mock up of a typical test station is being assembled by Jim in Westminster, have included a sketch for your review.
pjs
Attachment

TO: Jack Smith
DATE: September 21, 1972
FROM: Jim Black

DEPT: 1105 Production

SUBJ: 1105 SYSTEMS TEST

Attached is a copy of the plan for organizing ll05 systems test around the methods used in the 1105 basic checkout area.

Initially I would like to start small and add other options and peripherals over the next 90 days. The options I will start with are listed below.

1. DRll General Purpose Interface
2. BM792 Bootstrap Loader
3. MM11 Memory Expansion
4. KhllP Programmable Clock
5. PCll Paper Tape Reader and Punch
6. KLll Communications Interface
7. DLil Communications Interface
8. LA゙30 Serial and Parallel Printers

The above options account for about $60-70 \%$ of the 1105 systems business today. These options will also give us a good look at problems we may encounter when we start to do disks, magtapes, etc. using this concept.
pjs
Attachments

NOTES:

1. We anticipate configurations I, II and III to cover 70% of the OEM business.
2. Anticipate negligible complex systems. Price strategy place most of this type in the 20 and 40 areas.

> Below is a brief outline of the function of each block in the 1105 systems test plan.

INCOMING VERFICATION

BASIC CPU STOCK

MEMORY CHECKOUT

DRIl CHECKOUT

KWllp CHECKOUT
PCll CHECKOUT
BM792 CHECKOUT
KLll/DLIl CHECKOUT
LA-30 CHECKOUT
CABINET AND BA EXPANSION
BOX INSPECTION
-- An abbreviated re-acceptance of the PDP$l 105$ would be done here upon receipt of the computer from Puerto Rico.
-- Basic ll05's would come from Puerto Rico and be tested as received in then be put into stock.
-- Memory expansion kits would be tested and put into stock as "ll05 tested" 4 K and 8 K memory systems. MEll expanders would also be tested at this point.
-- DRIlAS and DRIlC's would be pre-tested and repaired as required using an ll05. These also go to stock as tested units.

Each of these areas would pre-test options for the 1105 system test group in the
-- same manner as DRIl checkout.
__ This would be an electrical and mechanical inspection of $B A$ boxes prior to entering the 1105 systems test area.

PERIPHERAL SLOT VERIFICATION-- This test requires the use of 4-DRII's and a bus tester. The 1105 small peripheral slots are tested and the CPU bus timing to insure that there are no failures in the basic CPU hardware or wiring.

MEMORY EXPANSION
DRIIA TEST
KWIIP TEST
A CPU passes through each area and depending on the customer receipt, receives the required option. The testing is performed

PCll TEST
BM792 TEST
KLIl/DLll TEST
LA-30 TEST
as follows:
If the machine requires a KWllp a known good KWIlP is put in and tested for a minimum amount of time. Next a kWllp from stock is plugged in and "should run" if it does not, we get another KWllP from stock. Then a check is made to insure proper operation and the system is passed to the next area.

CAB's and BA EXPANSION
-- If a small system requires a cabinet and additional BA boxes they will be added at this point.
-- This will be a final systems test by a technician to insure that all the system works together.
-- Final verification by field service prior ± 0 shipment.

TO：Operations Committee
cc：R．Cady
D．Tahmoush
F．Cassidy
S．Teicher
R．Hamel
M．Titelbaum
D．O＇Connor W．Vaillancourt
R．Savell
SUBJ ：
11／05 MEMORY FAILURES

DATE：October 4， 1972
FROM：Dick Manion
DEPT：Memory and Power

I have experienced the following problems in getting enough information from different departments．

1．The $11 / 05$ Production Line has been slow in getting the required information on memory failures that occur on the Mini Line．

2．Memory Test has failed to generate the required daily failure reports．

3．Component Engineering was unable to evaluate bad components．
The information from these three areas is very important and is needed to effectively solve the $11 / 05$ memory problems．

Because of the insufficient data，I personally evaluated 22 rejected systems from the 11／05 line．

1． 4 or 18% failed because of component failures．
2． 4 or 18% failed because the ground jumper on Gllo shorts to a transformer．
3． 14 or 64% failed because of poor workmanship and testing in the memory test area．

The failure rate on the $11 / 05$ line went up substantially on the Mini Line．The rate went from 12% to 31% ．The major reason for this increase can be attributed to the ll／05 line reworking modules．Ron Marchetti and Don Tahmoush have agreed to send all modules back to memory test for repairs．

1]/05 MEMORY FAILURES Dick Manion Page 2										
Production yield for memories.										
DATE	VERIFICATION			MINI LINE	HEAT BOX		QUICK VERIFY		ACCEPTANCE	
		Total	Failed	Total Failed	Total	Eailed	Total	Failed	Total	Failed
9/22 \rightarrow 9/24		33	9	$30 \quad 7$	50	0	40	0	28	2
9/25\& 9/26		34	10	2510	39	1	13	0	76	5
TOTALS		67	19	5517	89	1	53	0	104	7
FAILURE	RATE			31\%		1.1\%	0\%			5.7\%
	11/05 Memory Failure Report.									
	Date: 9/26/72									
	Total returned from 11/05 line 19									
	Total tested on 11/05 Q.V. tester...................... 17									
	Total passed on 11/05 Q.V. tester..................... 7									
	```Total returned memories tested on }222 and Macrodata....................................................}```									
	Could not confirm problem............................... 1									
	Memory test area errors.................................. 1									
	Required repairs: .......................................... 5									
	Marginal stacks ( $\mathrm{V}_{\mathrm{t}}$ ).................................... 0									
	Bad stacks................................................ 0									
	Components................................................ . . 1									
	Mechanical................................................. 4									
	Others..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0									
Number of components replaced............... 10.1008										
Number of components given to Component Engineering. $\qquad$ . Not known										
Number of retested systems returned to the ll/05 Line....................										

11/05 MEMORY FAILURES
Dick Manion
Page 3

A concentrated effort is being made by Memory Engineering to find out why memory systems are failing at the Initial Verification and Mini Line Test Stations. I am monitoring these stations closely.

My findings thus far are as follows:
Findings at ll/05 Initial Verification and Mini Line.

\# of Failing Memories	Date	Component Failures	Wrong Component	Missing Component	$\begin{aligned} & \text { Mis- } \\ & \text { aligned } \end{aligned}$	Short	Other
$\begin{gathered} 9 \\ \text { Initial } \\ \text { Verification } \end{gathered}$	9/28/72	1-7380	1-74H74	$\begin{aligned} & \text { l-0672 } \\ & \text { 3-Missing } \\ & \text { Jumpers } \end{aligned}$		$\begin{aligned} & \text { 1-Gnd } \\ & \text { Jumper } \end{aligned}$	2-Needs ECO   l-Poor looking Current, changed DL-]
5 Initial Verification	9/29/72	$\begin{aligned} & 1-250 \mathrm{~J} \\ & 1-74 \mathrm{HOl}-1 \end{aligned}$				$\begin{array}{\|l} \text { 3-Gnd } \\ \text { Jumper } \\ \text { 3-Pos- } \\ \text { sible } \\ \text { solder } \\ \text { shorts } \\ \text { on Glln } \end{array}$	1-Missing ECO l-Current Loop Broken
$\begin{aligned} & 5 \text { Mini } \\ & \text { Line } \end{aligned}$	9/29/72	$\begin{aligned} & \text { ] }-74 \mathrm{HOl}-1 \\ & \text { l-7380 } \\ & \text { (Both on } \\ & \text { Gll0) } \end{aligned}$			]-G] 10	$\left\lvert\, \begin{aligned} & \text { l-Gnd } \\ & \text { Jumper } \\ & \text { l-GI } 10 \end{aligned}\right.$	1-Dirty Pins
$3$   Initial Verification	9/30/72						2-Wrong Jumper Cut   ]-Poor Solder Connection

11/05 MEMORY FAILURES
Dick Manion
Page 4

At the Initial Verification and the Mini Line Test Stations the sample of systems that I have looked at shows the following: Four out of twenty-two failed because of component failures. Four out of twenty-two failed because of ground jumper shorts. Fourteen others failed because of poor Q.C.ing of modules or poor testing.
TO： Steve TeicherDATE：February 26， 1973
FROM：Ken Olsen
DEPT：Administration
EXT ： ..... 2300

SUBJ

11／05 CHANGES

Last week，Andy asked you to set up a meeting to review possibilities of redoing the 11／05 with some quick but rather drastic changes．

I would like to meet with you soon，before that meeting，and have you go over once again for my edification some of the details that we have to consider．I would like to hear your guess，sometime in the next few days，of what power supply specs we would need and how much heat we would have to remove if we fill a 10 inch box up with sockets．It would be good to give these specs to the power supply group to see if it is worth having one standard supply that would drive anything you put in the box，or should we have one or two power supplies．

I would also like to see a list of peripheral controllers that we might want to redo with some way of estimating how much stuff would be in the controller and how difficult it would be to put them on one hex board with or without daughter boards．I also would like to know what would be involved in putting memory on a single board and an estimate of what that would do to the costs．

If we had this dream machine，with every unit on a single board，could we print a standard back panel？

I personally like the idea of each controller on a board，but it can be quite high so that there is the room of several boards without the cost of several boards．

I would also be interested to hear what handles you would like on the modules to make them easy to test and what specifications you would put on ways of getting cables in and out of the box．It would also be handy to include a list of the cables that go in and out of the box．

DATE: $12 / 6 / 72$

FROM: Bob Cavell
DEPT: Memory and Power

Supply Engineering

SUBJ: CONTROL OF MANUFACTURING GROUPS
cc:


You, Roger Cady and I met the other day to discuss the high rate of rejects still observed when memories are tested at the input to the ll/05 computer final assembly area. We explained that engineering design problems over the last few weeks account for no rejects, component failures account for a percentage that is still larger than wed like, but that the largest category are apparently due to the units not being tested properly in the Manufacturing Memory Test Area.

You asked if I felt I should run the Memory Test Area. I do not feel I should for three reasons:

1. The problem in Memory Test is typical of the problems in all manufacturing test areas--poor discipline brought on because Manufacturing's philosophy is to "ship the numbers". That's all they're ever told by their management, and they continually tell us that they "don't have time" or. "can't afford the time" to do the job right.

Manufacturing must learn to take the responsibility for quality as well as quantity, and for setting up the administrative procedures necessary to insure that if the checkout procedures specified by engineering are not carried out properly by their people, that they can identify the people involved and correct the situation.
2. I feel that my job right now in building up the Power Supply Group and solidifying both memory and power supply groups is large enough that I don't want my efforts to be diluted.
3. Our group should be spending our follow-on engineering effort on any engineering design problems that do occur, and in working with component engineering so that together we can try to get the component failure rate lower. We cannot do this if we continually have to monitor and point out manufacturing problems.

I'd like to point out that the man running the test area, John Groark, is completely capable of running it properly. He knows what to do and how to do it, but has been unable to run it right because of pressure to ship.

Roger Cady stated that he felt it was, and always had been, the engineer's responsibility to define and monitor the administrative manufacturing procedures mentioned above. I may be a bit slow, but I've been here $11 \frac{1}{2}$ years now and have never understood that to be the engineer's responsibility, nor have I observed that Roger Cady's engineers seem to understand that they have that responsibility. If that responsibility does exist, it's a well kept secret.

When I learned that Roger was going to work on problems of this sort in Manufacturing I was pleased because Manufacturing clearly needs help. If Roger's statement to me is an example of the way in which he's going to solve the Manufacturing problems, however, then we're in big trouble since his approach is to transfer responsibility from Manufacturing back to Engineering! I've already stated my feelings about that.

Gordon, how about getting some company wide clarification on these two questions?
(1) What is the engineer's responsibility?
(2) What is Manufacturing ${ }^{\circ}$ s responsibility?

Unless the answers to these questions are quite clear, neither groups will be able to staff and budget to properly handle the total job, nor will their performance be able to be measured.

DATE:
December 27, 1972
FROM: Ken Olsen

DEPT: Administration

Steve Teicher was telling me some of the problems with the power switch on the $11 / 05$. He concluded that we should make the switch a seoprate assembly and therefore get rid of the adjustment problems.

I am not happy with that idea alone. We used to have the switches as a separate assembly and they caused no end of trouble, so it is not just a matter of whether it is integral with the front panel or separate. We have to have a straightforward way of actuating and adjusting the switches. Maybe the problem is we don't over-drive them enough.

November 13， 1972

Ken Olsen
Administration
．

## SUBJ：

## CHEAPER 11／05

FROM：
DEPT：

DATE：

I would like to meet with you someday soon to talk about what we can do to make the $11 / 05$ cheaper．What are the costs for each of the major pieces？ It would be interesting to know what the costs are in the major module．If they are relatively small，we can gain a lot working over the power supplies，sheet metal and front panel．

Now that we have this experience，what are the alternative configurations？ Would it be an advantage to go to the $3 \mathrm{l} / 2$ inch panel，or would we be better off going to 7 inches，or $83 / 4$ inches，or $10 \mathrm{l} / 2$ inches high？If we went to $10 \mathrm{l} / 2$ inches high，what would we use the other space for and what power supplies would we need？If we built a version of the 11／05 in Ireland or Taiwan which we would sell to the OEM＇s at a very low price but without the normal services，what should we put in this？Should it be a large，easy－to－assemble， cool and reliable box with a simpler front panel or no front panel？

If we imported the OEM product in order to separate it from our normal product line，what could we do to make the memories and peripherals somewhat different？ It would be nice to have the OEM memory the same for manufacturing and testing， but different as far as final configuration．Could we also put some of the peripherals that are now in the systems units on one hex board？

Could we get rid of all the systems units so that we could just line up sockets the way the PDP－8 does？We could then put the peripheral on a hex board with daughter boards．The daughter boards would end up perhaps taking less space than a systems unit，and might end up being a lot simpler than putting in a systems unit with a number of quad boards．

I am on a kick of trying to get mother／daughter boards considered because I believe they will be the way around our complex board layout problem and board re－layout problems．

The $11 / 05$ is one of the products we are going to concentrate on making very inexpensively because large quantities are made．

DATE: January 31, 1972
FEB 21972

FROM: Dennis Macklin

DEPT: LDP Engineering

SUBJ: 11/05 Chassis - Use by others

A resent examination of the $11 / 05$ chassis shows that it is not readily usable for other products. This is because of the small opening in the front.

I see it as very desirable for this chassis to be more universal so that we can quit reinventing the same, but slightly different. I will be pursuing this over the next few days.

Potential usage of $11 / 05$ chassis:
Lab Peripheral System
" " " Expansion A-D's

Cassettes?


DM/kcs

Distribution List:
Engineering Committee
Bob Puffer
Roger Cady
Joe St. Amour
Bruce Delagi
Loren Prentice
Lorrin Gale


## SCHEDULE:

The attached PDPmII/25 schedule indicates the development and initial shipment of the machine and its component elements. Initial builds are ten (in) in June with a monthly progression of $4 \varnothing$ in July and $6 \varnothing$ in August; shipments are schedule for the month after build to allow system configuration and debug.

Certain assumptions are basic to this schedule.

1. Automatic test and acceptance has to happen for the PDP-11/45 and this occurs before the PDP-II/25 needs it. Stations must be built for the PDP-11/25 with dedicated XOR testers adjacent to the production line.
2. Memories for the PDP-II/25 are the MMII-S or equivalent ( 3 MMII-S type in a 9 slot, double system unit). The development and test of the memory module is critical to the development of the PDP-11/45 (end the PDP-11/D5) and must happen. The PDP-11/25 numbers must be requested, however, and the equivalent memory defined.
3. The power supply for the PDP-II/25 machine ${ }^{\text {s }} \mathrm{s}$ integral with the BAII-DA basic box or BAII-DB expansion box. The electrical portion of this power supply is a subset of the H742A power supply with the regulator modules H744 and H745A being used, The numbers for the PDP-11/25 must be requested and the testing of the power supply by the PDP-11/45 group monitored. A very basic assumption, which must itself be monitored, is that the power supply is a repackaging job only.
4. ROM's represent an advantage in that initial ECO's that normally require etch changes may now be implemented with a new ROM. The facility to inspect and alter ROM's is assumed as it is necessary for the PDP-11/65 and PDP-11/45.

PDP-II/25 SCHEDULE, STATUS AND NEAR FUTURE PAGE 2
January 21, 1972

Purchase and test inputs are necessary on the PDP-11/25 volume and types.

The schedule is reasonably tight, especially for the BAll-DA box and power supply and the FIS option. No direct conflict is now apparent with the production schedule of the PDP-II/ $\varnothing 5$ or the PDP-II/45; these machines are ahead of the PDP-11/25 and should do significant basic work for us. Help them: The schedule does accommodate the corporate constraint on overtime (salaried personnel excepted).

## STATUS:

The schedule has been presented to the product line, new products and production; marketing has a business plan although further refinement is necessary on option quantities and the phase over from the PDP-II/2ø. Money is budgeted for Q3 and Q4 for the project; it is expedient that the project, as scheduled, is completed on time!

The status of the individual elements of the PDP-II/25 are noted:

1. KDII-A basic processor has all boards ( 4 hex and l quad) layed out, three boards are being digitized, two boards are completed. The backpanel is being wire listed Por the basic machine. The console, KYユI-D is being layed out.
2. Memories are being developed for the $P D P-1 l / \varnothing 5$ and PDP-Il/25. Two testers upanother next week. Verbal commitment for prototype needs from Dave Gendreau:
3. Box and Power Supply begins draiting layout of the box todag. Untts available to PDP-11/45 not yet tested completely. Verbal commitment for regulator units for prototype needs from Al Hirsch.
4. EIS breadboard is being debugged on the KDII-A breadboard. Prints need redrawing to go to layout.
5. FIS design is developing with algorithms and data paths; no logic design exists.
6. Memory segmentation breadboard is being constructed. The hooks are difficult in the breadboard, but the prototype will not be available. After EIS, the segmentation will be debugged in the breadboard.
7. No work yet done on manuals or training. Three week courses will be provided; initial course in May.

PDP-11/25 SCHEDULE, STATUS AND NEAR FUTURE
PAGE 3
January 21. 1972
8. No complete PDP-II/25 exists.

## NEAR FUTURE:

No meetings are planned for the next month or two, yesterday's production meeting can suffice for a while. Engineering has some design to do, and other groups are busy or don't need to start yet. Copies of a biweekly status report will be distributed. If questions arise please call X2654. Regular meetings will occur when were closer to production. Send notes for distribution with the status reports and communicate directly with people involved with a problem. (The distribution list notes names and specialties.) Do work not meetings.

## SERMON (Optional)

Certain problems happened to use (engineering and production) on the PDP-11/2中; there is no intention of repeating them. The following items are resolved:

1. Adequate modules will be available to allow module swapping.
2. An integral XOR teston will exist with the production line to allow repair of modules on site.
3. Machine builds of basic machines will be in onemmonth; shipment of the systems are in the following month.
4. An engineering acceptance procedure that requires much of PDP-1i devices is being developed. The PDP-11/25 will meet this procedure.
5. Training will be orientated toward systems with new emphasis on manufacturing needs and diagnostic programming techniques. Power supply training will be mandatory.
6. Since the $P D P-11 / 25$ replaces the $P D P-11 / 2$, care is necessary in discussing the PDP-11/25 and its characteristics. Don't want to turn off PDP-1.1/2ф sales

JOL/emp



```
PDP-1I/25 DISTRIBUTION LIST AND ORGANIZATION CHART
```


## PRODUCT LINE:

$5-2$	Andy Knowles
$5-2$	Julius Marcus
$5-2$	Roger Cady
$5-2$	Bob Anundson

ENGINEERING:
5-2 Jim O'Loughlin
5-2 John Buzynski
5-2 Chuck Kaman
I-2 Tom Treiss
5-2 Paul Janson?
1-2 Ed Anton
5-2 Bill. Minor
5-2 Chuck BIasi $\}$

Group Manager
Product Line Manager Engineering Manager
Marketing

SUPPORT:

$1-5$	Gene Stringer
$1-4$	John Harrington
$1-4$	Dennis OVonnor
W/M	Bud Dill
$21-4$	Wayne Grundy
$5-3$	John Wannamaker
$4-5$	Joe Madden
A\&M	Bill McLain
$5-2$	EdCrowley
$1-4$	Don Tahnoush
$3-5$	Earl Haight
$12-2$	Ron Brender

```
New Products (Engineer)
New Products (Black Hat)
Test Line
Production (in lieu of specific appointee)
Field Service
Model Shop (Layout)
Drafting
Manuals
Training
Quality Control
Diagnostic Programming
System Programming
```



digital

# - PDP-11/35 BUSINESS PLAN 



## COMPANY CONFIDENTIAL DO NOT COPY

Jack MacKeen PDP-11/OEM Marketing March, 1973

```
PDP-11/35 BUSINESS PIAAN - SYNOPSIS
```

1. Product

PDP-ll/40 CPU in $10 \frac{1}{2}$ Inch Box
2. Basic price includes:

1. CPU
2. Box with slides
3. Console
4. Power Supply
5. 8 K memory (MF/ME/MM11S)
6. Cost (on basis of 1,000 units)
\$2,482
7. Price Recommended
$\$ 9,995$
8. Discount/Terms

Type I OEM - Return to Factory Warranty
6. Gross Margin at Average OEM Discount (29\%)
$\$ 4,614-65 \%$
7. Related/Affected Product

PDP-11/05, PDP-11/15, PDP-11/40
8. Announcement/Delivery Plans

Announced to selected customers starting in April. General announcements in June. Initial deliveries end of May/June to selected customers (current $11 / 15$ or $11 / 40$ :customers) based on availability of memory.

## COMPANY CONFIDENTIAL <br> - - -

## TABLE OF CONTENTS

Page
I. Product Description ..... 1
II. Cost Data ..... 4
III. Margin Analysis/Recommended Price ..... 5
IV. Product Unit Forecast ..... 6
V. Related/Affected Products ..... 7
VI. Product Schedules ..... 9
VII. Competition ..... 13
APPENDIX ACost/Margin Work Sheets
APPENDIX B
Product Photographs/Sketches
rampany ranamamtan

## I. PRODUCT DESCRIPTION

The PDP-11/35 packages the $11 / 40$ processor in a $10 \frac{1}{2}$ inch high chassis. It consists of a rack-mountable box $10 \frac{1}{2}$ inches high, 17 inches wide, and $23 \frac{1}{4}$ inches deep. This box has the capability of mounting five PDP-ll System units. Two of these are used for the central processor and its options. The three remaining spaces are for memory and/or peripherals. Power is provided by the $H 750$ supply. System units mount front-to-back on the left side of the BAll-DA Box* (as viewed from the front). Power Supply mounts on the right side. Air is drawn in from the sides at the front and exhausted at the rear (see sketch App. B).

The PDP-ll/35 will be available only as a rack-mountable box with three possible memory variations. (No plans have been made for a table-top version with super cover as practically no table-top machines are sold to OEM's.) All memories will be 8 K minimum bundled into the basic system which will consist of the following:

Central Processor - KDllA (same as PDP-11/40). Mounting Box - BAll-DA/DB (includes slides). Power Supply - H750.

## COMPANY CONFIDENTILL

I. PRODUCT DESCRIPTION (Cont.)

Console
Memory - Minimum 8 K in one of three versions, (see table next page)

All other components or options are to be purchased as line items. No bundled systems will be offered.

Although the PDP-11/35 is intended to eventually replace the PDP-11/15, the recommended packaging/pricing policy is not to unbundle to the level which the PDP$11 / 15$ did. Analysis of the PDP-11/15 orders shows a 100 percent order rate for Programmer's Consoles, and nearly 100 percent for Power Fail/Restart and MultiLevel Priority Interrupt Options. With the sophisticated systems possible with the PDP-11/35, these features should be standard. Therefore, the PDP-11/35 basic price will include the individual items listed in the product description above plus the standard features of Power Fail/Restart, Multi-Level Priority Interrupt, Prewired/Pretested CPU Option Slots, and capability for serial or parallel console terminals.

## COMPANY CONFIDENTIAL

I. FRODUCT DESCRIPTION (Cont.)

The table below presents the PDP-11/35 nomenclature including variations in memory and available spaces for mounting peripherals.

Type \#	TABLE 1			System Unit Space Available
		Memory Variation	Voltage	
PDP-11/35	JA	MFll	115 V	1
PDP-11/35	JB	MFll	230 V	
PDP-11/35	JC	MMIIS	115 V	2
PDP-11/35	JD	MM11S	230 V	- 2
PDP-11/35	JE	MEIILA	115 V	3
PDP-11/35	JF	ME11LB	230 V	

The PDP-ll/35 will be sold initially as an OEM machine only under a Type l discount. Terms and conditions will be those of the OEM discount agreement i.e., documentation with the first system only, circuit schematics with each system, 30 day Return-to-Factory Warranty, and reproducible diagnostics with the first system only. All other services such as system software, training, additional documentation, installation, and extended warranty will be available at established prices.

## COMPANY CONFIDENTILL

```
PDP-1l/35 Business Plan
(Cont.) -4-
II. COST DATA

Presented below is the product cost for the basic packaging as described in Section I. These costs were obtained from the Cost Accounting Group (Larry Rasile). These costs include system integration, but not manuals or inventory obsolesence charges.

KDll-A Processor \$ 655
KY1l Console 147
MMILS Memory 700
BAll-DA Box and Cables 136
H750 Power Supply 244
System Integration
Misc. Parts 100
F.A. \& T. \(\quad 500\)
\$2,482

\section*{COMPANY CONFIDENTIAL}

\section*{III. MARGIN ANALYSIS/RECOMMENDED PRICING}

The detail chart below presents the margins to be realized at the various discount levels on the Type I schedule based on the cost listed in Section II. The recommended price for the product was arrived at by first examining the distribution of discount levels under our existing OEM discount agreements. The average discount level was then used to arrive at a net price for the processors as this is the only price the OEM cares about. This net price was then factored back up to arrive at a list price. Recommended list price is \(\$ 9.995\) U.S. for the basic system as defined in Section I. (MM11S and MFllL only - MEllL version is \(\$ 10,495\) to reflect \(\$ 500\) price difference between MEllL and MFllL).
\begin{tabular}{|c|c|c|c|c|}
\hline List Price & Discount Level & Net Price & \[
\begin{gathered}
\text { Gross } \\
\$ \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Margin } \\
\% \\
\hline
\end{gathered}
\] \\
\hline \multirow[t]{6}{*}{\$9,995} & 1-15\% & \$8,496 & \$6,014 & 70.8\% \\
\hline & \(2-20 \%\) & \$7,996 & \$5,514 & 69.0\% \\
\hline & \(3-29 \%\) & \$7,096 & \$4,614 & 65.0\% \\
\hline & \(4-34 \%\) & \$6,597 & \$4,115 & 62.4\% \\
\hline & \(5-36 \%\) & \$6,397 & \$3,915 & 61.2\% \\
\hline & 6-38\% & \$6,197 & \$3,715 & 60.0\% \\
\hline
\end{tabular}

Recommended Pricing Summary (Refer to Table I, Section I.)

Type \#
```

PDP-11/35 JA/JB \$9,995
PDP-11/35 JC/JD
PDP-11/35 JE/JF

```

Price
\$9.995
\$9,995
\$10,495
IV. PRODUCT UNIT/S FORECAST

The PDP-11/35 is estimated to have a product life in the OEM Marketplace of three to four years. Based on the projected announcement date and start of deliveries, this active product life will include Fiscal Years 1973 through 1977. The table below projects the expected unit shipments over these fiscal years.from the OEM Group alone.

Fiscal Year Q1 Q2 Q3 Q4 Total
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline FY, & '73 & - & & 5 & 30 & 35 \\
\hline FY, & ' 74 & 140 & 170 & 195 & 210 & 715 \\
\hline FY, & ' 75 & 240 & 250 & 260 & 270 & 1,020 \\
\hline FY, & '76 & 250 & 290 & 280 & 280 & 1,100 \\
\hline FY, & ' 77 & 250 & 220 & 150 & 50 & 670 \\
\hline
\end{tabular}

The table below represents the estimated gross revenues to the corporation (for both basic processor/ memories (column 3) and as systems.
\begin{tabular}{|c|c|c|c|}
\hline Fiscal Year & CPU'S \# & Basic CPU/Memorys* & Systems \({ }^{*}\) \\
\hline FY, '73 & 35 & . 35 & . 91 \\
\hline FY, '74 & 715 & 7.15 & 21.45 \\
\hline FY, '75 & 1,020 & 10.2 & 32.64 \\
\hline FY, '76 & 1,100 & 11.0 & 37.40 \\
\hline FY, '77 & 670 & 6.7 & 23.45 \\
\hline
\end{tabular}
```

PDP-11/35 Business Plan
(Cont.)

Primary intent of the PDP-11/35 will be to replace the PDP-11/15 thus completing a "second generation" PDP-11 Family for both limited (OEM) and full service (end-user) models.

Availability of PDP-11/35 will impact all of the OEM PDP-11/40's to some degree. This will be due to three factors:

1. Type 1 Discounts
2. Unbundling.
3. Convenience of the smaller package - $10 \frac{1}{2}$ " box versus full 72" cabinet.

However, since more and more large PDP-11 systems will be sold and the PDP-11/35 announcement will occur during the manufacturing build up of PDP-11/40's țo a full product rate, the actual effect of the PDP-1l/35 will be to cause a leveling in the OEM PDP-11/40 order rate rather than an actual decrease in PDP-11/40 orders. It is expected that for large systems the PDP-11/40 will still be selected versus the PDP-11/35 due to the flexibility in power and packaging inherent in a single large chassis.

PDP-11/35 Business Plan (Cont.)
V. RELATED/AFFECTED PRODUCTS (Cont.)

There is potential impact as well on the PDP-11/05, primarily due to packaging (e.g., the availability of PDP-11/35 power in a $10 \frac{1}{2}$ " box will be attractive to those PDP-11/05 users who want more performance, but have balked at the fully bundled PDP-1l/40 price.) However, the packaging consideration will be minimized because the $10 \frac{1}{2}$ " chassis PDP-11/05 will actually offer greater packaging advantages for peripherals than the PDP-11/35.

The PDP-II/35 price has been recommended so as to maintain a substantial margin over the projected $10 \frac{1}{2}{ }^{\prime \prime}$ chassis PDP-11/05. This should therefore leave the highly flexible PDP-ll/05 as the low price entry from the PDP-ll Family. Since the PDP-11/05 business has accelerated rapidly with no decrease in the PDP-11/15 business there is little actual impact expected on the PDP-11/05.

The charts in Appendix A show comparisons of the PDP-11/35 versus the PDP-11/40, PDP-11/15, and PDP-11/05 at gross and net dollars for approximately equivalent system configurations.

```
pDP-1l/35 Business Plan
(Cont.)

\section*{VI. PRODUCT SCHEDULES}
1. Manufacturing Forecast

Forecasts have been entered through Q4 of FY'74. The intent is to establish some inventory of basic products to have on the shelf at time of general announcement. Initial delivery availability will be specified at time of announcement in a manner which will allow relief of PDP-11/15 backlog if required, and to forestall losses of orders to competition because of delivery. The OEM Product Group has received allocations for Q4 of FY'73.
2. Customer Commitments

Commitments have been made to only two customers Kodak and Time Data. Kodak is a major customer and the early delivery (March) of PDP-11/35's will provide a valuable test bed prior to volume deliveries. Two systems have already been delivered to Kodak and two more will be shipped by the end of the month. We are currently on schedule with PDP-11/35 deliveries to Kodak.

\section*{COMPANY CONFIDENTIAL}
VI. PRODUCT SCHEDULES (Cont.)
2. Customer Commitments (Cont.)

All delivery commitments for this product are being made only by the OEM Group at this time.
3. Due to the current backlog situation and long lead times quoted for both PDP-11/40 and PDP-11/15 (300 PDP-11/40 - ten months ARO and 200 PDP-11/15 six months ARO), it is proposed that the PDP-11/35 be preannounced to selected PDP-11/15 - PDP-11/40 customers. By converting these customers to PDP-11/35's, the backlog/lead time situation which is currently causing DEC to lose business can be improved to levels which present and potential customers can accept.

This conversion will begin in Q4 of FY ' 73 and continue through Q1 of FY '74. Since the average OEM requires 60-90 days to turn a system around after computer delivery, the PDP-11/35 will not show up in public until after that time. This will allow us to delay announcement for this period of time while receiving revenues and working on the backlog problem.
PDP-11/35 Business Plan -11- March, 1973
(Cont.)
VI. PRODUCT SCHEDULES (Cont.)
3. (Cont.)

This conversion can be implemented immediately upon approval of this plan, subject only to manufacturing's ability to build product in Q4, FY '73. Assuming implementation, the PDP-11/35 should be announced in June at the National Computer Show in New York.
4. Phase Over Program

Major users of the PDP-11/35 will come from the present major users of the PDP-II/15's. Currently, \(80 \%\) of the PDP-11/15 business comes from ten customers. In order to facilitate the rapid transition of PDP-11/15 users to PDP-11/35's and therefore minimize duplicating our manufacturing efforts, presentations on the PDP-11/35 will be made to the following key PDP-11/15 OEM's prior to announcement. These OEM's are:

Time Data
Eastman Kodak
Applied Color
Frederick Electronics
Computer Machinery Corporation
Hendrix Electronics
Foxboro Company
Periphonics
Tektronix

\section*{company confidential}
```

PDP-1l/35 Business Plan

```
(Cont.) -12- March, 1973

\section*{VI. PRODUCT SCHEDULES (Cont.)}
5. Advertisement/Support Materials

An ad to support product announcement has been drafted. Cost versus need is being reviewed and the ad may be dropped.

A brochure is underway with a target date for availability in the field offices by May 1 , or at announcement date if that is later. Particular emphasis is being placed on making this brochure a working document from which the customer can understand packaging variations and thereby reduce ordering confusion.

The processor is included in the new PDP-ll Family Processor Handbook scheduled for completion at the end of March.

Release of all promotional material will be coordinated with the actual product announcement.
VII. COMPETITION

The PDP-ll/35 will compete primarily with the following equipment:
```

Data General - Nova 800
Hewlett-Packard - 2100
Interdata - Model 70/74
General Automation - SPC 16 Series

```

\section*{NOTE:}

The competitive chart in Appendix B shows a feature/price comparison for a number of machines in addition to the above. Note that a price of \(\$ 9,995\) for the PDP-11/35 compares favorably with:

The new DG 840 is also an interesting price comparison. Base price includes 16 K core and memory management.

DG 840
DEC PDP-11/35
\$16,530
CPU/8K 9,995

MM11L 4,400
KTll-D A2.480
COMPANY CONFIDENTIR. 6.875

> A P P E N D I X A
company coirfinential

PDP-ll/35 Business Plan -Al-
(Continued)
MANUFACTURING COST ESTIMATES

Present Estimate PDP-11/35

March, 1973 L. Rasile \(+\begin{aligned} & \text { uigarano } \\ & 4 / 3 / 73\end{aligned}\)

PDP-11/40
Estimate
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{F.A.\&T} & \$500 & \$500 \\
\hline & \$3,497 & \$3,754 \\
\hline \multirow[t]{2}{*}{Inventory Obsolescence} & \$353 & \$376 \\
\hline & \$3,850 & \$4,130 \\
\hline \multicolumn{3}{|l|}{11/35 is Less DLIlA/LT33DC/} \\
\hline \multicolumn{3}{|l|}{Inv. Obsolescence -\$1,368} \\
\hline \multirow[t]{2}{*}{11/35 Cost} & \$2,482 & \\
\hline & \[
C O M P A
\] & NTTA \\
\hline
\end{tabular}

\section*{KDIIA Processor}
M7231
M7232
M7233
M7234
M7235
M981
Logic (70-9009)
Assy \& C/O (from KAll
processor)
\[
\begin{aligned}
& \text { \$110 } \text { std. } \\
& \text { \$103 } \\
& \text { std. } \\
& \$ 96 \\
& \text { std. } \\
& \$ 85 \\
& \text { std. } \\
& \$ 78 \\
& \text { std. } \\
& \$ 18 \\
& \text { std. } \\
& \$ 165 \\
& \text { (Included in } \\
& \text { F.A. \&T.) }
\end{aligned}
\]

KYll-D Console
\$147
MMIIS \(\$ 700\)
BAll-DA Box, Bezel, \$136 and Cable

H750 Power Supply
\$244
DLII-A
\$ 84
LT33-DC \$931 \$931
\$100
Basic System Integration
Material (Misc. \& parts not accounted for.)

Inv. Obsolescence -\$1,368
\(11 / 35\) Cost
\(\$ 2,482\)
LT33-DC \$931 \$931
\$ll0 std.
\$103 std.
\(\$ 96\) std.
\$ 85 std.
\$ 78 std.
\$ 18 std.
\(\$ 165\) std.
(Included in
F.A.\&T.)
\$145
\(\$ 700\)
\(\$ 249\)
\(\$ 390\)
\(\$ 84\)

\section*{APPENDIX A}

PDP-11/35 Business Plan (Continued)

\section*{11/15 MARGIN ANALYSIS}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & List & Total Net & & Cost & & G.M. & \% G.M. \\
\hline 2-9 & \$9,200 & 8,020 & - & 2,778 & \(=\) & 5,242 & 65\% \\
\hline 10-19 & \$9,200 & 7,560 & - & 2,778 & \(=\) & 4,782 & 63\% \\
\hline 20-49 & \$9,200 & 6,972 & - & 2,778 & \(=\) & 4,194 & 60\% \\
\hline 50-99 & \$9,200 & 6,632 & - & 2,778 & = & 3,854 & 58\% \\
\hline 100-199 & \$9,200 & 6,448 & - & 2,778 & = & 3,670 & 57\% \\
\hline 200 & \$9,200 & 6,264 & - & 2,778 & \(=\) & 3,486 & 56\% \\
\hline
\end{tabular}

PDP-11/15 List Price \(\$ 4,000+\$ 5,200(\) MEllL \()=\$ 9,200 . \quad\) CPE is Type II Discountable and Memory is Type I Discountable.

\section*{COMPANY CONFIDENTIAL}

\section*{APPENDIX A}
```

pDP-11/35 Business Plan
(cont.) -A3- March, 1973

```

\section*{PDP-11/35 VERSUS PDP-11/15 MARGIN ANALYSIS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { PDP-11/35 } \\
\text { List } \\
\hline
\end{gathered}
\] & 1 & 2 & 3 & 4 & 5 \\
\hline \multirow[t]{6}{*}{\$9.995} & 2-9 & 8,496 & +476 & 6,014 & +772 \\
\hline & 10-19 & 7,996 & +436 & 5,514 & +732 \\
\hline & 20-49 & 7,096 & +124 & 4,614 & \(+420\) \\
\hline & 50-99 & 6,597 & -35 & 4.115 & +261 \\
\hline & 100-199 & 6,397 & -51 & 3,915 & +245 \\
\hline & 200 & 6,197 & -67 & 3,715 & +229 \\
\hline
\end{tabular}

\section*{EXPLANATION OF COLUMNS}
1. Discount Quantity Level
2. PDP-11/35 Net
3. Unit increase in net due to PDP-11/35 (PDP-11/35 Net -pDP-11/15 Net)
4. PDP-11/35 Gross Margin
5. Unit increase in Gross Margin due to PDP-11/35 (PDP-11/35 G.M. -PDP-11/15 G.M.)

PDP-1l/35 Business Plan (Continued)
```

PDP-11/35 - PDP-11/05 - PDP-11/40 PRICE COMPARISON
AN EQUIVALENT SYSTEM BASIS

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& \text { Present } \\
& \text { PDP-11/40 } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { PDP-11/35 } \\
\text { List } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\begin{array}{c}
\text { PDP }-11 / 35 \\
\text { Net }
\end{array} \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 10 \mathrm{l} / 2^{\prime \prime} \\
& \text { Chassis } \\
& \text { PDP-11/05 } \\
& \quad \text { List } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { PDP-11/05 } \\
\text { Net }
\end{gathered}
\] \\
\hline Teletype & std. & 1,620 & 1,620 & J, 620 & 1,620 \\
\hline TTY Control & std. & 400 & 328 & std. & std. \\
\hline Cabinet & std. & 650 & 533 & 650 & 533 \\
\hline Inst. \& 30-Day Warranty & 260 & 250 & 250 & 250 & 250 \\
\hline CPU \(\mathrm{W} / 8 \mathrm{~K}\) & 12,995 & 9,995 & 7,096 & * 7,295 & 5,180 \\
\hline * Exp. Box & N/A & 1,500 & 1,065 & 1,500 & 1,065 \\
\hline List & 13,255 & 14,415 & & 11,315 & \\
\hline Total Net & \[
\begin{aligned}
& (\text { PDP-11/40) } \\
& \$ 10,915
\end{aligned}
\] & & 10,892 & & 8,648 \\
\hline
\end{tabular}

Discounts Assumed
Type I - 29\%
Type \(I\) II - 18\%
* Price is estimated

\section*{A P P E N D I X B}

The PDP-11/35 offers in its unique package five system units; of these only two are required to house the \(C P\) and all the mentioned options plus Line Clock (KW11L) and terminal in arface.

The next two system units can be filled with up to 24 K and there is still one system unit for whatever use you can imagine. The room available will prove sufficient for most applications, but if more space is needed, any expansion box can be used.

Concerning power, a typical system with 8 K will have 11 Amps at \(+5 \mathrm{~V}, 2 \mathrm{Amps}\) at -15 V and 1 Amp at +15 V available for expansion.

\section*{}

DIGITAL EQUIPMENT CORPORATION MAYNARD, MASSACHUSETTS 01754

T0: Hen Oleex
- Irevewed the PoplI/3s unth manketing and eqgereric ox Fiidy.

There were two major pioblens usth the bot whice hare teen erreated.

OT The perver disitilntid
merhere was to limetid f-

mored arsold in the ty.
This has heen emplits
reduriznel ancl is naw alygnte.
(2) Corbinj as a pirlemibiben

DICAAL EQUIPMENT CORPORATION
\[
2
\]

Andy Knowles
udeojnae ande the ch relter ase tmperature halvel (hongto well within quiffeatil.
Qur mafimen hinlits is 60 machive in a veny entrollel sithatim. Leve wicl row annerse the macline in ok messine ing (kyg tot " \(1 / 35\), IIlos.) We are awaiting a schuchule for the nuw done and Ruggl! which aill the the 16x meinsy Anch 924-73

DIGITAL EQUIPMENT CORPORATION

\section*{}

TO: Operations Committee
Cc: Bill Long Joe Meany Clayton Rix

SUBJ: BUSINESS PLAN - EXPANDED (21"

DATE: September 18, 1972
FROM: Jack Mackeen padr
DEPT: PDP-11/OEM Marketing
EXT: 3115 LOC: 5-2
CHASSIS PDP-11/35

Approval is requested for the attached "Expanded PDP-11/35" Business Plan.

In conjunction with the plan, it is proposed that the previously approved (4/9/73) price of \(\$ 9995\) for the 8 K , \(101 / 2^{\prime \prime} 11 / 35\) be reduced to \(\$ 9495\). Approval is requested for this change.

JCM/emp
Enclosure

\section*{COMPANY CONFIDENTIA! DO NOT COPY}

digitial

\section*{EXPANDED PDP-11/35 BUSINESS PLAN \\ (21" CHASSIS)}

Jack MacKeen PDP-11/OEM Marketing September, 1973

\section*{SYNOPSIS}
1. PRODUCT
\(11 / 40\) converted to 16 K memories less TTY and services.
2. BASIC PRICE INCLUDES

CPU console, \(21^{\prime \prime}\) chassis, cab, power control, power supplies, and appropriate memory.
3. \(\operatorname{Cos} T\)
\begin{tabular}{rrrr}
\(\frac{16 \mathrm{~K}}{2}\) & \(\frac{32 \mathrm{~K}}{2}\) & \(\underline{48 \mathrm{~K}}\) & \(\frac{64 \mathrm{~K}}{182}\)
\end{tabular}
4. RECOMMENDED PRICE
\(\begin{array}{llll}\$ 16995 & 20495 & 24495 & 27995\end{array}\)
5. TERMS

Type 1 OEM Discount/Return to Factory Warranty.
6. GROSS MARGIN AT \(29 \%\) AVERAGE OEM DISCOUNT
66.7
65.4
64.4
63.9
7. RELATED/AFFECTED PRODUCT

OEM PDP-11/40
8. ANNOUNCEMENT/DELIVERY

16 K announced October 1 for \(Q 3\) delivery. \(32 \mathrm{~K}, 48 \mathrm{~K}, 64 \mathrm{~K}\) announced January 1 for Q4 delivery.

\section*{TABLE OF CONTENTS}
PAGE
I. Product Description 1
II. Cost Data 3
III. Margin Analysis/Recommended Price 4
IV. Product Unit Forecast 5
V. Related/Affected Products 6
VI. Product Schedules 7
VII. Competition 8APPENDIX A
COST REFERENCE JUNE (PINK BOOK)

The primary intent of the expanded \(11 / 35\) is to provide an aggressively priced processor/memory package to gain additional revenues from present and additional OEM customers requiring the processing capability of the 1l/40 class machine. In the OEM marketplace, these customers are presently purchasing \(11 / 40\) systems with a gross value of \(\$ 45,000-50,000\) and having slightly over 32 K of core.

Additionally, the expanded \(11 / 35\) completes the establishment of a true OEM product family by offering the power and packaging flexibility of the \(11 / 40\) chassis on unbundled OEM terms. The OEM product family now would consist of \(51 / 4^{\prime \prime}\) and \(101 / 2^{\prime \prime} 11 / 05 ; 101 / 2^{\prime \prime}\) and 21" \(11 / 35\). The expanded \(11 / 35\) also provides a vehicle for the sale of the new 16 K memories.

The expanded \(11 / 35\) is mechanically the \(11 / 40\) as presently sold with the following changes.
1. TTY and control (standard on \(11 / 40\)) are not included and must be purchased as line items.
2. Existing 8 K (MFll-L) backplane and power regulator are removed. 16 K (MF1l-U) backplane, power regulator and harness are added.
3. Memory Management Unit (KTll-D) is included.
4. Front panel rescreened \(11 / 35\).

\section*{I. PRODUCT DESCRIPTION (Con't)}

As with the \(101 / 2^{\prime \prime} 11 / 35\), the expander version will be sold as an OEM product with a type 1 discount. Terms and conditions are those of the OEM discount agreement, i.e., 30 day return to factory warranty, documentation at list prices, and circuit schematics. and OEM diagnostics with each system. All other products/services such as system software, training, installation and extended warranty are available at established prices.

The expanded \(11 / 35\) will be available in four versions varying only in core memory size. Memory Management will be standard. I/O Console device and control (TTY or LA30) is not included and must be purchased as a separate line item. All other standard hardware features of the 11/40 are included.
\begin{tabular}{lccc}
TYPE \# & MEMORY & VOLTAGE & \begin{tabular}{c}
SYSTEM UNIT \\
SPACES AVAILABLE
\end{tabular} \\
\hline \(11 / 35 /\) & 16 K & \(115 / 230\) & 5 \\
\(11 / 35 /\) & 32 K & \(115 / 230\) & 5 \\
\(11 / 35 /\) & 48 K & \(115 / 230\) & 3 \\
\(11 / 35 /\) & 64 K & \(115 / 230\) & 3
\end{tabular}

\section*{II. COST DATA}

Presented below is the cost data used as the basis for this plan. Except where noted, costs shown are "Prior

3 Month's Weighted Average Actual Cost," from the June 1973 Option and System Actual Cost Report (Pink Book).
1. I6K Model

11/40-CA \(\$ 4390\)

Less LT33DC \$ 941
DLIl-A 84
MF 11-L \(\frac{711}{\$ 1736}\)
\(\frac{1736}{2654}\)

Plus
16K MF11-U*
1159
KTll-D
208

BASIC COST \$4021
2. 32 K Model

Plus 16K MM1I-U*
CosT \(\frac{1001}{\$ 5022}\)
3. 48 K Model

Plus 16K MFll-U*
1159
COST \$
4. 64 K Model

Plus leK MMll-U*
\(\operatorname{cosT} \quad \frac{1001}{\$ 7182}\)
*Cost from MFll_U/MM11-U business plan.

NOTE:
1. Cost of Option Level only.
2. Cost does not include FY74 accounting changes.

\section*{III. MARGIN ANALYSIS/RECOMMENDED PRICE}
\begin{tabular}{lrccc}
\begin{tabular}{c}
MEMORY SIZE \\
WITH MGMT.
\end{tabular} & \begin{tabular}{r}
DEC \\
PRICE
\end{tabular} & COST & \begin{tabular}{c}
\% G.M. \\
AVE. DISC. \\
\(29 \%\)
\end{tabular} & \begin{tabular}{c}
MAX.M. GISC. \\
MA
\end{tabular} \\
& & & & \(38 \%\)
\end{tabular}

NOTE: Lines 2 and 3 of each category above provide margins realized if miscellaneous costs are added to the manufacturing costs at \(5 \%\) of list price. This was first done in the June 1973 Cost Report (Pink Book).

Line 2 represents allocated miscellaneous manufacturing costs.

Line 3 represents system integration.
IV. PRODUCT UNIT FORECAST
\begin{tabular}{lrrrrr}
& \(\underline{Q 1}\) & \(\underline{Q 2}\) & \(\underline{Q 3}\) & \(\underline{Q 4}\) & \(\underline{\text { TOTAL }}\) \\
FY74 & -- & - & \(* 130\) & \(* 150\) & 280 \\
FY75 & 150 & 160 & 170 & 175 & 655 \\
FY76 & 175 & 180 & 175 & 150 & 680 \\
FY77 & 100 & 50 & 30 & -- & 180 \\
& & & & & \(\underline{1795}\)
\end{tabular}
*Based in part on conversion of existing \(11 / 40\) orders and customers.

With the exception of the 16 K memories, this product is now over one (1) year old. Approximately two (2) years additional life can be expected and then a sharp drop will occur due to announcement of new mid-range 11 replacement at significantly less \$.

The table below presents estimated gross revenues for the above CPUs shipped as systems. Average value per system will rise as lower core prices trigger increased core buying and additional peripherals are added to the system. The rise will be very slight due to price erosion.
\begin{tabular}{cccc}
FISCAL YEAR & \(\#\) SYSTEMS & \(\frac{\text { SYSTEM REVENUES* }}{}\) & \\
FY74 & 280 & \(\$ 12,040\) & AVERAGE \\
FY75 & 655 & 31,440 & \(\$ 43 \mathrm{~K}\) \\
FY76 & 680 & 35,360 & 48 K \\
FY77 & 180 & 9,540 & 52 K \\
& & & 53 K
\end{tabular}

\section*{V. RELATED/AFFECTED PRODUCTS}

Presently OEMs can purchase the ll/40 only as a bundled full-service system. With the 11/40 now an accepted product in the marketplace, many OEMs wish to make repeat buys without paying for unnecessary services. The expanded 1l/35, offered as an unbundled product on OEM terms fulfills this need.

Since \(70 \%\) of the present OEM \(11 / 40\) business comes from less than 20 customers, a minimum \(70 \%\) of OEM \(11 / 40\) business will be converted to the expanded 11/35. Unbundling, combined with the aggressive pricing contained herein, is expected to bring the impact to over \(90 \%\). New OEMs may still buy bundled systems (11/40) for development under the new OEM QDA, but this should be less than \(10 \%\) of total OEM requirements for the processor and will approach zero in a short time. This is supported by the fact that with software now treated as a product at standard prices, even new OEMs will probably buy the expanded \(11 / 35\) in order to maintain product continuity.

In summary, the OEM 11/40 business will convert to the expanded 11/35.

\section*{VI. PRODUCT SCHEDULES}

As the 16 K memories are already being implemented on the 11/40 (new regulator - H754, new power harness), the expander \(11 / 35\) can be produced as soon as these ECOs are completed and the 16 K memories available.

The OEM Group will ship the first production 16 K sense systems in Q2, FY74 if all ECOs and tests are completed on schedule. Large scale deliveries can then be made in Q3.

\section*{VII. COMPETITION}

The expanded version of the \(11 / 35\) will compete in the OEM area primarily with the Data General Nova 840.
Varian has announced a "memory mapping" feature with the V-73 to handle 256 K words of core, but price and policies are not available.

16 K NOVA \(840 \quad \$ 16,530\)
Less Memory \(\quad-2,400\) \(\begin{array}{rr}\text { Price Cut } & 14,130 \\ \text { CAB } & 1,000\end{array}\)
POWER FAIL \(\quad 400\)
\(\$ 15,530\)

32K
ADD \(\frac{6,400}{\$ 21,930}\)

\section*{APPENDIX A}

COST REFERENCE JUNE (PINK BOOK)

RESPONSIBLE ENGINEER

FORECASI:
Dir. Prod. Build Cost
Qty. Per Month

Qty. Per Month
Estinated Product Life:
Es:ihated Units During Product Life:
ihat If?

DIGITAL EQUIPMENT CORPORATION
MAYNARD, MASSACHUSETTS 01754

\section*{DATE: December 28, 1972}

FROM: Andy Knowles
DEPT: Small Computer Products
EXT : 3043

Our strategy is not to announce this machine publicly until around WESCON (Aug 73).

We will introduce it to customers in January-March ' 73 and deliver it to whomever will switchover from PDP-1l/l5's at PDP-1l/15 prices during \(Q 4\) since Pete will be building PDP-11/35's.

It is an OEM machine only (for now)
Reasoning:
(1) Cost is lower than \(11 / 15\) because of CPU, memory •• profits at \(11 / 15\) prices will be higher
(2) It is the \(11 / 40 \mathrm{CPU}\) and memory . . we get a competitive advantage technically i.e., \(1.85 x\) the speed, the 1l/40 bells and whistles, etc.
(3) We have customers somewhat waiting (Time Data, Kodak, etc.)
(4) They are (machines) forecasted and allocated Q4 so we should start (privately) selling Q3.

\section*{New 16K Memory}

Our strategy here is not to introduce this memory to customers during Q3, Q4 and maybe Q1, but to use it in shipments when available at existing 8K memory prices.

\section*{Reasoning}
(1) We need to move memory prices now. Let's maximize profits.
(2) We haven't forecasted it although the design will be ready for LR late March. Estimated Cost is \(\$ 1,000\) per copy.
(3) It takes a new backplane (packing density is higher) and power supply module. These aren't ready for ll/40, ll/45's yet, so we must be careful.```

[^0]: pjs
 Attachments

