```
TO: Win Hindle
John Leng
Ulf Fagerquist
```

DATE: August 29, 1972
FROM: Fred Wilhelm
DEPT: DECsystem-1 \varnothing Engineering

PROJECT GOALS

CONFIDENTIAL

On the 27 th of October, 1971 , the DECsystem-1ø Product Line proposed a Phase I study to determine an Engineering Specification, Software Specification, Marketing and business plan for the KL1ø. At that time the $K L 1 \emptyset$ performance was that of the $K A 1 \varnothing$ and the factory cost estimate of the following configuration was estimated at $\$ 36.5 \mathrm{~K}$.

```
Processor
PDP11/ø5
VT\emptyset5
32K of Memory
(2) 16\emptyset\emptyset bpi, 45 ips mag tapes
3\emptyset\emptyset lpm line printer
3\emptyset\emptyset cpm card reader
1\emptyset mega word discs
```

The cost of an equivalent KA1ø was $\$ 135 \mathrm{~K}$, therefore the $\mathrm{KL} 1 \emptyset$ was proposed to have a cost/performance factor normalized to KA1ø of 3.69 . As the study progressed and more detailed estimates were made, we discovered a number of cost items had been left out such as $\$ 5 . \emptyset \mathrm{K}$ worth of assembly, processor checkout and system integration. We also watched the size of the present monitor grow and realized that a system with 32 K of memory was not viable. We therefore placed 64 K on the system. With the

Fred Wilhelm 8/29/72
advent of 8 K and 16 K sense memories, the addition did not escalate the cost of the system very much. Finally the cost of 16 asynchronous lines was added in so that the basic KL1ø would be capable of timesharing. The price of the system was then estimated at $\$ 51.2 \mathrm{~K}$. In addition, the cost of an equivalent $K A 1 \emptyset$ system was reduced to $\$ 1 \varnothing \emptyset \mathrm{~K}$ with the advent of the MF1ø memory. The combination of the increase of the $K L 1 \varnothing$ cost and reduction of the KA1ø equivalent system cost reduced the cost performance ratio to 1.95 from 3.69. To bring that ratio back up to our goal, the performance goals of the KL1ø had to be raised to 1.89 that of the KA1Ø. In order to hedge against further erosion of this cost/performance ratio over the development period, we increased the ratio from 3.69 to 5 .

PERFORMANCE

In order to really get a handle on exactly which technology to use in order to accomplish our goals, we investigated three circuit families: $74 \varnothing \emptyset T^{2} L, T^{2} L S$ and ECL. We did not have the set of scripts or a simulator to run them on, so up to this point we have based our permormance on a Gibson mix. This does not measure true system performance, but is the best we have available at this point. The results for T^{2} LS and ECL are summarized in Table I.

KL1 \emptyset PROJECT TECHNOLOGY GOALS	F. Wilhelm
$8 / 29 / 72$	

TABLE I

INST	INST\%	KL1 $\emptyset \mathrm{T}^{2} \mathrm{LS}$		KL1ø ECL	
		EXEC TIME	PRODUCT	EXEL TIME	PRODUCT
ADD/SUB	33	$1.9 \emptyset$	62.7	$1.9 \emptyset$	62.7
MUL	$\emptyset .6$	4.34	2.6	2.51	1.5
DIV	$\emptyset .2$	8.28	1.7	$4.6 \emptyset$. 9
JRST	6.5	. 95	6.2	. 95	6.2
CAML	$4 . \emptyset$	1.99	$8 . \emptyset$	$1.9 \emptyset$	7.6
MOVE	17.5	5.7	99:8	$5.7 \emptyset$	99.8
LSH	4.6	1.39	6.4	. 95	4.4
AND	1.7	$1.9 \emptyset$	3.2	$1.9 \emptyset$	3.2
INDEXING	$19 . \emptyset$. $\varnothing 6$	1.1	$\emptyset .3$. 6
FAD	7.3	3.17	23.1	$1.9 \emptyset$	13.9
FMP	$4 . \emptyset$	$3.9 \emptyset$	15.6	2.27	9.1
FDV	1.6	6.94	11.1	$3.9 \emptyset$	6.2
AVER					
INST X	$1 \varnothing \square . \emptyset$		241.5		216.1

F. Wilhelm 8.29/72

Although not shown in the table, the KA1ø had an average instruction time of $4.38 \mu \mathrm{sec}$, and the $\mathrm{KL} 1 \varnothing$ with $74 \emptyset \emptyset \mathrm{~T}^{2} \mathrm{~L}$ was $2.82 \mu \mathrm{sec}$. A summary of performance ratios normalized to $K A 1 \emptyset$ would then be as follows:

AVER. INST. TIME ($\mu \mathrm{sec}$) PERF. RATIO

KA1ø
KL1ø 74øø
KL1ø S
2.41
$K L 1 \varnothing$ E
1.82

1
1.55
$2 . \not 03$
(TABLE 2)
Assuming that any of the $K L 1 \varnothing$ machines could be built for the $\$ 51.2 \mathrm{~K}$ cost estimate so that a 2 to 1 cost improvement over the KA1 \varnothing with MF1ø memory could be realized, the 5 to 1 performance/cost ratio could not be obtained. ECL came closest with $4 . \varnothing 6$ to 1 , followed by T^{2} LS with 3.64 to 1.

We then went back over the Gibson mix figures and recognized that the short instructions were memory limited. By using an IC memory buffer to reduce access time to $3 \emptyset \mathrm{~ns} 95 \%$ of the time, we came up with a new set of average instruction times and performance ratios.

KL1ø PROJECT TECHNOLOGY GOALS :5-
 F. Wilhelm
 8/29/72

TABLE 3

AVER. INST.
TIME ($\mu \mathrm{sec}$) PERF. RATIO

KA1 $\varnothing ~$	4.38	1
KL1ø 74øø	2.12	$2 . \varnothing 7$
KL1øS	1.25	$3.5 \emptyset$
KL1øE	$\varnothing .69$	6.39

The conclusion of this study was that with cache memory, either $T^{2} \mathrm{LS}$ or ECL would meet our requirements. The almost 2 to 1 performance of ECL over T^{2} LS intrigued us though, so we investigated the cost of both types of machines.

COST
The first thing we did was to interview all IC vendors at length in order to determine component costs for the future. The results are summarized in TABLE 4.

KL1ø PROJECT TE CHNOLOGY GOALS :-6-
F. Wilhelm 8/29/72

ECL competes reasonably well in the simple gates, has an edge in MSI but loses big on FF's, because only a dual version is available. Motorola has promised a hex or quint version if we desire it. costing figures assume its availability. A later section on risks states the implication of being wrong in this area.

The next level of cost we studied was the hex board which is summarized in table 5.

TABLE 5

HEX BOARD COST

	$\mathrm{T}^{2} \mathrm{LS}$	ECL
Multilayer Board	$61 . \varnothing \emptyset$	76.86
Filter capacitor	7.84	7.84
Terminators	$4.8 \emptyset$	$6.6 \emptyset$
IC's	59.12	61.44
Rework	$8 . \varnothing \varnothing$	$8 . \emptyset \varnothing$
Test	$4 . \emptyset \emptyset$	$4 . \varnothing \varnothing$
TOTAL	144.76	164.74
COST PER IC	1.81	2.95

The cost of ECL is 13.2% higher than T^{2} LS at the board level because of an additional board layer for the -2 volt termination requirement, resistor terminators and higher IC cost.

We then investigated total processor and system cost. This is summerized in Table 6.

TABLE 6

The ECL machine was more expensive at the processor level by 5.5% and at the system level by 2%.

COST/PERFORMANCE

A summary of basic system cost figures for $K A 1 \varnothing$ and $K L 1 \varnothing$
is as follows:
TABLE 7
CACHE ($\$ \mathrm{~K}$) NO CACHE (\$K)
KA1甲 $1 \varnothing \varnothing . \varnothing$

KL1 1 S
49.8 46.6

KL1 1 E
$5 \emptyset .8$ 47.3

A summary of cost/performance ratios normalized to KA1 \varnothing and based on Table 2, Table 3 and Table 7 is as follows:

TABLE 8

CACHE NO CACHE
KA1 \varnothing

KL1 \varnothing S
KL1øE
12.5
$7 . \boxed{ } 2$
$3.9 \varnothing$
4.29

It is clear that a $\mathrm{T}^{2} \mathrm{LS} \mathrm{KL} 1 \emptyset$ will meet the goals set down one year ago by some margin, but it is also clear that an ECL KL1 \varnothing is a bigger winner. We also feel though that ECL exhibits a moderate risk and increase in startup cost as outlined in appendices $1 \& 2$.

The performance margin between the machines is so great that I feel it to be a bigger risk with respect to the present competion or competition to be if we don't go for the ECL machine. Another consideration is that no matter what we decide for the $\mathrm{KL} 1 \varnothing$, ECL is apparently closing quickly with $\mathrm{T}^{2} \mathrm{~L}$ and warrents watching closely.

APPENDIX I

B. Walton 8/29.'72

TRAINING	TTL	ECL
1. Incomming Inspection 2 people (2 days at 3 locations)	\varnothing	$\emptyset .5 \mathrm{~K}$
2. Module test		
Total labor cost including training and debugging of initial modules on XOR.	25.9K	27.5K
3. Production checkout		
3才 people for 2 weeks on KL19 processor course.	28.8 K	28.8 K
4. Field Service		
75 people for 5 weeks on KL19 system course	18す. 0 K	$18 \emptyset .0 \mathrm{~K}$
5. XOR follow on labor failure analysis etc. for one year.	19.0 K	19. K
SUB TOTAL	253.7 K	255.8 K

DEVELOPMENT

1. Incoming Inspection \emptyset $5 . \emptyset K$
Teredyne-development labor.
2. XOR development \emptyset $1 \varnothing .6 \mathrm{~K}$
3. 5 layer board and backpanel
In house development cost ifwe were to use 5 layers.$\emptyset$$1 \varnothing \varnothing . \nexists \mathrm{K}$
SUB TOTAL \emptyset 115.6 K
B. Walton
$8.29^{\prime 72}$

APPENDIX I (Contd.)

CAPITAL EQUIPMENT

TTL

ECL

1. Incomming Inspection (3 locations)

All hardware and programs needed to test 25 new devices on Teredyne \varnothing 95.3K tester.
2. Module Test

2 XOR testers, 2 KL1 Ø's and
2 bus simulators
91.9K
95.6K
3. Basic checkout (2 wk)
$1 \emptyset$ station ACT-11 line and 4 bus simulators $11 \varnothing . \emptyset \mathrm{K} \quad 110.0 \mathrm{~K}$
4. System Integration (4 wk)
$2 \varnothing$ station ACT line and $1 \varnothing$ bus simulators $\quad 230.0 \mathrm{~K} \quad 230.0 \mathrm{~K}$

SUB TOTAL
431.9K
530.9K

TOTAL START UP COSTS
$686 . \emptyset \mathrm{K}$
$9 \emptyset 2 . \emptyset K$

DIFFERENCE
$216 . \emptyset K$

APPENDIX II

RISKS

1. 5 layer multilayer board - The $11 / 45$ uses a 4 layer hex board consisting of +5 volt and ground on the inner layers and 2 outer signal layers.

The KL1ø requires either a 5 layer hex consisting of $-5,-2$ volts and ground inner layers with 2 outer signal layers or could utilize a 4 layer board with bus strips for the additional voltage.

Joe St. Amour estimates the development of the 5th layer to be $\$ 5 \emptyset \mathrm{~K}$. This has been included in the startup costs for ECL.

There was some concern that the 5 th layer would make the board too thick for the Sylvania block. This has been investigated thoroughly and the conclusion is that the 5 layers can readily be manufactured to within 65 mils, $1 \varnothing$ mils more than the $11 / 45$ board and 5 mils within the block specification.
2. Multilayer PC back panel - The $11 / 45$ uses a 2 layer back panel for voltage and ground.

The KL19 was originally proposed with a 5 layer backpanel with the same layer assignments as the multilayer hex.

This arrangement has changed to 2 voltage layers and a ground in order to make servicing and ECO's easier.

KL1ø PROJECT TECHNOLOGY GOALS -12-

Fred Wilhelm $8^{\prime} 29^{\prime} 72$
\therefore
Joe St. Armour estimates $\$ 5 \emptyset \mathrm{~K}$ for this effort. This also has been factored into the startup costs.
3. IC availability and delivery is close to zero risk. At least one vendor has all the types we require. (Sfe Appendix IV). Second sourcing will be available on all devices by 4 '73.
4. One of the keys to the cost'performance of the machine is the cache design. Our best estimate of the risk this represents is a possible 2 months slippage on a 24 month project.
5. Motorola has committed to deliver the hex flop 3/73. In order to eliminate the associated risk, the $K L 1 \emptyset$ design will be based on the available quad flop if the hex flop development slips.
6. The biggest risk of this or any project which uses large boards is the time required to perform PC layout. Redac must be in place by February 1973 in order for the project to succeed.

KL＊の CIRCUIT FAMILIES

The purpose of this memo is to summarize the relative performance of Schottky T．T．L．and the 1 の すのの ECL family of devices，which are the two logic families suitable for use in the KL19 to achieve the desired performance．

1．BASIC PERFORMANCE

1．1 Gate Propagation Delay
The basic family of 74 S devices is about a factor of two slower than ECL as shown below．

	74S	ECL 19K
Gates	7 ns	4.0 ns
Flip Flops（Dual D） （Clock to output）	11 ns	6.6 ns
74151 （8 line mux．address－ output）	19.5 ns	8.6 ns

2．D LINE DRIVING CAPABILITY

74 g gates are not capable of driving transmission lines，but 19K gates can drive 50 ohm lines resistively terminated．

To minimize reflections 74 S lines must be terminated by a clamp diode biased to clamp any negative going signal transient at ground．

Gates such as the $74 \mathrm{~S} 14 \varnothing$ power driver require a clamp diode biased to turn on at about +5 volts as ringing may cause overshoot above 5.5 volts which is an illegal condition for TTL。 The overshoot occurs with above about 52 ohms, and the duration of the overshoot is equal to twice the signal line propagation delay.

Because of the poor drive capability it is necessary to wait for twice the delay of signal line to ensure that the line has been charged to a voltage above the minimum gate input threshold when making a-positive transition.

The performance when driving a line of 12" length and impedance of $7 \emptyset \Omega$ is shown below:

		$\frac{12 " \text { (Iine) }}{}$		
74 S	$7 . \emptyset \mathrm{ns}$	Biased Diode	2.1 ns	11.2 ns
$1 \varnothing \mathrm{~K}$	$4 . \emptyset \mathrm{ns}$	Resistor	2.1 ns	6.1 ns

The total delay is considered to be the time required for all points on the line to be above the minimum input threshold of a receiving gate.

3. POWER DISSIPATION

The dissipation of the two families for a $5 \emptyset \%$ duty cycle with
$1 \emptyset \mathrm{~K}$ assumed driving a 68Ω line terminated to -2 volts is shown below, at 1 MHz and at 16 MHz , which is the clock frequency of the $\mathrm{KL} 1 \emptyset$ with Schottky logic. The 74 S dissipation also increases with operating frequency.

	FREQUENCY	POWER (per gate)	OUTPUT STAGE DISSIPATION	TERMINATOR DISSIPATION	TOTAL DISSIPATION
-74S	1 MHz	35 mW	---	---	35mW
$1 \varnothing \mathrm{~K}$	1 MHz	26 mW	11 mW	9 mW	46 mW
74S	16 MHz	46 mW	-_-	---	46 mW
$1 \not 1 \mathrm{~K}$	16 MHz	26 mW	11 mW	9 mW	46 mW

$4 . \emptyset$ NOISE IMMUNITY

The DC noise immunity is a measure of how much interference may occur at a gate input without spurious operation.

Coupled interference (crosstalk) from one signal line to another is also dependent on the amplitude and transition of the signal causing the interference. A comparative measure of noise immunity may then be made by defining a figure of merit for a logic family as

$$
\mathrm{F}=\frac{\text { Noise Immunity } \times \text { Transition time }}{\text { Signal swing }}
$$

The comparison for 74 S and $1 \varnothing \mathrm{~K}$ is shown below. Larger values of F mean better performance.
D.C. Noise Immunity Max. Signal Swing Min.Transition Time F

$3 \emptyset \emptyset \mathrm{mV}$	'0'	state
$7 \emptyset \emptyset \mathrm{mV}$	11	state
125 mV	$1 \& 0$	states

3.8 V	1.5 ns
3.8 V	1.5 ns
$\emptyset .95 \mathrm{~V}$	1.5 ns

$\emptyset .95 \mathrm{~V} \quad 1.5 \mathrm{~ns}$
ECL noise immunity is dependent upon supply voltage and temperature difference between the driving and receiving gate.

For a voltage difference of 136 mV which is $5.2 \mathrm{~V} \pm 2 \%+32 \mathrm{mV}$ I.R. drop distribution and a temperature difference of $11^{\circ} \mathrm{C}\left(2 \varnothing^{\circ} \mathrm{F}\right)$ which is based on an ambient temperature ranging from $15 \frac{1}{2}{ }^{\circ} \mathrm{C}$ to $35 \frac{1}{2}{ }^{\circ} \mathrm{C}$ at the inlet, $F=\emptyset .128$ for $1 \emptyset \mathrm{~K}$.

5.ø SUPPLY CURRENT VARIATION

The variation of supply current in a 74 S gate function varies by a ratio of about $2: 1$ depending on whether the gate is in a ' 0 ' or ' 1 ' state.

A current spike also occurs during switching of the output stage due to overlap switching effects of the totem pole output and charging currents to the output load capacitance.

These transients require good decoupling and make the use of multilayer boards with low inductance power and ground planes mandatory. $1 \emptyset \mathrm{~K}$ ECL uses two supply voltages. -5.2 volts supplies the differentia input amplifier and voltage reference source. The current drawn by these stages is very constant regardless of which logic state the gate is in and decoupling is much less critical than for the +5 volt supply for 74 .

The $1 \emptyset K$ gates use a terminating supply of $-2 v o l t s$ and this supply experiences current fluctuations of about 5:1 between ' O ' and ' 1 ' state for a 68Ω terminating resistor, hence the -2 volt supply requires caref $\because 1$ distribution, so a 4 layer multilayer board is required as it is for the 74S family.

APPENDIX IV

PRODUCT AVAILABILITY

Bill Walton
9/6/72

$$
\begin{aligned}
& 1 \not 1 \varnothing 1 \\
& 101 \varnothing 2 \\
& 1 \varnothing 1 \varnothing 4 \\
& 101 \varnothing 5 \\
& 101 \varnothing 6 \\
& 101 \varnothing 7 \\
& 1 \varnothing 1 \varnothing 9 \\
& \text { 1011ø } \\
& 10111 \\
& 10117 \\
& 10118 \\
& 10119 \\
& 10121 \\
& 1 \varnothing 124 \\
& 1 \varnothing 125 \\
& 10131 \\
& 10141 \\
& \text { 1ø144+ } \\
& 1 \varnothing 16 \varnothing \\
& 10161 \\
& 1 \varnothing 174 \\
& 10179 \\
& 1 \varnothing 181
\end{aligned}
$$

QUAD OR/NOR
QUAD NOR

QUAD AND

triple 2-3-2 OR/NOR
triple 4-3-3 NOR
triple XOR

MOT	SIG	TI	NATIONAL
		11/72	11/72
*	11/72	10/72	
12/72	6/73	1¢/72	n :p.
	${ }_{*}^{*}$	11/72	
*	*	11/72	*
*	*	11/72	
*	*	12/72	*
*	*	10/72	
*	*	10/72	
*	*	11/72	*
*	*	11/72	*
*	*	11/72	*
*	*	11/72	*
*	*	2/73	12/72
*	*	2/73	12/72
*	*	2/73	12/72
*	2/73	4/73	n.p.
4/73	3/73	7/73	n, p.
	11/72	9/72	12/72
*	*	9/72	n.p.
*	10/72	4/73	1/73
*	3/73	1/73	n.p.
*	3/73	4/73	n.p.

$12 / 72$

dual 4-5 OR/NOR

1

SI
11
11

dual 3 input 3 output $O R$
dual 3 input 3 output NOR
dual 2 wide OR-AND-invert
dual 2 wide OR-AND
4 wide OR-AND
4 wide OR-AND-invert
QUAD TTL to MECL translator
QUAD MECL to TTL translator
dual D flip flop
4 bit Univeraal Shift Register 256 bit RAM +
12 bit Parity Generator
Binary to 1 of 8 decoder
Dual 4-1 Multiplexer
Look ahead carry block 4 bit ALU

* Available in production quantities now.
n.p. - No development plans at this time.

All dates are months that production quàntities will be available.

+ Fairchild is now delivering a pin compatible device which we can use until other vendors are available.

