

# INTEROFFICE MEMORANDUM

TO: Win Hindle John Leng **Ulf** Fagerquist

| DATE: | August 29, 1972 |
|-------|-----------------|
| FROM: | Fred Wilhelm    |

DEPT: DECsystem-10 Engineering

SUBJ KL10 PROJECT TECHNOLOGY GOALS

CONFIDENTIAL

PROJECT GOALS

On the 27th of October, 1971, the DECsystem-10 Product Line proposed a Phase I study to determine an Engineering Specification, Software Specification, Marketing and business plan for the KL10. At that time the KL1Ø performance was that of the KA1Ø and the factory cost estimate of the following configuration was estimated at \$36.5K.

> Processor PDP11/05 VTØ5 32K of Memory (2) 1600 bpi, 45 ips mag tapes 300 lpm line printer 300 cpm card reader 10 mega word discs

The cost of an equivalent KA10 was \$135K, therefore the KL10 was proposed to have a cost/performance factor normalized to KA1Ø of 3.69. As the study progressed and more detailed estimates were made, we discovered a number of cost items had been left out such as \$5.0K worth of assembly, processor checkout and system integration. We also watched the size of the present monitor grow and realized that a system with 32K of memory was not viable. We therefore placed 64K on the system. With the

Fred Wilhelm 8/29/72

advent of 8K and 16K sense memories, the addition did not escalate the cost of the system very much. Finally the cost of 16 asynchronous lines was added in so that the basic KL1Ø would be capable of timesharing. The price of the system was then estimated at \$51.2K.

-2-

In addition, the cost of an equivalent KA1Ø system was reduced to \$1ØØK with the advent of the MF1Ø memory. The combination of the increase of the KL1Ø cost and reduction of the KA1Ø equivalent system cost reduced the cost performance ratio to 1.95 from 3.69. To bring that ratio back up to our goal, the performance goals of the KL1Ø had to be raised to 1.89 that of the KA1Ø. In order to hedge against further erosion of this cost/performance ratio over the development period, we increased the ratio from 3.69 to 5.

#### PERFORMANCE

In order to really get a handle on exactly which technology to use in order to accomplish our goals, we investigated three circuit families:  $74\emptyset\emptyset T^2L$ ,  $T^2LS$  and ECL. We did not have the set of scripts or a simulator to run them on, so up to this point we have based our permormance on a Gibson mix. This does not measure true system performance, but is the best we have available at this point. The results for  $T^2LS$  and ECL are summarized in Table I.

\* .

F. Wilhelm 8/29/72

## TABLE I

1

-3-

| INST     | INST%         | KL1Ø         | T <sup>2</sup> LS | KL1Ø E       | CL      |
|----------|---------------|--------------|-------------------|--------------|---------|
|          |               | EXEC TIME    | PRODUCT           | EXEL TIME    | PRODUCT |
|          |               | 전 영상 관계 영상 문 |                   |              |         |
| ADD/SUB  | 33            | 1.90         | 62.7              | 1.9Ø         | 62.7    |
| MUL      | Ø.6           | 4.34         | 2.6               | 2.51         | 1.5     |
| DIV      | Ø.2           | 8.28         | 1.7               | <b>4.</b> 6Ø | .9      |
| JRST     | 6.5           | .95          | 6.2               | .95          | 6.2     |
| CAML     | 4.Ø           | 1.99         | 8.Ø               | 1.90         | 7.6     |
| MOVE     | 17.5          | 5.7          | 99.8              | 5.7Ø         | 99.8    |
| LSH      | 4.6           | 1.39         | 6.4               | . 95         | 4.4     |
| AND      | 1.7           | 1.9Ø         | 3.2               | 1.90         | 3.2     |
| INDEXING | 19 <b>.</b> Ø | <b>.</b> Ø6  | 1.1               | Ø.3          | .6      |
| FAD      | 7.3           | 3.17         | 23.1              | 1.90         | 13.9    |
| FMP      | 4.Ø           | 3.9Ø         | 15.6              | 2.27         | 9.1     |
| FDV      | 1.6           | 6.94         | 11.1              | 3.90         | 6.2     |
| AVER     |               |              |                   |              |         |
| INST X   | 100.0         |              | 241.5             |              | 216.1   |

F. Wilhelm 8.29/72

Although not shown in the table, the KA1Ø had an average instruction time of 4.38  $\mu$  sec, and the KL1Ø with 74ØØ T<sup>2</sup>L was 2.82  $\mu$  sec. A summary of performance ratios normalized to KA1Ø would then be as follows:

-4-

|           | AVER. INST.<br>TIME (µ sec) | PERF. RATIO |
|-----------|-----------------------------|-------------|
| ka1ø      | 4.38                        | 1.          |
| KL1Ø 74ØØ | 2.82                        | 1.55        |
| KL1Ø S    | 2.41                        | 1.82        |
| KL1Ø E    | 2.16                        | 2.Ø3        |
|           |                             |             |

#### (TABLE 2)

Assuming that any of the KL10 machines could be built for the \$51.2K cost estimate so that a 2 to 1 cost improvement over the KA10 with MF10 memory could be realized, the 5 to 1 performance/cost ratio could not be obtained. ECL came closest with 4.06 to 1, followed by  $T^{2}LS$  with 3.64 to 1.

We then went back over the Gibson mix figures and recognized that the short instructions were memory limited. By using an IC memory buffer to reduce access time to 30 ns 95% of the time, we came up with a new set of average instruction times and performance ratios.

\* .

F. Wilhelm 8/29/72

#### TABLE 3

|           | AVER. INST.<br>TIME (µ sec) | PERF. RATIO |
|-----------|-----------------------------|-------------|
| KA1Ø      | 4.38                        | 1           |
| KL1Ø 74ØØ | 2.12                        | 2.Ø7        |
| KL1ØS     | 1.25                        | 3.5Ø        |
| kl1øe     | Ø.69                        | 6.39        |

The conclusion of this study was that with cache memory, either  $T^{2}LS$  or ECL would meet our requirements. The almost 2 to 1 performance of ECL over  $T^{2}LS$  intrigued us though, so we investigated the cost of both types of machines.

#### COST

The first thing we did was to interview all IC vendors at length in order to determine component costs for the future. The results are summarized in TABLE 4.

|                                 |               | TABLE 4      | (Component   | Cost)        |
|---------------------------------|---------------|--------------|--------------|--------------|
| SIMPLE GATES                    | <u>1972</u>   | <u>1973</u>  | 1974         | 1975         |
| T <sup>2</sup> L<br>ECL         | .43<br>.56    | .42<br>.43   | .29<br>.33   | . 24<br>. 28 |
| FF'S<br>T <sup>2</sup> L<br>ECL | 1.Ø1<br>1.77  | .87<br>1.15  | .57<br>.89   | .43<br>.72   |
| MSI (ALU)                       |               |              |              |              |
| T <sup>2</sup> L<br>ECL         | 1Ø.ØØ<br>6.15 | 5.75<br>4.7Ø | 4.68<br>3.84 | 3.73<br>3.16 |

### F. Wilhelm 8/29/72

ECL competes reasonably well in the simple gates, has an edge in MSI but loses big on FF's, because only a dual version is available. Motorola has promised a hex or quint version if we desire it. costing figures assume its availability. A later section on risks states the implication of being wrong in this area.

The next level of cost we studied was the hex board which is summarized in table 5.

#### TABLE 5

HEX BOARD COST

|                  | $\underline{\mathrm{T}^{2}}_{\mathrm{LS}}$ | ECL    |
|------------------|--------------------------------------------|--------|
| Multilayer Board | 61.ØØ                                      | 76.86  |
| Filter capacitor | 7.84                                       | 7.84   |
| Terminators      | 4.8Ø                                       | 6.6Ø   |
| IC's             | 59.12                                      | 61.44  |
| Rework           | 8.ØØ                                       | 8.00   |
| Test             | <b>4.</b> ØØ                               | 4.00   |
| TOTAL            | 144.76                                     | 164.74 |
| COST PER IC      | 1.81                                       | 2.Ø5   |
|                  |                                            | +13.2% |

The cost of ECL is 13.2% higher than  $T^2LS$  at the board level because of an additional board layer for the -2 volt termination requirement, resistor terminators and higher IC cost.

We then investigated total processor and system cost. This is summerized in Table 6.

-7-

#### TABLE 6

|    |                          | KL10S        | KL1ØE        |       |
|----|--------------------------|--------------|--------------|-------|
| 15 | Processor boards         | <b>21</b> 6Ø | <b>2</b> 46Ø |       |
| 1  | Paging boards            | <b>3</b> Ø6  | 346          |       |
| 2  | RAM boards               | 768          | 96Ø          |       |
|    | Packaging, cooling & wir | ring 2345    | 2345         |       |
|    | CPU power                | 675          | 776          |       |
|    | I/O power                | 5ØØ          | 5ØØ          |       |
|    | 11/05 -12K of memory     | <b>2</b> ØØØ | 2000         |       |
|    | <b>VT</b> Ø5             | 7ØØ          | 7ØØ          |       |
|    | Checkout                 | 2000         | 2000         |       |
|    | TOTAL BASIC PROCESSOR    | 11,454       | 12,087       | +5.5% |
| 2  | Channels                 | 975          | 975          |       |
| 2  | Mag tapes (1600 bpi,45 i | ips) 7000    | 7000         |       |
|    | Card reader (300 cpm)    | 1200         | 1200         |       |
|    | Line printer (300 lpm)   | 7ØØØ         | 7000         | -     |
|    | Disc (10 mega words)     | 5ØØØ         | 5ØØØ         |       |
|    | TTY MUX (16 lines)       | 31ØØ         | 31ØØ         |       |
|    | Memory(64K) + cache      | 11071        | 11438        |       |
|    | System integration       | 3000         | 3000         |       |
|    | TOTAL BASIC SYSTEM       | 49,8ØØ       | 50,800 -     | +2%   |
|    |                          |              |              |       |

The ECL machine was more expensive at the processor level by 5.5% and at the system level by 2%.

F. Wilhelm 8/29/72

#### COST/PERFORMANCE

A summary of basic system cost figures for KA1 $\emptyset$  and KL1 $\emptyset$  is as follows:

#### TABLE 7

-8-

|       | CACHE (\$K) | NO CACHE (\$K) |
|-------|-------------|----------------|
| KA1Ø  |             | 100.0          |
| KL1ØS | 49.8        | 46.6           |
| KL1ØE | 5Ø.8        | 47.3           |

A summary of cost/performance ratios normalized to  $KA1\emptyset$  and based on Table 2, Table 3 and Table 7 is as follows:

#### TABLE 8

|       | CACHE | NO CACHE |
|-------|-------|----------|
| KA1Ø  |       | 1        |
| KL1ØS | 7.Ø2  | 3.9Ø     |
| KL1ØE | 12.5  | 4.29     |

It is clear that a  $T^2LS$  KL10 will meet the goals set down one year ago by some margin, but it is also clear that an ECL KL10 is a bigger winner. We also feel though that ECL exhibits a moderate risk and increase in startup cost as outlined in appendices 1 & 2.

The performance margin between the machines is so great that I feel it to be a bigger risk with respect to the present competion or competition to be if we don't go for the ECL machine. Another consideration is that no matter what we decide for the KL10, ECL is apparently closing quickly with  $T^2L$  and warrents watching closely. \* .

B. Walton 8/29/72

## APPENDIX I

-9-

| TRA | INING                                                                              | TTL            | ECL             |
|-----|------------------------------------------------------------------------------------|----------------|-----------------|
| 1.  | Incomming Inspection<br>2 people (2 days at 3 locations)                           | Ø              | Ø.5K            |
| 2.  | Module test                                                                        |                |                 |
|     | Total labor cost including training<br>and debugging of initial<br>modules on XOR. | <b>25.</b> 9K  | 27.5к           |
| 3.  | Production checkout                                                                |                |                 |
|     | 30 people for 2 weeks on KL10<br>processor course.                                 | 28.8K          | <b>28.8</b> K   |
| 4.  | Field Service                                                                      |                |                 |
|     | 75 people for 5 weeks on KL10<br>system course                                     | 18ø.øk         | 18Ø.ØK          |
| 5.  | XOR follow on labor failure<br>analysis etc. for one year.                         | 19.ØK          | 19.ØK           |
|     | SUB TOTAL                                                                          | <b>2</b> 53.7K | 255.8K          |
| DEV | ELOPMENT                                                                           |                |                 |
| 1.  | Incoming Inspection<br>Teredyne-development labor.                                 | Ø              | 5.ØK            |
| 2.  | XOR development                                                                    | Ø              | 10.6K           |
| 3.  | 5 layer board and backpanel                                                        |                |                 |
|     | In house development cost if we were to use 5 layers.                              | Ø              | 100 <b>.</b> Øk |
|     | SUB TOTAL                                                                          | ø              | 115.6K          |

KL10 Project Technology Goals

## -1Ø-

B. Walton
8.29'72

## APPENDIX I (Contd.)

### CAPITAL EQUIPMENT

. .

|    | 주말 그 아이는 것은 것이 같아요. 정말 것이 같아.                                                     | TTL            | ECL            |
|----|-----------------------------------------------------------------------------------|----------------|----------------|
| 1. | Incomming Inspection (3 locations)                                                |                |                |
|    | All hardware and programs needed<br>to test 25 new devices on Teredyne<br>tester. | Ø              | 95 <b>.</b> 3K |
| 2. | Module Test                                                                       |                |                |
|    | 2 XOR testers, 2 KL10's and<br>2 bus simulators                                   | 91 <b>.</b> 9K | 95.6K          |
| 3. | Basic checkout (2 wk)                                                             |                |                |
|    | 10 station ACT-11 line<br>and 4 bus simulators                                    | 11ø.øk         | 110.ØK         |
| 4. | System Integration (4 wk)                                                         |                |                |
|    | 20 station ACT line<br>and 10 bus simulators                                      | 23Ø.ØK         | 23Ø.ØK         |
|    | SUB TOTAL                                                                         | 431.9K         | 530.9K         |
|    | TOTAL START UP COSTS                                                              | 686.ØK         | 9ø2.øk         |
|    |                                                                                   |                |                |

DIFFERENCE

216.ØK

-11-

#### APPENDIX II

#### RISKS

 5 layer multilayer board - The 11/45 uses a 4 layer hex board consisting of +5 volt and ground on the inner layers and 2 outer signal layers.

The KL1Ø requires either a 5 layer hex consisting of -5, -2 volts and ground inner layers with 2 outer signal layers or could utilize a 4 layer board with bus strips for the additional voltage.

Joe St. Amour estimates the development of the 5th layer to be \$50K. This has been included in the startup costs for ECL.

There was some concern that the 5th layer would make the board too thick for the Sylvania block. This has been investigated thoroughly and the conclusion is that the 5 layers can readily be manufactured to within 65 mils, 10 mils more than the 11/45 board and 5 mils within the block specification.

 Multilayer PC back panel - The 11/45 uses a 2 layer back panel for voltage and ground.

The KL10 was originally proposed with a 5 layer backpanel with the same layer assignments as the multilayer hex.

This arrangement has changed to 2 voltage layers and a ground in order to make servicing and ECO's easier. KL10 PROJECT TECHNOLOGY GOALS -12-

Joe St Armour estimates \$50K for this effort. This also has been factored into the startup costs.

- IC availability and delivery is close to zero risk. At least one vendor has all the types we require. (See Appendix IV). Second sourcing will be available on all devices by 4'73.
- 4. One of the keys to the cost/performance of the machine is the cache design. Our best estimate of the risk this represents is a possible
  2 months slippage on a 24 month project.
- 5. Motorola has committed to deliver the hex flop 3/73. In order to eliminate the associated risk, the KL10 design will be based on the available quad flop if the hex flop development slips.
- The biggest risk of this or any project which uses large boards is the time required to perform PC layout. Redac must be in place by February 1973 in order for the project to succeed.

G. Atterbury Sept. 6, 1972

#### KL<sup>\*</sup>Ø CIRCUIT FAMILIES

The purpose of this memo is to summarize the relative performance of Schottky T.T.L. and the 10 000 ECL family of devices, which are the two logic families suitable for use in the KL10 to achieve the desired performance.

#### 1. BASIC PERFORMANCE

1.1 Gate Propagation Delay

The basic family of 74S devices is about a factor of two slower than ECL as shown below.

| 24 전 25 11월 25 11일 - 11일 전 12일 - 2014년 11일 - 2014년<br>11일 - 2014년 11일 | <u>745</u> | ECL 10K |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|
| Gates                                                                                                                                                                 | 7 ns       | 4.0 ns  |
| Flip Flops (Dual D)<br>(Clock to output)                                                                                                                              | 11 ns      | 6.6 ns  |
| 74151 (8 line mux. address-<br>output)                                                                                                                                | 19.5 ns    | 8.6 ns  |

#### 2.0 LINE DRIVING CAPABILITY

74S gates are not capable of driving transmission lines. but 10K gates can drive 50 ohm lines resistively terminated.

To minimize reflections 74S lines must be terminated by a clamp diode biased to clamp any negative going signal transient at ground.

#### KL10 CIRCUIT FAMILIES

#### G. Atterbury 9'6'72

Gates such as the 74S14Ø power driver require a clamp diode biased to turn on at about +5 volts as ringing may cause overshoot above 5.5 volts which is an illegal condition for TTL. The overshoot occurs with above about 52 ohms, and the duration of the overshoot is equal to twice the signal line propagation delay.

Because of the poor drive capability it is necessary to wait for twice the delay of signal line to ensure that the line has been charged to a voltage above the minimum gate input threshold when making a positive transition.

The performance when driving a line of 12" length and impedance of  $7\emptyset\Omega$  is shown below:

|     |       |              | 12" (Line) |        |  |
|-----|-------|--------------|------------|--------|--|
| 74S | 7.Øns | Biased Diode | 2.1ns      | 11.2ns |  |
| Øĸ  | 4.Øns | Resistor     | 2.1ns      | 6.1ns  |  |

The total delay is considered to be the time required for all points on the line to be above the minimum input threshold of a receiving gate.

#### 3. POWER DISSIPATION

The dissipation of the two families for a 50% duty cycle with 10K assumed driving a 68Ω line terminated to -2 volts is shown below, at 1MHz and at 16MHz, which is the clock frequency of the KL10 with Schottky logic. The 74S dissipation also increases with operating frequency.

-14-

KL1Ø CIRCUIT FAMILIES

## G. Atterbury 9/6/72

|     | FREQUENCY | POWER<br>(per gate) | OUTPUT STAGE.<br>DISSIPATION | TERMINATOR<br>DISSIPATION | TOTAL<br>DISSIPATION |
|-----|-----------|---------------------|------------------------------|---------------------------|----------------------|
| 745 | 1 MHz     | 35mW                |                              |                           | 35mW                 |
| 1ØK | 1 MHz     | 26mW                | 11mW                         | 9mW                       | 46mW                 |
| 745 | 16MHz     | 46mW                |                              |                           | 46mW                 |
| 1øk | 16MHz     | 26mW                | 11mW                         | 9mW                       | 46mW                 |
|     |           |                     |                              |                           |                      |

#### 4.Ø NOISE IMMUNITY

The DC noise immunity is a measure of how much interference may occur at a gate input without spurious operation.

Coupled interference (crosstalk) from one signal line to another is also dependent on the amplitude and transition of the signal causing the interference. A comparative measure of noise immunity may then be made by defining a figure of merit for a logic family as

#### F = Noise Immunity x Transition time Signal swing

The comparison for 74S and 10K is shown below. Larger values of F mean better performance.

|     | D.C. No | oise : | Immunity | Max. Signal S | wing Min.Transition | Time F |
|-----|---------|--------|----------|---------------|---------------------|--------|
| 74s | 3ØØmV   | '0'    | state    | 3.8V          | 1.5ns               | .117   |
|     | 7ØØmV   | '1'    | state    | 3.8V          | 1.5ns               | .273   |
| 1øk | 125mV   | 1&0    | states   | Ø.95V         | 1.5ns               | .145   |

ECL noise immunity is dependent upon supply voltage and temperature difference between the driving and receiving gate.

For a voltage difference of 136mV which is  $5.2V \pm 2\% + 32mV$  I.R. drop i distribution and a temperature difference of  $11^{\circ}C$  ( $20^{\circ}F$ ) which is based on an ambient temperature ranging from  $15\frac{1}{2}^{\circ}C$  to  $35\frac{1}{2}^{\circ}C$  at the inlet, F = 0.128 for 10K.

-16-

G. Atterbury 9.6.72

#### 5.Ø SUPPLY CURRENT VARIATION

The variation of supply current in a 74S gate function varies by a ratio of about 2:1 depending on whether the gate is in a 'O' or '1' state.

A current spike also occurs during switching of the output stage due to overlap switching effects of the totem pole output and charging currents to the output load capacitance.

These transients require good decoupling and make the use of multilayer boards with low inductance power and ground planes mandatory.

10K ECL uses two supply voltages. -5.2 volts supplies the differential input amplifier and voltage reference source. The current drawn by these stages is very constant regardless of which logic state the gate is in and decoupling is much less critical than for the +5 volt supply for 74S.

The 10K gates use a terminating supply of -2volts and this supply experiences current fluctuations of about 5:1 between '0' and '1' state for a 68 $\Omega$  terminating resistor, hence the -2 volt supply requires careful distribution, so a 4 layer multilayer board is required as it is for the 74S family.

#### APPENDIX IV

#### PRODUCT AVAILABILITY

# Bill Walton 9/6/72

|        |                                | MOT                  | SIG   | TI    | NATIONAL |
|--------|--------------------------------|----------------------|-------|-------|----------|
| 1ø1ø1  | QUAD OR/NOR                    | *                    | 10/72 | 11/72 | 11/72    |
| 1ø1ø2  | QUAD NOR                       | *                    | 11/72 | 1Ø/72 | *        |
| 1ø1ø4  | QUAD AND                       | 12/72                | 6/73  | 10/72 | n.p.     |
| 1Ø1Ø5  | triple 2-3-2 OR/NOR            | *                    | *     | 11/72 | *        |
| 1ø1ø6  | triple 4-3-3 NOR               | *                    | *     | 11/72 | *        |
| 10107  | triple XOR                     | *                    | *     | 11/72 | *        |
| 1Ø1Ø9  | dual 4-5 OR/NOR                | *                    | *     | 12/72 | *        |
| 1ø11ø  | dual 3 input 3 output OR       | *                    | *     | 10/72 |          |
| 1Ø111  | dual 3 input 3 output NOR      | *                    | *     | 10/72 | *        |
| 1Ø117  | dual 2 wide OR-AND-invert      | *                    | *     | 11/72 | *        |
| 1Ø118  | dual 2 wide OR-AND             | *                    | *     | 11/72 | *        |
| 1Ø119  | 4 wide OR-AND                  | *                    | *     | 11/72 | *        |
| 1Ø121  | 4 wide OR-AND-invert           | *                    | *     | 11/72 | *        |
| 1Ø124  | QUAD TTL to MECL translator    | *                    | *     | 2/73  | 12/72    |
| 1Ø125  | QUAD MECL to TTL translator    | *                    | *     | 2/73  | 12/72    |
| 1Ø131  | dual D flip flop               | *                    | *     | 2/73  | 12/72    |
| 1Ø141  | 4 bit Universal Shift Register | *                    | 2/73  | 4/73  | n.p.     |
| 1Ø144+ | 256 bit RAM +                  | 4/73                 | 3/73  | 7/73  | n.p.     |
| 1Ø16Ø  | 12 bit Parity Generator        | * ·                  | 11/72 | 9/72  | 12/72    |
| 1Ø161  | Binary to 1 of 8 decoder       | *                    | *     | 9/72  | n.p.     |
| 1Ø174  | Dual 4-1 Multiplexer           | *                    | 1ø/72 | 4/73  | 1/73     |
| 1Ø179  | Look ahead carry block         | *                    | 3/73  | 1/73  | n.p.     |
| 1ø181  | 4 bit ALU                      | *                    | 3/73  | 4/73  | n.p.     |
|        |                                | 승규는 사람이 가지 않는 것이 없다. |       |       |          |

\* - Available in production quantities now.

n.p. - No development plans at this time.

All dates are months that production quantities will be available.

+ Fairchild is now delivering a pin compatible device which we can use until other vendors are available.

-

