January 13, 14, 1970
(EXECUTIVE SESSIONS)
COMPUTER SCIENCE AND ENGINEERING BOARD

19th Meeting	Washington, D. C.
Twin Bridges Marriott January 13, 1970	
*Reading Room	January 14, 1970

LIST OF ATTENDEES

Attending	Absent
Board Members	Members
Anthony G. Oettinger, Chairman	Dr. Walter S. Baer Prof. David C. Evans Dr. Launor F. Carter Prof. Wesley A. Clark Dr. Sidney Fernbach Mr. Jerrier A. Haddad Dr. Johm R. Meyer Dr. John R. Pierce Prof. J. Barkley Rosser Dr. Alan F. Westin Dr. Ronald Wigington
Mr. William L. Lurie	
Prof. William F. Miller	

Mr. Joel Cohen
Dr. Bernhard Romberg
*P1ease note that the Day Session is being held in the Reading Room in the Main Building located at 2101 Constitution Avenue, Washington, D. C.

National Academy of Sciences
 2101 CONSTITUTION AVENUE WASHINGTON. D. C. 20418

COMPUTER SCIENCE AND ENGINEERING BOARD
AGENDA
Evening Session January 13, 1970

EXECUTIVE SESSION

The Executive Session of the Board meeting will be held on January 13, 1970, at the Twin Bridges Marriott Hotel, Terrace Room, U. S. Highway 1 (14th Street Bridge), Washington, D. C. Dr. James D. Gallagher and a few associates will attend to participate in an informal discussion of current and possible applications of computer systems and associated technologies to the educational progress and problems with which OEO is primarily concerned. The informal discussions are expected to start during refreshments which will be served at $6: 30 \mathrm{p} . \mathrm{m}$. and to continue through dinner, which will be served at 7:30 p.m. Professor Anthony G. Oettinger, Chairman, Computer Science \& Engineering Board, will speak briefly to set the theme for the evening's discussions.
\square

National Academy of Sciences
 2101 CONSTITUTION AVENUE WASHINGTON. D. C. 20418

COMPUTER SCIENCE AND ENGINEERING BOARD

AGENDA
Day Session January 14, 1970

Reading Room
at
2101 Constitution Avenue
(1) Discussion of Commerce Department's lack of funds to implement the Data Base Panel's recommendations to provide additional services--Dr. Sidney Fernbach.
(2) Review of the status report of the panels of the Board and the draft

- report summarizing computer science development in the USA and the activities initialed by the Board since its inception---Dr. Bernhard Romberg (deferred from December, 1968 meeting).
(3) Discussion of appropriateness of distributing the annual report to ARPA to other contributors and supporters---The Chairman.
(4) Discussion of IIA's (Information Industry Association) desire to broaden the base and viewpoint of the national commission on copyrights---The Chairman.'
(5) Review of the informal discussions with Dr. Gallagher and associates regarding OEO problems and possible computer systems applications--The Chairman.
(6) Status of the Information Systems Panel effort, and the support by the Council of Library Resources---Dr. Ronald Wigington.
(7) Status of the NSF Survey report which is to have been revised in response to Board comments during the December, 1968, meeting--Dr. William Miller.
(8) Status of the Project on Computer Data Banks (deferred from the December, 1968, meeting).

Computer Science \& Engineering Board Day Session
January 14, 1970
AGENDA
(9) Status of the continuing review of the draft report by the National Programs Pane1 "A"---Drs. Walter Baer, Sidney Fernbach, et al.
(10) Review of the draft of the report of the Summer Conference on Computers and Higher Education---Dr. Alan Perlis.

Administrative Items

General Academy policy in regard to rental of automobiles---Administrative Secretary.

Attaining copy of NRC brochure "Information for Members of Divisions, Committees, Boards and Panels."---Administrative Secretary.
$* *$ Note--All back-up papers will be passed out to each member at the meeting on January 14, 1970.

THE ASSISTANT SECRETARY OF COMMERCE

WASHINGTON, D.C. 20230

DEC 291969

Dr. Anthony G. Dettinger
Chairman, Computer Science and Engineering Board National Academy of Sciences
2101 Constitution Avenue
Washington, D. C. 20418
Dear Dr. Oettinger:
We appreciate the opportunity to review the informal study results of the Data Base Panel of the Computer Science and Engineering Board of the National Academy of Sciences, and we share with you the concern for adequate statistical identification of activity in the computer science and engincering field.

In this regard, we note with some satisfaction, that we have representatives of the Department of Commerce serving on your Data Base Panel. We regret, however, that at this time funds for the support of any additional activity at the Department of Commerce, as described in your study, are not available within the Domestic and International Business budget. It, of course, remains to be seen whether the 1971 fiscal budget will permit us to support such an endeavor.

Thus, at this time, we can only encourage you to continue your efforts knowing that you have our full interest, moral support, and the cooperation of our present computer and science activities.

Sincerely,
ROBERT MoLisjLant
for
K. N. Davis, Jr.

Assistant Secretary for Domestic and International Business

ATTACHMENT 1

December 23, 1969

CS\&E PANEL \& STATUS

Education Pane1, Dr. Alan Perlis (Board Project)
Mission -- to devise ways and means for assuring an adequate flow of expert and skilled manpower to meet the emerging requirements in colleges and universities for teaching, for research, and for applications.
\cdots
Initial concentration is upon the problems connected with staffing the computer departments of the colleges and universities. A Conference on Computers in Colleges and Universities was held this summer. The conference report is due out within the next two or three months.

This Panel's work should contribute significantly to the development of the computer science and engineering field.

Data Base Pane1, Dr. Sidney Fernbach (Board Project)
Mission -- to establish the parameters of and the flow of information relating to the CS\&E field, to define critical gaps, and to devise ways and means of filling such gaps, and to monitor generally the adequacy and timeliness of the flow and distribution of such information.

Initial efforts of the Panel are concentrated upon working out programs which the government departments can undertake to fill certain critical gaps.

This Panel's work should contribute substantially to the development of the computer science and engineering field.

Export Pane1, Dr. Donald Ling (Board Project)
Mission -- to provide continuing support to the Office of Science and Technology, the Department of State, the DoDR\&E and other government activities in the computer export area.

Initial concentration has been upon production of a series of technical evaluations of various aspects of the computers in relation to the export problem. A draft report from the Summer Conference inventories the state of our knowledge

Page 2
Attachment 1
regarding critical aspects of the computer export problem and defines critical gaps in our knowledge. A follow-up program to be undertaken shortly will concentrate upon ways and means of remedying such gaps.

The work of this Panel contributes directly to expanding the frontiers of our understanding of computer science and engineering.

FCC Interconnections Pane1, Mr. Lewis S. Billig (FCC Project)
Mission - to do a technical analysis and evaluation of the difficulties arising from the attachment of various interconnecting devices to the "common carrier voice communication system".

Inasmuch as this problem area is undefined and unexplored, the initial effort is designed to create the essential literature of the field, to define critical technical and systems problems, and to weigh these in light of both the short and the long-term: The effort will culminate in a report to the FCC.

In the sense that computer science and engineering embraces systems dependent upon data exchanges via common carrier facilities, this effort should contribute significantly to our understanding of computer science and engineering.

Information Systems Pane1, Dr. Ronald Wigington (Council on Library Resources Project)

Mission -- (1) to assess the potential for application of computer science and engineering principals to meet national needs for efficient and effective information systems of.all kinds; (2) to identify the roadblocks to the more effective and rapid employment of computer science and associated technologies to information handling problems; and, (3) to focus national level attention on the need for appropriate actions arising from (1) and (2).

The initial effort by this Panel is to make a study leading to the identification and development of sound computer science and engineering principals for applying computers, computer systems and related technologies to various information handling problems associated with conventional and special libraries.

Page 3
Attachment 1

The work of the Panel will contribute directly and significantly to expanding the frontiers of our knowledge in the computer science and engineering field.

Nationa1 Programs Pane1 "A", Dr. Launor Carter (Board Project)
Mission -- to examine the general state of the computer science and engineering field, viewed from the national level, as one means of exploring what actions might be taken at various levels to benefit the field.

Initial efforts of the Panel concentrated upon the R\&D programs related to computer science and upon various activities in being and being promoted which are concerned with regional and national level laboratories, institutes, and other institutional forms. Report is in draft.

The work of this Panel should contribute directly to our understanding of our "institutional forms" and their processes, and how these relate to the computer science and engineering field.

National Programs Panel "B", Mr. Jerrier Haddad (Board Project)
Mission -- to explore the feasibility of devising a "national level program" designed to further the development of the computer science and engineering field, and to define the appropriate role of the U.S. government and the Private Sector in such a program.

The initial approach is to identify and to evaluate the various existing activities which might be considered important elements in such a national program. The outsome of this effort, as well as the form it might take, are uncertain at this point.

If successful, this Panel's work should contribute critically to assuring the needed momenta and directions to the computer science and engineering field.

Page 4
Attachment 1

Patterns of Industry Support for Computers in Colleges and Universities Dr. William F. Miller (NSF Project)
Mission -- to explore the feasibility of divining motivations and future attitudes of both donors and recipients which could affect the trends in industrial support of computing activities in U.S. educational institutions.

Initial efforts are concentrated upon selected companies active in the support of computing activities in colleges and universities. Report is in process which indicates that further effort along the lines followed in the initial study would be of limited value.

This report will contribute only marginally, if at all, to the computer science and engineering field.

Privacy Pane1, Dr. Alan Westin (Russell Sage Foundation Project)

Mission -- to survey and assess developments in large, computerized data banks and related activities as they affect the privacy of individuals in our society.

The project will run for about 18 months, and will culminate in a comprehensive report. The first task is to survey selected data banks throughout the country.

This effort'will contribute significantly to our understanding of various aspects of computers and their associated processes as they affect our society, our institutions, and the individual.

Standards Planning Group (Chairman is being sought)

In the Planning Group stage. No recommendations have been made to the CS\&E Board.

FIRST ANNUAL PROGRESS REPORT
November 1, 1968 - October 31, 1969
COMPUTER SCIENCE AND ENGINEERING BOARD

ARPA Order Number -- 1215/1
Program Code Number -- P9D30
Contractor -- National Academy of Sciences
Effective Date of Contract -- 68 November 01
Expiration Date of Contract -- 71 October 31
Amount of Contract -- $\$ 300,000$
Contract Number -- DAHC-15-69-C-0198
CS\&E Board Chairman -- Professor A. G. Oettinger

NATIONAL ACADEMY OF SCIENCES
Washington, D. C.
December 1969

Chairman

Professor Anthony G. Oettinger
Harvard University

Dr. Walter S. Baer Laird Systems, Inc.

Dr. Launor F. Carter System Development Corporation

Professor Wesley A. Clark Washington University

Professor David C. Evans University of Utah

Dr. Sidney Fernbach University of California

Mr. Jerrier A. Haddad IBM Corporation

Dr. J. C. R. Lick1ider Project MAC

Mr. William L. Lurie General Electric Company

Mr. Warren C. House Executive Secretary

Dr. John R. Meyer
National Bureau of Economic Research
Professor W. F. Miller
Stanford University
Mr. Kenneth O1sen
Digital Equipment Corporation
Dr. Alan J. Perlis
Carnegie-Mellon University
Dr. John R. Pierce
Bell Laboratories
Professor J. Barkley Rosser
University of Wisconsin
Dr. Alan F. Westin
Columbia University
Dr. Ronald Wigington
Ohio State University

Mr. A. R. Lytle
Project Engineer

First Annual Progress Report

Computer Science and Engineering Board

In this first year of operation the Computer Science and Engineering Board has directed its primary effort to trying to view the computer industry and associated technologies within the framework of (a) the deep involvement and penetration of computer technology into government and private sector operations, (b) the complex technology of the industry and associated use areas, (c) the active R.\&D. activities within the industry, (d) the effects of the technology on education and educational methods, and (e) the strong position of the U.S. computer technology in world markets. Within this framework the Board has tried to identify (1) roadblocks to progress, (2) areas in positive need of research and/or development or just much more information, (3) guidelines the government or industry should apply in certain areas such as export controls, standards, etc., (4) areas of interlock with other technologies where sociological or other non-technical problems may arise. In this it has been the purpose to try to recognize the problems, difficulties, etc. that are fairly fundamental as differentiated from those that arise primarily from growing pains.

The operating procedure has been for the Board to raise, discuss and evaluate possible study areas. On their acceptance as proper within the above framework, responsibility for their further definition, development and completion was placed in the hands of a panel or committee. All such panels or committees were chaired by a Board member but the remainder were predominantly non-Board members. In some instances it seemed that the subject was of special concern to another agency so separate individual funding was sought. In this way the primary support from A.R.P.A. has
served to catalyze research studies in broader areas and provided greater freedom to the Board in its planning. Thus a list of panels and committees present a suecinct index of decisions made by the Board at this early stage concerning areas in which research, development or other efforts would be worthwhile and needed.

The accompanying chart illustrates the extent and sources of supplemental funding -- showing the support and interest in programs by other agencies.

The following is a list of committees and panels that were set up and became active during the first year:

Study
I

II
III
IV
v Computer Export Pane1
VI

VII
in U. S. Educational Institutions

National Program Pane1 A
Data Base Pane1 Data Banks

Topic
Study of Patterns of Industry Support of Computers

Computer Science and Software Engineering Education

Study of Privacy and Due Process Issues in Computer

Technical Analysis of Selected Factors in the Computer/Communications Interface Field

Computer Science education and the use of computer technology in educational institutions are items of great importance in assuring an adequate supply of personnel trained to exploit the technology to the optimum level. (For example, the Board feels that lack of manpower restricts by up to five times the utilization of computer technology). Thus, the studies under Study I were aimed at learning the status and trend of industrial support of computers in educational institutions.

In the past this has been very helpful to many schools and colleges. Such information could play a strong role in decisions by universities on their future needs and funding requirements and is expected to be especially helpful to National Science Foundation in its planning for funding of university facilities and curricula. The report on this study will be submitted by December 31, 1969.

A second aspect of computer technology as related to educational institutions is the character and quality of computer technology and related education and training provided by schools of higher education. Particular concern was expressed by the Board that an inadequate number of students were being given even a basic training and education in computer technology but more particularly that there was little provision for encouraging education aimed at effective "software engineering."

The approach to this phase was to hold a week-1ong working conference, Study II, in July 1969 among concerned representatives of Universities, users and operators of computing systems, Administrators, Manufacturers (soft and hardware) and government. Over 40 attended. The discussions delved deeply into the types of graduate and undergraduate programs that are offered versus what are needed for adequate computer science education at all levels for the near and distant future. Goals for curricula were freely discussed. Much data were presented on the rate of production of trained students and faculty as related to the forecast needs for manpower. The report, which should be available by the end of the year, should be of major assistance to government agencies such as National Science Foundation and Advanced Research Projects Agency who are concerned with
academic support in the computer field.
What might be considered as a third phase in the Board's interest in computer technology as it affects the education field also overflows into the general field of major data processing, information retrieval, research and development, and teaching, and has taken the form of - to use the general expression - "Study of Computer Institutes." These institutes combine the various functions and needs of computer technology in various proportions, some serving primarily as management aids with some teaching and R\&D, others being primarily intended for process development with little management application. Most of these proposed institutes were closely tied into groups of universities or within government agencies and government assistance in funding would be necessary. As it was envisioned that considerable difficulty may arise in attempts by the government to evaluate these programs on the basis of present knowledge, the National Program Panel A, Study III was requested to survey these proposals and report its recommendations. During the course of this survey oral presentations and brochures concerning five such "institutes" were reviewed by the Panel.

The Panel discussions growing out of these presentations have raised many questions about the need or justification for some of the planned functions of the large enterprises that are envisioned, also concerning the mode and source of funding. On the other hand there is considerable merit in some of the concepts. The Panel believes that its best contribution would be in the form of criteria for such institutes. Such criteria will ferret out the justification of or need for a particular institute
function versus alternative means of accomplishing the purpose and will provide the basis for judging the adequacy and availability of manpower and funding and the type of organization planned for with Institutes. The report also includes a rough compilation and analysis of funding generally available for this purpose.

Throughout its planning studies the Board was continually made more aware of the general inadequacy, in volume, completeness and scope, of data on the industry; how many computers are there, or will there be at some point in the future, how many of what types of personnel are or will be in the industry, to what uses are computers put and by whom? Knowledge about the large, mostly government-agency owned computing activities was abundant although not always accurate or consistent. Knowledge about all other activities is very inadequate. The Data Base Panel Study IV has been trying to fill or determine how to fill these many gaps. A preliminary draft drawn up around data generally available confirmed that there is a real problem - not only in assembling the data but also in evaluating its reliability consistency, completeness and degree of coverage. For instance, estimates of the number of operators vary by 100,000 . Many individual data sources have been examined; some of them are quite comprehensive and complete but limited in scope - such as "Computers in the Federal Government" - "Computers in Higher Education" - yet it is felt that the needed industry data is available or would become available if there were a properly designed and used information retrieval system.

The panel recognized many problems such as how to measure computer power - or to define a computer - what is a programmer - analyst - etc., how to identify computer personnel who normally are classified as physicists,
mathematicians - biologists, etc. Several cataloging and indexing systems are being reviewed for their possible value in serving as adequate data source locators. As an aid in evaluating such systems a list of questions has been prepared to which answers could logically be expected from a competent data bank or library; they cover the range from technology of hardware, through equipment and personnel to economic forecasts. The one probable result of this panel's activities will be recommendations for setting up a library or catalogue of library references for adequately serving this data-and-information need in the computer industry. Supplemental recommendations or suggestions for further steps to coordinate industry usage in common areas such as job definitions may also result. It is believed that this panel is operating in an area essential to the orderly development of the industry.

The summer conference of the Computer Export Panel group, to which a number of other experts as well as interested and concerned government officials were invited, was held from July 14 through July 18, 1969. The purposes of this study were: (a) to develop within the Panel a broader and more detailed information base from which to devel op support for the government; (b) in particular, to explore important areas hitherto only lightly touched on by the Panel, e.g., economic considerations, implications of technology transfer, etc.; (c) to educate, through their participation in the conference, the sponsoring or interested agencies in the government, i.e., DOD, State and Commerce; (d) to develop a broader community of people knowledgeable about the problem, and available for help and
consultation; (f) to isolate and explore areas which remain imperfectly understood, so that recommendations can be made for further study and research. The work was carried out through five study groups, with however considerable coordination and liaison across interest areas. These groups were: Computing Equipment, Economic Aspects, Military Applications, Computer Technology and Software. Many of the meetings were classified.

The report draft of this study has been revised twice by the Export Panel and has been approved for content by the CS\&E Board. The report is now being given final editing and will be given limited distribution because of the restricted character of the subject matter. The Export Panel plans to devote the first meeting after the report is completed to developing a follow-on research and analysis effort built around the deficiencies and priorities defined in the Summer Conference report.

Soon after the Computer Science and Engineering Board was formed and began its study of the computer field, concern was focused on problems that have arisen and the questions that have been posed for the future in respect to the privacy aspects of the large data banks being instituted by local, state and federal governments and private organizations Study VI. These data banks can be classified as either intelligence systems, regulatory systems or statistical systems, but all contain personally identified information and data, and under the present system there is often little control over widespread access. The resultant potential loss of privacy combined with issues of due process and of public accountability is a matter for real concern. The CS\&E Board has recognized the magnitude and
significance of the problem and has prepared a broad outline of the studies that should be undertaken to meet or ameliorate the anticipated problems and has recommended action. The Russell Sage Foundation has funded this 26 month project. Thus CS\&E Board in its normal advisory capacity has catalyzed an activity which is entering the picture at a favorable time before intensive problems have arisen, but after the techniques have been developed and potential problem areas are recognized. The results of this and possibly subsequent studies should have a profound influence on the reception and regulation of computer activities into everyday lives. The project is, therefore, felt to be of great importance. Public announcement of this project is expected early in 1970, following the constitution of an outside Advisory Pane1.

The value of the immediate availability of CS\&E Board for consultative and advisory services in the computer field was evidenced in the project, just getting underway, for the Federal Communications Commission Study VII. This arose from a recent controversy regarding implementation of a Federal Communications Commission decision in the common carrier/interconnections area which in turn focused interest in the need for a technical assessment of the various factors affecting the common carrier/interconnections are of public communications. There are short and long term facets to this problem. As a start, a series of conferences is planned to consolidate and define the issues concerning users' requirements and system capabilities in both data and voice areas. It is the plan that thru these studies technical and background information will be developed that will aid
F.C.C., common carriers, users, and equipment manufacturers in solving immediate, very difficult problems and to provide a framework for advanced planning by all interested parties. Any constructive service that can be developed in this field will be of major assistance in the near-future progress of information transmittal. It is noted that this project is funded separately but was able to get off to a good start because of the presence of CS $\$ E$ Board.

The operations of the several panels is proceeding according to previous plans. No action on the part of the government is needed at this time. The fiscal status of the contract is attached.

ANNEX I

ARPA Contract DAHC-15-69-C-0198

Fiscal Status

A. Total three year contract
\$300,000 Amount currently funded 100,000
B. Estimated expenditures and commitments to date 100,000
C. Estimated funds required for remainder of current funded period
D. Estimated date of completion of work

This is an incrementally funded three year contract. The projected work will be completed by the end of the final contract period.

 co: Prem

Dr. Fred C. Cole
Council on Library Resources
One Dupont Circle
Washington, D. C. 20036
Dear Dr. Cole:
Thank you very much for your letter of December 19 advising us of the action of the Council in support of the NAS Computer Science and Engineering Board's proposed program.

The conditions as outlined in your letter are agreeable to the Academy, and I am enclosing the executed conditions of grant as you request.

I am asking Mr. House of the CS\&E Board staff to keep you fully informed of the status of this project. Mr. B. L. Kropp our Deputy Business Manager will be responsible for the financial aspects of this program.

We look forward to this opportunity of working with the Council on Library Resources in this joint undertaking.

Sincerely yours,

John S. Coleman
Executive Officer
Enclosure
cc: Mr. W. F. House
Mr . B. L. Kropp
Professor A. G. Oettinger

COUNCIL ON LIBRARY RESOURCES One Dupont Circle - Washington, ㅁ.C. - гоозя

Mr. John S. Coleman
Executive Officer
National Academy of Sciences 2101 Constitution Avenue N.W. Washington, D.C. 20418

CLR-475
Dear Mr. Coleman:
On Wednesday we had a satisfactory meeting with Professor Oettinger, Mr . House, and Mr. Wigington concerning the NAS Computer Science and Engineering Board's project which will be carried out under a $\$ 50,920$ grant from this Council over a period of eighteen months.

We agreed that they would notify the Council when they are ready to start and request at that time the initial payment. It is our inmention to pay the amount appropriated in five equal installments of $\$ 9,000$ each, with a sixth and final payment of $\$ 5,920$ when we are satisfied that the program has been completed. The Council generally makes its payments at the end of March, June, September, and December, upon request accompanied by a progress report covering both substantive and financial matters. Mr. William H. Dodderidge, Treasurer of the Council, will shortly send you forms for use in reporting expenditures. Since we do not yet know the starting date of the NAS project, we shall have to set up the schedule of payments at a later time. Meanwhile, I should appreciate it if you would sign and return to us the enclosed Conditions of Grant.

Twenty-five copies of the final report and any other reports or publications growing out of the project should be furnished us for distribution to our directors and for our records.

We are pleased to be associated with the Academy in this important work.
cc: Prof. Oettinger Mr . House Mr. Kropp

FCC: el
enclosure

All grants made by the Council on Library Resources, Inc., are subject to the following conditions:

1. Expenditure of Grant Funds: A grant is to be used exclusively for the purpose stated in the letter of grant notification. Reallocations or revisions of items in the budget upon which the grant is based must be approved in advance by the Council.
2. Revocation of Grant: A grant may be revoked by the Council at any time, with or without cause.
3. Reversion of Grant Funds: A grantee must return to the Council the unexpended balance of any grant: grant.
b) If the grantee at any time ceases to be exempt from Federal income taxation under Section 501 (c)(3) of the Internal Revenue Code of 1954 (Section 101(6) of the Internal Revenue Code of 1939
as amended).

In the event a grant is revoked, the Council thereafter has no obligation to make any further payment thereunder, and the grantee shall return to the Council, promptly upon request, the balance of the grant held by the grantee, less any amount necessary to pay or provide for proper and unavoidable commitments already made by the grantee in reliance upon the grant.
4. Reports: The grantee shall furnish the Council with reports of accomplishment under the grant, and reports of expenditures of the grant funds, in accordance with the reporting schedule prescribed in the notification of grant approval.
5. Public Announcement: The Council makes public announcement from time to time of its grant actions, but does not necessarily issue special releases regarding each grant, nor does it ask a grantee to do so. Should a grantee wish to publicize a grant, specific written approval of the nature of the intended publicity must be
secured from the Council.
6. Acknowledgment of Support: All reports or publications announcing the results of work supported by a grant from the Council shall acknowledge such support in language approved by the Council.
7. Copyrights or Patents: If patentable discoveries or inventions are made, or if any copyrightable material grant, refer to the Council for determination of the question whether a patent or copyright shall be sought, in the tax-exempt status of the Cond for what disposition, in order to protect the public interest and in view of
8. Commitment: Any grant made by the Council is on the understanding that the Council has no obligation to provide additional or any other support to the grantee.
9. Other Terms and Conditions: Each grant is subject to such other terms and conditions as may be required by the Council and set forth in its letter of grant noficiation.

National Academy of Sciences
2101 Constitution Avenue
Washington, D. C. 20418
(Name \& Address of Organization)

NATIONAL ACADEMY OF SCIENCES

2101 CONSTITUTION AVENUE
WASHINGTON, D. C. 20418

COMPUTER SCIENCE AND ENGINEERING BOARD
PROJECT ON COMPUTER DATA BANKS
ALAN F. WESTIN, DIRECTOR

INVITEES TO MEMBERSHIP TO THE NATIONAL ADVISORY PANEL OF THE PROJECT ON COMPUTER DATA BANKS

Ex-Officio Members of Pane $1 *$
*1. Professor Anthony G. Oettinger
Chairman, Computer Science and Engineering Board
Aiken Computation Laboratory
Harvard University
*2. Dr. John R. Pierce
Vice Chairman, Computer Science and Engineering Board
Bell Laboratories
3. Dr. Frederick Mosteller

Department of Statistics
Harvard University
4. Dr. Edgar Dunn

Economist
Resources for the Future
5. Mr.Lee Rieser

Director of Personne1 Data Bank
Corn Products Co.
6. Mr. George S. Moore

First National City Bank of New York
7. Dr. Robert Weaver

President
Baruch College, City University of New York
8. Dr. John H. Knowles

Physician and Medical Administrator
Massachusetts General Hospital
9. Dr. George A. Miller

Department of Psychology
Rockefeller University
10. Rep. Cornelius E. Gallagher

New Jersey Democrat
11. Mr. Roderick O. Symmes
Director, Data Systems Development, HUD
12. Mr. Arthur NaftalinDepartment of Public AffairsUniversity of MinnesotaFormer mayor of Minneapolis, Minnesota
13. Dr. Robert C. WoodPolitical Science DepartmentMassachusetts Institute of Technology
andDirector, Joint Center for Urban StudiesHarvard University
14. Hon. Nathan L. Jacobs
Assocate Justice
New Jersey Supreme Court
15. Professor Arthur R. Miller University of Michigan Law School
16. Hon. James Farmer
Assistant Secretary, HEW
17. Mr. Ralph Nader
Research Lawyer
18. Mr. Roy Nutt
Vice President
Computer Sciences Corporation
19. Dr. Alain C. Enthoven
Economist
Vice President
Litton Industries
20. Hon. Nicholas DeB. Katzenbach
Vice President
IBM Corporation

National Academy of Sciences

2101 CONSTITUTION AVENUE WASHINGTON. D. C. 20418

November 26, 1969

MEMORANDUM TO: Heads of Offices
FROM:

John P. Gillis
Director of General Services

As you know, it is the general Academy travel policy that rental automobiles are to be used only when more convenient or economical forms of transportation are not available. Whenever rental cars are necessary, you should inform your staff and committee members that the Academy is granted an automatic 20% discount by most of the national car rental agencies, especially Hertz and Avis. Therefore, arrangements of rental cars should be made by using an Academy air travel card to assure that billing includes the discount and is made by the agencies directly to the Academy.

The Avis Corporation will also grant the 20% discount to members of our staff for rental of cars for personal use. Whenever you or any of your staff wish to take advantage of this offer, please request an identification card from this office.

National Academy of Sciences
2101 CONSTITUTION AVENUE
WASHINGTON. D.C. 20418

December 23, 1969

- MEMORANDUM

TO: Heads of Offices
FROM: John S. Coleman

Enclosed are copies of the 1969 revision of the NRC brochure, "Information for Members of Divisions, Committees, Boards, and Panels." This brochure should be brought to the attention of professional support staff in your units for their own use and also should be distributed to members engaged in committee work for the division.

Additional copies may be obtained from the Office of Information.

Enclosures

NATIONAL ACADEMY OF SCIENCES

Computer Science and
Engineering Board

$1 / 16 / 70$

Dear Ken,
Sorry you could not make the last Board meeting. The attached is in response to some serious concern expressed at the last meeting regarding the time required to produce high quality and customer oriented reports on Board activities. Most of the work will be on items $2 \& 3$. If you have any desire to take a whack at rethinking, restructuring and rewriting either of these two, please let me know or just come on down.

Warren

Executive Support Staff, Room 536, Joseph Henry Building Phone (202) 961-1386

National Academy of Sciences
2101 CONSTITUTION AVENUE
WASHINGTON. D. C. 20418

January 15, 1970

$$
\underline{S} \underline{P} \underline{E} \underline{C} \underline{A} \underline{L} \quad \underline{B} \underline{O} \underline{A} \underline{R} \underline{D} \quad \underline{N} \underline{T} \underline{I} \underline{C} \underline{E}
$$

Dear Ken,
The Chairman wishes to devote the entire meeting in February to the review, evaluation, customer-orienting, redrafting and dissemination planning of the following reports:
(1) The Survey of Patterns of Support for Computers and Computation in Universitities (for the NSF)--Dr. William Miller
(2) The National Programs Panel "A" draft report (Board initiated)----Dr. Launor Carter
(3) The draft report of the 1969 Summer Conference on Computers and Higher Education (for the NSF)--Dr. Alan Perlis

The Chairman wishes to establish the following working teams as having primary responsibility for each of the above drafts:
(1) Survey - Dr. William Miller, The Chairman, The Secretary
(2) National Programs Panel "A"--Dr. Walter S. Beer, Dr. Sidney Fernbach, Dr. William Miller, Professor Wesley Clark, Dr. Ronald Wigington
(3) Summer Conference on Computers, etc.,--Dr. Alan Perlis, Dr. John Pierce, Dr. Barkley Rosser, Mr. John Griffith plus all available upon completion of items (1) and (2) above.
The Chairman's plan is to complete the review of the Survey report quickly for delivery to the NSF and then to redistribute the manpower between the National Programs Panel "A" draft and the Summer Conference on Computers, etc. draft.

The Chairman's desire is to concentrate on (a) sorting out and clearly defining the various reports that the contract/proposal indicate should be provided to the NSF and' (b) to revise the initial draft of the Summer Conference report so that it will be ready for review by the Academy. The Chairman may provide additional guidance to the various team members.

Would those listed as team members confirm their attendance. Those not included in the working teams are cordially invited to send written comments or to volunteer for assignment. Please call me or Tony if you have any questions.

National Academy of Sciences

2101 CONSTITUTION AVENUE
WASHINGTON. D. C. 20418

January 16, 1970

TO ALL BOARD MEMBERS

Attached are the and conclusions for the National Programs Panel "A" report.

This was done by Drs. Baer, Fernbach and Miller.
Would you please send any comments you may have to them with an information copy to Tony and me.

Warren C. House

January 12, 1970

Anthony G. Oettinger
c/o Computer Science and
Engineering Board
National Academy of Science 2100 Constitution Avenue Washington, D.C.

Dear Tony:

I am sorry that neither Bill Miller nor I will be able to attend the Board meeting this month. During the past two weeks we met in Palo Alto and conferred with Sid Fernbach by phone to discuss the Carter report and to redraft a cover letter from you to Phil Handler.

Our main effort was to rewrite the conclusions which will appear both in the Introduction and in Section VI of the Panel report. While we had some suggestions for changes in the body of the report, on balance we felt that the report could stand as written as long as the conclusions were clearly and positively stated at the front. A copy of our drafting efforts is enclosed.

A redraft of the cover letter also is enclosed, which hopefully includes many of the comments from the last Board meeting. We believe that the Panel report is of sufficient interest and timeliness to warrant its release outside the Academy. In particular, we believe that representatives of the Panel and the Board may want to present the Panel's conclusions to Dr. DuBridge and others in the Executive Office of the President.

I am sure that the suggestion for dissemination outside the Board and our latest redrafting efforts will be discussed thoroughly at this month's Board meeting. I will give you a call later in the week to hear the results.

Dr. Philip Handler President
National Academy of Science
Washington, D.C.
Dear Dr. Handler:
I am pleased to transmit to you a report by a panel
of the Computer Science and Engineering Board on "An Examination of Government Support of Computer Related Research and Development with Particular Reference to Institutes."

The report represents a concensus of the panel and has been reviewed by the Computer Science and Engineering Board. The panel was constituted by the Computer Science and Engineering Board particularly in response to the Board's awareness of a growing number of proposals for the establishment of government supported institutes in the computer field. Several of these proposals were examined in detail. In reviewing them the panel necessarily examined overall support of computer-centered research and computer-related applications.

The panel came to a number of conclusions which are endorsed by the Board and are stated below:

1. The panel concluded that new institutes or special laboratories should be established only when existing institutions and channels of support are inadequate to perform badly needed tasks. The panel does not believe
this to be the case at present for computer-centered research and development. In reaching this conclusion the panel has set down criteria that should be valuable in evaluating requests for new research and development institutes over a wide range of scientific areas.
2. The panel does believe that applications of computing to specific missions (e.g., education, health care, employment) may need increased government support. This support should be recognized as a necessary adjunct to the mission of the agency and is not a substitute for computercentered research and development.
3. The panel was concerned over the apparent lack of overall federal policy and guidelines for the support of computer-centered research and development. A large fraction of such government sponsored work, and in particular, most large-scale research and advanced development efforts are supported by a single federal agency -- the Advanced Research Projects Agency of the Department of Defense. The panel believes that such concentration of support in one agency is unwise over the long run for both the nation and the field of computer science. On the other hand, it believes strongly that many research activities in computer science require large-scale funding, and that the successful pattern
of support established by ARPA should be continued. The panel recommends that the Federal Government review its policies for the support of computer-centered research and development, with a view towards building comparable programs in other agencies so that a better balance can be maintained.
4. The Panel found it difficult to get precise and satisfactory data on overall support of computer related research and development. This report necessarily presents a first approximation of the external government and nongovernment funds available for computer related projects.

Besides supporting the above conclusions, the Board would offer these additional comments:

1. The Board believes that the panel has done a very honest and thorough job with the information available to it. The panel has been exceedingly careful not to exaggerate claims for increased funding in computer science. The Board recognizes the potential danger of not shouting as loudly as spokesmen for other fields of science. We, therefore, must state emphatically that the Panel report should not be construed to minimize the very serious effects that decreased funding would have on progress in the field.
2. The Board emphasizes the Panel's conclusion that several mission-oriented agencies, which are consumers of research and talent in the computer area, at present do not support the research and development necessary to advance their own objectives.
3. The Board believes that many important computercentered research and development projects will be successful only if supported on a relatively large scale. One milliondollar project may accomplish much more than ten projects funded at $\$ 100,000$ each. The Advanced Research Projects Agency has been the chief source of such large-scale support. The Board considers it likely that, over the next few years,some computer-centered research now funded by ARPA will have to be shifted to other federal agencies whose "style" of research support is quite different. If such transfers take place, preserving the scale of effort in individual projects should be emphasized as well as maintaining the overall level of research support.

The Computer Science and Engineering Board intends to look further into a number of these important issues raised by the panel in the coming months.

> Sincerely,

Anthony G. Oettinger

DRAFT CONCLUSIONS

 NATIONAL PROGRAMS PANEL A REPORTThese pages would be substituted for the conclusions now summarized on Page 3ff. They would appear also in Section VI along with the original conclusion 6 from the Panel Report.

This report is organized into six major sections, with supporting material in appendices.
I. INTRODUCTION AND SUMMARY - P. 1
II. SOURCES OF SUPPORT FOR COMPUTER-RELATED RESEARCH AND DEVELOPMENT - P. 4
III. PRESENT AND PROPOSED ORGANIZATIONS UNDERTAKING COMPUTERRELATED RESEARCH AND DEVELOPMENT - P. 15
IV. COMMENTS ON COMPUTER-RELATED PROBLEM AREAS - P. 19
V. CRITERIA FOR THE ESTABLISHMENT OF GOVERNMENT-SUPPORTED INSTITUTES - P. 24
VI. CONCLUSIONS - P. 30

APPENDIX A - PROPOSED NEW PROGRAMS IN COMPUTER-RELATED FIELDS -P.
APPENDIX B - ARPA-SUPPORTED CONTRACTS IN INFORMATION PROCESSING TECHNIQUES - P.

The Panel's conclusions are stated in Section VI. Its principal findings are:

1. The highest levels of Government should examine the formal responsibilities for support of computer-related research and development to achieve a clearer delineation of these responsibilities. The Panel believes that the responsibilities and mission of each agency of government should be examined to determine the nature of their need for computer-related research, development and application. Once such an examination has been made, official and unambiguous assignment of responsibilities for
the support of appropriate programs should be made.
2. Having examined a large number of computer-centered research and development problem areas, the Panel believes that most of the important problems are receiving serious attention. Present funding patterns are, in general, appropriate and permit continued progress. However, the panel is concerned over possible cutbacks in research and development support which would seriously impede efforts to solve these problems.
3. At present there is a greater need for new or increased support in the application of computer resources to various specific missions. Proposers of applications should not expect to siphon off money from basic computer science activities. If computer capabilities are to be applied, for example, in the poverty program, in education, in urban development, and other public areas, then it is important that funds from these areas be used to support such new computer-related applications.
4. From time to time it has been proposed that there should be one massive institute to guide much or all of government sponsored work in computer-related research and development. The Panel believes this would be unwise; it believes that pluralistic sources of funding and points of view are desirable. Furthermore, it is essential for each agency having computerrelated needs to be directly involved in supporting research and development to meet these needs.
5. New institutes or special laboratories should be established only when existing institutions and patterns of support are inadequate to perform needed tasks. The Panel recommends that agencies requested to fund new computer-related research and development organizations examine such requests in the light of the criteria listed in Section V.

COMPUTER SCIENCE \& ENGINEERING BOARD
20th Meeting Washington, D. C.
NAS Reading Room February 18, 1970
NAS Reading Room
February 19, 1970

Mr. Kenneth O1sen

National Academy of Sciences

18 February 1970

20TH MEETING

INFORMAL STAFF NOTE

1. Attached are the three reports under review and the Team assignments indicated in the 15 January 1970 Special Board Notice. We will consider these teams to be self-organizing in the finest sense, with only general guidance provided by the Chairman at the outset.
2. Bill Miller will not be able to be present during all of the evening and day sessions. However, his report appears to be well-scrubbed and he is willing to abide by whatever changes the Team decides upon. At NSF's request, I delivered two copies of this report yesterday for internal use.
3. Launor Carter will be unable to attend due to a lastminute company requirement to be on the West Coast. However, the Board has already decided to treat this report as a staff paper delivered to the Chairman and the review and changes should be made with this purpose in mind.
4. We may all end up working on the "conference" report draft by Alan Perlis. One question will be to establish as clearly as possible the context for this report, i.e., the general reporting responsibility of the Board in connection with the Conference and the problems addressed. As soon as this is done, the Chairman plans to get in touch with the appropriate NSF people to explore with them the most useful ways the Board can assist NSF beyond this initial "conference" report.
5. It would be useful to indicate to the Chairman if you cannot be present throughout both evening and day sessions.

NAtional Academy of Sciences

21O1 CONSTITUTION AVENUE

 WASHINGTON. D. C. 20418

January 2, 1970

Informal Staff Note

To: All Board Members

A question arose during the last meeting of the Board regarding just what contractual commitments the Board had made (via the Academy) to produce what kinds of reports for the NSF based upon the Summer Conference on Computer Science Education sponsored by the NSF. This question arose in connection with examining the feasibility of submitting promptly to the NSF a report of the Summer Conference proceedings and preliminary findings without analysis, evaluation or endorsement by the Board. This, in turn, led to some discussion of what additional reports might still be "owed to the NSF."

By way of background, contracts of this sort with the NSF are handled via one-page task orders. The relevant item from the Task Order No. 169 follows:
"2. Scope of Work: The work under this task order shall be performed in accordance with the Academy's proposal transmitted by 1etter dated May 1, 1969."

The appropriate pages of the referenced proposal are attached for your information.

Comment--It appears upon a cursory examination that the Board is clearly committed to produce a report outlining the results of a general analysis of computer science education in the U.S. (see Key 1); that this analysis is to contain input-output models relating to the development of programs, the production of trained students and faculty, and the needs of industry and government (see Key 2); and that this report should identify the undergraduate and graduate courses that should properly be considered to be computer science and that these should be evaluated as to their adequacy in relation to computer science needs, both in the immediate future and in the longer-term (see Keys 4 and 5). There is also mention of separate reports for Resource \& Function Areas (see Key 6).

In sum, it seems apparent that the Board is committed to turn out a general analytic and evaluative report on the various aspects of computer science and education. At first glance, there seems to be nothing in the agreement that would conflict with the idea that the first phase of the Board's response should be in the form of a report on the conference proceedings, without reflecting necessarily analysis, evaluation or endorsement by the Board of the content and judgments contained in the report.

Please note that the above deals only with the technical contractual aspects and does not address the quite different aspect of the "appropriateness of such an initial response by the Board." In regards to the latter point, perhaps the conference proceedings could be transmitted informally as an interim draft, with the thought that it was presented for information only, and that it was considered to be grist for the eventual Board report. Also, please note that the consensus of the Board was that Alan Perlis should present a revised draft on the Conference to the Board at the January, 1970, meeting, with options as to how further to proceed to be dealt with by the Board at that time.

WCH/bla

SUMTER CONFERENCE ON CO:IPUTER SCIENCE EDUCATION

The objective of the proposed conference is the preparation of a report outlining the results of a general analysis of computer science education in the United States, with particular attention being given to:

1. Graduate Education in Computer Science, and
2. Education in software (and hardware) systems.

Within each of the above areas, detailed analysis will be made of the Resource and Function aspects. By Resource is meant the creation of input-output models relating to the development of programs, production of trained students and faculty, and the needs of industry and government for people so trained. A timetable reflecting the estimated velocity and acceleration rate of these programs will be produced. In accord with the estimated growth rate of these programs, a study will be made of the resources (plant, people and money) required to provide the needed educational development under various response alternatives. Function refers to the undergraduate and graduate courses and programs which should be properly identified as computer science. Also, an evaluation of these programs (will be made to provide the basis for determining their adequacy in relation to computer science education needs, both in the immediate future and the longe tern. It is not the intent of the meeting to provide detailed curricula, but rather to suggest goals and directions of educational progran...s.

The conference is planned to be held from July 21 through July 25, 1969, at the Hilton Hotel in Annapolis, Maryland. separate report is scheduled for the Resource and the Function areas, and these are then to be combined into one final report. Annex A contains further details on the planned conference proceedings and particular questions to be examined. Annex B is a list of selected professionals who will be invited to participate in the conference. Annex C is an estimated budget for the conference. The cost of producing the copies of record for the National Science Foundation is included in the -estimated budget.

National Academy of Sciences

January 15, 1970
SPECIAL BOARD NOTICE

Dear

The Chairman wishes to devote the entire meeting in February to the review, evaluation, customer-orienting, redrafting and dissemination planning of the following reports:
(1) The Survey of Patterns of Support for Computers and Computation in Universitities (for the NSF)--Dr. William Miller
(2) The National Programs Panel "A" draft report (Board initiated)----Dr. Launor Carter
(3) The draft report of the 1969 Summer Conference on Computers and Higher Education (for the NSF) --Dr. Alan Perlis

The Chairman wishes to establish the following working teams as having primary responsibility for each of the above drafts:
(1) Survey - Dr. William Miller, The Chairman, The Secretary
(2) National Programs Panel "A"--Dr. Walter S. Baer, Dr. Sidney Fernbach, Dr. William Miller, Professor Wesley Clark, Dr. Ronald Wigington
(3) Summer Conference on Computers, etc.,--Dr. Alan Perlis, Dr. John Pierce, Dr. Barkley Rosier, Mr. John Griffith plus all available upon completion of items (1) and (2) above.

The Chairman's plan is to complete the review of the Survey report quickly for delivery to the NSF and then to redistribute the manpower between the National Programs Panel "A" draft and the Summer Conference on Computers, etc. draft.

The Chairman's desire is to concentrate on (a) sorting out and clearly defining the various reports that the contract/proposal indicate should be provided to the NSF and (b) to revise the initial draft of the Summer Conference report so that it will be ready for review by the Academy. The Chairman may provide additional guidance to the various team members.

Would those listed as team members confirm their attendance. Those not included in the working teams are cordially invited to send written comments or to volunteer for assignment. Please call me or Tony if you have any questions.

```
P ofessor Anthony G. Dettinger
Aiken Conmutation Laboratory
H}\mathrm{ reward 
C mbricge, Hassechusetts 02333
```


Dear Tony:

Enclosed is a copy of the revised NSF Survey Panel report. I have also porworied a copy to Warren House.

```
Best remarcs,
W. P. Miller
```

Encl.
copy to: Warren House (w/encl.)

Report of NSF Survey Panel

W. F. Miller, Chairman
January 1970

Contents
Introduction 1
Forms of Industrial Support 2
Trends in Industrial Support 3
Discussion - Corporate Giving 4
Discounts on Equipment 5
Grants and Research 7
The Role of Industry and the Government 8

INTRODUCTION

The Computer Science and Engineering Board was asked to investigate types of support from the computer industry to the colleges and universities in this country. ${ }^{l}$ The objective was "to assess the general nature, impact, and trends of industrial support of computers and computer-related activities in educational institutions". It was proposed that the study take place in two phases. The first phase was to be completed in a few months in order "to sharpen the questions related to this problem and to determine whether a second phase would be appropriate.

The Board recommended that the panel carrying out the work should try to determine from a limited sample of key officers in computer manufacturing companies, software organizations, and universities what forms of industrial support are now extant and what trends in form and amount might be apparent.

The first phase of the study has been completed and it permits some general qualitative conclusions. A second phase does not appear to be warranted at this time because the general policies of the computer industry are clear from the limited sample.

This study does not attempt to assess anew the needs for or the uses of computers in colleges and universities. There has been a succession of reports ${ }^{2}$ which have addressed these problems. They clearly present the need for increasing support to colleges and universities for computer-related teaching and research.

1. This work was undertaken as part of a proposal to the National Science Foundation.
2. The reports and their principal concerns are:
(a) The Rosser report, "Digital Computer Needs in Universities and Colleges", Publication No. 1233, National Academy of Sciences, 1967, covered all uses of computing within the universities.

Industrial support to colleges and universities for conputer-related educational and research activities has been given principally in three forms: (1) gifts of or discounts on equipment, (2) grants or contracts for specified activities, and (3) unrestricted gifts.

Until recently the most common form of support from computer manufacturers to educational institutions has been the gift of or discount on purchase (or rental) of equipment. There were a number of reasons why this form of support was a preferred form. The earlier tax law was quite favorable to this form of gift. It was good public relations to have the company's equipment before students. It brought the company into close contact with advanced research and new applications.

A few of the larger computer companies also engaged in giving grants and contracts for specified activities. Policy in this area varied between companies. The grant or contract was usually for the development of software or for the exploitation of computer capabilities in some new area of application.

Unrestricted cash gifts were given by some manufacturers. This form of gift was most advantageous to the receiving institution, but offered the least imnediate advantage to the manufacturer making the gift.
2. (cont'd)
(b) The Picrce report, "Computers in Higher Education", Report of the President's Science Advisory Cormi.ttee, The White House, Washington, D. C., February 1967, considered principally the use of computers in teaching.
(c) The COSRTMS report, National Academy of Sciences, 1968, addressed the needs for support of research in the mathematical sciences. This report made a special appeal for increased support in the area of research and graduate education in computer science.

As a general conclusion we see clear trends toward decreasing at least one form of industrial support (discount on equipment) and we see little inclination toward increasing other forms.

It is clear that support in the form of gifts or discounts on equipment will decrease dramatically in the next few years. This shift arises from changes in corporate attitudes toward gifts to educational institutions, from government auditing rules, and will be strongly influenced by the new tax law. Dr. E. Piore, ${ }^{3}$ Vice President and Chief Scientist of IBM, has indicated that IBM is tending toward the unrestricted gift as a form of support for colleges and universities. Mr. Jomes G. Miles, ${ }^{4}$ Vice President of Control Data Corporation, has indicated that $C D C$ has eliminated the discount on equipment as a form of educational support.

Computer manufacturers continue to give some support in the form of grants or contracts for specific research programs. Although quantitative data was not made available to the panel, the officers of several computer companies indicated that the total amounts of support in this form was not large.

One company, IBM, has made a clear statement of a trend toward unrestricted gifts to colleges and universities. All other companies contacted (CDC, XDS, DEC) indicated that they have no policy in this area and that they contribute very little in this form. It is not clear whether or not the shift in form of support by IBM will influence other conpanies toward this form of support. There seems to be little or no evidence that the amount of support in the form of unrestricted grants is likely to equal the amount of support in the form of discounts on equipnent.
3. Private Communication.
4. Private Communication.

DISCUSSION

Corporate Giving

Corporate giving for education is a relatively recent phenomenon. Corporations, as such, have contributed relatively little to educational institutions before 1950.5 Pre-1950 support was principally in the form of scholarships and fellowships to students and a limited amount of research of direct special interest to the contributing corporation.

Prior to 1953 the legality of corporate giving was held in question. The case of A. P. Smith Manufacturing Company versus Barlow et al. (1953) established the constitutionality of legislation permitting corporations to make charitable contributions. By 1967 all but three states had adopted legislation that established statutory authority for corporate contributions to charity.

The first year of record by the National Industrial Conference Board for Corporate Support for Education is 1949 . Since that time support for education has been increasing steadily, but the bulk of support is still limited to a handful of the largest corporations. 6 Since 1949 we have seen substantial changes in the method of corporate management. These changes toward planning, decentralization of line authority, and delegated responsibility have had an impact on corporate giving to education. They have frequently resulted in the establishment of an office responsible for setting company policy and the coordination of corporate giving to education. These changes have been seen principally in the Jarger corporations.

[^0]This short history of corporate giving and the particularly brief history of the computer industry leaves one with little basis for extrapolation into the future.

Discounts on Equipment
One form of support to colleges and universities that has been prevalent until recently has been the discount (or educational allowance) for computing equipment. The usual form of such support has been a discount by the manufacturer for either the purchase or the rental of equipment, or the * gift of a particular item of equipment. There were modest restrictions by the donors on the utilization of the equipnent so acquired. For example, before 1962 the IBM educational allowance agreement prohibited the use of the discounted machine for "sponsored research". Sponsored research here referred to work done by faculty and/or students on a federal government contract or grant. In 1962 IPM changed the nature of this restriction to prohibit only classified research or research not done as a part of the academic mission of the university or college. A second restriction imposed was that if the equipnent is resold within a five-year interval after purchase, the educational institution must rebate to the manufacturer a pro-rated amount of the discount.

In the late 1950's and early 1960^{\prime} s the eaucational discount played a significant role in helping establish teaching programs. There is little doubt that the colleges and universities who first introduced large teaching programs in computing would not have been able to support their educational courses on such an extensive scale without the educational discount.

The amount of discount made available to the colleges and universities has been deceasing over the last several years. In the mid-1950's the established IBil discount was 60 percent; that is, the college or university would pay 40 percent of the listed price of the equipment. This discount
would apply either to the purchase of cquipment and subsequently to the equipment maintenance contract, or to the rental (including maintenance). In the case of the rental contracts it was common for the university or college to pay 40 percent of the first shift rental and be permitted to utilize the equipment on as many other shifts as possible with no additional charge. Discounts have been decreasing in percentage of sale or rental price. Currently IBM offers a maximum of 10 percent educational allowance on new products and the Control Data Corporation discontinued giving an "educational allowance. Other smaller computer manufacturers such as Xerox Data Systems and Digital Equipment Corporation make limited use of the educational allowance.

Three events have contributed to changes in the use of the educational discount. These are the Carnegie decision, the arti-trust suit against IBM, and the new tax law.

Before the so-called Carnegie decision ${ }^{7}$ the colleqes and universities were able to treat the educational discount as a gift and utilize the contribution for support of their educational and unsponsored research programs. Goverment audit rules eventually disallowed this practice and made it necessary to pro-rate the benefit of the discount to all users including those supported by government sponsored research contracts. This ruling, in turn, had the effect of decreasing the contribution to the teaching program.
7. Carnegic Institute of Technology (1964) ASBCA No. 4299, 1964 BCA 4026. Credits against computer rental - A non-profit institution contractor using an IBM 650 computer for sponsored research could not include the full rental for the computer as a research cost under a cost-reimbursement contract since it was allowed a 60 -percent deduction in rental payments for a so-called educational contribution regardless of whether or not the prerequisite to the taking of the deduction was fulfilled.

In the anti-trust suit of the U. S. Government against IBM Corporation ${ }^{8}$.
the IBM Corporation is charged with the utilization of the ecuational discount as a means of effecting a monopolistic position. It seems clear that the recommendation will be to enjoin IBM to cease and desist the offering of the educational discount. This action will certainly encourage IBM in the direction of the elimination of the educational discount whether or not the Justice Department suit is successful.

The new tax law has more restrictions on charitable contributions than formerly. The gift of use (rental) of equipment is now not deductible. Neither can one deduct as a charitable contribution a gift of less than the full price of the equipment.

Grants and Research
As pointed out in letters from Miles of Control Data Corporation, Spinrad of Xerox Data Systems, and Olsen from Digital Equipment Corporation, these companies give support in areas of specific interest to their companies. The support is often in the form of equipment but may also be in the form of a grant that includes the support of personnel as well as the use of equipment. The consequences or these policies is that graduate research in the universities should not look to the computer manufacturers for research support. These policies also leave unsupported an important area of activity outlined in the report of the President's Science Advisory Committee, "Computers in Higher Education", 9 which called attention to a
8. Civill Action No. 69 CIV. 200, U. S. District Court for the Eouthern District of New York, Filed: January 1.7, 1969. See COMPLATNT: 20(d) and PRAYER ${ }^{2}$ 4. Appendix VI, p. 9 and p. 11.
9. "Computers in Higher Education", Report of the President's Science Advisory Committee, The White House, Washington, D. C., February 1967, frequently called the Pierce Report after the panel chairman.
substantial need in the area of teaching both undergraduates and graduates in the use of computers as well as in the subjects necessary to contribute to the development of computers.

THE ROLE Of INDUSTRY AND THE GOVERNMENT'

We believe at this time one must conclude that the computer industry is still searching for its role in support of colleges and universities in computer research and education. The larger companies are taking a global s view and are considering their role in support of educational institutions quite far beyond computing. The smaller emerging companies are taking a very short-range view of their inmediate self-interest, and have not yet developed a long-range policy and attitude toward research and toward support of colleges and universities. A great deal of work must be done by colleges and universities as well as industry in developing understanding as to what are the needs of the universities and how industry can best help them and at the same time serve their own self-interest.

National Academy of Sciences
2101 CONSTITUTION AVENUE
WASHINGTON. D.C. 20418

January 16, 1970

TO ALL BOARD MEMBERS

Attached are the revised suggested letter of transmittal and conclusions for the National Programs Panel. "A" report.

This was done by Drs. Baer, Fernbach and Miller.
Would you please send any comments you may have to them with an information copy to Tony and me.

Warren C. House

January 12, 1970

Anthony G. Oettinger
c/o Computer Science and
Engineering Board
National Academy of Science 2100 Constitution Avenue Washington, D.C.

Dear Tony:
I am sorry that neither Bill Miller nor I will be able to attend the Board meeting this month. During the past two weeks we met in Palo Alto and conferred with Sid Fernbach by phone to discuss the Carter report and to redraft a cover letter from you to Phil Handler.

Our main effort was to rewrite the conclusions which will appear both in the Introduction and in Section VI of the Panel report. While we had some suggestions for changes in the body of the report, on balance we felt that the report could stand as written as long as the conclusions were clearly and positively stated at the front. A copy of our drafting efforts is enclosed.

A redraft of the cover letter also is enclosed, which hopefully includes many of the comments from the last Board meeting. We believe that the Panel report is of sufficient interest and timeliness to warrant its release outside the Academy. In particular, we believe that representatives of the Panel and the Board may want to present the Panel's conclusions to Dr. Dubridge and others in the Executive Office of the President.

I am sure that the suggestion for dissemination outside the Board and our latest redrafting efforts will be discussed thoroughly at this month's Board meeting. I will give you a call later in the week to hear the results.

Dr. Philip Handler
President
National Academy of Science
Washington, D.C.
Dear Dr. Handler:
I am pleased to transmit to you a report by a panel
of the Computer Science and Engineering Board on "An Examination of Government Support of Computer Related Research and Development with Particular Reference to Institutes.

The report represents a concensus of the panel and has been reviewed by the Computer Science and Engineering Board. The panel was constituted by the Computer Science and Engineering Board particularly in response to the Board's awareness of a growing number of proposals for the establishment of government supported institutes in the computer field. Several of these proposals were examined in detail. In reviewing them the panel necessarily examined overall support of computer-centered research and computer-related applications.

The panel came to a number of conclusions which are endorsed by the Board and are stated below:

1. The panel concluded that new institutes or special laboratories should be established only when existing institutions and channels of support are inadequate to perform badly needed tasks. The panel does not-believe
this to be the case at present for computer-centered In worize on las pidblam research and development. In-reaching this conclusion the panel has set down criteria that should be valuable in evaluating requests for new research and development institutes over a wide range of scientific areas. to specific missions (e.g., education, health care, employment) may need increased government support. This support should be recognized as a necessary adjunct to the mission of the agency and is not a substitute for computer-. centered research and development.
2. The panel was concerned over the apparent lack of overall federal policy and guidelines for the support of computer-centered research and development. A large fraction of such government sponsored work, and in particular, most large-scale research and advanced development efforts arensupported by a single federal agency -- the Advanced Research Projects Agency of the Department of Defense.
The panel believes that such concentration of support in one agency is unwise over the long run for both the nation and the field of computer science. On the other hand, it believes
strongly that many research activities in computer science require large-scale funding, and that the successful pattern
of support established by ARPA should be continued. The panel recommends that the Federal Government review its policies for the support of computer-centered research and development, with a view towards building comparable programs in other agencies so that abetter-balance can be maintained.
3. The Panel found it difficult to get precise and satisfactory data on overall support of computer related research and development. This report necessarily presents a first approximation of the external government and nongovernment funds available for computer related projects.

Besides supporting the above conclusions, the Board would offer these additional comments:

1. The Board believes that the panel has done a very honest and thorough job with the information available to it. The panel has been exceedingly careful not to exaggerate claims for increased funding in computer science. The Board recognizes the potential danger of not shouting as loudly as spokesmen for other fields of science. We, therefore, must state emphatically that the panel report should not bejconstrued to minimize the very serious effects that decreased funding would have on progress in the field.
2. The Board emphasizes the Panel's conclusion that several mission-oriented agencies, which are consumers of research and talent in the computer area, at present do not support the research and development necessary to advance their own objectives.
3. The Board believes that many important computercentered research and development projects will be successful only if supported on a relatively large scale. One milliondollar project may accomplish much more than ten projects funded at $\$ 100,000$ each. The Advanced Research Projects Agency has been the chief source of such large-scale support. The Board considers it likely that, over the next few years, some cómputer-centered research now funded by ARPA will have to be shifted to other federal agencies
This $\quad \mathrm{impran} \Rightarrow r=0{ }^{\omega}$ whose "style" of research support is quite diffexent.
 If such-transfers-take place, preservithe thalscale of effort imprimet in inindividual projects shouldeemphasized as well as maintaining the overall level of research support.

The Computer Science and Engineering Board intends to look further into a number of these important issues raised by the panel in the coming months.

Sincerely,

DRAFT CONCLUSIONS

NATIONAL PROGRAMS PANEL A REPORT

These pages would be substituted for the conclusions now summarized on Page 3ff. They would appear also in Section VI along with the original conclusion 6 from the Panel Report.

This report is organized into six major sections, with supporting material in appendices.
I. INTRODUCTION AND SUMMARY - P. I
II. SOURCES OF SUPPORT FOR COMPUTER-RELATED RESEARCH AND DEVELOPMENT - P. 4
III. PRESENT AND PROPOSED ORGANIZATIONS UNDERTAKING COMPUTERRELATED RESEARCH AND DEVELOPMENT - P. 15
IV. COMMENTS ON COMPUTER-RELATED PROBLEM AREAS - P. 19
V. CRITERIA FOR THE ESTABLISHMENT OF GOVERNMENT-SUPPORTED INSTITUTES - P. 24
VI. CONCLUSIONS - P. 30

APPENDIX A - PROPOSED NEW PROGRAMS IN COMPUTER-RELATED FIELDS -P.
APPENDIX B - ARPA-SUPPORTED CONTRACTS IN INFORMATION PROCESSING TECHNIQUES - P.

The Panel's conclusions are stated in Section VI. Its principal findings are:

1. The highest levels of Government should examine the formal responsibilities for support of computer-related research and development to achieve a clearer delineation of these responsibilities. The Panel believes that the responsibilities and mission of each agency of government should be examined to determine the nature of their need for computer-related research, development and application. Once such an examination has been made, official and unambiguous assignment of responsibilities for
the support of appropriate programs should be made.
2. Having examined a large number of computer-centered research and development problem areas, the panel believes. that most of the important problems are receiving seriousfattention. present funding patterns are, in general, appropriate and permit continued progress. However, the panel is concerned ower Yiat possible cutbacks in research and development support which would seriously impede efforts to solve these problems.
3. At present there is a greater need for new or increased support in the application of computer resources to various specific missions. Proposers of applications should not expect to siphon off money from basic computer science activities. If computer capabilities are to be applied, for example, in the poverty program, in education, in urban development, and other public areas, then it is important that funds from these areas be used to support such new computer-related applications.
4. From time to time it has been proposed that there should be one massive institute to guide much or all of government sponsored work in computer-related research and development. The Panel believes this would be unwise; it believes that pluralistic sources of funding and points of view are desirable. Furthermore, it is essential for each agency having computerrelated needs to be directly involved in supporting research and development to meet these needs.
5. New institutes or special laboratories should be established only when existing institutions and patterns of support are inadequate to perform needed tasks. The Panel recommends that agencies requested to fund new computer-related research and development organizations examine such requests in the light of the criteria listed in Section V.

Introduction

 1List of Attendees 5
Recommendations 8
Schedule of the Week 13

List of Reports

Reports
Transcript of the Sessions
Bibliography

14
15-64
not included in this draft
not included in this draft

INTRODUCTION

A conference to study computer science education in the United States was held July 21 through 25, 1969 at the Hilton Hotel in Annapolis, Maryland. The conference was sponsored by the National Academy of Science Computer Science and Engineering Board under a grant from the National Science Foundation.

The Computer Science and Engineering Board has been formed to provide a focus for those aspects of the computer field that are important to science in general and the federal government. Attached is a document that describes the purposes of the Board.

The conference was organized to make maximum use of the participant's capabilities in the time available. It is planned to hold all day meetings during the entire week and to focus our attention on two specific topics:

1. Graduate education in computer science
2. Education in software (and hardware) systems

The conference discussions and conclusions may broaden considerably beyond these two areas; nevertheless they seem reasonable for initiating and focusing discussion. With each of these issures there will be two major technical concerns:
B) Content: A thorough study should be made of the content of the undergraduate and graduate programs to be labeled as computer science. Furthermore, an audit of existing programs should be made to gauge what distances exist between what is being done and what should be done. Furthermore the subject of content and standardization should be treated. Similar treatment should be accorded to education in software (and hardware) systems.

It is planned to organize the meeting as a sequence of open plenary sessions with the entire group meeting to discuss the partial results obtained in one of the above areas; and in working sessions divided into working technical groups. A tentative schedule for the two major work groups (Content -Working Group A and Resources -- Working Group B) follows:

Morning

Monday
Introduction
Tuesday
Work
Wednesday
Report
$A \rightarrow B$

Work
Thursday

Afternoon

Work Work

Report
B \rightarrow A

Friday
Final Reading
There are a large number of questions that the conference should attempt to answer. Amont them are:

- Of the reasonabiy large number of graduate departments of computer science now existing, are these programs producing in kind and in number the graduates that are needed?
- Are there needs, insofar as computer science is concerned, which these programs are not meeting?
- Are these programs separating the mathematical from the engineering too much?
- What alternatives to this mode of educational development can be proposed?
- Does there exist a natural education sequence in the field of computer science like that, e.g., in another mathematical science? Thus, how does one characterize education in computer science through the range of junior college, B.S., B.A., M.S., M.A., Ph.D., and professional degree?
- Does there exist a natural education sequence in the field of computer science like that: e.g., in another mathematical science? Thus, how does one characterizc education in computer science through the range of junior college, B.S., B.A., M.S., M.A., Ph.D., and professional degree?
- In the field of computer science what are the goals of the various degrees?
- Is the education program best organized so that students from the lower degree programs provide the major source of the students in the advanced degree programs?
- Will computer science departments become as introverted as has happened, for example, in mathematics?
- How do the programs now in operation compare with those outlined by the study groups such as the ACM Curriculum Committee and COSINE?
- Are the professional societies the appropriate groups to recommend or set curricula? What orderly alternatives are there?
- Are there large problems in software production and use that are largely caused by the lack of well trained software specialists?
- If there are such large problems, should they be solved within a formal education system by educating specialists at various degree levels?
- Or can this matter be best solved by those now responsible for the production of software using on-the-job training?
- Thus, can hardware manufacturers be depended upon to supply the software systems that are needed and also train the personnel to produce and service them?
- Would not software education in a university environment produce technological derelicts since the software problem seems to change so rapidly?
- Put another way, won't the very nature of software make the solutions to these problems be solved by meta software produced by a very small number of specialists?
- If one speaks of software engineering, then why not let the engineering schools and disciplines define and develop the programs?
- Is it possible to meaningfully separate the software problem from the hardware problem?
- How can national institutes of computer science, several of which are now being proposed, contribute to education in computer science?

Other questions will arise during the course of the discussions, but certainly the goal of the conference should be to focus not only on the nature of the problem but to prepare recommended solutions. Naturally, any additional questions that you feel should be discussed will be considered. We would appreciate any fecling you may have concerning the priorities of the various topics which have been raised.

Though it is not required for participation, the attendees would be pleased to receive from you any written comments that you might care to make prior to the meeting. While formal papers are not being asked for, careful organization of your thoughts on these or other related matters would be appreciated. If a working paper can be provided by June 22nd copies will be made available to all the participants to study before the meeting commences. These working papers will undoubtedly provide a strong basis for discussion during the conference.

It is hoped that this conference will provide a reference for the field of computer science -- at least in the two major areas -- that will be a natural first source for information about the field. The conference will be attempting to obtain in one week what the more established sciences have developed over many years -- an overview of the present state, logistics, and future directions of the field. Naturally it could not hope to be complete, but it will provide a first overview of the field that up to now has not existed.

During the conference, duplication and secretarial facilities will be provided for quick preparation of additional working papers and intermediate reports. The goal of the conference will be the preparation of a report outlining the results of the conference. Toward that end, in each of the two areas (resources and content), a chairman and two younger recording secretaries will have the responsibility of preparing the draft of each section, and these two reports will then be coordinated into a final report.

You may be familiar with a report of the National Academy of Science entitled "The Mathematical Sciences: A Report (NAS publication 1681:1968, xiv +256 pages, paper, $\$ 6.00$). This report, and preceding reports by the Pierce Committee and the Rosser Committee are the sole widely based surveys conducted under federal auspices on computer science education. It is hoped that the report of this conference will provide a major technical expansion of the requiements and goals of computer science education.

Please let me know as soon as possible, and in no case later than June eth, if you will participate in this conference. Upon receipt of your willingness to participate in the conference you will be receiving a set of preliminary documents on or about June 15 th. These documents will include the full list of attendees, copies of the above mentioned report of the National Academy and the Pierce Committee, a report of the ACM Curriculum Committee, and working papers as they become available. A partial list of attendees and the groups to which we have tentatively assigned them is attached. I would appreciate additional names of people whose presence would materially improve the conference.

Sincerely yours,

AJP: dg

Dr. Alan J. Perlis, Head Department of Computer Science
enc.

```
Prof. Richard Andree
Dept. of Mathematics
University of Oklahoma
Norman, Oklahoma }7306
Dr. Bruce W. Arden
Associate Director
Computing Center
University of Michigan
Ann Arbor, Michigan
Dr. C. L. Coates
Electronics Research Center
University of Texas at Austin
Austin, Texas }7871
B. H. Colvin
Head, Mathematics Research Laboratory
Boeing Scientific Research Laboratories
P.O. Box 3981
Seattle, Washington 98124
Dr. Ruth Davis
National Institutes for Health
National Library of Medicine
Bethesda, Md.
Dr. George and Alexandra Forsythe
Computer Science Department
Stanford University
Stanford, California 94305
Dr. John Giese
Chief, Applied Mathematics Division
Department of the Army
U.S. Army Ballistic Research Laboratories
Aberdeen Proving Ground, Maryland 21005
Mr. Bruce Gilchrist
Executive Director
American Federation of Information Processing Societies
210 Summit Ave.
Montvale, N.J. 07645
Prof. J. W. Graham
Computing Centre Director
University of Waterloo
Waterloo, Ontario, Canada
Prof. Fred Gruenberger
Department of Accounting
San Fernando Valley State College
Nathridge, California 91324
```

Dr. John HamblenSouthern Regional Education Board
130 6th Street N.W.
Atlanta, Georgia
Dr. Walter W. Jacobs
1812 Metzerott Road
Adelphi, Maryland 20783
Mr. Scott E. Moore
Manager of SDD Technical Education
IBM Systems Development Division
Department H77, Building 962
Box 390
Poughkeepsie, New York 12602
Saul Rosen, Director
Computer Sciences Center
Mathematical Sciences Building
Purdue University
Lafayette, Indiana 47907
Dr. Samuel Seely
Associate Graduate Dean
University of Massachusetts
Amherst, Massachusetts 01002
Professor J. N. Synder
Associate Head of Computer Science
University of Illinois
Urbana, Il1inois 61801
Dr. Robert Spinrad
Scientific Data Sysțems
701 South Aviation Boulevard
E1 Segundo, California 90245
Professor John W. Tukey
Department of Statistics
Fine Hall, P.O.Box 708
Princeton, New Jersey 08540
Dr. John Carr, III
Moore School of Engineering
Department of Computer Science
University of Pennsylvania
Philadelphia, Pennsylvania
Professor Juris Hartmanis
Department of Computer Science
Cornell University
Ithaca, New York

Professor E. J. McCluskey
Electronics Department
Stanford University
Stanford, California 94305
Mr. Robert Morris
Bell Telephone Laboratories, Inc.
Room 2C-524
Mountain Avenue
Murray Hill, New Jersey 07974
Mr. James Rowe
Union Carbide
270 Park Avenue (41st floor)
New York, New York
Dr. T. L. Jordan
University of California
Los Alamos Scientific Laboratory
P. O. Box 1663

Los Alamos, New Mexico 87544

1. We support the second recommendation of the COSRIMS report which we repeat here:
"We recommend that at the national level special priority be given to support of the expansion of research and graduate study in computer science. Appropriate actions would include: special support for developing and updating courses, support for research during the academic year when needed, grants to departments to cover costs of computer usage in research, special attention to needs for space, and expansion of numbers of research assistantships and traineeships to stretch the capacity of all departments of high quality."
2. We recommend that universities, industry and the Federal Government cooperate in the development and support of excellent baccalaureate programs in computer. science. While it is recognized that there may be a multiplicity of such programs at a university accenting different aspects of computer science, it is important that the development of the programs be entrusted to one faculty group that, if necessary, cuts across college boundaries.

Furthermore, we recommend that universities take steps to define master's degree programs in computer science that function to award a degree of consolidation built on the content of solid undergraduate programs in computer science and to deaccent master's programs whose major function is the conversion of baccalaureates from other fields to computer scientists.

Furthermore, we recommend that these baccalaureate programs contain strong elements of laboratory training in the development and utilization of computer systems.

The computer industry should be urged and encouraged to make major contributions to the development of computer science education in the universities.

In particular we deplore the recent trend toward the reduction and elimination of discounts to universities by computer manufacturers for the purchase of computing equipment.

We feel that the advantages to the whole computer industry far outweigh possible disadvantages to smaller computer manufacturers.

The computer industry has a strong vested interest in supporting the university programs that are their major source of supply of trained personnel. It is clearly in the interest of the whole industry to support university computer science programs.
3. Many of the existing and new Ph.D programs in computer science (in addition to that group of key institutions supported by large research grants oriented not specifically to educational problems) are drastically limited by the lack of support for competent graduate students.

At present, because of the restrictions of NDEA and NSF traineeships to already existing science and engineering disciplines, there are few fellowships available specifically to computer science graduate students.

It is recommended that new computer science graduate programs, in addition to those already supported by massive research grants, be supported in their initial and continuing stages by (1) graduate teaching and
research fellowships, (2) post-doctoral teaching fellowships to aid in acquisition of new faculty, and (3) support of new and different computer facilities, such as satellite computers and processors for film and TV animation for instructional purposes, hybrid computers, converters to and from other systems, and new up-to-date equipment continuously being developed as a result of the investment of resources in national research and development through the defense, space, and scientific research programs.
4. It will be essential to the universities and colleges to greatly expand their students' opportunities to learn the essentials and principles of all elements in problem formulation to computing realization, and to be aware of the part that computer science wishes to play in offering such opportunities, and the cooperation of individual departments should be encouraged and supported, and departments with competent and interested staff should be encouraged and supported in providing opportunities for students to gain insight and knowledge in part or all of this area, and all reasonable efforts should be made to encourage interdepartmental cooperation in this whole area. And finally, that both research in the general area of application and materials preparation directed toward teaching deserves support, especially when each is planned to support the other.
5. In order to guarantee that the student body in this new undergraduate and graduate education in computer science be spread evenly geographically and economically across the United States, and in order to make sure that the result of this program is not the concentration of computer science
activity and talent in a small number of key prestige institutions, it is recommended that specific techniques be employed in the distribution of resources to guarantee grass-roots growth in this area throughout the United States.

To this purpose, it is recommended that undergraduate support be distributed on a pro rata student population basis throughout the states, similar to but not necessarily as in the National Defense Education Act, to the intent that students in all locales, including inner city and undersupported schools, can participate in this highly important program that will upgrade markedly the performance and productivity of many individual human beings.
6. Even in a relatively stable field like Mathematics, a strong need has been felt for up-to-date information about the nature of education and research in the field, and the amounts and sources of its funding. These needs resulted in the NSF-sponsored Survey of Research Potential and Training in the Mathematical Sciences (c. 1957), and the reports of the Ford Foundation-sponsored Survey Committee of the Conference Board of the Mathematical Sciences (c. 1967). The later committee is apparently to maintain a continuous inventory from now on.

In the rapidly changing field of computing sciences up-to-date information is needed even more, and is harder to get. Under NSF sponsorship, the Southern Regional Education Board has prepared surveys of college and university educational activity in the computing sciences, but apparently no agency is doing anything similar for research in our field. At the same time, graduate departments have a great need for, but possess very little information on what research in computing sciences
is being sponsored; who does the research, who sponsors it, and at what levels.

We recommend that the NAS Computer Science and Engineering Board seek authorization, personne1, and funding for a continuing research survey committee, with some full-time staff, whose mission it would be to maintain a continuous inventory of research in the computing sciences.
7. It is recommended that the Computer Science and Engineering Board of the National Academy of Sciences make definite approaches to Congress to recommend that in the next budget legislation those funds authorized by the Higher Education Act for construction and the funding of computer equipment be made available to the National Science Foundation and the Office of Education so that a Federal program to support recommendations one through five can become operative on an appropriate scale.

Whtoma Acmony of Sumee ConPronco on Combige Sepures Bduration

SGhedule for the week of 21 JULY 1969

```
Icrgey
    A.f. Concrel Discussion
    F.N. Forelng Grours
            Rosourocs-(finchryat)
            Contont -. (Ifomuckey)
            Whet is Good Devolownsmten (Rrdon)
            Whe vill taach end bin wilh do
            rgesaren in syobonu dorelomarst - (Takoy)
Tusex
A.F. Conmbtoo Ronorts
FH, Forome Goupe
    lesources (Yenjs)
    Goncom (halior)
    Coals and Tools (tarms)
Wgmesmy
in,\mp@code{N Vowning, Broups}
    (sune as Themgat P.N.)
Pur Comatucomagorde
    N00cureos
    Comemt
    Co.ju ame Poois
E:orma fowing growk:
                            An Undorgrdiate Protran in Com,wor, SoLmes
Sonesm
int ram, Sosmon
```

 Combenes on Compuber Sciunce Braction
 30 ? (atoce (Cuthries)
a, Wht is Cood Derolopmot? (irden)

4. Roversirs (formeno)
5. Undmo sexatore Thogretion (bar) (to be added in next draft)

Srione of Compater Econo (Cem)

$\therefore \therefore 6(1,50 x+y(0)$

Report of the Gilchrict Conmitce

WHAT KIMDS OP COMPUTER PEOPLE ATE HEMDED?

Eaclusive of instailations involving special purpose equipment, or eguimment ror specinic spectal purposes (erg:, process control), as well es those involving very small machines, there are on the ordez of 25,000 instalatitons in thes coumtry. Very roughly, they are orgenized by gize and purpose like this:

Sciontiple Comprcind

Laxge	$2000:$	200	200
Neatma	10,000:	5000	5000
Sha?	14,030:	4000	10500

 great a neen es the otimexs for comptent psople, but unfortuntely the proper parion soon noves up. By defoult, thet section of the computer norla bacones staxica by pooriy trainea peopie.

For the pirst tho groubs, then, the peogie to be tratned tall Into thone crompines:

Remearonere
Systoms hanymes
Sybtam Progrmans $\frac{\text { lange }}{}$
Aphications Brognemara
Usex/Programers
Usery

The dictinction betreen large and small in this outlint wes made by Glichrict: those who quelioy as "Inerge" con modty 08360

 the reavite ane correcto

Scott Movie eugested a breathon of people nocds a drement way, Given tu the following outhine:

DEFELOPMBT Develors these tools and how to use theme Also noeds caperts in barmare
(sothame
(combiation or tho two

so do wich dete.

Hon to $\left.\begin{array}{c}(\text { select }) \text { a myeny. } \\ (\text { use }\end{array}\right)$.
Fich to measure extertwonems.
-2
man al tixec grame hea with both theory and peaticed arozications.

Computer beitence an a discipzine is concerned with mon involved with the theoretical destign of tools and ciplications of theme As an industry (the comitioce egred that it is not, a proxession): sone 500,000 poople are engrged move or less full time, but it has

 person doen an employer look fon and hite? He listea thene specinicutiona:

1) A certain gleora in the eye, vaguely defineti as rotivation.
2) Sone moxleate of the machunce of computiog; erge, the opplicant has tran owa compater prograns.
3) Problem solving adeptibinityo

4) Ability to be selpocretical

The belance of the comation'g then was spent Intraing to Prop. Grahata description of the inotaing wogran at the ynivexatoy of Watavoo. The Comittee recomanc wht be be aksed to repeet this descruption sor the eative erous.

Wer io Cood Sutat Doviocot?

Combtoc lowast, Drates Arden, Chavinan

"Fo

 the nyem.

 Tonking, zawe brature

 W,

 6xamames.

 Sas doocrigton

PROBLEM FORMULATION AND MATCHING
A VITAL SEGMENT

If we are to realize the potentialities of computing systems at a reasonable rate, we must look forward to the education and development of men and women across a very broad spectrum. It is easy to recognize the inevitable needs for certain kinds of people, such as:
-researchers into the understanding and expansion of what algorithms and computing systems can do.

- systems programmers competent to guide, lead, and do the development of major software systems.
-operators and routine programmers to run tens of thousands of installations.

As we attend to such clearly recognized needs, and, as well, to such crucial needs as increasingly effective attention to "wholeware"-to the hardware and software of a computing system as a whole -- planned together as well as working together. We must not forget the vital segment of the spectrum associated with matching the problem to the computing system.

Problems do not arise in forms suitable for attack by computing systems. Those that seem to us "just made for a computer" came to that state by much human effort. If we are to tackle new problems -- or new versions of old problems -- effectively, bravely, and pioneeringly, and successfully, it will be because individuals or small groups have done a good job of problem formulation, because individuals or small groups
 to aedi emecdively :ith these vell bad carefully zomadated problem?

Neよthos phe ci this task can be dors mbolly nlone:
-Prob.an Puchajation oitell requareg both repanise txizl and eaplonction and ineightyun wnderstadtag of wat convating facil?ties are reslly at hand.

 tride to lise thun the gren poxalation.

Rocomengotion:

It will be essential ion uno miversities and colleges to ereatly

 conputing reolenatima.

Recomenction:

 such opportanttes, or t'; cooperate in offerdre then, that deqamanat Bhowld be espactoly enciaraged ard eupported

We fee? jt romle be 马ajt uncalictje to expect ali zepanoment

Recommendation:
Other departments with competent and interested staff should be encouraged and supported in providing opportunities for students to gain insight and knowledge in parts of all of this area. All reasonable efforts should be made to encourage interdepartmental cooperation and co-working. If opportunities are to become widely available, there will have to be significant investments of time and efforts to develop materials ranging from case studies to organized presentations. Research into the credentials of how these problems are effectively formulated and brought to computation can and should have relation to mutual support with the efforts to develop materials.

Recommendation:
Both research and materials preparation deserve support, especially when each is planned to support the other.

 antan \therefore 的
\qquad
\qquad
A..
Inas then wo
onstar

The principal advantage of the retreading approach is the specde up in creating new computing experts over starting with conventional now graducte work. One cost would be the substanially lareer salarles reguired for post-acctorel stwdents than for graduate students. If there vere an overlosd of, say, 100 post-doctorsil students, there would be a substantal cost in finding faculty marbers to deal with them.

That has been scid about physiciets may anply also to matheraticians and, with lesser force, to some other fielus.

Recomenction:

We therefore recomend that great attentaon be paid to the opportunty for creatimg appilcations programiars, systems progitamere, and conguter scieace faculty and rasearch persons by retreation zeent Phodus in other riclas.

22 July 1969

A POTENTIALLY LARGE MANPOWER REQUITEMENT

The offect of commercial time-sharing on manpower requirements for "professional" computer personnel will be a highly important one. For the first time, highly competent professional help will be given to those 15,000-20,000 small installations around the country using lower cost computers in small data-processing facilities.

For the commercial time-sharing groups to compete effectively, they will have to specialize their services for some segment of the organized technology, for example: machine tool tape preparation, type-setting ard hyphenation, wholesale accounting, small-scale inventory control.

Each of these time-sharing organizations must have highly effective computer systems programers to develop languages, generalized routines, "hand-tooled" algorithms, etc., to satisfy the individual needs of the user.

Users will try competing services against each other for cost, speed and breadth of capability. Those time-sharing commercial groups with the most professional staffs (all other characteristics-management, marketing, etc., being equal) will survive this very intensive compotition.

It may be that the $15,000-20,000$ small machines, most of which do not have any professional computer staff, will be merged into the commercial timo-sharing networks, with this many ($15,000-20,000$) professionals needed to work for them indirectly. These men and women must be professionally trained in structure of time-sharing systems, managerial processes, data structures, operating systems.
J. W. Carr IV

Monday, July 21, 1969

The Need for Increascd Education in Software Engincering as a Subset of Computer Science

One prosently arising class of computer problems differs in both quanity and quality from those that havo boen most important up until now. Such problems are characterized by:

1. Large size
2. Complexity of structuro
3. Lack of formal descriptions
(here follows one or more furthar characteristics)

Examples of such problems today include operating systems for largescale computers; manufacturing systoms for large aircraft; construction, retrieval, and analysis of large data bases; air and ground traffic control; management information systems, command and control systems; (here follows a list of other problems)

These problems fall into a category that represents an important area concurrent to and perhaps a part of computor science. The study in and of this technology has been proposed to be called "software engineering"; some of what has been called "systems engineering" or "oporations research" falls directly into this problom area.

Such systems have in the past been organized out of groups of human beings as control elemonts, human-accessed data storages, and direct human consunication. The coming of the computers, as woll as the expansion of applications of physics and technology, now requires effectuation and autbmation of systems in winich humans can no longer play a dotailed pari. Where in the older system they served as local control elemonts, the rosponse timo and data rates required no longer allow this participation.

Such systems must now be developed by toarns of human beings no one of whom, in genoral, can view the problom as a wole. The digital computer now sorves as data storaga, communications device and monitor, control element, and manager of the overall activity. Humans intorface the system and must be satisiactorily servod. The systems are characterized by large numbers of program steps, complex mappings into present-day computer structures, and need for optimization within a sot of complex constraints.

The design of such systems, and their prototype construction via compliter prograins, is today in its infancy. Examples up until now have ranged from successiful special purpose systems for one-problem applicationzs (such as airlines reservations) to less successful gereral purpose systems for improvement of computer utilization (such as batch and time-sharing operating systems.)

It is in this area of design and development of large computer progiams for such large systems that there appears to be a lack of organized instruction in higher ciucation, here or anywhere, at the prosent time.

Without the educational dovelopanent of persons who can work on the computeroriontud portions of such problems, the problems will be able to be attacked only on an intuitive ad hoc basis. It is expected that the fundamentals of computor science will serve as a scientific basis for the education of such persons, but
that special areas and tools of application musi $2 l$ so be taught.
The products of such an educational curriculum will serve as the cadres of the teams that will construct the computer program portions of such systems. (continue)

One of the requirements of such an educational experience is the availability of an effective laboratory oxperience. (continue)
"Software engineering" is not a good phrase and its use should be discouraged. The reasons are as follows:

1. Hardware and software are intimately related. Ten years from now many functions that are now handled by software will be either hardware functions or shared hardware software functions. The term "software engineering" emphasizes the distinction. It is very important to emphasize the interrelationships. "Computer Science" is a far better term for this than "software engineering."
2. A curriculum in "software engineering" at a university would of necessity be housed in the School of Engineering. This could create great confusion in schools in which Computer Science is not currently housed in the School of Engineering.

Purduo Hasters Dogree Progran in Compace Sejonecs

There are /f mojor areas:
J. Nworjcol Analysis

3. Systena
4. Applicetion aroes.

 of Legic and Aviometa and the foclowing Syeteng comper:

1. Compucor Oxemientior:
2. Piograming Iangugea
3. Comptiors
4. Oparating Systom

They ain are cake 2 or 3 course in the a, pitwo ors ace, Courses in appicetions inclupe:

1. Informetion Retriova3
2. Artificisi Intolligenes
3. Simulation
4. Nathematicel Progranatis
5. Computer Oramica

 courrontiy cacomraged becauce of stapping problons.

 Engineosing.

Noto thet charo aloo miste a now josit anotom a aroo porma betwon Comptor Scionco en Trdererich irmacenort.

REPORT OF THE RESOURCES COMMITTEE
Dr. Alan Perlis
July 23, 1969

We have a number of figures and tables which have come out which might be of interest. In education, for example, the University of Waterloo has chosen to commence with the Bachelor of Science program in computer science and to develop from that upward to the MS and Ph.D programs. In the United States development in the opposite direction has generally been followed. It is recognized by Waterloo that the first approach, their approach, is a somewhat more difficult path to follow, it being more difficult to upgrade a Bachelor's program than to downgrade a Ph.D program.

However the committee strongly feels, and this is the first recommendation, that major educational efforts should be spent in the development of Bachelor of Science programs in Computer. Science in the USA over the next few years. Furthermore, the committee concurs with the Waterloo experience that the program should include significiant amounts of practical, handson experience with real computer systems problems. Hence the committee feels, and this is a second recommendation, the BS program will be greatly aided by and should include laboratory courses and/or cooperative ventures with industry and government during the school semesters or over summer periods. The committee does not feel that the development of MS programs has the same priority as the two extremes, BS and Ph.D. Indeed, the MS program contains material only superficially different from the BS program and serves mostly as a springboard for those switching fields and as consolation prizes for those unable to complete $\mathrm{Ph} . \mathrm{D}$. programs. The
committee next considered the needs of the non-computer scientist being educated in the universities, since it became clear it would not be feasible to educate as many specialists as one might need in this field in the next 10 years. The first calculation we made we call the Waterloo computation. At Waterloo there is an IBM $360 / 75$, costing 125 K per month. Student jobs account for $1 / 10$ of the system time on that machine or if you will costing about 12.5 K per month. Considering cost in the support or overhead equal to that of hardware we have a cost of $\$ 25,000$ a month for student jobs. For that cost the productivity is 5,000 runs a day or 100,000 runs per month. Considering a productivity of four cracks at the machine per problem, this means that that system is capable of absorbing 25,000 problems per month. Consequently, given a student population size and a number of problems one can come up with various estimates as to what it costs to provide undergraduate computer experience for the noncomputing specialist, i.e., someone who does problems of a relatively small size. We came up with one figure assuming 25,000 students in the university of one dollar per problem per student per month. The size of those problems is that their programs are limited to one second of cpu time and the students are not charged to disc file time but they generally do, not include much file work.

We might at some later time have a few words to say about the overall picture of the way the system flows at Waterloo. In any event over a ten month academic year a system of this kind could support students giving them 10 problems over an academic year at a cost of 10 dollars per student per year in a 25,000 student population which almost reaches the student population of the largest universities we have in the United

States today. Now this figure is substantially below the figure in the Pierce report which runs closer to 50 or 60 dollars per year. That means if we wish to attain the Pierce report figure we could have the student doing 50 problems per year, which is probably much too heavy a load for non-computing specialists!

Now this leads us to make a third recommendation. We recommend that funds be made available so that a cost analysis study can be made of the specification and use of various systems for handling bulk student jobs for the non-computing specialist at different student population levels. It would be hoped to provide a study that would say - at the cost level at which we have spoken, given a student population of 1,000 , system A would provide computation at the rate of $\$ 50$ per year at a level of between 10 and 50 jobs or problems per year. At a student population of 5,000 system B will similarly provide at 10,000 system C, at 30,000 system D, etc. Such a specification of systems is not now available to the educational community. Of course, these systems need not be unique. There can be many systems in each of these four categories. Neverthesless, it is the feeling that at all four of these student population levels, 1,000, $5,000,10,000$ and 30,000 , systems can be found which are of economical comparison to the Waterloo system.

We arrived at an estimate that to turn out 300 Ph .Ds per year in computer science, we were talking about an estimated machine cost of $\$ 9$ million a year. This is the machine cost required to support Ph.D theses and Ph.D education at the level of 300 Ph . Ds per year. Thus: to produce 300 Ph . Ds per year it is estimated that it will take 30,000 dollars per $\mathrm{Ph} . \mathrm{D}$ in machine time or a total of 9 million dollars in machine time
for the $\mathrm{Ph} . \mathrm{D}$ production of 300 Ph. Ds.
For the Bachelor of Science program in computer science, assuming six courses in their program that are in the core of computer science, thus not counting auxiliary courses, and an education program that will turn out 15,000 B.S. computer science students per year, a figure of 15 million dollars per year in computer time was arrived at. The calculations will be laid out in more detail in the report.

For the Master of Science program, a figure of 5 million dollars per year in hardware costs was obtained.

The total cost in hardware is 29 million dollars per year. One of the figures that we used was that the EDP industry would be taking in about 100,000 people per year. What percentage of these should be Ph.Ds? Figuring that one percent should be Ph. Ds we get a desirability of producing a thousand Ph.Ds a year. Our feeling on the matter was that by 1975 we might be able to produce 1000 Ph.Ds in computer science, but that we would not be able to produce 1000 Ph.Ds per year by 1975. If you can get up to about 300 by 1975 this would be about what we could expect. It seems to double about every two years.

From whence comes this figure of 15,000 BS students per year? Is it attainable? At the present time in engineering and mathematics the output per year is of the order of 50,000 . Now assuming there is no major change within engineering and science schools but that quality computer science undergraduate programs do come into being, how many of the 50,000 per year could we siphon off into computer science? We believe that we could without a great deal of heavy advertising or pressure of any sort get 20-30\% of the present undergraduate enrollment that are now in mathematics
and engineering programs diverted into computer science programs, if there were existing quality undergraduate programs in computer science. That means of the 100,000 per year that are required in the EDP area, 85,000 are probably going to have to remain or be non-computer science baccalaureates. We also made an estimate of computer science faculty costs and came up with an estimate of 45 million dollars per year for that part of computer science faculty costs devoted to computer science education alone at the three levels being well aware, of course, that there are other costs associated with their education outside the computer science department. But we're talking now about cost of a faculty of about 1500 . Waterloo argues that they are producing 200 Baccalaureates per year to service 1,000 computers in the province of Ontario. There are 67,000 computers in the USA. Consequently, if we assume that the ratios are comparable, this leads to 13,400 output in the USA to service these computers, if we adopt that ratio. This compares reasonably well with our 18,000 figure.

John Giese came up with another set of figures arrived at differently from the figures just cited which tend to corroborate this level by about 1975:

A conservative estimate of the prospective demand for the products of the Computer Science educational system.
A. In the long run the overwhelming majority of computer science graduates at all degree levels will go to non-academic employment. For the estimates we shall make later, we shall need to estimate the number of "computer science" positions which should be filled with computer science trained people if possible at computer
installations in the U.S.
(i) It has been said that there are about 67,000 computers in the U.S. in 1969.
(ii) Let us assume the following distribution of sizes of installations and staff.

SIZE OF INSTALLATION	LARGE	MEDIUM	SMALL
NUMBER OF THIS SIZE	1000	10,000	56,000
AV. CS EMPLOYEES PER INST.	100	30	3
AV. NO. OF PH.Ds PER INST.	5	1	0

Then the desired number of TOTAL "CS" EMPLOYEES $1000 \times 100+10,000 \times 30+56,000 \times 3=568,000$ and the desired number of TOTAL "CS" PH.Ds $=15,000$.
(iii) These positions are not now filled by computer science graduates. We assume it would be desirable to replace them gradually by computer science graduates to upgrade the computing profession
B. Let us assume that the computing profession remains static at about this level, i.e., that increases in efficiency make new people available for an inexhaustible set of new problems. Let us assume that we have a rather rigid slowly varying working population, like the Civil Service. This may not be too unreasonable to assume, since these professionals might become union-organized (as teachers are now). If we assume a working life of about thirty years, then in the steady state we shall have to replace about $\frac{568,000}{30}=19,000$ "CS" employees per year and about $\frac{15,000}{30}=500$ "CS" Ph.Ds per year.
C. Composition of 19,000 computer science graduates.

If we assume that about 20% of these graduates seek advanced degrees, this means about 4,000 advanced computer science degrees per year. If we claim 500 PH .Ds per year, this leads to a need for

500 Ph.Ds
3,500 Masters per year
15,000 Bache1ors
in the computer science area.
D. Conservatism of this estimate.
(i) The assumed static "CS" employee pool is about $\frac{500,000}{200,000,000}=0.25 \%$ of the total U.S. population.
(ii) 19,000 graduates per year is about half the number of engineering grads $(40,000)$ per year. That doesn't sound unreasonable. Computer technology should be about as widely appliable as engineering.
(iii) For comparative purposes consider the fraction of our manpower resources devoted to medicine and associated subjects. We produce about 9,000 physicians per year. They must be backed up or supplemented by about 18,000 nurses, technicians, dentists, and various forms of physiologists, etc. As a guess, about 27,000 graduates per year are devoted to problems of health.

You might argue that since medicine absorbs a fairly small fraction of our economic output, and since computing is (or will be) involved in all of man's activities, including
medicine, perhaps the output of computer science graduates could safely be increased to the level of medicine (and associated graduates) or 27,000 eventually.
(iv) Some "CS" enthusiasts assert that the growth of "CS" jobs may be 100,000 per year.

In a steady state process, with thirty-year working life, this would lead to a CS employee-pool of

$$
30 \times 100,000=3,000,000
$$

If the population of the U.S. remains static at $200,000,000$, this would mean that the pool would contain about 1.5% of oúr population.
E. You have Bruce Gilchrist's estimates of staffing requirements to provide faculty for these hordes of computer science students.
F. Nothing has been said about the provision of refresher courses for the people in the pool who will constantly become obsolete. If you provided a "refresher" or updating course once every five years, this comes to 0.2 course (three weeks?) per year. Even if you restricted this updating to the lucky employees at the large and medium installations, somebody would have to provide about

$$
0.2 \times 400,000=80,000
$$

student courses/year. Even if these things operate at 100 students per section, you would have to run about 800 refresher course-sections per year.

If we aren't so generous and send only 10% of the pool to refreshers, this cuts the total to 80 course sections per year. That ought to be a tolerable burden for the educational system.
G. Nothing has been said about providing computer "service" courses for non-computer science students.

The other computations I performed are very original notes merely paralleled (for very assumed populations) the calculations of Gilchrist. I have therefore not repeated them here.

It may seems ridiculous to staff the small installations with graduates. To handle this I suggest that we reinterpret our imagined program. Let us say that we provide instruction and facilities to produce 190,000 graduates per year. If about a third of these drip out after the first two or three years, they would probably have to be content to work at the small institutions. Actual graduates go to medium or large places.

I would assume that the computer industry would be included as part of the large installations.

One final point. The figure of 15,000 baccalaureates is considerably lower than we would like. Arguing that 100,000 entries into the EDP area a year are needed, we figure that 25,000 come from business schools and industrial administration programs, 25,000 by upgrading from their current positions. This leaves 50,000 coming from colleges, and we're only providing $1 / 3$ of that. That means that 35,000 are going to come from a lower educational leve1 than baccalaureate computer science programs. Jim Rowe mentioned that one of the consequences of providing 15,000 baccalaureates in computer science will be a temporary diminution of the number of people needed in the field. But we all agreed that this diminution would be temporary. The more trained people that you have presumably the less total number you need. However, Rowe felt that he would really prefer
that all 100 K came out of baccalaureate programs in computer science.
We merely want to point out that the figure of 15,000 per year is, in our judgment attainable right now, if baccalaureate programs are introduced.

John Giese
J. W. Graham

Bruce Gilchrist
James Rowe
A. J. Perlis

Education in Computer Science

We see Computer Science as a coherent academic discipline. The educatod Computcr Scientist will be trained in both hardware and software-the inextricably intorwoven elements of his field. Graduate study will, at first, lead to a broader understanding of complex hardware/softwaro systoms. Further study, (to tho Ph . D. leval) will naturally lead to a more penetrating specialization.

Wo believe that there is a core of knowledge fundamental to the undergraduate's education and independent of his future course of stidy. For this reason we specifically reject the notion of a "homogenizing" entry year of graduato study whose object is to correct the deficiencies (soft or hard) in the student's previous education (hard or soft). For this same reason we reject the concept of two educational paths-- one leading to a torminal professional degree ard the other leading to further graduate study.

We find no compelling reasons that lead us to suggest that Computer Science is appropriately placed within any particular classical academic discipline. Our strong concern is that in a given university, there bo only one undergraduate progran concerned with the science and engineering oi computing. (A student wishing . to enter Computer Science from an "adjacont" field will have the traditional academic remedy of "making up" the neccrsary prergquisites.)

In broad terms, the areas of study we consider essential and at the core of tho Computer Science undergraduate program aro:

1. Mathematics
2. Subsystem Design
3. Physics
4. Hardware Tochnology
5. Prograrming
6. Logic Design
7. Software Structures
8. Computer Organization
9. Compiiers
10. Systems Programming
11. Computer Systems Laboratorios
12. Systems Applications

These are, of course, in addition to the fundamental education traditional to the undorgraduato curriculura.

We consider the laboratory-oxperimental aspect of the training of students in computer science to be vital to their development. We therefore recommend the establishment of computer systoms laboratories as part of the curriculum of both undergraduates and graduates in computer science.

There are many substitute plans that could conceivably serve to fulfill the same purpose as the computer systems rescarch laboratories, e.g. sumner amployment in industry, cooperative work projects with industry, or part-time employment in a computation center on campus. Each of these alternatives was explored by the committee and considered to be difficult for one or more reasons. Principally, these substitute plans lacked the supervised directed planning of an organized laboratory. The success of any of these alternatives is quite personnel dependent.

In the laboratory course the students are expected to work in a team of about six students under close supervision of the faculty member and teaching assistant. The student team is expected to concentrate on design, documentation, scheduling of their work, performance evaluation, efficiency, orror recovery, diagnostics, maintainability and other features of a well-engineered system.

It is expected that each student should take the equivalent of two of the below laboratories during the course of his study.

We propose the following computer systems laboratory courses as basic to a graduate computer science curriculum:
C.S. Lab. 1. Construction of Assemblers and Computers
C.S. Lab. 2. Construction of Operating Systoms
C.S. Lab. 3. Construction of Terminal Systems (both typewriter and graphics)
C.S. Lab. 4. Construction of Switching, Communication and Process Control
C.S. Lab. 5. Construction of Large Data Base Systems

In addition, we consider two additional laboratory courses that could be given in addition to or in place of the above five:
C. S. Lab. 6. Managoment of a Computer Facility
C. S. Lab. 7. Construction of Large Application Systoms

The above laboratory courses, particularly the first five, are graduate level courses given concurrontly with or following a lecture course covering the subject matter. It is intonded that the lecture courso cover the theory, models, and formal aspects of the subject matter. The associated laboratory is intended to provide the student an experience that will sharpen his understanding of the theory and, so will, have given him an understanding of the practical problems of implementing large systems.

The companion lecture courses associated with the above listed laboratory courses are given below:

Laboratory Course
C. S. Lab. I.. Construction of Assemblers and Compilors

Lecture

Lecture course such as I5 and/or A1 from Curriculum 68, A Report of the ACM Curriculum Conmittee on Computer Science. Includes dofinition of formal grammars, arithmetic expressions and precedence grammar, algorithms for syntactic analysis, recognizers, semantics of grammar, object code generation, organization of assemblors and compilers, meta-languages and systems.
C. S. Lab. 2. Construction
of Operating Systems
C. S. Lab. 3. Construction of Terminal Systems (both typewriter and graphics)
C. S. Lab. 4. Construction of Switching, Communication Systems, and Process Control
C. S. Lab. 5. Construction of

Large Data Base Systems

Lecture course such as I_{4} and/or A2 and/or A3 from Curriculum 68. Includes operating systems characteristics, structure of multiprogramming systems, structure of time-sharing systems, addressing structures, interrupted handling, resource management, schoduling, file system design and management, input-output techniques, design of system modules, sub-systems.

Lecture course such as I4 and A6. Includes text oditors, string manipulations, data structures for text editors, job control languages, data structure for pictures, syntax and semantics of torminal and graphics language, control of the console system, meta-languages and system..

Lecture course such as I/4 and/or A2 of Curricuium 68. Inciudes traffic control, interprocess comnunication, system interfaces, realtime data acquisition, asynchronous and synchronous control, telecommunication, analog-to-digital and digital-toanalog conversion.

Lecture course such as A5 and A8 of Curriculum 68. Includes organization of large data base systems, data organization and storage structure techniques, data structuring and inquiry languages, searching and matching, automatic retrieval, dictionary systems, question answering.

Those laboratories will require a certain amount of "hands $2 n$ " use of a subsiantial computer facility. In some installations it may be possible to carry out the entire project in a subsystem or partition of a larger system. In that caso the uso of the subsystem would have to be dedicated to the projoct for a substantial portion of tine.

We believe that a team of six students can be given a very significant experience for $\$ 1,000.00$ per student or $\$ 6,000.00$ for the whole team f one-quarter laboratory.

These laboratories are presented as examples of laboratories that might be given. Each school will have different staff and facilities available and will present variations on this proposal. The important emphasis is the supervised hands on experience with attention to the practical aspects of the system.

Subcommitteo Miller, Chairman Coates Andree Gruenborger Spinrad
\therefore A. Forsythe Seely

Ir. Ancirec

A CRNDUAS CURRICULU: IN THE VAROOUS COEPUMIIG SCIEICES

The initians IrCS used in this paper may be read as Informatic: and Computing Sciorces or as Inforration Science or Computer Scienc an as any otio. phrasus that describe the science and the art conce: ded
the study 0 on the complex structure that surcounds computers.
"re phiase "computer Science" will contirue to have chanciny Qunious as stano interests and abilities change. The comanttee 20co,jnizes that valid graduate mocrams may dizer nidity in struct e,

\therefore. \because e core of a suadute promam in ItCS shoula contain a blend of Pure theory (Math, Physics, etc.)

Haramare-software systems
Laboratory experience involving both hardware and software

Applications of existing hardware-software systema to realistic problems from various areas

Administrative management (operations research) minis shouid provide an extension (not a repetition) of the süadits'uncersraduate experience.
2. A person wo holds a master's derree in ItCS should be able to irad and understand (with reasonable effort) more than half of the articies in his area of speciritzation which are printed in the existins computer related journals. A person with a Ph.D derrec
should be able to understand a much hisher percentage of the articles in his area and in related areas and should be able to create simjlar journal articles.
3. A student whose primary interest is in an existinc discipline (electrical engineering, chemistry, mathematics, business administration, industrial enginecring, economics, (tc.) should continue to earn the $\mathrm{Ph} . \mathrm{D}$ degree in the appropriate department possibly with a minor in Information and/or Computing Sciences rather than creating myriad diverse $\mathrm{Ph} . \mathrm{D}^{\prime}$ s in the "Applications of ItCS". The Ph.D in ItCS should be primarily for students interested in computing (including hardware-sof'tware and abstraci theory) rather than in the applications of computers to researci and work in other specific areas, vital as this may be.
4. (a) The masters profram of the person who will become a "professional practitioner" of the computer art should not differ markedly from that of the pre-Ph.D in ItCS.
(b) There should be both undergraduate and graduate "service courses" in I+CS which include appreciably more than mere programing in compiler language. They may be the same or different courses from those of $4(a)$, but should be substaniial in nature and include an understanding of the basic concept: of hardware-software inceriace as well as related elementary theories. Possibly there should be a second, very broad orush masters dessee for students from other disciplines who will then return to their own disciplines either for employ ent or for further training in that discipline.
5. Courses in coinputer related subject matter which are currently being well taught in existing departments should continue to be taught by those departments (possibly with crosslistinc). If new courses are needed, which existing departments are well qual fied to teach, they should be urged to do so before the I+CS departme it undertakes additional teaching duties.
6. A department of ItCS should be aware of the publications related to curriculum including at least
A.C.F. recomendations in Curriculum 60
C.U.P.M. recomendations for a curriculur in Oomputer Science
D.P.M.A. recomnendation for certified Data Process Certisicate
A.C.N. recommendations for a curriculum in Busines: Data Processing (being prepared by M. Tondow and others)

COSINE recommendations on Engineering Computer degrees (now being prepared)
7. Students of ItCS at both the undergraduate and the graduate level.s should have both theory courses and related laboratory experience (the critical word is related) which will focus their attention on the organization, implementation, and documentation of larger scile computing systems.
\&. [Your suggestions are welcome.]
9. The commit tee hesitates to recommend specific course material other than that suggested in 6 above, but does sincerely recommend the creation of two courses not readily available at present. a. Discrete mathematics (with an awareness of computers) To contain material on matrices, probability, logic, graphs, conbinatorics; automatise theory, computability, linguistics and pas sibly some simulation theory at a level suitable to build on the students' undergraduate preparation, but not in such depth that a reasonable selection cannot be completed in one or two terms. Suitable references for future reading: are essential.
b. Basic Computer Components (hardware and software)

To contain current information on hardware-software interphase and their symbiotic relations and hangups as well as possible near future chances. Should be possible in one semester.

7/20/60
Dosem

Wo whooe that compure sotence is coine to be the handuation of
 mach that rivel hman problens con be colved.

Whe whin coals of grogress in comotiton suionce aphy broadyy to computation, compthen ybtoms, and computing poocosses. We an convonionty in imbity siu such fonlo:

Ganhmy thatguthrourh orenaination
Gotntrg Sactual monledge
Atwanam not feastbitittos
Tmororomatit of procuctivity
Beひter intoraction mith peopio
Ryon of tandeht
The whmobon and beocoth of those wons on be botesn apereciated

 nuseroe.

Gonins thatht throurh orongraton

1. Develop a Pomal Iamgage hich con wembigously and ayobomotcaly

 sombume.

2. Symbmatise the wothods thot haman botars we to woive poblens.
S. Devolop bacmat mobodo for dogabtiae deta and incruction

 ase abmio.
 mydome.

Geinine faccuat hnowiodeo
t to 5. Detemino tho problem

- paravjol computors onzioncios of:
- associabive monowies
- distributed Iosic rachinas
- momonycentened computor systoms

6. Dobarina *- ramplea lawuages

 O. llow much mong itulty elowedts.
 9-10, That it waco.
9.2t, That is tho loast amome of monk (ow stomere) regrived to comyter singtion x

Ten Condothtites - Ittonat

Int: Domplop an adoquace fanguage fon dasonibing:

Ianouge:

$$
\begin{aligned}
& \text { - Iancuagos } \\
& \text { - data } \\
& \text { - Eraphic objactio } \\
& \text { ooc (oxsoctrve } \\
& \text { ard hongy abobraic mamol mandmulatom }
\end{aligned}
$$

\% Whd out how a compore can hove very hast access to a monory of 10^{9} roveds on wowa.
\therefore Woern how to plon gytoms and progens that aro mon move likely to allow oasy incration of verpected chancer.
9. Develop precise cescriptions of this and that.

2. Trplenont cood intoractive data analygis.

2wn Devolop sy tom automatins:

- the anematime of elenatary analysis
- the solmbions or ordinary difocontial equtions
.. the golution or incroesingly laree chassas of partian diterontiat equations

3. Pactuce an ofective algebraic swbol mampuntion probocsor.
4. Produce a progrow bo play chempionenip choes.
5. Lamane to onoctively insmumt compuer systoms to identing
 ray regure us to restructure our aytens.)

6. Ind beter nothods for degriving heta and instuctions.
7. Fin out how to gymocige hra-quathy wisul wagos (ty on rovio qualimy.

Ler Seasibstitios - oremay
 fachithes rocdod to allon a mobot do operebe efectively in enviromronts hostile to hume (hass, deop oceos, cte.).
 bankeint to orarate an nutomobje in ordinamy bajeto.
F. and b Devolop Sechnicuen Sow:

- sueech zroognituon
- leri-uhur bpeint recocnition (as a substitute for sicuatwes)
$5-7$ = Find autombte rethods of intoppetation for:
- medscal romays
- EKG:
- bubbiemonemen picturos
B. Tmplowon mochanioal wanmabjon betweon natura lamgages.

THPOUBGM or ponucron

This is a gonl of gueat invortonee, toward mioh prozrass is usualiy made tin onemare steps.
3. Bocistraphing fron eagy probloms to hand probloma.
\therefore When to intenntot and wen to compla.
3 . Then to bind ance then to jeave areo.
$\operatorname{Bac}+0 \operatorname{tact} \mathrm{H}$

- whent processes
- the broin

3 and \therefore Contribute to the dovolopment of affoctivo

- sonsoxy prosthepos
- incollcobur prowhesos
 Rotatomip mote poote

I and 2. boan more cboti hum input/output copobititios, incmaing:

- Wacretondime tho potentialitues of gaphse tumut to hamen thtortion.
 mochontsm, and the posctbibity of explottinc this as a compuras invut.

One presently anding daes of computen poblom dineore in both quontty and quatioy trom boose that have been most importand up untit no: Such prohtens are charactoratrod by:

ㄱ. Tange gise
2. Complewity of vomoture
3. Tact of Somat descrations

L P Possibla rentwine roguxemento

6. Sonsontry hongine deda baect

constrinction, zecriovel, ad analysis of large data baces; aje toreic contol; magenm insomation systoms, comand and entrot systom: (howe follows a ziss on other problems)

These problens foll into a catecony that roprosents an impobant aroa concurrent to and perhaps a part of compater scieroe. Sono
 falls directly ixeo this problen area.

Such systemg hove in tho distanc gast boon creminod out of eroups

 as the oxpansion of applications of phystos and tecmologe now requines effecturtion (and automation) of systens in mion hums van no Jongon play a detailed part. Where in the olden aystem they eoxpod as jo0et control oloments, the response time and data racos regutred no longer allow this pertionpation.

Such systems mast now bo developed by coans on human betmes no one of thon, in foneral, can vien the probion as a mote the oftitot
 control clewent and nonger on tho oremil activity. Tho armern are
 and noed for ontingetion whin e set on sompor conctrants.

Tho dowion o? such systone, whe thotr protowne conotwencion via comutr brocram, ta today thets infoncy. Eramben up untin now have rarced from muccosant spectal purpose symben foz onomproblea erplications (such as aimlines resarvotions) to ?ess succenant genomat. bumpor vyotone fon impovenont on computen wtitration (such as batek कhe timen waring onerating nymens.)

Its in in this area thet there appears to be a lack of oromined

Whohout the oducetional dovelowent of porwone tho can worli on
 abio to be atbacked miy on a case by cose basis. Tit is expected

 tond ar moticadion mut also be taught.

The probacts of wuch on eductobong curioutun what sore as the cadmes of the tows that will combtact the corputer promen nowbone of wheh sivemen (combinu)

Heboratice
*Logic

```*HIcebre (39?-.
```

Analym:
Geometry (Inear, projectiva)
*Thfomation/comumications theory
**Probabiticy
Hethometion soigeos

```*hathometcal suctistica
```

W放ana Analybis
womations recoaveh (quombtheory, optimination theory,
monich of experimonts

Whinocting
Solide atote dovieon Computor ciroubs

```Computar momosen
```

Thochatod encomocking


```
Ewgholeg
    Towminc wowy
    Conbeal. nowvom symen
    *W/O channola -. to/hom monomy and tnouition
    *aprobmaramvins
    mporeptnal rechanismom-cosialt, ete.
```

$$
\begin{aligned}
& \text { Aroso of antication } \\
& \text { Any/all } \\
& \text { Computer seicnce } \\
& \text { Descraptive } \\
& \text { Soranties } \\
& \text { Syntactics } \\
& \text { Fomal Iencuaces } \\
& \text { Harduare behavior } \\
& \text { Computer alforthms } \\
& \text { Automata/machines } \\
& \text { Error detection/reliability } \\
& \text { Pattera recocnition } \\
& \text { Interactive procraming } \\
& \text { Artirictal intellicence }
\end{aligned}
$$

Areas in the nathonatical setonces thich students with an whergraduate majos chould givo increasec ationtion as certaing useful for roweroh in compater selicnco:

Sporiaz etontion noeded. With combiatz:

- Thore alcebra
- Probabinity
- Hathenetien atebistice
- Data ancyycia
 mathematicat procrement
- Desich or cmparircata
- Combinatorial anaygio

Sncery attembon docorved, mood bets:

- henar r/o chameis.
andenamin mowory and intustion, includias forcoghal mochanisws
 Tolya/roneme pycholong

A PROPOSED UNDERGRADUATE COMPUTER SCIENCE PROGRAM

Dr. Alan J. Perlis

	Freshman	Sophomore	Junior	Senior
1 st	1. Anal I	Alg I	Prob \& Stat I	OR II
Sem.	2. Prog I	Prog III	Comp.Sys. II	Abstr. Sys. III
	3. Phys I	Anal III	Lab II	Elect. II
	4. Hum.	OR I	Abstr. Sys. I	Elect. III
	5. Hum.	Hum.	Hum.	Hum.
2nd	1. Anal II	Lab I	Prob \& Stat II	OR III
Sem.	2. Prog II	Alg II	Abstr Sys. II	Comb. Anal.
	3. Phys II	Prog IV	Lab III	Administration and finance
	4. Hum.	Comp. Sys. I	Elect. I	E1ect. IV
	5. Hum.	Hum.	Hum.	Hum.

NO'TES:

Hum = Humanities
Prob. \& Stat. = Probability and Statistics

Programming I - IV

1. Algorithms, programs and language organized by data
2. structures
3. Machines and their programs
4. Problems associated with the management of programs: file systems, libraries; and Proofs of termination and correctness; Verification, representation and documentation of programs

Computer Systems I and II

1. Devices
2. Representation
3. Synthesis
4. System design

Abstract Systems I to III

Logic: Propositional Calculus; 1st order Predicate Calculus
Automata Theory: Finite state machines and regular expressions
Turing machines
Computability
Stages of computability
Math, Linguistics, correspondences (recognizers as machines)

Operations Research

OR I Optimization Techniques
OR II Simulation Techniques and modeling
ORIII Processing requirments of large data systems

Computer Science Laboratory I - III

1. Building, enhancing, auditing a sub-routine library
2. Interfacing two systems
3. Design of a system
4. Completion of a system
5. Managing a system design and construction

 titacsi is)!.

 wameng? igu?

 Wharniot ow oro whomenthetos?

[^1]

MARCH 18, 1970

ATTENDANCE LIST

ATTENDEES

BOARD MEMBERS

Prof. A. G. Oettinger, Chairman
Prof. Wesley A. Clark
Dr. Sidney Fernbach
Dr. Martin Greenberger
Mr. Jerrier Haddad
Mr. William Knox
Prof. W. F. Miller
Mr. Roy Nutt
Dr. Alan J. Perlis
Prof. J. B. Rosser
Dr. Alan F. Westin
Dr. Ronald Wigington
CONSULTANTS TO BOARD
Mr. Joel Cohen
Mr. John Griffith
Dr. Bernhard Romberg
CS\&EB Staff
Mr. Warren C. House
Mr. Jack F. Kettler
OBSERVERS
Co1. Andrew Aines
Mr . Brad Byers
Dr. John Egan
Dr. Bruce Gilchrist
Dr. Lawrence Grayson
Dr. Herbert Grosch
Dr. Newman A. Hall
Mr. Ken Hunter
Miss Ann Marie Lamb
Mr. J. D. Madden
Mr . Arthur Me1med
Dr. Charles V. L. Smith
Dr. Bruce Waxman
Mr. Charles Witter

Dr. Walter S. Baer
Dr. Launor F. Carter
Dr. J. C. R. Licklider
Mr. William L. Lurie
Mr. John R. Meyer
Mr. Kenneth Olsen
Dr. John R. Pierce

ATTENDEES

SPONSORS

Dr. Madison B. Brown (in lieu
of Dr. Edwin L. Crosby)
Mr. W. Melahn

Mr. W. F. Bauer
Mr. Harry Heltzer
Mr. William R. Hewlett
Dr. Robert W. Kreuger
Dr. Howard O. McMahon
Mr. William C. Norris
Mr. E. R. Piore
Dr. B. R. Stanerson
Mr. J. C. Wilson
Mr. Sam Wyly

NATIONAL ACADEMY OF SCIENCES

Computer Science and
Engineering Board

18 March 197 (will be held in The Reading
Room of the rain National Academy Sciences
Building locited at 2101 Constitution
Avenue, N.W.

NATIONAL ACADEMY OF SCIENCES

EXECUTIVE SESSION AGENDA
Evening Session
(1830 hours to 2000 hours)

The Evening Executive Session of the Board will sta:t at 1830 hours and extend to 2000 hours. The mee :ing will be devoted to discussions of
(a) new business prospects;
(b) possible changes in the NAS organization, operating doctrines and methods, acknowledged responsibilities, etc.
(c) possible changes in the mission and function of the CS\&E Board;
(d) possible changes in CS\&E Board organization structure, activities and procedures; and,
(e) such other matters as may be properly brought to the Board's attention.

NOTE: Please do not let the generic nature of the topics mislead you. This trip should be well worth the price of the ticket.

NATIONAL ACADEMY OF SCIENCES

Computer Science and
Engineering Board

DAY AGENDA - Change in:
Dr. Ling wil present his briefing at $2: 00 \mathrm{p} . \mathrm{m}$. in lieu of the scheduled time (11:15 ı.m.)

Executive Support Staff, Room 536, Joseph Henry Building, Washington, D. C. Phone (202) 961-1386

National Academy of Sciences

21ST MEETING

> EXECUTIVE SESSICN AGENDA
> Day Session
> (1000 hours to 1700 fours)

CS\&E ANNUAL MEETING FOR PROGRESS REPORTING

10:00 a.m.	Introductory remarks by the Chairman
10:15	Progress and status report by the Chairman of the CS\&E Panel on Education and Computer Sciences and Engineering
10:45	Progress and status report by the Chairman of the CS\&E Panel on the Data Base Problem
11:15	Progress and status report by the Chairman of the CS\&E Panel on the Computer Export Problem
11:45	Progress and status report by the Chairman of the CS\&E Panel on the Data/Communications Problem --Mr. Lewis Bil1ig
12:15	LUNCH -- At local restaurant
1:30 p.m.	Progress and status report by the Chairman of the CS\&E Pane1 on Information Systems. --Dr. Ronald Wigington
2:00	Progress and status report by the Chairman of the CS\&E Panel "A" on National Programs --Dr. Launor Carter
2:30	Progress and status report by the Chairman of the CS\&E Pane1 "B" on National Programs

fod csee rospraif amy

NOTE: The sequence and timing of the above are arbitrarily chosen. Anyone wishing to make changes to meet his time or travel requirements should negotiate with the holder of the time to be traded. Trades may be made up to the time the meeting starts. Please notify the CS\&E Support staff of all such early changes so that an updated agenda may be distributed at the meeting. Last minute changes just prior to the meeting may be made by contacting the Chairman or the Secretary. (Dr. Oettinger - 617-868-6155; Mr. House -202-961-1386)

Attached for the convenience of the Panel Chairman are:
(a) an updated statement of the basic mission and current task of each of the operating Panels, and
(b) a suggested guide for assuring coverage of the mini-essentials in each of the Panel Chairman's report to the Board.

POR CSAE BD.STAR OMLY

NATIONAL ACADEMY OF SCIENCES

Attachment

Version III
29 February 1970

PANEL MISSION AND STATUS

CS\&E Pane1 for Computer Science \& Educatior, Dr. Alan Perlis
Mission -- to devise ways and means for assuring an adequate flow of expert and skilled manpower to meet the emerging requirements in colleges and universities, in the computer industry, in the computer arplication areas of both government and the Private Sector.
Initial concentration is upon thon fems connected with training manpower needed to staf the computer departments of the colleges and universities Conference report is due out within the next twpor thee mónths. (NSF Project)
Entire result should contribate sidnificantly to the development of computer seiknce and engineering.

Data Base Pane1, Dr. Sidney Fernbaci
Mission -- to establish the parancters of and the flow of information relating tosenessefield, to define critical gaps, and to devise ways and meats of filling such gaps, and to monitor general \hat{x} the dadequacy of the flow and distribution of such information (B\&ard Project)

Initial efforts of the Panel are (a) concentrated upon working out specific programs which various government departments can undertake to fill certain critical gaps and (b) providing data in support of other CS\&E Panels.

Entire result of this Pane1's work should contribute substantially to the development of the computer science and enginคering field.

Page Two
"Panel Mission and Status" 29 February .. 970

Export Panel Dr. Donald Ling
Mission -- to provide continuing support to DoDR\&E, OST, and the Department of State in the computer export area.

Initial concentration has been upon production of a series of technical evaluations of various aspects of the computer export problem. A draft report from the '69 Summer Conference inventories the state of our knowledge regarding critical aspects of the computer export problem and defines critical gaps in our knowledge. A follow-up program to be undertaken shortly will gopentrate upon ways and means of remedying such gapssint DoDR\&E, State, OST Project)

The work of this Panel contrifates drectly to expanding the frontiers of our understrining de computer science and engineering.

Data/Communications Pane1, Meremis S. Rulig
Mission -- to continuous Ay mor developments in this dynamic field, to tentationy defindumerging problems warranting the attention b fen Bord, to take informal initiatives as necessey td test the feasibility of Board actions, to recommend action considered appropriate for the Board and methods ion complishing the recommended actions.

The initial task of this Panel is to do a technical analysis and evaluation of the difficulties arising from the attachment of various interconnecting devices to the "common carrier voice communications system." Inasmuch as this problem area is undefined and unexplored, the initial effort is designed to create the essential literature of the field, to define critical technical and systems problems, and to weigh these in light of both the short and the long-term. The report is scheduled for delivery to the FCC during or shortly after April, 1970. (FCC Project)

Information Systems Panel, Dr. Ronald Wigington

Mission -- (1) to assess the potential for application of computer science and engineering principals to meet national needs for efficient and effective information systems of all kinds; (2) to identify the roadblocks to the more effective

Page Three

"Panel Mission and Status" 29 February 1970

and rapid employment of computer science and associated technologies to information handling problems; and, (3) to focus national level attent ion on the need for appropriate actions arising from (1) and (?).

The initial effort by this Panel is to make a study leading to the identification and development of sound computer science and engineering principals for applying computers, computer systems and related technologies to various information handing problems, with emphasis on the national library system. The Panel has made its first visit in a scheduled field survey of selected developmental or experimental technical information handing gystems and major conventional libraries. (Council ghtikary Resources Project)

The work of the Panel will contrivue diredtly and significantly to expanding the frontiers our knehyedge in the computer science and

National Programs Pane1 "A", Launqk darter
Mission -- to examine the oneral sate of the computer science and engineerjng freta, means of exploring what actions might be taken at the nationat dr neqional levels to benefit the field.
Initial efforls of the Panel concentrated upon the R\&D programs in the computer science and engineering field and related non-substantive activities in being and being promoted which are significant in the "national leve1" context. Report has been submitted to the Board which accepted it as an internal staff paper for use only within the Board. (Board Project)

The work of this Panel should contribute directly to our understanding of our "institutional forms" and their processes, how these relate to the computer science and engineering field and their implications for possible Board actions.

Page Four

"Panel Mission and Status"
29 February 1970

National Programs Pane1 "B", Mr. Jerrier Haddad
Mission -- to explore the feasibility of devising a "national leve1 program" designed to further the development of the computer science and engineering field, and to define the appropriate role of elements in the U.S. government and the Private Sector in such a development.

The initial approach is to idetify and evaluate the various existing activities which might be considered elements in such a "national level program." The outcome of this effort, as well as the form it might take, ere uncertain at this point. (Board Project)

If successful, this Panel's work coy to assuring the needed goals, momentum and directions to the computer science and engineering field?

Survey of Patterns of Computer Indus Ary Suppert for Computer Activities in Colleges and Universities, DFA. Wi Ap fand R. Miller

Mission -- to explore the fasimizity ondivining motivations and future attitwdes of odth donors and recipients which could affeot the thendssin computer industry support of computing antive tilesuln U.S. educational institutions.

Initiaf afforts concentrated upon selected computer companies active in the support of computing activities in colleges and univecsities. Report has been approved by the Board and is in final stages of editing. The report should be delivered to the National Science Foundation within a week or so from this date. (NSF Project)

This report will contribute only marginally, if at all, to our understanding of the computer science and engineering field.

Privacy Pane1, Dr. Alan Westin
Mission -- to monitor developments in the computer science and engineering field and in the closely related fields of communications and information handing, including related technologies, with particular reference to events or trends which may impinge

Page Five
"Pane1 Mission and Status"
29 February 1970

upon the privacy of individuals in our society.
The initial task of this Panel is to survey and assess development in large, computerized data banks, related activites and technologies as they may affect the privacy of individuals in our society and due process in law.
The project will run for about, $24-30$ months from this date, and will culminate in a comprêensive report. The first task is to survey selected data panks throughout the country. Preparatory work is ungerway and the survey of data banks is scheduledfo seartwithin a few months. (Russe11 Sage FoundationProjecth

This effort will contribue stgnificantly to our understanding of varzqus aspecfor computers and their associated processes as they affect our society, our institution 8 and tace individual.

Standards Plannipo
In ER RHining Group stage. No recommendations have been ane the CS\&E Board. A Chairman is being sought.

FOO CSME BOSTAFP OMY

National Academy of Sciences

SUGGESTED TERMS OF REFERENCE FOR CS\&E PANEL CHAIRMAN'S ANNUAL PROGRESS REPORT TO THE BOARD ON MARCH 18, 1970

Attachment
4 March 1970

I. INTRODUCIION

Statement of the mission and functions of the Panel, its nature and general responsibilities as to: length of life; orientation, i.e., task problem/basic research; substantive focus or area of concentration, i.e., privacy and data banks, basic data flow of CS\&E field, etc.; sponsor or customer, i.e., NSF, FCC, Russell Sage Foundation, CS\&E Board, etc.; natule of sponsor's interest, i.e., continuous, spaced burst, intereftent burst, waning, rising, etc.; nature of the problem<<.e. speculative, innovative, fact gathering, analytical, actery pregrammatic, tutorial, and the like.
II. BODY OF DISCUSSION

The substantive nature of the probiom in somewhat greater depth than above;

The Panel resource and arprgach to the problem/task;
How much of the perphes Panel completed to date?
How much remains to Bed done?
Is the taskNpodin dynamic linearly, prolifertaionally, complicating

Is the problem/task universe expanding at a rate faster than the speed of the Panel's pursuit? Equal to? Slower than?

Is the problem/task relatively static but huge?
How does the Panel plan to respond to this? What does this mean in terms of the Panel's future pursuit? Deceleration? Lighting the afterburner? Increasing troops, money other resources?
Closing down?

Page Two
"Terms of Reference"
4 March 1970
III. FUTURE PLANS AND PROGRAM FOR THE PANEL

Does the Panel expect to complete htif wofk during the next 12 months? 18 months? 24 months? Konkers?

Does the Panel expect to change its ccope and mission? Its area of concentration? fes prioncity structure?

If so, in what ways? At what yines? For what purposes?
Does the Panex लpect for develop or use new approaches, techniques or mathots?

Are there particular problems that should be noted for the Boardis Jat tension?
IV. QUESTIONG ANW ANSWERS

National Academy of Sciences

MEMORANDUM

TO:
All Professional Staff
FROM:
Philip Handler PZV

The attached memorandum presents a set of procedures that we will be following to assure more appropriate and effective review of our published reports.

As you know, the Academy publishes reports dealing with a vast array of concerns and having a variety of purposes and audiences. Our objective in developing these procedures is to provide a useful system for giving each report the kind of attention that its particular character requires.

Some reports, exclusively technical or reportorial, require no special evaluative review except editorial. Others should be very carefully considered because their content is directly concerned with matters of great public consequence. And between these extremes are many grades of varying import. We want to be as sure as we can that we handle all cases as appropriately as possible, as well as expeditiously.

One part of the attached material is an informational form, which will be submitted to the Executive Office, through your divisional or major office, in connection with each new work project that involves the creation of a report. As a first order of business, I ask that you complete this form for all work projects now in progress, realizing that for the most part, this will be largely for purposes of information.

I invite your careful attention to the memorandum attached, and request your continued cooperation. Our published reports are our principal tangible means of representing the Academy and its work. I must lean heavily upon the efforts of all our staff for assurance that they are as well done as we can make them.

Foo cram sobesuaf my
 National Academy of Sciences

OFFICE OF THE PRESIDENT ZIOI CONSTITUTION AVENUE WASHINGTON, D. C. $2041 B$

March, 1970

MEMORANDUM

TO: All Professional Staff Personnel, National Academy of Sciences-National Research Council

FROM:
Philip Handler

SUBJECT: Review of Reports

As you are well aware, the advisory activities of the Academy and the Research Council have, over the past few years, become increasingly significant on very broad technical and political fronts. The principal. means of making known the results of the work of our committees, both to those directly concerned and to wider audiences, continues to be our reports. Accordingly, it is increasingly important that we give the most careful attention to the preparation of these documents as representative of the content and quality of all our work. We owe this to the impressive number of individuals who freely commit their time and energies to the projects undertaken by a great variety of Academy and Research Council working groups. We owe it to the membership of the Academy, in whose name our reports are presented. And we owe it to ourselves as the permanent working staff of our organization, as a continuing guarantee of the effectiveness of our efforts.

Because the task of reviewing all reports would overwhelm the Executive Office, because such review frequently requires the collective wisdom of individuals of differing backgrounds and competence, and especially in order to relate the Academy more closely to the work of the Research Council, I have asked a representative committee of members of the Academy, to be known as the Report Review Committee and to be chaired by the Academy's Vice President, Dr. Kistiakowsky, to participate on a continuing basis in the necessary review of our reports. Mr. Robert Green will, in addition to his duties with the Committee on Science and Public Policy, serve as staff officer.

To assure that the Executive Office is kept adequately informed of progress from initiation to completion of all reports, a set of required procedures is outlined below which embraces the essentials of the procedural memorandum issued by Mr. Coleman on April 21, 1969. Those requirements are modified mainly to provide us with earlier information on the initiation and planning of projects, specifically those leading to published reports, and to ensure timely and appropriate review. The intent of this directive is to assure the effectiveness of our procedures for the best possible accomplishment of our tasks.

As you know, the responsibilities of our Publications Editor, Mr. Robert Hume, include providing necessary advice and assistance in editorial matters to all staff personnel, and keeping the Executive office informed concerning the development and processing of reports. Mr. Hume, in addition to his continuing responsibility for the general editorial quality of reports, will be responsible for assurance that the procedures described below are followed. We anticipate that these procedures will minimize the time-consuming and frustrating necessities of re-doing and repair of faulty manuscripts after presentation for final approval to the Publications Editor.

General Procedures

Attached is a form, which is to be completed by the responsible staff officer as soon as possible after initiation of work on a new task. With the approval of the executive secretary of the appropriate division, or the director of an office, the form is to be forwarded to the Executive Office. Use of this form will be required whether the new task results from a new contract, amendment to an existing contract, or simple assumption of a new task under the terms of an existing, relatively broad contract. In general, the form would most appropriately be completed after the first meeting of the working group which, later, will draft the report.

1. Title of Project and Tentative Title of Report

Originating Unit Project Staff Officer Sponsoring Agency Chairman of the Project Committee
2. Tentative identification of scope of the document to be produced as a publication, i.e., what it will contain:
a. technical information
b. recommendations concerning iederal agency programs and/or policies
c. recommendations concerning other types of public policy
d. minutes or reported proceedings of meetings
e. collection of symposium papers
f. other
3. Scheduling:
a. Contract deadline date
b. Date of availability of draft for review
4. Proposed distribution, i.e.:
a. by public sale
b. by free distribution
c. transmittal to a government agency for public release
d. transmittal to a government agency for internal government use
e. transmittal to a congressional committee
f. transmittal to a private sponsor for internal use
g. transmittal to a private sponsor for public release
h. other

5. Proposed review procedure, as approved by division or major office, i.e.:
a. by parent body of the committee
b. by outside readers of recognized competence in relevant fields, selected by the parent body
c. by executive committee or other delegated members of National Research Council division
d. by Committee on Science and Public Policy
e. by a panel of the Report Review Committee

If a report is to be security classified, this should be noted so that an appropriately cleared group can be selected for the review.

If, in the course of a project, there are significant modifications of the facts contained in the project information form originally submitted, these changes should be made known to the Executive Office. This should be done by submitting a revised set of the report forms with a covering memorandum stating that this is a follow-up on the earlier set.

All documents to be distributed outside the NAS-NRC will be considered as reports, except business correspondence, Proceedings of the National Academy of Sciences, and documents specifically exempted by the Executive Office. Each will be given a Report Number by the Executive Office upon receipt of the form statement described above; the system of Report Numbers will be used for internal control purposes only. After receipt of the form statement, the Executive Office will inform the project staff officer through his division or other office that the proposed review plan for a report has been approved, or that certain modifications appear necessary. The details of the review procedures are outlined below.

All numbered documents must be submitted, prior to reproduction, to the Publications Editor, accompanied by a written statement of approval by the relevant reviewing body. The Publications Editor will approve a manuscript report for publication when (1) it has been reviewed and certified according to the general requirements outlined here, and (2) it is acceptable in editorial quality. (A rule-of-thumb is that manuscripts must be of such quality as would be acceptable to a reputable professional journal.) If the manuscript does not meet these requirements, it will be returned to the originating office.

Review Procedures

The review process will be most useful and effective, of course, if early drafts of reports are brought under review. Thus, the nature and mechanism of the review of any given report should be decided upon well before preparation of the first draft.

1. Documents of exclusively technical, reportorial, or administrative content, and not including conclusions and recommendations regarding government policy or public policy with any likelihood of being of general public interest require review by the executive committee of the relevant Research Council division, or, where there is one, the parent standing body.

2. Documents with significant policy implications, including all those containing recommendations regarding expenditure of public funds, require review by a group of broadly representative Academy members selected for the purpose by the Report Review Committee, or by the Committee on Science and Public Policy, or by a parent standing body if it is broadly constituted。
3. Minutes or proceedings which contain conclusions and recommendations by the committee involved and are being distributed for other than internal purposes only, must be reviewed in the same manner as are reports of similar scope and purpose.
4. Collections of symposium papers, if they are just that and do not contain conclusions and recommendations by the relevant committee, and include only statements attributed to individuals, need be reviewed only by the Publications Editor.
5. If a document falls into none of the categories referred to above, it should be brought to the attention of the Executive Office of the Academy.

In general, review procedures for any given document will depend upon the scope and proposed distribution of the document. In every case, however, review must be made by a group not directly involved in the preparation of the document. The intent of the review is to provide an in-house test of acceptability and effectiveness of a report for its intended audiences, and to provide some guarantee that the character and purposes of the report will be correctly interpreted by its readers. Another important effect will be to increase the active participation of Academy members in the affairs of the Research Council.

In the event of irreconcilable disagreement between the committee responsible for preparation of a given report and the revieving body, responsibility for final decisions must rest with the President, as in the past. In such instances the President may consult with the Academy Council or the Research Council Governing Board should he consider such procedure desirable.

No report, at any stage of its preparation, should be transmitted to a sponsoring agency or organization until it has been through the appropriate review procedure and approved, unless expressly exempted by the Executive Office.

1. TITLE OF PROJECT AND TENTATIVE TITLE OF REPORT

Originating Unit

Sponsoring Agency
2. TENTATIVE IDENTIFICATION OF SCOPE OF DOCUMENT: (Check one or more)
\square a. Technical Information.
\square b. Recommendations concerning federal agency programs and/or policies.
\square c. Recommendations concerning other types of public policy.
\square d. Minutes of reported proceedings of meetings.
\square e. Collection of symposium papers.
3. SCHEDULING:
a. Contract deadline date \qquad
b. Date of availability of draft for review
4. PROPOSED DISTRIBUTION: (Check one or more)
\square a. Public sale.b. Free distributionc. Transmittal to a government agency for public release.d. Transmittal to a government agency for internal government use.e. Transmittal to a congressional committee.
\square f. Transmittal to a private sponsor for internal use.
\square g. Transmittal to a private sponsor for public release.

5. PROPOSED REVIEW BY: (/dentify)

a. Parent body of the committee:b. Outside readers of recognized competence in relevant fields, selected by the parent body:c. Executive committee or other delegated members of National Research Council division:d. Committee on Science and Public Policy.e. Panel of the Report Review Committee.
$\overline{\text { Date }}$

REMARKS: (for Executive Office Use)

NATIONAL ACADEMY OF SCIENCES
Computer Science and
Engineering Board

The attached revised list of Board Members is to replace the List of Board Members in your SMART Rook.

COMPUTER SCIENCE AND ENGINEERING BOARD MEMBERS

Chairman

Professor Anthony G. Oettinger Aiken Computation Laboratory Room 200, Harvard University Cambridge, Massachusetts 02138 Te1: 617-868-6155

Dr. Walter S. Baer
Laird Systems, Inc. 1901 Avenue of the Stars Century City
Lọs Angeles, California 90067
Te1: 213-277-2900
Dr. Launor F. Carter
Vice President and Manager
Public Systems Division
System Development Corporation
2500 Colorado Avenue
Santa Monica, California 90406
Tel: 213-393-9411, x304
Professor Wesley A. Clark
Computer Systems Laboratory
Washington University
724 South Euc1id Avenue
St. Louis, Missouri 63110
Te1: 314-361-7356, x70
Dr. Sidney Fernbach
Head, Computation Department
Lawrence Radiation Laboratory
University of California
Box 808
Livermore, California 94550
Te1: 415-447-1100, x8528

Dr. Martin Greenberger
The Johns Hopkins University
Charles \& 34th Streets
Maryland Hal1 102
Baltimore, Maryland 21218
Te1: 202-483-8919

Mr. Jerrier A. Haddad
Vice President and Director
Poughkeepsie Laboratory
Department A70, 705 Building
Poughkeepsie, New York 12602
Tel: 914-463-5410
Mr. William Knox
Vice President, Information Systems
Corporate Planning
McGraw Hill, Inc.
330 West 42nd Street
New York, New York 10036
Te1: 212-971-3333
Dr. J. C. R. Licklider
Director, Project MAC
545 Main Street
Cambridge, Massachusetts 02139
Te1: 617-864-6900, x5851
Mr. William L. Lurie
General Manager
International Business Support Division
General Electric Company
570 Lexington Avenue
New York, New York 10016
Te1: 212-750-3665 (3666)
Dr. John R. Meyer
President
Nationa 1 Bureau of Economic Research
261 Madison Avenue
New York, New York 10016
Te1: 212-682-3190, x49 or 70

Professor W. F. Miller
Computer Science Department
Polya Hall
Stanford University
Stanford, California 94305
Te1: 415-854-3300, x256
Mr. Roy Nutt
Computer Sciences Corporation
1901 Avenue of the Stars
Suite 1900
Century City, California 90067
Tel: 213-678-0592, x1045
Mr. Kenneth O1sen
President
Digital Equipment Corporation
146 Main Street
Maynard, Massachusetts 07154
Tel: 617-897-5111, x2301

Dr. Alan J. Perlis
Head, Department of Computer Science
Carnegie-Mellon University
Schenley Park
Pittsburgh, Pennsylvania 15213
Tel: 412-683-7000, x228
Dr. John R. Pierce
Executive Director
Research Communications Sciences Div.
Be11 Laboratories
Murray Hil1, New Jersey 07974
Tel: 201-582-2626

Professor J. Barkely Rosser
Mathematics Research Center
U.S. Army

University of Wisconsin
Madison, Wisconsin 53706
Te1: 608-262-3636

Dr. Alan F. Westin
Professor of Public Law and Government
Department of Political Science
Columbia University
Fayerweather Hall
New York, New York 10027
Tel: 212-865-0494

Dr. Ronald Wigington
Director of Resear ch
Chemical Abstracts Service
Ohio State University
$25<.0$ Olentangy River Road
Co umbus, Ohio 43210
Te..: 614-293-4221

Consultants

Mr Joel Cohen
Junior Fellow, Society of Fellows
Hanvard University
Catubridge, Massachusetts 02138
TeI: 617-734-3300 x511

Mr. John Griffith
Thomas J. Watson Research Center
IBM Corporation
P. O. Box 218

Yorktown Heights, New York 10598
Te..: 914-945-1384

Dr. Bernhard Romberg
Arthur Little Company
25 Acorn Park
Cambridge, Massachusetts 02140
Tel: 617-864-5770

Mr. Warren C. House
Executive Secretary
Computer Science and Engineering Board
National Academy of Sciences
2101 Constitution Avenue, N.W.
Washington, D. C. 20418
Te1: 202-961-1386 or 961-1372
Mrs. Lally Anne Anderson
Secretary to Mr. House
National Academy of Sciences 2101 Constitution Avenue, N.W. Washington, D. C. 20418
Te1: 202-961-1386 or 961-1372

NATIONAL ACADEMY OF SCIENCES

Computer Science and
Engineering Board

Attached are two additional items for inclusion in your SMART Book. They are as follows:

1. Revised List of Board Observers
2. List of Pane1 members for the Computer Data Bank (Privacy) Panel

List of Observers

Col. Andrew Aines Technical Assistant
Office of Science and Technology
Executive Office Building
Washington, D. C.
Te1: 395-3547
Mr. David Beckler
Assistant to the Director
Office of Science and Technology
Executive Office Building
Washington, D. C.
Te1: 395-3520
Dr. John Egan, Sr. Staff Specialist DDR\&E, OAD/Inte11igence
The Pentagon, Room 3D1070
Washington, D. C. 20301
Te1: OX 7-3816
Dr. Bruce Gilchrist
Executive Director
American Federation of
Information Processing Societies
210 Summit Avenue
Montvale, New Jersey 07645
Te1: 201-391-9810
Dr. Lawrence Grayson
Office of Education, Room 3013
400 Maryland Avenue, S.W.
Washington, D. C. 20202
Te1: 963-7157
Dr. Herbert Grosch, Director
Center for Computer Sciences
and Technology
National Bureau of Standards
Washington, D. C. 20234
Te1: 921-3525
Dr. Newman A. Hall
Executive Director
Commission on Engineering Education
National Academy of Sciences
2101 Constitution Avenue, N.W.
Washington, D. C. 20418
Te1: 961-1417

Mr. Ken Hunter,
U.S. General Accounting Office

441 G Street, N.W.
Washington, D. C. 20548
Tel: 386-3047
Miss Ann Marie Lamb
Management Analyst
ADP Management Staff
Bureau of the Budget, Room 9235
New Executive Office Building
Washington, D. C. 20503
Te1: 395-4726
Mr. J. D. Madden
Executive Director
Association for Computing Machinery
1133 Avenue of the Americas
New York, New York 10036
Te1: 212-265-6300
Mr. Richard McCann
Chief, Laboratories Branch
Office of Education, Room 3148
400 Maryland Avenue, S.W.
Washington, D. C. 20202
Te1: 963-3598
Mr. Arthur Melmed
Head, Special Projects Section
Office of Computing Activities
National Science Foundation
1800 G Street, N.W.
Washington, D. C. 20550
Te1: 632-5962
Dr. A. Hood Roberts
Associate Director
Center for Applied Linguistics
1717 Massachusetts Avenue, N.W.
Washington, D. C.
Tel: 265-3100 x251 or 334
Dr. Lawrence Roberts
Advanced Research Projects Agency
The Pentagon, Room 3D167
Washington, D. C. 20301
Tel: OX 7-8663

```
Dr. Charles V. L. Smith, Chief of Mathematics and Computers Branch
Division of Research
U.S. Atomic Energy Commission
Washington, D. C. }2054
Tel: 973-3278
Prof. Laurence Tribe
Harvard Law School
Cambridge, Massachusetts 02138
617-868-7600 x3163
Mr. Bernard Urban
Director, Urban Clearing House Service
Department of Housing and Urban
    Development, Room }713
4 5 1 ~ S e v e n t h ~ S t r e e t , ~ S . W .
Washington, D. C. }2041
Tel: 755-5426
Dr. Bruce Waxman, Director
Health Care Technology Division
NCHSRD, HSMHA
5600 Fishers Lane
Parklawn Building, Room 15A55
Rockville, Maryland 20852
Tel: 443-2900
Mr. Charles Witter
c/o Congressman Cornelius Gallagher
Government Operations Committee
Rayburn Office Building
Washington, D. C. }2051
Te1: 225-6751
Mr. Brad Byers
Office of Information
National Academy of Sciences
2101 Constitution Avenue, N.W.
Washington, D. C. 20418
Te1: 961-1511
```

Edgar S. Dunn, Jr.
Research Associate
Resources for the Future, Inc. 1755 Massachusetts Avenue, N. W.
Washington, D. C. 20036
James Farmer
Assistant Secretary for Administration Department of Health, Education \& Welfare 330 Independence Avenue, S. W. Washington, D. C. 20:01

Cornelius E. Gallaghe"
235 House Office Building
Washington, D. C. 20515
Nathan L. Jacobs, Justice
New Jersey Supreme Court
284 W. Hobart Gap Road.
Livingston, New Jersey 07039
Nicholas deB. Katzenbech
Vice President \& General Counsel
IBM Corporation
old Orchard Road
Armonk, New York 10504
John H. Knowles, M.D.
General Director
Massachusetts Genera1 Hospital
Boston, Massachusetts 02114
Arthur R. Miller
Professor of Law
335 Hutchins Hall
University of Michigan Law School
Ann Arbor, Michigan 48104
Professor George A. Miller
The Rockefeller University
New York, New York 10021
President Malcolm Moos
University of Minnesota
Minneapolis, Minnesota 55455
Hon. Constance Baker Motley
U.S. District Judge
U.S. Courthouse

Foley Square
New York, New York 10007

Ralph Nader
1908 Q Street, N. W.
Washington, D. C. 20009
Arthir Naftalin
Professor of Public Affairs
University of Minnesota
3300 University Avenue, S.E.
Minneapolis, Minnesota 55414
Roy Wutt
Vice President
Computer Sciences Corporation
650 N. Sepulveda Boulevard
E1 Segundo, California 90245
Hon. Ogden R. Reid
House of Representatives
240 Cannon Building
Washington, D. C. 20515
L. F. Reiser

Corporate Director
Personne1 \& Industrial Relations
CPC International Inc.
International Plaza
Englewood Cliffs, New Jersey 07632
Richard Ruggles
Department of Economics
Yale University
New Haven, Connecticut 06542
W. I. Spencer

Executive Vice President
First National City Bank
399 Park Avenue
New York, New York 10020
Roderick O. Symmes
Director, Data Systems Development
Office of Deputy Under Secretary
Dept. of Housing \& Urban Development
451 7th Street, S. W.
Washington, D. C. 20410
Mrs. Jacqueline Brennan Wexler
President
Hunter College
New York, New York
Professor Robert C. Wood
Chairman, Department of Poltical Science E54-447, Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Professor Anthony G. Oettinger
Chairman
Computer Science and Engineering Board
Aiken Computation Laboratory
Room 200
Harvard University
Cambridge, Massachusetts 02138

Dr. John R. Pierce
Vice Chairman
Computer Science and Engineering Board

Executive Director
Research Communications Sciences Division
Bell Laboratories
Murray Hil1, New Jersey 07974

```
Professor Alan F. Westin
Project Director
Center for Research and Education in American Liberties
5 0 1 ~ W e s t ~ 1 2 1 s t ~ S t r e e t
New York, New York 10027
Mr. Michael A. Baker
Research Assistant
Department of Sociology
Brooklyn College
City University of New York
Brooklyn, New York 11210
Mr. J. Paul Blun
Research Assistant
Center for Research and Education in American Liberties
501 West 121st Street
New York, New York 10027
Mr. Joe1 E. Cohen
Consultant
Harvard School of Public Hea1th
55 Shattuck Street
Boston, Massachusetts 02115
Professor 0. E. Dial
Research Associate
Political Science Department
Baruch College
City University of New York
New York, New York 10003
Mr. Gerald L. Grotta
Consultant
Department of Journalism
Southern Illinois University
Carbondale, Illinois 92901
Mr. Lance J. Hoffman
Research Associate
Computer Science Department
Stanford University
Stanford, California 94305
Miss Madelyn Miller
Administrative Assistant
Nationa1 Academy of Sciences
```


[^0]: 5. Kenneth G. Patrick and Richard Eels, Education and the Business Dollar, The MacMillan Company (1969), p. 4.
 6. Ibid, p. 8.
[^1]:

