June 19, 1968
THIRD CS\&E BOARD MEETING
AGENDA

1. Review of the minutes of the first two meetings.
2. Report by the Chairman on the status of the proposal to add an economist to the CS\&E Board by Dr. Seitz.
3. Report by John Griffith, speaking for Jerrier Haddad, on the status of the solicitation campaign for uncommitted funds of $\$ 100,000$ for use by the CS\&E Board. .
4. Discussion of the informal proposal by Milt Rose to study "the patterns of industrial support for computers, computing and computer science in the nation's colleges and universities."
5. Further discussion of the report by Allan Perlis on the Education Committee plan.
6. Report by Dave Evans on the planning paper for the R\&D committee.
7. Report by Barkley Rosser on planning for the National Programs committee.
8. Report by Bruce Gilchrist on the American Federation of Information Processing Societies as sources of current and future data on the computer science/information processing field.
9. Report by Don Madden on the Association of Computing Machinery as a current and future source (see 非8).
10. Discussion of the establishment of deadlines for submitting more-orless finished planning papers for Education, R\&D and National Programs Committees.
11. Scheduling future meetings through the next six months.
12. Other

NATIONAL. ACADEMY OF SCIENCES
2101 CONSTITUTION AVENUE
WASHINGTON, D.C. 20418

THIRD COMPUTER SCIENCE AND ENGINEERING BOARD MEETING

```
                                    Sheraton Malibu Asirport Inn
                                    16%0 Smith Road
                                    Demver, Colorado }8021
                                    Araa Code 303-388-4821
```


CS\&E Board Members:

Professor Aṇthony G. Oettinger
Chairman
Dr. Launor F. Carter
Professor David C Evans
Dr. Sidney Fernbach
Mr. Jerrier A Haddad
Professor W. F. Miller
Dr. Nathan M. Newmark
Mr . Kenneth O1sen
Dr. Alan J. Perlis
D:- John R Pierce
P ofessor J Barkley Rosser
Dr. Alan Westin

Business Addresses:
CS\&E Board Members: See Attachment

Inivited Guests:

Dr. Bruce Gilchrist: IBM Cofooratic-, 112 East Post Road, White Plains. N. 1.10601
Dr. John G=iffith: IBM Corpozation, Thnmas J. Watson Research Center, P O. Box 218, Yorktorn Heights, N. Y. 10598
Dr. Herbert Grosch: Bureau of Standards, Connecticut ive. and Van Ness Street, Washington, D C 2023i.
Miss Ann Lamb: Bureau of the Budget, 17 th and Pennsylvanir Ave., N W., Washington, D. C. 20503
Mr. Donald Madden: Association for Computer Machinery, $2 l 1$ East 43 rd Street, New York, N. Y. 10017
Dr. Miton Rose: National Science Foundation, 1800 G Stree乞, N W., Room 504 , Washington, D C. 20550
Mr. Fuber I'aylor: Advanced Research Projerts Agency, ? D 16 'y The Pertagor, Washington, D C. 203C1
Mr. Pernard Urban: Management and Organization Divisiols, Bureau of the Budget, 17 th and Pennsylvania lve., N. W. Washington, D. C. 20503
 Institute in^{-}Health, 5$\lrcorner 33$ Westbard Avenu, Bethesda, Maryland 20014

Dr. Jaunor F. Carter
Vice President and General Manager
Public Systems Division
System Devilopment Comporation
2500 Colorado Avenue
Santa Monica, Califomia 90404
Prof. David C. Evans
Director, Computer Science
Universtity of Utah
Salt Lake City, Utah 84112
Dr. Sidney Fernbach
Head, Computation Division
Lawrence Radiation Labonatory
Box 808
Livemore, California 94550
W上. Jerrier A. Haddad
Vice President
Engineering, Programning and Technology
TBM Corporation
Old Onchard Road
Armonk, New York 20504
Prof. W. F. Miller
Computer Science Department
Polya Hall
Stanford University
Staniond, Califomia 94305
Dr. Nathan M. Nemark
Head, Department of Civii
Engineerting
1114 Civil Engineering Euilding
University of Illinois
Urbana, Ilitinois 61801
Prof. Anthony G. Oettinger
Aiken Computation Laboratory
Harvand University
Camiridge, Massachusetts 02138

Mr. Kenneth Olsen
President
Digital Equipment Comporation
Maynard, Massachusetts
Dr. Alan J. Perlis
Head, Department of Computer Science
Camegie-melion university
Pittsburgh, Pennsylvania 25213
Dr. John 2. Pierce
Executive Dinector
Research Communications Sciences Division
Bell Labonatnries, Inc.
Numay Hill, New veaces 07971
Prof. J. Bankley Rosser
Mathematics Research ćenter
U.S. Amy

University of Wiscor, in
Madison, Wisconoin 53706
Dr. Alan restio
Department of Dubiic Lawz and Govemment
Fayer Weather Hall
Columbia University
New York. Ne: York 10027

SECOND MEETING
May 16, 1968
AGENDA
9 a.m.

1. Review of minutes of last meeting.
2. Introduction of government and professional society observers.
3. Introduction of Dr . Walter Baer, Assistant to the Director, Office of Science and Technology, and of Mr . Bernard Strassburg, Chief, Common Carrier Bureau of the Federal Communications Bureau.
4. Discussion of the activities and problems in the areas of Dr. Baer and Mr. Strassburg related to the CS\&E Board's activities.
5. Comments by Mr. Donald Madden, Executive Director, Association for Computer Machinery, and Dr. Bruce Gilchrist, Past President of the American Federation of Information Processing Societies, on ways and means of making use of the resources of the professional societies in the field.
6. Report by the Group Leader of the

- Education Planning Group,
- Research and Deve1opment Group
- National Programs Group, and
- Data Base Group,

ON

- Area of responsibilities,
- General approach and priorities,
- Suggested committee organization and membership,
- Suggested set of initial tasks to be undertaken.

7. Report on how to go about establishing

- The inventory of CS\&E data presently available,
- The Structure of the existing inventory,
- What additional data are needed,
- Priorities to be assigned to the needed data, and
- How best to proceed with development of the data base.

L U N C H

COMPUTER SCIENCE AND ENGINEERING BOARD

SECOND MEETING
Executive Session
AGENDA

After lunch
8. Report by Mr. Jerrier A. Haddad regarding fund raising prospects among the business and general professional associations.
9. Scheduling of future Board meetings beyond September.
10. Other

E N D

COMPUTER SCIENCE AND ENGINEERING BCARD
 MEETING

Summary Minutes
May 16,1968

Professor Oettinger called the meeting to order and introduced the various observers from the government departments and from the professional societies. These included Mr. Robert Taylcr, Advanced Research Projects Agency, DOD; Miss Ann Lamb and Mr. Bernard Urtan, BOB; Dr Bruce Waxman, National Institutes of Health; Mr. Arthur Melmed, National Science Foundation; Dr. Bruce Gilchrist, past President of the American Fedoration of Information Processing Societies; Mr. Donald Madden, Executive Direcior, Association for Computer Machinery; and Dr. John Griffith, Consuitant to the Chairman. ine Chairman then introduced as invited speakers Dr. Walter Baer, Assistant to the President's Assistant for Science and Technology, and Mr. Bernaxd Strassburg, Chicf, Common Carrier Bureau of the Federal Comunications Commission. Nr. Strassburg was accompanied by Mr. Charles R. Cowañ and Mr. Earnest Nash. Professor Gettinger also introcuced Mr. Ernest Banard, Staff Administrator to Coıgressman Jack Brooks ce Texas who's subcommittee of the Committee on Government Operations initiated in Mareh 1963 legislation to provide a Government-wide coordinated management system for the use of data processing equipments. This legislation was approved in October, 1906, and is not Public Law 89-306. The Chairman indicated the intentior of the Board to invite continued partic-pation b_{y} observers fiom vaiuls wieas of the govrnment and frun various professional societies. IIe ouserved that continnor cooperation among all people concerned with various aspects of computer science and
engineering was essential to prompt and orderly progress in defining the field and in worki=g on priority questions confronting the planners, managers, operators and scientists in the fiold. The Chairman invited full participation by guests and observers in the Board discussions according to their interests and responsibilities. He stressed that all discussions of the Board and the information presented was "privileged," i.e., not to be passed beyond the Board and the participants.

Dr. Baer explained thát Dr. Hornig serves as Special Assistant to the President for Science ard Technology as well as being head of the Office of Science and Technoiogy. He pointed out that in the former capacity, Dr. Hornig's responsinility is to provide support in both the domestic area and in the foreign policy area. As Director of the Office cf Science and Technology, Da. Mornig is responsible for continuing efforts to coordinate activities and to initiate programs benefiting both the government and the private sector in the field of science and technology. L. . Baer commented that such broad responsibilities give rise to rather á rich mix of priority tasks, probiems, and programs. IN Said that Dr. Horrig is pleased that the Board of Computer Science and Engineering has been established by the Academy and that he is looking forward to following the action program of the Board.

Dr. Baer gave a grief description of functions and responsibilities of the Office of Science and Technology. He indicated the limitations of the OST starf in size and expertese particularly in computer science and technology, and emphasized that the Office under the direction of Dr. Hornig performed general oversizht funcoion the field of scienue an lechinolugy. Included in this oversight function is provicing executive assistance to the
various government departments or areas, providing substantive review of operating programs and giving guidance as to priorities and emphasis. Dr. Baer stressed the importance of originating and developing interesting ideas as means of achieving broad, national otjectives through the use of emerging opportunities in the field of science and technolcgy.. He cited, as an example, the current interest in the Executive area in utilizing through training and education the "hard-core" unemployed resources in the cities to meet some of the manpower requirements for processing information into computers and computer networks, and perhaps for operating computers and information exchange systems. Me indicated that there is little data on how much of this manpower might be utlizable or for what particular kinds of information processing work. Dr. Baer then commented briefly on Che items listed as points of jnterest to OST in a letter sent to the Chairman by Dı. 'Tornig shortly after the Doard was established.

The Chairman then introduced Mr. Bernard Strassburg to speak on the FCC interest in computers and their relation to communications. Mr. Strassburg described briefly the mission and responsibitities of the FCC. He then explained that the FCC came to se interested in computers and in their role in communications initially as a resuli of concern being expressed by the "carrier" customers regardirg the burgeoning role of computer-driven data exchanges utilizing common carriex facilities. Mr. Strassburg touched upon the difficultie in distinguishing betwoen computers and common carrier switching equipments and between data processing and communications, the latter as defined for common carriers in the pre-computer era. He pointed out that some basic aspects of the philosophy of free enterprise were involved in the computer-data processing-communications milieu; for example, in one form, information passing over common carrier facilities was regrlated by the Federal

Sumiz 非4
May 1968

Government as to tariff by time unit which roughly paralleis quantity as conventional speeds of transfer, whereas in another forn the same tariff was charged for the passage of far greater masses uf information via computer data exchange; for another example, the entry of common carrier companies into the computer and data processing business covid lead to a situation where the carriers became their own, and perhaps preferred. This condition could provide the basis for discriminatory practices to the disadvantage of the computer and dat processing businesses. Mr. Strassburg admitted that with their limited staff ai rec (about 110 professionals; they have been able to develop very little expertise in computers and data processing. He indicated that the 3ureau was moving to bring in contract assistance to unalyse and process the responses to the Dorket dealing with computers in communications. The Asscniation for Computing Machinery is providing a set of tutorial seminars for solected members of the Bureau and FCC staff people. He added that ile was sure that additionai help would be needed once the responses were analyzed.

The Chairman thanked both speakers and invited them to stay and pari.cipatc through the balance of the open session. Dr. Alan Perlis then reported 0: the plan for the Education committee: Part I dealt with general respons:bilities; Part II with approach; Part III with membership; and Part IV with tasks. Two priority areas werc recommenced: (1) graduate education in computer science and (2) unaergraduate education in software engineering. Perlis stated that the first is critical because computer scientists are already in short supply and there is a rapid expansion in the number of university depricments that need to be staffed. Perlis beiieves the seconci is critical because programning systems must be transformed into a subject of
engineering education and treatment if orderly and signiticant progress is to be made in computer scftware, beyond the preseni lovel of general art and personal mystique. He further believes that the tiending of conventional engineering and software techniques should begin at the undergraduate level, perhaps at mid-point in high school. Perlis recommended that two small sub-committees be established. The Chairman called for comments from the observers and then from the Board members. The ensuing discussion reflected the following points: concern for the limited number of priority arsas recommended, i.e., applications of computers to general education could become wore important then engineering software, or of equal importance; an observer from the Office of Education should be included in future discussions; availability of basic data in chese fields; the small size of the two committees for such large problems; overlaps between R\&D and Education comnittees; computer function and requirement projections into the future stould combine computers and communications. The discussion was continued after Iurch in the afternoon Executive session.

FXECUTIVE SESSION

The Chairman opened the Executive session by introducing John Griffith as his general consultant on matters pertaining to national security areas The discussion of the areas of priority for the Education Committee continued briskly with a consensus arising that further discussion should take place at the next meeting, with preliminary exchanges of suggestions for staffing to take place among the Board members prior to tho next meeting. The Chairman summed up the discussion by indicating that comput aid to education should also be considered by the praming group as a priority task to be assigned to a task group within the committee aiung with the two thok groups proposed.

The Chairman then tabled for discussion the possibility of adding an economist to the Board in the near future ai proposed by Dr. Seitz. The general response was strongly in favor of such an addition. In the following discussion, the distinction vas made between an economist who had specialized in using computers as a tool in his profession and one who had studied computers and their impact on the economic activities at the sector, national and international levels. The ensuing consensus strongly favored the latter, with the understanding that policy support experience at the national level, an enduring interest in technology arross-the-board and a grasp of the important developments in relations botween government and science should also be considered to be important exiteria. The Chairman expressed his appreciation and said that he would pass the Board's views to Dr. Sejtz.

Dr. Jerrier Haddad reported on the plans to launch a campaign to solicit uncommitted funds for use of the CS\&E Board on iniative tasks during the next eighteen months. He indicated his belief based upon the best professional advice he could obtain that a fund of $\$ 100,000$ was a reasorable iigure and that the total of solicited sums from. various business, professional and general organizations interested in computer science and engineering should be scaled to about $\$ 135,000$. He reported that he had obtained separate lists of business associations, professional associations and technical assoriations from which male up the campaign solicitation base. After some discussion, it was agreed chat solicitation of foundations should be deferred for the monent and that Haddad should develop the materials for the solicitation campaign and report at the n sixt meering of the Board in Denver.

Dr. Rosser indicated that some difficul+y was being encountered in formulating clearly just ..nat the National Programs area involved even though
he had held several discussions with various people about it. The Chairman agreed that this was going to be one of the more difficult areas to define with any precision and indicated that he would take some action prior to the "next meeting to assist the National Programs Committee Planning Group. Dr. Evans reported that the Research and Development Committee Planning Group was also encountering considerable difficulty in formulating piecisely what the R $\& D$ area included and what problems should be assigned top friority, etc. In the following discussion it was pointed out that the"ritle approach to R\&D" could make a few holes in the R R in landscape but that this would have limited effect on the overall $R \& D$ arer. After further discussiun, it was agreed tinat it would be helpful to the Board to have the draft R\&D committee paper (a) structure the R\&D area for computer science and engineering; (b) list the basic alternaiives, such as broad revjews of the R\&D field vs pin-pointed studies of priority problems; (c) roughiy examine the jnput costs and probable benefits of the alternative approaches; and (d) propose an initial R\&D program of actions that could be made up of broad reviews, pin-poirced sturios or a mixture of both. It was agreed that such a paper would provide the best basis for enabling the Board to weigh the siternatives and to proride guidance to the R\&D Committee Planning Group now and later to the Committee's research and production program. Evans indicated that he would call a meeting of the planning group refore the next meeting,

The Chairman pointed out that a successor was being sought for Lew Bright's job in the Office of Elucacion. It was agreed that Board members should forward any suggestions to the Chairman within the following week or ten days.

1. That Miss Zehring should make a rough index by tape number of the various topics discussed by the Board so as to facilitate extraction of portions of the Board discussion for Committee Chairman, Working Groups, etc.
2. Papers to be discussed by the Board should be distributed ahead of the meeting. The CS\&E staff will reproduce and distribute such papers wher needed.

Mr. Kenneth O1sen

1. Board Attendance List
2. Guest Attendance List
3. Updated List of all CS\&E Board Members (Note Telephone Numbers)
4. Agenda
5. Draft of minutes from Third CS\&E Board Meeting at Denver
6. Statements issued by Dr. John Pierce at Denver Meeting re: Supplying Computers to the Iron Curtain Countries; and The Brooks Institute
7. Statement issued by Professor Barkley Rosser at Denver Meeting re: Dr. Alan J. Perlis
8. (Request from Dr. David Evans) Statement issued at Denver Meeting re: R \& D Committee
9. Mi1t Rose Project letter packet
10. Anatol Holt papers
11. Sample meeting form

National Academy of Sciences
 21O1 CONSTITUTION AVENUE WASHINGTON, D.C. 20418
 Board Attending the
 COMPUTER SCIENCE AND ENGINEERING BOARD
 Fourth Meeting
 July 12, 1968

Board Members Attending

Dr. John R. Pierce: Acting Chairman
Dr. Sidney Fernbach

Mr. Jerrier A. Haddad

Dr. John R. Meyer
Professor W. F. Miller

Dr. Nathan M. Newmark

Mr. Kenneth Olsen

Dr. Alan J. Perlis

Professor J. Barkley Rosser

Dr. Alan Westin

Board Members Absent

Professor Anthony G. Oettinger: Chairman
Dr. Launor F. Carter

Dr. Wesley Clark
Dr. G1en Culler

CS\&E Attending Staff
Mr. Warren C. House Executive Secretary

Miss Robin Zehring
Secretary to Mr. House

NATIONAL ACADEMY OF SCIENCES
 2101 CONSTITUTION AVENUE WASHINGTON. D.C. 20418

Guest List

COMPUTER SCIENCE AND ENGINEERING BOARD

Fourth Meeting
July 12, 1968

Attending Guests

Dr. Herbert Grosch - Speaker - National Bureau of Standards: Washington, D. C.
Mr. Issac Nahama - Speaker - International Computing: Bethesda, Maryland
Dr. Walter Baer: Office of Science and Technology: Washington, D. C.
Mr. Ernest Baynard: Chief of Staff for Congressman Jack Brooks

Mr. John Griffith: IBM: Yorktown Heights, New York
Miss Ann Lamb: Bureau of the Budget: Washington, D. C.

Mr. Donald Madden: Association for Computing Machirery: New York City, N. Y.
Mr. Arthur Melmed (substituting for Dr. Milt Rose) National Science Foundation, Washington, D. C.

Dr. Charles V. L. Smith: Atomic Energy Commission: Germantown, Maryland

Mr. Robert Taylor: Advanced Research Projects Agency: Washington, D. C.

Absent Guests

Dr. John Egan: Department of Defense, R\&E: Washington, D. C.
Dr. Bruce Gilchrist: IBM: White Plains, New York

Mr. Richard McCann: Office of Education: Washington, D. C.
Mr. Bernard Urban: Bureau of the Budget: Washington, D. C. (Transfered to HUD)

Dr. Bruce Waxman: National Institutes of Health: Bethesda, Maryland

Dr. Launor F. Carter
Vice President and General Manager
Public Systems Division
System Development Corporation
2500 Colorado Avenue
Santa Monica, California 90404
Telephone: 213-393-9411
Dr. Wesley A. Clark
Computer Systems Laboratory
Washington University
724 S. Euclid
St. Louis, Missouri 63110
Telephone: 314-F0 1-7356
Dr. Glen J. Culler
Director
Computer Center
University of California at Santa Barbara
Santa Barbara, California 93106
Telephone: 805-968-1511
Professor David C. Evans
Director
Computer Science
University of Utah
Salt Lake City, Utah 84112
Telephone: 801-322-7914
Dr. Sidney Fernbach
Head, Computation Division
Lawrence Radiation Laboratory
Box 808
Livermore, California 94550
Telephone: 415-447-1100
Mr. Jerrier A. Haddad
Vice President
Engineering, Programming and
Technology
IBM Corporation
Old Orchard Road
Armonk, New York 10504
Telephone: 914-765-7411.
Dr. John R. Meyer
Program on Science and Technology
Littauer 235
Harvard University
Cambridge, Massachusetts
Telephone: 617-868-7600

Professor W. F. Miller
Computer Science Department
Polya Hall
Stanford University
Stanford, California 94305
Telephone: 415-321-2300
Dr. Nathan M. Newmark
Head, Department of Civil
Engineering
1114 Civil Engineering Building
University of Illinois
Urbana, Illinois 61801
Telephone: 217-333-3813
Professor Anthony G. Oettinger
Aiken Computation Laboratory
Harvard University
Cambridge, Massachusetts 02138
Telephone: 617-868-6155
Mr. Kenneth Olsen
President
Digital Equipment Corporation
899 Main Street
Maynard, Massachusetts
Telephone: 617-897-5111
Dr. Alan J. Perlis
Head, Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213
Telephone: 412-683-7000
Dr. John R. Pierce
Executive Director
Research Communications Sciences Division
Be11 Laboratories
Murray Hill, New Jersey 07971
Telephone: 201-582-2626
Professor J. Barkley Rosser
Mathematics Research Center
U. S. Army

University of Wisconsin
Madison, Wisconsin 53706
Telephone: 608-238-6919

Dr. Alan Westin
Department of Public Law
Fayer Weather Hall
Columbia University
New York, New York 10027
Telephone: 212-280-3965

COMPUTER SCIENCE AND ENGINEERING BOARD STAFF

Mr. Warren C. House
Executive Secretary
Computer Science and
Engineering Board
National Academy of Sciences
2101 Constitution Avenue
Washington, D. C. 20418
Telephone: 202-961-1386
Miss Robin Zehring
Secretary to Mr. House
National Academy of Sciences
2101 Constitution Avenue
Washington, D. C. 20418
Telephone: 202-961-1389 or 961-1372

National Academy of Sciences
 2101 CONSTITUTION AVENUE WASHINGTON. D. C. 20418
 COMPUTER SCIENCE AND ENGINEERING BOARD
 Fourth Meeting
 July 12, 1968
 AGEND A

1. Announcement of new members and welcome by Dr. John Pierce, Acting Chairman. Introduction of Mr. Richard McCann as the observer from the Office of Education.
2. Review of the minutes of the June 18-19 meeting in Denver.
3. Confirmation of the following meeting schedule for the next six months:

months:	
October	$9-10,1968$
November	$6-7,1968$
December	$11-12,1968$
January	$7-8,1969$
February	$4-5,1969$
March	$5-6,1969$

4. Review and evaluation of the following prospective sites for a halfday briefing for the Board in conjunction with future meetings. Alternatives or additions should be put forth at this time. Each member agreed to submit three locations. Suggestions received before meeting will be in the CS\&E working folders.
A. COINS -- General Robert Taylor/ George Hicken
B. Livermore
C. Poughkeepsie
D. SAC
E. Computer Usage Corp.
F. Digital Equipment Corp.
G. Social Security -- IRS, Census, or the like
H. FBI -- Justic Department
I. Fort Holabird
J. Selected ARPA Research Projects
K. Systems Development Corp.
L. Headquarters NORAD, Colorado Springs, Colorado (SAGE, BUIC, BMEWS, and Space Track)
5. Preliminary results of a survery of information processing personnel based on professional society membership -- presented by Ike Nahama, sponsored by ARPA, contracted by AFIPS. Initial presentation 20-30 minutes.
6. Summary remarks by Herb Grosch of the National Bureau of Standards on the NBS program in computer standardization in relation to the Brooks Bill, with emphasis on progress to date, problems encountered, and probable developments over both the short and the longer term.
7. Further discussion of the report by Alan Per1is on the Education Committee P1an, the priority areas, and the candidates for the task teams.
8. Further discussions of the report by Dave Evans on the R\&D Committee, the priority areas, and the candidates for the task teams.
9. Further reports by Barkley Rosser on planning for the National Programs Committee.
10. Discussion in further detail of the informal proposal by Milt Rose for the CS\&E Board to study "the patterns of industrial support for computers, computing and computer science in the nation's colleges and universities." Includes preliminary draft of letter by Bill Miller, etc. for possible initial survey use.
11. Submission of papers by Bruce Gilchrist and Don Madden confirming and detailing their verbal reports to the Board at the Denver meeting regarding possible data gathering activities of AFIPS and ACM.
12. Other

Denver Meeting: June $18-19,1968 \quad \underline{P} \underline{\mathrm{R}} \underline{\mathrm{V}} \underline{\mathrm{L}} \underline{\mathrm{E}} \underline{\mathrm{G}} \underline{\mathrm{D}}$
D R A F T

The Chairman called the meeting to order and asked for comments on the draft minutes of the CS\&E meeting on May 16-17, 1968. With some minor changes, the minutes were approved.

The Chairman reported that Dr. Seitz was approaching the point of decision on the selection of an economist to serve with the Board. He indicated that the field had been narrowed to four and that the emphasis was on selecting an economist who had considerable experience in analyzing the impact of computers and their applications upon the general economy and upon major economic sectors.

John Griffith, reporting for Jerrier Haddad, then gave a brief summary on the status of the preparation of the materials for the $\$ 100$ to 150,000 solicitation campaign for uncommitted funds from the private sector. He indicated that solicitation prospects had been divided into computer companies, trade associations with an interest in computers and computing, professional associations other than scientific or technical and professional societies. The computer companies had been divided into three groups; the large companies providing both hardware and software, the companies specializing in software and related services, and companies providing peripheral or computer-related services. Three different draft letters for solicitation were then distributed for comment and suggestions. Mr. Griffith indicated that some very professional people were being used by the Solicitation Task Team to draft the letters, to do the text on the brochure to accompany the letter, to select specific amounts to be requested, and so forth. He said that the text for the brochure was being prepared and should be ready for the next Board meeting in Washington.

Dr. Milton Rose, of the National Science Foundation, then outlined some of the considerations that led to his recent letter to the Chairman suggesting that the Board consider undertaking a study of "the patterns of industrial support for computers, computing and computer science in the nation's colleges and universities." He indicated that this area had always been rather ill-defined and that even a partial job at this time would be useful to the Foundation planning people. He commented that the survey could also provide initial momentum to the Board in its collection of essential information regarding the computer science and engineering field. He stressed that his thinking as reflected in his informal letter to the Chairman and the thinking of the people concerned in the Foundation was far from conclusive and that reactions and comments from the Board would be we 1c ome.

A responsive discussion ensued during which the following points were made regarding the computer services in colleges and universities: computer services for small colleges require more direct participation of the user in getting the services needed; in a university a wide variety of computer services is required, ranging from simple to complex; a centralized computer service has some inherent drawbacks, i. e. it generates competition among the users, usually develops a line of low-priority users waiting for machine time, and thus often runs counter to the basic need to generate new and innovative computer uses by making it very difficult for new users to get machine time; perhaps the whole problem of computer services on the colleges and universities should be given an entirely new look in light of emerging technologies with a view toward guiding those technologies along the most promising paths, i. e., use the colleges and universities as a live laboratory in which to experiment with real-time interaction between major user groups and emerging technologies.

Out of the foregoing and related discussion arose a consensus that doing the "entire" job would constitute a major undertaking and would require a considerable length of time. Dr. Rose indicated that the Foundation was taking a long view of this problem and that doing the job in stages would be entirely satisfactory. It was agreed that $D r$. Rose would work on refining his informal request for the next Board meeting, that Bill Miller would try his hand at drafting a letter which might be used for the initial or exemplatory survey action and that the Board would explore further at the next meeting ways and means for proceeding with the task. It was also agreed that Dr. Rose's initial inquiry of possible Board interest would be formalized and directed to Dr. Seitz before the Board undertook the task. The matter of determining the amount of funding for the Board's survey was deferred pending a clearer definition of precisely what work should be done as the first cut at the problem.

Dave Evans submitted a revised and enlarged draft statement of the goals for the $R \& D$ committee, distributed copies to the Board members and invited comments and discussion. Considerable discussion revolved around the criteria to be used in establishing the priorities for the R\&D committee effort, including whether the priorities should be based upon field segments, by national level goals as defined by Congress, by military interests, intelligence interests, civilian interests, by departmental priorities, by user interests or by budget priorities. The Chairman observed that, whatever the criteria selected by which to establish priorities in the R\&D field, we must be sure that adequate clearances are obtained for the committee and the task force members to assure that time, energy and money are not wasted in re-discovering solutions already developed in government areas of classified activities. He emphasized that this would be especially important in the $R \& D$ and National Program activities, and indicated

```
June 18-19, }196
DRAFT
CS&E BOARD MEETING MINUTES
Page 4
```

that close collaboration between these two would be necessary as their efforts got under. way. Evans then submitted a tentative list of candidates for membership in the R\&D committee and solicited comments and contributions of other names. The Chairman observed that $R \& D$ was a particularly sensitive area in computer science and engineering and suggested that the $R \& D P$ lanning Group consider the wisdom of tentatively staffing the R\&D comittee initially with the idea that the first two or three months work could be pointed toward refining the R\&D priorities which, in turn, would point toward candidates qualified by interest and experience to be considered as chairmen and members of the initial task forces. It was agreed that this had considerable merit in that it made possible prompt action without undue risk in selecting task team members and chairmen prematurely. It was also agreed that the Board members should submit candidate names for both the $R \& D$ committee and the unspecified task teams to Dave Evans with two paragraphs of background matched against $R \& D$ goals, either before or at the next meeting in Washington. Further discussion of the R\&D goals, priorities and means of achieving these goals, and committee and task team membership whould be continued at the next meeting of the Board.

Barkley Rosser, in reporting on the National Programs planning problem, indicated that his preliminary investigation showed that the transfer of techniques, technologies and concepts from the classified areas of activity to non-classified areas of government and the private sector should be considered one of the priority tasks. This led to a rather stirring discussion. Robert Taylor remarked that in the intelligence field more emphasis had been placed on the collection of information than upon how to process the information and what should be done with it. Taylor also commented that some of the techniques
and technologies were fairly low-level and should be transferable without too much difficulty so long as they were kept separate from the intelligence content with which they were involved. Launor Carter observed that in SDC's experience battlefield information handling and presentation should be broken out by segments rather than as total systems. He added that there were lots of military classified information processing activities that were not highly restricted and should be broken out with proper precautions. He remarked that it might be helpful in dealing with this problem to use categories, such as military intelligence systems, weapons evaluation systems, systems analysis activities and force analysis activities.

It was agreed, after considerable further discussion, that the National Programs planning group should proceed with care in this and other matters relating to National level programs, especially in light of one observation that the type and number of information processing activities within the DOD were proliferating at a rate that made it very difficult to maintain a current \log. In regard to tentative staffing of a task force on "privacy" the names of Ithiel Pool and Carl Kaysen were mentioned.

Bill Miller reported that the California legislature was currently considering legislation regarding the protection of the privacy of individuals and that one of the most difficult aspects was the definition of precisely what such rights ere in the field of personal information that could be made availabe to third parties without the knowlege of the individual directly concerned. He said that investigation had indicated that many of these "privacy protections" for the individual were not spelled out in the constitution and he added that the California legislation went far beyond the constitution in this aspect of privacy. He volunteered to obtain a copy of the California legislation and to forward it to the CS\&E staff. He also
said that he had a graduate student working on the privacy problem and suggested that the Board consider establishing some informal technique for encouraging selected graduate students to undertake theses work on priority problems such as this. The Board endorsed the idea and the Chairman referred this to the Chairman, Data Base Planning Group, for action with the collaborating of the other Planning Group chairmen and Board members generally. Rosser asked Evans to alert him to any emerging technology that could have a significant impact at the national program or policy level.

Rosser called attention to another area of interest to the National Programs committee, i. e. the FCC inquiry into computers in relation to communication as defined for common carriers, and remarked that the Board should be kept up to date on developments there even though he, Rosser, had not been keeping up. Madden indicated that the seminar series being provided the FCC by ACM would be completed a few days before the next Board meeting. He promised to bring the Board up to date at the next meeting and he reminded the Board of the stages through which the Bureau of Common Carriers planned to proceed: (a) ACM seminars for staff familiarization; (b) selecting a contractor for assistance in handling the responses; (c) reviewing the work of the contractor; (d) advising the FCC Commissioners on both technology and policy aspects. The Chairman remarked that these stages seemed to set the stage rather clearly for the determination, if, and at what point or points, the Board might assist either the Bureau of Common Carriers of the FCC Commissioners.

Rosser reported on a conversation he had with an old friend, John Kincaid, Assistant Secretary of Commerce, regarding computers in government, the Brooks Bill and the National Bureau of Standards. In this conversation, Kincaid raised the question of a "national institute for Computers." Kincaid's remarks
reflected an inability to determine precisely what such a computer center or institute should be, what it should do, how it should do this, and the like. Pierce remarked that such an institute could look into the general inadequacy of computers, encourage program documentation, evaluate current output of computers in terms of usability, determine whether computer systems were accessible to users and usable by them, determine whether computer systems were economic, and generally study the hardware-software problem and encourage appropriate action by the elements of the field concerned with the problem. Rosser indicated he had selected $\$ 5,000,000$ as the likely cost of establishing such a computer institute, when pressed for a figure by Kincaid. He remarked that some study of this cost figure should be undertaken if there is serious concern with an institute. He said that he had promised Kincaid to try to refine this gross figure, even though no one seems to have any clear idea of what such a computer institute should do. The Networks for Knowledge, as explained to the Board by Dr. Walter Baer, assistant to Dr. Donald Hornig, the President's Assistant for Science and Technology, was suggested as a likely subject for the National Programs Committee as well as the the National System for Scientific and technical information libraries. Bob Taylor offered to supply the Board with ARPA's report listing what it considers to be current "centers of excellence" in the computer and information processing science field.

Bruce Gilchrist reported on his investigation of AFIPS as a source of current and future data on the computer science and information field. He indicated that AFIPS would be willing to undertake such studies in the future to further the professional development of the field. He cited the recent survey by Ike Nahama of information processing personne 1 based upon professional society membership. He pointed out that this study had been funded by ARPA

```
June 18-19, 1968
DRAFT
and conducted under the sponsorship of AFIPS. Don Madden reported that ACM could probably be counted on to increase its data collection activities on professional aspects of the field. He distributed copies of an ACM report listing Master's and Doctor's theses in computing science classified by the system used in ACM's Computing Reviews. He volunteered to provide copies for each mamber of the Board. He pointed out updating work on this publication had lapsed about (Don, please fill this in) years ago and asked for Board comments as to whether such work constituted a useful contribution to the data base concerning the work of professionals in the field. The Board indicated that it would and asked Don to encourage the ACM President and Board to continue the work. Madden also passed around a copy of an inventory of computers in Canada. He cited this as possible model for a similar inventory for the U. S. which the Board might wish to promote and as a very real prospect for international collaboration in developing an inventory of computers for the Northern Hemisphere.

After a brief discussion regarding the need to nail down at least a fairly definitive draft of the various committee planning papers as soon as possible, it was agreed that each Committee Planning Group Chairman would submit a more or less complete draft of his group's report to the Board at the September meeting, including area of responsibility, priorities, recommended problems for action, task forces to be established, and staffing suggestions for both the committees and the recommended task forces.

The Chairman reported that he would be out of the country on his first vacation in three years, wished John Pierce the best of luck in "the Chair," and urged that the Board pursue its work at full speed durring this absence.

June 19. benves
To: oettingez and House
From: Je Re Plezce
SUPELYING COMPUTERS TO RHE TRON CURTATN COUNLRTES

I belteve that ous computers ase better partiy because of better components. and partly because of laxgeoseale manufacture and use, which have a teachung value to marumacturea.

The last thing we should do ts to teach the ixonocuztath countries how to make good components.

An assembly Lnme making compuecse from a careful2y controlled supply of components woudn \({ }^{\text {ch }}\) be go bad.

A Little can be Learned about makkng good componente by examintng them, but not enotgh to enable soncone co duplicate then Hence, it is only modexately dangorouss to seli components. TE the purchaser should uge such components in militaxy gear. he has the thapleasant prospect of maintaining Lezge peockpincs of elme having gear that is alnost all. the we but useleas becauso some pazt is mussunge

Cantbalzing computers woukd be a very expenstve wave of getelng components.

Snall computess whthout much perstexal equspment might be incorporated drrectly 4 thto wapons or process control. A denand Eot large numbers of small conputerg with 111 etke or no or very odd pextreral egutment wousd be a suspichous shgno A demand for computer systems. as thay aze used in computhng centers, woutd not.

co buy computers row a few vory direet and sensible zeasom:
(1) They beliave that a communist aconomy can be made to mun tif they can ony get and handla adecuare data. This in part of the heybernetic' kick they've been on for some years.
(2) Schentsics and enghneere wank soma good and usekut. compreces.
(3) They may want to copy. ox try to copy or adape. westemn destgna. This would have the mall virtue of keepthg chem always behand.
Lt scems to me that the greatest danger in supplying conputeze to inonmentean conneries Lies in avakenhig a laxge group of unesig to the value of good computing.

To: Rosser, Detcinger, House

From: Jo Re Pierce

\section*{THE BROORS TNSTETUTE}

Such an instltute would be useful only if it really improved compting in the parts of the goverment concemed in bos, for inatance.

Thus, the research would have to be dixected at alleviating problems of the user commatty, and at what the manuractureys could be induced to do to alleviate them.

A modest number of humanengineer type psychologists. operations analystss, economists and Lngentous softwase men might tackle problems of the following sort:
- Are the selection and training of users effictent and adequate?
* Are programs adequately documented and so written that there is a chance of altering and revisiag themg and axe they accessibly and sensibly indexed so that others can got and use them?
- When now machines are purchased, is the cost of adapting or rewriting the programs for them realistically taken Luto account and provided Eos?
- Ts the cursent output of actual value, and to whom? Computers can flood an oxganization with sheets of E\&gures that no one reads.
- Ts a system accessible and understandable to the people who should be using it? or is it too general in nature or too complicated to leam to use and to use?
- Is the syatera economical?
- What hardware and sostware problems lie between what people axe dokng and what would be better to do?

Fygm Jo Barkley Rosecs:

To perits fous zesponstbilitses, I would add a xischo It ta a bie hate co dencuine in one aencence, go that I w111 meander a bito

Responamblsty three calla for edscatsing studentg tri the ockence., engmeering, buskness education. etce in the use of computers in thesm respectiva areas of atudy. Suppose thas is done in the freshman or nophomore geat. of what avalı, 15 the acudent is never thereafer arked to ure a computer? So a large complex of changes must be made. Texte and other cumenculas matemial muat be provideds on thaough graduate school, based on the premise that the abudent has acceas to a computer and has the fxatning to Eake advantage of thiso Faculty members must be tauned co uge such macexialo Above alfo the access to a compretex must ba providedo Eutauge a conadderabie fraction of the Bcudent body wit be involved tia varytng degreen. the hasitaxe expenser wil be tor major and the zolewase

 for somputeriso


 thet those who dinpence funds whil give nextous atcencton to zeconmendethons os CSEB, then these zecommendabens cannot量gnote an avea which Will soak up hat the fuxado

 pamorfyy ore is indeed compelltngo Unless the surply of
 all the ochez mexpometuritstes vint Eajcer for lack on trained rampowero I camos see a Riocorg eame for the gecond
 purn ons a 10 of poop


 Which is machine wndependento Spertal meas prog entumg eftorsan




 Shven in any undergandurce majoz in computer sedence.
 ghtmeg and colleges 10 so go to Ensuse that ronoptokessional noest of computezs have adequate trannung and experience, fhen every high
 and efermexerty made。
TMATERET
May 21, 1968

Dr. Anthony Oettinger, Chaiman
Computer Science and Engineering Board
National Acadery of Sciences
2101 Constitution Avenue, N. W.
Washington, D. C. 204,18
Dear Tony:
While I am certain that problems of organization and planning continue to be a majoc concern for you, \(\vec{a}\) wish to inquire at his time on the Board's interest in ourrying out a study for the Natinmai Science Foundation. This study might ka described loosely as tiht pattems of industrial support for computers, computing, and computer science in the nations colleges and univelsities."

This sinnort, both direct and indirect, takes various forms: research, graduate fellowships, discounts on purchased equipment, clonations, etc. The congreis has, at different times, questioned the policy of Federal support in this area, clairing that, a iearer perception by the computer industry of its self-interest should make Federal surport unnecessary. While we have some idea of the level of institutional investment in academic computing activititi the industrial contribution is largely unknown to us.

A study of this matuer in tine near fluture would be . ost timely for the Foundation and might sirultaneously heip the compoter industry develop a rational policy in this area.

I lock forward to hearing from you in the near future. If this study holds some interest for you, I will be pleased to formalize the Foundation's interest with a ietter to Dr. Seitz.

MAY 23,1968


Viliton E. Rose
Head
Office of Computing Activities
 TU "ONY, WITH A COPY TO ME. IF YOU HAVE AN QUESTIONS, PLEASE CAIL TOYY UR ME. A"ACHED IS MY STAFF NOTE TRANSITTTING MILTS LETTER TO D.R SEITZ. Thanks y Maio
\(!\)

\title{
NAtIONAL AcADEMY OF SCIENCES \\ 2\{OTCONSTITUTION AVENUE \\ IVASHINGTON. D.C. 20418
}

Hay 23. 1958

Dr. Erederick Seltz
president
National Acacieny of Scionces
Dear Dre Soicz:
- Atrached is a copy of a letter vo received this morntng From Kiltor Rose at the Dational Science Foundation. I have called it to tomy and formarded a cony by Air Mail Spectal nolivery. ronys indtal reaction was one of high meterest.

The question that milt vould like to have the cses fond Look thto has some very, very interesting dmplicntions and touches upon one of the more contive aspects of the U. S. Guvemments zole in compter develophont and untversity suppont. In tems of
 a very semative and signtficant aspect of compter sciance and ongincering, the would be a very warthoule projece. in tems of controbuing to a clearem understanding of a problem imolving the governmsit and major semments of the compter sctence field. a good job wond reflect constderble credit on the Acadery and, In sure. bet tho stago and teapo for bjular or follondon efforts.

At Thy's guggest:on, I have Am hailed coples of the letter Erom Hitit to all CBes Board momers under an "loadong Privileged" Bhap requesting theis piomp reaction and coments.

Any suidance or coments that you may wish to nole at this rime would be most helpiul. I will fowand them te rone if you wosh
sincérely
cc: Jom S. Coleman
Robert Green
Anthony G. Oettirser
C. E. Sunderlim

THE UNIVERSITY OF UTAH
SALT LAKE GITY 84112

COLLEGE OF ENGINEERING
COMPUTER SCIENCE
June 5, 1968

Dr. Anthony Oettinger, Chairman
Computer Science and Engineering Board
Harvara University
Cambridge, Massachusetts
Dear mony:
I think Milt Rose's project is one that isn't very easy, but ought to be done. IE's going to be very difficult, indeed, to separate true support and just plain, old marketing gimaicks. I say let's give it a try.

Sincerely,

David C. Evans, Director Computer Science

DCE: Skm
cc: Warren C. House

June 3, 1968

\author{
Dr. Anthony Oettinger, Chairman Computer Science and Engineering Board National Academy of Sciences 2101 Constitution Avenue, N. W. Washington, D. C. 20418
}

Re: National Science Foundation Study on Industrial Support for Computers and Colleges

Dear Tony:
I have read Mr. Rose's letter to you with great interest. It seems to me that this study would be a worthwhile one for. the Board to undertake. The only caution I have is that it should deal specifically with industrial support for computers, computing and computing science in the nation's colleges and universities and it should not deal with the more general subject of general support oit the nation's colleges and universities by the comouter industry. Soecifically, it seems to me unrestricted grants from industry to colleges and universities are a separate subject even when made by companies in the data processing and computing field. It is not apparent to me that our Board should become involved in the unrestricted grant area.

JAH:nt
cc: Mr. W. C. House


\section*{SYSTEM DEVELOPM脌NT CORPORATION}

June 3, 1908

Dr. Anthony G. Dettinger
Harvard University
Cambridge, Massachusetts
Dear Tony:
I have the material from Warren House, which includes a letter from Milt Rose with a note that you are anxious to have our reaction to Rose's request. Rose says, "ais study might be described loosely as 'the patterns of industrial support for computers, computing, and computer science in the nation's colleges and universities.'" Ny first reaction is that this would be a very worthwhile thing to investigate. I suspect, however, that we would have some trouble in finking out the exact facts, since they seem to vary a good deal from university to university. Recently I received a Letter describing the shit it of a major university from one company's equipment to mother. It indicates that one of the major computer equipment companies is giving this university an educational discount, which it would sever have done before except that they can now replace another manufacturer's equipment by doing this--I gather this is an ad \#oc arrangement with this particular university.

I imagine tit would be very difficult to weary ind out what the computer industry is doing, not only in universities, but in their own estabizsments. Congress and some or the military have often expressed the opinion that if we just sit by the computer industry will itself undertake all the necessary ReD to make the field progress both in hardware and software. It would certainly be informative to know how much the computer industry is spermine on various categories 02 SBD, bo ch in their om establishment and in support at universities. If we could get cooperation I would certainly like to see such a study cone:

> Sincerely yours,


Launor F. Canter
Vice President and Manager
Public Systems Division

IFC: 0
cc:- Warren :ouse
```

Prozescor Anthony Cottinger
Cnofman, Ccwuter Sejenee nod Engmeerjog Ecard
Nlotjomal Acoucay or Sotrnces
Asen Computation Iscoranow
Haraag UnLuersit?
Crumrdze, Wasssemeetta 02133

```

Desr Tony：
```

 This is in cecoonse to the lecter from Mition Soso to you cated Hay ll
    ```




ve would have to careriuly expletia tie papoees and uee to de vave on we


y=at the cans.

If，for exapple， 311 that is nedod or aie purpoes is ingutay as to






 The polioy or feceral suport in thts anea，wr act large I think it wolu ie






 ぐ2のんvaraga．

Protesar hithony Cuttiger Fuge 2

I voxes whether a special study on the foustrial support is necesany
 bota receral and incuatrial.

I'II than wore avont the problen in I lave any wore thouthe; the fove are my top-of-therbed wes.

Regrectaing,
H. B. Willer

Probescr or Cotpher Science
HIT: H
ce: Fomen flows

\section*{UNIVERSITY OF CALIFORNIA}

\section*{LAWRENCE RADIATION LABORATORY}

BOX 808
LIVERMORE, CALIFORNIA 94551
May 27, 1968

\author{
Professor Anthony G. Oettinger \\ Aiken Computation Laboratory \\ Harvard University \\ Cambridge, Mass. 02138
}

Dear Tony:
With reference to Milt Rose's letter requesting a Study for the National Science Foundation, I feel that we should certainly endeavor to take this on. This information is going to be of great value to us for the present, as well as in the near future, and it is a way of getting started with some of our data base problems.

Sincerely,

\section*{SF:ke}

> S. Fernbach, Head Computation Division cc:W.C.House

\title{
National Academy of Sciences
}

\author{
2101 CONSTITUTION AVENUE
}

WASHINGTON. D.C. 20418

July 10, 1968

Mr. Anatol Holt
Applied Data Research
Washington, D. C.
DICTATED TO MR. HOLT BY ROBIN ZEHRING VIA TELEPHONE:
JULY 10, 1968 AT 2:45 P.M.

Dear Anatol,
Thank you very much for inviting me to the meeting this morning. I enjoyed it and feel that something constructive is sure to come out of it. If you would dictate your rough notes to me regarding the outcome of the meeting sometime this afternoon and call my secretary, Miss Robin Zehring, when they are ready, we will pick them up by special courier. If you can possibly do this, I will include this as an informal note of prospective business in the working folders of the Board members for the meeting on Friday.

Thank you.

\section*{women repose \\ Warren House}

WCH: ez
pakice bo All Grace ppemers:
The akkached draft minute is provided as (1) an efaniple of bue-kine of interest so she Gard and (2) for yous preliminary epaminakion inkermo of background use only at bis lime. \(\rightarrow\) -

Convened on July 10, 1968 at the offices of Applied Data Research, Arlington, Virginia; in attendance: Stan Rothman, TRW, Frank Leonard, Computer Usage, Donald Walker, MITRE, Herbert Koller, Leasco, Warren House, National Academy of Science, Anatol Holt, Applied Data Research.
1. Report and Proposal by A. W. Holt

During the last eighteen months the ACM Committee on Social Implication has established two edge-notch card files: a person file containing entries for ACM members, and some other members who have experienced an interest in the Committee's area of concern, and who filled out a questionnaire detailing their interests and abilities from the Committee point of view; there are about 100 to 200 persons in the file; a document file listing articles, books, etc. with brief descriptions and evaluations. This file was intended to become the basis of an information service offered by the Committee for a subscription fee. Subscribers would receive, monthly, duplicates of new cards, pre-punched. Though much of the ground work for the service was done, it was never actually started.

In addition to organizing sessions at professional meetings, the Committee also formulated plans for the establishment of several standing subcommittees which would act as exchange bureaus, e.g.,

Al. A speaker bureau - charged with finding speakers as well as organizations interested in speakers and putting the one in torch with the other.

A2. A project bureau - charged with finding investigators and sponsors and putting the one in touch with the other.

A3. An advice bureau - charged with finding experts (on the technology of privacy, the effects of automation, etc., etc.) and those in need of advice and putting the one in touch with the other.

A4. Other bureaus of the same general design.

The performance of these functions would not only be useful in itself, but also would generate knowledge for the committee of problems that are actual and that might provide the basis for useful projects to be sponsored.

Holt proposed that AFIPS establish a Bureau on Social Implications of Information Processing and Communications Technology -- the bureau to be permanently quartered and staffed with a part-time or full time executive director and secretarial help. The Bureau would represent the interests of all member societies in the subject area and would be supported by funds contributed regularly by all member organizations. Associated with the Bureau would be a board of directors, one director from each member organization. These directors would be the new equivalent of the currently existing chairmen of numerous Committees concerned with computers and society.

The Bureau would perform the following functions:
Bl. Maintain a person file, as described above.
B2. Maintain a document file, as described above.
B3. Perform functions Al - A4.

B4. Maintain facilities for soliciting foundation support for projects and administering such projects. Projects would not necessarily be carried out in offices maintained by the Bureau. The Bureau could then give the opportunity for computer professionals in industry to engage in a study related to computers and society while on leave of absence from their regular employment.

Part of the rationale for the proposed Bureau is as follows: Cl. It is difficult for each member organization to command sufficient resources in people and/or funds to carry out meaningful programs in this area.

C2. Most professionals, while sincerely concerned with the relationship between their technology and society, cannot justify substantial investments of their time in related activities. On the other hand almost nothing significant in the area of computers and society can be accomplished on the basis of occasional committee meetings and/or discussion groups. This, in the opinion of Holt, is what has made the accomplishment of most such committees less than spectacular.

C3. The Bureau could act as a service organization to any and all committees that might be formed within member organizations, so long as some aspect of such Cormittee's concern touched on social implications.
2. Report and Proposals by S. Rothman

Rothman presented some proposals the motivation for which came from two underlying feelings about the social implications of computers. One, that the impact of computers on people must be assessed from a very broad and human point of view. Two, that much of the lay-material that has been written in the subject area is intellectualized, ellitist garbage. As such, he proposed that a pragmatic evaluation be made of the objective impact of computers during the first fifteen years of their history, and that this evaluation be documented with an equitable representation of both the positive and negative aspects. It is foreseen that this documentation can take a number of forms -- papers, books, a movie, or a TV white paper.

Another project he proposed would involve bringing together a group of people who have had first-hand contact with human beings in the mass. Such a group could discuss the effects of computers on the routine activities of life in the various social classes (and here one might enlist military induction and college entrance interviewers, corporate personnel men, teachers, and ministers), as they affect people in conflict (lawyers, police, judges, wardens, parole and probation people), and the physically and mentally troubled (doctors, nurses, psychiatrists, child guidance workers, and social workers). The point here is to get data directly from the "people processors". The question to be asked of them is: "What is the current observable effect of computers on people?"

The first steps taken in these two projects have involved the identification of competent and responsible members of the technical community that can implement these ideas. The first difficulty to be overcome as fare as a "white paper" is concerned is that possibility that a broader organizational base than AFIPS might be required to secure widespread acceptance of the objectivity of the results.

In order to begin to assess some of the possibly obscure but quite pervasive influences of the computer, Rothman had written to a broad representation of the Congressional committees and executive agencies concerned both with the Federal tax structure and with the mechanisms of economic stabilization to determine the extent to which computer technology has facilitated the consideration of alternative tax policies and improved fiscal stabilization mechanisms.

Rothman proposed that the Committee serve to consider policy identify projects, and provide guidance to responsible members of the community who would take complete responsibility for the implementation of these projects. Since there is a clear geographical separation between east coast and west coast representatives, he proposed that Holt serve as vice-chairman for east coast activities. Currently, these activities would include having Leonard and Koller follow up on the letters to Congress and the executive agencies regarding tax policy. Walker would work with the Harvard and M.I.T. groups that are examining the relations of science and engineering to society and to social policy.

The general discussion ranged broadly over a number of topics, both organizational and substantive. Qrganizationally, the alternative of committee structure was opposed to that of an established central office. The desirability of having a continued formal involvement of all of the AFIPS-afiliated professional societies argued for maintaining the existence of the AFIPS Commitee. The desirability of having somebody with resources obligated for something more than discussion made a central office especially meaningful. In either case the identification of people, information (documentary and otherwise), and funding information were recognized as essential. The possibility of a compromise with the AFIPS Committee advising an office was considered reasonable. a巻 separation of functions based on geographical proximity (East vs. West coast) as considered desirable.

The discussions on substance reflected the different interests and professional styles of the participants. \(\mathbb{P}_{\text {Rothman was concerned }}\) with having computer technologists in government and policy making desisions as well as acting in advisory capacities. He was also interested in identifying the role played by computers and computer models in some particular area; federal budget and tax decisions were suggested as particuparly meaningful.

Holtwas concerned with the problems posed by too much information too seiny from prict to point. and the inability of an individual to control his exposure to it or hus emarasson of it.

Walker was concerned with the limitations of models and
algorithms within the computer and the dangers that might result
from taking computers for granted and, consequent \(\bar{y} y\), accepting, without
examination, the relation between the models they contain and
their referents in the real world. He pointed out the self-confirming effect of decisions made using such models.

House identified the mission of the Computer Science and Engineering Board of the National Academy of Sciences and suggested that it constituted a potential resource for use.

Holler
Koller remarked on the recent interest by universities in science, technology and public policy. Rothman suggested that Walker contact the groups at both Harvard and MIT. Walker identified a new Harvard-MIT joint venture, the University Information Technology Corporation, and volunteered to contact it and explore the possibility that it might constitute an example of the impact on (the parent) institutions of computing technology.

Pursuing an analogy with the impact on people and education of intelligence tests, walker suggested that computers as methodological tools might constrain people toward valuing those problems and jobs that required computers. Rothman remarked that the existence of computing facility which needed to be used did in fact constrain the activities of an organization.

Leonard expressed concern for focus on the human aspects of information processing technology:
people as designers and producers of systems, people as operators of systems,
people as suppliers and users of information and with particular emphasis on the impact of systems on people at a remove from the industry proper. such as propsed \(3 y\) fis
He proposed that one means of bringing a staff \(\wedge_{\text {into }}\) being would be to identify a single viable research project for which funding could be secured from an appropriate source.

The requirements for such a project would be:
1. that it provide useful information
2. that it not require sophisticated research techniques
3. that it not require \(a\) large staff for implementation
4. that it can be completed in a reasonable length of time
5. that it not be very costly

The utility of such a project would be:
1. to provide the nucleus for a permanent staff
2. to establish the credibility for AFIPs administers research
3. to provide an impetus for industry al action along related lines.

IT. Was mantaven that Resent STuDiEs Fostered in This snvirownsat OAN bs. conducted with more 10TzGRity and/ at hess ExpEnSE Thad Compariale work performs lo flak Stings,

In Wubesu


\section*{NATIONAL ACADEMY OF SCIENCES}

2101 CONSTITUTION AVENUE WASHINGTON. D.C. 20418

TO: All Computer Science and Engineering Board members

FROM: Warren House

RE:

Attached is an example of a convenient form which is being used to create records at a least possible burden for an informal group that is working on a fairly complicated problem. Also attached is a slightly modified form which may be useful for you in keeping records of informal meetings you have with working groups and task teams and similar activities.

\title{
COMPUTER SCIENCE AND ENGINEERING BOARD \\ Informal Report Memo
}

TO:

FROM:

DATE:

PARTICIPANTS:

Name
Title/Organization
Te1ephone
Other
\(\qquad\)

SUMMARY, CONCLUSIONS, DECISIONS, ACTION ASSIGNMENTS:

Coming, Gaiter, Madden,
© wetting er, Revers

FROM: 3. \(\therefore\) Cosdon Joint Agreement Group (JAG) Meeting No. 1
date prepared: \(\qquad\) \(68 / 5 / 14\)
PROJECT: \(\qquad\)
SubIto:
COPIES:

\section*{DARE: 65/5/14}

PLACE:
PHONE:
ORGANIZATION:
TINE: \(0900 \mathrm{has}^{\circ}\)
\begin{tabular}{l} 
MORE \\
DEN2ACON \\
NBS Gaithersberg \\
\hline
\end{tabular}

IN OUT \(=\)

PARTCIPANTS: (Name, Title, Phone):
aTT
See Attachment iI
\(\qquad\)
NOTES, COVENS, SUMMARY, DECISIONS:
Attachment I is the convening memorandum which called the group together. This is an informal group which was formed at a meeting of ACID at the SJCC 1968. The major purpose of the meeting was to find ways (and begin) to make arrangements for the major societies in the computer field to get a common arrangement for exchange of bibliographic data before we automate ways of doing it that may be incompatible and cause unnecessary duplication in transcription of basic data.

The meeting can be said to have gotten off to a grand start. We as teed not to publish formal minutes but only to record agreements and numb cr them for reference. Some 14 or more agreements were made at the first meeting. We set homework studies for individuals and the results axe to be distributed before the next meeting. Tentatively a monthly meeting schedule was agreed. The tone of the meeting was very open, cordial, frank and positive. If this kind of thing continues we can look forward to some very useful cooperation.

Po. : Kccoz
LATE: 671207

AT＇TACHMENT I
（xa．：．in somats GOMERNMENI


TO ：Dr．Howaid E．Tompkins，TEEE Di：Join A．Gosden，ACMV
naicjuly
\[
\begin{aligned}
& \text { 。 } \\
& \text { ACM= シnC GBEO } \\
& \text { U.S. DEPARTMEN" (J: COMNGRCR } \\
& \text { national burazu of standizds }
\end{aligned}
\]

DATE：May 7， 2900
In acply refie to：


This is to romind you of our subcommitcee mecting on May 14， 1968. I wuld suggest that we plan to convene about 9：00 a．m．in my office In hoow 3－－250 of the Instamentation Building（225）at the National Burcau of standards．As you know NBS is near Gatehersburg on inderstate Aighway 70S．I leave it to your discretion to invite aduictonal participants；for example，representatives of ACM heaciquatters and AIP．

As my contribution to a basis for our discussions，I will provide
copies of：
（1）FEnal Report on Research Project Reponting（Sherwin Comaittee）
（2）Tixis Subject Categoxies Scheme
（3）Classification Scheme for Computing Roviews
（4）Pail Bagley＇s．Subject List（AFIPS Repont）
（5）Any othet categorization scheme I can lay my hands on．
See you next Ruesday？


National Academy of Sciences
2101 CONSTITUTION AVENUE
WASHINGTON. D. C. 20418

COMPUTER SCIENCE AND ENGINEERING BOARD
Fifth Meeting
September 10, 1968
Eab TTIVE SESSION
\[
\mathrm{A} G \underline{\mathrm{G}} \mathrm{~N}-\mathrm{A}
\]
1. The Computer Export Problem: includes briefing by ViceChairman on initial meeting of Advisory Panel on Computer Export Problem and Special Panel work done since initial meeting of Advisory Panel.
2. The National Computer Institute Problem (general).
3. The Question of Privileged Information and the Board's work (general).
4. Other.

\title{
National Academy of Sciences
}

2101 CONSTITUTION AVENUE WASHINGTON. D. C. 20418

\section*{COMPUTER SCIENCE AND ENGINEERING BOARD}

Fifth Meeting
September 11, 1968
A G E N D A
1. Minutes of last Board meeting.
2. The National Computer Institute Problem.
3. Commission on Engineering and Education.
4. Additions to the Board, Formal Committee appointments, announcement of new Observers.
5. The Computer Standards Question.
6. The Privacy Question in Relation to Computers, etc.
7. Status of the Informal NSF Proposal for Board action.
8. Status of the CS\&E Campaign Materials Package.
9. Discussion of the location for the Board meetings in October, November and December (San Francisco?) of 1968, and January, February and March of 1969.
10. Candidates for Briefings of the Board in lieu of or in addition to visits of computer activities.
11. Reports by each of the Acting Chairmen of the Planning Groups for Education, R \& D, National Programs, and Data Base. Each Chairman is to briefly summarize his work to date and submit his draft report to the Chairman for review by the Board. Report is to include definition of mission and areas of interest, listing of priority areas and tasks for action in rough order of attack, the Panels or Task Groups to undertake the various tasks, and recommended members for the various working groups.
12. Other.

\section*{COMPUTER SCIENCE AND ENGINEERING BOARD MEMBERS}

Dr. Launor F Carter
Vice President and General Manager
Public Systems Division
System Development Corporation
2500 Colorado Avenue
Santa Monica, California 90404
Telephone: 2133939411
Professor Wesley A. Clark
Computer Systems Laboratory
Washington University
724 S. Euclid
St. Louis, Missouri 63110
Telephone: 314 FO 17356
Dr. Glen J. Culler
Director
Computer Center
University of California
at Santa Barbara
Santa Barbara, California 93106
Telephone: 8059681511
Professor David C. Evans
Director
Computer Science
University of Utah
Salt Lake City, Utah 84112
Telephone: 8013227914
Dr. Sidney Fernbach
Head, Computation Division
Lawrence Radiation Laboratory
Box 808
Livermore, California 94550
Telephone: 4154471100
Mṛ. Jerrier Haddad
Vice President
Engineering, Programming and Technology
IBM Corporation
Old Orchard Road
Armonk, New York 10504
Dr. John R. Meyer
President
National Bureau of Economic Research
261 Madison Avenue
New York, New York 10016
Telephone: 212 MU 23190

Professor W. F. Miller
Computer Science Department
Polya Hall
Stanford University
Stanford, California
Telephone: 4153212300
Dr. Nathan M. Newmark
Head, Department of Civil
Engineering
1114 Civil Engineering Building
University of Illinois
Urbana, Illinois 61801
Telephone: 2173333813
Professor Anthony G. Oettinger
Aiken Computation Laboratory
Harvard University
Cambridge, Massachusetts 02138
Telephone: 6178686155
Mr. Kenneth Olsen
President
Digital Equipment Corporation
899 Main Street
Maynard, Massachusetts 01754
Telephone: 6178975111
Dr. Alan J. Perlis
Head, Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213
Telephone: 4126837000
Dr. John R. Pierce
Executive Director
Research Communications Sciences
Division
Be11 Laboratories
Murray Hil1, New Jersey 07971
Telephone: 2015822626
Professor J. Barkley Rosser Mathematics Research Center
U. S. Army

University of Wisconsin
Madison, Wisconsin 53706
Telephone: 6082386919

Dr. Alan F. Westin
Department of Public Law and Government
Fayer Weather Hall
Columbia University
New York, New York 10027
Telephone: 2122803965

Dr. J. C. R Licklider Project MAC
545 Main Street
Cambridge, Massachusetts 02139
Telephone: 8646950

\section*{COMPUTER SCIENCE AND ENGINEERING BOARD CONSULTANT}

Mr. John Griffith
IBM Corporation
Thomas J. Watson Research Center
P. O. Box 218

Yorktown Heights, New York 10598
Telephone: 9149451384

COMPUTER SCIENCE AND ENG INEERING BOARD STAFF

Mr. Warren C. House
Executive Secretary
Computer Science and
Engineering Board
National Academy of Sciences
2101 Constitution Avenue
Washington, D. C 20418
Telephone: 2029611386
or 9611372
Miss Robin Zehring
Secretary to Mr. House
National Academy of Sciences
2101 Constitution Avenue
Washington, D. C. 20418
Telephone: 2029611372
or 9611386

\title{
National Academy of Sciences
}

2101 CONSTITUTION AVENUE WASHINGTON. D.C. 20418

COMPUTER SCIENCE AND ENGINEERING BOARD

Fifth Meeting

Attending Observers:

Dr. Walter Baer: Office of Science and Technology
Dr. John Egan: Department of Defense: R \& E
Professor Stephen J. Fenves: substituting for Dr. Nathan Newmark; Department of Engineering, University of I11inois

Dr. Bruce Gilchrist: IBM; White Plains, New York
Dr. Herbert Grosch: National Bureau of Standards
Mr. Arthur S. Me1med: National Science Foundation
Dr. Milton Rose: National Science Foundation
Mr. Frank Schmidtlein: substituting for Mr. Richard McCann, Office of Education

Dr. Charles V. L. Smith: Atomic Energy Commission.
Dr. C. E. Sunderlin: Special Assistant to the President, National Academy of Sciences

Mr. Robert W. Taylor: Advanced Research Projects Agency
Mr. Bernard Urban: Bureau of the Budget
Professor Larry Tribe: Technology Assessment Panel of the National Academy of Sciences

Mr. Charles Witter: Special Subcommittee on the Invasion of Privacy

\section*{MEETING SCHEDULE}
\begin{tabular}{lrl} 
September & \(10-11\) & at the Academy \\
October & \(9-10\) & \\
November & \(6-7\) & \\
\begin{tabular}{ll} 
December & \(11-12\)
\end{tabular} & San Francisco \\
January & \(7-8\) & \\
February & \(4-5\) & \\
March & \(5-6\) &
\end{tabular}

Mr. Warren C. House
Executive Secretary
Computer Science and Engineering Board
National Academy of Sciences
2101 Constitution Avenue
Washington, D.C. 20418
Dear Mr. House:
Thank you for asking the members of the Computer Science and Engineering Board to send me any comments or suggestions on my paper "Computers and Privacy: The Present and the Future". I plan to submit a revised version to the Commications of the ACM in the very near future.

I would very much appreciate receiving the works on computers and privacy that the Board comes across. Let me therefore accept the offer in your letter of 15 August 1968 to forward these to me. If I encounter any new developments in the area of computer privacy, I shall make the Board aware of these.

You may be interested to know that the bill (A.B. 1381) on public records which was before the California Legislature has now been passed (in amended form) and is awaiting signature by Governor Reagan. I enclose a copy for your information. We had hoped that better safeguards for privacy would be amended into it. However, I believe there are now some efforts underway to establish a permanent Computer Privacy Advisory Board to the Legislature. Steve Gibbens of the California Intergovernmental Advisory Board on Electronic Data Processing could tell you more about this.

Sincerely,

Lance J. Hoffman
Research Assistant
\(\mathrm{LJH} / \ln 1\)
Enclosure
cc: Professor W. F. Miller
Mr. Stephen F. Gibbens

Assembly Bill No. 1381

Passed the Senate August 1, 1968

Secretary of the Senate

This bill was received by the Governor this \(\qquad\)


\section*{CHAPTER}
\(\qquad\)
An act to amend Sections 3020, 7017, and 19132 of the Business and Professions Code, to amond Scctions 15190 and 16480.1 of the Government Code, to amend Section 11770.5 of the Insurance Codc, to add Scction. 10207 to, and Chaptcr 3.5 (commencing with Scction 6250) to Itivision 7 of Title 1 of the Government Code, and to repeal Scetions 1208, and 20173 of the Agricultural Code, Scctions 2122, 2713.5, 2352.5, 4013. 4809.1, 5011, 6307.5, 7207.5, 7611, 8010 , 8919.2, 9009.5, \(9536,9936,10060,18626.7\) and 19035. 10 of the Dusiness and Professions Code, Article 1 (commencing with Scction 15s7) of Chapter 3 of Title 2 of I'urt \(i\) of, and Scctions 189?, 1893, and 1891 of the Code of Civil P'rocedure, Sections 113, 13967, 23607, 24156, 26003 and 31003 of the Education Codc, Sections 105, 732, 1326, and 11107 of the Fish and Ciame Code, Scetions 1227, 8013, 8310.8, \(8110.8,10207,13913,15487,20137\), and 65020.10 of the Govcrnment Corle, Scetions 1153.2, 126.2, 1350, 1711, and 3805 of the Ilarbors and Navigation Code, Sretions 103.2. 131.1, 1110.2. 13111.2, 17910, and 18917 of the ILcalth and Safety Code, Scctions 71.2, 137, 117, and 3092 of the Labor Code, Scctions 538, 638, 666, 4567, 9065.2, and 9072 of the Public Resources Code, Section 21209 of the Public Utilitics Code, Scclions 2605 and 3009 of the Vehicle Code, Sections 13008 and 20031 of the Water Code, and Chapter 842 of the Statutes of 1959, relating to public records.
The poople of the State of California do enact as follows:
Section 1. Section 1208 of the Agricultural Code is repealed.

Sec. 3. Section 20473 of the Agricultural Code is repealed.
Sec. 4. Section 2122 of the Business and Professions Code is repealed.
Se.c. 5. Section 2713.5 of the Business and Professions
Code is repealed.
Sec. 6. Section 2852.5 of the Business and Professions Code is repealed.
Sec. 7. Section 3020 of the Business and Professions Code is amended to read:
3020. The board shall keep an accurate inventory of all property of the board and of the state in the possession of the board and it shall obtain a receipt therefor from its successor.

\section*{- 4 -}

Sec. 8. Section 4013 of the Business and Professions Code is repealed.

SEC. 9. Scetion 4809.1 of the Business and Professions Code is repealed.

SEC. 10. Section 5014 of the Business and Professions Code is repealed.

Sec. 11. Section 6307.5 of the Business and Professions Code is repealed.

Sec. 12. Section 7017 of the Business and Professions Code is amended to read:
7017. The board, in addition to the usual periodic reports, shall within 30 days prior to the meeting of the general session of the Legislature submit to the Governor a full and true report of its transactions during the preceding biennium including a complete statement of the receipts and expenditures of the board during the period.
A copy of the report shall be filed with the Secretary of State.

Sec. 13. Section 7207.5 of the Business and Professions Code is repealed.
Sec. 14. Section 7611 of the Business and Professions Code is repealed.

SEC. 15. Section 8010 of the Business and Professions Code is repealed.

Sec. 16. Section 8919.2 of the Business and Professions Code is repealed.

Src. 17. Section 9009.5 of the Business and Professions Code is repealed.

Sec. 18. Section 9536 of the Business and Professions Code is repealed.

Sec. 19. Section 9936 of the Business and Professions Code is repeated.

Scc. 20. Section 10060 of the Business and Professions Code is repealed.

Sec. 21. Section 18626.7 of the Business and Professions Code is repealed.

Sec. 22. Section 19035.10 of the Business and Professions Code is repealed.

Sec. 23. Section 19432 of the Business and Professions Code is amended to read:
19432. The secretary shall keep a full and true record of all proccedines of the board, preserve at the board's general office all books, documents, and papers of the board. prepare for service such notices and other papers as may be required of him by the board, and perform such other duties as the board may prescribe.

SEC. 24. Article 1 (commencing with Section 1887) of Chapter 3 of Title 2 of Part 4 of the Code of Civil Procedure is repealed.

Sec. 25. Section 1892 of the Code of Civil Procedure is repealed.

Sec. 26. Section 1893 of the Code of Civil Procedure. is repealed.

Sec. 27. Section 1831 of the Code of Civil Procedure is repealed.

Sec. 28. Section 113 of the Education Code is repealed.
SEc. 29. Section 13867 of the Education Code is repealed.
Sec. 30. Section 26008 of the Education' Code is repcaled.
Sec. 31. Scetion 23607 of the Education Code is repealed.
SEC. 32. Section 24156 of the Education Code is repealed.
Sec. 33. Section 31008 of the Education Code is repealed.
SEC. 34. Section 105 of the Fish and Game Code is repealed.

SEC. 35. Section 732 of the Fish and Game Code is repealed.

Sec. 36. Section 1326 of the Fish and Game Code is repealed.

Sec. 37. Section 14107 of the Fish and Game Code is repealed.

SEC. 38. Section 1227 of the Government Code is repealed.
SEc. 39. Chapter 3.5 (commencing with Section 6250) is added to Division 7 of Title 1 of the Government Code, to read:

Chapter 3.5. Inspection of Public Records
6250. In enacting this chapter, the Legislature, mindful of the ridet of individuals to privacy finds and decTares that access to niormation contimin the conduct of the people's business is a fundamental and necessary right of every citizen of this state.
6251. This chapter shall be known and may be cited as the California Public Records Act
-6252. As used in this chapter:
(a) "State agency" means every state office, officer, department, division, bureau, board, and commission or other state ageney, except those agencies provided for in Article IV (excent Section 20 thercof) or Article VI of the California Constitution.
(b) "Local agency"' includes a county; city, whether general law or chartered; city and county; school district; municipal corporation; district; political subdivision; or any board, commission or agency thereof: or other local public agency.
.
(c) "Person" includes any matural person, corporation, partnership, firm, or association.
(d) "Public records" includes all papers, maps, pasnetic or naper tones, photurephicentuserth-onints macnetic or Pumdind prepared, owned, used, or retained by any state or local ageney regardless of physical form or characteristics.
6253. Public records are open to inspection at all times during the office hours of the state or local agency and every citizen has a right to inspect any public record, except as hereafter provided. Every asency may adopt regulations stating the procedures to be followed when making its records available in accordance with this scetion.
6251. Nothing in this chapter shall be construed to require disclosure of records that are:
(a) Preliminary drafts, notes, or interagency or intra-agency memoranda which are not retained by the public agency in the ordinary course of business. provided that the public interest in withholding such records clearly outweighs the public interest in disclosure ;
(b) Records portaining to pending litigation to which the public agency is a party, or to chams mate busuant to Division 3.6 (commencing with Section sit) of Tithe 1 of the (iovernment Code, until suth litigation on chaim has been finally adjudieated or otherwise sentled;
(c) Personnel, medical, or similar files, the disclosure of which would constitute an unvarranted invasion of personal \(\triangle\) privacy;
(d) Trade secrets;
(e) Geological and gequhysical data, plant production data and similar infurnation relating to utility sstems development, or market or crop reports, which are obtained in confidence from any persun;
(f) Records of complaints to or investigations conducted by, or records of intelligence information or security procedures of, the office of the Attorney (ionmal and the Department of Justice, and any state or local folien areney, or any such investigatory or security files compal by any other state or local ageney for correctimal, law enforement or licensing purposes;
\((g)^{2}\) Test questions, scoring kers and uther cxamination data used to administer a licensing examination, examination for employment, or academic examination;
(h) The contents of real wate appraisals, engineering or feasibility estimates and evalmatims made for or by the state or local ageney relative to the anmisition of property, or to prospective public supply and construction contracts, until such time as all of the property has bern acquired or all of
the contract agreement obtained, provided, however, the law of eminent domain shall not be affected by this provision;
(i) Information required from any taxpayer in connection with the collection of local taxes which is received in confidence and the disclosure of the information to other persons would result in undair competitive disadvantage to the person supplying such information;
(j) Library and museum materials made or acquired and presented solely for reference or exhibition purposes; and
(k) Records the disclosure of which is exempted or prohibited pursuant to bowisions of federal or state law, including, but not limited to, provisions of the Evidence Code relating to privilege.
(l) In the custody of or maintained by the Governor or employees of the (iovernor's office employed directly in his office, provided that publie records shall not be transferred to the custody of the (iovernor's office to evade the disclosure provisions of this chapter.
(m) In the custoty of or maintained by the Legislative Comsel.
Nothing in this section is to be construed as preventing any agency from opening its records concerning the administration of the agency to public inspection, unless disclosure is otherwise prohibited be law.
6255 . The arency shall justify withholding any record by demonstrating that the record in question is exempt under express provisions of this chapter or that on the facts of the particular case the public interest served by not making the record public clearly outweighs the public interest sered by disclosure of the record.

62-56. Any person may reccive a cony of any identifiable public record or shall be provided with a copy of all information contained therein. Computer data shall be provided in a form determined by the agency.
6257. A request for a copy of an identifiable public record or information preduced therefrom, or a certified cons of such record, shall be :owmpanied by payment of a reasonable fee or deposit establithei by the state or local agency, or the preseribed statutor: "en. where applicable.
6253. Any person may institute proceedings in any court of competent jurisdiction to enforce his right to inspect or to receive a copy of any public record under this chapter. The times for responsive pleadings and for hearings in such proccedings shall be sut by the judge of the court with the object of securing a deciniun as to such matters at the earliest possible time.
(fo-)! Whenever it is made to appar by verified petition to the superior court of the county where the records or some part themol are situated that certain publie records are being
impropery witheh? fan a momber of the puble she court
 roneds on diselese the pan acout or show couse why he



 mary allow.















『のà.


Fats.




Suc. 45. Siction 15400 of the Gorermment Code is amended to read
wate al Thare in the state ar anment the sota Allo-










\(\therefore\) Gonerl



 \(\cdots\)


\(\qquad\)

\(\qquad\)

\(\qquad\)

\(\qquad\)

\(\qquad\)

\(\qquad\)

as:



\[
\therefore=
\]

\[
\therefore 8
\]

\[
:
\]

\[
\therefore \therefore=1
\]


\(-2=\)
\(-7-1\) ..... 픈

\(\because\)\(5 \ldots \ldots\)

\(\qquad\)
 

SEC．53．Section 3805 of the Marbors and Navigation Code is repeated．

Swe．5！．Section 10：3．2 of the Health and Safety Code is repealed．
SEc．5\％．Section 431.4 of the IIealth and Safety Code is repeated．

Sbec．50．Scetion 1110.2 of the Mealth and Safety Code is repealed．
SBa．57．Section 13141.2 of the ITealth and Safety Code is reperaled．

Sre．58．Section 17940 of the IIealth and Safety Code is repealed．

Nim．5！．Section 18917 of the IEalth and Safety Code is rowalad．
Sur．S！S．Soction 11770.5 of the Insurance Code is amoulad torad：

117an交．The provisions of Artiche（eommencing with Sotion 11100 of（hapter 1 of lart 1 of Jovision 3 of Title \(\because\) or（＇haptar 3 S（ermmomeme with Section（inso）of Divi－ sion \(\boldsymbol{T}\) w＇＇Tithe 1 w＇the（Busemment（＇ode shall unt apply to the band of bifectors of the Ntate（＇ompensation Insurance F゙mいい。

Ste．（io）．Sedion 71.2 of the Labor Code is repealed．

Sad．dia．Sewtion 1877 of the dabor Code is repeated．

Sare fit．Seetion 538 of the lenblie Resourees Code is re－ pealded．
sine 6ia．Soetion \(63 S^{\circ}\) of the Publie Resourees Code is re－ pealed．

Na：fig．Socotion bibit of the Publie Resoures Code is re－ pealed．

Nbe．（i7．Soetion tabi of the Publie Resourees Code is re－ pealed．
 repabled．

Swe 69．Sedion 907：of the Publie lisourees Code is re－ pealod．

SWe Fo．Sotion ：120？of the Publie lititios Code is re． peald．






\title{
NATIONAL ACADEMY OF SCIENCES \\ 2101 CONSTITUTION AVENUE WASHINGTON. D.C. 20418
}
TO: Warren HouseFROM: Tony OettingerDATE: August 30, 1968Would you distribute this copy of Witter's letter to the Board andinvite him to meet with us at the September meeting if he can.Perhaps he could be prepared to make a short presentation concerningthe work of Gallagher's committee.

\section*{r MEMbers} MSON, ILL., ChaIrman D, CALIF. 3, TEX.
AIN, N.C. ARD, N.C. ARDY, JR., VA.
BLATNIK, MINN. E. JONES, ALA. AD A. GARMATZ, MD. E. MOSS, CALIF. TE B. FASCELL, FLA. RY S. REUSE, WIS. SAN S. MONAGAN, CONN.
rORDERT H. MACDONALD, MORDENT H. MACDONALD, MASS, J. EDWARD RUSH, IND.
WILLIAM S. MOORHEAD, CORNELIUS E. GALLAGHER, N.J. CORNELIUS E. GALLAGHER,
WILLIAM I. RANDALL, MO, BENJAMIN S. ROSENTHAL, NY JENA WRIGHT, TEX.
JIM WRIGHT, TEX.
FERNAND J. ST GERMAN, RI,

 COMMITTEE ON GOVERNMENT OPERATIONS


でdatyingtor, 2. \(\mathbb{C}\). JOHN N. ERLENBORN, IL JOHN W. WYDLER, N.Y CLARENCE J. BROWN, JR.,OHIO JACK EDWARDS, ALA. GUY GANDER JAGS, MICH GUY GANDER JAGT, M FLETCHER THOMPSON, FLETCHER THOMPSON, GA.
WILLIAM O. COWGER, KY. WILLIAM O. COWGER, KY.
MARGARET M. HECKLER, MASS. GILBERT GUDE, MO.

CHRISTINE RAY DAVIS, STAFF DIRECTOR
CAPITOL 4-3121 MAJORIT - ExTENSION 5051 Minority-Extension 5074

July 10, 1968

Dr. Anthony G. Oettinger
Aiken Computation Laboratory
Harvard University
Cambridge, Massachusetts
Dear Dr. Oettinger:
I want to take this opportunity to congratulate you on your appointment as chairman of the Computer Science and Engineering Board within the National Academy of Sciences.

As you undoubtedly know, one of the main efforts of the Special Subcommittee on Invasion of Privacy has been to reaffirm the validity of human values at the interface between man and machine. I cannot help but feel that your Board will assess this issue in your evaluation of the computer and society.

I am enclosing for your files a copy of our hearings and speeches made by the Chairman, Congressman Cornelius E. Gallagher. I believe that this will express the point of view developed by the Special Subcommittee and I would like to request that both the Subcommittee and Congressman Gallagher be placed on your mailing list.

Frankly, it has been pretty lonely out here implying that the computer has potentially harmful effects within its admittedly beneficial aspects. Your Board has a very real challenge and if the Subcommittee can assist you in any way, please feel free to call upon us.


\author{
CARTES WITTER \\ Stain Administrator \\ Special Subcommittee on \\ Invasion or Privacy
}

Enclosures

\title{
NATIONAL ACADEMY OF SCIENCES
}

2101 CONSTITUTION AVENUE WASHINGTON. D.C. 20418

August 30, 2968

Wx. Charles Witter
Special Subcomittee on Invasion of Privacy Commttee on Government Operations 2157 Raybum house office Building Washington, D. C.

Deaz Ar。Weter:
I have Just found yout Letten of July 10 following an creonded absence abroad.

I vory mucl: appreciate yom inecroot in the Computer scionce and Inginearing roand as weld as recotving the copy of the hearings rocord and the speeches by Congressman Galiagtier.
 of the substantial overiap iv own thtorestes, I hope that we can commancade infomally from time to thme, and I shoula espectally like to invite you to attend some of the neetings of on Board as an coberver.

By copy of this lettex, I an aching W. Wamen louse, the Buecutive Secretary of our Doard, to get in tount with you and infom you of our plans and our neeting schedules. I Jook forwerd to an eariy opportudty to meet you.

> Sincerely yours,

Anthony G. Oettinger
Chatrman
Computer Sctence \& Enginecring Doard
js
ce: Warren Nouse

\section*{TRAVEL EXPENSE VOUCHER}

\author{
National Academy of Sciences • National Research Council - National Academy of Engineering 2101 CONSTITUTION AVENUE, WASHINGTON, D. C. 20418
}

To \(\qquad\)
(Name of Claimant)
(Address)

\begin{abstract}
Purpose of Travel: (Be specific; include Persons and/or Organizations Visited and Reason for Visit or Meeting Attended, including Location of Meeting).
\end{abstract}

Date and Hour of Departure \(\qquad\) Date and Hour of Return TRANSPORTATION: (Please furnish all information requested-incomplete vouchers may be returned)


\section*{(CLAIMANT NOT TO WRITE BELOW THIS LINE)}

DIVISION: COMMITTEE OR OFFICE:
APPROVALS: I certify that the above travel was duly authorized; and I approve the claim for payment:

FOR DIVISION: FOR COMMITTEE OR OFFICE:

FOR BUSINESS OFFICE USE ONLY
\begin{tabular}{c|c|c||c|c|}
\hline \multicolumn{3}{c|}{ ACCOUNT/FUND } & \multicolumn{2}{c}{ FOR BUSIN } \\
\hline Type & Number & Sub. & Object Class & Transaction Amount \\
\hline & & & & \\
\hline
\end{tabular}

Date

Audited:

Approved:

\section*{INSTRUCTIONS}

\section*{PREPARATION OF TRAVEL EXPENSE VOUCHERS}
1. Expenses of authorized travel will be reimbursed upon receipt of properly prepared vouchers signed by the traveler and approved by the appropriate officer in charge.
2. All pertinent information should be filled in as requested. Unusual circumstances which affect the travel expenses should be fully explained.
3. When appropriate, the claim should be adjusted equitably on account of activities for other agencies
4. Expenses for transportation by privately owned car will be reimbursed on a mileage basis at a rate not exceeding ten cents ( \(10 \not \subset\) ) per mile, plus toll charges and necessary parking fees, if any, provided that the cost of travel by privately owned car plus related subsistence expenses do not exceed the cost of travel by common carrier plus related subsistence expenses.
5. Personal expenses such as laundry, insurance, and valet are not allowable charges.
6. Travel advances will be accounted for on the voucher in the space provided. Travel costs in excess of advances will be reimbursed. In case the advance is greater than the travel costs the traveler will return the unused portion when submitting his voucher.
7. Under certain circumstances, air or rail tickets will be purchased for the traveler. The costs will be charged directly to the appropriate fund. The traveler will list his complete itinerary in such cases and under the amount column insert the phrase "Furnished by NAS."
8. When air travel cards are used, the traveler will list his complete itinerary and in the amount column will insert the term "ATC." The passenger coupon should be attached to the travel voucher.
9. Reimbursement for the use of rented automobiles on authorized travel will be made, provided that circumstances make it impossible or impracticable to use other means and that the traveler submits information indicating the necessity for the use of a rented automobile.
10. Financial commitments for international travel shall be approved in advance by the Business Manager upon the recommendation of the appropriate officer in charge.
11. Subsistence may be claimed in an amount not exceeding \(\$ 25.00\) per person per day or fractional part thereof, if subsistence expenses are itemized, or an allowance in lieu of actual subsistence expenses not exceeding \(\$ 20.00\) per person for each calendar day or \(\$ 5.00\) for each quarter day thereof during the period of travel. For purposes of computing the allowance in lieu of actual subsistence expenses, the day begins at 00 hours. In the event the period of travel is wholly within a single calendar day subsistence expenses may be claimed only on an actual cost basis.
12. Whenever the traveler is claiming reimbursement for greater than economy or tourist class airfare, the appropriate block listed below should be checked.

\section*{First Class Travel is Claimed Because Less Costly Accommodations:}
\(\square\) Were not available or were not available at time reservation could have been made.Would have required circuitous routing.
\(\square\) Would have resulted in discomfort or hardship to the traveler because of physical or medical requirements.
\(\square\) Would have resulted in additional direct costs which would offset the savings in transportation costs.
\(\square\) Would have greatly increased the duration of the trip.
\(\square\) Would have required travel to begin or end at unreasonable hours.

See Instructions on reverse side
TRAVEL EXPENSE VOUCHER
National Academy of Sciences - National Research Council • National Academy of Engineering 2101 CONSTITUTION AVENUE, WASHINGTON, D. C. 20418

To \(\qquad\) Date \(\qquad\)
(Name of Claimant)
(Address)

(CLAIMANT NOT TO WRITE BELOW THIS LINE)

DIVISION: \(\qquad\) COMMITTEE OR OFFICE: \(\qquad\)
APPROVALS: I certify that the above travel was duly authorized; and I approve the claim for payment: FOR DIVISION: \(\qquad\) FOR COMMITTEE OR OFFICE:
\begin{tabular}{c|c|c||c|c|c}
\hline \multicolumn{2}{c|}{ ACCOUNT/FUND } & \multicolumn{3}{c}{ FOR BUSINESS OFFICE USE ONLY } \\
\hline Type & Number & Sub. & Object Class & Transaction Amount & \\
\hline & & & & & \multirow{3}{*}{ Check No._ Date__ } \\
\hline & & & & & \multirow{3}{*}{ Audited: } \\
\hline & & & & & Approved: \\
\hline
\end{tabular}

\section*{INSTRUCTIONS}

\section*{PREPARATION OF TRAVEL EXPENSE VOUCHERS}
1. Expenses of authorized travel will be reimbursed upon receipt of properly prepared vouchers signed by the traveler and approved by the appropriate officer in charge.
2. All pertinent information should be filled in as requested. Unusual circumstances which affect the travel expenses should be fully explained.
3. When appropriate, the claim should be adjusted equitably on account of activities for other agencies
4. Expenses for transportation by privately owned car will be reimbursed on a mileage basis at a rate not exceeding ten cents (10申) per mile, plus toll charges and necessary parking fees, if any, provided that the cost of travel by privately owned car plus related subsistence expenses do not exceed the cost of travel by common carrier plus related subsistence expenses.
5. Personal expenses such as laundry, insurance, and valet are not allowable charges.
6. Travel advances will be accounted for on the voucher in the space provided. Travel costs in excess of advances will be reimbursed. In case the advance is greater than the travel costs the traveler will return the unused portion when submitting his voucher.
7. Under certain circumstances, air or rail tickets will be purchased for the traveler. The costs will be charged directly to the appropriate fund. The traveler will list his complete itinerary in such cases and under the amount column insert the phrase "Furnished by NAS."
8. When air travel cards are used, the traveler will list his complete itinerary and in the amount column will insert the term "ATC." The passenger coupon should be attached to the travel voucher.
9. Reimbursement for the use of rented automobiles on authorized travel will be made, provided that circumstances make it impossible or impracticable to use other means and that the traveler submits information indicating the necessity for the use of a rented automobile.
10. Financial commitments for international travel shall be approved in advance by the Business Manager upon the recommendation of the appropriate officer in charge.
11. Subsistence may be claimed in an amount not exceeding \(\$ 25.00\) per person per day or fractional part thereof, if subsistence expenses are itemized, or an allowance in lieu of actual subsistence expenses not exceeding \(\$ 20.00\) per person for each calendar day or \(\$ 5.00\) for each quarter day thereof during the period of travel. For purposes of computing the allowance in lieu of actual subsistence expenses, the day begins at 00 hours. In the event the period of travel is wholly within a single calendar day subsistence expenses may be claimed only on an actual cost basis.
12. Whenever the traveler is claiming reimbursement for greater than economy or tourist class airfare, the appropriate block listed below should be checked.

\section*{First Class Travel is Claimed Because Less Costly Accommodations:}Were not available or were not available at time reservation could have been made.Would have required circuitous routing.Would have resulted in discomfort or hardship to the traveler because of physical or medical requirements.Would have resulted in additional direct costs which would offset the savings in transportation costs.Would have greatly increased the duration of the trip.Would have required travel to begin or end at unreasonable hours.

\section*{TRAVEL EXPENSE VOUCHER}

National Academy of Sciences • National Research Council • National Academy of Engineering 2101 CONSTITUTION AVENUE, WASHINGTON, D. C. 20418

To \(\qquad\) (Name of Claimant)

\section*{(Address)}


\section*{(CLAIMANT NOT TO WRITE BELOW THIS LINE)}

DIVISION: COMMITTEE OR OFFICE:
APPROVALS: I certify that the above travel was duly authorized; and I approve the claim for payment: FOR DIVISION: FOR COMMITTEE OR OFFICE:

FOR BUSINESS OFFICE USE ONLY
\begin{tabular}{c|c|c||c|c|}
\hline \multicolumn{3}{c|}{ ACCOUNT/FUND } & \multicolumn{2}{c}{ FOR BUSIN } \\
\hline Type & Number & Sub. & Object Class & Transaction Amount \\
\hline & & & & \\
\hline
\end{tabular}

Check No. \(\qquad\) Date

Audited:

Approved:

\section*{INSTRUCTIONS}

\section*{PREPARATION OF TRAVEL EXPENSE VOUCHERS}
1. Expenses of authorized travel will be reimbursed upon receipt of properly prepared vouchers signed by the traveler and approved by the appropriate officer in charge.
2. All pertinent information should be filled in as requested. Unusual circumstances which affect the travel expenses should be fully explained.
3. When appropriate, the claim should be adjusted equitably on account of activities for other agencies
4. Expenses for transportation by privately owned car will be reimbursed on a mileage basis at a rate not exceeding ten cents ( \(10 \not \subset\) ) per mile, plus toll charges and necessary parking fees, if any, provided that the cost of travel by privately owned car plus related subsistence expenses do not exceed the cost of travel by common carrier plus related subsistence expenses.
5. Personal expenses such as laundry, insurance, and valet are not allowable charges.
6. Travel advances will be accounted for on the voucher in the space provided. Travel costs in excess of advances will be reimbursed. In case the advance is greater than the travel costs the traveler will return the unused portion when submitting his voucher.
7. Under certain circumstances, air or rail tickets will be purchased for the traveler. The costs will be charged directly to the appropriate fund. The traveler will list his complete itinerary in such cases and under the amount column insert the phrase "Furnished by NAS."
8. When air travel cards are used, the traveler will list his complete itinerary and in the amount column will insert the term "ATC." The passenger coupon should be attached to the travel voucher.
9. Reimbursement for the use of rented automobiles on authorized travel will be made, provided that circumstances make it impossible or impracticable to use other means and that the traveler submits information indicating the necessity for the use of a rented automobile.
10. Financial commitments for international travel shall be approved in advance by the Business Manager upon the recommendation of the appropriate officer in charge.
11. Subsistence may be claimed in an amount not exceeding \(\$ 25.00\) per person per day or fractional part thereof, if subsistence expenses are itemized, or an allowance in lieu of actual subsistence expenses not exceeding \(\$ 20.00\) per person for each calendar day or \(\$ 5.00\) for each quarter day thereof during the period of travel. For purposes of computing the allowance in lieu of actual subsistence expenses, the day begins at 00 hours. In the event the period of travel is wholly within a single calendar day subsistence expenses may be claimed only on an actual cost basis.
12. Whenever the traveler is claiming reimbursement for greater than economy or tourist class airfare, the appropriate block listed below should be checked.

\section*{First Class Travel is Claimed Because Less Costly Accommodations:}Were not available or were not available at time reservation could have been made.Would have required circuitous routing.Would have resulted in discomfort or hardship to the traveler because of physical or medical requirements.
\(\square\) Would have resulted in additional direct costs which would offset the savings in transportation costs.Would have greatly increased the duration of the trip.Would have required travel to begin or end at unreasonable hours.

\title{
NATIONAL ACADEMY OF SCIENCES \\ 2101 CONSTITUTION AVENUE WASHINGTON. D. C. 20418
}

\author{
COMPUTER SCIENCE AND ENGINEEZING BOARD \\ Sixth Meeting \\ October 9, 1968 \\ Executive Evening Session \\ AGENDA
}
1. Update on suatus of the work of the Special Panel for Computer Export Prob !em
```

 -in:tial report
 -in.tial reaction
 -follow on generally
 -special meeting on October ll.
    ```
2. Discussion of organization problems of the Board
-reriew of the Planning Group reports on Education and National Programs. -guidance and guidelines for panels or task teams set up by the Board
3. Relationshil s with OST, COSATI, DOD, GAO, BEMA, State, classified government areas, and individual computer manufacturing and software organizations in terms of policy insights, attackable problems, access to expertese and resources for panels and task teams.

\title{
National Academy of Sciences
}

2101 CONSTITUTION AVENUE WASHINGTON. D. C. 20418

COMPUTER SCIENCE AND ENGINEERIVG BOARD
Sixth Meeting
October 10, 1968
A \(\underline{G} \underline{E} \underline{N} \underline{D}\)

\section*{ACTIVE ITEMS}
1. Minutes of the last Board meeting.
2. Announcement of new observers invited.

Dr. Newman A. Hall, Executive Director, Commission on Engineering Education

Dr. Hood Roberts, Associate Directcr, Center for Applied Linguistics
3. Briefing on Commission on Engineering Education by Dr: Hall.
4. Status of the NSF Survey proposal.
5. Status of the ARPA partial funding proposal.
6. The Privacy Question in relation to Computers.
7. The Standardization Problem.
8. Location of the Board meeting for November 6~7, 1968.
9. The Chairmen's Progress report to the NAs Council, December 7, 1968.
10. Continued review of the reports by the Chairmen of the Planning Groups for Education, National Programs, R\&D, ar.d Data Base areas. Refer to \#11, open عgenda, September 11, 1968.

NUMBER 10 WILL BE THE MAIN ITEM OF SUBSTANTIVE BUSINESS FOR THIS MEETING
ITEMS CARRIED I'ORWARD
1. Location of the Board meetings for January, February and March of 1969. Forward scheduling of next three meetings of the Board to provide six mont'i lead for Board member planning.

\title{
National Academy of Sciences \\ 2101 CONSTITUTION AVENUE WASHINGTON. D.C. 20418
}

A \(\underline{G} \underline{E} \underline{N} \underline{D}\)
Page 2
2. Candidates for Buard briefings in lieu of or in addition to the visits to computer activities already discussed by the Board.
3. Status of the CS\&E Campaign Materials Package.
4. Update briefings on the BoB and \(F C C\) situations.

\author{
HUMAN FACTORS IN DATA BANKS
}

Westin cites four aspects:

\author{
Privacy; \\ Due Process; \\ Impenetrability; \\ Excessive stratification.
}

The first two are somewhat interlocked. If, by due process, a person can edit or annotate the information on file about him, he will be less concerned about it being kept private; he may even wish it widely circulated.

Computerization of data banks may aggravate problems of privacy by increasing the accessibility of data, unless special precautions are taken. The issue of due process is aggravated by centralization of files; the further an individual is from his file (geographically or politically) the less he can find out or influence what is in it. Computerization may facilitate centralization, but is not really a primary factor.

It is in the impenetrability that the computer may add an entirely new aspect. Impenetrability by the user (even more by the subject) has long been a feature of data banks, and has led to distrust, and even fear or hatred. The law may require individuals to make certain disclosures for permanent record, these may be sent to many different places or be disclosed in embarrassing ways, etc. Efforts to find out (or influence) what is happening are met by bureaucratic insulation. However, one has at least a hope of being persuasive and getting some cooperation, or perhaps going higher in the organizational structure. One has a chance of determining what the law is, and if it is sufficiently offensive, one may even persuade a legislative body to amend it. However, if a file is maintained by a sufficiently complicated program, written jointly by many people, no one may really know quite how it operates, what data it may select to store or disclose, where are all the places it is stored, etc. With sufficient control over the programming, this can be avoided. Indeed, the situation could be better than it is now where human stupidity or carelessness may result in filings or disclosures not intended by the law. However, impatience to get a program quickly or skimping on expert programmers could lead to the, abuses noted, and likely will unless considerable precautions are taken. More importantly, even if the computerized version is actually more flexible than the earlier bureaucratic version, the user (and the victim) likely will not know how to penetrate into it, and will feel desperation and anger.

As an example of an abuse due to excessive stratification, the generation of data depending on racial characteristics may hinder the obliteration of racial distinctions. It is hard to see how computerization would be a factor here, except insofar as it might make possible larger and more elaborate files, and so tempt the designers of the files to include such matters and the users to report on them.

Much file activity has no human factor. Tables of chemical compounds, physical constants, symptoms of disease, or compendia of statutes, or the like can hardly provoke disquiet among humans. If computerization can produce bigger and better files of these sorts at modest costs, one can hardly object; many would applaud. Because of this, the techniques for management of large data files are being actively pursued, and are becoming more and more available for use with files concerning human attributes, about which one may have the concerns noted above.

A Panel should first of all assemble the relevant data. What sorts of files already exist, what are plausibly possible (and when)? What techniques already exist to prevent abuses, what are in prospect, what might be developed if sufficient resources are supplied (and what resources are needed and how to direct their application). There is also the question of how to assure use of such techniques when available, which really comes in the aspect of guidance, rather than assembly of data. Other guidance is needed, such as how to restrain the too impetuous from going overboard with large data systems before safeguards are available and how to reassure the fearful so that they will not hinder the use of suitable data banks even when adequate safeguards are available and assured.


October 10,1968

The CS\&E Board, in executive session on the evening of October 9,1968, reached agreenent on the following policy and operating matters:
1. To accept the reports of the chairmen of the planning groups for Education, \(R \& D\) and National Prograns, with appreciation to the chairmen and the planning group members;
2. To abandon for the time being the subcommittee structure for the Board, i.e., the contemplated committees for Education, \(R \& D D\), National Prograns and Data Base;
3. To request the Chairman of the Data Base Plaming Group to accelerate his work in order to make an early report to the Board;
4. To assune direct reponsibility, by acting in plenary session as the oomittee-of-the-whole, for selecting substantive problems in the CSEE area warranting action and for appointing panels under the Board to undertake appropriate action;
5. To monitor and review the work of these operating panels directly by action as the committee-of-the-whole in plenary session;
6. To request the Board members who worked on the planning groups to continue to act as "problen finders" for actionable items in their respective areas of interest and to bring them to the Board's attention for evaluation and decision.
7. To adher to the following procedures in determining.owhat Panels should be established to do the work of the Board:
a. Upon "finding" an actionable problem or task prospect in the CS\&E area, the Board nember should arrange for a briefing of the Board by the substantive pepple knowlable of and concerned
wi th the problem
b. The Board, acting as the committee-of-themowole, will evaluate the problem as an action propsect in general and then refer the matter to an Ad Hoc committee for further problem definition, and recommendations as to panel membership, priority, duration of the panel effort, etc.
c. The Ad Hoo committee will report back to the Board its recommend ations in time for the entire review and decion-making process to ocour during a single meeting of the Board.
8. To endorse the contimuation of the existing Panels which up to this point had been associated with the planning groups designated for Education, \(R\) \& D, National Planning and Data Base.

\title{
NATIONAL ACADEMY OF SCIENCES \\ 2101 CONSTITUTION AVENUE WASHINGTON. D.C. 20418
}

TABLE OF CONTENTS FOR
COMPUTER SCIENCE AND ENGINEERING BOARD

> Sixth Meeting
> October 10, 1968
> B O A R D
> MEMBERS
> O \(\underline{N} \underline{L} \underline{Y}\)
1. Meeting Schedule
2. Executive Agenda
3. Open Agenda
4. List of Attending Board Members

List of Absent Board Members
5. List of Attending Guests

List of Absent Guests
6. Ha11--Report of the Commission on Engineering Education
7. Rosser--Letter of September 16, 1968, National Programs Committee
8. Rosser--Letter of September 30, 1968, Approaches to Funding a Board Inquiry into Computers and Privacy
9. O1sen--Letter of September 25, 1968
10. Schwartz--Letter of September 23, 1968
11. Perlis--Education Report
12. Evans--Research and Development Report
13. Westin--Ora1 Report, CS\&E Meeting, September 11, 1968
14. List of CS\&E Board Members

\title{
COMPUTER SCIENCE AND ENGINEIRING BOARD
}

\section*{MEETING SCHEDULE}
\begin{tabular}{lcc} 
September & \(10-11\) & at the Academy \\
October & \(9-10\) & \(6-7\) \\
November & \(11-12\) & San Francisco \\
December & \(7-8\) \\
January & \(4-5\) & \\
February & \(5-6\) &
\end{tabular}

\title{
National Academy of Sciences \\ 2101 CONSTITUTION AVENUE \\ WASHINGTON. D.C. 20418
}

\title{
COMPUTER SCIENCE AND ENGINEERING BOARD \\ Sixth Meeting
}

October 9, 1968

The executive session this evening will include a reception and dinner in the Refectory of the National Academy of Sciences Building. The reception will begin at 5:30, with dinner served at \(6: 30\) and the executive session to follow in Room 150.

October 10, 1968

This session will include invited speakers and guests, and, therefore, will be an open session for the full day. The meeting will begin at 9:00 in Room 150 of the NAS Building. Luncheon will be served at 12:30 in the Executive Dining Room. Coffee will be served at \(10: 30\) and 3:00.
- 0 -

Mr. Warren C. House's secretary, Miss Susan Lee Johnson, will be glad to assist you with reservations or accomodations if necessary. Please telephone the Academy, 961-1386.

\title{
National Academy of Sciences
}

2101 CONSTITUTION AVENUE WASHINGTON. D.C. 20418

COMPUTER SCIENCE AND ENGINEERING BOARD
Sixth Meeting
October 9, 1968
Executive Evening Session
A G END A
1. Update on status of the work of the Special Panel for Computer Export Problem
-initial report
-initial reaction
-follow on generally
-special meeting on October 11.
2. Discussion of organization problems of the Board
-review of the Planning Group reports on Education and National Programs.
-guidance and guidelines for panels or task teams set up by the Board
3. Relationships with OST, COSATI, DoD, GAO, BEMA, State, classified government areas, and individual computer manufacturing and software organizations in terms of policy insights, attackable problems, access to expertese and resources for panels and task teams.

\title{
National Academy of Sciences
}

\section*{2101 CONSTITUTION AVENUE} WASHINGTON. D. C. 20418

\author{
COMPUTER SCIENCE AND ENGINEERING BOARD \\ Sixth Meeting \\ October 10, 1968 \\ A \(\subseteq \underline{E} \mathbb{E} \underline{D} \underline{A}\)
}

\section*{ACIIVE ITEMS}
1. Minutes of the last Board meeting.
2. Announcement of new observers invited.

Dr. Newman A. Hall, Executive Director, Commission on Engineering Education

Dr. Hood Roberts, Associate Director, Center for Applied Linguistics
3. Briefing on Commission on Engineering Education by Dr. Hall.
4. Status of the NSF Survey proposal.
5. Status of the ARPA partial funding proposal.
6. The Privacy Question in relation to Computers.
7. The Standardization Problem.
8. Location of the Board meeting for November \(6-7,1968\).
9. The Chairman's Progress report to the NAS Council, December 7, 1968.
10. Continued review of the reports by the Chairmen of the Planning Groups for Education, National Programs, R\&D, and Data Base areas. Refer to \#ll, open agenda, September ll, 1968.

NUMBER 10 WILL BE THE MAIN ITEM OF SUBSTANTIVE BUSINESS FOR THIS MEETTING

\section*{ITEMS CARRIED FORWARD}
1. Location of the Board meetings for January, February and March of 1969. Forward scheduling of next three meetings of the Board to provide six month lead for Board member planning.

\section*{National Academy of Sciences}

2101 CONSTITUTION AVENUE
WASHINGTON. D.C. 20418
\[
\underline{A} \underline{G} \mathbb{E} \mathbb{N} \underline{D} \underline{A}
\]

Page 2
2. Candidates for Buard briefings in lieu of or in addition to the visits to computer activities already discussed by the Board.
3. Status of the CS\&E Campaign Materials Package.
4. Update briefings on the \(B \circ B\) and \(F C C\) situations.

\section*{National Academy of Sciences}

2101 CONSTITUTION AVENUE
WASHINGTON. D. C. 20418

\section*{COMPUTER SCIENCE AND ENGINEERING BOARD \\ Sixth Meeting \\ October 10, 1968}

Attending Board Members
Professor Anthony G. Oettinger: Chairman
Dr. Launor F. Carter
Professor Wesley A. Clark
Dr. Glen J. Culler
Professor Stephen J. Fenves, representing Dr. Nathan M. Newmark

Dr. Sidney Fernbach
Mr. Jerrier Haddad
Dr. J. C. R. Licklider
Dr. John R. Meyer
Professor W. F. Miller
Mr. Kenneth Olsen
Professor J. Barkley Rosser
Dr. Alan F. Westin
CS\&E Attending Staff
Mr. Warren C. House
Executive Secretary
Miss Susan Lee Johnson
Secretary to Mr. House

Absent Board Members
Professor David C. Evans
Dr. Nathan M. Newmark
Dr. Alan J. Perlis
Dr. John R. Pierce

\title{
National Academy of Sciences \\ 2101 CONSTITUTION AVENUE WASHINGTON. D.C. 20418
}

COMPUTER SCIENCE AND ENGINEERING BOARD
Sixth Meeting
October 10, 1968

\section*{Attending Guests}

Mr. David Beckler: Office of Science and Technology
Dr. John Egan: Department of Defense: R \& E
Dr. Bruce Gilchrist: Liaison, American Federation of Information Processing Societies

Mr. John Griffith: Special Consultant to the Board
Dr. Herbert Grosch: National Bureau of Standards
Dr. Newman A. Ha11: Executive Director, Commission on Engineering Education, National Academy of Engineering

Miss Ann Lamb: Bureau of the Budget
Mr. Donald Madden: Association for Computing Machinery
Mr. Arthur S. Melmed: National Science Foundation
Dr. Milton Rose: National Science Foundation
Dr. C. E. Sunderlin: Special Assistant to the President, National Academy of Sciences

Mr. Robert W. Taylor: Advanced Research Projects Agency
Mr. Bernard Urban: Bureau of the Budget
Professor Larry Tribe: Technology Assessment Panel of the National Academy of Sciences

Mr. Charles Witter: Special Subcommittee on the Invasion of Privacy
Dr. Charles V. L. Smith: Atomic Energy Commission

\title{
National Academy of Sciences \\ 2101 CONSTITUTION AVENUE WASHINGTON. D.C. 20418 \\ \\ COMPUTER SCIENCE AND ENGINEERING BOARD \\ \\ COMPUTER SCIENCE AND ENGINEERING BOARD \\ Sixth Meeting \\ October 10, 1968
}

\section*{Absent Guests}

Mr. Ernest Baynard: Chief of Staff for Congressman Jack Brooks
Mr. Richard McCann: Office of Education

Mr. Issac Nahama: International Computing

Dr. Hood Roberts: Associate Director, Center for Applied Linguistics
Mr. Frank Schmidtlein: Office of Education
Dr. Bruce Waxman: National Institute of Health
Mr. John S. Coleman: Executive Officer, National Academy of Sciences

\title{
Commission On Engineering Education
}

1501 NEW hAMPShire avenue, N. W., WAShington, D. C. 20036
\(\qquad\) 2

TELEPHONE 202-332-7970

\author{
Professor Anthony G. Oettinger \\ Aiken Computation Laboratory \\ Harvard University \\ Cambridge, Massachusetts 02138
}

Dear Professor Oettinger:
Following up on our conversation of a few weeks ago, I am pleased to transmit for your information and for the NAS Board on Computer Science and Technology a resume of the activities and concerns of the Commission on Engineering Education in the general domain of information processing. This area has received substantial and continuing attention since the Commission was established in 1961 and we must carry on this activity if we are to fulfill our responsibilities in educational technology.

Our current move to become an integral body of the National Academy of Engineering will, fortunately, facilitate a close collaboration between our efforts and those of your Board. In accord with your suggestion, I would urge that there be established a joint committee in appropriate areas of common concern. Certain of these will be immediately evident from the recommendations of our Information Processing Committee in the enclosed resume.

In accord with your invation, I shall plan to attend the meeting of your Board on October 10 at which time I can provide additional information. It will be possible at that time to explore means of working together on the areas of common concern.

cc Dean Gordon S. Brown
Dr. J. Mulligan
Members, Computer Science and Engineering Board
Mr. Warren C. House
```

Dean Gordon S. Brown
School of Engineering
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139
Dear Gordon:
Subject: Report of Information Processing Committee (CEE)

```

The Information Processing Committee met on Saturday, May 25, at 0'Hare Airport, Chicago. The following were present and participated in the discussion and conclusions:

Richard H. Bolt
Edward E. David
Herman H. Goldstine
Newman A. Hall
Nathan M. Newmark
Andrew Schultz, Jr.
John R. Whinnery
Paul F. Chenea, Chairman
It was our understanding that we were to develop a long range plan for CEE in the field of Information Processing. We chose to follow a format built around the following questions:
1. What is not now going on in the Universities or elsewhere that the Commission believes should be going on?
2. Why isn't it going on? What are the roadblocks?
3. What can the Commission do about it?

This format is followed below for each of the six areas of concern which we were able to identify:
A. (1) The engineering educational establishment in the United States needs a central archive unit for the development and dissemination of software systems. These systems should be based upon a central framework of broad applicability.
(2) Proprietary agencies can't do it because such an activity must transcend individual hardware systems. Non-proprietary organizations have not been user oriented nor do they have funds for this purpose, and substantial amounts of money will be required. The copyright problems are formidable and must be solved. It is also true that it would not be worth the effort to publish or preserve much of the current program production; thus the establishment that carries out this task would necessarily be highly discriminating in its operation using strict certification and testing techniques.
(3) The Commission should establish a national center for this purpose. CEE should start with a strong full-time leader to plan the operation and to write the necessary proposals for funding. Clearly a large full-time staff will be necessary as the program develops.
B. (1) There is need for much more university research directed toward improving the impedance match between the computer and the unsophisticated user. This involves the development of problem oriented languages which are independent of hardware and which will provide "on-line" capabilities needed for engineering activities.
(2) It appears that a main stumbling block is lack of professional recognition and credit for software work, which is considered by many as a service function only. Contributions to the field have low visibility and are infrequently considered in the promotion process or in the establishment of salaries, and they are rarely appreciated by ones peers.
(3) The implementation of \(A\) above could provide a recognized place to publish and thus it could result in appropriate visibility and appreciation.
C. (1) There needs to be a more extensive restructuring of the educational process that recognizes the existence of computers especially with respect to the undergraduate engineering program. Such a restructuring must involve a critical examination of subject matter, subject matter sequences and pedagogical techniques.
(2) Although the pace of this activity is slow, it may well be that it is moving as fast as the available talent, leadership and money can support.
(3) It appears that there is little the Commission can do at this point in time.
D. (1) There needs to be a careful development by universities of programs to provide the educational needs of the variety of computer specialists. Such programs must recognize the differing needs of computer technicians, engineers and scientists.
(2) The problem seems to stem from lack of talent, lack of the right leadership, lack of well defined objectives and lack of funds.
(3) The "Cosine" proposal aims at a solution to this problem. The committee members will review the "Cosine" proposal and send our recommendations to Newman Hall.
E. (1) There needs to be a broader view of the interaction between communication, data processing and educational processes. Such a view should encompass data retieval and transmission for libraries, student records, etc. and it should include consideration of the development and management of large scale central computing facilities.
(2) Reasons for present state are largely the same as stated in D (2) above. Programs of this complexity do however require incubation time.
(3) The Commission should carefully review the Daddario Report. The newly-appointed Teaching Aids Committee, under the chairmanship of John Whinnery, has the responsibility for this presently. We should also continue to follow the efforts of Educom and the AUI program.
F. (1) A clearer picture needs to be developed of what constitutes a minimum university information processing capability and what constitutes the minimum experience that the students should have, particularly those in engineering. This picture must recognize the varying goals of institutions and programs. Minimum educational standards should be developed.
(2) Why hasn't it happened? We don't know, unless it is just lack of interest on the part of all concerend.
(3) CEE should take the initiative, although in the past we have agreed that educational standards were the province of ECPD and other accrediting agencies and not the province of CEE. CEE might foster a study group that could develop a "white paper" on the subject.

The discussion above does not exhaust the computer field but it does cover the main issues as we can see them at this point in time. We trust that it suggests a framework for long range goals for CEE.

Best personal regards,

Paul F. Chenea /s/

PFC:np
cc: R. H. Bolt
E. E. David
H. H. Goldstine
N. A. Hall
N. M. Newmark
A. Schultz, Jr.
J. R. Whinnery

During the summer of 1961 an NSF supported conference of leaders from industry and academic institutions met for a week to review the most important needs and prospects for engineering education. The consequence of this conference was the establishment of the Commission on Engineering Education as a research and development organization charged with increasing the capability of and available resources of engineering schools. Attention has been directed particulary to stimulating and initiating new approaches and methods.

It became immediately apparent that in the whole domain of analysis and design the advances in information processing systems would be of major consequence. During its first year, the Commission and its advisory committees reviewed at length desirable ways of giving this area substantial attention.

The Use of the Computer in Design
In 1962 a Committee on Engineering Design established a subcommittee on the use of the computer with the following membership:
D. L. Katz, (University of Michigan) Chairman
S. J. Fenves, (University of Illinois)

Dwight Baumann, (then at MIT)
Robert Prince, (Lockheed Aircraft)
Andrew Schultz, (Cornell University)
It assumed an advisory and planning role for the Project on the Use of Computers in Engineering Education at the University of Michigan, at that time supported by the Ford Foundation. Subsequently a continuing project in the same area at Michigan supported by NSF was more closely associated with the Commission which appointed an advisory committee consisting of:
N. M. Newmark (University of Illinois) Chairman
S. A. Elmaghraby (Yale University)
S. J. Fenves (University of Illinois)

Don Hart (General Motors Corporation)
Andrew Schultz (Cornéll University)
This project provided orientation training for many engineering
teachers and in addition, produced a summary report on Computers in
Engineering Design Education which gave particular emphasis to the then available programming practices in a variety of engineering applications.

During this period the Commission enlarged its committee on computers in design in order to provide a more diversified and effective input. By the summer of 1963 the membership consisted of:
N. M. Newmark (University of Illinois) Chairman

Robert M. Ashby (Autonetics)
Dwight M. Baumann (Massachusetts Institute of Technplogy)
William Bollay (Massachusetts Institute of Technology)
Sullivan Campbell (International Business Machines Corporation)
Brice Carnahan (University of Michigan)
Salah Elmaghraby (Yale University)
Stephen J. Fenves (University of Illinois)
Richard Hamming (Bell Telephone Laboratories)
Don Hart (General Motors Corporation)
Donald L. Katz (University of Michigan)
John G. Kemeny (Dartmouth College)
William Pickering (California Institute of Technology)
Dr. Robert Prince (Lockheed Aircraft Corporation)
James Reswick (Case Institute of Technology)
Andrew Schultz, Jr. (Cornell University)
Lucien Schmidt (Case Institute of Technology)
Richard S. Varga (Case Institute of Technology)
Charles Whitmer (National Science Foundation)
Lyle W. Phillips (National Science Foundation)
A series of informal studies by this committee on modes of analysis, sources of information on computer uses, and facilities aided in the continuing inquiries. Some of these studies appeared in print and their considerations provided the basis for many subsequent steps.

In 1964 planning was begun for a conference on the Impact of Computers on Education in Engineering Design. The conference was held at the Chicago campus of the University of Illinois on April 21-23, 1966. A copy of the
proceedings of this conference is attached. Also during the summer of 1964 the Commission initiated work on its Engineering Concepts Curriculum Project under the leadership of Edward E. David, Jr., (Bell Telephone Laboratories) and John G. Truxal (Polytechnic Institute of Brooklyn). This activity has developed a basic course in engineering concepts for the nontechnical oriented advanced high school student. Among the major segments of the course is a comprehensive treatment of the concepts involved in computer systems. This segment is currently appearing as Part Two of the text, THE MAN-MADE WORLD. The promise of use of this course material at both high school and junior college level is high. The emphasis on computer concepts rather than techniques is unique.

Early in 1964 a group of leaders in electrical engineering education began to seek a more incisive examination of the role of computer science in electrical engineering education. This group became associated with the Commission and with a grant from NSF has been carrying forward studies and donferences as the COSINE committee (Computer Science in Electrical Engineering). The current organization of this committee is:
M. E. Van Valkenburg (Princeton University) Chairman
L. A. Zadeh (University of California, Berkeley)
W. H. Surber (Princeton University)
S. Seely (University of Massachusetts)
E. J. McCluskey (Stanford University)
F. F. Kuo (University of Hawaii)
M. Karnaugh (International Business Machines)
J. F. Kaiser (Bell Thlephone Laboratories)
W. H. Huggins (Johns Hopkins University)

David C. Evans (University of Utah)
J. B. Dennis (Project MAC, Massachusetts Institute of Technology)
C. L. Coates (University of Texas)

Taylor Booth (University of Connecticut)

The first report of COSINE in September, 1967 , provided an analysis of curriculum and course prospects. Subsequent reports are providing more detail on courses. The Committee has also sponsored summer institutes on course content at Princeton in 1967 and 1968. Close liaison has been maintained with related ACM studies.

In September 1965 an informal conference at Bell Telephone Laboratories reviewed the current and prospective developments in the use of the computer in producing animated films. Following recommendations from this meeting, the Commission established an advisory committee representing all disciplines to stimulate and assist in further developments in this area. Membership in this committee has included:
```

E11is F. King (University of California, Los Angeles) Chairman
John Carr, III (University of Pennsylvania)
Leon Cohen (University of Maryland)
Richard F. Hartze11 (State University of New York)
W. H. Huggins (Johns Hopkins University)
Kenneth C. Knowlton (Bell Telephone Laboratories)

```

The committee has been instrumental in the establishment and development efforts at the University of Pennsylvania and at Polytechnic Institute of Brook1yn. It sponsored and organized a review conference attended by some 200 people in July, 1967, at Education Development Center in Watertown, Massachusetts., Further conferences are being planned.

The contribution of the computer and information processing systems in general to educational technology is diverse and extensive. The computerproduced film is only one of many examples. It has become increasingly evident that the potential domain of this educational resource must receive major attention by engineering. The Commission recognizes the need and opportunity
and for over a year, through its Committee on Teaching Aids headed by J. R. Whinnery (University of California at Berkeley), has been conducting intensive studies to determine more specifically the prospect and areas warranting specific attention. For example, for the past six months, the Committee has selected as a principal topic of study the use of the computer as an active partner in the teaching-1earning process. A survey has been made of the types of activity which meet this definition and of the location, both academic and industrial, where such efforts are underway. The major emphasis has been on the drill and practice, tutorial and dialog systems, particularly as they are used in institutions of higher education. Some attention has been devoted to the computational uses, the computer-aided laboratories and the use of simulations, mode1s and games in the education process. The ancillary uses such as testing and recording and processing student performance have also been given some attention, principally because of the powerful promise they provide as learning and teaching research tools.

When the National Academy of Engineering was asked by Representative E. Q. Daddario, Chairman of the House Subcommittee on Science, Research and Development to undertake several pilot studies of how to approach the problem of technical assessments, educational technology was one of the areas selected and the Commission was asked to perform a study in this area. Drawing upon the background which has been generated by the Teaching Aids Committee and narrowing the study area to cover only instructional television and computer aided instruction in institutions of higher learning, the committee has such a report in the final stages of preparation.

Members of this committee are:
```

John R. Whinnery (University of California at Berkeley) Chairman
Leslie P. Greenhil1 (Pennsylvania State University)
Dean Brown (Stanford Research Institute)
William Knox (McGraw Hill, Inc)
J. C. R. Licklider (Massachusetts Institute of Technology
Donald L. Bitzer (University of Illinois)
John A. Starkweather (University of California Medical Center)
Lawrence P. Grayson (Manhattan College)

```

An assessment following the 1966 conference on the use of computers in design raised some basic questions as to what software development needs existed in order to enhance access and useability of the computer in engineering schools. Certain trends in the establishment of problem-oriented languages and more comprehensive computer software systems suggested the exisitng educational practices which depended on extensive programming training were not an ultimate answer. To pursue this concern the Commission at this point, in collaboration with the American Society for Engineering Education set up a joint committee consisting of:
H. H. Goldstine (International Business Machines Corporation)
E. E. David, Jr. (Be11 Telephone Laboratories)
N. M. Newmark (University of Illinois)
R. Louis Bright (then at U. S. Office of Education)

Arthur T. Thompson (Boston University)
Thomas F. Jones, Jr. (University of South Carolina)
Donald Katz (University of Michigan)
Richard G. Mi11s (Project MAC, Massachusetts Institute of Technology)
J. B. Dennis (Project MAC, Massachusetts Institute of Technology)

This committee, with the assistance of Mr. Richard Mills and Professor Jack Dennis of MIT as consultants, reviewed the software problem far enough to establish a focus on the requirement for some form of critical and systematic examination and collection of software systems for use in scientific and engineering analysis and design. Their recommendations reinforced the need for much greater attention to special purpose language development.

However, a desirable approach was not established and questions were raised as to the broader aspects of information processing.

Early this year, the Commission appointed an Information Processing Committee of its own members, consisting of:

Paul F. Chenea (General Motors Corporation) Chairman E. E. David, Jr. (Be11 Telephone Laboratories)
H. H. Goldstine (International Business Machines Corporation)
N. M. Newmark (University of Illinois)

Andrew Schultz (Corne11 University)
John R. Whinnery (University of California at Berkeley)
R. H. Bolt (Bolt Beranek and Newman Inc.)

Its deliberations to date have identified two general needs not now being served to which it recommends the Commission devote attention. First, it believes a coordinated collection, analysis and development effort should exist for software systems. Present services of this nature are limited in scope or depth and nowhere is there an attempt made to access and refine programming contributions which may appear. Furthermore, there is need for more systematic identification of programs and specialized languages in terms of underlying algorithmic modes of analysis. A staff memorandum which provides some background detail on this recommendation is attached.

Secondly, the committee is concerned with the lack of any source of information and interpretation as to minimum university information processing capability. There has been much consideration of the service which can be provided in the three major domains of business and administrative management, education and research. Nevertheless really useful guide lines are critically limited and the approach of many institutions is haphazard and opportunistic. Assistance which might be provided would
have to be flexible, objective and designed to adapt to the rapid pace of development. The need, however, is real and an appropriate advisory body can provide an essential service.

In the immediate future these preliminary recommendations will be further reviewed and sharpened. Particular attention will be given to related concerns of other bodies and institutions. The intent in all cases is to focus attention on those efforts which will enable the domain of information processing to be of maximum service to education.

COMPUTER SOFTWARE SYSTEMS
COORDINATION and DEVELOPMENT

Analysis and Statement of the Problem

The value and promise of the use of the computer in engineering and science is overwhelmingly evident. Its role is of such major consequence that the impact on the educational process is only beginning to be understood. Its capability is so extensive and flexible that immediate applications appear to be almost unlimited.

It is inevitable, however, that a careful examination of this powerful resource would indicate that its utilization would produce not only a revolution in detail and speed of analysis but also in basic approach. The largest use of the computer in engineering so far, has been a fairly direct application in accord with well-established modes of analysis and computation. The consequences of even this obvious approach are so great that it has been possible to take only limited advantage of the resource.

In the more advanced phases of engineering analysis there are three major elements involved in the use of the computer. These are:
1. The development of appropriate modes of analysis
2. Communication with the computer
3. Efficiency in utilization

The first of these has been largely approached through conventional techniques in numerical analysis. The second has provided the impetus for computer language development. The third has become a struggle with regard to access and cost.

All three of these factors represent rather superficial consequences of the more fundamental and profound contribution which the computer makes to the resources and techniques of analysis. In the history of applied mathematics certain improvements have appeared from time to time which, by virtue of the substantial change in mode of analysis, have had a more or less revolutionary effect on the procedures for logical and quantitative considerations of practical problems. Some of the more familiar and frequently unappreciated examples were the introduction of algebra and the development of calculus. Many others of greater or less consequence could be mentioned. When one of these events occurs its consequence is often not realized for some time. At the outset there is a strong tendency to overlook the implication of the new resource and to force on it the existing and sometimes inappropriate modes of analysis.

One of the major characteristics of such advances is that not only is a new analytical resource provided, but its use, interacting with the incentives of practical problems, will give rise to new, unexpected and powerful extensions of mathematics. This is the present situation with the computer. The consequences may well be determined by the magnitude of the resource itself. If so, we can certainly anticipate radically new modes of analysis of our practical problems and the appearance of many new developments in mathematics. The evidence of this is already apparent from the stimulation provided by
computer programming for algorithmic analysis.
The logical and quantitative examination of any engineering or other practical problem proceeds from the initial formulation of a conceptual model of the system or situation in which the problem occurs. The goal in resolving the problem is to proceed logically from the initial quantitative specifications to a final description. In effect, the whole endeavor is one of information processing.

Existing mathematical resources direct the investigator to proceed from a conceptual to a mathematical model. These take many forms, but the principle can be illustrated by the steps taken by the electrical engineer when his mathematical model appears in the form of the partial differential equation of electromagnetic field theory with associated boundary conditions. Depending on how tractable these equations are for the particular situation, greateror less progress will have been made at this point in solving the prob1 em.

By and large this approach has tended to focus attention on the local or differential aspects of the system. More extensive description has been provided by actual or implied integration or summation, or by the involvement of systems of equations. In any case, subsequent mathematical steps have increased analytical complexity. Fortunately, there have been a vast number of elegant mathematical short cuts and ingenious approximations which have, in fact, made possible the very existence of present engineering analysis.

The direct logical approach in the general case by means of existing mathematical methods is an impossible procedure. This can be well illustrated by the failure of any conventional method to solve the problem of turbulent
flow even though the partial differential mathematical model can be easily set forth.

With the availability of the computer, the most obvious and immediate response of the engineering analyst is to use this resource to break the barrier between his familiar mathematical model and his desired problem solution. To do this he introduces the appropriate techniques of numerical analysis and then with the necessary programming utilizes the computer as a high speed, large capacity calculating machine. In following this course, little use is made of the capability of the computer in providing access to totally new modes of analysis.

The direction to be followed, however, is reasonably well pointed out in the design or use of any programming language and in many studies in computer science. The computer intrinsically does not respond to the type of description that is characterized by the conventional mathematical models of mathematical physics. The computer is an algorithmic device. It responds to procedural more than to descriptive information. The essential art in computer language design is the conversion of the conventional descriptive representation of the model to an algorithmic procedure. This fact in itself is suggestive of the power of the computer, since its comprehension of the model is not static as conventional descriptions of mathematical models may be characterized, but is dynamic in the sense that there must be an information processing sequence starting with a characterization of the model and proceeding to some specified output.

Present studies in language design for engineering systems are gradually responding to the algorithmic character of the computer. The sequence of
developmental events that may take place is well illustrated by the evolution of the ICES language at MIT to its current status.

This sequence is generally familiar, but in briefest outline it consists of three steps. First, there is the concern with an almost random selection of individual problems in a certain domain, in this case Civil Engineering. Second, certain of these problems falling into coherent classes suggest the convenience of problem-oriented languages such as COGO or STRESS. Third, and a very substantial step is the review of the approach to the total class of problems experienced individually and collectively through the problemoriented languages; then developing a technique first, of a computer-oriented description of the system and second, since the computer deals with infarmation processing rather than mere description, identifying suitably the processing goal at the time the system model is presented to the computer.

It is essential to recognize that much more is involved in the ultimate step than the mere design of a language whereby mathematical expressions can be fed into the computer. There is a significant difference in approach to the initial consideration of the problem situation. This is mainly derived as observed above, from the sequential algorithmic information processing characteristics of the computer. When this is recognized, the language is designed to take advantage of this capability and consequently, both input and output of information may well take unconventional yet no less useful forms.

Much attention is being given currently to the details of language design and the formulation of special purpose programs for use on individual computers. This emphasis means that questions such as compatibility among
different computers is frequently critical. The 1 arger problem however, is to a significant degree independent of the final detail of programming on one or another computer. All computers depend essentially on an algorithmic approach regardless of programming details. Consequently, experience with regard to the modification in approach that one system, such as ICES provides can very well provide guides for dealing with many other domains.

The most important consequence is that the evolution of the appropriate mode of analysis for engineering systems which may be conveniently called algorithmic analysis will be most efficiently developed in an environment concerned with real engineering problems. This is already evident in the intermediate step of designing problem-oriented languages.

The communication of analytical methods calls for a more refined mode of the mathematical description of the algorithmic concepts that immediately precede formal identification of programming steps in computer languages. Experienced programmers short-circuit this stage when they proceed directly for example, from flow charts to the program or the special purpose language. However, it is clear that such an intermediate description must exist since again the experienced programmer is able to cope with computer incompatibility without having to repeat all preliminary details in setting up a program on a new machine. There is promise that such algorithmic descriptions would facilitate communication among computer users and also stimulate the refinement of mathematical analysis particularly adaptable to computer use.

The quantity and quality of activity already existing in meeting the need and taking advantage of the opportunity is encouraging. Nevertheless,
this represents only a beginning. The present concern is to devise means whereby the development process can be accelerated and more direct profit can be obtained from the existing initiative among the many engineering users of computing facilities in educational institutions. Exchange services such as the IBM SHARE program play a useful role, but the larger development effort is not touched by these activities.

Our specific concern is the examination of the total operation of information processing as it arises in dealing with engineering systems. From such an examination a development program should be defined and established with the concepts of algorithmic analysis being central to the design of the computer software system. It is this design endeavor which should receive our attention.

THE UNIVERRSITY OF WISCONSIN MADISON, WISCONSIN 53706
TELEPHONE 608-262-3636
J. BARKLEY ROSSER, Director

September 16, 1968

\author{
Dr. Anthony G. Oettinger \\ Aiken Computation Laboratory \\ Harvard University \\ Cambridge, Massachusetts 02138
}

Dear Tony,
It is recommended that there be an active National Programs Committee. The province of the Committee is to study institutional and policy problems traceable to the development of computer technology. Special panels are to be constituted when questions of high priority are identified. These panels shall represent the relevant areas and furnish expertness beyond that inherent in the Committee.

Specifically, questions involving interplay between computers and agencies of the government may be referred to this Committee in a wide variety of areas. The Committee should have enough internal competence in such areas to appreciate both the technical and policy issues involved, and to be able quickly to bring in qualified experts for a more detailed analysis. As far as possible, the Committee should anticipate crucial questions, and be prepared to react before there is time only for hasty action. Members of the Committee should have experience in interacting with governmental units.

One probably cannot get adequate coverage of many areas with fewer than six or seven members on the Committee. On the other hand, if the Committee gets too large, it will be unwieldy, and one might just as well take the Committee to be the entire Board. Probably somewhere between six and ten is an optional size.

With this in mind, the Planning Committee submits the following list of names of possible members. We have tried to choose names from a broad array of areas, and we trust that you will be able to choose a competent Committee from among the names proposed.

Before we turn to specific areas, the names of Carter and Rosser are indicated because both deal constantly with the interaction between computers and parts of government as a central part of their professional activities.

Since the Committee on Education appears firm in not considering certain broad aspects, perhaps these should have some attention in the National Programs Committee. Pierce and Rosser share a concern about this area. Alexander M. Mood would add strength to the Committee in several areas (as you can see from his write up in Who's Who) but his term of service as Assistant Commissioner of the Office of Education especially qualifies him in this area. I know him pretty well and will try to persuade him if you wish. If we can't get him, and if this area seems inadequately covered with Pierce and Rosser, we could ask Newmark, who has much experience and feels quite strongly that the Committee on Education is taking too narrow a view.

Incidentally, Pierce's membership on the Committee would add strength in many other areas.

Westin will supply indispensable competence in the area of government and law.

Meyer will supply indispensable competence in the area of economics.
. We need someone who is professionally concerned with what the future possibilities in computers are. Perhaps one man in this area will suffice, if we get the right man. I shall propose three for your consideration. Haddad has the advantage of being already on the Board. On the other hand, taking Griffith would add strength to what we already have on the Board. (He would also supplement Carter and Rosser in the intelligence area, about which I shall not say more.) However, Griffith urges that Knaplund would be of more use than himself. I know Knaplund only slightly, from having met him when he visited his mother here in Madison, but his write up in Who's Who is very impressive.

Considering the province of the Committee, a suitably chosen person from government itself could be of great value. Perhaps protocol would not allow us to have such a person as an actual member of the Committee; in such case he should be fairly intimately attached as a consultant. A name suggested (I don't know him at all) is Raymond T. Bowman, Assistant Director for Statistical Standards of the Bureau of the Budget. He has been one of the witnesses for BoB before the Gallagher Committee on the National Data Bank activity. One advantage of a man from \(B O B\) is that this agency has a built in right to poke its nose into the business of all other government agencies. Also, Bowman's write up in Who's Who shows him to have a breadth of experience which would make him extremely useful. If he can't be induced to serve, Ruth Davis would be a strong alternate.

An extremely attractive possibility is Robert Coldwell Wood. I don't know him myself, but he was at one time chairman of the Department of Political Science at M.I.T. More recently he has been undersecretary of HUD. He is just returning to M.I.T., and may not yet be too committed to take this on. If Wood can't serve, an alternate might be James \(Q\). Wilson of Harvard, who specializes in urban politics, crime, and race relations. I urge strongly that we try for Wood. If he refuses, perhaps we should have another look at the possibilities before deciding to approach Wilson.

We are perhaps approaching the upper limit on the size of the Committee. However, I will list some more possibilities. You might favor a larger Committee, or we might not be able to get all the people mentioned above.

Edward A. F. Hearle is author of a text on data processing for state and local governments. He could be useful if we feel the Committee should not confine itself only to the national level. He is now a vice-president of Booz Allen Applied Research, Inc. in Washington. I don't know him at all myself, but other members of the Planning Committee spoke strongly of him.

Harold Wilensky is a young Professor of Sociology at Berkeley. He is author of "Organization and Intelligence," which indicates his special interests. I don't know him, but Westin and Meyer were very enthusiastic about him.

If we could find the right man in communication theory, it might be a very good idea. Some six men have been proposed. Paul Baran comes to many people's lips in this area. The name of Albert Madansky was given to me, but from the write up in American Men of Science, he seems more of a statistician. As specialists in the technical side of communications, I have the names of C. H. Elmendorf of AT \&T, and D. Gillette of Bell Labs. Wilbur Schramm is Director of the Institute of Communication Research at Stanford (they do communication as in newspaper stories). Finally, there is Kassam, whom you proposed. Let me recall your suggestion that we sponsor a meeting in this area, after which we might be better able to choose the right person (or decide to have no one).

Names that have been proposed in the biological and medical area are Lederberg of Stanford, Levinthal of Columbia, Glaser of Berkeley, Rosenblith of M.I.T., Baruch of Educom, and Ledley of his own Foundation in Silver Spring. I have reservations about some of these, and suggest that if you feel we need someone you might phone me for more discussion. Could this be another area where we should sponsor a meeting? Perhaps it is really a matter for the Committee on R \& D.

Other names that have been proposed in assorted areas are Robert Marchand of the Library of Congress and Bill Sharp of Irvine. Also Fred Hoffman has a position in BoB similar to that of Bowman, and might be an alternate if Bowman refuses. However, someone thought that Hoffman is a bit senior to Bowman, in which case it might be indelicate to approach him after being refused by Bowman. Warren House can check out this point.

The question of an operating procedure for the Committee presents itself. As a preliminary suggestion, let me say that if the Committee has only a few members who are not members of the Board, these members could be invited as observers (or consultants) to those Board meetings which promise to be particularly enlightening. By coming early (or perhaps staying late) the Committee could work in a meeting as a Committee contiguous to the chosen Board meeting. Occasionally, the Committee might hold a special meeting of its own to hear a particular presentation or visit some particular activity, or to meet an emergency.

As stated above, there would be Panels acting under the jurisdiction of the Committee. Two exist already.

An urgent call involving a highly classified area led to the hurried formation of an ad hoc Panel consisting of Carter, Griffith, House, Oettinger, Rosser and about three others who are not members of the Board. This Panel has met once with the interested agency, and further meetings are expected. Carter has made inquiries about possible additional Panel members. I shall attend a meeting on October 14 at another agency which should provide a lot of background information. The precise status of this Panel can be clarified after the Committee is set up.

There is also the Panel on Export of Computers. A first meeting was held on July 23 under John Pierce before the membership had been crystallized. In August the Panel received an urgent call, and under your chairmanship met several days, preparing a draft report which went to several agencies. Many questions remain to be resolved, and the Panel should be formalized after the Committee has been set up.

The matter of hastening relaxation of secrecy restraints from important new hardware advances is related. If there is restraint on the export of computers, there will be less hesitancy about relaxing secrecy. Carter and I both feel this is a matter of importance, and that the Panel on Export of Computers should be urged to take it under consideration. Perhaps the Panel should be suitably enlarged.

Top priority for formation of a new Panel is the area loosely suggested by such terms as National Data Bank, Invasion of Privacy, etc. I will give you a sharper characterization after I get the transcript of Westin's presentation at the last Board meeting. It has been proposed that a suitable chairman be enlisted for this Panel and that the membership of the Panel and its course of action be largely his responsibility. It seems to me that Westin is admirably qualified to be chairman. Most of his qualifications are so well known that no listing is needed. I should like to mention a strong one which is likely not well known. Almost alone of many speakers and writers in this area his statements have attracted commendation from Congressman Gallagher. The political advantages of this need no elucidation. I feel that it will likely be possible to get support from some Foundation for the work of this Panel. I shall be making some exploratory contacts in the coming weeks.

You have already asked John Pierce to activate a Panel to study national computer laboratories or institutes. This Panel can be formalized after the Committee has been set up.

The interaction of computers with communication is facing a large expansion, with remarkable potentialities. If, as you suggest, we should sponsor a meeting in this area, the decision as to what sort of Panel activity is called for might well be left until after the meeting.

Ditto perhaps for computers and biology and medicine, unless it goes to the Committee on \(R \& D\).

Copyright questions connected with computers seem well understood by some members of ACM. If ACM will take adequate action in this area, the Committee should do no more than encourage them. However, the Committee should keep itself informed as to the progress of events, including ACM's participation. If the latter seems to falter, the Committee should consider suitable action. It has been suggested that the Committee not mention officially any concern in this area unless need for action arises.

The problem of what should be done about the computer operation at the National Bureau of Standards seems to have resolved itself in large part into technical questions, such as how much expansion is needed if the operation is to fulfill the role authorized by the Brooks Bill, how much it would cost, etc. These matters seem to fall more in the province of the Committee on R \& D, and will be commended to their attention.
cc: L. F. Carter
J. Griffith
W. C. House

Singerely,
J. R. Meyer
J. R. Pierce
A. F. Westin

THE UNIVERSITY OF WISCONSIN MADISON, WISCONSIN 53706 TELEPHONE - 608-262-₹636
J. BARKLEY ROSSER, Director

September 30, 1968

> Professor Anthony G. Oettinger
> Aiken Computation Laboratory
> Harvard University
> Cambridge, Mas:sachusetts 02138

Dear Tony,
While in V'ashington recently, I stopped in for a chat with Edward Ackerman, who is the Executive Officer of the Carnegie Institution of Washington. This is quite a different organization from the Carnegie Corporation and does not make grants of the surt we are hoping for to support the Panill on Invasion of Privacy (or watever it might be called; I don't yet have the transcript of Westin's pre ientation at the latest Board meeting). This is an advantage at this stage, where our plans for the Panel are still rather rague; I didn't feel embarrassed by not having anything clearcut to present \(t\), him since there was no prospect that I might later be approaching hin for a grant. At the same tim., he is not far from the center of philanthropy, and knows how the Fol ndations operate, whom to approach, etc. For instance, he suggested that Carl Borgmann, special assistant to Burdy, would be the best man to approach at the Ford Foundaticn. At the Carnegie Corporation either Pifer, the Iresident, or Morrisett, one of the Vice-Presidents, would be appropriate to ipproach; both are also high officials in the Carnegie Foundation for the Ac vancement of Teaching, which is irrelevant for the present Panel, but might le helpful in connection with some of Perlis':; endeavors. He indicated that it would have been quite ir. order to have a!proached any of these people at the present stage when tio plan of operaticn is still in a preliminary stage of discussion.

Just to have something definite to work from, I asked what luck we micht have getting support for a study, to be followed by a report sponsored by the National Acadeny. The "Digital Computer Neads" report was put out on a grant of \(\$ 60,000\). Hence it seemed plausible to talk about a request for \(\$ 100,000\). Ackerman indicated that this would be pretty small potatoes for the Ford Foundetion. However, the subject of study would appeal to them so much that the chance of success would be high. He said that there are
' dozens of smaller foundations who could manaçe a grant this size, and who would be strongly inclined to do so from the vital importance of the subject matter and the distinction of the sponsor. The e is a book listing foundations and their areas of interest. The Graduate School here has a copy, for reference in trying to find grants for deserving professors; I am sure most schools do.

It may well be that we should consider something appreciably more ambitious. This is a matter we should have some discussion on at the next Board meeting .

Sincerely,

cc: L. F. Carter
John R. Meyer
John R. Pierce
A. F. Westin

John Griffith

September 25； 1968

Professor Anthony G．Oettinger
Aiken Computaticn Laboratory
Harvard University
Cambridge，Massuchusetts 02138

Dear Tony：
I have no profound，or even helpful，observations ci whether we should sell computers to other countries．I would，however，instead，maise the plea that we，as a committe \(\mathrm{i}_{\text {，}}\) try to develop son te understanding of our own indust y．I suggest that we（or at least myself）are so clcse to this industry that we don＇t really have the understanding we should in order to pontif cate on national questions or computer educarion．

Most of us have c vested interest in continuing the mystique of computers，but if we a：e to influence the tuture of the industry，we should do it with understanding．

I have been watching the computer industry for a few years，but find I have little real knowledge in how it operates，but I do have many questions．If this is true of others，we might go over quastions and see what we can learn about the industry．A few of my questions are as follows：

We have seen many computer projects fail while others succeeded．Some even had er romous resources in money and people，but still failed．Why？

Is the usefulness if third generation computers really in the architecture and in the integrated circuits；or is it \(n\) that long list of mundane things that people learn when they produse one more model，along with all the knowledge tha：users and programmers have gained since the second generation machines？

Are we misleading the world，and ourselves，into finking that computer science is the secret of success in the computer industry，or can unly a successful computer industry afford the luxury of computer science？

Is there a progranming problem today，or is it just that people took on jobs bigger then they could possitly do？（Just like there would be a bridge problem if people contracied to build bridges hefore they measured the width of the rivers．）

Could a country make a viable computer industry if they simply copied last year's. computers and weren't forced by pride to have the highest speed and latest architecture? Does that last bit of speed make a computer industry succeed or fail, and is it necessary every year to go faster and faster, or could a country go a long time by simply copying an older machine and learning to build it well and service it thoroughly?

Why has the U. S. been more successful in the computer industry than others, and why have the computer industries in each country developed their present characteristics? How much of this is due to the educational system, the status and pay of engineers, and their ideas in maragement?

Is building a computer organization like designing a complex program? Is it so complicated that one cant understand it enough initially that it has to be heuristic in nature with sound amalgamations fo: success? Have all those attempts to build a computer organization from a master plan bee failures?

How important is large amounts of capital? Several small companies have succeeded, and yet RCA, General Electric, Raytheon, General Mills, Union Carbide, and a number of others, have, in :mme of their attempts, not been outstanding successes.

What are the critical parts in a computer industry? Is maybe the computer architect the easiest to find, and the sound mechanical engineer and practical circuit designer, along with a wise production engineer, really the ones that make an organization play?

I'm sorry I haven't been able to give any profound observations to help make your dec ions, but you might get a few ideas from this rambling as to some of the questions which bot her me, not only as we discuss selling computers to other countries, but also as we discuss the needs for the country in education and research and development.

Sincerely yours,


Kenneth H. Olsen
Presiamt
\(\mathrm{KHO}:\) eco


NEW YORK UNIVERSITY
Courant Institute of Mathematical Sciences
AEC Computing and Applied Mathematics Center 251 MERCER STREET, NEW YORK. N.Y. 10012 ASEA 212460.7100

\section*{PRIVILEGED \\ PIVIIBCD}

Mr. George Rusins
Seplember 23, 1968

National Acadsmy of Sciences 2702 Constitulion Avenue Washington D. C.

Dear Mr. Rudins:
This let;er is intended to serve as a report on my visitt to the Soviet Union, more specifically to Novosibirsk, under the Academy Exchange Program.

Arriving in the Soviet Union, and before proceening to Novosibimsk, \(\because\) spent a few days in Moscow, saw I. M. Gelfand and 0 . A. Iad zhenskata and others, ard then went to Ieningrad for three day, following which I went directly to Novosibirsit. In Ieningrad \(\because\) had a brief, essentially social meeting with Kantonovich wo was visiting Ieningrac though of course he is nomally in Novosibirsk.

In Novos birsk, most of my contar, was with the comouter group at the ieademy of Sctences Gompliting Center, though I also saw some ining of the mathematica economists who are working under the general direction of Kantorovich. A symposium. on optimization methods (the second amual symposium of this Kind) was meeting in Novostoirsk at the same time. The foreign participants fere largely French and merican and I also had 2. chance for some contact with the mevters of the sympostum. Most of my contact at the computer center was with the computer science group under Professon Ershov's direction, though in fact the largest part of the work of the center as a wole, is in scientific computation.

The first thing to realize about this group is that they Fork under handicaps which from the memican ooint of view are very severe. They have a lavge computer (BESN-6), out on the other hand the manufacturer of this machine provides essentially no softrare support, so that all the software must be whitten from soratch by the various univensity groups.

















est uauh yo euj vo paxwom Suza oste aue sasenzuet






- Kep rod sqof coapunu teuanos Sutuunt ad pqnom sagegs paqtun oun ut 9-WSEE Eut jo ozts aúg





















The underlying difficulties coming from lack or indusirial support seem to me to have their roots rather deep in the Russian organi:ation of these things. In particular, three separate ministiries are involved in the production of various computer systen components, and the "chief designer" system that has been used very successfully by the Russians in aircraft production is not used in the production of computers. Thus, new computers are produced without any single project manager being responsible for \(2 l l\) the \(\in\) lements of the eventual system.

There are also considerable difficulties in the introduction of computers into industrial practice. Certainly until a better develnped system of maintanenc a in software support, no very extens:.ve industrial applicatic of computers can be expected. \(\because\) t is also the case that Zussian industrial management is :elatively primitive by finemican standards, so that, for examile, even the basic bustrass forms technicues, nighly developed in the untted States, are relatively new in the Soviet Union. Ershov is working with a few industrial groups in the Novosibirsk area trying tir correct some of the dericiencies 0. an experimental basis.

Another on the major projects being camied out by Enshov's group (and by the engineering staff atbzched to this group) is the develop lent of a time-sharing sustem (oroject ATST). The system is yeing developed initially on a rather motely collection of mall machines ( a dual \(1-220\) and an old tube machine to be used as a message router). The design is being adapted With some relatively minor Lhovative features from various Americin time-sharing systems, in which the Russtan group has been highly interested. Spectal engineering work to hook these mall machines into a system with good intermachine communication is being done lovally at Novosioirsk.

If the AIJT Project is successful in its M-220 applicatior it will be adauted in a second version to the much larger BESM-6. My feeling about the project tas that the software design of this time-sharing system was dangerously large and general for so small a hardware systern as was inttially available to the Russians, and that trodole mignt result from this. A small JOSS-like system might have been wiser: but the Russian group dismissed this suggestion when I made it, as "unchallenging."

In adition to the computer people, I saw something of the Mathematics Economics Group at Novosibirsk, headed by Kantorovich and a younger colleague (Kuzenetsov), and the correspond ng group at the computing center of the Academy of Sciences in Moscow, headed by Professor Moiseev. I think that the development of wom in this field is an interesting feature of the current Russian intellectual scene. Not only mathematical economics but mathematical sociology are being built up. The mathematical character of the development seems to provide a way in which the subject can grow relatively undisturbed by ideallogical pressure. The Novosibirsk group is working largely in the theory of optimization; an area in the United states that would be called "economics of the firm" or "efficiency economics".

Moiseev's Moscow group seems to me to be more interesting. This group, the yersomnel of which consists largely of physical scientists who have gone into the social sciences without any formal training in economics, has its background in control theory, they have developed. a set of models in which economic problems are looked at essentially as problems of optimal control, more specifically optimal control in the presence of "random noise" requiring the re-adjustment of economic policy over various time periods. They are quite interested in learning more about American work In this area. Moiseev asked specifically about the wow of the cowles comassion and, suosequent to my return from moscon, I contected Professon Scari of the cowles commisstion and conveyed Moiseev's interest to him.

My reception throughout my stay ir the Soviet Union was most coratal and I am cuite pleased to have gone.


JTS/cec
1. Education cures all the ills of a society (!) and education in computers is to be anti-toxin \({ }^{1)}\), therapeutic \({ }^{2)}\), and conlitioner \({ }^{3)}\) for some of these ills: "Give me data and \(I\) will move the world."

We must distinguish among the following roles of computers in which education is required:
(i) As a cievice enhancing the educational process in general.
(ii) As a tool to be used in the work of other disciplines.
(iii) As a \(\quad\) niversal plastic for modeling ourselves, e.g., representations for our abstractions.
(iv) As a tool in which (i) to (iii) car be combined in unlimited way;

These roles can be studied, in principle, atevery educational level from grade-schoc 1 to graduate school.
2. The roles of CSEB with respect to education.

Naturally there are many roles for the CSEB committee to study. Principally, tensions (and reinforcements) arise in making a choice because the Board must serve both the scientific commity and the Federal Government.
1) An understanding of computers and their ole will prepare man to understand and hence resist the onslaughts on him by organized complexities: of one sort or another, or put another way cumputer education is survival education. Thus how do we teach this technical subject in a non-technical way to the non-scientist?
2) Those educated in computers can drive awty these ills by intelligent use of the computer in, e.g., organization of data, transmittal of the right data and burial of the wrong data, reorganization of resources, and the creation of universal euphoria from planned use of inspiring inventions.
3) Arned for the next crisis.

Within the scientific community CSEB must not only serve the established sciences but must emphatically support the establishment of computer science. For the Federal Government it must expose which of its problems can be helped by education in the computer. These problems arise both in the government's operations and its desires to improve society. In all cases CSEB must determine how gains and improvements are to be brought about.

CSEB involvement in any problem--at least in its first stages--cannot be total. Initially CSEB should focus on those problems which are importart and are not beinj adequately studied elsewherə. CSEB should be careful not to concentrate its energies and the talents of its members and panels on audits of studie; done elsewhere and on patches to solve specific problems in the Federal Government.

At some later date additional studies will need to be made evaluating work now going on elsewhere but which CSEB cannot now concern itself with.
3. Specific CSE3 education studies which are proposed for immediate attention.
(1) Graduate education in computer science.
(2) Underg :aduate education in software engineering.
4. Graduate edu:ation in computer science.

Computer sc:ence is a new and real discipline. Graduate programs exist and others are being born. Their outrut will populate all levels of computer education in the future. No complete study of this topic has yet been made and it is unlikely that any other Federal Board or Agency will do this stucy for CSEB.

This study should include:
(1) Definition: What is an adequate (excellent) graduate program
in computer science at the \(\mathrm{Ph} . \mathrm{D}\). and the M.S. level? How does it
relate to other graduate programs in allied fields like mathematics and electrical engineering and the social sciences?
(2) Resources (people): How many adequate (excellent) programs exist? How many are needed? What are t'ie bottlenecks which will delay achievement of the need? What is (should be) the ouput of these programs and how does (should) it filter through the general computer education program? At what stage should undergraduate computer science programs be begun?

Resources (money): How much money is required to adequately support and give birth to these programs? How much of this money should be Federal? Industrial? University? Philanthropic?
(3) Interaction: How will graduate programs in computer science affect the use of computers by other scientists, e.g., in increasing efficiency and even through better understanding of their own problems?
5. Undergraduate education in software engineering.

Whereas computer science is concerned with increasing our understandirg of concepts, software engineering focuses on things, albeit abstract ones, which are designed, constructed, documented, naintained, improved, and above all used. We refer to programs which are the central elements of computer systems. There are several central questrons which must be answered before examining the details of the education progran.
- (1) What's all the fuss about?

Software is becoming more intricate. After all so are the compurers and so are the interesting problems.

The software base required for useful computer systems is growing.

The software base for software development is also increasing both in size and complexity.

Furthermore, delays in production, inability, to accurately predict completion times and cost, are seriously prejudicing future developments in the entire computer and user industry.
(2) Is it : a eally engineering?

Perhaps what is required is not modern engineering which is ever drawing closer to science and is more akin to classical engineering. However new engineering subjects may havo to develop from "trades" as did their pjedecessors. However it is certainly the spirit and discipline of engineering that is needed in the development and manufacture of software.
(3) Are triined people needed?

Finding system programners of proven competence with a predictable productivity is a principle difficulty and bottlenceck in systems programming. Integrating programmers into teams is exceptionally difficult. Managing such teams is nightmarish being somewhat as in baseball without contracts and the reserve clause. (It's game time and the thin dbaseman leaves except nobocy on the team knows how to play the position!)

What, then, are the major issues in this area before the committee?
Clearly they are precisely the same logistic issues as raised for
computer science. However we note that there are no university programs in software engineering in existence now. The definition of a program is going to be considerably more difficult. Perhaps the committee will find that a first step will be the delineation of undergraduate options or
minors in electrical engineering, which, however, will be somewhat different than the propositions put forward for the computer science education within electrical engineering.
6. Reasons for rejecting other studies now.
(1) Computer aided instruction.

This important area--of potential value in education--is being supported by several agencies and studied by psychologists, educators, and computer scientists. While a future study will.undoubtedly be of value, there is no immediate pressure or studies at this time comparable to those outlined.
(2) Enhancing the use of the computer in other disciplines.

The ver: universality of the computer makes this kind of study
important. The importance of the user disciplines and their problems, the extremely important and expensive research programs which phase their develc.ment on the results of computation all make this a most important roie of computers. Nevertheless many in these fields have long experience in computation and their cwn professional societies have been aiding considerably in improving their use of the computer. Several previous studies have been made on the computer needs of these disciplines (The Rosser report). There are also ongoing educational efforts to intensify the educational use cf the computer within these
- disciplines. Here, too, a study will be required eventually, but there is no pressing need at this time for \(\operatorname{CSEB}\) to supervise one.
7. Recommended personnel for the committee and panels.

The following people are suggested for membership in the two committees:
(1) The committee on computer science
G. Forsythe (Stanford) A. VonDam (Brown)
J. Hartmanis (Corne11)
W. Clark (Washjington U.)
B. Rosen (Wisconsin)
H. Goldstine (IBM)
S. Conte (Purdue)
F. Brooks (U. N. Car.)
J. Carr (Pennsylvania)
B. Lampson (U.Cal)
R. Hamming ( \(\mathrm{B} T \mathrm{~L}\) )
(2) The committee on software engineering
E. David (BTL)
V. Vyssotsky (BTL)
T. Cheatham (ADR)
G. Culler (U.Ca1., S.B.)
L. Zadeh (University of California)
B. Gilchrist (IBM)
F. Corbato (MIT)
D. Knuth (Stanford)
S. Rosen (Purdue)
R. Jones (ADR)
E. McCluskey (Stanford)
M. Conway (Univac)
J. Snyder (I11inois)
R. Spinrad (SDS)
W. Acheson (University of Maryland)
A. Opler (Computer Usage)
J. Schwartz (SDC)
8. Timetable

General organizational meeting: late September for establishment of

Draft reports January
Final reports March

\title{
RESEARCH Aild DEVELOPMENT COMMITTEE 4 october 1968
}

\section*{PURPOSE}

To provide a competent and respected source of information on research and development in computer science and engineering which will be used as a guide for public and private research and development effort.

\section*{PUBLICATIONS}

The \(R\) \& D Committee will prepare for annual publication by the CS\&E Board a report which is an evaluation of the national research and development effort relating to the potential of the art and the needs of the community. This report will include an ordered priority list of the most urgent research and develop-ment tasks with clearly stated justification of their need.

The R \& D Committee will also prepare guidelines for support of R \& D projects, pointing out the differing project management and administrative control machinery required for \(R \& D\) projects as opposed to service and production projects. The report may also consider such questions as the staffing of projects and degree of redundancy that is appropriate for various kinds of projects.

\section*{PROCEDURE}

A research and development panel reporting to the \(R \& D\) Committee will be appointed to gather the required information, assess the \(R \& D\) effort, and identify the problems of exploiting the fruits
of these efforts. The panel membership must have competence in four areas:
(1) Computer Applications for Purposes of Auditing Computer Science Research
(2) Science of Machines and Programs
(3) Engineering of Machines and Programs
(4) Underlying Technology
(5) R \& D Management

It is the intent that the \(R \& D\) Panel examine research in computer science and engineering in light the needs of the community at large, not just the computer science community, thus its membership must include a strong representation of knowledgeable users. On the other hand, it is intended that all panel members have high technical competence in the computer field so that interaction among the members may be strong. It is expected that panel membership will include young, intermediate-level people. A broad range of experience and insight is required because both \(R \& D\) problems and the problem of exploitation of the results of \(R \& D\) must be examined. Many of these exploitation bottlenecks are beyond the control of \(R \& D\) people--they may arise from legal, technological, administrative, or production problems.

Although a single, small \(R \& D\) panel is appointed at first, it is assumed that is will be enlarged by nominees from
within the panel and perhaps divided into specialized panels along the lines of competence suggested in the paragraph above. PERSONHEL

Committee
Wesley A. Clark
David C. Evans
Jerrier Haddad
W.F. Miller.

Kenneth Olson
A.J. Perlis

\section*{Panel}

Paul Chenea, General Motors, Chairman
Fred Brooks, L.S.U.
S.H. Chasen, Lockheed

Thomas Cheatham, Harvard
John Egan, DDR\&E
John Griffith, IBM
Butler Lampson, U.C. Berkeley
Glen Lewis, USC
Glen Oliver, General Electric
John Saltzer, MIT
Jules Schwartz, SDC
Note that the panel nominees include a number of application specialists in addition to traditional computer research and development types. This is to assure sufficient representation
of applications in the complete panel. It is assumed that the technical deficiencies of the initial panel will be rectified by nominees suggested by the panel itself.

The exact structure of the \(R \& D\) committee is not specified because the memberships of other committees is not known. The \(R \& D\) board planning committee suggests that the CS\&E Board chairman appoint the permanent committee chairman. The planning committee suggests that W.F. Miller and D.C. Evans be considered as nominees for the position.


David C, Evans, Chairman
R\&D Planning Committee
skm

September 11, 1968
From Taped Minutes

I'd like to present some ideas on this. I think I'd go in the same direction as Barkley. Having done alot of work on this recently, I think I have some reasons for suggestions which are somewhat a particular way I'd like to go about presenting this to the Board. Also, let me apoligize for doing this orally because \(I\) believe that a written work is much more effective, so please excuse the fact that I'm giving this orally.

I think what we are concerned with is not privacy itself. We are looking at a phenomenon which are computer data bank information systems which are spreading through-out the governmental and private sector rapidly. The focus on the national basis issue, as Barkley has given it, is in someway depleted at the moment. We are having data banks and computer information systems all over the landscape. The question is what are they, what are the characteristics of them, and what issues do they raise. Let me see if I can just suggest the way I feel on that.

I think one way to do this is to look functually at what these computers, data banks, and information systemis do: I think they're forming into types: We have statistical data banks which try to provice richer statistical reports for government agencies and their constituents. You have regulatory data banks in which an agency is much more efficient in serving its clientele or regulating its assigned. area. Thirdly, you have administrative data banks in which a level of government tries to have this lovely thing called the total information system which brings together each one of the operating agencies and
some kind of real time capacity to know what its agencics are doing and how they are conducting their operations. This tics in with program budgeting and system analysis trends, etc. And finally, you have intelligence computer systems in which you are trying to, in the law enforcement area and in the intelligence community with the various levels of government, you're trying to deal with specific individuals who could present the rest (......airplane overhead....) special and social proclamations to be dealt with.

Let me just mention that concrete aspects of this are not generally known either around this table. Take the government, for example: If you start with a statistical data bank, you have growing up around the country a number of independent statistical data banks past the levels of government. To just give one example; Detroit has a social data bank which collects statistics on things such as crime and welfare rates, births, truancy, drop-out rates, veneral disease rates and other social indicators, and its used in order to do urban renewal planning and other types of settled grant design by Detroit. So its used primarily in one naked area, but its getting increasing use by other agencies in Detroit.

The second type is a type of data bank which clearly shares and coordinated information along a functional line of a particular field. For example, the New York State Identification Intelligence System serves 3600 criminal and justice agencies for the state of New York. All the police departments and district attorney's offices, forts, prison parole officers and private agencies are linked into this central computer in Albany, and it has a comprehensive criminal history on every person from
the time he is arrested all the way through until the time he is acquitted, sentenced, serves his time, etc. And in addition to having this, I guess, identification and record function, this thing is spinning off intelligence modules, organized crime intelligence, modules which will collect detailed dossier-type information on roughly three to five thousand known organized crime figures in the state of New York.

Another example in education is a corridor(?) information system which is now building a central data system of pupils, teachers, test results, school and construction plans, and other elementary educational systems for the state of Florida and here the clients are individual school districts, country agencies, and state educational offices.

The third type of data bank at the governmental level, is then a single line agency moves to the data bank moat. For example, the United States Secret Service has developed a data bank of information about any individual who might attempt to harm the President of the United States or the FBI set up the National Crime Information Service which is collecting and circulating data on "wanted" persons for certain types of stolen property. Or in California, the Department of Motor Vehicles has set up a very considerable data bank covering all data relavant to motor vehicle registration which goes not only for things like liscense applications, but all the rest of the things regarding a census with motor vehicles. I think NASA(?) has set up, as most of you know, "a data bank covering the personnel files of all people who have worked for the government. This is going to be a Federal Manpower data bank which will have in at the bottom all its Federal employees so that if they want to look somebody up who is six-one, and served in Nigeria PRIVILEGED
and is now working for the Department of Commerce and being. considered for some kind of overseas mission, they can push the button and see and get out a line on that type of thing.

Finally, the government data bank is that I described earlier as the administrator of the Total Information System which is, in a way, the most ambitious where at a particular governmental level, like a city or a county attempts to put all of the information from its agencies into a centralized information control and systems use this kind of operation. Examples are the Alameda county in California because the People Information Systems, as they call it, which is going to have a million residents of the county in individually-conceivable files so that they can find out from inquiring any information about that individual, any county contacts he has had with the tax system, the welfare system, the Public Health system, the Criminal Justice systems, and so on. Again, another example, New Haven, Connecticut, is co-operating with IBM on a private project to develop a similar kind of comprehensive municipal information system which will not only have this cross-check on every resident on file, but hopefully a real crime reading of social trends of the city such as school drop-outs, incidences of certain types of specific crime, and so forth. This is tied in with plans to set up a budgeting systems and analysis kind of operation in New Haven.

These are examples of government data banks. At the private level, I think its important to note some of the most important influential things that affect our lives also fall into data bank groups. The whole retail credit system is moving very rapidly in computers. So
that the Retail Credit Corporation of Los Angeles and New York, the most ambitious and modern of these, is now rapidly sweeping into areas it is covering in the credit system so that they're setting up a national computer outfit called \(\qquad\) : it will be national when they hook it up on a computer basis and it will be very different than that of a local retail credit teletype system which they have used in the past. There are also insurance investigations, personnel investigations, company and retail credit corporations, that are being hooked up to this kind of operation and the American Credit Bureaus and Associated Credit Bureaus of America are moving again in the direction of computers and computerized systems. Finally, there is what I would call the mixed system which is developing in which private and public agencies for the needs of pooling their data are beginning to think about data banks. An example is the joint set for Urban Study at Harvard and M. I. T., co-operating on the design of a computerized health information system for greater Boston and their plan, which is under a public health service contract, is to desgin a system which would have public health agencies and private hospitals associated in a data bank for typical record purposes but they're worried enough about the problem of privacy and others that are involved, that they are leaning at the moment toward a model such as the satellite corporation which would have on it representatives of the government agencies, representatives of the private agencies with an independent Board which is not under a particular government agency or even under geographical governmental jurisdiction. Another example of this would be \(\qquad\) , the anti-poverty agency in Washington, and public agency which is set up under a private trust agreePRIVILEGED
ment. Alot of data from government agencies, like welfare agencies of the District, plus the social welfare agencies have created a system of data banks which is charged with the duty of not giving any information to any inquirer on an individual basis, but furnishing only statistics and they've got private trust groups which have charged over management systems with legal responsibility and not to disclose any personal or individual information..

So this is what's happening. Therefore, I think to look at the National Data Bank, as if that's the issue, really takes a much smaller view of what's happening. More than that, it is a brief exchange of what went on between John Meyer and Barkley. Barkley indicated that you can get a National Data Bank by simply having the capacity to hook up these local governmental and private systems. Once you have no control on an inter-change or access in a way you don't need to build a giant system on the top. You can evolve a network system. But like, for example, the health system, if there is no strength on the movement of data from one system to another or from one level to another. So I think we are seeing this grow at this kind of level.

Now, I'd like to suggest to the Board that privacy is always one of four issues that I think are involved here, and I would think that the four issues that we ought to be concerned with are:....the first privacy which I define as what information goes into a system; what information is associated in the system and used by the primary collectors, and who else has access to or who else can use the information beyond the private level. Those seem to be the defining characteristics of the privacy
issue. Secondly, this issue of due process which sometimes gets lumped into privacy but I think mistakingly. The due process issue is having individuals have access in some way to most of the files of these kinds of data banks in order to know what is in the file about him: to rectify errors in it where the privates can explain, in some way, in justification of themselves subjective analysis by people who are selected to give it. He may in no sense want to change the entry, but to choose, from a due process standpoint, what he as an individual he prefers; who's going to confront that and from what judgement, at key points in his life, again and again for employment, for government, for licensing, for business regulations, and so on, in some capacity to say yes, that is a true fact, but its a partial fact, or its a fact that simply won't be understood in light of these events which the program or design of the information system didn't put in but which anybody with any sense would want to know in order to understand what about me, my business, my organization; is to be evaluated here. That is not the privacy issue, properly defined, I would say. It is the due process issue.

Third, I see the problem of administrative control. As we all know around the table, computers are very special things: the people who run them are special things. And the problem is raised, what is the impact when from within, the impact of administrative process is conducted here in setting up a \(\qquad\) like a computer instállation system which is in control over the flow of information, over the generation of data, over the evaluation of data, begins to
observe a remarkably stewing effect on the decision-making pattern of information systems. I talked to quite a number of people in military command and control where they're dealing with a third generation of computers, and they have some very serious doubts and alarming things to say about what it does to your capacity for response, and your capacity to predict and so forth; when you lock into certain kinds of systems. When you then have not really unanticipated crisis but certain types of things which call for human beings to respond within complex organizations in ways which are not easily set up into systems, programing, etc. And in less we're looking naive, we'd better face the prospect that we may be happy to build up in this first stage, dual systems; one to run it through the computer; the other to have the people to know the problem and to have to re-act to it in human terms, able to get off the system somehow and sort of try to control the system or stop the system if they are to respond at the level of something, in a way hard and pliable as some of the military problems. When you get into the areas of sot human problems, of community poverty programs, and of urban planning, the problems are even worse because you get the question of how to relate these giant computer information systems athat are supporting a plan transportation and urban renewal and so forth to the changing political plans of the city.

Interuption by Robert Taylor: May I ask you a question about your military statement? Did you have to claim that......the constraint placed on these military commands and controls by computers, were indeed, the constraints that were associated with the technical characteristics

Westin: I said it was a blend of these: that is, the machines, but the question is, Have you designed the machines for the problems, and that is the problem of having the right interplay and being able to ... .have people be able to adapt the systems rapidly and to the circumstances that may have been partially foreseen rather than wholly foreseen.

Taylor: Does that suggest, then, on the technical side, the development of more flexible....?

Westin: That's the great word out, yes: I heard a discussion around the time of the Pueblo incident, and the feeling was did you make, did you have to have alternate systems at the moment, alternate responses in which to convince, that made them work out designed plans for the computer. I hope this is a generally shared view. I feel that we are not dealing with the computer: we're dealing with computers communications and organizations. That blend.....

Taylor: I wanted you to make that point.

\section*{(Interruptions by six voices)}

Oetinger: Wait a minute! I think you have raised a very important point, broädening this question.
(General indiscriminate shouting of many voices)

Westin: If I may, just take it up for a minute. The fourth point is what I would call the public participation issue, and that is the increasingly we have the rift in our soriety between the rationalistic
experts working out a scientific and technological and logic system and the increased demand on society for modes of democratic participation; particularly among the groups formally excluded from real participation in the interest group and party systems; the poor, the black and those who are the subjects of research. But the research affects who they are, what their political role is in the society, and therefore, I think we are in for terribly dangerous times in our society if we go the route of designing computer information systems that do not in some way give opportunity for participation, criticism, and meaningful entry of the interest group elements and the subject elements into the very systems themselves. The easiest thing to do is to assume that the inert population is studied and registered and to be put into the com-puter-information system. But I think its a population that will distrot the system if it believes that they are being manipulated and controled by the information system, and to suggest to you that even in the statistical area, where people think they're so pure and so clean that they shouldn't be bothered by the political question because, as we saw in the Moyahand (?) report and dozens of other examples, we can give, you can make certain kinds of classifications about people: you can classify the elements that are relevant about socio-economic elements of statistics; you are making public policy by that very act of clarification. Therefore, this is not something which is removed from the whole question of how does the group effect participate in the design and management of these kinds of information systems.

Interruption by Haddad: Due process, is this distinction between an
illustration overlap?

Westin: Due process issue, I mean this issue is class and \(\qquad\) - .

Haddad: It's really due process from a class \(\qquad\) .

Westin: Exactly, exactly. Now, I think the problem of a meaningful response I define as this way: The computer people say you tell us what the legal and the public policy requirements are for set systems, and then we can devote our attention to design of both hardware and software and operator controls type of \(\qquad\) : that's a meaningful response, a very meaningful response, because if you get any person to decide, "Give us a strong privacy-protecting system" and if he's a half-way decent systems computer man, he's going to say, "Well, what is privacy? What are the restrictions? What is public record information, what is confidential information?" So if he's got a legitimate gripe that American law is amorphous and undefined, the public policy mediums are undefined, and he can't create a system unless there are clear definitions of what it is that is required in the elements of privacy and due process. If you try to get a totally secure system and forget about cost even, he still can't do a decent project; you still have to define standards of privacy and due process and so forth. The legal people, on the other hand, are by-in-large untutored as to what the computer system can do and what its \(\qquad\) are, and therefore, they are unable by themselves to do much in this area so that they are frightened by the machine; they don't understand a lot about it. They make'Arthur Miller-Vance Packard-type phantasy judgment conclusions about what a computer can do. So that I think they require a definition as to what the computer is, the reality of computer information systems, PRIVILEGED
so that they can organize themselves better as to what it is that they are trying to deal with. American law, for example, had to understand the economics of capitolism and the technology of capitolism before it could come up with new legal documents moving our law from certain mercantile assumptions into certain kinds of industrial capitolism assumptions, and I think of laws in the same sense here: If a lawyer needs from the computer poeple much more in the way of a description of the way these systems really operate and then how they can be threatened and monitored or mis-used and so on. The social sciences finally, by prevention, are also somewhat at sea by themselves, because they're where the people themselves are somewhat frightened by machines and de-humanization and impersonalization. But they're aware of the fact that its part of a cultural lag. The question is how quickiy will the people develop certain new relationships to computers and machinery which will enable them to see this as a manageable control, as opposed to an impossible control: as a control which is profitable to accept. Which means, social response which is defined by the way lawyers and congressmen and other legislators can deal with public fears and rational and irrational public fears.

Now, I think we have a role in this Board for this reason: Much work is going on. For example, at IBM you have a particular research group concerned with privacy: there's an issue of a big magazine which will be devoted to privacy, and very important industry \(\qquad\)
soon, but this operates within IBM and is shared not
widely on an informal basis, but operates exclusively within that one particular industry; that one particular company. There may be other industry work that's going on too. I don't think it has the broad scope that I think it requires for an over-view at this time. The Bureau of the Budget has said many times that it was going to set up an advisory cominitee of computer people, business people, lawyers and social scientists. To my knowledge, they have not set up. I suspect they won't set it up in the future. It was kind of nod in the direction of a prod they got from Congressman Gallagher. I don't think they are serious about it at the moment. I would feel rather hurt about it if they were serious about setting it up. I don't think they ought to. AFIPS, as you know, has done some good work; they set up an airy conference in 1957: this brought the right kind of people together. They also had a meeting at the Spring Joint Computer Conference on privacy which was very useful. But they also have lacked.....I think been too quiet on this issue. I don't hear much going on within. I think there is a standard group on privacy but I don't know if its ornamental at the moment. Many individual projects, for example, the New York State Identification and Intelligence Systems or the California Inter-governmental Advisory Group on Privacy and Data Processing are, for their own individual purposes, doing many things, but they focus within their own particular problem rather than on a broad national policy level. Then there are things like the American Civil Liberties

Union which has special data processing group which I share, but the trouble is, it doesn't have the right expertise around the table; it doesn't have the right law people, judges, it doesn't have the right computer experts, and so \(I\) think its going to be a reacting body, something which a more primary group would come up with, but I wouldn't expect it to have the initiative.

So \(I\) conclude by suggesting that we have, I think, a very significant role to play here, if we focus ourselves on the right kind of problems, and if we recognize what I think we have to, we might approach this issue as one in which a panel or committee, defining itself in these kinds of terms, would look to the trend development for the next five years, to recognize its far further along than I think many people believe, and that even the people who are doing good work do not yet, for various reasons, have not coordinated a clear basic standard of policy of law and of the relationship of technological and research development to law and public policy, and somewhere I think there needs to be coordination of this void. I wonder if this Board might not be the kind of place it could come from.

Discussion

\section*{\(R \& D\)}

A
Evans
Haddad
Miller
O1sen
Clark
(4) B

Fernbach
Newmark
Rosser
Licklider

\section*{National Programs}

A
Carter
Rosser
Westin
Meyer

Education

\section*{A}

Fernbach
Newmark
Perlis
(Pierce)
Licklider

B
Carter
Evans
01sen
Westin
Clark

Data Base
A
Carter
Evans
Fernbach
Haddad

October 9, 1968

\section*{COMPUTER SCIENCE AND ENGINEERING BOARD MEMBERS}

Dr. Launor F Carter
Vice President and General Manager
Public Systems Division
System Development Corporation
2500 Colorado Avenue
Santa Monica, California 90404
Telephone: 2133939411
Professor Wesley A. Clark
Computer Systems Laboratory
Washington University
724 S. Euclid
St. Louis, Missouri 63110
Telephone: 314 FO 17356
Dr. Glen J. Culler
Director
Computer Center
University of California at Santa Barbara
Santa Barbara, California 93106
Telephone: 8059681511
Professor David C. Evans
Director
Computer Science
University of Utah
Salt Lake City, Utah 84112
Telephone: 8013227914
Dr. Sidney Fernbach
Head, Computation Division
Lawrence Radiation Laboratory
Box 808
Livermore, California 94550
Telephone: 4154471100
Mr. Jerrier Haddad
Vice President
Engineering, Programming and Technology
IBM Corporation
Old Orchard Road
Armonk, New York 10504
Dr. John R. Meyer
President
National Bureau of Economic Research 261 Madison Avenue
New York, New York 10016
Telephone: 212 MU 23190

Professor W. F. Miller
Computer Science Department
Polya Hall
Stanford University
Stanford, California
Telephone: 4153212300
Dr. Nathan M. Newmark
Head, Department of Civil
Engineering
1114 Civil Engineering Building
University of Illinois
Urbana, Illinois 61801
Telephone: 2173333813
Professor Anthony G. Oettinger
Aiken Computation Laboratory
Harvard University
Cambridge, Massachusetts 02138
Telephone: 6178686155

Mr. Kenneth Olsen
President
Digital Equipment Corporation
899 Main Street
Maynard, Massachusetts 01754
Telephone: 6178975111
Dr. Alan J. Perlis
Head, Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213
Telephone: 4126837000
Dr. John R. Pierce
Executive Director
Research Communications Sciences Division
Bell Laboratories
Murray Hill, New Jersey 07971
Telephone: 2015822626
Professor J. Barkley Rosser
Mathematics Research Center
U. S. Army

University of Wisconsin
Madison, Wisconsin 53706
Telephone: 6082386919
\[
\operatorname{con}^{\prime} t
\]

Dr. Alan F. Westin
Department of Public Law
and Government
Fayer Weather Hall
Columbia University
New York, New York 10027
Telephone: 2122803965

Dr. J. C. R. Licklider
Project MAC
545 Main Street
Cambridge, Massachusetts 02139
Telephone: 6178646950

COMPUTER SCIENCE AND ENGINEERING BOARD CONSULTANT

Mr. John Griffith
IBM Corporation
Thomas J. Watson Research Center
P. O. Box 218

Yorktown Heights, New York 10598
Telephone: 9149451384

COMPUTER SCIENCE AND ENGINEERING BOARD STAFF

Mr. Warren C. House
Executive Secretary
Computer Science and
Engineering Board
National Academy of Sciences
2101 Constitution Avenue
Washington, D. C. 20418
Telephone: 202 961-1386
or 961-1372
Miss Susan Lee Johnson
Secretary to Mr. House
National Academy of Sciences
2101 Constitution Avenue
Washington, D. C. 20418
Telephone: 202 961-1386
or 961-1372

DRAFT REPORT OF THE EDUCATION WORKING GROUP
October 6, 1968

Those participating were Purlis, Spinrad, Hartmanis, McCluskey, and Gilchrist. The Group reviewed the report submitted to the Board on the missions of the Education Committee of the Computer Science and Engineering Board. There was a unanimous recommendation that the two issues--computer science education and software engineering--are the two paramount issues for committees of the Board to treat. However, the Group unanimously agrees that these two issues must not be separated, and, indeed, they are part of the same educational picture--education in computer science. The Group recognizes that deficiency exists in present graduate programs in computer science. This deficiency has various labels but is primarily revealed as an acceleration in the direction of over-formalism and mathematization. It is agreed that these are not in themselves bad, but it is felt that the departments are too closely following the natural gradient created by formalism, or, put another way, there seems to be too much aping of departments of mathematics. It is recognized that software engineering is the kernel of computer science and that the various current specialties in computer science have relevance only really in the sense that they clarify and improve computer systems--both software and hardware. This means that automata theory, formal theory of computation, linguistics, programming languages, etc., all have a critical function--to define and improve our familiarity with systems.

The Group further feels that undergraduate programs in computer science should be natural bases for both graduate study in computer science and preparation for industrial positions in the computer field. The difference between the graduate and undergraduate programs must be one of difference
in depth but not in kind. The bachelor's degree should be a professional degree so that the students should consider themselves as both engineers and scientists by the time they attain the bachelor's degree.
- II"

It is recommended that a committee be formed for the purpose of studying the issue of computer science education in the expanded sense indicated above, and that the charges to this committee be of two major kinds:
A) Economic Charges: By economic is meant the creation of inputoutput models relating the development of programs, production of students and faculty, and the needs of industry and government for people so trained. Furthermore, a time table establishing the velocity and acceleration of these programs should be produced. In accord with the postulated growth, a study should be made of the resources ( \(p\) lant, people, and money) required to provide this educational development.
B) Content: A thorough study should be made of the content of the undergraduate and graduate programs to be labeled as computer science. Furthermore, an audit of existing programs should be made so that we can gage what distances exist between what is done and what should be done. Furthermore, the subject of accreditation and standardization should be treated.
- III -

Instead of appointing a committee-wwich must clearly be of large size and hence, hierarchically organized, dragging its deliberations out over a long period of time and involving much paper work and many meetings.-. it is proposed that a three-day (from \(9 \mathrm{a} . \mathrm{m}\). to \(11 \mathrm{p} . \mathrm{m}\). ) meeting be held in which two working groups will meet in plenary session and in organizing
groups to thoroughly treat the issues raised in Item II. It is proposed that the following sequence of events take place:
1) a general letter be sent to the invitees,
2) that this letter be accompanied by a statement of purpose and details,
3) that this letter be accompanied by a statement of working procedures and schedule, and
4) that each invitee be asked to submit--but not required-a working paper on some aspect of the issues raised in Item II. These working papers will provide the basis on which discussions will be made.

During the conference, duplication and secretarial facilities will be provided for quick preparation of additional working papers and intermediate reports. The goal of the conference will be the preparation of a report outlining the results of the conference. Toward that end, in each of the two areas (resources and content), a chairman and two younger recording secretaries will have the responsibility for preparing the draft of each section, and the Education Working Group will then coordinate these two reports into the final report.

A tape recording of the entire conference proceedings will be made, and the contents will be used by the recording secretaries in preparing the draft report. Upon completion of the report preparation, all tapes will be destroyed, and the report will be made available for public distribution.

It is proposed that the meeting be held early in April on a Tuesday, Wednesday, and Thursday in a somewhat isolated spot, where the attendees
will be expected to devote their entire energies to the task at hand. It has been proposed that this meeting be held in a place like the Motel

Arlie in Warrentown, Virginia, since it is so close to Washington.
- IV -

People: It is proposed that the following be invited to participate
in the two groups:
1) The Economic Group:
\begin{tabular}{|c|c|}
\hline Gilchrist & Afips--Technical Society \\
\hline Tribers & Dean, Dartmouth College \\
\hline Forsythe & Chairman, Department of Computer Science \\
\hline Rowe & Computer Operations, Union Carbide \\
\hline Carr & Chairman, Department of Computer Science \\
\hline Perlis & Chairman, Department of Computer Science--Chairman of this Working Group \\
\hline Standish & Assistant Professor, CMU, Department of Computer Science--Recording Secretary of this Working Group \\
\hline VanDam & Assistant Professor, Computer Science, Brown University--Recording Secretary of this Working Group \\
\hline Zadeh & Computer Science and Electrical Engineering, Berkeley \\
\hline Snyder & Computer Science, Physics and Computer Center, University of Illinois \\
\hline Humphrey & IBM, Manager, Software Systems \\
\hline Brooks & Chairman, Department of Computer Science, University of North Carolina \\
\hline
\end{tabular}
- 5 -
\begin{tabular}{ll} 
Richard Jones & \begin{tabular}{l} 
Manager, Applied Data \\
Research, Private software \\
house
\end{tabular} \\
Robert Jones & \begin{tabular}{l} 
President, University of \\
South Carolina, university \\
administrator and electrical \\
engineer
\end{tabular} \\
Tanaka & \begin{tabular}{l} 
Cal COMP, Electrical Engineer \\
and Systems Designer
\end{tabular} \\
X & \begin{tabular}{l} 
U. S. Government, user of \\
systems and programmers
\end{tabular}
\end{tabular}

\section*{Content:}
2) The Audit and Accreditation Group:
\begin{tabular}{|c|c|}
\hline McCluskey & Stanford University, Group Chairman \\
\hline Gries & Assistant Professor, Computer Science, Stanford University, Recording Secretary \\
\hline Gruenberger & \begin{tabular}{l}
Educator, San Fernando \\
State College, Recording Secretary
\end{tabular} \\
\hline Spinrad & Scientific Data Systems, Software Manager \\
\hline Hartmanis & Chairman, Department of Computer Science, Cornell University \\
\hline Conte & Chairman, Department of Computer Science, Purdue University \\
\hline Hamming & Computer Science, Bell Telephone Laboratories \\
\hline Corbato & Project MAC, Massachusetts Institute of Technology \\
\hline Schwartz & SDC \\
\hline Bauer & President, Informatics \\
\hline Andree & Computer Educator, University of Oklahoma \\
\hline Harr & AT\&T, Central Office Computer Systems \\
\hline
\end{tabular}
- 6 -
\begin{tabular}{|c|c|}
\hline Zipf & Bond of America \\
\hline Vyssotsky & \begin{tabular}{l}
Software Management, \\
Bell Telephone Laboratories
\end{tabular} \\
\hline Knuth & Professor of Computer Science, Stanford University \\
\hline Climis & Manager of Software, IBM \\
\hline Bell & Computer Systems Designer, Professor, CMU \\
\hline Graham & Director of Computing Operations and Software Production, University of Waterloo \\
\hline Y & U. S. Government, user of systems and programmers \\
\hline
\end{tabular}

CHAPTER OF NATIORAL PROGRAMS PANEL A
I. Introduction

The purpose of this statement is to define the role or mission of National Programs Panel A. The text gives examples of the areas which may need national support and mentions a number of organizational and programmatic suggestions which have been implemented or proposed. Finally, the role of the Panel is discussed.
II. Areas Which Have Been Proposed as Needing Study and Supoort Within a National Context

In considering the areas where national programs in the computer sciences may need study and support, it is apparent that a large number of different functions or responsibilities have been envisioned. Among these functions are:
A. The Support and Conduct of Research and Applied Develonment Activities with Respect to Computer Equinment and Software

New developments in memories, switching capabilities, hardware configurations, etc. need study and demonstration. Similarly, developments in software as they relate to higher-order languages, compilers, list processors, data-based manipulators, executive systems, etc. are in need of investigation.

\section*{B. The Development and Maintenance of Standards}

Some contend that there is a great need for the development of standards in this area, but exactly what standards and in what areas is open to vigorous debate. It is argued that an appropriate body of professional computer scientists should be devoted to the study and monitoring of the standards area.

\section*{C. Applications Developments}

It has been suggested that national laboratories should concern themselves with the development of new applications where current comercial efforts ore likely to be insufficient. For example, the capability of handing large bodies of natural text is thought by many to be important but is currently not receiving significant support. Similarly, the ability to handle very large data bases hinges on both theoretical and applied research in data-based structure and development of various storage devices.

\section*{D. Systemi Encineering and Technical Direction}

It has been argued that the technical capability exists (or is about to exist) for the significant development of information processing systems in a number of applied areas but that there is neither sufficient support nor unified technical capability to undertake such developments. For

Charter of national prograns panel a

\begin{abstract}
example, it has been suggested that there could be a unified network of information systems; however, those vorking in the library and documentation area are generally technically unqualified to undertake such an effort, which needs to be done on a large, integrated scale, and requires centralized planning and implementation.
\end{abstract}

\section*{E. Social-Political Implications of Computer Systems}

Much has been written concerning the possible loss of privacy in connection with computer-based systems. Similarly, concern has been evidenced with respect to the new capacity for centralization and decentralization in social organization, which has become possible through the ability to handle speedily large amounts of information. It has been suggested that a concentrated and significant exploration of these problems should be undertaken.
III. Organizational Considerations

In considering functions similar to those mentioned above, a number of actions and recommendations have been made regarding the establishment of national laboratories in support of the computer sciences and related applied areas. Recently the organizational structure of the Center for Computer Sciences of the National Bureau of Standards has been modified to increase its position within NBS. Within the last two years the National Science Foundation has established the Office of Computer Science. For a number of years ARPA has been a major supporter of

Charter of national programs paitel a
applied research and development in both herdware and software, with programs at a number of major university centers, non-profit institutions, and private industry. Recommendations for laboratories in specialized application areas have been made, particularly by the National Library Commission, which recommended a national laboratory in the information sciences, and most recently by the Committee on Scientific and Technical Communication of the National Academy of Science. Several private organizations have either recomended a national laboratory or expressed the need for greater support in computer science research and development. Several suggestions enanating from the national laboratorics of \(A E C\) have been in this direction, as well as suggestions from EDUCOM. It is apparent that there are a number of different governmental, private organizations, and study groups which have expressed a concern regarding the organizational structures available to support and undertake research and development in the information sciences area.

\section*{IV. Role of the Panel}

The above two major headings have been stated to help define the organizational and functional areas which have stimulated the formation of the Panel. It is believed that the Panel should collect material and hold discussions regarding the above areas with a number of people and organizations-- in the Federal Government with such organizations as the National Science Foundation,
\[
-5-
\]

CHARTER OF NATIONAL PROGRAMS PANEL A

National Bureau of Standards, and ARPA---in universities with major computing centers and with consortia of universities such as the Argonne Universities Association and the Associated Universities---with non-profit corporations such as RAND, SDC, Mitre, and the Lincoln Laboratories, and with industrial organizations such as Bolt, Beranek, and Newman, and several major equjpment manufacturers.

The major product of the Panel's studies would be a summary of the current and projected plans of the organizations mentioned above, as well as a statement of their perception of the need for national programs or laboratories. The Panel would prepare material and information for review by the full Computer Science and Engineering Board and stand ready, on the basis of the information it had gathered, to assist government agencies which might seek the Board's advice in this area.

\title{
National Acalemy of sciences \\ 2101 CONSTITUTION AVENUE \\ WASHINGTON. D.C. 20418
}

\section*{COMPUTER SCIENCE AND ENGINEERING BOARD \\ Seventh Meeting}

November 6, 1968
Executive Evening Session
Preliminary AgENDA
1. Clearance status of board members by the Secretary.
2. Report on second effort of the Special Export Panel by the Chairman.
3. Briefing on classified basis by Mr. Norman Davis, CIA.
4. Briefing by Barkely Rosser-John Griffith at a classified level on a recent four-day conference concerning computer driven information networks and related activities.
5. General discussion.

The executive session will begin at 8:00 P.M. at a location to be designated.

\title{
NATIONAL ACADEMY OF SCIENCES \\ 2101 CONSTITUTION AV̈ENUE WASHINGTON. D.C. 20418 \\ COMPUTER SCIENCE AND ENGINEERING BOARD \\ 7th Meeting \\ November 7, 1968
}

AGENDA
1. (a.m.) Administrative Items
2. Organization of the Board into planning groups working parties to complete drafting of Panel charges and recommendations for members of the Panels.
3. (p.m.) Plenary session to review the charges to the Panels and the suggested membership lists.
4. (As time allows) Plenary session to hear preliminary presentations by "problem finders" regarding prospective problems for possible action by the Board.
a. Proposal for Privacy Study
b. Proposal for National Computer Institute Study
c. Other proposals.

The plenary session will be held in the NAS Reading Room behind the Library. Room 150 has been reserved for the entire day, along with the Reading Room, so as to facilitate the work of the parties dealing with panel charges and membership. The session will open at \(9 \mathrm{a} . \mathrm{m}\). and continue through the day with breaks at 10:30 a.m. and \(3 \mathrm{p} . \mathrm{m}\). and lunch at 12 noon in the Refectory.

October \(30,1.963\)

Mr. Clifford Brom
pirector of Research
Parliameat BuiJdings
Queen's Park
Toronto 2, Ontario
Dear Mr. Brom:
I have formarded your letter of October 24 to : fr. Varren louse, the executive secretary of the Computer science and Mngineering Board, with a request that he send gou a cony of the report of the Plamang Group of the Boand.

This report sets forth the Board's teras of reference. Professor Alan Vestin of Columbia thiversity, who is a momer of our board, is in the proliminary stages of organizing a comittee or Panel of the board wich will address itself to questions like those you ralse on the second or third paragrapi of your letter.

I very much appreciate your expression of interest and look forward to a continuing exchance of viers.

Sincerely yours,

Dr. Authony G. Oettinger

AGO:op
c.c. Varren house

Alan Westin


LEADER OF THE OPPOSITION

Parliament Buildings Queen's Park
Toronto 2, Ontario
October 24, 1968

Professor Anthony G. Oettinger
Department of Linguistics \& Applied Mathematics
Aiken Computation Laboratory
Harvard University
Cambridge, Mass.
Dear Professor Oettinger:
We have read with interest in the World Book Science Year 1968 of your appointment as Chairman of the Computer Science and Engineering Board of the National Academy of Science. We should be glad to receive the terms of reference under which you will be operating.

During the last session of this Legislature we had a long debate on the propriety of school children's records being used in court cases. In particular, the school record of one child who was a witness to the alleged shooting of a runaway by a policeman was used to discredit the witness' testimony. The teacher was subpoenaed to and unstable. the court to say that the child was unreliable Crown Attorney becausely this approach was suggested to the record.

From this the debate mushroomed to a general critique of the use of computerized information for purposes other than for which it was intended. It was pointed out that the teacher-child relationship would be jeopardized if there were no control over the ultimate destiny of this

We have since been favoured by large scale automation arising out of the Ministers' Information Systems Committee's centralized approach to school record keeping. The situation may be getting out of hand. We wish to cooperate with you in your investigations and we would like to propose during the forthcoming session that a Royal Commission or a legislative body be set up to look into this matter. We would tend to use your terms of reference as a model for this.

Yours sincerely,


Clifford Brown
Director of Research
P.S. Enclosed is a mailing list containing names of all the key men in the EDP educational field. I am sure you will find this useful in your work.

Glen C. Bonharn
Department of Curriculum Ontario Department of Education 44 Eglinton Avenue Vest
Toronto 12, Ontario
R.F. Bornnold

Regional Suparintendent
Midmestern Ontario Region
279 Hober Street North
Waterico, Ontario
Petei G. Bomers
ETV Branch
Griterio Department of Education 1670 Eavvien! Avenue
Toronio 17, Ontario
J.V. Cherry

Imperial Oil Limted
500 - 6th Avenue S. 1. Calgary 1, Alberta
E.J.M. Church, Director of Spectal Services

Department of Education
Adininistration Bullding
10820-98 Avenue
Edimonton, Alberia
A.H. Conklin

373 Guildiord Streat
Winnlpeg. 12, Manitoba

\section*{Kenneth H. Annett}

Directorate of Elem. \&
Secondary Education
Department of Education Quebec, P.Q.

Cyrll R. Ash
United Church School
Board
St. Join's, Ne:vfoundland
W.H. Atkinson

Training Command H.Q.
Westwin, Manitoba
Wim. F. Badke
Sun Llie Assurance Co. of Canada
P.O. B0\% 6075

Nontral, Quebec
J. \%. Baumberg.

Manager of Data Processing
Collegiare Institute Board
662 Lyon Street
Ottawa 1, Ontarlo
R.8. Beggs

Education Account Manager
P.O. Box 15

Toronto Cominion Centre
Toronio 1, Ontarlo
B.E. Besteck, Director

Public Scicols Finance Board
1181 Portage Avanue
Winnipeg 10, Manlitoba
Colin A. Billowes
Northern Electric Company
Research a Developrient
Box 3511
Station C
Ottara, Ontario
0.1. Bishop

2まo Grehen Streat
ioodstock, Ontario
Sin 3llss, Project Director
Crastern states educational
Iniormation project
ic:e, U.S.A.
Glen C. Bonhem
isoartmont oí Curriculum
Ontario Opportment of Education
an Eglinton funua Uhat

Mrs. D.V. Browne
39 Balmoral Drive
St. Albert, Alberta
D.R. Broun

Unemp loyment Insurance Comalssion
222 Mclean Street, Roorn 506 Ottewa 4, Ontario

Roy J. Brom, Project Director
The Minlsters' Information Systeris

W.C. Brown, R.E.E. Division

National Research Councll
Montreal Road, Ottama, Ontario


Brother Armond Brun
P.O. Box 752

Fredericion, New Brunswick
T.c. Byrne

Department of Education
Alboria
R.H. Catrns

Canadlan Mestinghousa Co. Ltd.
Hamilion, Ontario
John Calder
Nlagara College of Applied Arts \& Tecinolcay
Welland, Ontario
Don Campoell, Data Procossing Hanesor
Teachers' Superannuation Ccimilssic:i
789 Don Mills Road
Don Mills, Ontarlo
James R. Causley
Teachers' Superonnuation Commission
789 Don Mills Road
Don Mills, Ontario
C. James Chalmars
201. Novquay Building

WInnipeg, Mantioba
Geraldine Channon
Projects ? Inforration Officer
Canadian Tezchers' federation
444 \%claren Streat
Otraw 4, Ontaric

Murray Fahie, Executive Assistant Nova Scotia Teachers Union
1551 South Park Street
Hallifax, Nova Scotia
Dieter Fehlberg
Departiment of Education
Operational Research Branch
Administration Building
10820-98 Avenue
Edronton, Alberta
Robert Keith Fletcher
368 Eglinton Avenue East, Apt. 608 Toronto 12, Ontario

Nova Scotia Teachers Union
1551 South Park Street
Halifax, Nova Scotia
Richard Harvey
Department of Education
Centennial Building
Fredericton, New Bruns:aick
J.R. Hayes

Winnlpeg School Board
Winnlpeg, Manltoba
Gerald F. Henry
41-721 Irvine Street
Fredericton, New Brunswick
C.E. Connors

11010-142 Street
Edmonton, Alberta
J.K. Crossley, Group Chairman - General

Curriculum Section
Ontario Dapartment of Education
44 Eglinton Avenue West
Toronto 12, Ontario
W.H. Cumberland
C.N. Telecommunications

151 Front Stroet West
Toronto 1, Ontario


John L. Cunsall
29 Wilkinson Crescent
Portage La Prairle, Manltoba
R.W. Dalton

Associate Deputy Minister
Depariment of Education
511-1181 Portage Avenue
Winnipeg 10, Manitoba
J.S. Darling

372 Glasgo: Avenue
Klichener, Ontario
The Honourab ie Wr. G. Davis
Minister of Education
Ontario Department of Education
44 Eglinton Avenue West
Toronto 12, Ontario
Suzanne Dubols
17 Peel Street
Sherbrcoke, Quebec
Gordon L. Duffin
Assistant Depuity Minister of Education Ontario Cepartment of Education
44 Egliriton Avenue :lest
Toronto 12, Ontério
Kis. Dunlop
Toronto Eoard of Education
\(155^{\circ}\) College Street


Toronto 23, Ontario
J. Enns

20* 570
Yorden, Manitoba
\(\because\) urray Fahie, Executive Assistant
: iva Scotia Teachers Union
1551 South Park Street
Glifax, Sova Scotia
A.A. Frechette

Box 99
St. Boniface, Manitoba
R.G. Fredericks, President

Nova Scotia Teachers Union
1551 South Park Streat
Halifax, Nova Scotia
E.C. Frohloff

Bell Canada
620 Belmont
Montreal, Quebec
K.E. Gilliss
P.0. Box 752

Fredericton, New Brunswick
Robert Girard, Director
Information Systems
Quebec Department of Education
625 St. Amable
Quebec City, Quebec
W.R. Gordon

191 Harcourt Street at Portage
Winnipeg 12, Manitoba
E.J. Grace

Metropolitan Separate School Board 150 Laird Drive
Toronto 17, Ontario
L.E.S. Grean

Kates, Peat, Marwick \& Company
Toronto, Ontario


Frank Griffin, Assistant Executiva Secretary Ontario English Catholic Teachers' Assoc.
Suite 228, 1260 Bay Street
Toronto 5, Ontario
H.J. Hallworth

Department of Educational Psychology
The University of Calgary
Calgary, Alberta
Fred A. Hamilton
Board of Education
St. Catharines, Ontario
Reid Harrison
School Adninistrators Association
Nova Scotis Teachers Union
1551 South Par'i Street
Halifax, Mova Scotia
Richerd Harve:
ronartront nf Fdumatian
A.L. Lakie, Assistant Superintendent

Ontario Deparimant of Education
44 Egllnton Avanue West
Toronto 12, Omtario
R.L. \({ }^{\text {Lamb }}\)

1250 Bay Streat
Toronto 5, Ontario
D. Lampard

Faculty of Education
University of Lethoridge
Lethbrldge, Alberta
K.P. McDowall, Executiva Member

Alberta School Trustees' Association
Box 1198
Pincher Creek, Alberta
Stirling McDowell
Box 1108
Saskatoon, Saskatchewan
George A. Mclniyre
K. of P. Bullding

52 Bonauord Street
Moncton, Ne: Brunswick
1. A. Huyck
:.R. 3
narket, Ontarlo
1.W.B. Jackson, Chalrman
he Ministers' Intormation
Systems. Commlitee
ean-Marie Joly, Director
nstitute of Research in Education 117 Mgr . Grandin luebec 10, P.Q.
..N. Jones, Business Administrator 'roiesiant School Board - Greater Montreal i000 Fielding Avenue
: ontreal 29, Quebec
1. A. Jones, Administrative Assistant/
Intario Teachers' Federation
260 Bay Street oronto 5, Ontarlo
lavid B. Karaili
).A.S.B.O.
12 Oakdale Avenue
t. Catharines, Ontarlo
:arth A. Kaye
iurriculurn Section
Intario Deparitment of Education
:4 Eglinton Avenue West
joronto 12, Oniario
I.A. Keddy
i三g Jarvis Streat
oronto 5, Ontario
\(\because \because\). Kievit
:CA. Victor Limited
- ontreal, Ouzbec
icm Koch
Epertrent of Public Affalrs, TV
-
Eronto, nntario
\(\therefore 7\). Labossiere
\(\because 5\)
:=ues Laeroix
\(\because\) Educotion Association
- cor Streat West
pronito 5, Ontario
- L. Likle, Assistant Super!niendent

Richard F. Lawton, M.R.A.I.C.
Superintendent of Archliectural Services Ontarlo Department of Education 44 Eglinton Avenue West
Toronto 12, Ontario
N. LeSealleur

Education Division
- Dominion Bureau of Statistics

Ottawa, Ontarlo
Jean Lessard
Ministere de l'education
Gouvernement de Quabec
G.H. Lowther.

Box 1190
Portage La Pralrie, Manitoba
D.A. Mackay

Department of Educational Administration
University of Alberta
Edmonton, Alberta
H.K. Mackay
P.O. Box 578

Hallfax, Nova Scotia
D. MacLaren
Air Canada
Montreal, Quebec
H.A. MacNe:l

9807-108 Streat
Edmonion
C.R. Marks

Atlantic Provinces Economic Councll
181 Westmorland Street
Fredericton, New Brunswick
John S. Masterson
Hamliton Board of Education
100 Main Street West
Hamilton, Ontario
E.J. Mastronardi

Department of Industry
112 Kent Streat
Ottawa 4, Ontario
A.S. incionald
P.0. \(80 \times 578\)

Hallfax, Nova Scotia
K.P. MoDomull, Exacutivo nomher
G.C.J. Schlueter

Kitchener \& District Publls School Board Joseph Street Kitchener, Ontario

Wernèr G. Scimidt, Executive Director Alberta School Trustees' Association 10256-112 Street
Edmonton, Alberta
U.R. Shogren

Department of Education
Administration Bullding
Editonton, Alberfa
E.P. Sloan

Depariment of Manpover \& Immigration
305 Rideau Street
Otrawa, Ontario
Wendell J. Sparks
618 Bedard Boulovard
Lachute, Quebec
J.A. Speight

906-1111 W. Hastings
Vancouver, British Columbia
R.S. McLaren

973 Hart Avenue
Shawinigan, Quebec
L.D. McLean, Chairman

Department of Computer Applications
The Ontario Institute for Studies in Education
102 Bloor Street West
Toronto 5, Ontario
R.J. Mcivaughton

Ontarlo Department of Education 44 Eglinton Avenue West
Toronto 12, Ontario
Maurice Mercler
Ministere de l'Education
625, rue \(\mathrm{St} \boldsymbol{r}\)-Amable
Quebec City, P.Q.
Claude G. Mersereau
Room 300
11 Yorkville Avenue
Toronto 5, Ontario
J. Mledzinski

RCA Vicrorlimited Montreal, Quebec
F.h. Minkler, Director of Education

North York Board of Education
15 Oakburn Crescent
Willowdale, Ontario

W.E. Mitchali
G.C.J. Schlueter

Kitchener \& District Publls School Board Joseph Street
Kitchener, Ontario
Wernér G. Schmidt, Executive Director Alberta School Trustees' Association 10256-112 Street
Edmonton, Alberta
U.R. Shogren

Department of Education
Administration Bullding
Edmonton, Alberta
A.C. Patterson, Secretary-Treasurer Midland School, Division 25 Box 880
Carman, Manitoba
G.R. Pierce
P.O. Box 190

Kentville, NOva Scoṭia
W.J. PIndera

191 Harcourt at Portage
Winnipeg 12, Manitoba
H. Porteous, Acting Director
E.D.P. Branch Trit 6 ?

J.M. Ramsay

Box 28
Barrie, Ontario
J.E. Reid

Room 501
Administration Building
Department of Education
Edmonton, Alberta

\section*{Allana Reld-Smith}
152. Hillorest Avenue

Montreal 32, Quebec
George W. Robinson
School Planning Branch
Denartmant-........
E.P. Sloan

Department of Manpower \& Imnigration
305 Rideau Street
Otrawa, Ontario
Wendell J. Sparks
618 Bedard Boulovard
Lachute, Quebec
J.A. Speight

906-1111 W. Hastings
Vancouver, British Columbia

Cicely Watson, Chairman
Department of Educational Planning
The Ontario Institute for Studies
in Education
102 Bloor Street West
Toronto 5, Ontario
F.T. \(\because\) thite

5 Royal Mood Court
Weston, Ontario
\(\because\) Fred E. Whit:rorth
265 Elgin Street
Ottama 4, Ontario

Mlchael Stern
78 Inch Bay
Winnipeg 22, Manitoba.
J.S. Stephen

Ontario Department of Education
44 Eglinton Avenue West
Toronto 12, Ontario
Merlyn A. Stlllwell
Keswlck Ridge, R.R. 3
York Co., New Brunswlck
Shirley Stokes
Federation of Homen Teachers'
Associations of Ontario
1260 Bay Street
Toronto 5, Ontario
H.A. Sutiron

Department of Education
44 Eglinton Avenue West
Toronto 12, Ontario
A.S. Taylor, Director of Education

Scarborough Board of Education
2472 Eglinton Avenue East
Scarborough, Ontario
L.I. Thorson, Esecutive Secretary

Saskatchewan School Trustees' Association
570 Avord Tower
Regina, Saskatchewan
T. Wiley Tomlinson, Q.C.

Perth, Ne: Brunswick
George S. Tracz
Depariment of Educational Planning
The Ontario Institute for Studies
in Education
102 Blcor Street West
Toronto 5, Ontario
J.A. Turner

90 Dundas Síreet West
Cooksville, Ontario
R. :iarren

412 - 7th Street S.i.
Calgary 1
Alberia
Cicely llatson, Chairman
Departmant of Educational Planning
The Ontario Incritutn for ct...d:-.

> J.E. Wicks
> Education Division
> Dominion Bureau of Statistics
> Ottawa, Ontario

Barbara Williams, Secretary
The Ministers' Information Systems Committee
N.E. Williams

Coordinator of Computer Services
North York Board of Educaition
15 Oakburn Crescent
Willowdale, Ontario
David J. Wilson
Guelph Board of Education
385 Woolwich Straet
Guelph, Ontario
Ian J. Winslow (OISE)
Room 317
94 Cumberland Street
Toronto 5, Ontario

\title{
5 \\ \\ NATIONAL SCIENCE FOUNDATION \\ \\ NATIONAL SCIENCE FOUNDATION \\ \\ WASHINGTON, D. C. 20550
} \\ \\ WASHINGTON, D. C. 20550
}

OCT I 81025
Kre G. D. Hela
Business Vanager
INijional Acadery of Sciences 2101 Constitution Avena, 7. W. Washington, D. C. 20:n8

Rask onder No. 255

 うSSuê as follome:
2. Fitie: A stuay of Ratterns or Industry Supowt on Computers and Computer-aelatec Aetivities in U. S. RGucational Institiations.
2. Score of Woxt The work under this tosk order shaty be perSomad in acondance with your proposal datod Soctemen 20 , 2GOB, enticted "A Stwey or Patterns on Inaustry Suppowt of Combers and Computr-Related Activities in U. S. Etucational mustitutions" and sum instmactions as ray be pavidea by the Foundation.
 craer ahall cegin oa cotober 25, 2908 and oxtene through 49Fix \(24,2969\).
f. Esimated Cost: It is estintited that the totai cost to the Founuation or perionanie the work under thin task order will be \(\$ 10,000\).
5. Sajentifuc or tecmical Ifshon: In. Hiton R. Rose, Head, OLice or Compining Activities, ,hall mintain scientipic or techateal jaison for the wowi to be parionam under this task onder.

Please indicate acceptance or this tast order by boving it sianed and returaing tha original to ne.

Copy to Mr. Housel
-Sincerely yours,
 Contracting officer

\title{
SYSTEM DEVELOPMENT CORPORATION \\ 2500 Colorado Avenue • Santa Monica, California 90406
}

October 16, 1968

Dr. Anthony G. Oettinger
Aiken Computation Laboratory
Harvard University
Cambridge, Massachusetts 02138
Dear Tony:
The following is in response to Warren's telegram asking for nominations to the various panels. Ny nominations for the Computer Science and Education Panel, the Software Engineering Eaucation Panel, and the R\&D Panel are listed below. I do not feel strongly regarding these nominations and I am sure that other Board members have much more knowledge and judgment in these areas.

Computer Science Software Engr.
\& Education
Perlis
Forsythe
Carr
Hamming
Lamson

Education
Culler
Conway
Schwartz
McCluskey
Rosen

R\&:D Panel
Evans
Corbato
Clark
Miller
Chenea
Sutherland

With respect to the National Programs Panel A, I believe the members should be:
```

Carter
Meyer
Licklider
Gilchrist
Rowe
Morgan

```

You will note that this list is the same as that in John Pierce's letter of September 30, except that it omits Herb Grosch. As I understand Pierce's letter, he has already invited all of the above to be members of the Committee. (This was done in conjunction with me as a result of a telephone conversation.) I do not personally

Dr. Anthony G. Oettinger
October 26, 1968
know Morgan or Rowe, but from their titles and Pierce's recommendations, they certainly sound as though they would be good members.

Cordially yours,

LFC: db
cc: Warren House

Launor F. Carter
Vice President and Manager
Public Systems Division

Columbia University in the City of New York

DEPARTMENT OF POLITICAL SCIENCE

Fayerweather Hall New York, N.Y. 10027

November 1, 1968

Mr. Warren C. House, Executive Secretary
Computer Science and Engineering Board
National Acadeny of Sciences
2101 Constitution Avenue
Washington, D.C. 20418
Dear Warren:
These materials are for duplication and circulation to Board members for the next meeting. I trust that an appropriate item on the Agenda can be set up for November 7th.

Please note I will not be able to attend that part of the next meeting scheduled for the 6 th but will be in Washington on the 7 th.

Sincerely,

Alan F. Westin
Professor of Public Law

AFW/hf

To: Computer Science and Engineering Board
From Alan F. Westin
October 26, 1968

\section*{Report on Discussions with Foundations for Underwriting Data Bank Study}

In keeping with the discussions of the Board, Barkley Rosser, Tony Oettinger and I have been exploring possible foundation support for a study of the social implications of computer data banks, particularly their effects on the individual citizen. A chance telephone call from Orville Brim, Jr., president of the Russell Sage Foundation, led to an invitation by Brim to me to present my design of such a study to his staff and several invited social scientists at a luncheon meeting of the foundation on October 23. After telephone consultations with Barkley and Tony, I attended the luncheon and, indicating clearly that this was a preliminary discussion to explore ideas and not a firm presentation of a finished proposal, I outlined for them a twelveto fifteen-month study that is described in the accompanying - memo.

From considerable experience with foundations, it is my estimate that Russell Sage is fully ready to buy this one, assuming that the appropriate project proposal is well drafted and the usual negotiations are carried forward at the official levels. The reasons for their enthusiasm are as follows:
1. Russell Sage has just put a good deal of money into a study of the effects of keeping dossiers. They are very interested in the shift of dossiers from manual files into computerized data systems.
2. Russell Sage has also sunk a good deal of money into a study of ways to design social indicators for effective use in both social science research and government policy formulation. They believe that the whole future of social indicators will be significantly affected by the debates over the question whether the privacy of a citizen and his rights of due process can be protected while going forward with computerized information systems. I have served on several panels at which Russell Sage Foundation members and American Civil Liberties Union members held discussions with the Bureau of the Census on just these kinds of issues relating to civil liberties protections in the data gathering process.
3. Russell Sage has as one of its fundamental interests the intersection of law, the behavioral sciences, and technology. They fund quite a number of programs that look to the development of such-an-interdisciplinary approaches.

Because our project, at least as I have designed it, has just this element about it, Russell Sage sees it as exactly in the mainstream of research projects to which they are attracted。
4. It was clear from the conversations that Russell Sages would think quite well of the National Academy of Sciences and the new Computer Science and Engineering Board as an appropriate and distinguished sponsor for such a study. In some ways, I think they might appreciate such a format even more than the more traditional format of a university grant.

In light of these considerations, I am presenting to the board a draft of the project proposal as I outlined it to Russell Sage. I checked this through with Barkley Rosser on the telephone and had a meeting with Tony Oettinger in Cambridge on October 24. The timetable is roughly as follows. If the b,oard wishes to go ahead with the project, it ought to review the design and consider the policy questions that may be involved in the particular way that I have tried to set this up. Russell Sage would then like to have a preliminary discussion draft for their review. I would assume that the draft ought also to be circulated to the appropriate authorities at the Academy for their review of its merits and policy aspects involved in it. The deadline for formal submission to Russell Sage is January 10. Their trustees meeting will take place on February 7, 1969. Funds would be available immediately thereafter, and I have tried to insure that this project gets off to a fast start by designing the procedures to take advantage of this unusually swift possibility of funding from a foundation.

One more consideration would be worth noting. Russell Sage indicated that for them, \(\$ 150,000\) was a top figure that they could finance. Even then, they would probably sub-contract about \(\$ 25,000-50,000\) of the total amount to a smaller foundation such as the Noble Foundation. However, Brim made it clear that they would make such arrangements for subcontracting and we would not have to approach another foundation. In addition, he stressed that Russell Sage would remain the primary foundation for purposes of contact and review, and there would be no divided authority over the project.

Having received grants from four or five foundations of varying sizes, I would mention to the board that Russell Sage seems to me an ideal sponsor for our study. They are small, enoust and have a long-standing tradition of working very closely with those who receive their grants. Their staff has on it four or five specialists in sociology, political science, and computer applications, who would be invaluable as free consultants to the project, and at the luncheon meeting, it was stressed that if they funded the proposal, they would give it a great deal of support in this way. My experience with the Ford Foundation and other large funding bodies is
that they often do not provide such useful liaison and assistance. In addition, the chairman of the board of Russell Sage is a distinguished lawyer named Oscar Ruebhausen, who has written widely in the field of legal and social implications of science and technology, especially as this affects privacy. He was the chairman of the Special Committee on Science and Law of the Association of the Bar of the City of New York, under whose auspices I wrote my book, Privacy and Freedom。

A final point to mention is that the possibility of Russell Sage funding would provide a diversity of funding for our board, an example to other foundations of our availability for serious empirical studies, intellectual analysis, and policy exploration, and might do a good bit for our image in terms of our present heavy reliance on military, funding.

Given the longstanding tradition of Russell Sage and other private foundations in not attempting to dictate or exert improper influence on the formulation of conclusions and policy implications of their research, I do not see any difficulties in our lodging our funding here, assuming they decide to go ahead. I am sure that Russell Sage would like to see a study bearing the Academy imprint, which would indicate that it is possible to provide significant levels of protection for privacy and due process in computer information systems. If that is taken as the axe they have to grind, it coincides with my conclusions in all the work that I have done on this subject, and I believe that it represents the sentiment of the board, as I have heard our discussions. In that sense, Russell Sage has a point of view, but the very nature of that point of view would leave us complete freedom to develop the possible lines of approach and a consideration of their policy and cost implications under each main type of data bank, in keeping with the general role of our board reports, as Tony has depicted them.

It should also be noted, under the project plan attached, that there would be two major publications resulting from this project, if it goes forward. The first would be a report issued under the auspices of our board, which might be a 20- to 30 -page printed document. This would set the problem in its proper social and technological set£ing, summarize the empirical research that had been done, lay out the alternative choices that were open to government and private agencies, developing such data banks, and suggesting the lines of policy that might be adopted to provide the social protections that are called for in each setting. The second publication
would be a book length report, with chapters representing case studies of the selected computer data banks that had been studicd in depth by the project staff, as well as introductory chapters and a set of concluding chapters that would present the policy implications in greater detail than the Academy report. My assumption is that the royalties from such a book might be dealt with in two ways: either no royalties would be produced, and the pricing of the book would be reduced accordingly to insure the widest possible distribution, or, whatever royalties were produced would be paid to the Computer Science and Engineering Board, to support its future activities.

\title{
DRAFT DESIGN OF A PROJECT ON THE SOCIAL IMPACT OF COMPUTER DATA BANKS
}

October 26, 1969
Alan F. Westin
Professor of Public Law and Government, Columbia University Member, Computer Science and Engineering Board, National Academy of Sciences

The general objective of this proposal is a fifteen month study of the organization and operation of leading computerized data banks in both governmental and non-governmental areas of American life, focussing particularly on the problems involved in and alternative methods for producing protection for a citizen's right to privacy and due process under such data banks and the questions of public responsibility involved in these rapidly developing information systems.

The specific objectives of the study are as follows:
1. To develop a taxonomy and inventory of governmental and non-governmental computerized data banks that are presently in operation or very close to starting operations and therefore having developed extensive systems plans that could be examined.
2. To conduct on-site visits to a selected group of these computerized data banks in each major category identified. These visits would take place after the reports and development plans had been obtained and studied, and would consist of discussions with the management of the data banks as to their system, their objectives and operations, and the measures they had already taken or intended to take to provide safeguards for privacy, due process, and public responsibility. Serious attention would be given to the planning process and the mix of participants in the designing of such safeguards by each data bank, and the development of standards and choices as each system evolved. There would also be an attempt to discover for each of the data banks studied whether specific issues had yet arisen as to the privacy, due process, and public responsibility aspects of the system in its impact on individuals and groups covered by the information system.
3. To present an up-to-date, state-of-the-art survey of hardware and software possibilities for achieving civil liberties protection in data banks, including cost and efficiency estimates in general, and illustrating these choices from the specific data banks visited. This would also include reports of work in progress in industry, universities, government, and professional groups.
4. To survey the attitudes and current activities of the key decisionmaking groups in the area of data bank development. These would obviously include computer manufacturers, software firms, time-sharing agencies, professional associations, user groups, legislative committees, and administrative agencies. Regulatory agencies would also be covered by this survey.

Assuming that funds might be available in mid-February of 1969, the design of this study calls for the following personnel:
1. A principle investigator, part-time, with an established reputation in the areas of law, social science, and computer technology, to serve as the principle designer and intellectual administrator of the project.
2. An expert panel of perhaps twelve members, distributed among the major specialties of the computer field, law, and the social sciences, making sure thatall of the major viewpoints and contesting attitudes toward the development to data banks were incorporated within the panel.
3. A staff director, who would serve, both part-time and full-time, as described below.
4. A team of three specialists for field interviews, primarily younger specialists, one in law, one in computers, and one in the social sciences, perhaps sociology or political science.
5. One full-time secretary.

The procedures for the project would be a s follows:
I. Phase I, February 8 -March 31, 1969. During this time the principle investigator would recruit the staff director and the interviewer team. Members of the panel would be invited and the membership would be completed. A file collection on data banks would be begun to serve as the basis for the first set of meetings to chart the terrain.
2. Phase II, April 1-May 31, 1969. During this period the first panel meeting would be held to work through the project design and to review the procedures for the project. The basic questions involwed in interviewing would be discussed and the question of how to develop and quantify the results of the interviews would be discussed. Also at the panel meeting, arrangements would be made, where necessary, for insuring access to the principle selected data banks that would be studied in detail. During Phase II there would be a pre-test of the interview procedures on two sites, to test and refine the field process. The results of this pre-test would be evaluated at a second panel meeting held during this period. By the end of May, the first progress report would be made to the Computer Science and Engineering Board.

3. Phase III, June 1 -September 30 , 1969. During this period the main body of site interviews would be conducted by the thres-man field team, all three going together for each such interview. The maim body of interest group interviews would also be held during this period. Prelliminary analysis of the data and identification of its major patterns and implications would be begun. On this basis, a preliminary report would be made to the panel, which would meet to discuss whether supplementary interviews were necessary and, if not, to begin discussion of the tentative conclusions that emerged from the interviews and data. A second progress report would be prepared for presentation to the Computer Science and Engineering Board at its meeting in October.
4. Phase IV, October 1 - November 30, 1969. During these two months, the staff would prepare write-ups of its case studies and a summary chapter of its principle findings and policy analysis. The principal investigator would prepare a draft on the policy implications and choices growing out of the study, including any recommendations that would be appropriate for presentation to the panel and then to the board. The panel would meet to review these drafts and to discuss the conclusions and policy recommendations.
5. Phase V, December 1, 1969 - February 8, 1970. During this period the final write-up would be made of a draft report for the Computer Science and Engineering Board. This would be submitted to the board for appropriate action.
6. Phase VI, February 8 - May 1, 1970. In this period, the booklength volume would be completed, with the principle investigator having the primary responsibility to take the write-ups of the field studies and the other materials of analysis produced and develop these into a volume aimed at the informed public.

A preliminary budget, based on a span of time from February 8, 1969 to May 1, 1970 is estimated roughly as follows:

Principal investigator (part-time)
- Staff Director, part-time, February-June 1969 ful1-time, June 1969-Feb. 1970
\[
18,000
\]

Three field investigators (in law, social sciences, and computers)
part-time February-June and
October-Feb. 1970
full-time June 1-Sept, 30, 1969 ( \(\$ 12,000\) each

36,000
One secretary, 12 months, full-time
5,000
Travel budget for field interviews
25,000
Panel expenses, based on four meetings of
the panel and staff @ \(\$ 3,000\) each
12,000
Offices supplies, duplicating, etc.
Communications (telephone, postage, etc.)
Special papers to be commissioned
i
Indirect costs to the Academy calculated at \(31 \%\) of direct costs of salaries and wages, totalling \$70,000

23,000
Total cost of project

Pillowed
J. A. Haddad

Old Orchard Posit, Armonk, New York 10501
Canada
Ferwbect
Solent
How ne
September 19, 1968

Prof. Anthony G. Oettinger
Aiken Computation Laboratory
Harvard University
Cambridge, Mass. 02138
Dear Tony:
At the executive session of the last meeting of the Board I quarreled with the notion that a group designing a series of computers after the 360 could in fact utilize 360 programs. The fact is that this has not been done to any great degree up to the present time. Unfortunately I find that it could be done if the new group really focused on doing it. Therefore, I think the report we reviewed should not be changed from its present wording in this regard.

JAH:nt
Sincerely yours,

JAM:


TO: All members of the Computer Science and Engineering Board FROM: Warren C. House

The question of professional conduct and professional ethics came up at the July Meeting of the Board. Attached is a copy of the \(f\) CM Guidelines to Professional Conduct in Information Processing which Don Madden, the ACM Executive Secretary, prorised to provide for the infornation of the Board.
\(\rightarrow\)

\title{
Professional Conduct in Information Processing
}

\section*{INTRODUCTION}

This set of guidelines was adopted by the Council of the Association for Computing Machinery on November 11, 1966 in the spirit of providing a guide to the members of the Association. In the years to come this set of guidelines is expected to evolve into an effective means of preserving a high level of ethical conduct. In the meantime it is planned that ACM members will use these guidelines in their own professional lives. They are urged to refer ethical problems to the proper ACM authorities as specified in the Constitution and Bylaws to receive further guidance and in turn assist in the evolution of the set of guidelines.

\section*{PREAMBLE}

The professional person, to uphold and advance the honor, dignity and effectiveness of the profession in the arts and sciences of information processing, and in keeping with high standards of competence and ethical conduct: Will be honest, forthright and impartial; will serve with loyalty his employer, clients and the public; will strive to increase the competence and prestige of the profession; will use his special knowledge and skill for the advancement of human welfare.

\section*{1. Relations with the Public}
1.1 An ACM member will have proper regard for the health, privacy, safety and general welfare of the public in the performance of his professional duties.
1.2 He will endeavor to extend public knowledge, understanding and appreciation of computing machines and information processing and achicvements in their application, and will oppose any untrue, inaccurate or exaggerated statement or claims.
1.3 He will express an opinion on a subject within his competence only when it is founded on adequate knowledge and honest conviction, and will properly qualify himself when expressing an opinion outside of his professional field.
1.4 He will preface any partisan statement, criticisms or arguments that he may issue concerning information processing by clearly indicating on whose behalf they are made.

\section*{2. Relations with Employers and Clients}
2.1 An ACM member will act in professional matters as a faithful agent or trustee for each employer or client and will not disclose private information belonging to any present or former employer or client without his consent.
2.2 He will indicate to his employer or client the consequences to be expected if his professional judgment is over-ruled.
2.3 He will undertake only those professional assignments for which he is qualified and which the state of the art supports.
2.4 He is responsible to his employer or client to meet specifications to which he is committed in tasks he performs and products he produces, and to design and develop systems that adequately perform their function and satisfy his employer's or client's operational needs.

\section*{3. Relations with Other Professionals}
3.1 An ACM member will take care that credit for work is given to those to whom credit is properly due.
3.2 He will endeavor to provide opportunity and encouragement for the professional development and advancement of professionals or those aspiring to become professionals with whom he comes in contact.
3.3 He will not injure maliciously the professional reputation or practice of another person and will conduct professional competition on a high plane. If he has proof that another person has been unethical, illegal or unfair in his professional practice concerning information processing, he should so advise the proper authority.
3.4. He will cooperate in advancing information processing by interchanging information and experience with other professionals and students and by contributing to public communications media and to the efforts of professional and scientific societies and schools. Commission Curlos Use of Polygraphs


The Civil Service Commission has restricted the use of Ile detectors in the investigation of employes and applicants for appointments to sensitive positions.
At the same timo it has chrown up strong valeguards against unwarranted invasion of their privacy by its investigators. CSC Chalrman Johu W. Macy explained that the new restrictions applied to the investigations of persons for po-
|sitions in the competitive serv-|inquiry and the results of the \(\mid\) ice, but he expressed the hope test must be "properly safethat the same tight standards guarded." would be adopted by security and other agancies with noncompetitive positions.
tor are limited to matters
Use of a lie detector must lated to the fitness of the aphave prior approval of the plicant for a position.
CSC chairman, and it is restricted to agencies or parts of agencies "which have intelligence or counter-intelligence missiona directly affecting the national security and approaching in sensitivity the mission of the Central IntelllIn Agency."
In addition, the employe to be examined must consent to it in writing, and he must be told of his wight to counsel.
in refusal may not be noted in his personnel flle. Questions asked must have specific

The investigator may not question neighbors and associates of an applicant about his race, religion, national origin, union membership, fraternal or polltical affilfations, except when they relate to security fitness. He also may not use wire taps or undercover recording devices. express opinions about the applicant or question applicants or appointees concerning their concerning sexual conduct un less sexual misbehavior is indiThe
make unauthorized intrusions and
investigative
reports makes infrequent checks of on private property, divulge any investigative information outside official channels, and he can't make covert investigations such as inspections of trash or to pay informers.
The new CSC standards, de-
veloped by an interagency committee headed by Kimball Johnson, chief of CSC's invesigative staff, also defined the cope and eoverage of invest ations as follows:
"Bastcally, full-field investigations are designed to develop sufficient information to enable agency officials to determine the employability or fitness of persons entering itical-sensitive positions.
Fitness includes both secutions. Wuitability considerathe investigaver practicable the investigation should be
should be used as a personnel a selection device.
"Character, habits, morals, associations, and reputation will be investigated generally. Loyalty should be stressed and if a question is ralsed concerning an applicant's loyalty, his case should be referred to the FBI."
Jobs: The Marine Corps has
ming the Mationes has file clerks. Call OX 4-1046.
Thomas A. Flynn, General Accounting's long-time personnel director, will retire the end of this year ending a 34-
ear Federal career.
Civil Service Commission has agreed to make available to recognized employe unions the results of its agency inspections of problems rpecton gency personnel operations.
Commerce has a well-educated staff which includes 590 employes with Ph.D's; 1293 with master's degrees, and 475 with LLB's.
Post Office is seeking to contact with a college in the Northeast states to set up a program to train its superviors.
Navy has undertaken for the first time in 20 years a thor ough review os every civilion personnel policy, procedure, ule and regulation. Its two fold purpose is to eliminate excessive control and to sim lify its personnel system.
John F. Cushman has been ppointed executive director of the Administrative Confer ence of the United States. He The investidator cannot ond investigator cannot conducted before employmen unions. Its inspection staf FCC in legal positions.
1. Table of Contents
2. Agenda
3. Letter from John S. Coleman
4. Draft entitled "Research Program for the NATO Computing Software Institute
5. Memo of November 18,1968
6. April 25, 1968 1etter from Donald Hornig
7. Draft Report of the Education Working Group from 8th Meeting
8. Pane1 A Report from Launor Carter Revised Draft
9. NSF Task Order Description

\title{
National Academy of Sciences \\ 2101 CONSTITUTION AVENUE WASHINGTON. D.C. 20418 \\ COMPUTER SCIENCE AND ENGINEERING BOARD \\ Eighth Meeting \\ December 11, 1968 \\ Executive Evening Session \\ Preliminary AGENDA
}
1. Clearance status of Board members by the Secretary.
2. Report by Dr. Sidney Fembach on the latest discussions of the Computer Export Control problem in London.
3. Discussion of candidates for a list of critical problems in the computer science and engineering field warranting attention at the national level during the next two years. Background briefing will be given by the Chairman. Reference--November 18, 1968 Memo to All Board Members.
4. Report by the Chairman and Secretary on status of proposal for a "cleared facility" for the Board which would provide continuous access to information and activities at various sensitivity levels relevant to CS\&E support of various government activities.
5. Report by the Chairman on the status of the CS\&E Campaign Materials, specifically in relation to the acceptance of the plan and materials by the NAS Council.

\title{
National Academy of Sciences
}

2101 CONSTITUTION AVENUE
WASHINGTON. D. C. 20418
COMPUIER SCIENCE AND ENGINEERIITG BOARD
Eighth Meeting
December 12, 1968
DAY SESSION
Preliminary AGENDA
1. Administrative Items.
2. Report on the status of the NSF Study of Patterns of Industry Support of Computers and Computer Related Activities in U.S. Educational Institutions---Dr. William Miller.
3. Status Report on the Proposal to undertake a study of National Data Banks, Computers \& Privacy--Dr. Alan Weston.
4. Summary Presentation on the Proposal to Undertake a study of the Software Engineering Problem as a part of the general Board effort in the education field, including preliminary funding explorations--Dr. Alan Perlis, et al.
5. Status of the Proposal to undertake a study of the National Computer Institute problem, including preliminary funding explorations--Dr. Launor Carter.

LUNCH: 12:00 Noon
6. Presentation to the Board of a Proposal to undertake a broad-scale study of the manpower problem in the computer science and engineering field, considering the needs of industry, business and teaching in balance with needs for training and educational programs, as well as the impact of and trends in the various attrition processes, including preliminary explorations of possible funding---Dr. Bruce Gilchrist.
7. Report on the status of the effort of the Data Base Planning Group, including the general research and collection direction, personnel selection and specific proposals, as appropriate, to the Board.-Dr. Sidney Fernbach, et al.
8. Brief report by the Chairman on the status of the CS\&E Campaign Materials, specifically in relation to the acceptance of the plan and materials by the NAS Council, the follow-on action schedule, etc.
9. General comments by the Chairman on aspects of the upcoming transitional period, both prior to and following January 20, as this may affect the activities of the Board during the next 18 to 24 months.
10. Other.

NOTE---To facilitate consideration of the above items by the Board, where papers are involved, each presenter should bring at least 20 copies of each paper for distribution to the Board. Where time permits, such papers should be distributed to the Board members prior to the meeting.

\title{
NATIONAL ACADEMY OF SCIENCES
}

2101 CONSTITUTION AVENUE WASHINGTON. D. C. 20418
\[
\text { November 12, } 1968
\]

Professor Anthony Oettinger
Chairman
Computer Science and Engineering Board National Research Council.

\section*{Dear Professor Oettinger:}

At its meeting on October 5, 1968, the Council of the Academy authorized the Computer Science and Engineering Board to request \(\$ 10,000\) from the National Science Foundation for support of a study on patterns of industry support of computers and computer-related activities in U. S. educational institutions.

Sincerely yours,
```

cc: Mr. Meid
Miss Hermann

```

DR A FT
E. E. David, Jr.
M. D. Mcilroy

November 12, 1968

RESEARCH PROGRAM FOR THE NATO COMPUTING SOFTWARE INSTITUTE

The research program of the Institute will be centered upon software and in particular upon "engineering" aspects of software. The twin themes, software reliability and software adaptability, will guide the work.

In the past, these topics have not received the attention required to bring basic understanding and techniques into being. Thus, the Institute program will not overlap current research efforts. Furthermore, these topics are peculiarly suitable for an international effort since they cut across industrial and national interests. Universities, too, have not considered these subjects as relevant to their missions. Thus, the Institute will be filling a critical gap in computing research and development.

In this spirit, the charter of the Institute is to originate, explore, and demonstrate advanced techniques for increasing the reliability and adaptability of computing software with the objectives of facilitating software sharing, improving software performance, and creating an engineering discipline for software design and implementation.

The backbone research program will be as follows:


\section*{I. Software Reliability}

Hardware-software systems are today being applied to situations where unanticipated failure could be catastrophic; for example in air traffic control and in hospital intensivecare units, as well as in military and industrial command and control. Yet, it is now widely conceded that large software packages cannot be made completely error-free using today's techniques. Errors oftimes cause systems to abort their functions complețely, necessitating an extensive restart sequence. Failures of this kind tend to occur most often when the system is under heavy load, just the circumstance in which failure can be most damaging. There is today no software design technique for controlling the number or kinds of errors in software, nor is there any means of measuring the number of residual errors in software at any stage in its life or measuring the probability of failure. This situation calls for a technology of recovery-from-error-without-failure; that is, "fail-safe" design.

Special techniques have been widely used to obviate the effects of hardware failure. A commonly-used technique involves two independent sets of hardware continuously checked against each other. When a discrepancy is detected, diagnostic programs isolate the faulty equipment. It is then taken offline while the remaining units resume operation. The length of time necessary for this procedure is not sufficient to
interrupt seriously the function being performed. There are a variety of other fail-safe techniques for hardware. Though they may not be adequate to prevent failure completely, they can decrease the likelihood of a complete breakdown to a predictably low value.

On the other hand, there is no well-developed "failsafor sof́t" technology for software, though some techniques toward this end have been explored. For example, in some specialpurpose computing systems (computer-controlled telephone switching), there are so-called "audit" programs to check periodically and routinely the state of the various functions being performed. Should one of these functions be upset by either a software or hardware fault, the audit program determines the situation and brings to bear an appropriate recovery sequence. There are other possibilities, among them the evident software parallel to the "duplicated-hardware" technique. Here independently-coded software modules perform identical functions and are checked against each other. There has been little fundamental investigation of such techniques. For example, the interaction between hardware and software failures requires study, as does the "equivalence" of software modules. Research on topics relevant to improved software reliability will be one of the Institute's major thrusts. This activity can range between theoretical studies to incisive computer experiments and field studies of actual situations.

More specifically, the Institute would concentrate on exploring techniques for
1. Evalusting reszderal ernero
1. minimizing the number of residual errors in completed software, and
2. obviating the effects of errors when they do occur.

In pursuit of these objectives the Institute might
i. Exploit programming structures that foster correctness (see also II.vi).
ii. Develop methods for critical testing of members of generic classes of software (see II.ii).
iij. Investigate techniques conducive to "failsoft" response to software errors, such as paralleled software, data audits, and recovery procedures that might be usable in continuously operating systems.
iv. Seek theoretical insight into the construction of error-correcting software.
v. Evaluate and consolidate the state-of-the-art with respect to software reliability.
vi. Illuminate the parallels and differences in handling software and hardware errors.
vii. Survey and summarize current problems and practices with respect to software reliability.

\section*{II. Software Adaptability}

Adaptability is desirable in three major senses: 1. Adaptability to different hardware (commonly referred to as portability).
2. Adaptability to different applications.
3. Adaptability to changing requirements.

There have been massive amounts of software, good and poor, produced over the past \(10-15\) years. Among the best are some of the most creative contributions to all of technology and science. Yet, most of these are effectively lost to the wider community because such software cannot be transferred easily from one computing facility to another. Exporting software from its original environment today involves a ma.jor effort. There are, of course, some exceptions but the situation does not encourage sharing of software resources. As one of the elder statesmen of computing says, "In software, we do not stand on the shoulders of those who precede us, we stand on their feet." This situation has become known as "the compatibility problem".

There are no absolutes here, however. While it may not be feasible to transfer software without change to a. new situation, it may be possible in many instances to make software "portable"; that is, transferable with much less effort than would be required to rewrite completely. However, the necessary techniques are ill understood and not documented. It is known that the following matters are relevant:
(a) To be portable, software is best written in a high-level language such as Algol, Fortran, or \(\mathrm{PL}^{-1 .}\) The appropriate language depends upon the function the software is to perform. Adequate languages do not yet exist for many purposes.
(b) High-level language software tends to be larger and slower than the corresponding software written so as to take advantage of particular machine features. Yet, high-level software is easier to write, modify, debug, and document.
(c) The disadvantages listed above can be offset to an unknown extent by skilled use of the higher-level language and by "tuning" the software with the aid of traffic flow measurements. Nevertheless, portability necessarily involves a trade-off of other desirable properties, such as efficiency in execution.

Over the past 15 years, the size of typical software systems has increased from a few thousand lines of code to several million. Complexity has shown a similar if not a greater increase. Yet, the ability of programmers to produce code has not increased materially. Today, hundreds of programmers are commonly employed to produce a large software system. This approach, known as the "human wave" tactic, is complicated by coordination and management problems so
that the product is usually expensive, inflexible, and poor in performance. An alternative to the human wave approach has been proposed. It is based upon creating software 1 components from which to assemble software systems in the same sense that hardware components are used to synthesize hardware systems. Special techniques are required, however, to generate a particular required software component from a more generalized form which might be stored in an archive. Research is needed on both suitable generic forms and upon the generating mechnaisms.

These matters will be brought under study by the Institute, both theoretically and experimentally.

More specifically, this program will intend to
1. Identify logical classes of software components, and discover useful parameterizations to describe the variability among members of these classes.
ii. Greate generic classes of software components automatically or semiautomatically tailorable to related applications whose requirements or hardware differ in detail.
iii. Solidify techniques for making the "same software" work well on several machines.
iv. Demonstrate trustworthy transfer of software across machines and out of the laboratory.
v.. Demonstrate tailored components that work well in each of several systems.
vi. Exploit programming structures that foster adaptability by offering easy parameterization, convenient modifiability, and assured validity.
III. Experiments in Adaptability

The Institute's experimentation in adaptability should have a realistic flavor. To this end, the Institute will undertake the construction of a library of well-understood but nontrivial pieces of software of recognized excellence, based on the best sources worldwide. This library will be made available to universities and perhaps military and comnercial interests throughout the participating countries.

The library will evolve from a small offering of machine-independent, general routines, portable but inefficient, into an archive of generic classes of routine from which efficient adaptations could be selected or generated upon request. The direction of evolution will be towards a rationally organized set of parameterized, tailorable building blocks and assemblies thereof, useful in constructing systems and applications software. Actual attainment of a commercially viable library would probably fall outside the charter of the Institute, and would more properly be taken up by outside interests in the member countries.

While the most tangible end product of these researches would be the library, techniques for generating and validating it would dominate the innovative program in this area. These "second level programming" techniques may be foreseen to be one of the Institute's significant contributions to software engineering.

Some types of software that make good candidates for this research are:
1. Assembly programs for a wide class of machines, and macrogenerators for a wide class of texts or languages.
2. Applications to libraries and publications, such as concordance building, indexing, editing, and document formating.
3. Geometrical computations.
4. Mathematical function routines of specifiable accuracy, range, robustness, and time-space performance.
5. Input-output routines.
IV. Personnel, Facilities, and External Relations

Facilities and manpower for the Institute are crucial to the success of the Institute. A nucleus of really expert people of a high standard is required. Perhaps four to six such "pace-setters" would be adequate. These should be supported by 10-15 younger scientists and engineers, in
turn supported by 15-20 programmers on the assistant level. There, of course, should be provision for visiting staff. Required also is access to a modern computing facility. Ideally this would be a machine of modest size, but with a flexible file structure and good remote access so that contributors in the member countries could communicate with the facility from their own institutions on a selective basis. This feature is particularly vital if the Institute is to play an active role in the on-going activities of universities and industries in the member countries. Through computer communications; the Institute could become a focus for activity by a community of creative scientists and engineers distributed throughout the NATO countries and Western Europe.

A "journal" or other description of the library's contents would be an important publication of the Institute, upon whose quality critically depends the successful spreading of the fruits of its research.

\section*{V. Caveats}

In its first years, the Institute should be expected to prove itself by making a definitive contribution to software engineering. It should therefore pioneer areas that are not yet widely popular. In particular, development of large systems and study of languages should be avoided unless these undertakings were intended for purposes clearly and qualitatively distinguishable from customary efforts in these fields.

Large systems development would be held to a minimum for several "reasons:
1. It would likely compete with current work in many centers.
2. Concentration on particular systems could compromise the intent to conduct investigations of wide applicability.
3. At the outset at least systems would make muddy subjects, the study of which is unlikely to produce insight worth the effort.
4. In-house systems could distract the attention of the Institute so as to decouple it from realities of the software industry.

Evidently, personnel must be familiar with systems, for the themes of adaptability and reliability arise from systems needs, but systems expertise can be expected to arrive with people and need not be bred in-house. Insofar as systems may be needed to abet the work of the Institute, for example in realizing a "pilot plant" for software components, or in demonstrating the viability of certain approaches to program reliability, modest research-oriented systems may have to be developed.

Programming languages are another magnet for software research, of which the Institute should be wary. Language studies are well catered for elsewhere, and another
group could make no distinctive contribution to the field. Modest language work might be involved in creating generic classes of software components (see II.ii) or in elaborating program structures (II.vi) suitable for certain of the Institute's missions, but even then it should not be undertaken without substantial justification. The Institute certainly cannot expect locally defined languages to be widely acceptable outside, although they may prove very useful to its own internal activities.
VI. Overall

The programs of the Institute will center on research in software, but specifically on the items discussed above. There are many software topics which are not to be included. These are being attacked, at least in part, by existing institutions, universities, and industry. The Institute will have the character of a research and development laboratory. Its output will be carried to the commercial and production stage by outside interests in the member countries.
E. E. David, Jr.
M. D. McIlroy

DB/R









 HRERTA, STOP


\title{
EXECUTIVE OFACE OF THE PRESIDANT
}

Deas icny:
I am delighted to know that the Academy Computer Science and Engineering Board is ready to be christencd officially. You begin work at a time when computing problems axe high on everye body's priority lisi. I an sure you will not lack for business.

Wally Baer of my staff mentioned to me his conversation with you and your interest in hearing about issues in computing as we see them. Before I berin, let me say that the prime value to us of an Academy committec or board is its independent judgment in bringing to our attention those mattexs it feels are most important. I wocld not want in any way to piescribe your agenda.

But let me te!l you sorne of the questions we have:
1. Government organization for computing
-- Should there be a single focus in the Federal Government for computing policy?
-- What have been the practical results of the Brooks bill? Do we need additional guidelines or legislation for inhouse policies r". F"ocedures?
-. How has the NBS Center for Computer Sciences and Technology progressed? What more miglit it Be doing?
2. Computer Science
- What is the federal role in advancing computer sciences vis-a-vis the industry role? How well or poorly is the Federal Government meeting its responsibilities?
.. Are the computer sciencos seriously over or under - inded with respect to other federally suppouted research? With respect to other federally supported efforts in the field of computing (facilities, information systems, CAI, etc.)?
.-. Are the Rosser and Pierce reports up-to-date? Have our conceptions of educations computing changed since these reports were written, due to the difficulties in develosing operational timesharing and the striking success of small, thirdgeneration machines?
.- Do educational uses of computing fall into categories or classes which provice a sensible framework for federal efforts?
.- What should be the federal sirategy in developing computing for higher education? What research and/or experimentation must be dons before widespread implementation of educational computing cen take place?
.-. What should be the federal strategy in developing computer managed or computer assisted instruction? What emphasis should be placed on CMI or CAI?
4. Manpower for Computing
-. How do we best attack the overall manpower problem in computing and computer-related areas?
-- How can small solleges, junior colleges, and secondary schools best acquire the competences needed to bring useful computing to their institutions?
=- What more can be done to educate and train the disadvantaged for careers in programming, compute: operations and maintenance, and other computer related areas?
5. University Computer Costing
-. How can we imriove t.a present method of compute, costing in universities (DOB Circular A-21)?

\section*{6. Computex Infcrmation Systems}
- How do we set standards for interchange of information among computer-based systems?
-. What performance criteria should we use to measure the effectiveness of computer-based information systems?
..- How do we proceed to update the copy..ight laws to include information provessing by computer?

Our list could be considerably longer, but this gives you an indication of the range of problems that confront us. I understand that Dr. Baer will be meeting with your Board; and I personally look forward to keeping in close touch as your discussions go forward.

With best regards,

Donald F. Hornig Director

Professor Anthony \(G\). Oettinger
Aiken Computation Laboratory
Harvard University - Room 200
Cambridge, Massachusetts 02138

\section*{DRAFT REPORT OR THE EDUCATION VORKING GROUP}

November 6, 1968

Those participating vere Purlis, Spinrad, Hartmanis, McCluskey, and Gilchrist. The Group reviewed the report submitted to the Board on the missions of the Education Committee of the Computer Science and Engineering Board. There was a unanimous recommendation that the two issues--computer science education and software engineering--are the two paramount issues for committees of the Board to treat. However, the Group unanimously agrees that these two issues must not be separated, and, indeed, they are part of the same educational picture---education in computer science. The Group recognizes that deficiency exists in present graduate programs in computer science. This deficiency has various labels but is primarily revealed as an acceleration in the direction of over-formalism and mathematization. It is agreed that these are not in themselves bad, but it is felt that the departments are too closely following the natural gradient created by formalism, or, put another way, there seems to be too much aping of departments of mathematics. It is recognized that software engineering is the kernel of computer science and that the various current specialties in computer science have relevance only really in the sense that they clarify and improve computer systems--both software and hardware. This means that automata theory, formal theory of computation, linguistics, programming languages, etc., all have a critical function--to define and improve our familiarity with systems.

The Group further feels that undergraduate programs in computer science should be matural bases for both graduate study in computer science and preparation for industrial positions in the computer field. The difference betveen the graduate and undergraduate programs must be one of difference
in depth but not in kind. The bachelor's degree should be a professional degree so that the students should consider themselves as both engineers and scientists by the time they attain the bachelor's degree.
- II \({ }^{-}\)

It is recommended that a committee be formed for the purpose of studying the issue of computer science education in the expanded sense indicated above, and that the charges to this committee be of two major kinds:
A) Economic Charges: By economic is meant the creation of inputoutput models relating the development of programs, production of students and faculty, and the needs of industry and government for people so trained. Furthermore, a time table establishing the velocity and acceleration of these programs should be produced. In accord with the postulated growth, a study should be made of the resources (plant, people, and money) required to provide this educational development.
B) Content: A thorough study should be made of the content of the undergraduate and graduate programs to be labeled as computer science. Furthermore, an audit of existing programs should be made so that we can gage what distances exist between what is done and what should be done. Furthermore, the subject of accreditation and standardization should be treated.
- III -

Instead of appointing a committec---which must clearly be of large size and hence, hierarchically organized, dragging its deliberations out over a long period of time and involving much paper work and many meetings.... it is proposed that a three-day (from \(9 \mathrm{a} . \mathrm{m}\). to \(11 \mathrm{p} . \mathrm{m}\).) meeting be held in which two working groups will meet in plenary session and in organizing
groups to thoroughly treat the issues raised in Item II. It is proposed that the following sequence of events take place:
1) a general letter be sent to the invitees,
2) that this letter be accompanied by a statement of purpose and details,
3) that this letter be accompanied by a statement of working procedures and schedule, and
4) that each invitee be asked to submit--but not required--
a working paper on some aspect of the issues raised in
Item II. These working papers will provide the basis
on which discussions will be made.
During the conference, duplication and secretarial facilities will be provided for quick preparation of additional working papers and intermediate reports. The goal of the conference will be the preparation of a report outlining the results of the conference. Toward that end, in each of the two areas (resources and content), a chairman and two younger recording secretaries will have the responsibility for preparing the draft of each section, and the Education Working Group will then coordinate these two reports into the final report.

A tape recording of the entire conference proceedings will be made, and the contents will be used by the recording secretaries in preparing the draft report. Upon completion of the report preparation, all tapes will be destroyed, and the report will be made available for public distribution.

It is proposed that the meeting be held early in April on a Tuesday, Wednesday, and Thursday in a somewhat isolated spot, where the attendees
will be expected to devote their entire energies to the task at hand. It has been proposed that this meeting be held in a place like the Motel

Arlie in Warrentown, Virginia, since it is so close to Washington.
- IV -

People: It is proposed that the following be invited to participate
in the two groups:
1) The Economic Group:
\begin{tabular}{|c|c|}
\hline Gilchrist & Afips---Technical Society \\
\hline Tribers & Dean, Dartmouth College \\
\hline Forsythe & Chairman, Department of Computer Science \\
\hline Rowe & Computer Operations, Union Carbide \\
\hline Caxr & Chairman, Department of Computer Science \\
\hline Perlis & Chairman, Department of Computer Science--Chairman of this Working Group \\
\hline Standish & Assistant Professor, CMU, Department of Computer Science--Recording Secretary of this Working Group \\
\hline VanDam & Assistant Professor, Computer Science, Brown University---Recording Secretary of this Working Group \\
\hline Zadeh & Computer Science and Electrical Engineering, Berkeley \\
\hline Snyder & Computer Science, Physics and Computer Center, University of Illinois \\
\hline Humphrey & IBM, Manager, Software Systems \\
\hline Brooks & Chairman, Department of Computer Science, University of North Carolina \\
\hline
\end{tabular}

\section*{- 5 -}
\begin{tabular}{ll} 
Richard Jones & \begin{tabular}{l} 
Manager, Applied Data \\
Research, Private software \\
house
\end{tabular} \\
Robert Jones & \begin{tabular}{l} 
President, University of \\
South Carolina, university \\
administrator and electrical \\
engineer
\end{tabular} \\
Tanaka & \begin{tabular}{l} 
Cal COMP, Electrical Engineer \\
and Systems Designer
\end{tabular} \\
X & \begin{tabular}{l} 
U. S. Government, user of \\
systems and programmers
\end{tabular}
\end{tabular}

\section*{Content:}
2) The Audit and Accreditation Group:
\begin{tabular}{|c|c|}
\hline McCluskey & Stanford University, Group Chairman \\
\hline Gries & Assistant Proiessor, Computer Science, Stanford University, Recording Secretary \\
\hline Gruenberger & Educator, San Fernando State College, Recorảing Secretary \\
\hline Spinrad & Scientific Data Systems, Software Manager \\
\hline Hartmanis & Chairman, Department of Computer Science, Cornell University \\
\hline Conte & Chairman, Department of Computer Science, Purdue University \\
\hline Hamming & Computer Science, Bell Telephone Laboratories \\
\hline Corbato & Project MAC, Massachusetts Institute of Technology \\
\hline Schwartz & SDC \\
\hline Bauer & President, Informatics \\
\hline Andree & Computer Educator, University of Oklahoma \\
\hline Harr & AT\&:T, Central Office Computer Systems \\
\hline
\end{tabular}
- 6-
\begin{tabular}{ll} 
Zipf & Bank of America \\
Vyssotsky & \begin{tabular}{l} 
Software Managerent, \\
Bell Telephone Laboratories \\
Mroth
\end{tabular} \\
Professor of Computer \\
Climis & \begin{tabular}{l} 
Science, Stanford University \\
Bell \\
Manager of Software, IBM \\
Graham \\
Computer Systems Designer, \\
Professor, CMU
\end{tabular} \\
Y & \begin{tabular}{l} 
Director of Computing \\
Operations and Software \\
Production, University of \\
Waterloo \\
U. S. Government, user of \\
systems and programmers
\end{tabular}
\end{tabular}

\section*{SYSTEM DEVELOPMENT CORPORATION}

2500 Colorado Avenue • Santa Monica, California 90406
December 3, 1968

Dr. Anthony G. Oettinger
Aiken Computation Laboratory
Harvard University
Cambridge, Massachusetts 02138

Dear Tony:

Since our meeting last Monday I have been trying to pull together the materials we discussed regarding National Programs Panel A. Your request for bibliographic material on some of the new people we discussed has delayed my getting an organized set of material to you, and we still do not have any bibliographic reference for Butler Lampson. If I understood you correctly, you wanted bibliographic material on all proposed people who are not currently on the Board (with the exception of Bruce Gilchrist). Enclosed is that material. As I understood our conversation on Monday, the membership of the committee now consists of: Carter, Licklider, Meyer, and Evans from the regular Board membership. From outside the Board we would like to consider Gilchrist, Morgan, Rowe, Bloch, Campbell, and Lempson. It was my understanding that from those who are not now on the Board you want Fred Seitz to select those to be appointed to the Panel. I believe Gilchrist, Morgan, and Rove have already been approached. Bloch, Campbell, and Lampson are new names which you suggested might be added. In addition to this, Barkley Rosser seems to assume he is on the Panel. I believe we agreed that we would handle this by informing all Board members of Panel meetings and inviting them to attend if they so desired.

We discussed a tentative meeting schedule for the Panel, which is outlined below:
1. Tuesday, January 7 - Washington

AM - Milt Rose, NSF
PM - Herb Grosch, NPS USOE
2. Tuesday, February 4-Washington

AM - Bob Taylor, ARPA Intelligence Community
PM - Pratt, NIH
3. Tuesday, March 11 - Washington

> AM -Mr . Yost, Argonne NASA

PM - Hrommes - Associated Universities
Person from .. Ex. Office of President, Science Advisor
4. Thursday, April 3-Santa Monica
\[
\begin{array}{r}
A M-S D C \\
P M-\text { RAND } \\
\text { UCLA }
\end{array}
\]
5. Tuesday, May 20 - Boston
\[
\begin{aligned}
\text { AM - } & \text { Project MAC, Intrex } \\
\text { PM - } & \text { Harvard } \\
& \text { Lincoln }
\end{aligned}
\]
6. Tuesday, June 10 - New York City
\[
\begin{aligned}
& \text { AM - IBM } \\
& \text { PM - UNIVAC, GE, ? }
\end{aligned}
\]

It is recognized that the above schedule is quite tentative, and the scheduling of people should be left to Warren House's discretion, guided by their availability; that is to say, it is not terribly important that we have the people in the order or on the days that they are mentioned, but only that we should hear from each of the groups indicated.

With respect to the budget, I have tried to arrange the meetings at the places where the Board is going to meet anyway, thus the only additional travel expenses will be in connection with those people who are not members of the Board. If we assume that there are four additional people, I would imagine that we could count the average trip as costing in the order of \(\$ 100\), so this is four people times six trips times \(\$ 100\), which is \(\$ 2,400\) for travel. But this may be more or less, depending who the people are and where they are located. Since Warren House will presumably be busy on general Board matters; it would be most helpful if we had the assistance of a young staff person. I should think we might be able to use such a person at least half time, and no doubt some of the other panels will need similar assistance. I do not know what the Academy would consider the annual cost of a junior staff

Dr. Anthony G. Oettinger
December 3, 1968
member, but \(I\) do know that at \(S D C\) the cost would be near \(\$ 30,000\) per year by the time salary, fringes, and all overhead items are included. If the person were more senior, the cost might go as high as \(\$ 50,000\). Thus if we think of our efforts as covering a year, I should think we might well require \(\$ 15,000\) for staff support, \$3,000 for travel, and \$2,000 for miscellaneous items, or in the order of \(\$ 20,000\).

I am also enclosing a copy of the revised charter, taking into consideration the suggestions made by Jerry Haddad, Barkley Rosser, and you.

Cordially yours,
:

Launor \(F\). Carter
Vice President and Manager
Public Systems Division

LFC: db
Encl.

BLOCN, RICFARD M(ILTON), 81 Hemenway Rd, Framingham, Mass. ENGINEERIVG. Rochester, N.Y, June 18, 21; n. 46; c. 7. A.B, Harvard, 43. Nem. stafi, consults. sect, radio div, Naval Res. Lab, 43-4i; comput. lab, Harvard, 44-46, res. staff, 46-47; sr. develop. en;r, Raytheon Mfig. Co, 4749 , mgr. anal. sect, 49-51, comput. dept, \(51-55\); tech. asst. to v.pres. eng, datamatic div, Minneapolls-Honeywell Regulator Co, 55-58, dir, prod. develop, 58-63, V.PRES. ELECTRONTC DATA PROCESSING, HONEYWELL, INC, 63. AAAS; Res. Soc. Research, design and development of electronic digital computing equipment; scientific, Industrial and commercial application of data handline equlpment; applied numerical analysis; mass data handling and Information theory.

BLOCH, RICHARD M(ILTON). Engineering. Sce 11 th ed, Phys. \& Biol. Vols. New position \& address: V.pres. corporate develop, Auerbach Corp, Phila, Pa. Address: 201 Fuller St, West Newton, Mass. 02158.

CAMPBELL, DR. SULLIVAN G(RAHAM), Xerox Corp, Rochester, N.Y. MATH EMATICS. Merriam, Kins, July 29, 22; m. 45 ; c. 3. A.B, Kansas City, 47 ; M.S, Calif. Inst. Tech, 51; Ph.D.(math), Syracuse, 54. Instr. math, Finlay panel, Oak: Ridge Nat. Lab, 53-55. stretch planning groun, Int. Bus. Massoc. prof. math, Duke, 55-57; adv. engr ning cmt, 58-59, mer, adv, systs. Mach. Corp, 57-58, sr, engr, tech. planDIR. TECH. PLANNING, XEROX CORP, 63- Vis. vis, prof, California, Ios Anceles, 60, Con- Vis, lectr, Vassar Col, 59; Bus. Misch. Corp, 5G.57; Anem. cint 60, Consult, Off. Ord. Res, 55-57; Int. proj. Siarlight, 62. U.S.A.A.F, 42-46, Ress 46-54 sci, Nat. Sci. Found, 61, Mach. Numerical mathematics and computin 4 . chine organization; design and development of mechanisms; theory of machine organlzation; desten and development of larfe-scale digital systems; pattern recognition; graphic communications.

MORGAN, DR. SAMUEL F(OPE), b. San Diego, Calif, July 14, 23 ; m. 48; c. 4 . MATHEMATICAL PHYSICS. B.S, Calif. Inst. Tech, 43 , M.S, 44, Ih.D. (physMLATHENATICAL Phisics, B.S, 4ifornia, 43-44; Calif. Inst. Tech, 44-47; MEM Ics), 47. Asst. physics, Californa, 4-4, HEAD SiATH. PHYSICS DERT, 59TECH. STAFF, BFLLL TEL. LABS, 4,-, AAAS; fel. Inst. Elec. \& Electronics Eng̈; Phys. Soc; Sath. Soc; soc, propa\& Appl. Math. Electromagnetic theory; mechanics of continua; wave propagation; speclal mathenıatical functions; nunierical methods.
Telephone Labs, Inc, P.O. Box 263, Murray Hill, N.J. 07971 . rel

ROWE, J(AMES) E(DISON), 106 W. Damascus Rd, Oak Ridge, Tenn. MATHEMATICS. Livingston, Tenn, July 13,\(26 ; \mathrm{m} .48 ; \mathrm{c}\). 2 . A.B, B . M.A, 50. MATHEMATICLAN, UNION CARBIDE CHEMS. CO. DIV, UNION CARBIDE CORP, 47- U.S.A.A.F, 45. Asn. Comput

\section*{I. Introduction}

This statement defines the role or mission of National Programs Panel A. The text gives examples of the areas which nay need national support and mentions a number of organizational and programatic suggestions which have been implemented or pronosed. Finally, the role of the Panel is discussed.
II. Areas Which Have Been Proposed as Needing Study and Support Vitnin a National Context

In considering the areas where national procrams in the computer sciences may need study and support, it is apparent that a large number of different functions or responsibilities have been envisioned. Examples of such functions are:
A. The Support and Conduct of Research and Develonment

Activitics with Pespect to Computer Ecuipment and Software
New developments in monories, switching cavabilities, hardware configurations, etc. need study and demonstration. Similarly, developments in software as they relate to hirher-order languages, compilers, list processors, data-basec manivulators, executive systems, etc. are in need of investigation.

\section*{B. The Development and Maintenance of Standards}

Some contend that there is a great need for the development of standards in the computins area, but exactly what standards and in what particular areas is open to vigorous debate. It is areued that an appropriate body of professional computer scientists should be devoted to the study and monitoring of the standards area.

\section*{C. Development of Applications}

It has been suggested that national laboratories should develop new applications where current comercial efforts are likely to be insufficient. For example, the capability to analyze large bodies of natural language text is thought by many to be important but is currently not receiving significant sunport. Similarly, the ability to handle very large deta bases hinces on both theoretical and applied research in data-based structure and develomment of various storage devices.

\section*{D. System Encincerina aria Technical Direction}

It has been argued that the technical capabjlity exists (or is about to exist) for the significant develonment of information processing systems in a number of aprlied areas but that there is neither sufficient support nor organized techmical capabjlity to undertake such developments For examole, it has been surgested that there
could be a unified netrork of information systems; however, those working in the library and cocumentation area are generally technically unqualified to undertake such an effort, which needs to be done on a large, integrated scale, and requires centralized planniry and implementation. Special agencies or laboratories to oversee such system engineering and technical direction have been proposed.
E. Computer Prosram and Information Center

It has been surgested that there is a need for a center or exchange mechanism which would make computer programs available to users. Computer programs which meet certain standards could be collected, documented, and packaged for ready distribution. Such a center might replace present program sharing groups which tend to be associated with a single manufacturer's equipment. Such centers are being established in England and Germany. Similarly, an information center could be established which might be anslogous to the Mational fibrary of Medicine.

\section*{F. Effective and Efficiont Government Computer Service Operations}

The Federal Government is probably the world's largest user of computers. Efforts have been made to increase the efficiency with which its vast computer resources are utilized. It has been sugested that a national laboratory or azency misht monitor such operations or verhans become a goverment service center itself.
G. Study of the Social-political Implications of Information Systems Wuch has been written concerning the possible loss of privacy in connection with computer-based information systems. Similarly, the new capacity for centralization and decentralization in social organization, possible through the fast handing of large amount of information, has caused concern. These problens should be explored.

\section*{III. Organizationel Considerations}

In view of the need to perform functions such as the examples above, a number of actions and recomendations have been sugcested regarding the establishment of national laboratories in support of the computer sciences and related applied areas. Recently the position of the Center for Computer Sciences of the National Bureau of Standards has beer increased within NBS. Within the last two years the llational Science Foundation has established the Office of Computer Sciences. For a number of years ARPA has been a major supporter of applied research and development in both hardware and software, with programs at a number of major university centers, non-profit institutions, and private industry.

Recommendations for laboratorics in specialized applicetion areas have been made. Particularly, the National Library Comission recomended a national laboratory in the information sciences, ena most recently a similar recommendation has been made by the Committee on Scientific and Technical

Cormunication of the National Academy of Science. Several private organizations have either recomended a national laboratory or expressed the need for greater support in computer science research and development. Several surgestions emanating from university associations sponsoring AEC laboratories have been in this direction, as well as suggestions from EDUCON. Thus govermmental agencies, private organizations, and study groups have exnressed concem regarding the organizational structures available to support and undertake research and development in the information sciences area.

\section*{IV. Role of the Panel}

The above problems of function and organization have stimulated the formation of the Panel. The Panel will collect material and hold discussions regarding the above areas with a number of people and organizations---in the Federal Government with such organizations as the National Science Founcation, National Bureau of Standards, end ARPA--in universities with major computins centers and with consortia of universities such as the Argome Universities Association and the Associated Universitics--with non-profit corporations such as RAMD, SDC, litre, and the Lincoln Saboratories, and vith industrial organizations such as Bolt, Deranek, and Ziewmen, and several major equipment manufacturers.

The panel vill summerize the current and projected plans and percoptions of needs of the organizations mentioned acove. It will explone problems
which require attention within a broad context. It will analyze the several alternate solutions to these problems and prepare recomendations for CS\&EB. The Panel will prepare informative material and recommendations for review by the full Computer Science and Encineering Board and stend ready, on the basis of the information it has gathered, to assist government agencies wich might seek the Board's advice in this area.

Mr. G. D. Meld
Business Manager
National Academy of Sciences
2101 Constitution Avenue, H. H.
Washington, D. C. E0418
Task Order No. 255
Dear Mr. Maid:
Under the terms of Contract MSF-C310, Task Order No. 155 is hereby issued as follows:
2. Lie: A Study of Pattens of Industry Support of Computers and Computer-Related Activities in U. S. Educational Institutions.
2. Sops of Work: The work under this task order shall be performed in accordance with your proposal dated September 20 , 1968, entitled "A Study of Patterns of Industry Support of Computers and Computor-Related Activities in U. S. Educational Institutions" and such instructions as may be provided by the Foundation.
3. Period of Performance: The period of performance of this task: order shall begin on October 25, 2968 and extend through April 2 14, 1969.
4. Estimated Cost: It is estivated that the total cost to the Foundation of performing the work under this task order will be \(\$ 10,000\).
5. Scientific or Technical Liaison: Dr. Milton E. Rose, Head, Office of Computing Activities, shall maintain scientific or technical liaison for the word to be performed under this task order.

Please indfate acceptance of this task order by having it feigned and returning the original to me.

Sincerely yours,

```

