
- 43 -

CHAPTER II. MAXWELL'S EQUATIONS AND SPEC ALRELATIY77

-i The Electromagnetic Field Equations

(Reference: Prank "Electricity and Optics', Chao. VW. t

Thas far we have treated the electric field ani the

magnetic field as though they were compiete)y independent

This is not true in general because of Faraday « tus,
and Maxwell's introduction of displacement
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Maxwell deduced from them the equivalent differential equat tor;
which are generally called Maxwell's Equations, and are
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In free apace, »&=& and with no free o>

real currents, these equations become in vector 3

curl = at
aH

curl H = &
div E
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By taking the curl of the first equation ane + ttme
derivation of the second we have
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2
~ eurl(curl E) = pots dt*

xbut, - eurl(curl E)= - grad(div E)+ dx* dy?
+ve

So +
Gye Speke gee {3.8)3x?

+

since div E =0
Now eq. (3.8) is just the wave equation for the vecbor

E, and the wave is propagated with a velocity equal to
which we know to be c. An identical wave equation can be ob ~

tained for H. Maxwell's work was of the greatest importance
Since it showed the inherent electromagnetic nature of light,
and aiso predicted the possibility of the radiation of radio
waves.

3-2 Moving Coordinate Systems
If we have two coordinate systems, (x,y,z) and (x*,y*,

z*) and if the starred coordinate system is moving relative to
{x,y,Z) at a constant velocity v in the direction of the posi-
tive x-axis, then we should certainly expect to be able to ex-
press the coordinates of a point (x,y,z) in terms of the cc-
ordinates (x*,Y#,z*). If we assume that the two systems
at time t = 0 then at some later time, we have

x? - vt
(3.9)y* =

z* = z

Such a change of coordinates is called a Gali an trans
formation, and it is apparent that Newton's laws of motion for
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& mass point will be the same in either system since there 18

no relative aeseleration. However, if we inquire how Maxweil's

Field Equations behave under such 4 coordinate transformation

we find very quickly that their form changes radicaily. A

simple physical exampie serves to iliustrare this point. Sup-

pose we have a uniform magnetic field B at rest in (x,y,2) and

a charged particle at rest in (x*,y*,z*). In the unstarred

system we would measure a magnetic force since the particle is
moving, 1.e., F=qvxB. In the starred system the particle is
not moving and hence no magnetic force is possible.

It developes that the form of Maxwell's equations and the

general electromagnetic force equation (the ponderomotive equ-
ation)

(3.10)
remains unchanged under quite a different coordinate trans-
formation called the Lorentz transformation. (However, the
form of the field vectors must be changed in order for this
invariance to hold).
3.3. Elnstein's Derivation of the Lorentz Transformation.

In addition to the trouble with Maxwell's equations, by

1905 there were two sets of experimental data which indicated
that not all physical laws were constant under Gai trans
formations. In the first of these experiments Fizeau set about
to find the velocity of light in a moving liquid of refractive
index n. If the light propagation was unaffected by the liquid
motion one would expect to measure a velocity w= If the
light propagation depended entirely on the liquid one would
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expect to measure a velocity w=5 iv where v is the velocity
of the liquid relative to the earth. Actually, Fizeau found
that neither answer was correct but rather that

an intermediate value.
This strange result led Michelson and Morley to their

famous experiment by the following argument. Certainly, neither
the earth nor the moving fluid constitute a "preferred"
ate system in space then we should be able to detect the change
in motion of the earth relative to this system by measuring the
velocity of light from distant stars at two times,one-half :rear
apart ,between which times the relative velocity of the earth
would have reversed. The result of this experiment was com-
pletely negative; the velocity of light from the stars did mot

change.
This result led Einstein to make the following famous

assumption; the velocity of light in free space is indepenien:.
of the motion of the observer. We can now follow the con -

'bequences of this assumption. Imagine a spherical wave of
light starting from the origin of coordinates at time
when the starred and unstarred coordinates are coincident. Py
Einstein's assumption this spherical wave will be propagated 1

both systems according to:
2 2x+y + = 0%t?2

and, ? (3.11)
2. 2x* + y* 2 =
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We desire to find the functional relation hye

two coordinate systems, but we have not assumed that cle time

must be the same in each system, as does the Galilean trans ~

formation. Although the Galilean transformation seemed correct
for the dynamics of mass-points (Newton's Laws ) this may have

been only because the velocities invoived were very much lower

than ec. Since it is very desirable to have the liws of

as well as electromagnetism obey the same laws we shai require
that our new relationship reduce to Gaillean transformstion fer

c.
Let us rewrite equation (3.11) se that

xe, yee ze? - 2pae ~ x7+ y= 2° - e@t? (3.420)2.

and aseume

x*= ol(x - vt)
ye=y (3.23)

2* = z
a (t - 3 x)t *

Substituting (3.13) in (3.12) and collecting
24° and xt respectively, we have

at - =]
a =e
*ys = 0

of x

7 + 2

Since x and t are independent, their cceffictents ana .

those of xt must independently satisfy (3.14).
The solutions of (3.14) are:
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The second set of these solutions is obvicusly non-

physical. Prom the first set we will chocse tre poritive
roots as corresponding to the velocity direction we have x4 :

chosen, and hence we have the well-known Lorentz t : : :

p*

a
*

aA

y = 3
= t- we.

b=
where 2

2,4 Kinematics in Special Relativity
The first consequence of these equations

Can dnewer equal or exceed c for a material particle. A

conse juence ig the apparent contraction of
we piace ourselves in the unctarred coordinate syate: an'
the length of a body (at rest relative to
tremities are at x and X, we would achieve tie
But if this same body is in the starred Coe :

woule find

2%,-%, (xB ~ xf)
and henee the body is foreshortened in the direstion
motion. (The Fitzgerald-Lorentz contraction). Similarly

t : a

moving clocks apparentiy run more slowly to a fixed observer.
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w+ on + chy

Since v we can expand and neglect higher powers of Shc.

oe te:

G

Doppler Effect
If a source of light waves is moving relative to the

observer the observed frequency will be shifted from the value
in the case where observer and source are fixed, even though
the observed velocity is constant. Classically the frequency
shift is given by

fe = e(it
where the plus sign is to be taken if the source 18 mcving
toward the observer. Relativisticaliy this expression must be

@ modified, since there is relative motion of the coordinate
systems of the source and the observer, so that

f* p*
If v is small compared to c we can write this, neglesting

higher order terms in v/c,
fe = f(1 + v/e +3 )

Hence the relativistic correction is of second order,
but its sign is independent of the direction of the motion.
Ives made use of this fact in a recent experimental proof of
the correctness of the relativistic expression. He measured the
shift in frequency of the monochromatic light emitted by hydrogen
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atoms moving in opposite directions in a discharge tube.
Classically the average value measured would just be equal
to the frequency of light emitted by atoms at rest. Relativ-
istically the average would be shifted from the rest value by
an amount equal to The relativistic shift was detected
by Ives.
3.5 Relativistic Dynamics

In an isolated system (no external forces), both the
momentum and the total energy must remain constant, at least
according to Newtonian dynamics. We should like to find the
corresponding quantities in relativity which stay constant in
isolated systems, and also the law relating these quantities to
the forees of the system. We proceed in much the same manner
as we did in deriving the transformation laws, but since the
algebra is very tedious we will simply state the results here.

The momentum vector becomes

(3.18)p«
and the energy becomes

+ U (3.19)

where U is the potential energy.
We have written m, instead of m to imply that m, is the

measured mass in a system in which the mass point is at res'.
We can then regard as the mass when the particle has
a velocity v relative to the observer.

The law of motion becomes, then,



(3.20)dle)
dt dt dt

By integrating along a path s and defining the change
in potential energy as

tp-Ty=- [P-ae
we find that the total energy W is a constant of the motion.
The proof of this statement is left to the problems.

The expression for the total energy W implies that there
2isa "rest" energy mc" even when the particle 1s at rest.

Ample proof of the reality of this rest energy has been given
of late. and this prediction of rest energy is one of the
great triumphs of relativity theory. For the purposes of this
course we shall define the kinetic energy as the energy due

the motion of the particle and this is

ReE {3. 21)

It. is obvious that the expression for momentum reduc"2
its claseical value when v ccc. That the kinetic energy 24855

reduces to its classical value can be seen by expanding the
term in parentheses in eq. (3.21) by means of the binomial
theorm, t.e.,

2 of

KE =m.e"(1 4 + 8
neglecting powers of greater than the second, thie becomes,

2
mv2
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and hence the relativistic laws give the correct result for law

velocities.
A useful relation whose derivation is left to the problems

KE (3.22)

is:
+P 22

.6 Motion in a Magnetic Fiela
If a chargedparticle moves in a magnetic field (at

relativistic velocities) our equation of motion becomes

Vx (3.23)at i-p
The v and will not bejust a scalar (v vterm in )

changed in a magnetic field as we can see by taking the dot

product of with both sides of the above equation,
q

qvgr a
x Bd Ma V

The right hand side anv ° B, the power or rate of doing work,
and it is identically zero. Hence as in the classical case

athe magnetic field does no work.

Let us assume that initially is perpendicular to B
and using cylindrical coordinates let us set, in eq. (3.23),

> _

and
>B=i, B,

time (3.23) becomes

A,

and since Yo cannot change with the> >Then x B= i

9 Vo dig
i- B dt
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By eq. (2.10.7)

and hence
dt ~ % dt

BzVe

Where the negative sign simply means that the force is
centripetal and has no other significance. Since
the radius of curvature we have,

Mo V:
_ qkB, >Vs-pr

or generally for circular motion in a magnetic field

p= QRB (3.24)
B*

where p is the magnitdde of the momentum.

3:% General Remarks

It is difficult to give any general rules concerning
when relativistic formulae must be used, 1.e., when the
classical laws break down seriously. As a sort of general
condition it is not too conservative to use relativistic
formulae whenever the Kinetic Energy of the particle exceeds
10% of its rest energy, mer. In certain resonance phenomena,
for instance the motion of particlesin cyclotrons, 3 or 4% is
probably a better figure.

A numerical example may help to illustrate: The rest
energy of an electron is

me? = 9-11x10 9K100 = 8.2x10 joules
=31 +16 =14x

or
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14

1.6 x 10 ev. or .51

Hence for kinetic energies of 51,000 ev.

} = 1+0.1

v= 416
And hence even at 50 kv the electron has

the speed of light, and its mass has increased
proton is 1837 times heavier than the electron
energy is about 935 mev.

For any particle
KL

mev.6.2. 8.2X10

we have

5 10 51x10 (5 6 1) or

solving 1736 and

reached 40% of
by 10%. The

so its rest

(3.25)a |
1

m, a
Be

Pig. 3-1 shows the quantity lotted as a function of

comparison.

The classical value is given for the sake of
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HiGH NERGY PARTICLE WcCELERATORSCHAPTER IV.

Im omier to study tha properties of the atomic nucleus,
and to provide extremely high energy x-rays for medical and
metallographic uses it is necessary to accelerate charged particles
to energies in excess of one million eleetrom volts. Conventiona)s
tLransformer-rectifier type high voltage suppiites are difficult to
comatrmuct for these potentials because of the insulation prcblems
involved, and furthermore such supplies do act give a

woltage, Novel methoda of acceleration are require, therefore,
These methods of acceleration can be divided into three

general
1) Direst Voltage
2) «Resonance
3) Induction
The very highest energies, cver 100 to 500 Mew are ob-

tained by combination of the latter two methods. In this chapter
we shell attempt to describe examples of the more widely used
accelerators; in any event we shall cower those principles which
are fundamental ta all particte aceeliratore.
4.4 The Electrostatic

The most widely used of the cirect voltage machines is
the electrostatic or Van de Graaff generator, This type cof

accelerator, while limited ta voltages of the order of 10 million,
is a remarkably gtable souree, and is the most vreelae source of
high voltage now existant; stabilities of one part in 10% are
practicable. With such stability this type ef machine is most
useful for the ACCure o: wuelear energy levels,
although recently, wis 38Pt use a8 & Fourcé of high energy x-rays
has been made.

The principle of operatioa is quite simple. The high
voltage terminal is a suitably shaped metallic sheti (for instance
@ spherieai shell). The high voltage terminal is charged to a
high potential by conveying eieciric charge from ground to the
terminal by means of a vapldly wewing insulating belt. Fig. 4.1
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im order to obtain a potential of sof volts it is necessary
to have a sphere whose radius,

10
3x 106 x meter.16

For stable operation a radtus of about two times this is
required,

While the inherent stability of an electrostatic
generator is quite good, this stability can be greatiy im-
proved by the use of "feed-back" systems; i.e., amy gmali
change in the voltage can be detected and used to affect
the charging current so that the wariation tends to be
suppressed.

The electrostatic generator works squaily well for
positive or negative, heavy or iight particles.
4.2 The Cyelotron

When one tries to increase the potential of a direct
voltage device beyond i060 miiiion volts the imaulating require-
ments become aimost insurmountable. If we are to obtain
particles of energy much in excess of 10 e.v. then we must
resort to some other means of acceleration, Although in 1925
am elementary form of linear accelerator {see Sec. 4.8) was
succesefully used, the first important dewelopment of resonance
acteleration was the cyclotron of E. 0. Lawrence, The
trom works on the aimple principle that the angular
of 4 sharged particle moving in a magnetic field is a constanc,
and is given by,

w=g/m B

ie mot conatant, of course, im the relativistic region).
if now we continue to apply am RF field of frequency

{4.4}
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in phase with the angular volocity W of the particles a

magnetic field, we stould be able to transform the RF enerry
into particle kinetic energy.

This principle may be readily understood by referring

through the accelerating chambers. The electrodes or }Dees

pill box split along a diameter. Charged particles, generally

to Fig. 42 which shows horizontal and wertical sections

can be thought of as the two halves of a hoilow metallic

HORIZONTAL SECTION VERTICAL SECTION

Fig. 4.2
protons or deuterons but sometimes & -particles, are éreatea
near the center of the electrodes hy direct donization of the
gas in the chamber or by a suitable ion gun. If now an RF
field is applied to the Dees these particles will find them-
selves acted upon by an elestric force which will tend to
accelerate them. When the particles pass into the hollow
dee they will no 'onger be acted om by the RF field, but the
magnetic field will bend them in a circular are traversed
with angular velocity . If the particle is favorably
accelerated on its first trawersal of the gap, and ifit will again be accelerated con its second and
aubsequent traversala and will follow the spiral path shown,
gaining energy on each traversal of the gap. Particles whichstart in an unfavorable phase wiil soon be lost.



Since,
amd

KE = 2 3)
&.

KE
+ 2= MV = ME r2 a1

the kinetic energy at any radius r. The kinetic energy
is independent of the RF voltage and depends only on the
size and.intensity of the magnetic field. The energy of the
emerging particles, at radius is then

Ke = 3 (2) 2r? (4.2)1

Equations (&.3) and (4.2) are the fundamental
rejationa for the cyclotron, It is apparent that the re-
sonance condition (4.1) cannot be satisfied at high speeds
because of the relativistic increase of mass, and in fact
constant field and frequency cyciotrons are limited te
kinetic energies of about 1.5% of the rest energy m &

which 1s about 30 Mew for deuterons. it is obv?' ous from
this that cyclotrons have no practical use for accelerating

2

light particles (electrons) since the limiting energy would
be of the order of i0 Kev.

4,3 Resonant of

However, an interesting application cf the cyclotron
resonance principle to the precision determination of the
electric sharge to mass ratio was maie by Dunnington {then a
student of Lawrence) about 1933. Referring to Fig. 4.3 an
evacuated chamber is placed in a magnetic field, perpendicular
So the page aa shown. Electrons are emitted from a scurce &

and can be collected at C. The segment SC is insulated from
the main can A, and a fixed radio frequency field is applied
between them, An appropriate slit system is provided as
shown. Electrons leaving S wilh be accelerated by the RF field
in crossing the first gap. (Electrong which emerge during
a decellerating phace will be quickiy iost and need not con-
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cera ue here}. twitially @:

\A

\ by

Fig.
selector since oniy those electrons which satisfy

my
3)

Le)

cam arrive at C. Now if the applied frequency imitialiy
low 30 that the electrons mowe from the first slits to the
final siits in less than a period then the decelierating
force at the final slit system is less than the accelerating
force at the initial slite. Hence, ali the électrens of
correct Vv, are ecilected. If the frequency is adjusted sa
thet the time of flight is exactly one period then the
decellerating force is equal to the accelerating force.
Further increase of the frequency wili then cause 4a sharp
drop im the current ac C.

The cendition for this is,

Oo 4v o 8 {2 @ f (4 4
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Coobiniag (4.3) and (4.4) we have

(2 T ~

B
Q

where f is the frequency at which the sharp drop in
curreat begins. This method is capable of good precision
and has probabiy given the best dynamical walue of e/m
which hes been obtained.
44 The FM Cyclotron

we are to accelerate particles to kinetic anargiag
greater than 1 or 2% of their rest energy by cyclotrom prin-
ciples it ia evident from eq, (4.1) that we must vary efther
Bor f in order to make up for the relativistic nass change
Au first sight 1 would aeem proper so shape the magneric

B sc that 1t is increased 88 increased in Just the
Sane Manner a8 the masa incregses with radius. [Ba woule
involve no changes with time and the cyclotron would remain
a continuously acting accelerator. Unfortunately, for
atabllity reasons, it is nesessary tc decr-age B slightly
as pr increases. Increasing B with r woul] leaa : defocussing
im the vertical direction (the direction ox S;, Hence, the
omly possibility is to wary the frequency with time.

Now if the frequency varies with the time, two con-
ditions will be imposed om the cyclotron operation that are
not imposed on the operation of the constant frequency cyciv-
trom. Firatiy, omly those particles which start from rest

eyelotron opefation wiil not be steady but will be pulsed.
Secondly, the frequency change must just match (inversely)
the change im mass of the particle. But the time rate of
change of the particie energy, and therefore wass, will de-
pend om the RF field when the particle crosses the gap be-
tween the dzes. Thus it would seem that the osedilator
frequency must be externally synchronized with the rate at
whien the particle gains mass. Fortunately for eye lotron
constructors such ia not the case, within limits, as will

1

phen f B willbe accelerated, and consequently the1
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be seen.

The Principle of Phase Stability
We will endeavor to show that under the action of

a frequency-modulated field the particles will tend to re-
main in the right phase for acceleration to take place and
for the relativistic resonance condition to be satisfied,

o*

f= or m (4.5)1 1
K.E.

where f and K.E. are the instantaneous values of frequency of
field and kinetic energy of the particles

ft \A

Fig, 4.4

In Fig. 4.4 let us assume that a particle which comes
through the accelerating gap at A receives just the right
energy to come through the sap a cycle later at A' in the
identical : : : :
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A particle which arrives at the gap a little later
than the "correct" particle, phase B, will receive less
"kick" from the RF field and will tend to catch up, phase
B'. At first this sounds backwards but we must remember
that the time required for a particle to make a revolution
is equal to,

and hence the late particles will gain less energy and
therefore mass, and will tend to make the next revolution
in less time and will tend to catch up to the correct
particles. Similarly, particles arriving too soon will re-
ceive more kick, will take longer fora revolution, and will
tend to be caught by the correct particles, phases C and C'.
Hence, the motion on the right side of the positive cycle
4s stable in phase, and will remain so if the frequency is
not varied at too rapid a rate. Particles on the left-hand
side of the positive cycle are in an unstable phase and will
soon fall out of resonance.

Hence, the beam in an F.M. cyclotron will consist of
several groups of particles bunched in phase whéch in turnwill constitute a pulse. The number of bunches per pulsewill depend on the rate of change of frequency with time.

Such an F.M. cyclotron has been in operation at
Berkeley for about two years, producing 200 Mev deuterons
and 400 Mev xX-particles for a total frequency change of

2TTmB~
WwW

about 18%. The energy in such a cyclotron is given by therelativistic expression,

(4,6)
These two equations (4.5)and (4.6) are the fundamental

relations for F.M. cyclotrons.



a Bevetronik
:

We have already examimed the cages of the direst wot-
@ tage accelerator (electrostatic machine} and the resonance

accelerator (cyclotron). There remains a third Class, the
induction accelerator, of which the so-called betatron the
principal,if not only, member. As its name implies the beta-
tron ts used as a source of high energy electrons Beta rays)
amd works on the principle of acceleration by induced electre -
wtive force,

Consider an electron which 1s mowing in a circular orbtt
of radius r If this orbit links magnetic flux which 4a
changing with the time there will be an emf developed which
will produce a force on the electron. Purthermore, if the
orbit and the flux are both symmetric about a common axis,this force will be directed along the circular path {in the
azimuthal direction), and will accelerate the electron if we
choose the sense of the rotation to satisfy Lenz' law. The
orbit itself will remain circular prowiding

{4,73p =B_er
where B, is the magnetic field at the orbit and must be &
function of the time, since p 1s to increase. The emf de-
veloped is

ent = 32 (4.33
where @ is the total flux linked by the orbit. This emf will
ado work om the electron and the work per revolution is,

Work -e at
This ie the same as having a force P acting on the electron
and we may write

Work -- e Rag
at

or
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vd # » we nave

(4.10)5
a*

integrating, we have,

pe- (g - (4.43)

where 3 %, are the initial values of the momentum and the
flux. If we start the electrons in guch a manner that

e
Pa = B

then

a (4,32)

for the duration of the acceleration. Using eq. (4.7) we have

Boer, Bit) g

or

ann,
3

by definition B , and hence,
Tee

«2

(4.133AB :

or the field at the orbit must be 1/2 the average field en-
closed by the orbit in order that accelerated motion at ton-
stant radius be possible. Equations (4.7), (4.32) and (4,13)
May be regarded as the fundamental relations for the betatron,
when taken together with the relativistic energy equatron
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For very high energies (~100 Mev) the m terms in
(4.14) may be neglected and we have,

K.E {m )+(B er (4.14)

(4,15)

and it is seen that the produst Boro 1s a measure of the xinetic
energy attainable. For large energies we want large fields and
this implies the use of iron cores. Such cores saturate around
16,000 zauss. The energy, however, is determined by Bo the
orbital value of B, and this cannot exceed one-half the satura-
tior value. Herce, the betatron in limited in energy (for a
given weigh! of iron) to values corresponding to & - 6,000 gauss.

Actually, closer examination of the fundamental equati cus
allows somewhat higher values. It is actually the time rate of
change of the field at the orbit which must be one-half the
time rataeof change of the average field. By appropriate D.C.
biasing the magnetic field at the orbit may reach higher values,
but not the normal saturation values.

Since the magnetic field is changing with the time
jaminated iron 13 necessary to cut down eddy current losses,
Even with laminated irom, however, the frequency most widely
used is 60 eycles, although, as we shall see, a higher frequency
would permit higher energies. The frequency of 60 cycles is a
good practical compromise between particle energy and power
requirements.

In practice the magnet and 4 condenser bank from a re-
Bonance circuit whose free oscillation frequency is the desired
60 cycles. With the magnet diaccnnected the condenser bank is
charged from the line or from an auxiliary generator, The con-
nection to the magnet is then made and simultaneously low energyelectrons are injected into the orbit. The first quarter cycleof the discharge is used for acceleration; afterward the stored
magnetic energy is returned to the condenser bank. The average
power required from the line is then jusst that
roughly 20%, which is lost due to resiatanee in the connectors
and condensers, eddy currents and hysteresis...

ra



ge acceleration process is 4. some ome (in the time
scale of the electrons) requiring ome-240th of a second.
since the electrons are moving approximately with the speed
of ight most of the time, they travel about 10" meters cr
Lo, 050 pevolutions of 1 meter radius, which is the radius of
the .E. 100 Mev betatron. The energy acquired per revolution
18 thus about 600 ev, (Comparing this energy gain per
revolution with e 4a left to the problems. )at

Very many betatrons im the range 2-20 Mev have bean
constructed for x-ray use. The @.E. 100 Mew betatron is the
kargest now operating, although one for the 300 Mev range is
under construction at the University of Illinois.

There are, however, better ways of achieving high
energies. In addition to the high cost and the unfaverabie
condtion imposed by eq. (4.13), there 1s another very serious
limitation to the maximum energy to be obtained from the beta-
trom. It 18 well known that accelerated charges radiate.
The azimuthal acceleration is small {for electrons), but the
centripetal acceleration is about 10? times larger. Theory
predicts radiation along the forward direction of motion of
the electrons at a rate which 1s proportional to the fourth
power or the kinetic energy. At energies of the order of
100 Mev this radiation becomes appreciable, and has actually
been observed visually at @.E., but at energies of the order
of 500 Mev 1t becomes limiting. That is, the electrons radiate
energy as fast as they receive it from the Induction field.
The only way to make up for this is to vary the magnetic fieid
at a fuster rate in order to increase the rate or acquis? tion
of energy by industion. Such an increase in ie impractical
for iron magnets but might be practical for am air-cora magnet
However, we shall see in Seetion 4.7 there are better ways
cver these difficulties.

Fig. 4.5 shows a cross-section of a typital
betatron. The air gap is necessary in order to get the properfield at the orbit. In addition to the requirement that

a
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4.6 Stability Jn Maenerte Accelerators
We heve seen Theat tre phase atari

is necessary for the Sue & 5 igh oparation of resowant wag
metic aceeleratocra if the KK field changes wath time.
che magnetic field were to change with che time with the
RF field constant {the synchrotron) or if both fields change
with the time {the FM synchrotron), this prineiple is still
walid and is essential for operation, However, we have not
yet considered stability g ta keep tne part i: les
at the right radius and to prevent them from coiliding with
the top and bottom of the accelerating chamber, r and
2 stability. The following discussion ig walid for al} mag-
metic accelerators.

Let us assume that the field ig not quite uniform and
that besides its usual 2 component Bo» it has as well an r
component B Then the equations of motion for the r and
z directions are, for a negatively charged particie,

4

2a r
at2

de {4.16)
at"

The above equations are based on the assumption that
the f4eld is sylind: icaliy symmetric, tnat Bg=0, and that
time variations in B can be neglected since these are yery
slow. That is, we wish to investigate the variations of r
and z from their equilibrium values, Py and 0, respectively,
in short times. In this approximation we may consider
the kinetic energy is constant so that

wherqdVo is constant.
The equilibrium solution of eqs. (4.16) is then, for

ar\* a2 ag
(at)
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rsr

d@ dz ar (4.18)
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We wish to Investigate small departures from the
equilitvrium aolutions. Let us set

tu, (4.193
ge
at

where r', w' and z are small quantities,
Let us assume

then :B ( )

By Taylor's expansion,

and

by eq. (3.4), we have*

dB, dB,
~

{4.22}
and hence,

on
- {B ror + +

fe) ar Yr

awr™ @ rero*

ZY NZ (4

Let ug now examine the energy relation (4.17) anc sub-stitute our assumed solutions (8&.19) in it. We have
~ - ~ ~* Actually we muat first transform eq. (3.4) to cylindricalcoordinates. Then neglecting real current and Eaf Pawhich is consistent with our present approximation, we have,

OB, 3H,
» from which (4.23) follows.2 7 OFT
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when we have neglected products of the small quanti tes,
and tol,

Bet us now substitute our eapresstons
{4.23} and (#.24) in the equations of motion {4,162
for the r motion,

cy
e hava

Le}

1 2

at"
ofremenbering that and meglecting produces

quantities this expression becones,
k r

of Gor Fr

Using equation (4.24), we have
Y

pe

And hence the r wotion is stable if nei.
Let us mtw examine the equatiom for 2,

2
+ Gs

a :

which becomes om neglecting products of gmail quant*t
(remember z itself is amail),
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aes mance Por stable z motion we must Nave Oo

Taking 998. (4.25) and (4,26) togetner we require
aj.

21 I8 custonary to take m about to
synehnot rons. This tends tc ra luce the ous,

: be sure, bn The
is the direstion increasing gap.

you

The synehretron 18 primarily 3 type cf resonance
a" Te in whith the wagnetic field is varied wteh tne
Lime. In the ordinary (electron) synchrotron the particles
move G6 a eireular orbit of radius
an R.F, fteid. Let us assume that Mev electrons <n-

and are accelerated by

fortes drto sth as orbit Tre @ Pel dhs gerard,
with a velocity of .98 ac that the acceleration, If you pleags,

@ process takes place at almcat tonstant welocity, .8., the
MENS ANA energy increase although the velocity inareasea but
Blightiy. if we apply an R.F. across a pair of @lectrodes,
torcagr we tre €: & T° KONA pase, the New we & wh + stay in
resonance with the field providing,

f 2ry

am order for tha to remata4 io @ wf ce tel
cf raudue Fi» We must have

x
:

Sune @ increases with the -<Ine we met hawe Bo

with the time alse.
The ugual type of accelerating chamber for a avaches tron
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Fig. 4.6

The chamber consists of a hollow metal doughnut with a gap
across which the RF is applied. Except for the time of
passage across the gap the electrons are moving in electric-
field free space. Since the magnetic fieid must increase
with the time, just as in the betatron, the acceleration
Frocesa 1s siow, and only moderate RF voitages are required
af the order of 5,000 volts for a 300 Mev machine. While
there 1s always some betatron action, 1.€., induction
acceleration, most of the acceleration comes from the RF
field. The synchrotron has three distinct advantages over
the betatron;

1) The relation Bo=5 Bay no longer is required.
2) No field is required inside the orbit, so the iron

may be used economically.
3) Radiation by the electrons and the concurrent loss



anergy can be mage up for by the
RLF. voltage.

In practice all aynchrotrons now cperating and 417 but
one now buliding start with betatron action, since the time
varying magnetic field is present. When the electrons have
atteined relativistic energies, about. 2 Mev, the field inside
the orbit is made to saturate and the RF field is turned on.
Since electron synchrotrons are used only for energies very
much greater than me® the final energy is very nearly given
DY,

K.E. = Boryec
where By is the final value of the orbital field, and vaiues
very near to the saturation walue for iron tan be used.

Acoording to eq. (4.28) the magnetic field must change
at the same rate as the mass changes. No device is required
to insure this, however, since the principle of phase stability
applies.

Although losses from radiation are much Jess important
in the synchrotron than in the betatron, nevertheless the
acceleration process cannot be carried out indefinitely. At
103 Mev the radiation losses are such that 70 Kev of RF energy
must. be added per revolution to compensate. Hence, RF in-
Sulation provides the practical limitation in energy, which 43
probably about three times as great as that in the betatron.
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@HAPTER FIVE. ATOMIC STRUCTURE

Ref. M. and &. Chap. IX

One of the mest potent bits of evidence that atoms
possess an internal structure is the fect that, under proper
conditions, they emit radiation in the form of spectrum lines.
The problem of atomic structure is to devise a model which, on
the basis of known physical laws, will account for these lines.
At first sight On the basis of classical mechanics, we might
suppose that if an atom emits a spectrum line of frequency
then it must contain within it an oscillator of this same
frequency. But we soon run into difficulties with such a
theory, as is now well known.

The essential feature of atomic spectra, which was early
discovered in a purely empirical manner, is that it is possible
to discover a series of numbersorso-calledspectralterms,
such that by taking differences between these numbers we
arrive at the frequencies of this observed spectral lines. The
number of such spectral terms required to explain a given spectrum
is, in general, much smaller than the number of observed spectrum
lines. We shall not here go into this matter in any detail,
such as the way these spectral terms fall into groups, with
certain selection rules to say which terms do or do not combine,
but for the present content ourselves with the existence of
these spectral terms. The problem of atomic spectra will
therefore be solved if we can devise a model which will account
for the spectral terms and give a correct set of selection
rules stating how these terms are to be combined.

Various pieces of evidence, notably Rutherford's experi-
ments on the angular distribution of &-particles scattered by
atoms, point to the fact that an atom ccnsists of a small,
massive core carrying a positive charge Ze, surrounded by Z
electrons. These electrons are thus acted on by very strong
electrostatic forces of attraction by the nucleus and in order
to prevent collapse of such an atom it is necessary to assume
that the electrons are in motion. This leads to a fundamental
difficulty since these orbital electrons will be undergoing
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acceleration; we have seen that according to classical electro-
magnetic theory a charged particle moving with acceleration
will radiate energy. As the electron radiates, its energy will
change and so too will its frequency of motion. Such an atom
should therefore emit a continuous spectrum, contrary to ob-
servation. We must, therefore, postulate that when an electron
4s bound to an atom it does not, in general, radiate energy
even though it is moving with acceleration.

More generally, Bohr in 1913 laid down the following
fundamental postulates.

1. Atoms exist in "stationary states", without

(absorbs) a quantum of energy, i.e., electromagnetic
radiation, of frequency f where

radiating. w
2. When an atom changes from one stationary state

to another of lower (higher) energy it emits
1

2

(5.01)ne =

The constant bh is the one introduced by Planck some years be-
fore this to explain the spectrum of a black body, and success-
fully used by Einstein to account for the photoelectric effect.
These postulates of Bohr are extremely important. Atomic theories
differ in the way energy states are calculated, or in the atom
model used, but Bohr's postulates remain unaltered.

In order to calculate the energy states, 8, it is necessary
to set up an atom model and make one additional postulate which
introduces the constant h, i.e., quantizes the energy states.
In the Bohr theory it is the angular momentum of the electron
which 1s quantized. We (arbitrarily) say that the angular
momentum is an integral multiple of and will attempt to
make this choice more plausible latter. As an example let us
consider the simplest case a single electron in the field of
@ nucleus of charge + Ze. For simplicity we wild consider only
the case of circular orbits. The electrostatic 'force between
particles is given by

2

(5.02)
Ze
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and the potential energy is

(5.03)

We have already seen that gravitational forces can be neglected
in comparison with electrostatic ones in problems such as this.
Since the nucleus is very much more massive than the electron
(M ~1840Zm) we can assume the electrom to revalve about a
fixed center (infinite nuclear mass). Then we shall have

2 2

HITE r (5.03)

where V is the orbital velocity of the electron. But
2B=5 mv + V

2
(5.05)- mv2

Note that from Eqs. (5.04) and (5.05) we have

22 1= mv (5.06)22

80 r

3 1 Zee (5.07)12 -22

The minus sign in Eqs.(5.07) means that work must be done to
remove the electron. The angular momentum, mvr, is to be
quantized, so

mvr = nh/eTy \(5.08)
From (5.04) and (5.08) we get

whence
ze*

2 eo

Ze nh2
{5 .O9)KITE mv 2Trmy

(5.10)2 € nh



RD

23
(5,11)

and
2 4

(5.12)me e
nh

We have thus obtained the energy states, for a hydrogenic
atom) i.e., hydrogen (Z= 1); ionized helium (Z = 2); doubly
fonized lithium (Z -3), etc. The lowest energy ctate is
given by n=1, and this is the normal, or ground state, of the
atoms. The frequency of the radiation emitted in a transition
from a state En to a state

Eng (n,> ns) is thus given by
1

(By - By ) (5.13)mZ e 11

2

It 1s customary to measure frequencies in wave numbers (re-
ciprocal wavelengths): and when so measured we shall denote
them by f. Thus

(5.14)1
A e

+

so that if we put
hR= me (5.15)

we shall have, for the case of hydrogen (Z = 1)

f= (5.16)1

My2

Now just exactly this formula with n,=2 and n= 3,4,...
had been found empirically by Balmer to fit the lines in the
so-callled Baimer series in the spectrum of atomic hydrogen.
Balmer found that the constant R { he Rydberg constant) had
the value.

Ry =10,967,758 m2 (5.17)



83 -

If we put the usual values of the constant in Eq. (5.15)
we obtain

9.107 x 10 x(1.601x 10 4

8x(8.85 x 10 2.9978 x108
31 19R=

=1.0974x10" mt (5.18)
which is a remarkable argument. The corresponding spectrum of
lonized helium (Z=2) would be given by:

f=4r( - n=2,3,4,... (5.19)
1
44

Empirically we find

Rye= 10,972,226 mt 5.20)
which is slightly greater than This, too, is understandable
when we recall that we assumed the atomic nucleus to be fixed.
Actually, both nucleus and electron move about their common
center of mass and the effect of this is to replace in in all
of the above equations by

n= (5.21)
where m is the reduced mass of the electronand depends on M.
With this refinement, theory and experiment are in almost per-fect agreement .

Equation (5.11) tells us the "size" of a hydrogenic atom.
For hydrogen in the ground State, l.e., Z =1 and n=l we get

2Eng.85 (6,61x10734 2

(1, 60x
r=

= 5.27K 10 m = 1507 a (5.22)
11

as. the radius of the first Bohr orbit in hydregen. Thus a
normal hydrogen atom has a diameter of about one angstrom.
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Returning to Eq. (5.16) we see that a number of other spectral
series are possible. Some of these are

Lyman Series n,=1; n= 2,3 h
Paschen Serles n,= 3; n, = 4,5,6,...
Brackett Series no= 45 n= 5,6,7 >

3

Note that for each of these series the frequencies of successive
lines in the series come closer and closer together as ny in-
creases, until we reach the series limit corresponding to n= co,
It is convenient to represent the term values, or energy levels,

an energy level diagram,Pig. (5.1).

E(e.v.)
13.58

1.219 12.07
685 12.734

3

2.742 10.192

q
g a

g

a
a 9

et et

wm

10.968 0

Pig. 5.1
ENERGY LEVEL DIAGRAM FOR HYDROGEN
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The numbers on the left side cf the dlarram represent the term
values in wave number units, and on the ight the corresponding

emission of a spectrum line then corrssponds to « transition.
downward from one energy level to another. E.g. the Ha line
of the Balmer series corresponds to th > transition from the
state n=3, -1,218,600 mn (-1.508 ev) to the ucate n=
-2,742,000 (-3.394 ev) and the way2 number this line is
then 1,523,400 m7} (1.886 ev). The we velength i given by

energy is given in electron volts measured from tl: e ground state.
The quantum number, n, refers to the correspondiry; orbit. The

1

(1A=10 10 m).

d= 2= 6.583% 10 m= 6583 A (5.23)

Otner lines in the various series of ~he hydrc. 1: spectrum are
indicated in Fig. 5.1.

The treatment cf the hydrogen ::tom given -bove is overly
simplified, but 1t does bring out the fundaments 1 soundness of
Bohr's theory. Among the aspects mes ceted is : pessibiiity
of other than circular orbits. The g meral ort! of a partici
of negative energy in an inverse squ irc ttr 2 Field
ellipse. It was *hown by Sommerfeld hat essentii: lly the same
energy levels occur for elliptic orbi unless relativistic
variation of the mass of the electro: is taken :1: %0 account.If this is done the energy levels are split, rise to a
"fine structure". We will not go fur:her into thi subject at
the present time.

The Bohr theory has many weakn We ast. ime that the
laws of classical mechanics hold for an electron in one of its
stationary states, but we subject these same laws : the arbit-
rary postulate of quantization of the angular um. Al-
though the theory can be made to give a satisfacto:;)' explanation
of the spectra of atoms with a single radiating and
thus includes in addition to the hydrogenic spectra, the spectraof the alkalis Li, Ya. K, ete. where the single vaicice electronis more or jess locsely bound and on the "outside" c° the atom,it fails completely secon) most etom:
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namely helium, where it definitely predicts incorrect values
for the energy levels. The resolution of this difficulty
requires a complete revision of the laws of atom mechanics
into the formal structure of quantum mechanics, or wave-
mechanics. We shall not go into this matter other than to
point out that a wave-mechanical treatment leads to the con-
clusion that a particle of momentum p has associated with it
@ wavelength given by

A=? (5.24)

This implies that a beam of electrons, for example, can be
diffracted by a grating or crystal in the same way that light
or x-rays can. Such indaed is the case. It is interesting,
though perhaps not too fundamental, to note that the Bohr
quantum condition for a circular orbit, Eq. (5.08), can be
written in the form:

amr = Mona (5.25)
so that the electron forms a standing wave around the orbit.

A more treatment of atom mechanics would lead
us to the conclusion that we must assign not one but four
quantum numbers to each orbital electron. The number n used
above is the principal quantum number, and is unrestricted
as to (positive) value. The other numbers, which we shall not
discuss here, do not have such freedom; but the point of im-
portance.is that no two electrons in a given atom can have id-
entical sets of quantum numbers. This is known as the "Pauli's
Exclusion Principle" and is of great importance in understanding
the electronic structure of the elements. As a consequence of
this principle it turns out that the electrons form a series of
groups ,or shells, about the atomic nucleus. The innermost shell
ean contain only two electrons, each with n=1 and with spin
quantum numbers (1.e., intrinsic angular momentum) of opposite
sign. The next shell, (n=2) can contain 8 electrons; the next
(n=3) 18 electrons, and so on. In addition, the electrons in
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a shell of given n fall into sub-groups. If the outer shell
of an atom is filled with electrons then the atom is chemically
inert (the noble gases); 1.e., it 1s difficult to remove an
electron from a closed shell. This formation of closed shells
leads to a "periodicity" in atomic properties, so that the
elements can be arranged in the familiar periodic table. Since
we are not primarily concerned with atomic structure in this
course we shall not go into further detail in the subject. The
important facts of concern to us are the existence of fixed
energy states characteristic of each type of atom, and selection
rules which state the possibility or impossibility of trans-
itions between pairs of these states. The case of the hydro~
genic atom treated above does not involve any special selectian
rules unless fine structure is taken into account, as spectrumlines occur corresponding to transitions between all pairs

with n >
For more complicated spectra certain transitions are

forbidden, both in emission and absorption. In order for a
transition from a higher to a lower state to occur the atom
must first be raised from the ground state to an "excited"
energy state, or perhaps even ionized by entirely removing the
outer electron. The process of excitation or ionization can
be accomplished in a number of ways. By electron impact (in-elastic collision); by impact with another atom or ion; by ab-
sorption of radiation. We shall discuss each of these processesbriefly.

When an electron (or other particle) collides with an
atom 1n a gas the collision is in general one of two kinds. Anelastic collision is one in which the kinetic energy of the
system aton-plus-eleetron is conserved, We must of ccurse con-Serve momentum, in accordance with Newton's laws. The atom isin the same energy state after the collision as it was before.Its kinetic energy will in general be different and so, too,will that of the electron, but the sum is unaltered. Suchcollisions tell us nothing about atomic energy states. In aninelastic collision kinetic energy is not conserved. Inelastic

> 1? 2

collisions are of two types. In a "collision of the first kind"
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kinetic energy of the system is absorbed by the atom, which be-
comes either excited, i.e. raised to a higher energy state, or
perhaps ionized, so that it loses its most loosely bound electron.
The relation expressing conservation of energy becomes

Atom elec. (5.26)1 1(KE (K.E.) elec. > (K.E.) + (K.E.) +t JE atom

where AE is the increase in internal energy of the atom. In
a "collision of the second kind" an already excited atom under-
goes a collision with an electron, or other particles. As a re-
sult of this collision the atom drops to a lower energy state
and the kinetic energy of the system is increased by the lost
energy of excitation. Momentum is of course conserved, and
Eq. (5.26) applies, if the arrow 1s reversed. Any collision
in which an excited atom loses its energy of excitation without
the emission of radiation is, in fact, called a collision of
the second kind.

A study of energy losses suffered by electrons under-
going inelastic collisions gives us information regarding atomic
energy states. For a perfectly elastic collision the energy of
the scattered electron is almost the sane as that of an in-
cident electron. This is because the mass of the atom is so
much greater than that of the electron. If energy, as well as
momentum, is conserved in a collision the fraction of the
electron's energy transferred to the atom 1s equal to the mass
ratio of electron to atom, neglecting the initial thermal
energy of the atom which 1s quite small. Thus, if the energy
difference of an electron before and after an atomic collisionis measured the difference must correspond closely to a dif-
ference in energy states. This method of measuring atomic
energy states directly was demonstrated by Franck and Hertz in
a classical experiment carried out with mercury vapor in 1913
shortly after Bohr's first theory was developed. They found
that if a mercury atom and an electron undergo a collision,
the collision is always elastic as long as the energy of the
impinging electron is less than 4.9 ev. But above this velue
some of the electrons lost 4.9 ev of energy which was taken up
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As energy of excitation of the mercury atom. That this is 30
is shown by the fact that a line of the mercury speetrum is

mercury atoms dropping back to the ground state with the emi sion
of a quantum of energy of 4.9 ev (2537A). The method of Franck
and Hersz was refined by Franck and Einsporn, and their ap-
peratus is shown schematically in Fig. 5.2. Electrons emitted
from the filament F are accelerated through the variable

excited at the same time. This is caused by the excited
$

G, Go P

Ve

Apparatus for Measuring Excitation Potentials

Fig. 5.2

potefvtial difference Va between F and the grid G,- A small
potential difference Vv, 4 volt) is applied between the
grids G, and so that in this region where most of the
collisions occur all the colliding electrons have essentially
the same energy. A small retarding potential Ve of about .5
volts 1s applied between the grid G, and the collecting plate
P, the current to which is measured hy the galvanometer Ga, for
various values of Va- The filament F operates below saturation
so that, in the absence of collisions the current to P will in-

@ erease with Vac But when Va Just exceeds a critical potential

2?



te vs enevey co anmed? don In an atom of the pas +
tive tube and if sush am @lectrom makes an inedastic cobiision,
+ electron wii] lose almost al} one its energy amd so a Ly ra

be sollested by P and there will be a sharp drop in the current
to P whenever a critical potentiai is reached, The current
will not increase again until Va exceeds the critical potential
Plus the retarding potential. The apparatus shown in Fig. 5.2is capable of resolving critical potentials which are very
close together. The table below lists some of the critical
petentials for meceury vapour. The corresponding terms values

these are taken from spectroscopic data and so are much more
accurate. Note that éritical potentials are measured above
the ground state, term values below the lonization potential.

he V; and he 8 079 m+ are also listed

term valuesepitical potential
m

10.39 ionization potential
8.86 1,238,610
8.64 1,451,910
8.53 1,529,450
8. 38 1,631 ,660
7-93 2,025,310
7.73 2,183,080
6.71 3,031,286
5.46 013,830 metastable
4 88 4 476,890
4,66 4,653,620 metastable
0 8,417,850

-

grcund state
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will be seem from the table om page 90 that a more careful
investigation with hi : diacloses the lowest ex-
citation potential to be 4.66 volts,
weereas no Line in the mercury spectrum corresponds to a trens'-

{rom thie state ty the ground atate, J.e., a transition
'pom this etate to the ground state is "forbidden" by the
selection rules. Such a state is called "metastable". A
metastable state is a state from which the atom cannot
apomtameously drop to a lower state with the emission of ratia-

She question them arises as to how an atom, once excita
a metastable state, can ever returm to normal, and we see

that thie ean only be dome by means of a collision of the
second Kind, or else by further excitation, followec by an
*Liowed tramsition to a lower state. The lifetime of a meta-
stable state is thus much longer than that of an ordinary er-
eited state and further, depends rather strongiy on the prea-
eure (mean free path). Ordinarily, am excited atom returna to Fa
its usual state, with the emission of radiation, in about
to seconds. The life time of a metastable state under
usual circumstances is about 107* to iG seconds, since the
atom must wait for a collision in order to be able to change
ats energy of excitation.

Suppose a mercury atom to have been excited to the state
of 4,88 ev energy. .All it can do is returm to the Ground state,
with the emission of a quantum of energy of this amount, and a
single spectrum line of frequency f, or wavelength a » given by

7 4

3

A= =%
= 25374 (5.26)3

is emitted. That is, we can excite this single line of the
mercury spectrum by bombarding mercury vapour with a beam of

{the meat exeited state), Similarly, by proper choice of energy
combarding eleetrons we can arrange it so that only a certain

few lines of the complete spectrum are emitted. of course, the
possibility of multiple collisions does not preclude further

@leectrcms of emergy greater rheaA but tess than ev



excitation, but except for further excitation from a metastable
the probability of this occuring is extremely small. cr

aceoumt of Che very short mean lifetime of an ordinary exetiat
For example, suppose the bombarding electrons have an

energy of 5S ev. A mercury atom excited to the state of &.8% ay
energy would immediately drop back to the usual state and emit
the 2536A line, before it could undergo a further collision anc
ve eacited to a state of energy between 4.88 ev and (4.8645. ay.
but an atom excited to the metastable atate of energy 4.66 av
cuuld very well wait around lomg emough to suffer an additiona'
inelastic collision and be further excited (but not ionized,
since 1G 39 > 9.88). Sinee the 5.46 ev energy level 19 aisc
metastable we see that some ionisation wiil occur whenever the
bombarding electrons have an energy exceeding this value, since
10.39 - 5.46 < 5.46. When the available energy of the bombarding
ejectrons exceeds the ionisation energy then in general all lines
of the spectrum are emitted copiously. However, an ionized atom
can be further exctted (or ionised) by raising one of the re-
maining electrons to an excited state, i.e., a state of higher
energy than that in whichit normally finds iteeif. We shall
not be much concerned with multiple ionisation, or Spectra of
iomised atoms and so will not pursue the matter further.

Another method of exciting or ionising atoms is by im-
pact with positive ions, or in faet by bombardment with particles
uf any kind. All of the energy considerations discussed above
Wi1) still apply, of course, but the crobabiitty of such pro-
cesees taking pisec is much less tha tn in the case of electrons
of the same energy, Thus if the fundamental process under in-
vestigation involwes elestron bombardment, any positive (or
negative} ions 3. formedin the crocera wiil play a minos role
in the cverall pieture. Tne reasen for this is becaus2 the
probabilities of excitation or tonigation depend more nearly
on the velocity of the impacting particles rather than on the
energy. Thus an electron and a positive ion of the game
velocity will have roughly the same probability of ionizing
by collision.



wren am electrom undergoes an inelaatie collisicn with
an «com tt van transfer a part of its energy to the atom. tiare-
oy ey rhe,

it, amd carry away the rest of the emergy. In wiew
ar tree well-established photom (quantum) nature of the radiation

ag well as of the photoelecthic effect, it might he
that essentially the same sert of behaviour woulde cee.

woes an atom undergoes a collision with a quantum, 4 e. & is
eacvopee Co padiation. Thus 4t might be thought that any

am baying an energy greater than 4,66 ev could excite 4

amemtury atom, transferring thia much of ite energy, the re-
mainder going om as a quantum of lower energy. While such 2

procesy energetically possible the probability of its
oceuring is practically negligible unless the quantum loses ex-
actly ALL of its energy. Thus excitation of mercury fe the
4.88 ey atate by absorption of radiation can take place only
by absorbing a quantum of mercury radiation, 2536A, emitted by
another mereury atom on dropping from the 4.88 ev state tc the

atate {or by absorbing the same energy quantum from a
spectrum). Thus mercury vapour will strongly absorb

the 25%60A line of the mercury spectrum, thereby exciting the
mercury atoms which then re-emit this same radiation, which is
therefore ealled resonance radiation, Similarly, the 1849a
line in the mercury spectrum is a resonance iime, since it is
emitted by a transition from the 6.71 ev energy level to the
ground state, and so will be strongly absorbed by normal mercury
Vapour. Im general, amy spectrum line which is emitted by an
atom in a transition from any excited state to the ground state
18 a resonance line for that atom, and will be strongly absorbed
by vapour of that atom, Om the other hand, mercury vapour, for
example, ia quite transparent to radiation emitted by some other
atom (ay a lime spectrum}. If a vapour be exposed to a beam of
radiation possessing a continucus spectrum, it will strongly
absorb those wavelengths corresponding to its own resonance
emission Jines. Absorption of other than resonance lines re-
quires the presence of already excited atoms and the probability
of the process ceeuring is ccrreapondingly less.
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he energy of the incident quantum is greater tian
4 energy then the process is a bit different

e 9 still abe ety. with
The energy of the ejected electron is given +»

ene photoelectric equation
:

(5.27)

where Ws is the energy required to lonize the atom, e.g.,
ew ror the outermost electron in the case of mercury

vapour, Photcelectrie ionization can occur, however, from
any energy state of the atom, provided the incident quantum
has the requisite energy. The atom then may emit a more ccom-
pilcated spectrum, corresponding to transitions between the
deeper energy levels, The x-ray photoelectric effect falis
within this category. Of course, immer electrons can also be
ejected by electron bombardment if we use an incident beam 7
high energy electrons. The method described for determining
excitation potentials does not distinguish between excitation
and ionization, since all it measures is the energy loss of the
Impacting electron. However, a siight modification in the
method of using the same apparatus easily distinguishes be-
tween the two processes. This is illustrated in Figure 5.3.

2

Gy G, P

+
Ga

3

Figure 5.3
Apparatus for Tonization Potentiais
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y, 4e the (variable) accelerating potential.
Ff. Petarding potential, greater than vy -

small ccastant potemtial whose direction can be reverses.
The pressure is such that the mean free path of the electrons

Larger than the space between G, and P, but smaller than the
seracation of Gy and The galvanometer current is determined2
Am 3 fumetion of Vy for each direction of V3 and a curve such

na

as that shown in Figure 5.4 is obtained. Since V,> V, electron
and so do not reach P. The currentving ams

i

1

Figure 5.4

is sero for either direction of Ve. But if vy 1s great enough
vw ypermitt an inelastic éollision exciting am atom of gas to 4
resonance level {not a metastable level) resonances radiation
will be exeited (poimt A). This radiation may exeite phous-
electrons from the grid a, and the plate P. With 3 acting

reach P, and the galwanameter current 19 negative, If acts

or B Excitation of a second level will cause radiation of
another wavelength to be emitted so that there will be a change
+m shape of the current curve, BC, BC', and so on. Suppose,

so that is at the higher potential ,electrons from G,,

3photoelectrons from P travel toward @, and the galwano-
meter current is megative. This is the portion from A to B

however, that am atom 1e jomized. The original electrons from



SM

a



« GO =

weil as the eleetroms remowed in the ionization process
+ hi be returmed toward F but any positive ions formed wiii se
acceler tec Coward F and go will produce a positive current
f Ve, is small enough the magnitude cf the current wili not

w kare much on reversing and a sharp break occurs at 5D,

the Lomisation petential.
so far we have discussed possible processes for exelring

or am atom. An equally important question iss what
che probability of each of these processes taking place, Con-

the ease of eleetron bombardment of an atom. If the
energy of the incident electron is less than the energy of she
lowest excited state then all collisions are perfectly elastis
anc mo excitation or ionization is possible. IF the energy af
the eleetrom just exceeds the critical energy mecessary for.
excitation then it is quite probable that such an inelastic

take place. Although any greater energy can
aleo Cause same excitation, the probability decreases
with increasing energy, umtil 3 very Vngh energies this process
a3 not likely to occur to any extent. The probability of a
given type of collision occuring is expressed quantitatively
in terms of the collisicn cross section. Let us suppose that
Fe is the probability that a particle will make a given type
of collision in traveling a unit distance. We recall from
kinetic Cheory that the mean free path of a particle is given
by

4

3

é 3 {5.28)2
:

where N is the number of particles per unit value and & the
area of the particle. We also recall that the

value fo use for & depends on the process involved, i.e., the
cross section is different for different processes. Now the
mean free path is the mean distance a particle travels betweer
Buccessive coliisions., the mean mumber of collisions
per unit path length. P,, is just the reciprocal of the mean
free path. Thus

(5.29)
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wnow . and the number cf particles par unit volume
tien Po ds determined. Actually, equation (5.29) 18 usually
uae ty determine o from measured values of Pie We recall,
too, Trom theory that 4 & be the mean free path for
& particle in « gas, .g., an electron traveling
any gau, "hem the fraction of particies which travel a dis-
tance x without making a collision ia given by

=x/§
2

If we understand P to mean the number of collisions per
unit path Length at unit pressure and recall that / 1s
inversely proportioned to the pressure, then we shall have

1
(5.32)

where Po is the pressure, measured in the same units as those
used 1n defining P,. (It usual : specify P, per centimeter
of path at a pressure of 1 of mercury.) Equation
(5.303 then becomes

(5.32)9pPxNaN e

By measuring the fraction of particles which have not under-
gone a given type of collision, as a funetion of the distance
traveled we can determine Po? and knowing the pressure the
ecllision cross section is thus determined. From the way
in which la defined it follawa that the probability or
making any type of coliision is the sum of the probabilities
of making each of the various possible types of collision.
For example,

Protal = Pelastic * Pinelastic (5.33)

where P inelastic can be further broken up into the various
possible types of inelastic collisions, excitation to various
levels, fomization, etc.



4 me for determining Pe for eleetrome other
ce i 1m a gaa is im Figure 5.5.

emitted from the cathode, K, are acnelerates
4

4

Pig. 5.5
Apparatus for Determining Coilision Probabilities

o potential 4ifference V, to the anode A. The space between
X and A is evacuated, so that practically no collisions can
oceur in this region. Some of the electrons passé through the
slit 8, 2 into the collision chamber containing the gas. under
Anvestigation. A uniferm magnetic field B, perpendicular to
the plane of the diagram, is of such a value as to cause
electrons of energy ev, to be bent into an are of radius R.
The baffles b prevent electrons cof other energy from reaching
the ollesctor C through the slit 8,0 Further, any electrons
even though of the proper energy, will not reach 85 if they
are at any point ef the path deviated from the proper direction.
Thus, if an electron makes a collision, elastic cr inelastic,
acter leaving. it will not reach s,. The current to C, there-
fore, neasured tne number of electrons which have traveled 4



2 TR without meking a collision. This method snadtesto determine the tctal evllision cross section a9 a fumeitc

tributions te the total ercss section.

electron energy and €a5 pressure, Purther refinements are
meceasary in order to determine Separately the varicus con-
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5.@ Some Additional Facts of Electron Physics
A. The Compton Effect

:

We have seen that fundamental particles can have both
corpuscular and wave properties, and that electromagnetic radi-
ation can have cropuscular (quantum) aspects as well as wave
properties. This is not a contradiction;;rather modern physicsstates that both fundamental particles and electromagnetic
radiation exhibit their corpuscular aspects on emission or
absorption, and their wave aspects in transmission from source
to absorber. Although earlier in these notes we treated parti-cles as corpuscles in discussing their transmission we were
working in the same approximation that one makes in applying
geometrical optics to light transmission. It ia only occasion-
ally that the physical optics of particles becomes important.

In treating collision phenomena one may use either
the corpuscle or the wave aspect. A. H. Compton in 1923 gave
one of the clinching proofs of the inherent quantum nature oflight by considering the effect of the collision of a light
quantum (hf) and an electron. Before developing the theory ofthis effect, let us consider the momentum associated with a
beam of light.

If nm quanta of frequency f are absorbed by a material
body (carbon black, for example) then this represents an energy

this should equal CP, where F 1s a foree we associate withthis process. Then

transfer of nhf. The rate of doing work is then ae (mht) ana

a (nhf) =CP=C a
from which the momentum of the light beam is nhf/e and the
momentum of each quantum 1s hf/e. This effect was predictad
Classically and explains the experimentally known fact of
radiation pressure. (The fact that a comet's tail always
points away from the sun is explained by radiation pressure).
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Let us first see if a free electron can absorb a
quantum, The laws of conservation of energy and momentum
state, assuming the electron is initially at rest,

mo* - = hf .

mv =

dividing the first by the second, we have,
2 m

or

from which
-2

e

2 v"/e21

:

(1 - 22

and this result is obviously impossibie.
However, Compton showed that an electron may scatter

@ quantum hf providing the scattered radiation takes on a
Slightly different frequency f'. Consider the collision pro-
blem in Pig. 5.6.

nw

- = -

Pig. 5.6

The conservations laws are;



a



4hf :

cus ; my cos e

nf' /e sin @ =mv sin o J
From the first of equations (5.34) we have,

i BE = hf v

2 2

hf - hf!or setting L=

=1 +E2

1 ~ 2

from which, (5.35)

Now im order to confirm any conjectures we may de-
sire from theory by experiment we must consider which variabies
we can most easily observe, These variables are f' and <p.
Hence, we proceed to eliminate v and 9 from our equations.

Substituting (5.35) in the 2nd and 3rd of equation
(5.34) and solving for sin @ and cos 9 we have,

sin @ sin g
€? +2g

hf ~ hf coseos @=
ge +

Squaring and adding, we have,

1=( .2 rer ere . aft' cos g
m,° + 2€
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Substituting for € in terms cf and f* and re-
arranging terms, we have,

rf' (1 - cos ) (5.36)
m,

from which

2

1+ (Y - eos 4)hf

remembering that = » we have

x- A= (A - eos J) (5.37)

The constant h/m is equal to 2.4% 30712 m op just
oO24 A, and is usually cailed the Compton wavelength, Such a
shift of wave iength is most easily observed in the x-ray region.

B, Magnetic Moment and Eleetron Spin

Let us consider an electron in a Bohr orbit in a
hydrogen atom. Such an electron ia equivalent to a current of
ev/2 17 r and should give rise to a magnetic moment,

By Bohr's first quantum condition, equation (5.08)
gps and hence

M =

For the ground state n = i and

mh

nm eh

(5.38)
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Poza weap ion is often taken as defining am atomic unit of
magne monent, tailed the Bohr magneton).

'me would expect such a magnetic moment to interact
with applied magnetic Fields and to shift the atomic energy
Leveis and hemce the frequency of the spectral idnes. Such a
ie indeed the case; the Zeeman Effect .

In addition to the angular momentum and magnetic
aomemt associated with the orbital motion of electrons, it 4s
necessary to assume that each electron inherently has an angular
momemtum {spin} and magnetic moment in order to explain ail the
facts of atomle spectra. Classically, this is the equivaient
of saying that the electron has structure, and that ite sharge
and mass are so distributed throughout this structure ag to
give rise to the bserved values of spin angular momentum and
magnetic moment. The inherent magnetic moment of the electron

but the imherent spin angular momentum ie always numerically \

omly one value,
Be

is allowed, Actually, the spin has two
allowed values 2 since, 1f a magnetic field 4s applied the
inherent electron magnetic moment can either lise up with the
appiied field or against the applied field.

independentiy of the spectral data, Stern and Gerlach
showed the existence of the electron magnetic moment, and the
two allowed states of the spin quantum number, by the famous
experiment which bears their name. They allowed a weli
collimated beam of neutral silver atoma to pass through a
region in whieh am inhomogenous magnetic field existed,
(Inhomogenous, since we wish to operate on a magnetic moment,
or dipole, which is unaffected by a uniform field). After
passing through the field the displacement caused by the field
is measured, I[t was found that the beam was displaced by
equal amounts on both sides of the undisplaced position, in
accordance with the thesry developed from atomic spectra.

has been found to the Bohr magneton, equation (5.38),

equal to in other words the spin is quantized but
2

1

Co. Quantum and Paull Prineiple.
Since an electron in an atom has three degrese of
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freedom, and in addition has spin angular momentum, we should
expect that it requires four quantum numbers to completely
specify the (quantised) state of the atom. Pauli's Principle
states that no two electrons in a single atom can be in one
and the same quantum state, 1.e., can have identical sets of
quantum numbers. No exceptions to this rule have ever been
observed.

Pree electrons also have four quantum numbers
aascciated with their three components of momentun and their
one component of spin. The extension of the Pauli Principle
to free electrons will be dealt with in connection with the
Permi-Dirac Statiaties.

D. Heisenberg Uncertainty Principle
The correct quantum mechanical formulation of the

laws governing the behavior of atoms and electrons is essentially
statistical in nature. That 18, we can talk about the pro-
bability of an event. occurring, but we cannot say with certainty
whether any event whith is energetically possible will or will
not oceur, Heisenberg first pointed out that there is a
fundamental uncertainty in any physical measurement we choose
to make such that the product of the uncertainty in the posi-
tion measurement and the uncertainty in the momentum measure-
ment is of the order of Planck's constant h, 1.e.,

AP,
or in terms of the simultaneous measurement of time'and energy

AW At eh.
Such uncertainty is very small compared to ordinary

physical measurement and in general does not effect the
accuracy of experiments in any way. However, the implications
of this uncertainty principle are very important. For instance,
in discussing the natural breadth of spectral lines, or of the
stationary states from which they arise, one can write,

4 \



a oe,

AW At x lh

AW Af
h AfAt wh

At
Hence, the natural breadth (the uncertainty in the

frequency measurementjis of the order of the reciprocal of
the uncertainty in the time that the emission takes place
{the lifetime of the state}. This result is also true for
elassical radiators aithough we have no uncertainty principle
in classical physics.

The uncertainty principle also has very important
implications regarding the behaviour of dense assemblages of
free for instance, the conduction electrons in
metals, Im faet, we must use this principle in order to
underatand tne behavior of metallie eleetrons as we shall see
later im connection with the Fermi-Diree statistics
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Y STON PHENOMENA AND THE GASEOUS
'vefepence Milimam and Seely, Chap. X}

:

db gion Phenumena

sm dealing with the motion of eharged particles ander
'hus action of electric or magnetic flelds we heve asgumed "hat

'orees, other tham these due to these fields, act on such
nartieles. This meams, for example, that collisions de nat
take place between the ;artiele in question and any other particle.
We have exciuded this by assuming that the partdcies
move im a "vacuum". fram che point of view of kinetic thecry,
we need only require the pressure be so low that the mean
free path be large compared with the dimensions of the apparatus.

te an essential requirement for the problems consi tered
hitherto, auch av the cathode ray tube, particle accelerating
machines, etc, But there are cases where we mot only cannot
make this assumption but where the occurence of collisions is
an essential feature of the problem as in most of the last
ehapter, With this im mind we now go to the other extreme anc

@ suppose the pressure to be such that the mean free path is
smaii compared with the dimensions of the apparatus. In this
chapter we shalj ecnsider some of the properties of a gas in
the conducting state ani the production and removal of the dons
which cause this as well as some of the phenomena
uf the gaseous discharge.

a

6.3,4 Jom Mobilities
Cansider «a particle of charge q, mass m, moving

through a was under the action of an electric field E. The
icm will be moving with ites random thermal velocity and will
make collisions, We are not concerned with the random motion,
but only the superposed motion due to the action of the field,

is found experimentally that under such conditions a given
type of ion aequires a drift velocity proportional to the
flela E. Im the absence of colligions we know that such an ion
would wove with conatant acceleration. Thig difference in be-
havioug can be accounted for roughly, as follows. Comsider an



ra Loree am thie te9

@ Bay (5. 4

"rou". "oree acta for a time ~ the lon will scquire 9

ay = Phe akg? (6.62°
ine v Iu che velocity acquired under the action of the

(ef + yoga That thie additional velocity 18 complete!y icat
ene coltigion. (This 1s mot quite true), If we now. let +

ment4 :

the meam time between collisions then, on the average, the
velocity nequired by the ion 1s 4v and so

(6..03}
"or a given type of fon, mowing through a given gas at fixed

ant temperature, the quantities q, m, and are con-
atanis. Thus the drift velocity is preportional to the Sela
h OF

v' (6,04:
The quamtaity k ts ealled the mobility of the fon, and the above
erage calculation shows that 4t should be of the order of magni-
tude

{6.05}am PF

where ( 1s the mean free path of the ion in the gas and the -

mean (thermal) apeed. This formula does indeed Give values for
x Of the right order of magnitude (x~i07* a/s per v/m) but can-
mot be expected to be correct in detail.

The coneept of the mobility of an 4on is important in
discussing fomie eomduetion in a finida medium, Let us supposes potential difference V to he applied across a pair of electrodes
immersed im the fluid a distance d apart, Let Ry be the con-
centration (jons nex umit velume) of fons of type J, each carrying
a cherge and haviag a mobility ky. In the presence of anelectric field & such: tens will Gequire a drift velocity v3°
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te uhe Piesd bh. In a time dt the charge de cep Ty:
ee ra AA wiki be

The curremt 1 is thus

yatGA J Jj q J j dtq a :

k J ) (6. Tt JOA

At a Wiven temperature and pressure Ky is constant and if
the tons maintain their identity and type, Ty 1s constnnt
4s far ac varlations in E, end hence of the applied potentiai
V, are concermed. The behaviour cof nm is, however, sub jeer
to other circumstances. Im the first place, the passage of
a current necessarily means the removal of ioms. This means
that the depend om the current 1. in general, However, if

suppose that the current is so thet the fraction of
ions withdrawn 1s negligible then thr a, are constant if we
negiect recombination. or, if we suppose aouniform source of
icnization to be present then the n, are constant, the constant
value being determined by the rate of recombination, If we
further suppose that E is umiform, and given by V/d then

(6.08)

and we see that the current obeys Ohm's law, At higher field
intensities the relation between current and voltage becomes
much more complicated.

3 dis

6.3.2 Recombination of Ione

Suppose that we have a source of ionizing radiation
incident on a gas and let us suppose that it produces P pairsef tons per unit wolume, per unit time. For simpilcity we
wiil suppose only two kinds of ions produced; that is, we
assume a single gas in the ionization chamber and that only
one process of tonization occurs. Let my, and fh be the con-
centrations of free positive and negative tons, respectively,
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2 bo t
:

k2 : t

ane' so does not approximate to the steady state
t,>> 1, or unti22 re

(6.15)
PS

ty ip thus a measure of the time required to reach a steady
state, and is thus long for a weak source.

Suppose, on the other hand, that a steady state has
been reached and that the source is then removed. How does
the concentration decay with time? The equation (6.12) now
becomes

= - one {6.163an

with nen' at Thus

1 7 Ot (6.17)

or
ais (6.18)

The extension of these results to cases where more than one
type of positive and negative ion is present foliows immediately
from equation {6.10}, We have assumed in this treatment that
ions are removed by reGombination only and that no external
field is present. If the pressure is not too high the co-
efficient of recombination ia roughly proportional to the
pressure. Aithough the vaiue of depends on the gas, typicai
values iie in the range

(6.19)2

at a pressure of one atmosphere. Now we know from kinetic
theory that the number of collisions made per unit time by a
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JZ ney
it ie the concentration v the mean speed and

trcoug veetiom, Thus the total number of collisions made per
uaiy Welume per unit time is nZ and for such gases as
mitrogen, ete. this is

(6.21)
at room temperature. Hence, collisions between oppositely
charged tona are about 10,000 times more frequent than collisions

16 2

between neutral molecules,
6.1.3 Diffusion of Ions.

In addition to being removed by recombination ions
Car. disappear from a gas by diffusion to the walls of the
containing vessel, where they may become neutralized, If this
happens there wili exist a concentration gradient in the
vicinity of the walls, so that diffusion will persist. Let y
be the flux of parvicles in question, e.g., positive ions, @
is the number of such particles crossing unit area per unit
time. Then

P=- D,Vny (6.22)
defines the diffusion coefficient D, for these tons in the
fae in question; D depends both on the kind of ion and the
gas through which it diffuses. Consider a wolume f bounded
by a surface S. The total flux through the surface is

S S[? 2nde (6.23)

But the total flux through the surface is just equal
to the rate at which the concentration within the volume 7 is
decreasing, That is

[eas - ig at (6.24)dn

So



ag
dy

Ce Ube volume 7 18 arbitrary we must have

dn

which is the differential equation of diffusion. We have
assumed that the only cause of a change inn is diffusion.
chere tg a source of ionization of strength P present, and if
recombination be taken into account, then on referring to
equation (6.12) we see that equation {6.26) 18 to be replaced

n, 9 n,n, (6.27)21

with similar equations for each type of ion.
It is shown in kinetic theory that the diffusion

eoefficient is related to the mean speed V and the mean free
path A for the same particle, or ion, through the equation

(6.28)Da=
3

and is thus inversely proportional to the pressure. Diffusion
eoefficients differ for positive and negative ions and from
gas to gas, but are of the order of magnitude of 1-50 x 19 6 /sec
at a pressure of one atmosphere.
6.1.4 Ionization by Collision

Consider a plane parallel electrode ionization chamber,
aercoss which a potential difference V is applied. Suppose that
ions are produced at ome of the electrodes, e.g. photoelectrons
liberated from the cathode by iiluminating it with a suitable
source of radiation. If now for a given strength source, 1.e.
a given number of electrons produced per second at the cathode,
we measure the current through the ionization chamber as a
funetion of the applied voltage across the plates it will be
found that the current-voltage relation resembles that shown in
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Pigure 6.2
Jonization by Collision

Om "ultiplying both sides of equation (6.30) by the eleci.ronic
cha-ge e we shail thus have for the current reaching the anode

(6.31;xd

In this equation 4 corresponds to the electronic current
the cathode, and is the value that the saturation

curvent would attain if ionization by collision did not eceur.
The equation of continuity, of course, requires that the
current be the same at ali values of x. This means that the
pogstive iom current will $0 adjust itseif that

A (6,32)
at each value of x, so that at the anode, for example, the
positive ion current vanishes while it is a maximum at the
Cathode.
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fe som Fumet lon of the energy of the
com . L.e. of tte weloeity, if the energy of the
Pom is less than the ionization energy we would no? ex-

+ ftomization to occur, since the electron must transfer
cue Lecule suffielent energy to fomize it. The mean ener

: ect by the electron from the fieid will be fe @ »
«

", 'te mean free path, amd 80 we should expect of to be of th
the

pf (ke (6.422

where f, is a funetion which vanishea when the energy if lesr
thay the ionization energy. Since 2 is inversely proportional

'ihe pressure we can also write

"/p= t(E/p) (6,
c> 'hat 4f of be measured for a given gas at various preszures
ang various field strengths we should expect the vaiues

li on a smooth curve if we plot /p against E/p. th
is indeed found to be the case, if the field 4s not too great.
Dei 2 Breakdown

If equation (6.31) 1s valid we should expect tc ob-
tain a straight line of slope & if we plot log i against d,
wnere 2 is the current for a fixed fleid strength and gas
pressure. This is found to be the case for small values of
1, dut the current increases more rapidly than equation (6.31)
wouic Indicate, for larger values of d until finally, as is
weil known, the gas breaks down and a spark occurs. This
meane that there must be some other source of ionization.
Townsend at first assumed that the psotive tons formed in the
process of ionization by collision were also capable of ionizing
by the collision process, and introduced the Second Townsend
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4 Megiigible at the energies involved in the usual
the 8, by collision of positive lions 1s mesi a &

practical cases This is because, is we have ween 4°
ch , Che probability of tonization depends more the
vel of the fonizing particles tham on its energy. +

on :

+ }tkely process is the liberation vu secontary elec'
4? 'he cathode by positive ion impact. Let us suppose
or average, each positive ion striking the cathode

secondary electrons ( will usually be a smaii fraction; .
As coefore, let us suppose that n, electrons are release: fron
the eathode by the primary process, &.g., my photoeiectrons,
per mit time. These eleetrons, under the action of the ap-

a f4eld, will move toward the anode, ionizing by ecilisics
ao. thus producing pesitive ions. The pesitive ions wiih

electrons, Let ny be the number of electrons arriving the

i €

e toward the cathode where they will reiease secondary

as per unit time, Each of the n electrons wili fonize by
am

K A
Ny

Ny 22, = (NoM4)

Ny > kn,

Figure 6.3
The Effect of S,condary Electrons
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Site enatively, referring to Pigure 6.3, if n, be the total
Of positive ions reaching, the cathode

(n_+n_) (6,3
ghee is the total number of secondary electrons from the
cathode. By definition of V

nos Yny {6.373

AQ

- (n, +n, ) (6.38)2

(6,39)en jead

prinary or secondary, fonize by collision. On combining
16.38) and (6.39) we arrive at equation (6.35),

Equation (6.35) indicates that when

ince al eleetrons leaving the cathode surface, whether

(6,40)

the current becomes "infinite", t.e. the current limited
only by the resistance in the external circuit.
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"parking potential, and pd where d is the spark length st 4
pressure p for this potential difference. If we assume
equation (6,43) solved for V, we shall have

is an implicit relation between Va» the

V,= #(pa) (6.44
Thus, Y depends on the product pd only, and not on eithe~
slcme. This fact is known as Paschen's Law and is well
established experimentally. Physically, Paschen's aw means
that the sparking potential is a function only of the total
number of molecules in the space between the electrodes. The
form of the function g is similar to that shown in Pigure 6.4.

Figure 6.4
Breaxdown Potential vs. ra.



emba. geet we

y

Cure of tNe guava 4

Tas" twe fora - Bt F +2

cs Jomigationm dy
wer : electron from the cathode fon tenagt, fer

t y e@beer mur, That is,

4, igh

an ear.

foYn fead

18 equivalent tc equation (6,40), Now at wery low
a there are so few' molecules present that a high

lutensity is necessary in order to produce the requisite mom.
of teeondary electrons. At the other extreme, for large va :

pd the energy gained per mean free path 1s small unless
field is high. Notice that, regardless of the value of - cr
it 18 impossible to produce breskdown below a certain Mi mdm ice

e regardiess of the field intensity. There 1s evidence
@ that this ia mot true at extremely small walues of

Sir This minimum breakdown potential 18 about 340 - 366 colta
and occura at 3 value of pdiw .6 if p is measured in
meters Of mercury and d in centimeters. The accompanying
gives data on the minimum for a number of gases, Accura's
determination of these values 18 extremely difficult.
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Table ag

Sparking vata

(pd) minimum
mm of Hg
xem Spark

Minimum
SparkingPotential

das (volts:
Ais 325 = 350
Hydrogen 275 ~ 310
Oxygen 440 - 460
Nitrogen 250 ~ 300
Hei 150 - 260
Argon 140 - 230
Carbon Dioxide ~ 820
Suifer Dioxide ~460
Nitrous Oxide
Hydregen Sulfide mhS

56
1.41

72 - .48
67 - .75

2 7
769

53

50
" ,60



+ Gaseous:

The chemomenon of the cf am current
through a gas between two eleetrodes acrosa which a

1s applied is kmown as a gaseous discharge. For a
given gas, pressure, and geometrical Come an important

raeteristic of the discharge is the voltage-current curve
whieh exhibits some remarkabie features. A typical woltage
current curve for a low preasure discharge i8 shown im Fig. 6%.

en 4

figuration

lag i

Figure 6.5
Voltage -Current Characterie of a Discharge Tube

Since for moderate ranges of potential difference across the
electrodes the current ranges through many crders of magnitude
it ts convenient to use 8 logarithmic scale for the current.

At very icw voltages the currest is smali, graduaiiy
approaching an {apparent} saturation value in the region AB
(Figure 6.5), Beyomi here ionization by collision beccmes



until, at C, we reach the aparking potential anc
the Cischarge becomes self-maintainec, as we have seen pre.

In the region C-b the voltage drop across the Lube
18 practically independent of the current. At higher currents
She woltage decreases until we reach the region of the mo cme ,

discharge (E-F). Im this region the voltage drop is again
Andependent of the current, whieh is limited by the resistance
o: the external circuit, It 4a in this region tnat Biow dis-
charge voltage reguiating tubea (VR-105, VR-156, ete.) cperate
aust Geyomd this Pegicn the voltage rises rather steeply (#-3:

the region of the abnormal glow, and then quickly drops tr
& very Low Value in the region of the low voltage arc, beyon'

O.€.k The Normal Glow Diseharge
The ordinary lcw pressure gas discharge tube Operates

sm the region of the ncrmal glow. This region is characterized
by a low current density and a moderately high voitage dro.
The region between the cathode and anode is broken up into a
number of rather definite sections which are readily distinguished
Visually If the sepexaticn of electrodes is not too smali.
These are, starting at the cathode,)the Aston dark space, ad-
Jacent to the cathode and very narrow; 2) the cathode glow,
which appears to be "floating" on the cathode surface since
the Agton dark space is so marrow; next tc the cathode glowis the Creokes dark space, 3) whose width increases with de-
creasing pressure and depends somewhat on the tube current. The
duminosity in this region 18 much less than in the immediately
following negative glow, 4) whieh has a rather sharp voundary
om the side toward th- sathode and gradually fades off into the
mext region, 5) ealled the Feraday dark Space, or "second nega-tive dark space', where the luninosity is very low. Followingthis te 6) the positive column or plasma whose iength depends
almost solely om the length of the discharge tube. This region
extends practicaily to the anode, from which it is Separated by
the anode dark space, which is a very narrow region of relatively
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The varlations in luminosity along the length of the
discharge are accompanied by variations in the eleetric field
Sutensity. If the distribution of the electrics field is known
then the potential distribution and the distribution of (total)
free charge can be determined, An ingenious method for de-
termining the electric field distribution, "ue to J. J, Thomson
and used by Aston, is illustrated in Figure 6.6, The

:

N

Figure 6.6

Measurement of Electric Field Imtensity in a Discharge Tube

eathode and anode, € and A, are rigidly coupled together by
Meana cf a rane of glass rods, and thts entire structure
Can be moved the onto by means of am iron slug I.
An excremesy Rye beam of electrons from am auxiliary tube T
at right angles to the matm discharge tube passes through the
discharge under tavestigation and onto a Pluoressent screen 5.
The presence of an electric field E in the main discharge wilt
cause the auxiliary beam to be deflected, and this defiection
is a measure of E. Im order to minimize the effect of the



v dtseharge on the distribution of E in the matn
itary tube Lu completely shieided electrically rr + :

"he pest of the apparatus. By using a very small current
the probe beam and a fairly high voltage, the fonization pre.
alt OF by the passage of thie beam through the main discharges
can be made negligible. This arrangement 1s particularily
auitebie for measuring the field in the regions near the cathode
where the fields are strongest. It is possible by this. method
tc measure the field to within a very smal distance from the
cathode iteelf.

It 1s found that, neglecting minor detaiis, there
ie a rather strong field in the immediate vicinity of the
extending through the Crookes Dark Space into the negative g Low.The distance over whith the field extends 18 almost independent
of : @e1eetrode separation (provided this is not too smail) an?
80 too tg the field distribution. The potential drop across
this region is thus constant, and is cailed the "eathode fail
of potential". The actual value of this cathode fali is :de-
pendent on the material of the cathode an? the nature of the gaa.
The distance over whieh this potential drop takes piace is
such that it contains a sufficient number of free paths so that
the secondary electrona emitted from the cathode by positive
ion bombardment can produce enough electrons by tonization by
collision to maintain the discharge... This distance varies from
a few tenths to one millimeter at a pressure of one millimeter
of mercury, for a wide range of cathodes and gases. The
cathode fall of potential is of the order of magnitudeor, but
usually somewhat Jess than, the minimum sparking potential ef
the gas in question, f.e., it is in the range 50-500 voits.
The remainder of the potential drop across the discharge takes
place, more or less uniformly in the absence of striations,
across the positive coiumn. The length of the positive column
is usually encrmous in comparison with the distance over whith
the cathode fall occurs. Thus for any reasonable voltage across
the discharge tube the field in the positive column is much less
than in a region of the cathode fall, The method of Thomson and

it +
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tas
but another method, invoiving the Langmuir

be aged, This will be diecussed In seetton
bow :

The probe measures, among other things, the potential dis-
in the positive solumn from which the fieid can be

determined. Anticipating this, we show in Figure §.7 the re-
suits of measurements of light intensity, potential, field,
charge and current distributions in a typical discharge. The
problem of explaining these results in a quantitative way is
almost hopelessly complex, but it is not difficult to see in
a qualitative manner why some of the phenomena are as they are.

In the region of the cathode fall we have essentially
the mechanism of the self-maintained discharge taking piace.
We have seen (see equation 6.40) that the condition for this
is More generally, since the field will not be
uniform, we should write in the present case

a

& dx

{6.46)

where 18 the vaiue appropriate to the field at the cathode.
fhe & vibained from tnis equation wili piay a fundamental role
and will be very close to the length of the region over which
the cathode fall cccurs. in this region the positive tons
acquire an appreciable energy and thus preduces the requisite
secondary electrons by cathode bombardment . Although it is
conceivabie that electrons could also be emitted photoelectric-
aliy, independent experiments show that the number of such is it-
appreciable. We have already noted that the number of secondaries
produced by collisions of positive ions with neutral molecules is
also negligibie. The fundamental prcecess ie then the liberation
of secondary electrons by bombardment of the cathode with positive
fone. These secondary electrons are emitted with very sinabi
yelocities and consequently give rise to a net negative space
charge in the immediate vicinity of the cathode, This is quickly
overcome by the formation of positive ions and the acceleration
of the electrons sc that most of the region of the cathode fall
de characterized by a predominantly positive space charge of
rather high density. Beyond that, in the region of the nega-
tive Bick stiil more electrons appear, since their mobility
is so much greater than that of the positive ions, If the
eleetron density exceeds the ton density, as in the case
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c thug vanishes. That is, in the poaitive column the

But the electrons are moving much greater
and so cometitute the aur : prt in this

region. Pimaliy, in the immediate ee of «n+ anode there
18 4 Small decrease in electron density, due so vemoval of
electrons, and a decrease in positive liom density, re.
suiting Im 4 net negative charge density here and a giigh pres
in field strengch This corresvonda the region ot the wy

Lowes by *he Anwde Thee
ge

ROP.
This prief description is sot intended to be an

paanation cf what takes place in a gaseous discharge, but
rather a deseription of the reaulits of measurements of the

@ quantitles involved, We have assumed throughout that we sare

an the region of the "normal glow discharge", and we have noted
that this region is characterized by a "low" current density.
We shaii now make this vague atatement a bit more precise by
comsidering the actua? currents As seen in Figure
6.5, the currant in the normal glow is independent of the
woltage, which means that the current is determined by the
realetance of the external circuit. Suppose that, starting
at the point E, the externai resistance is lowered. The current
Wiil increase toward Pp and the voltage drop across the discnargewii) be practically unaffected, But 4 will be observed that
the area of the cathode covered by the cathode Giow increases
as the current is increased, until at the end.of the regian
of the normal glow disenarge the entire cathode area is covered.
Further, the current density over the cathode is approzimately -

constant throughout this change. We have noted {see also
Figure 6.7} that the region of the cathode fall of potentiai

megiecting details near the cathode, starts at a hign walue

fons *he same aa

ar

wan "™e (ay

ie characterized by a high density Or positive ions which,

and drops off wath a LEILA toward 1® Para. 7 Dar) Space. Ta



mation we ave the situation of a spare charge
it ive fon current im this region, a this 4a the

Seve + Dan che (positive ion) current density at the CAR node
k be of tha forn

(6.473is 9

where is the cathode fall of potential and d the distance
over which this takes place. The length d is of the order of
magnitude of, but somewhat iess than, the distance at whth
aparking oecurs at the minimum sparking potential, for the
pressure in question. Although the details implied by this
formula are net to be taken too seriously, it does give re-
suits of the right order of magnitude for the normal current
density, and dimensionally we must have a dependence of this
sort. Onee the tube current exceeds the value 1=JA where J
ia the normal current density and A the cathode area we cannot
have a normna giow discharge. The region of the abnormal glow
mow starts and the voltage drop across the tube increases with
increasing current, as indicated by the portron FG in Figure
6.7. If the current be still further increased we quickly pass
through the (unstable) region GH and into the low voltage arc.
The situation here is quite different; the potential drop across
the arc may be even iess than the ionization potential of the
gas in the discharge tube so that, at first sight, one might
Chink that a self-maintained discharge could mot exist. But
the existence of metastable states and collisions of the second
kind shows us that this situation is indeed possibie. We wili
not go further into this subject at present.
6.2.2 The Langmuir Probe

Let us consider again the positive column, or piasma.
We have noted that this 1s a region which is almost electrically
neutral, since the density of positive ions is practically
equal to the electron density. But the electrons, being much
lighter wili diffuse more rapidly through the gas. Consider



whey pone which @ifj:o.e8 the walls of the
WELT cause the pecome chargad 7

g potential 19 vomewhat ive with respeer fo the
each point . This negative potential difference

attract positive fons and since the net current to the
w9il mist be zeru the density of positive ions will be greater
than that of the electrons since their veiocity is much less.
The wails will thus be cowered with a sheath of electrons;
that is, the net current to the wails is zero, but the walis
carry a charge which is not zero, An analogous situation will
heid for any surface in the region of the plasma, In fact, a
confining surface, such as the walls of the discharge tube is
almost essential for the formation of a positive column. A
pesitive column does not form if the low pressure discharge
takes place in a large spherical enclosure. Rather, the dis-
charge and ionization diffuse over the whoie volume and the
concentration of excited atoms becomes quite small, so that
the Faraday Dark Space extends almost to the anode, where the
anode glow becomes more prominent than usual.

Suppose now that a probe, that is,an auxiliary electrode
P, be inserted in the discharge as shown am Figure 6.8,

At

<A +

ve

A

Figure 6 8
Probe Arrangement
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ame current to fhe probe Ve measured ag & Sungei a

p difference ,, between the probe and
be the potential in plasma, measured with

the cathode, and let A be the area of the probe surface.
Suppose first that Vp<sv? so that the probe is highly nega -
Live with respect to the plasma. Then the probe surface wil).
be covered with a sheath of positive ions of thickness 4, and
a space~charge-limited positive ion current will flow te the
prvbe, The thickness d, will depend on V' - V, and the ion
density in the plasma, but is generaliy in the range from a
few tentns to a few millimeters, The current density of posi-tive ions into this sheath is the random ton current density,at , and is equal to the ionic charge times the number of tons
crossing unit area per unit time. Thus we have from kinetic
theory

Nie vy, (6.48)
7

where N, 1s the concentration of positive ions in the plasma
and Vy. the meam apeed of these ions, if the ions have a Max-weliian distribution characterized by the temperature Ty +

{This wiil be somewhat greater than the gas temperature in
the discharge tube) Then

(6.49)
Prom kinetic theory and so

(6.50)> +J 2N eu 2

Can be measured, but in general Ny. and Ty are quantities
we wish to determine. If we write

V (6.' 2)
then the current density cam be written
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now that the prebe potential, Vos bea made more positive
then a few of the faster moving electrons be able to pene-
trate the sheath, (which also becomes thinner with decreasing
Ve). and the measured current wiil pe reduced. The ion current
wiil be unaffected at first but later, when Vs has changed
sign, the siower ions will be repelled and the sheath will be
one of electrons rather than positive ions. When Vp is highly
positive with respect to V' then only electrons can reach the
probe and we have a space charge iimited electron current across
an electron sheath of thickness a That is

7

8

2e -8 (6.53)a9

Note that in both equations 6.52 and 6.53 denotes the
magnitude of the sheath potential

J 16,54)5 Ne

where is the mean speed of the electrons and again, we
have assumed a Maxwellian energy distribution for the electrons,
though 'heir mean energy will generally be much larger than
that of the ions. Hence the "electron temperature" will be
much greater. If we denote it by T then

(6.55)
BY

KT
WimJ aN e {6.56)

Por Values of the probe pctential between the two extreme
cases just considered the situation is more complicated, and
this we now proceed to investigate, The curve in Figure 6.9
shows the current to the probe as a function of the probe
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Figure 6.9
Probe Current vs. Probe Potential

potential. The portion ab corresponds to the first case
cousidered, namely 4 space~charge-limited positive ion eurrent ,
po that

Ips AJy (6.57).
where A is the probe area {actually the area of the outside
surface of the positive ion sheath) and is given by
equation (6.50) or (6.52). The portion cd corresponds to
the second case, a space-charge-limited electron current,
and,
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ia given as above. The portion of the curve +.fut to
the of b corresponds tc the case where we are stili
collecting a positive ion current, but im addition some elect rons
are beimg colleeted. If we assume that the electrons in pene-
trating the positive ion sheath do not change their energy
Giatribution and do not alter the positive lom concentration
then the positive iom curremt will be the same as before and
by subtracting it off we can measure the electron current Teeas indicated in the figure. Purther, we can determine the
energy distribution of the electroms producing the current
since the electron current, Tas collected will be I diminished
by the effect of the retarding potemtiai from the plasma througn
the sheath to the probe, that is, the sheath potentiai. Thus

(6.59)
or, om using equation (6.532) 'p

Ve (6.60)

Thus 1f we pilot fn we should obtainas a function of
a straight line cf e/kY_ if the electrons have a Max-
wellian ciatribution characteristic of the temperature{If the curve so cbtained 18 not a straight line, within ex-
perimental error of course, it means that the distribution is
mot Maxwellian}. In particular the electron current wili just
equai the positive ion current, that is the probe current wiil
be cero, for a certain probe potential V, called the fioating
potential. It isa the potential which an ingulatea probe would
acquire if placed in the plasma. This ia easiiy read from the
graph. But for this vaiue of the probe potentiai the sheath
potential is Vo=V' - Vp and so we must have



gi

t enables us to determine VY', the plasma emt ta"ati t :

Ce are determined direetiy andand
"6.60,. Another, and perhaps more accurate way ot

determining V' is indicated in the figure. This is to ex-
date the straight aime portion d and the essentially

dime portiom where the current is rising sharply, uwn-
Li, they intersect at =v. The positive ion temperatures

ig yet to be determined. One procedure woulda he to take
this te Ge the same as the gas temperature, though At is
usually somewhat greater than this, In principle, we might

a method analogous to that used to determine That
28, the current measured beiow ed in the vicinity of the kee
of the curve represents the positive ion current i diminished
by the effect of the retarding potential, If we denote this
tom current by I, then

7 (5 ,62)
uP

v fKT 4.
(6.63)e41.

so that if we pict én i, against we should get a straightJime of gicpe efit* . Having determined these quantities, we
ean mow get the ion and electron concentrations from equations
(&.50} and (6.56). Probe measuremente thus determine the
following quantities, the plasma potential, the pesitive ton
concentration, the electron eoncentration, the eleetron % emp -
erature, tne random electron eurrent density, tise random jon
current density, aad the floating potential.
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CHAPTER VII. THE STATISTICAL BEHAVIOR OF ELECTRONS IN METALS
(Ref. M. and S., Chapter Iv)

7.1 The Experimental Basis for a new Statistics
In dealing with extremely dense assemblies of particles,

such as the free or conduction electrons in a metal, it is
necessary to resort to statistical methods; otherwise the math-
ematical complexity is imppssible to handle. One might at first
think that the classicai (Maxwell -Boltzmann) statistics for the
particles of a gas might hold equally well for the electrons in-
side a metal, and indeed there is some justification for this
point of view since the electrons emitted thermionically from
a metal do obey M-B statistics. This fact, however, ts fortui-
tous as we shall see later.

Measurements of the conductivity of metals, the slight
dependence of the conductivity on smail amounts of impurities
and the high reflecting power of metals for light waves all
lead to the conclusion that the number of free (conduction)
electrons in a metal 1s about equal to the number of atoms;for light metals this 1s of the order of 5x 10 electrons per
cc. On the basis of classical statistics each of these electrons
should contribute 3/2 k to the specific heat, C,. Experimentally
the specific heat of metals is explained completely by the heat
energy of the atoms, and the electrons are know.nko contribute
very little if any to the specific heat.

While the energy distribution of thermionically emitted
electrons seems to follow the M-B laws, the energy distribution
of photoelectrically emitted electrons does not. On the basis
of M-B statistics one would expect spread in energy of the
photoelectrons of about 3/2 kT or 0.05 e.v. at room temperature.
Actually the energy spread is of the order of several volts
(depending on the frequency of the light). The scattering of
electrons by Single metallic crystals, the Davtsson-Germer ex-
perimant, not only demonstrated the truth of the prediction
by de Brogiie that electrons have wave properties, and wave-
lengths A=h/p, but also showed that the binding energy of

22
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electrons in metals was equal to the work function of the
metal pius,5 e.v. Classically, we should expect this
binding energy to equal the work function plus 3/2 kT. Other
experimental evidence such as the anomalous Hall effect and
the emission of electrons by strong fields would not be ex-
plained classically.
7.2 The Theoretical Foundation for Quantum Statistics

The statistics which apply to free electrons in metals
was derived independently by Fermi and Dirac about 1925, The
theoretical arguments used follow.

1) We shall assume that the electrons are in thermo-
dynamic equilibrium with each other (this assumption is basic
for any kind of statistics) and with the atoms of the metal.

_

2) We shall assume that there are no ordinary forces,
forces whith depend on position only, acting on the electrons
in the body of the metal, and hence that the potential energy
is everywhere constant. There are, of course, forces at the
surface which keep the electrons in the metal, but these forces
may be handied independently of the statistics. (These forces
for the moment; may be regarded as strictiy analogous to the
walls of a box containing gas molecules obeying the classical
statistics.)

3) We shall assume that the most probable state co-
rresponds exactly to the actual physical state.

4) We shall assume that the electrnns obey the
general laws of quantum mechanics which are: (a) Pauli Ex-
clusion principle, (b) Heisenberg uncertainty principle, and
(c) the principle that each electron is completely indistingui-
shable from every other electron.

Assumptions (1), (2) and (3) could lead equally well
to Maxwell's formulation of the classical statistics. It is
our problem to introduce assumptions 4(a), 4(b) and 4() into
the usual statistical procedure, in order to obtain the
quantum (Fermi-Dirac) statistics.
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. Celis and Phase Space
Let us consider the number of electrons ny which

fall into a particular quantum state chacterized by energy
Wy in the smali range dw, - (dw, is perfectiy arbitrary, but
when we deal with large numbers of particles it can ve treated
exactly as a differential), We shall call &, the number of
states of energy wy in the range aw, per unit volume of the
metal. We can evaluate By by means of the Heisenberg un-
certainty principle.

According to Heisenberg the minimum uncertainty in
the simultaneous measurement of the momentum, Py» and the posi-
tion, x, of a particle is of the order of Planck's constant ,h;
that is, OP,OxZh. We can formulate this in three dimensions,

AP, APyAP,Ox Ay Oz n3

Now since this is the limit of accuracy with which
we can specify the state of a particle in posttton and momen-
tum, we will assume that this is the size of the unit cell in
the combined "space" of momenta and position coordinates.
(This is generally called the "phase-space"), If the precision
with which we intend to specify the particle is determined by
the differentiais dp.» apy» dp,» dx, dy, dz then certainly the

availabie cells in phase space is then just
reater than The number ofx y 2product dp dp dp dx dy dz is

ap dp dp dx dy dzx
&4=

We should like to determine g, in terms of the
energy range dw, rather than the combined space-momentum range.
To do this we first integrate over the space coordinates
(nothing depends on x,y and z) obtaining

3 dp,4pdp, (7.1)

where Vo is the total volume of the metal we are considering.
Now by equation (7.1) the cells are uniformly distributed
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'over momentum space, and the total momentum p .

p= Px + Py +P, (7.2)2 2 -22

Hence a sphere of radius p in momentum space is a
surface of constant total momentum and the number of cells
of momentum p in the range dp is just equal to the number of
cells between two spherical surfaces of radii p and p+dp.
This number of cells is equal to the "volume" of the spherical
shell 4 "dp multiplied by the density of states,
Hence,

2

(7.3)katy? - ap

In order to transform (7.3) to the desired form we
need only remember

W.= Sn » Pz

apdw

dp = (2m3)? wi aw,
2

we haveand hence, evaluating (7.3) in terms of energy w4°

3/2 4
Wy dw

We have divided through by Vy 'since we originally de-
fined &, as the number of states per unit volume of the metal.

The Permi-Dirae Statistics
Our problem now is to determine how to divide our

particies among the various allowed cells. Statistically we
wish to determine the probability that ny particles are in
the state &,- Now certainiy the probability that such a state
exists laproportional to the number of ways in which we can
form that state, under the quantum mechanical conditions that
no two particles can be in the same quantum state, and that
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the particles are completely indistinguishable; that is, that
exchanging particles A and B does not constitutc a new state.

Paull principle as applied to metals states that no
two electrons can occupy the same cell in momentum (or energy)
space unless they have different spin quantum numbers. Since
the spin quantum number has only two possible values this
means that two and only two electrons can occupy the same cell
in momentum space. Mathematically this ia exactiy the same
as though we had doubled the number of cells available to
the electrons, and we wil] redefine our & accordingly, i.e.,

(en)? w aw, (74)4&4=

We now inquire how many ways are there to divide
n, particles into g, states. This clearly is the same As
asking how many ways are there to take By things ny at a
time, and we will set the probability, Py» of this state
proportional to this number, getting,

i g, - n, (7.5)
4

To see this iet us use the following argument: if
we have &, things we can take any one of them in &, different
ways and so on until we have but &y

- n, +1 ieft which we can
take in one way only. The totai number W, is the product of
the individual numbers, and so,

Bs -N,= (8,) (a, - 1) (8, 2) 8 (s, - n,+ 1) =
4

However, we have assumed that each of the n, ways is dis-
tinguishable from any other way and this is the same as saying
that the electrons are distinguishabie. To correct this we
must realize that we must divide by the number of ways of
taking ny particles n, at a time (assuming distinguishability).
This is just n,: and dividing N, by this factor we have equation
(7.5).

In order to proceed further we recall two theorems.
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One is Boltzmann's theorem which states that the entropy of
a system is proportional to the logarithm of the probability,

Sak n P

This 1s reasonable since the most probable state of
a system is the state of greatest entropy by the second Law of
Thermodynamics. Also since the probability of two events
occuring simultaneously is just the product of the probabilities
of each occuring independently, while the entropy of the sum of
two systems is just the sum of the individual entropy, the
logarithmic connection seems correct.

The second theorem we need is due to Stirling and
states that

(n) - 1

as n becomes very large.
Let us now return to equation (7.5) which gives the

probability that n, electrons will be in the 1°" state with
energy Ww,

in the range dw, - If we consider all the electrons
in a system they can distribute themselves in many states of
different w. The probability of any one state occuring for
the system is then the product of the probabilities for all
the individual otates, hence

a By My

and the entropy of this system is then

s 2 6,1 - n,! - NCH - n ) (7.6)

applying Stirling's theorem

4 G, - & > n, (a, - - Byi 2 iSa

S fete &, n, ny = (gy - dalei (7.7)

Now the probability and the entropy are a maximum for
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the most probable state. Hence, let us take a smail variation
ins, §S, as the individual n,'s change by Sn, » and set 3s
equal to zero for a maximum. The &, will remain constant
as given by equation (7.4) as long as we keep dw, the energy
range under consideration, conatant.

ds dn, ny
- 1+5n, dn(g, - n,) +i

Zfbo(e, -n,) - n, = 0 (7.8)

We also require that the total number of particles
nyWs remain constant andNeZn4? and the total energy W=Z

hence that 3N and Iw=0. Then,

(7.9)ZSn, 20

2 w, 5n,= (7.10)

We now use LaGrange's undetermined multipliers to
aid our solution. Since all the summations are over the same
index, 1, and since $n, 1s a common factor, let us multiply
equation (7.9) by - & and (7.10) by -f and add. (o and fwill be determined later from the physical aspects of the
problem.

Now the Sn,'s are completely independent 80 we

2
{tn ny (7.11)

must require that each term in brackets is individually zero.
Hence,

bn (By +4 Bws (7.12)1)
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Rearranging terms and inverting the logarithm, we have,

4

Now g, 18 a differential (or nearly so) and our
notation should be changed to express n, a5 a differential
also. Setting n,=n(w)dw, dropping the subscripts, and

using (7.4),

n(w)aw= 20 (2m) 3/2 (7.23)
h ite

dw

n(w)dw is then the number of particles of energy w

in the range dw per unit volume. n(w) 1s the "density"
function; that is, it 1s the number of electrons of energy w

per unit volume per unit energy range.

7.5 Determination of& and&
In order to determine B let us examine the behavior

of equation (7.13) whena +8w 1s appreciably greater than
unity. The exponential is then much greater than 1 and we

can rewrite equation (7.13) as approximately,

n(w)aw Sa dw(x +Bw)

or (7.14)
n(w)dw 7 Pu dw3

where A and A' are constants. Now these expressions are of
the same form as the corresponding M-B functions. We shall
see later that one condition forK+ being greater than 1

is that the density of the electrons 1s small. Physically
we should expect electrons to obey M-B statistics if the
density is small since the effect of the Pauli exclusion
principle would be much less pronounced. I€ is reasonable
then to aseume that has its classical vahe of 1/xT.

Let us now set he -Wy/kT and proceed to determine
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Wu Equation (7.13) becomes,

a(w)dws (2m) 3/2 wt aw (7.15)
i+ exp

Let us evaluate n(w) at the absolute zero of tem-

perature. If we set T=0O in (7.15) the exponential is zero
for w < wy and hence n(w) 1s proportional to w*. For WPWy
the exponential term goes infinite and n(w) drops sharply to
zero. Hence, physically Wry at absolute zero, is just the
maximum energy of the electrons. Classically we should ex-
pect the energy of all electrons at to be zero;
Pauli principle denies this.

At O°K Wu is easily evaluated. Let us integrate
n(w) dw over ail possible values of w. The integral of the
left hand side of (7.15) 18 just N, the number of free
electrons per unit volume. Because of the behavior of the
exponential term at O°K, the integral of the right hand side
is just,

MO.
3/2 w dw4

and hence

from which

Ns 8 (2m) 3/2
3h MO

(7.16)3N 2/3
Mo

where we have set Wyo equal to the Value of Wy at T=0°K.
Wy can be evaluated at any value of T by integrating over
(7.15) for T#0. The result can be expressed as a power
series in (E )?, and is,

MO
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1 -% (KT (1.27)
MO

Por all real metais Wu is between 2 and 10 e.v.
while kT is a few tenths of an electron volt even at elevated
temperatures. Hence, Wy changes very little even for wide
ranges of temperature; the change in N due to expansion of
the metal is certainly as important as the temperature de-
pendence in (7.17). For our purposes we can take Wy as con-
stant and equal to w,,.

The density function n(w) 18 plotted in Fig. 7.1a.
The solid curve shows n(w) at T20. The dotted curve is for
a higher temperature; for real metais the dotted curve cor-
responds to T 2500°K.

7.6 Other Distribution Functions

Besides the density of electrons per unit energy
range we should like to know the density per unit speed
range or per unit velocity range. By a procedure similar to
that of section 7.3 we can easily show that the distribution
of electrens with velocity components Vy» Vy and ve in the
range dv, dv, dv, is

x yav av dy
n(v x?VV jav dv_dv

3
y' (7.18)

and that the distribution of electrons with speed v in the
range dv is

we
"x,

(7.19)
1 +exp

In expressions (7.18) and (7.19) the functional dependence of
won the speed and velocities components is.understood:

22 2 2eV +V ) me mv
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The density functions n(v,, Vy» v,) and n(v) are plotted
against w in Fig. T-1,b and c.

In the study of the emission of electrons from
metals there is one other distribution function of some im-
portance, namely, the function that gives us the distribution
of electrons of particular velocity component v, in the range
av, with no restrictions on the values of the other two com-
ponents of velocity. This function is certainly obtainable
from (7.18) by integration over all possible values of v,
and Yy° Hence,

02 Oo

nly,)av dv, x? ty tome
00

04 00

= dv )
da. av

Wy2 m{vx1+ exp(

In order to integrate this let us transform to polar
coordinates such that

2

pipa p2dv,dv,
We have then

Integrating over @, we have,

2

n(v_)dv_ adv

1+ exp (
+= nv

3
av

1 + exp(
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(a)

MO

(bd)x' y? :

MO

(oe)

MO

(a)
n(v )

}my MO
2
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Now let
1 2 1 2

=5 ™ 5 mv

n(v_)dv - xkTdv ay (7.20)4

where
1 2mv

The indefinite integral is standard and is given by

leeq
a? =~

7

and therefore,
1. 22

n(v_)av kT 3 mv

} (7.21)4

The low temperature behavior of n(v ) can readily
be seen. If T is very small then

2
We

- $ mv.
uy

is very large, except near Wy
1 mvé, and we can certainly

neglect the 1 in comparison to the exponential term. Equation
(7.21) then becomes,

n(v,)av,= (Wy
- 4 mv? Jdv

This function plotted against + avé is shown in Pig. 7.1(d) as
the solid line; the dotted line
in the neighborhood of 2500°K for a real metal.

shows n(v,) for a temperature
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UZ The Specific Heat of the Electron Gas

We may use the distribution functions to compute
average values of energy, speed etc. For instance, the
average value of the energy ts just,

n(w) dw

(w) dw

At o°K these integrals can be evaluated easily and we have

wag wMO (7.22)

At temperatures other than OK the integral can be evaluated
with some difficulty by series expansion (see M. and S, Appendix
IV) and the result to the first order in (kT/wy,)* is,

WEE Wyo 1+ 1E Ger)? (7.23)

Since Yo is of the order of 5 e.v. and kT is about 0.03 e.v.
(for room temperatures) the correction term in (7.23) is about
2 part in 5000 or 0.02%.

The specific heat per free electron is then

Ty (dw kT
MO

At room temperatures this is about 28 of the classical value
of (3/dc. Hence, although the F-D statistics gives a much
higher average energy of the electrons, the temperature de-
pendence is extremely low, and agrees with the experimental
observation that the electron gas does not contribute to the
specific heat.

The experimental fact that thermionically emitted
electrons obey M-B statistics can be readily understood,
These electrons evidentally come from the high energy region
(high temperature tail) of the F-D distribution. It is here
that the exponential term in (7.15) predominates and the dis-
tribution of emitted electrons is of the form of (7.14).
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If we now re-examine the facts regarding the photo-
electric energy distribution and the large potential energy
demanded by the Davisson-Germer experiment we see that the

large spread in energy of the free electrons in the metal,
required by the F-D statistics, agrees with the experimental
facts.
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8.1 The Metallic Model

Im order to fix our ideas about metals we must make
some assumptions about the electric fields and potentiais ex-
isting at the surface and in the body of the metal. In deriving
the F-D statistics we have already assumedthat no forces act
on the electrons in the body of the metal; that is, that the
potential energy of the electrons is constant inside the metal.
That this is not too bad an assumption, especially for emission
problems, is amply proved by experiment. Of course, a detailed
examination of the atomic structure of the metal shows that this
assumption is untrue. However, the mathematics for dealing with
@ more exact modei becomes hopelessiy complicated.

Having decided upon a workabie assumption for the in-terior of the metal we must now consider the forces on the e]-
ectron very near the surface of the metal. Certainly there are
strong forces at the surface; otherwise the electrons would
readily escape and we know that they do not escppe except at
elevated temperatures or when subjected to other strong stimuli
such as illumination by light of high-frequency, high electric
fields, etc. The simplest assumption, and one serviceable for
some purposes, is that there is a discontinuity in potential at
the surface, the "square barrier". A somewhat better assump -
tion, and one which is comoletely confirmed experimentally from
about 50 A on out, is the image field barrier. That 1s, we
know that a charge, ~e, situated at a distance z from a largemetal surface, is acted upon by an image force equal to
-e*/16rr€,2° (directed toward the surface).

A potential energy can be associated with this force
and is equal to -e/l6Tr€,z. If we arbitrarily set the potential
energy at large distances from the metal equal to zero; and eet

some uncertainty about the exact value of z at Bhe surface,
the eonstant value inside- the metaliegual to s there exists.

since according to the image force law we should have an in-
finity at z=0. Let us arbitrarily define ze as the point at
which the image potential energy becomes equal to the constant
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value We have

2

From which

Z5> = X10 102
m 36A

for We 210 e.v.
Hence, the error. we can make in allowing the potential

energy to become constant at Z2Z,#.36A is small in dealing
with distances frmm the surface of 10A or greater. The potent -Jal energy as a function of z for both the image barrier and
square barrier 1s shown in Fig. 8.1.

VA = 26 2 U=0
U

U= Wy

Fig. 8.1
Hence for the square barrier

B' U=0, 272,
and for the image barrier

U= 1 Wé VA

We can also show the distribution of the electrons
in energy (for convenience at T =0°K) on such a plot as shown
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t

in Figure 8.2. In Figure 8.2(a) the density of electrons in
indicated by the density of the lines. In Figure 8.2(b) the
density is indicated by plotting n(w) to scale.

Energy Energy

W

(a) (b)
Figure 8.2

For our purposes we shall suppose that the image
field barrier correctly represents the facts, and modify this
supposition where necessary.
8.2 Thermionic Emission

In order to obtain an expression for the emission of
electrons by temperature excitation, we must calculate the
number of electrons which have energies large enough, and
velocities so directed, that they may surmount the potential
barrier at the surface. Since the surface is perpendicular
to the z direction, and the image force and potential barrier
is in the z direction, we are clearly interested in the number2 : Of electrons for which

However, let us consider one point; we are interested

n(w)
M

ow
7
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in a current, not a charge density. Hence, the number of
electrons per unit volume, as given by equation (7.21),
having velocity component v, in the range dv, is not the

right function. Rather we want the number of electrons per
second coming to unit area of the surface with velocity com~
ponent v, in the range av- If we cail this function
n'(v,)dv, it is related to n(v,)dv,, by,

= vo n(v,av, (8.2)
In order ta ocdet to see this consider all the electrons
having velocity components between v and tav, in the volume
of length Ve (numerically) and unit cross-sectional area, as
shown in Figure 8.3.

Surface of Metal

Figure 8.3
Clearly alli of the electrons in this volume will

arrive at unit area of the surface per second, and it remains
to evaluate those which can escape from the metal and contribute
to the thermionic current. The thermionic current density is
then
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=TH fore ve n{v,av, (8.2)
ew,tm Vim

Using equation (7.21),

ew,
m

)dv =e

fJ 1 (83)
-2

This would be a rather formidable integral were it not known
experimentally that those electrons which can escape (for which
5 mv,>W,) have values for 2 mv, about 2-6 e.v. greater than
wae Hence even for T= 2900 K,

i 2

1 1 2

= 82 mv

or smaller. Hence, the exponential in the logarithmic term issmall sompared to 1, Recalling that

for x
3

we can replace the logarithmic term in (8.3) by
2 2mv

)exp (
2

or roughly 10 times8 4and the first neglected term is
as large as this term. Hence we can write,

-2

ew,
m

2 2
2 mv

av (8,4)
4Wmext

Setting
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21
M 2

(8.4) becomes

1
2

TH™

the value of which is

(8.5)
2 2

Setting A Atmek2 and B Wy

we have a well-known relation generally called the Richardson
equation.

Ipy =A T (8.6)

@ is called the work function, and €® is clearly the minimum
energy which must be added to an electron at O°K in order for
it to escape from a metal.

In order to test this equation againgt experiment,

The experimental points should fall ona straight line of
slope - 43439 and should intercept the vertical axis at
1081oAp- This serves to determine the value of @ , which can-

or 120 amp/em* - deg'. Experimentally this value is seldom, if
ever, attained for clean metals. The value of 60 is obtained
for pure tungsten and several other metals, values of A between
30 and 200 have been reliably observed for many metals.

2

againstwe can plot the experimental values of log40 TH 1
T°

not be predicted by statistical means. However, A_ depends
2only on universal sonstants and should equal 1.2 x10 mp ~ deg

6

8.3 Departures or A from Theoretical



2Since the value A, =120 amp/cm* - deg is not
obtained experimentally 1t will be better to revrite our
"equation (8.6) as,

(8.7)= AT2

where A is the experimental value and since e/k =11,600°K/
wolt 1t 1s sometimes convenient to write

Inq zat? b/t (8.8)
where b 11,600

Previous to the develonment of the quantum (Fermi-
Dirac) statistics in addition to the equation (8.8) another
form of Richardeon's equation was in vogue, namely,

At? .e (8.9)
Experimentally, it is difficult, or impossible, to

determine whether the T term of (8.8) or the T* term of
(8.9) 18 correct. This seems strange until we realize that
the termperature dependence of the exponential term is so

or pe term are rather well masked over tlic range of temperature
'and types of metals avaialble to us. The pe term 1s generally
used because of its basis in quantum theory.

Just before the introduction of F-D statistics a
quantum theory of thermionic emission was developed which led
to the same form as equation (8.8), but the value of 60 amp/
em* - deg". This deviation came about because the effect of
electron spin was not fully realized. (Compare the factor 2
in equation (7.18)). But because several metals gave values
of A=60 and none gave A=120 the validity of the quantum
statistics in this application was suspect for sometime.
Nowadays it is generally believed that the experimental values
of 60 are completely fortuitous.

J TH
4

strong that variations in thermionic emizsion due to the

If this is indeed the case we must ask ourselves why
the theory does not give the observed values of A. There are
at least three independent, and probably equally valid, reasons

@ why this is possible, and probabiy combinations of these three
effects are present for all metals.
8.3.1 Tempereture Dependence of Work
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The most intellectually pleasing reason for A#120
is the temperature dependence of the work function. Since
metals undergo changes of volume and of crystal structure
with changes in temperature we might reasonably expect that
the work function should also depend (slightly at least) on
T. Setting

a cAPX T

in equation (8.6) we have

THJ A (pot % T)e/kt
O {A e

The constant in front is then what we would measure as A and

2 A=60, we have

1

Lo is what we would measure as the work function. For
1A

e721,6000 2
2

or
-4Kx 10 {°K

a reasonable value. Further this effect would explain values
of A>120 since & could be negative.
8.3.2. Reflection of Blectrons at Surface

Classically, electrons having sufficient energy to
climb the barrier at the surface will assuradly contribute to
thermionic emission. On the basis of quantum theory this is
not strictly true; since the electrons have wave properties
there is always a chance that some of them will be reflected
at the surface and henee will not leave the metal. If the
percentage reflected is r, and if r is independent of Vz» we
would nave to modify A, by

AzA (1 - r)
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This can explain measured values of A less than 120, but
not greater.

We cannot compute r by statistical means, but only
by the methods of quantum theory. Strangely, the image
barrier can produce but little reflection; the square barrier
appreciable. In fact any potential barrier that varies more
rapidly than 2 (the image potential) can produce large re-
flection. Since there is independent evidence of the exis-
tance of reflection, it may be that the field varies rapidly
near the surface but becomes similar to the image field at
distances greater than several atomic diameters.
8.3.3. Effect of Patchiness of the Surface.

Perhaps the most important. effect 1s the fact that
no metal surface is completely uniform. Even if the surface
is free of impurities different crystal faces more than likely
have different work functions. Hence our experimental curve
should be the sum of several curves such as given by equation
(8.6), and although actually @ curved line rather than a
straight line results from a plot of log 6 vs. zit is not
difficult to see that over a limited range of T the composite
curve should look like a straight line. Because the work
function appears in exponential, the dominating term, we
would in general measure the work function of the surface of
lowest work function, but the measured value of A would very
likely be less than 120.
8.4 Energies of Escaped Electrons

We should expect that the emitted electrons would
follow a Maxwell-Boltzmann distribution and indeed measurements
confirm this. The resenn for this is that the emitted electrons
all. come from the top of the distribution curve where the ex-
Fonential term is large. For this case the 1 that occurs in
the denominator for most of the P-D functions can be neglected
compared to the exponential, and hence the form reduces to the
M-B case as was shown in Section 7.5.

Very careful measurement by Nottinghaam and others
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have shown that the observed curve differs somewhat from the
rredicted curve. If one takes the ratio of the observed to
the predicted distribution function n(v,) for various values
of and calls this ratio r(v,) one determines the reflection
coefficient of the barrier for electrons of specific velocity
perpendicular to the surface. The results thus obtained for
r(v) are similar to those predicted by the square barrier;
actually one need only assume a barrier varying more rapidly
than 1/z. The experimental side of measuring energy distri-
bution will be left to the discussion of the photoelectric
effect.

Since the electrons come from the tail of the distri-
bution function, and since this tail has M-B characteristics.
one could expect that the average energy of the escaping
electrons is of the order of kT. Exact analysis shows this
average energy 15 2kT. Since this represents energy carried
away from the surface of amount

which is numerically equal to about 4 2 watts/om-, for
T= 2000°K and J=100 ma/em, this energy transport should pro-
duce a definite cooling of the cathode. Such a cooling effect

Py e
TH ekT watts/m

has been confirmed experimentally.
8. Contact Potential Difference

It has been a long established experimental fact
that if we place two dissimilar metals in contact, there
willbe a difference of potential between their faces which
are not in contact. This is called the contact potential
difference, CPD. Experimentally, we know that this difference
is the same always for two given metals, A and B. Experiment
ally, let us form a condenser by placing two metal plates A
and B a very smail distance apart and let us connect them
through a light flexible wire andaa ballistic galvanometer as
shown in Pigure 8.4.

Now if a CPD exists charge will be induced on the
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Pigure 8.4
condenser plates of amount

Qa, (CPD)
where cy is the capacity of the pletes. If now one plate is
suddenly pulled away from the other plate, the capacity drops
to almost zero and the charge Q will flow through the galvane-
meter. The CPD thus determined is of the order of a volt
(0-3 volts) for all dissimilar metal pairs.

Our model of a metal leads to an explanation of this
phenomenon. Let us consider the function where the two metals
make contact, and let us assume that the temperature is quite
low. We know that 1f we apply only a slight potential aif-
ference across this junction electrons (currents) flow freely
pver it. Hence, there is no force at the barrier large enough
to prevent electron flow. However, the electrons in the metal
have varying kinetic energies from zero to several e.v., and
by Pauli Principle only those at the top of theF-D distribution
can take up small amounts of energy from an applied electric
field. (Those electrons below the top of the F-D distribution
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cannot acquire energy by increments since the allowed energy
States just above them are already filled). Therefore, there
can be a force at the contact providing the potential energy
difference due to this force does not exceed Wu for either
metal. Let us call this potential energy difference AU.
The potential energy Bituation at the junction is illustrated
in Figure 8.5(a), where the subscripts A and B refer to the

CPD

BBW

I

B
n(v1.

AU n(v JA

(a) (b)

Figure 8.5
different metals and we have set the potential energy outside
metal A eguea to zero.

If we take the Zz ai as normal to the junction
the energy conservation law states

2 2 i 2
2 mvza~ 5 mv ptr Au (8.10)

When no electric field is applied across the junction
we know that no net current flows and hence the number of
electrons per unit area per sec. leaving A for B must just
equal the number of electrons leaving B for A. But since
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Paull'p principle applies in both A and B an electron of one
particular Von leaving metal A must be replaced by an electron
from metal B which will have the same ZA in metal A; i.e.
equation (8.10) will hold. Now this condition can be fulfilled
4f, and only if, we have

n (v )dvea= na(v_5) avesZA

or
Von Maloq) avzA *2B ng(vop) eV (8.11)

That is, the number of electrons of velocity component

Vea in the range dvZA coming to unit area of surface A per
second must just equal the number of electrons of velocity
component VoB in the range aves coming to unit area of surface
B per second, where the conservation law (8.10) relates Von
and voB°

Taking the differential of (8.10) and remembering
that AU is a constant we have,

Voat%za= 2B qveB

Combining this result with (8.11), we have

n, (v4) = (V5) (8.12)

Now (8.12) need only be satisfied for these electrons
which can be exchanged for energy reasons, for those in
which

2 >mv > Au.

Equation (8.12) can only be satisfied if the electrons
in both metals at the top of the Fermi band have exactiy the
same potential energy relative to infinity, Plotting n(v_)this eebufor both metals on our energy diagram is iliustrated in Fig.
8.5(b). Because of this an electron just outside metal B has
its potential energy relative to infinity depressed by an
amount just equal to the difference in the work function, &.e.

crD=®, .-
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The algebraic sign of the contact potential difference
is such that the electrons just outside the metal of lower work
function are at a lower potential energy than the electrons just
outside the metal of higher work function. That is to say that
electrons leaving a metal of work function %,, will be retarded
by a potential 9, -5 where 48 the work function of the
collector. In the usual experimental set-up the emitter has
a lower work function than the collector and the CPD is there-
fore a.retarding potential.
8.6 The Effect of Retarding Fields

If an electric field is applied such that the potential
of the collector 1s lower than that of the emitter, electrons
leaving the emitter will be acted upon by a force tending to
return them to the emitter. Fig. 8.6 illustrates the potential
energy situation for this case.

Collector.U Applied Field

Combined Field
Emitter

N Image Field

Figure 8.6
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The net effect of the applied retarding field is to
raise the height of the potential energy barrier over which
the electrons must climb. Hence if A? the applied potential,
4s retarding, the net effect is to increase the work function

ev,
d= Jon e

by an amount Vas Hence, in Richardson's equation (8.7) we

should replace g by 9+V, and obtainA

where Jon is the saturation (zero field) electron current.
Retarding potential methods may be made use of in

determining the energy distribution of the emitted electrons.
If we have parallel plate geometry and take z as the direction
perpendicular to the plates, then the current J(V) measured at
a particular retarding potential V represents the current due
to all electrons which satisfy the condition.

2
2 mv! > Ve (8.13)1.

where vy is the velocity component outside the metal. Hence
if n(v?)av? represents the distribution function in v! outside
the metal

ow

(8.14)I(v) se
m

is the current due to electrons for whih (8.13) 1s satisfied.
It can be shown that

ar

where v and V are functionally related by 5 mv Ve. If
concentric spherical geometry is used and if the emitter is
small compared to the collector, one can measure the total
energy (or speed) distribution function.
8.7 The Bffect of Accelerating Fields

Schottky Effect
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If one applies a field which is favorable to electron
emission the situation is not as simple as an additive (or
subtractive) change in work function. Fig. 8.7 shows the
potential energy diagram for this case.

Af-e

Image Field Collector
U

> ~

Applied Field

'Combined Field

8

Pigure 8.7
"The figure illustrates (to an exaggerated scale) the fact that
the potential energy barrier at the surface of the metal is
reduced, but not by the amount of the applied potential. In
fact the reduction of work function 1s very small, but not
unimportant. To compute this reduction let us assume that
the geometry is plane parailel so that the applied potential

@ energy is,
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at
ev, = - e. EA

where EB is the magnitude of the apPlied uniform field. The
image barrier isA

2

and the net potential energy is
2

Us-_ e E,z 1 (8.15)

To determine Ag, the lowering of the work function,
we must compute the maximum vaiue of the combined potential
energy, Age. Differentiating Us with respect to z and setting
equal to zero

au 2 0
A 1

or

tq =\ oEA

for maximum. Therefore,

Us(max) 2

e EAAge =Usimax) 2e \ 7 Te,

A
1 TE.

5 wtAg =- 3.79«10 A

Hence, for an applied field of 10° volts/m the
lowering of the work function is only about .04 volt. How-
ever, this smal) charge of work function can produce large
changes in the emission current. If in equation (8.7) we
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replace J by J+Aq we have

AgeJ Jay e

but

-Ag 33-79 %10 « 11,600 = hh5
A A

Hence,
hy

e (8.16)TH

The validity of this theory, first given by Schottky,
can be tested by plotting the logarithm of the emission current
against the square root of the applied field (or of the applied

faces and Schottky's theory 18 amply justified. In fact, the
best measurements of saturation currents are made by means of
this theory.

As the temperature of a cathode is raised the emission
current density becomes large and space charge effects become
appreciable. Hence, one must go to high values of applied
potential before collecting all the thermionically emitted
electrons. But in going to high potentials one has enhanced
the emission by Schottky effect. The only escape is to go to
stil] higher potentials, and then to make a Schottky plot of
én 3 vs. ge By extropolating this back to zero applied field,
neglecting the data in the space charge limited region, one
arrives at the true value of. the saturation current.

straight line of slopevoltage for constant geometry). hy
should result. This is actually the case clean metal sur-

8.8 Field Emission (Cold emmission)
If one goes to applied fields of the order of 107 volts/m

and greater, one finds that the emission is much greater than
that predicted by Schottky theory. In fact even if the tempera -
ture is very low, appreciable emission is observed. Such an
effect has no explanation on the basis of classical theory but
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can be explained if one considers the wave properties of the
electrons. Under very strong fields the potential energy dia-
gram at the surface of the metal looks something like the dia-
gram of Fig. 8.8. (Still somewhat exaggerated). The Fermi
levels of the free electrons are indicated on the diagram for
a very low temperature.

0

B

Combined. Field

Figure 8.8
Ciassically the electrons do not have enough energy

to surmount the barrier and hence could not escape from the
metal. However, electrons with wave properties have a finite
chance of penetrating the barrier, from A to B for the most
energetic electrons, and appearing outside the metal. Such
an effect is called the tunnel effect, for obvious reasons
and the detailed theory is due to Fowler and Nordheim. The
resulting current density is predicted as,

D

e (8.17)A 22
A

where the applied field Ey plays a role analogous to that of



-170

the temperature in thermionic emission. The constants c andD are dependent on the particular metal and are

Cs amps/vo1t*

D=6.8x109 g3/2 volte/m
where Wy snr Wy are in units of electron volts.
8.9 Secondary Emission

If a metallic surface (or insulator for that matter)is bombarded by eiectrons, one finds that secondary electronsare emitted by the surface, and that this effect is essentiallyindependent of the temperature. Some of the electrons haveenergies equal to the primary electron and are truly reflectedelectrons, but for the most part the secondary electrons haveenergies of the order of 5 @.v., 4dindependent of the energy ofthe primaries, Furthermore, at primary electron energiesaround 500 e.v. the number of secondaries is about twice thenumber of primaries for most metals. For Beryllium, or moreproperly for Beryllium with a thin oxide film, the number ofsecondaries can reach 4 or 5 times the number of primaries.The explanation of this effect must be due tosuccessive momentum transfer, A primary electron strikesseveral of the electrons in the metal and imparts momentum tothem, but in a direction away from the surface. These electronscan, however, strike the atoms of the crystal lattice and bounceback, retaining the additional energy received from the primaryelectron. If this energy is greater than the barrier potentialenergy the electrons can escape from the metal.This point of view is strengthened by experimentswhich have measured the Secondary emission as a function ofthe angle of incidence of the primary beam. These experimentsshow that the component of velocity perpendicular to the sur-face is the determining element for secondary emission.Similar results are obtained when hetvy parti : les(say protons) are used in the primary beam, However, teenergy of primary electrons for maximum emission ratio

4
6
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about 1000 times higher (of the order of the mass ratio)
which also confirms the momentum transfer point of view.
8.10 Photoelectric Emission

When metals are illuminated with visible or ultra
violet light they emit electrons. This effect was discovered
in the late 19th century by Hallwachs, who observed that metals,
when subjected to ultraviolet radiation, became positively
charged to a few volts. The number of emitted photoelectronsis atrictly proportional to the intensity of the light at a
given frequency; but the photo current is strongly frequency
Gependent. The shape of the energy distribution of the emitted
electrons depends only on the frequency of the light, and not
at all on the intensity, a fact that was completely at odds
with classical theory.

Typical experimental curves for the emission from a
clean surface of sodium are shown. Fig. 8.9(a) shows the
total (saturation) photoelectric current per unit incident in-
tensity as a function of frequency. Pig. 8.9(b) illustrates
the distribution in total energy of the emitted photoelectrons
at a single frequency

Amp/Watt

1(f)

42802248

n(w)4,0x10

2.0x10

50004 40004 S000A4 :
: a

Fig. 8.9(a) Pig. 8.9(b)
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theseThe general explanation of results can be
obtained from our statistical model of a metal; for a detailed
explanation we must use the methods of quantum mechanics. Con-
sider the energy diagram for the electrons near the surface of
the metal at a low temperature,in Fig. 8.10.

U
A

B0
C

Pig. 8.10
The free electrons cannot absorb quanta (see section

5.2A) and hence only those electrons near the surface, the cross
hatched area, can absorb light since such electrons are bound
by the image force. Actually, most of the absorption of light
near the visible by metals is due to these surface electrons,
but only a small proportion of the absorption leads to photo-
electrons. From our dlagram,if the metal is illuminated by
light of frequency f such that hf <fe, it is apparent that
the energy transfer to the Fermi electrons is insufficient to
permit their escape. If, however, hf> ge it is still unlikely
that all, or even most of the absorbed quanta will lead to
photo emission. Even if the electron gains enough energy to
escape it may be travelling in the wrong direction. For ex-
Cape we must have that
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mv +hf=5 mv} Wy (8.18)
and v must. Also the electron may have lowinitial energy and hence even after absorption of hf con-dition (8.18) may not be satisfied. This situation is illus-trated by the three vertical arrows in Pig. 8.10. Each re-
presents a quantum of energy hf, but each is interacting witha different electron, indicated by the bottom arrow, QuantumA, absorbed by an electron at the top of the Fermi band, can
produce an energetic photoelectron; quantum B, absorbed by anelectron of intermediate energy can produce a photoelectronwith just enough energy to escape; quantum C, absorbed by anelectron near the bottom of the barrier cannot produce a photo-electron.

Quantum A produces the most energetic photoelectron,of energy

> mv she - ge (8.19)
This relation was predicted by Einstein in 1905(20 years before F-D statistics) and was the first clearstatement of quantum theory. In 1915 Millikan measured theMaximum energy of photoelectrons as a function of frequency,by measuring the retarding potential, Va » necessary to stopthe fastest photoelectron. A plot of ve against f yields astraight line of slope h/e, and Miliikan's was the first

good measurement of this quantity. Actually, of course,
2 mveay is not a unique quantity; at normal temperatures thereis always a slight temprature "tail" as shown in Fig. 8.9(b).In measuring the complete energy distribution functionone can use concentric Spherical electrodes, where the emitteris about a poit source. The photoelectrons emerge radially,and if a retarding potential Va is applied one collects allphotoelectrons of energy ev, and greater. If the photo currentis I(V,) the energy distribtuion is given by

21
MAX

1
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n(w')= av
where w' is the energy after escape.

Since n(w') can'be computed from the known distri-
bution inside, this provides a check on the F-D theory. Vers
good agreement is obtainable between theory and experiment;
there is some divergence which must be attributed to a barrier
reflection coefficient. This implies that the barrier departs
from the image field picture near the surface. A typical
current-voltage relation is shown in Fig. 8.11, where we have
plotted the photocurrent against the applied voltage.

1()

CPD

(in ev)
U +0.5
A

Fig, 8.11
The current does not saturate at the zero of applied voltage
pecause of contact potential difference,

The spectral distribution curve of Fig. 8.9(a) cannot
be predicted by statistical methods alone, except near the
threshold (the long wave length limit) of photoemission. The
threshold wave length 1s related to the work function by the
familiar relation

4 12 .400 (8.20)

As the frequency of the incident light is increased from the
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threshold, we should expect increased emission at first since
the number of electrons which can enter into the emission
process increases rapidly. However, quantum mechanics shows
that the absorption probability falls off with increasing
frequency. This decrease in absorption probability predominates
after a while and accounts for the maximum in the spectral dis«
tribution curve, and the subsequent diminution of the total
photocurrent.
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