-43._

i CHAPTER IIX. MAXWELL'S EQUATIONS AND SPECIAL RELATIVITY

‘ 3.1 The Eieetromagnetic Field Equations

{(Reference: Frank "Electricity and Ooptice", Chap. VIII.)

Thus far we have treated the electric field and the
magnetic field as though they were completely independent.
This 1s not true in general' because of Paraday's Induction Law,
and Maxwell's introduction of displacement current. PFaraday
showed thnat 1? the mgnetﬁ:\lias éhanging with the time, the
electromotive force around a closed péth is not zero, but is
equal to the time rate of change of the flux 'uf" 3 linked by the '

path. That 1s

{w . ééa'- aE {2 %)
j;n ds = - 3F --”“ das
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. . In order that the equation of continuity of current be .
satisfied, Maxwell introduced the idea of displacement current
|
|
|

»

and showed that the displacement current density is Just equal
2D .

to T+ . In stating Ampere‘s circultal theorem, we must take

aceount of this current density as well ag the real current

density, J. Hence, Ampere's circultal lane beconmes,

Q‘h’ * 48 IJ(J“}’%) - as ¢ {"{M.
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These equations (3.1) and (3.2) together with

D 1d8 =
cléged f
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closed

‘ are the integral equations of the electromagnetic fleid.




Maxwell deduced from them the equivalent differential equations

which are generally called Maxwell ‘s Equations, and are
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In free space, /Af/‘e »€=%, and with no free charges op
real currents, these equations become in vector motation,

aH
curl E = -—,“'~° at

curl H = 8.%

divE =20
div H o)

By taking the curl of the first equation and the time

derivation of the second we have
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2
- curl(curl E) =P‘°e°%§; ,

A YN
but, -~ curl{(curl E)= - grad(div E) + Ixt * ;‘a‘,’, s }31

T a‘ £’
aéf; + Tg ds;_ __/,.,, .g—,, (3.8)

since 4div E =0

So

Now eq. (3.8) i1is just the wave equation for the vecbor
E, and the wave 18 propagated with a velocity equal to 1/6;:20'
which we know to be ¢. An identicel wave equation can be ob-
tained for H. Maxwell's work was of the greatest importance
since 1t showed the inherent electromagnetic nature of light,
and aiso predicted the possibility of the radiation of radio
waves,

3.2 Moving Coordinate Systems

If we have two coordinate systems, (x,y,z) and (x*,y*,

z*) and 1f the starred coordinate systeﬁ is moving relative to
(x,y,2) at a constant velocity v in the direction of the posi-
tive x-~axlis, then we should certainly expect to be able to ex-
press the coordinates of a point (x,y,z) in terms of the co-
ordinates (x*,¥*,z#). If we assume that the two systems coincidé
at time t = 0 fhen at some later time, we have

x* = x - vt

yr=y (3.9)

gt = g

Such a change of ccordinates 1s& called a Galiﬁ?n trans-

.rormation, and 1t is apparent that Newton's laws of motion for



a mass point will be the same in elther system since there 1s

no relative acceleratlon. However, if we inguire how Maxwell's
Field Equations behave under such a éoordinate transformation
we find very quickly that their form changes radically. A
simple physical example serves to 1llustrare this point. Sup-
pose we hﬁve a uniform magnetic fleld B at rest in (x,¥,2) and
a charged particle at rest in {x*,y*,z*). In the unstarred
system we would measure a magnetic force since the particle is
moving, 1.e., F=qvx B. In the starred system the particle is
not moving and hence no magnetlc force 1s pbssible.

It developes that the form of Maxwell's equations and the
general electromagnetlic force equatiqn (the ponderomctive equ-

ation)
P=q[E+vxB] (3.10)

remaing unchanged under quite a diff'erent coordinate trans-
formation called the Lorentz transformation. (However, the
form of the field vectors must be changed in order for this
invariance to hold).

3.3 Einstein's Derivation of the Lorentz Tpansformation.

In addition to the trouble with Maxwell's equations, by
1905 there were two sets of experimental data which indicated
that not all physical laws were constant under GaliIAean trans-
formations. In the first of these experiments Pizeau set about
to find the velocity of 1light in a moving liquid of refractive
index n. If the 1light propagation was unaffected by the liquid
motion one would expect to meaéure a velocitynwz:%n If the

light propagation depended entirely on the liquid one would
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expect to measure a velocity w:%;:.v where v 1z the velocity
of the 1ilquid relative to the earth. Actually, Fizeau found

that neither answer was correct but rather that

/]

S

an intermediate value.

This strange result led Michelson and Morley to their\
famous experiment by the following argument. Certainly, neither
the earth nor the moving fluid constitute a "preferred” soordin-
ate system in space then we should be able to detect the change
in motion of the earth relative to thils system by measuring the
velocity of light from distant stars at two times,one-half year
apart between which times the relative veloecity of the earth
would have reversed. The result of this experiment waes com-
pletely negative; the velocity of light from the stars did not
change.

This result led Einstein to make the following famous
assumption; the velocity of light in free space is independent

of the motlon of the observer. We can now follow the econ-

8equences of this assumption. Imagine a spherical wave of

light starting from the origin of coordinates at time t — 0,

" when the starred and unstarred coordinates are coincident, By

Einstein's assumption this spherical wave willl be propagated 1in

both systems according to:

2
X + yzi-z2 = ¢2t2

and, (3.11)
L e By ouB i o2 o2
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We desire to find the functional relation befween the

two coordinate systems, but we have not assumed that the time
must be the same in each system, as does the (Galllean trans-
formation. Although the Galilean transformation seemed correct
for the dynamics of mass-points (Newton's Laws) this may have
been only because the velocitles invoived were very much lower
than ¢. Since 1t 18 very desirable to have the laws of mechanles
as well as electromagnetism obey}the same laws we shall require
that our new relationship reduce to Galllean transformation for
v << ©.

Let us rewrite equation (3.11) so that

2

xa2,y* r2z%° - c?tef = x2+- y2+— 22 - 22 (3.18)

and assume

x*= ol(x - vt)

e =2
t* = ok (¥t - 9 x)
Substituting (3.13) in (3.12) and collecting coefficients
of 12,1‘.2 and xt respectively, we have

dd - 28%* =
et - 4t = -¢

~2«lr pac¥3 =0

[ A

Since x and t are independent, their ccefficients and .

those of xt must independently satisfy (3.1%).

The solutions of (3.14) are:
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The second set of these
physical. Prom the first set
roots as corresponding to the
chosen, and hence we have the

y-uot

i

{g# - f" %Eé
¥ I~ Ar

solutions 1s obvicusly non-
we will choose the pogitive
velocity direction we have alresady

well-known Lorentz transformations:

p

The first consequence of these equations (3,18) 1s that

can never equal or exceed ¢ for a material particle.

consequence 1s the apparent contraction of moving hod

A
es.

we place ourselves in the unstarred coordinate zystem and mepsu

the length of a body (at rest

tremitlies are at X5 and Xy wWe

But if this same body is in the starred ccordinate

would find

{ =

$g * % =

relative to curaelves) whose ey -
would achieve the repult =». - x.

system we

f]f;;z (x8 - x?)

and hence the body is foreshortened in the direstion of 4ts

motion.

(The Pitzgerald-Lorentz contraction).

Similarly

moving elocks apparently run more slowly tc a fixed observer.
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(it' should be pointed out that these effects are very small
‘ ' until v » ¢/10.)
In adding relative velocitles we must take account of the
transformation laws. Iet us assume a third frame of reference
(xwe, yoo gzas tas) goving with a velocity u relative to

(x#, y*, z#, t*) along the positive x-axie.

: P i
e = }..:.ﬂ.t_

— Yi=at

y“l“ 2 lyi‘: y

(3.16)
ZEt = g =g
ek
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LER =~ t et
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Subatituting (3.16) in (3.15), we ean show that
y s Ud't
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Again,this law (3.17) for the addition of veloeitiee
reduces to w o v pu when vu <« c‘ It can be shown that w ecan
never exceed ¢, providing, of course, that u w never exeead
¢, and hence, no relative motion can ever cxist at 2 apee
rreater than the speed of :oropagaﬂon of light in vaocuum,

We can also derive the result of Fizean's experiment
using this expression, (3.17). Let v be the weloelty of the
liquid relative to the earth, and let u be the veloeity of

® light relative to the liquid, 1.e., ¢/n. Then the veloeity of

;1ght relative to the earth is
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o+ </n U+ <y
W e - v
| 4 %)%z, & ( ne
Since v ¢» ¢ we can expand and neglect higher powers of e
- £ U _¢c o ke
LR ;,_2__;.'+v(1 ”;).

Doppler Effect

If a source of light waves 18 moving relative to the
observer the observed frequency will be shifted from the value
in the case nhere‘observer and source are fixed, even though
the observed velocity is constant. Classically the frequency
shift 1s given by

£+ = (12 3)
where the plus sign 1s to be taken if the source 18 moving
toward the observer. Relativistically this expression must be
modified, since there 1s relative motion of the coordinate

syatems of the source and the observer, so that

£* = (I i"yc,)/v |—p*

If v 1s small compared to ¢ we can write this, neglecting

X
~l

T~ T il o
=z [ o u,(7 ¥ L
higher order terms in v/e,

f* 2 f(1 £ v/e +3 f':)
Hence the relativistic correctlion is of second order,
but its slgn is independent of the direction of the motion.
Ives made use of this fact in a recent expe:inental proof of

the correctness of the relativistic expression. He measured the

shift in frequency of the monochromatic light emitted by hydrogen
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atoms moving in opposite directions in a discharge tube,
Classically the average value measured would Just be equal

to the frequency of 1light emitted by atoms at rest. Relativ-
istically the average would be shifted from the rest value by
an amount equal to 3 %:f . The relativistic shift was detected
by Ives.

3.5 _Relativistic Dynamics

In an isolated system (no extermal forces), both the

momentum and the total energy must remain constant, at least
~according to Newtonian dynamics. We should like to find the
corresponding quantities in relativity which stay constant in
isolated systems, and also the law relating these quantities to
the forces of the system. We proceed in much the same manner
as we did in deriving the transformation laws, but since the
algebra 1s very tedious we will simply state the results here.

The momentum vector becomes

o U
p= V'_‘:(?'—’ (3.18)

and the energy becomes

= V'—-/_%-: + U 3.19)

where U 1s the potential energy.

We have written m, instead of m to imply that m, is the
measured mass in a system in which the mass point is at pest.
We can then regard “o/ﬁ;ﬁi as the mass when the particle has
& veloelty v relative to the observer.

The law of motion becomes, then,



;o MWel
— _dp _ dimo) d § y,‘_(a)

(3.20)

d+
By integrating along a path s and defining the change

in potential energy as

UB-UA:'fF' d8
we find that the total energy W is a constant of the motion.

The proof ot this statement 18 left to the problems.

The expresaion for the total energy W 1mf311es that there
2

is a "rest" energy m c” even when the particle 1s at rest.
Ample proof of the reality of this rest energy has been given

of late, and this prediction of rest energy is one of the

great triumphs of relativity theory. For the purposes of this
course we shall define the kinetic energy as the energy due to -

he motion of the particle and this is
K.E. :nca - m 02 =m c2(-~\-—- - 1) (3.21)

It 1s obvious that the expression for momentum reduces to
its clessical value when v << ¢. That the kinetic energy also
reduces to 1its claasicai value can be seen by expanding the
term in parentheses in eq. {3.21) by means of the binomial

theorm, 1.e.,

2 "
) © 3 U .
KE z=m e=(1 + &g,i'-é-é'.; - e s oo =1)

J
neglecting powers of ¢ greater than the second, this becomes,

)
- 2 4, 2
KE = m ¢ (3 c,_")'% m,v ,
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and hence the relativistic laws give the correct result for law

velocities.

A useful relation whose derivation is left to the problems

KE -:‘lmoca)a.p ot - m°c2 / (3.22)

3,6 MoGion in a Magnetic Field B
If a chargedparticle moves in a magnetic fleld (at

relativistic velocities) our equation of motion becones

>

-
& [ Y _\.q¥xB (3.23)

(1=7*
2 2 - > :
The v term in /S 1s just a scalar (v ° v) and will not be
changed in a magnetic field as we can see by taking the dot
product of V with both aides of’ the above equation,

77/‘2 e B - 1 \
!_d.‘t J7-B% ::q@ '!_-; BJ‘ il

The right hand side 1s v » F, the power or rate of doing work,

and it is identically zerc. Hence as in the classical case
\ :‘.}\‘

Ve e (&)

the mag_netic field does no work.
Let us assume that initially 'v? is perpendicular to 3

and using cylindrical coordinates let us set, in eq. (3.23),
—
- 1? V¥
and -
e
B = iz Bz

B <
Then v x B = 1 VQ By, and since v@ cannot change with the
time (3.23) becomes

W Ve deg Woet .
Yr=p* dt “3%bPz%
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By eq. (2.10.7)
-
deg P de
dt = @ dt °
and hence
-Mp V,

My .o NS o
V7= A =~ & de/dt By

Where the negative sign simply means that the force is

centripetal and has no other significance. Since
the radius of curvature we have,

o Ve

i - anz 3

V7i-pg*
or generally for circular motion in a magnetic field

™,V Hposins '
p = —2— =qRB Tt (3.2%)
V/-8%

where p is the magnitdde of the momentum.

3.7 G@General Remarks

It is difficult to give any general rules concerning
when relativistic formulae must be used, i.e., when the
classical laws break down seriously. As a sort of general

condition 1t is not too conservative to use relativistie

formulae whenever the Kinetic Energy of the particle exceeds
2
10% of 1ts rest energy, my¢ . In certain resonance phenomena,

for instance the motion of particlesin eyclotrons, 3 or 4% is

probably a better figure.

A numerical example may help to illustrate: The rest

energy of an electron is 6
-31 +1 =14
mee® = 9.11%10 "X 9X10 = 8.2x107 " Joules

or

e
de/d¢
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-14
8.2X10 .

2 _ e . 6
me? =7 6x10° 39 = -51X10

ev, or .51 mev,

Hence for kinetic energies of 51,000 ev. we have

‘ 5 6,
.51 X 10”° = .51X10°(—L— - 1) o
5 »(’,.___ ) or

By
]
=1+0.1
2 Vi< g2
solving ﬂ - .1736 and _
v = . 416 ¢

And hende even at 50 kv the eledtron has reached 40% of
the speed of 1light, and its mass has increased by 10%. The
proton is 1837 times heavier than the electron so its rest
energy is about 935 mev.

For any particle

R T
moga. - V;:—E:_ I (3025)

Pig. 3.1 shows the quantity%]i%plotted as a function of
9]
ol . .
j3 = m-“/c*o The classical value 1_3 given for the sake of

comparison.
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CHAPTER IV. HIGH ENERGY PARTICLE 4CCELERATORS

_ In order to study the properties of the atomic nueleus,
and to provide extremely high energy x-rays for medical and
metallographic uses it is necessary to accelerate charged particles
to energies in excess of one miilion electron volts. Conventlional
transformer-rectifier type high voltage supplies are difficult to
conatruct for these potentials because of the insulation problems
involved, and furthermore such supplies do not give a very stnlle
voltage. Novel methods of acceleration are required, {herefores,

These methods of acceleration can be divided into three
general types:

1) Direct Voltage

2) Resonance

3) Induction

The very highest energies, over 100 to 500 Mev are ob-
tained by combination of the latter two methods. In this chapter
we shall attempt to describe examples of the more widely used
accelerators; in any event we shall cover those principles which
are fundamental to all particle acecelzrators.

4.1 The Electrostatic Geuneratoxr

The most widely used of the direct voitage machines is
the electrostatic or Van de Graaff generator. This type of
accelerator, while limited to voltéges of the order of 10 million,
is a remarkably stable source, and is the most precise source of
high voltage now existant; stabilities of one parﬁ in 10“ are
practicable. With such sftability this type of machine is most
useful for the accurs s leterminaticr 0 nuclear energy levels,
although recently;wi@aspread use as s source of high energy x-rays
has been made.

The principle of operation 1s quite simple. The high
voltage terminal is a suitably shaped metallic shell {for instance
a spherical shell). The high voltage terminal is charged to a
high potential by conveying electiric ehafge from ground to the
terminal by means of a rapidly moving insulating belt. Fig. 4.1
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inaide the high voltage terminal, and can themn be acesisruted
down an evacuated discharge tube and allowed to strike tha
target material desired. The power required inaide the high
voliage terminsl can be transmittes meehaﬁﬁea]iy by the belt
0 & dypamo situated imside the terminal. i
The voltage to wh&c: such o generator may be charged
depends on Lhe Imsulating gualities of the supporting column
and dlscharge tube and the atmosphere surrounding the termimsl.
Veually the Qiachnrge tube imsulatiom iimits the voltage, The
*nnulating propertieas gof both the columr and of the surround’ ng
| almosphere can be snhanced greatly by increasing the pregsyujre
‘ et the gag surrounding the termimal wnd the celumn, Most
nodern electrostatic gsmerators are so "preassurized . ”
~ In air the breakdown field 5Ezeﬁgth is 3>a2n5 vcianfﬁéf-?

1
T
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in order to obtaim a potential of 106 volts it is necessary

to have a sphere whose radius,

6 .
Vv 10 i

a = = " SR meter.
By T 3x10® 3

For stable operation 3 radius of about two times this ia
required. ‘

While the inherent stabliity of an electrostatic
generator is quite good, this stability can be greatly im-
proved by the use of "feed-back" systems; i.e., any small
change in the voltage can be detected and used to affect
the charging current so that the variation tends to be
suppressed. :

The electrostatic generator works equally well for
positive or negative, heavy or light particles.

A\

\

™\

k,2 The Cyelotron

When one tries to increase the potential of a direct
voltage device beyond 10 miliion volts the insulating require-
ments become almost insurmountable. If we are to obtain
particles of energy much in excess of 107 e.v. then we must
resort to some other means of acceleration. Although in 1928
an elementary form of linear accelerator (see Sec. 4.8) was
succesafully used, the first important development of resonance
acceleration was the cyclotrom of E. 0. Lawrence. The cyeclo-
tron works omn the simple primciple that the angular veloeity ;
of 8 charged particle moving in a magnetic field is a constant,
and is given by, ‘

w=9/m B
(v 18 not constant, of course, im the relativistic region).

If now we continue to apply am RF field of frequency

pmld .1 o
£=ER 2w & P {%.2]



%
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in phase with the angular voloelity W of the particles im a
'magnetic field, we should be able to transform the RF energy

into particle kinetic energy.
This principle may be readily understood by referring

to Fig. 4.2 which shows horizontal and vertical sectio?s :

through the accelerating chambers. The electrodes or "Dees

ecan be thought of as the two halves of a hollow metallic

pill box split along a dlameter. Charged particles, generally

NN

ey

N

HORIZONTAL SECTION VERTICAL SECTION

Pig. 4.2

protons or deuterons but sometimes X -particles, are ecreated
near the cemter of the electrodes by direct ionization of tha
gas in the chamber or by a suitable ion gun. If now an RF
field 1s applied to the Dees these particles will find them-
selves acted upon by an electric force which will tend to
accelerate them, When the particles pass into the hollow
dee they will no longer be acted om by the RF field, but the
magnetic field will bend them in a circular are traversed
with angular veloeity (v . If the particle is favorably
accelerated on 1ts first traversal of the gap, and if

£ == é%,, it will again be accelerated om its second and
subsequent traversals and will follow the spiral path shown,
gaining energy on each trajersal of the gap. Particles which
start in an unfavorabla phase will soon be lost.
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Since, 2Mf=q/m B=w

and

mv2 - 5 mw2r2

=

KE =
m(3) ?p°r

is the kinetlc energy at any radius r. The kinetic energy
18 independent of the RF voltage and depends only on the
size and. intensity of the magnetic field. The energy of the
emerging particles, at radius Py is then'

KE =

N A=

KE = 3 u(d)%p%r 2 (4.2)

Equations (%.1) and (4.2) are the fundamental
relations for the cyclotron. It is apparemt that the re-
sonance condition (4.1) cannot be satisfied at high speeds
because of the relativistic increase of mass, and in fact
constant field and freguency cyclotrons are limited to
kinetic energies of about 1.5% of the rest energy m ce
which 18 about 30 Mev for deuterons. It is obv*ous from
this that cyclotrons have no practical use for accelerating
light particles (electrons) since the limiting energy would
be of the order of 10 Kew.

4.3 Resonant mzasurement of e/n

However, an interesting application of the cyclotron
resonance principle to the precision determination of the
electric charge to mass ratio was mede by Dunnington (then a
student of Lawrence) about 1933. Referring to Fig. 4.3 an
evacuated chamber is placed in a magnetic fleld, perpendicular
to the page, as shown. Electrons are emitted from a source S
and can be collected at C. The segment SC is insulated from
the main can A, and a fixed radio frequency field is applied
between them, An appropriate slit system is provided as
shown. Electrons leaving S will be accelerated by the RF field
in crossing the first gap. ’(Electrons which emerge during
a decellerating phage will be quickly lost and need not con-
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cern us here). Initially the device acts as a velocity

Fig. 4.3

selector since only those electrons which satlsfy

can arrive at C. Now if the applied frequency f is initlally
jow so that the electrons move from the first slits to the
final slits in less than a period then the decellerating
force at the final slit system is less than the accelerating
force at the initial slits. Hence, all the.electrons of
correct v, are ccllected. If the frequency 1s adjusted so
that the time qf fiight is exactly one period them the
decellerating force is equal to the accelerating force.
Further increase of the frequeﬁey will then cause a sharp
drop in the current at C. '

The condition for this is,

(277 =‘0°)ro

v = = = (277 - o, )r £, (4.%)

O
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Combining (4.3) and (4.4) we have

‘ : e_ (2 W;go)fo
m - B

where ro is the frequency at which the sharp drop in
current begins. This method is capable of good precision
and has probably gl#en the best dynamical value of e/m
whieh has been obtained.

k.4 The FM Cyclotron

If we are to accelerate particles to kinetic anergies
greater than 1 or 28 of their rest energy by cyclotron prin-
ciples 1t is evident from eq. (4.1) that we must vary efther
Bor f in order to make up for the relativistic mass change .
At first sight 1t would seem proper %o shape the magnetic
field B so that 1t is increased as r increased in Just the
same manner as the mass increases with radius. This would
involve no changes with time and the cyeclotron would remain
a continuocusly acting accelerator. Unfortunately, for

. stability reasoms, it is necessary to decr-2ase B slightly
a8 r increases. Increasing B with r would leaa g defocussing
in the vertical direction (the direction or #}. Hence, the
only possibility is to vary the frequency with time.

Now 1f the frequency varies with the time, two con-
ditions will be imposed on the cyclotron operation that are
not 1mposéd on the operation of the constant frequency cyclo-
tron. Firstly, only those particles which start from rest
when r._E—--JL-B willbe accelerated, and consequently the
cyclotron ope?ation will not be steady but will be pulsed.
Secondly, the frequency change must just match (inversely)
the change in mass of the particle. But the time rate of
change of the particle energy, and therefore mass, will de-
pend on the RF field when the particle crosses the gap be-
tween the dees. Thus it would seem that the oseillator
frequency must be externally synchronized with the rate at
which the particle gains mass. Fortunately for cyclotron

’ constructors such 1s not the case, within limits, as will
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be seen,

The Principle of Phase Stabllity

We will endeavor to show that under the action of
a frequency-modulated field the particles will tend to re-
main in the right phase for acceleration to take place and
for the relativistic resonance condition to be satisfied,

1 @
2 m,

1
X.E

m_c*~
o

f= B

(4.5)

1+

where f and K.E. are the instantaneous values of frequency of
fleld and kinetic energy of the particles

/

Fig, 4.4

In Fig. 4.4 let us assume that a particle which comes
through the accelerating gap at A receives just the right
energy to come through the zap a cycle later at A' in the
identical [i:ic Lviavion,
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A particle which arrives at the gap a little later
than the "correct" particle, phase B, will receive less

"kick" from the RF field and will tend to catch up, phase

B'. At first this sounds backwards but we must remember
that the time required for a particle to make a revolution
is equal to,

T - ng::QTTmB
=35 q

and hence the late particles will gain less energy and
therefore mass, and will tend to make the next revolution
in less time and will tend to cateh up to the correct
particles. Similarly, particles arriving too soon will re-
celve more kick, will take longer for a revolution, and will
tend to be caught by the correct particles, phases ¢ and C'.
Hence, the motlon on the right side of the positive cycle
is stable in phase, and will remain so if the frequency 1is
not varied at too rapid a rate. Particles on the left-hand
side of the positive cycle are in an unstable phase and will
soon fall out of resonance.

Hence, the beam in an F.M. c¢yclotron will consist of
several groups of particles bunched in phase wheéch in turn
will constitute a pulse. The number of bunches per pulse
will depend on the rate of change of frequency with time.

Such an F.M, cyclotron has been in operation at
Berkeley for about two years, producing 200 Mev deuterons
and 400 Mev X -particles for a total frequency change of
about 18%. The energy in such a cyclotron 1s given by the
relativistic expression,

m=\/—(moce)24-.32r 2<12¢=2 - mc? (4.6)

o

These two equations (4.5)and (h 6) are the fundamental
relations for P.M. cyclotrons.
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5.5 The Betatron

We have already examxned the cases of the direct vol-

- tage accelerator (electrostatic machline) and the resonance

accelerator (cyclotron). There remains a third class, the
induction accelerator, of which the so-called betatron is the
principal,if not only, member. As 1its name implies the beta-
tron 18 used as a source of high energy electrons {Beta rays)
and works on the prineciplie of acceleration by induced electrc-
m-iive force.

Consider an electron which 1s moving in a circular orbit
of radius r_. If this orbit links magnetic flux which is
changing with the time there will be an emf developed which
will produce a force on the electron. Furthermore, if the
orbit and the flux are both symmetric about a common axis,
this force will be directed along the circular path {in the
azimuthal direction), and will accelerate the electron if we
chocse the sense of the rotation to satisfy Lenz‘' law. The
orbit itself will remain circular providing

pzzBoerc (&4.7)

where Bo 1s the magnetic field at the orbit and must be a
function of the time, since p is to increase. The emf de-

veloped is .
ent = 3¢ (£.8)

where { 1s the total flux linked by the orbit. This emf will
do work on the electron and the work per revolution is,

ag

AWOrk = e at

This ie the same as having a force F acting on the electron
and we may write

Work — e gg: F - 27r

or
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dt= v~ dt ~ (3.20)
integrating, we have,
p-py=53 (F-6,) (#.11)
g

where Py ¢1 are the initlial values of the momentum and the
flux. If we start the electrons in such a manner that

e
pizﬁfrro' ¢.’L

then

p=’2;§.o‘¢ . (¥.12)

for the duration of the acceleration. Using eqg. (4.7) we have

g e
B er = x¢
2 r,

D 0", e
or
B°=-;L7y'*¢
awrc'

by defimition BAV::T:;EA # , and hence,

1
B =3 By {4.13)

or the field at the orbit must be 1/2 the average field en-
closed by the orbit im corder that accelerated motion at con-
stant Padius be possible., Equations (%.7), (%.12) and (4.13)
may be regarded as the fundamental relatlons for the betatron,
when taken together with the relativistic energy equation
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oy 2y 2 2
K.E,..\/(moc )-P(Boeroc) - myc {4.14)
Por very high energles { ~100 Mev) the m°c2 terms in
(4.14) may be neglected and we have, '
e §.15)
KE = B_er ¢ (

and it 1s seen that the produst Boro 1s a measure of the kinetic
energy attainable. For large energies we want large fields and
tfhis implies the use of irom cores. Such cores saturate arcund |
16,000 gauss. The energy, however, 1s determined by B° the |
orbital wvalue of B, and this cannot exceed one-half the satura-
tior value. Herce, the betatron 1z limited in emergy {for a
given weight of irom) to values correapbnding to 4 - 6,000 gauss.
Actually, closer examination of the fundamental equations
allows somewhat higher wvalues. It 1s actually the tlme rate of
change of the field at the orblit which must be one-half the
time rateeof change of the average field. By appropriate D.C.
biasing the magnetic field at the orblt may reach higher values,
but not the normal saturation wvalues.

Since the magnetic field is changing with the time
laminated iron 1s necessary to cut down eddy current losses,
Even with lamlnated iron, however, the frequency most widely
used is 60 eycles, although, as we shall see, a higher frequency
would permit higher energies. The frequency of 60 cycles 1is a
good practical compromise between particle energy and power
requirements.

In practice the magnet and a condenser bank from s re-
sonance circult whose free oscillation frequency is the desired
60 cycles. With the magnet dlaconnected the condenser bank is
charged from the line or from an auxiliary generator. The con-
nection to the magnet is then made and simultaneously low energy
electrons are injected into the orbit. The first quarter cycle
of the discharge 1s used for acceleration; afterward the stored
magnetic energy is returned to the condenser bank. The average
power required from the line is then Jusst that fﬁ%ction,
roughly 20%, which 1s lost due to resistance in the connectors
and condensers, eddy currents and hysteresis..

I



ol 7 B

The acceleration process 13 a ilong one (in the time
scale of the electrons) requiring one-240th of a second.
Since the electrons are moving approximately with the speed
of light most of the time, they travel about 106 meters or
150,000 revolutions of 1 meter radius, which is the radius of
the G.E. 100 Mev betatron. The energy acquired per revolution
1s thus about 600 ev. (Comparing this energy gain per

revolution with e g-g 1s left to the problems.)

Very many betatrons in the range 2-20 Mev have bean
constructed for x-ray use. The (G.E. 100 Mev betatron is the
largest now operating, although one for the 300 név range is
under construction at the University of Illinois.

There are, however, better ways of achieving high
energies., In addition to the high cost and the unfavorable
conqkion 1mposed by eq. (4.13), there 1s another very serious
limitation to the maximum energy to be obtained from the bets-
tron. It 1s well known that accelerated charges radiate. |
The azimuthal acceleration is small {for electrons), but the
centripetal acceleration is about 109 times larger. Theory
predicts radiation along the forward direction of motion of
the electrons at a rate which 1s proportional to the fourth
power of the kinetic energy. At energies of the order of
100 Mev this radiation becomes'appreciable, and has actually
been observed visually at G.E., but at energies of the order o
of 500 Mev 1t becomes limiting. Thaﬁ 1s,the electrons radiate
energy as fast as they receive it from the induction fleld.
The only way to make up for this is to vary the hagnetic field
at a faster rate in order to increase the rate of acquisition
of energy by induction. Such an increase in %g ie impractical
for iron magnets but might be practical for an'air—core magnet
However, as we shall see in Section 4.7 there are better ways
over these difficulties. | ‘

Fig. 4.5 shows a schematic cross-section of a typical
betatron. The air gap 1s necessary in order to get the proper
fleld at the orbit. In addition to the requirement that

9B, 1 dBuy
at T 2 T4t
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4.6 Stabillity Considerations in Magnetic Accelerators

i Nt s et <A <

We have seen that the principlie cf phase stabllity
18 necessary for the successful operation of reasonant mag-
netic accelerators 1f the RF field changes with time. if
the magnetic field were to change with the time with the
FF field constant (the synchreotron) or if both fields change
with the time (the FM synchrotron), this prineciple is stiill
valid and 1s essential for operation. However, we have not
yet consldered stability requirements to keep the particles
at the right radius and to prevent them from colliding with
the top and bottom of the accelerating chamber, i.e., r and
z stability. The following discussion 18 valid for all mag-
netie accelerators.

Let us assume that the field is not quite uniform and
that besides its usual 2z oomponent B it has as well an r
component Br‘ Then the equations of motion for the r and
z directions are, for a negatively charged particie,

d™r 49,2 . e dae 3

oy Tilw - TE

2 (4.16)
d°z _e . . do -1
;—;—E--WBPP-E

The above equations are based on the assumption that
the field is cylindrically symmetric, that B¢=:O, and that
time variations in B can be neglected since these are very
slow, That i1s, we wish to investigate the variations of r
and z from their equilibrium values, ¥ and 0, respectively,
in short times. In this approximation we may c¢onsider
the kinetic energy is constant so that

(%—%: 2302 (§B2 =2 (8.17)

wher Ve is constant.
The equilibrium solution of eqs. (4.16) 1s then, for
rzr,, zzo, B,=o

a _

4.0 =£s ar _ o (4.18)

die
=l
~

z’
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We wish to Investigate small departures from the
‘ equilibrium solutions. Let us set
g de : -l :
FIr+r', FF =@, +D, z=z (4.19)

where r', w' and z are small guantities.
Let us assume

&B
= 4 i e . B [ I )
Bz"‘Bo(ro) , then ST = s h (&.20)
By Taylor's expamnsion,
B, = (B_)__ (+=2) »r* + . .. .2B ~BC  p (4 o1)
z g'rzr + \Ip per, _JAAE 4 o
and
. = ABI.\ z +
r \& ¥ ror ,z:0
. by Maxwell’s eg. (3.4), we have®
dB, 4B,
A% T 9r {4.22)
and hence,
4B
B, x(<2) ., a..*z = -D52 p (4.23)
r %3 rzr, 30 5 o :

Let us now examine the energy relation {4.17) and sub-
stitute our assumed solutions (8.19) im 1t. We have

» Actually we must first transform eq. (3.%) to cylindrieca
coordinates. Then neglecting real current and AEQ,/.:)

which 18 consistent with our present approximation;, we have,
) :
GH, Anz

» from which (4.21) follows.

Xz;ar
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{8.28)

when we have neglected products of the small quantities, p!
and W',

Let us now substitute our expressions (B.19), (4.21),
(#.23) and (#.2%) in the equations of motion (4.16) We have
for the r motion,

2 : :
ar' . § e _ e L { Y I e )
d;é-.:(ro.g.r )(u°+w) m(Bo T »BO}\er#r ,(c..c_««,w j

remembering that %Bo :wo, and neglecting products of small
quantities this expression becomes,

dar‘

) ]
zp W (Wnw )
gt oo o' T,

Using equation (%.28), we have L - . (A
D—T(: Www y'=0

a2 (1 -n)d2r =0 ), (5.25)
d : - "
v =C FONOS 7T ey |
And hence the r motion is stable if ngi. : 3
Let us mnow examine the equation for =z,

d°z _e, nz o \/ { ne ‘ .

=5 =gl 5 B + r' 4w )z Wl ) (w4 ]

4t Q ) o N ‘
which becomes on neglecting products of small quantities
{ remember z itself is small),

~
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';_ 7y 5 : .0
d£ LBWe 2 =0 {&.26)
At o

and hence for stable z motion we must have nd» 0.

Taking eqs. (4.25) and (4.26) together we require that
‘ , Q&N .

It 1s customary to take m about .75 for betatrons and
aynéhpetrona, This tends to reduce the vertical osecilliations,
at the expsnse of the radial oscillations to be sure, but the
vertizal direction is the direction of inereasing air gap.

Yo
4.7 _The SynchrotDen :

The synchrotron is primarily a type of resonance
accelerator in which the magnetic fleld is varied with the
time. In the ordinary (electromn) synchrotrom the particles
move in a circular orbit of radius Xy and are accelerated by
an R.F. fleld. Let us assume that 2 Mev electrons are in-
Jected into such an orbit. The electrons are already moving ,
with a veloelty of .98¢ sc that the acceieration, if you pleass,
process takes place at almost constant veloecity, i.e., the
mass and energy imcrease although the velocity increases but
slightly. If we apply an R.F. field acrcss a pair of electrodes,
through which tne'electrona pass, the electrons will stay in

resonance with the field providing,

: A4 e
f""

= - - . {8.27)
2vr° ?fr.c

In order for the electrons to remain in & stable orbit
of radius rQ, we must have

L4
i . O ¢ e — )
“‘)O-— ¥ SF cz BG-‘-‘E I & (4.28)
(o) ©

Since m increases with the fime we must have BO i~
creasing with the time alsc.

The usual type of accelerating chamber for a synchrotron



)
s

e
(&)

3

g2 g | Tg—— Vol s '® 3 106
ne cnamoer con of & hollow met:

B i e ek E il e pal R . :
across which the RF is appllfw— Exc¢ ept for the time of

Py} "9 £ - R Te 7 5 1
ectrons are moving in electric-

agnetic f must lncrease

leration
Ry $ vl
are reguired

moderate RF vol -
ne While

;8 for a 300 Mev

T Y induction

from the RF

aavan

2}  Radtéation By the slestrons
3) Radlation by the electrons and the concurrent loss




of energy can be made up for by inereasing the
R.F. voltage.

In practice all synchrotrons now cperating and al! but
one now bullding start with betatron action, since the time
varying magnetic field is present. When the electrons have
attalined relativistic energies, about 2 Mev, the field inside
~the orblt is made to saturate and the RF field is turmned on.
Since electron synchrotrons are used only for energles very
much greater than moc2 the final energy 1s very nearly given
by, ;

K.E. = Boroec

where Bo is the final value of fthe orbital field, and values
very near to the saturation value for iron can be used.

According to eq. (4.28) the magnetic fleld must change
at the same rate as the mass changes. No device is required
to insure this, however, since the principle of phase.stability
applies.

Although losses from radiation are much less important
in the synchrotron than in the betatron, nevertheless the
acceleration process cannot be carried out indefinitely. At
103 Mev the radiation losses are such that 70 Kev of RF energy
must be added per revolution to compensate. Hence, RF in-
sulation provides the practical limitation in energy, which is
probably about three times as great as that in the betatron.
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".& The FM Synchrotron

n order to accelerate heavy particles to enerpgles equal

% 4 - - : 4 - e T~r > ..- Yol 2
to taelr rest energy (935 Mev for the proton) or zreater. we
n
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8t become extremely important. The M cyc}otrun in prine!.
vle would be gquite workable in the 1000 Mev range. but in peint
of fact 1t 1s much more expensive than a synchrotron. This 4s
because the cyelotron needs a high magnetic field cwver the en
tire area enclosed by the final orbit while the synchrotron
needs a high magnetic fleld only at the orbit.

Now the particles in all magnetieally operated machines
in the very high energy reglon have energies approaching
:Or;ecn Bo is limited to something arcuné 15,000 gauss zo fop
practical purposeg the energy is proportional to “he radine.
This means that if we double the radius of a ecycletron to get

.upiﬁ the energy we must multiply the volume, the mass and
hence the cost by almost eight times. In the synchrotron,
powever, this latter factor is between two and four.

 In order o use the synchrotron with heavy particlas
we must change the frequency since
f“’?T’r
and v will not be effectively constant until energies, for
protons of the order of 4000 Mev are attainecd.

With both the magnetic fleld and the frequency. changing
with the time, we cannot rely on the principle of phase stabi-
1ity alone, but we must control the prate of frequency change ao
that 1t is properly adjusted tc the rate of change of Pﬁ. The
partiecles will then settle in stable orbits and stahle phasen,
4.9 The Linear Accelerator

s !

~

The Linear Acceleratcr is a resonance deviéa in whicsh the
accelerating force is provided by an RF field travai{ng down a
wave gulde. We must see then that he veloeilty of the particles
is equal to the phase veloglty cf the electromagnetic wave. The

principle of phase stability will permit tha particlies to ex-
tract energy from the wave;, but careful attantion must be gilven
to focussing problems.

A mathematlcal discussion of the linear accelerator is
“beyond the scope of these notes,
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GHAPTER FIVE. ATOMIC STRUCTURE

Ref. M. and S, Chap. IX

One of the most potent bits of evidence that atoms
possess an internal structure is the foct that, under proper
conditions, they emit radiation in the form of spectrum lines.
The problem of atomie structure 1s to devise a model which, on
the basis of known physical laws, will account for these lines.
At first sight an the basls of classical mechanics, we might
suppose that if an atom emits a spectrum line of frequency'P
then it must contain within it an oscillator of this same
frequency. But we soon run into difficulties with such a
theory, as 1s now well known. ’

The essentlial feature of atomic spectra, which was early
discovered 1in a purely empirical manner, 1s that it 1s possible
to discover a series of numbers or so-called spectral terms,
such that by taking differences between these numbers we
arrive at the frequencies of this observed spectral lines. The
number of such spectral terms required to explain a given spectrum
is, 1n general, much smaller than the number of observed spectrum
lines. We shall not here go into this matter in any detail,
such as the way these spectral terms fall into groups, with
certain selection rules to say which terms do or do not combine,
but for the present content ourselves with the existence of
these spectral terms. The problem of atomie spectra will
- therefore be solved if we can devise a model which will account
for the spectral terms ahd give a correct set of selection
rules stating how these terms are to be combined.

Various pileces of evidence, notably Rutherford’s experi-
ments on the angular distribution of X -particles scattered by
atoms, polnt to the fact that an atom ccnsists of a small,
massive core carrying a positive charge Ze, surrounded by Z
electrons. These electrons are thus acted on by very strong
electrostatic forces of attraction by the nucleus and in order
to prevent collapse of such an atom it 1s necessary to assume
that the electrons are in motion. This leads to a fundamental
difficulty since these orbital electrons will be undergoing
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acceleration; we have seen that.according to classical electro-
magnetic theory a charged particle moVing with acceleration
will radiate energy. As the electron radiates, its energy will
change and so too will its frequency of motion. Such an atom
should therefore emit a continuous spectrum, ccntrary to ob-
servation. We must, therefore, postulate that when an electron
18 bound to an atom it does not, in general, radiate energy
even though it 1s moving with acceleration.
More generally, Bohr in 1913 laid down the following
fundamental postulates,
1. Atoms exist in "stationary states", without
radiating. 4
2. When an atom changes from one stationary state ‘i
to another l of lowsr (higher) energy it emits
(absorbs) a quantum of energy, i.e., electromagnetic
radlation, of frequency [ where

\

Wt :
\ W=2 -8, (5.01)

r——

.The constant h 1s the one introduced by Planck some years be-

fore this to explain the spectrum of a black body, and success-
fully used by Elnsteln to account for the photoelectric effect.
These postulates of Bohr are extremely important. Atomic theories
differ in the way energy states are calculated, or in the-atom
model used, but Bohr's postulates remaln unaltered.

In order to calculate the energy states, i; it is necessary
to set up an atom model and make one additional postulate which
introduces the constant h, 1.e., guantizes the energy states.

In the Bohr theory it 1s the angular momentum of the electron
which 1s quantized. We (arbitrarily) say that the angular
momentum is an integral multiple of h/27T and will attempt to
make this cholice more plausible latter. As an example let us
consider the simplest case of 2 single electron in the field of
a2 nucleus of charge + Ze. For simplicity we will consider only
the case of circular orbits. The electrostatic foree between
particles is given by

il hTTEOrE (5.02)
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and the potential energy is

\ 7 s
® Ea-E u—z.,-r%;; | (5.03)

i NS

We have already seen that gravitational forces can be neglected
in éomparison with electrostatic ones in problems such as this.
Since the nucleus 18 very much more massive than the electron
(M ~ 1840Zm) we can assume the electrom to revalve about a
fixed center (infinite nuclear mass). Then we shall have

- g 2
m v YA '
F=- = o o (5.04)
. 477E © _
where Vv is the orbital velocity of the electron., But
W 4o
l'=¢§ mv-+ V
e &
B 2 ze”
= %-mv - ¥er (5.05)
o

D A 1 .
Z™ EBmEr- 2" (5.06)
80 - TRTR AN ;
W ey o . ze®
- A § i Tk
| 8= > mv = 5 V= B—,ﬁ:E:r (5.07)

The minus sign in Egs.(5.07) means that work must be done to
remove the electron. The angular momentum, mvr, is to be
quantized, so

= nh/2 .08
mvr /2T L .KQS )
From (5.0%) and (5.08) we get 2 eV’
2
ze — _nh
= 2Trmv {5.09)

P Ry
4TTE mv
(e}
whence

o V=Ze_mh | (5.10)
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€ n“h
.:T;—-z-—é-—=n2r1 i (5»11)
mZe
and 5
W
B= - 2ee (5.12)

BEEnéhE

We have thus cobtalined the energy statesrgn, for a hydrogenic
atom, 1i.e., hydrogen (Z = 1); ionlzed helium (Z = 2); doubly
jonized 1lithium (2 — 3), etec., The lowest energy ctate 1s
given by n=1, and this i1s the normal, or ground state, of the
atoms. The frequency of the radlation emitted in a transition
from a state E, to a state En2 (n1> na) is thus given by

1
1
o=k

(E )_%_f; (% - —5) (5.13)

12= n

It is customary to measure frequencies in wave numbers (re-
ciprocal wavelengths) and when so measured we shall denote
them by f. Thus

Tkt
so that 1f we put
I
me
R:-——é—g— i |
8th-¢ )

. we shall have, for the case of hydrogen 4% = ))

_/R(=§ “5) (5.16)
N 2y

Row Jjust exactly this formula with n,=2 and n1::3,4,.,.
had been found empirically by Balmer to fit the lines in the
so-callled Balmer serles in the spectrum of atomiec hydrogen.
Balmer found that the constant R (“he Rydberg constant) had

the wvalue.

Ry =10,967,758 m™* (5.17)




where m

288 -

If we put the usual values of the constant in Eq. (5.15)
we obtain '

9.107 %1031 x (1,601 x 10-19) %
8x(8.85 X 10" 12)2(6.610%10"37) 3x 2.9978 x 108

R=

=1.0974%x107 m™} (5.18)

which 1s a remarkable argument. The corresponding spectrum of
ionized helium (Z=2) would be gilven by:

£=4Rr( 35 - ;1?) n=2,3,%,... | (5.19)

Empirically we find

Rye= 10,972,226 m"1 " (5.20)

which is slightly grester than RH' This, too, 1s understandable
when we recall that we assumed the atomic nucleus to be flxed.
Actually, both nucleus and electron move about their common
center of mass and the effect of this is to replace m in all

of the above equations by |

m'= B (5.21)
is the reduced mass of the electronand depends on M.
With this refinement, theory and experiment are in almost per-
fect agreement. :
Equation (5.11) tells us the "size" of a hydrogenic atom.
For hydrogen in the ground state, l.., 2 =1 and n=1 we get

= |
o= Fo® [/ 8.85x10712x (6.61x10734)2

Tme® [TTX9.1X10732x (1.60X 10-19)2

= 5.27x107M n = .57 a (5.22)

as the radius of the first Bohr orbit in hydrogen. Thus a
normal hydrogen atom has a diameter of about one angstrom.
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Returning to Eq. (5.16) we see that a number of other spectral
series are possible. Some of these are

Lyman Series n,=1; n,=2,3 4

Paschen Series n,=3; n1=:4,5,6,...'

Brackett Serles n. = 4; 1=5 0.7
Note that for each of these series the frequencles of successive
lines in the serlies come closer and closer together as ny in-
creases, untll we reach the series limit corresponding to n,= oo,
It 1s convenient to represent the term values, or energy levels,
Un an energy level diagram,Fig. (5.1).

o o . E(e.v.
o~ F ) i e Ly 2 st
685 _ Ry f 12,73
1.219 l ) 3 12,07
2.742 ‘L . ' st 10.19
a
4 2 2
; f
g 5k
b 3 2.8
8 S
|t
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-
;
3
Z
10.968 L.y ¥ 1 0

Fig. 5.1
ENERGY LEVEL DIAGR&N‘FOR HYDROGEN
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The numbers on the left side of the dlagram represent the term
values in wave number units, and on the 1right the corresponding
energy is given in electron volts measured from tlie ground state.
The quantum number, n, refers to the corresponding. orbit. The
emission of a spectrum line then corrasponds to o transition
downward from one enerzy level to another, E.g. t“he HX 1line

of the Balmer serles corresponds to tii: transition from the
state n=3, - 1,218,600 m " (-1.508 ev) to the ucate n= 2
2,742,000 m™1 (-3.39% ev) and the wav: number 7 this line is

. then 1,523,400 m~1 (1.886 ev). The wevelength i: given by

(1a=1071° m).

A=1-6.583%x10"7 m=6583 a (5.23)
f
Other lines in the varlious serles of “he hydro i n spectrum are

indicated in Fig. 5.1.

The treatment of the hydrogen atom given ~bove is overly
simplified, but 1t does bring out the fundament:al soundnegs of
Bohr's theory. Among the aspeccets neg ccted is e possibility
of other than circular orbits. The g neral orb:f. of a particle
of negative energy in an inverse squarc attracii e field 's zn
ellipse. It was fhown by Sommerield “hat essentii:lly the same
energy levels occur for elliptic orbl:s unless ti: relativistie
varlation of the mass of the electro: is taken i1 to account.
If this is done the energy levels are split, Qiviv ; rise to a
"fine structure". We will not go furcher into thi: subject at

‘the present time.

The Bohr theory has many weakn:sses. We ast:me that the
laws of classical mechanics hold for an electron i one of its
stationary states, but we subject these same laws ¢ > the arbit-
rary postulate of quantization of the angular mome: um. Al-
though the theory can be made to give a satlsfactcry explanation
of the spectra of atoms with a single radiating ele~tron, and
thus includes in addition to the hydrogenic spectra, the spectra
of the alkalis L1, Na, K, etec. where the single vald ice eleetron
i1s more or less locsely bound and on the "outside” ¢~ the atom,
it faills completely fox the fzse of the second most fimpie atom
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namely helium, where it definitely predicts incorrect values
for the energy levels. The resolution of this difficulty
requires a complete revision of the laws of atom mechanics
into the formal structure of quantum mechanics, or wave-
mechanlcs. We shall not go into this matter other than to
point out that a wave-mechanical treatment leads to the con-
clusion that a particle of momentum p has associated with it
a wavelength /\ given by

kell=g

P, % (5.24)

This implies that a beam of electrons, for example, can be
diffracted by a grating or crystal in the same way that light
or x-rays can. Such indeed 1s the case. It is interesting,
though perhaps not too fundamental, to note that the Bohr
quantum condition for a circular orbit, Eq. (5.08), can be
written in the form:

e R
2TTr = ;= = nA (5.25)

so that the electron forms a standing wave around the orbit.

A more deteiled treatment of atom mechanics would lead
us to the conclusion that we must assign not one but four
quantum numbers to each orbital electron. The number n used
above 1s the principal quantum number, and is unrestricted
as to (positive) value. The other numbers, which we shall not
discuss here, do not have such freedom; but the point of im-
portance. 1s that no two electrons in a given atom can have id-
entical sets of quantum numbers. This 1s known as the "Paull's
Exclusion Principle” and is of great importance in understanding
the elgctronic structure of the elements. As a consequence of
this principle it turns out that the electrons form a series of
groups ,or shells, about the atomic nucleus. The innermost shell
can contain only two electrons, each with n =1 and with spin
quantum numbers (1.e., intrinsic angular momentum) of opposite
sign. The next shell, (n=2) can contain 8 electrons; the next
(n=3) 18 electrons, and so on. 1In addition, the electrons iﬁ
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a shell of given n fall into sub-groups. If the outer shell

of an atom is filled with electrons then the atom is chemically
inert (the noble gases); 1.e., it 1s difficult to remove an
electron from a closed shell. This formation of closed shells
leads to a "periodicity" in atomic properties, so that the .
elements can be arranged in the familiar periodic table. Since
we are not primarily concerned with atomic structure in this
course we shall not go into further detail in the subject. The
“important facts of concern to us are the existence of fixed
energy states characteristic of each type of atom, and selection
rules which state the possibility or impossibility of trans-
itions between pairs of these states. The case of the hydro-~
genic atom treated above does not involve any speclal selectian
rules unless fine structure is taken into account,‘as spectrum
lines occur corresponding to transitions between all pairs
ny—>ny, with n,> n,. '

For more complicated spectra certain transitions are
forbidden, both in emission and abscrption. In order for a
transition from a higher to a lower state to occur the atom
must first be ralsed from the ground state to an "exeited"
energy state, or perhaps even ionized by entirely removing the
outer electron. The process of excitation or ionization can
be accomplished in a number of ways. By electron impact (in-
elastic collision); by impact with another atom or ion; by ab-
sorption of radiation. We shall discuss each of these processes
briefly.

When an electron (or other.particle) collides with an
atom 1n a gas the collision is in general one of two kinds. An
elastic collision 1s one in which the kinetic energy of the
;ystem atom-plus-electron 1s conserved. We must of course con-
serve momentum, in accordance with Newton's laws. The atom is
in the same energy state after the collision as it was before.
Its kinetic energy will in general be different and 8o, too,
will that of the electron, but the Sum 18 unaltered. Such
collisions tell us nothing about atomie energy states. In an
inelastic collision kinetie energy is not conserved. Inelastic
collisions are of two types. 1In a "collision of the first kind"
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kinetic energy of the system 1s absorbed by the atom, which be-
comeéréithéf excited, l.e., ralsed to a higher energy state, or

‘ ;S_ei;haps ionized, so that it loses its most loosely bound electron.
The relation expressing conservation of energy becomes

: |

1
(K‘E‘)Atoni'!"(K’E°)e1e5".'9'(K°E')Atom+'(K'E‘)e1ec.+ AEatom (5.26)

where A E 1is the increase in internal energy of the atom. In
a "collision of the second kind" an already excited atom under-
goes a collision with an electron, or other particles. As a re-
sult of this collision the atom drops to a lower energy state
and the kinetlc energy of the system is increased by the lost
energy of excitation. Momentum is of course conserved, and
Eq. (5.26) applies, if the arrow 1s reversed. Any collision
in which an excited atom loses its energy of excitation without
the emission of radiation 1s, in fact, called a ecollision of
the second kind. |
A study of energy losses suffered by electrons under-
going inelastic collisions gives us information regarding atomic
energy states. For a perfectly elastic collision the energy of
‘ the scattered electron is almost the sane as that of an in-
cident electron. This 1s because the mass of the atom is so
much greater than that of the electron. 1If energy, as well as
momentum, 1s conserved in a collision the fraction of the
electron's energy transferred to the atom 1s equal to the mass
ratio of electron to atom, neglecting the initial thermal
energy of the atom which 1s quite small. Thus, 1f the energy
difference of an electron before and after an atomic ¢ollision
is measured the difference must correspond closely to a dif-
ference in energy states. This method of measuring atomic
energy states directly was demonstrated by Franck and Hertz in
a classical experiment carried out with mercury vapor in 1913
shortly after Bohr's first theory was developed. They found
that 1f a mercury atom and an electron undergo a collision,
the collision is always elastic as long as the energy of the
impinging electron is less than 4.9 ev. But above this value
some of the electrons lost 4.9 ev of energy which was taken up
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as energy of excitation of thg mercury atom. That this is so
is shown by the fact that a line of the mercury spectrum is

. excited at the same time. This 1s caused by the excited
mercury atoms dropping back to the ground state with the emission
of a quantum of energy of 4.9 ev (2537A). The method of PFranck
and Hertz was refined by Franck and Einsporn, and their ap-
peratus is shown schematically in Fig. 5.2. Electrons emitted
from the filament F are accelerated through the variable

|
| ¢, G, P
% ' |
| ' '
| F o |
i

! |
| VA ' Va |VR

]

Mg. 5.2

potential difference VA between F and the grid Gl' A small
potential difference Vé( ~ .1 volt) is applied between the
grids Gl and 02, so that in this region where most of the
collisions occur all the colliding electrons have essentially
the same energy. A small retarding potential VR of about .5
volts 1s applied between the grid 02 and the collecting plate
P, the current to which is measured by the galvanometer Ga, for
various values of VA. The filament P operates below saturation
so that, in the absence of collisions the current to P will in-
| ‘ crease with VAO But when VA Just exceeds a critical potential

\
|
Apparatus for Measuring Excitation Potentials
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corresponding to an energy transition in an atom of the gas in
the tube and if such an electron makes an inelastic collision,
the electron will lose almost all of its energy and so will not
be collected by P and there will be a sharp drop in the current
to P whenever a critical potential is reached, The current
will not increase again until VA exceeds the critical potential
plus the retarding potential. The apparatus shown in Fig. 5.2
is capable of resolving critical potentials which are very
close together. The table below 1ists some of the criticai
potentials for mevﬁury vapour, The corresponding terms values
*ar f"B‘ V; and F_ = 8.079 x 10° m 1 vo1t-1 1 are also listed;
these are taken from spectroscopic data and so are much more
accurate. Note that critical potentials are measured above

the ground state, term values below the ionization potential.

¢ritical potential term values
{volts) {m—!) _ :
10.39 - 0 - " lonization potential
8.86 1,238,610 '
8.61 1,451,910
8.53 1,529,450
8.38 1,631,660
T7.93 2,025,310
7.-73 2,183,080
6.71 3,011,280
5.46 | 4,013,830 metastable
i.88 4,476,890
k,66 k,653,620 metastable
0 ' 8,417,850  ground state
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it will be seem from the table on page 30 that a more careful
investigation with hizher resclution diseloses the lowest ex-
citation potential for TIitury  wvapour to be .66 volts,

whereas no line in th~ mercury spectrum corresponds to a transi-
tion from this state to the groumnd state, Jl.e., a transition
“rom this etate to the ground state is "forbidden” by the
selection rules. Such a state is called "metastable". A
metastable state is a state from which the atom c¢eamnot
apontaneously drop to a lower state with the emission of radis-
tion. The question them arises as to how an atom, once excitnd
to a metastable state, can ever return tovnormal, and we sae
Lhat‘thia can only be done by means of a collision of the

second kind, or else by further excitation, followe! by anmn
allowed tramsitionm to a lower state. The lifetime of a meta-
stable state is thus much longer thamn that of an ordinary ex-
Q:;ed statc.and further, depends rather strongly on the pres- 1
sure (mean free path). Ordinarily, an excited atom returns to 4@“
its usual state, with the emission of radiation, in about 10~ %
to 10’7 seeconds. The life time of 2 matastable state under

usual circumstances is about 10"“ to 1073 seconds, since the

atom must walt for a collision in order to be able to change

its energy of excitationm.

Suppose a mercury atom to have been excited to the state
of %.88 ev energy. .All it can do is returm to the ground state,
with Che emission of a gquantum of energy of this amount, and a
single spectrum line of frequency f, or wavelengbh‘x s given by

w»

A=%=3 =2537A (5.26)

‘ Y ]

1z emitted. That 1s, we can excite this single line of the
meércury spectrum by bombarding mercury vapour with a beam of
electrons of emergy greater thaa 5.9 v but less than 5.46 ev
(the next excited state), Similarly, by proper choice of energy
of Lombarding electrons we can arrange 1t so that only a ecertain
few lines of the complete spectrum are emitted. Of course, the
possibility of multiple collisions does not preclude further
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ezciiation, but except for further excitation from a metastable
state the probabllity of this occuring is extremely small, on
account of the very short mean lifetime of an ordimary exeited
state"l For example, suppose the bombarding electrons have an
energy of 5 ev. A mercury atom excited to the state of 4. 88 ev
eneprgy would immediately drop back to the usual state and emit
the 2536A line, before it could undergo a further ¢ollision and
be excited Lo a state of energy between 4.88 ev and (4.8845) av.
but an atom excited to the metastable state of energy 4.66 ev
could very well wait around lomg emnough to suffer am additicnal
inelastic collision and be further excited (but not ionized,
since 10.39 7> 9.88). Since the 5.46 ev energy level is alsc
metastable we see that some lonisation will oecur whenever the
bombqrding electrons have an energy exceeding this value, since
10,39 - 5.36 ¢ 5.46. When the available energy of the bombarding
electrons exceeds the ionisation energy them in general all lines
of the spectrum are emltted copiously. However, an ionized atom
can be further exctted (or ionised) by raising one of the re-
maining electrons to an excited state, 1.e., a state of higher
energy than that in which it normally finde itself. We shaill

not be much concerned with multiple ionisation, or spectra of
ionised atoms and so will not pursue the matter further.

Another method of exciting or ioniaing atoms is by im-
pact with positive icms, or in faet by bombardment with particles
of any kind. All of the energy considerations discussed above
will still apply, of course, but the probablitty of such pro-
cesees taking place is mueh 1less than in the case of electrons
of the same energy. Thus 1f the fundamentél procéss under in-
vestigation involves electron bombardment, any positive (or
negative} ions 3. formed in the process will play a minds role
in the overall picture. The reason for this is becausz the
probabilities of excitation or ionigzation depend more nearly
on the veloeity of the impacting particlés rather than on the
energy. Thus an electron and a positive ion of the same

veloecity will have roughly the sanme probability of ionizing
by collision.
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“hen an electron undergoes an inelastic collision with
an atom 1t can transfer a part of its energy tc the atom, there-
by syciting 1t, and carry away the rest of the energy. In view
of the well-established photon (guantum) nature of the radiation
~rocess, ag well as of the photoelectiic effect, 1t might he
thought that essentially the same sert of behaviour would oeccur
when an atom undergoes a collision with a quantum, iaeﬂi is
exposed to pradiation. Thus it might be thought that any
cuantum having an energy greater than 4.66 ev could excite a
amercury atom, transferring this much of its energy, the re-
mainder going on as a quantum of lower energy. While such a
nrocess is energetically possible the probability of its
oceuring is practieally negligible umnless the quantum loses ex-
aé;lz all of its energy. Thus excitation of mercury to the
h 88 ev state by absorption of radiation can take place only
by abscrbing a quantum of mercury radiation, 2536A, emitted by
another mereury atom on dropping from the 4,88 ev state tc the
ground state {or by absorbing the same energy quantum from a
continuous spectrum). Thus mercury vapour will strongly absorb
. the 2536A line of the mercury spectrum, thereby exciting the
mercury atoms which then re-emit this same radiation, which i=
therefore c¢alled resonance radiat;qno Similarly, the 1849a
iime in the mercur& apectéum is a‘fésonance line, since it is
emitted by a transition from the 6.71 ev energy level to the
ground state, and so will be strongly absorbed by normal mercury
vapour. In general, any spectrum line which is emitted by an
atom in a transition from any excited state to the ground state
is a resonance line for that atom, and will be strongly absorbed
by vapour of that atom. On the other hand, mercury vapour, for
example, 18 guite transparent to radiastion emitted by some other
atom (as a 1ine spectrum). If & vapour be exposed to & beam of
radiation possessing a contlinucus spectrum, it will strongly
abgorb those wavelengths corresponding to its own resonance
emlssion lines. Abscorption of other than resonance lines re-
quires the presence of already excited atoms and the probability
of the process occuring 1is ccrrespondingly less,
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f the energy of the incident quantum is greater than \‘
the ionisation energy them the process is a bit different.
{;;?;;E{6n< The energy of the ejected electron is given by
the Fimstein. photoelectria equation

LmvP=hr - W (5.27)

whers Ki is the energy required to icnize the atom, e.g.,
17.329 ev for the outermost electron in the case of mercury
vapour. Photoelectric ionization can occur, however, from
eny energy state of the atom, provided the incident quantum
has the requisite energy. The atom then may emit a more com-
pilcated spectrum, corresponding to transitions between the
deeper energy levels, The x-ray photoelectric effect falls
within this category. Of course, inner electrons can also be
eJected by electron bombardment if we use an incident beam of
high energy electrons. The method described for determining
excitation potentials does not distinguish between excitation'
‘ and 1onizatiop, since all 1t measures is the energy loss of the
impacting electron. However, a slight modification in the
method of using the same apparatus easily distinguishes be-
tween the two processes. This is illustrated in Figure 53,
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Apparatus for Determining Ionization Potentials




v, is.the (variable) accelerating potential.

V., is a retarding potential, greater than Vlh

vj ie 2 emall constant potentlal whose direction can be reversed.
The pressure is such that the mean free path of the electrons

1s larger than the space between 02 and P, but smaller than the
spraration of Gl and 0é~ The galvanometer current is determined
ag a funetion of V1 for each direction of V3 and aﬁcurvo such |
as that shown in Figure 5.% i1s obtaimed. Since Vo> V, electrons

le:ving ! cannot reaeh 02, and so do not reach P, The current

| ' //,
7 4 i

; i

J !

N =

v £

Figure 5.4

is zero for either directiom of V3. But 1rf vy 1s great enough
o permif an inelastie ¢ollision ex¢lting an atom of gas to a
resonance level (not a metastable level) resonance radiation
will be excited (poimt A). This radiation may excite photo-
electrons from the grid 02 and the plate P. With V3 acting
32-¢ P so that P 1s at the higher potential,electrons from 02
reach P, and the galvanometer current is negative, If V3 acts
QE-Q-P photoelectrons tr9$ P travel toward 02 and the galvano-
meter current is negative. This is the portion from A to B

or B'. Excitation of a second level will cause radiation of
another wavelength to be emitted =m0 that there will be a change
in shape of the current curve, BC, BC', and so on. Suppose,
however, that am atom is ionigzed. The original electrons from
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¥ as well as the electromns removed in the jonization process
will be returned toward F but any positive ions formed will bHe
sccelernted foward P and so will produce & positive current

f vﬁ is small enough the magnitude of the current will not
changc much on preversing VB and a sharp break occurs at D,

the iomnization potential.

So far we have discussed possible processes for exeiting
or lonizing an atom. An equally important question is: what 1=

the probability of each of these processes taking plsce. Con-
sider the case of electron bombardment of an atom. If the
energy of the incldent electron is less than the energy of the
lowest exclted state thén all ccllisions are perfectly elastie
and no excltation or lonization is possible. IF the energy of
the elesctron Just exceeds the critical energy mecessary for
exeltation Then 1 is quite probable that such an inelastie
collision wiil take place. Although any greater énergy can
also cause <,is same excitation, the probability decreases

with imcreasing energy, until a. very 1igh energies this prbeess

.is not 1likely to occur to any extent. The probability of a
given type of collisiom oceuring 1s expressed quantitatively
in terms of the collision cross section. Let us suppose that
P‘ is the probability that a particle will make a given type
of collision in traveling a unit distance. We recall from
kinetic theory that the mean free path of a particle is given

by

¢ =§y}g—=. ’{ (5.28)
where N is the number of particles per unit value and & the
cross-sectional area of the particle. We also recall that the
value to use for ¢ depends on the process involved, i.e., the
cross section is different for different processes. Now the
mean free path is the mean distance a particle travels between
Buccesalve colllsions. Hence, the mean number of colliisions
per unit path length. P, is just the reciprocal of the mean
free path. Thus

sl ane (5.29)

Q-
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rf we know ¢ . and the number of particles per unit volume
then P 1s determined. Actually, equation (5.29) 1s usually
ugel t¢ determine ¢ from measured wvalues of Pc, We recall,
too, from kinetic theory that if ¢ be the mean free path for
a given particle in s gas, e.g., an elegctron traveliné through
any gas, then the fraction of particlies which travel a dis-

tance x without making a colllision is given by

% se'x"e (5.30)
0
If we understand P to m=an the number of collisions per
unit patb length at unlit pressure and recall that l is
inversely proportioned to the pressure, then we shall have

§ =Pofe . (5.31)

where Py is the pressure, measured in the same units as those
used 1in defining P,. (It i+ usual “0 spsecify P, per centimeter
of path at a pressure of 1 millimeter of mercury.) Equation
(5.30) then becomes

-p.P x
NaN e o_¢ (5.32)

By measuring the fraction of particles whieh have not under-
gone 2 given type of collision, as a funetion of the distance
traveled we can determine Pc’ and knowing the pressure the
ecollision c¢ross section g is thus determined. From the way
in which Pc ia defined it folldws that the probability orf
making any type of coliision 1s the sum of the probabilities
of making each of the various possible types of collision.
For example,
Ptotal - Pelastic kd Pinelastic (5.33)
where Pinelastic can be fuprther brokem up into the various

possible types of inelastie collisioms, excitation to various
levels, ionlzation, etec.




A method for determining Pe for electrons ( or other

Y

charg=d particles) in a gas is 1llusirated in Flgure 5.5.
. Flectrons enitted from the cathode, K, are accelerated through

"’ Fig. 5.5

Apparatus for Determining Coillision Probabilities

a poteptial Aifference Vh to the anode A. The space between

XK and A is evacuated, Bo that practiecally no collisions can

occur in this region. Some of the electrons pass through the

8lit al,into the eollision chamber c¢ontalining the g&e.under

investigation. A uniform magnetle field B, perpendicular to

the plane of the diagram, 1s of such a value as to cause

electrone of energy evA to be bent into an arce of radius R.

The baffles b prevent electrons cf other energy from reaching

the collector C through the sliit B, e Further, any electrons

even though of the proper energy, will not reach 8, if they

are at any point of the path deviated f'rom the proper directian.
'Thus, if an electron makes a collision, elastic or inelastie,

arter leaving s 1t will not reach s,. The current to C, there-

2
fore, measured the number of electrons which have traveled a




distance 2 R without meking a collision.

1
s

This method snables

to determine the total collision cross section as a function
oL electron energy and gas pressure, Purther refineénents are

. 'neceasary in order to determine separately the variouns con-
tributions to the total eross Bection.



P———%—_——T

5.2 Some Additional Pacts of Electron Physiecs
A. The Compton Effect

We have seen that fundamental particles can have both

corpuscular and wave properties, and that electromagnetic radi-
ation can have cropuscular (quantum) aspects as well as wave
properties. This 13 not a contradiction;;rather modern physics
states that both fundamental particles and electromagnetic
radiation exhibit their corpuscular aspeets on emission or
absorption, and thelr wave aspects in transmission from source
to absorber. Although earlier in these notes we treated parti-
cles as corpuscles 1n discussing their transmission we were
working in the same approximation that one makes 4in applying
geometrical opties to light transmission. It is only oecasion-
ally that the physical optics of particles becomes important.

In treating collision phenomena one may use either
the corpuscle or the wave aspect. A. H. Compton in 1923 gave
one of the clinching proofs of the inherent quantum nature of
1ight by considering the effeet of the collision of a light
quantum (hf) and an electron. Before developing the theory of
this effect, let us consider the momentum associated with a
beam of light. :

If n quanta of frequency £ are absorbed by a material
body (ecarbon black, for example) then this represents an energy
transfer of nhf. The rate of doing work is then i (nhf) and
this should equal CP, where F 1s a force we associate with
this process. Then

5 (nht) =cP=c $R

from which the momentum of the light beam is nhf/ec and the
momentum of each quantum is hf/e. This effect was predictad
classically and explains the experimentally known fact of
radiation pressure. (The fact that a comet's tail always
points away from the sun is explained by radiation pressure).
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Let us first see if a free electron can absord a
quantum, The laws of conservation of energy and momentum
‘ state, assuming the electron is initially at rest,

2 2 _
me - mc = ht

mv = hf/e
dividing the first by the second; we have,

2 m
R SLL

or

1 - \/1 -vz/c2=§

from which

2
v 2 __ L4
(1-'6)—1"";2-

and this result is obviously impossible.
. However, Compton showed that an electron may scatter
a quantum hf providing the scattered radiation takes on a

slightly different frequency f'. Consider the collision pro-
blem in Pig. 5.6,

Rl

Fig. 5.6

. The conservations laws areg
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o : 2
h + m e” = hf'+ me _ \1
: || el
~ 3 \/ :
ht/e = he'/e cos ¥ + mv cos @ 7 (5.34)
hf'/e sin § = mv sin © J

From the first of equations (5.34) we have,

1 __:l+hf’~hf‘

b

or setting § = P—-t—-:—gg
m, ¢
e =1 +¢
ﬁ - v2/c2
from which, (5.35)

& 2
V:m £°c + 28

Now in order to confirm any conjectures we may de-
sire from theory by experiment we must consider which variables
we can most easily observe. These variables are f' and 4.
Hence, we proceed to eliminate v and © from our equations.

Substituting (5.35) in the 2nd and 3rd of equation
(5.34) and solving for sin @ and cos © we have,

sin © ::-t% sin g - -
e G?____;hf - hgwcos f!.
b \[82 +2¢

Squaring and adding, we have,

1=(B 24 e? - 2ret cos g

)
moc2 ﬁjé + 2€
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Substituting for € in terms of £ and f' and re-
arranging terms, we have,

£ - p° —.:.Ji-;_, ££' (1 - cos %) (5.36)
mo-d:

from which

| ol % 1
hf
14+—= (1 - cos {)
m ¢

remembering that £ =¢/y , f! :.-'c/x , We have

A=2A= 2 (1 - cos #) (5.37)
Q

The comstant h/moc is equal to 2.4« 107312 g op Juat
024 A, and is usually eailed the Compton wavelength. Such a
shift of wave length i1s most easily observed in the X-ray region,

B. Magnetic Moment and Electron Spin

Let us consider an electron in a Bohr orbit in a
hydrogen atom. Suech an electrom i1z equivalent to a current of |
ev/2 m r and should give rise to a magnetic moment, !

e ENR e SN LN
PRbagty Tr =S5

By Bohr's first quantum condition, equation (5.08)
4 CYr = %t-l-“m s and hence
_.neh
M=

For the ground state n = 1 and
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(This eapression is often taken as defining am atomie unit of
nagneiic moment, talled the Bohr magneton).

One would expect such a magnetic moment to interact
with applied magnetic fields and to shift the atomic energy
levels and henmce the frequency of the spectral 1lines. Suzh a
iz indeed the case; the Zeeman Effect.

In addition to the angular momentum and magnetie

moment associated with the orbital motion of electrons, it is

necessary to assume that each electron inherently has an angular
momentum (spin) and magnetic moment in order to explain all the
Tacts of atomie spectra. Classically, this is the equivalent

of saying that the electron has structure, and that its charge
and mass are so distributed throughout this structure as to

give rise to the "bserved values of spin angular momentum and
wagnetic moment . The inherent magnetic moment of the eleetron
has been found ewal to the Bohr magneton, equation (5.38), * e
but the 1nherent spin angular momentum is always numerically R
equal to 5 §ﬁ.1 In other words the spin is quantized but )
only one value, 5, is allowed, Actually, the spin has two
allowed values 4-53 since, if a magnetic field is applied the
inherent electron magnetic moment can either lige up with the
applied field or against the applied field,

Independently of the spectral data, Stern and Gerlach
showed the existence of the electron magnetic moment , and the
two allowed states of the spim guantum number, by the famous
experiment which bears their name. They al’owed a well
collimated beam of neutral silver atoms to pass through a
region in which an inhomogenous magnetic field existed. ‘
(Inhomogencus, since we wish to operate cn a magnetic moment,
or dipole, which is unaffected by a uniform field). After
passing through the field the displacement caused by the field
is measured. It was found that the beam was displaced by
equal amounts om both sides of the undisplaced position, in
aceordance with the theory developed from atomie apectra.

€. Quantum Numbel’s and Paull Primeiple.

Since an electrom in an atom has three degress of
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freedom, and in addition has spin angular momentum, we should
expeet that it requires four quantum numbers to completely
specify the {quantised) state of the atom. Pauli's Principle
states that no two electrons in a single atom can be in one
aﬁ&.the same quantum state, 1.e., ¢an have identical sets of
quantum numbers. No exceptions tc this rule have ever been
observed.

Free electrons also have four quantum numbers
aasociated with thelir three components of momentun and their
one component of spin. The oxXtensloR ¢ ¢he Pauli Principle
to free electrons will be dealt with in connection with the
Fermi-Dirac Statisties.

D. Helgenberg Uncertainty Principle

The correct quantum mechanical formulation of the
laws governing the behavior of atoms and electrons is essentially
statistical in nature., That is; we can talk about the pro-
bability of am event occurring, but we cannot say with certainty
whether any event whih is energetically possible will or will
not occur, Heisenberg first pointed out that there is a
fundamental uncertainty in any physical measurement we choose
to make such that the product of the uncertainty in the posi-
tion measurement and the uncertainty in the momentum measure-
ment 1s of the order of Planck's constant h, i.e.,

AprZ ~h

or in terms of the simultanecus measurement of time’'and energy

AW ALt ~h.

Sueh uncertainty is very small compared to ordinary
physical measurement and in general does not effect the
accuracy of experiments in any way. However, the implications
of this uncertainty principle are very important. For instance,
in discussing the natural breadth of spectral lines, or of the
stationary states from which they arise, one can write,



AW AL ~ I

AW ~h AT
h AfAt ~h

1
Af ~ %

Hence, the natural breadth (the uncertainty in the
frequency measurement)is of the order of the reciprocal of '
the uncertainty in the time that the emission takes place
{the lifetime of the state). This result is also true for
elassical radiators although we have no unecertainty principle
in ¢lassical physies.

The uncertainty principle also has very important
implieations regarding the behaviour of dense assemblages of
free »leetroas, for instance, the conduction electrons in
metals, In faect, we must use this principle in order to
understand the behavior of metallic electrons as we shall see
later in connection with the Fermi-Dirac statistics.
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CHAPTER VI, COLLISION PHENOMENA AND THE QGASEOUS DISCHARGE

(Refepence: Millman and Seely, Chap. X)

.

.1 Kollision Phenomensa

in dealing with the motion of charged particles under
the actlion of electrie or magnetic flelds we h¥ve aszumed that
ne forces, other tham those due to these fields, act on sugh
particles. This means, for example, that collisioms do not

~ take place between the particle in question and any other particle.

We have excluded this possibility by assuming that the particles
move in a "vacuum". Hut fram che point of view of kinetic theory,
we need only require that the preossure be so low that the mean
free path be large compared with the dimensions of the apparatus,
This ies an esasential rethrement for the problems considered
hitherto, aueh as the cathode ray tube, particle accelerating
machines, ete. Ent there are cases where we ot only cannot
make this assumption but whers the occurence of collisioms is

an essential feature of the problem as in most of the last
chapter. With this in mind we now gec to the other extreme and
suppose the pressure to be such that the mean free path is

small compared with the dimensions of the apparatus. In this
ehapter we shall consider some of the properties of a gas inm

the conduecting state ari the production and removal of the 4ons |
which cause this conduetivity, as well as some of the phenomana :
of the gaseous discharge.

6.1,1 Jom Mobilities

Consider a particle of charge ¢, mass m, moving
through a gas under the action of an electric field E. The
iom will be moving with its random thermal veloecity and will
make collisions. We are not concerned with the random motion,
but omly the superpcsed motion due to the aection of the field.
It is found experimentally that under such eonditions a given
type of iom aequires a drift veloeity proportional to the
fleld E. In the absence of collisions we know that such An ion

would move with constant acceleration. This difference in be-
haviouz ecan be aceounted for roughly, as follows. Consider an
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lon betweon collliolons. The forece 4im this ion 1s
. ¥ =Eq (6.01)
'f this force acts for a time ™ the lon will scquire a momentunm
component gzivem Ly
nv = Py =EqT (6.02)

where v 1s the velocity acquired under the actiom of the field,
Let, us suppose that thie additional velocity 1s completely 1oat
at each coliision. (This is not quite true). If we now let #
be the mean time between collisions them, on the average, the
arift velocity amequired by the iom 1s #v and so

2%&2 % T ,(6003)

!\.:)éw

¥or & gilven type of ion, moving thrcugh a given gas at fixed
pressure and temperature, the quantities q, m, and © are con-
stants. Thus the drift velocity 1is proportional to the Tield
E, or

‘ ' v' =kE (6.04

The quamntity k 15 ecalled the wobility of the iom, and the above
crude ealculation shows that it should be of the order of magni-
tude

1 -3
kepdvagd y (5.03)

where ¢ 13 the mean free path of the ion im the gas and ¥ the -
mean (thermal) speed. This formula does indeed give values for
k of the right order of magnitude (k-'IO'h n/s per v/m) but can-
not bhe expected to be ecorrect im detail.

The coneept of the mobility of an 4om is important 4in
Jdiscussing ionie eomduetion in a fluid medium. Let us suppose
3 potential difference V to bhe applied across a pair of electrodes
imnersed im the fluid a distance d apart. Let nJ be the con-
eentration (ions per unit volume) of ions of type J, each carrying
a e¢harge QJ and having a mobility kJo In the presence of an
electric £ield E such ions will dequire a drift veloceity vJ,




parallel to the field E. In a time dt the charge dQ crossing
an area 4 A will be ‘

$ W v _ . e .
(@...AA\ZQJBJVJ) —AMIQan‘_‘J}E dt (6.06}

The current 1 1s thus
1::%% =dA i(anjkd) o {(6.07)

At a given temperature and pressure k, is constant and if

the ions maintain their identity and type, qq 1s constnont
' as far ac varlations in E, mnd hence of the appiiled potential

V, are concermed. The behaviour of nJ 18, however, subject

to other ecircumstances. In the first place, the passage of

a current necessarily means the removal of ions. This means

that the nJ depend on the current 1, 1in gencral, However, if

we suppose that the current is sc small that the fraction of

ions withdrawn is negligible then the “3 are constant if we

neglect recombination. Or, if we suppose a uniform source of

icnlzatlon to be present then the n, are constant, the constant |
.‘ value belng determined by the rate Sf recombination, If we

further suppose that E is uniform, and given by V/d then

\
and we see that the current obeys Ohm's law. At higher field
intensities the relation between current and voltage becomes
much more complicated.

6.1.2 Recombination of Ions

Suppose that we have a scurce of ionizing radiation
incident on a gas and let us suppose that it produces P pairs
of lons per unit wvolume, per unit time. For simplicity we
wiil suppose only two kinde of ions produced; that is, we
agsume a single gas in the ionization chamber and that only
one process of 1onization occurs. Let n, and n_ be the con-
centrations of free positive and negative lons, respectively,
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wil secur, and in pariicular, when 8 pousitive and
e lon collide there s a certain probability the thesy
srombine and form a neutral moleculs. The numbe: I

volllisionsg betwsen positive and negative lons 18 propor.ional
v the coneentration of each and s0 the number of rezom:ins-
tlong oceuring is proportional to ngn_: Hence, 1f we neglect
the effect of all other types of collisions, e.g., lons with
neutral moleculies, the increase 1n the number of positives

(or negative) ion2 im time 4t ‘is given by

Ao, =dn_=(P - 9-n; n_)at (6.09)

where the ccefficient © 1s called the ccoefflcient of re-
ecmbinetion, and depends onr the particu.ar ions in question,
as well as on the pressure;, but 1s independent of n*_énﬂ n_.
Rewriting equation (6.09) we have

dny. _p _ .
\\ ("ﬁ, _P gn*_n” \

{6.10)
=3¢ =F - @ nn_

ffrom which 1t follows that the ‘differonce Mg = D_ is & constant, .,

so that if the gas ¢ imitially unzharged we shall have

\?1_‘_-: n_=a : f6 N
o

im 2

r=P - 9n° (6.12)

The ionic concentratiin will reach a 3teady state when
"jfi’l,/ ’: —— ‘-/ ? i 3 @

7 9

n'=\p/C (6.13)

A )

where n' 1s the equilibrium concentration corresponding %o
the scurce strength P. If an un-ionlzed gas be exposed to a
source of strength P then the concentration will build up to
the equilibrium value n' acecording to the equation
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2V Po ¢
Y - 1 2 ¢ b \
NER —— {H.1%)
o® V76 ¢ + 1

ant sc does ﬁct approximate to the steady state untii

2y pPe t;l >> 1, or until

1 3
1204 | (6.15%)
177 2\Fe
tl i8 thus a measure of the time required to reach a steady
state, and 1s thus long for a weak source.
Suppose, on the other hand, that a steady state has
been reached and that the source is then remcved. How does

the concentration decay with time? The equation (6.12) now
becomes

da _ . on® . (6.16)

with n=n' at t=0. Thus

1.1 )
= - 2, z0t (60;7,
or
nft
e T3 {520

The extension of these results to'caaee where more than one

type of poeitive and negative ion 1s present follows immediately
from equation {(6.10). We have assumed in this treatment that
ions are removed by recombination only and that no external
field 418 present. If the pressure 1is not too high the ¢o-
efficient of recombination 18 roughly proportional to the
pregsure. Although the value of © depends on the gas, typical
values lie in the range '

0 ~1-2 210" m3/sec (6.19)

at a pressure of one atmosphere. Now we know from kinetiec
theory that the number of collisions made per unit time by a




where n is the concentration v theimean speed and ¢ the moleculer
erong section., Thus the total number of collisions made per

unlt volume per unit time is nZ and for such gases as oxygen,
nifrogen, etc. this 1is

-16 2

nZ ~ 1-2 210 (6.21)

at room temperafture. Hence, collisions between oppositely
charged iona are about 10,000 times more frequent tham collisions
between neutral molecules.

6.1.3 Diffusion of I%ms

In addition to being removed by recombination ions
can disappear from a gas by diffusion to the walls of the
- contalning vessel, where they may become neutralized. If this
happens there will exist a concentration gradient in the
vicinity of the walls, so that diffusion will persist. Let ¥
be the flux of particles in question, e.g., positive ions. &
is the number of such particles crossing unit area per unit
time. Then

@=- DyVn, - (6.22)

defines the diffusion coefficient D, for these ions in the
gae in question; D depends both on the kind of ion and the
gas through which it diffuses. Consider a volume T bounded
by a surface S. The total flux through the surface is

[{Pdszv D‘/V'\ * ds=-D V(Vn)df:-Djvzndr {6.23)
s S T "

But the total flux through the surface is just equal
to the rate at which the concentration within the volume 7 is
decreasing. That is

fqzds: -| & ar (6.24)
$ T
So



'Far=0|¢ ar (6.25)
}‘T J‘r
ince the volume 7 is arbitrary we must have

g% = DV‘? n {6.25)

which 18 the differential equation of diffusion. We have
assumed that the only cause of a change in n 18 diffusion. If
Chere 18 a source of ionization of strength P present, and if
mecombination be taken into account, then on referring to
equation {6.12} we see that equation (6.26) 1s to be replaced
Ry

dt’;l 5
—JESP + DV ny - © nyn, : (6.27)

with similar equations for each type of 1on.

It i1s shown im kinetic theory that the diffusion
coefficient is related to the mean speed V and the mean free
path [ for the same particle, or ion, through the equation

o~%tv ' (6.28) i

and 1s thus inversely proportional to the pressure. Diffusion
coefficients differ for positive and negative ions and from

gas to gas, but are of the corder of magnitude of 1-50;(10°6m2/sec
at a pressure of one atmosphere.

6.1.4 Ionization by Coilisionm

Consider a plane parallel electrode ionization chamber,
across which a potential difference V is applied. Suppose that
ions are produced at one of the electrodes, e.g. photoelectrons
liberated from the cathode by illuminating it with a suitable
source of radiation. If now for a given strength source, i.e.
a given number of electrons produced per second at the cathode,
we measure the current through the ionization chamber as a
function of the épplied voltage across the plates it will be
found that the current-voltage relation resembles that shown in



Pigure 6.1
vurrent Voltage Relation in an I%nization Chamber

, the voltage, but as tne voltage 138 increased the current
awna&ently reaches a saturation value independent of V. We
wish éw'determine the current as a function of the applied
f1eld and separation of the electrodes. It is found experi-
meatally that for eonstant field the current increases ex-
prnentiaily with plate separation provided the field is not .
too great. This was explained by Tovmsend by assuming that
ﬂn’eltctron on striking a gas molecule can, if its energy be
great enough, ionize the atom thus releasing am additional
alectrunJAvThis procese is known as ionization by cocllision
and .piays an important role in gaseous c¢onduction. 'Eggggggd
asaumed that each electron in traveling a distance dx pro-
duced gldx new iona. The coefficient ol 18 known as the First
Townsend Coefficient, Thus, if across a plane st a distanze

-

r from thé'caﬁbode these pass n electrons then a number n4 dn
will pass across a plane at a distance x4+ dx, where If we _
negleet recombination and diffusion dn 18 the number of eslectrons
released by the collision process. According to Townsend's
hypothesis we shall have

dn=of NAX (6 29)
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Pigure 6.2
Jonization by Collision

On multiplying both sides of equation (6.30) by the electronic
charge e we shall thus have for the current reaching the anode

1==1°e"d (6.31)

In this equation 10 corresponds tp the electronic current
ieaving the cathode, and 18 the value that the gsaturation
current would attain Af ionization by collision did not oeecur.
The equation of comntinuity, of course, requires that the
current be the same at all vaiues of x. This means that the
pogitive ion current will S0 adjust itseif that

iri1=1 (6.32)

at each value of x, so that at the ancde, for example, the
positive 1on current vanishes while it is a maximum at the
cathode.
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'{eld strength and the mean free path (pressure). Since o Iis
wmber of ionizing collisions per unit path length 1t is

ot other things, proportional to the pressure. In addition

+111 be some functiom of the energy of the ionizing papticis
{electron), 1.e. of its velocity, If the energy of the
electron i3 less than the ionization energy we would not ex-
rect lonization fo ocecur, since the electron mpst transfer o
the molecule sufficlent energy to ionize 1t. The mean energy
acqguired by the electron from the field will be Ee ¢ , Whera (
1¢ the mean free path, and 80 we should expect of to he of th
the form

o =p-fy(Ee ¢ ) (6.33)

where f, 1s a function which vanishes when the energy is leax
than the ionizaticn energy. Since ¢ 1s inversely proportional
to the pressure we can also write '

o/p= £(E/p) ~ (6.34)

so that if o be measured for a given gas at various preasures
and for wvarious fileld strengths we should expect the values
to fzll on a smooth curve if wejlot </p against E/p. Such
iz indeed foumd to be the case, if the fleld is not toc great.

5,1.5 _Breakdown

If equation {6.31) is valid we should expect to ob-
tain a straight line of slope & if we plot 1log 1 againat 4,
where 1 1s the current for a fixed field strength and g&s
pressure. This is found to be (he c¢case for small values of
4, but the current increases more rapidly than equation {(6.31)
would indicate, for larger values of d until finally, as is
well known, the gas breaks down and a spark occurs. This
mearne that there must be some other source of ionization.
Townsend at first assumed that the paotive ions formed in the
process of ionigzation by collision were also capable of ionizing
by the collision process, and introduced the Second Townsend



Coe ‘c‘?r_gut_ﬁ, .o, Adx 18 '.h% number cf lons produced bv
elon when 2 single positive fom travels a distance -dx

ugh Lhe gas. Although this assumption leads to an U -
Vicin whieh, 2Zp a formal way, accounts for the observed »e
sults 1f ia now known from direct measurement that the guant ity
4 4is negligible at the energies invelved 1in the usual cgses.
Th&fAig; tomization by collision of positive ions 1s negliigite
in most practical cases. This 1s because, as we have aeen iv

chapter V, The probability of ionization depends more on the
veloelty of the ionizing particles tham on its energy. & mueh
more likely process is the liberation of secondary electrons
at the cathode by positive ion impact. Let us suppose that
or the average, each positive ion striking the cathode releancs
¥ secondary eiectrons (¥ will usually be a small fraction).
A= Lefore, let us suppose that q, electrons are released fron
the cathode by the primary process, .., qg photoelectrons,
per unit time. These electrons, under the action of the ap~-
plied fleld, will move toward the anode, ionizing by ecollision
and thue producing positive ions. The pesitive ions will
migrate toward the cathode where they will reiease seccndary
electrons. Let ni be the number of electrons arriving at the
anocd# per unit time, Each of the n, electrons will ionize by

K A
A

%1, 3N, =(No +¥y) N~

St ] ns'-'- kn{-

Figure 6.3
The Effect of Sg,condary Electrons
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and on this account n e™ " electrons will reach
L8
! N B ;
In this proceas n_({e d _ 1) positive ions will be. pre

iwed and on arriving at the cathode willl release yn _{
8

¢ f?“t. v
ccondary electrons, which will also ionize Ly collision, th
supplying Xnuéﬁfd - 13€“d additional electrons at the anode.

¢ will thus be an additional number Kno(edd - 1)2 e~ of
rsltive ions reaching the cathode, ete.

Hence, the total
wmber of electrons reaching the anode is

o B omd ooy owd
fﬁ”noh*ac 1) e

1) . (6.35)

ﬁlffrnhtively, referring to Pigure 6.3, if n, be the total
number of positive ioms reaching the cathode
n+= nl il (n0+ ns) (695(:’

is the total number of secondary electrons from the
cathode. By definition of ¥

where n
8

and 30 ' &

n838ﬁ\1 - (n, +na)j (6.38)
But

nl-a.(no-g-ns)e"d | (6.39)

since all electrons leaving the cathode surface, whether
primary or secondary, ionize by collision.

On combining =qua-
tion (6.38) and (6.39) we arrive at equation (6.35),

Equation (6.35) indicates that when
1 - §(&9 - 1n=0 16.30)
the current becomes "infinite", t.e. the current ‘& limited

only by the reslstance in the external circuit. Ihysically,

.
3¢l .]



thls means ‘hat a spark occurs. Let us denote the aparking

potential oy V,. The f1eld 18 thue V./4. We have aseen “hat
: \ L
“he 1 ~m
K =pfE/pi= plfiv. /de {(o.%1)

urthesr, " will depend on the energy which the positive ion
pisseeses en 1Y ptrikes the cathode. If we assume an ion Lo

Tope a3l o 1D energy at each collision then we need only
contider Lhe energy acquired in the laest mean free path ba-
fore reaching “he cathode. This is equal to ¥ef ., Thus
y:;F1(Eu'.>.;@{E/pszygqvlfpd} {6 42}
Thus aquatlon (6.40) 1s of the foprm
Al pdf{\rl/pdi
F(V d; | e - 1li=1 €.43)
(Vy/pdi i ( )

Equation {(5.%3) 1s an implicit relation between Vl’ the
sparking potential, and pd where d is the spark length at a
pressure p for this potential difference. If we assume
equation (6,43) solved for Vy we shall have '

Vy= #(pe) : (6.44)

Thus, V, depends on the product pd only, and not on either
alone. This fact 1s known as Paschen's Law and is well

established experimentally. Physically, Paschen's Law means
that the sparking potential is a function only of the total

number of molecules in the space between the electrodes, The
form of the function # is similar to that shown in Figure 6.4,

Y, el

hd

Figure 6.%
Breakdown Potential vs. pd.
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i 2.
e breakdown sctentlial 1s high at very smell or very large
volues of pd and preaches a2 minipum somewhere in betweer he

.

hand portion of the curve 1s nearly

-

linear. Qualitative’
thes sort of behaviour 1s understandable. The conditicn fop
breakdown 1s that jJust encugh pousitive ions must be formaed.

result of lonlzatiom by eollision, to prodnce one
secondary electron from the cathode by ion impact, for esc)
primary electron. That 1is,

¥n (e - 1)=n (6.4 B

This 18 equivaient tc equation (6.40). Now at very low wvalve-
of pd there are so few’ molecules present that a high field
intensity is necessary in order to produce the requisite number
of secondary electroms. At the other extreme, for large valoesa
of pd the energy gained per mean f{ree path 1s small unless the
field 18 high. Notice that, regardless of the value of P or

it 18 1mposaible to produce breskdown below a certain minimum
viltage regardless of the field intemnsity. There 1s evidence
that this 1s not true at extremely améll values of 4, For

alr this minimum breakdown potential 1s about 340 - 350 volts
and occurs at a value of pd ~ .6 if p 18 measured $n miild-

. meters of mercury and d in centimeters. The accompanying tah e

gives data on the minimum for a number of gases. Accurate
determination of these values 18 extremely difficult.




. Table 6,1

Sparking lata

Minimum {pd) minimum

ity um of He

Gas {volte) SO CRELE

Atr 325 . 350 i .56

Hydrogen ] 275 - 310 1.2 - 1.8

Oxygen 20 - 8460 ' T2 - .48

Nitrogen 250 ~ 300 67 - .75

Helifum 150 - 260 4.0 - 2.7

Argon 4 140 - 230 .9 - .76
Carbon Dioxide | ~ B20 ~ .51
Sulfer Dioxide | ~%60 ! ~ 33
Nitrous Oxide ~R20 ~ .50
‘ Hydrogem Suifide ~i15 “~ 60

2




5.2 The Gaseous Ulscharge

‘ The phenomenon of the passage of an eleetris surrent
through a gas between two electrodes across which a potential
differencc is applied 18 known as g gaseous discharge. For a
given gas, pressure, and geometrical configuration an important
characteristic of the discharge is the voltage-current curve
| which exhibits some remarkable features. A typlical voltage-
current curve for a low pressure discharge is shown in Fig. 6.5.

e . dv— —— a— W tomn - m— a— — — — — — — —

R e 45

log 1

Figure 6.5 .
Voltage-~Current Char?cterisc of a Discharge Tube

Since for moderate ranges of potential difference across the
elecirodes the current ramges through many orders of magnitude
it 1= convenient to use 8 logarithmic scale for the current.

At very low voltages the current is small, gradually
approaching an (apparent) saturation value in the region AB

‘ | (B'igure 6.5). Beyond here ionization by collision becomes




appreciable until, at C, we reach the sparking potential and
the disecharge becomes self-malntained, as we have seen pre-
*icugly. In the region C-D the voltage drop across the tube
ig practically independent of the current. At higher currents
the voltage decreases until we reach the regiom of the normal
gilow discharge (E-F). In this region the voltage drop 1s again
Andependent of the current; which is limited by the resistance
0f the extermal c¢ircuilt. It 1s in this region that glow dis-
charge voltage regulating tubes (VR-105, VR-150, etc.) cperate
Just beyond this region the voltage rises rather steeply (F-3!
in the region of the abnormal glow, and then quickly drops to
3 very low value in the regiom of the low voltage arc, beyond
H.

©.2.1 The Normal Gluw Discharge

The ordinary low pressure gas discharge tube operates
in the region of the ncrmal glow. This region is characterized
by & low current density and a moderately high voitage drogp.

The region between the cathode and anode is broken up into a
number of rather definite sections which are readily distinguished
visually if the separatiocn cf electrodes is not toco small.

These are, starting at the cathode,)the Aston dark space, ad-
Jacent to the cathode and very marrow; 2) the cathode glow,

which appears to be "floating" on the cathode surface gince

the Aaton dark space is so narrow; next to the cathode .glow

15 the Crookes dark space, 3) whose width increases with de-
creasing pressure and depends somewhat on the tube ¢urrent. The
luminosity in this reglon 18 much less than in the immediately
following negative glow, %) whieh has a rather sharp boundary

on the side toward th= gathode and gradually fades off into the
next regiom, 5) called the Paraday dark space, or "second nega-
tive dark space', where the luminosity i1s very low, Following
this 18 6) the positive column or plasma whose length depends
almost sclely on the length of the discharge tube., This region
externds practically to the anode, from which it is separated by
the anode dark space, which is s very narrow region of relatively



v. For certaln ranges O curreni. ant pressure

ilow luminondt
e soniLivs ecolumn: breaks up 1ato o sepries of ceigh
iark vande, salled "str1dtions”.

The varlations 1n luminosity along the length of the
discharge are accompanied by variations in the electric field
intensity. I the distribution of the electric field is known
then the potential distribution and the distribution of (total)
free charge can be determined. An ingeniocus method for de-
termining the electric field distribulion, 4ue to J. J. Thomson
and used by Aston, is i1liustrated in Figure 6.6, The
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Pigure 6.6

Measurement of Electrie Field Intensity in a Discharge Tube

cathode and anode, ¢ and A, are rigidiy coupled together by
meana of a frame of glass rods, and this entire structure

can be moved from the outnde by means of an iron slug I.

An extremeiy fine beam of electroms from an auxiliary tube T

at right angles to the main dib@harg@ tube passes through the
discharge under lnvestigation and onto a fluoressent sereen S.
The presence of an ele¢tric field E in the main discharée will
cause the auxliliary beam to be deflected, and this deflection
is a measure of E., Imn oirder to minimize the effect of the
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auniliary discharge on the distribution of E in the main tube
the auzilliary tube 18 completely shlelided electrically from
the rest of the apparatus. By using a very small current in
the probe beam and a fairly high voltage, the ionization pro-
duced by the passage of thie beam through the main discharge
can be made negligible. This arrangement is particularly
suitable for measuring the field in the regions near the cathode
where the flelds are strongest. It i1s possible by this method
t¢ measure the field to within a very small distance from the
cathode iteelf.

It is found that, neglecting minor details, there
i1s a rather strong field im the immediate vicinity of the cathode,
extending through the Crookes Dark Space into the negative gléw.
The distance over which the fleld extends 1s almost independent
of eleetrode separation (provided this is not too smail) and
80 oo 18 the field distribution. The potential drop across
this region is thus constant, and is called the "cathode fall
of potential”. The actual value of this cathode fall is de-
ééndent on the material of the cathode and the nature of the £es.
The distance over whiech this potential drop takes place is
such that it contains a sufficient number of free paths ‘so that
the secondary electrons emitted from the cathode by positive
ion bombardment can produce enough electrons by iomnization by
collision to maintain the discharge.  This distance varies from
a few tenths to one millimeter at a pressure of one millimeter
of mercury, for a wide range of cathodes and gases. The
cathode fall of potential 1s of the order of magnitude ¢f, but
usually somewhat less than, the minimum sparking potential of
the gas in queation, i.e., it is in the range SO-SOO volts.
The remainder of the potential drop across the discharge takes
place, more or less uniformly in the absence of striations,
across the positive column. The length of the positive column
is usuaily enormous in comparison with the distance over which
the cathode fall occurs. Thus for any reasonable voltage across
the discharge tube the field in the positive column 1s much less
than in a region of the cathode fall, The method of Thomson and
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vgton is therefore not suitablie for field measurements in the

positive column, but another method, invoiving the Langmuir
probs, must be used. This will be discussed In section 6.2.2.
The probe measgsures, among other things, the potential dis-
tribution 1in the positive column from which the fleld can be
determined. Anticipating this, we show in Figure 5.7 the re-
sults of measurements of light intensity, potential, fieild,
charge and current distributions in a typical discharge. The
problem of explaining these results in a quantitative way 1is
almost hopelessly compiex, but it is not difficult to see in
a qualitative manner why some of the phenomena are as they are.
In the region of the cathode fall we have essentially
the mechanism of the self-maintained discharge taking place.
We have seen {see equation 6.40) that the condition for this
is l-rif=réﬁdn More generally, since the field will not be
uniform, we should write in the present case

1+¥=¥ef:°‘ ax
{6.86)

where ¥ 1s the value appropriate to the field at the cathode.
The G obLained from this equation will play a fundamental role
and will be very close to the length of the region over which
the cathode fall occurs. In this region the positive ions
acquire an appreciable energy and thus procduces the requisite
secondary electrons by cathode hombardment. Although it is
conceivable that electrons could also be emitted photoelectric-

ally, independent experiments show that the number of such is in-
appreciable. We have already noted that the number of secondaries
produced by eollisions of positive ions with neutral molecules is

alsc negligible. The fundamental process is then the liberation

of secondary electrons by bombardment of the cathode with positive

ions. These seccndary electrons are emitted with very small
velocities and consequently give rise to a net negative space

charge in the immediate vwicinity of the cathode, This 1s quickly

overcome by the formation of positive ions and the acceleration
of the electrons so that most of the region of the cathode fall
is characterized by a predominantly pcsltive space charge of
rather high density. Beyond that, in the region of the nega-
tive glow s8till more electrons appear; since their mobility
is soc much greater tham that of the positive ions. If the
electron density exceeds the ion density, as in the case
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{liuatrated in Figure 6.7, the potentlial wiil pass through s
maximum and undergo a small dip omr the anode side of the negs-
tilve glow, in the PFaraday Dark Space. From here wn‘thﬂ potentia
rises nearly uniformly almost to the anode and the net space
charge thus vanishes. That is, in the poaitive column the
Censily of positive ions 1s practically the same as that of
the electrons., But the electrons are moving witr mueh greater
velocities and so constitute almos® the €B%ire currpnt in this
regilon. Pinally, in the immediate vwicinity of ths anode thewe
18 a small decrease in electron density, due 5o removal of
slectrons, and a larger decrease in positive ion density, re-
suiting in a net negative charge demsity here and a siigh' rise
in field strength. This corresponds tc the region of the anonds
glow foliowad by The anode dark spece. This latter dark snace

sxirenely narrow, amounting to aboul one iree path [o:
iomization.

This brief description i1is not intended to be an ex-

piapation of what takes place in a gaseous discharge, but
rather a description of the results of measurements of the
quantities involved. We have assumed throughout that we are
in the region of the "normal glow discharge", and we have noted
that thls region is characterized by & "low"” current density.
We shall now make this vague statement a bit more precise By.
- considering the actual currents invoived. As seen in Figure
6.5, the current 1nvthé normal glow is independent of the
voltage, which means that the current is determined by the
resistance of the extermal -circuit. Suppose that, starting
at the point E, the external resistance 1s lowered. The eurrent
will increase toward P and the voltage drop acrosa the discharge
will be practically unaffected., But it will be observed that
“ the area of the cathode covared by the cathode glow increases
as the current is increased, until at the end}of the region
- of the normal glow discharge the entire cathode area 1is covered,
Further, the current density over the cathode is approximately -
constant throughout this change. We have noted {see also »
Figure 6.7) that the region of the cathode fall of potential
ie characterized by a high density of posttive ions which,
neglecting details near the cathode, starts at a high value
and drops off with distance toward the Faraday Dar} Space. To
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& rough approximation we have the situation of a space charge
limited positive 1on current in this region. If this 12 the
case than The (positive ion) current density at the cathode
will be of the form

——  g3/2
pareail it

-;§~ (6.47)

whepre Vc is the cathode fall.of.potentlal and d the distance
over which this takes place. The length d is of the order of
magnitude of, but somewhat less than, the distance at whth
aparking occurs at the minimum sparking potential, for the
pressure in question. Although the detalls implied by this
formula are nct to be taken too seriously, it does give re-
gults of the bight order of magnitude for the normal current
density, and dimensionally we must have a dependence of this
sort. Once the tube current exceeds the value 1 =JA where J

ia the normal current density and A the cathode area we cannot
have a normal glow.dlscharge. The region of the abnormal glow
now starts and the voltage drop across the tube increases with
increasing current, as indicated by the portron FG in Figure
6.7. If the current be still further increased we quickly pass
through the (unztable) region GH and into the low voltage arc.
The situation here is quite different; the potential drop across
the arc may be even iess than the ionization potemtial of the
gas in the disecharge tube so that, at first sight, one might
think that a self-maintained discharge could not exist. But
the existence of metastable states and c¢ollisions of the second
kind shows us that this situatiocn is indeed possible. We will
not go further into this subject at present.

6.2.2 The Langmuir Probe

Let us consider again the positive column, or plasma.
We have noted that this 18 a region which is almost electrically
neutral, since the density of positive ions is practically :
equal to the electron density. But the electrons, being much
lighter will diffuse more rapidly through the gas. Consider
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those slectrons which diffuse radlally to the walls of the
ube. They will cause the &lass) wall ¢o become charged so
that 1is potential 18 somewhat negative with respect to the
nlasma at each point. This negative potential difference
will attract positive ions and since the net current to the
wall must be zerc the density of positive ions will be greater
than that of the electrons since their velocity is much less,
The walls will thus be covered with a sheath of electrons;
that 1s, the net current to the walls is zero, but the walls
carry a charge which is not zero. An.analogous situation will
hold for any surface in the region of the plasma., ' In fact, a
confining surface, such as the walls of the discharge tube is
almost essential for the formation of a positive column. A
positive column does not form if the low pressure discharge
takes place in a large spherical enclqsure, Rather, the dis-
charge and ionization diffuse over the whole volume and the
concentration of ‘excited atoms becomes quite small, so that
the Faraday Dark Space externds almost to the ancde, where the
anode glow becomes more prominent than usual. :
Suppose now that a probe, that'is,an auxiliary electrode
P, be inserted in the diucharge as shown in Figure 6.8,

s

Figure 6.8
' Probe Arrangement .







and that the current to the probe be measured as a funet?

. v 4 O

of the potential difference_zP between the probe and dathode
Lel V' be the potential in the plasma, measured with respect
to the cathode, and let A be the area of the probe surface.
Suppose first that VP<<.V° so that the probe is highly nega-
Live with respect to the plasma. Then the probe surface will
be covered with a sheath of positive ions of thickness ds and
a apacp-chargemlimited positive ion current will flow to the
probe. The thickness d will depend on V¢ - VP and the ion
density in the plasma, but 1s generally in the range from a
few tenths to a few millimeters. The current density of posi-
tive ioms into this sheath is the random 1on.current density,
it , and is equal to the ionic charge times the number of ions

¢rossing unit area per unit time. Thus we have from kinetic
theory

LEEN, e T, (6.38)

where N"ls the concentraticn of*poait1Ve ions in the plasma
and 3;, the mean speed of these ions, if the ions have a Max-
welllan distribution characterized by the temperature 1*

{This will be somewhat greater than the gas temperature in
the discharge tube) Then

8KT

—r

= (6.49)

From kinetic theory amd so

J.8N e s (6.50)
+5 %Y TN, .

4 can be measured, but ia general N4 and T4 are quantities
we wish tc determine. If we write

Vov' -V, (6.51)

then the curremnt density J* can be written
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Suppose now that the probe potential, vp, ba made more positive,
Then a few of the faster moving electrons will be able to pene-
trate the sheath, (which also becomes thinner with decreasing
Vs), and the measured current will be reduced. The ion current
will be unaffected at first but later, when Vs has changed

sign, the slower ione will be repelled and the sheath will be
one of electrons rather than positive ions. When VP is highly
positive with respect to V' then only electrons can reach the
probe and we have a space charge limited electron current across
an electron sheath of thickness ds“ That 1is

3/2 .
4E v
e ¥ " (6.53)
8

Ncte that in both equations 6.52 and 6.53 v, denotes the
magnitude of the sheath potential .

J_syNew (6.54)

where V_ is the mean speed of the electrons and again, we
have assumed a Maxwellian energy-distribution for the electrons,
though 1heir mean energy will generally be much larger than
that of the ions. Hence the "electron temperature” wiil be
much greater. If we denote it by T; then

— Tm
OO\ B - (6.55)
80
KT _
J_GN_O m (6056}

For values of the probe pctential between the two extreme
cases just considered the situation is more complicated, and
this we now proceed to investigate. The curve in Figure 6.9
shows the current to the probe as a function of the probe
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Figure 6.9
Probe Current vs. Probe Potential

potential. The portion ab corresponds to the first cage
consldered, namely a space~charge~limited positive ion ¢urrent
g0 that

9

I,= Adg {6.57).
where A is the probe area (actually the area of the ocutside
surface of the positive ilon sheath) and J,. 1s given by
equation (6.50) or (6.52). The portion c¢d corresponds to
the second case, a space-charge-limited electrun current,

®
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I =AJ : {6.58°

where J 1is given as above. The portion of the curve just to
the right of b corresponds tc the case where we are still
collecting a positive lon ecurrent, but in addition some electrons
are being ccollected. If we assume that the electrons in pene-
frating the positive ion sheath do nmot change their energy
distribution and do not alter the positive ion concentration
then the positive icn current will be the same as before and

by subtracting it off we can measure the electron current Ie'

as indicated in the figure. PFurther, we can determine the
energy distridbution of the electrons producing the curpent

since the electron current, Ie, collected will be I_ diminished
by the effect of the retarding potemntial from the plasma through
the sheath to the probe, that is, the sheath potential. Thus

-V _e/xT P
I,=I_e ° ° (6.59)

or, on using equation (6.51) (v~ Up Kt

[ e

e-V‘e/k‘IL ) eq.Vpe/k'I‘_

I,=1_ (6.60)

Thus 1f we plot {n I, as a function of V, we should obtain

a straight line of slope ¢/kT_ if the electrons have a Max-
wellian distribution characteristiec of the temperature T .

(If the curve so obtalned 18 not a straight line, within ex-
perimental error of course, 1t means that the distribution is -
not Maxwellian). In particular the electron current will just
equal the positive ion current, that is the probe current will
be zero, for a certain probe potential V? called the floating
potential. It 18 the potential which an insulated probe would
acquire 1if placed in the plasma. This is easlly read from the
graph. But for this value of the probe potential the sheath
potential 1s_VB=V9 - VF and so we must have
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eguation enables us to determine V', the plasma potential
since 7, , 1 and V? are determined direqtly and T_ 1s given
by equation (6.60). Another, and perhaps more accurate way of
- determining V' 1s indicated in the figure. This 1s to ex-
trapolate the straight iime portion e¢d and the esgentially
straight line portion wherg the current 1s rising sharply, un-
%1l they intersect at vps V'. The positive ion temperatures
mé is yet ©0 be defermined. One procedure would be to take
this to be the same as the gas temperature, though it is \
usually somewhat greater thanm this. Tn principle, we might
follow a method analogous to that used to determine T . That
is, the current measured below ¢d in the viecinity of the knee
of the curve repveagnts the positive ion ecurrent I diminished

by the effect of the retarding potential. If we denote this
ton current by I, then |

I;j=l, e (6.62)
or

1,1, /KTy b e (6.63)
so that if we plct en I against -V we should get a straight
line of slope e/kT_‘, Having detemmed these quantities, we
c4an now get the ion and electron ecncentrations from equations
(6.50) and (6.56). Probe measurements thus determine the
following quantities: the plasma potential, the positive 4on
conecentration, the electron concentration, the electron temp-
erature, the random electrom current density, the random ion
current dengity, and the floatimg potentiai.

N ) : -V e/kT,
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CHAPTER VII. THE STATISTICAL BEHAVIOR OF ELECTRONS IN METALS
(Ref. M. and S., Chapter IV)

7.1 The Experimental Basis for a new Statistics

In dealing with extremely dense assemblies of particles,
such as the free or conduction electrons in a metal, it 1is
necessary to resort to statistical methods; otherwise the math-
ematical complexity is imppssible to handle. One might at first
think that the classical (Maxwell-Boltzmann) statistics for the
particles of a gas might hold equally well for the electrons in-
side a metal, and indeed there is some Justification for this
point of view since the electrons emitted thermionically from
a metal do obey M-B statistics. This fact, however, Ls fortui-
tous as we shall see later.

Measurements of the conductivity of metals, the slight
dependence of the conductivity on small amounts of impurities
and the high reflecting power of metals for light waves all
lead to the conclusion that the number of free (conduction)
electrons in a metal i1s about equal to the number of atoms;
for 1ight metals this is of the order of 5)(1022 electrons per
cc. On the basis of classical statistics each of these electrons
should contribute 3/2 k to the specific heat, Cy,- Experimentally
the specific heat of metals 1s explained completely by the heat
energy of the atoms, and the electrons are knonnvo contribute
very little if any to the specific heat.

While the energy distribution of thermionically emitted
electrons seems to follow the M-B laws, the energy distribution
of photoelectrically emitted electrons does not. On the basis
of M-B statistics one would expect a spread in energy of the
photoelectrons of about 3/2 kT or 0,05 e.v. at room temperature.
Actually the energy spread is of the order of several volts
(depending on the frequeney of the light). The scattering of
electrons by gingle metallic erystals, the Davisson-Germer ex-
perimant, not only demonstrated the truth of the prediction
by de Broglie that electrons have wave properties, and wave-
lengths A=h/p, but alsc showed that the binding energy of



electrons in getals was equal to the work function of the
metal pluq&5 e.v. Classlically, we should expect this

binding energy to equal the work funetion plus 3/2 kT. Other
experimentai evidence such as the anomalous Hall effect and
the emission of electrons by strong~f1e1ds would not be ex-
plained classically.

7.2 The Theoretical Foundation for Quantum Statistics

The statistics which apply to free electrons in metals
was derived independently by Fermi and Dirac about 1925, The
theoretical arguments used follow.

1) We shall assume that the electrons are in thermo-
dynamic equilibrium with each other (this assumption is basic
for any kind of statistics) and with the atoms of the metal.

2) We shall assume that there are no ordinary forces,

forces which depend on position only, acting on the electrons
in the body of the metal, and hence that the potential energy
is everywhere constant. There are, of course, forces at the
surface which keep the electrons in the metal, but these forces
may be handled 1ndependently of the statistics. (These forces
for the moment may be regarded as strictly analogous to the
walls of a box eontaining gas molecules obeying the classical
statistics.)

'3) We shall assume that the most probable state co-
rresponds exactly to the actual physical state.

4) We shall assume that the electrnns obey the
general laws of quantum mechanics which are: (a) Pauli Ex-
clusion principle, (b) Heisenberg uncertainty principle, and
(c) the principle that each electron is completely indistingui-
shable from every other electron.

Assumptions (1), (2) and (3) could lead equally well
to Maxwell's formulation of the classical statisties. It is
our problem to introduce assumptions 4(a), 4(b) and 4¥(¢) into
the usual statistical procedure, in order to obtain the
quantum (Fermi-Dirac) statistics.
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7.3 ¢Cells and Phase Space

Let us consider the number of electrons n, which
fall into a particular quantum state chacterized by energy
w, in the small range dwi. (dw1 is perfectly arbitrary, but
when we deal with large numbers of particles it can be treated
exﬁctly as a differential). We shall call g, the number of
states of energy LA in the range dw1 per unit velume of the
metal. We can evaluate 8y by means of the He;senberg un-
certainty principle.

According to Heisenberg the minimum uncertainty in
the simultaneous measurement{ of the momentum, Py and the posi-
tion, x, of a particle 1s of the order of Planck'’s constant,h;
that 1s, Aprx‘;‘-' h. We can formulate this in three dimensions,

' =53
APy AP AP, Ax Ay Az = h

Now since this 1s the 1imit of accuracy with which
we can specify the state of a particle in posttion and momen-
tum, we will assume that this is the size of the unit cell in
the combined "space“ of momenta and position coordinates.
(This is generally called the "phase-space"), If the precision
with which we intend to specify the particle is determined by
the differentials dpx, dpy, dpz, dx, dy, dz then certainly the
product dpxdpydpzdx dy dz is g?eaber than h3. The number of
avallable cells 1n phase space is then Just

'dpxdplﬂpz dx dy dz

ho

‘

8=

We shouid like to determine 8; in terms of the
energy range dw1 rather than the combined space-momentum range.
To do this we first integrate over the space coordinates
(nothing depends on x,y and z) obtaining

Yo

(;'i‘z.;l-3 dp,dp dp, (7.1)

where Vo is the tofal volume of the metal we are considering.
Now by equation (7.1) the cells are uniformly distributed
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over momentum space, and the total momentumyp .
p2: szqv- Py2+'922 (7.2)

Hence a sphere of radius p in momentum space 1s a
surface of constant total momentum and the number of cells
of momentum p in the range dp is8 Jjust equal to the number of
cells between two spherical surfaces of radii p and p-+dp.
This number of cells is equal to the "volume" of the spherical
shell 47Tp°dp multiplied by the density of states, V_/h>.
Hence,

g = bmp2 22 4 ‘ (7.3)
{4 = h—3 P .

In order to transform (7.3) to the desired form we
need only remember

g

1=
padp =(2m3)% wg dwi
and hence, evaluating (7.3) in terms of energy w,, We have

51"‘%[ (2m)3/2 w,? awy

We have divided through by Vo since we originaily de-
fined g, as the number of states per unit volume of the metal.

7.4 The Permi-Dirac Statistics

Our problem now 18 to determine how to divide our
particles among the various allowed cells. Statistically we
wish to determine the probability that n, particles are in
the state 84 Now certainly the probability that such a state
exists 1qbroportiona1 to the number of ways in which we can
form that state, under the quantum mechanical conditions that
no two particles can be in the same quantum state, and that
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the particles are completely indistingulishable; that 1is, that
exchanging particlea A and B does not constitutc a new state.

: ' Paull principle as applied to metals states that no
two electrons can occupy the same cell in momentum {or energy)
space unless they have different spin quantum numbers. Since
the spin quantum number has only two possible values this
means that two and only two electrons can occupy the same cell
in momentum space. Mathematically this 1s exactly the same

as though ve had doubled the number of cells available to

the electrons, and we will redefine our 8y accordingly, i.e.,

si-f;}r(em)m %dw ~ )

We now inquire how many ways are there to divide
n, particles into g, states. This clearly is the same ss
asking how many ways are there to take 8y things n. at a
time, and we will set the probability, Pi’ of this state
proportional to this number, getting,

P, o -
1 (31 - ni)! nis

(7.5)

To see this let us use the followlng argument: 1if
we have g, things we can take any one of them in g, different
ways and so on until we have but & - n1+—1 left which we can
take in one way only. The total number Ni is the product of
the individual numbers, and so,

8¢
(81 -y ni)‘!

N,=(g,)(gy - 2)(g -2 ... (g -ny+1) =

However, we have assumed that each of the n, ways 1s dis-
tingulishable from any other way and this is the same as saying
that the electrons are distingulishable. To correct this we

must realize that we must divide by the number of ways of

taking n, particles. ny at a time (assuming distinguishability).
This 1s Just n1° and dividing N by this factor we have equation
(7.5).

In order to proceed further we recall two theorems.
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One is Boltzmann's theorem which states that the entropy of
a system is proportional to the logarithm of the probability,

S=zk fnp

This 1s reasonable since the most probable state of
a system is the state of greatest entropy by the second Law of
Thermodynamics. Also since the probability of two events
occuring simultaneously is Jjust the product of the probabilities
of each occuring independently, while the entropy of the sum of
two systems 1s Jjust the sum of the individual entropy, the
logarithmie connection seems correct.

The second theorem we need is due to Stirling and
states that

bn n!Zn-dn(n - n

as n becomes very large.

Let us now return to equation (7.5) which gives the
probability that n, electrons w1ll be in the 1*" state with
energy w, in the range dwi. If we consider all the electrons
in a system they can distribute themselves in many states of
different w. The probabllity of any one state occuring for
the system 18 then the product of the probabilities for all
the individual atates, hence

and the entropy of this system is then
s o< Z{en gyt - &x n,! - en(si - ni)gf (7.6)
1 .

applying Stirling's theorem

Sv‘i:{siﬁn gy - 8 - niin n,+n; - (g - ni)tn(si - 04)p8y - “1}

S“zi{gi% 81 3 nib‘ n1 3 (81 g ﬂi)ln(si o ni)} (7.7)

Now the probability and the entropy are a maximum for
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’ the most probable state. Hence, let us take a small variation
in S, §£3, as the individual n,'s change by Sn,, and set s
. equal to zero for a maximum. The gi's will remain c¢onstant
as given by equation (7.4) as long as we keep dw, the energy
range under consideration, constant.

es olzi {- Snién n, - 3.4--.'5n1 bn(31 - n1)+1}=o

?{Bﬂ(si -n,) -&n nI} Xni =0 (7.8)

We also require that the total number of particles
N=Z n,, and the total energy W=2Z n,w, remain constant and
X b+

hence that SN and 3W=0. Then,

?Sni‘:o (7.9)

: ; w,3n,2 0 (7.10)
We now use LaGrange’s undetermined multipliers to
aid our solution. Since all the summations are over the same
index, 1, and since $n, 1s a common factor, let us multiply
equation (7.9) by -~ o and (7.10) by -ﬂ and add. ( « and I
will be determined later from the physical aspects of the
problem,

g, ~ n
i Ti{bn 'A’_ﬁ";l - c(-(::wi} fnizo (7.11)

| Now the 5n1°s are completely independent so we
} must require that each term in brackets is individually zero.
| Hence,

dn (% - 1)=‘-c':(+/3wi (7.12)
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Rearranging terms and inverting the logarithm, we have,

&y
’ni w
14 &8

Now g, 18 a differential (or nearly so) and our
notation should be changed to express n, as a differential
also. Setting n, = n(w)dw, dropping the subscripts, and

using (7.%),

n(w)dwsg (2m) 3/2 wi(i%w . (7.13)
l+e

n(w)dw is then the number of particles of energy w
in the range dw per unit volume. n(w) 1s the "density”
function; that 18, it is the number of electrons of energy w
per unit volume per unit energy range.

7.5 Determination of & an.{ﬁ

In order to determine ﬂ let us examine the behavior
of equation (7.13) whene + jw 18 appreciably greater than
unity. The exponentizl is then much greater than 1 and we
can rewrite equation (7.13) as approximately,

n{w)dw = A wﬁ' . e'(o“ﬂw) dw

- or (7.1%)
n(w)dw FA? Wi e’ﬁw dw

where A and A' are constants. Now these expressions are of
the same form as the corresponding M-B functions. We shall
see later that one condition ford&(+ 8w being greater than 1
183 that the density of the electrons 1s small. Physlcally
we should expect electrons to obéy M-B statistlics if the
density is small since the effect of the Paull exclusion
principle would be much less pronounced. I§ 1s reasonable
then to assume that /3 has its classical vabe of 1/kT.

Let us now set cxs-wu/kT'and proceed to determine
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Wy Equation (7.13) becomes,

. n(w)dwag (2111)3/2 wt aw (7.15)

Let us evaluate n(w) at the absolute zero of tem-
perature. If we set T=0 1n (7.15) the exponential 1is zero
for w < Wy and hence n(w) 1s proportional to w<. For w)wn
the exponential term goes infinite and n(w) drops sharply to
zero. Hence, physically Wy at absolute zero, is Just the
maximum energy of the electrons. Classically we should ex-
pect the energy of all electrons at T==0°K to be zero;

Pauli principle dsnles this.

At 0’k wy 18 easily evaluated. Let us integrate
n(w)dw over all possible values of w. The integral of the
left hand side of (7.15) 1e Jjust N, the number of free
electrons per unit volume. Because of the behavior of the
exponential term at‘0°K, the integral of the right hand side
is Just,

vo.
i—g(am)3/2 «.[ wé dw
and hence
o 3/2 3/2
N= 2m
'3'5 (o) _ "o
fmm which
2 2
Wmo-'-%a' (g’%) /3 (7.16)

Ay

where we have set Yo equal to the value of WM at T=O°K.
wy can be evaluated at any value of T by integrating over
(7.15) for T#O, The result can be expressed as & power

series in (%—T- )2, and 1is,
MO
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wm-_-.:wuoil 5B o R T } lram

For all real metails WMo is between 2 and 10 e.v.
while kT 1s a few tenths of am electron volt even at elevated
temperatures. Hence, Wy changes very little even for wide
ranges of temperature; the change in N due to expansion of
the metal 1s certainly as important as the temperature de-
pendence in (7.17). For our purposes we can take wy as con-
stant and equal to w Wno©

The density function n{w) is plotted in Pig. T7.la.
The solid curve shows n(w) at T=0. The dotted curve is for
2 higher temperature; for real metals the dotted curve cor-

responds to T=2500°K.

7.6 Other Distribution Functions

Besides the density of electrons per unit energy
range we should like to know the density per unit speed
range or per unlt velocity range. By a procedure similar to
that of section 7.3 we can easily show that the distribution
of electrens with velocity components Vs vy and L A in the
range dvx dv dvz is

y
3 dv_ dv_ dv
- om p 4 z
n{v ,vy,v )dv dv dvz"‘;f' ‘Lw = (7.18)

and that the distribution of electrons with speed v in the
range dv is

3
n(v)av sargm y2dy

W= Wy
14=exp (—?f_)

(7.19)

In expressions (7.18) and (7.19) the functional dependence of
W on the speed and velocities components is understood:

,, 2 2
we m(v +vy+v )_.2 mv
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The density functions n(vy, Vys v,) and n(v) are plotted
against w in PFig. 1.1,b and c¢.

In the study of the emission of electrons from
metals there is one other distribution function of some im-
portance, namely, the function that gives us the distribution
of electrons of particular velocity component L in the range
dvz with no restrictions on the values of the other two com-
ponents of velocity. This function 1s certainly obtainable

from (7.18) by 1ntegration over all possible values of v

and vy. Hence,

n(v )dv =dv, jf n(v , V 3’ v )dv dvy

0 00

3 dv dv
2m
o, 2 50

-m(v +v -Hré) - "M
1+exp(

In order to integrate this let us tranafbrm to polar
coordinates such that

2 .. sl 2
‘P - vx 1‘Vy
_Pdfd {)au'lvxd\ry
We have then
]'213' 3 36
2m dpL
n(v_)dv dv
el zoso—;g {’*'”“’2_"»1
1+exp( T )
Integrating over @, we have, .
3 (+2-] .
4TTm _pd
n(v )av :—-——3— av f
- () % Ry +3 mvf- Y
1+ exp( . )
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=gr ¢ dp
-4
_’H‘m d
n(vz)dv _—;3— »kTdv, ;:‘lﬁ ‘7.20)
(]
where
1 2
5 nmyv_ - 'M
"70": E’% ¥

The indefinite integral is standard and is given by

__an_ {__'_'__2__ - It e )

14 e? 14 e

and therefore,

5 2 Wy = %mvz
n(vz)dvzz%- x? An{1+4exp(-2 e £) (7.21)

The low temperature behavior of n(v ) can readily
be seen. If T 1s very small then

1 2
WM - E mvz
KT
1s very large, except near er.% mvg, and we can certainly
neglect the 1 in comparison to the exponential term. Equation

(7.21) then becomes,

1 2
n(vz)dv —T (w mv )dv
This function plotted against %—mv"a 1s shown in Fig. 7.1(d) as
‘ the s0l1id line; the dotted line shows n(v ) for a temperature
| ’ in the neighborhood of 2500 K for a real metal.
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1.7 The Specific Heat of the Electron Gas

We may use the distribution functions to compute
average values of energy, speed etc. For instance, the
average value of the energy is Jjust,

fo ’ w n(w)dw
o | u/‘ 0
we w n{w)dw=
N ‘L“n(w)dw
o
At d°K these integrals can be evaluated easily and we have
-3 '
w-s "Mo (7022)

At temperatures other than 0°K the integral can be evaluated
with some difficulty by series expansion (see M. and S, Appendix
IV) and the result to the first order in (kT/w,,)? is,

w22 wy, 1+i;;5 (;i%)a | (7.23)

Since “Mo i3 of the order of 5 e.v. and kT is about 0.03 e.v.
(for room temperatures) the correction term in (7.23) is about
1 part in 5000 or 0.02%.

The specific heat per free electron is then

dw kT
e = - k(=
v =dr é "o

At room temperatures this is about 2% of the classical value
of(s/ék. Hence, although the F-D statistics gives a much
higher average energy of the electrons, the temperature de-
pendence 1s extremely low, and agrees with the experimental
observation that the electron gas does not contribute to the
specific heat. « :

The experimental fact that thermionically emitted
electrons obey M-B statistics can be readily understood.
These electrons evidentally come from the high energy region
(high temperature tail) of the P-D distribution. It is here
that the exponential term in (7.15) predominates and the dis-
tribution of emitted electrons is of the form of (7.14).



If we now re-examine the facts regarding the photo-
electric energy distribution and the large potential energy
demanded by the Davisson-Germer experiment we see that the
large spread in energy of the free electrons in the metal,

required by the F-D statistics, agrees with the experimental
facts. i
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8.1 The Metallic Model

In order to fix our ideas about metals we must make
some assumptions about the electric fields and potentials ex-
isting at the surface and in the body of the metal. 1In deriving
the F-D statisties we have already assumedthat no forces act
on the electrons in the body of the metal; that is, that the
potential energy of the electrons is constant inside the metal.
That this 1s not too bad an assumption, especially for emission
problems, 1is amply proved by experiment. Of course, a detailed
examination of the atomic structure of the metal shows that this
assumption 18 untrue. However, the mathematiecs for dealing with
@ more exact model becomes hopelessly complicated.

Having decided upon a workable assumption for the im-
terior of the metal we must now consider the forces on the el-
ectron very near the surface of the metal. Certainly there are
strong forces at the surface; otherwise the electrons would
readlly escape and we know that they do not escppe except at
elevated temperatures or when subjected to other strong stimull
such as 1llumination by light of high~-frequency, high electrie
flields, etc. The simplest assumptlion, and one serviceable for
some purposes, 1s that there is a discontinuity in potential at
the surfaae, the "square barrier”. A somewhat better assump-
tion, and one which is comnletely confirmed experimentally from
about 50 A on out, is the image field barrier. That 1s, we
know that a charge, -e, situated at a distance z from a large
etal surface, 1s acted upon by an image force equal to
-e /16rr£ z2 (directed toward the surface).

A potential energy can be associated with this force
and is equal to -e/16rr£oz, If we arbitrarily set the potential
energy at large distances from the metal equal to zero; and eset

the constant value inside- the metalsequal to ~W., there exists
aome uncertainty about the exact value of z at %he surface,

since according to the image force law we should have an in-
finity at z=0. Let us arbltrarily define z, as the point at
which the image potential energy becomes equal to the constant



value -WB. We have

From which

e? -10
Zozmﬁ.—oﬁg—“—‘- .36 X10 m =, 36A

for WB =10 e.v.

Hence, the error we can make in allowing fhe potential
energy to become constant at z=z°=.36A is small in dealing ‘
with distances frmm the surface of 10A or greater. The potent -
1al energy as a function of z for both the image barrier and
square barrier 1s shown in Fig. 8.1. '

Fplbitn, 2 - U=0

U= -WB

Fig. 8.1
Hence for the sqguare barrier

Us - B’ z<zo, U =0, 2>z,

and for the image barrier

e2

phenlits i G <t LS

We can also show the distribution of the electrons
in energy (for convenience at T =0°K) on such a plot as shown



-153-

in Figure 8.2. 1In Figure 8.2(a) the density of electrons in
indicated by the density of the lines. In Figure 8.2(b) the
density i1s indicated by plotting n(w) to scale.

Energy Energy

nw)

(a) (b)
Figure 8.2

For our purposes we shall suppose that the image
field barrier correctly represents the facts, and modify this
supposition where necessary.

8.2 Thermionic Emission

In order to obtain an expression for the emission of
electrons by temperature excitation, we must calculate the
number of electrons which have energles large enough, and
velocitles 80 directed, that they may surmount the potential
barrier at the surface. Since the surface 1s perpendicular
to the z diréction, and the image force and potential barrier
is in the z direction, we are clearly interested in the number
of electrons for which :

D

However, let us consider one point; we are interested

b ]
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in a current, not a charge density. Hence, the number of
electrons per unlit volume, as given by equation (7.21),

having velocity compongnt v, in the range dvz is not the
right function. Rather we want the number of electrons per
second coming to unit area of the surface with velocity com-
ponent Ve in the range dvz, If we call this function
n'(vz)dvz it 1s related to n(vz)dvz by,

nv(vz)avz’-.-_ vz.n(vz)dvz' (8.1)

In order tn ocdet to see this consider all the electrons »
having velocity components between Yy and vzq-dvz in the volume
of length v, (numericzlly) and unit cross-sectional area, as
shown in Figure 8.3.

~

-~

~

i

_——-—-——_-——_-.—.—.~——.—_—~-—.7

/Surfaee of Metal

Figure 8.3
Clearly all of the electrons in this volume will
arrive at unilt area of the surface per second; and it remains
to evaluate those which can escape from the metal and contribute
to the thermionic current. The thermionic current density is
then
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o g Ll

Jpy= fn'(vz)dvz::e Yz- n(vz)dvz (8.2)
[ G
m m
Using equation (7.21),
’Hl'm e % ny
J £ kT bn { 1 +exp( Z)¢ av

m

(83)

z

This would be a rather formidable integral were it not known
experimentally that those electrons which can escape (for which
%mvz>wB) have values for %,- mvg about 2-6 e.v. greater than
L/ Hence even for T= 2900 K,
: 1 2
WM o= -2~ sz

kT

n

-8

or smaller. Hence, the exponential in the logarithmic term 1is
samall compared to 1, Recalling that
x""2 13
&\(l-l-x)::x ~JPI .. . forx.gl

we can replace the logarithmic term in (8,3) by

M 2 z
exp ( kT )

-

and the first neglected term is %— c or roughly 10"‘ times
as large as this term. Hence we can write,

? | 2 g
i 2 Wy - 5 mv
JTH;-_T%?E.@ f v, exp { ~ET 2.) av,_ (8.%)

’EWB
m

Setting




.5

du= T vzdvz

{8.4) becomes
Yrmek? Hamir
b S .eu du
TH h‘3"‘ J

)
the value of whieh is

J ‘__‘Vllmek2 22 e- -—n‘-—wa M (8.5)
TH- hg 3
2 W, - w
Setting A = 4"—"‘%5- and -B_-;._._"‘. =<
h

we have a well-known relation generally called the Richardson
‘ equation.

Jog SATC @ & (8.6)
cp is called the work function, and €@ 1is c¢clearly the minimum
energy which must be added to an electron at 0°K in order for
it to escape from a metal.
In order to test this equation againgt éxperiment,
we can plot the experimental values of log10 —I-g against %
The experimental points should fall on a straight line of
slope - .4343¢§~ and should intercept the vertical axis at
logloAO, This serves to determine the value of ¢ , which can-
not be predicted by statistical means. However, Ao depends _
only on universal constants and should equal 1.2 x106 amp/mz- dega-
or 120 amp/cm2 - degen Experimentally this value 1s seldom, if
ever, attained for clean metals. The value of 60 is obtained
for pure tungsten and several other metals, values of A between
30 and 200 have been reliably observed for many metals.

8.3 Departures of A from Theoretical
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Since the value A, =120 amp/cm® - deg? 1s not
obtained experimentally 1t will be better to rewrite our

‘equation (8.6) as,

- ame o~ ©@e/kT

Ty SATS o7R / (8.7)

where A 1s the experimental value and since e/k =11,600°K/
- volt 1t 1s sometimes convenient to write

4 =472 ~P/T (8.8)

where b 11,60099 A

Previous to the develonment of the quantum (Fermi-
Dirac) statistics in addition to the equation (8.8) another |
form of Richardeon's equation was in vogue, namely,

MY L (8.9)

Experimentally, it is difficult, or impossible, to
determine whether the T term of (8.8) or the T® term of
{(8.9) 18 correct. This seems strange until we realize that
the termperature dependence of the exponentlial term 1is so
strong that variations in thermionic emicsion due to the T
or T2 term are rather well masked over tiic range of temperatmre
‘and types of metals avalalble tc us. Tho T2 term 1s generally
used because of 1ts basisc in quantum theory.

Just before the introduction of F-D statistics a
quantum theory of thermionic emission was developed which led
to the same form as equation (8.8), but the value of 60 amp/
cm2 - dege. This deviation came about because the effect of
electron spin was not fully realized. (Compare the factor 2
in equation (7.18)). But because several metals gave values
of A=60 and none gave A =120 the validity of the quantum
statistics in this application was suspect for sometime.
Nowadays it is generally believed that the experimental values
of 60 are completely fortuitous.

If this 1s indeed the case we must ask ourselves why
the theory does not give the observed values of A. There are
at least three independent, and probably equally valid, reasons
why this is possible, and probably combinations of these three
effects are present for all metals.

J

8.3.1 Temperature Dependence of Work Funetion.

T miteae ek e
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The most intellectually pleasing reason for A #120
is the temperature dependence of the work function. Since
metals undergo changes of volume and of crystal structure
with changes in temperature we might re‘asonably expect that
the work function should also depend (slightly at least) on
T. Setting

o S +X T

in equation (8.6) we have

2 ‘((Po+—°( T)e/kT

I — A T° e = (A

L ~ _ Pe/KT
= 7 e O(e/k)TQe (o)

o

The constant in front is then what we would measure as A and
CPO i1s what we would measure as the work function. For
i1

A =5 Ao=-60, we have
o RefK 1

o-11,6000_

1
=g
or

-4
L &2 107" oK,

4 reasonable value. Further this effect would explain values
of A>120 since o could be negative.

8.3.2. Reflection of Electrons at Surface

Clasaically,'electrons having sufficient energy to
climb the barrier at the surface will assuradly contribute to
thermionic emission.: On the basis of gquantum theory this is
not strictly true; since the electrons have wave properties
there 1is always a chance that some of them will be reflected
at the surface and hencé w111 not leave the metal. If the
percentage reflected is r, and if r is independent of v,s we
would have to modify AO by

A-::.Ao(l - r)



This can explain measured values of A less than 120, but
not greater.

We cannot compute r by statistical means, but only
by the methods of guantum theory. Strangely, the image
barrier can produee but little reflection; the square barrier
appreciable. In fact any potential barrier that varies more
rapidly than % {(the image potential) can produce large re-
flection. Since there 1is independent evidence of the exis-
tance of reflection, 1t may be that the field varies rapidly
near the surface but becomes similar to the image field at
distances greater than several atomic diameters.

8.3.3. Effect of Patchiness of the Surface.

Perhaps the most important. effect 1s the fact that
no metal surface 1s completely uniform. Even if the surface
is free of impurities different crystal faces more than likely
have different work functions; Hence our experimental curve
should be the sum of several curves such as given by equation
(8.6), and although actually a curved line rather than a
straight line results from a plot of loglo %2 vs. %-1t is not
difficult to see that over a limited range of T the composite
curve should look like a straight line. Because the work
function appears in exponential, the dominating term, we
would in general measure the work function of the surface of
lowest work function, but the measured value of A would very
likely be less than 120.

8.4 Energies of Escaped Electrons
We should expect that the emitted electrons would
follow a Maxwell-Boltzmann distribution and indeed measurements

confirm this. The resenn for this is that the emitted electrons

all come from the top of the distribution curve where the ex-
ponential term i1s large. For this case the 1 that oceurs in
the denominator for most of the FP-D functions can be neglected
compared to the exponential, and hence the form reduces to the
M-B case as was shown 1in Section 7.5,

Very careful measurement by Nottinghdam and others



have shown that the observed curve differs somewhat from the
predicted curve. If one takes the ratio of the observed to
the predicted distribution funection n(v ) for various values
of v,, and calls this ratio r(v ) one determines the reflection
coefficient of the barrier for electrons of specific velocity
perpendicular to the surface. The results thus obtained for
r(vz) are similar to those predicted by the square barrier;
actually one need only assume a barrier varying more rapidly
than 1/z. The experimental side of measuring energy distri-
bution will be left to the discussion of the photoelectric
effect.

Since the electrons come from the tail of the distri-
bution funetion, and since this tail has M-B characteristics
one could expect that the average energy of the escaping
electrons 18 of the opder of kT. Exact analysis shows this

average energy 18 2kT. Since this represents energy carried
away from the surface of amount

J
P, TH 2kT watts/m°

which is numerically equal to about % x10~° watts/em>, for
T=2000"K and J =100 ma/ecm, this energy transport should pro-
duce a definite cooling of the cathode. Such a cooling effect
has been confirmed experimentally.

8.5 Contact Potential Difference

It has been a long established experimental fact
that 1f we place two dissimilar metals in contact, there
wilﬂpe a difference of potential between their faces which
are not in contact. This 18 called the contact potential
difference, CPD. Experimentally, we know that this difference
is the same always for two given metals, A and B. Experiment -
@lly, let us form a condenser by placing two metal plates A
and B a very small distance apart and let us connect them
through a light flexible wire andaa ballistic galvanometer as
shown in Figure 8.4,

Now 1f a CPD exists charge will be induced on the
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Figure 8.4
condenser platei of amount
Q =CO(CPD)

where co 1s the capacity of the plates. If now one plate is
suddenly pulled away from the other plate, the capacity drops
to almost zero and the charge Q will flow through the galvane-
meter. The CPD thus determined is of the order of a volt

(0-3 volts) for all dissimilar metal pairs.

Our model of a metal leads to an explanation of this
phenomenon. Let us consider the function where the two metals
make contact, and let us assume that the temperature is quite
low. We know that if we apply only a slight potential dif-
ference across this junction electrons {currents) flow freely
pver 1t. Hence, there is no force at the barrier large enough
to prevent electron flow. However, the electrons in the metal
have varying kinetic energies from zero to several e.v., and
by Paull Principle only those at the top of theF-D distribution
can take up small amounts of energy from an applied electric
field. (Those electronf below the top of the F-D distribution
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cannot acquire energy by increments since the allowed energy
states just above them are already filled). Therefore, there
can be a force at the contact providing the potential energy
difference due to this force does not exceed Wy for either
metal. Let us call this potential energy difference AU.

The potential energy situation at the Junction 1s 1llustrated
in Figure 8.5(a), where the subscripts A and B refer to the

g
i A
]
|
I
"Ba | Yem
|
i
TR
A

s : (b)

Figure 8.5
different metals and we have set the potential energy outside
metal A egual to zero,
If we take the z dié%tion a8 normal to the Jjunction
the energy conservation law states
1 2 1

!
ZOV,,= 5 msz-l-AU {8.10)

When no electric field is applied across the Junction
we know that no net current flows and hence the number of
electrons per unit area per sec. leaving A for B must Jjust
equal the number of electrons leaving B for A. But since
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Paull'p principle applies in both A and B an electron of one
particular va leaving metal A must be replaced by an electron
from metal B which will have the same VoA in metal A; 1i.e.
equation (8.10) will hold. Now this condition can be fulfilled
if, and only 1f, we have

nl.\(va) deA= né(sz) dsz

or
\ nA(va) dva;zsz nB(sz)dsz (8.11)

That is the number of electrons of velocity component
Voa in the range dv zA coming to unit area of surface A per
second must Jjust equal the number of electrons of velocity
component v.B in the range'dsz coming to unit area of surface

"B per second, where the conservation law (8.10) relates Voa

and v.B° )
Taking the differential of (8.10) and remembering
that AU is a constant we have,

vadvazzng dsz

Combining this result with (8.11), we have
na(¥5) = n(7p) (8.12)

Now (8.12) need only be satisfied for these electrons
which can be exchanged for energy reasons, l.e., for those in
which

1 2 »
'é' mva ? AU'

Equation (8.12) can only be satisfied if the electromns
in both metals at the top of the Ferml band have exactly the
same potential energy relative to 1nf1nity. Plotting n(v )

4laig sidvatiow

for both metals on our energy diagramAis 1llustrated in Fig
8.5(b). Because of this an electron Just outside metal B has
its potential energy relative to infinity depressed by an

amount Just equal to the difference in the work function, i.e.

ceo=¢; - Y




The algebralc sign of the contact potential difference
is such that the electrons JustAoutside phe metal of lower work
function are at a lower poténtial energy than the electrons just
outside the metal of higher work function. That is to say that
electrons leaving a metal of work function ¢§ will be retarded
by a potential ¢A - ¢B’ where ¢A is the work function of the
collector. In the usual experimental set-up the emitter has
a lower work function than the collector and the CPD 1s there-

fore a.retarding potential.

8.6 The Effect of Retarding Fields

If an electric fleld is applied such that the potential
of the collector .'13 lower than that of the emitter, electrons
leaving the emitter will be acted upon by a force tending to

- return them to the emitter. Fig. 8.6 1llustrates the potential
. energy' situation for this case.

U Applied Field ? - i ,~Collector

. -
Enitter — R i1

_ <~ Combined Field
0

‘ Figure ‘8.6




# 165 Y
The net effect of the applied retarding fleld 1s to
raise the height of the potentilal energy barrier over which
the electrons must climb. Hence 1if VA, the applied potential,
18 retarding, the net effect 1s to increase the work function
by an amount V,. Hence, in Richardson's equation (8.7) we
should replace # by # +V, and obtain :
eVA
e 4
J= JTH e

where Jn, 1s the saturation {zero field) electron current.

Retarding potential methods may be made use of in
determining the energy distribution of the emitted electrons.
If we have parallel plate gecmetry and take z as the direction
perpendicular to the plates, then the current J(V) measured at
& partieular retarding potential V represents the current due
to all electrons which'satlsfy the condition.

1 2 'a -

5 mvl© > Ve ‘ (8.13)

' "

where \ 1s the velocity component outside the metal. Hence

ir n(v;)dv; represents the distributlon function in v} outside
the metal

I(V):ef vl n(v;)dv; (8.14)
&

m
is the current due to electrons for whih (8.13) 1s satisfied.
It can be shown that

a(vp)=- S

where Y and V are functionally related by %—mvé2= Ve. 1If
concentric spherical geometry 1s used and if the emitter is
small compared to the collector, one can measure the total

energy (or speed) distribution function.

8.7 The Bffect of Accelerating Filelds

Schottky Effect



- 166 ~

If one applies a field which is favorable to electron
emission the situation is not as simple as an additive (or
subtractive) change in work function. Fig. 8.7 shows the
potential energy diagramvfor this case.

Ap-e
-l

Emitter e 5 ’/ Image Fleld Collector
U
Y - i - AR N \
g T SXN\.—Applied Field
A =
/ N
¥y Combined Field
]
Figure 8.7

‘The figure 1llustrates (to an exaggerated scale) the fact that
the potential energy barrier at the surface of the metal is
reduced, but not by the amount of the applied potential. In
fact the reduction of work function 1s very small, but not
unimportant. To ecmpute thilis reduction let us assume that

the geometry is plane parallel so that the applied potential
energy 1is,
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eVAr- - eE z.

A
. where E, 1s the magnitude of the apPlied uniform field. The
image barrier is
Ry
| p—
16T gz

and the net potential energy 1is

2
i 3 [
US - - e EAz TE;FE;E- (8.15)
To determine A @, the lowering of the work function,
ve must compute the maximum value of the combined potential
energy, Afe. Differentiating US with respect to z and setting
equal to zero

g

2=\ TR,

for maximum. Therefore,
e E

ik : A
US(xnax) ot 5 161r£°
e EA
Afe =Us(max) =-2e\ g e,

W G -5 ok
Hence, for an applied field of 106 volts/m the
lowering of the work function is only about .04 voit. How-
ever, this small charge of work function can produce large
changes in the emission current. If in equation (8.7) we
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replace @ by §+A¢ we have

Age
4

JsJTH e

but
-A# £=3.79 %2054 12,600 E} = .44 &}

Hence,

e i (8.16)

The validity of this theorysrirst glven by Schottky,

‘can be tested by plotting the logarithm of the emission current

against the square root of the applied field (or of the applied
voltage for constant geometry). A atraigh:ﬂ}ine of slope égi
should result. This 18 actually the case =f clean metal sur-
faces and Schottky's theory 1s amply Justified. In fact, the
best measurements of saturation currents are made by means of
this theory.

As the tempefature of a cathode 18 raised the emission
current density becomes large and space charge effects become
appreciable. Hence, one must go to high values of applied
potential before collecting all the thermionically emitted
electrons. But in going to high potentials one has enhanced
the emission by Schottky effect. The only escape is to go to
st1ll higher potentials, and then to make a Schottky plot of

In 5 vs. EA' By extropolating this back to zero applied field,
neglecting the data in the space charge limited region, one
arrives at the true value of the saturation current.

8.8 Pield Emission (Cold emmission)

If one goes to applied fields of the order of 107 volts/m
and greater, one finds that the emission is much greater than
that predicted by Schottky theory. In fact even if the tempera-
ture 1s very low, appreclable emission 1s observed. Such an
effect has no explanation on the basis of classical theory but
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can be explained if one considers the wave propertles of the
electrons. Under very strong fields the potentlizl energy dia-
gram at the surface of the metal looks something like the dia-
gram of Fig. 8.8. (Still somewhat exaggerated). The Fermi
levels of the free electrons are indicated on the dlagram fo?
a very low temperature.

@ e em v W @ w w -

Combined ~F1eld./

Figure 8.8

Classically the electrons do not have enocugh energy
to surmount the barrier and hence could not escape from the
metal. However, electrons with wave properties have a finite
chance of penetrating the barrier, from A to B for the most
energetic electrons, and appearing outside the metal. Such
an effect 18 called the tunnel effect, for obvious reasons
and the detailed theory 1is due to F&wler and Nordheim. The
resulting current density is predicted as,

D
i
s © A, amps/m® (8.17)

where the applied field EA plays a role analogous to that of
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the temperature in thermionic emission. The constants C and
D are dependent on the particular metal and are

umpl/volt2

D=6.8x10° ¢3/2 volts/m

where Wb snf wM are 1n units ot electron volts.

8.9 Secondary Emission

If a metallie surface (or insulator for that matier)
is bombarded by electrons, one finds that secondary electrons
are emitted by the surface, and that this effect 1s essentially
independent of the temperature. Some of the electrons have
energies equal to the Primary electron and are truly reflected
electrons, but for the most part the secondary electrons have
energles of the order of 5 e.v., independent of the energy of
the primaries. Furthermore, at primary electron energles
around 500 e.v. the number of secondaries 1s about twice the
number of primaries for most metals. For Beryllium, or more
properly for Beryllium with a thin oxide fi1lm, the number of
secondaries can reach 4 or 5 times the number of primaries.

The explanation of this effect must be due to
successive momentum transfer, A Primary electron strikes
several of the electrons in the metal and imparts momentum to
them, but in a direction avay from_the surface. These electrons
can, however, strike the atoms of the erystal lattice and bounce
back, retaining the additional energy received from the Primary
electron. If this energy is greater than the barrier potential
energy the electrons can escape from the metal.

This point of view 1is strengthened by experiments
which have measured the Secondary emission as a function of
the angle of incidence of the primary beam. These experiments
show that the component of veloecity perpendicular to the sur-
face 1s the determining element for secondary emission.

Similar results are obtained when heavy particles
(say protons) are used in the primary beam, However, tie
energy of primary electrons for maximum emission ratio i8
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about 1000 times higher (of the order of the mass ratio)
which also confirms the momentum transfer point of view.

8.10 Photoelectric Emigsion

When metals are i1lluminated with visible or ultra
violet lighﬁ they emit electrons. This effect was discovered
in the late 19th century by Hallwachs, who observed that metals,
when subjJected to ultraviolet radiation, became positively
charged to a few volts. The number of emitted photoelectrons
is strictly proportional to the intensity of the light at a
glven frequency; but the photo current is strongly frequency
dependent. The shape of the energy distribution of the emitted
electrons depends only on the frequency of the light, and not
at all on the intensity, a fact that was completely at odds
with classical theory.

Typical experimental curves for the emission from a
clean surface of sodium are shown. FPig. 8.9{a) shows the
total (saturation) photoelectric current per unit incident in-

‘tensity as a function of frequeney. Fig. 8.9(b) illustrates

the distribution in total energy of the emitted photoelectrona
at a single frequency

-4




The general explanation of 2@22; results can be
obtained from our statistical model of a metal; for a detailled
explanation we must use the methods of quantum mechanics. Con-
sider the energy diagram for the electrons near the surface of
the metal at a low temperature,in Fig. 8.10.

U
A
4
0 B } Z
? T C ¢
Y )
eP
¥
W
B L 1
L B
Fig. 8.10

The free electrons cannot absorb quanta {see section
5.2A) and hence only those electrons near the'surface, the cross
hatched area, can absorb light since such electrons are bound
by the image force. Actually, most of the absorption of light
near the visible by metals 12 due to these surface electronms,
but only a small proportion of the absorption leads to photo-
electrons. From our diagram,if the metal is illuminated by
light of frequency f such that hf £ fe, it is apparent that
the energy transfer to the Fermi electrons 1s insufficient to
permit their escape. If, however, hf>fe it 1s still unlikely
that all, or even most of the absorbed quanta will lead to
photo emission. Even if the electron gains enough energy to
escape 1t may be travelling in the wrong direction. For ex-

cape we must have that
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and vé must be positive., Also the electron may have low
initial energy and hence even after absorption of hf con-
dition (8.18) may not be satisfied. This situation 1s 1llus-
trated by the three vertical arrows in Fig. 8.10. Each re-
presents a quantum of energy hf, but each is interacting with
a different electron, indicated by the bottom arrow. Quantum
A, absorbed by an electron at the top of the Fermi band, can
produce an energetic photoelectron; quantum B, absorbed by an
electron of intermediate eénergy can produce a photoelectron
with Just enough energy to eéscape; quantum C, absorbed by an
electron near the bottom of the barrier cannot produce a photo-
electron. ;

Quantum A produces the most energetic photoelectron,
of energy :

% mv2, =ht - ge (8.19)

This relation was predicted by Einstein in 1905
(20 years before F-D statistics) and was the first clear
statement of quantum theory. 1In 1915 Milliken measured the
maximum energy of photoelectrons as a function of frequency,
by measuring the retarding potential, VA, necessary to stop
the fastest photoelectron. A plot of VA against f ylelds a
stralght line of slope h/e, and Millikan'’s was the first
good measurement of this quantity. Actually, of course,
%»mvﬁAx is not a unique quantity; at normal temperatures there
1s always a slight temprature "tail" as shown in Fig. 8.9(b).
In measuring the complete energy distribution function
One can use concentric spherical electrodes, where the emitter
is about u‘pog& source. The photoelectrons emerge radially,
and if a retarding potential Vh is applied one collects all
Photoelectrons of energy eVA and greater. If the photo current
is I(Vh) the energy distribtuion is given by
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n(w')._.._ > Q:_[_(_V_)_

av

where w' 18 the energy after escape.

Since n{w') can'be computed from the known distri-
bution inside, this provides a check on the F-D theory. Veryg
good agreement is 6bta1nab1e between theory and experiment;
there 18 some divergence which must be attributed to a barrier
reflection coefficient. This implles that the barriep departs
from the image field picture near the surface. A typical
current-voltage relation is shown in Fig. 8.11, where we have
plotted the photocurrent against the applied voltage.
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Fig, 8.11

The current does not saturate at the zero of applied voltage
because of contact potential difference.

The spectral distribution curve of Fig. 8.9(a) cannot
be predicted by statistical methods alone, except near the
threshold (the long wave length 1imit) of photoemission. The

threshold wave length is related to the work funetion by the
'familiar relation

As the frequency of the incident light is increased from the




b o

threshold, we should expect increased emission at first since
the number of electrons which can enter into the emission
process increases rapidly. However, quantum mechanics shows
that the absorption probability falls off with increasing -
frequency. This decrease in absorption probability predominates
after a while and accounts for the maximum in the spectral dis~
tribution curve, and the subsequent diminution of the total
photocurrent.
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