3.1 The Electromagnetic Fleld Equations

(Reference: Frank "Electricity and Optics", Chap. VII.)

Thus far we have treated the electric field and the magnetic fleld as though they were completely independent. This is not true in general because of Faraday's Induction Law, and Maxweli's introduction of displacement current. Paraday 21.2.
showed that if the magnetic $\wedge^{\text {is }}$ changing with the time, the electromotipe force around a closed path is not zero, but is equal to the time rate of change of the flux of 3 liniked by the path. That is

$$
\begin{equation*}
\oint J \cdot d s=-\frac{\partial \Phi}{\partial t}=-\iint \frac{\partial E}{\partial t} \cdot d S \tag{3.1}
\end{equation*}
$$

In order that the equation of continuity of current be satisfied, Maxmeli introduced the idea of displacement current, and showed that the displacement current density is just equal to $\frac{\partial D}{S t}$. In stating Ampere's efreuitai theorem, we must talce account of this current density as well as the real current density, j. Kence, Ampere's circuital lat becomes,

$$
\begin{aligned}
& \oint H \cdot d s=\iint\left(j+\frac{\partial D}{\partial t}\right) \cdot d S \\
& \text { These equations (3.1) and (3.2) together with } \\
& \qquad \iint_{\text {ciosed }} D \cdot d S=\rho \\
& \iint_{\text {closed }} B \cdot d S=0
\end{aligned}
$$

s.re the integral equations of the electromagnetic field.

Maxwell deduced from them the equivalent differential equations which are generally called maxwell's Equations, and are

$$
\left.\begin{array}{l}
\frac{\partial E_{z}}{\partial y}-\frac{\partial E_{y}}{\partial z}=-\mu \frac{\partial H_{x}}{\partial t} \\
\frac{\partial E_{x}}{\partial z}-\frac{\partial E_{z}}{\partial x}=-\mu \frac{\partial H_{y}}{\partial t} \\
\frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}=-\mu \frac{\partial H_{z}}{\partial t} \\
\frac{\partial H_{z}}{\partial y}-\frac{\partial H_{y}}{\partial z}=j_{x}+\varepsilon \frac{\partial E_{x}}{\partial t} \\
\frac{\partial H_{x}}{\partial z}-\frac{\partial H_{z}}{\partial x}=j_{y}+\varepsilon \frac{\partial E_{x}}{\partial t} \\
\frac{\partial H_{y}}{\partial x}-\frac{\partial H_{x}}{\partial y}=j_{z}+\varepsilon \frac{\partial E_{z}}{\partial t} \tag{3.6}
\end{array}\right\}
$$

In free space, $\mu=\mu_{0}, \varepsilon=\varepsilon_{0}$ and with no free charges or real currents, these, equations become in vector notation,

$$
\begin{align*}
& \operatorname{curl} E=-\mu_{0} \frac{\partial H}{\partial t} \\
& \operatorname{curl} H=\varepsilon_{0} \frac{\partial E}{\partial t} \tag{3.7}\\
& \text { div } E=0 \\
& \text { div } H=0
\end{align*}
$$

By taking the curl of the first equation and the time derivation of the second we have

$$
-\operatorname{curl}(\operatorname{cuxl} E)=\mu_{0} \varepsilon_{0} \frac{d^{2} E}{d t^{2}}
$$

but, $-\operatorname{curl}(\operatorname{curl} E) \equiv-\operatorname{grad}(\operatorname{div} E)+\frac{\partial^{2} E}{\partial x^{2}}+\frac{\partial^{2} E}{\partial y^{2}}+\frac{\partial^{2} E}{\partial z^{2}}$
so $\quad \frac{\partial^{2} E}{d x^{2}}+\frac{\partial^{2} E}{d y^{2}}+\frac{d^{2} E}{d z^{2}}=\mu_{0} \varepsilon_{0} \frac{d^{2} E}{d t^{2}}$
since div $E=0$

Now eq. (3.8) is just the wave equation for the vecbor E, and the wave is propagated with a velooity equal to $1 / \sqrt{\mu_{0} \varepsilon_{0}}$ which we know to be c. An identical wave equation can be ob ~ tained for H. Maxigell's woric was of the greatest importance since it showed the inherent electromagnetic nature of light, and aiso predicted the possibility of the radiation of radio waves.

3.2 Moving Coordinate Systems

If we have two coordinate systems, (x, y, z) and (x^{*}, y^{*}, z*) and if the starred coordinate system is movirg relative to ($x, y, z)$ at a constant velocity v in the direction of the positive x-axis, then we should certainiy expect to be able to express the coordinates of a point (x, y, z) in terms of the coordinates (x^{*}, Y^{*}, z^{*}). If we assume that the two systems coincide at time $t=0$ thea at some later time, we have

$$
\begin{align*}
& x^{*}=x-v t \\
& y^{*}=y \tag{3.9}\\
& x^{*}=z
\end{align*}
$$

Such a change of coordinates is called a Galilãan transformation, and it is apparent that Newton's laws of motion for
a mass point 111 be the same in either system since there is no relative acceleration. However, if we inquire how Maxueli's Fleld Equations behave under such a coordinate transformation we find very quickly that their form changes radicaliy. A simple physical example serves to illustrare this point. Suppose we have a uniform magnetic field B at rest in (x, y, z) and a charged particle at rest in $\left(x^{*}, y^{*}, z^{*}\right)$. In the unstarred system we would measure a magnetic force singe the particle is moving, i.e., $F=q v \times B$. In the starred system the particle is not moving and hence no magnetic force is possible.

It developes that the form of Maxwell's equations and the general electromagnetic force equation (the ponderomotive equation)

$$
\begin{equation*}
F=q[E+v \times B] \tag{3.10}
\end{equation*}
$$

remains unchanged under quite a different coordinate transformation called the Lorentz transformation. (However, the form of the field vectors must be changed in order for this invariance to hold).

3.3 Einstein's Derivation of the Lorentz Transformation.

In addition to the trouble with Maxwell's equations, by 1905 there were two sets of experimental data which indicated that not all physical laws were constant under Galis an transformations. In the Pirst of these experiments Pizeau set about to find the velocity of ilght in a moving liquid of refractive Index n. If the IIght propagation was unaffected by the ilquid motion one would expect to measure a velocity $w=\frac{c}{n}$. If the light propagation depended entirely on the ilquid one would
expect to measure a velocity $w=\frac{c}{n} \pm \nabla$ where v is the velocity of the liquid relative to the earth. Actually, Fizeau found that neither answer was correct but rather that

$$
w=\frac{c}{n} \pm v\left(1-\frac{1}{21^{2}}\right)
$$

an intermediate value.
This strange result led Michelson and Morley to their famous experiment by the following argument. Certainzy, neither the earth nor the moving fluid constitute a "preferred" coordinate system in space then we should be able to detect the change In motion of the earth relative to this system by measuring the velocity of light from distant stars at two times, one-helf year apart, between which times the relative velocity of the earth would have reversed. The result of this experiment was completely negative; the velocity of light from the stars did not change.

This result led Einstein to make the following famous assumption; the velocity of ilght in free space is independent of the motion of the observex. We can now follow the consequences of this assumption. Imagine a spherical wave of IIght starting from the origin of coordinates at time $t=0$, when the starred and unstarred coordinates are coincident. By Einstein's assumption this spherical wave w111 be propagated in both systems according to:
and,

$$
\left.\begin{array}{l}
x^{2}+y^{2}+z^{2}=c^{2} t^{2} \tag{3.11}\\
x^{{ }^{2}}+y^{n}+z^{2}=c^{2} t n^{2}
\end{array}\right\}
$$

We cesire to find the functional relation between the two coordinate systems, but we have not assumed that the time must be the same in each system, as does the Galilean transformation. Although the dalilean transfomation seemed correct for the dynamics of mass-points (Newton's Laws) this may have been only because the velocities involved were very much lower than c. Since it is very desirable to hawe the laws of nechanies as well as electromagnetism obey the same laws we shall require that our new relationship reduce to Qalilean transiormstion for $\mathrm{v} \lll 0$.

Let us rewrite equation (3.11) so that

$$
\begin{equation*}
x^{2}+y^{t^{2}}+z^{2}-c^{2} t w^{2}=x^{2}+y^{2}+z^{2}-c^{2} t^{2} \tag{3.12}
\end{equation*}
$$

and assume

$$
\left.\begin{array}{l}
x^{*}=\alpha(x-v t) \tag{3.13}\\
y^{*}=y \\
z^{*}=z \\
t^{*}=\alpha(\delta t-\delta x)
\end{array}\right\}
$$

Substituting (3.13) in (3.12) and collecting coefficients of x^{2}, t^{2} and $x t$ respectively, we have

$$
\left.\begin{array}{c}
\alpha^{2}-c^{2} \delta^{2} c^{2}=1 \tag{3.14}\\
\alpha^{2} v^{2}-c^{2} \alpha^{2} \gamma^{2}=-c^{2} \\
-2 \alpha^{2} v+2 c^{2} \alpha^{2} \gamma \delta=0
\end{array}\right\}
$$

Since x and t are independent, their coefficients and those of $x t$ must independently satisfy (3.14).

The solutions of (3.14) are:

aुए
 51

 :
poser

$$
\frac{1}{x}=?^{\frac{2}{1} x} 1 \times \frac{2}{x}=1
$$

toumine

$$
\left.\begin{array}{l}
d^{2}=\frac{1}{1-v / c^{2}} \\
\gamma^{2}=1 \\
s^{2}=v^{2} / c^{4}
\end{array}\right\} \quad a r\left\{\begin{array}{l}
\alpha^{2}=\infty \\
\gamma^{2}=v^{2} / c^{2} \\
\delta^{2}=1 / c^{2}
\end{array}\right.
$$

The second set of these solutions is obviously nonphysical. Prom the inst set we will choose the positive roots as corresponding to the velocity direction we have already chosen, and hence we have the well-known Lorentz transformations:

$$
\begin{align*}
& x^{*}=\frac{x-v t}{\sqrt{1-\beta^{2}}} \\
& y^{*}=y \tag{3.25}\\
& z^{*}=z \\
& t^{*}=\frac{t-\frac{v x}{c^{2}}}{\sqrt{1-\beta^{2}}}
\end{align*}
$$

where $\beta^{2}=v^{2} / c^{2}$
3.4 Kinematics in Special Relativity

The first consequence of these equations (3.15) is that v can never equal or exceed e for a material particle. A scend consequence 18 the apparent contraction of moving bodies. If we place ourselves in the unstarred coordinate system and measure the length of a body (at rest relative to ourselves) whose extremities are at x_{2} and x_{1} wo wad achieve the result $x_{2}-x_{1}$. But if this same body is in the starred coordinate system we would find

$$
l=x_{2}-x_{2}=\sqrt{1-\beta^{2}}\left(x_{2}^{t}-x_{1}\right)
$$

and hence the body is foreshortened in the direction of 1 ts motion. (The Fitzgerald-loorentz contraction). Similarly moving clocks apparently run more slow dy to a fixed observer.

(It should be pointed out that these effects are very small unt12 $4>c / 10$.

In adding relative velocities we must take account of the transformation laws. Let as assume a third frame of reference ($x^{* *}, y^{* *}, z^{* *}, t^{* *}$) moving with a velocity u relative to ($\left.x^{*}, y^{*}, z^{*}, t^{*}\right)$ along the positive x-axis.

$$
\begin{align*}
& x^{* *}=\frac{x^{*}-\mu t^{*}}{\sqrt{1-\beta^{2}}} \\
& y^{* *}=y^{*}=y \\
& z^{* *}=z^{*}=z \tag{3,16}\\
& t^{* *}=\frac{t^{*}-\frac{u x^{*}}{c^{2}}}{\sqrt{1-\beta^{2}}}
\end{align*}
$$

Substituting (3.16) in (3.15), we can show that

$$
\begin{align*}
& x^{* *}=\frac{x-\omega t}{\sqrt{1-\beta^{2}}} \\
& t^{*}=\frac{t-\frac{\omega^{2} x}{c^{2}}}{\sqrt{1-\beta^{2}}} \\
& \omega=\frac{5+\omega}{1+\frac{u^{u} u}{c^{2}}} \tag{3.17}
\end{align*}
$$

Again, this lav (3.27) for the addition of velooitiee reduces to never exceed c, providing, of course, that ${ }^{\text {a }} \mathrm{Ar}^{\mathrm{y}} \mathrm{v}$ never exceeds c, and hence, no relative motion can ever exist at a speed greater than the speed of propagation of 11 ght in vacuum.

We can ala o derive the result of Fizeau's experiment using this expression, (3.17). Let v be the velocity of the liquid relative to the earth, and let u be the velocity of light relative to the liquid, i.e., $/ \mathrm{n}$. Then the velocity of light relative to the earth is

$$
\begin{aligned}
& I=\operatorname{In} \sin \left(t^{x}-\frac{x^{x}}{c}-10 \sin w(\right. \\
& \text { cimentimine. Velitivéstic } \\
& \begin{array}{l}
\text { Sourse } \\
\text { andy }
\end{array} f_{a}=f_{0}\left(1-\frac{u}{c}\right)=f_{0}\left(1-\frac{u}{c}+\frac{1}{2} \frac{u^{2}}{c^{2}}\right) \\
& \text { tarond } f_{T}=f_{0}\left(1+\frac{u}{c}\right)=f_{0}\left(1+\frac{u}{c}+\frac{1}{2} \frac{v^{2}}{c^{2}}\right) \\
& H \text { ins } \quad \frac{v^{2}}{C^{2}}-\frac{6 \times 10^{2}}{9 \times 10^{6}}=10^{-4} \\
& V=\sqrt{2 \cdot 10^{8} \times 3 \times 10}=2.5 \times 10^{6} \mathrm{~m} / \mathrm{c}
\end{aligned}
$$

$$
w=\frac{v+c / n}{1+\frac{v c}{n c^{2}}}=\frac{v+c / n}{1+v / n c}
$$

Since $v<n$ c we can expand and neglect higher powers of

$$
w=\frac{c}{n}+v-\frac{v}{n^{2}}=\frac{c}{n}+v\left(1-\frac{1}{n^{2}}\right)
$$

Doppler Effect

If a source of light waves is moving relative to the observer the observed frequency will be shifted from the value in the case where observer and source are fixed, even though the observed velocity is constant. Classically the frequency shift is given by

$$
f^{*}=f\left(1 \pm \frac{v}{c}\right)
$$

where the pius sign is to be taken if the source is moving toward the observer. Relativistically this expression must be modified, since there 18 relative motion of the coordinate systems of the source and the observer, so that

$$
f^{n}=f(1 \pm v / c) / \sqrt{1-\beta^{2}}
$$

If is small compared to c we can write this, neglecting higher order terms in v / c,

$$
f \approx f\left(1 \pm v / c+\frac{1}{2} \frac{v^{2}}{c^{2}}\right)
$$

Hence the relativistic correction is of second order, but its sign is independent of the direction of the motion. Ives made use of this fact in a recent experimental proof of the correctness of the relativistic expression. He measured the shift in frequency of the monochromatic light emitted by hydrogen

$$
\begin{aligned}
& \text { RE }=\frac{1}{2} \frac{m v^{2}}{\sqrt{1-v^{2} / 2}} \\
& 1 C E=m_{0} c^{2}\left(\frac{1}{\sqrt{1-v / c^{2}}}-1\right)
\end{aligned}
$$

atoms moving in opposite directions in a discharge tube. Classically the average value measured mould just be equal to the frequency of light emitted by atoms at rest. Relativistically the average would be shifted from the rest value by an amount equal to $+\frac{1}{2} \frac{u^{2}}{c^{2}} f$. The relativistic shift was detected by Ifes.

3.5 Relativistic Dynamics

In an isolated system (no external forces), both the momentum and the total energy must remain constant, at least according to Newtonian dynamics. We should like to find the corresponding quantities in relativity which stay constant in isolated systems, and also the law relating these quantities to the forces of the system. We proceed in much the same manner as we did in deriving the transformation laws, but since the algebra is very tedious we will simply state the results here.

The momentum vector becomes

$$
\begin{equation*}
p=\frac{m_{0} v}{\sqrt{1-\beta^{2}}} \tag{3.18}
\end{equation*}
$$

and the energy becomes

$$
\begin{equation*}
W=\frac{m_{0} c^{2}}{\sqrt{1-\beta^{2}}}+U \tag{3.19}
\end{equation*}
$$

where U is the potential energy.
We have written m_{0} instead of m to imply that m_{0} is the measured mass in a syster in which the mass point is at rest. We can then regard $m_{0} / \sqrt{1-\beta^{2}}$ as the mass when the particle has a velocity relative to the observer.

The law of motion becomes, then,

$$
\begin{equation*}
F=\frac{d p}{d t}=\frac{d(m v)}{d t}=\frac{d\left(\frac{m_{0} v}{\sqrt{1-\beta^{2}}}\right)}{d t} \tag{3.20}
\end{equation*}
$$

By integrating along a path s and defining the change in potential energy as

$$
\mathrm{U}_{\mathrm{B}}-\mathrm{U}_{\mathrm{A}}=-\int \mathrm{F} \cdot \mathrm{~d} \mathrm{~s}
$$

We find that the total energy W is a constant of the motion. The proof of this statement is left to the problems.

The expression for the total energy W implies that there is a "rest" energy $m_{0} c^{2}$: even when the particle is at rest. Ample proof of the reality of this rest energy has been given of late, and this prediction of rest energy is one of the great triumphs of relativity theory. For the purposes of this course we shall define the kinetic energy as the energy due to the motion of the particle and this is

$$
\begin{equation*}
\text { X.E. }=m c^{2}-m_{o} c^{2}=m_{o} c^{2}\left(\frac{1}{\sqrt{1-\beta^{2}}}-1\right) \tag{3.21}
\end{equation*}
$$

It is obvious that the expression for momentum reduces to its classical value when $v \ll c$. That the kinetic energy also reduces to its classical value can be seen by expanding the term in parentheses in eq. (3.21) by means of the binomial theorm, 1.e.,

$$
B E=m_{0} c^{2}\left(1+\frac{1}{2} \frac{d^{2}}{c^{2}}+\frac{3}{6} \frac{v^{4}}{c^{4}} \ldots \ldots\right.
$$

neglecting powers of $\underset{c}{\mathcal{L}}$ greater than the second, this becomes,

$$
K E \approx m_{0} c^{2}\left(\frac{1}{2} \frac{v^{2}}{c^{2}}\right)=\frac{1}{2} m_{0} v^{2}
$$

and hence the relativistic laws give the correct result for law velocities.

A useful relation whose derivation is left to the problems
18:

$$
\begin{equation*}
K E=\sqrt{\left(m_{0} c^{2}\right)^{2}+p^{2} c^{2}}-m_{0} c^{2} \tag{3.22}
\end{equation*}
$$

3.6 Motion in Magnetic Plela

If a chargedparticle moves in a magnetic lela (at relativistic velocities) our equation of motion becomes

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{m_{0} \vec{v}}{\sqrt{1-\beta^{2}}}\right)=q \overrightarrow{\mathbf{v}} \times \vec{B} \tag{3.23}
\end{equation*}
$$

The ∇^{2} term in β^{2} is just a scalar $(\vec{v} \cdot \vec{v})$ and will not be changed in a magnetic field as we can see by taking the dot product of $\overrightarrow{\mathcal{v}}$ with both sides of the above equation,

$$
\vec{v} \cdot\left[\frac{d}{d t}\left(\frac{m_{0} \vec{v}}{\sqrt{1-\beta^{2}}}\right)\right]=q \vec{v} \cdot[\vec{v} \times \vec{B}]
$$

The right hand side $1 s \vec{v} \cdot \vec{F}$, the power or rate of doing work, and it is identically zero. Hence as in the classical case the magnetic field does no work.

Let us assume that initially $\overrightarrow{\text { * }}$ is perpendicular to \vec{B} and using cylindrical coordinates let us set, in eq. (3.23),

$$
\vec{\omega}=\vec{i}_{f}{ }_{\hat{F}}
$$

and

$$
\overrightarrow{\mathrm{B}}=\overrightarrow{1}_{\mathrm{I}_{2}}
$$

Then $\vec{\Psi} \times \vec{B}=\vec{i}_{s}$, B_{c}, and since φ cannot change with the true (3.23) becomes

$$
\frac{m_{0} v_{0}}{\sqrt{1-\beta^{2}}} \frac{d i_{q}}{d t}=q v_{q} B_{z} \overrightarrow{i_{r}}
$$

By eq. (2.10.7)

$$
\frac{d \vec{i}_{Q}}{d t}=\vec{i}_{h} \frac{d \varphi}{d t},
$$

and hence

$$
\frac{m_{0} v_{\phi}}{\sqrt{1-\beta^{2}}}=-g \frac{v_{\varphi}}{d \varphi / d t} B_{2}
$$

Where the negative sign simply means that the force is centripetal and has no other significance. since $\frac{V_{p}}{d \varphi / d t}=R$, the radius of cuxwature we have,

$$
\frac{m_{0} v_{0}}{\sqrt{1-\beta^{2}}}=q 2 B_{z}
$$

or generally for cigcular motion in a magnetic rield

$$
\begin{equation*}
\mathrm{p}=\frac{m_{0} v}{\sqrt{1-B^{2}}}=\mathrm{qRB} \tag{3.24}
\end{equation*}
$$

where p is the magnitude of the momentum.

3.7 General Remarks

It is difficult to give any general rules concerning when relativistic Pomulae must be used, i.e., when the classical laws break down seriousiy. As a sort of general condition it is not too conservative to use relativistic Pommalae whenerer the Kinetic Energy of the particle exceeds 10% of $1 t s$ rest energy, $c_{0} c^{2}$. In cerotain resonance phenomena, for instance the motion of particlesin cyelotrons, 3 or 4% is probably a better rigure.

A numerical example may help to illustrate: The rest energy of an electron is

$$
m_{0} c^{2}=9.11 \times 10^{-31} \times 9 \times 10^{+16}=8.2 \times 10^{-14} \text { joules }
$$

or

$$
m_{0} e^{2}=\frac{8.2 \times 10^{-14}}{1.6 \times 10^{-19}}=.51 \times 10^{6} \text { ev. or } .51 \text { mev. }
$$

Hence for kinetic energies of 51,000 av. we have
$.51 \times 10^{5}=.51 \times 10^{6}\left(\frac{1}{\sqrt{1-\beta^{2}}}-1\right)$ or

$$
\frac{1}{\sqrt{1-\beta^{2}}}=1+0.1
$$

solving $\beta^{2}=.2736$ and

$$
v=.416 c
$$

And hence even at 50 kv the electron has reached 40% of the speed of light, and its mass has increased by 10%. The proton is 1837 times heavier than the electron so its rest energy is about 935 mev.

For any particle

$$
\begin{equation*}
\frac{K E}{m_{0} c^{2}}=\frac{1}{\sqrt{1-\beta^{2}}}-1 \tag{3.25}
\end{equation*}
$$

Fig. 3.1 shows the quantity $\frac{K E}{m_{0} c^{2}}$ plotted as a function of $\beta^{2}=v^{2} / c^{2}$. The classical value is given for the sake of comparison.

Figo 3.1

In order to study the properties of the atomic nucleus, and to provide extremely high energy x-rays for medical and metallographic uses it is recessary to accelerate charged particles to energies in excess of one millon electron volts. Conventional transformer-gectiler type high woltage supplies are difilcult to construct for these potentials because of the insulation problems involved, and furthermore such supplies do not give weyy stable witage. Nowel methods of accelesntion are requirer, therefore,

These methods of acceleration can be divided inco three general types:

1) Direst Voltage
2) Resonance
3) Induction

The very highest energies, ower 100 to 500 Mev are obtained by combination of the latter two methods. In this chapter we shall attempt to describe examples of the more widely used accelerators; in any pent we shall cown those princlples which are fundanental to all particle accelarators.

4. 1 The ELectrostatio Menerator

The most widely used of the drect woltage machimes is the electrostatic or Van de Graaft generator. This type of accelerator, while 1imited to voltages of the oroler of 10 million, 18 pemazkably stable source, and is the most preciac source of high woltage now existant; atabilities of one part in 10^{4} are practicable. With such stability this type of machine is wost useful for the accurat leterminatyon of muclear energy levels, although recentiy, widhapread use as s source of high energy x-rays has been made.

The promedple of operation is quite simple. The high woltage temminal is a suitably shaped metallic shell fror instame s sherical sheli). The high voitage terminal is charged to a high potential by conveying eiectric charge frow ground to the terminal by means of a rapidiy wowirg insulating belt。 Fig. 4.1

Its 3. schematis as much a ganerstor. Whasge is sprayed from coroma pointa, de about 10 KV potentisi. on to the mowing
 अerac psocess. Electrons or positive particles are generated

Inside the high woltage temwinal. and can then be accurerutect down an ewacuated discharge tube and allowed to gtrike the terget material deafred. The power reguticed inulde the high voltege tesmansi can be cxansmitted rechanjcaliy by thay belt to a dynmorostuated inside the teryinnal.

The Tattage to when such a generator ruay be charged Lepents on \&he inaulating quallefes of the supporting cotumin
 VBualiy the discharge tube insulatiori ixmito the woltage. The Fnspletheng propertetea ap both the ooluwn and of the gumporunditnes abrospriere can be enhaneed greatiy py hnoressing the preasure of the gas summonmding the temolnal sno the column. Most moderct electrostatic generetorg are so "preasurized。"

In sif the breatrionn queld strength 133×10^{6} goxtermates

In order to obtain a potential of 10^{6} voits it is necessary to have a sphere whose radius,

$$
a=\frac{V}{E_{B}}=\frac{10^{6}}{3 \times 10^{6}}=\frac{1}{3} \text { meter. }
$$

For stable operation \& radus of about two times this is required.

While the inherent stability of an electrostatic gemerator is quite good, this stability can be greatly improved by the use of "reed-back" systems: 1.e., any small change in the voltage can be detected and used to affect the charging current so that the vardation tend to be suppressed.

The electrostatic generator works equally well for positive or negative, heavy of light particlea.

4.2 The cyelotron

Whan one tries to increase the potential of a direct woitage device beyond 10 milision wolts the insulating requirements become almost insurmountable. If we are to obtain particles of energy much in excess of 10^{7}. .v. then we must resort to some other means of acceleration. Although in 1928 an lementary form of Inear accelerator (see Sec. 4.8) was successfully used, the first important development of reanance acceleration was the cyclotron of E . O . Lawrence. The cyclotron works on the simple principle that the angular welocity of charged particle mowing in a magnetic lield is a constant, and is giver by.

$$
\omega=q / 0 . \mathrm{B}
$$

(ω is not constant, of course, in the relativistic region).
If now we continue to apply an RF field of frequancy

$$
\begin{equation*}
B=\frac{\omega}{2 \pi}=\frac{1}{2 \pi} \frac{g}{\pi} \cdot B \tag{4.1}
\end{equation*}
$$

In phase with the angular wolocity w of the partioles in a magnetic field, whould be able to transform the RF enercy into particle kinetic energy.

This principle may be readily understood by referring to Fig. $4: 2$ which shows horizontal and vertical sections through the accelerating chambers. The electrodes or "Dees" can be thought of as the two halves of a hollow metallic pill box aplit along a diameter. Charged particles, generaily

HORIZONTAL SECTION

VERTIGAL SEGTION

Pig. 4.2
protons or deuterons but sometimes α-particles, are created near the ceater of the electrodes by direct lonization of the gas in the chamber or by auitable ion gun. If now an RF field is applied to the Dees these particles will find them selves acted upon by an electric rorce which will tand to accelerate them. When the particies pass into the hollow dee they will no longer be acted on by the RF field, but the magnetic field will bend them in a circular arc trawerged with angular velocity ω. If the particle is favorably accelerated an its ficst traverasi of the gap, and if $f=\frac{4}{8 \pi}$, it mill again be accelerated on Its second and subsequent rrawersals sand will follow the spiral path shown, gaining energy on cach tratersal of the gap. Particles which start in an untavorable phase will goon be lost.

$$
\text { Since, } 2 \pi f=q / m B=\omega
$$

and

$$
\begin{aligned}
& E E=\frac{1}{2} m v^{2}=\frac{1}{2} \omega^{2} x^{2} \\
& E S=\frac{1}{2} m\left(\frac{9}{m}\right)^{2} B^{2} x^{2}
\end{aligned}
$$

$1: 8$ the kinetic energy at any radius tr. The kinetic energy $^{\circ}$ The is independent of the RF woltage and depends oniy on the size and.intensity of the magnetic fleld. The energy of the emerging particles, at radius r_{0} is then

$$
K E=\frac{1}{2} m\left(\frac{q}{m}\right)^{2} B^{2} x_{0}^{2}
$$

Equations (4.1) and (4.2) are the fundamental relations por the cyclotron. It is apparent that the resonance condition (4.1) cainnot be satisfied at high speeds because of the relativistic increase of mass, and in fact constant field and Prequency cyclotrons are dinated to cinetic energies of about 1.5% of the rest energy $m_{0} c^{2}$, which 1 s about 30 Mev for deuterons. It is obvious from this that cyclotrons have no practical use for accelerating ilght particles (electrons) since the limiting energy would be af the order of 10 Sev.

4.3 Resonant monsumement of e/m

Howerers an interesting application of the cyclotron resonance principle to the precision determination of the electicic charge to mass ratio was made by Dunnington (then a student of Lampence) about 1933. Referming to Fig. 4.3 an cracuated chamer is placed in a magnetic field, perpendicular to the page, 2 shom, Electrons are emitted ryom a source' S and can be coliected at C. The segment $S C$ is insulated from themain can A, and a flxed radio frequency field is applied between them. An mppropriate slit system is prowided as shomn. Elactrons leaving S will be accelerated by the RPileld in crossimg the firsit gap. (Flectrons which emerge during a cecelierating phase will be quickiy $108 t$ and need not com-

$$
\text { Fig. } 4.3
$$

selector since only those elections mich satisfy

$$
\begin{equation*}
\frac{m w_{o}}{b_{0}}=a B \tag{4,3}
\end{equation*}
$$

can arrive at C. How if the applied frequency is initially low so that the electrons move from the first slits to the final slits in less than a period then the decelerating force at the final slit system is less than the accelerating force at the initial slits. Hence, all the electrons of correct vo are collected. If the frequency 18 adjusted so that the time of relight is exactly one period then the decellerating pore is equal to the accelerating force. Further increase of the frequency will then cause a sharp drop in the current ats C.

The condition for this is,

$$
\begin{equation*}
w_{0}=\frac{\left(2 \pi-\theta_{0}\right) s_{0}}{w_{0}}=\left(2 \pi-\theta_{0}\right) r_{0} t_{0} \tag{4,4}
\end{equation*}
$$

Conbiniag (4.3) and (4.4) we have

$$
\frac{e}{i n}=\frac{\left(2 \pi-\theta_{0}\right) R_{0}}{B}
$$

where f_{o} is the frequency at which the sharp drop in current begins. This method is capable of good precision and has probably given the best dynamical walue of e/m which hes been obtained.

4.4 The Pria cyclotron

If we are to accelerate particles to kinetic energies greater than 1 or 2 of their rest anergy by eyclotron principles it is evident from eq. (4.1) that we must vary either B or f in order to make up for the relativistic mass change. At first sight it would aeem proper to shape the magnetic field B so that it is increased as r increased in fust the same manner as the mass increases with radius. This would 1mvoive no changes with time and the cyclotron zould remain a continuously acting accelerator. Unfortunately, for stability reasons, it is necessary to decraase B slightly as in increases. Increasing B with would lead to defocussing in the verticel direction (the direction or wi. Hence, the only possibility is to vary the frequency with time.

Now if the frequency varies with the time, two conditions will be imposed on the cyclotron operation that are not imposed on the operation of the constant frequency cyclotron. Pirstly, only those particles which start from rest when $f=\frac{1}{2 \pi}=\frac{9}{10} B$ willbe accelerated, and consequentiy the cyciotron opefation will not be steady but will be pulsed. Secondiy, the frequency change must just match (inversely) the chamge in mass of the particle. But the time rate of charge of the particle energy, and therefore mass, will depend on the RFfield when the particle crosses the gap between the dees. Thus it would seem that the oscillator frequency must be externaliy synchronized with the rate at which the particle gains mass. Fortunately for eyclotron constructors such is not the case, within iimits, as will

The Principle of Phase Stability

We will endeavor to show that under the action of a frequency-modulated field the particles will tend to remain in the right phase for acceleration to take place and for the relativistic resonance condition to be satisfied,

$$
\begin{equation*}
f=\frac{1}{2 \pi} \frac{e}{m_{0}} B \frac{1}{1+\frac{K_{0} E_{0}}{m_{0} c^{2}}} \tag{4.5}
\end{equation*}
$$

where f and K.E. are the instantaneous values of frequency of field and kinetic energy of the particles

KIF.
Voltage:-

Fig, 4.4
In Fig. 4.4 let us assume that a particle which comes through the accelerating gap at A receives just the right energy to come through the gap a cycle later at A in the identical \qquad

A particle which arrives at the gap a little later than the "correct" particle, phase B, will receive less "kick" from the RF field and will tend to catch up, phase B'. At first this sounds backwards but we must remember that the time required for a particle to make a revolution is equal to,

$$
T=\frac{2 \pi}{\omega}=\frac{2 \pi m B}{q}
$$

and hence the late particles will gain less energy and therefore mass, and will tend to make the next revolution in less time and will tend to catch up to the correct particles. Similarly, particles arriving too soon will receive more kick, will take longer for a revolution, and will tend to be caught by the correct particles, phases C and C '. Hence, the motion on the right side of the positive cycle is stable in phase, and will remain so if the frequency is not varied at too rapid a rate. Particles on the left-hand side of the positive cycle are in an unstable phase and will soon fall out of resonance.

Hence, the beam in an F.M. cyciotron will consist of several groups of particles bunched in phase whtch in turn w111 constitute a pulse. The number of bunches per pulse will depend on the rate of change of frequency with time.

Such an F.M. cyclotron has been in operation at Berkeley for about two years, producing 200 Mev deuterons and $400 \mathrm{Mev} x$-particles for a total frequency change of about 18%. The energy in such a eyciotron $1 s$ given by the relativistic expression,

$$
\begin{equation*}
X E=\sqrt{\left(m_{0} c^{2}\right)^{2}+B^{2} r_{0}^{2} q^{2} c^{2}}-m_{0} c^{2} \tag{4.6}
\end{equation*}
$$

These two equations (4.5) and (4.6) are the fundamental relations for F.M. eyclotrons.

We have already examined the cases of the direct voltage accelerator (olectrostatic machine) and the resonance accelerator (eyclotron). There remains a third class, the induction accelerator, of which the so-called betatron is the principal, if not oniy, member. As its name lmplies the betatron is used as a sougce of high energy electrons (Beta rays) and works on the principle of acceleration by induced electrowive rosce.

Consider an electron which is moving in a circular orbit of radius 5_{a}. If this orbit links magnetic flux which is changing with the time there will be an emp developed which will produce a force on the electron. Furthermore, if the orbit and the flux are both symmetric about a common axis, this force will be directed along the circular path (in the asimuthal direction), and will accelerate the electron 1 w we choose the sense of the rotation to satisfy Lenz' law. The orbit $1 t s e l l$ will remain circular prowiding

$$
\begin{equation*}
\mathrm{p}=\mathrm{B}_{0} \varepsilon_{0} \tag{4.7}
\end{equation*}
$$

where B_{0} is the magnetic fleld at the orbit and must be a function of the time, since p is to increase. The emf developed is

$$
\begin{equation*}
\operatorname{em} t=\frac{d \phi}{d t} \tag{4.8}
\end{equation*}
$$

where \emptyset is the total filux linked by the orbit. This emf will do work on the electrom and the work per revolution is,

$$
\text { Work }=e \frac{d \phi}{d t}
$$

This is the sane as having a corce F acting on the electron and we may write

$$
\text { Work }=e \frac{d \phi}{d t}=F \cdot 2 \pi_{8}
$$

or

$$
\begin{equation*}
F=\frac{e}{2 \pi 0_{0}} \times \frac{d \phi}{d t} \tag{4.9}
\end{equation*}
$$

Since $\vec{F}=\frac{d p}{d t}$, we have

$$
\begin{equation*}
\frac{d p}{d t}=\frac{e}{2 \pi r_{0}} \times \frac{d \phi}{d t} \tag{4,10}
\end{equation*}
$$

integrating, we have,

$$
\begin{equation*}
p-p_{1}=\frac{e}{2 r_{0}}\left(\phi-\phi_{1}\right) \tag{4.11}
\end{equation*}
$$

where p_{1}, F_{1} are the initial values of the momentum and the flux. If wo start the electrons in such a manner that

$$
p_{1}=\frac{\theta}{2 \pi r_{0}} \times \varnothing_{1}
$$

then

$$
\begin{equation*}
p=\frac{0}{2 \pi 0_{0}} \times 0 \tag{4.12}
\end{equation*}
$$

for the duration of the acceleration. Using eq. (4.7) we have

$$
B_{0} \operatorname{cr} r_{0}=\frac{e}{2 \pi r_{0}} \times \phi
$$

or

$$
B_{0}=\frac{\lambda}{2 \pi r_{0}^{2}}=\not
$$

by definition $B_{A V}=\frac{1}{\pi r_{0}^{2}} \times \phi$, and hence,

$$
\begin{equation*}
B_{0}=\frac{1}{2} B_{A V} \tag{4.13}
\end{equation*}
$$

or the field at the orbit must be $1 / 2$ the average field enclosed by the orbit in order that accelerated motion at constant fadius be possible. Equations (4.7), (4.12) and (4.13) may be regarded as the fundamental relations for the betatron, when taken together with the relativistic energy equatho

$$
\text { K.E }=\sqrt{\left(m_{0} c^{2}\right)^{V}+\left(B_{0} e r_{0} c\right)^{2}}-m_{0} c^{2} \quad \quad \text { (4.14) }
$$

For very high energies ($\sim 100 \mathrm{Mev}$) the $\mathrm{m}_{0} c^{2}$ terms in (4.14) may be neglected and we have,

$$
\begin{equation*}
\mathrm{KE}=\mathrm{B}_{\mathrm{o}} \mathrm{Er}_{\mathrm{o}} \mathrm{C} \tag{4.15}
\end{equation*}
$$

and it is seen that the product $B_{0} r_{0}$ is a measure of the kinetic energy attainable. For large energies we want large fields and this iaplies the use of iron cores. Such cores saturate around 16,000 gauss. The energy, however, is determined by B_{o} the orbital walue of B, and this cannot exceed one-half the saturation value. Hence, the betatron is limited in emergy for a given weight of iron) to values corresponding to $4-6,000$ causs.

Actually, closer examination of the fundamental equations allows somethat higher walues. It is actually the time rate of change of the field at the orbit which must be one-half the time rataeof change of the average field. By appropriate D.C. biasing the magnetic field at the orbit may reach higher values, but not the normal saturation values.

Since the magnetic pield is changing with the time laminated iron is necessary to cut down eddy current losses. Even with laminated $180 m$, however, the frequency most widely used is 60 cycles, although, as we shall see, a higher irequency would permit higher energies. The frequency of 60 cycles is a good practical compromise between particle energy and power requirements.

In practice the magnet and a condenser bank from a resonance circuit whose free oscillation frequency is the desired 60 eycles. With the magnet diaconnected the condenser bank is charged from the line or from an auxiliary generator. The conmection to the magnet is then made and almultaneously low energy dectrons are injected into the orbit. The pirst quarter cycle of the discharge is used for acceleration; afterward the stored magnetic energy is returned to the condenser bank. The average power required from the line is then jusst that furmetion, roughly 20%, which is lost due to resistance in the connectors and sondensers, eddy currents and hysteresis.

The acceleration process 18 s long one (in the time scale of the electrons) requiring one-240th of a second. Since the electroms are moving approximately with the speed of light most of the time, they travel about 10^{6} meters or 150,000 revalutions of 1 meter radius, which is the radius of the $G . E .100$ Mew betatron. The eneggy acquired per revolution 18 thus about 600 ev. (Comparing this energy gain per revolution with e $\frac{d \phi}{d t}$ is left to the problems.)

Very many betatrons in the range $2-20$ Mer have been constructed for x-ray use. The G.E. 100 Mev betatron is the largest now operating, although one for the 300 Mev range is under construction at the University of Illinois.

There are, bowever, better ways of achieving high energies. In addition to the high cost and the unfarorable condition imposed by eq. (4.13), there is another very serious Ilmitation to the manimum energy to be obtalned from the betatron. It is well kown that accelerated charges radiate. The afimuthal acceleration is smali (for electrons), but the sentripetal acceleration is about 10^{9} times larger. Theory predicts radiation along the forward dipection of motion of the electrons at a rate which is proportional to the fourth power of the kinetic energy. At energies of the order of 100 Nev this radiation becomes appreciable, and has actually begn observed visually at G.E., but at energies of the order 0 of 500 Mev it becomes limiting. That is, the electrons radiate energy as fast as they recelve it from the induction fiela. The oniy way to make up for this is to wary the magnetic fleid at a faster rate in order to increase the rate or acquisttion of anergy by induction. Such an increase in $\frac{d \%}{d t}$ is impractical for iron magnets but might be practical for an air-core magmet However, as we shall see in Section 4.7 there are better ways over these difficulties.

Pig. 4.5 shows a schematic cross-section of a typical betatron. The air gap is necessary in order to get the propent fleld at the orbit. In addition to the requirement that

$$
\frac{d B_{0}}{d t}=\frac{2}{2} \frac{d B_{A V}}{d t}
$$

there 18 another requirement, for stability reasons; on the rete of change of B with re the orbit, and this will be discussed in the next section.

AIR GAP

$$
\begin{aligned}
K E & =\sqrt{D+\theta_{c}^{2}+B^{2} r_{c}^{2}} \\
& \simeq B_{0} r_{0} C_{c}
\end{aligned}
$$

Section through Betatron

Fig. 4.5

4.6 Stability Comsiderations in Magnetic Accelerators

We have seen that the peinciple of phase stability is necessary for the successeul operation of resonant mag. netic accelecrators if the Rif ifeld changes with time. in the magnetic fleld were to change with the time with the RF field constant (the synchrotron) or if both fields change with the time (the M synchrotron), this principle is atill vaild and is essential for operation. Howewer, we harre not yet considered stability requifements to keep the particles at the right redius and to prevent them from colliding with the top and bottom of the accelerating chamber, i.e., rand z stability. The following digcussion is valid for all mag = netic accelerators.

Let us assume that the field 18 not quite uniform and that besides its usual z component B_{2}, it has as well an r component B_{r}. Then the equations of motion for the r and z directions are. Por a negatively charged particie,

$$
\left.\begin{array}{l}
\frac{d^{2} p}{d t^{2}}=\left(\frac{d \theta}{d t}\right)^{2}=-\frac{e}{m} B_{z} \cdot x \cdot \frac{d \theta}{d t} \tag{4.16}\\
\frac{d^{2} z}{d t^{2}}=\frac{B_{1}}{n} \cdot x \cdot \frac{d \theta}{d t}
\end{array}\right\}
$$

The above equations are based on the assumption that the field is cylindrically symmetric, that $B_{\phi}=0$, and thet time variations in B can be neglected since these are very slow. That is, we wish to investigate the variations of r and z from their equilibrium values, r_{0} and 0 , respectively, in short times. In this approximation we may consider the kinetic energy is constant so that

$$
\begin{equation*}
\left(\frac{d r}{d t}\right)^{2}+r^{2}\left(\frac{d \theta}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}=v_{0}^{2} \tag{4,17}
\end{equation*}
$$

wherely is constant.
The equilibrium solution of eqs. (4.16) is then, fom $r=r_{0}, z=0, B_{r}=0$

$$
\begin{equation*}
\frac{d \theta}{d t}=\omega_{0}=\frac{e}{m} B_{z}, \quad \frac{d z}{d t}=0, \quad \frac{d r}{d t}=0 \tag{4.18}
\end{equation*}
$$

$\sin v_{0}=r_{0} \omega_{0}$
We wish to investigate small departures from the equilibrium solutions. Let us set

$$
\begin{equation*}
r=r_{0}+r^{1}, \quad \frac{d \theta}{d t}=\omega_{0}+\omega^{4}, \quad z=z \tag{4.19}
\end{equation*}
$$

where $x^{\prime}, \omega^{\prime}$ and z are small quantities.
Let us assume

$$
\begin{equation*}
B_{z}=B_{0}\left(\frac{r}{r_{0}}\right)^{-n} \text {, then } \frac{\partial B_{z}}{\partial r}=-\frac{n}{r} B_{0} \tag{4.20}
\end{equation*}
$$

By Tayiox'a expansion,

$$
B_{z}=\left(B_{z}\right)_{r=F_{0}}+\left(\frac{\partial B_{i}}{\partial I_{0}}\right)_{x=x_{0}}+x^{2}+\cdots \approx B_{0}-\frac{n x^{0}}{r_{0}} \cdot B_{0}(4.21)
$$

and

$$
B_{r}=\frac{\partial B_{r}}{d^{2}}{ }_{r=E_{0}, z=0}=t
$$

by Maxwell's aq. (3.4), we have

$$
\begin{equation*}
\frac{\partial B_{r}}{\partial z}=\frac{\partial B_{z}}{\partial r} \tag{4.22}
\end{equation*}
$$

and hence,

$$
\begin{equation*}
B_{r} \approx\left(\frac{\partial B_{z}}{\partial r}\right)_{r=r_{0}, \frac{1}{z}=0} \cdot z=-\frac{n z}{r_{0}} \cdot B_{0} \tag{4,23}
\end{equation*}
$$

Let us now examine the energy relation (4.17) and substitute our assured solutions (15.19) In it. We have

* Actually we must first transform eq. (3.4) to cylindrical coordinates. Then neglecting real current and a $E_{g} d t$, which 18 consistent with our present approximation, we have, $\frac{\partial H_{F}}{\partial z}=\frac{\partial H_{z}}{\partial w_{2}}$.from which (4.21) Co110ws.

$$
\left[\frac{d}{d t}\left(r_{0}+r^{\prime}\right)\right]^{2}+\left(x_{0}+s^{\prime \prime}\right)^{2}\left(\omega_{0}+\omega^{1}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}=v_{0}^{2}
$$

but

$$
\frac{d r_{0}}{d t}=0, \text { and }\left(\frac{d x}{d t}\right)^{2}+r_{0}^{2} \omega_{0}^{2}+\left(\frac{d x}{d t}\right)^{2}=v_{0}^{2}
$$

and hence, we have
ar

$$
x_{0} \omega^{\prime}+r^{\prime \prime} \omega_{0}=0
$$

$$
\begin{equation*}
\omega^{\prime}=-\frac{x_{0}}{v_{0}} \omega_{0} \tag{4.24}
\end{equation*}
$$

when we have neglected products of the mall quantities, F^{*} and ω^{\prime}.

Let use now substitute our expressions (4.19), (4.21),
(4.23) and $(4,24)$ in the equations of motion (4.26). We have for the motion,

$$
\frac{d^{2} x^{r}}{d t^{2}}=\left(r_{0}+r^{1}\right)\left(\omega_{0}+\omega^{1}\right)^{2} \cdot \frac{s}{m}\left(B_{0}-\frac{m r^{2}}{r_{0}} \cdot B_{0}\right)\left(r_{0}+r^{1}\right)\left(\omega_{0}+\omega\right)
$$

remembering that $\frac{\theta}{m} B_{0}=\omega_{0}$, and neglecting products of small quantities this expression becomes,

$$
\frac{d^{2} \xi^{2}}{d t^{2}}=\xi_{0} \omega_{0}\left(\omega^{\prime}+n \omega_{0} \cdot \frac{r^{1}}{E_{0}}\right)
$$

Using equation (15.2^{4}), we have

$$
\left(D^{2}+(1-h) w^{2}\right) r^{\prime}=0
$$

$$
\frac{d^{2} z^{\prime \prime}}{d t^{2}}+(1-n) \omega_{0}^{2}=0 \quad b= \pm \sqrt{(1-n) \omega_{0}} \quad(4.25)
$$

And hence the motion is stable if $n<2$.
Let us now examine the equation for s.

$$
\frac{d^{2} z}{d t^{2}}=\frac{\theta}{\pi n}\left(-\frac{n z}{s_{0}} B_{0}\right)\left(x_{0}+r^{i}\right)\left(\omega_{0}+\omega^{\prime}\right)=-\frac{n z}{r_{0}} \omega_{0}\left(r_{0}+w^{x}\right)\left(\omega_{0}+\omega^{\prime}\right)
$$

which becomes on neglecting products of small quantities (remember z itself is many),

$$
\begin{equation*}
\frac{a^{2} z}{c t^{2}}+n w_{0}^{2} z=0 \tag{4,26}
\end{equation*}
$$

sna hence for stable zotion we mut have $n>0$.

$$
\begin{gathered}
\text { Taing eqs. }(4.25) \text { and }(4.26) \text { together me require that } \\
0<n<1
\end{gathered}
$$

It 1 customary to take about .75 for betatrons and syminotrons. This tends to reduce the verticel oselilations, at the expense of the radial osciliations to bo sure, but the yectical direction is the direction of increasing ase gap. 4.7 The Synchrotron

The synchrotcon is primerily a type of resonance accelerator in which the migetic field is waried with the time. In the ordinary (electron) symchrotron the particles wove in a circular orbic of radius w_{o}, and are accelerated by an R. field. Let us assume that 2 Mev electrons are infected inco such an orbit. The electrons are already moving Wh a velocity of . 986 so that the acceleration, if you please, process takes place at almost comstant velocity, i.e., the mass and energy increase although the velocity increasea but slighty. If woply an R. F. pield across a patr of electrodes, through which the electrons pass, the clectrons will gtay in resonsme with the field prowiding.

$$
\begin{equation*}
f=\frac{v}{2 \pi r_{0}}=\frac{c}{2 \pi \pi_{0}} \tag{4.27}
\end{equation*}
$$

In order for the electrons to remain in a atable orblt of radiue 5 , we must have

$$
\begin{equation*}
\omega_{0}=\frac{0}{F_{0}}=\frac{c}{x_{0}}=\frac{e}{R_{B}} B_{0}=\hat{c} \pi \tag{4,28}
\end{equation*}
$$

Since increases with the time we must have Bo 1aoreasing with the time 2lso.

The usuat type of accelereting chamber for a synchrotron

Fig. 4.6
The chamber consists of a hollow metal doughnut with a gap acrose which the RF is applied. Except for the time of passage across the gap the electrons are moving in electricfield free space. Since the magnetic field must increase with the time, just as in the betatron, the acceleration process is slow, and only moderate RF voltages are required of the order of 5,000 volts for a 300 Mev machine. While there is always some betatron action, i.e., induction acceleration, most of the acceleration comes from the RF field. The synchrotron has three distinct advantages over the betatron;

1) The relation $B_{0}=\frac{1}{2} B_{A V}$ no longer is required.
2) No field is required inside the orbit, so the iron may be used economically.
3) Radiation by the electrons and the concurrent loss

$$
\begin{aligned}
& \text { of energy can be made up for by increasing the } \\
& \mathrm{F}, \mathrm{~F} \text {. voltage. }
\end{aligned}
$$

In practice all synchrotrons now operating and all but one now building atart with betatron action, since the time varying magnetic field is present. When the electrons have attained relativistic energies, about 2 Mev , the field inside the orbit is made to saturate and the RF field is tumed on. Since electron synchrotrons are used only for energies very much greater than $m_{0} c^{2}$ the final energy is very neariy given by,

$$
\text { K.E. } \approx B_{0} r_{0} e c
$$

where B_{0} is the final value of the orbital field, and values very near to the saturation value for 1 ron can be used.

Acoording to eq. (4.28) the magnetic field must change at the same rate as the mass changes. No device is required to insure this, however, since the principle of phase stability applies.

Although losses from radiation are much less important In the synchrotron than in the betatron, navertheless the acceleration process cannot be carried out indefinitely. At 10^{3} Mey the radiation losses are such that 70 Kev of RF energy must be added per revolution to compensate. Hence, RFinsulation provides the practicsl limitation in energy, which is probably about three times as great as that in the betatron.

In order to accelerate heavy particles to energies equal to their rest energy (935 Hev for the proton) or greater, be must go to machines of considerable size, and considerations of cost become extremely important. The FW cyclotron in polnct ple would be quite warkable in the 1000 Mew range, but in point of fact it is much more expensive than a synchrotron. This is because the eyclotron needs a high magnetic fleld over the en tire area enclosed by the final orbit while the symonrotron needs a high magnetic field only at the orbit.

Now the particles in all magnetically operated machines In the very high energy region have energies approaching $B_{0} r_{0} e A_{0}$ is ilmited to something arounc 15,000 gauss ao for practical purposes the energy is proportional to the radius. This means that if we double the radius of a cyclotron to get double the energy we must multiply the volume, the mass avd hence the cost by almost eight times. In the symohmotron, however, this latter factor is between two and four.

In order to use the synchrotron with heawy particles we must change the frequency since

$$
f=\frac{v}{2 \pi x}
$$

and v will not be effectively constant until energies, for protons of the order of 4000 Mey are attalned.

With both the magnetic eleld and the erequency chamging with the time, we cannot rely on the princsple of phase stabl11ty alone, but we must control the rate of frequency change ao that it is properly adjusted to the rate of change of B_{0}. The particles will then settle in stable orbits and stable phases. 4.2 The Linear Acceleraton

The inear Accelerator is m resonance device in whioh the accelerating foree is provided by an RF field traveling down a wave gulde. We must see then that be felocity of the particles is equal to the phase vellocity of the electromagnetic wave. The principle of phase stability will permit the partlales to extract energy from the wave, but careful attention must be given to focussing problems.

A mathematical discussion of the Innear accelerator is beyond the scope of these notes.

Space Charge
$C h 10-$ Frank
Ch 7 - Mas
$c_{a}>-m+s$

GHAPTER FIVE. ATOMIC STRUCTURE

Ref. M. and S. Chap. IX
One of the most potent bits of evidence that atoms possess an intemal structure is the fact that, under proper conditions, they emit radiation in the form of spectrum lines. The problem of atomic structure is to devise a model which, on the basis of known physical laws, will account for these lines. At first sight on the basis of classical mechanics, we might suppose that if an atom emits a spectrum line of frequency f then it must contain within it an oscillator of this same frequency. But we soon run into difficulties with such a theory, as is now well known.

The essential feature of atomic spectra, which was early discovered in a purely empirical manner, is that it is possible to discover a series of numbers or so-called spectral terms, such that by taking differences between these numbers we arrive at the frequencies of this observed spectral lines. The number of such spectral terms required to explain a given spectrum 1s, in general, much smaller than the number of observed spectrum lines. We shail not here go into this matter in any detail, such as the way these spectral terms fall into groups, with certain selection rules to say which terms do or do not combine, but for the present content ourselves with the existence of these spectral terms. The problem of atomic spectra will therefore be solved if we can devise a model which will account for the spectral terms and give a correct set of selection rules stating how these terms are to be combined.

Various pieces of evidence, notably Rutherfors's experiments on the angular distribution of α-particies scattered by atome, point to the fact that an atom consists of a small, massive core carrying a positive charge Ze, surrounded by Z electrons. These electrons are thus acted on by very strong electrostatic forces of attraction by the nucleus and in order to prevent collapse of such an atom it is necessary to assume that the electrons are in motion. This leads to a fundamental difficulty since these orbital electrons will be undergoing
acceleration; we have seen that according to classical electromagnetic theory a charged particle moving with acceleration will radiate energy. As the electron radiates, its energy will change and so too will its frequency of motion. Such an atom should therefore emit a continuous spectrum, contrary to obserwation. We must, therefore, postulate that when an electron is bound to an atom it does not, in general, radiate energy even though it is moving with acceleration.

More generally, Bohr in 1913 laid down the following fundamental postulates.

1. Atoms exist in "stationary states", without radiating。
2. When an atom changes from one stationary state W_{i} to another ${ }_{2}$ of lower (higher) energy it emits (absorbs) a quantum of energy, i.e., electromagnetic radiation, of frequency f where

The constant h is the one introduced by Planck some years before this to explain the spectrum of a black body, and successfully used by Einstein to account for the photoelectric effect. These postulates of Bohr are extremely important. Atomic theories differ in the way energy states are calculated, or in the atom model used, but Bohr's postulates remain unaltered.

In order to calculate the energy states, W_{1} it is necessary to set up an atom model and make one additional postulate which introduces the constant h, $1 . e .$, quantizes the energy states. In the Bohr theory it is the angular momentum of the electron which is quantized. We (arbitrarily) say that the angular momentum is an integral multiple of $\mathrm{h} / 2 \pi$ and will attempt to make this choice more plausible latter. As an example let us consider the simpiest case of a single electron in the field of a nucleus of charge $+2 e$ Fos simplicity we will consider only the case of circular orbits. The electrostatic force between particles is given by

$$
\begin{equation*}
F=-\frac{2 \dot{e}^{2}}{4 \pi \varepsilon_{0} m^{2}} \tag{5.02}
\end{equation*}
$$

and the potential energy is

$$
\begin{equation*}
V=-\frac{z e^{2}}{4 \pi \varepsilon_{0}} \tag{5.03}
\end{equation*}
$$

We have already seen that givavitational forces can be neglected in comparison with electrostatic ones in problems such as this. Since the nucleus is very much more massive than the electron ($M \sim 1840 \mathrm{Zm}$) we can assume the electrom to revalve about a fixed center (infinite nuclear mass). Then we shall have

$$
\begin{equation*}
F=-\frac{m v^{2}}{r}=-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r^{2}} \tag{5.04}
\end{equation*}
$$

where V is the orbital veloeity of the electron. But

$$
\begin{align*}
W & =\frac{1}{2} m v^{2}+V \\
& =\frac{1}{2} m v^{2}-\frac{z e^{2}}{4 \pi \varepsilon_{0}} \tag{5.05}
\end{align*}
$$

Note that from Eqs. (5.04) and (5.05) we have

$$
\begin{equation*}
\frac{1}{2} m v^{2}=\frac{z e^{2}}{8 \pi \varepsilon_{0}}=-\frac{1}{2} v \tag{5.06}
\end{equation*}
$$

so

$$
\begin{equation*}
\bar{W}=-\frac{1}{2} m v^{2}=\frac{1}{2} v=-\frac{z e^{2}}{8 \pi \varepsilon_{0}} \tag{5.07}
\end{equation*}
$$

The minus sign in Eqs. (5.07) means that work must be done to remove the electron. The angular momentum, mvz, is to be quantized, so

$$
\begin{equation*}
m v r=n h / 2 \pi \tag{5.08}
\end{equation*}
$$

From (5.04) and (5.08) we get

$$
\begin{equation*}
r=\frac{Z e^{2}}{4 \pi \varepsilon_{0} m v^{2}}=\frac{n h}{2 \pi m v} \tag{5.09}
\end{equation*}
$$

whence

$$
\begin{equation*}
\nabla=\frac{z e^{2}}{2 \varepsilon_{0}^{\pi h}} \tag{5.10}
\end{equation*}
$$

$$
\begin{equation*}
r^{n}=\frac{\varepsilon_{0} n^{2} h^{3}}{\pi m z e^{2}}=n^{2} r_{1} \tag{5.11}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{n}=-\frac{m z^{2} e^{4}}{8 \varepsilon_{0}^{2} n^{2} n^{2}} \tag{5.12}
\end{equation*}
$$

We have thus obtained the energy states, W for a hydrogenic atom, 1.e., hydrogen $(z=1)$; ionized helium $(z=2)$; doubly fonized lithium ($Z=3$), etc. The lowest energy ctate $1 s$ given by $n=1$, and this is the normal, or ground state, of the atoms. The frequency of the radiation emitted in a transition from a state $E_{n_{1}}$ to a state $E_{n_{2}}\left(n_{1}>n_{2}\right)$ is thus given by

$$
\begin{equation*}
\dot{f}_{12}=\frac{1}{h}\left(E_{n_{1}}-E_{n_{2}}\right)=\frac{m z^{2} e^{4}}{8 \varepsilon_{0}^{2} h^{3}}\left(\frac{1}{n_{2}^{2}}-\frac{1}{n_{1}^{2}}\right) \tag{5.13}
\end{equation*}
$$

It is customary to measure frequencies in wave numbers (reciprocal wavelengths) and when so measured we shall denote them by $\tilde{\mathrm{f}}$. Thus

$$
\begin{equation*}
\tilde{f}=\frac{1}{\lambda}=\frac{f}{c} \tag{5.14}
\end{equation*}
$$

so that $1 f$ we put

$$
\begin{equation*}
R=\frac{m e^{4}}{8 \varepsilon_{0}^{2} h^{3} c} \tag{5.15}
\end{equation*}
$$

we shall have, for the case of hydrogen $(z=1)$

$$
\begin{equation*}
\tilde{\tilde{r}}=2^{2} R\left(\frac{1}{n_{2}^{2}}-\frac{1}{n_{1}^{2}}\right) \tag{5.16}
\end{equation*}
$$

Now just exactly this formula with $n_{2}=2$ and $n_{1}=3,4, \ldots$ had been found empirically by Balmer to fit the lines in the someallied Balmer series in the spectrum of atomic hydrogen. Balmer found that the constant R (the Rydberg constant) had the value

$$
\begin{equation*}
\mathrm{R}_{\mathrm{H}}=10,967,758 \mathrm{~m}^{-1} \tag{5.17}
\end{equation*}
$$

If we put the usual values of the constant in Eq. (5.15) we obtain

$$
\begin{align*}
R & =\frac{9.107 \times 10^{-31} \times\left(1.601 \times 10^{-19}\right)^{4}}{8 \times\left(8.85 \times 10^{-12}\right)^{2}\left(6.610 \times 10^{-34}\right)^{3} \times 2.9978 \times 10^{8}} \\
& =1.0974 \times 10^{7} \mathrm{~m}^{-1} \tag{5.18}
\end{align*}
$$

which is a remarkable argument. The corresponding spectrum of ionized hellum $(z=2)$ would be given by:

$$
\begin{equation*}
\tilde{f}=4 R\left(\frac{1}{1^{2}}-\frac{1}{n^{2}}\right) \quad n=2,3,4, \ldots \tag{5.19}
\end{equation*}
$$

Empirically we find

$$
\begin{equation*}
R_{H e}=10,972,226 \mathrm{~m}^{-1} \tag{5.20}
\end{equation*}
$$

which is slightiy greater than R_{H}. This, too, is understandable when we recall that we asaumed the atomic nucleus to be fixed. Actually, both nucleus and electron move about their common center of mass and the effect of this is to replace in in all of the above equations by

$$
\begin{equation*}
m^{\prime}=\frac{m M}{m+m} \tag{5.21}
\end{equation*}
$$

where m^{\prime} is the reduced mass of the electronand depends on M. With this refinement, theory and experiment are in almost perfect agreement.

Equation (5.11) tells us the "size" of a hydrogenic atom. For hydrogen in the ground state, $1 . e, \quad Z=1$ and $n=1$ we get

$$
\begin{align*}
r=\frac{\varepsilon_{0} h^{2}}{\pi m e^{2}} & =\frac{8.85 \times 10^{-12} \times\left(6.61 \times 10^{-34}\right)^{2}}{\pi \times 9.1 \times 10^{-31} \times\left(1.60 \times 10^{-19}\right)^{2}} \\
& =5.27 \times 10^{-11} \mathrm{~m}=.527 \mathrm{~A} \tag{5.22}
\end{align*}
$$

as the radius of the first Bohr orbit in hydrogen. Thus a nomal hydrogen atom has a dlameter of about one angstrom.

Returning to Eq. (5.26) we see that a number of other spectral series are possible. Some of these are

Lyman Series
$n_{2}=1 ; n_{1}=2,3,4, \ldots$
Paschen Series
$n_{2}=3 ; n_{1}=4,5,6, \ldots$
Bracket Series $n_{2}=4 ; n_{1}=5,6,7, \ldots$

Note that for each of these series the frequencies of successive ines in the series come closer and closer together as n_{1} increases, until we reach the series limit corresponding to $n_{l}=\infty$. It is convenient to represent the term values, or energy levels, of an energy level diagram; Fig. (5.1)。

Pig. 5.1

The numbers on the left side of the diaglam represent the term values in wave number units, and on the light the corresponding energy is given in electron volts measured from the ground state. The quantum number, n, refers to the correspondin orbit. The emission of a spectrum line then corresponds to a cransition downard from one energy level to another. Eog. the $H \propto$ line of the Balmer series comesponds to the transition from the state $n=3,-1,218,600 m^{\text {ll }}(-1.508$ ew) to the acate $n=2$ $-2,742,000 \mathrm{~m}^{-1}(-3.394 \mathrm{ev})$ and the wave number cif this line is then $1,523,400 \mathrm{~m}^{-1}(1.886 \mathrm{ev})$. The wevelength 1 s given by $\left(1 \mathrm{~A}=10^{-10} \mathrm{~m}\right)$.

$$
\begin{equation*}
\lambda=\frac{3}{\widetilde{\mathrm{E}}}=6.583 \times 10^{-7} \mathrm{~m}=6583 \mathrm{~A} \tag{5.23}
\end{equation*}
$$

Other lines in the various serles of the hydrocla spectrum are indicated in Fig. 5.1.

The treatment of the hydrogen atom given bowe is overiy simplified, but it does bring out the fundamentel soundneas of Bohris theory. Among the aspects neg ected is the possibility of other than circuiar orbits. The gnerel orill of a particie of negative emergy in an inverse square attract:re field is an ellipse. It was \$hown by Sommerield hat essentsinlly the same energy levels occur for elliptic orbits unless the relativistic variation of the mass of the electro is taken ilto account. If this is done the energy levels are split, giviv; rist to a "fine structure". We will rot go further into this subject at the present time.

The Bohr theory has many weaknesses. We astume that the laws of classical mechanics hold for an electron int one of its stationary states, but we subject these same laws to the arbitrary postulate of quantization of the angular momeri um. Although the theory can be made to give a satisfacton? explanation of the spectra of atoms with a single radiating elestron, and thus includes in addition to the hydrogenic spectra, the spectra of the alkalis Li, Na, K, etc. where. the single vala ce electron is more or less loosely bound and on the "outside" ci the atom, it fails completely for the case of the recori most rimple atom
namely helium, where it definitely predicts incorrect values for the energy levels. The resolution of this difficulty requires a complete revision of the laws of atom mechanics into the formal structure of quantum mechanics, or wavemechanics. We shall not go into this matter other than to point out that a wave-mechanical treatment leads to the conclusion that a particle of momentum p has associated with it a wavelength Λ given by

$$
\begin{equation*}
\Lambda=\frac{h}{p} \tag{5.24}
\end{equation*}
$$

This implies that a beam of electrons, for example, can be diffracted by a grating or crystal in the same way that light or x-rays can. Such indaed is the case. It is interesting, though perhaps not too fundamental, to note that the Bohr quantum condition for a circular orbit, Eq. (5.08), can be written in the form:

$$
\begin{equation*}
2 \pi x=\frac{n h}{m v}=n \Lambda \tag{5.25}
\end{equation*}
$$

so that the electron forms a standing wave around the orbit.
A more detriled treatment of atom mechanics would lead us to the conclusion that we must assign not one but four quantum numbers to each orbital electron. The number n used above is the principal quantum number, and is unrestricted as to (positive) value. The other numbers, which we shall not discuss here, do not have such freedom; but the point of $1 \mathrm{~m}-$ portance. is that no two electrons in a given atom can have identical sets of quantum numbers. This is known as the "Pauli's Exclusion Principle" and is of great importance in understanding the electronic structure of the elements. As a consequence of this principle it turns out that the electrons form a series of groups , or shells, about the atomic nucleus. The innermost shell can contain only two electrons, each with $n=1$ and with spin quantum numbers (1.e., intrinsic angular momentum) of opposite sign. The next shell, $(n=2)$ can contain 8 electrons; the next $(n=3) 18$ electrons, and so on. In addition, the electrons in
a shell of given n fall into sub-groups. If the outer shell of an atom is filled with electrons then the atom is chemically inert (the noble gases); 1.e., it is difficult to remove an electron from a closed shell. This formation of closed shells leads to a "periodicity" in atomic properties, so that the elements can be arranged in the familiar periodic table. Since we are not primarily concerned with atomic structure in this course we shall not go into further detail in the subject. The important facts of concern to us are the existence of fixed energy states characteristic of each type of atom, and selection rules which state the possibility or impossibility of transitions between pairs of these states. The case of the hydrogenic atom treated above does not involve any special selectinn rules unless fine structure is taken into account, as spectrum lines occur corresponding to transitions between all pairs $n_{2} \rightarrow n_{1}$, with $n_{2}>n_{1}$.

For more complicated spectra certain transitions are forbidden, both in emission and absorption. In order for a transition from a higher to a lower state to occur the atom must first be raised from the ground state to an "excited" energy state, or perhaps even ionized by entirely removing the outer electron. The process of excitation or ionization can be accomplished in a number of ways. By electron impact (inelastic collision); by impact with another atom or ion; by absorption of radiation. We shall discuss each of these processes briefly.

When an electron (or other particle) collides with an atom in a gas the colilsion is in general one of two kinds. An elastic collision is one in which the kinetic energy of the system atomoplus-electron is conserved. We must of course conserve momentum, in accordance with Newton's laws: The atom is In the same energy state after the collision as it was before. Its kinetic energy will in general be different and so, too, w111 that of the electron, but the sum 18 unaltered. Such collisions tell us nothing about atomic energy states. In an inelastic collision kinetic energy is not conserved. Inelastic collisions are of two types. In a "collision of the first kind"
kinetic energy of the system is absorbed by the atom, which becomes either excited, i.e., raised to a higher energy state, or perhaps ionized, so that it loses its most loosely bound electron. The relation expressing conservation of energy becomes

$$
(\text { K.E. })_{\text {Atom }}+(\text { K.E. })_{\text {elec. }} \rightarrow\left(\text { K.E. }^{(}\right)_{\text {Atom }}+(\text { K.E. })_{\text {elec. }}^{l}+\Delta E_{\text {atom }} \text { (5.26) }
$$

where ΔE is the increase in internal energy of the atom. In a "collision of the second kind" an already excited atom undergoes a collision with an electron, or other particles. As a result of this collision the atom drops to a lower energy state and the kinetic energy of the system is increased by the lost energy of excitation. Momentum is of course conserved, and Eq. (5.26) applies, if the arrow is reversed. Any collision in which an excited atom loses its energy of excitation without the emission of radiation is, in fact, called a collision of the second kind.

A study of energy losses suffered by electrons undergoing inelastic collisions gives us information regarding atomic energy states. For a perfectiy elastic collision the energy of the scattered electron is almost the sane as that of an incident electron. This is because the mass of the atom is so much greater than that of the electron. If energy, as well as momentum, is conserved in a collision the fraction of the electron's energy transferred to the atom is equal to the mass ratio of electron to atom, neglecting the initial thermal energy of the atom which is quite small. Thus, if the energy difference of an electron before and after an atomic collision is measured the difference must correspond closely to a difference in energy states. This method of measuring atomic energy states directly was demonstrated by Franck and Hertz in a classical experiment carried out with mercury wapor in 1913 shortiy after Bohr's first theory was developed. They found that if a mercury atom and an electron undergo a collision, the collision is alvays elastic as long as the energy of the impinging electron is less than 4.9 ev . But above this value some of the electrons lost 4.9 ev of energy which was taken up

as energy of excitation of the mercury atom. That this is so is shown by the fact that a Ine of the mercury spectrum is excited at the same time. This is caused by the excited mercury atoms dropping back to the ground state with the emission of a quantum of energy of $4.9 \mathrm{ev}(2537 \mathrm{~A})$. The method of Pranck and Hertz was refined by Franck and Einsporn, and their apparatus is shown schematically in Fig. 5.2. Electrons emitted from the filament P are accelerated through the variable

Apparatus for Measuring Excitation Potentials

Fig. 5.2
potential difference ∇_{A} between F and the grid G_{1}. A small potential difference $V_{d}(\sim .1$ volt) is applied between the grids G_{1} and G_{2}, so that in this region where most of the collisions occur all the colliding electrons have essentially the same energy. A small retarding potential V_{R} of about .5 volts is applied between the grid σ_{2} and the collecting plate P, the current to which is measured by the galvanometer Ga, for various values of V_{A}. The filament F operates below saturation so that, in the absence of collisions the current to P will increase with V_{A}. But when ∇_{A} fust exceeds a critical potential
corresponding to an emergy transition in an atom of the gas in the tube and if such an electron makes an inelastic collision, the electron will lose almost all of its energy and so will not be collected by P and there will be a sharp drop in the current to P whenever a critical potential is reached. The current will not increase again until V_{A} exceeds the critical potential plus the retarding potential. The apparatus shown in Fig. 5.2 is capable of resolving critical potentials which are very close together. The table below lists some of the critical potentials for creury vapour. The corresponding terms values $\tilde{f}=\frac{e}{h c} \mathrm{~V} ;$ and $\frac{e}{h c}=8.079 \times 10^{5} \mathrm{~m}^{-1}$ volt ${ }^{-1}$] are also Iisted; these are taken from spectroscopic data and so are much more accurate. Note that critical potentials are measured above the ground state, term values below the ionization potential.

$\frac{$| eritiead potential |
| :---: |
| $(\text { volts })$ |}{10.39} | 8.86 |
| :---: |
| 8.61 |
| 8.53 |
| 8.38 |
| 7.93 |
| 7.73 |
| 6.71 |
| 5.46 |
| 4.88 |
| 4.66 |
| 0 |

$\frac{\left.\left.t_{m}\right)^{-1}\right)}{0}$	
$1,238,610$	
$1,451,910$	
$1,529,450$	
$1,631,660$	
$2,025,310$	
$2,183,080$	
$3,011,280$	
$4,013,830$	metastable
$4,476,890$	
$4,653,620$	metastable potential
$8,417,850$	ground state

It will be seen from the table on page 90 that a rore careful investigation with higher resolution diacloges the lowest exoftation potential for Hocoury vapous to be 4.66 wolts, whereas no line in the mercury spectrum corgesponde to a transition from this state to the ground atate. Ioc. a transition from this etate to the ground state is "Eorbidden" by the selection rules. Such a state 18 csiled "metastable". A inetastable state Is a state from which the atom exnok spontaneously drop to a lower state with the emission of padia tion. The question them arises as to how an atom, once excitch to a metastable state, can ever retum to nomma, and we see that this can only be done by means of a collision of the second kind, or else by further excitation, pollowec by an allowed transition to lower state. The Iffetime of a metastable state is thus much longer than that of an ordinary exGited state and further, depends pather strongly on the pres = sure (mean free path). Ondinarily, an excited atom returne to its usual etate, with the emission of radiation, in about 10^{-9} to 10^{-7} seconds. The 110 the of a matastable atate under usual arcumstances is about 10^{-4} to 10^{-3} seconds, Eince the stom must wait for a collision in order to be able to change純 entrgy of excitation.

Suppose a mercury atom to have been excited to the state or 4.88 evergy. All it can do is retum to the ground state, with the enission of a quantum of energy of this amount, and a single spectrum line of frequency f, ore wavelength λ, given by

$$
\begin{equation*}
\lambda=\frac{C}{\tau^{2}}=\frac{1}{\tilde{1}^{2}}=2537 A \tag{5.26}
\end{equation*}
$$

18 emitted. That is, we can excite this single line of the mescury spectrum by bombanding mercury papour with a beam of electrons of emergy greater than 4.9 at but 2 ess than 5.46 ev (the rext excited state). Similarly, by proper choice of energy of bombarding alectrons we can arrange it so that only a certaln few limes of the complete spectman are emitted. of course, the possiblifty of multiple collisions does mot preclude further
excitation, but except for further excitetion from a metastable state the probability of this occuring is extremely small, or account of the wery short mean lifetime of an ordinary excited stato. For example, suppose the bombarding electrons have an energy of 5 ev . A mercury atom excited to the state of 4.88 ev energy would frmediately drop back to the usual state and emit the 2536A Iime, before it could undergo a further collision and be excited to a state of energy between 4.88 ev and $(4.88+5)$ ev; but an atom excited to the metastable state of energy 4.66 ev could very well wait around long enough to suffer an additional inelastic collision and be further excited (but not ionized, since $10.39>9.88$). Since the 5.46 evenergy level is also metastable we see that some ionisation will occur whenever the bombarding electrons have an energy exceeding this vaiue, since $10.39-5.46 \leqslant 5.46$. When the araidable energy of the bombarding electrons exceeds the ionisation energy then in general all $31 n e s$ of the spectrum are emitted copiously. Howerer, an ionized atom can be further exctied (or ionised) by mising one of the remaining electrons to an excited state, 1.e., a state of higher onergy than that in which it normaily finds itself. We shall not be much concerned with multiple ionisation, or spectra of fomised atoms and 30 wil not pursue the matter further.

Another method of exciting or ionising atoms is by impact with positive ions, or in pact by bombardment with particles of any kind. All of the energy considerations diacussed abowe will still apply, of cousese, but the probability of such pro= cester taking place is much less then in the case of elections of the same energy. Thus if the Eundamental process under in= westrgation involves electron bombsument, any positive (om negativel 10ns 3o formadits the procesa will play a minos role in the overali picture. The reason for this is because the probabilities of excitation or lonizetion depend more neariy on the velocity of the impacting particles rather than on the energy. Thus an eloctron and a positive ion of the same velocity will have roughly the same probability of lonfing by collision.

When an electron undergoes an inelagtic collision with an atom 10 com framsfer part of its energy to the atom, thereby exalting it, and carry away the rost of the energy. In wiew of the well-cstablished photon (quantum) nature of the padiation process, 18 well as of the photoelectic effect, it might be thought thet essentially the same sont of behavioux would occur when an atom undergoes collision with a quantum, i.e. is exposec to sadiation. Thus it might be thought thet any quantum having an energy greater than 4.66 ev colld excite a amercury atom, fransferring this much of its energy, the remaindes going on as quartum of lower nergy. While such a process is energetically possible the probability of its occuring is practicelly negligible unless the quantum loses exactiy all of its energy. Thus excitation of mercury to the 4.88 ev atate by absorption of radiation can take place only by absorbing a quantum of mercury radiation, 2536 A , emitted by another mercury atom on dropping from the 4.88 ev state to the ground state for by absorbing the same energy quantum from a continuous spectrum). Thus mercusy fapour will strongiy absorb the 2536 A 1in of the mercury spectrum, thereby exciting the mercury atoms which then re-emit this same radiation, which is therefore called resomance radiation. Similarly, the 1849A Inne in the mercusy spectrum is a resonance line, since it is emitted by a transition from the 6.71 ev energy level to the ground state, and so will be strongiy absorbed by normal mereury vapour. In general, any spectrum line which is emitted by an atom in a transition from any excited state to the ground stake is a resomance line for that atom, and will be strongly absorbed by vapour of that atom. On the other hand, mercury vapour, for example, is quite transparent to radiation emitted by some other gtom (ss a line spectrur). If a vapour be exposed to a beam of rediation possessing continuous spectrum, it will strongly abeorb those wavelengths corresponding to its own resonance emisoion lines. Absorption of other than resonance lines rem quines the presence of already excited atome and the probability of the process occuring is correspondingly less.

If the energy of the incident quantum is greater than the ionismtion energy then the process is a bit dipferent. The quentum is still aboorbed in its atirety, with consequent 1onization. The energy of the jectea electron is given by the Einsteln photoelectia equation

$$
\begin{equation*}
\frac{1}{2} m w^{2}=h f^{2}-w_{i} \tag{5.27}
\end{equation*}
$$

where W_{i} is the energy required to lonize the atom, e.g., 10.39 ev for the outemost electron in the case of mercury wapour. Photoelectric ionization can occur, however, from any energy state of the atom, provided the incident quantum hes the requisite energy. The atom then may emit a more compilcated spectrum, corresponding to transitions between the deeper energy levels. The x-ray photoelectric effect ialls within this category. Of course, inner electrons can also be efected by slectron bonbardment if we use an incident beam of high nergy electsons. The method described for determining excitation potentials does not distinguish between excitation and Lomization, since all it measures 18 the energy $109 s$ of the impacting electron. However, a silght modification in the method of using the same apparetus easily distingulahes between the two procesaes. This is 111ustrated in Figure 5.3.

Figure 5.3
Apparatus for Determining Ionization Potentials
V_{1} is. the (variable) accelerating potential.
V_{2} is A retarding potential, greater than V_{1}.
73^{18} a mall constant potential whose direction can be reversed.
The pressure is such that the mean free path of the electrons 18 Amer than the space between G_{2} and P, but smaller than the spoasation of σ_{1} and 0_{2}. The galvanometer current is determined AB A function of V_{1} for aah direction of V_{3} and a curve such as that shown in Figure 5.42 s obtained. Since $V_{2} \geqslant$ FI edectens levilug canon reach G_{2}, and so do not reach P. The currant

Figure 5.4
Is zero for either direction of V_{3}. But if V_{1} is great enough to permit an inelastic collision exciting an atom of gas to a resonance level (not a metastable level) resonance radiation will be excited (point A). This radiation may excite photoelectrons from the grid a_{2} and the plate P. With V_{3} acting $a_{2} \rightarrow P$ so that P is at the higher potential, electrons from Q_{2} reach P, and the galvanometer current is negatiw. If V_{3} acts $Q_{2} * P$ photoelectrons from P travel coward Q_{2} and the galvanometer current is negative. This is the portion from A to B or $B^{\prime \prime}$. Excitation of a second level will cause radiation of another wavelength to be emitted so that there will be a change In shape of the current curve, $B C, B C l$, and so on Suppose, however, that an atom is 1omiged. The original electrons from

$$
\begin{aligned}
& \quad \begin{array}{l}
A \cdot=V \\
\frac{h}{V}=N=\frac{A}{V \sigma} \quad \\
\frac{1}{\sigma} \quad \\
\quad e=\frac{A}{A}=V \\
V=A \\
h=\frac{A}{6} \\
N=\frac{n}{v}=\frac{A}{6 V} \\
l=\frac{v}{A}
\end{array}
\end{aligned}
$$

P as well as the electrons removed in the iomization process w111 be returned toward F but any positive iona formed will be accelerated toward P and so will produce a positive current If V_{3} is small enough the magnitude of the current will not change much on peversing V_{3} and a sharp break occurs at D_{s} the fonization potential.

So far we have discussed possible processes for exciting or ionjzing an atom. An equally important question $18:$ what is the probability of each of these processes taking place. Consider the case of electron bombardment of an atom. If the energy of the incident electron is less than the energy of the lowest excited state then all collisions are perfectly elastic and no excitation or ionization is possible. If the energy of the electron just exceeds the critical energy necessary for excitation then it is quite probable that such an inelastic collision will take place. Although any greater energy can also cause fils same excitation, the probability decreases with increasing energy, until at very iligh energies this process is not likely to occur to any extent. The probability of a given type of collision occuring is expressed quantitatively in terms of the collision cross section. Let us suppose that P_{c} is the probability that a particle will make a given type of collision in traveling a unit distance. We reaall from kinetic theory that the mean free path of a particle is given by

where N is the number of particles per unit value and σ the cross-sectional area of the particle. We also recall that the walue to use for σ depends on the process involved, i.e., the cross section is different for different processes. Now the mean free path is the mean diatance a particle travels between successive collisions. Hence, the mean mumber of collisions por unit path langth. Pc, is just the reciprocal of the mean free path. Thus

$$
\begin{equation*}
\mathrm{P}_{\mathrm{C}}^{\prime} \equiv \frac{1}{4}=\mathrm{Na} \tag{5.29}
\end{equation*}
$$

If we know σ°, and the number of particlea par unit volume then P_{G} is determined. Actually, equation (5.29) is usually used to determine o from measured walues of P_{c}. We recall, tov, from kinetic theory that if b the mean free path for a given particle in gas, e.go, an electron traveling through any gar, then the fraction of particies which tratel a distance x whout making a collision ia given by

$$
\begin{equation*}
\frac{N}{N_{0}}=e^{-x / 4} \tag{5.30}
\end{equation*}
$$

If we understand P_{c} to man the number of collisions per unit path length at unit pressure and recall that is inversely proportioned to the pressure, then we shall have

$$
\begin{equation*}
\frac{1}{b} \& P_{o} P_{C} \tag{5.31}
\end{equation*}
$$

where p_{0} is the pressure, measured in the same units as those used in defining P_{C}. (It is usual to specify P_{C} per centimeter of path at a pressure of I milimeter of mereury.) Equation (5.30) then becomes

$$
\begin{equation*}
N=N_{0} e^{-p_{0} P_{c}^{x}} \frac{1}{1} \tag{5.32}
\end{equation*}
$$

By measuring the rraction of particles which have not undergone given type of collision, as a function of the distance traveled we can determine P_{C}, snd knowing the pressure the collision cross section li is thus determined. From the way in which P_{C} is defined it follaws that the probability of making any tye of coliision is the sum of the probabilities of making each of the various possible types of collision. For example.

$$
\begin{equation*}
P_{\text {total }} \cong P_{\text {elastic }}+P_{\text {inelastic }} \tag{5.33}
\end{equation*}
$$

Wher $P_{\text {inelastic }}$ an be further broken up into the various postable types of inelastic collisions, exeltation to various levals, fonimation, ecc.

A method for detemining P_{c} for lectrons for other charged particles) in a gas is illuatrated in P1gure 5.5. Electrons emtted prom the cathode, K, are secelerated through

Pig. 5.5
Apparatus for Detarnining Coilision Probabilities
a potential difference V_{A} to the anode A. The space between K and A is evacuated, so that practicaliy no collisions can ocour in this region. Some of the electrons pas through the 811 s sinto the collision chomber containing the gas under investigation. A unifommagnetic field B_{8} perpendicular to the plane of the diagram, 18 of such a value as to cause - lectrons of energy eV_{A} to be bent into an are of radius R. The baffies b prevent alectrons of other energy from reaching the collector 6 through the slit 8_{2}. Further, any electrons even though of the proper anergy, will not reach s_{2} if they are at any point of the path deviated frow the proper directim. Thus, if an electron makes a collision, elastic or inelastic, afer leaving s_{2} it will not reach s_{2}. The current to C, there $=$ fore, measured the number of clectrons which have traveled a
distance $2 \pi R$ without making a collision. This method enables us to deterwine the total collision cross section as a function of electron enargy and gas pressure. Purther refinementy are nocessary in order to determine separately the werioug contributions to the total cross section.
5.2 Some Additional Pacts of Electron Physies
A. The Gompton Effect

We have seen that fundamental particies can have both corpuscular and wave properties, and that electromagnetic sadiation can have eropuscular (quantum) aspects as well as wave properties. This is not a contradictiong; rather modern physics states that both fundemental particles and electromagnetic radiation exhibit their corpuscular aspects on emission or absorption, and their wave aspects in tramsmission from source to absorber. Although earlier in these notes we treated particles as corpuscies in discussing their transmission we were working in the same approximation that one makes in applying geometrical optics to light transmission. It is only oceasionally that the physical optics of particles becomes important.

In treating colilsion phenomena one may use either the corpuscie or the wave aspect. A. H. Compton in 1923 gave one of the clinching proofs of the inherent quantum nature of light by considering the effect of the collision of a light quantum (hf) and an electron. Before developing the theory of this effect, let us consider the momentum associated with a beam of light.

If n quanta of frequency f are absorbed by a material body (carbon blaci, for example) then this represents an energy transfer of nhf. The rate of doing work is then $\frac{d}{d t}$ (nhif) and this should equal CP, where F is a force we associate with this process. Then

$$
\frac{d}{d t}(\mathrm{nhf})=C F=c \frac{d p}{d t}
$$

from which the momentum of the light beam is nhf/e and the momentum of each quantum is hf/c. This effect was predictad classically and explains the experimentally known fact of radiation pressure. (The fact that a comet's tail always points away from the sum is explained by radiation pressure).

Let us first see if a free electron can absorb a quantum. The laws of conservation of energy and momentum state, assuming the electron is initially at rest,

$$
\begin{array}{r}
m c^{2}-m_{o} c^{2}=h f \\
m v=h f / c
\end{array}
$$

dividing the first by the second, we have,

$$
\frac{c^{2}}{v}\left(1-\frac{m_{0}}{m}\right)=c
$$

or

$$
1-\sqrt{1-v^{2} / c^{2}}=\frac{v}{c}
$$

Prom which

$$
\left(1-\frac{v}{e}\right)^{2}=2-\frac{v^{2}}{e^{2}}
$$

and this result is obviously impossible.
However, Compton showed that an electron may seatter a quantum $h f$ providing the scattered radiation takes on a slightly different frequeney f^{\prime}. Consider the collision problem in Fig. 5.6.

Fig。 5.6
The conservations laws ares

$$
\begin{align*}
& h h_{0}+e^{2}=n f^{1}+m c^{2} \\
& h f / c=h R^{\prime} / c \cos +m p \cos \theta \tag{5.34}\\
& \text { heidi } \sin =\sin \theta
\end{align*}
$$

From the first of equations (5.34) we have.

$$
\frac{1}{\sqrt{1-v^{2} / c^{2}}}=1+\frac{h \xi^{2}-h p^{0}}{m_{0} c^{2}}
$$

or setting $\varepsilon=\frac{h f-h f^{i}}{m_{0} s^{2}}$

$$
\frac{1}{\sqrt{2-v^{2} / c^{2}}}=1+\varepsilon
$$

from which,

$$
\nabla=T+\varepsilon \sqrt{\varepsilon^{2}+2 \varepsilon}
$$

Now in order to confirm any conjectures we may desire from theory by experiment we must consider which variables we can most easily observe. These variables are f^{\prime} and (p. Hence, we proceed to eliminate v and 9 from our equations.

Substituting (5.35) in the and and ard of equation (5.34) and solving for sin 9 and $\cos 9$ we have,

$$
\begin{aligned}
& \sin =\frac{h f^{\theta}}{m_{0} c^{2}} \sin \phi \cdot \frac{1}{\sqrt{\varepsilon^{2}+2 \varepsilon}} \\
& \cos \theta=\frac{h f-h f \cos \phi}{m_{0} c^{2}} \cdot \frac{\sqrt{\varepsilon^{2}+2 \varepsilon}}{l}
\end{aligned}
$$

Squaring and adding, we have,

$$
1=\left(\frac{\mathrm{h}}{m_{0} 6^{2}}\right)^{2} \frac{f^{2}+p_{0}^{2}-2 f^{9} \cos \phi}{\varepsilon_{0}^{2}+2 \varepsilon}
$$

Substituting for $\&$ in terme of and find rearranging terms, we have,

$$
\begin{equation*}
p=f^{\prime}=\frac{h_{2}}{m_{0} f^{\prime}}(1-\cos \phi) \tag{5.36}
\end{equation*}
$$

from which

$$
P^{\prime \prime}=1 \cdot \frac{1}{1+\frac{h f}{m_{0} e^{2}}(1-\cos \phi)}
$$

remembering that $E=c / \lambda, P^{\prime}=c A^{\prime}$, we have

$$
\begin{equation*}
\lambda^{0}-\lambda=\frac{h}{\pi_{0}^{c}}(1-\cos \eta) \tag{5.37}
\end{equation*}
$$

The constant $\mathrm{h} / \mathrm{m}_{0}$ c is equal to 2.4×10^{-12} on just .024 A , and is usuajly called the Compton wavelength. Such a shift of wave iength is most easily observed in the x-ray region.

Bo Magnetic Moment and Electron Spin
Let us consider an electron in a Bohr orbit in a hydrogen atom. Such an electron is equivalent to a curvent of ev/2 πx and should give sise to a magnatic moraent.

$$
\mu=1 A=\frac{v}{2 \pi r} \cdot \pi r^{2}=\frac{e v r}{2}
$$

By Bohr firgt quantum condition, equation (5.08)

$$
\begin{aligned}
& W Y=\frac{n h}{2 \pi n} \quad \text { and hence } \\
& \mu=\frac{n e h}{4 \pi}
\end{aligned}
$$

For the ground state $n=3$ and

$$
\begin{equation*}
\mu=\frac{2 h}{4 \pi m} \tag{5.38}
\end{equation*}
$$

(Thzs expression is often taken defining ars atonic unit of magnetic moment, called the Bonr magneton).

One would expect such a manetic moment to interact with appiled manmetic rielda and to shif't the atomic enemg levela and hence the requency of the spectral lines. Sueh a 15 Indeed the casoy the Zeeman Effect.

In addition to the anguiar moraentum and manatic momant associated with the orbitel motion of electrons, it is necessasy to assume that each electron inherently has an angular momentum (apin) and magnetic moment in order to explain all the acts of atomic spectra. Classically, this is the equivaient of ssying that the election has structure, and that its charge and mass are ao distributed throughout this structure as to give rise to the observed values of spin angulaz momentum and magnetic moment. The inherent magnetic moment of the electron has been cound eppal to the Bohs magneton, equation (5.38), but the inherent spin angular momentum is always numerically equal to $\frac{1}{2}$. $\frac{h}{\text { Eif }}$ In other words the $s p i n$ is quantized but only one value, $\frac{1}{2}$ is allowed. Actualdy, the spin has two allowed waluea $\frac{1}{2} \frac{1}{2}$ since, if a magnetic ileld is applied the Inherent electron magnetic moment can either Ilse up with the appiled field of against the appiled field.

Independently of the spectral data, Stern and Gerlach showed the existenc of the electron manetic moment, and the two allowed states of the spin quantum number, by the famous experiment which bears theis name. They aliowed a well collimated beam of meutral silwer atoms to pass through a region in which an inhomogenous magnetic field existed. (Inhomogenous, since we wish to operate on a magnetic moment, or dipole, which is unafected by anifom field). After passing through the ileld the displacement caused by the fleld is measured. It was found that the beam was displaced by equal anounts on both sides of the undisplaced position, in accordane with the thersy derreloped Irom atomic spectra.

> Co Quantum Numbers and Pauli Principle.
> Since an dectron in an atom has three degress of
freedom, and in addition has spin angular momentum, we should expect that it requires four quantum numbers to completely specify the (quantised) state of the atom Pauli's Principle states that no two electrons in a single atom can be in one and the same quantum state, $1 . e_{0}$, can have identical sets of quantum numbers. No exceptions to this rule have ever been observed.

Free electrons also have four quantum numbers associated with their three components of momentum and their one component of spin. The extension of the Pauli Principle to free electrons will be dealt with in connection with the Fermi-Dirac Statistics.

D. Heisenberg Uncertainty Principle

The correct quantum mechanical formulation of the laws governing the behavior of atoms and electrons is essentially statistical in nature. That is, we can talk about the pro= bability of an event occurring, but we cannot say with certainty whether any event whit is energetically possible will or will not occur. Heisenberg first pointed out that there is a fundamental uncertainty in any physical measurement we choose to make such that the product of the uncertainty in the poss= tron measurement and the uncertainty in the momentum measure mont is of the order of Planchis constant $h, 1.0$.

$$
\Delta p_{x} \Delta x \sim h
$$

or in terms of the simultaneous measurement of time' and energy

$$
\Delta W \Delta t \sim h
$$

Such uncertainty is very small compared to ordinary physical measurement and in general does not effect the accuracy of experiments in any way. However, the implications of this uncertainty pionciple are very imporesir. For instance, in discussing the natural breadth of spectral ines, or of the stationary states from which they arise, on c can write,

$$
\begin{aligned}
& \Delta W \Delta t \approx h \\
& \Delta W \sim h \Delta t \\
& H \Delta \Delta t \sim n \\
& \Delta I \sim \frac{1}{\Delta t}
\end{aligned}
$$

Hence, the natural breadth the uncertainty in the frequency measurement)is of the arder of the reciprocal of the uncertainty in the time that the misaion takes place (the lifethue of the state). This resuit is also true por classical padiators although we have no uncertainty principle in classical physics.

The uncertainty principle also has pery important impliaqtions pegarding the behavious of dense assemblages of free - lectrons, for instance, the conduction electrons in metals. In fact, we must use this principle In order to understand the behawios of metalife edectrons as we shall see later in connection with the Fermi-Disac atatistica.

CHAPRTER VI. COLLISION PHENOMENA AND THE QASEOUS DISGHAROE (Reference: Milman and Seely, Chep. X)

6.1 Co111s1ors Pheromens

In dealing with the motion of charged particles under the action of electric or magnetic flelds we heve assumed that no forces, other than those due to these flelds, act on suah particles. This means, for example, that collisions do not take place between the particle in question snd any other particle. We have excluded this possibility by asauming that the particiee move in a "\%acum". But from the point of view of kinetic theory, We ned only require that the pressure be so low that the mean free path be large compared with the dimensions of the spparatus. This is an essential pequirement for the problems considered hitherto, auch as the cathode ray tube, particle accelerating machinea, etc. But there are cases mhere we not only cannote wake this assumption but where the occusence of colilsions is ari essensial peature of the problem as in anst of the last chapter. With this in mind we now go to the other extreme and suppose the pressure to be such that the mean tree path is smal compared with the dimensions of the apparatus. In this chapter we shall consider some of the properties of a gas in the conducting state ari the production and rewowai of the 1 ons which cause this conductivity, as well as some of the phenomana of the gaseous discharge.
6.1.1 Ion Mobilities

Comsider a pareicle or charge q, mass $m, m o p i n g$ through gas under the action of an electric field E. The 10 will be moving with its gando thermal velocity and will maice collisions. We me not concerned with the zandom motion, but onis the superposed motion due to the action of the field. It is found oxperimentally that under such conditions a giwen type of ion acquires a drift velocity proportional to the firld E. In the absence of colligions we know that auch an lon would nowe with constant accelbration. This diference in behawious can be accounted Por roughiy, as follows. Consider an

Ion Detween collistoms. The force in this ion is

$$
\begin{equation*}
K=E Q_{R} \tag{6,01}
\end{equation*}
$$

If this force acts for a the the $10 n$ wil2 scquime a momentum component geven Dy
B F
where v is the velocity acquire under the action of the field. Let us suppose that this additional velocity is completely lost at each colission. (This is not quite true). If we now let e be the mean time befween collisions then, on the average, the droft pelocity acquired my the fon 18 thend ac

For a given type of ion, moving through a given gas at ixed prossume and temperature, the quantities q, m, and tere con= stants. Thus the dpitt velocity is proportlonal to the siell E, OT

$$
\begin{equation*}
\nabla^{\prime}-\mathrm{kE} \tag{6.04}
\end{equation*}
$$

The quamitity k is called the mollity of the fong and the above crude calculation shows that it should be of the order of ragna = tude
where l is the mean free pith of the Ion In the gas and 亩 the mean (thermar) speed. This rormula does indaed give values ror k of the sight osier of magnitude ($k \sim 10^{-4}$ a/s per v/m) but cannot be expected to be cornece in detail.

The concent of the mobility of an lon is important in discussims lonic conduction in a fuld mocium. Let us suppose apotential difference V to be mppifed acrose a pair of electrodes innersed in the luid a distance dapart. Let ng be the con= centrotion (fons per unde volume) of loxs of type j, cach carcying a charge i_{y} and hawling a moblility k_{j}. In the presence of an clectric pheld E suck fons will acquire a drift velocity vgs
parallel to the field E. In a time dt the charge dQ crossing ara area A.A will be

$$
\begin{equation*}
d Q=\Delta A\left(\sum q_{j}{ }^{n} f_{j} g^{d t}=\Delta A\left(\sum q^{n} j^{k_{f}}\right) E d t\right. \tag{6.06}
\end{equation*}
$$

The current i is thus

$$
\begin{equation*}
1=\frac{d Q}{d t}=\Delta A \sum\left(q_{j} n_{j} k_{j}\right) \cdot E \tag{6.07}
\end{equation*}
$$

At a given temperature and pressure $k, 1 s$ constant and if the fons maintain their identity and type, q_{g} is constant as far ac variations in E , whence of the appiled potential V, are concerned. The behaviour of $n_{f} 1 \%$, however, subject to other circumstances. In the first place, the passage of a current mecessarily means the remowal of ions. This means that the n_{j} depend on the current 1 , in general. Howerer, if we suppose that the current is so sinal that the fraction of ions withdrawn is negigible then the are constant if we neglect recombination. Or, if we suppose a uniform source of ionization to be present then the n; are constant, the constant value being determined by the rate of recombination. If we further suppose that E is uniform, and given by V / d then

$$
\begin{equation*}
1=\Delta A\left(\sum_{j} n_{f} q_{f} k_{j}\right) \frac{V}{d} \tag{6.08}
\end{equation*}
$$

and we see that the current obeys Onm"g law. ht higher fleld intensities the relation between current and yoltage becomes much more complicated.
6.2.2 Recombination of Iome

Suppose that we have source of ionizing radiation incident on a gas and let us suppose that it produces P paire of lons per unit wolume, per unit time. For simplicity we w121 suppose only two kinds of loms produced; that is, we assume a single gas in the ionization chamber and that ondy one process of ionization occurs. Let $n+$ and n be the concentrations of free positive and negatipe ions, respectireiy.

Col21stons will ocgu, and in paztoulac when a positive amo nogetive $10 n$ collide these is a cemtain probability the they W121 recombine and fomm a neutral molecula. The mumber of politsions between positive and megatire lons is proporional to the concentmation of each and so the number of reembinsthons pocuring is proportional to to Hence, if we reglect the effect of all other types of collisions, e.g., lons with neutral molecules, the increase in the number of positive (or megative) ions in time dt is given by

$$
\begin{equation*}
d n_{t}=d n_{0}=\left(P=e_{n} n_{i, n}\right) d t \tag{6.09}
\end{equation*}
$$

where the coeflicient o is called the coeffielent of re combination, and depends on the particuiar ions in question, as well as on the pressure, but $1 s$ independent of $n+$ and n. Rewriting equation (6.09) we heve

$$
\left.\begin{array}{l}
\frac{d n}{d E}=P=e n^{n}+n \tag{6.10}\\
\frac{d n}{d E}=P=\theta n_{+n}^{n}=
\end{array}\right\}
$$

 30 that if the gas is inatially unsharged we sheil have

$$
\begin{equation*}
n r_{0}=n=n \tag{6.21}
\end{equation*}
$$

08

$$
\begin{equation*}
\frac{\ln }{d e}=P-9 n^{2} \tag{5,22}
\end{equation*}
$$

The ionic conchntratin wh1 Feach a steady state when $\mathrm{dn} / \mathrm{At}=0,1 . e_{0}$,

$$
\begin{equation*}
n^{\prime \prime}=\sqrt{P / \theta} \tag{6.13}
\end{equation*}
$$

Where $n^{\prime \prime}$ is the equilibrium concentration corsesponding to the source strength P. If an un=1oniaed gas be exposed to a source of strength P then the concentration will bulld up to the equilibriun value $n^{\prime \prime}$ according to the equation

$$
\begin{equation*}
n=n \cdot \frac{e^{2 \sqrt{P \theta} t}-1}{e^{2 \sqrt{P \theta} t}+1} \tag{6.14}
\end{equation*}
$$

and so does not approximate to the steady atate until
$2 \sqrt{P Q} \quad t_{1} \gg 1_{s}$ of unt11

$$
\begin{equation*}
t_{1} \gg \frac{1}{2 \sqrt{P \theta}} \tag{6.15}
\end{equation*}
$$

${ }^{4}$ is thus a measure of the time required to reach a steady state, and is thus long for a weak source.

Suppose, on the other hand, that a steady state has been reached and that the source is then removed. How does the concentration decay with time? The equation (6.12) now becomes

$$
\begin{equation*}
\frac{d n}{d t}=-\theta n^{2} \tag{6,16}
\end{equation*}
$$

with $n=n^{9}$ at $t=0$. Thus

$$
\begin{equation*}
\frac{1}{n}=\frac{1}{n^{\prime}}=\theta t \tag{6.17}
\end{equation*}
$$

or

$$
\begin{equation*}
n=\frac{n^{n}}{1+n^{\prime \prime} \theta t} \tag{6.18}
\end{equation*}
$$

The extension of these results to cases where more than one type of positive and negative ion is present follows immediately from equation (6.10). We have assumed in this treatment that ions are removed by recombination only and that no external field is present. If the pressure is not too high the coefficient of recombination is roughly proportional to the pressure. Although the value of θ depends on the gas, typical values Iie in the range

$$
\begin{equation*}
\theta \sim 1-2 \times 10^{-12} \mathrm{~m}^{3} / \mathrm{sec} \tag{6.19}
\end{equation*}
$$

at a pressure of one atmosphere. Now we know erom kinetic theory that the number of collisions made per unit time by a

$$
\begin{equation*}
z=2 \sqrt{z} m \sigma \bar{w} \tag{6.20}
\end{equation*}
$$

where is the concentration the mean speed and o the molecular cross section. Thus the total number of collisions made per unit volume per unit time is $n z$ and for such gases as oxygen, mitrogen, etc. this is

$$
\begin{equation*}
n z \sim 1-2 \times 10^{-16} n^{2} \tag{6.21}
\end{equation*}
$$

at room temperature. Hence, collisions between oppositeiy charged ions are about 10,000 times more frequent than collisions between neutral molecules.
6.1.3 Diffusion of IOns.

In addition to being remored by recombination ions can disappear Erom a gas by diffusion to the walls of the containing vessel, where they may become neutralized. If this happens there will exist a concentration gradient in the wicinity of the walls, so that diffusion will persist. Let 4 be the flux of paricieles in question, e.g., positive ions. \mathscr{X} 18 the number of such particies crossing unit area per unit time. Then

$$
\begin{equation*}
\Phi_{+}=-D_{+} \nabla n_{t} \tag{6.22}
\end{equation*}
$$

defines the diffusion cofficient D_{+}for these ions in the gas in question; D depends both on the kind of ion and the gas through which it diffuses. Consider a wolume bounded by a surface S. The total flux through the surface is

$$
\begin{equation*}
\int_{S} \Phi d S=-D \int_{S} \cdot d S=-D \int_{q} \nabla \cdot(\nabla n) d s=-D \int \nabla^{2} n d \tau \tag{6.23}
\end{equation*}
$$

But the total filux through the surface is just equal to the rate at which the concentration within the volume is decreasing. That 18

$$
\begin{equation*}
\int_{S} \Psi d s=-\int_{\tau} \frac{d n}{d t} d \tau \tag{6.24}
\end{equation*}
$$

$$
\begin{equation*}
\int_{T} \frac{d n}{d t} d \tau=D \int_{T} V^{2} n d r \tag{6.25}
\end{equation*}
$$

Since the rolume \% 18 arbitrary we must have

$$
\begin{equation*}
\frac{d n}{d t}=D \nabla^{2} n \tag{6.26}
\end{equation*}
$$

which is the differential equation of diffusion. We have assumed that the only cause of a change in n is diffusion. If there is a source of ionization of strength p present, and if necombination be taken into account, then on referring to equation (6.12) we see that equation $(6.26$) is to be replaced by

$$
\begin{equation*}
\frac{d n_{1}}{d t}=P+D \nabla^{2} n_{1}=\theta n_{1} n_{2} \tag{6.27}
\end{equation*}
$$

with similar equations for each type of ion.
It is shown in kinetic theory that the diffusion coefficient is related to the mean speed \bar{V} and the mean free path l for the same particle, or 10 , through the equation

$$
\begin{equation*}
D \sim \frac{1}{3} l \bar{V} \tag{6.28}
\end{equation*}
$$

and is thus inversely proportional to the pressure. Diffusion coefficients differ for positive and negative ions and from gas to gas, but are of the order of magnstude of $1.50 \times 10^{-6} \mathrm{~m} / \mathrm{sec}$ at a pressure of one atmosphere.
6.2.4 Ionization by Col118ion

Consider a plane parailel electrode ionization chamber, scross which a potential difference V is applied. Suppose that lons are produced at one of the electrodes, e.g. photoelections ilberated from the cathode by illuminating it with a suitable source of radiation. If now for a given strength source, 1.e. a given number of electrons produced per second at the eathode, we measure the curxent through the lonization chamber as a function of the applied voltage across the plates it will be found that the current-voltage relation resembles that shown in

V

Plgure 6.1

Cuirent Voltage Relation in an , Ionization Chamber
to the voltage, but as tne voltage is increased the current apparently reaches a saturation value independent of V. We Wish to determine the current as a function of the spplied theld and separation of the electrodes. It is fourd experimontaliy that for comstant fleld the cureent increases exponemetakiy with plate separation prowided the fleld is not too great. This wes explained by Tomsend by assuming that an ellectron on striking a gas molecule can, if its energy be great enough, ionize the atom thus releasing an additional electron. This process $1 s \mathrm{knom}$ as fonization by collision and phays an important role in gaseous conduction. Tommsend assumed that each electron in traveling a distance dx pro= duced $d d x$ new ions. The coefficient α is known as the First Townsend Coefficient. Thus, if across a plane st a distance x from the cethode there pass n electrons then a number nto dm will pass across a plane at a distance $x+d x$, where If we negleot recombination and diffusion di 18 the number of electrons seleased by the collision process. According to Tomsend'g hypothesis we shall have

$$
\begin{equation*}
d n=d n d x \tag{6.29}
\end{equation*}
$$

$$
n=n_{0}^{8} x
$$

(6.30).

> Pigure 6.2
> Ionization by Collision

On multiplying both sides of equation (6.30) by the electronic charge owe shail thus have for the aurrent reaching the anode

$$
\begin{equation*}
1=1_{0} e^{\alpha d} \tag{6.31}
\end{equation*}
$$

In this equation i_{0} corresponds to the electronic current leaving the cathode, and is the value that the arturation curcent would attain if ionization by collision did not occur. The equation of continuity, of course, requires that the current be the same at all vaiues of x. This means that the positive ion current will 50 adjust itself that

$$
\begin{equation*}
1+1=1 \tag{6.32}
\end{equation*}
$$

at each walue of x, so that at the anode, for exampie, the positive ion current vanishes while it is a maximum at the cathode.

The quantity α, for a given ges, depends on the Sleid strength and the mean free path (pressure). Since of is the number of ionizing coilisions per unit path length it 18 , aroug other things, proportionsl to the pressure. In addition, it w111 be some function of the energy of the lonizing particle (electron), 1.e. of its velocity. If the energy of the clectron is less than the ionization emergy we would not expect ionization to occur, since the electron must transfer to the molecule surficient energy to ionize it. The mean energy acquined by the electron from the field will be Ee b, where t is the mean free path, and so we should expect α to be of th the form

$$
\begin{equation*}
\alpha=p \cdot f_{1}(E \ell) \tag{6.33}
\end{equation*}
$$

where f_{1} is function which vanishes when the energy is less than the ionization energy. Since l is inversely proportional to the pressure we can also write

$$
\begin{equation*}
\alpha / p=f(E / p) \tag{6,34}
\end{equation*}
$$

so that if α be measured for a given gas at various pressures and for various field strengths we should expect the values to fall on a smooth curve if we plot a/p sgainst E / p. Such is indeed found to be the case, if the fleld is not too great. 6.1.5 Byeakdomm

If equation (6.31) is valid we should expect to obtain a straight line of alope α if we plat $\log 1$ against d, where 1 is the current for a fixed fleld strength and gas pressure. This is found to be the case for small values of d, but the current increases more rapidiy than equation (6.31) would indicate, for larger values of d until Einally, as is weli known, the gas breaks down and a spark occurs. This means that there must be some other source of ionization. Townsend at first assumed that the paotive ions formed in the process of ionization by collision were also capable of lomizing by the collisiom process, and introduced the second Townsend.

Coefficient β 1.e., $\beta d x$ is the number of ions produced by collipion when a single positive ion travels a diatance dx through the gas. Aithough this assumption leads to an equation which, in a formal way, accounts for the observed results it is now kmown from direct measurement that the quantity \& is negligible at the energies involved in the usual coses. That is, ionization by collision of positive ions is negilgibie in most practical cases. This is because, as we have seen in chapter V, the probability of ionization depends more on the velocity of the ionizing particles than on its energy. A much more likely process is the liberation of secondary electrons at the cathode by positive ion impact. Let us suppose that, on the average, each positive ion striking the cathode releases (secondary clectrons (γ will usually be a small fraction). As before, let us suppose that n_{0} electrons are released from the cathode by the primary process, e.g., no photoelectrons, per unit time. These electrons, under the action of the ap plied fleld, will move toward the anode, lonizing by collis1on and thus producing positive ions. The positive ions will mignate toward the cathode where they will release secondary clectrons. Let n_{1} be the number of electrons arriving at the anode per unit time. Each of the n_{0} electrons will lonize by
$\left|\begin{array}{ll}\longrightarrow n_{0} \\ \longrightarrow n_{8}=n_{1}-\left(n_{0}+n_{s}\right) \\ \longrightarrow n_{s}=8 n_{+}\end{array}\right|$

Figure 6.3
The Effect of S_{e} condary Electrons
collision, and on this account $n_{0} e^{d}$ electrons will reach the anode. In this process $n_{0}\left(e^{\text {a }}\right.$ - -1$)$ positive ions. Will be produced and on arriving at the cathode w112 release $\gamma_{0}\left(e^{\text {wd }}\right.$. secondary electrons, which will also ionize by collision, thus supplying $y_{n_{0}}\left(e^{\alpha d}-1\right) e^{u d}$ additional electrons at the anode. There will thus be an additional number $n_{0}\left(e^{\alpha d}-1\right)^{2} e^{\alpha d}$ of positive ions reaching the cathode, etc. Hence, the total number of electrons reaching the anode is

$$
\begin{align*}
n_{2} & =n_{0} \sum \gamma^{i}\left(e^{\alpha d}-2\right)^{j} \cdot e^{\alpha d} \\
& =\frac{n_{0} e^{\alpha d}}{2-\gamma\left(e^{\alpha d}-1\right)} \tag{6.35}
\end{align*}
$$

Altematively, referring to Figure 6,3 , if n_{4} be the total number of positive ions reaching the cathode

$$
\begin{equation*}
n_{t}=n_{2}-\left(n_{0}+n_{s}\right) \tag{6.36}
\end{equation*}
$$

where ${ }^{n}$ is the total number of secondary electrons from the cathode. By definition of V

$$
\begin{equation*}
n_{\infty}=\gamma n_{+} \tag{6.37}
\end{equation*}
$$

and 90

$$
\begin{equation*}
n_{s}=\gamma\left[n_{1}-\left(n_{0}+n_{s}\right)\right] \tag{6.38}
\end{equation*}
$$

But

$$
\begin{equation*}
n_{1}=\left(n_{0}+n_{8}\right) e^{d d} \tag{6.39}
\end{equation*}
$$

since all electrons leaving the cathode surface, whether primary or secondary, ionize by collision. on combining equaton $(6,38)$ and $(6,39)$ se arrive at equation (6.35).

Equation (6.35) indicates that when

$$
\begin{equation*}
1-\gamma\left(e^{\alpha d}-2\right)=0 \tag{6,40}
\end{equation*}
$$

the current becomes "infinite", $1 . e$, the current is indeed only by the resistance in the external circuit. Physically,
this means that a sparik occurs. Let us denote the sparking potential by V_{x}. The "tela 18 thus $V_{?} / d$. We have seen shat c is of the form

$$
\begin{equation*}
\alpha=p f(E / p)=p f\left(V_{1} / p d\right) \tag{6.41}
\end{equation*}
$$

Further, " will depend on the energy which the positive $10 n$ poassese en it strikes the cathode. If we assume an ion to lone all 01 Its energy at each collision then we need only eonsider the energy acquired in the last mean free path before reaching the cathode. This is equal to Ee ℓ. Thus

$$
\begin{equation*}
y=F_{\lambda}(\text { Se } 0)=F(E / p)=P\left(v_{2} / p d\right) \tag{6,42}
\end{equation*}
$$

Thus equation (6.40) is of the fomm

$$
\begin{equation*}
F\left(V_{1} / p d\right)\left[e^{p d f\left(V_{3} / \rho d\right)}-1\right]=1 \tag{6.43}
\end{equation*}
$$

Equation (0.43) is an implicit relation between V_{y}, the sparicing potential, and pd where $d 18$ the spark length at a pressure por this potential difference. If we assume equation (6.43) solved for V_{1} we shall have

$$
\begin{equation*}
v_{1}=\$(p d) \tag{6.44}
\end{equation*}
$$

Thus, V_{1} depends on the product pd oniy, and not on elther slone. This fact is known as Paschen's Law and is well established exporimentally. Physically, Paschen's Law means that the sparicing potential is a function only of the total number of nolecules in the space between the electrodes. The form of the function $\$$ is similas to that shown in Figure 6.4.

Figure 6.4
Breakdows Potential vs. pd.

The breakdow poterntal 18 high at very gmell or wery large values of $p d$ and peaches a mintium gonewhere iri between. The right hand portion of the curve is neariy linear. Quelitatively thes sort of bekaviour is underatancable. The condition for breakdom is that just enough positive lons must be formed, as a resuit of lonization by collision, to prodpce one secondary electron from the cathode by lon fupset, for esch primary electron. That is,

$$
\begin{equation*}
V_{n_{0}}\left(e^{a d}-1\right)=n_{0} \tag{6.45}
\end{equation*}
$$

This is equiwaient to equation (6.40). Now at wery low waiues of pd there are so few molecules present that a high fleld intensity is necessary in order to produce the requisite number of secondary electroms. At the other extreme, for large values of pd the energy gelned per mear free path is small unlesg the field is high. Notice that, regardless of the walue of p or d it is imposaible to produce breakdown below a certain minimur Valtage regardiess of the field intensity. There is evidence that this is not true et extremely smell values of d. For air this minimum breakdown potential is about $340-350$ volts and occurs at $\&$ walue of $p d \sim .6$ if p is measured in railli= meters of mereury and d in centimeters. The accompanying table gives data on the minimun for a number of gases. Accurate determination of these values is extremely difficult.

Table 6.1
Spaxiking Data

Qas	Minimum Sparking Potential (volts)	(pd) minimum mom of Hg $x \mathrm{~cm}$ Spark
A10	$325-350$.56
Hydrogen	275-310	1.2-2.4
Oxygen	$440-460$	$.72-.48$
Nitrogen	250 ~ 300	$.67=.75$
Helamm	150-260	4.0-2.7
Argon	$140-230$.9-.76
Carbon Dioxide	~ 420	~. 51
Sulfer Dioxide	~ 460	a. 33
Nitrous Oxide	~ 420	-.. 50
fydrogen Suzfide	~0425	$\therefore .60$

6.2 The Gascous Discharge

The phenomenon of the passage of an electric current. through a gas between two electrodes across which a potential difference is applied is known as a gaseous discharge. Por a given gas. pressure, and geometrical configuration an important characteristic of the discharge is the voltage-current ourve which exhibits some remarkabie seatures. A typical voltage= current curve for a low pressure discharge is shown in fig. 6.5.

> Figure 6.5
> Voltage-Currert Characterisc of: a Discharge Tube

Since for moderate ranges of potentlal difference across the electrodes the curpent ranges through many orders of magnitude It is convonient to use a logantthmic scaic for the current. At wery low voltages the current is snall, gradually appraaching an (apparent) saturation value in the region $A B$ (rigure 6.5). Beyond here ionization by collision becomes
appreciable until, at C, we reach the sparking potential and the discharge becomes self-maintained, as we have seen previously. In the region $C-D$ the yoltage drop across the fube is practically independent of the current. At higher currents the voltage decreases until we reach the gegion of the normal glow discharge $(E-F)$. In this region the woltage drop is again independent of the current, which is limited by the resistance of the extemai circuit. It is in this region that glow dis. charge voltage regulating tubes (VR-105, VR-150, etc.) operate. Just beyond this region the voltage fises rather steeply ($P=0$) in the region of the abnormal glow, and then quickly drops to a very low value in the region of the low woltage arc, beyond H.
6.2.1 The Nomma Glow Discharge

The ordinary low pressure gas discharge tube operates in the region of the normal glow. This region is characterized by a low current densify and a moderatedy high voltage drop. The region between the cathode and anode is broken up into a number of rather definite sections which are peadily distinguished visually if the sepaxation of electrodes is not too small. These are, starting at the cathode, the Aston dark space, adjacent to the cathode and wery narrow? 2) the cathode glow, which appears to be "floating" on the cathode surface since the Aston dark space 18 so narrow; next to the cathode glow is the crackes dark space, 3) whose width increases with de= creasing pressure and depends somemhet on the tube current. The Iuminosity in this region is much less than in the immediately following negative glow, 4) which has a zather sharp boundary on the side toward the cathode and gradually fades off into the next region, 5) called the Faraday dark space, or" "seaond negative dack apacell, where the Iuminosity is wery low. Following this 18 6) the positize column or plasma whose length depends almost solely on the length of the discharge tube. This region extends practically to the anode, frore which it is separated by the anode dark space, which is a very narrow region of relatively

 aask bends, salied "Estations".

The varlations In luminosity along the length of the discharge are accompanied by masiations in the ciectric eleld intensity. If the distribution of the electric field is known then the potential distribution and the distribution of (total) free charge can be determined. An ingenious method for detemining the electilc pield disteibution, due to Jo Jo Tromsan and used by Aston, is i21ustrated in Figure 6.6. The

Heasurement of Electric Fleld Intensity in a Discharge Tube cathode and anode, C and A, are rigidy coupled together by means of a frame of glass rods, and this entire structure can be moved fom the oknode by means of an fron glug I. An extremejy filme bean of electrons from an auxiliary tube T at pight anglos to the maln discharge tube passes through the discharge under investigation and onto a pluoreshent screen S. The presence of an electric fledd E in the main discharge will cause the auxiliary beam to be deflected, and this deflection is a measure of E. In omder to minimize the efreet of the
aurilisry discharge on the distribution of E in the main tube the auxillary tube is completely shielded electricaliy from the rest of the apparatus. By using a very small current in the probe bean and a fairly high woitage, the fomization produced by the passage of thit beam through the main discharge can be made negligible. This arrangment is particularly suitable for measuring the fleld in the regions near the cathode where the flelds are strongest. It is possible by this method to measure the field to within a wery small distance from the cathode itself.

It 18 found that, negiecting minor details, there is a rather strong field in the immediate icinity of the athode, extending through the Crookes Daric Space into the negative giow. The distance over which the ficid extends. Is almost independert of eiectiode separation (provided this is not too smali) and so too is the fleld distribution. The potential drop across this region is thus constant, and is called the "eathode fall of potential". The actual walue of this cathode fall is dependert on the material of the cathode and the nature of the gas. The distance over which this potential drop takes place is such that it contains a sufficient number of iree paths so that the secondamy electrons emitted from the cathode by positive Ion bombardment can produce enough electrons by ionization by collision to maintain the diacharge. This distance varies from a few tenths to one milimeter at pressure of one millimeter of mercury, for a wide range of cathodes and gases. The cathode fall of potential is of the order of magnitude of, but usualiy somewhat less than, the minimum sparking potential of the gas in question, i.e., it is in the range $50-500$ rolts. The remainder of the potential drop across the discharge takes place, more or less unfformy in the absence of striations, across the positive column. The length of the positive column is usuaily enommous in comparison with the distance over which the cathode fall occurs. Thus for any reasonable voltage across the discharge tube the field in the positive column is much less than in a region of the cathode fall. The method of Thomson and

y

126

Aston is therefore not suitabie for fleld measurewents in the positive column, but another method, involving the Langmuire probe, must be used. This wil be discussed in section 6.2.2. The probe measures, among other things, the potential distribution in the positive column from which the field can be determined. Anticipating this, we show in Figure 6.7 the resuits of measurements of light intensity, potential, field, charge and current distributions in a typical discharge. The problem of explaining these results in a quantitative way is almost hopelesaly complex, but it is not difficult to see in a qualitative manner why some of the phenomena are as they are. In the region of the cathode fall we have essentially the mechanism of the self-maintained diacharge taking place. We have seen (see equation 6.40) that the condition for this is $1+\gamma=r e^{6 d}$. More generaliy, since the field will not be uniform, we should write in the present case

$$
\begin{equation*}
x+\gamma=y e \int_{0}^{d} \alpha d x \tag{6.46}
\end{equation*}
$$

where Y is the value appropmate to the field at the cathode. The o obtained from this equation will play a fundamental role and will be wery close to the length of the region over which the cathode fall occurs. In this region the positive ions acquire an appreciable energy and thus produces the requisite secondary electrons by cathode bombardment. Although it is concelvable that electrons could also be emitted photoelectricalis, independent experiments show thet the number of such is inappreciable. We have already noted that the number or secondaries produced by collisions of positive lons with meutral molecules is also negligible. The fundamental process is then the liberation of secondary electrons by bombardment of the cathode with positive 1ons. These secondary electrons are emitted with very small velocities and consequently give rise to a net negative space charge in the immediate vicinity of the cathode, This is quickly overcome by the formation of positive ions and the acceleration of the electrons so that most of the region of the cathode fall is characterized by a predominasity poaitiwe space charge of rather high density. Beyond that, it the region of the negative glow still more electrons appear, since their mobility 1s so much greater tham that of the positiwe lons. If the electron density exceeds the $10 n$ denaity, as in the case

Cathoda

Figura 6.7 Yropertieg of the Gageous Discharge. (Loob)

121ustrated in Figure 6.7 , the potential will pass through a meximum and undergo a exall? dip on the anode stie of the nega tlve glow, in the Faraday Dark Space. From here on the potential rises neariy unifomiy almost to the anode and the ret space charge thus vanishes. That is, in the poaitive column the denaity of positive ions is practicaliy the same as that of the electrons. But the electrons are moving with much greater velocities and so constitute almost the ontire current in this region pinaliy, in the imediate vicinity of the anode there 12 a small decrease in electron density, due to removal of Diectrons, and a Laxger decrease in positive ion density, re suiting in a net negative charge density here and a silght ifse in field strength. This corresponds to the region of the anode glow loliowed by the anode dark space. This 1atter dayk seace
oxumenely nazrow, amounting to about one izee path co: 10nyeacion.

This brief description is not intended to be arn expianation of what takes place in a gaseous discharge, but Father a description of the gesults of measurements of the quantities involved. We have assumed throughout that we are in the region of the "normal glow discharge", and we have noted that this region is characterized by a "los" current density. We shall now make this rague atatement a bit more precise by considering the actual currents involved. As seen in Figure 6.5 , the current in the nomal giow is independent of the voltage, which means that the current is determined by the resistance of the extemal circuit. Suppose that. starting at the point E, the external resiatance is lowered. The current will increase toward p and the poltage depp across the discharge will be practically unaffected. But it will be observed that the area of the cathode covered by the cathode glow increases as the current is increased, until at the end. of the region of the normal glow discharge the entire cathode area is covered. Purther, the current demsity oper the cathode is approximately. constant throughout this change. We have noted (see also Figure 6.7) that the region of the cathode fall of potertial is characterized by a high density of pastive ions which, negiecting details near thic cathode, starts at a high walue and drops off with distance toward the Faraday Dark Space. To
a rough approximation we kave the situation of a space charge iimited positive ion current in this region. If this is the case then the (positise ion) curcent density at the cathode will be of the form

$$
\begin{equation*}
J=\frac{4 \varepsilon_{0}}{9} \sqrt{\frac{2 e}{M}} \frac{\nabla_{c}^{3 / 2}}{d^{2}} \tag{6.47}
\end{equation*}
$$

where V_{c} is the cathode fall of potential and d the distance over which this takes place. The length dis of the order of magnitude of, but somewhat less than, the distance at whith aparking occurs at the minfmum sparking potential, for the pressure in question. Although the details implied by this formula are not to be taken too seriously, it does give re= suits of the right order of magmitude for the normad current density, and dimensionaliy we must hare a dependence of this sort. Once the tube current exceeds the value $1=j a$ where j 18 the normal current density and A the cathode area we canmot have a normal glow discharge. The region of the abnomal glow now starts and the voltage drop across the tube increases with increasing current, as indicated by the portron Fein Figure 6.7. If the current be still further increased we quickiy pass through the (unstable) region $G H$ and into the low voltage arc. The situation here is quite different; the potential drop accoss the arc may be ever less than the ionization potential of the gas in the discharge tube so that, at first sight, one might think that a self-maintained dischasge could not exist. But the existence of metastable states and collisions of the second kind shows us that this situstion is indeed possibie. We will not go further into this subject at presert.
6.2 .2 The Langmuir Probe

Let us consider again the positive column, or plasma. We have noted that this is a region which is aimost electrically neutral, since the density of positive ions is practicaliy equal to the electron density. But the electrons, being much ilghter will diffuse more rapidiy through the gas. Consider
those electrons which diffuse wadiadiz to the walls of the tube. They wll cause the (G3ass) whll to become charged so that its potential is somewhet regative with respect to the plasma at each point. This negative potential difference will attract positime ions and since the net current to the wail must be zero the denaity of positiqe ions will be greater than that of the electrons since their velocity is much leas. The walls will thus be cowered with a sheath of electrons; that 1s, the net curcent to the walls 18 zero, but the wails carry a charge which is not zero. An analogous situation will hold for any surface in the region of the plasma. In pact, a corfining surface, such as the walls of the discharge tube is almost essential for the formation of a positive column. A positive column does not form if the low pressure discharge takes place in a large spherical enclosure. Rather, the discharge and ionization diffuse over the whole volume and the concentration of excited stoms becomes quite small, so that the Faraday Daric Space exteris almost to the anode, where the anode glow becomes more prominent than usual.

Suppose now that a probe, that is an auxiliasy electrode P, be inserted in the discharge as shown in pigure 6,8 ,

$$
\text { Vaditan inis } \delta_{t}=1 / 4 N_{T} e \overline{V_{T}}
$$

and that the current to the probe be measured as \& function of the potential difference η_{p} between the probe and cathode Let V^{3} be the potential in the plasma, measured with respect to the cathode, and let A be the area of the probe sumface. Suppose first that $V_{p} \leqslant \nabla^{\circ}$ so that the probe is highly negative with respeat to the plasma. Then the probe surface will be covered with a sheath of positive lons of thickness d_{s} and a space-charge-ilmited positive ion current will flow to the probe. The thickness d_{B} will depend on V - VP and the ion density in the plasma, but is generally in the range from a few terths to a fow millimeters. The current density of positive ions into this sheath is the random ion current density, It, and is equal to the ionic charge times the number of $10 n s$ crossing unit area per unit time. Thus we have from kinetic theory

$$
\begin{equation*}
J_{t}=\frac{1}{4} N_{t} \cdot \sigma_{t} \tag{6.48}
\end{equation*}
$$

where N_{ϕ} is the concentration of positive ions in the plasma and $\bar{\psi}+$ the mear speed of these lons, if the lons hawe $a \mathrm{Max}$ wellian distribution characterized by the temperature T_{f}. (This w112 be somewhat greater than the gas temperature in the discharge tube) Then

$$
\begin{equation*}
\bar{y}+\sqrt{\frac{8 K T}{\pi^{M}}} \tag{6.49}
\end{equation*}
$$

From kinetic theory and so

$$
\begin{equation*}
J_{\phi} 8 N_{+} e \sqrt{\frac{K T}{2 \pi M_{+}}} \tag{6.50}
\end{equation*}
$$

${ }^{\circ}+$ can be measured, but in general N_{+}and T_{+}are quantities we wish to determine. If we write

$$
\begin{equation*}
\nabla_{\mathrm{e}}=V^{\prime}-v_{p} \tag{6.51}
\end{equation*}
$$

then the current density in can be written

$$
\begin{equation*}
J_{t}=\frac{4 E_{0}}{9} \sqrt{\frac{2 e}{v_{4}}} \frac{v_{8}^{3 / 2}}{d_{3}^{2}} \tag{6.52}
\end{equation*}
$$

Suppose now that the probe potential, V_{p}, ba made more positive. Then a few of the faster mowing electrons will be able to peretrate the sheath, (which also becomes thinner with decreasing V_{S}), and the measured current will be reduced. The ion current will be unaffected at first but later, when V_{s} has changed sign, the slower lons will be repelled and the sheath will be one of electrons rather than positive ions. When V_{P} is highly positive with respect to V then only electrons can reach the probe and we have a space charge limited electron current across an electron sheath of thickness d_{s}. That is

$$
\begin{equation*}
=\frac{4 E_{0}}{9} \sqrt{\frac{2 e}{M}} \frac{\psi_{8}^{3 / 2}}{d_{8}^{2}} \tag{6.53}
\end{equation*}
$$

Wote that in both equations 6.52 and $6.53 \mathrm{~V}_{\mathrm{s}}$ denotes the magnitude of the sheath potential

$$
\begin{equation*}
J_{\infty}=\frac{3}{4} N_{-} e^{\bar{w}} \tag{6.54}
\end{equation*}
$$

where \bar{F}. 1 s the mean speed of the electrons and again, we have assumed a Maxwelilan energy distribution for the electrons, though their mean energy will generally be much larger than that of the ions. Hence the "electron temperature" will be much greater. If we denote it by T then

$$
\begin{equation*}
\bar{v}_{-}=\sqrt{\frac{8 \pi T}{\pi \pi}} \tag{6.55}
\end{equation*}
$$

80

$$
\begin{equation*}
J_{-}=N_{-} e \sqrt{\frac{K T}{2 T^{m}}} \tag{6.56}
\end{equation*}
$$

For values of the probe potential between the two extreme cases just considered the situation is more complicated, and this we now proceed to investigate. The curve in Figure 6.9 shows the current to the poobe as a function of the probe

Figure 6.9
Probe Current vs. Probe Potential
potential. The portion ab corresponds to the flrgt ease considered, namely a space-charge ilmited positive ion current, so that

$$
\begin{equation*}
I_{\phi} \Rightarrow A J_{\phi} \tag{6.57}
\end{equation*}
$$

where A is the probe area (actually the area of the outside surface of the positive ion sheath) and Jt is given by equation (6.50) or (6.52). The portion cod corresponds to the seconc case, a space-charge-limited electran cumrent, and.

$$
I_{-}=A J_{-}
$$

where is given as above. The portion of the curve just to the right of corresponds to the case where we age still collecting a positive ion current, but in addition some electrons are being collected. If we assume that the electrons in penetrating the positive ion sheath do not change their emergy distribution and do not alter the positive ion coneentration then the positive lom cusrent will be the same as before and by subtracting it of we can measure the electron curcent $I_{\text {e }}$ as indicated in the figure. Further, we can determine the energy distribution of the electrons producing the curcent since the electron current, Ie collected will be I. diminished by the effect of the retarding potential from the plasma through the sheath to the probe, that $i s$, the sheath potential. Thus

$$
\begin{equation*}
I_{e}=I_{-} e^{-V_{s} e / k T} \tag{6.59}
\end{equation*}
$$

or, on using equation (6.51) - $\left(v^{\prime}-u_{p}\right) e / k+$

$$
\begin{align*}
& I_{e}=I_{-} C \\
& I_{e}=I_{=} e^{-V^{6} / k T} \cdot \cdot e^{+V / V^{*} / k T} \tag{6.60}
\end{align*}
$$

Thus if we plot In $_{\text {I }}$ as a function of V_{p} we should obtain a stralght line of Blope e/k?, if the electrons have a Maxwellian distribution charecteristic of the temperature T.. (If the curve so obtained is not a straight Inc, within experimental error of course, it means that the disteribution is not Maxwellian). In particular the electron current will just equai the positive ion current, that is the probe current will be zero, for a certain probe potential V_{p} called the floating potential. It is the potential which an insulated probe would acquire if piaced in the plasma. This is easily read from the graph. But for this value of the probe potentiad the sheath potential is $V_{B}=V^{n}-V_{P^{\prime}}$ and so we must have

$$
\begin{equation*}
x_{\infty} x^{-\left(v^{2}-v_{F}\right) / k T} \tag{6,61}
\end{equation*}
$$

This equation enables us to determine γ, the piasme potemial aince $I_{t}, I_{\text {_ }}$ and V_{p} are determined directly and T, is given by equation $(6,60)$. Another, and perhaps more accurate way of determining $V{ }^{\prime}$ is indicated in the ifgure. This is to extrapolate the straight ine portion cd and the essentially stralght line porition where the current is rising sharpiy, un= ifi they intersect at $V_{p} V^{\prime}$. The positive ion temperatupes $T_{\text {t }}$ is yet to be determined. One procedure would be to take this to be the same as the gas temperature, though it is usuajly somewhat greater than this. In primoiple, we might follow a method analogous to that used to determine T. That 2s, the current measured beiow cd in the vicinity of the knee of the curve represents the positive ion current I dininished by the effect of the retarding potential. If we dersote this Ion current by I_{i} then

$$
\begin{equation*}
I_{1}=I_{*} e^{-V_{B} e / k T_{*}} \tag{6,62}
\end{equation*}
$$

Dr

$$
\begin{equation*}
I_{1}=I_{+} e^{\nabla g} e / k T_{+} e^{-V V_{p} e / k \gamma_{t}} \tag{6.63}
\end{equation*}
$$

so that, if we plot In I_{1} against V_{p} we should get a straight IIne of slope o/kT + Having deternined these quantities, we can row get the i on and electron concentrations erom equations (6.50) and $(6,56)$. Probe measuremente thus determine the following quantities: the plasma potential, the positive ion concentration, the electron concentration, the electron temperature, the random electron curcent denslty, the rendori ion cumbent density, and the Bloating potential.

GHAPTER VII. THE STATISTICAL BEHAVIOR OF ELECTRONS IN METALS (Ref. M. and S., Chapter IV)

7.1 The Experimental Basis for a new Statistics

In dealing with extremely dense assemblies of particles, such as the free or conduction electrons in a metal, it is necessary to resort to statistical methods; otherwise the mathematical complexity is imppssible to handle. One might at first think that the classical (Maxweil-Boltzmann) statistics for the particles of a gas might hold equally well for the electrons inside a metal, and indeed there is some justification for this point of view since the electrons emitted thermionically from a metal do obey M-B statistics. Th1s fact, however, ts fortuitous as we shall see later.

Measurements of the conductivity of metals, the slight dependence of the conductivity on small amounts of impurities and the high reflecting power of metals for light waves all lead to the conclusion that the number of free (conduction) electrons in a metal is about equal to the number of atoms; for light metals this is of the order of 5×10^{22} electrons per cc. On the basis of classical statistics each of these electrons should contribute $3 / 2 \mathrm{k}$ to the specific heat, \mathcal{C}_{w}. Experimentally the specific heat of metals is explained completely by the heat energy of the atoms, and the electrons are knownto contribute very little if any to the specific heat.

While the energy distribution of themionically emitted electrons seems to follow the M-B laws, the energy distribution of photoelectrically emitted electrons does not. On the basis of M-B statistics one would expect a spread in energy of the photoelectrons of about $3 / 2 \mathrm{kT}$ or $0.05 \mathrm{e} . \mathrm{v}$. at room temperature. Actually the energy spread is of the order of several volts (depending on the frequency of the 1ight). The scattering of electrons by single metallic crystals, the Davisson-Germer experimant; not only demonstrated the truth of the prediction by de Broglie that electrons have wave properties, and wavelengths $\Lambda=h / p$, but also showed that the binding energy of
electrons atnuetals was equal to the work function of the metal plus, 5 e. $y_{\text {. Classically, we should expect this }}$ binding energy to equal the work function plus $3 / 2 \mathrm{kT}$. Other experimental evidence such as the anomalous Hall effect and the emission of electrons by strong fields would not be explained classically.
7.2 The Theoretical Foundation for Quantum Statistics

The statistics which apply to free electrons in metals was derived independentiy by Permi and Dirac about 1925, The theoretical arguments used follow.

1) We shall assume that the electrons are in thermodynamic equilibrium with each other (this assumption is basic for any kind of atatistics) and with the atoms of the metal.
2) We shall assume that there are no ordinary forces, forces which depend on position only, acting on the electrons in the body of the metad, and hence that the potential energy 18 everywhere constant. There are, of course, forces at the surface which keep the electrons in the metal, but these forces may be handled independentiy of the statistics. (These forces for the moment may be regarded as strictiy analogous to the walls of a box containing gas molecules obeying the clasaical statistics.)
3) We shall assume that the most probable state corresponds exactly to the actual physical state.
4) We shall assume that the electrans obey the general laws of quantum mechanics which are: (a) Pauli Exclusion principle, (b) Heisenberg uncertainty prineiple, and (c) the principle that each electron is completely indistinguishable from every other electron.

Assumptions (1), (2) and (3) could lead equally well to Maxwell's fommiation of the classical statistics. It is our problem to introduce assumptions $4(a), 4(b)$ and $4(c)$ into the usual statistical procedure, in order to obtain the quantum (Fermi-Dirac) statistics.

7. 3 Cells and Phase Space

Let us consider the number of electrons n_{1} which fall into a particular quantum state chacterized by energy w_{1} in the small range $d w_{1}$. $\left\langle d_{1}\right.$ is perfectly arbitrary, but when we deal with large numbers of particles it can be treated exactly as a differential). We shall call g_{1} the number of states of energy w_{i} in the range $d w_{i}$ per unit volume of the metal. We can evaluate g_{1} by means of the Heisenberg uncertainty principle.

According to Heisenberg the minimum uncertainty in the simultaneous measurement of the momentum, p_{x}, and the posi$t i o n, x$, of a particle is of the order of Planck's constant,h; that is, $\Delta p_{x} \Delta x \cong h$. We can formulate this in three dimensions,

$$
\Delta p_{x} \Delta p_{y} \Delta p_{z} \Delta x \Delta y \Delta z \cong h^{3}
$$

Now since this is the limit of accuracy with which we can specify the state of a particle in posttion and momentum, we will assume that this is the size of the unit cell in the combined "space" of momenta and position coordinates. (This is generaliy called the "phase-space"). If the precision with which we intend to specify the particle 18 determined by the differentials $d p_{x}, d p_{y}, d p_{z}, d x, d y, d z$ then certainly the product $d p_{x} d p_{y} d p_{z} d x d y d z$ is sreater than h^{3}. The number of avallable celis in phase space is then just

$$
g_{1}^{\prime}=\frac{d p_{x} d p_{y} d p_{z} d x d y d z}{h^{3}}
$$

We should ilke to determine g_{1} in terms of the energy range $d w_{1}$ rether than the combined space-momentum range. To do this we first integrate over the space coordinates (nothing depends on x, y and z) obtaining

$$
\begin{equation*}
g_{1}^{\prime \prime}=\frac{V_{0}}{h^{3}} d p_{x} d p_{y} d p_{z} \tag{7.1}
\end{equation*}
$$

where V_{0} is the total volume of the metal we are considering. Now by equation (7.1) the cells are unifomily distributed
over momentum space, and the total momentump.

$$
\begin{equation*}
p^{2}=p_{x}^{2}+p_{y}^{2}+p_{z}^{2} \tag{7.2}
\end{equation*}
$$

Hence a sphere of radius p in momentum space is a surface of constant total momentum and the number of cells of momentum p in the range dp 18 just equal to the number of cells between two spherical surfaces of radil p and $p+d p$. This number of cells is equal to the "volume" of the spherical shell $4 \pi p^{2} d p$ multiplied by the density of states, V_{0} / h^{3}. Hence,

$$
\begin{equation*}
g_{1}^{\prime \prime \prime}=4 \pi p^{2} \frac{v_{0}}{h^{3}} d p \tag{7.3}
\end{equation*}
$$

In order to transform (7.3) to the desired form we need only remember

$$
\begin{aligned}
& w_{1}=\frac{p^{2}}{2 m}, p=\sqrt{2 m w_{1}} \\
& d w_{1}=\frac{p}{m} d p \\
& p^{2} d p=\left(2 m^{3}\right)^{\frac{3}{2}} w_{1}^{\frac{3}{2}} d w_{1}
\end{aligned}
$$

and hence, evaluating (7.3) in terms of energy w_{1}, we have

$$
g_{1}=\frac{2 \pi}{h^{3}}(2 m)^{3 / 2} w_{1}^{\frac{1}{2}} d w_{1}
$$

We have divided through by V_{0} since we originaliy defined g_{1} as the number of states per unit voiume of the metad. 7.4 The Femi-Dirac Statistics

Our problem now is to determine how to divide our particies among the various allowed cells. Statistically we wish to deternine the probability that n_{i} particles are in the state g_{1}. Now certainiy the probability that such a state exists iaproportional to the number of ways in which we can form that state, under the quantum mechanical conditions that no two particies can be in the same quantum state, and that
the particles are completely indistinguishable; that is, that exchanging particles A and B does not constitutc a new state.

Pauli principle as applied to metals states that no two electrons can occupy the same cell in momentum (or energy) space unless they have different spin quantum numbers. Since the spin quantum number has oniy two possible values this means that two and only two electrons can occupy the same cell in momentum space. Mathematically this is exactly the same as though we had doubled the number of cells available to the electrons, and we will redefine our g_{1} accordingiy, i.e.,

$$
\begin{equation*}
g_{1}=\frac{4 \pi}{h^{3}}(2 m)^{3 / 2} w_{1}^{\frac{1}{2}} d w_{1} \tag{7.4}
\end{equation*}
$$

A. We now inquire how many ways are there to divide n_{1} particies into g_{1} states. This clearly is the same as asiang how many ways are there to take g_{1} things n_{1} at a time, and we will set the probability, F_{1}, of this state proportional to this number, getting,

$$
\begin{equation*}
P_{1} \propto \frac{g_{1}!}{\left(g_{1}-n_{1}\right)!n_{1}} \tag{7.5}
\end{equation*}
$$

To see this let us use the following argument: if we have g_{1} things we can take any one of them in g_{1} different ways and so on until we have but $g_{1}-n_{1}+1$ left which we can take in one way only. The total number \mathcal{N}_{1} is the product of the individual numbers, and so,

$$
N_{1}=\left(g_{1}\right)\left(g_{1}-1\right)\left(g_{1}-2\right) \cdot\left(g_{1}-n_{1}+1\right)=\frac{g_{1}!}{\left(g_{1}-n_{1}\right)!}
$$

However, we have assumed that each of the n_{1} ways is distinguishable from any other way and this is the same as saying that the electrons are distinguishabie. To correct this we must realize that we must divide by the number of ways of taking n_{1} particies n_{1} at a time (assuming distinguishability). This is just n_{1} : and dividing N_{1} by this factor we have equation (7.5).

One is Boltzmann's theorem which states that the entropy of a system is proportional to the logarithm of the probability,

$$
s \equiv k \ln p
$$

This $1 s$ reasonable since the most probable state of a system is the state of greatest entropy by the second Law of Thermodynamics. Also since the probability of two events occuring simultaneously is just the product of the probabilities of each occuring independently, while the entropy of the sum of two systems is just the sum of the individual entropy, the logarithmic connection seems correct.

The second theorem we need is due to Stirling and
states that

$$
\ln n!\cong(n \cdot \ln (n)-n
$$

as 18 becomes very large.
Let us now return to equation (7.5) which gives the probability that n_{1} electrons will pe in the $1^{\text {th }}$ state with energy w_{1} in the range $d_{w_{1}}$. If we consider all the electrons in a system they can distribute themselves in many states of different wo The probability of any one state occuring for the system is then the product of the probabilities for all the individual states, hence

$$
P \propto T^{\frac{i}{n}} \frac{g_{1}!}{\left.n_{1}!\cdot g_{1}-n_{1}\right)!}
$$

and the entropy of this system $1 s$ then

$$
\begin{equation*}
s \propto \sum_{1}^{-a}\left\{\ln g_{1}:-\ln n_{1}:-\ln \left(g_{1}-n_{1}\right):\right\} \tag{7.6}
\end{equation*}
$$

applying Stirling's theorem
$s \propto \sum_{1}\left\{g_{1} \ln g_{1}-g_{1}-n_{1} \ln n_{1}+n_{1}-\left(g_{1}-n_{1}\right) \ln \left(g_{1}-n_{1}\right)+g_{1}-n_{1}\right\}$

$$
\begin{equation*}
s \propto \sum_{1}\left\{g_{1} \ln g_{1}-n_{1} \ln n_{1}-\left(g_{1}-n_{1}\right) \ln \left(g_{1}-n_{1}\right)\right\} \tag{7.7}
\end{equation*}
$$

Now the probability and the entropy are a maximum for
the most probable state. Hence, let us take a small variation in $S, \delta S$, as the individual $n_{1}{ }^{\prime} s$ change by δn_{1}, and set δS equal to zero for a maximum. The $g_{i}{ }^{\prime} s$ will remain constant as given by equation (7.4) as long as we keep $d w$, the energy range under consideration, constant.

$$
\begin{align*}
\delta_{S} \propto & \sum_{1}\left\{-\delta n_{1} \ln n_{1}-1+\delta n_{1} \ln \left(g_{1}-n_{1}\right)+1\right\}=0 \\
& \sum_{1}\left\{\ln \left(g_{1}-n_{1}\right)-\ln n_{1}\right\} \delta n_{1}=0 \tag{7.8}
\end{align*}
$$

We also require that the total number of particles $N=\sum_{i} n_{1}$, and the total energy $W=\sum_{1} n_{1} w_{1}$ remain constant and hence that $\delta \mathrm{N}$ and $\delta w=0$. Then,

$$
\begin{align*}
& \sum_{1}^{1} \delta n_{1}=0 \tag{7.9}\\
& \sum_{1} w_{1} \delta n_{1}=0 \tag{7.10}
\end{align*}
$$

We now use LaGrange ${ }^{\text {s } s \text { undetermined multipliers to }}$ aid our solution. Since all the summations are over the same index, 1 , and since δr_{1} is a common factor, let us multiply equation (7.9) by $-\alpha$ and (7.10) by $-\beta$ and add. $(\alpha$ and β will be determined later from the physical aspects of the problem.

$$
\begin{equation*}
\sum_{1}\left\{\ln \frac{g_{1}-n_{1}}{n_{i}}-\alpha-\beta w_{1}\right\} \delta n_{1}=0 \tag{7.11}
\end{equation*}
$$

Now the $\delta n_{i}{ }^{\prime} s$ are completely independent so we must require that each term in brackets is individually zero. Hence,

$$
\begin{equation*}
\ln \left(\frac{g_{1}}{n_{1}}-1\right)=\alpha+\beta w_{1} \tag{7.12}
\end{equation*}
$$

Rearranging terms and inverting the logarithm, we have,

$$
n_{1}=\frac{g_{1}}{1+e^{x+\beta} w_{1}}
$$

Now g_{1} is differential (or nearly so) and our notation should be changed to express n_{1} as differential 21so. Setting $n_{1}=n(w) d w$, dropping the subscripts, and using (7.4),

$$
\begin{equation*}
n(w) d w=\frac{4 \pi}{n^{3}}(2 m)^{3 / 2} \frac{w^{\frac{1}{2}} d w}{1+e^{d+B w}} \tag{7.13}
\end{equation*}
$$

si(w) dw is then the number of particles of energy w in the range dw per unit volume. $n(w)$ is the "density" function; that 1 s , it is the number of electrons of energy w per unit volume per unit energy range.

7.5 Determination of os and B

In order to determine β let us examine the behavior of equation (7.13) when of $+\beta w$ is appreciably greater than unity. The exponential is then much greater than 1 and we can rewrite equation (7.13) as approximately,
or

$$
\left.\begin{array}{l}
n(w) d w \cong_{A^{\frac{1}{2}}} \cdot e^{-(\alpha+\beta w)} d w \tag{7.14}\\
n(w) d w \cong_{A^{0}} w^{\frac{\pi}{2}} e^{-\beta w} d w
\end{array}\right\}
$$

where A and A° are constants. Now these expressions are of the same form as the corresponding M-B functions. We shall see later that one condition for $\alpha+\beta$ w being greater than 1 is that the density of the electrons is small. Physically we should expect electrons to obey M-B statistics if the density is small since the effect of the Pauli exclusion principle would be much less pronounced. I色 is reasonable then to assume that β has its classical value of $1 / \mathrm{kT}$.

Let us now set $\alpha=-W_{M} / k T$ and proceed to determine
W_{M}. Equation (7.13) becomes,

$$
\begin{equation*}
n(w) d w=\frac{4 \pi}{h^{3}}(2 m)^{3 / 2} \frac{w^{\frac{1}{2}} d w}{1+\exp \left(\frac{w-w}{k T}\right)} \tag{7.15}
\end{equation*}
$$

Let us evaluate $n(w)$ at the absolute zero of termperature. If we set $T=0$ in (7.15) the exponential is zero for $w<w_{M}$ and hence $n(w)$ is proportional to $w^{\frac{1}{2}}$. For $w>w_{M}$ the exponential term goes infinite and $n(w)$ drops sharply to zero. Hence, physically W_{M}, at absolute zero, is just the maximum energy of the electrons. Classically we should expact the energy of $a l l$ electrons at $T=0^{\circ} \mathrm{K}$ to be zero; Pauli principle dandies this.

At $0^{\circ} \mathrm{K} \mathrm{w}_{\mathrm{M}}$ is easily evaluated. Let us integrate $n(w)$ aw over all possible values of w. The integral of the left hand side of (7.15) is just N, the number of free electrons per unit volume. Because of the behavior of the exponential term at $0^{\circ} \mathrm{K}$, the integral of the right hand side is just,

$$
\frac{4 \pi}{h^{3}}(2 m)^{3 / 2} \int_{0}^{W_{M O}} w^{\frac{1}{2}} d w
$$

and hence

$$
N=\frac{8 \pi}{3 h^{3}}(2 m)^{3 / 2} w_{M O}^{3 / 2}
$$

Prom which

$$
\begin{equation*}
W_{M O}=\frac{h^{2}}{2 m}\left(\frac{3 N}{8 m}\right)^{2 / 3} \tag{7.16}
\end{equation*}
$$

where we have set $w_{M O}$ equal to the value of w_{M} at $T=0^{\circ} \mathrm{K}$. W_{M} can be evaluated at any value of T by integrating over (7.15) for T T. The result can be expressed as a power series in $\left(\frac{k T}{W_{M O}}\right)^{2}$, and 18 ,

$$
\begin{equation*}
w_{M}=w_{M O}\left\{1-\frac{\pi^{2}}{12}\left(\frac{k T}{w_{M O}}\right)^{2}+\ldots .\right\} \tag{7.17}
\end{equation*}
$$

For all real metals $w_{M O}$ is between 2 and $10 \mathrm{e} . v$. while kT is a few tenths of an electron volt even at elevated temperatures. Hence, w_{M} changes very ilttle even for wide ranges of temperature; the change in N due to expansion of the metal is certainiy as important as the temperature dependence in (7,27). For our purposes we can take W_{M} as constant and equal to wo°

The density function $n(w)$ is plotted in P1g. 7.la. The solid curve shows $n(w)$ at T ミO. The dotted curve is for a higher temperature; for real metals the dotted curve corresponds to T 鱼 $2500^{\circ} \mathrm{K}$.
7.6 Other Distribution Functions

Besides the density of electrons per unit energy range we should like to know the density per unit speed range or per unit velocity range. By a procedure similar to that of section 7.3 we can casily show that the distribution of elections with velocity components v_{x}, v_{y} and v_{z} in the range $d v_{x} d v_{y} d v_{z}$ is

$$
\begin{equation*}
n\left(v_{x}, v_{y}, v_{z}\right) d v_{x} d v_{y} d v_{z}=\frac{2 m^{3}}{h^{3}} \frac{d v_{x} d v_{y} d v_{z}}{1+\exp \left(\frac{W-W_{M}}{K I}\right)} \tag{7.18}
\end{equation*}
$$

and that the distribution of electrons with speed v in the range dv is

$$
\begin{equation*}
n(v) d v=\frac{8 \pi m^{3}}{h^{3}} \frac{v^{2} d v}{1+\exp \left(\frac{\mathrm{ET}}{\mathrm{EW}^{W}}\right)} \tag{7.19}
\end{equation*}
$$

In expressions (7.18) and (7.19) the functional dependence of w on the speed and velocities components is. understood:

$$
w=\frac{1}{2} m\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right)=\frac{1}{2} m v^{2}
$$

The density functions $n\left(v_{x}, v_{y}, v_{z}\right)$ and $n(v)$ are plotted against w in Fig. 7.1,b and c.

In the study of the emission of electrons from metals there is one other distribution function of some importance, namely, the function that gives us the distribution of electrons of particular velocity component v_{z} in the range dv_{z} with no restrictions on the values of the other two components of velocity. This function is certainly obtainable from (7.18) by integration over all possible values of v_{x} and v_{y}. Hence,

$$
\begin{aligned}
& n\left(v_{z}\right) d v_{z}=d v_{z} \int_{0}^{\infty} \int_{0}^{\infty} n\left(v_{x}, v_{y}, v_{z}\right) d v_{x} d v_{y} \\
& =d v_{z} \iint^{\infty} \frac{2 m^{3}}{n^{3}} \frac{d v_{x} d v_{y}}{1+\exp \left(\frac{\frac{1}{2} m\left(v_{x}^{2}+v_{y}^{2}+v_{y}^{2}\right)-w_{M}}{k T}\right)}
\end{aligned}
$$

In order to integrate this let us transform to polar coordinates such that

$$
\begin{aligned}
& \rho^{2}=v_{x}^{2}+v_{y}^{2} \\
& \rho^{d} \rho^{d} \rho \rho^{d v_{x}}{ }^{d v_{y}}
\end{aligned}
$$

We have then

$$
n\left(v_{z}\right) d v_{z}=d v_{z} \int_{0}^{\infty} \int_{0}^{2 \pi T^{2}} \frac{2 m^{3}}{h^{3}} \frac{\rho d \rho d p}{1+\exp \left(\frac{\frac{1}{2} m \rho^{2}+\frac{1}{2} m v_{z}^{2}-w_{M}}{k T}\right)}
$$

Integrating over Q, we have,

$$
n\left(v_{z}\right) d v_{z}=\frac{4 \pi m^{3}}{h^{3}} d v_{z} \int_{0}^{\infty} \frac{\rho d \rho}{1+\exp \left(\frac{\frac{1}{2} m \rho^{2}+\frac{1}{2} m v_{z}^{2}-w_{M}}{k T}\right)}
$$

Now let

$$
\begin{align*}
& \eta=\frac{\frac{1}{2} m \rho^{2}+\frac{1}{2} m v_{z}^{2}-w_{M}}{k T} \\
& d \eta=\frac{m}{k T} \rho d \rho \\
& n\left(v_{z}\right) d v_{z}=\frac{4 \pi m^{2}}{h^{3}} \times k T d v_{z} \int_{\gamma_{0}}^{\infty} \frac{d \eta}{1+e^{\eta}} \tag{7.20}
\end{align*}
$$

where

$$
\eta_{0}=\frac{\frac{1}{2} m v_{z}^{2}-w_{M}}{K T}
$$

The inderinite integral is stmaime and is given by

$$
\int \frac{d \eta}{1+e^{\eta}}=\int \frac{e^{-\eta} d^{\eta}}{1+e^{-\eta}}=-\ln \left(1+e^{-\eta}\right)
$$

and thorofore,

$$
\begin{equation*}
n\left(v_{z}\right) d v_{z}=\frac{4 \pi m^{2}}{n^{3}} \mathrm{kT} \operatorname{Cn}\left\{1+\exp \left(\frac{w_{M}-\frac{1}{2} m v_{z}^{2}}{n T}\right)\right\} \tag{7.21}
\end{equation*}
$$

The low temperature behavior of $n\left(v_{2}\right)$ can readily be seen. If T is very mmall then

$$
\frac{W_{M}-\frac{1}{2} m v_{z}^{2}}{K T}
$$

18 very large, except near $w_{M}=\frac{1}{2} \mathrm{mv}_{2}^{2}$, and we can certainly neglect the 1 in comparison to the exponential term. Equation (7.21) then becomes,

$$
n\left(v_{z}\right) d v_{z} \Xi \frac{4 \pi m^{2}}{h^{3}}\left(w_{M}-\frac{1}{2} m v_{z}^{2}\right) d v_{z}
$$

This function plotted against $\frac{1}{2} m v_{z}^{2}$ is shown in Fig. 7.1 (d) as the solid line; the dotted ilne shows $n\left(v_{z}\right)$ for temperature in the neighborhood of $2500^{\circ} \mathrm{K}$ for a real metal.

7.7 The Specific Heat of the Electron Gas

We may use the distribution functions to compute average values of energy, speed etc. For instance, the average value of the energy is just,

$$
\bar{w}=\frac{1}{N} \int_{0}^{\infty} w n(w) d w=\frac{\int_{0}^{\infty} w n(w) d w}{\int_{0}^{\infty} n(w) d w}
$$

At $0^{\circ} \mathrm{K}$ these integrals can be evaluated easily and we have

$$
\begin{equation*}
\bar{w} \overbrace{2}^{5} w_{\mathrm{MO}} \tag{7.22}
\end{equation*}
$$

At temperatures other than $0^{\circ} \mathrm{K}$ the integral can be evaluated with some difficulty by series expansion (see M. and S, Appendix IV) and the result to the firgt order in $\left(k T / w_{M O}\right)^{2} 18$,

$$
\begin{equation*}
\bar{w}=\frac{3}{5} w_{M O}\left\{1+\frac{5 \pi^{2}}{12}\left(\frac{k T}{w_{M O}}\right)^{2}\right\} \tag{7.23}
\end{equation*}
$$

Since $W_{M O}$ is of the order of $5 \mathrm{e} . \mathrm{v}$. and kT is about 0.03 e.v. (for room temperatures) the correction term in (7.23) is about 2 part in 5000 or 0.02% 。

The specific heat per free electron is then

$$
c_{v}=\frac{d w}{d T}=\frac{\pi^{2}}{2} k\left(\frac{k T}{w_{M O}}\right)
$$

At room temperatures this is about 2∞ of the classical value of ($3 /$ akc. Hence, although the $F-D$ statistics gives a much higher average energy of the electrons, the temperature dependence is extremely low, and agrees with the experimental observation that the electron gas does not contribute to the specific heat.

The experimental fact that thermionically emitted electrons obey M-B statistics can be readily understood. These electrons evidentally come from the high energy region (high temperature tail) of the $P-D$ distribution. It is here that the exponential term in (7.15) predominates and the distribution of emitted electrons is of the form of (7.14).

If we now re-examine the facts regarding the photoelectric energy distribution and the large potential energy demanded by the Davisson-Germer experiment we see that the large spread in energy of the free electrons in the metal, required by the $\mathrm{F}-\mathrm{D}$ statistics, agrees with the experimental facts.

8.1 The Metalilc Model

In order to fix our ideas about metals we must make some assumptions about the electric flelds and potentials existing at the surface and in the body of the metal. In deriving the $\mathrm{F}-\mathrm{D}$ statistics we have already assumed that no forces act on the electrons in the body of the metal; that 1s, that the potential energy of the electrons is constant inside the metal. That this is not too bad an assumption, especially for emission problems, is amply proved by experiment. Of course, a detailed examination of the atomic structure of the metal shows that this assumption is untrue. However, the mathematics for dealing with a more exact model becomes hopelessly complicated.

Having decided upon a workable assumption for the imterior of the metal we must now consider the forces on the electron very near the surface of the metal. Certainly there are strong forces at the surface; otherwise the electrons would readily escape and we know that they do not escppe except at elevated temperatures or when subjected to other strong stimull such as illumination by light of high-frequency, high electric flelds, etc. The simplest assumption, and one serviceable for some purposes, 18 that there is a discontinuity in potential at the surface, the "square barrier". A somewhat better assumption, and one which is completely confirmed experinentally from about 50 A on out, is the image field barrier. That is, we know that a charge, ee, situated at a distance z from a large metal surface, is acted upon by an image force equal to $-e^{2} / 16 \pi \varepsilon_{0} z^{2}$ (directed toward the surface).

A potential energy can be associated with this force and is equal to $-e / 16 \pi \varepsilon_{0} z$. If we arbitrarily set the potential energy at large distances from the metal equal to zero; and set the constant value inside- the metal equal to m , there exista some uncertainty about the exact value of z at the surface, since according to the 1mage force law we should have an infinity at $z=0$. Let us arbitrarily define z_{0} as the point at which the image potential energy becomes equal to the constant
value $-W_{B}$. We have

$$
-W_{B}=\frac{-e^{2}}{16 \pi \varepsilon_{0}^{2} 0}
$$

From which

$$
z_{0}=\frac{e^{2}}{16 \pi \varepsilon_{0}^{W} \mathrm{~B}}=.36 \times 10^{-10} \mathrm{~m}=.36 \mathrm{~A}
$$

for $W_{B}=10$ e.v.
Hence, the error we can make in allowing the potential energy to become constant at $z=z_{0}=36 \mathrm{~A}$ is small in dealing with distances frmm the surface of 10 A or greater. The potent$1 a l$ energy as a function of z for both the image barrier and square barrier is shown in Fig. 8.1.

F1g. 8.1
Hence for the square barrier

$$
U s-W_{B}, \quad z<z_{0}, U=0, \quad z>z_{0}
$$

and for the image barrier

$$
U=-W_{B^{\prime}}, z<z_{0}, U=-\frac{e^{2}}{16 \pi \varepsilon_{0} z}, z>z_{0}
$$

We can also show the distribution of the electrons in energy (for convenience at $T=0^{\circ} \mathrm{K}$) on such a plot as shown
in Figure 8.2. In Figure $8.2(a)$ the density of electrons in indicated by the density of the ilnes. In Figure $8.2(\mathrm{~b})$ the density is indicated by plotting $n(w)$ to scale:

Pigure 8.2
For our purposes we shall suppose that the image field barrier correctly represents the facts, and modify this supposition where necessary.
8.2 Thermionic Emission

In order to obtain an expression for the emission of electrons by temperature excitation, we must calculate the number of electrons which have energies large enough, and velocities so directed, that they may surmount the potential barrier at the surfiace. Since the surface is perpendicular to the z direction, and the image force and potential barrier is in the z direction, we are cleariy interested in the number of electrons for which

$$
v_{z}>\sqrt{\frac{2 W_{B}}{m}}
$$

However, let us consider one point; we are interested
in a current, not a charge density. Hence, the number of electrons per unit volume, as given by equation (7.21), having velocity component v_{z} in the range dv_{z} is not the right function. Rather we want the number of electrons per second coming to unit area of the surface with velocity com ponent v_{z} in the range $d v_{z}$. If we call this function $n^{\prime}\left(v_{z}\right) d v_{z}$ it is related to $n\left(v_{z}\right) d v_{z}$ by,

$$
\begin{equation*}
n^{v}\left(v_{z}\right) d v_{z}=v_{z} \cdot n\left(v_{z}\right) d v_{z} \tag{8.1}
\end{equation*}
$$

In order to oder to see this consider all the electrons having velocity components between v_{z} and $\nabla_{z}+d v_{z}$ in the volume of length ψ_{z} (numerically) and unit cross-sectional area, as shown in Figure 8.3.

Figure 8.3
Clearly 211 of the electrons in this volume will arrive at unit area of the surface per second, and it remains to evaluate those which can escape from the metal and contribute to the thermionic current. The thermionic current density is then

$$
\begin{equation*}
J_{T H}=e \int_{\sqrt{\frac{2 W_{B}}{m}}}^{n^{\prime}\left(v_{z}\right) d v_{z}}=e \int_{\sqrt{\frac{2 W_{B}}{m}}}^{\infty} v_{z} \cdot n\left(v_{z}\right) d v_{z} \tag{8.2}
\end{equation*}
$$

Using equation (7.21),

$$
\begin{equation*}
J_{T H}=\frac{4 \pi m^{2} e}{n^{3}} \mathrm{kT} \int_{\sqrt{\frac{2 W_{B}}{m}} v_{z} \ln \left\{1+\exp \left(\frac{w_{i n}-\frac{1}{2} m v_{z}}{k T}\right)\right\} d v_{z} . \infty .} \tag{83}
\end{equation*}
$$

This would be a rather formidable integral were it not known experimentally that those electrons which can escape (for which $\frac{1}{2} m v_{z}^{2}>W_{B}$) have values for $\frac{1}{2} m v_{z}^{2}$ about $2-6$ e.v. greater than W_{m}. Hence even for $T \& 2900 \mathrm{~K}$,

$$
\frac{w_{\text {渞 }}-\frac{1}{2} m v_{z}^{2}}{K T} \approx-8
$$

or smaller. Hence, the exponential in the logarithmic term is small compared to 1. Recalling that

$$
\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3} \ldots \text { for } x \leqslant 1
$$

we can replace the logarithmic term in (8.3) by

$$
\exp \left(\frac{W_{M}-\frac{2}{2} m v_{z}^{2}}{E T}\right)
$$

and the first neglected term is $\frac{1}{2} \mathrm{e}^{-8}$ or roughly 10^{-4} times as large as this term. Hence we can write,

$$
\begin{equation*}
J_{T H}=\frac{4 \pi m^{2} e k T}{h^{3}} \int_{z}^{\infty} v_{z} \exp \left(\frac{w_{M}-\frac{1}{2} m v_{z}^{2}}{k T}\right) d w_{z} \tag{8.4}
\end{equation*}
$$

Setting

$$
\begin{aligned}
u & =\frac{w-\frac{1}{2} m v_{z}^{2}}{K T} \\
d u & =\frac{-m}{k T} v_{z} d v_{z}
\end{aligned}
$$

(8.4) becomes

$$
J_{T H}=\frac{4 m m_{k}^{2}}{h^{3}} \int_{\infty}^{\left.f_{B}-w_{T}\right) / k T} e^{u} d u
$$

the value of which is

$$
\begin{equation*}
J_{T H}=\frac{4 \pi m e k^{2}}{h^{3}} T^{2} e^{-\frac{W_{B}-w_{M}}{T}} \tag{8.5}
\end{equation*}
$$

Setting $A_{0}=\frac{4 \pi \text { mek }{ }^{2}}{h^{3}}$ and $\frac{W_{B}-w_{M}}{e}=\varphi$
we have a well-known relation generally called the Richardson equation.

$$
\begin{equation*}
J_{T H}=A_{0} T^{2} e^{-\frac{q}{E T}} \tag{8.6}
\end{equation*}
$$

φ is called the woris function, and $e \varphi$ is clearly the minimum energy which must be added to an electron at $0^{\circ} \mathrm{K}$ in order for it to escape from a metal.

In order to test this equation against experiment, we can plot the experimental values of $\log _{10} \frac{\mathrm{TH}}{\mathrm{T}^{2}}$ against $\frac{3}{\mathrm{~T}}$. The experimental points should fall on a straitht line of slope $-.4343 \varphi \frac{0}{\mathrm{~K}}$ and should intercept the vertical axis at $\log _{10^{A}} O^{\circ}$ This serves to determine the value of ϕ, which carrnot be predicted by statistical means. However, A_{0} depends only on universal constants and should equal $1.2 \times 10^{6} \mathrm{mp} / \mathrm{m}^{2}-\mathrm{deg}^{2}$ or $120 \mathrm{mp} / \mathrm{cm}^{2}-\mathrm{deg}^{2}$. Beperimentally this value is seldon, if ever, attained for clean metals. The value of 60 is obtained for pure tungsten and several other metals, values of A between 30 and 200 have been reliably observed for many metals.

8.3 Departures of A from Theoretical

Since the value $A_{0}=120 \mathrm{amp} / \mathrm{cm}^{2}-\mathrm{deg}^{2}$ is not obtained experimentaily it will be better to rewrite our equation (8.6) as,

$$
\begin{equation*}
J_{T H}=A T^{2} e^{-\phi e / k T} \tag{8.7}
\end{equation*}
$$

where A is the experimental value and since $e / k=11,600^{\circ} \mathrm{K} /$ volt it is sometimes convenient to write

$$
\begin{equation*}
J_{T H}=A T^{2} e^{-b / T} \tag{8.8}
\end{equation*}
$$

where b 11,600 \varnothing.
Previous to the develonment nf the quantum (Remi Dirac) statistics in addition to the equation (8.8) another form of Richardoon ${ }^{18}$ equation was in vogue, namely,

$$
\begin{equation*}
J_{T H}=A T^{\frac{1}{2}} \cdot e^{-b / T} \tag{8.9}
\end{equation*}
$$

Experimentally, it is difficult, or impossible, to determine whether the T^{2} term of $(8,8)$ or the $T^{\frac{1}{2}}$ term of (8.9) is correct. This seems strange until we realize that the termperature dependence of the exponential term is so atrong that varlations in thermionic emission due to the $T^{\frac{1}{2}}$ or T^{2} tem are rether well masked over the range of temperatmre and types of metals avalalble to us. The T^{2} term is generally used because of $1 t s$ basio in quantum theory.

Just before the introduction of $F-D$ statistics a quantum theory of themionic emission was developed which led to the same form as equation (8.8), but the value of 60 mp / $\mathrm{cm}^{2}-\mathrm{deg}^{2}$. This deriation came about because the effect of electron spin was not fully realized. (Compare the factor 2 in equation (7.18)). But because several metals gave values of $A=60$ and none gave $A=120$ the validity of the quantum statistics in this application was suspect for sometime. Nowadays it is generaliy believed that the experimental yalues of 60 are completely fortultous.

If this is indeed the case we must ask ourselves why the theory does not give the observed values of A. There are at least three independent, and probably equally valid, reasons why this is possible, and probabiy combinations of these three effects are present for all metals.
8.3.1 Tempereture Dependence of Work Function.

The most intellectually pleasing reason for $A \neq 120$ is the temperature dependence of the work function. Since metals undergo changes of volume and of crystal structure with changes in temperature we might reasonably expect that the work function should also depend (slightly at least) on T. Setting

$$
\varphi=\varphi_{0}+\alpha T
$$

in equation (8.6) we have

$$
J_{T H}=A_{0} T^{2} e^{-\left(\varphi_{0}+\alpha T\right) e / k T}=\left(A_{0} e^{-\alpha e / k}\right) \mathrm{T}^{2} e^{-\rho_{0} e / k T}
$$

The constant in front is then what we would measure as A and φ_{0} is what we would measure as the work function. For $A=\frac{1}{2} A_{0}=60$, we have

$$
\begin{aligned}
& e^{-\alpha e / k}=\frac{1}{2} \\
& e^{-11,600 \alpha}=\frac{1}{2}
\end{aligned}
$$

or

$$
\alpha \approx 10^{-4} / 0 \mathrm{~K}
$$

a reasonable value. Further this effect would explain values of $A>120$ since α could be negative.

8.3.2. Reflection of Electrons at Surface

Classically, electrons having sufficient energy to climb the barrier at the surface will assuredly contribute to themionic emission. On the basis of quantum theory this is not strictiy true; since the electrons have wave properties there is always a chance that some of them will be reflected at the surface and hence. will not leave the metal. If the percentage reflected is r, and if r is independent of v_{z}, we would have to modify A_{0} by

$$
A=A_{0}(1-r)
$$

This can expiain measured values of A less than 220 , but not greater.

We cannot compute r by statistical means, but only by the methods of quantum theory. Strangely, the image barrier can produce but littie reflection; the square barrier appreciable. In fact any potential barrier that varies more rapidly than $\frac{1}{z}$ (the image potential) can produce large reflection. Since there is independent evidence of the existance of reflection, it may be that the field varies rapidiy near the surface but becomes similar to the image field at distances greater than several atomic diameters.

8.3.3. Effect of Patchiness of the Surface.

Perhaps the most important effect is the fact that no metal surface is completely uniform. Even if the surface is free of impurities different crystal faces more than likely have different work functions. Hence our experimental curve should be the sum of several curves such as given by equation (8.6), and although actually a curved line rather than a straight line results from a plot of $\log _{10} \frac{I_{T}}{T}$ vs. $\frac{1}{T}$ it is not difficult to see that over a ilmited range of T the composite curve should look like a straight ilne. Because the work function appears in exponential, the dominating term, we would in general measure the work function of the surface of lowest work function, but the measured value of A would very likely be less than 120 .

8.4 Energies of Escaped Electrons

We should expect that the emitted electrons would follow a Maxwell-Boltamann distribution and indeed measurements confim this. The resenn for this is that the emitted electrons all. come from the top of the distribution curve where the exponential term is large. For this case the 2 that occurs in the denominator for most of the $P-D$ functions can be neglected compared to the exponential, and hence the form reduces to the M-B case as was shown in Section 7.5.

Very careful measurement by Nottinghanm and others
have shown that the observed curve differs somewhat from the predicted curve. If one takes the ratio of the observed to the predicted distribution function $n\left(v_{z}\right)$ for various values of v_{z}, and calls this ratio $r\left(v_{z}\right)$ one determines the reflection coefficient of the barrier for electrons of specific velocity perpendicular to the surface. The results thus obtained for $r\left(v_{z}\right)$ are similar to those predicted by the square barrier; actually one need only assume a barrier varying more rapidiy than $1 / z$. The experimental side of measuring energy distribution will be left to the discussion of the photoelectric effect.

Since the electrons come from the tail of the distribution function, and since this tail has M-B charactaristics one could expect that the aserage energy of the escaping electrons is of the order of kT . Exact analysis shows this average energy is 2 kT . Since this represents energy carried away from the surface of amount

$$
P_{0}=\frac{J_{T H}}{e} 2 k T \quad \text { watts } / \mathrm{m}^{2}
$$

which is numerically equal to about 4×10^{-2} watts/cm ${ }^{2}$, for $T=2000^{\circ} \mathrm{K}$ and $J=100 \mathrm{ma} / \mathrm{cm}$, this energy transport should produce a definite cooling of the cathode. Such a cooling effect has been confirmed experimentally.

8.5 Contact Potential Difference

It has been a long estabiished experimental fact that if we place two dissimilar metals in contact, there w11llbe a difference of potential between their faces which are not in contact. This is called the contact potential difference, CPD. Experimentally, we know that this difference is the same always for two given metals, A and B. Experimentally, let us form a condenser by placing two metal plates A and B a very small distance apart and let us connect them through a light flexible wire andaa ballistic galvanometer as shown in Pigure 8.4.

Now if a CPD exists charge will be induced on the

Pigure 8.4

condenser plates of amount

$$
Q=C_{0}(C P D)
$$

where C_{0} is the capacity of the platas. If now one plate is suddenly pulled away from the other plate, the capacity drops to almost zero and the charge Q will flow through the galvanemeter. The CPD thus determined is of the order of a volt ($0-3$ volts) for all dissimilar metal pairs.

Our model of a metal leads to an explanation of this phenomenon. Let us consider the function where the two metals make contact, and let us assume that the temperature is quite low. We know that if we apply only a slight potential difference ackoss this junction electrons (currents) flow freely pver it. Hence, there is no force at the barrier large enough to prevent electron flow. However, the electrons in the metal have varying kinetic energies from zero to several e.v., and by Pauli Principle only those at the top of theF-D distribution can take up small amounts of energy from an applied electelc field. (Those electrons below the top of the $F-D$ distribution
cannot acquire energy by increments ince the allowed energy states just above them are already filled). Therefore, there can be a force at the contact providing the potential energy difference due to this force does not exceed w_{M} for either metal. Let us call this potential energy difference ΔU. The potential energy situation at the junction is iliustrated in Figure $8.5(2)$, where the subscripts A and B refer to the

Figure 8.5
different metais and we have set the potential energy outside metal A equal to zero.

If we take the z diretion as normal to the junction the energy conservation law states

$$
\begin{equation*}
\frac{1}{2} m v_{z A}^{2}=\frac{1}{2} m v_{z B}^{2}+\Delta U \tag{8.10}
\end{equation*}
$$

When no electric field is applied across the junction we know that no net current flows and hence the number of electrons per unit area per sec. leaving A for B must just equal the number of electrons leaving B for A. But since

Pauli P principle applies in both A and B an electron of one particular $V_{2 A}$ leaving metal A must be repiaced by an electron from metal B which will have the same $V_{z A}$ in metal $A ; i . e$. equation (8.10) will hold. Now this condition can be fulfilled if, and only if, we have

$$
n_{A}^{g}\left(v_{z A}\right) d v_{z A}=n_{B}^{g}\left(v_{z B}\right) d v_{z B}
$$

or

$$
\begin{equation*}
v_{z A} n_{A}\left(v_{z A}\right) d v_{z A}=v_{z B} n_{B}\left(v_{z B}\right) d v_{z B} \tag{8.11}
\end{equation*}
$$

That is, the number of electrons of velocity component $v_{z A}$ in the range $d v_{z A}$ coming to unit area of surface A per second must just equel the number of electrons of velocity component $v_{z B}$ in the range $d v_{z B}$ coming to unit area of surface B per second, where the conservation law (8.10) relates ${ }_{z A}$ and $v_{z B}$.

Taking the differential of (8.10) and remembering thet ΔU is a constant we have,

$$
v_{z A} d v_{z A}=v_{z B} d v_{z B}
$$

Combining this result with (8.12), we have

$$
\begin{equation*}
n_{A}\left(v_{z A}\right)=n_{B}\left(v_{z B}\right) \tag{8.12}
\end{equation*}
$$

Now (8.12) need only be satisfied for these electrons which can be exchanged for energy reasons, $1 . e .$, for those in which

$$
\frac{1}{2} m v_{z A}^{2}>\Delta U
$$

Equation (8.12) can only be satisfied if the electrons in both metals at the top of the Fermi band have exactiy the same potential energy relative to infinity, Plotting $n\left(y_{z}\right)$ for both metals on our energy diagram $\wedge^{\text {is }}$ iliustrated in Fig. 8.5(b). Because of this an electron just outside metal B has its potential energy relative to infinity depressed by an mount just equal to the difference in the work function, i.e.

$$
C P D=\varphi_{\dot{A}}-\varphi_{B}
$$

The algebraic sign of the contact potential difference is such that the electrons just outside the metal of lower work function are at a lower potential energy than the electrons just outside the metal of higher work function. That is to say that electrons leaving a metal of work function \varnothing_{B} will be retarded by a potential $\phi_{A}-\varnothing_{B}$, where ϕ_{A} is the work function of the collector. In the usual experimental set-up the emitter has a lower work function than the collector and the CPD is therefore a.retarding potential.

8.6 The Effect of Retarding Fields

If an electric field 18 applied such that the potential of the collector is lower than that of the emitter, electrons leaving the emitter will be acted upon by a force tending to return them to the emitter. Fig. 8.6 illustrates the potential energy situation for this case.

Pigure 8.6

The net effect of the applied retarding field is to raise the height of the potential energy barrier over which the electrons must climb. Hence if V_{A}, the applied potential, is retarding, the net effect is to increase the work function by an amount V_{A}. Hence, in Richardson ${ }^{\prime} s$ equation (8.7) we should replace ϕ by $\phi+V_{A}$ and obtain
$-\frac{\mathrm{eV}_{A}}{\mathrm{KT}}$

$$
J=J_{T H}
$$

where $J_{T H}$ is the saturation (zero field) electron current.
Retarding potential methods may be made use of in determining the energy distribution of the emitted electrons. If we have parallel plate geometry and take z as the direction perpendicular to the plates, then the current $J(V)$ measured at a particular retarding potential V represents the current due to all electrons which satisfy the condition.

$$
\begin{equation*}
\frac{1}{2} m v_{z}^{j^{2}} \geqslant v e \tag{8.13}
\end{equation*}
$$

where v_{z}^{\prime} is the velocity component outside the metal. Hence if $n\left(v_{z}^{g}\right) d v_{z}^{\prime}$ represents the distribution function in v_{z}^{\prime} outside the metal

$$
\begin{equation*}
I(v)=e \int_{\sqrt{\frac{2 e v}{m}}}^{\infty} v_{z}^{0} n\left(v_{z}^{i}\right) d v_{z}^{i} \tag{8.14}
\end{equation*}
$$

is the current due to electrons for which (8.13) is satisfied. It can be shown that

$$
n\left(V_{z}^{\eta}\right)=-\frac{d I(V)}{d V}
$$

where v_{z} and V are functionaliy related by $\frac{1}{2} \mathrm{mv}_{\mathrm{z}}{ }^{2}=V e$. If concentric spherical geometry is used and if the emitter is small compared to the collector, one can measure the total energy (or speed) distribution function.
8.7 The sffect of Accelerating Fields

Schottiky Effect

If one applies a field which is favorable to electron emission the situation is not as simple as an additive (or subtractive) change in work function. Fig. 8.7 shows the potential energy diagram for this case.

Figure 8.7
The figure illustrates (to an exaggerated scale) the fact that the potential energy barrier at the surface of the metal is reduced, but not by the amount of the applied potential. In fact the reduction of work function 18 very small, but not unimportant. To compute this reduction let us assume that the geometry 18 plane parallel so that the applied potential energy is,

$$
\mathrm{eV}_{\mathrm{A}}=-\mathrm{e} \cdot \mathrm{E}_{\mathrm{A}} z
$$

where E_{A} is the magnitude of the applied uniform field. The image barrier is

$$
u=\frac{-e^{2}}{16 \pi \varepsilon_{0}^{2}}
$$

and the net potential energy is

$$
\begin{equation*}
v_{S}=-e E_{A} z-\frac{e^{2}}{16 \pi \varepsilon_{0} z} \tag{8.15}
\end{equation*}
$$

To determine $\Delta \phi$, the lowering of the work function, we must compute the maximum value of the combined potential energy, $\Delta \phi$ e. Differentiating U_{S} with respect to z and setting equal to zero

$$
\frac{d U_{S}}{d}=-e \cdot E_{A}+\frac{e^{2}}{16 \pi \varepsilon_{0} z^{2}} 0
$$

or

$$
z_{m}=\sqrt{\frac{e}{16 \pi^{\varepsilon} \varepsilon_{0 E_{A}}}}
$$

for maximum. Therefore,

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{S}(\text { max })}=-2 \cdot \sqrt{\frac{e E_{\mathrm{A}}}{16 \pi \varepsilon_{0}}} \\
& \Delta \phi \mathrm{~d}=\mathrm{U}_{\mathrm{S}(\text { max })}=-2 e \sqrt{\frac{e E_{A}}{16 \pi \varepsilon_{0}}} \\
& \Delta \phi=-\sqrt{\frac{e}{4 \pi \varepsilon_{o}}} \cdot E_{\mathrm{A}}^{\frac{2}{2}}=-3.79 \times 10^{-5} \mathrm{E}_{\mathrm{A}}^{\frac{1}{A}}
\end{aligned}
$$

Hence, for an applied field of $10^{6} \mathrm{volts} / \mathrm{m}$ the lowering of the work function is only about .04 voit. However, this amall charge of work function can produce large changes in the emission current. If in equation (8.7) we
replace ϕ by $\phi+\Delta \varphi$ we have

$$
\begin{equation*}
J=J_{T H} \tag{kT}
\end{equation*}
$$

but

$$
-\Delta \varnothing \frac{e}{k}=3.79 \times 10^{-5} \times 11,600 \mathrm{E}_{A}^{\frac{1}{2}}=.44 \mathrm{E}_{A}^{\frac{1}{2}}
$$

Hence,

$$
\begin{equation*}
J=J_{T H} \cdot \frac{.44 E_{A}^{\frac{1}{2}}}{T} \tag{8.16}
\end{equation*}
$$

The validity of this theory, first given by Schottky, can be tested by plotting the logarithm of the emission current against the square root of the applied field (or of the applied voltage for constant geometry). A stralght line of slope $\frac{.44}{T}$ should result. This is actually the case clean metal surfaces and Schottky's theory is amply justipled. In fact, the best measurements of saturation currents are made by means of this theory.

As the temperature of a cathode is raised the emission current density becomes large and space charge effects become appreciable. Hence, one must go to high velues of applied potential before collecting all the thermionically emitted electrons. But in going to high potentials one has enhanced the emission by Schottky effect. The only escape is to go to still higher potentials, and then to make a Schottky plot of \ln J vs. $\mathrm{E}_{\mathrm{A}}^{\frac{2}{2}}$. By extropolating this back to zero applied field, neglecting the data in the space charge limited region, one arrives at the true value of the saturation current.

8.8 Field Emission (Cold emmission)

If one goes to appiled fields of the order of 10^{7} volts $/ m$ and greater, one finds that the emission is much greater than that predicted by schottky theory. In fact even if the temperature is very low, appreciable emission is observed. Such an effect has no explanation on the basis of classical theory but
can be explained if one considers the wave properties of the electrons. Under very strong fields the potential energy diagram at the surface of the metal looks something like the diagram of Fig. 8.8. (Still somewhat exaggerated). The Fermi levels of the free electrons are indicated on the diagram for a very low temperature.

Figure 8.8
Classically the electrons do not have enough energy to surmount the barrier and hence could not escape from the metal. However, electrons with wave properties have a finite chance of penetrating the barrier, from A to B for the most energetic electrons, and appearing outside the metal. Such an effect is called the tunnel effect, for obvious reasons and the detailed theory is due to Fowier and Nordheim. The resulting current density is predicted as,

$$
J=C \cdot E_{A}^{2} e^{-\frac{D}{E_{A}}}, a m p s / m^{2}
$$

where the applied field E_{A} plays a role analogous to that of
the temperature in thermionic emission. The constants C and D are dependent on the particular metal and are

$$
\begin{aligned}
& C=\frac{6.2 \times 10^{-6}}{W_{B}}\left(\frac{W_{M}}{\phi}\right)^{\frac{1}{2}} \quad \mathrm{amps} / \mathrm{volt}^{2} \\
& D=6.8 \times 10^{9} \phi^{3 / 2} \quad \text { volts } / \mathrm{m}
\end{aligned}
$$

where W_{B} snf w_{M} are in units of electron volts.

8.9 Secondary Imission

If a metaliic surface (or insulator for that matter) is bombarded by electrons, one finds that secondary electrons are emitted by the surface, and that this effect is essentially independent of the temperature. Some of the electrons have energies equal to the primary electron and are truly reflected electrons, but for the most part the secondary electrons have energies of the order of 5 e.v., independent of the energy of the primaries. Purthermore, at primary electron energies around 500 e.v. the number of secondaries is about twice the number of primaries for most metals. For Beryllium, or more properly for Beryllium with a thin oxide film, the number of secondaries can reach 4 or 5 times the number of primaries.

The explanation of this effect must be due to succeasive momentum transfer. A primary electron strizes several of the electrons in the metal and imparts momentum to them, but in a direction away from the surface. These electrons can, however, strike the atoms of the crystal lattice and bounce back, retaining the additional energy received from the primary electron. If this energy is greater than the barrier potential energy the electrons can escape from the metal.

This point of view is strengthened by experiments which have measured the secondary emission as a function of the angle of incidence of the primary beam. These experiments show that the component of velocity perpendicular to the surface is the determining element for secondary emission. Similar results are obtained when heavy particles (say protons) are used in the primary beam. Howerer, tie energy of primary electrons for maximum emission ratio is
about 1000 times higher (of the order of the mass ratio) which ilso confirms the momentum transfer point of view.

8.10 Photoelectric Emission

When metals are illuminated with visible or ultra violet light they emit electrons. This effect was discovered in the late l9th century by Hallwachs, who observed that metals, when subjected to ultraviolet radiation, became positively charged to a few volts. The number of emitted photoelectrons is strictly proportional to the intensity of the light at a given frequency; but the photo current 18 strongly frequency dependent. The shape of the energy distribution of the emitted electrons depends only on the frequency of the light, and not at all on the intensity, a fact that was completely at odds with classical theory.

Typical experimental curves for the emission from a clean surface of sodium are shown. Fig. 8.9(a) shows the total (saturation) photoelectilc current per unit incident intensity as function of frequency. F1g. 8.9(b) 111ustrates the distribution in total energy of the emitted photoelectrons at a single frequency

Fig. 8.9(a)

F1g. 8.9(b)

The general explanation of these results can be obtained from our statistical model of a metal; for a detailed explanation we must use the methods of quantum mechanics. Consider the energy diagram for the electrons near the surface of the metal at a low temperature, in Fig. 8.10.

Fig. 8.10
The free electrons cannot absorb quanta (see section 5.2A) and hence onjy those electrons near the surface, the cross hatched area, can absorb light since such electrons are bound by the image force. Actually, most of the absorption of light near the visible by metals is due to these surface electrons, but only a small proportion of the absorption leads to photoelectrons. From our diagram, if the metal is illuminated by light of frequency P such that $h f<\phi e$, it is apparent that the energy transfer to the Fermi electrons is insufficient to permit their escape. If, however, hf $>$ ゆe it is still unlikely that all, or even most of the absorbed quanta will lead to photo emission. Even if the electron gains enough energy to escape it may be travelilng in the wrong direction. For excape we must have that

$$
\begin{equation*}
\frac{1}{2} m v_{z}^{2}+h f=\frac{1}{2} m v_{z}^{2}>W_{B} \tag{8.18}
\end{equation*}
$$

and v_{z}^{\prime} must be positive. Also the electron may have low initial energy and hence even after absorption of hf condition (8.18) may not be satisfied. This situation is illustrated by the three vertical arrows in Fig. 8.10. Each represents a quantum of energy hf, but each is interacting with a different electron, indicated by the bottom arrow. Quantum A, absorbed by an electron at the top of the Fermi band, can produce an energetic photoelectron; quantum B, absorbed by an electron of intermediate energy can produce a photoelectron with just enough energy to escape; quantum C, bsorbed by an electron near the bottom of the barrier cannot produce a photoelectron.

Quantum A produces the most energetic photoelectron, of energy

$$
\begin{equation*}
\frac{1}{2} m v_{M A X}^{2}=h r-\varnothing e \tag{8.19}
\end{equation*}
$$

This relation was predicted by Einstein in 1905 (20 years before $F-D$ statistics) and was the first clear statement of quantum theory. In 1925 Milliken measured the maximum energy of photoelectrons as a function of frequency, by measuring the retarding potential, V_{A}, necessary to stop the fastest photoelectron. A plot of V_{A} against f yields a straight line of slope h / e, and Millikan's was the first good measurement of this quantity. Actually, of course, $\frac{1}{2} m v_{M A X}^{2}$ is not a unique quantity; at normal temperatures there is always a slight temparature "tail" as shown in Fig. 8.9(b).

In measuring the complete energy distribution function one can use concentric spherical electrodes, where the emitter is about a poit source. The photoelectrons emerge radially, and if a retarding potential V_{A} is applied one collects all photoelectrons of energy $e V_{A}$ and greater. If the photo current is $I\left(V_{A}\right)$ the energy distribtuion is given by

$$
n\left(w^{\prime}\right)=-\frac{d I(V)}{d V}
$$

where w^{\prime} is the energy after escape.
Since $n\left(w^{\prime}\right)$ can be computed from the known distribution inside, this provides a check on the F-D theory. Very good agreement is obtainable between theory and experiment; there is some divergence which must be attributed to a barrier reflection coefflcient. This imples that the barrier departs from the image field picture near the surface. A typical current-voltage relation is shown in Fig. 8.11, where we have plotted the photocurrent against the applied voltage.

$$
\text { Fig, } 8.11
$$

The current does not saturate at the zero of applied voitage because of contact potential difference.

The spectral distribution curve of Pig. 8.9(a) cannot be predicted by statistical methods alone, except near the threshold (the long wave length limit) of photoemission. The threshold wave lengh is related to the work function by the familiar relation

$$
\begin{equation*}
\lambda_{0}=\frac{22,400}{8} \tag{8.20}
\end{equation*}
$$

As the frequency of the incident 21 ght is increased from the
threshold, we should expect increased emission at first since the number of electrons which can enter into the emission process increases rapidiy. However, quantum mechanics shows that the absorption probability falls off with increasing frequency. This decrease in absorption probability predominates after a while and accounts for the maximum in the spectral dis tribution curve, and the subsequent diminution of the total photocurrent.

