PARE A: FBAT AKD GYKRMODYNAMICS

CRAPEEE I. REVIEM OF MATHEMATICS

a) Introduction:

The science of Teat desis vith the changes in the properties of matter with the transfer of heat. It Is ans exper ivental science amd the data obtained axe roproaented by omplsical laws, zaxy of mhleh can bo justifled a postgriori by thoory. mhemodynsinics on the other hand 1s p puroly mathonaticsi discipline. The levs governing the trensform mation of energy through work and heat are derived srom these basic postulates, snd importent relations are obtiolned betweex the properties of "zystexa in thexwal equilibsiuza " If the "gyston" of momwodywamica Is then identified with the "quantity of mattor" doalt with in Peat one obtains rigoroum relations betweon the omplricel quantities. In order to distinguish carefully betwean theso two categories of twuths weshall denote the emplricel relatlon by as sad the deductions from postulates by w.

However these two sciencess even tuken togethex do not give a complete picture. Most of the omplpical Lews do not foliow Prom therwodymanics, and the 1uroves. ibility of thomal procenses geows to violato the more bs.sic laws of mechauica. The fect is that tharmodynamice would be an empty discipline, with no epplication in natuxes, were not mottor composed of a myoled of molecules. or ct leest a large number of degrees of freedom. The besis of both the explxicsit lavg of Heat and the postuletes of moswodynamies me found in Stetistica? Mechanles, and furstherwore the letter gives soncrete picture of the abstractions of thomodynaics, such as extropy end onersy.

It is therefore domed valueblo to include some statistical Mechanics with an introduotory cousse in Host and whemwodymanio although it is zoperetod in soccon part of the course because the methods are so difrerant. This can, of course, onig be done et the orponse of some sspects of the lettor which are noman 117 includer. We shall lixit ourselves to pure substances and, with one exceptions to work done by hydrostatic pressure. The exception in the chepter on whetism which is introduced because the oxdering and disoriering of alpole orlentations give such a cloan illustration of changem of entropy. Mhis ollulnates many intcresting spplicetions, guch y chemical equilibelum and the laws of dilute solutiorss but it is felt thet these can readily be learnt whos needed and ame ossily forgotton when not used, thexess the princtples of Stetistics Mechemice whem onco Isemt remsin pormenentIy e post of one's vimulysetion of themom dynamic processer.

The grudent of thermodynumics is pereorce essumed to bo familiar with partial difremextiation, exd with all soxts of changez of dependent and incopencent verisbles separetely. Fowever, in ghomandynemios the depondent and. Luciepondont vamiebles ere frequentiy zextielly interohanged, and thes 1s conrusing. Thero i.e no wey to svotd this

The necessary formulae are lev and are reviewed in the following sections of this chapter.
b) Partial Derivatives:

Let $z(x, y)$ belknown function of two Independent variables
x and y. The differential of z is given by

$$
\begin{equation*}
d z=\left(\frac{\partial z}{\partial x}\right)_{y} d x+\left(\frac{\partial z}{\partial y}\right)_{x} d y \tag{Ib1}
\end{equation*}
$$

where the functions

$$
\begin{equation*}
A=\left(\frac{\partial z}{\partial x}\right)_{Y}, B=\left(\frac{\partial z}{\partial y}\right)_{x} \tag{Ib}
\end{equation*}
$$

are the partial derivatives of 2 , the subscript on the parenthesis indicating that that variable is held constant in the differentiation with respect to x and y.

It is frequently necessary to change the independent variables from x and y to two nev variables u and v. Let x and y be known fundtrons of u and v so that

$$
\begin{aligned}
& d x=\left(\frac{\partial x}{\partial u}\right)_{v} d u+\left(\frac{\partial x}{\partial v}\right)_{u} d v \\
& d y=\left(\frac{\partial y}{\partial u}\right)_{v} d u+\left(\frac{\partial y}{\partial v}\right)_{v} d v
\end{aligned}
$$

Substituting in (Dbl) one obtains

$$
\begin{aligned}
d z & =\left[\left(\frac{\partial z}{\partial x}\right)_{y}\left(\frac{\partial x}{\partial u}\right)_{v}+\left(\frac{\partial z}{\partial y}\right)_{x}\left(\frac{\partial y}{\partial u}\right)_{v}\right] d u \\
& +\left[\left(\frac{\partial z}{\partial x}\right)_{y}\left(\frac{\partial x}{\partial v}\right)_{u}+\left(\frac{\partial z}{\partial y}\right)_{x}\left(\frac{\partial y}{\partial v}\right)_{u}\right] d v
\end{aligned}
$$

from which one may conclude that

$$
\begin{equation*}
\left(\frac{\partial z}{\partial u}\right)_{v}=\left(\frac{\partial z}{\partial x}\right)_{y}\left(\frac{\partial x}{\partial u}\right)_{v}+\left(\frac{\partial z}{\partial y}\right)_{X}\left(\frac{\partial y}{\partial u}\right)_{v} \tag{Ib3}
\end{equation*}
$$

$$
P V=n R T
$$

$$
\frac{P v}{n}=\eta \tau=P_{v}
$$

$$
\begin{aligned}
& \left(\frac{\partial(z)}{\partial x}\right)=\left(\frac{1}{\partial z}\right) y \\
& \left(\frac{\partial z}{\partial z}\right)_{y}\left(\frac{\partial x}{\partial w}\right) y\left(\frac{\partial u}{\partial t}\right) y+\cdots=1 \\
& \left(\frac{\partial z}{\partial x}\right) y\left(\frac{\partial x}{\partial y}\right)_{z}\left(\frac{\partial g}{\partial z}\right)=\text { ul }
\end{aligned}
$$

and a. aioliar equation in which u and v are interchanged. This is the fundamental relation for transtomaing partial derivatives. It reduces to two simpler form which are of content application and deserve to be remembered.

$$
\operatorname{Iet} \quad v=\nabla
$$

go that only one variable is being changed. Obviously

$$
\left(\frac{\partial y}{\partial u}\right)_{y}=0
$$

so that (I b 3) becomes

$$
\left(\frac{\partial z}{\partial u}\right)_{y}=\left(\frac{\partial z}{\partial x}\right)_{y}\left(\frac{\partial x}{\partial u}\right)_{y}
$$

or

$$
\left(\frac{\partial u}{\partial z}\right)_{y}\left(\frac{\partial z}{\partial x}\right)_{y}\left(\frac{\partial x}{\partial u}\right)_{y}=1
$$

This ray be called the "chair" relation because it can be shortened or extended by removing or adding "links." Thus

$$
\begin{aligned}
& \left(\frac{\partial z}{\partial x}\right)_{y}\left(\frac{\partial x}{\partial z}\right)_{y}=1 \\
& \left(\frac{\partial w}{\partial u}\right)_{y}\left(\frac{\partial u}{\partial z}\right)_{y}\left(\frac{\partial z}{\partial x}\right)_{y}\left(\frac{\partial x}{\partial z}\right)_{y}=
\end{aligned}
$$

The characteristic of the chain relation is that the sse variable is hold constant in each partial derivative

$$
\text { Lot } \quad v=z
$$

so that one of the new fndeperdant vexiebles is the old dependant variable. (I b 3) then becomes

$$
0=\left(\frac{\partial z}{\partial x}\right)_{y}\left(\frac{\partial x}{\partial u}\right)_{z}+\left(\frac{\partial z}{\partial y}\right)_{x}\left(\frac{\partial y}{\partial u}\right)_{z}
$$

Now $10 t$

$$
u=\frac{y}{y}
$$

30 that

$$
0=\left(\frac{\partial z}{\partial x}\right)_{y}\left(\frac{\partial x}{\partial y}\right)_{z}+\left(\frac{\partial z}{\partial y}\right)_{x}
$$

and using (Ib5)

$$
\begin{equation*}
\left(\frac{\partial x}{\partial y}\right)_{z}\left(\frac{\partial y}{\partial z}\right)_{x}\left(\frac{\partial z}{\partial x}\right)_{y}=-1 \tag{Ib6}
\end{equation*}
$$

This may be called the "cyclic" reletion bocause the varisbles x, y, z ars permuted cyclicelly in successive factors. This relation cannot be shortened or extended by gimply removing or edding links es wes done with the chain relation, and the negetive sign should be noted.
c) Integration in Two Variabies:

The function z in

$$
\begin{equation*}
d z=A d x+B d y \tag{IeI}
\end{equation*}
$$

is not always known. The functions A and B my be given and the problem 18 to find $z(x, y)$.

Let z_{0} be the value of $\&$ at x_{0}, y_{0}. This has to be assumed known or else ft appears as a constant of integration in the answer, and of course the point $\left(x_{0}, y_{0}\right)$ way be at the origin. The value of z at ($2, y$) is then found by integrating along two Innos as shown in fig. Ic. In the first integration

$$
z_{1}\left(x, y_{0}\right)-z_{0}=\int_{x_{0}}^{x} A\left(x, y_{0}\right) d x
$$

the variable y is held constant, so ths is an ordinery integration and z is the constant of integration. Then a gecond integration is performed

$$
z(x, y)-z_{1} \int_{y_{0}}^{y} B(x, y) d y
$$

holding x constant, so that finally

$$
z(x, y)-z_{0} \int_{x_{0}}^{x} A\left(x, y_{0}\right) d x+\int_{y_{0}}^{y} B(x, y) d y \quad\binom{\text { I } d)}{(1 \quad 0}
$$

x_{0} and J_{0} also appear in the onctres as constant of integration. Thus it is ween that the two pert of the differential are intogratod sep ~ arately es simple indopinito intogreiv, but one must not forgot to give to the variable y In A Ats value J_{0} which is tho lower limit of the second integral. Failure to do this Frequently leads to an answer which 1. twice too big. In integrating with respect to two variables one should always chock the answer i by differentiation. One can, of course, equally vel integrate over the path indiceted by dasher in the figure and represented by the formula

$$
\begin{equation*}
z-z_{0}=\int_{x_{0}}^{\pi} A(x y) d x+\int_{y_{0}}^{J} B\left(x_{0}, y\right) d y \tag{array}
\end{equation*}
$$

d) Bract and Inexact Differentials:

If $z_{\text {is }}$ is unction of x end y equations (Ie 2) and (1 e 3) w111 both lead to the sene answer. This cen be dircorontisted to give (Ic 1), which is then termed "exsect". It may happen, however, that (I G 2) and (I o 3) EAve dirioment answers oven though the 1atogrations have been done correctly. The differential expression 13 then called "inexact", and in order to make this distinction clear it all be witter with a bes scyros the d :

$$
\begin{equation*}
d i v=A^{\prime} d x+B^{2} d y \tag{IdI}
\end{equation*}
$$

(a xe

This situation is familiar to students of electricity and ragnettsu. If A and B or A ' and B bethought of as components of a rove, expressions (Ic I) and (I d I) are tho element of work done by that force in going the dipropential distance ($2 x, \mathrm{dy}$). I is minus the potential of that oreo, but 12 Poses do not have a. potential and megnotic fiddles wo e typleel example. The wore then depends on the path and di k is en Inexact differential. The condition that a diperentiel be exact is well known to be

$$
\begin{equation*}
\left(\frac{\partial A}{\partial y}\right)_{x}=\left(\frac{\partial B}{\partial x}\right)_{y} \tag{Id2}
\end{equation*}
$$

In lect, by Stoles' theorems, the quantity

$$
\begin{equation*}
\left(\frac{\partial A}{\partial y}\right)_{\pi}-\left(\frac{\partial D}{\partial x}\right)_{y} \tag{n}
\end{equation*}
$$

measures the amount of voris done per unit onclosed area in going spound a closed peth. In thermodymatos, as in olectricity and megnetiam, one generally know from fundewontal prinolples vhother a diferentlal is axact or inoxact, and (I c 2) is an extra equation availeble in the former cose

When ft is necossexy to integrate an inoxact differential a bar Yill be put acroes the integrel bign to indlcate that the path must be spocisiod. Thus

$$
\begin{equation*}
v=f\left(A^{\prime} d x+B^{\prime} d y\right) \tag{Id3}
\end{equation*}
$$

-) Lagrange Multioliors:
In stetisticel mecharsics $1 t$ vill bo neceasary to doel with functions of not simply two, but mililons of ixdependent varieblos x_{1}, i w $l_{0} 2 \ldots . . . N$. The particular problen which arises iz thet
 those varlablea subject to two (or more) constreints

$$
\left.\left.\left.\begin{array}{l}
X\left(x_{2}\right. \\
\ldots \\
X\left(x_{2}\right.
\end{array} \cdots x_{n}\right)=0, x_{n}\right)=0\right\}
$$

These comstraints detoruine a "quyace" in the Todimensionel space of the $x{ }^{1} p$ and one seeks the oxtroms of z on ths suxpace. This is called a constreinod ortromal. Thus thone ere only $\mathbb{N}-\overline{2}$ indepondent varisbles and one might logically solve (I e I) for tro of the $x_{1} \mathrm{~g}$ In terus of the otherg axd substitute these in the function Z But this ia Lmprecticel and one sosorta to the method of Legrenge sultiplieng. Orse defines the function $)^{(}\left(x_{1} \ldots \ldots x_{n}\right)$ by

Where α and β are undetorminod constants and then detenmanes tho free

$$
\frac{\partial \theta}{\partial \tilde{x}_{1}}=0
$$

or $\quad \frac{\partial Z}{\partial x_{1}}=a \frac{\partial X}{\partial x_{1}}+B \frac{\partial X}{\partial x_{1}}$

(the)

 of a ard B. Subgtituting these in (T Q 1) one ean molve these two equetions fox α and P, thus fasuriag bhest the ostrems of fells on tho surface of oonttreint. Eut on this Eurface f and 2 ero 1doritical by (I © 2) and (I © I). Whe positton of the conetreined extremsl of 2 kse therefore been founc, axu 1 th velue is obteined by subetthuting

II EQUATIONS OF STPATE

a) Law of Force Betweer Atoms

Atoms are know to consist of a nucleus surrounded by a number of eleatrons. The nucleus conteins almost the entire mess mof the atom and has a pesitive chargo equel to, though opposite in sign from, that of z olectrons, where z is tho atomic aumber of the element whose atom is considerod. The nuclous is sursounded by a cloud of Z electrons, so that the whole totom has no net chargo. The study of the energy and motions of these oloctrons belongs to atomic structure and we need conssaer here only briesty the not efreat of one atom on another.

Because of the olectrical nature of atoms they become polarized when placed in an oloctric field; that is they act like a dielectric, their positive charges being diaplaced slightly in the direction of the fleld reletive to their negative charges. Now a dielectric sphere is alweys attracted towards rogions of large olectric field inpospective of the direction of the olectric intensity \mathbb{E}. Thus if one molecule is slightly polarized it will attract other moleculse and cause thom to bocomo polarized also. These in tum will tend to increase the polarefation of the first one. Thus because molecules ase pelarizable thoy polerize each other in such a way es to attreat. This type of forco varies invorsely as the seventis powes of the distance, is asiled a Ven der Waels forco, and explains tho force betwoon atons at lerge distances.

As atoms get closet together, of the order of a mill linicron between nuclei, their sleatson clouds interact in more complicated ways than olectile polamizetion. Thit may result in an additional attrection which is bailod a chemical valenco forces or in a repulsion. Two nitrogon atoms attract in this range whereas two argon atoms repel. At yet oleser distances there is alvays a repulsion due to the interections of tho inner shells of electrons, or eventually of the nuclei thersolves. This repulaive force genorally increases very rapidly with decreasing distarce. The result of all these interections is a variation of the rarce and potential energy on intornucloar distance representod in figure IIa. This figure does not give the full story because valenco roncos depend on angles as well as an distance, but 1 t is suffleient for most purposes.

PIO. IIs

In static equilibrium two atoms will oceupy the position r_{0} of rinimum energs w_{0}. The quantities r_{0} ond u_{0} cen be computod, In the case of atoms which form nolecules, srom bond spectia, and for atoms which do not form moleeules chey mey be estinsted erom the viscosity of the ges. The latter method con also bo applied to the interaction of molecules. Table IIe sives some results of both methods, and some obvious conclustons cen bo drem erom these dets. In the flrst place the force betweon molecules is not much different from that between atoms which do not fom moleculos. Compare for Inatence rethane wh.th krypton. On the other hond atoms whioh do Cown molecules have an enemgy minimum abont ton times as doop and half as per out. This ghows th e influence of the additienel ehemicel binding force over the polawheition foreo. Indecd those atous tom molocules at roou temperature becsuse the binding onergy is so great.

Atom	$\begin{gathered} r_{\theta} \\ m \times 10^{-12} \end{gathered}$	$\frac{u_{0}}{\operatorname{exg} \times 10^{-12}}$	Rolecule	$\begin{aligned} & 19 \\ & 3 \times 10^{-12} \end{aligned}$	$\begin{gathered} u_{0} \\ 02 g \times 10^{-12} \end{gathered}$
HI	74	7.15	He	217	. 19
11	267	1.82	H_{2}	273	. 20
\mathbb{N}	110	11.8	We	259	.15
0	121	8.13	CH_{4}	416	.47
Ne.	308	1.22	NH_{3}	442	.90
p	189	8.05	${ }^{\text {² }}$	376	. 25
S	189	5.75	O_{2}	362	.33
cl	199	3.97	A	366	. 38
K	392	. 82	CO_{2}	463	.57
I	267	2.46	K2	417	. 45
閣	330	.12	\% 0	491	. 61

TABLE IIA

Atomic and noloculan radil and dissocistion energion Lote hand columas froz band spectre, 21 gint hand colvws from viscosity.

The "molecular wolght" μ of a substanco is a number proportional to the mass in of a molecule and such thot it hes the value 16 for atomic oxygen. A mass M of substance contetns

$$
N=M / m \text { molecules }
$$

(IIb 1)

An amount of substance whose mess is equal to the molecular weight is called a "mole". Thus the moss 11 contains

$$
\begin{equation*}
n=M / u l \text { moles } \tag{array}
\end{equation*}
$$

Thus the number of molecules, in a mole doponds on tio unit of mass and there are two units in comon use: the gremu-mole ond the kilogramm-mole. The number of molecules in a gremanole is called Loschmidt's number and 1s

$$
\begin{equation*}
\frac{\mathrm{N} / \mathrm{n}=6.023 \times 10^{23} \text { nolocules/gram-mole }}{1} \tag{ITb3}
\end{equation*}
$$

This is a tromendous mumber so large in fact that no matter how far ve subdivide matter so long es ve cen still see or. weigh it, it will still contain a voly lerge number or moleoules. Many of the laws which are studiod in Thermodynamics depend on the fact that one is dealing with an aggregato of a very Iasge numbor of identical particies.

Consider then an aggregate of a vory large number of identical atome in static equilibrium. Each atow vill be in a position of equilibrium relative to ell the others, and as there w121 be so meny more interior moloculos then ones near the surfece we shall neglect surface effects.

The distence of nearest neighbors will then be close to T, the departure frow boing due to the influence of the nert-T8-nearest neighbors, and the total onergy will heve its lowost possible value \tilde{U}_{0}. Let V_{0} be the corresponding volume. The condition of equal seperation of neerest neighbors inposes a regularity on the structure, and it is called a perfect crystal.

The particular conifguration will depond on the netrme of the valence forcos and these differ greatly botwoen different atoms. However, one can distinguish three basic types of structure In which the elemonts crystavlize and one adcttionel one for com pounds. These are all shown in IIg. IIb.: (I). When on element forme diatomic molecules it generaliy means thet tho valence force between two ators is strong but thet it saturatos when the two atoms are united so that there 13 no remaining bond to attract a third atom. The molecules mey, however, be held together by their Van der Weals attraction, forming a molecular arystal. Nitrogen
and iodine are typical examples of this type, as are also many compounds as lee or methane. (2) Atoms with many valence bonds such as carbon may continue to bind additional atoms, forming chains, sheets, or solid valence crystals. In the jo cases the entire crystal may be considered as a single molecule, and bocanse valence pores are strong these crystals are generally hard. Diamond is the typical example of a valence crystal in which each carbon atom is attached to four neighboring carbon atoms by valence bonds, this bonding ex.. tending throughout the crystal. Quartz and carbormoun ore also valence crystals formed by compounds.

1. - MOIECULAR CRYSTAI I_{2}

$\mathrm{N}_{\mathrm{a}}{ }^{+} \mathrm{Cl}^{-} \mathrm{N}_{\mathrm{a}}{ }^{+} \mathrm{CL}^{-}$
$01{ }^{\circ} \mathrm{N}_{\mathrm{B}}{ }^{+} 0 \mathrm{Cl}^{\circ} \mathrm{N}_{\mathrm{E}}{ }^{+}$
$\mathbb{N}_{8}^{+} \mathrm{Cl}^{-} \quad \mathbb{N}_{\mathrm{a}}{ }^{+} \mathrm{Cl}^{-}$
$\mathrm{Cl}^{-} \mathrm{F}_{\mathrm{a}}{ }^{+} \mathrm{CI} \mathrm{Ha}^{+}$
2. - IONIC CRYSTAZ

FIG. II

Carbon also crystallizes as graphito which is a difforent Pom than diamond, and is a mixed type. Were the capbon atoms unite by valonce bonds in sheets, the pattem of one shoet being shom in $918 . \mathrm{IIb}$. The aheots ere the hold togother by Van der Voals Rorcos, and this is responsible for the softnens of graphite. Asbestos is a similas -

In the metals the bonding force is nelther valonco nor Von dom Waals but 1s simply Coulomb attraction. The atoms onch lose one or more electrons and those occupy tho interstoces botveon the atoms. As the atoms are now positively charged they are attrected by the nolghboring electrons, and, reolprocally, tho tons hold the electrons 1n. However the olectrons have constierable srocdom ond ror this reeson the metals are good conductoti of olectrictity, Most of the olemente orystallize in this way. (4). Salts are compounds of a metal and an electronegative atom os radiclo. When thoy crystalilze the molecules dissociate into positive and nogativo Lons, end those aro arranged in a lattice so that each positive ion is surxounded by negative ones and vice versa. The crystol is hele together by the Coulomb attraction of the ions and is in this vey simplem to a metel, but the negative fons, boing larger and hoavion, are not free to move as are the electrons of a metal.

Table IId gives the voluac por grem-atom (volume per mole divided by the number v of atoms in a molecnlo) for a number of crystalline solids. From this table the following qualitativo rolations mey be obeerved: First tho atomic volumo does not vesp vory much excopt for hydrogen, which is vers sum.1, end the elkaliog, which are very large. Very hoevy atoms Itko lead ere also lerge. Socond that the valence compounds are relatively compect, the metals and lonic compounds ero loss so, and the molocrlar compomads are quite lose. (In computing tho etomic volume rop ice tho hy drogens have beon negloctod, so it 15 the wolar volume which is given.) This is in agreoment vith the strength of the binding forces, valence, Coulomb, and Van dor Waels, for those clasees of compounds.

We have spolen of the state of lowost energy as berne one of static oquilibrium. This is not twie. If the electrons cerve to rest in their positions of lowest energy they rovid fell into the positive nuclei and all mattor as ve know it would disappoer. It is known thet the electrons in atoms move in steble onolts in their states of lowest onergy, and similerly tho electrons in a metal are not stationary in the intergtices but are canstantly moving at a high speed. Atoms mey similerly have some motion in their stete of lowest onergy but, because of thelw very much larger mass. this motion is quite smell and may for most purposes bo ovos1ooked. This zero-point kinetic energy is to be included with the potential onergy is the value of 0_{0}.

c) Thermodynamic Variables

The state of lowest energy described above is called absolute zero and is not observed in nature, but may bo approsched in the leboratory as a lim1t of oxperiments destgnee to remove as much energy as possible from a syster. In order to define the state of a system one must thorofore speciny one or more penameters in addition to the numbers and kinds of atoms present. An obvious paremeter would be the energy U. This is, in principle, dipectly mosurable. Let M_{0} be the nass of the syster ot ebsoluto zero.
Then by Einsteln's relation

$$
\begin{equation*}
U-U_{0}=\left(M-M_{0}\right) c^{2} \tag{1xc}
\end{equation*}
$$

where c is the volocity of light. However the energy direeroncos that we are interested in are of the order of one Joule per grea and therefore $M-M_{0}$ 13 of the orter of 20-15. Such en accurecy
is quite unattainable. The energy U - Jo vill therofore have to bo calculatod from other data.

Another peramoter would be the degree of disorder. In the higher onergy atatez the atows aro oscillating yith incopondent amplitudes and phsses and therofore the crystal to not as Pagular. This leck of regularity appoarg on x-ray diferation pattoms and a suitable parameter might be computed from them. This also lecks accuracy, and the disorder paraseter called the ontrops Sand to be derined more exactiy leter, is, like the energy 0 , dorived from thomal data. This will be explained later.

Then there is the volume change $V-V_{0}$ Thils, though orten swall is directly neasursile,

Other paramoters guch as sheor defomations, surface tension, polarization, etc. can also bo mocsured, but thoy will not be considered here purely for the sare of simplicity. Eech such paranoter leads to rolations quite similas to those of the volume changes and if the latter are once understood it is very easy to extend them to these other varisbles.

U, s, and V are cslled "extensive" wamiablos beceuse they are proportional to the amount of matorial considored. The "spociric" variables which are propertiss of the kind and not the emownt of meteriel mey be doplned per wole

$$
\begin{equation*}
u=\mathrm{V} / \mathrm{n}, \quad \mathrm{~s}=\mathrm{s} / \mathrm{n}, \quad \mathrm{~V}=\mathrm{V} / \mathrm{n} \tag{IIc2}
\end{equation*}
$$

per gram

$$
\begin{equation*}
u^{\prime}=\mathbb{U} / \mathrm{M}^{P} \quad \mathrm{~g}^{\prime}=S / \mathrm{MP}^{\prime} \quad \nabla^{\prime}=\mathrm{V} / \mathrm{M} \tag{IIc}
\end{equation*}
$$

Whi beyo Lntrolow

It unid he virits ale

$$
d U=A^{\prime} d t-B d V \text {. }
$$

$$
\text { we hion } A^{\prime}=C_{p}
$$

$d u=C_{p}-B d U$

$$
\begin{aligned}
& A=U-T s L \text { gschon transfunction } \\
& \begin{aligned}
& d A=d U-t d S-S d T=-S d t-\operatorname{pdV} \\
&\left.\frac{d S}{d V}\right)-\left(\frac{d v}{\partial t}\right)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& p=-\left(\frac{\partial U}{d U}\right)^{s} \\
& \gamma_{-}=-\frac{1}{U}\left(\frac{d U}{d P}\right)^{2} \quad K_{s}=\frac{1}{v}\left(\frac{d U}{d P}\right)_{s} \\
& d u=-P d U+T d S=d Q= \pm \omega \\
& \beta=\frac{1}{v}\left(\frac{d v}{d t}\right) p \\
& \frac{d v}{V}=\beta d t+\alpha_{n} d P \\
& \text { (a) } u=\text { min } s=0 \\
& \text { (a) } u>u_{0}, s>0 \\
& \text { Totiol n.tさr. } \\
& B, H, C_{v}, C_{p} \text { are the neasubble }
\end{aligned}
$$

or per gran-aton

$$
\begin{equation*}
u^{n}=\mathrm{U} / \mathrm{vn}^{\prime} \quad s^{n}=\mathrm{S} / \mathrm{vn}, v^{\prime \prime}=\mathrm{V} / \mathrm{vn} \tag{IIc4}
\end{equation*}
$$

where v is the nuraber of atoms in a molecule. The last sot are particularly ugeful in solids where it as not always certain how many atoms to includo in the molecule, but tho guentity m / v is mom as it depends on the composition only. If the ertensive variables were directly measurablo thermodynenice would be a greot doel simpler, for all the othor themodynsuic variables could then be obtainod by differentiation, ss vill be show. But such is not the case and whet one measures are two other variables, celled "intensive", because their differences detervine doperture irom equilibrium. If two bodies are pressed together thosr volumes will both docrease. The changes in general will not be the same and may not even be proportionsl, but if a pressure gauge is placed botroon then it wil1 read the same towards which ovor body it is owiented. This is a consequence of Newton's Third Iaw. Pressure P is tho intensive varlable which must be oqual in two bodies in mechantcel equilibrive. It is not moasurod by examining the body itsolis but by putting a geuge in contact with the body and examining the gauge. It is not the only intemsive variable. Electrio potentisl, for example, is one which vill not be ilscugsod hoje. Whon all mechanical, chemical, electricel, and other known alsturbences are elimineted there still romains a veriable of which oun sonses give us an indication and thich is callod Tempenature. When two bodies at different temperetures are placed in contact thoir properties arg observod to change progressively until tho temporetures aso equalized. Any device which is sensitive to temposeture difforonces. such es mercury in s gless bulb at the end of a cepillery, may bo used as 2 thernoscope, the criterion that wo are truly observing the equillbrium parameter bolng that the fnstmunent give the bane reading then placed successively in contact with, and proserably inside, two bodies in oquilibrium. Thet auch a thing io possible is cellod the Zeroth lew of Thermodynamies. It is anelogons to Newton's Thim Iaw.

Different thermoscopes, while all agrooing whon indicating equallty of teriperature, will not give the same noasure for differences of tomporature unloss cellibnated against e standerc instmument. Such on Instmument is the idesl gas thomoneter which vill be described at the end of the chepter in comection ft th the lews of gases. It defines the absoluto temperature scelo. Onc of the virtues of the ideal. ges thermometon is that is reads zozo in the state of lowest energy. Another themometor having this property is the platinum resistance themowoter, the elootrical resisf of strip of pletinum approaching zoro as the stste of lovest onergy 1 a approached.

Having chosen a stander instrument, and therefore st town perature scale there remains to chose of tomporeture unit. The unit universally used in scientific work is the centigrocio unit, which is such that there axe 100 units between tho spoestag and boiling points of pure water under one atmosphere pressure.

The units of pressure are marortunstoly not so univorsel as, besides the consistent CQS and BES units, tho "mili1moter of mercury" is the univorget laboratory unit, and one "otmosphero" is the nownel pressure. These units are related os follows:
> 10^{6} dynes $/ \mathrm{cm}^{2}=10^{5}$ Mouton/ $/ \mathrm{m}^{2}=750.06$ min of mercury $=2$ Ben

$$
760 \text { m of mercury }=2 \text { atmosphere }
$$

(Te 5)

The variables V, P, and ane tho ones most easily rombured. The relation betwoon the ae varienle3 for my substance 13 called te Equation of grate. No must, however, lumedietoly give up the arpectation of being able to write dow a single wothometicel cagession to represent all the phases of a pure substance. Such as orpreagion if it were found would be too complicated to be noedily used and would have to be broken dom into parts zepresentlag the different phases. We shall in the remelnder of this chapter summarize the oxpirical equations of state for the different phases of pure substances.

d) The Toes Solid

The volume of solids doedzthenge very much under oxpertmentally realizable pressures, rarely more than e few percent. Mus means that the intemnoloan separation of tho atoms does not depart very much frow its equilibuiuza value. Teiciag e. smell portion of the force curve in figure INa in the neighborhood of wo it can be soon that it does not depart much frow a straight inge. It follows from these facts the the volume of a solid will vary sensibly linearly with the pressure

$$
V \approx V_{0}(a-b P)
$$

This 18 Hooke's Lew. It is written with the sign zinstoed of a straight equality align to indiceto that it 13 an empirical end not a rigorous equation. The compressibility $\}$ is defined by

$$
x=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T} \approx \frac{b V_{0} \approx \frac{b}{b}}{\square}
$$

$$
\begin{aligned}
& \frac{d V}{d P}=1 c V \\
& V=\int 1 c v P+C
\end{aligned}
$$

The quantities a and of are functions of tho tompongturo, so that the coefficient of themed expansion β is given by

$$
\begin{equation*}
\beta=\frac{2}{V}\left(\frac{\partial V}{\partial T}\right) \approx \frac{V_{0}}{V^{2}}\left(a^{\prime}-b^{2} p\right) \approx a y a \tag{Ind3}
\end{equation*}
$$

where the primes represent disionemitation with rospoct to t.
The compressibility and volume coosfictont of thomas axpension of a number of crystalline solidi 1 s given in table ITo. It is noted that the valence compounds and motels, the slkallos eropted, are relatively incompressible, the tonic compotes ane more so, and the molecular compounds oven more.

The variation with temperature of K and for coppoz is shown in figure IId, and is rather typical or ell solitis. The stow increase of \mathcal{X} with temperature is a consequence of the thomas oxperalon. As the atoms get further spent the slope of the fore curve (fig Ja) gets loss, when implies s greater compressibility. The foot gradual wise of β may be stmilexiy explained, but vino auden drop in B as absolute zero is approached. It might bo thought that this is due to the choice of tomporgture scale 123 this region, but sa the drop occurs st a different temperature, chamectorist1c of each solid no change in scale can straighten out ell there curves. It 19 found to be related to a simplex change 1 n tho opeolfic heat for which a theory has been developed by E1netotn-Dobye-Braniom.

$$
\begin{aligned}
& \text { Intensive } \\
& \left.\begin{array}{l}
u=U_{0} t \\
v=U_{0}(a-b p)
\end{array}\right\} \text { Extensive (oddtive) } \\
& v^{\prime}=\frac{v}{h}, v^{\prime}=\frac{u}{m}, v^{\prime \prime}=\frac{V}{r h} \text { Specific } \\
& \text { mks Newton/ } h^{2}=\text { bor } \\
& B_{a r}=10^{6} \text { derek } \tan ^{2}=750.06 \mathrm{~m} \text { of } \mathrm{Hg}
\end{aligned}
$$

of 1 Hg .

$$
V \text {-liter }
$$

SUBSTANGE FORRULA DENSITY ATOMIC COMPRESSTBILITY THERMAL VOLTE EXPANSION

		$\begin{gathered} d \\ \mathrm{gm} / \mathrm{cm}^{3} \end{gathered}$	$c^{v^{\prime \prime}} / \operatorname{mot}$	$\begin{aligned} & k \times 10^{12} \\ & y^{2} / \text { Nowt. } \end{aligned}$	$\begin{gathered} \beta \times 10^{6} \\ \operatorname{deg}^{-1} \end{gathered}$
VALETCE					
Diamond	C	3.52	3.41		2.67
Graphite	C	2.25	5.34		9
Carborundum	S1.	3.15	6.35		6.35
Corunduza	$\mathrm{AL}_{2} \mathrm{O}_{3}$	3.95	5.27	4	17
Quartz	310_{2}	2.65	7.55	27	33.6

METAL

Soalum	Na	.97	23.7	156	200
Aluminum	Ab	2.70	10.0	13	73
Potassium	\mathbb{K}	.86	45.4	360	239
Iron	Fe	7.88	7.06	5.8	36
Copper	Cu	8.94	7.10	7.2	40
Sllver	Ag	10.50	10.3	9.9	59
Tungsten	W	19.3	9.53	2.9	12
Lead	Pb	11.34	18.35	2.4	74

IONIC

Salt	Na Cl	2.17	13.5	42	121
Sphalerite	ZnS	4.02	12.1	13	20
Fluorite	$\mathrm{Ca} \mathrm{F}_{2}$	3.18	8.29	12	55
Calcite	$\mathrm{Ca}_{3} \mathrm{CO}_{3}$	2.71	7.39	14	14
Barite	Ba SO	4	4.47	8.71	18

MOLECUTAR

Iodine	I_{2}	4.92	25.8		300
Ioe I	B_{2}	.917	39.6		120
Cerbon diomide	CO_{2}	1.56	9.40		150
Benzene	$\mathrm{C}_{6} \mathrm{H}_{6}$	1.04	$12.5 *$	329	850

SABLE II d
DEMSITE, COHPRESSTBTITTY, AND TFIGRTAI BXPATVSIOI OP SOLTDS
粦 Not ccunting hydrogen.

The volume of a solid is not alweys a continuous function of the pressure and tomperature as represented by equation (II d 1). For many solids there are discontinuous changes in which the atoms roampenge themselves. Ice is a pertieulerly good example, stx different polymorphic formg having beon discovered. These may be poprosented by Iines on a P-T diagram thich give the values of P and T at which discontinuous transitions occur (Fis. IIe). These ines are felrly straight and can be well represonted by equetions of the form

$$
\begin{equation*}
T-T_{0} \approx a P-b P^{2} \tag{IIel}
\end{equation*}
$$

Where a and b are now exporqmental constants differing from those used previousiy ant of 19 gonerally guste spall compared to a.

The P-T diagnam is incompleto and a bottor representation is given by a surfece in which V is piotted ageinst P and T. The different phases are then given by surieces whose equetlons ane like (IIdI), seperated by vertical steps elong the linon (IIel). This sur. face for ice is shown in Zomensley, Hoet and Themodymamics, Fig. 11.10, but not many such surfeces heve been prepsed.

It should be pointed out that the surpaces of oach phase, and the cormesponding equation (IIdI), wey be extonded beyond its vorticel boundaries, and this is not meso machomatics out cen in meny cases be realised physiceliy. If the prespure is releesed on ice II 1t will not instentereously change to $1 c 0$ I end thus, for a while; ice II may exist at zero prossuxe. It is, hovevor, not in equilibmilum and will in time change apontaneously to ice I. The surface shown in P1gure 11.20, and the arees of figure IIe, show only the equillbrium stetes. This oxpleins the absence of fee IV, mnothor erystailine form of lce thich can be produced but is nover in equilioritum.

As may be seen in figuze ITe the boundarios sepereting the dirferent phases are oriented pretty much at random. On the other hand a derinite stetement can be mado concoming the volume change on crossing a Ine along which two pheses are in equilibrium. In an isotherwel process in which the pressure is increesing, the volume deoneases as the equilibrium lise is crossed. If this vere not so and the volume increasod when the pressure increesed the system would, of course, be unstable. Generelizing on this behevior Lo Chatolior enunciated a gonorai principle which xas be epplied to any intensive varieble (condition): "When the condstions under which a syatem is in oquilibrium are cauned to cherge white equilibrium is still mantained, the syatem aways tonds to oppose that chango". In this case as one attempts to incresse the pressure on 100 it will change to a phsse of smaller volume and thus "oppose" the increase in pressure.

These volume chenges enter in importent themodynamic formulae and wlll be represented by

$$
\begin{equation*}
\Delta v=v_{2}-v_{1} \tag{IIe2}
\end{equation*}
$$

$$
\begin{aligned}
&) K=-\left(\frac{\partial l u}{\partial r}\right)_{T} \\
& B=-\left(\frac{\partial l v}{\partial \partial}\right)_{p}
\end{aligned}
$$

ligrid - log rage vor

whore phase 2 is the highom tempereture phese. From Le Chatelien'g principle it Pollows that $\triangle V$ is positive if the transition inne on a p.T diagram slopes upward to the right, and negntive 11 it slopes upwards to the left. Thus les I contwacts on chenging to water whereas 1ce V expends. When the trengltion line is horizontal the convention for the sign of ΔV breaks dom, but this oceurs seldon.

There 1s a completely anatogous law goveming tsobaric changes: as the temperature jnowesses the system changes to a whese of greator entropy, or disorder, though how this opposes the rise in tomperature can be explained onjy in the next chepter.

As the temperature is increased a stste is reachod in which long range order has disappeared, and this will be depined es a $11 q u i d$. But finst "long range order" must be deflned. In a persect crystai at absolute zero, if the positions of any three atoms not on a line are given, this fixes all the positions which any other atom may occupy, in principle out to infinlty. This is perfect order. As the tempereture is incrosged. the positions bocome uncertain firgt on account of vibretions about the equilibrium positions, but eventualis the posftiong of equilibrium thereselves venish oxcept in the 1 mmedlate nelghborhood of a molecule. Here the roquirements of spece allow about 12 molecules to be simulteneously in contact with another one, and they cannot change thelw relative positions without bumping into esch other. This forces es short-renge onden which appears very clearly in x-nay petterns os Ilquids.

Ordinarily a IIquid is dorined as a condonsed phase (meanIng that the molecules sre essentlally in contect) which cannot support a ghearing stress in oquilibrium. The slightost shoaring streos causes It to Plow, which inplies long range disordes. On the other hend Ilquids do not differ much in compressibility or theman expension from the solids with which they are in equilibwium. As te have agreed to study only the themodymmics of hydrostatic ppessure and not of sheaping stresses, the usual definition is not appliceble and e Ilquid appoers as simply another modification of a solid. Perheps this iz fortunate as our definition in temens of longmange disorder includes glasser nod other amorphous solids with the liquids. These solids are protty rigid and yot if a shearing stresg is appliod continuously they u111. In time, plow in the direction of the stress. They are therefore very viscous liquids, and in myy cases supercooled ilquids. This means that thone exists a crystalilne form to which the gless vili, in time, transform spontaneously the transition texperatures Iying above that consldered and heving been pessod too quickly for the crystallizetion to take place. This is not an uncomon occurance. Weter, for instances if free from dust, may be cooled many degrees below zero centigrade without immedetely tuming to lee. Whe fowniae of themodynamics apply equally well to these unstable atates, but it mast be remembered that the return to oquilibrium $1 s$ an 1 rreversible process. The melting point deta et atmospheric pressure of some solids is given In the elmst foux colums of table IIe. The melting temperetures follow the pattem elready indlcated by the nature of the binding forces: moleculax compounds melt below, of near, soom temperatures the ionsic compounds and metals are quito comparebles and the valonce compounds are quite resmocory. Almost without exception there is

MELTING POINT DATA

$\stackrel{V_{n}}{\mathrm{~V}}$	$\stackrel{\mathrm{v}}{\mathrm{~m}} \mathrm{mlo}$	$\frac{\mathrm{T}}{\mathrm{om}}$	$\begin{gathered} \ell_{\mathrm{m}} \\ \mathrm{~kg}^{\mathrm{cos} 1 /} \\ \mathrm{mole} \\ \hline \end{gathered}$	$\begin{gathered} \Delta x_{m} \\ \text { cal/ } \\ \text { deg.mole } \end{gathered}$	$\begin{gathered} \ell_{v} \\ \mathrm{kg.cal} / \\ \mathrm{mole} \\ \hline \end{gathered}$	$\ell^{*} /{ }^{\prime} \mathrm{m}$
Metals						
Me 24.2	24.6	371	0.63	1.70	26.2	42
A1 10.6	11.0	932	2.55	2.73	67.6	26
Fer 7.50	8.12	1802	3.56	1.97	96.5	27
Ag 10.8	11.3	1234	2.70	2.19	69.4	26
Sn 16.50	16.97	505	1.72	3.40	68.0	39
Hg 14.15	14.65	234	. 58	2.48	15.5	27
Ionic						
NaCl 29.6	37.7	1073	7.22	6.72		
AgBr 30.4	33.6	703	2.18	3.10		
NaOR 18.8	- -	591	1.60	2.71		
$\mathrm{AgNO}_{3} 39.0$	-	583	6.45	3.76		
Molecular						
A 24.2	28.1	83	. 280	3.38	1.88	6.7
$\mathrm{H}_{2} \quad 26.5$	28.7	14	. 028	2.0	. 22	7.9
$\mathrm{N}_{2} \quad 27.2$	32.8	63	$.218$	3.46	1.69	7.7
$\mathrm{H}_{2} \mathrm{O} \quad 19.65$	18.02	273	1.43	5.25	11.3	7.9
$\mathrm{CO}_{2} 28.8$	37.0	217	1.99	9.16	6.44	3.2
Velenco						
C		3800			140.	
SHO_{2}		1980				
$\mathrm{Al}_{2} \mathrm{O}_{3}$		2320				

TABLE IIE
expension on meiting so thet the solid sinics in itm melt. It is noticeale, however, that the metals expand very ilttle on melting. this is probably because the solid metsil is itself elreedy helf melted: Its negative elements, the electrons, do not occupy fixed lattice positions. The 11quid metal therelore differs loss from the solid. than is the case vith other substances, except of course the glasses.

f) Vaporizstion

It hes been meon thet a Ifquid difeers quelitatively from a solid in its inability perwanently to suppoit shomz and in the long reage disorder of its moleoules, the gleages occupying en embiguous position with respect to the insat oritemion. Fhere is another state of matter, the gesoous state, which diffess quelltatively isom both liquids and solids in its inability to gupport cension and in the great disorder of $1 t \$$ molecules.

If the pressure on a solld 1 s reduced there comes a polnt Where the piaton, or thatever device was used to exert the pressure, separates Prous the solid and leaves a spece thich the solid does not X111. This space is expty, however, oniy in sppearence. Actually It contalns many molecules of the solid woving freely across the avallable volume. When these molecules strike the solid they may condense on 1t and, reciproce117, surfece molecules of the solid mey spontaneously leave it and join those of the ges. In equilioriuss these two processes take place at equal wates. Whe pressure exested by the gas in equilibrium with the solid is cslled the vapor pressuse of the solid. Liquids elso exert a vepor pressure. Jsually these pressures are quite srall and thet is thy they do not show in figuro IIe, but if the pressuro scele of that ifgure is increased a millionfold one obtains riguxe IIdl. The rusion ourve now appeaxs vestical. and tharo are bounderies betwoen lce and vapor and weter and vapor regions. Theme sue the vepor pressure curves. These three lines intersect at Thich is knom as the triple point. At this pressume and tempereture water, ice, and weter-vepor yay be in equilibrium. The triple point data of Bone aubatances is given in Table IIfI

Pigure IIfl gives the vapor pressure over a renge of 60 dogroea, but a $p-T$ plot is mot satiaractory to reprosent vapor presgures over greater ranges because the prossuxe chenges by several. orders of megnitude. It fis ovidently.nocessesy to plot the logarithw of $\mathcal{P}_{\text {, ad }}$ it tuma out thet it is beet to plot log gagainst $1000 / \mathrm{M}$. This 18 done in ifgure IIfe for water and sor mercury. The most striking feature of this figure is the tremendoua range of yapor prossures which are observed, and measured: a factor of $10^{11} \mathrm{in}$ the cene of mercury and there is no reason to belleve thet these curves may not be oxtended indefinitely to the right, Whis is not 30 fox thesr extension to the loft for in this divection they teminate. The terwinsi point ofor the weter curve 18 shown in the flgure. Fext it fa observed that the vapor pressure curves are elmost strelght lines on this plot, and the glight curveture mey be teken into account by a tema in 10 g ? so that one has: -

$\int^{P} m^{P}$ of Hg

SUBSTAYCE

	$-1{ }_{\mathrm{C}}$
$\mathrm{H}_{2} \mathrm{O}$.0098
SO_{2}	-72.7
CO_{2}	-56.6
O_{2}	-218.4
$\mathrm{~A}_{2}$	-289.2
$\mathrm{~N}_{2}$	-209.8
H_{2}	-259.1
Hg_{2}	-38.8

PRESSURE mims. 4.579
16.3

3885

$$
2.0
$$

$$
512.2
$$

$$
96.4
$$

$$
51.4
$$

1.2410^{-6}

DENSTMY TK gra/cm ${ }^{3}$ Ziguld Solid .9982 .917

$$
1.247
$$

$$
1.279
$$

$$
1.53
$$

1.304 1.43 1.44 1.65 .873 1.025 .075 13.690 14.193
or
or again

$$
\begin{aligned}
& \log P \approx-\frac{A^{\prime}}{T}+B^{\prime}+C^{\prime} \log T \\
& \ln P \approx-\frac{A}{T}+B+C \ln T \\
& P \approx T^{C} \theta^{B-A / T}
\end{aligned}
$$

but one must bevare that in the last equation, where one has raised θ to a power, slight emrors in the logarithm are greatly magnified.

The water vapor pressure curve is show in Pigure IIf2 extended into the 100 region. This is in accord vith observation that water free from dust may be supercooled considerably below the freezing tempereture. In this condition the water is not in equilibrium and should a speck of toe be dropped in it ice crystals yili grow very rapidy. Similarly if a beaker of supercooled water is in an evacuated region containing also apiece of ice, the weter will distill onto the ice. For example at $-16^{\circ} \mathrm{C}$ the vapor pressure of water 1 s 1.323 and that of ice is 1.132 mm so that thers is a pressure difference of 0.191 mm to produce the distillation.

The values of the constants in equation ITfI for some substances are tabulatod in table IIf2 and the following regularities may be noted: The constent A is roughly proportionsl to the melting tempersture TM, the ratio A'/Tw being about 5 for substances with Van der Waals binding and about 12 for motals. Water classes with the retals in this respect because the vater molecule hes such a strong dipole moment that its binding is almost ionic. The constant C is relatively small and nearly always negative.

If the tempereture of a liquid is ralsed to the value corresponding, on the vapor pressure curve, to the pressure in the 11quid plus the pressure necessary to maintein a bubble ageinst surface tension, the phenomenon of bolling will be obsorved. Because of this additional pressure due to surface tension, the boiling point of a liquid is defined as the temperature of the vapor above a boiling liquid. The wapor-pressure curve 18 therefore also the curve of boiling points at different pressures. The boiling point at atmospheric pressure is celled the normal boiling point. The normal boiling point (B) and melting point (M) are show in Plgure IIf2 as well as the triple point (T).

VAPOR PRESSURE CONSTANTS

ELEMEMT
 So11ds

Tus
A^{\prime}
B
C^{\prime}
Additionel Terms A:/m

Ne	24.6	112.8	4.218	-	4.58
$\mathrm{~N}_{2}$	73.3	359.4	4.790	-	4.90
A	83.9	412.5	4.747	\cdots	4.98
Kr	116	578	4.847	-	4.98
Hg	234	3347	5.766	-	14.3
$\mathrm{H}_{2} \mathrm{O}$	273	2790	10.595	-1.07	10.2
CB	299	4120	7.571	-1.0	13.8
Ca	594	6073	8.845	-.9	10.2
Zn	692	6750	6.041	-	9.77

11qu1ds

He	-	3.018	-. 678	2.484	$-.00297 T^{4}$	-
H_{2}	24.0	46.65	1.190	. 84		3.33
Ne	24.6	97.4	3.591	-		3.96
O_{2}	54.7	485.6	11.450	-3.1		8.86
N_{2}	73.3	356.6	8.291	-1.96		4.86
A	83.9	357.7	4.095	-		4.25
Kr	116	569	7.763	-1.45		4.90
Hg	234	3308	7.4984	$-.8$		14.1
$\mathrm{H}_{2} \mathrm{O}$	273	2799	17.218	-3.77		10.2
CB	299	4042	8.301	-1.4		13.5
8	335	4552	5.918	-. 5		13.6
Ne	370	5567	6.360	-. 5		14.8
Cd	594	5982	11.188	--		20.1
Zn	692	6697	9.372	-1.2		9.67

Pressures are in bers, temperatures in degrees kelvin.
g) The Ideal Oes:

The laws of gases are particularly simple when their density is vely much less then that of the corresponding liquid or solid. The laws obeyed in the limit of low density are called the ideal gas lave, and these laws are good approximetions at ordinery densities. If the density is one thousand th of that of the licuid the deviations are a.few tenths of a per cent. The iceel ges laws are therefore good epproximetions for ordinery geses as well as being exect laws for an ideal ges.

1. Lew of Boyie: If the volume V of a ges is measured 2.8 a function of the applied pressure P, time being allowed between each observation for the gss to come to therratel equilibriun with its suro rouncings, it is observed that the product PV is constant

$$
\begin{equation*}
P V=B \tag{IIgI}
\end{equation*}
$$

Boyle's law for gases corsesponda to Fiooke's law for solldss Both are approximations good in the limit of low pressures, the dopertures from Yooke's law occuring at pressures roughly 1000 times laxges than the departures irom Boyle's law. Boyle's law may be pepresented grephiceliy by plotting P sgainst V at constant T (Ag. IIgI). The curve obtained is a hyperbola. It is also convenient to use logerithmic scales for P and V, in which case the curves are atralght Inos sloping downwer at 45°. The oxperivent is comonly performed by allowing the ges to enter the closed end of a y -tube and tropping it with a colum of meroury. The length ℓ occupled by the gas is then measured as a function of the difference in level h of the mercury in the tro arms. The volume is then

$$
V=A 2
$$

and the pressure

$$
Y=p g\left(h+h_{0}\right)
$$

Where h_{0} is the barametric height at the Eime and plece of the experdment.

The product PV has the dinensions of energy exd should therefore bo exprossed 1π ergs (cas) or joules (MRS). However. pressures are alweys neasured In atnospheres or sillimeterg of merouxy. A converaion is therefore alvays necossary. It is conveniext to know that
$1 \mathrm{~cm}^{3} \times 1$ man 1351 ergs
1 liter x 1 ber $=100$ joules
1 I1ter x 1 atmosphere 101.325 joules

FIG. IIgI
2. Law of Cherrea and Gay Zussect The constant k depends, of course, of the tomporature. If the tempereture, t, is measured with a conventional mercuxy-1n-gless therwometer it is found that FV depends linesmy on t

$$
\begin{equation*}
P V \approx c(1+\alpha t) \tag{IIg2}
\end{equation*}
$$

and thet the constent a has the same velue for all geses. More procisely, a is found to depend sllghtiy on pressuze, tewpereture and the neture of the ges, but as the prossure is decreased os toncs towerds the same limits imespective of the neture of the ges and epproztrately irrespective of the sompezeture.
3. The Ideal Ges momonotor: The indopendonce of apin the inato on the aubatances suggesta that the lew expressed by (IIg2) is iundamental. and that the dependonce of other propertios on tewporature w111 become shmpler is the mercusy-in-gless tempereture scale is corrected so that a is exactiy indepondont of the tempexature. Its value, s universel constent, is then obtained by applyins (IIg2) exactiy to any gea, in the ifmit of low pressure, at, the nomal fralting (t w) and boiling $(t=100)$ points of watce. Within oxperimental ersor the value is

$$
\alpha=1 / 273.16 \quad{ }^{0} \mathrm{C}^{-1}
$$

The following equation then deflnea the 1 deal gas temperature scalo

$$
\left.\begin{array}{c}
P V \rightarrow C^{B}(t+2 / \infty) \\
B \rightarrow 0
\end{array}\right\}
$$

The law is simpler if the zoro point of the temperature sceio 13 shifted so thet

$$
\begin{gather*}
R=t \div I / a \\
R V \rightarrow C \cdot T \tag{253}\\
P \rightarrow 0
\end{gather*}
$$

and this defines the absolute cemtigrade ideal gan tempereture $30 \& 10$.
Fothing 18 ingiled yet sbout the sbolute nature of 5 m 0 or even the possibility of nogetive values Ror T. Equation (IIg 3) rexely laplies that ldeal geses do not onist at such tomperatures.

As a practicel matter it doos make a difeerence what gas is used because equation (IIg3) can not be applied if the gas is condensing. If mercury gas were used thig would obligesat the ice point, using pressures bolow 1.85×10^{-4} sua, whioh 13 improctical. Obviously gases with very low boiling pointis are best, and hydrogen and helium are standard. However aves here there is a limit at the nomal bolling of helius, at 4.3° absolute at vhich the ideal gas thermometer becomes tupreotroel. Below this tomperatuxe the vepor pressure equetion of hollum (Trble TIP2) is used, but it will be f1xgt neceasary to show that the torporatuxe thus derined is identicel vith that which would bo messured with an ldeal gas therwometer if the lateser were practical.

The ideal gas themanetar is not a convenient instmunent es it is alway necessery to verify that the pressure is low oxough so that the 13 mit has been reached. In practice one uses a flalto volume (8.45 liters for 1 gra of kydrogen is standard) and applies cormections? but evon so tt is clumsy to use so that in precice one detemmines a certain muber of fired points with a ges thomoneter and uses more convenient instruments to intorpolate. The nomal welting point of solids are conveniont sized points if the solid is osily obtained pure ss melting pointa are little affectod by amall changes of pressure. Boiling points are also conveainnt elthough hore care must be oxercised that the prossure 18 exactly 760 or mercury because of the great valiation of bolling point with pressure. Table IIg3 gives a number of ilxed polnts which heve been detomined carefully.
4. Iev of Avogadro: The constent C' in equstion (ITE3) is proportional to the emount of gas used so that one can write

$$
\begin{equation*}
\text { PV . }=\text { WReT } a \text { nRI } \tag{8}
\end{equation*}
$$

Where I stands for the muber of moleculeg and n. for the number of moles. Now it tums out thet k and \mathbb{R} are univergal constents, inciepenciont of the neture of the ges

Boltzman's constent: $k=2.380 \pi 10^{-16}$ erg/nolecule, degree
Cas constant:

$$
\text { Il } m 8.314 \text { Joules/gram-mole, cegree }
$$

where it must be noted that R is 12 mixed MRS - CGS units. Another wey of expressing this constant, and one which is easiez to reammer, is to note that at 300° absolute ano one ber preasure the volume of a grean wole of teeal ges is 24.942 Ifters.
5. Law of Dalton: The progortionelity between $?$ and a and the unverisal vaine of k and If shows that bsch mole exerte a pressure RTA independentily of the presemee of other moleoules in the same volum and in vistue of gome property comon to all kinds of molecules. It ghould thenefore waice no difference if disfervnt kinds (i) of gamos sse mixed, each kind vill independently oxert itm own pertial preasura

PABLE IIg3

Transition	Substance	Absolute Tomperature
B．P。	Eydrogen	20.38
B．P．	Heon	27.07
B．P．	Witrogen	77.35
D．P。	Oxygen	90.19
M．P．	Mercury	234.30
M．P。	Iog	233.26
Treassition	Gothue Surphere	305.54
B． 2.	THator	373.16
M，P。	Tin	505.01
M， 8 。	Leac	600.5
$B . P$ 。	Sulphue	717.75
綗．P 。	Antimony	903.7
M．8．	SHIver	1233.7
R．P。	Gola	1336
M．P．	Pallediw	1827
觘．P ．	Platinua	2036
解P．	Tungsten	3659

$$
\left.\begin{array}{l}
P_{1} \approx n_{1} R M / V \\
P \approx n R N / V
\end{array}\right\}
$$

where

$$
\begin{aligned}
& n=\sum n_{1} \\
& p=\sum \sum_{1}
\end{aligned}
$$

This is Dalton's law of partial pressures.
6. Kinetic theory: Is was anear to tho anoints that the pressure of a gas FIght be due to the boating of tho molocuios gegengt the walls, but is remained Pow Bowvoully to thor that Boyle's lay followed fran this as sumption. The following is c, exude kinetic picture but which nevertheless gives the correct results:

Assume that there are 7 particles in a rectangular volume V. that they all have the same kinetic energy

$$
u=m v^{2} / 2
$$

that they move in directions paspendicular to the welles $1 / 3$ in peck direction $s 0$ defined and. rebound elastically prom the wails: Consider two opposite vale of area A sud separation D. It takes each particle e tines

$$
\tau 20 / v
$$

to wake the round trip between
 the walls, so that in this time ail $1 / 3$ proticies have rebounded off both wails, delivering to och wall an impulse

$$
\vec{T}=a \geq v=N / 3
$$

The average pressure on orch vaIl is

$$
\begin{gathered}
z=\frac{\mathrm{A}}{\mathrm{~A}}=2 \mathrm{mV} \frac{\mathrm{~W}}{3} \frac{V}{2 A D}=\frac{\operatorname{TV}^{2}}{V} \frac{N}{3}=\frac{\mathrm{Nu}}{2 \mathrm{~V}} \mathrm{~V} \\
\mathrm{PV}=\frac{2}{3} \mathrm{Nu}
\end{gathered}
$$

 u 16 constant at constant texperature, Chasles lev follows if u Ls proportional to H ', Avogedro and Dalton's levs folloy if the trenslettonsi oncrgy por peritcio it tho seme for different geses in aqui11brium. The lest follok: Prom rechsmica, for it can be ahown that in the elestic collision between two perticies, the pnergy difeerence betwern the two wiln, in the svergege be reduced in the matio $\left(\frac{m_{1}-m_{2}}{m_{1}+1 m_{2}}\right)^{2}$ by oach colliston. The evevege vaive os u tende thererore to becono the seane.

Rolating (IIg6) to (ITg4) givas the value of the ararege onergy per particle

$$
\begin{equation*}
\pi=\frac{3}{2} u \tag{ITB7}
\end{equation*}
$$

h) Foa 1 (9ases

2. Diggocistion: Certain geses exhibit markod deviations from the iden gas lavs at densitios at which one would axpect these laws to be setigiled. Nitrogen tetroxide N204 is a good example and the devietion is bost mhow by plotting FV/aT. a quantity which should be congtant, against the temporature. (F1g. ITmL). It one rale of liquid is silowed to gveporete at the nomal bolling point, 21.300 . It 18 observed thet the vepor ocouples 16 percent wore spece than 18 expected. The situetion becomes wosse en the temperature 1s inw oressed at constant pressure until 15000 where it has prectical2y levelsd off st. twice the normel voluse. The cusve can be oxtrepoleted to lower temperatures and this is tone in the sigure. plotted in this wey it is qeen that this gubstence boheves as e0 ideal gas both below $-40^{\circ} \mathrm{C}$ (11 it dse not 1iquefy) and above $150^{\circ} 0^{\circ}$. but that the mumber of woles 18 twice as lasge at tho higher tewpereture than et the 2owex. In the midele IVage it is dismociating scconding to the foxmile

$$
\mathrm{N}_{2} \mathrm{O}_{4} \div 2 \mathrm{HO}_{2}
$$

Let a be the Prection of $\mathrm{H}_{2} \mathrm{O}_{4}$ molecules which heve dissociated. then there are

$$
\begin{aligned}
& \text { 1-a molecules of } \mathrm{Tr}_{2} \mathrm{O} 4 \\
& \text { - } 20 \text { molecules of } \mathrm{NO}_{2} \\
& x=2+4 \text { moleculea. }
\end{aligned}
$$

Wigurg IThi is a plot of 2 o and shova how the alssoctation procoeds with increasing tenpereture.

The observed anomaly ts thererore not e peal doparture from the ldanl ges laws. Whet we have is s mixture of two 1 deel gssea undergoing a reversible chemicel reaction, and the ideal ges leves are applied to both of then to congute the regree of dissociation a.

Fig II h 1
\bullet

1

2. Eveporetion and Condensation:

The Asothermals shown in ilgue IIg3 do not extend indefinitely to swsller volumes. When the vapor pressure coveresponding to the tompenature of the 1gothemal is roached the ges begins to condense, and che preszure cannot exseed this value until the gas is ontirely condenged. The isothemss therefore has a bead in it joining the ldeal gas section to s horizortal section. This is show in ilgure ITh2 with Iogarithmic ace.les.

The locus of the bonds in the isotiomals is called the condemation curve. It is readily obtained by eliminating T betwoens squations IIfl and IIg4. This curve divides the p-v plens, points to the sight of it ropresenting gas, and points to the loft of it a mixed phase: 1iquid end vapore if sbove the pressure of the triple point, nolid and vapor if below. The wori "vapor" is used to reprezont a gas in equilibriun with ita condonsed phese, and does not signify any doperture from the 1desl ges Lews. At the nomal bofling point stoen occupies e volume 2.3 per cent less than predicted by the ideal gas laws and the dopertures are less than that at lerger volumes. To the laft of the iiquid end vapor and solid and vapor reglons there is another sharp bend 1π the isotherme is and one enters the liquid or solid regions, rospectively, of the P-V.plane.

Each point of the wixed phase regions represents a definite proportion 0f vapor and condensed phase. Lat V_{G} and V_{g} represent the volumes at the ovaporetiom and condensation lines, and V as intemediate point, all et the same temporature. Iat there be ne moles of condensete and n_{g} moles or ges at V. Mren

$$
\begin{gather*}
n=m n_{c}+n_{g} \\
V=n_{g} V_{c}+n_{g} V_{g}=\frac{n_{c}}{n} V_{c}+\frac{n_{g}}{n_{0}} \quad V_{g} \\
Q=\frac{n_{n}}{n}=\frac{V-V_{c}}{V_{g}-V_{c}} \tag{IIh2}
\end{gather*}
$$

a is the fraction evaporetod, and one soss that it is proporiomal to the diatance Frow the evaporation curve.
3. Real Qases: The doperture of real gases Prom the 1 deal laws is well shown by plotting I m VV/aRT, e quantity which is one for en ideal ges, ageinst the pressure P. Figure In 3 shows the isothemmas for osxbon dioxide plotted in this wey. Sinilar plots ere obtained for all other gases if the scales are suitable altered. This is the "Lew of corresponding stetes" which will be stated rore precisely in peragrept ITh5. The folloving features of the plot may be noted.
a) Aly the curves go through I at $9=0$. This is the 1deal gea IImit。
B) The initial slope of the 1sotherws depends on the tempereture, and its dependence cen be spproxirusted by

$$
\begin{align*}
& I-\int() d P \\
& \frac{\partial I}{\partial P} \approx\left(\frac{b_{0}}{R T}-\frac{s_{0}}{R^{2} T^{2}}\right) \tag{ITh3}
\end{align*}
$$

This defines the two conatants a_{0} and b_{0} and also gives a measure of the departure frow the lieal gas lews.

$$
\begin{equation*}
\frac{\Delta I}{I} \approx \frac{n}{\bar{V}}\left(b_{0}-\frac{a_{0}}{R T}\right) \tag{IThi}
\end{equation*}
$$

It is seon that it is directly proportionel to the molem density. The tempereture $a_{0} / R b_{0}$ at which the indikal zlowe chenges froan negative to positive is called the characteristic temperature. It 15 the termperature at whlch the gas is most 1deal and 18 about $370^{\circ} \mathrm{C}$ for carbon dioxide, $52^{\circ} \mathrm{C}$ for mitrogen and $-165.72^{\circ} \mathrm{C}$ for hydrogen.
r) At very high pressures tho 1 sothems all slope upvard. This Is because the gas has becone vexy incompressible and obeys Hooke's law wore nearly then the ldoal gas laws. Whe isotherms therefore approximate parabolas with the concevo side down.
8) In this rogion the dirferent 1 sothema cross over, a phenomenon called inversion. At low pressures the ges contracts greatly, and may even condenge, as the temperature is lowered. Above the inversion pressure the volume chenges less than the factor $1 / T$ and therefore the 1 sotherms for low T lie above these for high T. This inversion is important in the liquifaction of gases.

4. Vrn der Waals: equation

These properties of real gases were erplained qualltatively by considering two properties of molecules which ess

Fig: ITh4

neglected in the ideel gas theory. First the entire volume V is not avallable to any given molecule. There is a volume V_{b} denied to it due to its own finite size and that of the other molecules. Thus

$$
V=V_{a}+V_{b}
$$

Sivilarly the pressure is only partiy due to the kinetic fupects of the molocules on the wells. It is also party of statsc origin due to the attractions of the molecules.

$$
P=P_{E}+P_{v}
$$

The kinetic theory developed in paragraph IIg6 applies between V_{a} and P_{T} so that

$$
\left(P-g_{s}\right)\left(V-V_{b}\right) \approx n R T
$$

Now V_{b} is proportional to the number of molecules so thet

$$
v_{b} \approx n b
$$

To obtain a fomula for P_{g} consider the attrections between the molecules in a thin layer near the anrace of the gais and those boneath thet layer but within renge of the Van der Faals forces. These attractions acting on the molecules as they approsch the surface w1ll retard them and thus reduce P_{K} by the amount P_{s}, which must be negative. Neglecting the dopendence of the foree on distance, one soes that the number of force vectors acting across the boundary of the suxface layer is proportional both to the density of molecules in that layer and to thet beneath; that is to the density squered. Hence

$$
p_{s} \approx-a n^{2} / v^{2}
$$

and

$$
\begin{equation*}
\left(3+\frac{n^{2} a}{V^{2}}\right)(V-n b) \Rightarrow n R T \tag{ITh}
\end{equation*}
$$

This is Van der Wnals' equation.
The fsothormels of Van der Weals' equation are shown on a P-V plot with logarithmic scales in figure IIn4. At large volumes the isotherns are nearly gtrelght and at $45^{\circ} \mathrm{ln}$ agreement with the fdeal ges laws. At smsil volumes they tum up steeply corresponding to the relative incompressibility of a liquid. All the curves below thst marked 27 have a dip in thern corresponding to the behaviour of a reel gea. 27 corresponds to the charecteristic tomperature.

At low values of P and V, however, the behsvior is singular as a portion of the curve has a positive slope, indicating a negetive compressibility. If this part of the curve wore realizable the substance would oxpend When the pressure is increased and contract thon it is decreased, an obviousiy explosive situation. Fortunately it need not be realized, for a given pressure and tempersture in this region determine three solumes and the substance may choose any one of the three, or part may be in one state (or phase) and part in another. It. is just a question of What combination is most stsble, and this vill, in fact, never inciude the unstable phese. It turns out thet the condensed phase is more stable at the higher prossures, the expanded phese at the lower pressures, and that they are equelly stsble at the pressure P_{y}. The actual isothorm is then the broken curve with a horizontai section at P_{v}. This Is exactly the observed behavior during condensation. P_{v} is the vapor pressure and the horizontal section represents a combinatios of liquid and vepor phases. There remains the question of where to drew the horizontal 1ino. It vill bo shown later thet it should be draw so that the two areas enclosed between it and the horizontal are equal when the P and V sdales are Ilnear (Fig IIh5) not logarithmic. Van der Wals' oquetion is therefore capable of explaining qualitailvely (the quantitstive checks are not good) the condensation phenomens and the liquid phase as vell es the doperture of real gages from the ideal lews.

5. The Condenastion Curve:

Some isotherws for carbon dicride are shown in figure In6. The Ine joining the lert hand ends of the horizontal portions of the 1sotherms mey be celled tho bolling curve as it gives the pressure-volune relation of a liquid on the point of boiling. SimilarIy the right hand curve mey be celled the condensation curve. The whole curve may be called the saturation curve as the right hand side correaponds to a satureted vapor, the left to a saturated ilquid. There 1s no simple equation for the satunetion curve, but if one plots the densities of saturated liquid and vapor agelnst the temperature (figure IIh7) it is found that the diameter of the curve (the average of the two densities) the line obteined fis quite accurately straight.

$$
\begin{equation*}
1 / v_{i}+1 / v_{g}=2 / v_{c}-c\left(t_{c}-t\right) \tag{IIh6}
\end{equation*}
$$

this is called the law of Csillotet and Mathias.
The point there the bolling and condensation curves meet is called the critical point. Poculiar phenomena occur at this point which will not be describod here. Suffice it to say that the phenomena, are similar for all substances whose critical point has beon observed. This unfortunately limits us to ilquids whose binding is molecular as the criticel point of liquids whose binding is by valonce or coulomb forces are above the oxperimental range. The critical points of some molscular substances are given in table In5.
-

Figure 3 In4
Teothom of Fgn त9\% サ9ola' Eavat100

Van der Waals isothexw and Maxvell's construction

Not only are the phonomena at the cioiticel point similar, the ontire curves which have been given for CO_{2} in figures ITh3, 6 , and 7 hold with fair accuracy for all geses provided the scales of pressure, temperature, and volume are changed so thet the critical point corresponds to the same values. This is called the law of corresponding atates.

As an example of the socuracy of thls law we have given in Table ITh5 the volume of the liquid far from the critical point and compared it to the critical volume. It is seen that the ratio V / v is constant within 20%. To be correct the volumes of the IIquids should have been telen at comesponding tomperatures, that is at a definite frsotion of the critical tomporeture, and if this were done the constancy would be somewhat botter. The accuracy of the law of corresponding states is much botter then the scourecy of Von der Waals' equation.

6. The Criticel Polnt:

The transition between the stable 1 sotherms and those with an unstable portion occure whon the point of inflexton is horizontel. This point, which is also the point of highest pressure at which iiquid and vapor can be in equilibsium, is celled the critical point. The values of P, v, and T at the eritical point for a mumber of geses are given in table ITh5. It ia noted thet the critical volume is generally close to 3 times the molar volume of the liquid. The theoretical velues of these variables for Van dor Wasls' equation are readily obtained by solving ITh5 for the pressure

$$
\begin{equation*}
P \approx \frac{n R T}{V-n b}-\frac{n^{2} a}{V^{2}} \tag{IT}
\end{equation*}
$$

ant differsntiating twice

$$
\begin{align*}
& \left(\frac{\partial P}{\partial V}\right)_{T} \approx-\frac{n R T}{(V-n b)^{2}}+\frac{2 n^{2} a}{V^{3}} \tag{IIn8}\\
& \left(\frac{\partial^{2} P}{\partial V^{2}}\right)_{T} \approx \frac{2 n R T}{(V-n b)^{3}}-\frac{6 n^{2} a}{V^{4}} \tag{ITh9}
\end{align*}
$$

Equating IIh7 and ITh8 to zero, nRT is readily eliminated to give

$$
V_{c}-n i=\frac{2}{3} V_{c}
$$

TABLE TIn5

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Gas \& $$
\frac{v_{2}}{\frac{\cos 3}{\operatorname{sol}}}
$$ \& $$
\frac{v_{c}}{v_{Z}}
$$ \& $$
\begin{array}{r}
{ }^{V_{C_{3}}} \\
\frac{\mathrm{cral}_{3}}{\mathrm{~mole}}
\end{array}
$$ \& $$
\begin{array}{cc}
P_{\mathrm{C}} & \mathrm{~T}_{\mathrm{c}} \\
\text { bars } & o_{\mathrm{K}}
\end{array}
$$ \& $$
\frac{\mathrm{R}_{\mathrm{C}}}{\mathrm{P}_{\mathrm{c}} \mathrm{~V}_{\mathrm{c}}}
$$ \& $$
\begin{aligned}
& a_{c} \\
& \text { Iter- } \\
& \frac{\text { Joule }}{n o l e}
\end{aligned}
$$ \&

\hline He
H_{2} \& 27.2
26.4 \& 2.26
2.46 \& $$
\begin{aligned}
& 61.5 \\
& 65.0
\end{aligned}
$$ \& $$
\begin{array}{r|r|}
2.29 .19 \\
13.0 & 33.2
\end{array}
$$ \& $$
\begin{aligned}
& 3.69 \\
& 3.27
\end{aligned}
$$ \& $$
2 \frac{3}{24} \cdot 8
$$ \& $$
\begin{aligned}
& 23.4 \\
& 26.6
\end{aligned}
$$

\hline N0 \& 16.7
18.0 \& 2.50
2.50 \& 41.7
45.0 \& $\begin{array}{rrrr}27.2 & 44.4 \\ 220.6 & 647.2\end{array}$ \& 3.25
5.81 \& $$
\begin{aligned}
& 21.2 \\
& 580 .
\end{aligned}
$$ \& $$
\begin{aligned}
& 17.0 \\
& 31.9
\end{aligned}
$$

\hline NH_{3} \& 20.8 \& 3.5 \& 73.0 \& 113.405.6 \& 4.10 \& 425. \& 37.3

\hline $\mathrm{CH}_{4} 4$ \& 38.6 \& 2.57 \& 99.3 \& 46.3190 .7 \& 3.45 \& 229. \& 42.9

\hline N_{2} \& 34.7 \& 2.60 \& 90.2 \& 33.9126 .0 \& 3.41 \& 137. \& 38.6

\hline CO

HON
$\mathrm{C}_{2} \mathrm{H}_{2}$ \& 34.5
38.6
42.5 \& 2.68
3.5
2.66 \& 192.4

135. \& $$
\begin{aligned}
& 35.4 \frac{134.2}{156.7} \\
& 53 . \\
& 6309
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 3.41 \\
& 5.50 \\
& 3.60
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
144 . \\
1190 . \\
432 .
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 38.3 \\
& 93.0 \\
& 51.0
\end{aligned}
$$
\]

\hline NO \& $$
\begin{aligned}
& 23.8 \\
& 28.0
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 2.42 \\
& 2.66
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 57.6 \\
& 74.5
\end{aligned}
$$

\] \& \[

$$
\begin{array}{l|l}
66 . & 179.2 \\
50.4 & 154.4
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 3.92 \\
& 3.42
\end{aligned}
$$

\] \& \[

\frac{143 .}{338 .}

\] \& \[

$$
\begin{aligned}
& 28.2 \\
& 31.8
\end{aligned}
$$
\]

\hline $\mathrm{C}_{2} \mathrm{H}_{4}$ \& 49.5 \& 2.57 \& 1.27 .5 \& 51.5882 .9 \& 3.58 \& 453. \& 57.0

\hline | A |
| :--- |
| HCL |
| PF_{3} | \& 28.4

30.5
45.6 \& 2.65
2.82

2.48 \& $$
\begin{array}{r}
25.3 \\
86.0 \\
113 .
\end{array}
$$ \& \[

$$
\begin{aligned}
& 48.5251 .2 \\
& 82.6524 .7 \\
& 65.324 .
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.44 \\
& 3.80 \\
& 3.67
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 237 \\
& 372 \\
& 460
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 32.4 \\
& 40.8 \\
& 51.8
\end{aligned}
$$
\]

\hline C83 $\mathrm{O}_{3} \mathrm{H}$ \& 40.5 \& 2.90 \& 117.6 \& 79.7513 \& 4.54 \& 960 \& 66.6

\hline N10 \& 35.9 \& 2.71 \& 97.5 \& 72.6309 .7 \& 4.55 \& 385 \& 44.3

\hline CO_{2} \& 137.3 \& 2.54 \& 94.8 \& $73.95 / 304.3$ \& 3.51 \& 366 \& 42.9

\hline 0_{3} \& 28 \& 3.78 \& 89 \& 68 268.2 \& 3.68 \& 423 \& 41.0

\hline $\mathrm{CX}_{3} \mathrm{Cl}$ \& 54.9 \& 2.78 \& 152.5 \& 66.6426 .3 \& 3.41 \& 759 \& 65.0

\hline $\mathrm{CH}_{4} \mathrm{~S}$ \& 55.4 \& 2.69 \& 149 \& 72.2470 .0 \& $3: 63$ \& 891 \& 67.6

\hline $3 \mathrm{O}_{2}$ \& 43.8 \& 2.83 \& 123.7 \& 78.7430 .4 \& 3.68 \& 686 \& 56.9

\hline Cl_{2} \& 41.5 \& 2.98 \& 123.7 \& 77.1817 .2 \& 3.64 \& 668 \& 53.2

\hline $$
\begin{aligned}
& \mathrm{Kr}_{8} \\
& \mathrm{SO}_{3}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 38.9 \\
& 41.6
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.78 \\
& 3.05
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 108.0 \\
& 127
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 54.8 \\
& 84.610 .0 \\
& 491.5
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.92 \\
& 3.80
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 234 \\
& 832
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 39.8 \\
& 60.4
\end{aligned}
$$
\]

\hline $\mathrm{CCl}_{2} \mathrm{O}$ \& 71 \& 2.68 \& 190 \& $57 / 455$ \& 3.49 \& 1060 \& 83

\hline Xe \& 43 \& 2.64 \& 113.7 \& 58.9289 .8 \& 3.59 \& 415 \& 51.1

\hline COC_{4} \& 96.3 \& 2.87 \& 276 \& 45.5556 .3 \& 3.68 \& 1910 \& 322

\hline Bg \& 14.8 \& 2.70 \& 40 \& $3 6 0 0 \longdiv { 1 9 0 0 }$ \& 1.10 \& 292 \& 5.5

\hline Aversge \& \& 2.74 \& \& \& 3.68 \& \&

\hline
\end{tabular}

Whence

$$
\left.\begin{array}{c}
\mathrm{V}_{\mathrm{c}} \approx 3 \mathrm{nb} \tag{IThlo}\\
\mathrm{~T}_{\mathrm{c}} \approx 8 \mathrm{a} / 27 \mathrm{Rb} \\
\mathrm{P}_{\mathrm{c}} \approx \mathrm{a} / 27 \mathrm{~b}^{2}
\end{array}\right\}
$$

and there is a simple relation botween these:

$$
\begin{equation*}
\frac{1}{I_{c}} \approx \frac{n R T_{c}}{P_{c} V_{c}}=\frac{8}{3} \tag{IThll}
\end{equation*}
$$

The value of this ratio is also shown in table ITh5 and it is seen that the actual value is definitely larger than that predicted by Ven der Waals. This is evidence of the spproximate nsture of Ven der Waels' equation, but the situation is actually not as bad as these particular numbers would indicate, as the position of the point of inflection on the almost horizontal section of the critical isothemmay be changed a good deal by a very slight alteration of the curve.

Equations IIn9 may be used to compute the Van der Waals constants a, and b, from the critical constants $P_{c} ; V_{c}, T_{c}$. There are too many equations, but we have seen that the first equation is uncellable and we must use the last two

$$
\left.\begin{array}{c}
a_{c} \approx \frac{27}{64}\left(\frac{R T_{c}}{P_{c}}\right)^{2} \\
b_{c} \approx \frac{R T_{c}}{8 P_{c}}
\end{array}\right\}
$$

IIhl2

The subscript c has been used to distinguish the Van der Waals constants determined in this way from those a_{0}, b_{0}, determined from low pressure measurements, but portunately they do not differ very much. Values of these constants are given in table ITh5. The value of b is generally larger than the molar volume of the liquia, probebly because the molecules of a liquid are compressed by their mutual attractions. It will be noticed thet v_{ℓ} and b differ most when a is large, and this is tme for molecules with large dipole moments. The quantity $R T{ }_{c} / \mathrm{P}_{\mathrm{c}}{ }_{\mathrm{V}} \mathrm{c}$ is fairly constant, but not as con$\operatorname{stant} a s \mathrm{v}_{\mathrm{c}} / \mathrm{v}_{\ell}$.

The fraction of the volume of a gas which is actually occupled by the molecules may be estimated from the values of b. Thus the molecules of a mole of alr occupy about $37 \mathrm{~cm}^{3}$, whereas the gas occupies, under standard conditions, $22400 \mathrm{~cm}^{3}$ or about 600 times as much space.

On the other hand if we wish to compare ilnear dimensions we must take the cube root of this figure, or the seperation between molocules is about 8.5 times their diamoter.

7. Continuity of State:

Whe P-V diagram contains a region, under the boiling and condensation curve, which represents a combination of liquid and vapore It is commonly agreed that points to the right of the condensation curve represents ges and points to the left of the bolling curves but before the solidificetion line, roprosent licuid. But what ebout points above the critical point? There is no boundery hewe and a substance can be brought continuousiy from the "ges" to the "1iquid" region without chenge of phase: Where there is no froe surface the words "IIquid" and "ges" are underined so it is a question of convenlence thich one to use, provided one understands that there is no sharp physical distinction. It is convenient to use "gas" where the 1deal gas laws are epproximeted and "liquid" Where Booke's law is more nearly true. A glance at figuxe TTh4 shows thet this is more a question of volume than elther pressure or temperatires if the volume is much less than the criticsl volume the substance is like a liquid, if it is much larger the substance is ike a gas.

III TKE PIRST LAY

(a) Vork

1) Definition

If a substance exerting a pressura P undecgoes expenston DV It performe an anount of work

$$
\begin{equation*}
d t W=P d V \tag{IIIeI}
\end{equation*}
$$

and if the expansion continues trom A to B along the path $A B$ the totel amount of work porfomed is

$$
W_{A B}=f_{A}^{B} P d V=A x \theta a \text { under } A B \text { (IIIE2) }
$$

W obviously depends on the path chosen in going from A to B and this is indicatod in oquation (IIIa2) Dy the ber across the integral sign. Therofore W is not a function of the state of the gas and camnot be

EIG. IIIaI ©xprossed in temes of V, P and T. It is celled s functional. Thus कW is not obtained by differontiating a function and this is oxpressed by saying that it 18 not on exact diprorentiel and is in dicated by the bar across the ow. This distinguishes it from ozact aiferometals such as

$$
d T=\frac{T}{V} d V+\frac{T}{E} d P
$$

which intogrates to

$$
T=V P \times \text { consi }
$$

There are, of course, other foms of work than thet derined by (IIIal), such as electrocal work or megnetlaing womk, but these will not be considered hore.
2) Unitis
 respectively. In dealing with geses it ia convoniont to use tho 1iter-Ber defined by oquation (IITsi) in shich V is expressed in IIterg and 9 in Bars.

$$
\text { 1. } 11502 \cdots B a r=100 \text { Joules }
$$

3) Reversible and Irreversible Processes

The work obtained in going from A to B Blso depends on the speed with which the process is cariled out. Imagine that the subatance is a gas working against a piston. If the piston is vithdram repldiy the pressure exerted on the platon may be less than the pressure in the gas. It can oven be iragined that the piston 1.5 vithdrawn faster than the speed of the molecules in the gas, In which case the pressure on the piston 1 s zoro and no work is done by tho gas. Reciprocally whon the piston is pushed $1 n$ and $d V$ and w wre negative the pressure on the platon may bo larger than that in the gas. In both ceses

$$
\alpha W \leq P d V
$$

where P has any value between its oxtremos at the piston or far from the piston. It is assumed only that pressure waves have not been set up and the piston is not withdrawn in such a way as to follot a prossure crest. Such an unlikely cirevxstance will be constcored in discussing irreversible processes. In general the dipeerence between PdV and W is internal work which parts of the system do on other parts but which nevor appears on the outside.

If the process $A B$ is done slowly so that the equality sign holds it may bo repeated in oxectly the reverse direction $B A$ and the work done on the substance will be equel to that done by bye sas bofore. The process is then said to betrevergiolo. On the othor hand $1 f$ the inequality holds less work is obtained from and more is done on the gas so that there is a net loss of work and the process is 1mrevergible

In discussing a process such as the expansion $A B$ we axe deperting from the agreement to deal only with equilibrius states. for the very fact that the state is changing shous that there is not equilibrium. Howover if the process is cerriod out vory giowly it can be, at every atop, very close to equilibriur (quasi-stetic). The ine $A B$ on the $P-V$ diagram then roprosonts the equilibrium statos to which 1t pesses very close. On the othor hand a process which is cerried out very fast does not go near equilibrium statey and cennot be represented on a P-V diagram. We shall generally restrict ourselves to quasi-statlo, reversible, processes.
4) Crelic Processes

Particular importance attaches to cyclic processes in which a substance at the ond of the process has returned to its inltial state A. If performed re: versibly the process is representod by a closed figure on a P-V diagram and the area onclosed is the work of the process.

$$
\begin{equation*}
W_{0} \leq \phi P d V \tag{IIT}
\end{equation*}
$$

(IIT8.5)

FIG. IXIE 4

If the figure is described in the direction of motion o: the hends of a clock the work 18 done by the subatance and is consicored positive. As the cycle may be repestod 8 often as wo plonno sad each time we obtain the work W there must be some compenation in the form of a quantity Q which has not yet been discussod. Fovever this property of W of increasing indopinitely as one goes around a eycle illustretes a characteristic proper'y of inexact diferontials. in expet difforential, such as at, returns to oxactly its indital valve when a substence rotums to its initial stete.

(b) Heat

1) Method of Mixtures:

When two masses M_{7} and H_{2} of the sane substance but at dit forent temperatures TI and $T_{\text {a }}$ apleced in concect their temperatures change and eventually reach the same velue T_{3}, which, if T_{1} end T_{2} do not difior by too much, is given by

$$
\begin{equation*}
\frac{T_{1}-T_{3}}{T_{3}-T_{2}}=\frac{T_{2}}{T_{2}} \tag{IxIbI}
\end{equation*}
$$

If the two substances are different this equation mat be oxtonded to read

$$
\begin{equation*}
\frac{2_{1}-T_{3}}{T_{3}-a_{2}}=\frac{0_{2}}{C_{1}}=\frac{e_{2}^{n_{2}}}{0_{2}} \tag{IITb2}
\end{equation*}
$$

The quantities C are celled hoat oapacities and the quantities a are called specific heats. Speoticic herta depend (a) on the substance used. (b) on the mean pressure and torperature of tho experiment, and (c) on the oonditions of the experiment such as whether the prosbure or the volume is held constant. In order to meesure speciric hocts it remeins only to rafer them to a standaw substance: water, at atandard pressure and temperature: one atmosphere and 15° centigrede, under standard conditions: constent pressure, whose aptelitic host is taken as unity.

2) The Calorte

Equation (2ITtra) as well as many othon obsorved relations, sh follow from the hypothesis that a quentity, , of something collod heat, flows from the hotter body to the colder one, and thet

$$
\begin{equation*}
o t Q=c_{x} d T \tag{ITIb3}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{x}=c_{x^{\prime}} H=c_{x^{n}} \tag{IIIb4}
\end{equation*}
$$

C_{x} is the heat capacity, c_{x} the heat capscity per moles c_{x} the specific heat, and the subscript x is used to denote the paraneter which is to be hold constant in the process.

The unit of heat, the calorie, $1 s$ the guontity of heat which Will raise one grom of water from $14.5^{\circ} \mathrm{C}$ to $15.5^{\circ} \mathrm{C}$ under one atmosphere pressure

Equation IIIbS is correct as it stands for the process described, but it is possible to rasse the temperature of body in other ways than by conducting heat to $1 t$, such as by vigorous stirming of a liquid or rubbing a solid. To include such processos one must write

3) Conduction
 The rate of hoat elow, d Q/dt, through a material is found to be proportional to the ares A through thich 1 t 1 lows and to thes temperature gradient dT/d
 $\mathrm{CQ} / \mathrm{dt}=\mathrm{K} \mathrm{KdT} / \mathrm{d} 2$

The factor of proportionality K is called the themal conductivity. Metals have the highest conductivities, that of silves being about I cal/sec. cm. ${ }^{8} \mathrm{C}$. Ifquids are pooren conductors than solids and geses axe poorer yet being about 6×10^{-5} $\operatorname{col} / \mathrm{sec}$. cxa ${ }^{\circ} \mathrm{C}$. at nomal. pressure and tenporeture. There is elso a characteristic difforence betwoen solids and rlulds thet in the fomer the conducti 1ty decreeses Whth the temperature while

In the letter it incresses. For 1deal geses it varies as $\mathrm{T} / 2 / 2$

4) Temperature Equation

EIG. IITb4
The equation for the distribution of tempereture along a rod of crosg-section A can be derived from (IIIb6) and (IIIbS) ss follows: The heat flow along the rod is, by (IIXb6),

$$
\begin{equation*}
\Gamma-K A \frac{\partial T}{\partial x} \tag{IIID7}
\end{equation*}
$$

and therefore the not rate at which heat is flowing thto a section dx of the rod is

$$
\begin{equation*}
\frac{\partial}{\lambda t}\left(\sum_{Q}\right)=-d \Gamma=K A d \frac{\partial T}{\partial K} \tag{IITb8}
\end{equation*}
$$

The hest capacity of the section of rod 1 s

$$
\begin{equation*}
d C_{p}=c_{p}^{\prime} d M=\rho c_{p}^{\prime} A d r \tag{IITb9}
\end{equation*}
$$

Whore ρ is the density of tho rod. Now from (IITb 3)

$$
\begin{equation*}
-d \Gamma=d 0_{p} \frac{\partial m}{\partial t}=p c_{p} A d x \frac{\partial m}{\partial t} \tag{ITIDIO}
\end{equation*}
$$

whence

$$
\begin{equation*}
\frac{\partial^{2} T}{\partial x^{2}}=\frac{\rho_{D}}{K} \frac{\partial T}{\partial t} \tag{1TIbli}
\end{equation*}
$$

Eq. (IIIbII) comnocss the diatribution of tempereture elong the rod with its rate of change with time. Note that the pirst derivative with respect to time enters ingtead of the secomd derivetire as in the wave equation

$$
\begin{equation*}
\sum \frac{\partial^{2} p}{\partial x^{2}}=-k_{8} \rho \frac{\partial^{2} p}{\partial t^{2}} \tag{x}
\end{equation*}
$$

The propagation of tomperature thererore differs greetIy from that of pressure. The solution of (IIIbI2) is any weve propogated with a definito velocity

$$
v_{p}=3 / \sqrt{ } K
$$

but there 15 no guch desinite velocity connected with (IIIbII).

$$
2 \mathrm{HCl}=\mathrm{H}_{2}+\mathrm{C}_{2} \mathrm{I}_{2}
$$

5) Specipic Heats

It has been seen that the specific heat (Eq.IIIbJ) differs sco cording to the process, and whatevor paremeter remains constant is indicated by a subscript. We are comonly concerned with c_{p} and c_{v}, but one can also consider an isothemal process for which $c_{T} w$ because $d T=0$. stmplaxly a reversible process for which there is no heat transier is called ediabatic and the corresponding specipic beat $c_{\pi}=0$ Each one of these processes dorinês a direction on the $\mathrm{P}-\mathrm{V}$ plane and these ere Indicetod on FIg. IIIb5. For directions botween the isothermel and adiabatic the specific hoat. is nogetive and for ell others it is positive.

FIG. IIIb 5

Experimental values of c_{p} and o_{G} for copper are shom $1 n$
celpmole deg.

FIG. 3 ITb 6 flgune IITb5, and the general shape is typical of all solles. The tomperature at thich the curves bend over sharply 1 s called the chametemistic tompereture, and it is Pound that the specific hent curyes of ell 3011 de agree fanrly well if terneratures are measured in teres of the chorgcteristic temperature and if the spectif.e heets are computed per gran-rstom instead of per nole. If there are v atoms in a molocule the number of grem-Etoms is $n_{a}=v n$
(IITbI3)
Above the charactoristic temperature the specific heat at constant volume for most sollda romsins neer $6 \mathrm{cel} / \mathrm{gm}$ stom ${ }^{\circ} \mathrm{C}$. This is mang and Petit's Law. c_{p} is found to be precticeliy Independert of the pressure. Coraparing rigures (ITd) and (ITIb 5) It is noticeable that c_{p} and β rary in much the same way. Threed there is a result of the the uny of the solld state knom as Grunelsen's Ixw which aays thet

$$
\begin{equation*}
\frac{v \beta^{2}}{n k c_{p}^{2}}=A \tag{IIIb14}
\end{equation*}
$$

Where A is approximately constant. The presonce of V and K in this Pormula does not alter much the proportionality of c and β as V and H vary little and in the same direction. This formbla is useful to obtain values of β at low temperatures from measurements of c_{p}.

The apecific heats of gases have a sivilar temperature dependince although their characteristic tomperetures are much lower and at absolute zero they approach 3 calymole dogreo instemd of zero. At normal terperatures c_{v} has approximately the value 3,5 , or 6 celories per mole degree according to whether the ges is monetomic, dietomic, or polyatomic. The specific hest of a solid 13 therefore alvays smaller than that of its vapor at low temperatures and larger then it at high temperatures.

6) Heat and Work

It will presently be shown that heet, like work, is onergy in transit. Heat differs irom work in that no macroscopic motion is necessarily involved. It is transferred olther by conduction through a material or between surfaces in contact or by radiation through iree space and in no other way. In the process of convection thore are two heat transfers: Prom the hot body to the sluid and Prom the rluld to the cold body. In flowing from the hot to the cold bocy the fluid carries not heat but enthalpy as will be seen.

C. Fipgt.Lav

1) Equivelence of Work and Heat

In a series of classic experiments Rumiord (1798), Joule (1840), and others showed that impeversible work and hoet were equivalent. In Joule's P1rat experiment paddle wheels yore caused to stir Wetor by felling weights, and the loss of potential energy of the woights compared to the temperature rise in the water. A similar oxperiment was performed using the 12 R loss of olectrical energy in a conductor. In all cases it is found that 4.1858 Joules of 1 rrevereible work produce the geme effect as the transfer of 1 calorie of heet.

2) Gyclic Process

It is, however, not necessary thet the work be perfomed irreversibly. If a substance is taken around a reversible cycle as show in Fig. (IIIa\&) it has bean seen that a quantity of work

$$
W=\oint o t w
$$

appears or disappears in each cycle. Experiment shows thet an oquivalent amount of hoat

$$
\begin{equation*}
Q=\oint \infty Q \tag{IIIcI}
\end{equation*}
$$

$$
\begin{aligned}
& \frac{V B^{2}}{h X y^{2}}=A(\text { acastand }) \\
& \text { polida }
\end{aligned}
$$

Ia Clatehins Orii Grunusen form.

Equiblimin
Quasistatie
heversible proses

$$
\begin{aligned}
& \begin{array}{l}
W=\int^{W} F d x=\int p d u \text { - quasstatie proses } \\
d \omega=P d v
\end{array} \\
& \left.\begin{array}{l}
I_{w} \leqslant P d v\left(\text { ahe }-d u s^{-}+\right) \\
d w \geqslant P d u(\text { hes } d v i s-)
\end{array}\right\} \text { espasene }
\end{aligned}
$$

p

Iw is mot iqat (बw) becanse wher \int asoond a closed low $\sim o t=t_{0} \dot{\sigma}_{1}$
mechmial - heat
$A T \sim W \quad Q \cdot C A E$
Neat is trapplasod hy
$\frac{w}{\Delta t}=4.186 \mathrm{C}$ 107 ?

4,186 Donbo/inlous.

$$
\delta d \omega-d \theta)=0 \quad \therefore \text { exact } \quad 1^{s t} \operatorname{Lan}
$$

diseppears or appears also, so that

$$
\begin{equation*}
\oint\left(\omega_{Q}-\not t W\right)=0 \tag{IIIc2}
\end{equation*}
$$

This equation cannot, of course, be proved in general, but no contredlction has-ever been found provided ot in includes all lenom foms of work: mechanical, electriond, magretic, chemled. etc.
3) Intornal Energy

The universal validity of (IIIc2) is the condition thet t Q - dh bo an exact differential

$$
\begin{equation*}
d U=d Q-d W \tag{IIT}
\end{equation*}
$$

The function U is called the Intemal Energy, and the oxistence of this function constitutes the First Lev of Themodynamics.

If We restrict ourselves to voluwe changes eq. (IIIc3) be-
comes

$$
\begin{equation*}
\mathrm{dU} \geq t_{Q}-P d V \tag{IIIC4}
\end{equation*}
$$

Where the inequality sign holds for processes thet are mechentcally irreversible.
4) Heet Capscitios

Equetion (IIIc4) can be written

$$
\begin{equation*}
\mathrm{Z} Q \leq \mathrm{Qv}+\mathrm{PdV} \tag{173e5}
\end{equation*}
$$

also

$$
d U=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V
$$

Hence

$$
\begin{equation*}
t_{Q} \leq\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left[\left(\frac{\partial U}{\partial V}\right)_{T}+p\right] d V \tag{IITe6}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{V}=\left(\frac{\partial U}{\partial W}\right)_{V} \tag{IIIc7}
\end{equation*}
$$

Defining the Enthalpy as

$$
\begin{gather*}
\mathbb{H}=U+P V \tag{IIIC8}\\
d Q \leq d F-V d P \tag{IIIC9}
\end{gather*}
$$

Proceeding as above we find that

$$
\begin{equation*}
O Q \leq\left(\frac{\partial T}{\partial T}\right)_{P} d T+\left[\left(\frac{\partial F}{\partial P}\right)_{T}-V\right] d P \tag{IIIcIO}
\end{equation*}
$$

$$
\begin{aligned}
& d P=d u+d w c d u+P d u \\
& d V=\left(\frac{\partial u}{\partial+}\right)_{j} d t+\left(\frac{\partial u}{\partial v / t} d v\right. \\
& d Q=\left(\frac{\partial u}{d t}\right)_{u} d t+\left(P+\left(\frac{\partial v}{\partial \psi}\right)+\right) d u \\
& \text { if } u=\text { castat } d u=0, d Q \approx C u d Q=\left(\frac{\partial v}{\partial+}\right)_{v} d t \\
& \quad e_{u}=\left(\frac{\partial V}{\partial t}\right) v \\
& \text { rote }^{\gamma}
\end{aligned}
$$

$$
\begin{equation*}
C_{p}=\left(\frac{\partial H}{\partial T}\right)_{P} \tag{IIIcII}
\end{equation*}
$$

Thus C_{V} and C_{p} meesure, respectively, the change in internal energy and onthalpy with temperature. U and H are not generally moasured experimentaliy and C_{p} is much easier to measure than C_{V}. Therefore the onthalpy H is gonerally celculated first from measurements of C_{p} and the energy deduced from (IIIc8). In fact the enthalpy is given directly in the cooling-curve method of measuring specific heets. In this method the substance to be studied is disposed so that it is maintsined at a constant pressure P but loses (or gains) heat at a known rato s and which we shell assume to be constant.

$$
\begin{equation*}
\alpha Q / d t=r \tag{IIIcI2}
\end{equation*}
$$

This can be done, for example by heating through a resistance vire. The temperature is then plotted ageinst the time and the slope of the curve

$$
\begin{equation*}
\frac{d T}{d t}=\frac{r^{p}}{C_{p}} \tag{IIIcI3}
\end{equation*}
$$

is inversely proportional to the spociric heat. However from (IIIc9) it is seon that
$d H=a^{-1} Q=r d t$
and thererore

FIG. IIIC 4

$$
\begin{equation*}
H=H_{0}+r t \tag{IIIcI4}
\end{equation*}
$$

If we plot rt against the temperature we have innediately a plot of the enthelpy.

- One could similamy obtain a plot of the intemal energy U 15 one could perfom the experiment at constant volume, but this is generally not possible.

5) de-Equations:

The heat absorbed in any process can be deduced frow O_{p} and ${ }^{C}{ }_{V}$ as follows:

$$
\begin{equation*}
d U=\left(\frac{\partial U}{\partial V}\right)_{p} d V+\left(\frac{\partial U}{\partial P}\right)_{V} d P \tag{IIIe15}
\end{equation*}
$$

Substituting, chis in (IIIC5)

$$
\begin{align*}
& \mathscr{A} Q \leq\left[\left(\frac{\partial U}{\partial V}\right)_{P}+P\right] d V+\left(\frac{\partial U}{\partial P}\right)_{V} d P \\
& d t_{Q} \leq\left(\frac{\partial H}{\partial V}\right)_{P} d V+\left(\frac{\partial V_{P}}{\partial P}\right)_{V} d P \\
& t Q \leq\left(\frac{\partial F}{\partial T}\right)_{p}\left(\frac{\partial T}{\partial V}\right)_{p} d V+\left(\frac{\partial U}{\partial T}\right)_{V}\left(\frac{\partial T}{\partial P}\right)_{V} d P \\
& \delta_{Q} \leqslant c_{p}\left(\frac{\partial T}{\partial V}\right)_{p} d V+c_{V}\left(\frac{\partial T}{\partial P}\right)_{V} d P \tag{IITcI6}\\
& \left.d_{Q} \leq \frac{C_{D}}{\beta} \frac{d V}{V}+\frac{C_{V}}{\beta}\right\} d P \tag{IIXe17}
\end{align*}
$$

Substituting

$$
d P=\left(\frac{\partial P}{\partial V}\right)_{P} d V+\left(\frac{\partial P}{\partial T}\right)_{V} d T
$$

and using the cyclic relation we find

$$
\begin{equation*}
\dot{L}_{Q} \leq c_{V} d T+\left(c_{p}-c_{V}\right)\left(\frac{\partial T}{\partial \boldsymbol{V}}\right)_{p} d V \tag{IIIe18}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\partial Q_{Q} \leqslant c_{p} d T-\left(c_{p}-c_{V}\right)\left(\frac{\partial T}{\partial P}\right)_{V} d P \tag{IIIC19}
\end{equation*}
$$

These equations will give the heat absorved by a substance in any reversible process. In particular the second terms of (IIIc18) and (IIIc19) give the "isothermal heat" or heat required by a reversible isothermal process.

6) Adiabatic

The equation of an adiabatic curve on a P-V diagram is readily obtained by setting $2 \mathrm{t}=0$ in equation (IIIc17). Using the subscript s to denote an adiabatic process -

$$
\frac{1}{V}\left(\frac{\partial v}{\partial p}\right)_{s}=\frac{c_{V}}{c_{p}} k=k s
$$

Defining adiabatic compressibility by

$$
\begin{equation*}
K_{S}=-\frac{1}{\mathrm{~V}}\left(\frac{\left.\frac{\partial V}{\partial P}\right)_{8}}{}\right. \tag{ITIc20}
\end{equation*}
$$

and also indicating by a subscript the compessibility moasupod iso－ the madly

$$
\begin{equation*}
\gamma=\frac{c_{p}}{C_{V}}=\frac{\mu_{T}}{\mu_{B}} \tag{XIXc21}
\end{equation*}
$$

Frequently the two compressibilities can bo mocsured：K_{T} by erect moasuronents of P and V aud h_{s} from the volocity of ocund．C_{V} is them obtained from the above relation．

The velocity of sound in an ideal gas is given by

$$
{ }^{\text {sound }} \text { }=\sqrt{1 / X_{s} g}=\sqrt{8 / X_{4 \rho}}=\sqrt{\frac{Y P V}{M}}
$$

where the deal gas laws have been used to get K．Forever it has been seen that

$$
P V=\frac{1}{3} m v_{\text {molecules }}^{2}
$$

hence

$$
\frac{v_{\text {sound }}}{v_{\text {molecules }}}=\sqrt{\frac{6}{3}}
$$

Thus sound，in an leal gas，travels almost as fast os tho molecules．

7）Energy Equation

$$
\begin{aligned}
& \text { Combining (IITcI8) with (IIIc年) wo hero } \\
& d U=a_{V} d T+\left[\left(C_{p}-C_{V}\right)\left(\frac{\partial T}{\partial V}\right)_{D}-I\right] \text { aV }
\end{aligned}
$$

If C_{V}, C_{p} ，and the equation of gtsto are bow this rotation can bo used to compute the Internal energy 0 ．Note that the inequality has not been kept in this equation boceuse it is imposesple to tell which way it would go．Equation（IIIo22）applies on ll to a reversible process，that $1 s$ to equilibrium states．This is a common restriction for thomodmonic ecua－ trons and prevails whenever the inequality sign is pot speofficeliy indicated．

$$
\therefore d u=C_{v}\left(t_{2}-t_{1}\right)
$$

Combining similarly equations (IIIcI9) and (IIIc9) we hove for the enthalpy

$$
\begin{equation*}
d H=C_{D} d T+\left[V-\left(C_{p}-C_{V}\right)\left(\frac{\partial p}{\partial p}\right)_{V}\right] \partial P \tag{IIIc23}
\end{equation*}
$$

8) Free Expansion

There are two simple though incovorstble oxpansions of a gas which will illustrate the use of thomodymamio relations in ixpovosisible processes. The first is ire oxpenalon.
Imsine vessel of volume V_{2} with a portion of it V_{1} separated by a partition. Let V_{I} contain a gas at pressure P_{1}, and the remelndex be evacuated. Then imagine the par tition to be punctured or otherwise removed. The gas will then expend irrevoresbly occupying the entire volume V_{2}. However pressure and tom-

FIG. TIe 5 porature will not bo constant, or oven measurable, during tho process. No externs 1 work has been done, so of $=0$, and 15 the vessel is insulated of $Q=0$. Hence Prom (IIIc3) $d U=0$ and the process proceeds at constant energy.

Consider now a covorsible process at constant onosigy. Using the cyclic relation we obtain

$$
\begin{equation*}
\mu=\left(\frac{\partial T}{\partial V}\right)_{U}=-\frac{(\partial U / \partial V)_{T}}{\partial U / \partial T)_{V}}=-\frac{I}{C_{V}}\left(\frac{\partial U}{\partial V}\right)_{T} \tag{IIIc24}
\end{equation*}
$$

This quantity is called tho Jovio coefficient. Integrating

$$
\begin{equation*}
T_{2}-T_{1}=\frac{V_{2}}{V_{1}} u d V \tag{IIIe25}
\end{equation*}
$$

The end gites of the froe expeasion being equilibrium states the bemaperature difference computed in this way for a reversible process will be the same as for the reversible ono.

Actually equations (IIIc24) and (IIIe25) are used in the reverse way, measurements of the tompenture change $T_{2}-T_{1}$ giving a sensitive way of obtaining the change of intemel energy with volume at constant temperature.

In terms of this coefficient one can write the energy equation

$$
\begin{equation*}
d U=O_{V}(d T-\mu d V) \tag{IIIc26}
\end{equation*}
$$

-

\bullet

0

9) Throttilng Process

The second simple irreversiblo process is that in thich a gas ilowing through a pipe at pressure P_{7} expends through a nozele into a second pipe at pressure P_{2}. This differs from a

FIG. IETCT free expansion because as n moles go through the nozzle an amount of work $P_{1} V_{I}$ is done on it by the gss behind it and in tum it does $P_{2} V_{2}$ on the gas ahead. Then the net work is $W=P_{2} V_{2}-$ $P_{1} V_{1}$ and if there are no heat losses to the pipe $Q=0$. Then

$$
\begin{align*}
& U_{2}-U_{1}=Q-W=P_{1} V_{1}-P_{2} V_{2} \\
& H_{2}=U_{2}+P_{2} V_{2}=U_{1}+P_{1} V_{1}=E_{1} \tag{ITIc27}
\end{align*}
$$

The enthalpy before and after passlig through the nozele is thererome the same. It would be incorrect, however, to say that the enthalpy is constant as the pressure is not vell dodined at the nozzle. Mowevor the temperature change may be calculated by considering a revorsible process having the same end points. Uaing the cyclic relation ve find ror the Joule-Kelvin coerficient

$$
\begin{gather*}
\mu^{\prime}=\left(\frac{\partial T}{\partial p}\right)_{H}=-\frac{(\partial H / \partial p)_{T}}{(\partial H / \partial T)_{p}=-\frac{1}{C}{ }_{p}\left(\frac{\partial T}{\partial P}\right)_{T}} \\
d H=C_{p}\left(d T-\mu^{\prime} d P\right) \tag{IIIc28}
\end{gather*}
$$

It tums out that wen the temperature is less then about 5 times the criticel temperature this coeficient is positive (cooling on expansion) and may be quite large. the ifmele process for liquepying gases is besed entirely on this principle.
10) Reversible Flow

For stream-line, insulatod, flow

$$
\begin{equation*}
d H=d U^{V}+P d V+V d P=V d P \quad\{ \tag{IIIcट9}
\end{equation*}
$$

Now from the force equation $\quad \frac{\mathbb{F}}{A}=\left(\frac{\partial P}{\partial x}\right) d x$

$$
\frac{F}{1} \quad \frac{d p}{d x}=-\rho \frac{d^{2} x}{d t^{2}}=-\rho v \frac{d v}{d x}
$$

$$
C_{v}
$$

$$
U_{k+\cdot n_{n v}} \cdot\left(\frac{3}{2}-\frac{2}{2}-1\right) h l
$$

whence

$$
d p=-\frac{1}{2} 3 d v^{2}
$$

so that

$$
d F=-\frac{1}{2} M d v^{2}
$$

and

$$
\begin{equation*}
M / x+\frac{1}{2} v^{2}=\text { const } \tag{IITC30}
\end{equation*}
$$

This is the extonsion of Bornoulli's aquetion to the thow of a conpressible gas.

> a. Appliortions

1) Kinetic Pleture

From the simple Kinetic plotume of an Ideal. gas given earlier it wes shown that

$$
\begin{equation*}
V E=\frac{x}{3} W m v^{2} \tag{IITdI}
\end{equation*}
$$

It follows that the Kinetto ensrgy of transistion of the gexteles is

$$
\begin{equation*}
U_{K Q^{\prime}}=\frac{7}{2} M V^{2}=\frac{3}{2} V P=\frac{3}{2} \operatorname{HRP} \tag{IIId2}
\end{equation*}
$$

If this were the only internel emergy it would fillow thet

$$
\begin{gather*}
C_{V}=\left(\frac{\partial U}{\partial T}\right)=\frac{3}{2} \mathrm{aR} \tag{IITC3}\\
C_{V}^{\prime}=\frac{3}{2} R=2.98 \mathrm{cal} / \mathrm{mole} \mathrm{deg} \text { deg }
\end{gather*}
$$

and this 1 very noarly correct for momatomic gases. To explata the aditional heat capacity of diecomic and polyatomic seses it is as sumed thet the roleculey have rotetional xinetic onergy ss woll sad thet

$$
\begin{equation*}
J_{K R}=\frac{y}{2} n R X \quad e_{y}^{:}=\frac{3+v}{2} R \tag{xIIa4}
\end{equation*}
$$

Where $v=0,2$ or 3 according to mhecher the molecules are monatomic, diatomic, or polyatomic. This, howsver, is mot en exact relstion as can be seon Proms the decrease of apecillc hoats ot low tomperatures.
2) Ideal Ges

Experimentally it is not found that the spoctiflo hoets bocome constazt in the $12 m 2 t \mathrm{~N} / \mathrm{V} \rightarrow 0$ but $1 t 18$ found thet tho coule coepflelent verishes $1 x$ this limt. Theroforo for an Ides. gas

From (IIIc24)

$$
\left(\frac{\partial U}{\partial v}\right)_{T}=0
$$

From (IIIc26)

$$
d U=C_{V} d T
$$

Applying the condition for an exact differention to this oquation it is seen that

$$
\begin{equation*}
\left(\frac{\partial c_{V}}{\partial V}\right)_{T}=\left(\frac{\partial c_{V}}{\partial P}\right)_{T}=0 \tag{IIId6}
\end{equation*}
$$

so that C_{V} can bo a function of T only. Integreting (IIId5)

$$
U=U_{0}+\int_{0}^{T} C_{V} d T
$$

From (IIIc5)

$$
\partial Q_{Q} \leq C_{V} d T+P d V
$$

Whence
and

$$
\begin{gather*}
c_{p}=C_{V}+P\left(\frac{\partial V}{\partial T}\right)_{p}=C_{V}+2 R \tag{IIIT}\\
d H=C_{p} d T
\end{gather*}
$$

The difference in the heat capacities comes, in an ideal gas, entirely from the tem PdV which represents the extemal work done whem the gas is heated at constant pressure. It elso gives the heat necossary to expand a gas 1sothemally.

From (IIIcl6)

$$
\tau_{Q} \leq T\left(c_{p} d V / V+c_{V} \bar{d} P / P\right)
$$

so that along an adiabatic
or

$$
\begin{gather*}
\gamma d V / V+d P / P=0 \\
P V^{\circ}=\text { const. } \tag{IIId8}
\end{gather*}
$$

3) Latent Hoat

In the parts of a P-V diagram where two phases are in equilibrium the 1sobars are also 1sotherms and

$$
\begin{equation*}
C_{p}=C_{T}=\infty \tag{IIId9}
\end{equation*}
$$

It is therefore impractical to use the ctQ-equations. Hovever equation (IIIc9) applied to an isothernn in these regions gives

$$
\dot{d}_{Q} \leqslant d H
$$

The latent heat If is defined es the amount of hoat ebsombed in passing completely and reversibly at constant temperature sad prossure, Proan one stete to enother. Integrating (IIIdIo)

$$
\begin{equation*}
I_{12}=H_{2}-H_{1} \tag{ITTa11}
\end{equation*}
$$

Where. the subscmipts 1 and 2 myy stand for sozid arad vapor. solld end liquid, or liquid end vapor. Fion this gimple relation it is geen that at the triple point

$$
\begin{equation*}
L_{\text {subliantlon }}{ }^{2} \text { Imelting }+ \text { Iboining } \tag{IIIdI2}
\end{equation*}
$$

and at the criticel point

$$
I_{c x i t i c a r}^{a x} 0
$$

In geaserel tho latont heat varios with the tomporwture as shomn in Fig. IIId

4

From the definition of the enthalpy

$$
\begin{equation*}
Z_{12}=U_{2}-U_{1}+P\left(V_{2}-V_{1}\right) \tag{IIIdI3}
\end{equation*}
$$

The latent heat may therefore be considered as tho sun of two ports: an "internal" part which goes into changing the internal energy of the substance and an "oxtommi" part which goes into work ageing the external pressure. This latter pert is quito small unless tho second phase is vapor.

As an example of the orders of magnitude encountered wo may take water at one atmosphere pressure. Then

At $0^{\circ} \mathrm{C}$
$I_{\text {melting }}=80 \mathrm{cal} / \mathrm{mole}$
from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
$\Delta I=100^{\circ} \mathrm{cel} / \mathrm{mole}$
at $100^{\circ} \mathrm{C} \quad$ Ibo1112g $=539 \mathrm{cal} / \mathrm{mole}$
of which $40 \mathrm{csl} / \mathrm{xole}$ go into external work.
The intent heat of boiling divided by the temperature is found to be remarkably constant for $2 l l$ substances provided the prossuno is such that the molar volume of the vapor is about the same. Choosing arbitrarily 197 liters per mole one finds that I/nRT is remarkably close to 13.5 Weer and other 11 quids with molecules having a high dipole moment lead to higher values. This is the Trouton-Hildebrend lan.

$$
\begin{aligned}
& \begin{array}{l}
\text { D. } \int \text { feratizils } \\
-\{d \omega \leqslant P d U\} \\
d Q
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& S=\int \frac{t}{T} u d t+\sinh u+S_{a} \\
& h\left(R_{u}\right)-h(h n i) \\
& \frac{\Delta p}{p}+\frac{P_{v}}{V}=\frac{d t}{T} \\
& \frac{d Q}{t}=\frac{C_{v}+n n}{t} d+-n n \frac{d p}{p} \\
& S=S^{T} \frac{c p d t}{}-n h p_{t} S_{0}
\end{aligned}
$$

2^{2+} lavt $=\frac{1}{t}$ is \int fostr fariall sulstana

$$
d u=\quad \text { tds-paut }
$$

$H=v+P V$
$J_{H}=+d S+v d r e$.
$\oint d V=6 \quad \oint \frac{d O}{d t} \leq \oint d s 0$ oth meverabe

IV THE SECOND LAW

(a) Entropy

1) Ideal Gas

It is readily seen that the difference \mathcal{W}_{Q} - do is not the only exact differential that can be formed out of the inexact ones of Q and ow. For instance

$$
\begin{equation*}
d W / p=d V \tag{Val}
\end{equation*}
$$

is exact if we consider only reversible processes. In the case of an ideal gas it is easy to see that

$$
\begin{equation*}
\frac{L_{Q}}{T}=\frac{C_{v} d T+P d V}{T}=d S \tag{IV®.2}
\end{equation*}
$$

is also exact with the same limitation and thus defines the function $S_{\text {, }}$ which is called the entropy, to within an additive constant, by simple integration. Indeed as $P=n R T / N$ and C_{V} is a function of T only

$$
\begin{align*}
S & =\int^{T} \frac{C_{V}}{T} d T+n R \ln V+S_{0} \tag{IVes}\\
& =\int^{T} \frac{C_{p}}{T} d T-n R \ln P+S_{0}^{1} \tag{IVal}\\
& =\ln \left(V^{C} P_{P}^{C_{V}}\right)+S_{0}^{\prime \prime} \tag{IVEs}
\end{align*}
$$

These three forms for the entropy follow from integrating the three कQ-equations (IIIcI8, 19, and 17) of the lest section. To derive the third form (IV as) it has been assumed that C_{V} and C_{p} are constand and therefore this expression is not as general as the other two. but it does bring out clearly the equation of an adiabatic: PVY a constant, when the entropy is constant. The three constants S_{0}, S_{0}, and S_{0}^{\prime} are In general different and depend on the lower limit of the integral. Without further assumptions it is impossible to determine these constands although their differences are readily found.

Equations (IVel) and (IVe2) may be introduced into the energy equation (IIIc3) to give

$$
\begin{equation*}
d U=T d S ~-~ P d V \tag{IVar}
\end{equation*}
$$

This equation is not quite as general as (IIIc3) as it can only be used when P and $\%$ are woll doilned, that is ror quesi-equilibriun stotes. Similariy one has

$$
\begin{equation*}
d H=T d S+V d P \tag{IVa7}
\end{equation*}
$$

Equations (2) and (2) can be genematiaed to apply to inpeversible processes by introducing inequalitiea:

$$
\begin{align*}
& d W \leq R d V \tag{IVa8}\\
& d Q \leq T d S \tag{IVag}
\end{align*}
$$

We have geen that the 11rgt of these linequelities is due to prossure greaients in the system so that wows is done $1 n t e m a l 2 y$ and does not all apposs as external woric. Similarly the second inequality. called the clausius inequality, is due to intemal thomel gradionts so thet heet 5lows internaly. In an iryeversible proeess having the gane ond stutes as a reversiblo one, the work done by a ges is less and the heat absorbed by it is leas, but the diprerence must be the same as the internsl energy chenge is the same whether (TVe6) or (IIIc3) 1s used.

Equations (IVa8) enc (IVa9) show the enalogy betwoon entropy and volume. Entropy is extensive lime volume and it also genoreliy increases with temperature and decroases with prossure. It diesers from volume in that it is not directly meesureble, and in this it in similar to onorgy. Like energy it contalns an additive constant. Unlike energy it is conserved only in reversible processes:

$$
\begin{gather*}
f(d Q-\alpha W)=\beta d U=0 \tag{IValo}\\
\$ \alpha Q / T \leqslant \$ d S=0 \tag{IVa.11}
\end{gather*}
$$

but

2) Second Lav

Equation (IVa2) is neally not surpeising as it is shown in mathomatics thet it is always possible to find an integrating factor (in this case 1/T) which, when multipliod into an inexact differential such as ot will produce an exact dipeerentiai such as dS. A similar equation must therefore hold not only for an Ideel gas but for all substances. However $1 t$ tums out that the integrating fector is the same, $1 / 1$, for a11 substencen. ghis fect together with the statement that negative temperetures do not exist constitute the Second Low of Themodynamics. This meang thet the equations (IVa6, 7, 8, 9, 10, and 11) are perfectly generel and apply to any system. The yroof of this is not dinect but rests in the verificetion of conciusions spom these equations and will be discussed later.

3) T-S Diagrams

From analogy it is clear that plots of temperature against entropy will have many properties equally useful to those of P-V diagrams. Thus from equation (IVa, it is seen that the heat absorbed in a reversible process $A B$ is given by the area under the curve $A B$. An irreversible process cannot be reprosented by a T curve as the temperature 13 then not dfifined. Also from (IIIb5) and (IIIb4) we have for the heat capacity

$$
\begin{equation*}
\left(\frac{\partial Q}{\partial T}\right)_{x} \leqslant c_{x}=T\left(\frac{\partial S}{\partial T}\right)_{x} \tag{IVaI2}
\end{equation*}
$$

T / C_{x} is therefore the slope of the curve of constant x on a T-S diagram, just as $-1 / \mathrm{V} K_{z}$ is the slope of the curve of constant x on

FIG IVAI e P-V diagram.

Adiabatic and isothermsl processes are, of course, represented by vertical and horizontal linea. If infinltestwal processes of constant T, P, V, and S are shown on $a P-V$ and $a T-S$ diagran it is seen that these diagrams are obtained, one from the other, by a sheer

deformation such as to bring the isothermels and adiabatics at right angles in the latter. The topology of a T-S diagram is therefore similar to that of a P-V diagram and the verioug equilibrium regiong between solid and liquid, $11 q u 1 d$ and vepor, \& vepor and solid look much alike. The area under a melting or vaporizetion isotherm is the latent heat of the process.

FIG. TVE3

4) The Gybbs Surface

As has bean seon with the $P-V-T$ surrace, two dimensionel diagrams are best considexed as profoctions of on ecuilibxium suphace In a three-dimensional spece. Considereble adventage comes of plotting three extensive quantities instead of maing intenclve and ortonsive ones as is done in tine P-V-T surface, and we now have doinned throe such quantities in the onergy ev, ontropy S, and volume V. Willard Qibbs firet proposed using those coordinetes and the surface so plotted If named efter him. Equation (IVa6) shows that tomperaiure and the negative of prossure are the slopes of a tengent plene to this surface.

Consider the point U_{1}, V_{1}, S_{1}. the equetion of the tangert plene is
or

$$
\begin{gather*}
U-U_{1}=T_{1}\left(S-S_{1}\right)-P_{1}\left(V-V_{1}\right) \\
U-T_{1} S-P_{1} V \Leftrightarrow U_{1}-T_{1} S_{1}-P_{1} V_{1}=G_{1} \tag{IVO13}
\end{gather*}
$$

a_{1} is a constant in this equation and gives the intercept of the tangent plans with the enexgy exis. Considered as a function of the point or trangenoy it is catlod the Gibbs funotion.

The second derivatives of this surface aiso heve simple meanings:-

$$
\begin{align*}
& \left(\frac{\partial^{2} U}{\partial S^{2}}\right)_{V}=\left(\frac{\partial T}{\partial S}\right)_{V}=\frac{m}{C_{V}} \tag{IVaI4}\\
& \left(\frac{\partial^{2} U}{\partial V^{2}}\right)_{S}=\left(\frac{\partial P}{\partial V}\right)_{S}=\frac{1}{V M_{S}} \tag{IVe15}\\
& \frac{\partial^{2} U}{\partial S C V}=\left(\frac{\partial T}{\partial V}\right)_{S}=\frac{1}{V B_{S}} \tag{xval6}
\end{align*}
$$

where B_{S} is a negative quantity mhtoh may be celled tho ediebatic coofficient of volume expension.

But the pertieular adventage of these coordinates is the abllity to represent nom-equilibrium stetes. IP we plot the sgeclelc energy u, entropy s, and volume v, per wole or per grens, then the pares of a homogeneous system are ropresented by the somo point as tre whole system. The parts of a non-homogeneons systen are represented by different points whose center of grevity represonts the whole system.

Suppose for instance thet n_{1} moles of a substence at toaperature T_{1} are considered together with n_{2} moles of the same substance at the tompersture S_{2}. The speciple energies are:

$$
u_{1}=u_{1} / n_{1}, \quad u_{2}=u_{2} / n_{2},
$$

the combined specific onergy is:

$$
\begin{equation*}
u_{c}=\frac{0_{1}+U_{2}}{n_{1}+n_{2}}=\frac{n_{1} u_{1}+n_{2} u_{2}}{n_{1}+n_{2}} \tag{IVel7}
\end{equation*}
$$

and similariy for the volumes and entroplos as these ere also edditire. Thus the point c is on the Ine joining 1 and 2 (Fig, TVaH). for lot the two quantitles be physically combinod. Thotr prossure vill then rapldly equalise, followed by themel oqullibriwa whon the point E on the equilibrium surfece $1 s$ reached. If the process is at constant total energy and volume the line CE wll be parallel. To the entropy axis, and beceuse of the sign of

$$
\begin{equation*}
\left(\frac{\partial^{2} u}{\partial s^{2}}\right)_{v}^{m} \frac{x_{v}}{c_{v}} \tag{IVa.18}
\end{equation*}
$$

will be in the direction of inereasing entropy.

Saturated $11 q u i d$ and vapor are ropresented by different points and the equilibrium surface contains the stralght line folning these as the liquid and vapos are in equilibrium in any proportions. pho eriple point is a trianguler plane area joining the polnts ropresenting solid. 11quid, and vapor at this pressure and temporature. A non-equilibrium state can generally be divided up into very small parts which are very neariy in equsilibrium within thomselves and can therofore be represented by points on the surface. But if they are not in equilifriwa botween oach other their center of grevity will not fall on the surface. As the second derofvetives (IVa14) and (IVa15) are necessam11y positive, the conter of grevity 110 above the surface. All non-कqullibrium states

FIG. TVa4. are therefore represented by polnts above the surface, and an 1 meveralbls proce日s is ropresented by o lime passing above the surfaco. Although the entropy of a non-equilibrivm state is not derined by equation (IVag) it can be computad ss tho sum of the entroples of the perits of the gystem if these are close enough to equilibriun.

b. Cyclic Processes

1) Revorsible Cycies

Particular 1mportence attachas to reversible cycies, because In a cyclic process the working substance petarns to its original atote. The nat reault of the process is then indeponcent of eny changes in i. propertias of the substance and nelato only to tho conversicns of heat and work. In particular it follows from the Fisest Taw that

$$
\begin{equation*}
W=Q=Q_{2}-Q_{1} \tag{IVol}
\end{equation*}
$$

Where Q_{2} and Q_{1} are the quantities of hoet absorbed ard rejectod by the working substance dursmg the cycle and 1 is the net wosk done. If the objective 1s to convert heet into worle the officienoy of the process ls def1ned as

$$
\begin{equation*}
y=\frac{W_{1}}{Q_{2}} \text { es } 1-\frac{Q_{1}}{Q_{2}} \tag{IV02}
\end{equation*}
$$

Equation (IVall) can then be uned to nolete Q_{2} end Q_{2} in eny perviculero cycle.

It is immedately clear that the efficioncy cannot be one, that is the heat absorbed cannot be entipely converted into vork. unless Q_{2} is zero, and from Ifgure (IVOI) it is seen that this can occur onfy if the retumn path is et the tomperature $\Rightarrow=0$, Ag the absolute zero is unattainable it follows that:

The heat Q camot be converted into work W without an accompanying amount of hoat Q_{1} dropping from the higher to e lower temperature. (Kelvin statcment: no perpetual motion of the second kind).

Reciprocally, if the cycle is performed in tio opposite direction as a refrigereting eycle:

The heat Q_{1} cannot be ralsed from a lower to a higher tem.. perature without the expenaiture of an amount of wonk \mathbb{V}. (Clausius gtatoment). The "coerficient of performance" $Q_{1} /$ mey, hovever, in this case be greater than one.

If the objective 18 to deliver heat Q_{2} at the highe termperatures the use of a revergible cycle where $Q_{2}>W$ is more eflicient than the direct convorsion of work into heat, as in mechanical friction or in an electrical resistor where $Q * W$. Mhis is the besis for some proposels for the efficient heating of houses.

A special example is the isothemal cycle $111 u s t r a t e d$ in the P-V diagram, Pigure IIh5. The curved. Ine is a Van der Warl's isothern, the horizontal ine the liquid-vapor equilibrium isothern. If comprossed rapldiy enough the gas might concelvably be comped through its unstable states and then expanded along the stable isotherm. As the whole eycle is at the same temperature it is represented by a horizontal ine on a $T-S$ diagram and $Q_{1}=Q_{2}$. Therefore the work must be zero and the two shaded areas in the figure must be equal, and this is just the construction given previously in figure IIh5.

2) Carnot Cycle

Sedi Carnot (1824) proposed a simple cycle composed of two isothermal and two adiabatic processes and which is therefore represented by a rectangle on a T-S diagram no matter what the working substance. Also as the heat |ip Q_{2} is all absorbed at the same temperature T_{2} and, similarly, Q_{1} is all reloasod at T_{1}. The heats Q_{2} and Q_{1} are simply expressed in termas of the entropies S_{a} and S_{b} of the two adiabatics.

$$
\left.\begin{array}{l}
Q_{2}=T_{2}\left(S_{b}-S_{a}\right) \\
Q_{1}=T_{1}\left(S_{b}-S_{a}\right)
\end{array}\right\}
$$

(IVb3)
(IVB4)

The efficiency of a Carnot cycle depends, thereiore, only on the tomperatures between which it operates and neither on the woriking substance nor on the entropy difference betweon the adiabatics.

One application of this, proposed by Lord Kelvin in 1848, is to use the efficiency of a Carnot cycle to measure tomperature. At low temperatures the ideal gas themoraeter is unsvalleble, as all gascs condense, while the Carnot cycle formula is indopendent of the substance In actual practice other consequences of the Second Law than the gamot Law defines a temperature scale, the integrating denominator of $\&$, which is independent of any choice of substance.

3) Other Cycles

It is now possible to campare the Carnot oycle uith other cycles. Comparing it with other reversible cycles one can say that it is more efficient then any other reversible cycle working between the same extremes of temperature T_{2} and T_{1}. Any reversible cycle can be out up by adiabatic processes (Fig. IVb4) into smaller cycles which are very nearly Carnot oycles and whose efficiency $\eta \mathrm{c}$ is given by (IVb4) but with values Tid and Ti appropriate to the small cycle.

FIG. IVO4
$\mathrm{As} \mathrm{T}_{2}^{\prime}\left\langle\mathrm{T}_{2}\right.$ and $\left.\mathrm{T}_{1}\right\rangle \mathrm{T}_{1}$ by definition, $\eta_{c}^{\prime}<\eta_{c}$ and therefore the resultant efficiency $\eta<\eta_{c}$. To have the same ofplelency all the heat would have to be taken in at \mathbb{T}_{2} and given out at T_{1}, but this would make it a Carrot cycle.

Comparing two cycles, one reversible and the other irroversible, but both taking and surrendering heat at the some teaporetures, one can see from (ITal) that

$$
\oint \frac{d Q_{\text {sr r }}}{T}<\oint^{d Q_{r e v}} \frac{T}{T}
$$

Therefore we must have for the heats absorbed Q_{2} irs $<Q_{2}$ rev or for these rejected

$$
Q_{1} 1 \times \mathrm{m}>Q_{1 \mathrm{rev}}
$$

or both these inequalities may hold. In any case $\left.\left(Q_{2} / Q_{2}\right)_{\text {inv }}\right\rangle\left(Q_{1} / Q_{2}\right)_{\text {rev }}$ and therefore

$$
\begin{equation*}
\eta_{\mathrm{imp}}<\eta_{\mathrm{rev}} \tag{TVb5}
\end{equation*}
$$

4) The Second Lay

In view of these inequalities the statements mace in paragraph (IvbI) can be amplified:

An amount of heat Q cannot be converted into work $\mathrm{V}=\mathrm{Q}$ without an additions l amount of heat

$$
\begin{equation*}
Q_{1} \geqslant \frac{T_{1}}{T_{2}-T_{1}} \Omega \tag{avos}
\end{equation*}
$$

falling from the higher temperature g_{2} to the lover temperature ${ }^{2}$
The hoot Q_{1} will not of 1 itself flow from the temperature T_{1} to the higher temperature x_{2} but requires the expenditure of an amount of work

$$
\begin{equation*}
W \geq \frac{T_{2}-T_{1}}{T} Q_{1} \tag{IVb7}
\end{equation*}
$$

Furthermore our argument can be reversed, as follows:
No violations of the Kelvin or Clausius statements are observed in ours experience. If this 18 unfrozsal it follows that all reversible carnot engines working between the same bomperctures have equs efficiencies. Otherwise the more efflelent ono could be
used as a motor to drive the other as a reirigerator. If they are adjusted so the heats Q a ere oqual they will violate the Kelvin statement, or if the wopks W are equal thoy violato the cleusius statoment. Therefore Q_{2} / Q_{1} is the same for 211 this class of engines and is equal to T_{2} / T_{1} beceuse this is its value for an ideal gas. Thus

$$
\begin{equation*}
\dot{\&} \frac{d^{2} Q}{T}=0 \tag{IVD8}
\end{equation*}
$$

for all Reveraible Camot cyeles, and therefore for all reversible cycles by the construction of ifigure IVb4. Whis is the condition thet

$$
\begin{equation*}
\frac{t_{Q}}{T}=\mathrm{CS} \tag{IVロ9}
\end{equation*}
$$

be an exact differential, which therefore follows from the Kelvin or clausius statementy. An imeversiblo ongine nood not be as efficiont and so, more gomerally

$$
\begin{equation*}
\Phi \frac{\operatorname{to}}{T} \leq 0 \tag{IVBIO}
\end{equation*}
$$

c) Irroversible processes

1) Nechanicel Irrevorsib11ity

Comider Joule's paddle wheel experiment as a typical example of mechanical imeversibility. There is no heat transfer in this oxperiment so
and

$$
\begin{aligned}
& t_{Q}=0 \\
& d U=-d W
\end{aligned}
$$

The work -otw goes into mass motion of the water which, because there are vares in the vessel to facilitate the procems, breaks up into smaller and smaler vorteces and these overtualiy become invisible. One can lmagine the scale of the vorteces continually diminishing until it is of molecular dimensions, uhen it can be referred to as thermal motion. Part of the kinetic energy wey, however. go into potential energy of soparetion of the molecules. Indeed it is observed tinst the teraperature rises by

$$
d T-d U / C_{v}
$$

(It is easiest to think of the experiment as performed at onstank volume although, actually, ft is pontormed et consent pressure).

The some rise in temperature could have been produced by the conduction of an amount of heat

$$
d_{Q}=O_{\psi} d T=-d W
$$

resulting in an increase of entropy

$$
\mathrm{dS}=\mathrm{d}_{\mathrm{L}} \mathrm{Q}^{1} / T=-d_{W / T}
$$

This entropy carse (tn large pert) frow the boas which supplied the heat ot Q', but the same increase of entropy occurs in the paddle Wheel experiment, although in this cere tit does not eure from arothoz body but is created. Where? the conversion of the potential energy of the driving weights Into the initio kinetic orerey in the water does not necessarily involve an inomodse of entropy as the intnetic energy can be reconverted to potential energy with little loss. It Is the breaking up of the vonteves into smaller and males ones until they eventually dimppear ix on sight the constitute the creation of entropy. This cai bo represented schenatioelly by

$$
\begin{equation*}
-a^{+} W \rightarrow \square \eta^{2} / 2 \rightarrow T E S \tag{INCl}
\end{equation*}
$$

It is in the dissipation of the vorteces that the possiblifty is lost of reconverting the kinetic energy berk into work. Bntroyy there sore, It asmociatod with diaumarod motion.

The loss of mechanical energy in fiction between solid surfaces, or the dissipation of electrical enemas in a resistor is entireig similar to the above except that the inturnodinto eatage of mess motion of the medius is raising.

2) Therms Inxoversibility

Another simple very of creating entropy 13 to put g hot body in contact with a cold ono. If a quantity of heat tu passer between them when the hot body is at texperetug $\frac{5}{2}$ and the cold one at TI the entropy of the hot body ital charge by

$$
\mathrm{dS}_{2}=\dot{L}_{Q / \mathrm{S}_{2}}
$$

and for the cold body

$$
d S_{1}=e t a / m_{1}
$$

so that the net change is

$$
\begin{equation*}
d s=d s_{2}+d s_{1}=\frac{T_{2}-T_{1}}{T_{2} T_{1}} \mathscr{L}_{Q} \tag{IVe2}
\end{equation*}
$$

Conduction always leads to a net increase in ontropy. Had we taken the heat of Q from the hot body reversibly, that is allowing it to operate a Camot cycle, we would have obtalned an anount of work

$$
\begin{equation*}
t W^{\prime}=\frac{\mathrm{T}_{2}-\mathrm{T}_{2}}{\mathrm{~T}_{2}} d t_{Q} \tag{IVc3}
\end{equation*}
$$

and delivered to the cold body

$$
\partial Q^{\prime}=\frac{T_{I}}{T_{2}} d Q
$$

so thet in this case

$$
d S^{\prime}=d S_{2}+d S_{2}^{\prime}=0
$$

Howe ver there is a relation botween the work (IVc3) thet wo could have obteined, but didn't, and the increase in entropy (IVC2)

$$
\begin{equation*}
d_{W}=T_{1} d S \tag{IVe4}
\end{equation*}
$$

the loss in ability to do work is always equal to the incrosge in entropy times the lovest tomperature of the systern.

3) Internal Irrevergioinity

The simplest example of internal irreversibility is the iree expansion of an ideal gas. In this case

$$
\Delta{ }^{\Delta} W=\mathscr{L}_{Q}=d U=\Delta T=0
$$

but from equation (IVa3) for the entropy of an icieal gas we find that there has been an increase

$$
\begin{equation*}
S_{2}-S_{1}=n R \ln V_{2} / v_{1} \tag{IVe5}
\end{equation*}
$$

The process could have been performed reversibly by an Isothermal expansion, getting an amount of work

$$
W:=f_{V_{1}}^{V_{2}} P d V=n R T f_{V_{1}}^{V_{2}} \mathrm{dV} / V=n R T \ln V_{2} / V_{1}
$$

and, of course, supplying an equal amound of heat. Again, the womk Which could have been obteined, but which has become unavailable in the process, is

$$
W^{\prime}=T\left(S_{2}-S_{1}\right)
$$

Eiemining the details of the free expension we see that 1nitially parts of the compersed gas do womk SdV on other perts to give them kinetic energy mrv/2. There is no entropy change in this process. If the motion of the zas could be kept as a regular pressure weve it might be reflectod from the far sice of the evacueted vessel and all return to the part originally occupied. But this does not happen and when the acoelewated gas hits the further side of the evscuated vessel the motion bocones confused and disordered, and this results in an increase in entropy. The process is again

$$
\mathrm{PaV} \rightarrow \mathrm{av}^{2} / 2 \rightarrow \operatorname{TdS}
$$

but in this case there is no net increase in whetic energy as theme is no change in tomperature. In ract if the oxperiment is perionned with a reel ges there will probobly be a decrease in tompereture and in mean kinetic energy. The entropy is duo to the grenter mandomess or position of the molecules which is whmply due to the increesed volume within which the molecules aro scattored.

3) Insulated Systens

The Cleusius inequaltty

$$
o t Q \leq \text { TuS }
$$

shows that for any insulated ayster, thet is one ror which
one has

$$
\left.\begin{array}{r}
d a=0 \tag{IVe反}\\
d B \geq 0
\end{array}\right\}
$$

or the encropy can onjy Increase.
Similarly for a systera on which no wow is done
and

$$
\pi=0
$$

$$
\begin{equation*}
\operatorname{Bav} \sum 0 \tag{IVcT}
\end{equation*}
$$

but one canot conclude from (Iro7) that the volume an ony increase because attractive icrecs exist which can prokuce tensions, on negative pressures. Equation (Ive?) merely states that changes in volume will have the same sign as the riossuae. The ontropy law polious from the non-existence of negative tempexatures.

Any system loft to itself, that is to which no enemg han the form of heat or work is transporped or taken, can only inerease in entropy, the meximm being atteined vhen therma end neehonicel equilibrium is ettelned.

4) Life

Finally there is Iffe itself which desorves a word in this connection. Even the simplest living orgenism is very highly organized, which means that its entropy is abnome 11 y low. At doath rapid irreversible chenges take place enc the entropy wises to a wore nomal value. Are the forces which meintain this low ontropy violating the Second lew? If life could continue in an 'ssolsted" body they obviousIy would bes but it camot. "Ilfe" needs "dead" sumpoundings end prow duces order within Itself only ait the expense of disorder in its onviroment in conplets accordance with the clevsius inequelity. Simple plent life reduces its entrogy by absorblug the low entropy heat of sunlight and rejecting it et the much highes entropy levol of amblent temperature. Animel Iife feeds on the low ontropy products of phant life rejecting it in the high ontrope form of cervon diokide. The irreversibility of life is a good indication thet tho disondor it produces in its surpoundings is sivays fan greator thon the order produced within itself.
d. Thermodynumio Fommiae

1) Thermodynamic Potentials

The basic laws of Mnemodynamics are containod in the relations

$$
\begin{align*}
L_{W} & \leq P d V \\
t_{Q} & \leq T d S \tag{IVdI}\\
d U & =d_{Q}-t_{W}
\end{align*}
$$

containing the inexact differentiels for work and heat. These re lations are epplicable to both reversible and ixuoversible procesees.

It is more convenient, hovever, to use variebles which are functions of the stete of the system end heve equalitios instead of inequalities. This can be done only with tho restriction to ecullibrium states and reversible processes, and this restriction mat bo understood in all the equations which ame to rollow. With this restriction we have already derined a sunction

$$
\begin{equation*}
\mathrm{H}=\mathrm{U}+P V \tag{Ivaz}
\end{equation*}
$$

called the enthalpy. The transfomation of u into H by adding the product PV is called a Legendre transformation; it has the ofrect of interchanging a verleblo with the corvegponding slope, as seen in equations (IVa5) below. nnother Legendre trensfomation, suotracting the product TS, leads to two more such functions: the Helmholtz function

$$
\begin{equation*}
A=U-T S \tag{IVdz}
\end{equation*}
$$

and the Gibbs function

$$
\begin{equation*}
G=H-T S \tag{IVA}
\end{equation*}
$$

These last two have both been called "free energy" and it is therefore always better to use the names of the men who introduced them U, H, A, and G are called the memodynomic Potentials.

2) First Derivatives

From (IVdI) and simple differentiation or (IVd2), (IVd3), (IVd4) one obtains the following equations for the exact differentials

$$
\begin{align*}
& d U=T d S-P d V \\
& d H=T d S+V d P \tag{IVeS}\\
& d A=-S d T-P d V \\
& d G=-S C T+V d P
\end{align*}
$$

From these differentials one readily obtains all the first derivatives of the potentials. There are eight simple ones of the type

$$
\begin{equation*}
\left(\frac{\partial U}{\partial S}\right)_{V}=T \ldots \ldots\left(\frac{\partial Q}{\partial P}\right)_{T}=V \tag{TVA}
\end{equation*}
$$

in which each potential is differentiated with respect to its "natural" independent variables, those whose differentials appear in the same equation (I VI5) as the potential.

There are eight more in which one of the independent variebles is "natural". such as

$$
\begin{gather*}
\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial S}{\partial V}\right)_{T}-P \tag{IVd7}\\
\left(\frac{\partial U}{\partial T}\right)_{V}=C_{V}=T\left(\frac{\partial S}{\partial T}\right)_{V} \geqslant\left(\frac{t Q}{d T}\right)_{V} \tag{IVa}
\end{gather*}
$$

and similarly

$$
\begin{gather*}
\left(\frac{\partial H}{\partial P}\right)_{T}=T\left(\frac{\partial S}{\partial P}\right)_{T}+V \tag{IVd9}\\
\left(\frac{\partial H}{\partial T}\right)_{p}=C_{p}=T\left(\frac{\partial S}{\partial T}\right)_{p} \geqslant\left(\frac{\partial Q^{2}}{\partial T}\right)_{p} \tag{IVdIO}
\end{gather*}
$$

and there are eight others, such as $\left(\frac{\partial U}{\partial P}\right)_{T}$, in which both independent variables are "unnatural".

There are 312 other first derivatives as each of the eight variables, P, V, T, S, U, H, A, G may be differentiated with respect to any of the seven others holding any of the remaining six constant. This gives $8 \times 7 \times 6=336$ erst derivatives. However, they are not independent and it can be show that there are 521,631, 180 relations between them, all obtainable by applying (I bS) and (Ide)! A few of these relations are of frequent use and will be derived below.
3. Gibos-He.lmholtz Equations

From equations (TVC3) and (IVd5) wo have immediately

$$
\begin{equation*}
A-U=T\left(\frac{\partial A}{\partial T}\right) V \tag{ITal}
\end{equation*}
$$

and similarly from (IVd4) and (IVd5)

$$
\begin{equation*}
G-H=T\left(\frac{\lambda G}{\lambda T}\right) \tag{IV.12}
\end{equation*}
$$

These relations ane useful to compute U knowing A, oz knowing G, or vice versa, B s they do not contain the entropy explicitely.

4. Maxwell's Relations

As the potentials are functions of the stale of the system, their differentials mast be exact. J. C. Maxwell applied the corditions for exactness to equations (IVJ5), obtaining two relations applicable to adiabatic processes:
and

$$
\begin{gather*}
\left(\frac{\partial P}{\partial V}\right)_{S}=-\left(\frac{\partial P}{\partial S}\right)_{V}=-\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial T}{\partial S}\right)_{V}=\left(\frac{\partial P}{\partial S}\right)_{V}\left(\frac{\partial V}{\partial T}\right)_{P} /\left(\frac{\partial V}{\partial F}\right)_{T} \\
 \tag{IVal2}\\
=-\frac{T}{C_{V}} \frac{B}{K}
\end{gather*}
$$

and two which apply to 1sothempal precesses

$$
\begin{equation*}
\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V}=\frac{\beta}{K} \tag{IV214}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{\partial S}{\partial P}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{S}=-V B \tag{IVals}
\end{equation*}
$$

5) Energy and Enthalpy Equations

Introducing the last two expressions for the derivatives of the entropy into (IVd7) and (IVeS) respectively give

$$
\begin{gather*}
\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P=T^{2}\left(\frac{\partial(P / T)_{V}}{\partial T}\right)_{V} \tag{IVa16}\\
\left(\frac{\partial H}{\partial P_{T}}\right)_{T}=V-T\left(\frac{\partial V}{\partial T}\right)_{P}=-T^{2}\left(\frac{\partial(V / P)}{\partial T}\right)_{P}=V(1-T P) \tag{ITaly}
\end{gather*}
$$

Combining these with (IVd8) and (IValo) gives

$$
\begin{aligned}
& d U=c_{V} d T+\left(\frac{T P}{K}-H\right) d V \\
& d H=c_{p} d T+V(Z-T B) d P
\end{aligned}
$$

These equations are used to obtain the energy end enthalpy from measurements of the heat capacities and of the equations of state.

Frons these we see also that tho Joule coerifcient

$$
\begin{equation*}
\mu=\frac{T B \cdot P K}{K C_{v}} \tag{Ivaso}
\end{equation*}
$$

and the Joule-Kelvin coefficient

$$
\begin{equation*}
\mu^{\prime}=V \frac{I-T^{3}}{C_{P}}=-\frac{T^{2}}{C_{P}}\left(\frac{\partial(V / P)}{\partial T}\right)_{P} \tag{IVdeI}
\end{equation*}
$$

Referring to the plot of RV/nRT genet P for a reel gas, it is seen that at the points were successive isotherms cross each other PV/nRT is independent of \mathbb{T} at constant P, and therefore at these points the Joule-Kolvin coefficient is zero.

6) Tais Equations

Combining the last two Maxwell relations With (IVd8) and (Ivaro) we have what are know as the sab equations

$$
\begin{align*}
& d Q_{Q} \leq T d S=C_{V} d T+\frac{T B}{K} d V \tag{Ivą2}\\
& d Q \leqslant T d S=C_{P} d T-T V B d B
\end{align*}
$$

These equations are useful to botein th o heat absorbed in any process.

Comparing these equations with (IIIcIB) Enc (ITTCIG) we see that

$$
\begin{equation*}
c_{P}-c_{V}=\Gamma V B^{2} / K \tag{IVC24}
\end{equation*}
$$

It is from this equation that C_{V} generally is celoulatod from measurements of C_{P} and the other variables in the equation.

In the case of solids we can uso Gruneioen's relation (IVBI4) to get the Femst-Inindemenn equation

$$
\begin{equation*}
c_{p}-c_{V}=A T c_{p}^{2} \tag{IVA25}
\end{equation*}
$$

by which c_{y} can be calculated from measurements of e_{p} and T and the determination of A by a single measurement of B and K.

7) Change of Phase

During a change of phase, which takes place at constant pressure and temperature, it is evident from equations (IVa) that
and

$$
\begin{equation*}
\left.d H=T d S \geq 0, t_{Q}\right\} \tag{IVU26}
\end{equation*}
$$

If the pure phases are denoted by 1 and 2 , there 2 is tho higher tenperature phase

$$
\left.\begin{array}{c}
G_{2}=G_{1} \tag{1vae7}\\
H_{2}-H_{1}=T\left(S_{2}-S_{1}\right)=I_{1}
\end{array}\right\}
$$

Where Lis the latent heat of the transformation.
The first ThiS equation

$$
\begin{equation*}
d Q \leq G_{V} d T+T\left(\frac{\partial P}{\partial T}\right)_{V} d V \tag{IVd28}
\end{equation*}
$$

integrates readily in this case because $d T=0$ and nelthex P nox T depend on V. The integral is

$$
I_{1}=T \frac{d P}{d T}\left(V_{2}-V_{1}\right)
$$

or

$$
\frac{d P}{d T}=\frac{I}{T\left(V_{2}-V_{1}\right)}
$$

(IVC29)

This is called the Clausius-Clapoyron oquetion. Tho pantial sign has been dropped in the derivative as the adtio of op to dT in going between two isotherms is the same, in the equillbulun rocion, whether one takes a constant volume op any othor peth. In any case dp/at gives the slope of the line on a P-T didgram which soprosonts the transformation.

Similarly, from (IVd27 and 19),

$$
\begin{gather*}
\text { Similarly, from (IVd27 and 19), } \\
\frac{d I}{d T}=C_{p 2}-C_{p 1}+\left(V_{2}-V_{1}\right) \frac{d P}{d T}-T\left(V_{2} \beta_{2}-V_{1} \beta_{1}\right) \frac{d P}{d T}=c_{p_{2}}-C_{p_{1}} f(r) \tag{xvaz0}\\
=C_{p 2}-C_{p 1}+\frac{I}{T}-\frac{V_{2} \beta_{2}-V_{1} B_{1}}{V_{2}-V_{1}}
\end{gather*}
$$

This is Kirchoff's equation. It may aiso be written

$$
\begin{equation*}
\frac{d\left(I_{1} / T\right)}{d T}+\frac{V_{2} B_{2}-V_{1} B_{1}}{V_{2}-V_{1}} \frac{Z}{T}=\frac{C_{p 2}-C_{p 1}}{T} \tag{IVd31}
\end{equation*}
$$

This last is a differential equation for the "latent ontropy." z/T. If the equations of state and specific heats of poth phases ane known, as well as the latont heat at onc tomporaturo, it onn in poinciple be integrated for the latent entropy, which moy thon be substituted in Clapeyron's equation end integrated for the vagor pressure.

- Applications

1) Ideal Solid

We have defined the ideal solid as ono those equation of state 1 s

$$
\begin{equation*}
V \approx V_{0}(a-b p) \tag{IVel}
\end{equation*}
$$

Where a and b are furctions of the teaperature and

$$
\begin{align*}
& K \approx b V_{0} N \tag{IVe2}\\
& B \approx\left(a^{0}-b^{B} P\right) V_{0} N \tag{Ive3}
\end{align*}
$$

The enthalpy equation (IVa18) is

$$
\begin{equation*}
d H=C_{p} d T+V_{0}(a-b P-T a:+T B P) d P \tag{IVe4}
\end{equation*}
$$

Integrating first at constant presaure

$$
\begin{equation*}
H_{I} \approx H_{0}+f_{0}^{T} o_{p} d P \tag{IVe5}
\end{equation*}
$$

and then at constant temperature

$$
\begin{equation*}
H \approx H_{2}+V_{0}(a-2) P+V_{0}(T b:-b) P^{2} / 2 \tag{IVeb}
\end{equation*}
$$

The process of integration may be shown on a P-T diagram. To find the anthelpy at (P, T) we atart ot the origin and integrate $C_{p} p$ along the temperature axis ($P=0$) to get Hy_{g}. This is the integrel (IVe5) which gives the enthalpy at zero pressuxe. We then integrate $V(1-2 \beta)$ at constant temperature to get (IVe6).

Applying the condition for an oxact differential to (IVeH) we ind

$$
\left(\frac{\partial Q_{p}}{\partial \bar{P}}\right)_{T} \approx V_{0} T\left(b^{\prime \prime} p-a^{\prime \prime}\right) \quad(\operatorname{TVE})
$$

and intograting this

ETG TVe?
${ }_{p} \approx C_{p o}-V_{0} \operatorname{PT}\left(B^{1}-0^{n 1} P / 2\right)$ (IVeB)

There. Cpo represents the heat capacity at zero preasure but arbitrary temperatixe.

As the second derivatives $a^{\prime \prime}$ and $b^{\prime \prime}$ are generaliy small C_{p} Will not depend greatly on the pressure.

The internal energy U 土s obtained immediately by subtracting PV from (IVe6)

$$
\begin{equation*}
u \approx y_{I}-v_{0} w a^{\prime} p+v_{0}\left(b+M_{b}\right) p^{2} / 2 \tag{xveg}
\end{equation*}
$$

It is noted that the internal energy initielly decreases on isothemal compression. Of course work is done on the solid during compression, but so much heat has to be taken awas to maintain the temperature constent that the intemel energy actually decreases until the pressure is large enough for the squered tems to be important.

Using (IVe8) in the second
 TaS equation one obtains

PIGTHe2

$$
d S \approx \frac{c_{p o}}{T} d T-V_{0} P\left(a^{\prime \prime}-b^{\prime \prime} P / 2\right) d T-V_{0}\left(a^{\prime}-b^{\prime} P\right) d P
$$

Ghich readily integrates to

$$
\begin{gather*}
s_{1} \approx s_{0}+f_{0}^{T} \frac{c_{p o}}{T} d T \tag{TVolo}\\
s \approx s_{1}-V_{0} P\left(e^{\prime}-b^{\prime} p / 2\right)
\end{gather*}
$$

The Helmholtz free energy takes a perticularly sfaple Som

$$
\begin{gather*}
A \approx A_{1}(T)+\frac{1}{2} V_{0} b P^{2} \\
A_{1} \approx S_{1} \tag{TVell}
\end{gather*}
$$

It is a characteristic of this potontial that at a given tomperature it has a maimum at zero pressure. It is because $\frac{1}{2} \mathrm{YV} \mathrm{p}^{2} 1 \mathrm{~s}$ the
elastic work done on the sol1d during an isothermaz compression thet A is called "free anergy".

$$
\begin{aligned}
& \left(\frac{\partial S}{\partial v}\right)_{T}=\left(\frac{\partial p}{\partial \psi}\right)_{v}=\frac{B}{K}=0 \\
& \left.\left(\frac{\partial S}{\partial p}\right)_{F}=-\frac{\partial v}{\partial t}\right)_{\rho}=-v \rho \rightarrow 0
\end{aligned}
$$

$\left(\frac{\partial e v}{\partial v}\right)=$

Finally from (IVa24) we have for the diference in heat capactuies

$$
\begin{equation*}
c_{p}-C_{V} \approx V_{0} T(a \cdot-b \cdot p)^{2} / b \tag{IveI.2}
\end{equation*}
$$

At Iov tenperatures where the themal coefficient of expansion 10 gmall the difference in heat capacitios is quite neglighole, At nomma temperstures, when the thomel coeritetiont of oxpanston is senstoly constant, the difference increases linearly with the teraserature.

2) The Third Law

It is observed experimentally that both B and b_{p} for all sollds tend towards zero at least proportionataly to Th as the ebsolute zero of tompereture is approachod. Tt follows then from Maxwell's Isothermal relations, ask does not vamish thot the entropy of all sollds is completely independent of pressuxe and volume at absolute zero and increases at most as Te wth tho torporature. Where crystalline solids can be related chemfcelly tit is found. from the chemical evidence that the ontrovy offrepence betveen these golids venishes at absolute zero. It appears theroforo that the catropy of all caystalline solids is the same et absolute zero and, ag there is always an arbitresy constant in the measupement of ontropy, the entropy at absolute zero may be taken as zeno. This contstutes the Ghird Law of Themodynomics and was discovered by Nemnt.

The word "crystelinne" above is signixicant, and this may be illustrated by the properties of glycerine which have been studied. the specific heat of the erystalline solid is plotted in figure (IVe3) up to 2910 K at which temperature the crystals melt with a latent heat of 4371 calories per mole. This comesponds to an entropy difference between 11 quid and erystal $s_{2}-s_{c}=15.02 \mathrm{cal} / \mathrm{mole}$ deg. The specific hsat of the liquid is larger than thet of the crystal by about 1.5 cal/mole deg. The ilquud is easily superm cooled and undergoes a repid but continuous change within a few degrees of $280^{\circ} \mathrm{K}$. Below this range it has the rigidlty of a solid but has romained amorphous. There is no Iatent heat In the change, and below it the specilic heat of the amorphous solld
 is much the same as that of the crystal. If one plots tho diprepence of the specific heats divided by the tomporeture one obtains the curve of FIg. (IVe4). The eree under this curve is $20.46 \mathrm{cal} / \mathrm{mole}$ deg.

and hence

$$
\left(s_{l}-s_{c}\right)_{291}-\left(s_{l}-s_{c}\right)_{0} \approx 10.46
$$

whence

$$
\left(s_{l}-s_{c}\right)_{0} \approx 4.56 \mathrm{cal} / \mathrm{mole} \mathrm{deg} .
$$

If the entropy of the crystal is zero at absolute zero it follows that the entropy of amorphous glycerin at absolute zero is 4.56 calmole degree. This is explained by the disordered arrangement of the molecules in the amorphous solid.

The amorphous solid is not, of course, an equilibrium state. If lett to itself
 long enough it will spontaneously crystal-

FTG. TVe4 lime, and as this in reversible change must be accompanied by an increase in entropy the resulting crystal will be hot. that is, there is a latent heat in the change.

3) Van der Walls' Gas

Van der Wools' equation solved for the pressure is $\left(p+\frac{h^{2} a}{V^{2}}\right)(v-h b) \approx N h y$

$$
\begin{equation*}
P \approx \frac{n R T}{V-n b}-\frac{n^{2} a}{V^{2}} \tag{IVel3}
\end{equation*}
$$

From this we see that

$$
\begin{equation*}
\left(\frac{\partial P}{\partial T}\right) \approx \frac{n R}{V-n b} \tag{IVo14}
\end{equation*}
$$

and

$$
\left(\frac{\partial^{2} p}{\partial m^{2}}\right) \approx 0
$$

The constant volume curves on a poT diagram gee therefore straight lines.

Applying the condition for en expect differential to as from the first ThIS equation one has

$$
\frac{2}{T}\left(\frac{\partial C_{V}}{\partial V_{T}}\right)_{T}=\left(\frac{\partial^{2} p}{\partial T^{2}}\right)_{V} \stackrel{V}{2}_{0}
$$

$T d s=\underset{c u d t+p d U}{d u}+P d U$
(TVe15) $\left.\left(\frac{\partial C_{v}}{d v}\right)_{T}=\frac{\partial P}{\partial t}\right)_{V}$
$d u=A d x+B d g$
$\left(\frac{\partial A}{\partial y}\right)_{x}=\left(\frac{\partial B}{\partial x}\right) y$

t

So that C_{V} for a Van der Weals' goes is constant if T is held constant; that is C_{V} is a function of T only. This is the basic fact from which Fe cen start to derive the Thermodynamic functions of a Van der Walls' gas.

Substituting (IVel.4) in the PaS equation

$$
d S \approx \frac{C_{V}}{T} d T+\frac{n R d V}{V-n b}
$$

Which integrates immediately to

$$
\begin{equation*}
s \approx f \frac{C_{V}}{T} a T+n R \ln (V-n b)+S_{0} \tag{JVeI6}
\end{equation*}
$$

The Van der Walls' forces Which are measured by" ${ }^{\prime \prime}$ contribute nothing to the entropy: it is the same as that of an ideal gas whose volume is reduced by nb.

Substituting (IVeI4) in the energy equation gives ?,
so that

$$
\left(\frac{\partial U}{\partial V}\right)_{T} \approx \frac{n R T}{V-n 0}-P=\frac{n^{2} a}{V^{2}} \quad\left(\frac{\partial u}{\partial v}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V}-P=
$$

which integrates to

$$
\begin{equation*}
U \approx f_{0}^{T} c_{V} d T-\frac{n^{2} a}{V}+U_{0} \tag{IVel7}
\end{equation*}
$$

so that here it is only the attractive forces which enter and reduce the energy. In a free expansion, in which V increases but U is constant, it is evident that the integral must decrease, which means that a Van der Wail' gas always cools in a free expansion. The Joule coefficient is

$$
\begin{equation*}
\mu \approx n^{2} a / v^{2} C_{V}=\left(\frac{\partial T}{\partial p}\right)_{h} \tag{IVe18}
\end{equation*}
$$

The enthalpy is obtained by adding PV to the intemal energy and is

$$
\left.\begin{array}{rl}
\mathbb{H} & \approx f_{0}^{T} C_{V} d T+\frac{n R T V}{V-n b}-\frac{2 n^{2} a}{V}+U_{0} \tag{IVe19}\\
& \approx f_{0}^{T} C_{V} d T+P V-\frac{n^{2} a}{V}+U_{0}
\end{array}\right\}
$$

$$
\left.\begin{array}{l}
L=H_{2}-1 \psi_{1} \\
=P\left(U_{2}-V_{1}\right)+h^{2} a\left(\frac{1}{V_{1}}-\frac{\psi}{L_{2}}\right) \\
L=\left(V_{2}-V_{1}\right)(P+n a \\
\quad V_{2}+\psi_{1}
\end{array}\right)
$$

In a throttling process (Joule-Kelvin experiment) the end states have the same enthajpy but the pressure has decreased. It cannot easily be seen from (IVe19) whether this process will result in an increase or decrease of temperature. Howevor it is readily seen from (IVal9) that both enthaipy and teaperatupe can rewain constant if

$$
T_{i} \beta=1
$$

Computing β from (IV̈e13) this equetion reduces to $\quad \beta=\frac{1}{U}\left(\frac{\partial V}{\partial T}\right)_{p}$

$$
\begin{equation*}
p_{1} V: \frac{n e}{b}(2-3 n 0 / v) \tag{IVe21}
\end{equation*}
$$

08

$$
R T_{1}=\frac{2 a}{b}\left(1-\frac{n b}{v}\right)^{2}
$$

and it may be shown that if P or T are below the values glven by these equations the gas cools on expansion and if they are greeter it heats. As the volume is always much larger than no the fnversion tempereture is nearly independent of V, and therefore of D. Elinfating V between equations (IVe21) one obtains

$$
\begin{equation*}
P_{1} \approx \frac{a}{b^{2}}\left(1-\sqrt{\frac{b R T_{1}}{2 a}}\right)\left(3 \sqrt{\frac{b R T_{i}}{2 a}}-1\right) \tag{IVeez}
\end{equation*}
$$

which defines the inversion curve on a P-T diegrem. The throttling process to obtain cooling and eventuel liqueraction is videly used in the Inde Process.

Finally from equation (IVd24) it follows that

$$
\begin{equation*}
c_{p}-c_{v} \rightleftharpoons \frac{P+n^{2} q N^{2}}{P-n^{2} q / v^{2}} n R \tag{IVe23}
\end{equation*}
$$

FIG. IVE5
Constant enthaloy curyes for a Van der Waals gas.

4) Van der Waal s' Condensation

> Subst toting the formula (IVol9) already found for a Van der Wars' gas in (IVd.27) wo find for the latent heat of condensation

$$
\begin{equation*}
L \approx\left(V_{g}-V_{l}\right)\left(P+n^{2} a / V_{g} V_{l}\right)=n R T \ln \frac{V_{g}-n b}{V_{l}-n b} \tag{IVe24}
\end{equation*}
$$

Which clearly shows the latent heat to be due to work against exterai (P) and internal ($n^{2} a / V^{2}$) pressure. Substituting values of P and V near the critical point we ind that the intemal work is three times the extemal work, and this ratio becomes larger at lower pressures. Due to the factor $V_{g}-V_{h}$ the latent heat goes to zero at the critical point, its tomperature dependence being shown in Fig. IVe7. Real gases have latent heats considerably larger then that pieducted by the Van den Warns' equation as shown in the figure, clapeyron's equation for a. Ven dor Wadis gens is simply

$$
\begin{equation*}
\frac{d P}{d T} \approx \frac{P+n^{2} \varepsilon / V_{g} V_{l}}{T} \tag{TVeR}
\end{equation*}
$$

FIG. IVA
$\frac{d p}{d t}=\frac{S_{m}}{V_{1}-U}=\frac{L}{t\left(U_{2}-V_{1}\right)}=\frac{S_{2}-S_{1}}{V_{2}-V_{1}}$ claperns Equ.
him tha $\rightarrow \frac{S_{i n}}{\Delta U_{0}(\partial-b P)}$

$$
\int \Delta V_{1}(a-b p) d P \approx \int \sin d t=\text { asme constiwith } A T
$$

$$
A U_{0}\left(c+a p-\frac{b p^{2}}{2}\right) \approx \sin \left(t-T_{T}\right)
$$

 Levie "." 4

$$
\begin{aligned}
& S_{m}=\frac{L}{T} \text { Sifnelty } \\
& \left.\frac{d S_{n}}{d T}=\frac{\left(C_{e}-C_{s}\right.}{T}\right)_{\text {ant }} \\
& \Delta S_{m}=\frac{L}{T}=\left(c_{e}-c_{s}\right) h \frac{t}{t_{T}} \approx 0 \\
& \frac{L}{T} \approx \text { inst }=\sin
\end{aligned}
$$

but the deviation of observation from this formula are so large as to make it of istle value.

5) Melting

The latent heats l_{m} of melting per mole at atmospheric pressure of a few solids is given in the accompany ing table. It is seen that they vary by factors up to 200. However the teraperatures of melting $\underline{m}_{\mathrm{m}}$ vary by equally large amounts, and in the same direction, so that the entropy of melting

$$
\begin{equation*}
S_{\ell}-S_{\mathrm{g}}=1 \mathrm{Im} / T_{\mathrm{ma}} \tag{IVe25}
\end{equation*}
$$

varies remarkably little. It hes already been said that entropy measures randomness so it is quite understandable that there should be an increase in entropy in going from a crystal where the molecules are arranged in perfect order to a liquid where they are disordered and that if we deal with the same number of molecules the amount of randomness, and therefore the incroese in entropy, should be about the same.

For reference the latent heat of vaporization at the game temperature is also given. It also varies widely s but keeps a nearly constant ratio to the latent heat of melting. At low pressures the latent heat of vaporization represents almost entirely work done against the binding forces in separating the molecules, the wow $P\left(V_{g}-V_{l}\right)$ done against the extomal pressure being negisible. The table shows the a metal absorbs about one thiwtioth of its binding energy when it melts. On the other hand a molecular compound requires a seventh of its binding energy to melt it, and this is because the binding of molecular compounds is so weak. In either case, however, the liquid is very much closer in energy to the solid thar to the gas.

The coefficient of volwae expenaion β is quite small for both solids and liquids. so that the last tex m of Kirchore's equation (IVd31) is generally small when this equation is applied to molting. The remainder of the equation integrates to

$$
\begin{equation*}
\frac{I_{m}}{T} \approx \frac{I_{m}}{T_{t}}+f_{T_{t}}^{T} \frac{C_{p 2}-C_{D 8}}{T} d \mathrm{~S} \tag{IVe27}
\end{equation*}
$$

Where ${ }^{T}$ end $I_{\text {nt }}$ are the temperature and latent heat of melting at the triple point. As the heat capacity of the 1 liquid C_{p}, is always larger than that of the solid $C_{p s}$ the entropy of melting decreases slowly with the temperature

$$
\frac{d C}{d t}=C_{p}-C_{p_{i}}+\left(\frac{C}{T}-\frac{V / 2 \beta_{2}-V_{1} H_{1}}{V_{2}-V} U\right)_{s}
$$

$$
\begin{gathered}
v_{2} \gg V_{1} \\
p v=n n+ \\
\beta=\frac{1}{v}\left(\frac{\partial v}{\partial f}\right)_{p}=\frac{1}{f} \\
\frac{d L}{d T}=c_{j}-C_{p y} \\
L=L_{0}+f_{0}^{t} \Delta c_{p d t}
\end{gathered}
$$

fir pent that atrip thad goo lane.
is Clog Eger

$$
\begin{aligned}
& \text { Clop Eoe } \\
& \frac{d P}{d t}=\frac{L P}{\text { Whet }} \quad l
\end{aligned}
$$

$\frac{\downarrow P}{P}=\frac{L d t}{R T^{2}}$ per ole chose que for shalgos

$$
\frac{1}{n n t} \int D C_{p} d t=\frac{\Delta C_{p}}{\operatorname{nnt}}+\frac{1}{T^{2}} \int_{C_{p}} \frac{\Delta c_{p} d^{t}}{n n}-\frac{\Delta c_{p}}{n n t} \text { purf }
$$

$$
\frac{C_{\phi}}{+}
$$

The meaning of this equation is staple: consider the cycle (Fig. IVe8) which follows the melting curve on both sides, crossing it at the trifle point and an arbitrary other point. Equation (IVe27) seys thet the entropy change on going around this cycle is zero. Looked at in this way it is seen that equation (IVea7) is exact if one introduces ${ }^{\text {G Sat }}$, the heat capacity of the "sotureted" solid or liguid. in place of ${ }^{C} \mathrm{p}$.
If $I \mathrm{~m} / \mathrm{T}=\Delta \mathrm{S}$ is opproximately constant and V_{2} and V_{2} both obey

FTG. TVe8 Hooke's law so that $V_{2} \cdot V_{1} \approx \Delta V_{0}(a-b P)$ clapeyron's equation integrates to

$$
\begin{equation*}
\Delta V_{0}\left(C+a P-b P^{2} / 2\right)=\Delta S\left(T-T_{t}\right) \tag{IVe28}
\end{equation*}
$$

and this is the foxm actually observed for the melting line on a P-T diagran.

6) Sublimation

In the sublimation of a solfd the molar volume of the gas is always very lerge compared to that of the solid, and the same thing is true for the vaporization of a liquid except very near the critical point. In these cases V_{1} cari be neglectod compared to V_{2} and V_{2} can be given its ideal gas vaiue nRT/P. Furthermore as $\beta_{2}=1 / T$ for an 1deal gas the last two temm of the Kirchhoff equation (IVd30) cancel so that there remains

$$
\begin{gather*}
\frac{d L}{d T} \approx c_{p G}-C_{p s} \approx \Delta c_{p} \tag{IVe29}\\
\frac{d P}{d T} \approx \frac{P L}{n R T^{2}} \tag{Ivejo}
\end{gather*}
$$

As an example of the approximations involved, if these equations are appiled to weter at one atruosphore and $100^{\circ} \mathrm{C} \mathrm{Eq}$. (IVe29) is in error by 3.5 per cent and Eq. (IVe30) by 0.6 per cent. These equations are much more accurately true when opplied to sublimetion.

These equations may be integrated es follows:

$$
\begin{equation*}
L \approx I_{0}+f_{0}^{T M} \Delta C_{p} d P \tag{IVesi}
\end{equation*}
$$

$$
\begin{gather*}
\frac{d P}{P} \approx \frac{L d T}{n R^{2}} \\
\operatorname{Ln}_{\mathrm{L}} P \approx-\frac{I_{0}}{n R T}+f^{T} \frac{d T}{T^{2}} f_{0}^{T} \frac{\Delta C_{p}}{n R} d P \\
\approx-\frac{I_{0}}{n R T}+f_{0}^{T} \frac{\Delta C_{p}}{n R T} a T-\frac{1}{2} f_{0}^{T} \frac{\Delta C_{0}}{n R} d T \tag{IVes}
\end{gather*}
$$

Two cases are of particular interest:
a) Above room temperature. Both heat cepsoltles are roughly constan and Dugong and Petit's law is a good approximation for $\mathrm{C}_{\mathrm{ps}}{ }^{\circ}$ ΔC_{p} is then a negative constant

$$
\Delta C_{P} \approx-\Omega R C
$$

so that
and

$$
\begin{equation*}
I \approx I_{\Phi_{T}}-n R C T \tag{IVe33}
\end{equation*}
$$

$$
\ln P \approx-\frac{I_{0}}{n R T}+B-0 \ln M
$$

where B is an integration constant. This is the vapor pressure law observed empirically.
B) Low temperatures. Fere

$$
c_{p g} \quad \frac{\gamma}{\gamma-1} \mathrm{nR}
$$

and $C_{p s}$ is genemsly small but not a simple function of T. Then

$$
I_{1} \approx I_{0}+\frac{\gamma}{\gamma-1} \text { NR }-f_{0}^{2} C_{p s} d x
$$

and
where

$$
\begin{equation*}
\ln p \approx-\frac{I_{0}}{n R T}+i+\frac{\gamma}{\gamma-1} \ln T-b \tag{IVe34}
\end{equation*}
$$

$$
b=\frac{S_{s}}{n R}-\frac{1}{T} f^{T} \cdot \frac{0_{p s}}{n R} d T
$$

and 1 is called the vapor pressure constant.
-

\bullet

is is

These equations enable one to calculate the entropy of the vapor for

$$
\begin{gather*}
S_{S}=S_{S}=\frac{L_{I}}{T}=\frac{L_{0}}{T}+\frac{\gamma}{\gamma-1} n R-\frac{1}{T} f_{0}^{T} C_{p s} d T \\
=\frac{L_{0}}{T}+\frac{\gamma}{\gamma-1} n R+n R b-S_{S} \\
S_{g}=\frac{\gamma}{\gamma-1} n R+1 n R+\frac{\gamma}{\gamma-1} \text { nR } \ln T-n R \ln P
\end{gather*}
$$

But we already know that for an ideal gas

$$
\begin{equation*}
S_{g}=\frac{\gamma}{\gamma-2} n \operatorname{nin} 2-n R C n P+S_{0} \tag{Ive35}
\end{equation*}
$$

so that

$$
\begin{equation*}
s_{0}=\left(1+\frac{\gamma}{\gamma-1}\right) n R \tag{IVez6}
\end{equation*}
$$

The entropy constant of solids has been fixed by setting the entropy zero at absolute zero, and this has fixed the arbitrary constant in the entropy of the gas. The determination of S_{0} is important both to verify theory and to determine chemical equilibrium between gases which react. The determination of the vapor pressure constant 1 is therefore important. It can be done on a log $P-I / T$ plot, but it is best, to calculate b first from specific hest date, and then to plot $\mathrm{hn}(\mathrm{PT} \times / 8-1)+b$ against $1 / T$. This plot should be accurately straight, so the best straight line is drawn through the experimental points. The intercept of this line with the T w axis gives the value of i_{g} and the slope gives $I_{0} / n R$. Some experimental results for monatomic vapors are given in the following table. It is found that the quantity

$$
\begin{equation*}
1_{0}=1-\frac{3}{2} \ln \mu-\ln g \approx 7.97 \tag{IVe37}
\end{equation*}
$$

Where \mathcal{H} is the molecular weight and g is the "statistical weight", a small whole number which is obtained from band spectra, is remarkably constant and close to 7.97 in MKs units. Putting (IV 37, 35 , and 35) together one finds

$$
\begin{align*}
& S_{0} / n R \approx 21.5+6 n \frac{g_{2}}{2} \sqrt{M 3 T_{2}} \tag{IVe38}\\
& \ln p=\frac{L_{0}}{n x_{+}}+\frac{c p^{2}}{h n} \cdot \ln t+i=b(x) \\
& P=\pi t^{5 / 2} e^{-k_{0} / n n t}
\end{align*}
$$

$$
\begin{aligned}
& i_{v}=i-\frac{3}{2} \log \mu-\lg \approx 7.97-g=102
\end{aligned}
$$

Element	2 (ces/mole)	1	moler	8	10
Ne		12.45	20.2	1	7.84
Na		13.32	23.0	2	7.93
Mg	34850	12.61	24.3	1	7.83
Zn	31370	14.31.	65.4	1	8.04
Cd.	26740	14.98	112	1	\%.90
Hg		25.74	201	1	7.79
T1		15.97	- 204	2	8.30
Average $\quad 7.97$					

VAPOR PRESSURE CONSTANT FOR MONATOMIC VAPORS

CHAPTER V

Entropy and Probability

(a) M1crostates and Macrostates

The internel onergy and the entropy of substances are obtained indirectly from measurements of heat and work by integrating the equations

$$
\begin{array}{ll}
& d U=d Q-d W \\
\text { and } & d S \geqslant d Q / T
\end{array}
$$

However these definftions in tems of messurements followed by an integretion do not give s picture of thom, so that it is 1 m possible to visualise what they repxesent.

In the case of the onergy ve already have a picture coming from Mechenics. Here we learn firgt of kinetic energy and then, through en integretion, of potential cnergy and the conservation of the two combined. Knowing matter to be composed of atoms exerting forces on each other one can readily imegine the internal energy to be the sum of the potential and kinotic energies of 211 the atoms

$$
\begin{equation*}
U=\Sigma\left(\phi+m v^{2} / 2\right) \tag{ve.3}
\end{equation*}
$$

One is tempted to assign these two fomm of energy sonehow to work and heat, but this, it must be said immediately, is doomed to fallure, as work and heat are characteristics of a process which completely loose their identity in a state. Wevextheless the atoulc picture gives us an understanding of internai energy which one con never obtain from thermodymemics, and the explanetion of the specific heats of ideal gases are good examples of its usefulness.

It is our purpose now to derive a formula similax to (Va3) for the entropy. Hovover this is not as intuitire, and there are two reasons for this: In the first place the formula for the entropy derives from Quentum Theory and the concept of Merostetes insteed of from the more familiar Mechanlcs. In the second place the ontropy, unlike the energy, is a property non-axistant in a single perticie but which emerges when one has a large number of porticles. One must therefore introduce new ideas of probability ond Statistics.

Let us first consider the distributions of $\#$ particles in s box of volume V leaving their motions eside roz the moment. We begin by dividing the volune into cells whose volume a represents the most eccurate detemanation of position we shall went to make. For example, the cella mey have the volume occupied by single molecules in a crystal, so thet there may be 10^{26} cells in a IIter. Lot the cells be numbered irom 1 to $\hat{\sigma}=\mathrm{V} / \mathrm{B}$, let i be the nuraber of any posticules cell.

A "microstate" is defined by giving the number N_{1} of perticies in each cell. It does not matter "which" perticles are in e given cell for atoms are indistingulshable and it has no meaning to ask them to be named, but we can tell the cells by simple measurements from one comer of the box, and we can count the particles in it. The set of numbers N_{1} can be represented by $\left[N_{1}\right]$. Thus

$$
\begin{equation*}
\left[N_{i}\right]=(0,0,1,0,2,0,0,1) \tag{Va4}
\end{equation*}
$$

represents a mierostate in which there are 8 cells and 4 perticles. The N_{i} s are called occupstion numbers. In general they are sial 11 numbers and are irequently zero.

In practice we observe huge mumoerg of atoms and therefone even greater numbers of cells. Let n be the very least number of atoms whose prossure and temperature con be moasured; sonething of the onden of 1010 perhaps. Let g be the corresponding number of celle. A "distribution" or "marrostate" will be defined by giving the numbes nj in each group of g cells. A mecrostate is tho most acourete determinetion desimable of the state of metter in bulk, berope the properties we vish to study become lost in the contusion of attempting to keep treck of 1026 molecules.

An onalogy will bring out the roason for introducing mearostates. It is possible to study paintinga with a microscope and to leam meny things in this rey about pigments and the supporting media. Howerer such a study w111preveal the laws of 11 ght and shodow and pexspective, or even allow aclessification into landscapes, inceniors, and portraits. These are properties thich emorgo only when one visw the subject from sufficientiy far so as to lose aight of the findividual pignen perticles and see then oniy in groups. Tho Themodymamic pmopenties of pressure, temperature, and entropy are sixilar to light. shadow, and portratt in that they are propertles of the groupings of perticles which are bost observed when we do not push observation to the limit of detall. Me introduce macrostates, therefore, not because we cannot obsesve more detall but because, at the moment, we are studying the large scale properties of matter. It will of course have to turn out, is the prom perties we study are to heve any meaning, that they do not depend critically on the perticular value of the sige $\&$ of group vaich we choose.

(b) Probab111ty and Entrovy:

We shall start with the postulate that all microstates hare the same inherent probsibility, As a macrostete is less sharply defined then a microstate there vill be a greet many of the letter corresponding to each one of the former and the fipst probiem is to find how many. This number, W, will be called the thermodmamic probobility of the macrostate. It is not, of course, an ordinary probebility as it is
always a very large numberg but it is nevertheless a measure of the relative likelyhood that the panticles fill have any given distribution rather then another one.

Let us first find the number ws of microstates within the group g . Iret the cells be numbered

$$
1_{1} \cdot 1_{2}, f_{3}, \ldots \ldots 1_{g}
$$

and let the molecules be represented by $n g$ zeros: $0,0,0, \ldots-\cdots$ all identical, as indeod the wolecules themselves ane. Let us mix the i's and the zeros and let us emmenge then in any order. For expmple:

$$
\begin{equation*}
1_{1} 1_{2} 1_{3} 01_{4} 1_{5} 001_{6} 1_{7} 1_{8} 0 \tag{VbI}
\end{equation*}
$$

and let us adopt the convention that the zeros pepresent molecules Which are located in the cell represented by the next preceding 1 . Thus the series (VDI) represorts the some state as (Va4). It is necessary for this convention that the firgt syabol of the gerles be an i. It cen be enyone of the gi's. The remelning symbois an be ampanged in any orders so that there ane in all

$$
\varepsilon(\xi+n j-2)!
$$

sequences such as (VbI). Each oequence reprosencs a mierostate, but there are many repotitions: Permuting the i's wes unnecessary es all the microstates con be represented by sequences in which the cells are in the order of theix mumbers. Pemmuting the zeros obviousiy maices no difPerence. Thus

$$
\begin{equation*}
W_{j}=\frac{g\left(8+n_{j}-1\right)!}{g!n_{j}} \tag{vo2}
\end{equation*}
$$

This is a very large number, and it will be convonient to uae stirilngss approximetion

$$
\begin{align*}
& n!a x \sqrt{2 \pi n}(n / e)^{n} \tag{703}\\
& W g=g \sqrt{\frac{g^{+n} j^{-1}}{2 \pi g n_{j}}}\left(\frac{g+n j^{-1}}{e}\right)^{g^{2 n} g^{-1}}\left(\frac{e_{g}}{g}\right)^{s}\left(\frac{e}{n_{j}}\right)^{n} j \\
& w_{j}=\frac{e}{\sqrt{L n n_{j}}}\left(\frac{g+2 x}{g} j^{-1}\right)^{g+n} j^{-1 / 2}\left(\frac{g}{g_{j}}\right)^{n} j
\end{align*}
$$

and teking logerithms

$$
\begin{equation*}
\ln w=\left(g+n, \frac{2}{2}\right) \ln \left(1+\frac{n_{j}-1}{g}\right)+n g \ln \frac{g}{n}-\ln \frac{\sqrt{2 \pi n} j}{\theta} \tag{104}
\end{equation*}
$$

In this expression we wish to neglect 1 compared to n_{j}. This imposes a. minimum size to the group which is much less severe than the experimental one. Introducing also the notation

$$
\begin{equation*}
\overline{\mathbb{N}}_{j}=n_{j} / g \tag{Vo5}
\end{equation*}
$$

for the average occupation number of the group, we have

$$
\begin{equation*}
\ln w_{j}=g\left[\left(1+\bar{N}_{j}\right) \ln \left(1+\bar{N}_{j}\right)-\overline{\mathbb{N}}_{j} \ln \overline{\mathbb{N}}_{j}\right] \tag{V05}
\end{equation*}
$$

This gives the number of ways wh in which the ng molecules may be disposed in the g cells of the groulp.

We now wish to find the number of ways W in which the If molecules mey be disposed in the G cells such that each group of g cells has the number n_{j} appropriate to that group. The set of numbers n_{j} define the distribution, or macrostate, and W is the number of miorostates which corpespond to $1 t$. But W is just the product of the $\mathrm{a} / \mathrm{g} \mathrm{w}_{j} \mathrm{~s}$

$$
\begin{align*}
& W=w_{1} w_{2} \cdots w_{G / g} \tag{Vb7}\\
& \ln W={\underset{1}{G / g}}_{\sum_{1}}^{G}\left[\left(1+\mathbb{I}_{j}\right) \ln \left(1+\bar{N}_{j}\right)-\mathbb{N}_{j} \ln \mathbb{N}_{j}\right] \tag{Vb8}
\end{align*}
$$

The firgt line of (V08) is a sum over all the groups of cells g. But as the quantity summed is identical for each cell in a group, it can equally well be summed over the cells and thus do awey With the factor g. The last line now does not contein the group size g any more: it hes gone out to the extent that I could be neglected compared to n_{j} in formule (Vb4). The varishing of g as the groups contain more and more particles corresponds to the disappearance of the grains in a painting as one views it from further away.

One further simplification may yet be made. In all cases ordinarily encountered the averege occupetion numbers are very small. Then

$$
\begin{equation*}
\ln \left(1+\bar{x}_{1}\right) \approx \bar{w}_{1} \tag{vbg}
\end{equation*}
$$

and

$$
\begin{equation*}
\ln W=\sum_{1}^{G} \mathbb{D}_{i}\left(I-\ln \pi_{1}\right) \tag{Vblo}
\end{equation*}
$$

We shall now give the statistical definition of the entropy
where

$$
\begin{equation*}
\frac{S=k . n \cdot W}{k=1.381 \times 10^{-23} \text { Joules/degree }} \tag{Vbl.1}
\end{equation*}
$$

It is not posaible to prove that this definition is identical with the thermodynamic one, and a.11 that wlll be done here is to show that it leads to the seme expreasion for the entropy of an ideal gas

Microstete

$$
\begin{aligned}
& G=81 \\
& \mathbb{N}=27
\end{aligned}
$$

1	2	3
2	3	4
3	4	5

Macrostate
g $=9$

Figure Vo

To work out an example in detail consider the microstate with 81 cells and 27 particies shown in figure Vo. Taking groups of 9 cells we find the following values for n_{j} and for w_{j}, using the exact formula (Vb2):

$j=$	1	2	3	4	5	6	7	8	9
$n_{j}=$	1	2	3	2	3	4	3	4	5
$w_{j}=$	9	45	165	45	165	495	165	495	1287

Taking logarithms we have

$$
\begin{gathered}
\ln W=\ln 9+2 \ln 45+3 \ln 265+2 \ln 495+\ln 1287 \\
=45.098 \\
S=6.23 \times 10^{-22} \text { Joules/degree }
\end{gathered}
$$

Dividing the same microstate into groups of 8 cells (with one left over:) the following valued of n_{j} were found:

$$
n_{\mathrm{f}}=1,1,3,2,3,3,4,2,4,4
$$

which leads to $\mathrm{H} W=42.801$, a 5 per cent difference due to the very small number of parilcles.

c) The Most Probable Distribution

Different distributions have different probabilities W. To take an extreme example consider the distribution in which all the partickles fall in the cells of one group. Then

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{T}_{1}}=\mathrm{N} / \mathrm{g} \quad \text { is that group } \\
& \bar{T}_{1}=0 \quad \text { in all other groups }
\end{aligned}
$$

and

$$
\begin{equation*}
\ln W_{1} \Rightarrow N(1-\ln N / g) \tag{Vel}
\end{equation*}
$$

On the other hand consider the macrostate in which the distribution is uniform, Then

$$
\mathrm{T}_{1}=\mathrm{N} / \mathrm{C}
$$

and

$$
\begin{equation*}
\ln _{2} W_{u}=N(1-2 n N / G) \tag{Vc2}
\end{equation*}
$$

Probability favors the uniform distribution, and the ratio is given by

$$
\begin{equation*}
\frac{W_{u}}{W_{1}}=\left(\frac{G}{G}\right)^{N} \tag{Vel}
\end{equation*}
$$

This, in general, is a colossal number. Wien in the example given in the last section, and for which the condition (Nog) does not hold,

$$
W_{I}=\frac{355}{27!8!}, W_{u}=(155)^{9},
$$

so the

$$
\frac{W_{u}}{W_{2}}=38.5 \times 10^{10}
$$

\int
When we are considering distributions of 10^{10} particles these relative probabilities become tremendous. A nor-equilibrium state, as defined in thermodynamics, 18 merely one of low probability. If left to itself it is extremely likely ("certain" would be a more "realistic" teri) to revert to a more probable distribution and therefore to increase in entropy. The most probable distribution is tho equilibrium state.
(vil) by differentiating with respect to the fin and equating to moro

$$
\begin{equation*}
\delta S=-2 \pi \ln W_{1} \delta \prod_{i}=0 \tag{Vol}
\end{equation*}
$$

The \bar{X}_{1} 's represent changes in the numbers of particles in each group due to all possible small changes in the distribution. They are not entirely arbitrary as we are doming with a fixed number \mathbb{N} of particles so that

$$
\begin{align*}
& \mathbb{N}=\sum \mathbb{W}_{1} \tag{Ven}\\
& \sum \delta \mathbb{N}_{1}=0
\end{align*}
$$

and therefore

Eq. (Vo6) is celled a constraint placed on eq. (Vcr) which restricts the values which can be given to the STR's. Equations (voa) and (voe) may be solved by the method of Lagrange multipliers: wultypiying eq. (VeG) by an undetermined constant c , and subtracting (Vol) wo obtain

$$
\begin{equation*}
\sum\left(0+k \ln \underline{w}_{1}\right) \delta \tilde{U}_{1}=0 \tag{Vel}
\end{equation*}
$$

This equation is satisfied for any δ 零 1 .

$$
\begin{align*}
& \ln \mathbb{W}_{1}=-\alpha / k \tag{Va}\\
& \mathbb{W}_{1}=e^{-\alpha / k} \tag{Veg}
\end{align*}
$$

and we can satisfy the constraint by substituting (Voc) in (Voes)

$$
\begin{equation*}
\mathbb{N}=\sum e^{-\alpha / k}=\frac{U}{a} e^{-\alpha / L} \tag{Vela}
\end{equation*}
$$

end using this to determine of

$$
\begin{equation*}
\cos -k \operatorname{la} \mathbb{N a} / V \tag{veIl}
\end{equation*}
$$

Eq. (Ve9) shows that the distribution on meximum entropy is unifoma (the \mathbb{V}_{1} 's are all the some) and substituting Ryon (Veli) in (Ve9) gives \# niew ì nacro

$$
\begin{equation*}
\pi_{i}=\mathrm{Ne} / \mathrm{V} \tag{Vcle}
\end{equation*}
$$

Eq. (Vblo) then gives the maximum value of the entropy.

$$
S=\operatorname{NK}(I-\ln \operatorname{Ti} a / V) \quad N=n A
$$

This equation agrees with that obtained from Themodshamics when applied to an ideal monatomic gas

$$
\begin{equation*}
S=n R \ln \left(\operatorname{vi}^{3 / 2}\right) \div S_{0} \tag{VoI4}
\end{equation*}
$$

provided k has the value 1.381×10^{-23} Joules per degroe, and pacept that it does not contain the temporature, 2.5 is to be expocted as thermal motions have been specifically neglected.

If two Identical volumes of ges are put in commalcetion so as to constitute a single syetem hoving $2 N$ portieles in o volume 2V, it is seen from (Vel3) that the entropy gimply coubles, 90 entropy as we have derined it is extensive.

On the other hand. is a given omount of ges oxpands isothemelly from V_{1} to V_{2} there is an increase of entrong.

$$
\Delta S=n R \ln V_{2} / V_{1}
$$

The expansion may take place in any of several ways: it may be "Pree" as when a gas expands into a vacum. In this case there is no heat or work involved and the clavsius inequality holds. On the other hand, the ges mey expend egeinst a piston, doing work. In this case, heat must be added in order to keep the temperature constant, and if the process is reversible

$$
\begin{gathered}
\Delta Q=T \Delta S=n R T \operatorname{lin}_{2} V_{2} / V_{1} \\
\Delta W=\Delta Q
\end{gathered}
$$

The net result of this process has been to convert hoat tnto woms. The motions of the perificles of the gas have rematned unchenged as has their total energy. But thoin posithons are less vell spocified as they are distributed over a large volume. Frest, which is rendom motion, is convertible into work, which is ondexed motion, only at the expenae of increased randomess of position.
d) Entropy of Mixing

Consider now particles of two kinds and lot W? of the plust
kind, and π^{n} of the second be contained in the volume V. In these particles have no appreciable size aw d do not attract or repel each other we can go through the argument of the preceding paregreph for each one independently and show that the moet probable distribution is that in which each of the two kinds of particles are untromuly dis tributed in the whole volume and that the entropy of this distribution Iss

$$
\begin{equation*}
S=N^{\prime} k\left(1-2 n N^{\prime} 0 / V\right) \div \mathbb{N}^{n} k\left(2-2 n N^{n} a / V\right) \tag{Val}
\end{equation*}
$$

Let

$$
\begin{aligned}
N & =W^{\prime}+N^{n} \\
x & =\mathbb{N}^{\prime} / N \\
2-x & =W^{n} / N
\end{aligned}
$$

x and I-x are the mole Erections of two genes whoso molecules awe in the ratio of IN' to ${ }^{\prime \prime}$. Substituting in (Vol) we obtain

$$
\begin{equation*}
S=N E[1-\ln N a / N-x \ln x-(1-x) \ln (1-x)] \tag{vac}
\end{equation*}
$$

It is seen that the fact that the particles are of two direarent kinds results in a larger entropy by an amount

$$
\Delta \mathrm{S}=-n R[x \ln x+(1-x) \ln (1-x)]
$$

This is a positive quantity beceuse the logarithms are negative, and is called the entropy of mixing. It follows if the distributions of the two kinds of molecules are independent of each other, the is that they do not attract or roped.

Entropy of M 4×1 ge
$S=\mathbb{N}^{\prime} k\left(1-\ln \frac{N^{2} a}{X V}\right)+\mathbb{N}^{\prime N} k\left(1-\ln \frac{N^{\prime \prime} a}{(1-x) V}\right)$
Pig. Val
$=N k\left(1-\ln \frac{\mathrm{Na}}{\mathrm{V}}\right)$

\mathbb{N}^{\prime}	$\mathbb{N}^{\prime \prime}$
2 V	$(1-\mathrm{X}) \mathrm{V}$

That is, the entropy is the some as though theme voro N particles all alike in the total volume V. Now is the pertition As romoved the perticies can redistribute themselves (inter diffuso) 30 as to attein the larger entropy (Vda). It is therciore probablo, thoubh not certain, that they will do so. How probable can be secn by a mumorieal exomple. Let the partition divide the volume in equal pats with dole a mole on eithor side. Then the entropy of mixing is

$$
\Delta \mathrm{S}=\text { Ni } \ln 2=1,375 \text { cel/dog.mole }
$$

This is not a laxge muber. Howerer, in we substitute in oquetion (Voll), and cell What W_{m} the probabilities on the mixed end sepereted states, respectively

$$
\ln W_{m} / W_{\mathrm{s}}=\Delta \mathrm{S} / \mathrm{k}=\mathbb{N} \ln 2
$$

or

$$
\frac{W_{m}}{W_{s}}=2^{M} \approx 10^{10^{23}}
$$

The probebility of diffusion is therefore overwnelming.

e) Distributions in Phase Spece

The theory must now be extented to includo tho wotions es well as the positions of the pasticles. this is done by oxtending the notion of a cell so thet it gpectries, to es high an acoupeeg es possible, the monentum es vell es the position of e pontiole. This is best visuetized by inagining a six-etmonotanat ingozopnce eelled

Ihase Space
Fig. Ve
phase spece, whose sxes are $x, y, z, \mathrm{mV}_{\mathrm{x}}, \mathrm{mv}_{\mathrm{y}}, \mathrm{my}_{z}$. Projections of this hyperspace can then be repaesented by dravings, as in figure Ve. Parts 1 and 2 of this iigure are the chree-dimenstonel space and momentum projections, and 3 is a two-dimensionel projection including one coordinate and the corvesponding momenturn. thore are three projections similer to this ong. A eoll. in this spece is a six-dimensional. hypervolume $\Delta x \Delta y \Delta z \mathrm{~m}^{3} \Delta \nabla_{X} \Delta v_{y} \Delta v_{z}$ rhoso projections ero the cube a in space and the cube b in momentum, of three similan roctangles h comresponding to x, y, and z. Naturally

$$
\begin{equation*}
\Delta x \Delta y \Delta y_{x} y^{3} \Delta v_{x} \Delta v_{y} \Delta v_{z}=a b=\dot{n}^{3} \tag{VeI}
\end{equation*}
$$

For a particle to be in this cell its position and momentum must be simultaneously in the cubes a and b.

The quantity h has the dimensions of action, whioh is already familiar from the Principle of Ieast Action in Mechamics. It acquires, hovevers on even greater significance in Quentum Theony Where it is shom that there is an ebsolute erperimentel limit to the accurady with which the sfnulteneous position and monentum of a paiticle along any axis can bo dotemined, and this limit is dofined by the relation

$$
\begin{equation*}
\Delta x \mathrm{~m} \Delta v_{x} \geqslant h=6.624 \times 10^{-27} \text { exg sec. } \tag{Ve2}
\end{equation*}
$$

The cells, which were introduced in ordinary space pos the methenetical oonvenionce in defining microstetes, heve a true physical meanlng in phase spece. When a mierostete is specisiod the gystem is as fuly dofined as it ever can be.

With this new definltion of a oell the ontire amgumont of section b cenries through es belore: the cejls sre cojlected into groups thich represent the destrable 1 init of detell so that the Theraodynamic properties mexge. The occupation numbers of the cells, N_{I} are replaced by their average velues over the groups, \#i, end the themodymamic probability W, detined as the number of microstates which correspond to the same macrostate, is ?ound to be given by

$$
\begin{equation*}
\ln W=\sum \bar{W}_{1}\left(1-\ln \bar{w}_{1}\right) \tag{V®3}
\end{equation*}
$$

The entropy is then

$$
\begin{equation*}
S m \mathbb{l n} W \tag{Ver}
\end{equation*}
$$

The above Pomulac apply to any wacrostate, but we are per.. tioulamiy interested in the equilibmiun state, which is thet of meximum entropy. Fere the develoment differs Irom thet of soction c boceuse we must intsoduce an additional constreint which provents tho points

Prom spreading out a. ll over momentum space. Besides having a finite number of particles N the system has a finite energy U. Accordingly there are two constraints
and

$$
\begin{align*}
& \mathbb{N}=\sum \mathbb{N}_{1} \tag{Ven}\\
& U=\sum u_{i} \bar{T}_{i} \tag{VeG}
\end{align*}
$$

where u is the energy of a particle in the cell 1 . For simplicity we shall consider only free particles, so that

$$
\begin{equation*}
u_{j}=m v_{i}^{2} / 2 \tag{VeT}
\end{equation*}
$$

and the results will then apply to an joel mozetomic gas.
The conditions for a maximum are now

$$
\begin{align*}
& \delta S=-k \sum \ln \tilde{N}_{1} \delta \bar{N}_{i}=0 \tag{Veg}\\
& \delta \mathbb{N}=\sum \delta \mathbb{N}_{1}=0 \tag{Veg}\\
& \delta U=\sum u_{i} \delta \tilde{N}_{1} \quad=0 \tag{Velo}
\end{align*}
$$

Applying the method of Lagrange multi pliers wo multiply (Veg) by -1 , (Veg) by α, (Ve10) by β, and add

$$
\begin{equation*}
\sum\left(a+\beta u_{1}+k \ln _{1} \overline{\mathrm{~N}}_{1}\right) \delta \vec{N}_{1}=0 \tag{VeIl}
\end{equation*}
$$

For this equation to be satisfied for 0.11 variations δ 雷 wo must have
or

$$
\begin{gather*}
k \ln \overline{\mathbb{V}}_{1}=-\alpha-\beta u_{1} \tag{Vela}\\
\cdot \frac{\alpha+\beta u_{1}}{k} \tag{Volu}\\
W_{1}=\frac{-\frac{1}{2}}{}
\end{gather*}
$$

Where α and B are to be determined by substitution in (Voes) and (VeG). This distribution, in which the average occupation numbers decrease exponentially with the energy, is celled a Boltrmom distribution. As equation (VeT) hes not been used in deriving this, the Boltzmann distribution is valid for equilibrium almost universally the only rem striction being that or equation (Via) which nequires the average occupatron muaberg to be smell. Substituting (Vol) in (V on) and (Vol) gives

$$
\begin{equation*}
s=\sum \sum_{i}\left(k+\alpha+\beta u_{1}\right)=(k+\alpha) N+\beta U \tag{Ve14}
\end{equation*}
$$

(i) Integration for a and β

The determination of a and β must be done by substituting (Ve13) in (Ve5) and (VeG). Performing the summations may be dieficult, but if the \bar{W}_{f} are sufficiently smooth functions of the coordinates of the cell the summation may be replaced by an integration. By simple proportions the number dos of particles in the volume element $d x d y d z m^{3} d v_{x} d v_{y} d v_{z}$ is proportional to the mambos N_{1} in ha^{3}. Thus

$$
\begin{equation*}
d \sigma_{\mathrm{m}}=\frac{m^{3}}{h^{3}} e^{-\alpha+\beta} \frac{\alpha}{k} d \pi d z d v_{x} d v_{y} d v_{z} \tag{V21}
\end{equation*}
$$

which is in mediately integrated over the volume to

$$
\begin{equation*}
d^{3} N=v \frac{m^{3}}{h^{3}} \rho^{-\frac{d+B v}{k}} d v_{x} d v_{y} d v_{2} \tag{2}
\end{equation*}
$$

Introducing

$$
\begin{equation*}
u=\frac{m}{2}\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right) \tag{VET}
\end{equation*}
$$

$d^{3} N=V \frac{m^{3}}{h^{3}} e^{-\alpha / k}\left[e^{-m v^{2} / 2 k} d v_{x}\right]\left[e^{-m v_{V}^{2} / 2 k} d v_{y}\right]\left[e^{-x i v_{z}^{2} / 2 k} d v_{z}\right]$ (VIL)
The brackets are functions of one variable only cad csch one integrated from $-\infty$ to $+\infty$ gives $\sqrt{2 \pi k} / \mathrm{m}$.

$$
\begin{aligned}
& \int_{0}^{\infty} x^{n} e^{-8 x^{2}} d x= \\
& 1 / 2 \sqrt{\pi / 2} \operatorname{ror}^{n}=0 \quad 2 / 2 a \operatorname{sor} n=1 \\
& 1 / 4 \sqrt{\pi / e^{3}}{ }^{n} \quad \pi=2 \quad 1 / 2 e^{2} \quad \text { n }=3 \\
& 3 / 8 \sqrt{\pi / a} \cdot n=4 \quad 1 / a^{3} \quad n=5 \\
& 15 / 16 \sqrt{T / a^{7}} \because n=6 \quad 3 / a^{4} \quad n \quad n \text { ox } 7
\end{aligned}
$$

5ab20 Y

Thus

$$
\begin{equation*}
N=V\left(\frac{2 m n k}{h^{2} \beta}\right)^{3 / 2} e^{-\alpha / k} \tag{VI}
\end{equation*}
$$

The energy is given by

$$
d^{3} U=u d^{3} N=v \frac{m^{3}}{h^{3}} u e^{-\frac{\alpha+\beta}{k}} d v_{x} d v_{y} d v_{z}
$$

The three components of the energy u lead to three identical integrals, so thet

$$
v=\frac{3 v}{2} \frac{m^{4}}{h^{3}}\left[\int v_{x}^{2} e^{-a v_{x}^{2} / 2 k} d v_{x}\right]\left[\int e^{-\pi u v_{y}^{2} / 2 k} d v_{y}\right]\left[\theta^{-m v_{z}^{2} / 2 k} d v_{z}\right]
$$

$$
\begin{equation*}
=\frac{3 V k}{2 \beta}\left(\frac{2 m m k}{B_{n}^{2}}\right)^{3 / 2} e^{-\alpha / k}=\frac{3 N k}{20} \tag{vif}
\end{equation*}
$$

Solving for α and β

$$
\begin{gather*}
\rho=\frac{3 N k}{2 U} \tag{I}\\
\alpha=k \ln \frac{V}{3}+\frac{3}{2} k \ln \frac{4 \pi m 0}{3 h^{2} \pi}
\end{gather*}
$$

(g) Thermodynamic Veriables

Substituting for a and β 1n (Ve14) gives

$$
\begin{equation*}
S=\mathbb{N}(\alpha+5 k / 2)=N k\left[\frac{5}{2}+\frac{3}{2} 2 n \frac{4 \pi m U}{3 \pi h^{2}}+\ln \frac{V}{N}\right] \tag{Vgl}
\end{equation*}
$$

This is an equation connecting the three specific quantities S / T_{1}, $\mathrm{U} / \mathrm{N}, \mathrm{V} / \mathrm{M}$. It is therefore the equation of the Globs surpsce for an idoal gas, and wo know that the pressure erd tempenatvre are the slopes of the tangent plane. Differentiating

$$
\begin{equation*}
d S=N k\left(\frac{d V}{V}+\frac{3}{2} \frac{d U}{V}\right) \tag{Vge}
\end{equation*}
$$

or

$$
\begin{align*}
& d U=\frac{2}{3} \frac{\mathrm{U}}{\mathrm{~m}} \mathrm{dS}-\frac{2}{3} \frac{\mathrm{U}}{\mathrm{~T}} \mathrm{dV} \\
& =\frac{d S}{B}-\frac{N 15}{B V} d V \tag{Vg}
\end{align*}
$$

Compering this with

$$
\text { dU } \operatorname{TdS}-\mathrm{PdV}
$$

we see immediately that

$$
\left.\begin{array}{c}
B=1 / T \tag{V85}\\
U=\frac{\pi}{2} N K T \\
P V=N K T
\end{array}\right\}
$$

Thus theLagrange multiplier B has a phystcal meaning ond we have dorived the ideal gas lav from statisties alone without any tetalled consideration of collisions, although, to be sume, the derivetion was not as dipoct as thet of paragraph (IIg6).

On the other hand the determination of the entropy constont i of an ldeal gas (Paragraph TVe6) was not oasy. It is now eirieady contained in equation (Vg1). Substituting for V and V from (Vg5)

$$
\begin{equation*}
s=M k\left[\frac{5}{2}+\frac{5}{2} \ln k T+\frac{3}{2} \ln \frac{2 \pi n}{n^{2}}-\ln g\right] \tag{Vg6}
\end{equation*}
$$

whence

$$
\begin{align*}
1 & =\frac{5}{2} \ln k+\frac{3}{2} \ln \frac{2 \pi}{n^{2}} \\
& =i_{0}+\frac{3}{2} \ln \mu \tag{g}
\end{align*}
$$

This is kngw as the Sackur-Tetrode equetion. It is to be noted that the constant h^{2} which measures the size of the mictrocells hes gancelied out of the theory almost as oomplotely 2 s tho siz0 gh3 of the moorocellis. It does not remeln in the energy or. the equation of state (Vg5) but enters only in the entropy constant is, a quantity difetcult of experimental determinetion. Taking the value of h from photoolectric messurements one finds

$$
\begin{equation*}
1_{0}=27.862 \text { 1KKs } \tag{7g8}
\end{equation*}
$$

Comparing this with the values obtained from vopor prossure moesuroments (p.97) we see that it falls within the ronge of these deteminations. We are thus justiffed in talking the dicrocelis of size h^{3}, or, more precisely the definitions of the Themodynamic probebility and entropy given by (Vez) and (Vet) are consiotent with Nomst's cholce of a crystal at absolute zoso as the refenence polnt for neesuming ontropies.

(h) Numerical Check

If the velues of α and β given by (vps) and (Vf8) are substituted in (Ve13) one obtains for the everage occupetion aumbers

$$
\begin{equation*}
\bar{W}_{\mathcal{L}}=\frac{N^{3}}{(2 \pi m k T)^{3 / 2}} e^{-u_{1} / k T} \tag{Vha}
\end{equation*}
$$

Let us substitute values for helium at the critical polnt ($V_{c}=61.5 \mathrm{~cm}^{3} / \mathrm{mole} \mathrm{T}_{\mathrm{c}}=5.19^{\circ} \mathrm{K}$) in this formule. As the formule should apply only to ideal gases this is not a tmo test of the formula, but tho resulta are significant. At this point $N / N=0.98 \times 10^{2}$? atoms/cm and

$$
\pi_{1} \approx 0.56 e^{u_{1} / k T}
$$

The cells of energy less than k are therefore about hall occupleds half empty. We are therefore not fustified here in tsking
 three, are much larger than the valuos chosen here and therefore the averege occupation numbers really are much less than one.

Evaluating of is somewhat more difficult, but suppose one can measure the pressure and tempereture of a drop of Iquid helium one micron in diameter. N / V for liquid helium is about. 43×1022 atoms/cm ${ }^{3}$ so the drop will contain 109 atoms. The number of celis is roughay twice this, so we are quite sefe in using sterling 's approximetion.

CHAPTER VI

Maxvel1-Boltzmann Statistics

(a) Maxwell Distribution

1. The Distribution Function

Substituting for α and β from (VY5) and (VP8) in (VP2) one obtains for the number of particies $d 3$ in the velocity range $d v_{x} d v_{y} d v_{z}$

$$
\begin{equation*}
d^{3} \mathbb{N}=\mathbb{N}\left[\left(\frac{m}{2 \pi k T}\right)^{3 / 2}-m y^{2} / 2 k T\right] d v_{X} d v_{y} d v_{z} \tag{VIal}
\end{equation*}
$$

Abstract

The quantity in square brackets is called the distribution in volocity. In particular it is a Maxwell distribution. We cen distinguish now between "microstate" (Va4), "macrostate" (Vhi), and "distribution" (VIal) and these are represented schematically, wad in only one dimension, in figure VIel. The vertical lines at the bottom of this figure ropresent molecules, each one in a cell at the appropsiate velocity. The spaces between the ines are empty cells. This is the pleture of a ficmostate. There are no numbers but zeros and ones, and possibly some higher whole numbers, associated with th. The cells are then divided into groups and the average occupation numbers $\overline{N_{4}}$, computed. These are plotted vertically as the step-function. This is the plcture of a macrostate, although in practise the steps are much less coarse than indicated. The midpoints of the steps may now be joined by a smooth curve, and this is the distribution function. It is obtained methemetically by imagining the groups and the steps to become smalles and smaller until the atepfunction approximetes the smooth curve, although this is not possible physically because of the discontinuous nature of the microstate. These steps in converting a microstate to a smooth function heve their exact counterpart in radio comunication where a pulse frequency modulation signal (the microstate) has to be converted in the receiver to a smooth audio signal.

Expression (VIal) may be broken into similar factors, each one containing only one component of velocity. Let

$$
\begin{equation*}
f\left(v_{X}\right)=\sqrt{\frac{\mathrm{m}}{2 \pi \mathrm{~K} T}} e^{-\min _{x}^{2} / 2 \mathrm{kT}} \tag{VIe2}
\end{equation*}
$$

Then

$$
\begin{equation*}
d^{3} N=\mathbb{N} f\left(v_{x}\right) d v_{x} f\left(v_{y}\right) d v_{y} f\left(v_{z}\right) d v_{z} \tag{VIe3}
\end{equation*}
$$

This means that the distribution in v is independent of the y and z
 ponents v_{x} and v_{7} and plotting the distribution verticelly above the $\mathrm{v}_{\mathrm{X}} \mathrm{v}_{\mathrm{y}}$ plare (Fig. VIa2) ons obtalns a surface with a maximum above the

origin. Equation (VIa3) states that the section of this surface by any plane perpendiculer to v_{y} in fact by any vertical plene at all, will give a similar curve. This feature of the Maxwell distribution is expressed by saying that the three components of the velocity are independent. It is an exclusive feature of the Mexvell distribution.

Referring to table Vf it is seen thet

$$
\begin{equation*}
\int_{-\infty}^{+\infty} f\left(v_{z}\right) d v_{z}=1 \tag{viah}
\end{equation*}
$$

Integrating (VIa3) with respeot to v_{Y} and v_{Z} one obtains

$$
\begin{equation*}
d \mathbb{N}=\mathbb{N} \sqrt{\frac{m_{2}}{2 \pi K T}} e^{-3 i v_{X}^{2} / 2 k T} d v_{X} \tag{vIa5}
\end{equation*}
$$

This is the distribution in one component of velocity, and it is seen to be similar to the distribution in vector velocity precisely because the components are independent.

Changing to polar coordinates one may write

$$
\begin{equation*}
d^{3} \mathrm{~N}=\mathbb{N}\left(\frac{m}{2 \pi \mathbb{K} T}\right)^{3 / 2} e^{-m v^{2} / 2 k T} v^{2} \sin \theta d \theta d \phi d v \tag{vxaร}
\end{equation*}
$$

which 1s, of course, the same thing as (VIeI). One nay now internate with respect to θ and ϕ and obtain the distribution in speed

$$
\begin{equation*}
d N=\mathbb{N}\left[\sqrt{\frac{2}{T}}\left(\frac{m}{k T}\right)^{3 / 2} e^{-m v^{2} / 2 k T} v^{2}\right] d v \tag{VIa7}
\end{equation*}
$$

This is also a Maxwell distribution, although it is a different function of the speed than (VIal) is of the velocity. This is because (VIal) gives the number of velocity vectors terminating in a swall cube $d v_{x} d v_{\mathrm{y}} \mathrm{d} \mathrm{v}_{\mathrm{g}}$ of the same size no matter where located in velocity space, wherreas (VIa7) gives the number terminating in a spherical shell of thickness dv , and the volume of this shell 1 ncreases with its radius v. (VIa7) is plotted in ilgure (VIa,3) end has a maximum at

$$
\begin{equation*}
v_{p}=\sqrt{2 k T / m} \tag{VI』8}
\end{equation*}
$$

$$
\begin{aligned}
& \sqrt{\frac{2}{17}}-\sqrt{\frac{2 m}{1+\pi}} \\
& \pi \\
& 1 \\
& p
\end{aligned}
$$

El2. Compare the formula for the rate of erflux of gas through a small hole with Torricelli's formula for the flow of fluid through a hole, using the same pressure and density for both cases. Explain why the formulae differ in the direction that they do.

E13. Compute the maximum rate of evaporation of mercury at $0^{\circ} \mathrm{C}$ and at $-20^{\circ} \mathrm{C}$. At $0^{\circ} \mathrm{C}$ the vapor pressure of mercury is 185×10^{-6} man of mercury and the latent heat is $80.5 \mathrm{cel} / \mathrm{gm}$.
E14. Tungsten at $2500^{\circ} \mathrm{K}$ will eant $0.28 \mathrm{mpl} / \mathrm{cm}^{2}$ and the work function is 4.5 volts. What is the vapor pressure of the electron gas evaporating from Tungsten and what is the latent heat in calories per mole?

E15. The stratosphere extends from 10 km to 60 km above the earth's surface and the aurora borealis has been observed in the ionosphere up to altitudes of 500 kan . Assuming the atmosphere to have a unform temperature of $-53^{\circ} \mathrm{C}$ celculate the pressure and the moleoular densities of nitrogen, oxygen, and hydrogen at these three altibudes. The proportions by volume of these elements in the atmosphere at sea level are:

$$
78 \text { per cont } \mathbb{N}_{2}, 21 \text { per cent } O_{2}, .01 \text { per cent } H_{2} \text {. }
$$

E16. The gravitational potential of a molecule of mass min the field of the earth is $-\mathrm{mgh}^{2} / \mathrm{s}$ where $\mathrm{R}=6380 \mathrm{~km}$ is the wadius of the earth. Show that this fomula leads to a finite atmospherlc pressure at infinity, Calculate the molecular density at infinity using the data of problem E15.

E17. Find the mean forward velooity \bar{v}_{X} of the particles which escape through a small hole into a vacuum.
E18. Show that the average kinetic energy of the partioles which esoape through a hole is $2 k T$.
E19. In a molecular beam experiment the source is a tube at $400^{\circ} \mathrm{K}$ containing hydrogen at a pressure $p_{3}=0.15 \mathrm{~mm}$ of mercury. The tube has a slit 30 x .025 mm which opens on a highly evacuated space in which experiments on the bean can be perromed. opposite the source slit and I meter away from it is the detector slits also $30 \times .025$ mam in size, and this opens on a small chamber in which tho equilibring pressure p_{d} can be measured.
a) What is the discharge rate of the source slit in cubic centimeters per second and micrograms per second?
b) At what rate does hydrogen reach the detector slit, in milero-micro gms/sec and in number of molecules/sec?
c) How meny molecules which are going to reach the detector are in the space between source and detector at any instant.
d) What is the equiliorium pressure in the detector chamber so that the rate of arrivel of hydrogen is equal to 1ts rate of leakage?

Gi

This is the most probable speed, whereas the most probable velocity is, of course, zero.

Substituting the energy

$$
\left.\begin{array}{r}
u=u v^{2} / 2 \tag{VIE.9}\\
d u=u v d v
\end{array}\right\}
$$

in (VI aT) gives the distribution in energy

$$
\begin{equation*}
d N=N\left[\frac{2}{(k T)^{3 / 2}} \sqrt{\frac{u}{\pi}} e^{-u / k T}\right] \mathrm{du} \tag{VIal}
\end{equation*}
$$

and is shown plotted in (VIa). Wis curve looks different from figure (VIal) because shells of equal energy difforonce decrease in thickness as the energy increases. The maximum of this curve is at

$$
\begin{equation*}
u_{p}=1 \mathrm{~m} / 2 \tag{V.ca11}
\end{equation*}
$$

which is the most probable energy.
All these curves and functions ported the same Maxwell Distribution.

2. Average Values

The distribution function gives the number of perticies having any velocity. It is then easy to get the average value of any quantity X depending in any way on the velocity by applying the formule

$$
X_{\text {ave }}=\frac{3}{\pi} \int X d N
$$

(VIa12)
As examples, the average speed is

$$
\frac{1 C T}{H m}=\frac{P V}{\pi m}
$$

$$
V_{\text {ave }} \int_{0}^{\infty} \sqrt{2}\left(\frac{m}{\pi 2}\right)^{3 / 2} e^{-n v^{2} / 2 k 2} v^{3} d v=\underbrace{\frac{3 x^{2}}{\pi n}}=\sqrt{\frac{8 p V}{\pi N}}(v I a 13)
$$

and the average energy is

This checks with the total energy $\frac{3}{2}$ mk in and gives for the root mean square velocity

$$
\begin{equation*}
v_{\text {mas }}=\sqrt{3 k T / m}=\sqrt{3 \mathrm{PV} / \mathrm{M}} \tag{VI215}
\end{equation*}
$$

These values are indicated on flgure VIa3. Note in particular how much larger the average energy \bar{u} is than the most probable energy u_{p}.
Referring back to the elementary kinetic picture given in soction IIgh we see thet the formulae ore identical provided the single speed assumed in IIg6 is identified with the rom.s. velocity. Yet we see how false the postulates made carlier were when we observe, in figure VIa3, how broad the distribution in speed really is.

3. Experimental Verification

There are two direct methods of observetion of the veloctty distribution of atoms. The first gives the distribution (VIe2) and consists of measuring the profile of spectrum lines. It is knom that atoms enit light of verious frequencies, but each kind is almost monochromatic. These give the spectral lines. It is also lnown thet the light observed in the x direction from a moving source has ita irequency displeced from the emstted erequency by an amount.

$$
\Delta v=v-v_{0}=\frac{v_{x}}{c} v_{0}
$$

Hence the light observed must be spread in frequency due to the velocities of the atoms, and the intenslty of the light of frequency v must be proportional to the number of atoms having the velocity v. If we plot the intensity I of a single spectrus inne, observed with an ingtrument of high resolution, as a function of Prequencys we obtain the propile shown below

Substituting for v_{x} in VIacwe see that the intensity should follow the 1aw

$$
I=I_{0}^{\exp }\left[\frac{\operatorname{mc}^{2}}{2 k T}\left(\frac{\Delta v}{v_{0}}\right)^{2}\right]
$$

so that a plot of log I against $(\Delta v)^{2}$ should be a straight line The observed departures from this law are due to the fret that the emitted light is not strictly monochrometic.

The second method uses a roteting druan as collector in a molecular beam apparatus. A beam of molecules of some wetallic vepors

such as bismuth or cadmium, enters the drum through a silt in one side. If the drum is stationary they strike the opposite vall of the drum Where they form a deposit on a glass target. If the drum is rotating 1t will tum a small angle while the nolecules trevel the daameter of the drum. Hence the deposit will be spipead out acconding to the distribution (VIel8) appropxiate to the particles in a bean.

4. The fandom Plow

As the molecules of a gen are by no meens statlonary one may ask how many cross any area A the the ges per second. The net rum. ber is zero, but let us count only those crossing the ono direction. This number, per second and per unit area, is called the random hlove or random current density r^{-2}. The same fommlee will gite the nuxber of particles striking the wall per second, or, $1 \hat{x}$ there is a hole in the wall gmall enough so that the I low of porticlen through it does not appreciably increase the numbers striling it, the fommiae will also give the number of pariticles issuing rom the hole. This is important in the production of moleculer beans. These are produced by maintaining a gas pressure P in a chamber used as a source. The source

chamber has a fine glit opening through which the molecules escape into a region in which a jov pressure is mainteined by continuous
pumping, Molecules issue from the source slit in all atrections, and those going in the destred direction are solected by s symen on slits. Verious experiments can be perfomed on tho becn, whin is thon detocted by measuring the pressure in a dotcetor cavity.

To calculate the randon 1.0 wo must flrst substitute for α and β in equation (Vil)

$$
\begin{equation*}
d^{6} N=N\left(\frac{m}{2 \pi k T}\right)^{3 / 2} e^{-u / K T} d x d y d z d v x d v_{y} d v_{z} \tag{VTa16}
\end{equation*}
$$

Considering first only molecules having a definite vector velocity v. Those striking the area A in tho time dt como from a cylindrical volume whose bese is A and axis v dt. (Fig. vyab). Its volume is $\mathrm{Av}_{\mathrm{x}} \mathrm{dt}$ and this may be substituted for $d x d y d z$ in (VIa16)
$d^{4} N=\frac{N A}{V}\left(\frac{m}{2 \pi L T}\right)^{3 / 2} e^{-u / k T} v_{x} d v_{x} d v_{y} d v_{z} d t$
(v2al7)

Solid angles can be introduced in this formula by moplacing $d v_{z} d v_{y} d v_{z}$ by
$v^{2} \sin \theta d \phi d \theta d v=v^{2} d^{2} \Omega d v$
and also setting

$$
u=\frac{1}{2} m v^{2}
$$

$v^{3} d v=\frac{2}{m^{2}} u d u$

P58.VTa6

A

$$
\begin{equation*}
d^{4} N=\frac{N A}{V} \frac{1}{\sqrt{2 \pi}} \frac{1}{(\pi k T)^{3 / 2}} e^{-u / k T} \text { u } \cos \theta d^{2} \Omega d u d t \tag{VIe.18}
\end{equation*}
$$

This formula gives the number of particles issuing from a hole as a function of their energy u and diroction θ. It is readily integrated over the energy to give

$$
\begin{equation*}
d^{3} N=\frac{N A}{V} \sqrt{\frac{k P}{2 \pi m}} \frac{\cos \theta}{\pi} d^{2} \Omega d t=\frac{\pi A}{V} v_{\text {ave }} \cos \theta \frac{d^{2} \Omega}{4 \pi} d t \tag{VIa.19}
\end{equation*}
$$

Integrating now over all directions, we get the random current density
Hpari/A/t

$$
122
$$

More precisely, this is the random particle current ciensity. We frequently went the random was current density r_{n} end this is obtrained by multiplying the particle current by the mass m of each particle

$$
\begin{equation*}
\Gamma_{2 a}=\frac{M_{\text {M }}}{V} \frac{\nabla_{\text {eve }}}{4}=\sqrt{\frac{P M}{2 \pi V}} \tag{VIa2I}
\end{equation*}
$$

For example, substituting the values for of r at one bar and $300^{\circ} \mathrm{K}$ one finds a random 12 ow of $28.5 \mathrm{gm} / \mathrm{sec} \mathrm{cm}^{2}$. It 13 , of course, this quite appreciable random flow, frapinging on the walls, which causes the pressure. It is interesting to compere (VIal) with Torricelli's formula for the flow of an incompressible fluid through a hole.

$$
\frac{d M}{d t}=A^{\prime} \sqrt{2 P \rho}
$$

(VIa2z)
where A " is the area of the "vena contracta", the minimum crone Sears section of the effluent streasa. A' is roughly 0.6 tines the area of the hole.

5. Evaporation

Formula (VIa2l) may be applied to the gross pate of eveporation from a surface. Consider the surface of a liquid sh equilibrium with its vapor. (VIa20) gives the rete at which molecules of the gens inpinge on the liquid. Assuage that the fraction of these molecules condense on the liquid and 1-cis rebound into the gas. Experiments indicate that a is often close to 1 . In order to maintain equilibrium the gross rate of evaporation of the liquid must be equal to the rate of condensation, and therefore be

Gross Rete of Evaporation $=a \sqrt{P S / 2 \pi}=a P \sqrt{C / 2 \pi R T}$

where F and ρ are the pressure and density of the vapor in equilibrium with the liquid.

It is natural to assume that this gross rate is maintained, at a given temperature, even though the external pressure is reduced below equilibrium. (VIa23) is therefore the net rato under zero externel pressure.
horo At Apore Clarge Blated

$$
r_{e}=\frac{W_{e}}{V} \frac{U_{a n}}{\varphi} \operatorname{los} 4
$$

teiperature dimile

$$
\text { goos - Wet } \frac{V a r}{4}=D_{\text {oleqter actial } A}
$$

r. reflectir coefl $\alpha=$ Acesbumbtion Coeff. $\alpha=1-\gamma$ enssinity es a $\xrightarrow{\text { froysion }}$ Iin oblecol waybstive Feest

In the case of solids we cen proceed sonowhet further. Substituting from (IVe37) in (IVe34)

$$
\ln P=-\frac{b_{0}}{R T}-b+\frac{\gamma}{\gamma-1} \ln T+\frac{3}{2} \ln \mu+\ln g+1_{0}
$$

now substituting from (Vg) for $I_{0}+\frac{3}{2} \ln \mathcal{M}$ and letting $\gamma=5 / 3$ es the theory of (Vg7) applies only to a monatomic gas

03
where

$$
\left.\begin{array}{c}
\ln P \approx-\frac{b_{0}}{R T}-b+\frac{5}{2} 2 n+2 n g+\frac{5}{2} \ln k+\frac{3}{2} \ln \frac{2 \pi m}{h^{2}} \\
p \approx \pi r^{5 / 2} 0-b-b_{0} / \pi N \\
\pi=\frac{h^{3}}{h^{3}}(2 \pi n)^{3 / 2} k^{5 / 2}
\end{array}\right\}
$$

This can be substituted in (VIe23) to give

$$
\text { Where } \left.\frac{\Gamma_{m}=B T^{2} e^{-b-b_{0} / R^{m}}}{B=2 \pi a^{2} m^{2} k^{2} / h^{3}}\right\}
$$

This formula hes been used, for instance, to obtain the detent heat of vaporization of tungsten, whose vapor pressure is too mall, to measure but for which the rete of evaporation can be deduced from the loss of weight of tungsten iflaments in gecuum tubes. However the most inportent application of equation (VI a25) has beck to the rate of eveporetimon of electrons from a heated metal. In this application vo are interested in the electric mather than the mess cument density and so the equation must be multiplied through by e/m. For electrons g is 2 because of the two orientations of the electron's spins but a 18 about $1 / 2$ so these two cancel. b 18 zero and the latent heat per electron is written et
Then

Where

$$
\begin{aligned}
& \left.H^{N} \frac{J=A T^{2} e^{-00 / \mathrm{Km}^{2}-b}}{A=2 \pi \alpha e k^{2} / \mathrm{h}^{3}}\right\} \\
& =120 \text { angie/ } \mathrm{cm}^{2} \mathrm{deg}^{2} \text {) }
\end{aligned}
$$

VIa26
and 1 is of the order of 2 few volts.

(b) Boltzmann Distribution

1. Independence of Space and Velocity

If there is an external force the total energy u is party y

Substituting in (VIe)

There B is a nev constant to be determined by nomalizstion. It is first to be observed that the distribution function splits into two factors, one depending on the position, the other on the velocity. This means that the velocity distribution $1 s$ Marwellion independently of the position, and reciprocally the spatial distribution $13 \mathrm{ex}-$ ponential independently of the velocity. Only the parameter ? has to bo the same in these two distributions.

Integrating over the velocity coordinates one obtains
or

This is called a Boltmmon distribution, the complete function (VIbe) of both position and velocity being e paxvell-Boltamenn distribution. We shell discuss two applications of these formae: to papacies in a uniform gravitational field, and to small magnets in magnetic field.

2. Uniform Gravitational Field

$$
\text { In this case } \quad \phi=\operatorname{moz}
$$

Consider the colum of ais above an area A of the surface of the Earth: Integrating (VI03)
so that

$$
\begin{aligned}
& N=A B N \int_{0}^{2 \infty} \theta^{-2 H g 2 / k T} d z=A B N \quad \mathrm{kT} / \mathrm{Ng} \mathrm{~g} \\
& B \text { mg/AKT }
\end{aligned}
$$

and

$$
B N=\frac{N r g g}{A K T}=\frac{W}{A K N}=\frac{P_{0}}{{ }^{W} W^{2}}
$$

Where W is the weight of the colum of afr and P_{0} is the pressure at the bottom.

Therefore

or
$\left.\begin{array}{c}\frac{d N}{d V}=\left(\frac{d N}{d V}\right) e^{-m g z / k T} \\ P=P_{0} e^{-m g Z / k T}\end{array}\right\}$

This law sufficiently well represents etmosphemic presump as function of altitude so as to be kown as the lan of the Atrandiome. In order to observe it under labomotory condicions, that ts over heights of a few centimeters, $1 t$ yould be necossary to obseme perticles of mass $m \approx \mathrm{kT} / \varepsilon \approx 4 \times 10^{-17}$ gin or about 10° atcias. thais is not easy. However $1 t$ 1s eesy to maike observable perticles of small effective mass by susponding perbleles of larger mass tn a liguid of almost equal density. Thus Perwin, who pirgt perfomod tho expeniment, 3 produced grains of 0.4 microns diancter of a mestn of donstity 7.2 gu/cma and therefore of effective denstity, Accordingly the effective mass was 8×10^{-15} gnis. A suspension of these perticles does not fell to the botton of the vedoel but retanins permanently a Boltzman distribution which cen bo ooservod directiy in a microscope, the perticle density reducine by $1 / 2$ fop overy 30 mierons vertical displacement.

Of courge the particles are not ataticnary ather but are observed to have a repid Brownian motion.

Returning to the atnosphome, ve havo secn that the volocity distribution is independent of the height. It 43 not independent of the distribution in height, however, as both contain the semo fector kT. In fact it is a kind of spectmum of the component velocity gistribution. Each molecule of vertical velocity v_{2} can go a height $z=v_{z}^{2} / 2 g$ before reaching the top of its trajectory, and the deczesse in donsity vith height corresponds to the decrease in number whith ve. A paradox appears here, for if the particles aro sloved down by gravity as the move upwards, how is it thet the meen kinetic enewgy strys constont with height? The answer is that only thone molecules which had a high velocity in the first place reach the hoicht z at all, this selection of fest molecules exactly belencing the glowing down due to gravity.

The equilibriun atmosphere has a constant tomperature. But everyone knows thet in our etmonphere, at loast up to 12 kn and except under unusual conditions, the tempereture stoodily 8000 down with al~ titude. Obviously the atmosphere is not in equilibrium, and the disturbing features are the turbulent winds of tho lover atmosphere. If the flow is adiabatic

$$
d \mathcal{H}=V d P
$$

But from hydrostatics

$$
\begin{gathered}
d P=-\rho g d z=-\frac{M g}{V} d z \\
d M=-H g d z \\
\frac{H-H 0}{n}=-g(h-h)
\end{gathered}
$$

$$
d^{2} N=N C e^{-U / d t} \sin \theta d \theta
$$

or

$$
\mathrm{H} / \mathrm{M}+\mathrm{gz}=\mathrm{const}
$$

The enthalpy decreases unifomiy with altitude. For on ideal gas in which

$$
d H=c_{p} d T
$$

it follows that

$$
\begin{equation*}
T_{0}-T=\frac{M g z}{C_{p}} \tag{VIb7}
\end{equation*}
$$

which, if an effective heat capacity for moist air of $10 \mathrm{cal} / \mathrm{mole}$ degree is used, works out to $6.80^{\circ} \mathrm{per} \mathrm{kilometer}$ rise.

3. Paramagnetism

An application of the Boltzmann formule which is more rodily observed in the laboratory is the alfgment of the magnetic moments of molecules in a magnetic field. Let in be the magnetic moment of a molecule, then its potential energy in a magmetic field B is

$$
\begin{equation*}
u=-m B \cos \theta, \quad m=1 A \tag{VIb8}
\end{equation*}
$$

where θ is the engle between the vectors \vec{m} and \vec{B}. Then is we want the distribution in angle irrespective of the velocity distribution

$$
\begin{equation*}
d^{2} \mathbb{N}=N C e^{m B \cos \theta / k T} \sin \theta d \theta d \varphi \tag{VITb9}
\end{equation*}
$$

Let

$$
\begin{gather*}
\left.\begin{array}{c}
m B / k T=x \\
\cos \theta=-t \\
\sin \theta d \theta=d t
\end{array}\right\} \tag{VIb10}\\
d^{2} N=N O e^{-x t} d t d \varphi \tag{VIbII}
\end{gather*}
$$

Integrating once gives

$$
\begin{equation*}
d N=2 \pi N C e^{-x t} d t= \tag{VIble}
\end{equation*}
$$

and integrating again

$$
\begin{equation*}
N=\frac{4 \pi \mathbb{N} C}{x} \sinh x \tag{vxbl3}
\end{equation*}
$$

This determines the constant c and we can rewrite equation (VIble)

$$
\begin{equation*}
d \mathbb{N}=\frac{N}{2} \frac{x}{\sinh x} e^{\cos t} d t \tag{VIbI4}
\end{equation*}
$$

$$
x=\frac{V_{n}}{y} \frac{x_{1}}{3 k t}
$$

$$
\begin{aligned}
& d V=\frac{H y}{2} \frac{x}{2} e^{2} e^{-x \tau} \\
& x=\frac{\theta^{2}}{1 t t} \\
& t=-\cos \theta
\end{aligned}
$$

$$
m=\int m \cos \dot{\theta} d m=N_{m}\left(\cos h r-t_{x}\right) \rightarrow \text { min }^{2}+
$$

$$
U_{n}=Z-m \cos \theta=\int m B t \frac{x}{2} e^{-r t} d t=-B H
$$

$d s m=n n$

$$
\begin{aligned}
& S=K E\left(1-\ln \bar{W}_{c}\right) \bar{N}_{c}=k \int(1-\ln -\bar{T}) d n \\
& =K\left(1-K\left(\frac{1}{2} \frac{x}{2 a t x} e^{-x}\right)\right) \frac{N}{2} \frac{x}{2 d} e^{-7 \Delta} d t+\cos \theta \\
& =k\left(1-h \frac{N}{2}+2 e^{2 h}+x \tau\right)(\\
& =N^{4} K\left(1-\ln \frac{N}{2}+\ln \frac{\operatorname{dN}}{x} x\right)-\frac{r^{2}}{m} M+\cos t
\end{aligned}
$$

The total magnetic moment 1 Is given oy adding up all the components of the magnetic momenta in the direction of the fleld

$$
\begin{align*}
& {\left[\sin [\operatorname{coth} x-1 / x] \frac{\beta}{\beta 1}\right.} \tag{VIb.15}
\end{align*}
$$

This formula was found by Langevin in 1905 and the quantity in breciets is celled the Langevin function. The initial slope of the function is $1 / 3$ so that for veak fields, or for moleavies of small magnetic moments m

Whis deperdence of the susceptibillty of the temperature 1 s called Curie's lew and is accuretely obeyed by paramgentictc mubstances domn to quite low tomperatures.

The magnetic energy of a magnitimed substance 13 fourd by adding up the energies of the individual molecules in the field

$$
\begin{gather*}
U_{M}=f_{0}^{N T} u d N=+\operatorname{mi} \frac{N}{2} \frac{x}{\sinh x} f_{-1}^{+1} t e^{-x t} d t \\
=-B M h \tag{VIbI8}
\end{gather*}
$$

and this is, of course, the well known foxmula for the energy of a magnet of moment when orionted in the direction of a magnetis field. The total internsl energy is the sum of this texn and another part U_{p} depending on the pressume and volume

$$
\begin{equation*}
U=U_{p}-M B \tag{VIb19}
\end{equation*}
$$

$d \varphi=C_{p n} d t-B d m$
$d u=C_{p a d t}-B d m-m d p$
t $\omega=-\operatorname{ma} d B$
we $\int H A B=$

$$
\frac{w+3 H d D=}{v_{B O}=N_{0}\left(H+\frac{m}{v}\right)}
$$

$$
\frac{w}{v}=\int\left(\frac{B}{e_{0}}-\frac{m}{v}\right) d B
$$

Similarly the entropy is found by substituting (VIbl4) in (Ve4) though there is some difficulty here asdVelis written as a summation over cells and (VIb14) is in differential form. The exact theory shows that the summation can be replaced by an integration provided x is not large, and gives

$$
\begin{aligned}
\frac{S}{X} & =\int_{0}^{N}\left[1-\ln \left(\frac{N x}{2 \sinh x} e^{-x t}\right)\right] d N \\
& =\int_{0}^{N}\left[1-\ln \frac{N}{2}+\ln \frac{\sinh x}{x}+x t\right] d N \\
& =2 N-\mathbb{N} \ln \frac{N}{2}+N \ln \frac{\sinh x}{X}-\frac{X N}{\text { in }}+\text { cost }
\end{aligned}
$$

The first two terms do not depend on magnetic quantities and so can be incorporated in the constant, leaving
and

$$
\begin{equation*}
\left.\frac{s_{\mathrm{M}}=\operatorname{Nk} \ln \frac{\sinh x}{x}-\frac{k \pi M}{m}}{\mathrm{~s}=\mathrm{s}_{\mathrm{M}}+\mathrm{s}_{\mathrm{p}}}\right\} \quad \times=\frac{m B}{k T} \tag{VIb20}
\end{equation*}
$$

This formula falls for large x (extremely low temperatures) where it goes to minus infinity whereas it should go io a negative constant.

The extension of the Tad equations to include magnetic energies is now found by differentiating (VIb20). First it is readily seen that

$$
\begin{equation*}
\frac{d}{d x} \ln \frac{\sinh x}{x}=\operatorname{coth} x-1 / x=\frac{1}{2 / 2} \tag{VIb21}
\end{equation*}
$$

so that

$$
\begin{equation*}
d S_{M}=-\frac{k x}{I M} d M=-\frac{B d M}{T} \quad \text { no } \tag{VIbe}
\end{equation*}
$$

whence

$$
\begin{equation*}
T d S=C_{P_{3} M} d T-T\left(\frac{\partial V}{\partial T}\right)_{P_{2} M} d P-B d u \tag{VIb23}
\end{equation*}
$$

One of the ways of producing extremely low temperatures, around $1 / 200$ of a degree Kelvin, is through the use of the entropy of a paramagnetic salt. The process is as follows: First a magnetic field is applied to the salt while it is in thermal contact with liquid helium. In this process the pressure and temperature are constant. Therefore, by equation (VIb23), the entropy must decrease as the magnetization increases. This is readily understandable as tho magnetization
represents an ordering of the magnetic moments in the alpection of the field and therefore a decrease in the randomness. Accordingly seat is given off in an amount

$$
\begin{equation*}
Q \leq-\int_{0}^{M} \quad \mathrm{BdM}, \quad \mathrm{~d} Q \leq-\operatorname{BdM} \tag{VIb24}
\end{equation*}
$$

and causes the liquid helium to boil. The work done by the electric circuits in producing the field B within the volume V is

Hence

$$
\begin{aligned}
&-W=V \int_{0}^{B} H d B=V \int_{0}^{B}\left(\frac{B}{\mu_{0}}-\frac{M}{V}\right) d B \\
&= \frac{V B^{2}}{2 \mu_{0}}-\int_{0}^{B} M d B \\
& U_{B}=Q-W=\frac{V B^{2}}{2 H_{0}}-M B
\end{aligned}
$$

(VIb25)
(VIbe)
which differs from (Vxbl8) fin including the energy of the field B.
Let us now insulate the paramagnetic salt. The entropy is then constant provided 0,11 changes are made reversibly. The ileld is then reduced slowly, and at constant prosoure. The magnetic moments resume their random orientation and becoming disondonods mut produce order elsewhere. The only ilsorder available is in the thermel motions of the molecules and these aresaccorelngly, reduced. From (VIbes)

$$
\begin{equation*}
\int C_{p} \operatorname{dT}=\int B d M \tag{VIbe}
\end{equation*}
$$

should an inadequate amount of entropy bo available so that T_{ρ} as computed by (VIb27) came out negative, the Magnetic moment m would simply
not go to zero as B went to zero, leaving a remanent megnetsqution.

There remains the problem of determining the value of the absolute teraperature which has been reached by deragnetization. So long as Curie's lev (VIbli) holds the temperature cen be computed from measurements of susceptibilities. But at extremely low teraperstures Curie's law fails and then the temperature must be determined directly from the second Law. This is best seen on a T-5 plots elk. VIbes on Which the initially unknown plot of II va 3 at zero field ls shows. Consider two experiments starting Iron the some initial point 0 at the know temperature T_{0}, but using different fields B_{1} and B_{2} to reach the unknown temperatures T_{1} and T_{2}. The heats $-Q_{1}$ and $-Q_{2}$ given off during magnetization are measured by the mounts of helium evaporated and determine the entropy difference

$$
S_{1}-S_{2}=\frac{Q_{1}-Q_{2}}{L_{0}}
$$

After the second experiment let us supply a small omount of heat q_{2} by means of the absorption ofy-nays for example, so as to bring the salt back to Th. This point can be determined oy a measuz"ement of suaceptibility quite independently of Curie's lav. Then, if T_{2} and T_{2} ane nearly the same

FIE. TTOL

$$
\begin{equation*}
\frac{T_{1}+T_{2}}{2}=\frac{a}{S_{1}-S_{2}}=\frac{Q}{Q_{1}-Q_{2}} \tag{VIb28}
\end{equation*}
$$

The averege absolute tompereture is thus detemmined orer ang anall cemperature interval desired.
(c) Equipartiticn of Energy

1) . The Theorern

It can be shown that if particles of different masses are mixed they w111 tend to assume the same sverage kinotic energy $3 / 2$ lit eachs because this distmibutton has the greategt muber of complexions and therefore greatest entropy. The seuse rosult can be derived by considering elastic collisions between particies of masses mi sua ma. It can then be show that tho particle of least enorgy will in the average gain a fraction $\frac{8}{3} \frac{m_{1} m_{2}}{\left(m_{1}+m^{2}\right.}$ of the energy differemoe before
the collision. In the average, therefore the energy diperence between groups of perticles which colitide becomes less es time goes on.

This oqual sharing of energy betwean particles is s apocial case of a much more genersl theorem called the Eoufparittion of Bnergys which states that in any complicoted system kinctic energy vill be shared equally between all the degrees of ipeedom of the syatemp, km/2 for each degree of fraeedem.

Deparkne fon Esposition
Degress of Tims
m b

0	Rothe	
0	2	3

0
1
1
i
i

Noratinio 3 tams colfelybyie
Davione 3tras 2uta $=C$ collole
Trakke lom when $\left\{\begin{array}{l}1, \text { Sowt } \\ \text { 2. Nridm } \\ 3 \text {, Nityed }\end{array}\right.$

The equipartition theorem says nothing about potential energy but the laws of mechanies give the ratio of potential to kinetic energy for any type of force. Two sases are of fmportance: in "free" trenslations and motstions there is no potential energy and therefore the total energy is $\mathrm{kT} / 2$ per degree of preedom. For bound" partloles there is an elastic restoring force glulng simple hamomic motion for which the averege potentiel energy is equal to the averoge kimetic energy and therefore the average energy is len per degroe of freetow. For other types of forces the ratio of potential to kinetio energy may depend on the amplitude of the motion end chus give a total energy wish is not simply proportional to the cemperatuxe.

2) Specipic heats

Let us apply the Equipmrititom theorem to a system of N moleculos each of which has f "ree" dogrees of froodon and b "bound" degrees of freedom. Then
and

$$
\begin{aligned}
& 0=(f / 2+b) \pi K T \\
& c_{v}=(I / 2+b) n R
\end{aligned}
$$

Applying this fommia to ideal gases for which
and hence

$$
C_{P}=\gamma C_{V}=\frac{C_{V}+n R}{}
$$

$$
\begin{equation*}
f+2 b=\frac{2}{\gamma-1} \tag{VIc3}
\end{equation*}
$$

$$
\begin{aligned}
& \partial=\frac{c v+n \lambda}{c v}=\frac{c_{p}}{c_{p}-n n} \\
& \frac{12}{12} \quad 1.2=(V I c 3)
\end{aligned}
$$

one can obtain the combination $s+20$ alrectly frow moasurements or γ. The experimental results for a mumber of gases is shovm below. It 1s geen that the quantity (VICS) very Prequently comes close to s whole number which corresponds in all cases to the thwee directions of trensletion plus, for dietomic molecules, two axes of rotation and, for triatomic and polyatomic molecules theee axes of rotation. In general the interatomic vibnations which might have been expected are not observed except for the heavier polyotomio molecuzes, and in these cases they do not come out whole numbers. In fact for the diatomio molecules, except chiorine, the energy diference betaeen the cells in phase space for vioretion is so large that at nomad terperatures ail the molecules are in the cell of lowest encrgy end wibsetion does not cortribute at all to the gpecific heat or the entropy. Going beck to the diatomic molecules we find the same thing happening with respect to rotation although onzy at temperatures around - -20000 .

Tumning to solids, where the atoms are all bound to the points of a crystal lattice, ono may expoct each etom to be able to vibrate in three dreetions and therefore heve 3lm of energy. This gives for the

SPECIFIC HEATS OF GASES

Gas $\underline{m^{\circ} \mathrm{C}} \quad \geq \quad \frac{2}{y-i}$

Trans. Rot. Vibe.

SPECIFLC HEATS OF SOLTDS

Solid

votT-ater

$$
\begin{gathered}
\lambda=-k \theta \\
\frac{1}{2} \pm u^{2}=\frac{1}{2} k t \\
P Z=\frac{1}{2} k \theta=\frac{1}{2} k+ \\
\frac{Q}{r=s}=\sqrt{\frac{h T}{k}}
\end{gathered}
$$

gpecific heat 3 R per grom otom, which corresponds to Dulong and Potit's law. The following table gives some experimental yelues and it is seen that Dulong and Petit's law is in general quite vell, though not accuretely, observed. The most notable erooptions are the ralence compounds and the reason here again is the sizo of the onergy dipforences between cells in phese space, and is well expleined by Deaye's theory of specific heats. It is found that these substonces oboy Dotong and Fetit's law at higher temperatures.

3) Fluctuations

The equipartition theorem applies not only to nolecules but also to systems of meroscopic dimensions. Themal motion yes rirst noticed by a botanist, Robert Brown, in 1827 es he obsorved the constant motion of pollen pertieles suspended in vater. Colloidal gold suspensions are roedily made with perticles of dianctors of the order of $5 \times 10^{-6} \mathrm{~cm}$ and thesp can bo seon by the light thoy scatter. As their mess 1 s about 10^{-15} erans thain $\mathrm{r} . \mathrm{m}, \mathrm{s}$. velooity is readiy calculated from

$$
\overline{m v^{2}}=3 \mathrm{kT}
$$

to be about $10 \mathrm{~cm} / \mathrm{sec}$.
The ultinate sensitivity of a galvonometors is limited by the thermal motion of the mirror. IE \mathbb{I} Is the torsion constant of the suspension, the potential energy of the mixuor whon turned through the angle θ is $1 / 2 \mathrm{~K} \theta$ 2. As this is a one-dinonsional notion with as olestic restoring force
or

$$
\begin{aligned}
& 1 / 2 \overline{I \theta^{2}}=1 / 2 K \theta^{2}=2 / 2 \mathrm{kT}
\end{aligned}
$$

(VIe5)

Superimposed on the steady derloction produced by the curpent being measured, there will be a random therma motion whose angle and anguler velocity are given by (VIc5), and deflections sullew then this amount can therefore not be read. Reducing I and \mathbb{Z} to improve the sensitivity only increases the themal motion. The type of motion will depend on the amount of damping of the instrument: if it is more thas critically damped the motion vill be imegules and jitterys if it is undemped the minror will swing with its proper frequency and with an gmplitude which varies with tike but stasa in the neighborhood of $\sqrt{\mathrm{kT} / \mathrm{K}}$.

Theman motions will produce fluctuations in the denstive of any medium, though they are parthoularly noticoable in the pese of a gas. This is most easily show by considering a large arount of gas Within which a moll amount, in moles, are separated of an maginary surface. This will nompelly enclose a volume V but, due to fluetuetions its volume may be $V+v$ and therefore the intomal pressure is $P+D$

$$
\begin{aligned}
& y \approx \lambda^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \omega_{0} \mathrm{H}^{2}=\sum_{\sim}^{\frac{\pi}{x}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ply dre } \operatorname{lnm}=K E \text { ~Tin } \\
& \text { or } \frac{1}{2} K T=K E \\
& \frac{1}{2} K T=P E
\end{aligned}
$$

The external pressure is assumed to remein P. The net work done in producing the compression -v is

$$
\begin{equation*}
W=-\int_{0}^{v} p d v=\int_{0}^{v} \frac{v d v}{V K}=\frac{1}{2} \frac{v^{2}}{V K} \tag{VIc7}
\end{equation*}
$$

and applying the equipertition theorem

$$
\frac{1}{2} x+P E=\frac{v^{2}}{2 v x}
$$

$$
\overline{v^{2}}=V K K T \quad\left(\frac{r}{V}\right)^{2}=\frac{k}{V} k T=\left(\frac{s p}{c}\right)^{2} \quad \frac{\text { dnoge in demixy }}{\text { (VIC8) }}
$$

or, as the relative change in density is minus v / v, the relative change in volume

$$
\begin{equation*}
\overline{(\delta \rho / \rho)^{2}}=\overline{(v / V)^{2}}=k T K / N \tag{VIC9}
\end{equation*}
$$

Pluctuations in dengity are therefore greatest when gundl volumes of a highly compressible substance are observed. The compressibility of a gas near the critical point becomes very large and therefore one may expect large fluctuations of density. These produce the opalesconce which is observed in gases near the critical point.

In the case of an ideal gas, where $\mathrm{K}=1 / \mathrm{P}$

$$
\begin{equation*}
\overline{(\delta \mathbb{N} / \pi)^{2}}=\overline{(\delta P / P)^{2}}=\mathrm{kT} / P V=1 / \pi \tag{VIeIO}
\end{equation*}
$$

in longe *here sterlyy aptVIc.11)
the mean square IIuctustion in the number of moleoulos in any volume is equal to the number of molecules in thet volume. The tomperature has disappeered from this equation and we ind a reletion which is well known in the theory of the rendom distribution of particles.

The blue color of the sky and the corrospondingly rod colos of the sun at sunset is due to the scatterthy of sunlight by the eir. This would not take place if the molecules of the afp were unifomily speced but, as was pointed out by Lord Rayleigh in 1871, is due to fiuctuations in the refrective index and therefore in the density of the air in volumes of the order of a wave-length of light cube. For blue light and at normal tempersture and pressure there are about nine million molecules in such a cube, and the refore the r.m.s. fluctuation is three thousend molecules. The numbers of nolecules in nelghboming cubes differ by about this amount and this irwegularity produces the scattering which is observed. The percentage fluctuation (VIclo) is proportional to $1 / N$ and therefore to $1 / \lambda$, and the number of scattering centers observed in any direction is proportional to $1 / A$ so that the
net scatterlng varies as $1 / \lambda^{4}$, which is Raylotgh's low fon sonttoring, and explains the preponderance of blue in the scatterod light.

d) Johnson NoLse

The Equipartition Theorem is not, of course, Immtod to mechanical energy. A short-circuited induotrnce cerries a rondon thermel current given by

$$
1 / 2 \overline{L I^{2}}=1 / 2 \mathrm{KT}=2 \times 10^{-14} \text { orge at } 300^{\circ} \mathrm{K}
$$

or

$$
\begin{equation*}
I_{3 . m . a .}=\sqrt{K M / L} \tag{VIele}
\end{equation*}
$$

and similerly a short-circuited condenser has a rendoa potential

$$
\begin{equation*}
\mathrm{V}_{\mathrm{x}_{\mathrm{o}} \mathrm{~m} \cdot \mathrm{~s} .}=\sqrt{\mathrm{LT} / \mathrm{C}} \tag{VIcl3}
\end{equation*}
$$

This wows out to 20 micso volts if $\mathrm{C}=10 \mu \mathrm{~m}$
These random currents and potentials aro celled "mommal" or "Johnson" notse in a communcetions clrouit end as they are $120-$ quently the limiting factor on the amplificetion which can be applied to an electric signal it is fmportant to kov thotn fecquener dis. tribution. In a resonant circuit (condensos shortod by an finductanee) the anawer is simple; the olvouit oscilletes at its roconant frecueney with ens.m.s. amplitude given by (VIcia) or (VIcI3).

To get the frequency distribution in a danpod ctroutt yo use the device of considoring a very long lossless transuicsion lino, of lengtin \&s stmilarly teminated at both ends. This syston hos mony modes of oscillation, each one comesponding to a standing wave of

$$
\begin{align*}
& \text { wave length } \quad \lambda=2 l / n \\
& \text { end of frequency } v=n c / 2 l \tag{VIe14}
\end{align*}
$$

where in is a whole number. In a frequency interval Δv there are

$$
\begin{equation*}
\Delta I_{3}=\frac{2 l}{c} \Delta v \tag{VIc15}
\end{equation*}
$$

modes of loscillation. Each of chese modes of oscilietion is a degree of freedom of the system and thererore has in the averese, $1 / 2$ wr of kinetic energy $1 / 2 \mathrm{~T}^{2}$ and $1 / 2 \mathrm{kT}$ of potential energy $1 / 2 \mathrm{CV}$. The mean energy in the frequency internai $\triangle v$ is thereforo

$$
\begin{equation*}
\bar{U}_{v} \Delta v=\operatorname{kT} \Delta n=\frac{2 b}{e} \operatorname{kT} \Delta v \tag{VIcI6}
\end{equation*}
$$

$$
\begin{equation*}
\bar{U}_{v} \Delta v=\frac{2 k T}{c} \Delta v \tag{VIcI7}
\end{equation*}
$$

Fach gtanding wave can be decomposed into two travelling weves, one going each way, and the power in one of these waves is its onergy density multiplied byc, so thet

$$
\begin{equation*}
P_{v} \Delta v=k T \Delta v \tag{VIcI8}
\end{equation*}
$$

This is the basic Pommula for the powen speotmm of Johnson noise. Its derivation is Nyquist's theorem.

At the end of the line there is Gonomally a rotiection com
 As a full kT $\triangle v$ comes from the ond of the 1120 , the temmation mast be omitting ($1-3^{5}$) kT $\triangle v$ and as only robsatances abmorb power the emission must come from the resiatancos also. The fraction (I-r) is both an absorption and an emisston coeppiciont and it cen be colouleted from circuit theory. If a inne of real impedence z is termineted by a pure resistance R

$$
\begin{equation*}
1-r=\frac{4 R Z}{(R+Z)^{2}} \tag{VIc19}
\end{equation*}
$$

and it is readily verisied that $y=0$ if the lood is mathed to the Ine $R=z$. The absorbed power is then

$$
B_{2}=\frac{4 R Z}{(R+Z)^{2}} k T \Delta v=I_{Q}^{2} R
$$

and

$$
i_{2}^{2}=\frac{4 z}{(R+2)^{2}} \mathrm{kT} \Delta v
$$

The exissive power of a resistance is best pictured by imagining a source of electromotive force \ddagger contained in it. As the owitted power is $p_{\theta}=s_{a}=\overline{1}_{0}^{2} z$
$i_{0}^{2}=\frac{4 R}{(R+Z)^{2}} \operatorname{kT} \Delta v$

The omission voltage is
P1g. VICI

$$
V_{e}=i_{e} Z=E-i_{e} R
$$

Hence

$$
\begin{equation*}
\overline{E^{2}}=i_{C}^{2}(R+Z)^{2}=4 R k M v \tag{VIC20}
\end{equation*}
$$

This Pormula was derived by Nyquist also. As it does not contain any parameters of the line it represents an inhosent property of resistances.

Suppose, for instance, thet we are interested in raequenoies Srom 1. to 6 megreycles. From (VIcle) wo geo thet a line will cemy 2×10^{-8} microwatts of theman pover in this isequency monge in each direction, end Irom (VIc20) we see thet a hell mogohn resistor contains a 200 microvolt e.m.i. untromiy spmoad oton the satuo froguoney range.

$w=V_{z}$
$u=v_{y}$
$v=v_{y}$
Diagram of velocity space.

$$
\begin{aligned}
& N=\int_{d} d N_{c}=\int_{d}^{U} A_{c} d c=\frac{D V^{2}}{2} \\
& \bar{C}=\frac{1}{N} \int_{\delta}^{V} A_{c} c^{2} d c=\frac{1}{4} \frac{2 M U^{3}}{L^{2} 3}=\frac{2}{3} V
\end{aligned}
$$

Schematic diagram of P-V-T surface for a substance that contracts on freezing.

Schematic P-v-T diagram for a substance that
expands on freezing.

NOTES OH ELECTRONICS
 Course 8.08
 M.I.T. Soring Term, 1949

Chanter I. Introduction

This set of notes is written as an introduction to that part of electronies which deals with the physical properties of electrons, and to some extent with the physical properties of other fundamental charged particles. This branch of the broad field of electronics is sometimes referred to as Physical Eleotronics. We can define physical electronics as the science which deals with the motion of electrons in electromacnetic flelds; the interaction of electrons with each other, with other oharged particles, and with radiation; and the emission of free electrons from matter, in particular, from metals.

Matter is made up of molecules which in turn are made up from the atoms of the chemical elements. All atoms consist of a heavy positively charged core, the nucleus, and a sufficient number of electrons surrounding the nucleus to just annul the net charge of the atom. An atom or a molecule may become ionized (charged) by the gain or loss of one or more electrons. All fundamental particles contain a charge which is numerically equal to the charge on the electron, or to a small integral multiple of this charge, and this charge may be both nositive and negative in sign.

The position of the atom in the Periodic Table determines the amount of nositive charce carried by its nucleus; the number of negatively charged electrons surrounding this nositive core is then just equal to the atomic number of the atom. While the total
charge carried by the external electrons is just equal and opposite to the charge of the nucleus, most of the mass of the atom resides in the nucleus. The nucleus of the lightest atom, hydrogen, which is called the proton, is 1837 times the mass of the electron. The heaviest natural atom, Uranium, is some 238 times more massive than hydrogen. All nuclei are made up of protons and neutrons; the neutron being an uncharged particle nearly equal in mass to the proton. Here the masses of all nuclei are nearly integral multiples of the proton mass. or the hydrogen atom mass.

When the atoms of a substance form a metallic solid some of the outermoat electrons become detached from their atomg and are then free to move about in the metal. These free electrons are the carriers of electric current in metals, and it is from their number that thermionic and photoelectric electrons arise. The particles with which we shall deal mostly are: (1) the electron, (2) the proton, (3) the deuteron, which is the nucleus of heavy hydrogen, and contains one neutron and one proton, (4) the α-particle which is the nucleus of hellum, and (5) the positive and negative ions of various atoms and molecules.

All fundamental particles are characterized by four definite properties, (1) mass, (2) charge, (3) inherent angular momentum (apin), and (4) inherent magnetic moment. Any of the last three quantities may be zero, but in general the values of each must be specified to help in our undergtanding of the particle. Modern phystes has not progressed far enough to tell us much about the slze of these particles, but order of magnitude calculationg can give upper and lower limits to the size.

These notes can be divided into the following general sections,
(1) Motion of Charged Particles in Electric and Magnetic Fields.
(2) Relativistic Motion
(3) High Energy Charged Particle Accelerators.
(4) Space Charge Effecti.
(5) Kinetic Theory of Gases.
(6) Elements of Atomic Theory and Collision Processes in Gases.
(7) Gaseous Discharges.
(8) Fermi-Dirac Statistical Mechanics.
(9) Emission of Electrons from Metals.

The general reference text will be Millman and Seely. "Electronics" and the material covered will be similar in content to Millman and Seely (M and S) Chapters $I-X_{0} X V$ although the order of the treatment will be different. Page references to M. and S. will be given throughout these notes.

These notes will use rationalized mok.s. units throughout, except where otherwise specified, and will try to conform to the most widely used notation of physical and electrical engineering texts. Millman and Seely use the so-called practical system of units and their notation departs from the norm to a considerable extent. Table I serves to compare the M1llman and Seely notation with that of these notes, but we can scarcely hope that this table is complete. The student should feel responsible for the conciliation of the two systems of units and notation.

TABLE I
Principle Differences in Notation and Units Between Millman and Seely and these wotes

Quantity	M111man-Seely		Notes		
	Symbol	Unit	Symbol	Un1t	Conversion Factor
force	${ }^{\text {f }}$	dyne	F	newton	1 newton $=30^{5}$ dynes
electric field	F	voit $/ \mathrm{cm}$	E	volt/m	$1 \mathrm{volt} / \mathrm{m}=10^{-2} \mathrm{volt} / \mathrm{cm}$
Potential	E	volt	V	volt	
mass	m	gram	m	kg。	$1 \mathrm{~kg}=10^{3}$ grams
distance	(verious)	cm	(various)	meter	$1 \mathrm{~m}=10^{2} \mathrm{~cm}$
Magnetic Induction	B	Gauss	B	weber/m ${ }^{2}$	1 weber/m $/ \mathrm{m}^{2}=10^{4}$ gauss
Energy	E	electron-volts joules	U,W	joules	I joule $=6.25 \times 10^{18}$

Chnpter II. Motion of Charged Particles, in Electric and Magnetic Fields

2.1 The Electrostatic Field

In order to formulate the laws of force between electrom magnotic flelds and charged particles we will begin with a sumaxy of the apecial case in which the fields do not vary with timo. The electric field, we know, arises from the presence of free charges, which attract or repel each other according to Coulomb's Law

$$
\begin{equation*}
F=\frac{+q q^{\prime}}{4 \pi \varepsilon r^{2}} \tag{2.1.1}
\end{equation*}
$$

Here F is the force between the two charges measured in noktons, q and q^{2} are the respective charges measured in coulombs, r is the separation measured in meters, and \mathcal{E} is a constant of the medium in which the charges are immersed, and for homogeneous isotropic media E is a scalar quantity. In the rationalized mokos system of units ε in mpty space is equal to $\frac{1}{-3 \pi} \times 10^{-9}$ farads/meter, aud is designated ε_{0}. Since we will be dealing only with empty spaos, or nearly empty space, in this courge, ε_{0} will be used throughout.

It is an experimental fact that charge consists of two kinds, labelled positive and nogative, and that no net charge is ever created or destroyed. All matter is made up of both kinds of charges, and one may separate negative charge from a neutral body, but one will always leave the body with a positive charge equal numerically to the negative charge removed. It is also an experimental fact that like charges repel each other and that unlike charges attract each other. The symbol q for charge, then, implies that an algebraic sign must bo used whon the symbol is to be rem placed by a number. The positive aign in equation ($2, I_{0} 1$) in= dicates that when q and $q^{\text {" }}$ are of like sign the force is positive, tending to increase r, and when q and q^{\prime} are of unilke sign the force is negative, tending to decrease r.

The electric intensity vector E due to a single charge may now be defined. Let us imagine a single charge q isolated in space. If we placed any other charge q^{\prime} in this space we know q will exert a force on q^{\prime} no matter where in space we put q° 。 We can think of
this process as being due to an electric field iue to q which completely fills this space, i.e., a vector field since the force is always directed along the line joining q and q '. However, since q^{\prime} will also give rise to a field it is necessary for the sake of definition thet q^{\prime} be very small compared to q so that its effect on the field is negligible. In symbols then, the electric field due to a single noint charge is

$$
\begin{equation*}
E=q_{q^{2} \rightarrow 0}^{L} \frac{F}{q^{1}}=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} . \tag{2.1.2}
\end{equation*}
$$

With this definition the force on any charged perticle q in an electrostatic field is always,

$$
\begin{equation*}
F=E q \tag{2.1.3}
\end{equation*}
$$

providing a does not disturb the charges giving rise to E.
The electric field due to an assemblage of charges is the veotor sum of the fields of the individual charges. In order to completely describe phenomena in material media it is necessary to introduce another vector, namely, the electric displacement vector D which'is related to the electric intensity vector' by

$$
\begin{equation*}
D=\epsilon_{0} E \tag{2.1.4}
\end{equation*}
$$

As a direct consequence of (2.1.4) and Coulomb"s Law, with ϵ_{0} replacing ϵ_{3} we can formulate Gauss' Law, which states that the flux of D over any closed surface is ecurl to the net charge q contained in the volume of which the surface is a boundary. In symbols

$$
\begin{equation*}
\iint_{c l o s e d} D \cdot d S=q \tag{2.1.5}
\end{equation*}
$$

where the dot algnifies that the component of D normal to the surface is to be multiplied by the element of area ds before the integration is performed. The sign convention states that $D . d$ as is positive if the component of D normal to the surface is directed outwards.

2.2 The Elecarostatic Potential

The electrostatic field is conservative and can, therefore, be derived from a scalar potential function. That is to say that If only electric forces are acting the work done by these forces on a charged particle will serve to raise the kinetic energy of the particle by the amount of the work done. More precisely we say that the electric field vector is the negative gradient of the scalar potential, V,

$$
\begin{equation*}
E=-\operatorname{grad} V \tag{2,2,1}
\end{equation*}
$$

in cartesian coordinates

$$
\begin{aligned}
& E_{x}=-\frac{\partial V}{\partial x} \\
& E_{y}=-\frac{\partial V}{\partial y} \\
& E_{z}=-\frac{\partial V}{\partial z}
\end{aligned}
$$

The necessary and sufficient cundition that a field be conservative is that the ine integral of the field vector around any closed peth be zero, or,

$$
\begin{equation*}
\oint_{E \cdot d B}=0 \tag{2.2,2}
\end{equation*}
$$

Physically this means that there is no net work done (per unit charge) as we muve a charge around a closed path, which is of course essential if energy is to be conserved.

The potential itself is not uniquely determined, since it arises from an integration of 4 , and must contain an arbitrary

 है। dy.omug 603:72480×6
constant. However, we can define the difference of potential between two points A and B as the negative of the work done per unit charge in moving a charge from point A to point B. Hence,

$$
\begin{equation*}
V_{B}-V_{A}=-\int_{A}^{B} E \cdot d s \tag{2,2,3}
\end{equation*}
$$

This integration is independent of the path taken from A to B because of the condition (2.2.2). We may, if we wish, so choose the point A that V_{A} may conveniently be set equal to zero. This is equivalent to stating a boundary condition which enables us to evaluate the arbitrary constant in (2.2.3). We may use the following metiod to choose the point A. The field in many problems can be expressed as,

$$
E \propto \frac{1}{r^{18}}
$$

where a may have any finite value. If a is greater than 1 we choose A at infinity, and if n is less than 1 we choose A at zero. For the special case where n is equal to 1 nelther zero nor infinity are good points, but some finite point appropriate to the situation must be chosen.

Since the potential is scalar function, most electrostatic problems are more readily solved by computing the potential, rather than by computing the three components of the fleld directiy. After the potential hes been ascertained the field $1 s$ readily obtained by differentiation。

The potential due to a point charge, q, at a distance r from the charge, 1s,

$$
\begin{equation*}
V=\frac{q}{\sqrt{\pi} \varepsilon_{0}^{x}} \tag{2.2.4}
\end{equation*}
$$

Where the potential at $x=\infty$ has been set equal to zero.
The potential of an assemblage of point charges is simply the algebraic sum of the individual potential.
as the line integral of E. It is equal, therefore, to the work done by E per unit charge, and is hence the negative of the potential difference. The net e.m.f. around any closed path in an electrostatic field is zero, equation (2.2.2). Where time varying fields are present equation $(2.2 .2)$ does not hold as we shall see later.

2.3 Poisson's Equation

If instead of considering the field due to point charges We wish to evaluate the field or potential due to distributed charges, it is convenient to restate Gauss' Law, equation (2.1 .5), in differential form.

Let us consider a small element of volume in space, dx dy dz, in which an electric charge density ρ exists. The charge density ρ need not be a constant, but can vary from point to point: how ever, the total charge contalned in any small volume $d x d y d z 13$ just ρ multiplied by $d x d y d z$.

Let us apply Gauss" Theorem to the small volume elemeat in Fig. 2.l. Since a charge is contained inside the volume there must be a non-zero integral of the normal component of D over the bounding surface. Since the volume is very small, the surface integral of D_{y} is evidently, $\left[D_{y}(y+d y)=D(y)\right] d x d z$ where $d x d x$ is the area normai to D_{y}, and where we have used the sign convention that an outward drawn normal leads to a positive surface integral.

Similarly the surface integral over the $d x$ dy surfaces is $\left[D_{2}(z+d z)-D_{z}(z)\right] d x d y$, and over the $d y d z$ surfaces is $\left[D_{x}(x+d x)-D_{x}(x)\right] d y d z$. Combining and equating to the charge enclosed, we have,

$$
\begin{array}{r}
{\left[D_{x}(x+d x)-D_{x}(x)\right] d y d z+\left[D_{y}(y+d y)-D_{y}(y)\right] d x d z+\left[D_{z}(z+d z)-\right.} \\
\left.D_{z}(z)\right] d x d y=\int d x d y d z
\end{array}
$$

dividing through by $d x$ dy $d z$ we have
$\frac{D_{x}(x+d x)-D_{x}(x)}{d x}+\frac{D_{y}(y+d y)-D_{y}(y)}{d y}+\frac{D_{z}(z+d z)-D_{z}(z)}{d z}=\rho$
Now the terms on the left hand side of the above equation are by definition $\frac{\partial D_{x}}{\partial x}, \frac{\partial D_{y}}{\partial y}$ and $\frac{\partial D_{z}}{\partial z}$ respectively in the init as dx , dy and dz approach zero. Hence,

$$
\frac{\partial D_{x}}{\partial x}+\frac{\partial D_{y}}{\partial y}+\frac{\partial D_{z}}{\partial z}=\rho
$$

Combining with Equation (2.1.4) this becomes

$$
\frac{\partial E_{X}}{\partial X}+\frac{\partial E}{\partial Y}+\frac{\partial E}{\partial z}=\frac{\rho}{\varepsilon_{0}}
$$

If now we use the three component equations of the set (2.2.1), we have Polsson's equation,

$$
\begin{equation*}
\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}=-\frac{\rho}{\varepsilon_{0}} \tag{2,3,2}
\end{equation*}
$$

For the special case where the charge density at the point in question is zero, the reduced form of ($2,3,2$) is called Laplace"s equation.

In many practical problems the geometry of the system has cylindrical symmetry. For such cases it is advantageous to make use of cylindrical polar coordinates r, ρ and z. We can express Poisson's equation in terms of such coordinates by following much the same
procedure as for cartesian coordinates. In Fig. 2.2 we have a set of cylindrical polar coordinates shown in their relationship to x, y, z coordinates and now our element of volume is $r d \varphi d r d z$.

$$
\frac{1}{r} \frac{\partial\left(r D_{r}\right)}{\partial r}+\frac{1}{r} \frac{\partial D_{Q}}{\partial Q}+\frac{\partial D_{2}}{\partial z}=\rho
$$

and since in cylindrical polar coordinates,

$$
\begin{aligned}
& D_{r}=-\varepsilon_{0} \frac{\partial V}{\partial r} \\
& D_{\phi}=-\varepsilon_{0} \frac{I}{r} \frac{\partial V}{\partial \phi} \\
& D_{z}=-\varepsilon_{0} \frac{\partial V}{\partial z}
\end{aligned}
$$

we have

$$
\begin{equation*}
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial V}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} V}{\partial \varphi^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=-\frac{\rho}{\epsilon_{0}} \tag{2.3.3}
\end{equation*}
$$

2.4 The Motion of Charged Particles in Electrostatic Fields

 [Millman and Seely: pp. 18-25, pp. 63-69, pp. 71-86]
2.4.1 Work and Energy

A charged particle of mass m and charge q suffers a force of Eq in an electrostatic field. (we are tacitly assuming that the charge q is not large enough to affect the distribution of charges which give rise to the field E.) By Newton's second law, we have,

$$
\begin{equation*}
\frac{d(m v)}{d t}=q E \tag{2.4,1}
\end{equation*}
$$

If we wish we can compute the work done on a particle in moving through an electrostatic field of force. We take the scalar product of each eide of equation 2.4 .1 with d_{s}, the element of length along the path, and integrate from the initial point A to the final point B.

$$
\begin{equation*}
\int_{A}^{B} \frac{d(m \vec{v})}{d t} \cdot \overrightarrow{d s}=\int_{A}^{B} d \vec{E} \cdot \overrightarrow{d B} \tag{2.4,2}
\end{equation*}
$$

The left hand side of the equation may be rewritten,
providing the mass m is constant, as

$$
\int_{A}^{B} m \frac{d v}{d t} \cdot d s=\int_{A}^{B} m \frac{d \theta}{d t} \cdot d v=\int_{A}^{B} m v \cdot d v .
$$

Upon integration equation (2.4.2) becomes:

$$
\frac{1}{2} m v_{B}^{2}-\frac{1}{2} m v_{A}^{2}=\int_{A}^{B} \overrightarrow{q E} \cdot \overrightarrow{d_{B}}
$$

which 18, of course, an expression of the work-energy principle, Remembering the definition of potential, V, we obtain

$$
\begin{equation*}
\frac{1}{2} m v_{B}^{2}+q v_{B}=\frac{1}{2} m v_{A}^{2}+q v_{A} \tag{2,4,3}
\end{equation*}
$$

which states the principle of conservation of electric and kinetic energy. In almost all dynamic problems concerning forces which do work on the particle, one of the first integrals of the differential equations of motion is an expression of the conservation of energy. This, of course, excludes dissipative forces such as friction. Forces which do no work, such as centripetal forces and magnetic forces, can generally be handled independently by the correct choice of coordinate systems, as we shall see.

2.4.2 The Electron Volt

Since all fundamental charged particles of physics. Which include all particles to be dealt with in these notes. carry a charge either numerically equal to or a small integral multiple of the charge on the electron g it is convenient to define a new unit of energy in terms of this charge. This energy unit is called the electron Volt, and is defined as the energy acquired by an electron in falling through a potential difference of one volt. We may write equation (2.4.3)

$$
\frac{1}{2} m v_{B}^{2}-\frac{1}{2} m v_{A}^{2}=e\left(v_{B}-v_{A}\right)
$$

where we have set $q=-e$ the electronic charge. This equation states that the electron increases 1 its kinetic energy by an amount equal to 1 ts numerical charge times the increase in potential; an electron tends to move to points of higher potential. For particles of numerical charge $+e$ the sign of the right hand side is reversed since positive charges tend to move to points of lower potential. In either case the particles are said to have gained 1 electron volt (lev) of energy if the difference in potential is 1 volt. To change from joules to electron-volts we need only divide the number of joules by the electronic charge in coulombs in order to obtain the number of electron volts, since,
change in kinetic energy $=$ change in Potential Energy or

$$
\begin{aligned}
\frac{\text { change in kinetic energy }}{\text { electron charge }} & =\text { change in potential in volts }= \\
& =\text { energy change in } e-v .
\end{aligned}
$$

If the particles are doubly or triply charged. that is if they have charges equal numerically to two or three electronic charges, then the energy change in av is numerically 2 or 3 times the potential charge in volts. It is customary, though not precise, to speak of 1400 volt electrons, or electrons of 1400 volts energy, meaning of course electrons of energy 1400 ev .

2.4.3 The Electrostatically Deflected Cathode Ray Tube

An interesting application of the motion of electrons
(or charged particles) in electric fields is met with in the Cathode Ray Tube. This tube in its simplest form is illustrated in Fig. 2.3. A cathode K emits electrons which are accelerated along the axis of the tube by means of a potential V_{A} applied to

Fig. 2.3
an accelerating electrode A. We will assume that by means of a suitable focussing system, not shown, that the electrons emerge from A in a well focussed, pencil-like beam. After leaving the anode the electrons next enter a region of constant electric field which is at right angles to their direction of motion; This constant electric field can be approximated by applying a deflecting potential V_{D} across two flat deflecting plates, shown here in section, whose separation d is somewhat smaller than the length ℓ of either plate. The motion of the electrons in the region between the deflecting plates is similar to the motion of a baseball thrown horizontally in the earth's gravitational field. Since the electric field is uniform, the electrons will move in a parabola until they leave the
deflecting region, at which time they will be travelling at an angle θ, to their original direction. After leaving the deflecting field the electrons travel in a straight line, through field free space, until they strike a fluorescent screen, and are thus observed at a distance L from the center of the deflecting plates. We desire to calculate the deflection D on the acreen.

Let us choose a coordinate system such that x is measured vertically downwardz from the center of the deflecting region. The electrons accuire velocity $\nabla_{\text {ro }}$ in pasaing from oathode to anode. If they leave the cathode with negligibly low velocitiea, we have, from conservation of energy,

$$
\frac{1}{2} m v_{x o}^{2}=e V_{A}, \text { or } v_{x o}=\sqrt{2 e_{\mathrm{m}} V_{A}}
$$

On entering the deflecting region at time $t=0$, the electrons are subjected to a force in the y-direction equal to . Assuming that the deflecting plates behave like a parallel plate condenser, large in lineor dimensions compared to the plate separation, and neglecting fringing of the field near the edgea, we have,

$$
E_{y}=\frac{V_{D}}{d}
$$

and by Newton's second law

$$
m \frac{d v_{y}}{d t}=e \frac{V_{D}}{d}
$$

or

$$
v_{y}=\frac{e}{m} \frac{v_{y}}{d} t, \quad v_{y}=0 \text { when } t=0
$$

and

$$
y=\frac{1}{2} \frac{e}{m} \frac{V_{D}}{d} t^{2}, \quad y=0 \text { wher } t=0
$$

$$
\Rightarrow
$$

Since there is no force in the x direction

$$
\begin{aligned}
& v_{x}=\text { constant }=v_{x 0} \\
& x=v_{x 0} t=\frac{l}{2}, x=-\frac{l}{2} \text { when } t=0
\end{aligned}
$$

The time of flight t_{p} through the deflecting region can be found by setting $x=\frac{l}{2}$, hence $t_{f}=\frac{l}{v_{0 x}}$.

The y deflection y_{f} during this time is then

$$
y_{f}=\frac{1}{2} \frac{e}{m} \frac{v_{D}}{d} \frac{l^{2}}{v_{x o}^{2}}
$$

The y directed velocity at time t_{f} is

$$
v_{y f}=\frac{e}{m} \frac{v_{D}}{d} \frac{l}{v_{x 0}}
$$

After leaving the deflecting region the electrons are traveling at an angle θ to the axis, given by,

$$
\tan \theta=\frac{v_{y f}}{v_{x 0}}=\frac{e}{m} \frac{v_{D}}{d} \frac{l}{v_{x 0}} .
$$

The further deflection due to traveling a distance $L=\frac{2}{2}$ to the screen at this angle is just,

$$
\left(L-\frac{l}{2}\right) \tan \theta
$$

To this deflection we must add y_{f} to get the total deflection D_{α}

$$
\begin{aligned}
& D=y_{P}+\left(L-\frac{l}{2}\right) \tan \theta \\
& D=\frac{l}{2} \frac{e}{m} \frac{V_{D}}{d} \frac{l^{2}}{v_{X O}^{2}}+\left(L-\frac{l}{2}\right) \frac{e}{m} \frac{V_{D}}{d} \frac{l}{v_{X O}^{2}}
\end{aligned}
$$

from which.

$$
D=L \frac{e}{m} \frac{V_{D}}{d} \frac{l}{v_{x o}^{2}}
$$

remembering $\nabla_{x o}^{2}=2 \stackrel{\theta}{m} V_{A}$

$$
\begin{equation*}
D=\frac{1}{2} \frac{l L}{d} \frac{V_{D}}{V_{A}} \tag{2.4.4}
\end{equation*}
$$

\bullet

This result is somewhat starting in that the magnitude of the deflection does not depend at all on the kind of charged particle. Of great practical importance is the fact that the deflection is proportional to the deflecting voltage, and honce the electrom static CRT is a linear instrument. A little geometrical work serves to show that all electrons seem to come from the central point in the space between the deflecting plates, which is therefore referred to as the "virtual" cathode.

We have thus far neglected errors due to the non-uniformity of the field; in practice the plates are never large compared to their separation; and to the fringing of the fieldat the edges of the deflecting plates. The errors thus introduced can be corrected for by modifying the geometrical factor $L \ell / d$ in equation (2.4.4) a small amount; for small deflections the linearity of the instrument is preserved.

Cathode Ray Tubes have many and varied uses including television screens; radar presentation screens, and a large variety of uses as measuring instruments in the laboratory. The most common use is as the well-hnown cathode ray osolllogcope. In this tube a second pair of deflecting plates are introduced along the axis, but rotated by 90° to the first pair in order to produce a deflection at right angles to that produced by the firet pair. If the separation of deflecting plate pairs is short com $=$ pared to the mean distance to the screen our formula (2.4.4) will st1ll hold approximately. We are now enabled to get a twodimensional picture of voltage or voltage and some of other suitable variable.

A common use of such an instrument is the measurement of
A.C. voltage vs. time. Up till now we have assumed that the electronic field is static. However, as far as the electron is concerned we need only require that the voltage varies but little during the time that one electron is in the deflecting fleld. This means that the transit time of a particular electron must be chort compared to the period of oscillation of the electric field or voltage. If we require that the transit time of the electron be no greater than 1% of the period, then

$$
\begin{aligned}
& \frac{\ell}{\nabla_{x O}}=\frac{\ell}{\sqrt{2 \frac{e}{I I} V_{A}}}=.01 \mathrm{~T}=\frac{.01}{f_{\max }} \\
& f_{\max }=\frac{.01}{l} \sqrt{2 \frac{e}{m} V_{A}}
\end{aligned}
$$

for $L=.02$ meters, $V_{2}=1,000$ volts

$$
\hat{S}_{\max }=9.4 \mathrm{mc} / \mathrm{sec}
$$

Hence, the measurement of voltages varying at frequencies up to $\sim 30^{7}$ epe puts no stringent conditions on the instrument.

Such a measurement is carried out by putting the voltage to be observed on the vertically deflecting plates, and a voitage varying lineariy with the time on the horizontally dellecting plates. The horizontal deflection is proportional to the time and the vertical deflection is proportional to the algnal voltage. The trace on the fluorescent screen then represents the signal voltage as a function of time. We must, of course, repeat the linear sweep at definite intervals, and these intervals must be synchronized with the signal voltage. This latter adjustment is easily made at the moderate frequencies we are consldering here.

2.4.4 Motion of Charged Particles in Electric Flelds Varying Slowly with the Time.

If the electric field of force is varying slowly with the time we can handle dynamical problems by much the same methods used for electrostatic fields. By slowly, we mean fields for which the wavelength λ is long compared to the dimensions of the space in which the field existr. Since $\lambda=\frac{\mathbb{C}}{f}$ this puts an upper limst on the frequency of the electric pleld, where o is the velocity with which electromagnetic disturbances are propagated. If this condition is not met the magnetic forces associated with the time varying electric field must be taken into consideration.

For example, consider a particle of charge q in the unifrom (in space) field between two large condenser plates. We may allow the field, $E=\frac{V}{d}$, to vary with the time, but at a given in stance it is constant throughout the region in question. If $\mathrm{V}=\mathrm{V}_{\mathrm{o}}$ sin $\omega \mathrm{t}$, Newton's second law requires

$$
\frac{d}{d t}\left(m v_{x}\right)=q \frac{v_{0}}{d} \sin \omega t
$$

where x is the coordinate along the fleld direction. If $x=0$, $v_{x}=0$ when $t=0$, the first integral of this equation is.

$$
v_{x}=\frac{1}{\omega} \frac{g}{m} \frac{v_{0}}{d}(1=\cos t \omega t)
$$

and

$$
\begin{equation*}
x=\frac{1}{\omega_{2}^{2}} \frac{g}{m} \frac{v_{o}}{d}(\omega t-\sin \omega t) \tag{2,4.5}
\end{equation*}
$$

This result shows that no matter what the value of the constants, wt will eventually predominate over sin $w t$, and the particle will be cleared from the space between the plates. It is easy to show that there is one and only one value of the
initial velocity which will enable the particle to oscillate between the plates and not be swept out by the field.

2.5 The Magnetostatic Field

It is well known experimentally that there are forces between moving electric eharges which are completely independent of the electrostatic forces described in Section 2.1. Since an electric current consists of an assemblage of moving charges, it follows that there are similar forees between currents and between currents and moving electric charges. These forces are called magnetic and may be uniquely deseribed if we introduce a field vector, B. This vector B, the magnetic induction vector, can be considered as arising from the currents, and we can describe the mutual forces between currents and moving charges as interactions between the field B and these moring charges or currents. This is similar to the electrostatic case where the f1eld E arises from charges (stationary) and the electric force on another charge is considered as due to an interaction between E and the charge in question.

The magnetic force on a moving charge can then be written as

$$
\begin{equation*}
F=q \vee \times B \tag{2.5.1}
\end{equation*}
$$

where v is the velocity of the charge. The magnetic force on a small circuit element ds is, by analogy,

$$
\begin{equation*}
d F=1 d s \times B \tag{2.5.2}
\end{equation*}
$$

When dealing with material media it is necessary to introduce another vector, the magnetic intensity H. This vector is related to the magnetic induction by,
where μ is the permeability of the medium. For free space which is our chief concern μ is designated by μ_{0} and is equal to $4 \pi \times 10^{-7}$ henries per meter.

Ampere's rule enables us to compute the magnetic
intensity due to a current element, and is

$$
\mathrm{dH}=\frac{1 \mathrm{ds} \times r}{\left|r^{3}\right|}
$$

where r is the vector drawn from the current element ids to the point at which the field is to be evaluated. Another general theorem applicable to the understanding of magnetic fields is Ampere's circuital law, which states,

$$
\oint H \cdot d s=1
$$

or in words, the inge integral of H around any closed path is equal to the algebraic sum of the currents linked by the path.

If we compare eq. $(2.5 .3)$ with eq. $(2.2 .2)$ we see that the condition for the establishment of a scaler magnetic potentpal is not fulfilled in general, and hence no magnetic potential can be uniquely defined. That is to say the magnetic field is not conservative. This does not imply that the general principile of conservation of energy is violated, but rather that magnetic forces do no work on moving charges. An inspection of eq. (2.5.1) shows that the magnetic force is always at right angles to the direction of motion, and hence no work is ever done on moving charges by magnetic fields.

If, however, we restrict ourselves to paths of in-
tegration which do not link currents we can set up a scalar magnetic potential, V_{m} and this is often convenient for the solution of field problems. This potential is defined in a similar manner to the electric potential, and strictly speaking, of course, it is the potential difference which is determined.

$$
\begin{equation*}
H=-\operatorname{grad} V_{m} \tag{2.5.4}
\end{equation*}
$$

It is also convenient in many problems to introduce the concept of magnetic dipole or magnetic moment. A small circuit elememt for instance behaves like a dipole in a unform magnetic field, in that there is no net force, but there is a net torque tending to turn the circuit element. This torque is

$$
\begin{equation*}
T=m \times B \tag{2.5.5}
\end{equation*}
$$

where m is the dipole moment and is equal to iA where A is the area of the circuit element. This equation (2.5.5) assumes that the field B does not vary appreciably over the area of the circuit element. The sense of the vector m is arbitrarily taken as the direction of advance of a right handed screw whose perimeter is turned in the direction of the positive current flow.
2. 6 Motion of Charged Particles in Magnetostatic Flelds
[M. \& S. pp. 31-40, 69-71]
Let us consider a particie of charge q moving in a magnetic field B. Eq. (2.5.1) tells us that a force will be exerted on the particle which is at once perpendicular to B and to the velocity of the partiole. If B is uniform and if the particle is initially moving parallel to B there will be no force whatsoever. If, however, the initial speed v of theparticle
is at right angles to B then there will be a force numerically equal to $\mathrm{qv}_{0} B$ which remains at right angles to both B and the velocity. This force is then centripetal in nature and does not increase the speed of the particle. It can and does change the direction of motion. Newton's second law for this case is then

$$
\begin{equation*}
\frac{m v^{2}}{R}=q v B \tag{2.5.6}
\end{equation*}
$$

or

$$
\begin{equation*}
\omega=\frac{V}{R}=\frac{q}{m} \quad B \tag{2.5.7}
\end{equation*}
$$

The angular velocity for a given particle and magnetic field is thus constant. This fact is made use of in the cyclotron, a device for accelerating charged particles, as we shall see later.

If the initial velocity has components both perpendicular and parallel to the field 8 then the motion will be helical in form. Let us assume that a charged particle is injected into a region of uniform magnetic field with an initial velocity v_{o} which makes an angle θ with the magnetic induction vector B. Then the initial velocity along the direction of the magnetic field is $v_{0} \cos \theta$ and is unaffected by the field B. The velocity at right angles to B is initially $v_{0} \sin \theta$, and we may think of this component of velocity interacting with the magnetic field so that eq. (2.5.7) becomes

$$
\frac{v \sin \theta}{R}=\frac{q}{m} \quad B
$$

and the projection of the motion in a plane at right angles to B is circular; the net motion being helical.

This situation has an important practical application;
namely magriet1c focugsing For ingtance jupose namely, magrietic focussing. For instance we have a beam of electrons which emerge from a cathode, or electron gun, which are not sharply focussed in a pencil-iike beam, but are in a slightly divergent beam of $\frac{1}{2}$ angle θ_{0}. Let us assume that all the electrons have the same speed v_{0} and that θ_{0} is small, so that, the component of velocity along the axis of the beam is,

$$
v_{0} \cos \theta_{0} \cong v_{0}
$$

and the component perpendicular to the axis is

$$
v_{0} \sin \theta_{0}
$$

Here we are considering the extreme case of the electron making the greatest angle, θ_{0}, with the beam axis. What follows will apply equally well to the electrons which are less divergent. These electrons will proceed down the tube With equal drift velocities, v_{0}, regardiess of the particular value of θ, but with different components of transverse velicity. However, the angular velocity about the axis of the beam will be the same for all electrons regardless of the value of θ, 1.e.,

$$
\omega=\frac{v_{0} \sin \theta}{r}=\frac{e}{m} B
$$

Hence after a time (the period) equal to $T=\frac{2 \pi}{\omega}$ all the electrons will be back on the axis of the beam, and this point is a focal spot. The distance from the cathode to the first focal spot is just the pitch of the helix, and is,

$$
p=v_{0} T=\frac{2 \pi v_{0}}{e / m \bar{B}}
$$

If the electrons have acquired their velocity by falling through a potential difference V_{A} this expression be-

$$
=\frac{2 \pi}{B} \sqrt{\frac{2 V_{A}}{e / m}}
$$

Theoretically it is possible to have on infinite number of such focal points, and indeed in some applications, the beam goes through many focal points before traversing the entire length of the vacuum tube in question. The pitch of the fielix, which is the separation of the focal points, is inversely proportional to B. If one wishes to limit the maximum sideways deflection that any given electron can have, one would increase B and hence decrease p, and for a given length of beam this process will increase the number of focal points. One example of the type of application is met with in the traveliing wave tube. In this application it is necessary for a beam of electrons 20 to 30 cm in length to be confined in a pencil beam a few millimeters in diameter. Thus far only magnetic focussing methods have been successfully used for this purpose. The travelling wave tube is a very interesting example of the interaction of electrons and high frequency waves, but its general theory is beyond the scope of these notes.

Another application of the motion of electrons in magnetic fields is the magnetically deflected cathode ray tube. In Fig. 2.3, we can imagine that the electric deflecting plates are removed, and that a uniform magnetic field B, perpendicular to the plane of the paper, occupies the region of length l. Then the electrons after entering the region occupied by the magnetic field B will be deflected in the arc of a circle. Fig. 2.4 shows a simplified view of the situation.

Fig. 2.4
By inspection,

$$
\sin \theta=\frac{Q}{R}
$$

for small θ

$$
\sin \theta \cong \theta \cong \tan \theta
$$

and for $L \gg l$

$$
\begin{aligned}
& D \cong L \tan \theta=L \frac{\ell}{R} \\
& R=\frac{v_{0}}{e / m B} \\
& D=\frac{L l B}{v_{0}} \frac{e}{m}=L \ell B \sqrt{\frac{e / m}{2 V_{A}}}
\end{aligned}
$$

The deflection is proportional to B which in turn is proportional to the currents producing it, so this tube is a linear instrument. It is not as widely used as the electrostatic

CRT, but is useful in cases where one wishes current rather than vcitsece sensitivity.

2.7 Motion of Charged Particles in Combined Electric and

 Magnetic Flelds. ($M_{0}+$ S. Pp. 40-48, 86, 87)We are now in a positinn to discuss the motion of particles when both electric and magnetic fields are present. For our immediate purposes we will assume that both E and B are uniform in space and constant in time. First, let us examine the case where the two fields are parallel. We can resolve the velocity vector into two components, one parailel to the flelds and one at right angles. The parallel component will be accelerated or decellerated by the electric fleld, but will not be influenced by the magnetic field. The perpendicular component will remain constant in magnitude, since it will not react with E, but will change continuousiy in direction under the influence of B. Hence, the projection of the motion in a plane perpendicular to the fields is a circie, and the entire path of the motion might be described as a helix of variable pitch.

Let us next examine the case where E and B are at right angles to one another as shown in Fig. 2.5

The equations of motion are

$$
\begin{aligned}
& \frac{d v^{x}}{d t}=\frac{q}{m} v_{y} B \\
& \frac{d v_{y}}{d t}=\frac{q}{m} E-\frac{q}{m} v_{x} B \\
& \frac{d v_{z}}{d t}=0
\end{aligned}
$$

Let us adopt the abbreviations

$$
\omega=\frac{q}{m} \beta \quad a=\frac{q}{m} E
$$

we then have

$$
\frac{d v_{x}}{d t}=\omega v_{y} \quad \frac{d v_{y}}{d t}=a-\omega v_{x} \quad \frac{d v_{z}}{d t}=0
$$

If we differentiate the second of these equations and substitute from the first, we have

$$
\frac{d^{2} N_{y}}{d t^{2}}+w^{2} v_{y}=0
$$

The solution of this equation is

$$
v_{y}=c_{1} \cos \omega t+c_{2} \sin \omega t
$$

where C_{1} and C_{2} are arbitrary constants. I_{f} we now assume that initially $v_{X}=v_{y}=\psi_{z}=0$, then $C_{I}=0$, and

$$
v_{y}=c_{2} \sin \omega t
$$

differentiating

$$
\frac{d v_{y}}{d t}=c_{2 \omega^{\prime}}^{\omega_{\cos }} \omega t
$$

initially $\frac{d N_{y}}{d t}=a$ and hence $c_{2}=\frac{a}{\omega} \quad$ and,

$$
\left.\begin{array}{l}
v_{y}=\frac{a}{\omega} \sin \omega t \tag{2.7.1}\\
y=\frac{a}{\omega^{2}}(1-\cos)
\end{array}\right\}
$$

$$
\begin{aligned}
& y=\frac{v_{y}}{a} \operatorname{sio} \omega t+\left(\frac{a}{u} 0-\frac{v_{2}}{u}\right)\left(1-c_{n} \omega \mid\right.
\end{aligned}
$$

if the particle is at the origin at $t=0$.

$$
\text { mow, } \left.\begin{array}{rl}
\frac{d v_{x}}{d t} & =\omega v_{y}=a \sin \omega t \\
v_{x} & =\frac{a}{\omega}(1-\cos \omega t) \\
x & =\frac{a}{\omega_{2}}(\omega t-\sin \omega t)
\end{array}\right\}
$$

The expression for x and y above are the parametric equations of a cycloid. The path of the motion is sketchediln Fig. 2. 5 for a positive particle. The solution of the case in which v_{x}, v_{y} and v_{z} are not zero is left to the problems.

Now let us examine the case where E and B make an arbitrary angle θ with each other as in Fig. 2.6.

$$
\begin{align*}
& \frac{d v_{x}}{d t}=\frac{q}{m} B v_{y} \\
& \frac{d v_{y}}{d t}=(E \sin \theta) \frac{q}{m}-\frac{q}{m} B v_{x} \tag{2.7.3}\\
& \frac{d v_{z}}{d t}=\frac{q}{m} E \cos \theta
\end{align*}
$$

The equations for the x and y coordinates are precisely the same as those at the top of page 29 with the exception that $\mathrm{E} \sin \theta$ has been substituted for E . Therefore if we make the same substitution in eqs. (2.7.1) and (2.7.2), remembering that a now equals $\mathrm{q} / \mathrm{m} \mathrm{E}_{\mathrm{A}}$ we have the solutions of the first two of eqs. (2.7.3) if the initial x and y velocities are zero. The solution of the final equation of (2.7.3) is just the usual expression for acceleration in a uniform field. Hence, the projection of the motion in the plane x and y is cycloidal, and the motion parallel to the z-axis is that of uniform acceleration. This result

2. 8 The Measurement of g / m

In all of the equations concerning motion of charged particles in electric and magnetic fields, which we have so far considered, the ratio of charge to mass has always occurred, but never the charge or mass alone. The ratios q / m for various fundamental particles make up one of the great sets of experimental knowledge in physics. These data, combined with the measurement of the electronic chargeeand the further knowledge that all other charges are equal to or are small integral multiples of the electronic charge, have been the most exact source of our knowledge of the mass of fundamental particles, atoms, and molecules. Not only was the filrst discovery of the existence of isotopes of the atomic elements made by such means, but also the whole science of "mass spectroscopy" has been built up through the measurement of the ratio of charge to mass.

The first measurements of q / m were made by $\mathrm{J} . \mathrm{J}$. Thomson about 1900, and led to his discovery of the isotopic constitution of the elements. In Thomson's apparatus parallel electric and magnetic fields were set up in the same region in space, and electrons or positive ions which had previously Pallen through a potential difference were injected into this region at right angles to the fields. This is just as though a CRT were equipped with a set of electrostatic deflecting plates and a set of magnetic deflecting coils. The deflection produced by the electric field will be at right angles to the deflection produced by the magnetic coils (since the fields
are parallel) and we may use the expression for the deflections In the two kinds of cathode ray tubes.

Calling the deflection on the screen produced by the electric field, y, and by the magnetic field, x, we have

$$
y=\frac{1}{2} \frac{L \ell}{d} \frac{V_{D}}{V_{A}}
$$

and

$$
x=\mathrm{L} \ell \mathrm{~B} \sqrt{\frac{g / m}{2 V_{A}}}
$$

Now we can find the curve on the screen due to 2 particular kind of particle by eliminating V_{a} between the two equations above. Squaring the second,

$$
x^{2}=\frac{1}{2} \frac{L^{2} l^{2} B^{2} g / m}{V_{A}}
$$

and dividirig this into the first equation we have,

$$
\frac{y}{x^{2}}=\frac{V_{D}}{I \cdot X^{2} d B^{2}} \mathrm{~g} / \mathrm{m}
$$

Hence, all particles of the same q / m will lie on a parabola on the screen; different points on the parabola corresponding to different values of V_{A}. The initial slope of the parabola will be proportional to the mass; hence the parabolas of the heavier particles will lie closer to the y axis, 1.e., the direction of the fields. Fig. 2.7 shows the case for positive and negative ions. The parabolas above and to the right of the axes are due to positive particies; the curves below and to the left are due to negative particles.

Fig. 2.7

Parabolas due to electrons on this scale flgure would practically coincide with the negative x-axis.

The above method is historicaily important, and while it separates out particles of the same q / m, but with different inftial velocities, it lacks precision and sensitivity. The first really precise method is due to Aston (about 1919) and uses a combination of electric and magnetic fields to refocus all ions of the same q / m regardiess of their inftial velocities.

Perhaps the most precise method now in use is due to Bainbridge, and consists of a "weloo1ty selector" to sort out all lons except those of the particular velocity desired, and then a magnetic field is used to sort out those ions of particular q / m. Fig. 2.8 111ustrates this process.

The velocity selector consists of two narrow slits of width w and separation s between which there are perpendicular electric and magnetic fields as shown. In the absence of the

Pig. 2.8
fields, ions of any velocity could pass through the silts if their direction is correct. With the fields present only dons of velocity $v_{0}=\frac{E}{B_{i}}$ can pass through the slits. (Refer to the equations at the top of p. 29, setting the net y-force equal to zero). These ions will then register on the photographic plate at a distance, $\boldsymbol{L}=2 R=\frac{L W_{0}}{g / m B_{0}}$ from the exist slit. We then have

$$
\frac{q}{m}=\frac{2 v_{0}}{l B_{0}}=\frac{2 E}{l B_{1} B_{0}}
$$

Since $q=n e$, where n is an integer, we have

$$
2 n=\frac{n e B_{1} B_{0}}{2 E} l
$$

and the mass is proportional to the distance from the exist sift.

The Bairabridge mass spectrograph is not a perfect instrupent although the lines on the plate are quite sharp. There are several sources of IIne-broadening and consequent exror.

1) The line on the plate must be at least as broad as the slit.
2) Due to the finite width of the silt charges will emerge in a narrow cone of half-angle $\frac{\omega}{j}$ and this will tend to broaden the 21 ne.
3) The velocity selector is not perfect.
4) The ifeld B_{0} is not exactly constant.

However, careful design can minimize all these errors, and masses can be measured to about I part in $10^{\frac{4}{4}}$ or 20^{5}.

2. 2 Weasurement of the Charge on the Blectron

The only careful measurement of electronle charge was made in a classical experiment by M121ikak (about 1915). W1.111ken introduced very small spherical draplets of 011, "atomized", into an air chamber in wich a unsfom electrie Rleld, parallel to the earth's gravitational eleld, could be produced. In the process of "atomizing", the droplets sre almost inveriably charged by friction, and it develops in many cases, by small amounts; 1.e., only a few electronic charges.

In the absence of an electric rield the particies Pall under the force of gravity and the viscous reaction of the 12 r . Since they are small in size their speed rapidiy attains its terminal value given by:
\bullet
-
where the left hand side is the gravitational force and the right hand side is the viseous force (Stokes Law): ? 1s the coefficient of $v i s c o s i t y ~ o f ~ a i r, ~ a ~ i s ~ t h e ~ r a d i u s ~ a n d ~ p ~ t h e ~$ density of the droplets. Millikan observed the rate of eall, *o, of a single droplet and from the free fall measurement he determined the radius of the droplet.

If now an electric field E is produced 80 that the electric force is upwards the force equation for constant speed becomes

$$
\frac{4}{3} \pi a^{3} \rho g-n e E=6 \pi \eta a v .
$$

where n is the number of electronic charges on the droplet. M1111kan then observed the veloeity v_{1} of fall or rise.of the droplet and knowing E he deterinined ne for a single droplet. By then performing this experiment many times fox different droplets he obtalned a large number of values of ne, but all these values were the integer multiples of a single number which we now know to be the elementary unit of charge. (In M1llikan's experiments he measured values of n between 1 and 200.)

2.10 Acceleration in Cylindrical Coordinates

Just as we discovered in Section 2.3, where we
derived Poisson's equation in cylindeleal coordinates, we must be careful in writing down the components of acceleration in any coordinate system except Cartesian. Referring to $F 1 g$. 2.9 the position P of a point may be specified by a set of cylindrical coordinates r, φ, z. In terms of these

Fig. 2.9
the position vector R is given by

$$
\begin{equation*}
\vec{R}=1_{r^{r}}+q_{z} \tag{2.10.1}
\end{equation*}
$$

where i_{r}, i_{f}, and i_{z} are unit vectors in the direction of r increasing, φ increasing, and z increasing, respectively. Let us specify these unit vectors in terms of the cartesian unit vectors $1, j, k$. Obriousiy,

$$
\begin{equation*}
1_{z}=k \tag{2.10.2}
\end{equation*}
$$

and from Fig. 2.9b

$$
\begin{equation*}
1_{r}=1 \cos \varphi+J \sin \varphi \tag{2.10.3}
\end{equation*}
$$

$$
\begin{equation*}
i_{\varphi}=-1 \cdot \sin \varphi+3 \cos \varphi \tag{2.10:4}
\end{equation*}
$$

Suppose that p moves in time. The velocity of p
18 a vector \%, given by

$$
\begin{equation*}
y=\frac{d \vec{k}}{d t}=i_{n} \cdot \frac{d r}{d t}+\frac{d \dot{b}}{d b} r+i_{z} \frac{d z}{d t} \tag{2.10.5}
\end{equation*}
$$

Note that 1_{z} is a constant vector. Now

$$
\begin{align*}
& \frac{d i r}{d t}=(-i \sin \varphi+i \cos \varphi p) \frac{d \varphi}{d t}=i \varphi \frac{d \varphi}{d t} \tag{2.10.6}\\
& \frac{d i \varphi}{d t}=(-i \cos \varphi-j \sin \varphi) \frac{d \varphi}{d t}=-i n \frac{d \varphi}{d t} \tag{2.10.7}
\end{align*}
$$

Thus

$$
\begin{equation*}
F=i_{\mu} \frac{d r}{d t}+i_{\varphi p} r \frac{d p}{d t}+i_{B} \frac{d 2}{d t} \tag{2.10.8}
\end{equation*}
$$

where we recognize the cylindrical components of the velocity vector.

Similarly we may write for the acceleration
vector, \bar{A},

$$
\begin{aligned}
& +\frac{d i p}{d \pi}+\frac{d \varphi}{d t}+4 \frac{d^{2} t}{d t^{2}} \\
& =i_{\rho} \frac{d^{2} \rho}{d t^{2}}+i_{\varphi} \frac{d r}{d t} \frac{d \varphi}{d t}+i_{\rho} r^{2} \frac{d^{2} \varphi}{d t^{2}}+\sin _{\varphi} \frac{d \rho}{d t} \frac{d \varphi}{d t} \\
& =i_{5} r\left(\frac{d \varphi}{d t}\right)^{2} * i_{i} \frac{d^{2} \frac{t}{d t^{3}}}{}
\end{aligned}
$$

$\vec{A}=i_{r}\left\{\frac{d^{2} r^{2}}{d t^{3}}-r\left(\frac{d \varphi}{d t}\right)^{2}\right\}+i_{\varphi}\left\{r \frac{d^{2} \varphi}{d t^{2}}+2 \frac{d r}{d t} \frac{d \varphi}{d t}\right\}+i_{i} \frac{d^{2} t}{d t^{2}}$
and we have found the three components of acceleration in
cylindrical coordinates.
2.11 The Static Magnetron

The magnetron is a very important oscillating
vacuum tube in the high frequency region. A study of its dynamic characteristics is beyond the scope of these notes. However, its static properties are of interest and will be considered here. A magnetron, in its simplest sense, consists of two concentric cylindrical electrodes which are long compared to their radii and across which a static voltage vo is applied. A uniform magnetic field B is applied parallel to the axis of the cylinders. A cross-section of such a tube is shown in Pig. 2.10.

Assuming that electrons are emitted from the inner cylinder with negligible initial velocities the equations of motion can be written as:

$$
\begin{aligned}
& a_{r}=\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \varphi}{d t}\right)^{2}=-\frac{e}{m} E+\frac{e}{m} B_{2} \varphi_{\varphi} \\
& a_{\varphi}=r \frac{d^{2} \varphi p}{d t^{2}}+2 \frac{d r^{2}}{d t} \frac{d \varphi}{d t}=-\frac{e}{m} B v_{r} \\
& a_{z}=\frac{d^{2} t}{d t^{2}}=0
\end{aligned}
$$

Fig. 2.10

The second of these equations can be written

$$
\frac{1}{r} \frac{d}{d t}\left(r^{2} \frac{d \theta}{d t}\right)=-\frac{e}{m} B \frac{d r}{d t}
$$

integrating and remembering $v_{r}=v_{\varphi}=0, r=r_{1}$

$$
\begin{aligned}
& n^{2} \frac{d \varphi}{d t}=-\frac{1}{2} \frac{\theta^{n}}{m}\left(r^{2}-n^{2}\right) \\
& \frac{d \varphi}{d t}=-\frac{1}{2} \frac{e}{m} B\left[1-\left(\frac{r_{1}}{r}\right)^{2}\right]
\end{aligned}
$$

This can be substituted into the first of our differential equations and an integral can be obtained (remembering $E=E(r)$), however, we can write dow ri the equation for the conservation of energy and accomplish the same end.

$$
\frac{1}{2} m\left(\frac{d r}{d t}\right)^{2}+\frac{1}{2} m r^{2}\left(\frac{d \varphi}{d t}\right)^{2}=e V /(r)
$$

where we have taken $V\left(r_{1}\right)=0$.
Using the expression for $\frac{d \varphi}{d t}$, we have,

$$
\left(\frac{d r}{d t}\right)^{2} \Rightarrow \frac{1}{4}\left(\frac{e}{m}\right)^{2} B^{2} r^{2}\left[-\left(\frac{r}{r}\right)^{2}\right]^{2}=2 \frac{e}{m} J(r)
$$

Now in the passage of an electron from cathode, r_{1}, to anode, r_{2}, there will be a competition between the accelerating electric field and the magnetic field which

W112 attemgt to bend the partioles back to the cathode. We can Cin the condition for the particle that just does on does not reach the enode, by 1mposing the foliowing conditions at $I=x_{2} \frac{d r}{d t}=0 \quad v_{2} V(r)=V_{0}$

$$
\frac{k}{2} \frac{8}{\eta n} \varepsilon^{2} r_{2}^{2}\left[1+\cdots\left\langle\frac{r_{1}}{n_{2}}\right\}^{2}\right\}^{2} \approx Z
$$

This is the "cut-off" condition. If V_{0} exceeds
this yalue a21 the electrons wili reach the anode, if Vo is 1ess than this value, none will reach the anode. Hence, the static magnetron has a sharp "qut-ofe", and its current $V 8$. magnetic field characteristic is as shown in Fig. 2.11.

[^0]

[^0]: F1.g. 2.11
 The current reaches a flat maximum when all the avallable electrons reach the anode.

