PART A: HEAT AND THERMODYNAMICS

CHAPTER 1. REVIEW OF MATHEMATICS

a) Introduction:

The science of Heat desls with the changes in the properties
of matter with the transfer of heat. It is an experimental scisnce and
the data obteined are represented by empirical laws, many of which can
be Justified a posteriori by theory. Thermodynsmics on the other hend
is a purely mathematical discipline. The laws governing the transfor-

-mation of energy through work and heai are derived from thrse basic

postulates, and important relations are obtalned baiwseen the properities
of "systems in thermal equilibrium.” If the "system" of Thermodypamice
1s then identified with the "quantity of matter” dealt with in Heat

one obtains rigorous relations between the empirical guantities. In
order to distinguish carefully tetwesn thess two categories of truths
ws shall denote the empirical relations by =2 sud the deductions from
postulates by =, .

HBovever these two sclences; even teken together; do not give
a complete picture. »Most of the empirical lews do not fcllow from
thermodynemics, and the irreversiblility cf thermal processes seems to
violate the more basic laws of mechanics. The fact is that thermo-
dynamics would be en empty disciplive, with no sapplication in naturs,

- were not matter compoged of & myried of molecules, or &t least e large

number of degress of freedom. The basis of both the empirical lavws
of Heat and the postulates of Thermodynswmics are found in Statistical
Mechanics, and furthermore the latter gives a concrete picturs of the
abstractions of themodyneamics, such &as enitropy end energy.

It is therefore deemad valuable e include some Statistical
Mechanice with an introdustory course in Heat and Thermodynamics,
although it is zeparated in a seccnd part of the course because the
methods arse so different. This can, of course, oniy be done at the
expense of some aspects of the latter which are normally included.
We shell limit ourselves to purs substances and, with one exception,
to work done by hydrosztatic pressure. The exception is the chapisr
on magnetism which is introduced because ths ordering and disordering
of dipole orientations give such & clear illustration of changes of
entropy. This sliminstes many interesting applications, such es
chemical equilibrium and the laws of dilute solutioms, but 1t is felt
that these can readily be learnt when needed and are saslly forgotten
wvhen not used, whereas the principles of Statistical Mechanice when
once lesarnt remain psrmenently & part of one’s visuelizetion of thermo-
dynamic processes.

The student of thermodynamice is perforce assumed to be
familiar with partial differentistion, aud with all sorts of changes
of dependent and independent variables separstsly. However, in Thermo-

dynemicz the dependent and. independent variablez are frequently ertielly 3

ipterchanged, snd this is confusing. There is no wvay to avoeld this

ard the oply solubicn is constant cere in the mathemetlcal mmﬁi;@iatiuhm.f _
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The necessary formulae are fev and are revieved in the following sections
: . of this chapter.

b) Partial Derivatives:

let 2z bg;inown function of two independcnt variables
x and y. The di ferential of z 1s glven by

dg = ( ) dx + ( ) ay (Iv1)

vhere the functions

A=(3h =5 (1b2)

L

are the partial derivatives of 2z, the subacript cn the parenthecis
indicating that that verieble is held constant in the differentiation
with respect to x and y.

It is frequently necessary to change the independent variables
from x and y to two new variables u and v. let x and y be known {func-
tions of u and v so that :

P ax = (3 )du+( )dv
dy = (g%)v du + (%%)u dv

Substituting in (Ibl) one ob;ains
o )
=30 B+ @ (sﬁ)v] an
[(3‘) 3+ (3 (gl)Jdv

from vhich one may conclude that

(5 -(g—;) 3D+ (59 (51) (103)










and using {Ib5)

(3 (3 ($H =-1 (1b6)

"This may be called the "cyclic"” relation because the variablss x, ¥,

z ars permuted cyclically in successive factors. This relatlion can-
not be shortened or extended by eslmply removing or edding links as was
done with the chain relation, and the negative sign should be noted.

¢) Integration in Two Variebles:

The function z in
dz = A dx + B dy (Iel)

is not always known. The functlons A and B may be given and the
problem is to find z(x,y).
b §

Lot z, be the value of g at X2 Vqe

i
|
i
This has to be assumed known or Y X
else it appears as a constant of
integration in the ansver, and of !
course the point (x ,yo) way be at |
the origin. The valueof z at X

(z,y) is then found by integrating ( ugs )

along two lines a&s shown in fig. Te. X2 ¥o) \X:To

In the first integration %
Pig. Ic

2y (x,7,) - 2, = fz A (x,5,) ax
0

the variable y is held constant, so this is sn ordinary integration
and z_ is the constant of integration. Then & second integraticn is

perfo?mad

z (x,3) - 2, = ¥ B (x,73) dy
yo

holding x constant, so that finally

3\
Ax,y)
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z (x9) - 2z, = Y A (x:5,) dx +f B (X¥) &y (Iec2)

v
xO yO

X, and Yo also appear in the answer as constants of integration. Thus

it is seen that the two parts of the difAOﬂont¢a1 arc integrated sep-
arately as simple indefinite integrals, but ome must not forget to give
to the variable y in A its value ¥o? vhich is the lower limit of the

sscond integral. Fallure to do this frequently loads to an answer vwhich
is twice tuo big. In integrating vith reepoct to two variables ons
should always check the answor by differentiation.. One can, of course,
equally we integrate over the path indicated by dashes in the figure
and represented by the formula :

Z - 2z = A(xy) ax +\f§ B (xo,y) ay | (I ¢ 3)

o
%o Yo

d) Exzact and Inexact Differsntisls:

If z is a function of x end ¥y equations (I ¢ 2) and (I 2 3)
vill both leed to the same BDEWET . This can be diffsrontiated to giv@
(I e 1}, which 1s then tarumed e”ﬂﬂ’“.. it may hn?gohg howsever, that

(1 c 2) and (I o 3) give different ansvers even though the integrations
have been done correctly. The differential expression is then called
"inexact®, and in order to make this distinction clear it will be
wvritten with a bar across the d:

dv = A1 dx + B! dy ‘ (1 4'3)
CTI»

This situation 18 familiarn/to students of elsctricity amnd
magnetism. If A and B or A' and B'%thought of as comrunents cf a
force, expressions (I ¢ 1) eand (I 4 1) ere the element of work done
by that foree in going the diffe“s tial distance {dx, dy). =z is
minus the potentisl of that force, but all &Lﬁﬁ@d do not have &
potential and magnetic {islds a»a 8 typicel example. The work ﬁ;e“
depends on the path and dw is en inexsct differsntial. The condition
that & dAifferential be exmct ls well kmown to be

In fact, by Stokes' theorem; the guantity

r‘BA.;.;..“ . (,a ?‘.,..
oY ox

o x y
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measures the amount of work done per unit snclosed arsa in going around
2 closed path. In thermodynamiocs; as in electricity and magnetism, one
generally knows from fundementel principles vhether a differential is
axact or inexact, and (I ¢ 2) is an extra equation available in the
former cage,

When 1t is neceasary to iniegrate an inexect differential a bar

will be put across the Intsegral sign to indicste that the path must be
specified. Thus : 4

v = £ (A" ax + B' dy) (1 a3)

©) Lagrange Multipliers:

In statisticel mechanics it will be necessary to deal with
functions of not simply two, but millions of independent variehles
Xey 1= 31,2 .0¢00.. N, The particular pircblem vhich arises is that
ot finding the maximum {(or minimum) of e function 2 (x4 .w?..gxn) of
these varisbles subject to two (or more) constraints

-

2 }
X(Kl aoeqaoxn) 0 y

; (I & 1)
Y‘Xl oeosc-xn,)so

Thege constraints determine a "surface" in the H-dimensional space

cof the x,'s and one seeks the extremal of Z# on this surface. This

is called a constrained extremsl. Thus there are only N-2 independent
variables and one might logically solve (I e 1) for twec of the xg'

in terms of the others and azbstitute these in the fumction Z. But
this 18 imprectical and one resorts Lo the method of Lagrange multi-
pliers. One defines the function 4 'x cesss X} bY

® =2 - aX - PY ' (

]
&
1\

vhere a and B are undeterminsd constants aud then determines ths free
extremel of ¢. This is found by solving tha N eguations:

. - o OX oY ¢
oX ‘E"ii a ‘5}'1 . ﬁ' gfii \3 @ 3!

This givesypoaition of the extremal of 4, thea ¥ x,(a,P), as functions
of ¢ and B. Subetituting these in (I e 1) cne ecan sclve these two ‘
quabinna for a and £, thus insuring that {ues extremsl of ¢ fslls nn
the surface of oonstraint. Put on thils surface ¢ eand Z ere ldentica

by (Y e 2] and (X e 1). ‘”é reeition of the congireined extrensl of

£ pas therefore veen fouvnd. & :

ML LRE VELUE 8§ COGEINeC LY SUDBLLHULINZ
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II EQUATIONS OF STATE

a) Law of Forge Between Atoms

Atoms are knowa to consist of a nucleus surrcunded by a
number of elestrons. The nucleus contains almost the entire mess
m of the atom and has a positive charge equel to, though opposite
in sign from, that of Z electrons, where Z 1s tho atomie aumber of
the element wheose atom 18 considered. The nuclous 18 surrounded by
a cloud of Z electrons, so that the whole atom has no net charge.
The study of the energy and motions of these elcctirons belongs to
atomic structure and we need conSider here only briefly the net
effeat of one atom on anttheér.

Because of the electricsl nature of atoms they becoums
polarized when pleced in an electric field; that is they ect like
a dlelectric, their positive charges being displaced slightly in
the direction of the field relative to their negative charges.
Nov a dielectric sphere is always attracted towards réglons of

large electric field irrespective of the direction of the olectrlc
intensity E. Thus if one molecule is slightly polarized it will
attract other moleculee and cause them to becomc polarized also.
These in turn will tend to increase the polarigation of the first
one. Thus because molecules are pelarizable thoy polerize eacéh
other in such a wvay as to attragt. This type of force varies. in-
versely as the seventh power of the distance, is oaslled a Van der.

s forece, and explains ths force between atoms at large dis-
tances.

As atoms get closer together, of the order of a mil-
limicron between nuclei, thelr electron clouds interact in more
complicated ways then electric polarizetion. This may resulf In

an additional attraction which 1s called gfg%%gin&l.xﬂl&nna.ﬁgggg, or
in a repulsien. Two nitrogen atoms atirac this rang® whereas

tvo argon atoms repel. At yel oleser distances there is alvays a
repulsion due to the interactiecns of the imner shells of elecirons,
or eventually of the nuclei themselves. This rcpulsive force gen- |
erally increases very rapldly with decreasing distance. The result
of all these interactions is & variation of the force and potentlal
energy on internuclear distance representcd in figure ITa. This |
figure does hot give the full story because valecnes {orcos depend |
on angles as well as on distance, but 1t 1s sufficient for moat |
purposes.
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In static equilibrium two etoms will occupy the position

Ty of minimum energy u,. The quantities . end u, ean be computed,

in the case of atoms which form molecules, Trom band spectrz, and

for atoms which do not form molecules they may be estimated from

the viscosity of the gas. The latter method can 2lsc be applised to
the interaction of molecules. nble IIa gives some wvesults of both
methods, and some obvious conclusions can be drawn from thess data,
In the first place the force between molecules is not much different
from that between atoms which do not form melsculos. Compare for
jnatence methane with krypton. On the other hand-atons which do-form
molecules heve an energy winimun ebout ten tluecs ags deold and helf as
far out. This shows th e influence Of the sdditiepel-chemical binding
force over the polarlizailon force. Indecd taese atous form molecules
at room temperature becsuge the binding energy is 80 great.

Atom T u, Molecule T u,
mx10” 12 ergxlo"la uxl0” 12 ergx10'12
H Th 7.15 He 217 .19
Li 267 1.82 H, 273 .20
N 110 11.8 Ne 259 .15
0 121 8.13  CE, 416 A7
Ke 308 1.22 NH, 42 .90
P 189 8.05 ' X, 376 .25
s 189 - 5.75 0, 362 .33
ct 199 3.97 A 366 .38
K ‘392 .82 €O, 463 8.4
1 267 2,46 Kr K17 45
Hg 330 I Xe 491 .51
TABLE Ila

Atomic and molscular radil and dissociation energles. Left hand
columns from band specire, right hand coluvmms from viscosity.
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b) The State of lowest Energy :
The "molecular weight'".«i¢ of a substance ls & number »ro-

portional to the mass m of a molecule and such that it hes the value
16 for atomic oxygen. A mass M of substance contailns

N = M/m molecules (1Iv 1)

An smount of substance whose mass is equal to the mo-
lecular weight is called & "mole". Thus the mass I contains

n = M/ moles (1Ib 2)

Thus the number of molecules, in a mole depends on tic unlt of mass
and there are two units in coumon use: the gremm-mole and the
kilogramm-mole. The number of molecules in a gramm-mole 1s called
Loschmidt's number and 1s f
N/n = 6.023 x 10°° molecules/gramm-mole (11v 3)
{

This is & tremendous number; sc large in fact that no
matter how far we subdivide matter so long as ve can still sse on
weigh 1t, it will still contain a very lerge number of molecules.
Many of the laws which are studied in Thermodynanics depend on the
fact that one is dealing with an aggregatc of a very large nunbor
of identical particles. ;

numher of
y

, Consider then an aggregate of a very large
jdenticel atoms in stetic equilibrilum. Each afom wil
position of equilibrium relative to all the others, a
will be so meny more interior molecules than onts nea
ve shall neglect surface effects.

nd as ther
p the surf

The distance of nearest neighbors will then be close te
r., the departure from r, belng due to the influence of the next-
t8-nearest neighbors, anf the total enmergy will have its lowest
poasible value Uo' Let Vo be the corresponding volume. The con-

dition of equal separation of nearest neighbors impcacs & rogularity
on the structure, and it is called a perflect crystal.

The particular configuration will depend on the nature
of the velence forces and these differ greatly between different
atoms. However, one can distinguish three baslc types of siructure
in vhich the elements crystallize and one a?%ﬁtional one for com-
pounds. These are all shown in fig. IIb.: -7'Hhen en element
forms diatomic molecules it generally means that the valence force
between two atoms is strong but that it saturates vhen the two
atoms are united so that there 1s no remaining bond to attract &
third atom. The molecules mey, however, be held together by thelr
Van der Wsals attraction, forming & molecular crystal. NKitrogen ]
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and iodine are typical exam?l s of thils type, as are 2lso nany com-
pounds as ice or methane. 2? Atoms with many valencc bonds such

as carbon may continue to bind additlonal atoms, forming chalns,
sheets, or solid valence crystals., In theso cases the entire cryatel
may be considered as & single molecule, and bocouse valence forces
are strong these cryastals are generally hord. ianmond 1s the typical
example of a valence crystal in which each carbon atom is atlached

to four neighboring carbon atoms by valence hHondgs, thls bonding ex-
tending throughout the crystal. Quartz and carborundum ars 21so
valence crystels formed by compounds.

:
B 7

0/3 .
L
g

1. - MOLECULAR CRYSTAL I, 2. - VALENCE CRYSTAL
' GRAPHITE
- § + -
¥ i . 5 x5 c1” N o1
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e + + 3 Nl bW Ceitd
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k: + + VRl TR R
-.-
+ + %
4 % X )
3., - METAL COPPER 4. - IONIC CRYSTAL
| FIG. IIb
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| Carbon also crystallizes as graphite wvhich is 2 diffcerent form than
| . diesmond, and is a mixed type. Here the carbon atoms unltc by valence

bonds in sheets, the pattern of one sheet belng chown in fig, IIb,

The sheets are the held together by Van der Waels forccs, and this

is responsible for the softness ef graphite. Asbeslos 1s a similar
le among compounds in which the velence bonds form chains,

In the metals the bonding force is nelther valcnce nor Van der
Waals but is simply Coulomb ettraction. The atoms cach lose one .
or more electrons and these cccupy the interstecec betveen the etoms.
As the atoms are now positively charged they are atiracted by the
neighboring electrons, and, reciprocally, the iong hold the electrons
in. However the electrons have comsgiderable froedcm ond Tor this
reagson the metals are good conduct of clectricity, Mcst of the
elements crystallize in this vay.(ggj' Salts are compounds of &
metal and an electroncgative atom 6r radicle. When they erystallize
the molecules dissociete inte positive and negatlve laons, end those
are arranged in e lattlice so that each positive ion 1s surrounded
by negative ones and vice versa. The gerystal is held together by
the Coulomb attraction of the ions and is in this wey similer U
a metal, but the negative ions, being larger and heavier, are not
free to move as are the electrons of a metal.

Table IId gives the volume por gram-aioul (volume per mole
divided by the number v of atoms in & molesule) for a nvmber of
ecrystalline solids. From this table the following gqualitative
relations may be observed: First thec atomlc volume deoes not very

. very much except for hydrogen, vhich is very suell, and the elkalics,
vhich are very large. Very heavy atoms like lead are also large.
Second that the valence compounds are relatively compect, the
metals and ionic compounds are lcss so, end the molecular compounds
are quite lose. (In computing the atomic velume for ice the hy-
drogens have been neglected, so it is the molar volume which is
given.) This is in agreement with the strength of the binding
forces, valence, Coulomb, and Van der Waels, for these clesses of
compounds. :

We have spoken of the state of lowesit energy as being one
of static equilibrium. This is not true. If ths electirons cauc
to rest in their positions of lowest energy they would fall ianto
the positive nuclei and all matter &s ve know 1% would disappear,
it is known that the electrons in atoms move in steble orblts
in their states of lovest energy, and similerly the electrons in &
metal ere not stationary in the interstices but are comstantly
moving at a high speed. Atoms may similarly have sonme motlon in
their state of lowest onergy but, because of thelr very much larger
mass, this motion 1z quite smell and may for mosti purposes be over-
looked. This zero-point kinetic emergy iz to be included with the
potential energy in the value of Uo.
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¢) Thermodynamic Variables

The state of lowest energy described above i3 called
absolute zero and is not observed in nature, but uay be approached
in the laboratory as a limit of experiments designed to remove &3
much energy as possible frem a system. In oxder to defline the
state of a system one must thercfore specily cne or more poroucters
in addition to the numbers and kinds of atocms precent. An obvious
parameter would be the energy U. This is, in principle, directly
measurable. Let Ho be the mass of the system at absolute zero,

Then by Einstein's relatlion
2
U - Uo = (M - Mb)c (IXcl)

vhere ¢ is the velocity of light. However the energy dlffercnces
that ve are interested im are of the crder of one Joule per grem
and therefore M - M, 1s of the onder of 10-15, Such apn accurscy

(o]

is quit& unatteinable, The epergy U - U, wilil
be calculated from other data.

herefore have Lo

.

Another parameter would be the degree of disorder. In
the higher energy states the atoms arc oscllleting with independent
amplitudes end phases and therefore the crystal Is not as wegular.
This lack of regularity appears cn x-ray diffractlion patterns and
a suitable parameter might be computed from them. Thls also lacks
accuracy, and the disorder perameter called the entropy Send Lo
be defined more oxectly later, is, like the energy U, derived from
thermal data., This will be explained later.

: Then there is the volume change V - V. This, thoug
often small is directly measurable,

Other parameters such as shear deformeiions, surface
tension, polarization, etc. can also be measured, but they will
not be considered here purely for the sake of simplicity. Eech
such parameter leads to relations quite similar tc those of the
volume changes and if the latier are conce understood 1t 1s very
easy to extend them to these other varilables.

U, 8, and V are called "extensive” wvariablos dDecsuse they
are proportional to the amount of material considcved. The "3pecific”
variables which are properties of the kind and not the emount of
material may be defined per mole

u=U/n, 8=3/m ve=V/ ’ (1I1a 2)

per gram
ut - U/Ei’ - 3/2,1» vi = V/M (IXc 3)







or per gramn-stom

u" - U/Véé 8" = 8/yn, V" =V/yn (I1c &)

wvhere v is the number of atoms in 2 molecule. The last sol are
particularly useful in solids where it 1s not always certain how
many atoms to include in the molecule, but tho quantity «¢/,- 1s known
es it depends on the composition only. If the extensive varliables
were directly measurable thermcdynamice would be a great deal simpler,
for all the other thermodynsmic variables could then be obtaincd by
differentiation, as will be shown. But such is not the case and

vhat one measures are two other varisbles, celled "intensive", bhe-
cause their differences determine departure from equilibrium, I

two bodies are pressed together their volumecs will Doth docreacze.

The changes in general will not be the same and may not even he pro-
portional, but if a pressure gauge is placed betweon them it will
read the same towards which over bedy 1t 1s orlented. This ls a
consequence of Newton's Third law, Pressure P 1s the intenslive
varisble wvhich must be equal in two bodles in mechanicel equilib-
rium. It is not measured by exemining the body itsell but by
putting a gauge in contact with the bedy snd examining the gauge.
It is not the only intensive variable. Electric potential, for
example, is one which vill not be discugsed here. ¥hon all
mechanical,chemical, electricael, and other known Cdlsturbences are
eliminated there still remains & variable of which our sensecs Zlive
us an indication and vhich is called Temperaturc. When two bodies
at different temperatures are placed in conbtact their propertles
are observed to change progressively untll the Temperatures are
equalized. Any device which is sensitive to temperabure diffaronces;
such &s mercury in a glass bulb at the end of a cepillary, may Do
used as a thermoscope,the criterion that we are truly cobserving

the equilibrium perameter being that the lnstrunment give the some
reading when placed successively in contact with, and preferably
inside, two bodies in equilibrium. That such & thing is possible

is called the Zeroth law of Thermodynamics. It is analogous to
Newton's Third lav.

Different thermoscopes, vwhile all agrceling when indicat
equality of temperature, will not give the same measure for dif-
ferences of temperature unless cellibrated agalnst & standarl in-
strument. Such an instrument is the 1deal zas theormcmeter which.
wvill be described at the end of the chapter in conuectlon with the
laws of gases. It defines the absoluts temperature scale. One of
the virtues of the ideal gas thermometer ig that is reads zeroc in
the state of lowest energy. Another thermometer having this Dro-
perty is the platinum reslstance thermcwecler, the electrical ?esis*
of a strip of platinum approaching zerc as the state of lowest
energy is approached. |
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Having chosen a standard instrument, and therefore & Lem-
perature scale, there remalns to chose & temperature unit. The unit
universally used in scientific work is tho centigwrade unit, which is
such that there are 100 unite betveecn the fyveezing and boilinz points
of pure weter under one atmospherc pressure.

The units ¢f pressure ars unfortunstely noi so univorsal
as, besides the consistenc CGD and HED units, the "millimoter of
<

mercury” is the universal laboratory unit, and one "atmosphers is

the normel pressure. These uniis are related os follovy:

6 2 5 - /..Q - TP g —
10° dynes/cm” = 10° Wewionfa™ = 750,00 ms o

T ol mercupry = 1 atmogpherd {IZIec 5)
; The variables V, P, and ¥ are the ones uog 8 22
The relation betwesn theas verlenhles for any snbstanco is 1led
., We must, however, Immedisiely 7@ U} 5 eX
pectation of being able to write down a single mathconmetical expres-
sion to represent &ll the phages of & pure substance Sueh X -

preasion if it were found would bs %Loo complicated to be read
used snd would have to be broken dowm into parts representing
different phases. We shall in the remelnder of thic chapter gurmarize
the empirical equations of sizte for the differant phases of pure

sudbstances.

d) The Ideal Solid

-

The volume of solids dcﬁg§§%ﬂnge very much under exD
tally reslizable pressures, raroly more than & few percent.
meanz that the internuclear soperation of the atoms dees nol deg
very much from its equilibrium value. Taking e snall portion of
the force curve in figure Ila in the neighborhood of v, 1t can be

seen thet it does not depert much from a straight 1ine®? It follows
from these facts thet the volume of a golid will vary semsibly -
linearly with the pressure AU
VasV. {a - bP) X
MR - B Y
ANy rd

This is Hooke's law, It is writfen with the sign ==
straight equality sign to indicete that it 1s an enpd
a rigorous equation. Ths compressibility X 1s de

1,9V, . b VYD
R ==p G Be

) -\-C,
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80 that the coeffilcient of thormel expen
=i (N "::Y"-(a' - h'F)aZ afa (IIdv3‘~
- V'(ET)5~ A e I LA

vhere the primes represent differeantiation with respect to T,

The compressibility and volume coofl
pansion of & number of crystalline solide 1

It is noted that the valence compounds and metels, the alkalleos ex-
copted, are relatively incomprossible, the lonic compounds 2are more

go, and the moleculer compounds even more.

The variation with temperature of ) and f for coppor is
shovn in figure IId, and is rather typlcal of &ll solids, The slow
insrease of ) with temperature ig o consequence of the thorucl oX-

: aion. As the atoms get furtber spert the slope of the force curve

é fgig IIa) gets less, which implies a greater comprensibllii The M@

3 %radual rise of P may be similarly > 1

| as absolute zero is approached. It might be thought that this 1s
due to the choice of temperaturse scale In thig reglos bu '

drop occurs at & c¢ifferent lemperature, charact

no change in scale can atraighten out all

.' to be related to & simllar chaerge in

&>
W

»

theory has been developed by Einstoin-Dsbye
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DENSITY, COMPRESSIBILITY, AND THERHAL FXPANSION OF SOLIDS

“ Wot ccunting hydrogen.

ATOMIC e THERMAL
SUBSTANCE FORMULA DENSITY VOLUME COMPRESSIBILITY EXFANSION
d v" Kx 102 B x10®

gm/cm3 cm34he%e m?/Newt. dqg"l
VALENCE it
Dliamond ¢ 3.52 2.4 2.67
Graphite C 2.25 - 5.34 9
Carborundum 81i¢ 3.15 6.35 6.35
Corundun A2203 3.95 5.17 4 b 4
Quartsz 81 0, 2.65 7.55 27 33.6
METAL
Socdium Na .97 23.7 156 200
Aluminum Al 2.70 10.0 13 i)
Potassium K .86 4.4 360 279
Iron Fe 7.88 7T.06 5.8 b 1o)
Copper Cu 8.9% T.10 T.2 49
Silver Ag 10.50 10.3 9.9 59
Tungsten W 19.3 9.53 2.9 12
Lead Pb 11.34 18.35 2.4% T4
I0RIC
Salt Na Cf 2.17 13.5 ho 121
Sphalerite Zn S 4,02 12.1 13 20
Fluorite Ca F, %2.18 8.19 g 12 55
Calcite Ca CO3 2.71 T+ 30 13 14
Barite Ba 30, b 47 8.71 18 163
MOLECULAR
Iodine 12 §.92 25.8 300
Ice I H,0 .917 19.6 % 120 150
Carbon dloxide C0, 1.56 9.5%0 850
Benzene 0636 1.0k 12.5 % 229

TABLE Il 4






19.
(II e)

e) Rolymorphic Trensitions and Melting

The volume of & solid is not 2lweys 2 continuous function of
the pressure and temperature as represented by equation (I 4 1). For
many sollds there are discontinuous changes in wvhich the atoms rearrange
themselves. Ice is a particulerly good exemple, six different Poly~
morphic forms having been discovered. These mey be represented by
lines on a P-T diagram which give the values of P and T at vhich gis-
continuous transitions occur (Fig. IIe). These lines are foirly straight
and ¢an be well represented by equations of the form

T-T 2% aP-bP? ' (1Iel)

vhere a and b are new exporimental constants differing from those
used previously anﬂ-bf ls generally quite small compared to a.

The P-T dlagram 1s incomplete and a better representation is
given by a surface in which V is plotted agesinst P and T. The gif-
ferent phases are then given by surfaces vhose equations are like
(II41), separated by vertical steps along the lines (IIel). This sur-
face for ice 1s shown in Zemansky, Heat and Thermodynamies, Fig. 11.10,
but not many such surfaces have been prepared.

It should be pointed out that the surfaces of each rThase,
end the corresponding equation (IIdl), mey be extended beyond its
verticel boundaries, and this 1s not mere mathematics but can in neny
cases be realised physicelly. If the pressuro i3 relessed on ice II
it will not instanteneously change to ice I end thus, for a2 while;
lce II may exist at zero pressure., It is, hovever, not in equilib-
rium and will in time change spontancously to ice I.  The surface
showvn in figure 11,10, and the areas of figure Ile, show only the
equilibrium states, This explains the sbsencoe of ice IV, anothor
crystalline form of ice which can be prodused but is never in equilib-
rium, : '

As may be seen in figure IIle the boundaries separating the
different phases are oriented pretty much at random. On the other
hand a definite statement can be made ccncerning the volume change
on crossing a line along which two phases are in eguilibrium. In
an isothermal process in which the pressure is increasing, the vol-
ume deoreases &s the equilibrium line is crossed. If this vere not
so and the volume increased when the pressure increacsed the system
would, of oourse, be unstable. Generalizing on this behavior le

Chatelier enunciated a genoral principle which way be applied To any
intensive variable (condition): "When the conditions under which a

system is in equilibrlum are caused-to-change while-equilibrium is
still maintained, the system-always tonds to opposse-that-change! In
this cass as one attempts to increase the pressure on lce, it will
change to a phase of amaller volume and thus"oppose the inecrease in
pressure.

These volume changes enter in important thermodynamic
formulae and will be represented by

TAG A K (IIe2)
2~V
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principle it follows that DV is positive if the transition line on

& P-T diagram slopes upward to the right, and negatlve 4f 1t slopes
upwvards to the left. Thus ice I contracts on changing to water vhersa
ice V expands. When the trensition line is horizontal the convention
for the sign of AV breaks down, but this cccurs seldom.

wvhere phase 2 is the higher temperature phase., Irom Le Chateller's
;2\

There is & completely analogous law governlng isobaric
changes: as the temperature incresses the system changes to a phase
of greater entropy, or disorder, though how this opposes the rise in
temperature can be explained only in the next chapter.

As the temperature is increased 2 state 1s reached in which
long range order has disappeared, and this will be defined as a liquid.
But first "long range order” must be defined. 1In a perfect erystal
et sbsolute zero, if the positions of any three atoms not on a line
ere given, this fixes all ths positions vhich any cother atom may
occupy, in principle cut to infinity. This 18 perfect order. As
the temperature is increased the pesitions become uvnecertain first on
account of vibrations about the equilibrium positions, but eventually
the positions of equilibrium themselves vanish except in the im~
mediate neighborhood of & molecule. Here the reguirements of space
ellow about 12 molecules to be simulteneously in contact with another
one, and they cannot change their relative positions without bumping
into each other. This forces & short-range ordsr which appears very
clearly in x-ray patterns of liguids.

Ordinerily a liquid is defined os a condensed phase (moan~
ing that the molecules are easentlally in contact) which cannot support
& shearing stress in equilibrium. The slighteost chearling streces causss

it to flow, which implies long range disorder. On the other hand liquids

do not differ much in comprossibility or thermal exransion from the
solids with which they are in equilibrium. As ve have agreed to gtudy
only the thermodynsmics of hydrostatic pressure and not of shearing
stresses, the usual definition is not applicable and e l1iguid appsars
as simply another modification of a solid. Perhaps this is fortunats
as our definition in terms of long-range disorder includes glasses

and other amorphous solids with the liquids., These solids are pretty
rigid and yet if a shearing stress 1s epplicd continucusly they will,
in time, flov in the direction of tho stress. They are therefore very
viscous liquids, and in meny cases supercooled ligquids. This means
that there exists a crystalline form to which the glass will, in time,
transform spontaneously the transition temperatures lying above that
considered and having been passed too gquickly for the crystallization
to take place, This is nol an uncommon occurance. Weater, for instance,
if free from dust, may be cooled many degrses below zero centigrade
without immedistely turning to ice. The formulae of thermodynemics
aepply equally well to these unsiable states, but it nmust be remch-
hered that the return to equilibrium is an irreversible process. The
melting point date &t atmospheric pressurs of some solids is given

in the .first four coiumnz of table IZe. The melting temperatures
f0llow he pattern already indlcated by the nature of the binding
forces: molecular compounds melt below, or nsaer, room temperature;
the ionic compounds and metals are quite comparable; ond the valonce
compounds are quite »efractory. Almost without exceptlon there 1s




MELTIRG POIRT DATA

v v £m OBy by
co/m8le cc/m@le % kg.cal/ cal/ kg.cal/ L /L
) mole deg.mole mole

Metals
_Na 24,2 24.6 T 0.63 1.70 26.2 41
Al 10.6 23:0 932 2.55 21y 67.6 26
Fe 7.50 8.12 | 1802 | 3.56 1.97 96.5 27
Ag 10.8 11.3 1234 2.70 2.19 69.4 26
Sn 16.50 16.97 505 | 1.72 3.40 68.0 39
Hg 14.15 14.65 234 .58 2.48 15.5 27
Ionic
NaCl 29.6 37.7 1073 | 7.22 6.72
AgBr 30.4 3%,.6 703 2.18 3.10
NeOH 18.8 - - 501 1.60 2. T4

. AgN0339.0 - - 583 | 6.45 3.76
Molecular
& ko 28.1 83| .280 3,38 1.88 6.7
n2 26.5 28.7 14 . 028 2.0 .22 7.9
n2 7.2 32.8 63 .218 3.46 1.69 y &
320 19.65 18.02 273 1.43 5.85 11.3 7.9
CO2 28.8 37.0 217 1.99 9.16 6.44 Bl
Valence
C 3800 1L0.
810, 1980
Al,0, 2320

TABLE 1Xe
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(22 T)
expansion on melting so that the solid sinks in its melt. It is
noticeables, however, that the metales expand very little on melting.
This is probably because the solid metal is iteelf slready half melted:
its negative elements, the electrons, do not occupy fixed lattice
positions. The liquid metal therefore differs less from the =olid
than ie the case with other substances, except of course the glasses.

f) Veporization

It has been seen thet a liguid differs quelitatively from &
solid in its insbility permanently to support shear and in the long-
range disorder of its molecules, the glassss occupying an swbiguous
position with respect to the first criterion. There is ancther state
of matter, the gasecus state, which differs qualitaetively from both
liquids and solids In its inability to support tension and in ths
great disorder of its molecules.

If the pressure on a solid 1ls reduced there comes a point
vhere the piston, or whatever device waz used to exert the pressure,
separates from the solid and lesaves a space which the solid does not
£111. This space is empty, however, only in appearance. Actually
4%t contains wmany molecules of the solid wmoving frsely across the
available volume. VWhen these molecules sirike the sclid they may
condense on it and, reciprocally, surfecs molecules of the soll
may spontaneously leave it and Join those of the gas. In equilibrium
these two processas take place at egual rates. The pressure exorited
by the gas in equilibrium with the solid is called ths vapor prassurs
of the solid. Liquids alsoc eXert a vapor pressure. Usually these
pressures are quite small and that is why they do not show in figure
IIe, but if the pressurs scele of that fizure is lncreased a million-
fold one obtains figure IIdl. The fuslon curve now appears vertical
and thors are boundaries between ice end vapor and water and vapor
reglons. Thess are the vapor pressure curves. These three lines
intersact at T wvhich is known as the triple point. At this pressure
and temperature water, ice, and water-vepor way be in equilibrium,
The triple point data of some substances is given 1in Table IIf1l.

Figure IIfl gives the vapor pressure over & range of 60
degrees, but a P-T plot is not satisfactory to represent vapor pres-
sures over greater rangss because ths prossure chenges by several

.orders of megnitude. It is evidently.necessary tc plot the logarithm

of P, and it turns cut that 1t 1s best tc plot log P ageinst 1000/T.
This is done in figure IIfZ for water and for mercury. The most
etriking feature of this figure is the tremendous range of ysapor
pressures which are cbserved, and measursd: & factor of 10tlin the
case of mercury; and there is nc rsason %o believe that these curves
may not be extended indefinitely to the right. This is no® so for
their extensiocn to the lefit for in this direction they terminats.

The terminal point ¢ for the water curve 1s shovn in the {igure.

Next 1t is obsserved that the vapor pressure curves are almost straight
lines on this plot, and the slight curvature mey be taken intc aceount
by & term in log T, so that one hasi-
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A! i ]
1ogP~—;f+B + C log T \

or in P~ - % +B+CAn T (11£1)

or again P= C oB-A/T

but one must beware that in the last equation, where one has ralsed o
to a power, slight errors in the logarithm are greatly magnified.

The water vapor pressure curve is showmn in figure I1If2 ex-
tsnled into the ice region. This 1s in accord with observation that
water free from dust may be supercooled considerably below the freezing
temperature. In this condition the water is not in equilibrium and
shculd a speck of ice be dropped in it ice crystals will grow very
rapldly. Similarly 1if a beaker of supercooled vater is in an evacuated
region ccntaining also & plece of ice, the water will distill onto the
ice. For example at ~16°C the vapor pressure of water 1is 1.323 mm and
thet of ice is 1.1%2 mm so that there is a pressure difference of
0.191 mm to produce the distillation.

The values of the constants in equation IIfl for soms sub-
stances are tabulated in teble IIf2 and the follovwing regularities may
be noted: The constant A is roughly proportional to the melting tem-
perature Tm, the ratio A'/Ta being about 5 for substances wvith Van
der Waals binding and about 12 for metals. Water classes with the
metals in this respect because the water molecule hes such a atroeng
dipole moment that its binding 1s almos® ionic. The ccnstant C is
relatively small and nearly always negative.

If the temperature of a liquid is raised to the value cor-
responding, on the -vapor pressure curve, to the pressure in the liquid
plus the pressure nscessary to meintein a bubble ageinst surface tension,
the phenomenon of boilling will be cbserved. Because of this additional
pressure due to surface tension, the boiling point of a liquid 1s
defined as the temperature of the vapor above & bolling liquid. The
vapor-pressure curve is therefore also the curve of boiling points
at different pressures. The boiling point at atmospheric pressure
is celled the normal boiling point. The normel boilling point {B)
and me%t§ng point (M) are shown in figure IIf2 as well as the triple
point (T).
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TABLE 11{2

VAPOR PRESSURE CONSTANRTS

ELEMENT. Tm A! B! o3y

Additional Terms A'/Tm
Sollds

Ne 24.6 112.8 4,218 - .58
N, 73.3  359.4  4.790 - 4,90

83.9  412.5 b,T47 - 4,98
Kr 116 578 4.847 - 4.98
Hg 234 3347 5.766 - 14.3
H,0 273 2790 10.595 -~1.07 10.2
Cs 299 4120 7.571 -1.0 1%.8
o] 594 6073 8.845 - .9 10.2
7n G2 6750 6.081 - 9.77
Liquids
He - 3,018 -.678  2.484 -.00297T" >
B, 14.0 45.65 1.190 .84 3.33
Ne 24,6 97.4  3.591 . 3.96
0, 54.7  485.6 11.450 -3.1 8.86
N, 73.3  356.6 . 8.291 -1.96 4.86
A 83.9 357.7 ~4.095 - h,25
Xr 116 569 7.763 -1.45 4.90:
Hg 234 3308 7. 4084 - .8 14.1
H,0 273 | 2799 17.218 -3.77 10.2
Cs 299 hoh2 8.301 ~1.h 13.5
K 335 4552 5.918 ~ .5 13.6
Ne 370 5567 6.360 -~ .5 14.8
cd 50 5082  11.188 - 10.1
Zn 692 6607 9.372 -1.2 9.67

Pressures are in bars, temperatur

es .in degrees kelvin,
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g) The Ideal Gas:

The laws of gases are particuvlarly simple when their density
is very much less than that of the corresponding liguid or solid. The
lawa obeyed in the limit of low density are called the ideal gas lave;
and these laws are good approximetions at ordinery densities. If
the density is one thousandth of that of the liguild the deviations
are & fev tenths of a8 per cent. The idecl ges laws are therefore
good approximations for ordinary geses &8s well &s belng exact laws
for an ideal gas.

1. lew of Boyie: If the volume V of & gas is measured es
a function of © applied pressure P, time being allowed between each

observation for the gas to come to thermal equilibrium with its sur-
rouncings, it is observed that the product ¥V is constant '

p . :
5 PVﬂMKB . (IIgl;
Boyle's law for geses corresponds to Hooke's law for solids,
Both are approximationsz good in the limit of low pressurss, the
departures from Hooke's law occuring at pressurss roughly 1000 tlmes
larger» than the deparuures from Boyle's law. Boyle's law may Dbe
ropresented graphically by plotting P against V at constant T
{Pig. IIgl). The curve obtained is & hyperbela. It is also con-
venient to use logerithmic scales for P and V, in which case the
curves are straight lines sleping downvard &t 55°, The experimsnt
is commonly perforued by 2llowing the gas to enter the clesed end
of a U-tube ard trapping it with s column of mercury. The length
L occupied by the gas is then measured as a function of the difference
in level h of the mercury in the two arms. The volume is then

V = AL
aend the pressure
P= pg(h+h )

wvhere h_ is the barsmetric helight
&t the Time and place of the ex-
periment.

The product PV has the
dimensions of energy and should
therefore be expressed in ergs
{cG3) or joules (MES). However,
pressures sre alwayvs neasured
in atmospheres or millimeters
of mercury. A conversion 13
therefore always necessary. It
i3 convenlent to know that

NIRRT

1 o’ X1l mm= 1351 ergs
1 Jiter x 1 bar = 100 joules
1 liter x 1 atmosphere = 101.3%25 joules

FIG, TIgl



2. Law of Charles and Gag Lussac: The constant B depends, of course,
on the temperature. e temperature, t, is measured with a con-
ventional mercury-in-glass thermometer it is found that FV depends
lineerly on t

PV=>C (1 + at) : (172}

and that the constent ¢ has the same velue for all gases. DMore
precisely, « is found to depend slightly om pressure, temperature
sndé the nasture of the ges, bul as the pressure is decrsased a tondsa
towards the same limit, irrespective of the nature of the gas and
epproximately irrespective of the temperature.

3. The Ideal Gess Thormomasteor: The independence of g,in the limit,
on the substance, suggeasta that the lew expressed by {(IIg2) is fun-
damental, and that the dependence of other properties on temporature
will become simpler if the mercury-in-gless tempersture scale is
corrocted so that ¢ is exaetly independont of the tempsrature. Its
value, a8 universal constant, 1s then obtained by applying {1122)
sxactly to eny gaas, in the limit of low prossure, at the normal
gelting (t = O) and boiling (&t = 100) polnts of water. Within ex-
perimsntal error the value 1s

a = 1/275.16 9%}

The following equation then definzz the ldeal gas Lemperaturs scals

PFV-—Ct (t + 1/a) ) .
P-—0

The law 1s simpler if
the zero point of the temperature scale is shifted so that

T?e ¢t + 1/c
PV-—C' T (1ig3)
P—3 0 ) ]

and this defines the ebsolute centigrade ideal gas temperature Beale.

Nothing is implied yet about the absolute nature of T= 0
or even the possibility of negative values for T. Equation {11g3)
merely implies that l1deal gases do not oxist av such temperatures.
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Le & practical matter it does make & difference what gas
ie used because equation {IXg3) cen not be applied if the gas is
condensing. If mercury gas were used this would oblige,at the ice
point; using pressures below 1.85 x 10-4 o, which is impractical.
Obvicusly gases with very low bolling poinis are best, and hydrogen
end helium are standard. However even herve there is & limit at the
normal boiling of helium, at 4.3° absolute, at which the ideal gas
thermometer becomes impractical. Bglow this temperature the vepor
pressure equation of helium (T-ble IIf2) is used,; but it will be
firat necessary to show that the lenporature thus defined 1s identical
vith that which would bs measured with an ildeal gas thermomster if
the latter were practical.

The idesl gas thermometer is not a convenient instrument
ag 1t is always necessary to verifly that the pressure is low eaough
so that the 1imit has heen reached. In practice one uses a fiaite
. volume (B.85 liters for 1 gm of hydrogsn is standard) and applies
corrections; but even 80 it is clumsy teo usse so that in practice
one datermines a certain sumber of fixed points with a gas thsrmometer
and uses more convenient instruments to interpolate. The normal
melting point of 8clids sre conveniont fizxed points if the sclid is
sasily obtained pure as melting vointe are little affectsd by small
changes of pressure. Bolling points ers alsc convenlsnt elthough
here care must bs exercised that the pressure ig exactly 7fCmm of
mercury because of the great variation of boiling polint with pres-
sure. Table IIg3 gilves a number of {ixed points which have been
determined carefully.

k, law of Avog&drox The constent C' in equaticn (IIg3) is pro-
porticns ) t of gas used so that one can write
PV .= HRT s nRT (IIgh)

vhere N stands for the number of molecules and n for the number of
moles. Noy it turns cut that k end R ere universal constants, in-
dependent of the nature of the gag

Boltzmann's constant: k = 1.38Gx10"*6 erg/molecule, degreo

Gas constant: R = 8,314 Joules/gram-tiole, degree
vhere it must be noted that R is in mixed MKS -~ CG3 units.
Another way of expressing this constant, and ons which is easier (o

remember, is to note that 2t 300° absolute and one bar preasure the
volume of & gram mole of ideal gas is 24,942 liters.

5. Law of Dalton: The proportionality between ? and n and the

universal vaiue of k and R shows that sach mole exerts a pressurs

RT A7 independently of the presence of other molecules in the sause

volume and in virtus of some property common to all kiands of molecules,

It should therefors maks no difference if diffeorsnt kinds (i) of

gaseos are mixed, each kind wlll independently exsrt its own partial
preassure ,










‘soclation a.

%

From this formula 1t iz seen thai Boyle's law folliows
u ig constent et constant temperature, Charles! lae¢ follows il u
ia proporticnal to T, Avogedro snd Dalton's lews follow 1f the trans-
iational energy per particle is the seme for different gases in
egulilibrium. The last follows from mechanics, for it can be shown
that in the elastic cellisicn beitween two perticles, the enerzgy
difference betwgen the two will, in the average, be reduced in the
ratio (Bl - 2.2 py each collisiocn, The everage velue of u tends

.\ml + Mo . -

therefore to becoue the same.

Relating {(Iigh) to {Ifgh) giveas the value of the as/orage
energy per particle -

e

u = 2 k7 {I1z7)

o

h) Real Oases

1. Dissocistion: Certain gases oxhiblt marked deviations from the
{deal gas laws at dsnsities at which one would gxpect thesa laws to
be satisfied, Nitrogen tetroxide Nply is a good exsmple end the
devietion is best shown by plotting PV/AT, a quaniity which should Dbe
constsnt, sgainst the temperature, {(Fig. IIhl). If one mcle of
liquid is sllowed to svapcrate at ths normel toiling point, 21.30C,
i1t is observed that the vapor oncupies 16 percent were space than

is expected. The situation bscomes ¥Worse &3 thie temperzture 1g in-
creased at constant pressure until 1500C vhere 1l has practically
leveled off at twice the normal voluse. The curve can be extra-
polated to lower temperaturss end thils s done in the fizure. Flotted
in this wey it is zeen thet thig substence behaves 8s en idesl pas
both btelow -409C (4f it did not liquefy) and above 150°C, ‘but that
the rumber of moles is twice as large 2t the higher tLemperesiure than
&t the lover. In the middle remge it is dissocleting according to
the formule

ﬁ ' P o }
Ry W3 gmee €0 &0 Ve
f 4

’

Let « be the fraction of W0, meoliecules which have dissoeclisted.
Then there are §

1 - a molecules cof H,0,

2a molecules of H

n = 1 4 & moleculss.

Filgurs IThl is a plot of 1 + G and sxhows oW the disscelation pro-
ceeds with increasing temperatursa.

The obaserved ancmaly 1 therefore not & real fok:
from the 1dsal gas laws, What we have 1s & mixmture of o i
gasez undergoing a reversible chemlcal voaction, and the ideal gas
laws are applied to both of thewm to computs tho degree of dis-
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2. Eveporation and Condensation:

The fsothermals shown in figure IIg3% do not extend in-
definitely to smaller volumes., When the vapor preasure corresponding
to the btemperature of the isothermal is rsached the gas begins to
condense, and the presasure cannot exceed thils value until the gas is
entirely condensed. The isothermal therefore has a bead in it Joining
the ideal gas section to & horizontal secticn. This 1s shown in
figure IIh2 with logarithmic scales.

The locus of the bends in the isothsrmals is called the
condensation curve. It is readily obtsined by eliminating T between
agquations IIfl and IIghi. This curve divides the P-V plene, points
to the right of 1t representing gas, and pcints to the left of it s
mixed phase: liguid arnd vapor 1f above the pressure of the triple
peint, sclid and vapor if below. The worl "vapor" 1s used to repre-
sent & gas in equilibrius with its condensed phase, and does not
slgnify any departure from the idesl ges lawvs., At the normel boiling
point steem occupies & velume 1.% per cent less than predicted by
the ideel gas lavs &nd the deparivures are less than that at larger
veolumes., To the left of the liquid and vapor and sclid and vapor
regions there is ancther sharp bend in the isothermals sand one enters |
the liguid or solid regions, respectively, of Phe P-V plane. ' |

Each point of the mixed phase regions represents & definite
proportion of vapor and coundensed vhase. Let Vc and Vg represent

the volumes &t the evaporation and condensation lines, and V an , |
intermmediate point, all et the same temperature. Iet there be n, -

noles of condensats and n, moles of ges at VY. Then 4
p=J

:1-nc+£1

43
n 4}
3 3 ...._9. h -&
] = ngfc + ngvg - fc + B Vg
n. Vv -V
R SR (1Ih2)
n ‘Is T Ve

a is the fraction svapcrated, and one soes that it ig proportional
to the distance from the evaporation cgurvs.

2. Real Gases: The deprarture of reel gases from the ideal lews is
vell shown by plotting I = FV/nRT, & quantity which is one for ean
idesl ges, against the presgsure P. Figure IIh3 shows the isothermals
for carbon ¢ioxide plotted in this wvay. Similar plots are ocbtained
for 411 other gases 1f the scales are suitable altered. This is the
"law of corresponding states’ which will be stated more preclsely in
peragreaph IThS. The following features of the plot may be ncted.

@) All the curves go through 1 at P = 0. This is the ideal
gag limit.

BY The initial slope of the isotherms depends on the temperaturs,
and its dependsnce can be approximated by
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This defines the two constents &, and bo and ealso gives & measure of
the departure from the ideal gas lawe.

DI n

"Y’::{:V (bo i CIEES

o B
5]
S

It 18 seen that it is directly proporticnel to the molsr density, The
Lenperature ao/Rbo at which the initial zlope changes from negative to

positive 1s called the characterilstic temperature. It is the tem-
perature at wvhich the gas Is most 1desl and is about 370°C for carbon
diloxide, 52°C for nitrogen and -165.72°C for hydrogen.
v) A% very high pressures the lsotherms all slope upward. This
is because the gas has become very incompressibie and obeys
Hooke’s lsw more nesarly then the ldeal gas laws. The isotherns
therefore approximate parabolas with the concave side dovn.

o @)
~

In thils reglon the different isotherms cross over, a e~

nomenon called inverslion. At lov pressures the gas contracts

. : . greatly, and may even condense, as the tempsrature is lowsred.
Abova the inversion pressure ths volume chenges less than

the factor 1/T and therefore the isotherms for lov T 1iz above

these for high T. This inverslca 1s important in the

liquifaction of gases.

b, V-n der Waals' eqguation

These properties of real gases were explained gualitstively
by considering two propsrties of molecules which are’
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neglected in the ideal gas theory. First the entire volume V isg not
availeble to any given molecule. There is a volume Vb denied to it

due to its own finite size end that of the other molecules. Thus

V= VA S5 Vb

Similarly the pressure iz only part‘y due to the kinetic impacts of
the molecules on the walls. It is also partly of static origin due
to the attractions of the molecules.

P= PK + PB
The kinetic theory developed in paragraph Ilg6 applies between V_
and PK so that

(P - PS)(V - Vb) =< nRT

Now Vb i1s proportional to the number of molecules so that

e
VD, b

To cbtain a formula for Ps consider the stiractions between the

molecules in a thin layer near the surface of fhe ges and those
beneath that layer but within range of the Van der Waals forces.
These attracticns acting on the molecules as they approcaczh the sur-
face willl retard them and thus reduce PK by the amount PS, which

must be negative. Neglecting the dependence of the ferce on dis-
tance, one sees that the number of force vectors asciing scross the
boundary of the surface 1ayer is proportional both to the density of
molecules in that layer and to thet beneath; that 1s to the density
squaered. Hence ‘

P,z - a ne/vg

and :
'{'!2& Ry 3 V 5
(P + =2}V - nb)~* nRT (IIh5)

This 18 Van der Wrals'! egusation.

The isothermals of Van der Weals' equation are shown on a
P~V plot with logarithmlc sceles in figure 171 At large volumes the
isotherms are nesrly strzight and at 45° in agvesm it with the ideal
gas lawvs. At small volumes they turn up steeply corresponding to the
relative incompressibility of a liquid. All the curves below that
marked 27 have a dip in then cc:f"spon6133 to the behaviour of a real
gas., 27 -corresponds te the characteristic temperature.
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At low values of P and V, hovever, the behavior is singular as a portion
of the curve has a positive slope, indicating a negetive compressibility.
If this part of the curve were realizable the substance would expand
when the pressure is increased cnd contract when it is decreased; an |
obviously explosive situation. Fortunately it need not be realized, for
a given -pressure and temperature in this region determine three solumes
and the substance may choose any one of the three, or pert may be in

one state (or phase) and part in ancther. It is Jjust a question of

vhat combination is most stable, and ‘this will, in fact, never include
the unstable phase. It turns out that the condensed phase 1s more
stable at the higher pressures, the expanded phase at the lower pres-
sures, and that they are equally stsble at the pressure P_. The

actual isotherm is then the broken curve with a horizonta) section at
Pv. This is exactly the observed behavior during condensation., P

is the vapor pressure and the horizontal dection repressents a com-
bination of liquid and vapor phases. There remains the question of
vhere to draw the horizontal line., It will be shown later that it
should be drawn so that the two areas enclosed between it and the
horizontal are equal when the P and V sdales are linear (Fig ITh5)

not logarithmic. Van der Wrals' oequation I1s therefore cepable of
explaining qualitatively (the quantitative checks are not goocd) the
condensation phenomene and the liquid phase as well as the departure

of real gases from the ideal lavs.

5. The Condensation Curve:

Some isotherms for carbon diaride are showvn 1n figure
IIh6. The line Joining the left hand ends of the horizontal portions
of the isotherms may be celled the boilling curve as it gives the ‘
preasure-volume relation of a liquid on the point of boiling. Similar-
1y the right hand curve may be cealled the condensatlon curve. The
vhole curve may be called the saturation curve ag the right hand side
corresponds to a saturated vapor, the left to a saturated liquid. There
is no simple equation for the satunailion curve, but if one plots the
densities of saturated liquid and vapor agalnsit the temperature (figure
IIh7) it 1s found that the dlameter of thec curve (the average of the
two densities) the line obtained is quite asccurstely straight.

/vy + l/vg;x52/vc - C (tc =0 IIh6

this is called the law of (Cailletet and lMsthiss.

g The point wvhere the bolling and condensation curves
msst is called the critical point. Peculiar phenomena occur at this
roint wvhich will not be described here. Suffice it to say that the
phenomena are similar for all substances wvhose critical point has

been observed. This unfortunately limits us to iiquids whose binding

is molecular as the criticel point of liguids whose binding is by

valence or coulomb forces ares above the oxperimental range. The criticel
peints of some molecular substances are given in table IIh5.
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Not only are the phenomena at the criticel point similar,
the entire curves which have been given for CO, in figures IIh3, 6,
and 7 hold with fair accuracy for all gases prgvided the scales of
pressure, temperature, and volume are changed so that the critical
point corresponds to the same values. This is called the law of
corresponding states.

As an example of the accuracy of this law we have given
in Table 1IIh5 the volume of the liquid far from the critical point ‘
and compared it to the critical velume. It is seen that the ratio |
v /v, is constant within 207 . To be correct the volumes of the |
liquids should have been taken at corresponding tomperatures, that |
is at a definite fraction of the critical temverature, and if this
vere done the constancy would be scmevhat botter. The accuracy of |
the law of corresponding stetes 1s much better than the accuracy of
Van der Waals' equation.

6. The Critical Point:

The transition between the stable isotherms and those with
an unstable portion occurs vhen the point of inflexion is horizontel.
This point, which 1is also the poini of highest pressure at which
liquid and vapor can be in equilibrium, is called the critical point.
The values of P, v, and T at the criticael point for a number of gases
ere given in teble IIh5. It is noted that the critical volums is
generally close to 3 times the molar volume of the liquid. The
theoretical values of these varisbles for Van dor Wasls' equation are
readily obtained by solving IIh5 for the pressure

2
P g V“nﬁb = __an*f 1In7
an! differsntiating twice
2
8Py .. _ nRT 2n“a
(W)TN vmp)2 * 3 IIh8
2 2
o°P 2nRT én“a
(-§) =3 - == IIho
ove T (V-nb) vr

Equating ITh7 and IIh8 to zero, nRT is readily eliminated to give

o nb';*’»%vc

c
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TABLE IIh&
. v v m a D
2 o . RT (o] o
Gans oms Ve _emd Fo Te “15“(37 }itii‘ cm>
mole vy mole bars OK cc -9-1-—-5 moie
i JBOlE
B l E i ‘
He 27.2 | 2.26 61.5 2.29' 5.19] 3.69 | 2.4 23.4
H, 26.4 | 2.46 65.0 13.0|33.2 | 3.27T; 24.8 26.6
Na 16.7 | 2.50 ¥1.7 | 21.2 | Bh.4 | 3,25 21.2 17.0
2,0 13.0 | 2.50 5.0 | 220.6 F#?.e 5.81 580. 31.9
Wiy 20.8 { 3.5 75.0 | 113, Wo05.5 | 4.101 425, Tk
CHy, 8.6 | 2.57 G9.3 46.% 190.7 | 3.45 | 229. 42.9
N, 34.7 | 2.6¢C 90.2 | 33.9 126.0 | 3.41| 137 38.6
co 34.5 | 2.68 92.4 35.4 34,2 | 3.41 | 1Ak, 38.3
HCN 28.6 | 3.5 135. 51. PB56.7 | 5.50| 1190. g%,
CH, |#2.5 | 2.66 113, 63, &og 3.60! 437, 51.0
NO 23,8 | 2.42 57.6 66. 1u79.2 | 3.92| 143, 28.2
0, 28. 2.66 74.5 50.4 p5&04 3.420 138 1.8
C.Hy (89.5] 2.57 127.5 95 382.9 3.58 | 453 57.0
A 28.4 | 2.65 15.3 48.5 151.2 | 3.k41 137 32.4
HCZ 30.5 | 2.82 86.0 2.6 pek.7 | 3.80| 372 40.8
PH 45.6 | 2.48 3. 65. Fau. 5.671 460 51.8
' CH50H |#0.5 | 2.90 117.6 | . 79.7 p13 .54 | 960 66.6
p N,0 35.9 | 2.71 a7.5 72.6 309.7 | 4.55| 385 LT
, 60, |37.3| 2.5% 94.8 | T73.98304.3| 3.61| 366 | 42.9
I3 28 | 2.18 89 68 ;268,3 3.68| 423 41.0
CH,08 |54.9 2.78 152.5 66.6 #16.3 | 3.41| 759 65.0
| CHy3 '55.4 2.69 149 72.2 ¥70.0 § 3.63| 801 67.6
30, |43.8| 2.83 | 123.7 | T78.7 #30.4 | 3.68) 686 | 56.9
cf, [41.5} 2.98 | 123.7 | 77.1p17.2 | 3.64| &68 56.2
| Rp 38.9 | 2.78 108.0 54.8 210.0 | 2.92| 234 29.8
| 805 41.6 | 3.05 12 84.6 491.5 | 3.80; 832 60.4
| C CLy0iT1 2.68 190 57 155 3.49 | 1060 83
Xe 43 2.64 | 113.7 | 58.9 p85.8 | 3.59| 415 51.1
C €&y {96.3 | 2.87 g 27 55.5 556.3 | 3.68| 1910 122
g 14.8 | 2.70 ko 3600 {1900 1.10] 292 5.5
Average 2.7 [ 3,681

v v e




whence
Vc::{}nb

T, =~ 8a/27 Rb IThl0

Pc - a/27b2

and there 1s a simple relation between these:

1 c 8
-::Trir—-cv-— , IIhll
Té e e 3

The value of this ratio is also shown in table IIh5 and it is seen
that the actual velue is definitely larger than that predicted by
Van der Wzals. This is evidence of the epproximate nature of Van

der Waeals' equation, but the situation 1s actually not as bad as
these particular numbers would indicate, as the position of the point
of inflection on the almost horizontal sectlon of the critical iso-
therm may be changed a good deal by & very slight alteration of the
curve.

Equations IIh9 may be used to compute the Van der Waals
constants a, and b, from the critical constanis Pc; AT S There

are too many equations, but we have seen that the first equation is
unreliable and we must use the last two

RT \
8c¢::%£ (—Fg)e
c

bc'foT

IIhl2

Q

&

~

The subscript ¢ has been used to distinguish the Van der Wzals con-
stants determined in this way from those a,s bo’ determined from

low pressure measurements, but fortunately they do not differ very
much. Vslues of these constants are given in teble IThS5. The velue
of b is generally larger then the molar volume of the liquid, pro-
bebly because the molecules of a 1iquid are compressed by their
mitual attractions., It will be noticed that vy and b differ most

wvhen a is large, and this is true for molecules with large dipole
moments. The quantity RTc/Pcvc is fairly constent, but not as con-
stant as vc/vz.
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The fraction of the volume of a gas which is actually oc~
cupied by the molecules may be estimated from the_values of b. Thus
the molecules of a mole of air occupy about 3 cm3p vhereas the gas
occupies, under standard conditions; 22400 cm”, or about 600 times as
much space.

On the other hand if we wish to compare linear dimensions

we must take the cube root of this figure, or the scparation between
molecules is about 8.5 times their diameter.

7. Continuity of State:

The P-V diagram contains a region, under the bolling and
condensation curve, which represents & combination of liquid and vapor.
It is commonly agreed that points to the right of the condensation
curve represents gas and points to the left of the bolling curve,
but before the solidificetion line, represent liquld. But what about
points above the eritical point? There is no bnudg,’" hers nnd a
substance can be brought continucusly from the "ges" to the "liguid”
region without change of phage. Where there 1s no froe surface the
vords "liquid" and "gas" sre undefined so it 1s a quesation of con-
venience vhich one to use, provided one understands that there is
no sharp physical distinection. It is convenieat tc use "gas" vher
the ideal gas laws are approximated and "1iguig" wh,re Hooke's law
is more nearly true. A glance at figurs IIn4 shows that this is
more & question of volume than QLLASf pressure or tem*ara*u"e' ir
the volume is much less than the critical volume' the substance is
like a liquid, if it is much larger the substance is like a gas.
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III THE FIRST LAW
{a) ¥ork

1) Definition

If a substance exerting a pressure P undergces expansicn DV
it performe en amount of work

W = PAV (11Iel) PR L
/L\ I/\/ \\ \i\
and if the expansion continues fron .\T\\\\\\ig\\
A to B along the path AB ths total R, TR DY, AR =
amount of work performed is '\C\J\f\\\\\\
AR

- §B ,

¥aB = 7, Pav = Area under AB (IIIs2) \NNNVAN
l\\\\\\.\'\ \\\\
W obviously depends on the path BRSO, el B
chosen in going from A to B and this {\: \Qg}f\\\\\\ o
is indicated in equation (III22) by o AN |
the bar across the integral sign. : et V
erefore W is not & functlion of FIG. IIIal

the state of the gas and cannot be

xpressed in terms of V, P and T. It is called & fuvactional. Thus
LW is not obtained by differentisting & funciion and this 1s ex-
pressed by saying that it 1s not en exect differential and is in-
dicated by the dbar acrosa the <. This distinguishes it from exact
differentials such as

which integrates to

T = VP % const

There are, of course, other fomas
such as electrical work or megnetl
considered here.

2) Units

swxd do wd® wzmwts s PYass Dl ard the Jnivle

HE Y 3 Vol

. =g W AT LR Y ISR AT b, ha
respectively. n dealing with geses it 1s convenient to uss the
liter-Bar defined by equation (IX¥sl) in which V 13 expressed in
liters and P in Bars.

1 liter-Bar = 100 Joulses ' (I11a3)
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3) Reversible and Irreversidble Processes

The work obtained in going from A to B also dependas on the
speed with which the process 1is carried out. Imagine that the sub-
stance is & gas working against a piston. If the piston is withdrawn
rapidly the pressure exerted on the piston may be less *hﬁ“ the pres-
surs in the gas. It can even be imagined that the piston is with-
dravn faster than the speed of the moleczules in the 84S, in which

case the pressure con the piston is zero and no work 1s done by thse gas.

Reciprocally when the piston ig pushed in and 4V and AW are nagatize
the pressurs on the piston may be larger then that in the gas. In
both cases

& WS PAV {111al)
wvhere P has any value between its extremes at the piston or Tar from
the pisten. It is assumed only that pressure waves have noclt been
set up and the piston is not withdrawn in such a way as to follew 8
pressure crest. -Such an unlikely circumstance wlll be considered in
discussing irreversible processss. In general the difference bstween
P4V and W is internal work which parts of the system do on other
parts but which never appears on the outside.

If the process AB is dcne slowly so that the equallity sign
holds it may be repeated in exactly the reverse direction EA and the
work done on the substance will be equal to tnat done bv bye zas be-

fore. The process is then said to be{FEVETEIDIE) On the other hand
if the inequality holds less work is obtained “vom and more is done

on the gas go that there is & net loss of work and the process is
I!!!!!Eii!!ﬂb

In discussing & process such as the expanslon AB ve are
departing from the agreement to deal only with eguilibrium states, for
the very fact that the state is changing shows that there ls not

equilibrium. Howsver i1f the process is carried out u;ry slowly it can
be, at every step, very close to equilibrium (guasi-stetic). The line
AB on the P-V diagram then represents the equllibrium states to which

it passes very cloae. On the other hand & process which is carried
out very fast does not go near oqguilibrium statey and cennot be re-
presented on a P-V diagram. We 3shall generally restrict curaelves to
quasi-static, reversible, processes.

. P
4) Cyeclic Processes
‘Particular importance attaches <§;<§Q3
to cyclic processes in which a substance '\\ \\\J

at the end of the process has rseturned to
its initis) state A. If performed re-
versibly the process is represented by
a closed figure on a P-V diagram and the
area enclosed is the work of the process.

Pav

W L. $
0 Wt o

(I11a5)



guantity Q which has not yeit bee

= aid

ticn in the form
1

As the cycle may be repeaited as of tan ‘f’vc
cbtain the work W thers must be mwoen

of W of incraaajng ijd&f{‘i.VBI
a characteristic property of inex
ferential, such as AT, returns t

substance returns to itas i

1) Method of Mixtures:

e

¥hen twe messes “1 and & dm of" the same substance but at 4if'- |
|

ferent temperatures Tl and ~T, ere“placed in contact their temperatures
change and eventually reach the same vsalue T,, which, if T 3
not differ by too much, is given by

[

T, - T, M
A 3.2 (I1Ib1)
T -, M

If the two substances are different this equatlon must e exteonded to
read '

TTTH

o . m Seg—s (‘j_‘ Ll *"
Gy :

The quanitities C are callaed heat capacities and the quantities ¢ are
o 2 Y

called specific heats. 3poci heets deprend {8, on the substance used,
(b) on the mean pressure and temperature cof the expsriment, and (¢) on
the oconditions of the experiment such as whether the pressure or the
volume is held constant. In order hu ﬂnnz‘: specific hesets 1t remeins
only to refer them to a standard 1 78 at standard pres-
gure and temperature: one eL"ﬁr;ﬂw:. snd c inds

standard conditions: constant preesur fic heat ig taken
as unity.

2) The Calorie

Equation (1ITt2) as well a8 mahy other obsorved relastilo :

follow from the hypothesis that e quentity Q, c¢f something ce
heat, flows from the hotter body to the colder one, and that

otq = ¢, ar (11Tb3)

wvhere

O = g/ = cma (T1104)
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will raise one grem of water from 1k,

vi
of a liquid or rubbing & solid. To include such proces

001 -

+ 0001 -

Da.

Cx is the heat capacity, c; the heat capscity per mole, Cy the specific

heat, and the subscript x is used to denote the perameter which is to
be held constant in the process.

}
The unit of heat, the calorie e _guo ntity of heat which
50 500 under one atmosphere

pressure

the process

e of &2 body in
gorous stirring
sos one must vrite

Equation IIIb3 is corrsct as it stands for
described, but it is possible to raise the temperatur
other ways than by conducting heat to it, such as by v

LQ £¢, a7 (IIIb5)

1 \\\\\\‘ Copper ,
o %) Conduction

. The rate of heat
flow, ¢l Q/dt, through a

0.1 1 material is found to be pro-

portional to the aresa A

: thrqugh which it flows and
\\\\\§§§?e“1te . to the temperature gradient
_ ———— daT/al

—
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There 18 alszc a characteristic
differsnce betwveen solids and
‘FIG. II1b3 fTluids that in the former
the conducti ity decrecases
vith the temperature vnile
in the latter it increases. For ldeal geses it varics ss T3/2,
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4j Temperature Equation

f/’
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FIG. IIIbk

The equation for the distribution of tempersturc along a rod
of cross-section A cen be derived from (IIIb6) and (I1Ib3) as follows:
The heat flow &long the rod is, by {(IIIb6),

e

[ = - KA

P>
O

=3

(IIILT)

5

[N

and therefore the net rate at which hest is I'lowing into & section ax
of the rod is !

%—;; (£Q) = -a " = k2 q ;’% {11T08)
The heat capacitiy of the section of rod is
dCj, = ¢ d¥ = p cf Adx (111Iv9)
where P 1s the density of the rod. Now from (IIIb3)
Al = dCP%%‘- = poy Adx g% {11Tb10)
whence _— - al \
| ai’é’ . 9;‘9’ I | (IIT621)
OF: R SR - &

Eq. (II1Ibll) connects the distribution of tewpersture slong
the rod with its rate of change with time, Note that the first der-
ivative with respect to time enters instemd of the second derivative
as in the wave equetion

=y 32 ~2
‘.‘ F \" . l ) T
N T = oK P L 5 {11Ib12)

/;) X
The propagation of temperature thereforve diifers greeily from that of

pressure, The solubtion of (IIIbl2) is &ny wave propegated with a
definite velocity \\\\\

e

¥ 1/ Kp |

but there is nc such definite velocity connected with (IIIbll).







5) Specific Heats

It has been seen that the
specific heat (Eq.IIIb3) differs ac-
cording tc the process, and vhatever 5
parameter remains constant 1s indicated +
by a subscript. We are commonly concern- - R
ed with o and ¢, bul one can also L

consider an isothermal process for which 4
cqp = ® because dT = 0. 3imilarly a re- S S

versible process for which there iz no
heat transfer las called ediabatic end

U

. \

‘__O(_)
the corresponding specific heat c¢c_ = O +\\ :

Each one cof thssge processes defingz 8 o)
direction on the P-V plane and these
are indicated on Fig. IIIbS.
directions between the isothermel and

adiabatic the specific heat i1s negative

For

end for sll others it is positive. ’ \/

FIG., IIIb5

Experimental valuss of cp and ¢ for conper apre shown in.

cal/mole deg.

o
e

i

~ ]
C Z_,,/——J

Cyp

--‘“P

200 450
#1G. 1IIb6

figure I1Ib5, and the general shape

is typical of all solids. The tem-
perature at which the curves bend over
sharply is called the characteristic
temperature, and 1t is found that the
specific heat curves of all soclids agree
fairly well if teuperatures are measured
in terms of the ciharacteristic tem-

perature and if %tie specific heats are

3.

computed per gram-stom instead of per
wmole., If there are v stoms in &
molecule the mumber of gram-atoms 1s
n, = vn (IITb13)

Above the charactorisilec temperature

the apecific hest atb
for most solida romains near & cal/gm
2tom®C. This is Dulong and Petit's
Lawv. cp is found to be practically

constant voiume
r 4

independent of th» pressure, Com-
paring figures (I7d) and {(ITIb5) it
is noticeable that ¢y and B vary in
much the same way. Tndeed there is a
result of the theory of the s0lid
¥nowyn as Grunelisen's Law which
that
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where A is approximately constant. The presence of V and /A in this
formula does not alter much the proporticnality of c_ and P as V and
A vary 1ittle and in the same direction. This formBla is useful to
obtain values of P at low temperatures from measurements of cp.

The specific heats of gases have a similar temperature de-
pendince although their characteristic temperatures are much lowver and
at absolute zero they approach 3 cal/mole degrece instead of zero. At
normal temperatures Cy has approximately the value 3, 5, or 6 celcries

per mole degree according to whether the gas is monatomic, dlatomie,
or polyatomic. The specific heat of a solid is therefore alvays
smaller than that of its vapor et low temperatures and larger than it
at high temperatures,

6) Heat and Work

It will presently be shown that heat, like work, is energy in
transit. Heat differs from work in that no mecroscopic motion is nec-
essarily involved. It is transferred either by conduction through a
material or between surfaces in contact or by radiation thrcugh free
space and in no other way. In the process of convection there are two
heat transfers: from the hot body to the fluid and from the fluid to
the cold body. In flowing from the hot to the cold bocy the fluid
carries not heat but enthalpy as will bs seen,

c. First.lav
1) Eguivalence of Work and Heat

In a series of classic experiments Rumford (1798), Joule
(1840), and others showed that irreversible work and heet were equiv-
alent. In Joule's first expeiriment paddle wheels wore caused to stir
wvater by falling weights, and the loas of potential energy of the
woights compared to the temperature rise in the water. A similar ex-
periment was performed using the 12R loss of clectrical energy in &
conductor. In all cases it is found that 14,1858 Joules of irreversible
work produce the same effect as the transfer of 1 calorie of heat.

2) Cyclic Process

It is, however, not necessary that the work be performed
irreversibly. If a substence is taken around & reversible cycle as
shown in Fig. (IIIa4) it has been seen that a quantity of work

Weadbw

appears or disappears in each cycle. Experiment shows that an
equivalent amount of hqat

Q=dtq , (11Tc1)
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diseppears or appears also, so that

$ (q -aW) = 0 | (I11c2)

This eqy f course, be proved _NO-.CON-
tradiciion has-ever been fo povided AW includes all known forms

of worlk: mechanical, electri: gnetic; chemionl, ete.

3) Internal Energy

) . The universal validity of {IIic2) 4is the condition thst
A Q -o¥ be an exact differential

AU =dQ -y | {I1Ic3)

The function U is called the Internal Ensrgy, and the existence of this
function constitutes the First Law of Thermodynamics.

If ws restrict ourselves to volume changes eq. (I1lc3) be-
comes

au=dLy - PAv (IIIck)

vwhere ihe inequality sign holds for processes that are mech&nicaliy
irreversible, ’

4) Heet Capacities

Equation (IXIc4) can be written

ZQ £ au + Pav {111e5)
also aU BU
' dl = (é—,r-)v aT + (W)T av
Hence 5
: o U\
o -":-'(E'T'v ar + {(‘\’U) + 1? av (1IIc6)
Sa- ‘I‘ -t
and
Cy = (%%)Y (111c7)
Defining the F:thalpy as
' H=1U-+ PV~ {111c8)
£Qq & au - V4P (11Ic9)

Proceeding as sabove we find that

i {
AQ £ (%%)P aT + {:igf}%)m -V }iar (I1Iclo)
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c, = (%%)P (11Te11)

Thus Cv and Cp measure, respectively, the change in internal energy and

enthalpy with temperature. U and H are not generslly measured ex-
perimentally and Cp is much easier to measure than Cv. Therefore the

enthalpy H is gonerally calculated first from measurements of Cp and

the energy deduced from (IIXc8). In fact the enthalpy is .g1lven
directly in the cooling-curve method of measuring specific heats. In
this method the substance to be studied 1s disposed so that it 1s main-
tained at a constent pressure P but loses (or gains) heat at a known
rate » and which we shell assume to be constant,

ZQ/at = r T (IIIcl2)

This can be done, for example by heating through & resistance wire.
The temperatura is then pletted ageinst the time and the slope of the
curve

T
aT r
iE™= 7T (11Ic13)
P
is inversely proportional toc the specl-
fic heat. However from (IIIc9) it is
seen that
GH = < Q = rdt
therefore \
kg ; FIG. IITch
HeH +rt (IIIc1k)

If wve plot rt agsinst the temperature we have immediately a plot of
the enthalpy.

. One could similarly obtain a plot of the internal energy U
1f one could perform the experiment at constant volume, but this 1is
generally not possible.



5) o, Q-Tiquations:

The heat absorbed in any process cen be
Cv as follows:

du = ( ) av + ( ) ap
Substituting,thia in (IX1c5)
Amfi W, g] av + (dU) ap
Le=(F av), v+ (ggg

dnéwm)( )av+(> ()
dﬁQ:é:cp (%%)pdv + Cy (yy) aP

. Y Cy
aﬁaﬁ&-ﬁg %X-+ —% X ar

Substituting
dP = ( ) dav + ( ) aT

and using the cyclic relation we find

( Uk
Q£ Cy AT t (Cp - Cy) (3 ) av

and similarly

L=
Lefc,

These equations will give the he&t absor

oT
ol e Thoke (5 L “,‘.’..
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deduced from Cp and

(11Te15)

aP

(1I1c16)

(IIXelT7)

(111c18)

(iIIle)

ved by & suostance |

in eny reversible process, In particular the second terms of (IIIc18)
and (IIIc19) give the "isothermel heat" or heat reqguired by a reversible

isothermal process.

6) Adiesbatics

The equation of an adliabetic curve on a P-V diagram 1s readilly
obtained by setting <€Q = 0 in equation (IIIcl7).
8 to dencte an adiabatlic process -

Using the subgcript
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' c '\
N N1 AN A
v ‘&‘)’8 Co )
Defining adiebatic compressibility by

1,3V ——
)‘(3 = -5 (7;-1; (IXIe20)
o8
and also indicating by a subscript the conpressibility measured iso-
thermally
- .
X = ){T
G,r k- -é&'- &5 e
v 8 \

o
x

Frequently the two compressibilities can Do meosured: M., by

measurenents of P and V and X; from the velocibty of
obtained from the above relation,

The velocity of scund in an ideal ges is glven oy

i~

Sty Jute-amnd o TS r——-— aart

14, 0 = Y/ %y = [YEV

Yaouna = Y1/% - Daie. /-9‘9:‘*»; s Lé?j.
~/ & 7

where the ideal gas laws have been used to get X.,. fHowever 1t has bheen
seen that

1 2
PV = 2! = vmolecules

hence

v g
_scend ¥y

Vmolccules 4

Thus sound, in an ideal gas, travels alwmos’ az fast o the moleculcd.

7) Energy Eoustion : ‘ f Lo Ly,

Combining (ILicl8) with (Q}IQ}} we have
N v M L
2 v % p 3 o | ‘0 f"
dU = CVdT 2 ECP - Uv; { =2 - P} av : { Tiie22)
. )
If Cy» C. ., and the equation of state are Imown thls roclation cen He used
vV’ "p

to compute the internal snergy U. Note
kept in this equation because 1t ig 1 ¢
go. Equation (IlIc22) epplies only %o & reve:
equilibrium states. This is a common resthrict & 3
tlons and prevails whenever the inequality sigm is not specifics

indicated. d " - C/L, (L-\wi,,)

been
would
8 o

agua -

L XS

g O b b oF
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Combining similarly equations (IIXcl9) and {(IIIc9) we have
for the enthalpy

C’.ﬂ
—
4
b
-
Q

n
\A
N

dH = C dT+L-(cp—r:V) )‘]

8) Fres Expansion

. There are two simple though irreversible expansicns of 2 ga
wvhich will illustrate thes use of t{hermodynamic relatlons in ix s
processes., The first is free expansion. ¢

Imagine a vessel of volume V2 with =

portion of it Vl separated by a par-
tition. Let Vy contain e gas at 4R . 2~V
pressura Pl’ and the remainder be

svacuated. Then imagine the par-
tition to be punctursd or othervise
removed. The gas will then expand
irreversibly cccupying the entire
volume V,. However pressure and tem- '
perature“will not be constant, or ev n measurable,

- P ”
ring tho preces

sulated £ Q = 0. Hence from (IIIu}‘ dU = 0 and the process procce
at constant energy.

Consider now & reversible process at ccnsbtant enoryy. Using
the cyclic relation we cobtain

RU/V
aT ! _ 1 430 AL
K= (B-V)U il (SU73TS, - - - ’{;TV ('Eﬁj-) 4 | (IZXc24)

This quantity 1s called the Jouls cosfficient. Integrating
Vo

T2‘ -0 = :’EV;_ padv (I1Ie25)

The end states of the free expanslon being equilibrium states the Lem-
perature difference computed in this way for a reversible process will
be the zame as for the irreversible one.

Actually equetions {IIIc24) and {IIIc25) are used in the
reverse vay, msasurements of the temperature charge 12 - Tl giving a
sensitive way of obtaining the change of internal energy vwith volume at
constant temperature.

In terms of this coefficient cne can write the ecnergy cquation

JU/ s 2
o | av = Oy \d’I‘ < pav) | (1I1c26)
’ A/ ! .
(f‘ \,/‘JLJ } v [ L .
A ‘ Ao e il







61‘)

. 9) CThrottling Process

The second simple irreversible process is ithat in which a gas
flowing through a pipe G v
at pressure P, expands 5 —< . P
through a nozlle into i =4 i 2

a second pipe at pressure - .
P2. This differs from a

free expansion because as
n moles go through the ;
nozzle an amount of work Pl Vl ;s done on it by the gsas vehind it and in

turn it doss P2 V2 on the gas ahead. Then the net work is W = P2V2 -
plvl and if there are no heat losses to the pipe Q = 0. Then

U v .

5, = Ul =Q ~-Wa= Pl V1 - P o

4

B o= Uy + PV, = H, {I1Xc2T)

The enthalpy before and after passing through the nozzle is therefore the
same. It would be incorrect, hovever, to say that the eunthalpy is con-
stant as the pressure is not well defined at the nozzle., However the

'I. temperature change may be calculated by consldering & reversible process
having the same end pointa. Using the cyclic relation ve find for the
Joule-Kelvin coefficlient

3
RS LU0 SR Y3
Eﬁ'ﬂ i§H/§?)p Cs ‘8D’ g
) {
dH = CP(dT - w' dpP) (1I1Ic28)

It turms out that wvhen the temperature iz less then about 5
times the criticel temperature this coefflcient i1s positive (cooling on
expansion) and may be quite large. The Linde process for ligueflying
gases 1s bssed entirely on this principle.

10) Reversible Flow
. For stream-line, insulated, flow

? : dU = - PaV (111c29)
dH = aU"+ PAV + VAP = VAP
1 £ {¥?)
| Nov from the force equation F = |/ ¢~
| N
| 5 -
‘ F ar _ ex dv .
| g &= BT YV







whence 1
dP“~'2-§dV

go that

1 M dv2

dﬂm-'"é'

and - 5

H/H + % v© = const
[ 8

This is the extenslion of Bernoulill's eguation
pressible gas.

d. Applications

s o

1) Xinetlc Pilcture

From the simpls Kinctle piecture of an

1t was shown that

\
It fcllows that the Kinstic ensrgy ol ir nslation of the par

Mmv™ = ? VE = =«

1
KT ™ B

1 this were the only internal energy it weuld flllov that

ou

CV o ((QT) -] nit
v -
¢t = <« R = 2,98 cal/mole deg.

1

and this is very nearly correct for mom tomic gases.
sdditiopal heat capacliy of dletomic and polyatonic
sumed that the molecules have rotational Kinetle

B4V

P e

2Racs

mz. b nt
UKR 5 nRT e

e N

wvhere v = (O, 2 or 3 sccordiang bto ynstcher
is not en exact

diatomie, or polyatomic, This, howsver,
can be seen from the decrease of

-

N

2) Ideal Gas

f

Experimentally it is not

ou
ir the limit n/V-~—-?2 0 but it 1
this lim: Thersaslore for

o

T

found that
an 1des) gas

conatart
venishes in

2

energy &3 well

the molecules ar® monatomic,
relaticn as
specific heats at low tewpsralures.

rd that the specific
& the Jou

"
gas given earlier

{11141)

To explein the |
1t is as- l

and tThat

{11144)
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From (IIIc24) (%g)T = 0
From (IIIc26) dU = C, aT (111485)

Applying the condition for an exact differentlel to this cquaticm 1t is

seen that
o oC
(=Y Y

= (—~=) =0 (111a6
TV T g )

so that Cy can be & function of T only. Integrating (111d5)
U=0U_+JT ¢, ar
o o “V

From (IIIc5) AQ £ ¢y 4T + PV

Whence 3V
cp- Cy + P (g-i;)pzcv+nﬁ‘ (1II7)
and Al = Cp aT

The difference in the heet capacities comes, in an Jdeel gas, entirely
from the term PAV which represents the external work done wvhen the gas
is heated at constant pressure. It elso gives the heat necessary to
expand a gas lsothermally.

From (IIIcl6)
AQ & T (C, aV/V + Cy d B/P)

so that along an adiabatic

Y av/V + aP/P = 0

or Y
PV’ = const. (11148)

2) latent Heat

In the parts of a P-V diagranm where two phases are in equilib-
rium the isobars are also isotherms and

Cp = Cp = o (11189)

It is therefore impractical to use the £Q-equations. EHovever cguation
(1I1Ic9) applied to en isotherm in these reglons gives

AQ “.an (TTTa10)




-

The latent heat I is defined es the amount ¢ heat gbhsorbed in Passing
completely and reversibly at constant temperatuce snd Dpressure, Lrom

one stete to enother. Integrating {IIIdJ@

where .the subscripts 1 and 2 may
liquid, or liquid end vapor. Fi
at the triple point

! z 1, + L . 7rTTaya
Laublimatiau “melting “hoiling (IITa12)

and at the critical point

i
1 |
~ In general th» latent heat varies with the tempersture as

shown 1an Fig., I1I4

L

i

R R D

T3
)
(4
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From the definition of the enthalpy

3

Ly, =U, -0y + P (V, - V) (1I11413)

12 2 i &

The latent heat may therefore be comsidered as the sum of two parts:

an "internel" part vhich goes into changing the internal energy of the
substance and an "external" part wvhich goes into wvork ageinst the externmal |
pressure. This latter pert is quite smell unless the second phese is

vapor,

‘ As an example of the orders of magnitude cncountered we may take
water &t one atmosphere pressure. Then .

o
At 0°C | Ihelting = 80 cal /mole
from 0°C to 100°% NI o= 100 cal/mole
o
at 100°C Lboiling = 539 cal/mole

of which 40 cal/mole go into exterpal vork.

The latent heat of boiliag divided by the temperature L3 foumd
to be remarkably constent for 211 substance ;\J'i’ﬂ” the 903;:.70 is
such that the moler volume of the vapor 1s go*v* the came. ?h osing
arbitrarily 197 liters per mole one finds- that L/nRT is b
close tc 13.5 Water and other liquids with vCLycdl
dipole moment lead to higher values. This is the Trouto:

lay .




Q
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{IVa)
IV THE SECOND LAW

{a) Entropy

1) Ideal Gas
It is readily seen that the difference 4Q - W is not the

only exact differential that can be formed out of the inexact ones ol Q
and o/UW. For instance

Ao V/p = av (Ival)

i3 exact 1f we consider only reverslble processes. In the case of an
ideal gas it 1s easy to see that

-« C_AQT + PAV
di%:u e = ds (Ive2)

1s also exact with the same limitation and thus defines the function S,
wvhich is called the entropy, to within an additive constant, by simple
integration. Indeed as P = nRT/V and C, 12 & function of T only

c

s [T —p aT + R iV + S, (1ve3)
p C '
- | wg- dT - oR fn P + 5 (Ival)

1

c. C,
= Iinfv>PpPY) +3 { IVa5)

o

' These three forms for the entropy follov from integrating
the three ofQ-equations {IIIcl8, 19, and 17) of the lest section. To

derive the third form (IVa5) it has been assumed that C, and Cp are con-.
stant and therefore this expression is not as general as the other twvo,.
but it does bring out clearly the eguaticn of an adiasbatic: FVY = constant,

_when the entropy is constant. The three constants 3 5S¢ , and Sg are

o? ~o
in general different and depend on the lower limit of the integral.
Without further assumptions it 1is impossible to determine these con-
stants although thelr differences are readily found.

Equatiors (IVal) and (IVe2) may be introduced into the energy
equation (IIIc3) to give

dU = Td3 -~ FdaV {IVas)




. This equation is not guite as general as (IITP}) as it can only be
‘used when P and T are well defined, that is for quasli-equilibrium states.
Simlilarly one hag

aH = TdS + VaP (Iva7)

Equations (1) and (2) can be genervalized (o apply
1bla processes by introducing inequelities:

vy to irrevers-

LW £ PAV { IVa8)
dQ £ 148 {Ivag)

We have seen that the firast of these inequalities is due to
pressure gradients in the system so that vork 1s done Ilnternally and
does not all appear as external work, Similarly the second inequallty,
called the Clausius 1lnequality, 1s due to internel thermal gradients
so that heat flows internally. In an irreversible process having the
same end states as a reversible one, the work done by a ges is less
and the heat absorbed by it is less, but the difference must be the
same as the internsl energy change is the same whether {(IVebs) or
(IIIc3) 1s used,

Equations (IVa8) end (IVa9) show the snalcgy between entropy |
and volume. Entropy is extensive like volume end it also generally in- |
creases with temperature and decreases with pressure, It differs from |
volume in that it 1s not directly measuresble; and in this it is similar |
to energy. ILike energy it contains an additive constant. Unlike |
energy it is conserved only in reversible processes: i

F(LQ - LY) = au = 0 (1valo)
e § LQ/T £f a8 = 0 (1va1l)

2) Second lLaw

Equation (IVa2) is really not surprising as it is shown in
mathematics that it is alwaye possible to find en integrating factor
{in this case 1/T) vhich, when multiplied into an lnexnct differentisl
such as d0Q will produce en exact differential such as 3. A similar
equation must therefore hold not only for an ideal gas but for all
substances. However 1t turns out that the integrating factor is the
same, 1/T, for all substencea. This fact together with the statement
that negative temperatures do not exist constitute the Second Law of
Thermodynamics. This means that the squations (Iva6, 7, 8, 9, 10,
and 11) are perfectly general and apply to any system. The proof of
this is not direct but rests in the verification of conzlusions from
these equations and will be discussed later.



3) T-3 Diagrams

From analogy it is cleer that plots of temperature against

entropy will have many properties equally useful to those of P-V
diagrams. Thus from equation (IVag9) it is seen that

the heat absorbed in a reversible process AB 1is
given by the area under the curve AB. An irre-
versible process cannot be represented by &
curve &8s the temperature is then not dffined.
Also from (ITIIb5) and (IIIb4) we have for

the heat capacity

), Lo =1 (D (1ve12)

T/C, is therefore the slope of the curve of
constant x on a T-S diagram, Just as ~1/VX&

is the slope of the curve of constant x on
e P-V diagram.

Adiasbatic and isothermal processes are, of course, represented
by vertical and horizontal lines. If infinltesimal processes of con-
stant T, P, V, and S are showvn on & P-V and & T-3 diagram it is geen

7

FIG IVal

that these diegrams are obtained, one from the other, by a sheer

P P

>

= v V N

FIG. IVa2

deformation such as to bring the isothermals and adiabatics at right

angles in the latter. The topology of a T-3 dlagram is therefore

similar to that of a P-V diagram and the various equilibrium reglions

between solid and liquid, liquid and vapor, & vapor and solid look

much alike. The ares under a melting or vaporlzation isotherm 1is the

latent heat of the process.




1q.
Liq. and Vap.

So0lid

Triple "point"

Solld and Vapor

rIG¢, IVa3

4) The Gibbs Surface

As hag besn seen with the P-V-T surlace,

twe dimengionsl

diagrams are best considered 28 projections of an equilidvrium surface

in a three-dimensional space.

is named efter him. PEquation (IVad) sl
negative of pressure are the slopcs of a

-

Consider the point Ul, Vl, 81.
rlene is

U - Ul = Tl {3 - Sl) -

1

01 is & constant in this equuation and gives the

- 3

with the
T
£

gent plans

of tangency

energy axis.

» . 2 - =
18 called

Censidserable adventage
three extensive quantitles insteed of mlixing
cnes 88 1a done in the P-V-T surface, and we now have
such quantities in the energy U, entropy 8, znd volume V,
Gibbs firet proposed using these coordinstes and
73

S00OY

Considered as a
the Gibbs funstion.

cones of plotting
intensive exnd extensive

dafined three
Willard

the surface so plotted
that temperature and the

this surface.

&

tangent plene to

The equetcn of the tangent

- PV

intercept of the tan-

. Py VL S o 2 2
functlion of the point
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The second derivatives of this surface also have simple
meanings: -

-a—?-q = aT uE T v
(o2 . (55)y = 5, Bl
3P 1
(E§§) = (5708 == vgé (Ivals)
2 |
E‘g?%“ - (g%})s = v%%- | { 1Va16)

vhere BS is a negative quantity which may be called ths sdisbatic co-
.efficient of volume expansion.

But the particular adventage of these coordinatss i
ability to represent non-equilibyium states. If we plot ¢
energy u, entropy s, and volume v, per mole or per gram

o

LV

2 then the parts
of a homogeneous system are ropresented by the same point as the whole
system. The parts of & non-homogeneous system arce represcuted by
different points whose center of gravity represonts the whole system.

Suppose for instance that n, ® moles of a substance st tem-
perature Tl are considered together with n, moles of the same sub-~

stance at the temperature T The speclific energles are:

the comblned specific energy is:

Ul + U2 niu, + Nyt 7
Ye * 0 F1n, © " n, F¥n ’ (1val7)
1 2 1 2
and similarly for the volumes &nd entroples as thsse ere also ”’diti!@.
Thus the point ¢ is on the 1line joining 1 end 2 (FPig, IVal). Hov let
the two quantities be physically combined. Theipr pressure will then
rapldly equalise, followed by thermel equilibriuvam vhon the point B on
the equilibrium surface is reached, If the process ig at constant
total energy and volume the line CE will be parellel to the entropy
axis, and because of the sign of
2

o%u T

s ”s ey

asa)v cv ? (Wal?;)

will be in the direction of increzsing entropy.




Saturated liquid and vapor are represented
by different points and the equilibrium
surface contains the straisght line Jjoin-
ing these as the liquid and vapor are in

equilibrium in sny proportions.

point 1s a triangular plane area

the points representing solid,

The triple
joining

liquid,

and vapor at this pressure sand tempoerature.
A non-equilibrium state can generally be
divided up into vary small parts vhich

are very nearly in equilibrium within
themselves and cen therefcre bs repressnt-~
ed by points on the surface. But if they
are not in equilibrium between each other
their csenter of gravity will nct fall on
the surface. As the second derivatives :
{(IValld) and (IVal5) are necessarily posi- ‘ e 5
tive, the center of gravity llea above
the surface. All ncn-dquilibrium atate
are therefore rspresented by points sbo

the surface, and ain irreversibls ?wa" 15 i: represented by a line pas-
sing above the surface. Although the entropy of & non-equilibrium
state 1s not defined by eguat 103 ii?aﬁ } it can be computed ss the
sum of the entropies of the parts of the avstem 1Y these are close

enough to equilibrium,

b. Cyelic Processes

1) Reversible Cycles

Particular impcrtence att
in a cyclic process the w«rkjng sul
The net result of t© : AE s pande
Q__Qpﬂnt.ies. o_f_,t,ha_guhr*fanoe pnd relats Q};ﬂ\ Lo the

and work. In particular it follows

(2

D W O
f-
}.1

..4‘ (5
> &

3 Yy 4
£
b

U"l‘”"ﬂ“ﬁ"{l ns c£ ggaet

from the Pirst lawv that

{Ivbl)

&7 St ds 8 & & oa £ I O x P vw o s Tuan sl on e e ':, -
the Qéﬂuc¢h¢mﬁ of heat sbascrbed and re jected by

vhere Qg end Ql are

the working substance duxri cyele 2nd ret work done. If
the objeﬂuive is to pnve¢‘ into i ienay ths pro-
cess 18 defined asz

) W . P

y =g =1 (Ivo2)
Bquation {IVall) can then bhe uned to »elate G, end 9, in eny particuviar

cycle. .
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P I
Y
FIG, IVbl S

It is immediately clear that the efficloncy cannot be one,
_that is the heat absorbed cannot be entirely converted into werk,
unless Q, is zero, and from figure (IVbl) it is seen that this can
occur onty if the return path is et the temperature T= 0, Az the ab-
solute zero is unattainable it follows that:

The heat Q cannot be converted into work W without an accon-
panying amount of heat Ql dropping from the higher to & lower tem-
perature. - {Kelvin statcment: no perpetual motlon of the second kind).

| Reciprocally, if the cycle is performed in the opposlte
i . direction us a refrigerating cycle:
The heat Ql cannot be raised from a lower to a higher tem-

| perature without the expenditure of an amcunt of work W. (Clausius
| statement). The "coefficient of performance” Ql/w mey, however, in

\ this case be greater than one.

| If the objective 1s to deliver heat Q2 at the higher ten-
peratures the use of a reversible cycle wvhere Q, > W is more efficient

than the direct conversion of work into heat, as in mechanical friction
or in an electrical resistor where Q = ¥W. This is the basis for some
proposals for the efficient heating of houses,

A special example is the isothermal cycle 1llustrated in the
P-V diagram, figure 1Ih5. The curved line is a Ven der Wzal's isotherm,
the horizontal line the liguid-vapor equilibrium isotiherm. I ~ompressed
rapidly enough the gas might concelvably be carried through its unstable 67
states and then expanded mslong the stable lsctherm. As the wvhole cycle
is at the same temperature it is represented by a horizontal line on &
T-3 diagram and Ql = Q2‘ Therefore the work must be zero and the iwo A

shaded areas in the figure must be equal, and this is Jjust the con-
struction given previously in figure IIh5.
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2) Carnot Cycle

Sadi Carnot (182%) proposed a simple cycle composed of two .
isothermal and two adiabatic processes and which is therefore rcpresent-
ed by a rectangle on a T-8 disgram no matter

vhat the working substance. Also as the heat; i:
Q2 is all absorbed at the same temperature Te
and, similarly, Ql is all released at Tl.
The heats Q, end Q, ere simply expressed in 5 T N
terms of the entropies Sa and Sb of the two
adiebatics. Q
oA )
Q =T, (3, - 8,) : l
(IVb3) ‘ i
Ql = Tl (s’b - S&) l .QJ‘ }
t ;
t
W= (T - T3)(8y - S) ! g
o -~ T, “  piG. IVD3
r)c - —T (IVblL)

The efficiency of a Carnot cycle depends, therefore, cnly on the tem-
peratures between vhich it operates and neither on the working sub-
stanece nor on the entropy difference betwesn the adlabatics.

One application of this, proposed by Lord Kelvin in 1348, 1s
to use the efficlency of a Carnot cycle to measure tomperaturc. At low
temperatures the ideal gas thermcmcter is unavalleble, as 2ll geses
condense, while the Carnot cycle formula is independont of the substance.
In actual practice other consequences of the Second Law than thejgarnot
law defines & tempersture scale, the integrating denominator of LQ,
vhich is independent of any choice of substance.

3) Other Cycles |

It i1s now possible to compare the Carnot cycle with cther
ecycles. Comparing it with other reversible -
cycles one can say that it is more efficient
than any other reversible cycle working be-
- tween theo same extremes of temperature T2

and Tl‘ Any reversible cycle can be cut
up by adiebatic processes (Fig. IVb4) in-

to smaller cycles which are very nearly
Carnot cycles and whose efficlency 7é is

given by (IVb4) but with values T4 and T4
appropriate to the small cycle.

n

FIG. IVb4
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As 'l‘é 4 '1‘2 and T]'_ > 'I'1 by definition, i/"‘ /\’% and therelocre the re-

sultant efficiency'y'zg'vc. To have the sam® efficlency all the heat
would have to be taken in at TQ and given cut at Tl’ but this would
make it a Carnot cycle.

Comparing two cycles, one ”6?6”31578 and the other irro vorsible,
but both taking and surrendering heat at the seme temperatures, cne
see from (IVall) that

s
Wirp , § X rev {
[ 4 - T
Therefore we must have for the heats sbsorbed Q, v <i_Q¢ oy OF for
these re jected il -
Ql 11“=Q> Q1 rev
or both these inequelities may hold. In any caue fﬁ.ftz}irh:>{g1/gp)rev

1
and therefore N
Dirr L. Trev

4) The Second lavw

In view of these inequallties the statements mede in para-
graph (Ivbl) can be amplifiea:

An amocunt of heat Q cznnot be converted inte work W = @
without an additional amount of heat -

Q. >
1= »

falling from the higher temperature 7T

N
ct
Q

4
{‘ »
o
[ ]
Q
-l
r.a
od
cr
o
=4
h
J
w(
‘;B
C
H~

The heat Q} will not of 1tself flovw from the tsmperaturs Tl
to the higher temperature T2 ut requires the expenditure of an amount

of work

Furthermore our argument can be reversed, as follows:

No violations of the ¥alvi:
gserved in our experisnce, If this 1:
reveraible Carnot engines working bet:s

equse Ticlencies, Otherwiss |




Tos

used as a motor to drive the other as a refrigerator. If they are
ad justed so the heats Q, are equal they will vioclate the Kelvin
statemsnt, or if the wogks W are equal they violatc the Clausius
statement. Therefore QQ/Q1 is the same {or 2ll this class of en-

gines and is equal to T2/‘1‘1 beceuse this is its velue for an ideal
gas. Thus

$ QR -0 (e

for all Reversible Carnot‘cycles, and therefore for all reversible
cycles by the construction of figure IVb4. This is tho condition
that

23 . as s (1vb9)

be an exact differential, whioch therefore fellowves from the Kelvin
or Clausius statements. An irreversible engine need not be as ef-
ficient and so, more generally

55@1% £ 0 { IV¥H10)

¢c) Irreversible Processes

1) Mechanicel Irreversibility

Consider Joule's paddle wheel experiment e&s & typleasl ex-
ample of mechanical irreversibility. There is no heat transfer in
this experiment so

LQ = 0
and | QU = -olW

The work -dlW gees into mass motion
of the water which, becauss there

are vanes in the vesael to facilitate
the process, breaks up intc smeller "
and smaller vorteces and these even- - Riiad
tually bacome invisible. One can
imagine the scale of the vorteces con- b o 0o
tinually diminishing until 1t is of
molecular dimensions, vhen it can be.
referred to as thermal motion. Part -
of the kinetic ecnergy may, however,

go into potential energy of separation

of the molecules. Indeed it is ob-

served that the {lenperature rises by

FIG. IVel

e ST i e r—
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dT = du/c

(It 18 easlest 3o think of ths experiment as performed ab con-
stant volume although,. actuelly, it is performed &1 consiant pressure).

AL
Q
O
oo
f
(o
)
£
ol
v
Al

The same rise in @eh;m"ﬂ*“a could hav
the conduction of an amount of hesat

R i

aéq==qﬂd?m ~ LW
4
resulting in an incregse of entropy

vl )
d8 = CLQY/T = & W/T

This entropy ceme {(in large part) from the body whilch supplied the

heatsii&‘, but the same increase of entropy ocours in the p“dd¢0
wvheel experiment, a2lthouch in % cege it does nob zome Trom another
body but is created. Where? conversion of the ﬂctczt¢&1 CROPrEY

of the driving weights irto the &ﬂ‘t al kinetic eonersy in the water
does not necessarily involve an increcase of entropy as the kLinetic

energy can be reconverted to notential eneryy with 1ittie losas. It
is the breaking up of thes vorteces into smeilsr end smaller cnes une-

til they eventually d;seppear from sight that constitute the orention
of entropy. This cann be represented schematicelly oy -

— AW v 2 ——d PAES {IVel)

It 18 in the dlsasipation of the vorteces ithat :he'p;ssibility 8 lost
of reconverting the kinetis anergy bask ianto work. Dntropy, therefore;
is associated with,dinovﬁerzﬁ motion.

' The loes of mechanical energy in
psurfaces, or the dissipation of elzctrieasl
entirely similar to fthe above except thst
mess metion of the wmediuw is missing.

e

N
i
w

H Dt

sl Irreversibilitly

Another sivples way cof cr~”w;‘d is to put 8 hot
body in contact with & ccld ono. 1T ¢ Z6I1
of heat 7.Q passee between them when tzB he .
body is at temperaturc ?0 and the celd cne i
at Tl the entropy of the hot bedy will change ' -
by N

, 0 sy

dsf) = (i Q/?.‘r) Q ..!
- * TS . |

|
@ and for the cold body

as, = £Q/T
o 1 = oy _r

i iy




so that the net change is

T, -7
- S
ds = as, + as, T Lq (Ive2)

Conduction always leads to a net lncrease in entropy. EHad we taken the
heat o€ Q from the hot body reversibly, that is allowving 1t to operate
a Carnot cycle, we would have obtalned an emount of work
Ta~T ,
2
ct"' --Tw-el £Q (IVCB)
end delivered to the cold body
T -
Q=2 aq
T
s0 that in this case A
dS' = d82 + dS’l = 0

Howe ver there is & relation between the work (IVc}? that we cculd have
obtained, but didn't, and the increase in entropy (IVe2)

L = 1, as {Ivel)

the loss in ebility to do work 1is alwvays equal to the incresse in
entropy times the lovwvert temperature of the system.

3) Internal Irreversibility

The simplest example of internal irreversibllity is the free
expansion of an ideal gas. In this case .

AW =« Q= au = 4T = 0

but from equation (IVa3) for the entropy of an ideal gas we find that
there has been an increase

S, - 8y = R fn V,/Vy (IVe5)

The process could have been performed reversibly by an
isothermal expansion, getting an amount of work

v v
W' = f,° PAV = nRT fvi aV/V = nRT ¢n V,/V,
1

and, of course, supplying an equal amount of heat. Again, the work
vhich could have been obteined, but which has become unavailable in
the process, 1s

Wi = T (3,-3,)
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Exemining the details of the free scxpension we see that
initially parts of the comgﬁ essed ges do work PAV on other parts to
give them kinetie energy mve/2., There is nc entropy change in this
process. I the motion of the zas could be kept as a regular pres-
sure wave it might be reflected from the far slde of the evacuuted
vessel and all return to the per: originally occupied. But this does
not happen and when the accelerated gas hits the further side cof the
evacuated vessel the motiocn heocomes confused and discrdered, and this
results In an increase In entrony. The precess is ggain

2,
PAV —> @av©/2 =3 Tds

but in this case therec is no nel increase in klnetlic energy as ther
is no change in temperature. In fact 1if the experiment is performed
with & neal_gas there will probebly be & decresge in toeaperature and
in mean kinetic enerzy. The entropy is duc to the greater renﬁ nEBS
5T position of the mclecules which 1s simply due to the increesed
volume within which the molecules arc scattered.

3) Ingulated Systeus

lead
fete
(43

The Clasusiuvs lilequal

e
Vi
2

) &= 768 t

.

shows that for any lusulated system, thet ia one Tor which

9
4
&2

By Q= 0
one has _ as > 0
or the entropy can only increase.
Similarly for a system on which no vork 1is done
G =0

and _ {TVeT)
AV 0

but one cannot conclude from (I cT7) that only incrcase
becauge attractive fC”C g ¢xist which ¢ trens, or negative

?n volume will
ows from the

pressures. Equation {Ive7) merely
have the same sibr ags the pressure,
non-existence of negative thWCP&UU“"q

Any system left to itself, that is to which no energy in
the form of heat or work is tranzferred or talk : incrcase
in entropy, the maximum being atteined vhen rechanical

equilibrium is ettalined.




Q@ 1) Lire
Finelly there is 1ife itself which descrves & word In this

connection. Even the simplest living organism is very highly crgon-

i1zed, which means that its entropy 1s abnormslly low. At death rapid
1rreversible changes take place and the entropy rlses to n more noin
velue. Are the forces which meintein this lov entropy vholatling
Second law? If life could continue in an "41gsolated" Dbody Ul
1y would be; but it cannot. "1,ife" needg "dead" suriround!:
duces order within itself only at the expense of dlaorder

viromment in complets accordance with the Cleusiuvs inequel
plant life reduces its entropy by absorbing the low entro
sunlight and re jecting it et the much higher 1
temperature. Animal life feecds on the low e:
life rejecting it in the high entropy form of carbon dicx
irreversibility of life is & good indlcatlon that the disorder 10
produces in its surrcundings ls aslwvays far greater then the owder
produced within itself.

ney
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d. Thermodynamic Forimulae

1) Thermodynemic Potentials

' The basic lews of Thewnodynamics ave contained In the
relations

Lw £ pav
Lo £ Tas : © {1val)
av = dg - &

containing the inexact differentiels for work amd heat. These re-
lations are epplicable to both reversible and irreversible proceszes.

It is more convenient, however, to use variables vhich are
functions of the state of the system end have equalitics instead of
inequslities., This can be dene only with tho restriction to eqguillb-
rium states and reversible processes, and this restriction rust e
understood in 21l the equations which arc to follow. With this
restriction we have already defined a function

called the enthalpy. The trensformation of U intec H by adding the
product PV is called & Tegendre transformatlon; it has the effect of
interchanginz a varieble with the corresponding glope, &s seen in

, equations { IVd5) below. Another Legendrc transformatlon, sub-

| ' tracti the product TS, leads tc two more such functilons: the

L Helmholtz function .

| L | | (Iva3)

’ E=1U+ PV ] (I\’d:’)
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anﬁ the Gibbs function
G=H ~-TS (1Ivay)

These last two have both been called "frec cnergy” and it is thevecfore
alvays better to use the names of the men who nﬁPOdLCCL them U, H,
A, and & are called the Thermedynemic Potentlals.

2) First Derivatives

From (IVdl) and simple differentiation of (IVGQ), {1vas),
(Ivah) one obtains the following equat 1ona for the exact dilferentials

dH = TdS + Vdpr

{Iva5)
| dA = - 84T - P4V
aG = - 34T + VdP
From these differentials one recadily obtains all the first derivatives
of the potentials. Therc are eight simple ones ol the type
oG ! =
( ) z‘:‘.‘ 20 a8 00 0mae (j) :*V, (_”‘!d"))

in vhich each potent*al'is differentiated with respeect to its "natural”
independent variables, those vhose di"f:rontials erpear in the same
equation ( IVAa5) as the potentiel.

There are eight more in which one of the Independent variebles
i1s "natural", such as

(), =T, -7 (1var)
() = oy =7 (F > & (1va8)

and similarly

+V (1vag)
g

(Ivalo)
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and there are eight others, such as ( ) , in which both independent
variables are "unnatural".

There are 312 other first derivatives as each of the eight
variables, P, V, T, S, U, H, A, G, may be differenticted with vespect
to any of the seven othors holding any of the remainingz six constant,
This gives 8 x 7 x 6 = 335 first derivatives. Howezer, they are not
independent and it can be shown that there are 521,631, Qrelations
between them, all obtainable by applying (Ib3) and (*do A few of
these relations are of frequent use and will be derived below.

2. @Gibbs-Helwholtz Eouations

From equations {IVd3) and {IVA5) we have immediately

A - U =S (1va11)

and similarly from (IVAd4) end (IVd3)

G - 1= & (Tvaia)

These relations are useful to compute U knowing A, or H knowing G,
or vice versa, as they do not contain the entropy explicitely.

4, Mexwell's Relations

As the potentiels are functlons of the stale of the system,
thelr differentials must be exact. J. C. Maxwell applied the con-
ditions for exactness to equations (IVd)), obtaining two relations
applicable to adiasbatic processes: ¥

&y -G - - Gh Gh - Gh G /&
\\\_,/

-

T g (7
- W [ IVdl2)
P Cv 2
T / ‘\ N 3 W
g (- @ -G, & -7 (1va1s)
\\wi
and two which apply to 1sotggnmalwprecesses
/’~\ N )
(S = ($E == (1V111)

Ead, .



@ <§%%= = (%)P = - V0 (Ivais)

5) Energy and Enthalpy Lguations

Introducing the last two expressions Yor the derivatives
of the entropy into {IVA7) and (IVAQ) respeciively glv

\‘H r v O el u.: V-4 .: - o e O3 o
B =v-1 @ PR - v (1va17)

mey
e - ; L’ A
AU = C,, aT + (=~ - P) &V (l§u¢g}
V -

L aH = Oy aT + V{1-T8)

=

=

"4
2
L v]
P )
b
<
jo
et
\C
p—

These equations are used to cobtain rthalpy from
messurements of the heat capacitlies and nf the 'ﬂwudxvns of state.

3 5 o p - 2 g o dedn 5 P y 42 N2
From these we see also that tho Jouls coefileient

M3 . )«c‘
2 . P
e & -
U., = u,.f-».a-x.. L e ( 1 A ;9 C )

ﬁiﬁ/

and the Joule~Kelvin cosfficlent

« < 4 u
u" Y ememce D e e %w”.‘,::«

Referring to the plot of HV/Lpi a;
that at the points where successiy
is independent of T at constant
Joule-Kelvin coef i*tcbt is zero.

- ~ F oy 4 9 e
"I’ 5} 5& Egueations
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L Q £ T8 = Cy aT +7\- av | (Ivaz2)

O
™

TdS = CpdT - T VB P i (Tvd23s)

—— —

e ————————————

These equatlons are useful to obiain th ¢ heet sbscrbed in any pre-
cess.
Comparing these equations with (IIZcl8) eond {(ITIcil) we
E 1 \ \
see that

It is from this equetion that Cv generally s cale from
other variebles in the ..

meesurenents of C JP and the

In the case of sollds we can use Gruneisen's reletion {IVhlh)

to get the Nernst-Lindemann squatlon

by which Cy caR be calculated from measurements of c and T and

| 3]

the determination of A by & single meagurement of # and }{.

7) Change of Phase

During a change of phese, w
pressure and temperature, it 18 eviden

1 RN F=Y o
aL208 ),v,{:x,CG‘ at constant
%
154 tion

s ( [Va5) thet

a@=0 | (1Va25)
and g = 7as 2 49 ) |

If the pure pheses are denoted by 1 znd 2, vhere 2 Is the higher Lem~
perature phase

(1vazT)
=5 i R
vhere L is the latent heat of the trensformetion.

The first Td3 equation

P )
et
<
2
4
o0

Soas”

&Q £ ¢ AT + P (%%) at
7 v
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(Ive)

.. integrates readily in this case because AT = ¢ and neither P nor T
depend on V. The integral is A

4P
LeTqg5 (Vy -7,)

or
ar 5
T = WV, <) LB
1
| o

s o el wy B pyen Y,
partial sign nas

This is called the Clausius-Clapoyron cquatlol

been dropped in the derivative eas the ratlio P t: aT in going be-
tween two isotherms 1lg the same; in the ":;";1~i:u region, whether
one takes & constent volume or sny other poth, In any case d4r/afr
gives the slope of the line on a P-¥7 diagran vhich represents the
transformation.
, % v
Similarly, from {IVd27 and 19), N
- \\‘ = “‘":
n PR |
a - ' - 7 ar = c, -, :
9% = Cop - Cpy + (VoVy) §7 - T(VB, - V1B)) G G e
|
| , - A
. e = VE,BQ 1P L {1vazo)
p2 pp T V- 7 : i

This is Kirchhoff's eguation. It may also be writien

f vV, B, - V.8 ¢,
1 a(r/m) = VoP2 - Va¥1 1 Cpo

J Vy = Vl b4 T R
l., ’ 4

This last is a differential equatlion for the "latent cntropy " L/T.
If the eguations of state and specific heats of i I
as well as the latent heat at onc teumperaturs,

be integrated for the latent entropy, which moy
in Clapeywon's equationand Integrated for the v

e. Applicatlons

1) Ideal Solid

We have defined the ideal solid as one vhose egquation of

T2V (a ~ bP) ' © {IVel)

@ ’
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. wvhere & and b ere funcstions of the temperature and

A=v vy {Tve2)
Prz(a’ - b'P) VA {1Ve3)

The enthalpy equation {IVAdi8) is

dH:S'Cp ar + Vo (a - bP - Ta' + ThiP) 4P {IVel)

{ntegrating first at constant pressure
Hy 7= B+ C_ 4T (1IVa5)

and then at constant temperature

HaH +7V, (s - T2')P + V, (T0¢ - b) P2/2  (IVeb)

The proceas of integration may b2 shown on & P-T diagram. To find the
enthelpy at {P,T) we start at the origin and integrate C along the

temperature axis (? = Q) to get H,. >
This is the integral {IVe3S) which

glves the enthalpy at zero pressure.

We then integrate V{1-7B) at con- ¢ H
stant temperature to get {IVes).

P

|

Applying the condition for an !
exact differential to (IVel) we A fvn-T8)dP

find ‘

|

i

i

(spB) == V_T(b" P - &%)  (IVeT)

M,
|

a } Ce.dm
and integrg%i g this JCpd

W

B, =0, ~ ¥, PPM(a" - " P/2) (IVel)
il FIG IVel

vhere.-C__ represents the heat capacity at zero pressure dbut arbitrary

e

semperatire




As the second derivatives a" and bd" are generally small C
will not depend greatly on the pressurc,

P

The internsl energy U is obtained immediotely by subtracting
PV from (IVe6)

UstH, -V, Ta'®+V, (b+ Tht) F/2 (1ves)
U

It is noted that the internal energy o

inlitielly decreases on isothermal com-
pression. Of course work is done on T2 1 50
the solid during compressioan, but so \\\
much heat has to be taken awvay to

meintain the tempersture constent

that the internal energy actually T=0
decreases until the pressure is .
large enough for the squared terms
to be important.

Using (IVe8) in the second
TdS equatlon one obtains

FIC IV

P e s e a s cann

D

c
as=-f2 4T - V_ P(a" - b" P/2) 4T - V_ (&' - B'P) 4P

which readily integrates to

: {Ivelo)
8”28 -V, P{a' - b' P/2)

The Helmholiz free encrgy tekes a particularly simple Torm

1 . 2
A"n‘-"Al (T) + 5V, bP
{Ivell)
| W
It 1s a characteristic of this potentlal that at a given tcuperature
it hes a minimum at zero pressure. It i3 because 1AV P2 1s the

elastic work done on the sollid during an isothermal compression that
A 1s called "free energy".
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Finally from (IVd24) we have for the dilfference in heat
sapaclties

- Cym= V, T (a' - b'P)%/b (1vel2)

At low temperatures where the tne*naW coefficient of expansicn is small
the difference in heat capacities is guite negliglble, AL norucl tem-
peratures, when the thermal coelfiblent of expanslon is sensibly con-

stant, the difference lincreases linearly with ihe tenpzrature,

2) The Third lLaw

il

o

It is observed experimentally that both B and Cp for
solids tend towards zero at leeast proportionately to T asg the ab-
solute zero of temperature 1s approached. It follows then from
Mexwell's isothermal relations, 2s )4 does not vanish thet the entropy
of all solids 1s completely independent ¢f pressurs and voiume &t
absolute zero and increases at most as T2 with the Scupcrature !
crystalline solids cen be releted chemically it ieg found
chenical evidence that the entropy é;:?uwcncg betuveen ti
vaenishes at absolute zero. It appears therefore thotb
all crystalline sollds is the same ot a*~oTch "opw and
always an arbitrery constant in the meas of
tropy at absolute zerc may be taken &

Third Law of Thermodynamics and was dis

The word "crystalline" above is Cp
significant, and this may be illustrated ik
by the properties of glycerine which have L L
neen studied. The specific heat of the g
~rysta111ne solid is- plotted in figure i

{IVe3) up to 291°K at which temperature )
che c*ystals melt with a latent heat of |
4371 calories per mole. This corresponds )
to an entropy difference between liguid and o
sirystal gp, - 8, = 15.02 cal/mole deg.

The specific h8at of the liquid is larger
than that of the crystal by about 1.5
sal/mole deg. The liquud is easily super-

,ooled and undergoes a rapid but con-
tinuous change within a few degrees of
2800K. Below this range it has the

I

!

I

[

!
rizidity of & solid but has remained géo FET

=

amorphcus. There is no letent heat
in the change, and below it the FIG. (Ives)

specific heat of the amorphous solid

is much the same ag that of the crystal. If one pleo
of the specific heats divided by the lemperature on
curve of Fig, (IVe4). The area under this curve i






©

nd h
. & ence . " p

vhence
{ A ©o -
(8) - 8,)g= 4,56 cal/mele deg.

“f the entropy of the crystal 1is zsro at
absolute zero it follows that the entropy
of amorphous glycerin at absolute zero ig
1.56 cal/mole degree. This is explained
by the disordered arrangement of the
molecules in the amorphous solid.

The amorphous solid is not, of course,
sn equilibrium state. If left to itself
iong enough it will spontancously crystal-

1ize, and as this irreversible change nust be accompanied L
crystal will be hot.

in entropy the resultlng
neat in the change.

%2) Van der Waals' Gas

Pprom this we se¢ that

oP ) !".R___
(v
. 2

The constant volume curves oo 2 &

s

!

/,

Van der W:als' eduaticn solved for the presgure

B e SRR i
2560 294 %
FIG., IVel
by an increasge
That is, there iz a latent

e is
Pto8 u—"\‘=) A= N
v :
{Ivels)
{IVelil)

P-T diagran gre therefore straight

limes.

Applying the condition for en exéct differential to &8

from the first T4S equation one has

(e
W)
AV

v

Vds = dw+@d v

| /
- | ik 1 1/
et t¥4V

(Ivels)

o) L2}

\du/lT \ T /v
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that is Cy 18 a function of T only. This is the basic fact from which |
7e cen start to derive the Thermodynamic functions of & Van der Wsals' l

I

gas, ,
Substituting (IVell4) in the TdS equation
a5 75 oL ap + DRIV
V-nb
vhich integrates immedlately to 1L L Pt
A~ | S / P i (
S=2Ff ~p AT + R fn (V-nb) + S, (ivel6)
Sz )wdr — DALVt So e
The Van der Wasls' forces vhich are measured by'a’ contribute |

nothing to the entropy: it is the that of an Jddeal gas uhoss,
volume is reduced by nh. "

Substituting (IVell) in the energy equation gives 7:}

V L
d(&zt Cdﬂr v /,‘ 0\
dt P \
(?)U)~X)RT _Psgea é'u(‘ :/}o/)~§-r
T -ID -V-'? TV - CARLY,
“ so that .-
, dU = Cy 4T + =5 av
Vv
which integrates to
2
s foar - 52+ U (IvelT)
& V 0

4
so that here it is only the attractive forces which enter and reduce
the energy. In & free expension, in which ¥ increages but U 1s
sonstant, it is evident that the integral must decrcase, which means
that & Van der Wsals' gas always cools in o free expension. The
Joule coefficient is 'y )
B e s (:/» <
w ~ n“a/V°Cy 2 §/L\ (Ivel8)

The enthalpy is obtained by adding PV to the internsl
snergy and 1is

2
nRTV _2na 4

T A
I§7$f6 CyaT + yonb v o

(Ivel9)

>

~2fT ooa1 + PV - BB 4 Uy
(o]

/
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In a throttling process (Joule-Kelvin experiment) the end

. states have the same enthalpy buit the pressure has decreascd., It

cannot easlily be seen from (IVel9) whether this process will result
in an increase or decrease of temperature. However it is readily seen
from (IVAl9) thet both enthalpy and temperature can remain constant if

b=l {(1IVve20)
= L
= I i ‘ ] 6: U lgr/e
Computing P from (IVel3) this equeticn reduces to

P,V 3= (2-30b/V)

or (Ive21)
rd, 28 nby2

RTir’“’ 5 (l-,"\-rm)

and it may be shown that if P or T are below the values gilven by the
equations the gas cools on expansion and if they sre grecter it heat
As the volume 1s always much larger than nb the inversion temperature
is nearly independent of V, end therefore of P. Elimineting V between
equations (IVe2l) one cbtains

3 e
; e
*

o |
-
[
o
(&

B

bRT, /lom'i |
e UL limae) 1 e o) (Ive22)

vhich defines the inversion curve on a P-T diegram. The throttling
process to obtain cooling and eventual liquefaction is widely used in
the Linde Process.

e

P 1 ';:'/

o

Finally from equation (IVd24) it follows that

2. as2
P+ :
Cp - V;#--E%ful- nR (IVe23)

P - n%a Ve

\H
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k) Van der Weals' Condenseation

Substituting the formula (IVel9) already found for a Van
der W-als' gas in (IVd27) we {ind for the latent hest of condensation

V,-nb
LR (Vg - Vo )P + 2% 8/¥ V,) = nRT In v (Ive2s)

which clearly shows the latent heat to be due to work against ex-
ternal (P) and internal (na/V?) pressure. Substituting salues of
P and V neer the criticel point we find that the internal work is
three times the external work, and this ratic becomes larger at
lower pressures. Due to the factor Vo = V, the latent heat goes to

zero at the critical point, its tem- b,
perature dependence belng shown in Fig.

IVe7. Real gases have latent heats k\‘\\\\
considerably larger than that pre- 5 IR
dicted by the Van der Waels' equetion
as shown in the figure, Clapevron's
equation for & Von der Wesals' gas is

simply
%Tg' ~ P+ Ilga/vzﬁf'g (Ive25) b I \
: b 4
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but the deviation of observation from this formule are so large as to
make it of l1little value.

5) Melting

The latent heats Zm of meiting per mole at atmospheric pres-

sure of a few solids is given in the sccompanying table. It is seen
that they vary by factors up to 20c. However the temperatures of
melting Tm vary by equally large asmounts, and in the same direction,

so that the entropy of melting

Sy - 84 = lm/T { TVe25)

tﬁzlgg;zﬁmarkahlx,linjle/(—;; has alreedy been said that entropy

measures randomness 80 it is qulite understandable that there should
be an increase in entropy in geing from a crystal wvhere the molecules
are arranged in perfect order tc & liquid wvhere they are disordered
and that 1f ve deal with the same number of mclecules the asmount of
randomness, and therefore the increese in entropy, should be about
the same. '

For reference the latent heat of veporization at the same
temperature is also gilven. It also varies widely, but keeps a nearly
constant ratic to the latent heat of melting. At low pressures the
latent heat of vaporization represents almost entirely work done

againat the binding forces in separaiing the molecules, the work
P vg~v2) done auainst the extarnal pressure being negliligible. The

table shows thet a metal absovob about one thirtieth of 1ts binding
energy when it melts. the other hend a molecular compound re-
quires & seventh of its binutnv energy %o melt it, and this is be-
cause the binding of molecular compounds is so wesk, In elther case;
however, the liquid is very much closer in energy to the solid than
to the gas.

The coefficient of volume expsnesion B is gulite small for both
solids and liquilds, so that tae last term of Kirchhoff's equation
(IVa3l) 1s generally small when this equation is applied to melting.
The remainder of the equation integretes to p h T

w C.g - C e / U
Lh'l lht + fT pl 5 dT/_/ (Ive2T)

—

where T, and L . are the temperature and latent hest of melting at

the triple point. As the heat capacity of the liguid Cpﬁ is always
larger than that of the solid Cps the entropy of melting decreases

slowvly with the temperature.
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The meaning of thils equation is simple: consider the cycle
(Fig. Ivel) which follows the melting '
curve on both sides; crossing it at P
the triple point and an arbitrary
other point. Equation (IVe27) saya ;
that the entropy change on going
around this cycle 1s zero. Looked
at in this way it is seen that
equation (IVe27) is exact if one
intreduces CSat’ the heat capacltiy

of the "saturated" solid or liquid,
in place of C

p L7
If Im/T = AS is spproximately ‘ o
y > 4 % % 4 !
constant and ‘2 and V. both obey FIG. IVeS

Hooke's lsw so that V;'i—vlfz Avo(a—bi‘)
Clapeyronis equetion integrates to

AV, (C +aP - bPE/2) = AS (T - T.) (1Ve28)

and this is the form actually observed for the melting line on &
P-T diagram. ' "

5) Sublimation

In the sublimation of & solid the molar volume of the gas
is always very large compared to that of the solid, and the same thing
is true for the vaporization of a liquid except very near the critical
point. In these cases Vl can be neglected compared to V? and V2 can

be glven its ideal gas velue nRT/P. Furthermore as B, = 1/T for an

1deal gas the last two terms of the Kirchhoff equation (IVa30) cancel
ao that there remsins .

4k .. e r
1 Rl A T Acp {Ive29)
i il , (Ive30)

nRT® g

As an example of the approximations involved, if these equations are
applied to weter at one atmosphere and 100°C Eq. (IVe29) is in error
by 3.5 per cent and Eq. (IVe30) by 0.6 per cent. These equations
are much more accurately true when spplied to sublimation.

These equations may be integrated es follows:

o
(9]

L&

L=l + £ O ¢, ar | ( TVe=1)
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Two cases are oi particular interest:
¢) Above room temperature. Both heat cepacitles are roughly con-

JANY))

D is then a negative c¢

so that

and

where B is an integration
observed empirically.

P)

Low_ temperatures.

and cns is generally small

L ﬂ;LO
and
In P =~=
vhere
b
end i 1s

stant and Dulonz and Petit

called the vapor pressure

s law 1
onstant

DC,_ =~ - nRC
o)
L=~1L, - nRCT
¢I
ot - !O ¥ T B — C
nng
constant. This is

r

Here

o

v

b

§

W
g

but not & simple

N ; m
+ - nRT - F£°
e TR .
i g i ¢ o
1 ) ’
- I 5 N
o et X .
mrr -t T oY=l
3 v - O,
= 8. 1T ps
nRk [ el nR

constant.

& good spproximation for C

ps’

(1ve33)

in T
the vapor pressure law
fvnction of T. Then
SRR L
pa
Hom & - { £
n T - k{ \J-"&‘?eah}
1
- aT /
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. between gases which react. The determination of the sapor pressure

These equations esnable one to calculate the entropy of the
vapor, for

i A
R T R - & #% c__ ar e
g 8 T T -1 "T7 “ps a
L E
"‘%“'\;'\-é/'t@ nR + nRb - S \T\T‘
% Y {
Sg | nR + 1 nR tyo, D R Zn T - nRInP
But we already know that for an ideal gas
o . .
8¢ =01 nRf{nT - nRiaP + S {IVe35)
so that "
D 1 ,
S, = {1 +g,_-__1} nR (IVe36)

The entropy constant of solids has been fixed by setting
the entropy zero at absolute zero, and this has fixed the arbitrery
constant in the entropy of the gas., The determination of So is

important both to verify thecry and to determire chemical equilibrium

constant 1 1s therefore important. £ can be done on a log P - 1/T plot,
but it is bes§(}§ ialculate b first from specific hest date, and then
to plot Zn{PT L) + b against 1/7. This plot should be accurately
straight, so the best straight line is drawn through the experimental
points. The intercept of this line vith the T = o axis gives the
value of i, and the slope gives Lo/th Sore experimental results

for monatomic vepors sre given in the following table. It is found
that the quantity '

i
P s
nohat

bn - in g2 7,97 (1vesT)

vhere 4. 13 the molecular weight and 2 is the "stetisticel welght", a
amall whole number which is obtained from band spectra, is remarksbly
constent and close to T7.97 in MKS units. Putting {IVe %7, 36, and 35)
together one finds ———

8,/0R = 11.5 + fn %//03T5 {Tve38)
. 5 \p2 AV oty ™

diofins
=
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CHAPTER V

Entropy and Probabllity

(a) Microstates and Macrostates

The internsl energy and the entropy of substances are ob-
tained indirectly from measurements of hzat and work by integrating
the equations

al = d - & (val)

- ciat a » du/ (va2)

However these definitions In terms of messurements followed
by an integration do not give & picture of them, so that it is im-
possible to visualise what they represent.

In the case of the cnergy we already have a picture coming
from Mechanics, Here we learn first of kinetic energy and then,through
en integration, of potential cenergy and the censervation of the two
combined.- Xnowing matter to be composed of atoms exerting forces on
each other one can readily imegine the internal energy to be the sum
of the potential and kinetic energies of all the atoms

U= S{¢ + mvg/e) (va3)

One is tempted to assign these two forms of energy somehow to work and
heat, but this, it must be sald immedietely, is doomed to faliure, as
work and heat are characteristics of’ a process vhich completely loose
their identity in a state. Nevertheless ithe atomle picture gives us an
understanding of internal energy which one cen never obtain from ther-
modynemics, and the explanation of the specific heats of 1ldeal gases
are good examples of its usefulness.

It is our purpose now to derive a fomauls similar to {Va3)
for the entropy. However thls is not as intulti-e, and there are two
reasons for this: In the first place the formula for the-sntvopy
derives from Quantum Theory.and the concept of Hicrostates instead of
from the more familiar Mechanics. In the second place the entropy,
unlike the energy, is a property non-existant in & single particle
but which emerges when one has & large number of particles. One must
therefore introduce new ldeas of Probability end 3tatistics.

let us first consider the distrivutions of ¥ particles in &
box of volume V leaving their motlons eside for the moment. We begln
by dividing the volume Into cells whose volume & represents the most
accurate determination of position we shall want to make, For sxample,
the cells mey have the volume oc%upied by single molecules in a
crystal, so that there may be 1020 cells in a liter. Let the cells be
numbered from 1 to G = V/a, let 1 be the number of any particuler cell.
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A "microstate™ is defined by giving the number W, of perticles in each

C.

cell. It does not matter "which" particles ere in & given cell for
atoms are indistinguishable and it has no meaning to ask them to be
named, but we can tell the cells by simple measurements from one corner
| of the box, and we can count _the psrticles in it., The set of numbers
| N, can be represented by [Ni], Thus

[y, J= (0,0,1,0,2,0,0,1) {Val)

represents a microstate in vhich there are 8 cells and % perticles.
The Ni's are called occupation numbers, In general they are swall num-

‘bers and are frequently zero.

L
In practice we observe huge numbers of atoms and therefoere

even greater numbers of cells, Let n be the very lesast number of atoms

wvhose pressure and temperature cen be measured; something of the order

of 1010 perhaps. Let g be the correspondinz number of cells. A "dis-
tribution” or "mecrostete” will be defined by gilving the number n; in
each group of g cells., A macrcstate is the mest accureic dectermiiiotion
desirable of the state of matter in bulk, hefore the propertics we vish
to gstudy become lost in the confusion of altempiing to kecp track of
- 102 molecules.,
!

An analogy will bring out the reason for intvoducing mecrostates.
‘ 1t is possible to study paintings with a microscops snd to learn meny
i

o
things in is wey about pigments and the supporting media. Howerser
noé} such a study willlvVreveal the lawvs of light and shedow and perspective,

or even allow aclassificatlion inte landscepes, interiors, end portraitis.
These are properties which emorge only when one views the subject {rom
sufficiently far so as to lose sight of the individual piguzen: pariicles
"and see them only in groups. The Thermodynamic properties of pressure,
temperature, and entropy are similer to light, shadow, end portrait in
that they are properties of the groupings of rarticles which are bLest
observed when we do not push observation to the limlt of detall. Ve

.. introduce macrostates, therefore, not because we cannot observe more

/ detall but because, at the moment, we are studying the large scale pro-
perties of matter. It will of course have to turn out, if the pro-
perties we study are to have any meaning, that they do not depend critic-
elly on the particular value of the size g of group which we choose.

(b) Probability and Entropy:

' We shall start with the postulate that all microgtates hase
the same inherent probasbility. As a macrostete ls less sharply defined
than a microstate there will be a great aany of the leiter corresponding
to each one of the former and the first problem ls to find how meny.
This number, W,will be cellied the thermodynamlic rucbability.of the
macrostaté, It 1s not, of course, an ordinary prcbability as 1t is
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(Vb)
alvays & very large number, but it 18 nevertheless & measure of the
relative likelyhood that the particles will have any given distribution
rather then another one. :

Let us first find the number w; of microstates within the
group g. Iet the cells be numbered

i i

R A

1 ?

\s

g

and let the meclecules be represenied by n, zeros: 0, 0, 0y ~=---

3
all identical, as Indeed the wmolecules themselves are. let us mix the
1's and the zeros and let us srrarnge them in any order. For exauples

i 3-5.; t} e i {Vvel)

5 6 7

11 12 13 0 i& 1. 00 %

and let us adopt the convention that the zeros represent moleculss
vhich are located in the cell represented by the next preceding i
Thus the series (Vbl) represernts the seme state as (Val), It is
necessary for this convention that the flrst symbol of the series be
an i, It cen be enyone of the g i's, The remsaining symbols can be
arranged in any order; so that thsre are in all

glg + ng - 1)

sequences such as (Vhl). ZEach sequence reprosents & microstate, but
there are many repetitions: Permuting the 1's was unnccessary &s all
the microstates can be represented by seguences in vhich the cells are
in the order of their numbers. Permuting the zeros obviocusly meies no
difference. Thus ,

v, =88 ¥y - 1) (Vb2)
J 2! nj!

This is a very large number, and it will be convenient to use Stirling's
approximetion

| . ]

e

n! = yZn {n/e)t {Vo3)

gin,-1 /[giml\gn.-1 h
Wy = 2 E_.._a...-}.,-a.ml el | ¢ ::'.}é’:s ?\.‘.:. )D'J
J o EWgnj \ 8 ‘e n

i’g'-, & S ,.1'.73-,?"1 %
T (e by i g T B
ki e \ g / nj

and talking logerithms

1 o o 3 - 1 - 7[:;;‘77.?1”:
In wy = (g+n€~§)£nﬁl+ )t n 5 Zn %;- By gt {Vbh)
e ~ 1
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In this expression we wish to neglect 1 compared to nj° This imposes

& ninimum size to the group which is much less severe than the ex-
perimental one. Introducing also the notation '

Nj - nj/g (Vbs)

for the average occupation number of the group; we have
. +W,)2 +N.)-N 1’“ 4
in V=g [}1 Wj) n(l Nj) Nj £n K@J {Vb5)

This glves the number of ways wj in which the nj melecules may be dis-
posed in the g cells of the group, :

We now wish to find the number of ways W in which the N
molecules may be disposed in the G cells such that each group of gz
cells has the number nJ appropriate to that group. The set of numbers

nj define the distribution, or macrcstate, and W is the number of

microstates which correspond to it. But W 1s just the product of the
G/g wj's ~

W=y vy, -~ Vo /g {Vb7)
5 i A
inV = ':T';g {_(l-mj)in(l-e—ﬁ'j)—ﬁj n ﬁj]
G . o .
= X[(14%,) sn(14F,) - ¥, in 7, | (V8)
1

The first line of (Vb8) is a sum over all the groups of cells g, But
as the quantity summed 1s identical for each c¢ell in a group, it can
equelly well be summed over the cells and thus do away with the factor
g. The last line now does not contain the group size g any more: it
has gone out to the extent that 1 could be neglected compared to nj in

formule (Vb%). The vanishing of g as the groups contein more snd more
particles corresponds to the diseppearance of the grains in a painting
as one views it from further away.

One further simplification may yet be made. In all cases
ordinarily encountered the average occupation numbers are very small.
Then

4n( 1+'§i1) ~ W, (Vb9)
and & .
In W = 'Z.z: K;(1-4n ¥,) (vvlo)
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We shall now give the stetistical definition of the entropy
as

SRR

N 1
SakiInW | (Vb11)
e =

2% o )
vhere | k= 1.381 x 10" °7 Joules/degree

It is not posesible to prove that this definition is identical with the
thermodynemic one, and sll that will be done here is to show that it
leads to the same expression for the entropy of an ideal gas

e . ° 1 2 L,
o] 1o 2 3 L
. ° 1% P i u 5
ol s 'J 3
Microstete Macrostate
G = 81
N = 27 ' g=9
Pigure Vb

To work out an example in detall consider the microstate
with 81 cells and 27 particlies shown in figure Vb. Taking groups
of 9 cells we find the following values for n; and for vj, using

the exact formula (Vb2):

3= | 1 | 2] 3] %] 5] 6] 7] 8] o
Dy = 1 2 3 2 ! 2 4 = 4 5
vy 9 45 | 165 15 ! 165 | 495 ‘ 165 | 495 | 1287

Taking logarithms we have
In W=In9+ 22n 45 + 34n 165 + 24n 495 + £n 1287
= 45,008

N - =D
S = 6,23 x 10722 Joules/degree
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(Ve)

Dividing the seme microstate into groups of 8 cells (with
one left over!) the following valuea of n, vere found:
nj‘“l: 1, 3, 2, 3: 3» b, 2, 4, b

which leeds to fn W = 42,801, 2 5 per cent difference due to the
very small number of particles.

¢) The Most Probable Distribution

Different distributions hsve different ﬂro%gbiiities W. To
take an extrems exeample consider the disur‘bun*xn in vhich all the par-
ticles fall in the cells of one group. Then

ﬁi = N/z in that group

ﬁi = 0 in all other groups
and
fn vy = ¥ (1 - #n N/3) : (Vel)

On the other hand consider the mucrostate in vwaich the distribution 1s
uniform. Then

W
Ei

= N/G
and .
fn W, =N (1 - 4nN/G) (Ve2)

Probability favors the uniform distribution, and the ratio is given by

W
u G
= (D ] (Ve3)
This, in general, is a colossal nuuber, R‘en in the example glven in
the last section, and for which the conditlon (Vh9) does not hold,
25
W W= {(155)°
Wy = 5#7*-—%. ur, .Ju w (155)7,

so that

ope— o ,8_'5 X 1010



‘When wve are considerinz distributicns of 10
relative probabilities become tremendous. A non-~equil
defined in thermodynemics, is merely one of low probal
to itself it is extremely likely ("certsin” would e ¢
term) to revert to & more probable distributlon end the
crease in entropy. The most probeble dlstrlbulbion is

icles these
o o

e
ﬁ 5..;:‘“}_ e s Cw

state.

"

(vbll) vy

&
o o e g o bt -
L 08 = =kZiin Ny, 0Ny =0 Vel )
o e madannt ahono 2 +a 3 aaasti ova A D iy 2 At 4
The Ni's represent changes Ln the numbers ol particles 11

group due to all poasible small changes in the 4
not entirely arbitrary as we are dealing with a
particles so that

e
Y3

N=3% N (Ve5)

and therefore

Eq. (Ve6) is celled a constraint placed on eq. (Ve
the values which can be glven to the o B, 's RQuo

may be sclved by the method of Lagrange L
eq. (Ve6) by an undetermined constant @, and
tein

S(a+knT) 0T, =0 (ver)

x"(l

This equetion is satisfied for any 3 ﬁi if

< o J = S
end using this to de‘i:er*m_irie a

am - k £a Na/V {Vell)
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Eq. (Ve9) shows that the distribution of meximum entropy is uniform
(the ﬁi's are all the same) end substituting from (Vell) in (Ved) gilves

g #/vv W,./A APy

N, = No/v (Ve12)

Eg. (Vbl0) then gives the maximum velue of the entropy.

Wl U piery [ foka N - 4

S = NK(1-Zn Ha/V) (Vels)

“

This equation agrees wilth that cbtained from Thermodynenics vhen ap-
plied to an ideal monatomic gas .4/ /~"

8 = nR £n (VP ~) + B8 {Vell)

provided k has the value 1.381 x 10'23 Joules per degrece, and sicept
that it does not contain the temperature, &8 is to be expected as

e
thermal motions have been speclfically neglected.

If two identical volumes of ges ave n communicetion
s0 as to constitute 2 single system having 2N les in & volume
2V, it is seen from (Vel3) that the entropy simply doubles, 50 entropy
as we have defined it is extensive.

On the other hand, 1f a given amount of gas expands iso-
thermally from V., to V., there is an lacrease ol entropy.
3 2

A\ S =nR in v/,
The expansion mey take place in any of several wajy it way be "free
a8 wvhen a gas expands into a vacuum, In this case there is no heat or
work involved and the Clasusius inequality holds, Cn the cther hand,
the gas may expand against e piston, dcing werk. In this case, heat
must be added in order to keep the temperature constant, and if the
process is reversible

14}

D Q=TA S =nmRP fn Vy/Vy

L We AQ
The net result of this process has been to convert heat into worlk.

The motions of the perticles of the gas have remeined unchenged as has
their total energy. But their positlons are less well apecilied as

they are distributed over & large volume. IHeat, which is rendom motion,
is convertible into work, which is ordered wmotion, only at the expense
of inereased randomness of position.

d) Entropv of Mixing

consider now particles of two kinds and LoT &




V¥ separated by & partition into //
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kind, and N" of the second be contained in the velume V. I these
particles have no appreciable asize and 4o not attract or repel each
other we can go through the argument of the preceding parezraph Tor
each one independently and show that the most probable distribution

is that in which each of the two kinds of particles are hhmlwrmiy dis~
tributed in the whole volume and that the entropny of this distribution
is

S=N'k (1 - 4nklg/V) + N" k (1 - 2n 1" /cn (val)

Let N =N+ R"
x=N'/N
l-x = "/

x and l-x are the mole fractions of two zasecs vhose molenulss are in
the ratio of W' to N". Substitubting in (Val) we obtain

S = Nk [i - fn Ha/N = x Zn x - (1-x) £n (l«x)] - {vaz)

It 1s seen that the fact that the particles are of two different lkinds
results in a larger entropy by an amount ~

4\ 8 = -nR [ﬁga x4 (l-x) in (1«?}]

in ————

This is & positiwe cuantﬁty because the logarithms ar
is called the entropy of mixing.

It follows if the distributions of AD
the two kinds of molecules are in-
dependent of each other, that is :
that they do not attract or repel. nRIn 2~ — — = e _

atl Ty and

ga

To see the meaning of the
entropy of mixing imagine & veolume

volumes xV end (1-x)V, and let there
be K' particles of the {irst kind in
one part and K" of the second kind . i

in the other. The entropy is then

ix.
g 0
8 = N'k (1~ﬂn ) + N"% (1-%n r%:%vv) Fig. Vdl

= Nk (1-£n 3’%) (va3)

Ng NH

x (1-x)V
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That is, the entropy is the same as though there vere I particles all

-

alike in the total volume V., HNow if the p&*t*tion is “LLOV@d the
particles can redistribute themselves (?n p» diffuse as to attein
the larger entropy (Vd2). It is therciore LT 1 not certaln,

2 g Lr
that they will do so. How probable can be soecn 1; . nuniord
Let the partition divide the volume In equal o i ;
either side. Then the entropy of mixzing 1is

ical example.
helf & mole on

LN 8 = Nz In 2 = 1,375 cal/deg.mcle
This is not a large number. Hewever, 1f we substliiute in o«

(Voll), and call W, and W, the probabilities Qf the mixed &
states, respectively

UM = A\Sfk =N in2

or
W 2 423
2 = 2N as10lf
3

The probebility of diffusicn is therefore overwhelning.

e) Distributions in Phase 3pace

The theory must now be ext
well as the positions of the particle
the notlon of a cell so that 1t apecs
possible, tho momentum og well as the posi
is best visuslized by lmegining & six-dlmons’?

y m Vt’ - " ‘V}‘

- 4
@&
=5

e 4 g e st s Pl S A e At B s

Phase Space

Fig., Ve

> / M‘\G . S J— %
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(Ve)

rhagse space, whose axes are X, ¥, 2. mv,, mvy, mvzl Projections of

this hyperspace can then be ropresented by dravings, as in figure Ve.
Parts 1 and 2 of this figure ave the threec~dimensionsl space and
momentum projections, and 2 is a two-dimenslonal projection including
one coordinate and the corresponding momenitum, wre are three pro-
Jections similar to this ong. A eell in this space ig a six-dimonsional
hypervolumeAx Oy ANz n’ A Ve ﬁh.vy zﬁ;vz whose nrojectlons ere

the cube a in space and the cube b in wmomenbtuom, or three similar
rectangles h corresponding to x, ¥y, and z. Naturally

Ax ANy Lz mEAvx [_},vyA’.'zaabnhE (Vel)

L]

For a particle tc be in this cell its positicn and womentum rmust be
simultaneously in the cubes a and b.

The quantity h has the dimensions of action, vhich is al-
ready famillar from the Principle of Ieast Actlon in Mechanics. It
acquires, howvever, an even greater significance in Quantum Theory
where it is shown that there is an gbsolute experimsntal limit to
the accuracy with which the simultaneous position and momentum of
a particle along any axis can be determined, and this limit is de?
by the relation

AxmbOv, > hs=6.624 x 10727 eng see. {ve2)

The cells, which were introduced in ordinary space for the mathematicel
conveniencé in defining microstetes, heve a true physical meaning in
phase space. When a microstate is specified the systeom is ss fully
defined as it ever can be,

With this new definition of a2 cell the ontlire argussnt of
section b carrles through as before: the cells anre collected into
groups which represent the desirable limili of detall so that the
Thermodynamlc properties emerge. The occupstion nuwbers of the cells,
Ni’ are replaced by their average values over the groupgs, ﬁi, and the

thermodynamic probability W, defined as the number of microstates which
correspond to the same mascrostate, is found to be glven by
InWe= 3 W (1-tn®,) | (Ve3s)

The entropy is then I
| Sm=k inW | (vel)

The above formulae apply to any macrostate,but we are par-
ticularly interested in the equilibrium state, which is that of maximum
entropy. Here the development differs from that of section ¢ beceause
ve must introduce an additional constreint vhich prevents the points
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from spreading out all over momentum space. DBesides having a finite
number of particles N the system has & finite energy U. Accordingly

there are two constralnts

N "Zﬂi (VBS)
and U =3 u 'r‘x‘i (Veb)

where u, 1s the enorgy of & particle in the cell 1. For simplicity
i consider only firee particles, so that

2 =
u, = mvy/2 (veT)
and the results will then spply to an ideel monztomic gas.

The conditions for a maximum are now
&Su-kﬁﬂnﬁigﬁino (ve8)
dn = Z.OW, = 0 (ve9)
U = 2. uig Ni_

&
o

(Velo)

Applying the method of lagrange mult!pliers we multiply (Ve8) by -1,
(Ve9) by «, (Velo) by B, and add

> (a + Puy + % 4n ﬁi)gﬁi = 0 (Vell)

For this equatlon to be satisfled for ell varistions o N, we must have

k £n ﬁi =-0o-Bu (Vel2)
i * e+ B uy
Fyme Ek (Vel3)

vhere a and B are to be determined by substitutlion in (Ve5) and (Ves).
This distribution, in which the average occupation numbers decrease
exponentially with the energy, is cslled & Bolizmenn dlstribution. As
equation (Ve7) has not been used in deriving this, the Boltzmenn dis-
tribution is valid for equilibrium slmost wniverselly; the only re-
striction beilng that of equation (Vh9) which requires the average occupa-
tion numbers to be small. Substituting (Vel3) in (Ve3) and {(Vell) gives

S=FTN (k+a+Bu)=(k+a) N+BU (Vell)




(f) Integration for o and B

. i The determination of & and B must be done ] _ ,
(Vel3) in (Ve5) end (Veb). Performing the summatiicns way be 4if-

= O e s = ¢
ficult, but 1if the Ni are sufficiently smooth functions. of the co-

ordinates of the cell the summsiticon nme

v be repleced Ly

an Integraition.
- .
>

By simple proportions the nuwber dON of particles in ths me element
dx dv dz m/ dVK av er ¥, in h’. Thus

4 - am o wisds § o\ g o e e, R, .
dvf is propertional to the numvbsr N
&1

J

2

B, MW @B . . . o ' ek |
AN = wp e“'“ﬁ-’"" dx dy dz dv_ dv_ dv_ (Ve ) |
h’: ; ;

which 1s immediately integrated over the voluwe to

ey

= 7 3
Fory ity =P . <
a’n v A...g e év,, dvv av a {Vf ?}
h = o <~

Introducing m . 2 ., 2 2, rient
u = :- V., + Vy E ‘.fz) A\ Y24

5, r~ 2., - o) - ) o

/ o aw >'«\_.,— Y s 1 v} . At J ™Y 1 i - Y - / ',:“.r'

4N = V Ez-e"a/k Le TV e/ <X dv_| !e Wo/eX gv_| |62/ dv, ! (veh)

o : . N ) y.i L. z_|

The brackets are functions of ore varisble only &nd csch one integrated
A8 0L

from - = to + = gives Y2rk/m.

fod

1/2 Jw/a for n = ¢ 1/2a for n =

[~ % ~ 2 -

1/% Jw/e® " n=2 1/285 " n =

o | Aok n ) £ X ] .

3/{) %"TI'/&) n o= 4 L/a~ n=5
PR P, : e

15/16 yw/al " na § 3/4% " n=7
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Vg)
The energy is gilven by
3 o= 3 ':3 .-gi.ﬁl. 7 shia ’
i’ U udﬂm’lhjue e d\rxd\ycnz (VE6)

The three components of the energy u lead to three identical integrals,
s0 that

" -2 =1 L o 1 2 ” . r... % -'2 -
vaZ m UV o= OVL/2K d”xj [fe mve/2k o hﬂ mv2 /2l d"z]

I
3Vk " > 2 -4 XI‘!E; L
- 3 (/e oo L 2 (ven
Solving for a and B

- ,“:l-: ‘

| =L . (v£8)

- < !
a =X fn %- + -g— k £n -}F:»;r (vro)

{g) Thermodynamic Vuriables

Substituting for a and P in (Velk) gives

Yol v ]
Bt 4+ £n {Vgl)

v

o]
|
4

S = N(c + 5k/2) = vm}\% + %

This is an equation econnecting the threce specific quantitles 3/¥,
U/R, V/N. It is therefore the equation of the Gilbbs surface for an
ideal gas, and ve know that theé pressure and tempersature are the

slopes of the tengent plane. ifferentieting
<7 2 A ‘ 0
as = Wk(% + % “-%) (ve2)
or
- 2
aU = = %‘Eds = '}%"F
S kK ..

Compering this with




‘given by

wve see immedlately that

B e 1/7 W

U = % NKT (ve5)

i,

PV o= NKT

Thue thelagrange multiplier B has ¢ yug.s‘. cal wmeaning and ve have derived
the ldeal gas lav from statistics elone without any detalled co;stdera icn
of collisions, although, to be sure, the derivation vas not as direc

as that of paragraph (IIg6). ‘

On the other hand the determination of the entropy constant i
of an ideal gas {Paragraph IVe5) was not easy. It is now alre&ag con-
tained in equation (Vvl) Substituting for U and V from {(Vgz5)

e G g i , .
S = I‘*’k[g—- + 3’- In kT + % -»{1% in "’J {(Vg6)
when . L D g oW
ce 1 3 nk+ 3 LI “:‘;72,
z
=1 +%5in A (ve7)

This is kngwn as the Sackur-Tetrode equation. It is to be noted that the
constant h* which measures the size of the microcells has cencelled out
of the theory almest as completely as the size zgh’ of the mecrocells.

It does not remain in the energy or the equation of state (VgS) but en-
ters only in the entropy constant i, a quantity difficult of experimental
determination. Taking the valuve of h from photcelectric measurements

one finds

Eg_i77.862 MK3 {(Vg8)

Comparing this with the values obtalned from vepor prossurc measuvements

{p.97) we see that it falls within ,18 range of these u%LC[ﬁiﬂﬂbLCﬂgo

We are thus justified in taking the hicrecells of sige h”, or, more

precissly, the definiticns of L&v T7cruolx1am;» provability and eatropy
(Veﬁ) and {Vel) are consistent with Nernst's cholce of a

crystal at absolute zecro as the refercnce point for measuring entropiss.




{h) Numerical Check

If the values of « and £ given by (VP5) and {VFB) are sub-
stituted in (Vel’) one obtains for the averagze occupation numbers

= 1,.
- it h- -y /KT il
By ™3 5/2 ¢ 1 (Vhl)

( 27vmkT)

et us substlitute values for helium at the ecritical point

b a0 . A . -
(v, = 61.5 om”’/mole, T, = 5.19°K) in this formula. As the formula
should apply only to ideal ges 203 this 1s not & true test of the for- 55

P
mula, buf the resulis are 31ﬁq'¢iwant, At this point K/V = 0.98 x 10

atoms/cm”’ and

The cells of energy less than kT ere therefore about half occupied;
half empty. We are therefore not Jjustified here in taking

Ln{ 14+N )gxyﬁan However for any ideal gas either T, V, or.%or all
three;, are much larger than the values chosen here and therefcre the
average occupation numbers reasily are much less than one.

-

Evaluating g is somewhat more dlfficult, bul suppoze cane can
measure the pressure and tempersture of & drop of liguid helium one

micron in diameter. N/V for liquid helium is about .43 x 1022 atoms/cm”

so the drop will contain 109 zstoms. The number of cells is roughly
twice this, so we are quite sefle in using Sterling‘s epproximetion.

PP VIV T ST, Ve e ey g e e | T Y Baak i
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CHAPTER VI
Maxwell-Boltzmann Statisties

(2) Maxwell Distribution
1. The Distribution Function
Substituting for a and B from (VFf5) and (VE8) in (VF2) one

obtains for the number of particles d°N in the velocity range dvx dvy dvz
2
m 2 - i
d3N = N [(EFET)B/ i /QCT:Ide dvy dvz (Vvial)

The quantity in square brackets is called the distribution in velocity.
In particular 1t is a Maxwell distribution. We cean distinguish now
between "microstate" (Val), "macrostate” (Vhl), and "distribution" {VIal)
and these are represented schematlcelly,and in only one dimension, in
figure Vial. The vertical lincs at the bottom of this figure represent
molecules, each one in a cell at the appropriate velocity. The spaces
between the lines are empty cells. This is the plcture of a micrcstate.
There zre no numbers but zeros and ones, and posgibly some higher whole
numbers, associated with . The cells are then divided into groups and
the average occupation numbers N, computed. Thesze ere plotted veritically
as the step-function. This is tﬁe plcture of a macrostate, although

in practise the steps are much less coarse than indicated. The mid-
points of the steps may now be joined by a smcoth curve, and this is

the distribution function. It is obtained methemetically by imsgining
the groups and the steps to become smaller and smaller until the step -
function approximetes the smooth curve, although this is not possible
physically because of the discontinuous nature of the microstate. These
steps in converting a microstate to a smooth function have their exact
counterpart in radio communicatlon where a pulse frequency modulation
signal (the microstate) has to be converted in the receiver to & smooth
audio signal.

Expression (VIal) may be broken inte similar factors,; each one
containing only one component of veloclty. Let

f(v,) = ’ﬁ% e’““’!zf/ kT (viae2)

Then N = N £(v,) av, £(vy) v £(v,) dv, (VIe3)

This means that the distribution in v_ 1s independent of the y and 2z
components of velocitlies of the moleciles. Considering only the com-
ponents vx and v_ and plotting the distribution verticelly above the
Ve VY plane (FPigy VIa2) onc obtains & surface with 2 maximum above the
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origin. Equation (VIa3) states that
the section of thls surface by any - ———
plane perpendicular to vy, in fact

by any vertical pleane at all; will
give a simlilar curve. This feature L ]

of the Maxwell distribution is ex- _Tﬁx\\\\\\\\\~\\
pressed by saying that the three il

components of the velocity are U
independent. It is an exclusive
feature of the Mexwell distribution.

Fig. Vie2
Referring to teble Vf it is seen that
+00
f_°° f(v,) dv, = 1 (vialk)

g

L2
dN = N /-2%{-,? o ~HVy/2KT dv_ (VIa5)

This is the diastribution in cne component of veloeclty, and it is scen
to be similar to the distributlion in vector velocily precisely because
the components are independent.

Integrating (VIa3) with respect to Ve and v_ one cbtelins

Changing to polar coordinutes one may write

2
N = N(ET%‘TP/? o WV /2T (2 44h 9a 0 as av (Vies)

which 1s, of course, the same thing as (VIal). One mey now integrate with
regspect to 6 and ¢ and obtain the distribution in speed

dN = N[jg (Ej’%)yg o ~mVS/2KT VQJ av (via7)

This is also & Maxwell distribution, althouzh it is a different function
of the speed than (VIal) is of the velocity. This is because (Viel)
glves the number of velocity vectors terminating in a small cube

dv_, dv_ dv_ of the same size no matter where located in velocity space,
whread (Via?) gives the number terminatinz in a spherical shell of
thickness dv, and the volume of this shell increases with its radius v.
(VIa7) is plotted in figure (VIs3) and has a maximum at

Vo ™ 2%T/m , (via8)







e

El2, Compare the formula for the rate of efflux of gas through a
small hole with Torricelli‘’s formula for the flow of fluid through
a hole, using the same pressure and density for both cases. Explain
vhy the formulae differ in the direction that they do.

El3. Compute the maximum rate of evapofation of mercury at 0°c

and at -20°C. At 0°C the vapor pregsure of mercury is 185 x J.0°6 mm
of mercury and the latent heat is 80.5 cal/gm.

El4, Tungsten at 2500°K will emit 0.28 emp/om® end the work function
is 4.5 volts. What is the vapor pressure of the electron zZas
evaporating from Tungsten and what is the latent heat in calories

per mole?

E15. The stratosphere extends from 10 km to 60 km ehove the earih's
surface and the aurora borealis has been observed-in the ionosihere
up to altitudes of 500 km. Assuming the atmosphere %o have o uniform

temperature of -53°C cslculate the pressure and the molesuler densities

of nitrogen, oxygen, and hydrogen at these three altitudegs. The
proportions by volume of these elements in the estmosphere at sea

level are: L LS
78 per cent Ny, 21 per cent Oys .01 per cent H,. :

E16., The grevitational pctential of = molecule of mass m in the
field of the earth is -mgR2/r where R = 6380 km is the radius of
the earth. Show that thls formule leads to 2 finite atmospheric
pressure at infinity. Calculate the molecular density at infinity
using the data of problem E15.

El7. Find the mean {forwvard velocity F& of the particles which escape
through a small hole into a vacuum,

E18. Show that the average kinetic energy of the particles which es-
cape through a hole is 2kT.

E19. In a molecular beam experlment the sburce is a tube at %00°K
containing hydrogen at & pressure Py ™ 0.15 mm of mercury. The tube

has a slit 30 x .025 mm which opens on a highly evacuated space in
vhich experiments on the beam can be performed. Opposite the source
slit and 1 meter away from it is the detector slit, also 30 x .025 mm
in size, and this opens cn a small chamber in which the equilibrium
pressure p, can be measured.

a) What is the discharge rate of the source slit in cubic
centimeters per second and micrograms per second?

b) At what rate doces hydrogen reach the detector slit, in
micro-micro gms/sec and in number of molecules/sec?

¢) How many molecules which are going to reach the detector
are in the space between socurce and detector at any instant.

d) What 1s the equilibrium pressure in the detector chamber
so that the rate of arrival of hydrogen 1s equal to its
rate of leakage?






This is the most probableAspeed, vhereas the most probable rselocity

is, of course;, zero.

’ Substituting the energy

/

u = mv2/2

du = mv av

in (VIa7) gives the distribution in energy

5
2 fu _ -u/x7

aN B | wees P @ adu

T )R

and 1s shown plotted in (VIe3). This curve locks different from figure
(VIa3) because shells of equal cnerzy
-a8 the energy 1ncrgases.

u, = x7/2

vhich 1s the most probable energy.

differcnee decrease in thickness
The maximum of this cuprve is at

157,

{(VIa9)

(VIaio)

(viell)

! All these curves eand functions portroy the same Mexwell
W

Distribution.

“ ‘ 2. Average Value

S

The distribution function glves the number of particles

having any veloclty.

It is then easy to get th e average value of any

quantity X depending in any way on the velccibty by applying the for-

mula
i - ey ®V e
’) ) —— = ‘T\ W\ xg(\ o
As examples, the 'average speed 1s T 6.
\J w o i (“"‘"—‘ , " )
?_ _32' 3/2 ~HV /QKT ] A = 8 <\ :__F_'i. 7
Vave ™ fo = (&5) u viav = [=o = T (31313)
e, ; o
and the averegs energy is Mo
2.4 2
v m m = 2kl . kS .
U= é” EFET'"E%"G e 2KT g, . % kT (vIiall)
. . B

This checks with
square velocity

S ")\‘4.' e .
the “total energy §~NKT and gilves for the roct mean

vms

= /3kT/m = V3PV

(Vvials)
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These values are indicated_on figure VIie3. Note in particular how much
larger the average energy u is than the most probable energy up°

Referring back to the elementary kinetic plcturc given in section IIgh
we see that the formulae are identlcal provided the single speed assumed
in IIgb6 is identified with the r.m.s. velocity. Yet we see how false
the postulates made earlier were vhen we observe, in figure Va3, how
broad the distributlon in speed really 1is,. :

2, Experimental Verification

There are two direct methcds of observetion of the velocity
distribution of atoms. The first glves the distribution (VIa2) and
consists of measuring the profile of spectrum lines, It is known that
atoms emit light of various freguencies, but each kind 1s slmost mono-
chromatic. These glve the spectral liines. It is a2lso known that the
light cbserved in the x direction from a nmoving source has itg fre-
guency displaced from the emitted frequency by an amount

Dv =y - Wy ™ ase ¥

Hence the light observed must be spread 1ln frequency due to the velocitiles
of the atoms, and the intensity of the light of frequency v must be pro-
portional to the number of atoms having the velocity v_. If we plot

the intensity I of a single spectrum line, obsgexved with an insirument

of high resolution, as a function of frequency, we obtain the profile
showvn below

7 &yﬂ

|

|

|

I

|

' =y ( Q)L
).)’ L

Fig. Vield \\\\

Substituting for vx:in Vie2we see that the intensity should follow the
law

r.,mc2 Dy, 2
=189 7w (57)

so that a plot of log I against (L:w)2 should be a straight line, The
observed departures from this law sre due to the fact that the emitted
light is not strictly mconochreomatic.




¢

120,

The second method uses a roteting drum as collectoer in a
molecular beam apparatus. /A beam of molecules c¢f some metalilic vepory

such as bismuth or cadmium, enters the drum through & giit in one side.
If the drum is stationary they strike the opposite wall of the drum
where they form & depozit on & gless target., If the drum is rotating
it will turn a smell angle while the molecules travel the dismeter

of the drum, Hence the deposit will be spread out according to the
distribution (Viel8) appropriate to ithe particles in a bean.

4., The Random Flow

As the molecules of & gas are by no wmesns statlionary one
may ask how many cross any area A in the gas per second., The net num-
ber is zero, but let us count only these c¢crossing in one direction.
This number, per second and per unit area, is called the random [low,
or random current densityf . The same formulese willl gise the nuuber
of particles striking the well per sescond, or, if there 1Is a hole
in the wall small enocugzh so thet the flow of particles through it does
not appreciably increase the numbers striking it, the formulae will
also give the number of particles issuing from the hole. This is Im-
portant in the production of molecular beams. These are produced by
maintaining & gas pressure P in a chamber used as & source. The source

/ \
R el e L

source Piz. Via5 detector

chamber hes a fine slit opening through which the molecules escape
into & region in which & low pressure is maintalned by continucus



o
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pumping. Molecules issue from the source slit In all divectiocns, end
those going in the desired directlion cre sclected hy o gysten of slits,

Various experiments can be perfo.med on the besiy, vhizh ig then detect-

ed by measuring the pressure in a detecctor cavity.

To calculate the random flov we must first substitute for a
and B in equation (V{il)

6 N, m -1 /%7 ‘ : : .
a°N = v('é,,"ﬁ)z’/a e dx dy dz d‘!lx c.aj‘:y_ av, (VIal6)
. " ™
Considering first only moliecules b
having a definite vector veloclty v. Thoss
striking the area A in the time dt coue W, dt
from a cylindrical volume whose besc is \\f*' >
A and axis v dt. (Fig. VIa6). Its volume et
is Avxdt and this may be substituted \\\\
for dx dy dz in (VIal6)
4. _ NA,_m \3/2 -u/kT L - I
AN = —V(EFET) e v, dv, dvy dv, dt \\\\\\‘
(vial7) Fig.VIn5

So0lid angles can be introduced in this
formule by replacing av, dvy av, by

vesin @ do A0 dv = v° dof) av

and also setting V
w = ’\ \r\.«)d
X 2 ’
v'adv = -5 u du
m

be o NA 1 1 -u/kT 2 %
d'N v To= (1rk'1')3 ) u cos6 4 ldu dt

\ (viai8)

This formula gives the number of particles

issuing from a hole as a function of their Pig,.Via?
energy u and direction 6. It 1s readily
integrated over the energy to give

o A 2~
a’N = E% /2¥; c?; 2 dEITLdt w2 m%, Vave 08 © §E$~5: ¢ (VIel9)

A




Integrating now over all directiona; we get the random curr%%gr%ensity

v/ \ L
7 ) { . eV
A Lii%ﬁffy‘i ‘tg M (v1a20)

e 4

More precisely, thilg 1s the "apdom rart;ch current ucnsity.
We frequently went the random mess current density rfm aend this is ob-

tained by multiplying the particle current by the mass m of each
particle

"
\

»:jw —e— |
M/ ‘
M ’ar'g age = [5at (VIa21)

For example, substituting the values for gir at one bar and BGOOK

one finds & random flow of 18.5 gm/sec om®, It is, of coursc, this
quite appreciabls randonm fiow, impinging on t e wolls, which causes
the pressure It is interesting to compare Via‘lﬁ with Torricelli's
formula for the flow of an incompreasible Llufd tns;u,h a hole.

&= A VBFS " (vie22)

33

= bes, 9
where A' is the area of the "vena contr aota the pminimum crog AL

e—

section of the effluent stream. A' 1ls Hld 0.6 times the arca——
of the hole.

5. Evaporation

Formula (VIa2l) may be applled to the gross rate of evaporation

from a surface. Consider the surface of a lfcuid fa equilibriua with
its vapor. (VIa20) gives the ratec at which molecules of the ges im-
pinge on the liquid. Assume that the fracclon o of these molecules
condense on the liquld and l-a rebound into the gas. Experinents

-indicete that a is often close to 1. In order to meintain equilibrlium

the gross rate of evaporaticn of the liquld must be equal to the rate
of condensation, and therefore be ) F)pi V 20
) v

’
Gross Rate of Evaporstion = a YP§/2r = cP L% /24RT (VIa23)

vhere P and ¢ are ths pressure and density of the vapor 1n equilibrium
with the liquid.

It is naturel to assume that this gross rate is meintalned,
at a given temperature, even though the external rressure 1lsg reduced
belovw equilibrium, (VIa23) is therefore the net rate under zero ex-

_ N/
= A

ternal pressure.






In the case of sclids we cean proceed somowhet further., 3ub-
stituting from (IVe37) in (IVexi)

2
zan—R-%-b+\-<—_‘f.,-znm+§:zm+.eng+1o

now substituting {rom (Vg?) for I _ + g- Ln4and lettingY¥ = 5/% ss the
theory of (Vg7) applies only to a monatomic gas

£
2an-§%-b+%znT :-é’ng-r--g-ﬁn’r:—{—g "n?fl%
h
or P,A«,TFTS/E e"b"eo RT \
Via2ly
; =
where - T = &g (Qym)B/z /2
h/
This can be substituted in (VIa23) toc give
2 _=—b-l 7
M = BT* e o/R ,, 1805

where B=2ra gmakz/h3

This formula hes been used, for instance, to obtain the leotent heat of
vaporization of tungsten, whose vapor pressure ls Lo small to measure
but for which the rate of evaporation can te deduced frem the loss of
welight of tungsten filaments in vacuum tubes. However the most In-
portant application of equation {VIa25) hes becn to the rate of evapora-
tion of electrons from & heated metal. In this application ve are
interested in the electric rather than the mess current density and

so the equation must be mltiplied through by e/m. PFor electrons g is
2 because of the two orientations of the electircn'’s spin, but o l1s

about 1/2 so these two cancel. b .is zero snd the latent hesat per .

electron 1s written ed Loy o200 frnchddiie
o | 1N T = AT o TO/KT ’JO\Q

X 9O O
vhere ‘ Am E*mxemkg/h3 ( Via25

= 120mamp/cm2 degg/j

and ¢ is of the order of & few volis.



(b)  Boltzmann Distribution

1. Independence of Spaceé and Velocity

If there 1s an external force the totalenergy u is partly

potential, o{x, ¥, z), L e’
— /’/?‘-" i Ve > t/,
/ / = == >, e~
ALY u= + e /2 LT o (VIbl)
o o el
Substituting in { 1, 4 A Y
S |
afn =B W e eb/kﬁ." o i e m_,,_z; .,/2 ‘mv©/2kT av, dv_ dv, (viv2)
Where B is a new constant to be‘deﬁermined‘by normalizetion, It igc

firat to be observed that the distrlbution funcition splits into tvo
factors, one depending on the position, the other on the velocity.

This means that the velocity distributicn is Maxwelllen 1naegendently -
of the position, and racin”ocally the spetial distribution is ex- Z\
ponential.independently of the velocity. oOnly the persmeter T has to _

be the same in these two distributions. NV Y
Integrating over the velocity coordinates one obtsins< sft )
3 -6 /kT dusdxdpilg = dv
d’N = BN e /% ax a) & J U |
: ) {Vip3)
This is called a Boltzmsnn dilstribution, the completbe fﬁﬁCtlun (VIp2)
of both position and velocity being & Maxwell-Boltomenn distribution.
We shall discuss two applications of these formulae: to hﬂ?fiblei
in a uniform gravitationai fleld, and to small nagnets in s maznetic
field. -
2. Uniform Gravitational Fieold
In this case ¢ =mg 2 {viok)

Consider the colwumm of alr ebove en area A of the surface of the Earth:
Integrating (VIb3)

°
N = ABN | é’mbz/kT dz = ABN kT/mg
0
so that B = wmg/AkT

and r
W om N W o
BY = A * AT " ©

wvhere W 1is the weight of the column of ailr &nd P is the pressure at
the bottom.
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Therefore an (dN) é'mgz/kT |

or

This lew sufficiently well represents atmosphcrlic presaun
function of altitude so as to be known es the Luav of the ihe
In order to observe it under leboratory conditions, that is over
heights of a few centimeters, it ggulﬁ be necessary to obscerve par-
ticles of mass m~ kT/g x4 x 107" gm or about 107 atcus. :
not easy. However it is easy to make observable partlczles
effective mass by suspending paritlcles of larger masgo in a
almost equal density. Thus Perrin, who first performed the
produced grains of 0.4 microns diameter of a regin ol
and therefore of effective densiiy,'vhen sugpe
Accordingly the effective mass was 8§ x lo"“s {
these particles does not fall tc the bottom of the veac
permanently & Boltzmann distelbutlon vhich cen Le ovsory
a microscope, the particle densgity reducing by L/2 Do
vertical displacement, /

Of course the particles ars not statichary eliher but ave
obgserved to have & repid Brownlan motion.

»
L2 gmy&ﬂn3 i
.2 gm/em”,

o

v (a X}
y Yn:d  aner Py Lo
¢l pDuUL revéins

7 in

Returniﬁg to the atmosphere, ve have secn that the velocliy
‘ distribution is independent of thiec heignt. It Is noct independent of

the distribution in height, however, as beill contain the semec factor KT,
In fact it 1s & kind of spectrum of the component velocity distribution.
Each molecule of vertical velocity v, caén go & helight z = Ve 2z before

reaching the top of its trajectory, and the decressg in density wvith
height corresponds to the decreass in number with Ve A paradox ap-

pears here, for if the particles are slowed down LY graviity as Laey
move upwards, how is it that the meen kinetlc energy stays constont
with height? The answer is that only those molecules which had o
high velocity in the first place reach the height z at all, this
selection of fest molecules exactly balencing the siowing down dus to
gravity. '

The equilibrium atmosphere has aconsiaont teamperaturce. DBut
everyone knows t in our atmosphere, &t lcast up to 12 ¥m and cxcept
under unusual conditions, the temperature steadlly gocs down with al-~
titude. Obviously the atmosphere 1s not in equilibrium, snd the dis-
turbing features are the turbulent winds of the lover ztiosphere.

If the flow is adisbatic

gH=V 4P
But from hydrostatics
@P = -pgadz = -8 ax
‘ whence aH = - Mg d=

| i )
= /0. L)
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or H/M + gz = const (VIb%)

The enthalpy decreases uniformly with altitude. For an ideal gas in
which

dH = Cp aT

it follows that
- M32Z
T - T ¢, (VIbT)

vhich, if an effective heat capacity for moist air of 10 cal/mole
degree is used, works out to 6.8°C per kilometer rise.

3. Paramagnetism

An applicetion of the Boltzmann formule wiich 1s more rcedily
observed in the laboratory is the alignment of the magnetic moments of
molecules in & magnetic field. Leti%zbe the magnetic moment of @
molecule, then its potential ene¥gy in a megnetlic fleld B is

u= - mB cos 8, m= iA (Vin8)

vhere © 1s the angle between the vectors T and'ﬁ. Then 1f we want the
distribution in angle irrespective oﬁ;th@_velocity distribution
To L gt 2o A8 AsL R

)

('L o b
' : 428 = § ¢ B 08 8/KT 441 5 ao atp (VIb9)
Let \mB/kT = x )
cos © = ~t (VIblo)
sin ©d @ = 4t '
a°N = N C o %% gt a o (VIbll)
\
Integrating once gilves Y ’
aN = 2r N C e %% at = "l v / (vIbl2)
and integrating again
‘ bR C
N = —— sinh x {VIbl3)
This determines the constant C and we can rewrite equation (Vibla)
) X Xl |
aN = ® Sinh x © dat (Vibil)

e St it e
. e e =T =

= e













| e NV ,
dN=X —=r € dF . 108,

Similarly the entropy is founfi by substituting (VIbl4) in (Vel)

. though there is some difficulty here asVelliis written 2s & summation
over cells and (VIbl4) is in differential form. The exect theory
shows that the summation can be replaced by an integration provided
X is not large; and gives
S N r — = -
R=Jlo[1-tn ramhr o ") o

K rp N . sinh x 3
ot [1-4n5+ on 80X v xt] an

=2N~N'en%+“6n§wx"§-%€4'ctnst

The first two terus do not depend on magnetlc gquentities and so czn be
incorporated in the constant, leaving

R
sinh x koM
o Vib20
and (
Sw=m {3, + 3 A\
M » S
| . This formule fails for large x (extremely low tempecratures) where it
| goes to minus infinity whereas it should go ©o a nezative constent.

The extension of the Tds equations to inelude megnetic cnergies is now
found by differentiating (VIb20). PFirst it is readily secen that

4 ,_ sinh x e 9
Ix In ~ — =ocothx - 1/x = W

| so that > 5
| dsM - o XX dM = - B%ﬂ A (VvIb22)

m — - -
whence . . 3V /
L - - =
TS = C;,m aT -~ T (ﬁ)p,m dP < B aW (VIb2z)

\ , B /

o

{Vvib2l)

(S
-~

One of the ways of producing extremely low tecmperatures,
around 1/200 of a degree Kelvin, is through the use of the entropy of
a paramagnetic salt. The procéss l1s as follows: First a magnetic
field is applied to the salt while it is in thermal contact with liquid
helium. In this process the pressure and temperature are constent.
Therefore, by equation (VIb23), the entropy must decrease as the nag-
netization inecreases. This is readily understandable as the magnetization
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represents an ordering of the magnetic moments in the direction of the
' field and therefore a decrease in the randomness. Accordingly heat is
‘ given off in an amount

Q- M mam, dnz - Ban (VIbak)

e ) e e

and causes the liquid helium to boil. The work done by the electrie
circuits in producing the field B within the volume V 1s

-W-foHdB-xrff(§~-v-) dB
0

o
/

VB ' . :
=5 - 3 MaB | (VIb25)
g, ,
Hence e \
: V32 | :
Up = Q@ - W= g—-M0 | {(VIb25)
" |

———t

which differs from (VIb18) in including the energy of the fleld B.

Let us now insulate the peramagnetic salt. The entropy is then
constant provided 21l changes are mcdo reversibly. The field ls then
‘ reduced slowly, and at constant pressure. The magnetic moments resume
their random orientation and, beccming discvicved, mmst produce ordor
“elsewhere. The only disorder avallcblc is In the theimel motions of
the molecules and these aresaccordingly, redused, From (VIb23)

! CpaT = [ Bam {(vIb2T)

- should an inadequate amount of entropy be available so thet Tf as com-

puted by (VIb27) came out negative, the msgnetic moment M would simply
not go to zero as B went to zero, leaving a remsnent mazgnetization.

There remains the problem of determining the value of the
absolute temperature which has been reached by demsgnetilzatlon. 30
iong as Curile's law (VIbl7) holds the temperature can be computed from
measurements of susceptibilities. But at extremely low tewmperatures
Curie's law falls and then the temperature must be deteramined dlrectly
from the Second ILaw. This is best seen on & T-8 plot, fig, VIb2, on
which the initielly unkmown plot of T vs S at zero field is shown.
Consider two experiments starting Tfrom the some initial point O at
the known temperature To’ but using different fields B1 and Bg to reach

the unknown temperatures T1 and Te. The heats - Ql and -~ Q2 given off
during magnetization are measured by the amounis of helivm evaporated
‘ ‘ and determine the entropy difference

. - Q,
3y « 8, = .%3:....,._“...?;.3“
4 = i
0

B el i



X b
4each, because this distribubtlion s

by

ST
After the second experiment ‘//i:::/.
1et us supply a small amount - 5 -
of heat q, by means of the
absorption of¥ -rays for
example, sc ag to bring ths
salt baclk to Tl. This point

can be determined by a mcasure-
ment of suaceptibility quite
independently of Curile's law.
Then, if Tl and Ta arce nearly

the same 2

T

a._.
= T =t (viv2g)

!
|

The average absolute temperaturs is thus detemmined over sny analil
temperature interval deslred.

{c) Equipartiticn of nerzy
1) - The Theorem

It can be shown that if particles of G’LLL;;E*“EQSSCS apre
mixed they will tend to assums Lhea sape average kinetlic ~ ¥
188 the greﬁtoﬁz mamoer 01 campnexions
and therefore greatest entropy. The name rogult cen be derived by
considering elestic collls¢0h" between particles of masses my and My

It can then be shown that the particle of least encrgy wi
average gein a fraction § my Mo of the energy difference before

il
...-.._.p...;..m,

“

3 Taphm)®
the collision. In the average, therefore, the energy d’?fesnnCﬁ

> QJ

between groups of particles which collide becomes less s time goes on.

This equal sharing of energy betwvesn particle:
case cf a much more general theorem celled the Egulpart
vhich states that in any complicated svstem kinetic ener
shared equally between 8ll the degrees cf freedom of Ulhe
for each degase—of-freedon.

is spocial
io .a f)f Energy,s
vy will be

8

votem, kT[g

e
1
A
it
'\N‘v
J
%)
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The equipartition theorem says ncthing aboui potential energy
but the laws of mechanics glve the ratioc of potential to kinetic energy
for any type of force. Two cases are of lmportsnce: in "free" irans-
latlions and rotsations there is no potentiel energy and therefore the
totel energy is kT/2 per degres of freedom. For " ound” rarticles
there is an elastic restoring force giving simple harmonic motion for
wvhich the average potentizl energy is equal to the average kinetic
energy and ther efore the average onergy is kT per degree of freedom.
For other types of forces e ratic or poctential to rinétlc energy

may depend on the amplluude of the motion end thus give & total cnergy
which is not simply proportiticnal teo the temperature,

2) Specific heats

Let us apply the Equipartition thecrem To & system of N

"

molecules ezch of which has £ ucs‘ degrees of frcedon and b "bound”

degrees of [lreedom. Then

7~ e i s e e

{U = (£/2 + b) H{T) {(VIel)
and i
= (£/2 + u) r&z {Viec2)
Applying this formmle to ideal aasss for which
— Cou Wi ol
=YC_ ='C_+ nR <§ - iJ”“" = 7“‘?“;
s v V ——\J hP_v\‘i'\—
and hence
£+ 2b = 7—%«{ 2 A (Vie3)

one can obtain the combination £ + 2b directly frou mecaourements of }/
The experimental results for a number of gases is shown below. It is
geen that the quantity (VIe3) very xyeruently comes close to a whole
number which corresponds in all cagses to the three directlions of trans-
lation plus, for diatomic molecules, two axes of roltation and, for
triatomic and polyatomic molecules, ta:@u ,Abs of rotation, In general-
the interastomic vibrations which might have en Vmu\cteﬂ are not ob-
ssrved except for the heavier pold,¢:uic hOlP‘h’“B, nd in these cases
they do not come ocut whole numbers, In fact for t&a diatcmic wmolecules,
except chlorine, the energy difference Letween the cells in phase space
for vibration is so large that at norwal temperstures sll the mclecules
are in the cell of lowest encrgy and vibretion does not contribute at
all tc the specific heat or the entropy “nL., back to the distomic
molecules we find the same thing LJL,,ninb rich respect to rotation
although only at temperaiures around -2005C.

Turning to solids, wvhere the atoms are all bound to the points
of & crystal lattice, one may e"pcwt each stom to be eble tovibvrate in
three dirsctions and therefore have 3kT of energy. This glves for the




SPECIFIC HEATS OF GASES

.! Gas *e X ﬁ Trans. Rot. Vibre.
l
’ Monatomic Gases
; He 18° 1.63 | 2.19 3
} Ne 19° 1.682| 3.13 3
| A ‘ 0° 1.667| 3.00 3 ‘
Kr 19° 1.680 | 2.87 3
Xe 19° 1,666 | 3.00 3
Hg 310° 1.666| 3,00 3
Diatomic CGases
H, 16° 1.%07 | %.90 z | 2
H, -181° 1.597 | 3.37 3 R
N, -20° 1.500| 5.00 3 2
N, -161° 1.468 | &4.27 3 1,%
0, 20° 1.399 | 5.01 3 2 |
WO 1.394 | 5.08 3 2
() c1, 1.333 | 6.00 3 2 .5 ‘
HC1 1.40 | 5.00 3 2.
Tristomic CGases |
H,0 1.305| 6.56 3 3 3
€O, 1.300 | 6.67 3 3 3
NO, 150° 1.31 | 6.15 3 3 .2
N0 1.324 | 6.18 3 3 e, !
Polyatomic Gases
CHy, 1.313| 6.4 3 3 .2
CH,C1 1.279| 7.2 3 3 .6
CH,C1, 1.219| 9.0 3 3 1.5
CHC1, 1.15% | 13.0 3 % 3.5
¢ c1, 1.130 | 15.% 3 3 4.7




SPECIFIC HEATS OF 30LID3

Solid 7% cal/z.% Cal/mele’C Gal/z.a,C
Cp C'p C’p
Molecular Compounds
12 20 . 0523 12,6 ‘ 65.65 S
H,0 (ice) 0 580 8,64 i 2.88 ey s
C Clu -0 .201 30.9 6.18
Ionic Compounds
We Cl 0 204 11.¢ 5.95
Zn 3 0 «116 10.8 5.4
Zn 0 C J11h 9.3 4.5
Ca Fy 0 .20% 15.9 53
Ca CO, 0 .182 18,2 3.5
NH, €1 0 \358 19.7 3.3
‘ Metallic Compounds g
Na 20 . 298 6.85
Al 20 .215 | 5.82
Fe 20 .107 .00
Cu 20 . 092 5.86
Zn 20 . 0025 5,04
W 20 . 0330 6.08
Pb 20 . 0304 5,3¢
Valence Compounds
Diamond 20 .118 1.42 L ez
Graphite 20 .168 2.00 Con %,/
Quartyz 20 T8 10.4 3."8/







134,

specific heat 3R per gram atom, which corresponds to Dulong and Potit's |
law. The followving table glves some experimental values and 1t is seen |
that Dulong and Petit's law is in general quite well, though not ac-
curately, observed. The most notable excoptions are the solence com- |
pounds and the reasson here again is the sise of the e¢nergy differences |
between cells in phase space, and iz well expleincd by Debye's theory
of specific heats. It is found that these subsitnonces obey Dulong and
Petit's law at higher temperaturcs.

3) Fluctustions

The equipartition theorem ayplies not only to melecules bui
also to systems of mecroscopic dimensions. Thermel mollon was Zirat
noticed by a botanist; Robert Brown, in 1827 as he observed the con-
stant moticn of pollen particles suspended in water. Colleidal gold
suspensiong are readlily made with particles of diamecters of the order
of 5 x 10™° cm and thesi cen be sesen by the light they scatter. A:
thelr mess 1s about 1072 grams their r.m,.s., velocity is readily
calculated from —

L;nwz = Bk@__,,) (Vich)

te be ebout 10 cm/sec.

The ultimate sensitivity of & zalvanometer is limited by the
thermal motion of the mirror. If XK is the torsion constent of tlie sus-

pension, the potential energy of the mirror vhen turned through the
angle © 1s 1/2 K62, As this is a onc-dimensicnal motion with ca clastie

restoring force o T
1/2 16° = 1/2 K&° = 1/2 kT
or ®m.s. ™ YRT/E O

{(VIe5)

®r.m.s. ™ /RT/1 /

o

Superimposed on the steady deflection produced by the curreat bLeling
measured, there will be a rendom thermel motion whose angle and
angular velocity are given by (VIe5), and deflections smellor than
this smount can therefore not be read. Reducing I and K to improve
the sensitivity only incresses the thermal motion. The type of
motion will depend on the amount of damping of the instrument: ir
it is more than critically damped the motion will be irregular and
jitterys if it is undsmped the mirror will swing with its proper
frequency and with an amplitude which varles with time but stays in
the neighborhoocd of 4kT7§.

Thermal motions will produce fluctuations Iin the density of
any medium, though they are partlcularly notlceable in the case of a
gas, This is most easily shown by consldering a large amount of gas
within which a small amount, n moles, are separated by an lmaginary
surface. This will normelly enclese & volume V buk, due to fluctuaticms
its volume may be V + v and therefore the internal pressure is P + p







B LT = K€ '
wnr v = Lyur=te 135,
-y = VH o) ‘ ) (VIO6)

The external pressure is aszumed to remein P, Tho net work done in
producing the compression -v is

W= -fvpdv = fV -V‘I»d?v- = %—- %-P\ (VIG?)

Ve = VAkT

v G)z’ e @f’ diage I dumi

or, as the relative change in density is minus v/V,the relative change
in volume

/

(S p/P)2 = (v/¥)2 = kD XAV (VIc9)

Fluctuations in density are therefore greatest when smell volumes of a
highly compressible substance are observed. The compressibility of a
gas near the critical pocint becomes very large and therefore one may
expect large fluctuations of density. These produce the opalesconce
which is observed in gases near the critical point,

In the case of an ideal gas, where Y = 1/P
(SR/M)° = (§ p/p)° = KI/PV = 1/8 (VIelo)
or 1Y) SENEYTEE i~ Lo Lolns Tk TF1011)

the mean square fluctustion in the number of molecules in any volume
is equal to the number of molecules in that velume. The temperature
has disappeared from this equation and we find a reletion which is
well known in the theory of the random distribution of particles.

The blue color of the sky and the correspondingly red cclor
of the sun at sunset 1s duec to the scattering of sunlight by the air.
This would not take place 1f the molecules of the air were uniformly
spaced but, as was pointed out by Lord Rayleizh in 1871, :s due to
fluctuations in the refractive index and thervefore in the density of the
air in volumes of the order of a wave~length of light cube. For blue
light and at normal temperature and pressure there are about nine
million molecules in such a cube, and therefore the r.m.s. fluctuation
is three thousand molecules. The numbers of molecules in nelghboring
cubes differ by about this amount and this irregularity produces the
scattering vhich is observed. The percegtage fluctuation (VIclo) is
proportional to 1/V and therefore to 1/A~, and the number of scattering
centers observed in eny direction is proportional to 1/A so that the
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!
net scattering varies as 1/1}, which 13 Rayleigh's law for scattering,
end explains the preponderance of blue in the scattered light.

d) Johnson Noise

The Equipartition Theorem 1s nct, of coursc, limited to
mechanical energy. A short-circuilted Inductence carriss & rondo:
thermal current given by

z . i Oy
/2 L I° = 1/2 X7 = 2 x 10 14 ergs at 300°K

or - = JkT/L (VIel2)

and similarly a short-circuited condenscr has o randem potentlal

Vo.ms. * JET/C (Viels)
This works out to 20 micro voltes if C = 10 uuf

These random currents &nd potentials are ca
or "Johnson" noise in & communicoticns clryeuvit and as
quently the limiting factor on the amplification which can be applied
to an electric signal it is important to know thelr ¢

tribution. In & resomant circuit (condonscr shovrited by -
the anawver is simple; the circult oscillﬁtcs st 1
with en r.m.s, asmplitude given by (VIel2) or {Viels).

DF I G GRS

-

To get the frequency distribution in o damped cire
the device of considoring s very long lossless transmigsion line
length 4, similarly terminated at both ends. This systom hos mony
modes of osclllation, sach one corrssgponding to & stording wave of

wave-length Ae 2/n

and of frequency v = nc/24

where n 1s & whole number., In a frequency interval L\ v there are

An:«?-ﬁ-&v

modes of \oseillation. Each of these wmodes of oseillstion 1s a o
of freedom of the system and therefore has in the everage, 1/2
kinetic energy 1/2LIZ and 1/2 kT of potentlal energy 1/2 CV2,
mean energy in the frequency internal A v is therefore

ﬁ'v DV = T\ n = %ﬁ- ' ANY (VIel6)




and the mean energy density is o

T, Av = ?-éklr-Av (Viel?)

Each standing wave can be decomposed into two travelling waves, one
going each way, and the power in one of these waves 1ls 1its energy
density multiplied bye , so that

y
P, &V = KTAY ‘ (VIe18)

This is the basic formula for the power specirum of Johnson nolse. Its
derivation 1s Nyquist's thoorem.

At the end of the line thers is generally a relliection co-
efficient r» go that (1l-r) kT Lnv 1s absorbed and »iT Av reflected.
As a full kT A v comes from the end of the lino; the terminstion mmust
be emitting (1-r) XT A v and as only rosfstances absorb power the
emission must come from the resistances also. The frection (1-r) is
both an absorption end an emission coefficlent end it cen be calculated
from circuit theory. If a line of real impedance Z i1s termineted by a
pure resistance R

lepy = l(‘if.z)e) (VIel9)

and it is readily verified that r = 0 if the load is matched to the
line R = Z, The absorbed power is then

P, = —iRE, kﬁ?z.\vzzga

% (R+2)
and —
2 bz
1, = ——=s kTAv
&  (r+2)
The emissive power of & re- o 1-» 5
sistance is best pictured by imagining > 5
a source of electromotive force E con- é R
" tained in it. As the emitted power is 5 r §
52 i ]
P P iz -
e” "a” Te | I S
\y |
2 4R
s RS TN
®  (r+2)
The emission voltage 1s Fig. Viel
VeﬂieZSE- ieR
Hence — =
E® = 15 (R+2)% = URKTOv (VIe20)
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This formula was derived by Nyquist also. As it does not centain any
parameters of the line it represenis an inhecrent propcrty of resistances.

Suppose, for insteance, th2t we are interes ted in frequ cnv¢es
from 1 §° 6 megascycles., From (VIcE”) wo gee Lhet e line "ill CarIy
2 x 107 microwatbs of thermwl power in this freq ueney range each

direction, end from (VIGEO) we see that ¢ wnff hov& 1 reslistor oor
tains & 200 microvolt e.m.f. uniformly sprcad over ULC S8HC Treguency
range.
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Schematic diagram of P-v-T surface for a substance that
contracts on freezing..




Schematic P-v-T diagram for a substance that
expands on freezing.







NOTES ON ELECTRONICS Wed, — | =4 |

Courge 8,08 Fvi

M.I.T. Soring Term, 1949 A
Chanter I, introductigg

This set of notes 1s written as an introduction to that
part of electrpnics which deals with the physical properties of
electrons, and to some extent with the physical properties of o teor
fundamental charged narticles. This branch of the broad fleld
of electronics 1s sometimes referred to as Physical Electronics.

We can define physical electronics as the sclence which deals
with the motion of electrons 1in electromagnetic flelds; the in-
teraction of electrons with each other, with other charged parti-
cles, and with radiation; and the emission of free electrons from
matter, in varticular, from metals.

Matter 1s made up of moleculeg which in turn are made up

from the atoms of the chemical elements. All atoms conglist of a
heavy vosiltively charged core, the nucleus, and a sufflclent
number of electrons surrounding the nucleue to Jjust annul the net
charge of the atom. An atom or a molecule may become lonlzed

(chargced) by the gain or loes of one or more electrons. All funda-

mental pvartlcles contain a charge which 1s numerically equal to l
the charge on the electron, or to a small integral multinle of ‘
this charge, and thig charge may be both nositive and negative 1in |
sign, q

The position of the atom in the Periodic Table determines ‘
the amount of nositive charge carried by i1ts nucleus; the number

of negatively charred electrons surrounding this nositive core 1s

then Just equal to the atomic number of the atom. While the total




- i

charge ocarrled by the external electrons 1s Just equal and op-
posite to the charge of the nucleug, mogt of the mass of the
atom resides in the nucleus. The nucleus of the lightest atom,
hydrogen, which ig called the proton, is 1837 timeg the mags of
the electron. The heaviest natural atom, Uranium, 1s some 238
times more masgsgive than hydrogen. All nuclel are made up of
protons and neutrons; the neutron belng an uncharged particle
nearly equal in mags to the proton. Here the magses of all
nuclel are nearly integral multiples of the proton mags, or the
hydrogen atom masgs.

When the atomg of a substance form a metallic golid gome
of the outermoagt electrons become detached from their atoms and
are then free to move about in the metal. These free electrons
are the carriers of electric current in metals, and it is from
thelir number that thermionic and photoelectric electrong arisge.

The particles with which we ghall deal mostly are: (1)
the electron, (2) the proton, (3) the deuteron, which ig the
nucleus of heavy hydrogen, and contalng one neutron and one proton,
(4) the c-particle which i1g the nucleus of helium, and (5) the
positive and negative lonsg of various atoms and molecules.

All fundamental particles are characterized by four de=-
finite properties, (1) mass, (2) charge, (3) inherent angular
momentum (gpin), and (4) inherent magnetic moment. Any of the
lagt three quantltigs may be zero, but in general the values of
each mugt be gpecified to help 1ln our undergtanding of the parti-
cle. Modern physcs hag not progregsed far enovgh to tell us much
about the slze of these particles, but order of magnitude cal-

culatione can give upper and lower limitg to the glze.
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Theée notes can be divided into the following general
sections, i
(1) Motion of Cﬁarged Particles in Electric and Magnetic
Fields.
(2) Relativistie Motion

(3) High Energy Charged Particle Accelerators.

(4) Space Charge Effects.

(5) Kinetic Theory of Gages.

(6) Elementg of Atomic Theory and Collision Processes

in Gases.

(7) Gaseous Diecharges.

(8) Fermi-Dirac Statistical Mechanics.

(9) Emigsion of Electrons from Metals.

The general reference text will be Millman and Seely,
“Electronics” and the material covered will be sgimilar in content
to Mlllman and-Seely (M and S) Chapters I-X, XV, although the
order of the treatment will be different. Page referencesg to
M. and S. will be glven throughout these notes.

These notes will use rationalized m.k.s. unitg throughout,
except where otherwlse specified, and will try to conform to the
most widely used notation of physical and electrical engineering

texts. Millman and Seely use the go-called practical gystem of

units and their notation departs from the norm to a conglderable

extent. Table I serves to compare the Millmean and Seely notation

with that of these notes, but we can gcarcely hope that this

table 1s complete. The student should feel responsgible for the

conciliation of the two systemg of units and notation.



TABLE I

Principle Differences in Notation and Units Between Millmen and Seely and ihesé Hotes

Millman-Seely Notes
Quantity Symbol Unit Symbol Unit Conversion Factor
force f dyne F newton 1 newton :3.05 dvnes
electric field F volt/cem E volt/m ] volt/m:lO-Q volt/cm
Potential E volt v volt
mass m gram m kg- 1 kg=103 grams
distance (various) cm (various) meter 1m —.-102 om

' Magnetic Induction B Gauss B weber/m2 e | weber/m2= xou gauss
Energy { E electron-volts U,w Joules 1l joule = 6.25 x 1018 e.v.

no symbol joules



Chapter II. Motlon of Charged Particles,
in Electric and Magnetic Fields
2.1 The Electrostatic Fleld -

_ In order to formulate the laws of force between electro-
magnetic fields and charged particles ve will begin with a summary
of the special case in which the flelds do not vary with time,

The electric field, ve know, arises from the presence of free
charges, which attract or repel each other according to Coulomb’s

Law

p = raa'

= Fer b2l sL)

Here F is the force between the two charges measured in
newtons, q and q' are the respective charges measured in coulombs,
r is the aeparatloh measured in meters, and & 1s a constant of the
medium in which the charges are immersed, and for homogeneous iso-
tropic media € 1s a scalar quantity, In the rationalized m. k.s
system of units € in empty space is equal £0 —iex 10 > farads/meter,
and 1s designated £ . Since we will be deaiigg;aﬁiy‘with empty““'
Spa09, Or nearly empty space, in this course, 65 will be used through-
out, ‘

It 18 an experimental fact that charge consists of two
kinds, labellied positive and negative, and that no net charge is
ever created or destroyed, All matter is made up of both kinds of
chargee, and one may separate negative charge from a neutral body,
but one will always leave the body with a positive charge esqual
numerically to the negative charge removed, It is also an experi-
mental fact that like charges repel each cther and that unlike
charges attract each other, The symbol q for charge, then, implies
that an algebraic sign must be used when the symbol is to be re-
placed by a number, The positive sign in equation (2,1.1) in-
‘dicates that when q and q' are of like sign the force is positive,
tending to increase r, and wvhen q and q' are of unlike sign the force
is negative, tending to decrease r,

The electric intensity vector E due to a single charge may
now be defined, Let us imagine a single charge q isolated im space,
If vwe placed any other charge q' in this space we knov q will exert
a force on q' no matter where in space ve put q'. We can think of




this nrocegs as being due to an electric field . ue to q which

comnletely fills thls snace, 1.e., a vector fleld since the force

is always directed along the line Jjoining q and q'. However,
gince q! will also give rise to a field 1t 1s necessary for the
sake of definition thot g' be very emall compared to q so that
its effect on the field 1s negligible. In symbols then, the

electric fleld due to a single moint charge 1s

g e (2.1.2)

™
4 ecr

E= L
Q-0

Q

With this definition the force on any charzed narticle

q in an electroatatic'field is always,
F = Eq (2.1.3)

providing g does not disturb the charges giving rige to E,
The electric field due to an assemblage of charges 1s
the veotor sum of the fields of the individual charges. In

order to comvletely describe phenomena in material media 1t 1s

necessary to introduce another vector, namely, the electric dis-

placement vector D which 'ls related to the electric intensgity

vector by
D = ‘OE . (20104)

As a direct consequence of (2.1l.4) and Coulonmb's Law,

with ¢, renlacing €, we can formulate Gauss'! Law, which states
that the flux of D over any closed surface is ecual to the net
. gharge q contained in the volume of which the surface 18 a
boundary. In symbols

ff De*dsS =g (2.1.5)

closged
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where the dot ¢ signifies that the component of D normal to the
surface 1s to be multiplied by the element of area 4S8 before the
integration 1g performed. The sign convention states that D - 48
is positive if the component of D normal to the gurface 1s di-

rected outwards.

2.2 The Electrogtatic Potential

The electrostatic field 1s congervative and can, therefore,
be derlved from a scalar potential function. That is to say that
if only electric forces are acting the work done by these forces
on & charged particle will serve to ralse the kinetlc energy of
the particle by the amount of the work done. More precilgely we
say that the electric field vector 1s the negative gradient of

the gcalar potential, V,

E =~ grad V (2.2.1)
in carteslian coordinates
S oV
- . aY
5 2y
S .
.E:" “Z

The necegsary and sufficient condition that a field be
congervative is that the line integral of the field vector

around any closed. path be zero, or,

§E » dg = 0 (2.2.2)

Physically thig meang that there i1g no net work done (ber
unit charge) as we move a charge around a cloged path, which igs '
of course egsential Af energy 1s tv be congerved. |

The potentlal 1teelf is not uniquely determined, sgince it

ariges from an integration of i, and mugt contain an arbitrary
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constant, However, we can define the difference of potential
between two points A and B as the negative of the work done per
unit charge in moving a charge from point A to point B, Hence,

Vo-V,* -] Ecas . (2.2,3)
A
This Integration is independent of the path taken from
A to B because of the condition (2.2.2)., We may, 1f ve wish,
80 choose the point A that VA may conveniently be set equal to
zero, This 1s equivalent to stating a boundary comdition which
enables us to evaluate the arbitrary constant in (2.2.,3), We may

use the following methcd to choose the point A, The field in
many problems can be expressed as,

1
E X
=

where n may'have any {inite value, It n 1s greater than 1 we

choose A at infinity, and if n is less than 1 we choose A at zero,
For tbhe special case vhere n 1is egual to 1 neither zero nor infinity
are good points, but some finite point apprcpriate to the situation
must be chosen,

Since the potentlial 1s scalar functiom, most electrostatic
problems are more readlly solved by computing the potential, rather
tban by computing the three components of the fleld directly, After
the potential hes heen ascertalned the fileld 1s readily obtained by
differentiation,

The potentisl due to & point charge, q, at a distance r
from the charge, 1s,

Vs oy (2.2.4%)

vhere the potential at r=co has been set equal to zeroc,

The potential Bfian assemblsge of point charges is simply
the algebraic sum of the individual potential,

The electromctive force in an electric fleld 1s defined
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as the line integral of E, It is equal, therefore, to the work /
done by E per unit charge, and 1s hence the negative of the / 3
potential difference, The net e.m.f, around any closed path in j
an electrostatic field is zero, equation (2,2.2). Where time |
varying fields are present equation (2,2,2) does not hold as we
shall see later,

2.5 Poisson's Equation

|
If instead of considering the field due to point charges |
we wish to evaluate the field or potentlal due to distributed j
charges, it is convenlent to restate Gauss' Law, equation (2.1.5),
in differential form, 1
Let us consider a small element of volume in space, dx dy 4z, |
in which an electric charge density p exlsts, The charge density ‘
P need not be a constant, but can vary from point to point; how-
ever, the total charge contalned in any small volume dx dy dz 18
just_p multiplied by dx dy dz,

Z Dz‘(z*d'l-) |
(x+dx,y+dy, z+dz)
D,(v) I
*_L‘}’j b Dy y+dy)
(%, Z Mot
) g I Y :
v PR
L .
< T 11 —
et T O =
. VA |
~ = 4
X < A Fig2.

Let us apply Gauss' Theorem to the small volume element 1n
‘'Fig, 2,1, Since a charge is conteined inside the volume' there
must be a non-zero integral of the normal component of D over the
bounding surface, OSince the volume 1s very small, the surface in-
tegral of E& is evidently,*[Dy (y +dy) - D(y)] dx dz where dx dz 1is

the area normal to Dy, and where ve have used the sign convention

that an outward dravn normal leads to a positlve surfsce integral.

\
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Similarly the surface integral over the dx dy surfaces 1s

EDz(z + dz) = Dz(z)] dx dy, and over the dy dz gurfaces is

[Dx(x + dx) - Dx(x)] dy dz. Combining and equating to the charge
encloged, we have,

[Dx(x + dx) - Dx(x)]dydz - [Dy(y + dy) - Dy(y)]dxdz -+ [Dz(z + dz)-

Dz(z)]dxdy~=f dx dy dz
dividiang through by dx dy dz we have
D (x + ax) - Dx(x)

Dy(y + dy) ~ Dy(y) D, (2 + dz) - Dz(z)

+ + -5
ax dy dz =
Now the terms on the left hand glde of the above equation
oD 2D 2D
ere by definition =X ¢ —L and —=%& regpectively in the limit as
X Y 22
dx, dy and 4z approach zero. Hence,
oD oD 2D,
X4 =L - =
2x oy a2z ‘f
Combining with Equation (2.1.4) this becomes
oE 2E 2E
" P - L. (2.3.1)

ox 2y z ¢
. If now we uge the three component equations of the get
(2.2.1), we have Polsson's equation,
G - S (2.3.2)
x°  y°  az o
For thé Qpeclal case where the charge denglty at the point
in question is zero, the reduced ferm of (2.3.2) 1s called LaPlace's
equation.
In many practical problemg the geometry of the system has
cylindrical symmetry. For such cages 1t is advantageoug to make uge
of cylindricel polar coordinates r, %>and 2. We can express Polgson's

equation in terms of guch coordinates by following much the sgame
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procedure as for cartesian coordinates. In Fig. 2.2 we nave a get
of cylindrical polar coordinates shown in thelr relationghip to x,

¥, z coordinates and now our element of volume 1s rd@dr dz.
\
De (24 49)

4,1-0/\, ?‘l’o?) '} r &9)

X - Fig. 2.2

Furtherinore. the glze of the volume elements, and the gize of four

of the surfaces which bound 1%, depend on the position of the volume

element, since one elde, rd @, is proportional to r. Since the volume
element depends on r alone of the coordinates, thig difference will
be important only for the surfaces perpendicular to r in the appli-~

cation of Gauss' Theorem which then yielde,

C(r + ar)D,(r + ar) - r D, (r)]agaz + (Do (@ + ap) - Do, (@)] ardz

‘ + [D,(z +dz) - D,(z)] ragaz = pragar dz

' from which it follows,




= I

£ 9(rD ) L1 3Dn : aD! -p
r or r 3¢ 22

' and since in oylindrical polar coordinates,
- =14
S €0 3r
I W
D? ¢ v
oV
Dz N c() Z
we have
.l,-.a_(r Q.Y.)-...].-. .12_!4. _32V=__‘£ (2.3.3)
R or P 22 322 €, -

2.4 The Motlon of Charged Particlee in Electrogtatic Fields

(Millman end Seely: pp. 18-25, pp. 63-69, pp. 71-86]
2.4.1 Work and Energy

A charged particle of mase m and charge q suffere a foroce
‘ of Eq in an electrostatic field. | (We are tacitly agsuming that the
charge q 1s not large enough to affect the distribution of charges

which give rise to the field E.) By Newton's second law, we have,

dlav) _ gp | (2.4.1)

If we wigh we can compute the work done on a particle in
moving through an electrostatic fleld of force. We take the scalar

product of each glde of equation 2.4.1 with ds, the element of

length along the path, and integrate from the initial point A to the
final point B.
B ' B
/ Qé%i”l . ds =/qi:’ . da (2.4.2)
A A

The left hand side of the equation may be rewritten,




= I3 Wt

providing the mass m 18 constant, as

B B B
gl' - -d—'EO — : .
fmdt ds ‘/mdt av —/mv dav .
A A A
Upon integration eguation (2.4.2) benomeq:
' F
- -» 4
%mvhz - -é-mwii= A qk - ds

which is, of course, an expreseion of the work-energy principle.

Remembering the definitlion of potential, V, we obtain
l 2 " T

(2.4.3)

>
e

which gtateg the principle of coneervétion of electric and kinetic
energy. In almost all dynamic probiemg concerning forces which do
work on the particle, one of the flrgt integrals of the differential
equations of motion 1s an expresslon of the conservation of energy.
Thls, of course, excludes dissipative forces such as friction.
Forces which do no work, guch as centripetal forces and magnetic
Tforces, can generally be handled independently by the correct cholce

of coordinate systemg, as we ghall see.

2.4.2 The Electron Volt

Since all fundamental charged particles of physics, which
include all particles to be dealt with in theee notes, carry a
charge elther numerically equal tc or & small integral multiple of
the charge on the eleétronr 1t ie convenient to define & new unit
of energy in ﬁerms of this charge. Thlg energy unit 1g called the

electron volt, and is defined as the energy acquired by an electron

in falling through a potentlal difference of one volt. We may write

equation (2.4.3)
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lev = \ C/(/'SI Sou’t'\.

ol L LR
3 mvg - 3 vy e(vB VA) d

where we have set q = - e the electronic charge., Thig equation
states that the electron increages 1ts kinetic energy by an amount
equal to 1ts numerical charge timeg the increage in potential; an

electron tends to move to points of higher potential. For particleg
of numerical chafgev+ e the slgn of the right hand gide ig reverged
slnce posgitive charges tend to move to poihta of lower potential.
In either case the particlesg are gald to have gained 1 electron volt
(1 ev) of energy 1f the difference in potential ig 1 volt. To
change from jouleg to electron-volts we need only divide the number
of Joules by the electronic charge in coulombs in order to obtain
the number of electron volte, since,

change in kinetlc energy = chamge in Potential Energy
or

change in kinetfc ener

electron charge = change in potential in voltg =

= energy change in e - v.
If the particles are doubly or triply Charged, that ig 1if
they have charges equal numerically to two or three electronic charges,

then the énergy change in ev 1g numerically 2 or 3 times the potential
charge in volte. It 1s customary, though not precige, to speak of
1400 volt electrons, or electrons of 1400 volts energy, meaning of

course electrong of energy 1400 ev.

2.4.3 The Electrosgtatically Deflected Cathode Ray Tube

An intereeting apolication of the motion of electrons
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(or charged particles) in electric fields 1g met with in the
Cathode Ray Tube. This tube in 1its simplest form 1s 1llustrated
in Flg. 2.3. A cathode K emits electrons which are accelerated

along the axie of the tube by means of a potentilel YA applied to

T/"l'
.
Ty

. Ce'e tronm
V. L

3
'\
A

Fig. 2.3
an accelerating electrode A. We will assume that by means of a
gultable focussing system, not shown, that the electrong emerge from
A in a well focussed, pencil-like beam. After leaving the anode
the electrong next enter a region of constant electric field which
is at right angles to thelr directlion of motionr Thig congtant
electric field can be approximated by applying”a deflecting potential
VD across two flat deflecting plates, ghown here in section, whose
separation d isg somewhat gmaller than the length & of either plate.
The motion of the electrons in the region between the deflecting
plates 18 similar to the motion of a baseball thrown horizontally
in the earth's gravitational field. Since the electric field 1g

uniform, the electrong will move 1n a parabola until they leave the




- 168 =

deflecting regloh, at which time they will be travelling at an angle
©, to thelr original direction. After leaving the deflecting flela

' the electrons travel in a straight llne, through field free space,

' until they strike a fluorescent gcreen, and are thug observed at a
distance L from the center of the deflecting plates. We degire to
calculate the deflection D on the screen.

Let ug choose a coordlnats system such that x ig meagured
vertically downwardz from the center of the deflecting region. The

electrong acnuilre e veloclity v in vassing from cathode to anode.

x0
If they leave the cathode with negligibly low velocities, we have,

from congervation of energy,

f

s S ; €
2 MVyo = & Vps OF Yy 25V .

Un entering the deflecting region at time t = o, the electrons are

. subl)ected to a force in the y-direction equel to b . Asgsuming that
the @eflecting plates behave like a parallel plate condenger, large
1n.l&é$fg} dimenslonsg compared to the plate separation, and neglecting

fringing of the field near the edges, we have,

s e
y @a

and by Newton's second law

dv \
—
G T °h
or
e VD
vy ol = - T vy = 0 when t = o
and
& XR tz Yy = o when t = o
Yy=2um d ' -







Since there 1g no force in the x direction

v = t
x congstant = vxo

x = ont = % s X = = % when t = o
The time of flight t, through the deflecting region can be
2 2

found by setting x = Z hence tf -l
ox
The y deflection Yo during this time 1s then
DRI
Ye 2m 4 vé i
X0
The y directed velocity at time tr is
N G o

yf m dvxo
After leaving the deflecting region the electrong are traveling at
an angle @ to the axlg, given by,

v v
~xfr _.e D ¢
bt ety S s BN

X0
The further deflection due to traveling a distance L = % Lo the

gcreen at this angle 1sg Just,

(L - %) tan @ .
To thig deflection we must add Ve to get the total deflection D.

5 2,
D = Vo +v(L 22) tan € ,
le D _t- _4ye D L
P=spa o *L-3) T3
Vo) . Vxo
from which, B
e D¢
D=Ly 3 ;5'
X0

remembering vio = 2 ﬁ'YA

{ 1 ' .







This result ig gomewhat startling in that the magnitude of
the deflection does not depend at all on the kind of charged parti-
cle. Of greet practical importance is the fact that the deflection
is proportional to the deflecting voltage, and hence the electro-
static CRT 1s & linear instrument. A little geometrical work
gerves to show that all electrons seem to come from the central
point in the space between the deflecting plates, which 1s there-
fore referred to as the "virtual" cathode.

We have thusg far negiected errorg due to the non-uniformity
of the fileld; in practice the piates are never large compgred to
thelr separation; and to the fringing of the field at the edges
of the deflecting plates. The errors thus introduced can be cor-
rected for by modifying the geometrical factor Li{/d in equation
(2.4.4) a small amount; for small deflections the linearity of the
ingtrument 1g preserved.

Cathode Ray Tubes have many and varied useg including
televigion soreens, radar pregsentation screens, and a large
variety of useg as measuring instruments in the laborazory. The
mogt common use is ag the well=hnown cathode ray oscllloscope.

In thlé tube a second pair of deflecting plateg are introduced
along the axie, but rotated by 90° to the first palr in order tu
produce a deflection at right angles to that produced by the firsgt
palr. If the separation of deflecting plate palrs ié short com=
pared to the mean distance to the screen our formula (2.4.4) will
8t1ll hold approximately. We are now enabled to get a two-
dimensional plcture of voltage or voltage and some of other sultable
variable.

A common uge of such an ingtrument is the measurement of
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A.C. voltage vs. time. Up till now we have agsumed that the

electrgnic field is static. However, as far as the electron is
‘l' ' concerned we need only require That the voltage varies but little
during the time that one electron is in the deflecting fileld.
Thie means that the transit time of a particulaer electron must
be ghort compared to the period of oscillation of the electric
Tield or voltage. If we require that the transit time of the
electron be no greater than 1% of the period, then

_ .01
= 01T = £==

s
=__i/_
e

for £ = .02 meters, Va = 1,000 volts

fmax = 9.4 mc/sec.

Hence, the measurement of voltages varying at frequencies up to
fVlO7 cpe puts no stringent conditiong on the ingtrument.

Such a meagurement 1s carried out by .putting the voltage
to be observed on the vertically deflecting plates, and a voitage
varying linearly with the time on the horizontally de’lecting
plates. The horizontal deflection 1g proportional to the time
and the verticai deflection is proportional to the si;znal voltage.
The trace on the fluorescent screen then represents the signal vol-
tage as a functlion of time. We must, of course, repeat the linear
sweep at definite intervals; and thege intervals must be synchro=-
nized with the slgnal voltage. Thig latter adjustmen: is easily

made at the moderate frequencles we are congldering hsre.

e
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2.4.4 Motion of Charged Particles in Electric Fieldg Varying

Slowly with the Time.
If the electric field of force is varying slowly with the

time we can handle dynamical problemg by much the game me thods
used for electrostatic fields. By slowly, we mean fields for
which the wavelength A ig long compared to the dimensions of the
space in which the field exists. Since A = % this puts an upper
limXt on the frequency of the electrlc field, where ¢ ig the
veloclty wlth.which electromagnetic dlgturbances are propagated.
If this condition 1g not met the masgnetic forces agsociated with
the time varying electric fleld must be taken into comsideration.
For example, consider a particle of charge q in the uni-
from (in gpace) field between two large condenger plates. We may

allow the field, E = 5, to vary with the time, but at a given in-

<t

stence 1t 1s congtant throughout the reglon in question. If

V = Vo sin wt, Newion's second law requires

\'/
4 -2
It (mvx) =q 3 eln wt
where x ig the coordinate along the fileld direction. If x = Q,

S, =0 when t = o, the first integral of this equation is,

Vv
. ] -
W h 3 (1L - cost wt)

and ' v

1

x = = % ‘-&9- (wt = gin wt) (2.4.5)

w

This result shows that no matter what the value of the
constants, wt will eventually predominate over gin wt, and the
particle wlll be cleared from the gpace between the plates. It

1s eagy to show that there 1s one and only one value of the
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initial velocity which will enable the particle to oscillate

between the plates and not be swept out by the field.
2.5 The Magnetostatic Field

It 1s well known experimentally that there are forces
between moving electric eharges which are completely independent
of the electrostatic forces described in Section 2.1. Since

an electric current consists of an assemblage of moving charges,
it follows that there are similar forces between currents and
between currents and moving electric charges. These forces
are called magnetic and may be uniquely described if we intro-
duce a field vector, B. This vector B, the magnetic induction
vector, can be considered as arising from the currents, and we
can describe the mutual forces between currents and moving
charges as interactions between the field B and these moving
charges or currents. This 1s simllar to the electrostatic
case where the fileld E arises from charges {stationary) and the
electric force on another charge 1s considered as due to an
interaction between E and the charge in question.

The magnetic force on a moving charge can then be
written as

F=qv XB (2.5.1)
where v 1s the velocity of the charge. The magnetic force on a

small circult element ds is, by analogy,

dF =1ds X B (2.5.2)

When dealing with material media it is necessary to
introduce another vector, the magnetic intensity H. This

vector is related to the magnetic induction by,




where/q is the permeability of the medium. For free space
which 1s our chief concern M i1s designated by Mo and 1is

=
equal to 4T X 10 = henries per meter.

Ampere's rule enables us to compute the magnetic
intensity due to a current element, and is

1dsXr

where r is the vector drawn from the current element ids to the
point at which the field is to be evaluated. Another general
theorem applicable to the understanding of magnetic fields is

Ampere's circuital law, which states,

§ 5. & e . (2.5.3)

or in words, the line integral of H around any closed path is
equal to the algebraic sum of the currents linked by the path.
If we compare eq. (2.5.3) with eq. (2.2.2) we see that
the condition for the establishment of a scaler magnetic potent-
lal 1s not fulfilled in general, and hence no magnetic potential
can be uniquely defined. That 1s to say the magnetic field is
not conservative. This does not imply that the general princi-
ple of conservation of energy 1is violated, but rather that mag -
netic forces do no work on'moving charges. An inspection of
eq. (2.5.1) shows that the magnetic force is always at right
angles to the direction of motlon, and hence no work is ever
done on moving charges by magnetic filelds.

If, however, we restrict ourselves to paths of in-
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tegration which do not' link currents we can set up a acalar

magnetic potentlal, V and this 1is often convenient for the solu-

mﬁ
tion of field problems. This potential is defined in a2 similar ‘
manner to the elect;ic potential, and strictly speaking, of

course, 1t is the potential difference which is determined.

H= - grad Vy (2.5.4)

It 1s also convenient in many problems to introduce
the concept of magnetic dipole or magnetic moment. A small
circult elememt {or instance behaves llike a dipole in a uniform
magnetic fileld, in that there 1is no net force, but there 1is a

net tcrque tending to turn the circult element. This torque is

T=m X B (2.5.5)

where m 1s the dipole moment and 1s equal to 1A where A is the
' area of the circuit element. This equation (2.5.5) assumes

that the fleld B does not vary appreciably over the area of

the circult element. The sense of the vector m is arbitrarily

taken as the direction of advance of a right handed screw whose

perimeter 1s turned in the direction of the positive current

flow.

2.6 Motion of Charged Particles in Magnetostatic Fields

[M. & 5. pp. 31-%0, 69-71)

Let us consider a particle of charge q moving in a
magnetic field B. Eq. (2.5.1) tells us that a force will be
exerted on the particle which is at once perpendicular to B and
to the velocity of the particle. If B is uniform and if the

particle 1s initlally moving parallel to B there will be no

' force whatsoever. If, however, the initial speed v of theparticle
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iz at right angles to B then there will be a force numerically
equal to qvyB which remains al right anglesto both B and the
velocity. This force is then centripetal in nature and does
not increase the speed of the particle. It can and does change
the direction of motion. Newton’'s second law for this case is

then

2
_11_1;_ - qVB {2.5.6)

or

w=g=32 B (2.5.7)

i<

The angular velocity for a glven particle and mag-
netlc fleld 1s thus constant. This fact is made use of in the
cyclotron, a device for accelerating charged particles, as we
shall see later.

If the initlal velocity has components both perpendicular
and parallel to the field B then the motion will be helical in
form. Let us assume that a charged particle 1s injected into a
region of uniform magnetic field with an initial velocity Yo
which makes an angle 6 with the magnetic induction vector B.
Then the 1nitial velocity along the direction of the magnetic
field is Vocos © and 1s unaffected by the field B. The velocity
at right angles to B 1s initially Vo8in © , and we may think of
this component of velocity interacting with the magnetic field

.80 that eg. (2.5.7) becomes

vsin® q

R - m B

and the projection of the motton in a plane at right angles to

B 18 circular; the net motion being helical.

This situation has an important practical application;
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namely, magnetic focussing. For instance {‘kwe have a beam of
electrons which emerge from a cathode, or electron gun, whiech
are nct sharply focussed in a pencil-like beam, but are in a
slightly divergent beam of 4 angle Oo. Let us assume that all
the electrons have the same speed v, and that O, 1s small, so

that, the combonent of velocity along the axis of the beam is,
Vo088 8, = v,
and the component perpendicular to the axis is

vosin 90 .

Here we are consldering the extreme case of the
electron making the greatest angle, ©,s with the beam axis.
What follows will apply equally well to the electrons which are
less divergent. These electrons will proceed down the tube
with equal drift velocities, Vo regardless of the particular
value of ©, but with different components of transverse velseity.
However, the angular velocity about the axis of the beam will
be the same for all electrons regardless of the value of e,
1.8,

vasSin ©
W=

- r -

= 5
m
amw
Hence after a time (the period) equal to T w all
the electrons will be back on the axis of the beam, and this
point 1s a focal spot. The distance from the cathode to the
first focal spot 18 Just the pitch of the helix, and is,

2Ty

D= voT-= e/m B
If the electrons have acquired their velocity by
falling through a potential difference VA this expression be-
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Theoretically it 1is possible to have g¢n infinite number
of such focal points, and 1ndeed in some applications, the béam
goes through many focal polnts before traversing the entire
length of the vacuum tube in question. The pitch of the helix,
which 18 the separation of the focal pocints, is inversely pro-
portional to B. If one wishes to limit the maximum sideways
deflection that any given electron can have, one would increase
B and hence decrease p, and for a given length of beam this pro-
cess will increase the number of focal points. One example of
the type of application 1s met with in the travelling wave tube.
In this application it is necessary for a beam of electrons
20 to 30 cm in length to be confined in a pencil beam a few
millimeters in dlameter. Thus far only magnetic focussing
methods have been successfully used for thls purpose. The
travelling wave tube 1s a very interesting example of the in-
teraction of electrons and high frequency waves, but its general
theory 1s beyond the scope of these notes.

Another application of the motion of electrons in
magnetic fields 1s the magnetically deflected cathode ray tube.
In Flg. 2.3, we can imagine that the electric defliecting plates
are removed, and that a uniform magnetic field B, perpendicular
to the plane of the paper, occuples the region of length,é'.
Then the electrons after entering the region occupied by the

magnetic field B will be deflected in the arc of a circle.

Fig. 2.4 shows a simplified view of the situation.




By inspection,
= @

sin 0= =

for small ©

sin 6 = @ =tan ©

Fig. 2.4 _
|
|

and for L DR

D=L tan 0 = L-’%

Vo
R = g/mB |
3 o e
Ol il

The deflection is proportional to B which in turn is
proportional to the currents producing it, so this tube 1is a

. linear instrument. It 1s not as widely used as the electrostatic



, but is useful in cases where one wishes current rather than
itare sensitivity.
2.7 Motion of Charged Particles in Combined Electric and

Magnetic Fields. (N,e S. pp-to-te, & 37)

We are now in a position to discuss the motion of
particles when both electric and magnetic fields are'prqunt.
For our immedlate purposes we will assume that both E and B
are uniform in space and constant in time. First, let us ex-
amine the case where the two fields are parallel. We can resolve
the vélocity vector into two components, one parallel to the fields
and one at right angles. The parallel component will be accelerated
or decellerated by the electric field, but will not be influenced
by the magnetic field. The perpendicular component will remain’
constant in magnitude, since it will not react with E, but will
change continucusly in direction under the influence of B. Hence,
the projection of the motion in a ﬁlane perpendicular to the
fields 18 a circle, and the entire path of the motion might be
described as a helix of variable pitech.

Let us next examine the case where E and B are at

right angles to one another as shown in Flg. 2.5

B z
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The equations of motion are

V%
F* = %vyB

dvy _ q - 4
_d%“'r'n' E fn'va

dv

== o

Let us adopt the abbreviations

- - E
wagp g

we then have

dv dv

ms =0t

= R-WAy

stitute from the first, we have

o
& 4 i = 0

at®

The solution of this equation 1is

VvV = C1 cos wt+02 sin Wt
y ;

where Cy and C2 are arbitrary constants.

initi Vv. =2 V.= ¢ -
n allyx y vz

vy-z-. 02 sin Wt

differentiating

2

v w
= CzAcos Ut.

initially d”’; ~ g 2nd hence C, = .

dv,
aE =

i1f we differentiate the second of these equations and sub- |

0, then Cl = 0, and

If we now assume that

(2.7.1) ‘






l 7 - 30 ~

if the particle 1s at the origin at t = ¢ .

‘ 9 Mawr, \ iig:% = W AC? T R Aanuwt
o & 7. wt
Ny = ‘JO LA ) (2.7.2)

X - = %‘(uf—-d’;“"t')

The expression for x and y above are the parametric
equations of a cycloid. The path of the motion is sketchediin
Flg. 2.5 for a positive particle. The solution of the case 1in

which Vys ¥ and vz are not zero is left to the problems.

Y
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Now let us examine the case where E and B make an

arbitrary angle © with each other as in Fig. 2.6.

: z
(3% £ cos© o
A /q'-’—
o
» Esim©

X

The differential equations of motion are;

dv __N_q_ A
& = n BV

Ay~ (Fund % - § B (2.7.3)

c%%l'._z: %Ew@

The equétions for the x and y coordinates are
precisely the same as those at the top of page 29 with the
exception that E sin © has been substituted for E. There-
fore if we make the same substitution in egs. (2.7.1) and
(2.7.2), remembering that a now equals q/m é:ﬁjy have the
solutions of the first two of eqs. (2.7.3) if the initial
x and y velocitles are zero. The solution of the final
equation of (2.7.3) is Jjust the usual expression for acceler-
ation in a uniform field. Hence, the broJection of the motion
in the plane x and y 1s cycloidal, and the motion parallel

to the z-axis 1s that of uniform acceleration. This result
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is evidently true for any finite value of 9O, however small.

2.8 The Measurement of gq/m

In all of the equations.concerning motion of charged
particles in electric and magnetic fieids, which we have so
far éonsidered, the ratio of charge to mass has always occurred,
but‘nefer the charge or mass alone. The ratios q/m for various
fundamental particles make up one of the great sets of experi-
mental knowledge in physics. Theseldata, combined with the
measurement of the electronic chargecand the furfher knowledge
that ail other'charges are equal to or are small integral
multiples of the electronicAcharge, have been the most exact
source of our knowledgevof the mass of fundamental particles,
atoms, and moleéules. Not only was the rfirst discovery of
the existence of isotopes of the atomic elements made by such
means, but also the whole science of "mass spectroscopy" has \
been built up through the measurement of the ratio of chafge
to mass.

The first measurements of q/m were made by J. J.
Thomson about 1900, and led to his discovery of the isotopic
constitution of the elements. In Thomson's apparatus parallel
electric and magnetic flelds were set up in the same region
in space, and electrons or positive ions which had previously
fallen through a potential difference were injected into this
region at right angles to the flelds. This 1s Jjust as thodgh
a CRT were equipped with a set of electrostatic deflecting
plates and a set of magnetic deflecting coils. The deflection
produced by the electric field will be at right angles to the
deflection produced by the magnetic colls (since the fields
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‘allel) and we may use the expression for the deflections

n the two kinds of cathode ray tubes,
Calling the deflection on the sc¢reen produced by

the electric fleld, y, and by the magnetic fleld, x, we

have
\3:.1_2}"_’2
2 4 v,
and _
x:L[Bg{-Z—U

Now we ¢an find the curve on the screen due to a
particular kind of particle by eliminating Va hbetween the

two equations above. Squaring the second,

x2_4_Lf£zﬁ3zién
-z vA

and dividing this into the first equation we have,

4=
x*~ LZ£dB- q/m

Hence, all particles of the same q/m will lie on
a parabola on the screen; different points on‘the parabola
corresponding to different values of VA' The initial slope
of the parabola will be proporticnal to the mass; hence the
parabolas of the heavier particles wiil lie closer to the y
axis, 1.e., the direction of the fields. Fig. 2.7 shows the
case for positive and negative ions. The parabolas above and
to the right of the axes are due to positive particles; the

curves below and to the left are due to negative particles.
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Parabolas due to electrons on this scale figure would prasti-
cally coincide with the negative x-axis.

The above method i1s historically important, and
while 1t separates out particles of the same qQ/m, but with
different initial velocities, 1t lacks precision and sensiti-
vity. The first really precise method'is due to Aston (about
19129) and uses a combination of electric and magnetic fields
to refocus all ions of the same q/m regardless of their initial
veliccitles.

Perhaps the most precise method now in use is due
to Bainbridge, and consists of a "velocity selector" to sort
out all lons except those of the particular velocity desired,
and then a magnetic fleld is used to sort oot those ions of
particular ¢/m. Pig. 2.8 1llustrates this process.

The velocity selector consists of two narrow sliits
of width w and separation s between which there are perpendicular

electric and magnetic fieldas as shown. In the absence of the
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Pig. 2.8

fields lons of any velocity could paés through the =lits

1f their direction 1s correct. With the fields present only
lons of velotity vo_—i can pass through the slits. (Refer
Lo the equations at the top of p. 29, setting the net y-force
equal to zero). These ions will then reglster on the photo-
gm;hic plate at a distance, £: 2R = ym 8, from the exist

#lit. Ve then have

g AW - Z,E

" %8, = 7E5

Since ¢ = ne, where n is an integer, we have

;,,:?tﬁ._BJ_?n_/é.
LE
and the mass 1s proportional to the distance from the exist

slit.




The Bai#brfége mass spectrograph 1s not a perfect
jnstramént although the lines on the plate are quite sharp.
There are several sources of line-broadening and consequent
error.,

1) The-line on the plate must be at least as

broad as ﬁhe slit. :

2} Due to the finite width of the slit charges

will emerge in a narrow c¢cone of half-angle

?<and this will tend to broaden the line.

(¥

) The velocity selector is not perfect,

&

) The field B, 1s not exactly constant.

However, careful deaign can minimize all these
errors, and masses ¢an be measured to about 1 part in 3
or 165.

2.6 ﬁaaaurement of the Charge on the Electron

The only careful measurement of electronic charge
;wés made in a classical expériment by Nlliik&n(about 101%).
Milidksn introduced very small spherical draplets of oil,
"atomized”, into an air chamber in which a uniform electric
fleld, parallel to the earth's gravitational field, could he
produced., In the process of "atomizing”, xhe droplete are
almost invariably charged by trlctlon,-and it develiops in
many cases, by small amounts; 1.e., only & few electronie
charges.

In the absence of an electric fleld the particles
fall under the force of gravity and the viscous reaction a?n
the air. Since they are small in size their speed rapidly

attains its terminal vaiue given by:







. where the left hand side 13 the gravitational force and the

tght hand side 18 the viscous force (Stokes'! law); 7 1s
coefficient of viscosity of air, a 18 the radius and 2 the
density of the droplets. Millikan observed the rate of fal

t
\

742 OF 8 single droplet and from the free fall measurement he

determined the radius of the droplet.

R
,

If now an electric field E 1is produ}.ed 80 that
electrie force 18 upwards the forece equation for constant speed
becomes _
41T PG ~nef = 77 qav.
where i1 1s the number of electronic charges on the droplet
M1llikan then observed the veloelty v, of fall or rise.of the .

droplet and knowinpg E he determined ne for a single droplet.

. By then performing this experiment many times forx
different droplets he obtalned a large number of values of : 1

ne, but all these values were the integer multiples of a

single number which we now know to be the elementary unit of
charge. {(In Millikan's experiments he measured values of n

between 1 and 200.)

2.10 Acceleration in Cylindrical Coordinates

J'ust as we discovered in Section 2.3, where we
derived Poisson's equation in cylindrital coordinates, we
zust be careful in writing down the components of accelera-
tion in 'any coordinate aystém except Cartesian. Referring

to Pig. 2.9 the position P of a point may be sbeci.t’ied by a

. set of cylindrical coordinates r, @, Z. In terms of these
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Pig. 2.9
the position vector R 1s given by
R=1l.r+d (2.10.1)
R=1pr+ i,z {(2.10.1)

where 1,, 1 , and 1, are unit vectors in the direction of

€ .
r increasing, ¢ Increasing, and z 3increasing, respectively.
Let us speeify these unit_ vectors in terms of the cartesian
unit vectors 1, J, k. Obviously,

121: k (2.10.2)

and from Pig. 2.9b

1.1 cosp+ ] sing {2.10.3)
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Hote that i» is a constant vector.
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Thus

where we recognize the cylindrical components of the velocity

vector.

(2.10.6)

(2.10.7)

{2.120.8)

Similarly we may write for the accelieration

-l
vector, A,
3 et oy T W
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and we have {found the three eomponents of accelerat

2y 1indrical coordinates.

2.11 The Static Magnetron

The magnetron 1s a very important cselllating
vacuum tube in the high frequency region. A study of it:
dynamic characteristics 1s beyond the scope of these notes,
However, 1ts static properties are of 1nteres£ and will be
considered here. A magnetron, in its simplest sense, con-
sists of two concentric cylindrical electrodez which are long
compared fo their radii and across which a static voltage Vo
1s appiied. A uniform magnetic field B i1s applied parallel

to the axis of the cylinders. A c¢ross-section of such & tube

‘13 shown in Pig. 2.10.

Assuming that electrons are emitted from the inner
¢ylinder with negligible initial velocities the equationas of

motion ¢an be written as:

g_r v d h 4 , S o CD.
e 2 - 3 b K
r~p A fl g‘,{ ']‘ Y . m o
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- dv  Ldrde _ e r
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.
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The second of these equations can be written

. d/p2do } _ e pdr
Fralrt = m B g

integrating and remembering VA= ¥
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This can be substituted into the firast

~
O1

our

differential equations and an integral can be obtained

(remembering E= E(r)), however, we can write dowrn the equa‘ior

for the conservation of énergy and accomplish the same end.

/dr 2 ;1 4@ 2 :
";z & "2' m:"*t’\ @i{.’ - e Vv(f.’

- M
- a1

where we have taken V(rl) - 0.

Using the expression forlgg- » We have,

ldy 2 /e irn2 ol )2 24” . € Ty
ol - :—-) g r,l P -‘/. 1% - = g »./ v'A;

\\S’t,’ = a2\ A

f

Now in the passage of an electron from cathocde,

. to anode, To, there will be a competition between the

accelerating electric fleld and the magnetic fileld which

.
~ad
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n £ind ndition for the particle at just does oy

eE | re: the anode, by 1lmposing the following condit

A
w4 . \ ' vlie) v
flp- ; : \ &) y

'his is the "cut-off" condition. ir VC exceeds
thies value all the electrons wlll reach the anocde, if Y. 18
iese than thie value, none will reach the anode. Hence, the

static magnetron has a sharp "cut-off", and its current ve

magnetic field characteristic 18 as shown in Fig. 2.11.
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Flg. 2.11
T™e current resches a flat maximum when all ¢the

sval lapble plectrons reach the anode.








