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CHAPTER I

Network Geometry and Network Variables

1. The clasgification of networks.

Linear passive networks are distinguished from ons another according
to the kinds of elements that are involved, and in the manner of their
interconnection., Thus a given network may be regarded as consisting of

resistance elenents alone. These are referred to as registance networks.

Similarly one mey define inductance networks or capacitunce networks as

significant special cases worthy of separaie consideration. Hext in corder
of complexity come the so-called two-element types, more precisely the
Lc-netwofks (those containing inductance and capacitznce elements but, by
assumption, no resistances), the RC-networks in which inductive effects
are absent, and RL-networks in which eapacitive effects are absent. The
RLC-network then represents the general case in the category of linear

passive networks.

2. The graph of a network.,

Quite apart from the kinds of elements involved in a given network is
the all-important question of network geometry thalt concerns itselfl solely

with the manner in which the various elements are grouped and interconnected
at their terminals, In order to enhance this aspect of a network's physicul
makeup, one {requently draws a schematié repregentation of it in which no
distinction is as yelt made between kinds of elements. Thus each element is
repfesented merely by a line with small circles at the ends denoting termi~
nals. Such a graphical portrayal showing the geometrical interconnection

of elements only, is called a graph of the given network. Tigurs 1 shows

an example of a network as it is usuelly drawn so as to distinguish the vari-
ous kinds of elements (part (a)), and how this same network appezrs when only
ite geometrical aspects are retained (the graph of part (b)). The nunbers
associated with the various branches are added for their identification only.
The terminals of the branches {which are coummon to two or ore branches where
these are conflvent) are referred to as nodes.
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There are situations in which various parts of & network are only in-
ductively comnected as in part (a) of Fig. 2-where two pairs of mutually
coupled inductances ars involved. Here the corresponding graph (shown in
- part (b) of Fig. 2) consists of three separate parts; and it is seen also
thet a node may be simply the terminus of a single brench as well as the
point of confluence of several branches.
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() Fig. 2 (b)
With the graph of a network there are thus associated three things or

conceptsy; namely, branches, nodes, and separate parts. The graph is the
skeleton of a network; it retains only its geometrical features. It is

useful when dlscussing how one should best go ahout characterizing the net-

work behavior in terms of voltages and currents, and in deciding whether a
selected set of these variables are not only independent but also adeguate
for the unique churacterization of the state of a network st any moment.

o
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In tais regard it is apparent that an sconomy can be effected in situa-

tions like the ome in Fig. 2 through permitting one node in each of the

separate parts to become coincident, thus uniting these paris, Be shown in
the graph of Fig. 3.

the same electrical potentiel, no restrictions are iumposed upon any of the

Except for the fact that the superimposed nodes are constrained to have

Ay # branch voltages or currents through
.<?—;m*»_2? this modification which reduces the
S // total number of nodes and the num-
 ASVRREEES ~ DA ber of separate parts Uy equel in-
teger values, In subsequent dis-
Fig. 3 cussions it is thus possible without

loss in generelity to consider only

graphs having one separate part.

3. The concept of a "tree."

which'currenta can clrculate.

aesociated network.
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This property of a greph (that it contain

closed paths) is obvlously necessary to the existence of currents in the

It 18 a property that can be destroyed through the re-

The graph of. & network places in evidence a number of closed paths upon
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In Fig. 4, the graph of a given network is shown in part (a), and again
in parts (b) and (c) with some of the branches rspresented by dotted lines.
If the branches shown dotted were removed, there would remain in sach of
the cases shown in (b) and in (c), & graph having all of the nodes of the
original graph (a) but no closed paths. This remant of the original graph
is called a "tree" for the reason that its structure {like that of any tree)
possesses the significant property of having no closed paths.

More specifically, a tree is defined as any set of branches in the ori-
~ ginal graph that is just sufficient in number to connect all of the nodes.
It is not difficult to see that this number is always ny -1 whers ny de-
notes the total number of nodes. For if we start with only the nodes drawn
and no branches, it is clear that the first added branch connects two nodes,
but thereafter one additional branch is needed for sach node contacted. If
no more than the minimum number of nt-l branches are used to connsct all of
the nodes, then it is likewise clear that the resulting structure conteins
no closed paths, for the creation of a closed path involves the linking of
two nodes that are already contaected, and hence involves the use of more
branches than are actually needed merely to connect all of the nodes.

For a given network graph it is possible to draw numercus trees, since
the process just described is not a unique one. Each tree, however, con-
nects all of the n, nodes, and consists of /

n=ng-1 (1)
branches, which are referred to, in any given choice, as the tree branches.
The remaining branches, like the ones shown dotted in parts (b) and (c) of
Fig. 4, are celled links. If there are £ of these, and if the total num-
ber of branches in the network graph is denoted by b, then evidently

b=_2¢+n, . (2)
an important fundamental relation to which we shall return in the following

discussions.

L. Network variables.

The response or behavior of a vetwork is completely known if the cur-
rents and the voltages in all of its branches zre known., The branch cur- .
rents, however, are related to the branch voltages through fundamental
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squations that characterize the voltampere behavior of the separate ele-
nents. For instance, in a resistance branch the voltage drop (by Ohm's

law) equals the current in that branch times the pertinent branch resis-
tinee, In a capacitance branch the voltage equals the reciprocal capaci-
tance value times the time integral of the branch current; and in an induc-
tance branch the voltage is given by the time derivative of the current with
the inductance as a proportionality factor. Although the latter relations
become somewhat more elaborate whem several inductances in the network are
matually coupleéc (28 will later be discussed in detail), their determination
in no way involves the geometrical interconnection of the elements. One can

alweys, in a straightforward menner, relate the branch-voltages directly and

reversibly to the branch currents.

We may, therefore, regard either the branch currents alone or the branch-
voltages alone as adequately characterizing the network behavior. If the to-
tal number of branches is denoted by b, then from either point of view we have
b quantities that play the role of unknowns or variables in the problem of
finding the network response, We shall now show that either set of b quanti-
ties is not an independent one, but that fewer variables suffice to character-
ize the network squilibrium, whether on a current or a voltage basis.

If in a given network a tree is selected, then the totality of b branches
is separated into two groups:s the tree branches and the links. Correspond-
ingly, the branch currents are separated into itree-branch currents, and link
currents. Since a removal or opening of the links destroys all closed paths
and hence by force renders all branch currents zero, it becomes clear that
the act of setting only the link current® egual to zero forces all ert.ents
in the network to be zero.* The link currents alone hold the power of life
and death, so to speak, over the entire network. Their values fix all the

#In these considerations it is not necessary that we concern ourselves with
the manner in which the network is energized although some sort of excita-
tion is implied since all currente and voltages would otherwise be zero
ragardless of whether the links are removed or not. If the reader insists
upon being specific about the nature of the excitation he may picture in
his mind & small boy tossing coulombs into the capacitances at random in-
tervals.
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current valuesy that is, it must be possible to express all of ths tree- '
ranch enrrents uniquely in terms of the link currants.

The inference to be drawn from this argument is tnat, of the b branch
urrente in a network, only .£ are independents £ is the smallest number of
currants in terms of whish all others can be expressed uniquely'; This situ-
ation may be seen to follow from the fact that all -currents become zero when
the 1ink currents are zero. Thus it is clear that the nurber of independent
currents is surely not larger than £, for if one of the tree-branch currents
were claimed also to be independent, then its value would have to remain non-
ero whnan all the link currents are set equal to zero, and this condition is
anlently impossible physically. It is equally clear on the other hand that
ne nunber of independent currents is surely not less than £, for then it woulc

wva to be possible to render all currents in the network zero with one or
wove 1inks still in place, and this result is not possible because closed paths

wiel so long es some of the links remain.

Thus, in terms of currents, it must be possible to express uniquely the
of a network in terms of .2 variables alone. As will be chown later, .
50 variables may be any appropriate set of link currents (according to the
necifie choice made for & tres), but more generally they may be chosen in s
srge variety of ways so that numerous specific requirements can be accommo-

aated,

Analogously one may regard the branch voltazes as separated into two
groups: the tree-branch voltages, and the link voltages. <Since the troe
branches connect all of the nodes, it is clear that if the tree-branch voli-
ages are forced to be zero ( througﬁ short-circuiting. the tree~branches, for
exanple) then all the node potentials become coineident and hence all branch

sitages are forced to be zero. Thus, the act of setting only the tree-bran-
roltages equal to zero, forces all voltages in the network to be zero. The
sg-branch voltages alone hold the power of life and death, so to speak,
entire network. It must be possible, therefore, to express all of the
tevoltages uniquely in terme of the trse-branch voltages.

' n of the branch-voltsges in a network are isdependen®, namely,

svta ning to the branches of & selscted tree. Surely no iarzser number .
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. than this can be independent because one or more of the link voltages would

‘ then have to be independent, and this assumption is contradicted by the fact
‘ that all voltages become zero through short-circuiting the tree branches
alone, On the other hand, no smaller number than n voltages can form the
controlling set, for it is physically not possible to force all of the node
potentials to coincide so long as some tree~branch voltages remain nonzero.

Thus one recognizes that the state of a network can uniquely be charac-
terized either by means of £= b-n,+1 currents or by n =n, -1 = b- 2 volt-
ages. The currents may, for example, be any set of link currents, and the
voltages may be any set of tree-branch voltages. Since, in general, n # ¢,
the characterization of 2 network in terms of current variables involves a
different number of wmknowns than does its characterization in terms of
voltage variables., There is nothing inconsistent about this conelusion
since we are at present considering the question of independence among
voltages or currents from a geometrical point of view only. Dynamically,
the number of independent variables associated with & given physical system

. determines uniquely its so-called degrees of freedom; their number depends
neither upon any algebraic method of derivation, nor upon the manner in
which the variables are defined. It is, howsver, not appropriate to raise
these questions at this time, since we are at the moment considering only
those features of our problem that are controlled by the geometrical aspects
of the given network.

5. The concept of loop currentsy tie sets and tie-set schedules.
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, It is possible to give to the liﬁk cux“x"elmts' an intereéting geonetri-
eal inte;rpretation that is useful "'when t.hes.e are selected as a set of
variables. Thie interpretation is best presented in terns of a specific
ex-ample. In Fig. 5 (a) is shown a simple network graph and in parte (b),
(¢}, and (d) of the same figure are several possible choices for a tree.
For the tree of part (b), the branches numbered 1, 2, 3, 4 are the links.
If one of these is inserted into the tree, the resulting structure has
just one closed path or loop, which is different for each link. ‘L‘hﬁs, for
this choice of tree, e distinct set of closed paths is associated with the
respective links., In Fig. 6 (a) these are indicated by loop arrows, pune
bered to correspond to the similarly numbered links with which they are
"associated and directed (as indicated by these loop arrows) so as to be
confluent with the respective link currents. Thus loop No. 1 is formed by
placing link No. 1 alone into the tree of Fig. 5 (b); loop No. 2 is formed

by placing link No. 2 alone into this tree; etc.
’f\

yie y 2\
) O\
i e, £
3 2 / {3 //
‘ Q\.f }../& 2 // :
\\\‘_é,,/’ : ‘ A
(a) (D) (e)
Fig. 6

Tris procedurs suggssts tha~ we may give 7c the link currenis & new in -

rerpretacion, name.w, that of being cvirculatory currents or locp currents.
Fach link current is *hus identified witk & loop curreni; ule remaining

rree-byanch currents are clearly expressiule as appropria‘e superpositions
of 'zhege loop currents, and hen.e are uniquely delermined Iy the link cur-

rents. as prec¢icted sarlier.
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If the branch currents in the network graph of Fig. 5 (a) are denoted
by jl’ jz, sve 18’ numbered to correspond to the branch numbering, and if
the loop currents of the graph of Fig. 6 (a) are denoted by i3, ip, i3, iy,
then we can make the identifications

=1 =1 =i, =1, (3)

Bttty Mdaa Tkl 4
Through comparison of Figs. 5 (a) and 6 (&) one can then readily express the |
remaining tree~branch currents as appropriate superpositions of the loop

currents, thus

Bl S
de T~y
dp = 43~ 1y, (4)
C lg=- i
or, being mindful of the relations 3, have
35= 33- 35
36 i 32" Jl’
by = d5- (5)
g2 4,4y

© .ese last four squations express the tree-branch currents, uniquely and
unar siguously, in terms of the link currents. Thus, of the eight branch cur-
rents in the graph of Fig, 5 (a), only four are geometrically independent.
Theze four are eppropriate to the set of links associated with any selected
tree. For the tree of Fig. 5(b), the link currents are jj, Jo, J3; Jze For
the tree of Fig. 5 {c) they are J3, Ja, J5, Jy. Here we may write, in place
of Fgqs. 3,
Jl - il’ 32 = 129 .15 = 13, J7 = 14' (6)
These loop currents circulate on the contours indicated in Fig. 6 (b), which
again are found through inserting, one at a time, the branches 1, 2, 5, 7
into the tree of Fig. 5 (c¢). The tree~branch currents in this case are ex-

pressed in terms of the loop currents by the relations
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6 = 2~ 1y
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which are found by inspection of Figs. 5 (&) and 6 (b) through noting that
the currents in the tree branches result from the superposition of pertinent

loop currents.

Through substitution of Eqs. 6 into 7, one again obtains the tree-branch

currents expressed in terms of the link currents

33 = 17_:’23
34 i j]. "J5J
‘16 = 32’11, (8)

38 - 31 '.12 "J5 'j'p
thus meking evident once more the fact that only four of the eight branch
currents are geometrically independent.

The reader is cautioned against concluding that any four of the eight
branch currents may be regerded as an independent set. The branci.es per-
taining to a set of independent currente must be the links associated vith
a tree, for it is this circumstance that assures the independence of the
currente. Thus the branch currents js, Jjg, J7, Jg, for example, could not
be a set of independent currents because the remaining brenches 1, 2, 3, 4
do not for & tree. The concept of a tree i8 recognized as useful beom;-se
it ylelds a simple and unambiguous method of deciding whether any selected
get of brancn-currents is an independent one. Or one can say that the tree
concept provides a straightforward method of determining a possible set of

independent current variables for any given network geometry.

Part (d) of Fig. 5 shows still another possible choice for a tree ap-
propriate to the graph of part (a), and in Fig. 6 (c¢) is shown the corre-
sponding set of loops. In this cass one has

Eoacd, 8 0 =1

4 l! u5 2’ 37 . 41'-33 :'8 [9}» : (9)
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and througﬁ superposition there follows that
o s Bl R PR P
st Tt Y’ St Pt [ o
(10)

When dealing with networks having large numbers of branches and corre-
spondingly elaborate geometries, one must have a less cumbersome énd.more
systematic procedure for obtaining the algsbraic relationships Letween the
branch currents and the loop-current variables. Thus it is readily appre-
ciated that the process of drawing and numbering the reference arrows for
the loops, and aubsequently obtaining by inspection the appropriate expres-
sioﬁs for the brancl currents as algebraic sums of pertinent loop currents,

can become both tedious and confusing in situations involving complex geome-
tries. '

A systematic way of indicating the loops associated with the selection
of & particular tree is had through use of a schedule such as the following,
which pertains to the graph of Fig. 5 (&) with the tree of part {(c) and
hence for the loops shown in Fig. 6 (b)

Branct.

Ho.
Loop L1213 143851 6118

No. \

Pt a oo e bed s el

2 I O SR8 T T T (1)
3 ojolof|ali|o| o}a

4 cj{ofr1]of{oo]| 1]a

To interpret this schedule we note that the first row, pertaining to loop
No. 1, indicates that a circuit around this loop is equivalent to traversing

in the positive reference direction, branches l, 4 and 8, and in the nega-
tive reference direction, branch 6, . None of the renaining branches
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participate in forming the contour of loop No. 1, and so their correspond-
ing spaces in the first row of the schedule are filled in with zeros. The
gecond row is similarly constructedj noting that the pertinent loop con-
tour is formed through traversing branches 2, 3, end 6 positively, and
brench 8 negatively. Thus the successive rows in this schedule indicate

the confluent sets of branches that participate in forming the various cor-
respondingly numbered loops, due attentlion being given (and indicated througﬁ
appropriate algebraic signs) to the confluence or counterfluence of respec-

tive branch and loop reference arrovws.

A most interesting and useful property of this schedule is ncw revealed
through attention to ite columns, for we mote that their elements are the
coefficients in an orderly written set of equations expressing the branch
currenfs in terms of the loop currents. Interpretation of the columns of
schedule 11 in this way yields the equations

&%k

=1,

Iy = 12+-§4

h Yy ity

J5 2.13 . (32)
¢ fuabins e

In = 14

o T
dg =4y -i-15-1,

which are seen to agree with Eqe. © and 7,

The reason why this schedule has the broperty just mentioned may best
be seen through supposing that it is originélly constructed, by columns, ac-
cording to the relationships expressed in Eqs. 12. One subsequently can ap-
preciate why the resulting rows of the schedule indicate the pertinent closed
paths, through noting that the nonzero elerents of & row are associated with
branches traversed by the same loop current, and these collectively must
form the £losed path in guestion.
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The actual construction of the schedule may vhus be donme in =ithoer of
two ways, viz.: by rows, sccording to a set of mdepéndant closed pathe
(for example, those associated with a selected tree), or by colums, ac-
cording to a set of equations expr<ssing branch currents in terms of loop
currents. If constructed by columms, the rows of the schedule automatically
indicate the closed paths upon which the associated loop currants circulate;
and if constructed by rows from & given set of closed paths, the colums of
the resulting schedule automatically yield the pertinent relations for the
branch currents in terms of the loop currents. This type of schedule {which

for reasons given later is called a tie-set schedule) is thus revealed to be

a compact and effective means for indicating both the geometrical structure
of the closed paths and the resul iing algebraic relations between branch cur-
rents and loop currents.

Regarding this relationship, one may initially be concerned about its
uniqueness, since there are fewer loop currents than branch currents. Thus,
Af asked to solve the Eqs. 12 for the loop currents in terms of branch cur-
rents, one might be puzzled by the fact that there are more equations than
unknowns. However, the number of independent equations e.moné this set Just
equals the number of unknown loop currents (for reasons given in the pre-
ceding discussion), and the equations collectively form a consistent set.
Therefore the desired solution is effaected through separating from the Egs. 12

‘an independent subset, and solving these. Knowing that the equations wsre

originally obtained through choice of the tree of Fig. 5 (c), thus designating
branch currents §y, Jos 15, jn as a possible independent set, indicates that
the corresponding equations among those given by 12 may be regarded as an in-
dependent subset. Thess yield the identifications il= 31, 1.2 =} 29 13 = .35_,,
i, = J7 as indicated in Eqs. & for this choice of tree.

It is, however, not essential that the independent subset chosen from
the Eqs. 12 be this particular one. Thus, if we consider the tree of Fig. 5 (d)
as a possible cholce, it becomes clear that branch currents j&y 55, 37, 38 are
an independent set. The corresponding equations separated from 12, nanely,
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lirk or loop currents to be zero. The existence of a single loop current
energizes a set of branches formj.ng the closed path on which this loop cur-.
rent eirculates. This set of branches, called a tie set, is indicated by
the elements in the pertinent row of the tie set schedule.

If the geometry of the network graph permits its mappability upon a
plane or spherical surface without crossed branches, then we may regard ?
any tie set as forning a boundary that divides the total network into two
portions¥®. Hence if the branches in such a set are imagined to shrini: lcagi-~
tudinally until they reduce to a single point, the network becomes "tied off®
so to speak (as a fish net would by means of a draw string), and the two por-
tione bounded by the tie set become effectively separated except for a common
node. It is this interpretation of the tie set that suggests its name.

Although there are several important variations in this procedure for
establishing an appropriate set of current variables, we shall leave these
for subsequent discussion, and turn our attention now tc the alternate pfo-
cedure (dual to the one just described) of formulating a set of network
variables on a2 wvoltage basis.

6. The concept of node-pair voltages; cut sets and cut-set schedules.

On the voltage side of the network picture, an entirely analegous situa-
tion prevails. liere we begin by regarding the tree-branch vecltages eis a
possible set of independent variables in terms of which the state of & net-
work may uniquely be expressed. Since the tree brenches comnect all of the
nodes, it is osoesible to trace a path from any node to any other node in
the network by traversing iree branches aloney and therefore it is possible
to express the difference in potential between any pair of nodes in terms
of the tree-brancu voltaeges alone. Moreover, the path connecting-any two—
nedes via tree branches is unique Aa:l._n:,;ﬁx_e tree has no closed loops and hence

offers no alternate paths between node-pairs. Therefore, the potential

*For a graph not mappable on a sphere (for example one that requires a
a doughnut-shaped surface), some but not all tie ssts have this property.
This point ie discussed further in Art. 9.
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difference between any two nodes, referred to e&s the pertinent node-pair
voltage, is uniquely expressible in terms of the tree-branch voltages.
The 1ink voltages, which are a particular set of node-pair voltages, are
thus recognized to be uniquely expressible in terme of the tree-branch

voltages.

Let us 1llustrate these principles with the network graph of Fig. 5 (a),

and choose initially the tree given in part (b) of this same figure. If the

branch voltages are denoted by v., Vos *°° Vg nambered to correspond to the
. : P L 3 +3+ion <
given branch numbering, then the quantities Tes Ves Vou Vg

branch voltages and hence may be regardsd as an independent set. They may

are the tree-

simul taneouely be regarded as node-pair voltages, and since they are to
serve a8 the chosen set of variables, we distinguish them through an appro-
priate notation and write

€, = V.4 6, = V,y 6, = Vo 8, = V.
This part of the procedure parallels the use of a separate notation for the

loop currentis il’ i g+« vwhen choosing variables on a current basis. There

2’
the link currents are identified with lcop currents; in Eq. 15 the tree-

& )

branch voltages are identified with node-pair voltages.

The remaining branch voltages, namely the link voltages, are now readily
expressible in terms of the four tree-branch or node-pair volteges 15. Thus,
by inspection of Fig. 5 (a) we have

Vo = =V .+ V, = -8, +8
1 .G TR

q Fi 808,

~-V.+V, = -8+ 0

37008 3 4

vV, = -V +V,_= -e, t+e,.
&

4 8. -5 4
The procedure in writing these equations is to regard each link voltage as

V. = =V, +V
é

<
i

a potential difference between the nodes terminating the pertinent link,
and to pass from one of these nodes to the other via tree branches only,

adding algebraically the several tree-branch voltages encounterad.
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If the tree of Fig. 5 {c¢) is chosen, the branch voltages
Vs vA,_ Vgr Vg become the appropriate indeperdent set, and we make the
identifications

8y % Way 8, = Vip 8y W Vg, 8, = Vg (17)
The expressions for the link voltages in terms of these read

v = -V $+V, -V, = -8,+2,~0©

s 4 € S < 7 4
Vo & =V, - ‘v'_)* vV, = -8, ~e, ¥+ 8¢,

- 8 . ~ & \“Ld‘

9B % Vg = 85+ L
v,? = -73-0- YS = -el+ eL.

The results expressed in Eqs. 16 and 18 bear out the truth of a state-
ment made in Art. 4 to the effect that any set of tree-branch voltages may
be regarded as an independent group of variables in terms of which the re-
maining Lranch voltages (link voltages) are uniquely expressible. In the
network graph of Fig. 5, any tree has four branches. Hence, of the eight
bran~h voltages, only four are geometrically independent. These may be the
ones pertinent to any selected tree; and the rest are readily expressed in
terms of them.

In dealing with more complex network geometries it becomes useful to
establish a systematic procedure for the selection of node-pair voltage
variables and the unique expression of the branch voltuges in terus of thenm.
The accomplishment of this end follows a pattern that is entirely analogous
(yet 'dual) to that described in the previous ariicle for the current basis.
That 1s to say, we seek to construct a schedule appropriate to the voltage
basis in the same way that the tie-set schedule is pertinent to the current
basis. To thie end we must first establish the geometrical interpretation
for a set of branches which, for the voltage basis, plays a role analogous
to that defined for the current basis by a tie set (or confiuent set of
branches forminz a closed loop). The latter is placed in evidence through
opening all of the links but one, so that all loop currents are zero except

one, The analogous procedure on a voitage basis is to force all but one of
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the node-pair (i.e., tres-branch) voltages to be zero, which is accomplished
through short-circuiting all but one of the tree branches. This act will in
general simultansously short-circuit some of the links, but there will in
any nontrivial case be left some links in addition to the one nonshorted
tree branch that are likewise not short circuited and will appear to form
connecting links between the pair of nodes terminating the pertinent tree
branch, This set of branches, which is called a cut set, is the desired

analogue of a tie set, as the followin: detailed slaboration will clarify,

Consider again the network of Fig. 5 (a) end the tree of part (b) of
this figure, together with the pertinent stipulation of node-pair voltages
as expressed by Egs. 15. The cut-set schedule appropriate to this situa-

tion reads

\\ Branch
Node-—paiN‘o :
No. \\\\g 1la2lalals '6 o |
1 ’_~1 ojlof1{11!0 o' 0
s SPRESL AT L* 0.0 toliTato (19)
3 | 011110 Rt 4 e
__— 41010 i 11 jojojola

It is customary to regard the node-pair voltages 812 802859, &8 risee,

while the branch voltages are drops. For this reason the reference ArTov
bt s e e - o S p -~ — . . isea 4y

for an "e®™ is opposite to that for the "y® that it is nuperically equal. to,
With this fact in mind let us congider in detail the construetion of“ :
schedule 19 by its rows, referring for this purpose to Fig. 5. Since by

Ea. 15, e = Vg We observe that the terminals of branch 5 constitute node
pair Ho. 1, and the tip end of the reference arrow for e, is at the tail end
of the reference arrow for branch 5. Analogous remarks apply to the other

three node pairs which are the terminals of branches 6, 7, and 8.
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To determine the cut set associated with node pair No. 1, we regard
) as the only nonzero node-pair voltagey that is, branches 6, 7, and 8
are short-circuited. Under these conditions it should be clear that the
links 2 and 3 are likewise short-circuited, but that links 1 and 4 together
with tree branch 5 remain nonshorted. These three branches, therefore, con-
stitute the cut set pertinent to node pair No. 1, and the corresponding ele-

ments in the first row of schedule 19 thus are the oanly nonzero ones.

Ncw a8 to the algebraic signs of these nonzero elements, we note that a

positive & would cause currents that are confluent with the reference ar-

rows in branches 4 and 5, and counterfluent with the referencs arrow in

branct 1. The sign given to the nonzero element is chosen positive for con-

fluence and negative for counterfluence.

Similarly, node pair No. 2 is identified with the terminals of branch 6.
lo plece in evidence the associated cut set, we imagine the other iree
branci es to be short-circuited, whence the nonshorted branches are 1, 2, and
4. The sign convention just deseribed yields plus signs for branches 1 and 6,
. and a minus sion for branch 2. Construction of the remaining rows in this
mt-get schedule follows the same pattem. |

If we nov regard the colums in this schedule as containing the coeffi- q

:

cients in an orderly written system of equations expressing the branch volt- 1
ages in terms of tne node-peir voltages, we have ‘
|

1 1

v, = -eyte,

vy = -6+ e,

LB Rl {20)
v.‘ = el

Ly My

Ve = ‘?'.%

g = e,
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A cut set quite generally is thus seen to be any group of branches so
selected that the act of cutting them separates the network into two parts.
We can visualize the selection of a cut set as being done by picking up in
one hand some of the nodes in the network and pulling these away from the
rest (wvhich may be thought of as fastened somehow to the plane of the pa-
per)s the stretched branches form a cut set.

With this interpretation irn mind let us again consider the formation of
the cut set scheduls 19 based upon the greph of Fig. 5 (2) with the tree of
part (b) of that figure and hence for the node-pair voltages defined by
Eq. 15. In Fig. 7 this graph is redrawn with the nodes lettered so we can

refer to them specifically. Branches 5,6, 7,8

constitute the tree. Node-palr voltage e
equals v_, and the tip of its reference arrow
is at node o. To find the cut set correspond-

inb to this node-pair voltage, the remaining

tree vbranches are regarded as short 01rcu1ts,
/;/2 whence the nodes b, ¢, d are seen to coincide

S with the node o. In our right hand we, there-

fore, imagine picking up nodes o, b, ¢, d, and
with our left-hand; holding node a...The tip
end of the reference arrovw for 8, is in our right hand; hence the positive

Fig. 7.

PRREPSSEDRNSEE

referance direction for branches ”ig_,mg..ﬁﬁﬂoez.atod cut set -is from our right
hen\d( ﬁo our left hand. 'Emmhed_brggggggw clearly are those nunbered
1,7 4,. 5, The Teference arrows on 4. and-5-erve-eonfluent. with the positive.
referénce direction for this node pair while that on branch 1 is counter-
ﬂm Constructlon of tre Tirst row of schedule 19 is thus clear.

To construct the second row we observe that &, = Vi, and sc the tip@end

of e, is again at node o. This time branches 5, 7, 8 aré regarded as short

"’ eircuits; so the nodes picked up in our right hand becone o, a, c, d, and

the positive reference direction for the cut-set branches is again diver-
gent from our right hand. The cut set consists of branches 1, 2, 6, with
1 and 6 positive and 2 negative.
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For o, the picked-up nodes are o, &, b, d, and for °, they are o, a, b, c.

It is useful always to consider picking up that group of nodes thut coincides
at the tip end of the pertinent node~pair voltage; then the positive refer-
ence direction for the branches in the associated cut set is consistently di-

vergent from the plcked-up nodes.
o - “

Returning now to the Iqs. 20, a few additional remarks may be in
order regarding their inversion. That is to say, if we were asked to solve
these equations for the e's in terms of the v's, the question of uniquensss
-may arise since thers are more equations than unknowns. However, the aitﬁa-
tion here is the sanme as has already been discussed for the current basis in
connection with Egs. 12. Namely, among the Eqs. 20 there are exactly four
independent ones (as many as there are independent unknowns), and so it is
merely a matter of separating four independent equations from the given
group and selving these. The last four are obviously independent and yield
the definitions chosen for the e's in the first place. However, we can al-

tematively choose say the first three and the fifth. Their solution yields
5 =%

o
it
<
+
q

(21)
83 = VvV, 4 VoV .'

=
»
W

@, =SV, +V,+V, +V
4

Y+ V¢ V. =V, o &
3 % ] (22)
Vo bVt V¢V, = Ve
¢ il Rl M 8
Hence the solutions 2) again agree with the definitions 15.
Of the Egs. 20, four are indepandent. Not any four are independent,
but there are no more than four independent ones in this group, and there

are several different sets of four independent ones that can be found

among them. A gimple rule for plcking four independent ones is to choose
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wummawm . The solu- |

tion to these ylelds the expressions for the efs in terms of the v's; and
substitution of these solutions for the e's into the remaining equations
yilelds the previously discussed relations between link voltages and tree-
branch voltages. The cut-set schedule which contains the information re-
garding the geometrical character of the cut sets, as well as the algebraic
relationships between the implied node-pair voltages and the braanch-voltages,
is thus seen to be a compact and effective mode of expressing tnese things.
It does for the formulation of variables on the voltage basis what the tie-
set achedule does for the establishment of a system of variables on the cur-
rent basis. Continued use will be made of both types of schedules in the
following discussions.

7. Alternative methods of choosing current variables.

The procedure for selecting an appropriate set of independent current
veriables in a given network problem cen be approached in a different manner
which may sometimes be preferred. Thus, the method given in Art. 5, which
fdentifies the link currents with a set of loop current variables, leaves
the tie sets or closed patiis upon which these currents eirculate, to be de-
termined from the choice of a tree, whereas one may prefer to specify a set
of closed paths for the loop currents at the ouiset.

Consider in this connection the graph of Fig. 8. In addition to provid-
ing the branches with numbers and reference arrows, a set of loops have also
been chosen and designated with the circulatory arrows numbered 1, 2, 3, 4.
These loops, incidentally, are referred to as meshes because they have the
appearance of the meshes in a fish net. It is a common practice in network
analysis to choose, as a set of current variables, the currents thut are
assumed to circulate on the contours of these meshes. Having made such a
choice, we must know how to relate im sn unambiguous and reversible nmanner,

the branch currents to the chossn mesh currents.




C-64B

6.00 - Elementary Circuit Theory - Ch. I Page I-24
1
P—
g, i N \
2 l Tree No. 1 Tree No. 2
- — ?_M.._._.__....___..

ST

g
e e —
?u—-————-—irm-———_.
o

/ “,.. ‘7\
6 B h o x
. |
{ { 1
- D "9 'i) B . 7]
'S | R \ /
N " / o v
R b 2e e gl o
5 e

Fig. 8
This end is sccomplished through setting down the tie-set schedule cor-
responding to the choice made for the closed paths defining the tie sete.

With reference to the graph of Fig. 8 one has by inspection
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|
y
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ifesh ™ ey A0 s { { i
No. N\J 1) 2] 3]4f 5] 6} 8{ 9
e TEE— ‘.» —,—‘~»v-5..—- .--{ e e — -~ ’
I R I a2 B AL S M A g U G ey
R o W g6 )
2 1O F Vi1 Q1] 016 { £1=-31 8 (23)
doimaien ey ki — ....f:.._- - ,t_.-..- b Beusie
¥ ey o AT seol Tl g bl
— e} S 7:_ .. el
410 kalefilai®oTe e
BN T i L




6.00 - Elementary Circuit Theory - Ch. I

and the columms yield
= 1

1

g = ~hrl

33 =t

3, = 441,

i (24)
g

=14

W%

)9 —13 .

The mesh currents in terms of the branch currents are found through
solving any four independent equations in this group. If we consider tree
No. 1 in Fig. 8, the links are given by branches 1, 2, 3, 4, thus indicating

‘ thet the first four of the Eqs. 24 are indepsndent. These yield
el
L, =4t
13 = 3+ 32;33 (25)
14 = jl-e» I+ 13+ 34.
Substitution into the remaining Eqse. 24, gives
R e A Y
o= %3+,
= J+d, o
3g = -;- 1,
39 = -3;- 35~ 35

These express the tree-branch currents in terms of the link currenis.
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if inetead, we chovse tree No., 2 it Fig. 8, the branches 1, 5, 8, 9 be-
come linke. The corresponding eguaticns in the group 24, namely
Paiaty,
a 4
14 2 “jﬁ
: g (27)
i, = ~J.
< jc
. N |
ij = ~dg

are independent and glve the expressions for the mesh currents in tems of
the link currents. With these, the remaining hgs. 24 yield again the tree-

branch currents in terms of the link currents, thus

Joy = "Jl“ ‘!B

j) = 18' i?

jIP p wj:i ] J() (28)
jé = 'Jg

in = ~lg

It is readily seen that the results expressed by Egs. 25 and 26 are con-
sistent with those given by Eqs. 27 and 28, That is to say, the choics of
a tree has nothing to do with the slgebraic relations between the loop cur-
rents and the branch currentsy it merely serves &s a convenient way of es-
tablishing an independent subset among the Egs. 24. In the present very

~ simple example, one can just as easily pick an independent subset without
the aid of the tres concept; hovever, in more complex problems the latter

can prove very useful.

In approaching the establishment of a set of current variables through
making at the outzet a choice of closed paths, a difficulty arises in that

the independence of these paths is in general not assured. A necessa

(though not sufficient) condition is that ell branches must participate in
| forming these paths, for if one or more of the branches were not traversed
by lodp éurrénta, then the currente in these branches in addition to the
loop currents would appear.io.be independent. Actually, the loop currents
chosen in this manner could not be independent since altogether there can

be only_f independent currents
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A sufficient (though not necessary) procedure to insure the independ-
ence of the closed paths (tie sets) is to select them succsssively in. such
a way that each additional path involves al least one branch that is not

part of -any-of-the previousty-selected paths., 7Thie statement follows from
the fact that the paths or tie sets form an independent set if the .£ rows
in the associated tie-sel schedule ars independent; that is, if it ig not

possible to express any row in this schedule as a linear comnbination of the
other rows. If, as we write down the successive rows in this schedule, each

- new Yow involves a branch that has not appeared in zny of the previous rows,
that row can surely not be formed from a linear combination of those already
chosen, and hence must be independent of then.

A glance at the schedule 23 shows that this principle is met. Thus,
construction of the first row involves only branches 1 and 2. The sacond
row introduces the additional branches 3, 7, 8; the third row adds branches 4,
6 and 9, and the last row involves the previously unused branch No. 5. It
is not difficult to convince oneself that if one designates only meshes as

‘ closed paths (which is, of course, possible only in a graph that is nia.ppable
on & plane or sphere), then the rows in the associated tie-sst schedule can
alvays be written in such a sequence that the principle just described will
be!lot. This simple cholce in a plane mappable graph, therefors, alwiys
assures the independence of the closed paths and hence does the same for
the Smplied,mesh—curr»ent variables. :

However, it is quite possible for the £ rows in a tie-set schedule to
- be independent while not fulfilling the property just pointed out., Thus as
already stated above, this property of the rows is a sufficient though not
necegaary condition to insure their independence. When closed pathe are
chosen in a more general manner, &s they sometimes may be, it ig not always
evident at the outset whether the choice made is acceptable., To illustrate

this point, let us reconsider the networic graph of Fig. 8 with the choice of"
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To investigate the independence of the chosen loops, we cbserve that the
choice of tree No. 1 in Fig. 8 indicates that the branch currents Jl’ 12,
33, Jl. form an independent set. Hence the first four of the Egqs. 30 should
be independent. They obviously are not, since the second and fourth equa-
tions are identical except for a change in algebraic sign., Hence the loops
indicated in Fig. 9 are not an independent set, notwithstanding the fact
that they are ¥ in number and collectively traverse all of the branches.

Tf we modify the choice of loops in Fig. 9 merely by shifting the part
of loop 4 that traverses branch 1 onto branch 2; the resultunt set is found
to be an indejendent one.® It should thus be clear that the choice of an
independent set of loops (or tie sets) is in general not a matter trat is
evident by invspecti.on, although one has a straightforward procedure for
checking a given selsction. Namely, the chosen set of loops are indegendent
if the .£ rows of the associated tie-set schiedule are independenty and they
are, if it is possible to find in this schedule & subset of ./ independent
columns (i.e., £ independent equations among a set like 30). The simplest
procedure for making this check zmong the columns is to pick those columns
correspondir.z to the links of any chosen tree. These must be independent
if the £ rows of the schedule are to be independent. They are if the per-
tinent equations (like the first four of 30 in the test discussed in the
previous paragraph) have unique solutions, Usuully one can readily see by
inspection whetuer or not such solutions exist. Aan elegant algebraic
method is to see if the deteruinant of these equations is nonzero. Thus
the nonvanishing ol the determinant formaed from the subset of colurms cor-
responding to the links of a chosen tree suffices to prove the independenice
of an arbitrarily selected set of closed paths.

*¥It night be noted, incidentally, that the rows of the correspondinzly
modified schedule 29 do not fulfill the property that each successive
one involves at least one new branch. Nevertheless these rows are in-
dependent.
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In the case of graphs having many branches this method may prove tedi- ‘
ous, and so it is usaeful to be aware of alternative procedures for arriving
at more genersl current varieble definitions, should this be desirable.

Thus cne may make use of the fact that the most general tie-set schedule

is obtainable through successive elementary transformations of the rows of
any given one, and that such transformations leave the independence of the
rows invarient. We may, for example, start with a schedule like 23 tkhat

is based upon a choice of meshes so that its rows are surely indeprendent.
Suppose we construct a new first row through adding to the elements of the :
present one, the respective elements of the second row. The new schedule

is then

Branch

Loop ,
. 1]2]3}4]|5]6]|7]8]9

(31) ‘

1

2 0|1<2|0|0|0{d}|=1j0!
3 0{0{1+-1{0}{1{0]0|2
4 0o{o|O0}1}2|0{0j0f0

Loops 2, 3, 4 are still the meshes 2, 3, 4 of Fig. 8. Hovever, loop 1
is now the combined contour of meshes 1 and 2, as a comparison of the first
row of the new schedule with the graph of Fig. 8 reveals. If we modify this
new schedule further througn constructing a new second row with elements
equal to the sum of the respective ones of the present row 2, 3, and 4, there
results another schedule that implies a loop No. 2 with the combined contours
of meshes 2, 3, and 4. It should thus be clear that more general loops or
tie sets are readily formed through combining linearly a set of existing sim-
ple ones. So long as only one new row is constructed from the corzbination
of rows in a given schedule, and if the pertineat old row is a constituent
par: of this combination, the procedure cannot destroy the independence of
a given set of rows.
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Each new schedule has the property that its columns correctly yield the
expressicns for the branca currents in terms of the implied new loop cur-
rents, That is to say, since transformation of the schedule through mak-
inz linear row combinations implies & revision in the choice of locps, it
likewise implies a revision in the algeoraic definitions ~f the loop cur-
rents. Nevertheless the relations expressing the branch currents in terus
of thess new loop currents is still given by the coefficients in the columns
of tre schedule. For example, we would get for schedule 3i the relaticns

=4

)

iz = ‘5*1"1;0""15

Ny "154'11:.

4 {(32)

15 = -1}

dg. = ié

e e

g = -4 -1,

lg = -1,

where primes are used on ths 1's to distinguish them from those in Egs. 24

which 4re pertinent to schedule 23.

Comparison of Eqs. 24 and 32 reveals the transformation in the loop cur-
rents implien by the transformation of schedule 23 to the form 31, namely
=i

[ors
i

P
+

.

13 = 13 (33)

This wssult is at first sight somewhat unexpected. Thus the transformation
from schedule =2 to schedule 31 implies leaving the contoure for the loop

currents i, j}. i, the same a3 in the graph of Fig. 8, but changes the con-
4

tour for loop current 1); Offhand we would expect the algebraic definition

for L.l tn change and those for 1?, 1., and 1¢ 0 renaln the same. Inatead
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. in which the a's are any real numbers. If 11 *++ 1, are an independent set
of current var;ables, then 1i coe Q,Will be independent if the Egs. 34 ure
independent; that is, if they possess unique solutlons (which they will if
their determinant is nonzero). In general the currents 1i sae ;é will no
longer have the signficance of circulatory currents or loop currents, al-
though for convenience they may still be referred to Dy that name. They

will turn out to be some linear combinations of the branch currents.

If sach a very general set of definitions for the loop currents i< de-
sired, one can approach the construction of an sppropriate tie-set schedule
directly from this point of view, which we will illustrate for the network
graph of Fig. €. Thus let us suppose that one wishes to introduce current
variables which are the following linear combinations of the branch currents

i SR P C R PRl

12 324'2334'16‘ ‘18

13 I * J3+35+J7+39
1y 23, + 3¢+ Ige

i
The first step is to rewrite these expressions in terms of 2(in tnis case

. 4

(35)

four) branch currents. To do this e may follow the usual scheme of picking
| a tree and finding the relations for the tree-branca currents in terms of
the link currents. ror tree No. 1 of Fig. 8, these are given by Zgs, 26,

Their use transforms Egs. 35 iato

1 = ;jl-fﬂdz +233+134

i, = 2§ +3j,+3i3+0§, (36)
i, = 0§; - 1§~ 135~ 15,

i, = 0§y +1i,+1j3+2),,

having the solutions

1= 04 +F 1,43 i3’“32'1.«.

=34 353501 (37)
iy'= = *1*% 12"% Ay

j,= 0440 3,+1 1,411,
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apgain we.have the additional relations

This ig the
current var

of being ci

As we

w

en important

ate to the

cussions, t
gardless of
the process
one of esse
of a tree a

this proces

T S
g = Ocdym gy 213 -% 4y
' Sl L _J; o | Y | .;.l.. 3
j./g" (&) ;1v2j2"' L3+214
1 ] ) &
% 4 G- - F
o = 5 1,40 1,45 13-+2 14 (38)
L L T
dwraatlls e
L . _1
Jg=01;-51, 1;-514,.
™ results in Eqs. 37 and 38 yield the following tie-set scheduls,
which more compactly contains this same information
% ‘ a8
\\~Broncq
e B0 |
.‘Ocp ! j »
Ty N B A - R ok Tt S B 8 9
e i G | ot !
1 |0 ;1/2 /2 ¢ { o} o |1/2 |-1/2] O !
FRale To saipas Thay 30, | il :
j 2 11“24:1/2i vz, 0 |-1/211/2, O 0 /2" (39)
Sa S TR s 3 :
3 3 r3/2£—l/2; 1 |—2 1 13/2 -3/2]1 <1 :
il R I I [ \
i 1322 | o | 1 L3/2|1/2 |1/2 |-1/21/2
ek itep o = S RSN [P . R e = !

achadule that is implied by the definitions- 35 for the loop-
jables, which no longer possess the geometrical interpretation

rculatory currents.

hell see in the following chapter, the tie-set schedule playe
role in the formulation of the equilibrium equations appropri-
chosen definitions for the current variables. The present dis-
herefore, provide the basis for accommodating such & choice re-
its generality or mode of inception. Thus we have shown that
of selecting an appropriate set of current variables can take
n+tially three different forms. (1) The approach through choice
nd i1dentification of the link currents with loop currents. 1In

e the algebreic definitions for the loop current variables are
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as simple as they can be, but one exercises no direct control over the ns-
ture of the closed paths or loops. (2) The approach through a forthright
choice of loops or tie sets. Here the procedure exercises direct control
over the paths upon which the current variables are assumed to circulate
(a simple choice being the meshes of a mappable network), but no facile con-
trol is had regarding the associated algebraic definitions of the loop svr-
rents. (3) The approach through making an initial and arbitrarily general
choice for the algebraic definitions of the current variables (like those
given by Eqs. 35). In this case the variebles no longer possess the simple
geometrical significance of circulatory currents. This approach will prob-

ably seldom be used, and is given largely for the sake of its theoretical
interest.
8. Alternative methods of choosing voltage variables,

When voltages are chosen as variables, we similarly have three possible
variations which the form of the approach may teke. The first, which is
discussed in Art.6, proceeds through choice of a tree and the identifica-
tion of tree-branch voltages with node-pair voltage variables. In this
process (like procedure 1 mentioned sbove for the cholce of current vari-
ables), the algebraic definitions for the node-pair voltages are as simple
as they can be, but little or no direcy control can be exercised over the
geometrical distribution of node pairs. A second form of procedure which
permits a forthright choice of node pairs at the outset, and a third in
which the process is initiated through an arbitrarily general choice for
the algebraic definitiated of the voltage varistles, are now presented in de-
tail.

To illustrate how a designation of node-pair voltage variatles may be ap-
proached through the initial selectfon of an appropriate set of node-pairs,
let us consider the network of fig. 8. In Fig. 10 are indicated the nodes
of this network, lettered 2, b, cc. f for ease of reference, and & system
of lines with arrow heads intended to indicate a choice of nods pairs and ref-
erence directions for the voltage variables @1» 855 cso 95. These arrowg are
not to be confused with branches of the network, yet if we nomentarily think
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ol them as such, we notice that the structure in Fig. 10 has the character-

istics of a %ree, for it connects ‘all of the nodes, and involves the smallest
number of branches needed to accomplish
this end. Hence this choice for the vari-

ke /‘(c . ables e

*«» ¢. 18 an appropriate one

g 3 5
B /< since the variables surely form an inde-
b o . “2 " pendent set, and their number equals the
. - number of branches in any tree associated
s, Pl ¥ with a network having these nodes. In
e .:i;9 £ meking a forthright choice of node pairs
i it is sufficient to see to it that the
system of reference arrows accompanying
this choice (whether actually drawn or
Fig. 10 :

merely implied) forms a structure that has

a tree-like character.

Using the principles set forth in Art. 6, one can construct the following
out-set schedule appropriate to the cholce of ncde pairs indicated in Fig. 10
for the network graph of Fig. &

\\Erarch!

N z

Node pai}fj""! e P ol alol Nodes
1 -1|-1]lojo|o|lofjo|-1]0 d
ol § |
2 1{1|lolof{ojlol2]o0]o0 a
{ i !

3 1] 1j-1jo0o]jojol<2}| 1R a,e (40}
)] ol [~X12 101 0]~L] 20210 b,d

& -1 =11 -1 |-1|-1[1{-1{1 | b,q,f

In this scliedule we have included a last column indicating the nodes picked
up in the formation of the respective cut sets. Thus, with reference to
Pig. 10, 1f ey is regarded as the only nonzerc node-pair voltage, nodes a,
o, ¢, e, f coincide at the tail end of e, while node d alone occuples the
tip end. Hence cut set No. 1 is found through picking up node 4 alone and

(all other nodes remaining fixed) noting the sat of branches in the network
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"ig. 8 that are stretched Yy this procedure. The assoclated uigro are
itive or negative according to whether the respective branch raolers
ow ig divergent from or convergent upon the picked-up node or noce

The cut set pertinent to e, is found through regarding all otler nois-

ir woltages as being zero so that aodes b, ¢, d, e, £ coincide =t

L end of o, vhile node a marks the tip end. Plcking up thig node siretches
he branches 1, 2, and 7 in the graph of Fig. 8, and the referencs sarrows
o branches 1 and 2 are divergent while that on branch 7 is convergent,
‘rnilarly, with e, alone nonzero, ncdes a, e colncide at the tip en
hile nodes b, ¢, d, f coincide at the taill end. The picked-up nodes sre

nd e, and the corresponding cut cet 1s then seen Yy inspection of [ig, 8.

» resder can thus readily check the remaining rows in the cut-sef

adule 40. '

@

According to the columns of this schedule we can now lmmediately wirlte

v, = ~el+ez+3 —e‘,‘-»e‘-j

V:, = ~81+ 82* 03-64- 85

b5 Baden il

' e
v, = -o (41)
Vé' = -—04- 05
77 = -02-03'0' 84+05
'3 = -Gl"' 03-84— 85
79 = -03"' 050

‘bo correctness of these may readily be checked with reference to Figas. 8

and 10, remembering again that the v's are drops and the e's are rises.

or example, v, is the voltage drop from node & to node d. If we paso

‘vom @ to d via the system of node-pair voltage arrows in Fig., 10, we ob-

srve that we first traverse the arrows for e, and e, counterfluentiy, and

ren the arrows for 855 €5 and e, © mfluently. Since confluence indicates
ise in voltege, the terms for ©15 9, and e; are negative. Therc unould

A

no difficulty in thus verifvying tbe remaining squations in the sot /1, -
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. . One could have written the Eqs. 41 from inspection of Figs. % and 10 to
start with and thus constructed the schedule 40 by colurmms, whence the rows
would automatically yleld the cut sets. This part of the procedure is thus
seen to be the same as with the alternate approach given in Art. 6. So is
the matter regarding the solution of the Egs. 41 for the node-pair voltages
in terms of the branch voltages. One selects any five independent equations
from this group and solves them. Again the selectioh of a tree in the asso-
ciated network graph (such a tree No. 1 or No. 2 in Fig. 8) is & quick and
sure way to spot an independent subset among the Egs. 41, and the remaining
ones will then yie.d the appropriate expressions for the link voltages in
terms of tree-branch voltages as discussed previously.

In this method of approach to the problem of defining an eppropriate set
of independent voltage variasbles, & rather common procedure is to choose the
potential of one arbitrarily selected node &s a reference, and designate as
variables the potentials §y, veil of the remaining nodes with respect to
this reference. Thus, one node serves &s a datum or reference, and the node

‘ pairs defining the veriables e, - e . all have this datum node in common.

The quantities - LR 2 in this arrangement are spoken of as node-potentials

4

and are referred to as a "nods-to-datum" set of voltage variables.

The rather simplified choice of node'pairs implied in this specialized
procedure is in a sense the parallel of choosing meshes for loops in the spe-
cification o° current veriasbles., This theme is elaborated upon in Art. 9
where the dual character of the loop and node procedures is stressed and the

implications of this duality are partially evaluated.

The equivalent of Fig. 10 for a choice of node-pair voltages of this sort

is shown in Fig. 11, pertinent to the

O d
a 1 1 ™ 3
4 ///{p network graph of Fig. 8. Agein for
the moment regarding the arrows in

b e : -
ey o i e this diegram as branches, we see Thetl
\ e} g gt it has tres-like character and hence
\\ A//M//’ < that such & node-to-datum set of -

C — 8,4 o f egas 13 elways irdependent.
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Thé cut sets appropriate to this group of node-pair voltsges are par-
iculerly essy to find since we observe that setting all but one of the
‘cde-pair voltages equal to zero causes all of the nodes to coincide at the
datum except the one at the tip end of the nonzero voltage. Hence the
tranches divergent from this single node form the pertinent cut set. With

ference to Fig. 8, the following cut-set schedule is thus readily obtained

yrancn }
N No. ,

ode\\ | ] ’
Kov - | o { | Picked-up
: N[ 1273 4)5]¢ 7§8§9 nodes
1 | 0 ogofmlﬁ-.lj%'o,(o;ogl f
- Ry : %..,_._.'g. s " , E ”l ? —
2 0{o0|-1!0 o4 0lajkij-al
1% = ! T ' : e taate dhmen -......}-,._.‘, 7. 2 E0 e .ﬁﬁ_...,.dr‘u SR |
3 mlr_l?o;m;o?o!o,-d?o. d (42)
bain { f e e e ,_-_._%_.__.- s —'.7"'"-'""%’“"”“%' ek
4 P T 10 L0 U EL T 04 b
i 4 ! o ~£’\ RASRT ST T Eaci “‘}“““"'?-‘W-—--'-jr'-&-— SR ey
: e _ ‘ Eoi it |
P g A ae 1205P 100, O 0 Bl L T

Since the node-pair voltages ere the potentials of the separate nodes with
espect to a common datum, each branch voltage drop is given by the difference
of two node potentials, namely those associated with the nodes termineting
the pertinent branch. If the latter touches the datum node, then its voltage
irop is given by a single node potential (with proper algebraic sign). These
>bservations ere borne out by the fact that all of the columns in the schedule
< have elther two or one nonzero elements; those with & single nonzero element
>ertaln to brenches touching the datum node., The branch volteges in terms of
the node poterntiels are thus formed either Ly inspection of Figs. 3 and 11 or

from the columns of schedule 42 to be

vy = “83‘:’85 V5 = -8
v, = -93~2<e5 ¥ ™ e,
v3 - 34 | Vo, = €.~ % (43)
vz’ ' -8y Vo = €,y 2,
Vg = (31 :2
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associated cut set is found through picking up these two nodes, as is also

indicated in the schedule 46. The picked-up nodes correspending to the re-
maining node-peir voltasges evidently remain the same as lLefore, and hence

the rest of the cut sets are unchenged.

Other simple transformations in the echedule 46 may similarly be inter-

preted. For exemple, if row 3 is added to row 4, the picked-up nodes for cu

get No. 4 become 4 and b, which in Fig. 12 implies that the teil end of e,

shifts from the datum to node b, and we will find that now e, = e;+ ez wher
3 A

the double prime refers to the latest revision of the set of node-pair volt-

T 3 (

ages (the rest of the e's remain as in Eqs. 49 with double primes on the

right-hend quantities).

-

One soon discovers, upon carrying out additionsl row combinations in th

schedules 42 or 46 that it is by no means always possible to associate a node

pair voltage diagram like the ones in Figs. 10, 11, or 12 with the resulting

i

node-pair voltesges for the reason that some of these are llkely no longer to

»

-

1}

be simply potential differences between node pairs but instead are more gen-

eral linear combinations of the branch voltages,

The same is true if one constructs a cut-set schedule (as is also & pos
gible procedure) through meking arbitrary choices for the picked-up nodes.
-

To illustrate such a method we may consider again *h

e graph of Fig. 8 which
is redrawn in Fig. 13 with the nodes lettered ss in Fi

igs. 10, 11, and 12i
i
e
o )
a e -0

U

O
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That such & set of equations exist is manifest since the schedule 50 is
obtainsble through a linear transformation of the rows in schedule 42, &nd
the property of the columns to yield the branch volteges in terms of the im-
plied node-pair voltages is not lost through such a transformetion. Hence,
if the Eqs. 51 possess unique solutions for the voltage variables - sl es,
these exist, and the cut-set schedule 50 is appropriate to them, The Egs. 51
do possess unique solutions if there exists among them an independent subset
of five equations appropriate to any tree of the graph of Fig. 13 or 8, Pick-
ing tree No, 1 in Fig. 3 designates Ves Vgs Vs Vgs Vg as independent tree- '
branch voltages snd hence stipulates thet the last five equations in the
set 51 should be independent. It is readily seen that they are, for they
yield the solutions

€, = =V

iy

o S

gt S My (52)
34 = 76—V9

es = —V7+ Vsc

We may conclude that the cut sets in the schedule 50 are independent, and
Eqs. 52 tell us what the implied voltage veriebles are in terms of the branch
voltages. The first two are simple potential differences between nodes, but
the remaining three are not. There is no reason why the selected voltege
variables have to be potential differences between nodes. So long as they
form an independent set, and we know the algebraic relations between thenm ahd
the branch voltsges, they are eappropriate.

Lastly let us consider for the same network of Fig. % the following set
of independent linear combinations of the branch voltages as e startlidg point

8. = V. + V. 4V +2v6+2v +‘§v + 5v

1 1 . Sl ¢ 7 9

e. = v .+ V. +V, - V_+ vV, + V_+ 4V

2 2 3 & 5 6 7 8

e, = ~v + 2v, -V + v6+ 3v8+2v

+ 4V

9

3 3 5 9 ("‘.‘?’/
84 = -V +2v3-v5+ v6 v7+ 2v8+ v9
e5 = V3- v5+v6
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Thus we see that any stated algebraic definitions for the voltage variasbles
can be accommodated, although their usuel simple geometrical interpretation
is no longer applicable. The independence of the definitions 53, inciden-
tally, is verified through noting that Eqs, 54 possess solutions.

9. Duality.

In the foregoing discussions regarding the appropriate selection of cur-
rent or voltage variables, the reader will undouttedly have noticed a number
of similarities and anaslogies between the procedures pertinent to these two
methods of approach, We wish now to call specific attention to this aspect |
of our problem so that we may gain the circumspection that later will enable
us to make effective use of its implications. In a word, this usefulness
stems from the fact that two situations which, on & current and voltage basis
respectively, are entirely analogous, have identical behavior patterns except
for an interchange of the roles played by voltasge and current, while physi-
cally and geometricaily they are distinctly different. Not only can one rec-
ognize an obvious economy in computational effort resulting from this faet
since the analysis of only one of two networks so related yields the behavior
of both, but one can sense as well that an understanding of these ideas may |
lead to other importent and practically useful applications, as indeed the

later discussions of our subject substantiate. 1

A careful review of the previous articles in this chapter shows that
essentially the same sequence of ideas and Jrocedures characterize both the !
loop and node methods, but with an interchange in pairs of the principal quan- i
tities and concepts involved., Since the latter are thus revealed to play a |
duel role, they are referred to as dual quantities and concepis. First among
gsuch dusl qusntities are current and voltage; and first among the dual con-
ceptsvinvolved are meshes and nodes or loops and node-pairs. <Since a zero
current implies an open circuit and a zero voltage a short circuit, these two
physical constraints are seen to be duels. The identification of loop cur-
rents - with link currents snd of node-pair voltages with tree-branch voltages

shows +hat® the links and the tree branches likewise asre dual quantities. The
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following table gives a more complete list of such pairs.

Dual guantities or concepts

current ; voltage

branch current branch voltage

mesh or loop node or node pair
numbar of loops '4) number of node peirs (n)
loop current node-pair voltage
mesh current node potential

link tree branch

1ink current tree-branch voltege
tree-branch current link voltage

tie set cut set

short circuit open circuit
parellel paths series paths

It should be emphasized that duality is strictly a mutuel relationship.
There is no reason why any pair of quantities in the above table cannot be ‘
interchanged, elthough each column as written associates those quantities
and concepts that are pertinent to one of the two procedures commonly referred

to as the loop and node methods of analysis.

Two network graphs are said to be duals if the characterization o one on
the loop basis leads to resulis identical in form to those obtained for the
characterization of the other on the node basis. Both graphs will have the
same number o branches, but the number of tree branches in one equals the
number of lin*s in the otherjy or the number of independent node pairs in one
equels the number of independent loops in the other. MMore specifically, the
equations relating the branch currents and loop currents for one network &are
identical in form to the equations relating the branch voltsges and the node-
pair voltages for the other, so that these sets of equations become inter-
changed if the letters i1 and j are repleced respectively by e and v, apd vice
versa. For appropriately chosen elements in the branches of the associated
dual networks, the electricel behavior of one of these is obtained “rom that

of the other simply through an interchange in the identities of voltage and

current. '




B A o A e R e b e S e

C-64B

6,00 - Elementary Circuit Theory - Ch, I Page 48

Apart from the usefulness that will be had from later applications of
these ideas, a detailed consideration of the underlying principles is ad-
vantageous at this time because of their correlative value with respect

to the foregoing discussions of this chapter.

Geometrically, two graphs are dual if the reletionship between branches
and node pairs in one is identical with the relationship between branches
and loops in the other. The detailed aspects involved in such a mutual re-
lationship are best seen from actual examples. To this end, consider the

pair of graphs in Fig., 14, Suppose the one in part (a) is given and we are

(b)
Tig. 14
to construct its dual as shown in part (b). At the outset we observe that
the graph o part (a) has seven meshes and “ive indevendent node pairs (a
total of six nodes). Hence the dusl graph must have seven independent node

pairs (a total of eight nodes) and five meshes. The total number of branches

must te the same in both graphs.

In proceeding with the construction of the duel of (a), one mayv begin by
setting down eight small circles as nodes--one “or each mesh in the graph of
part {(a), end an extra one that can play the part of a datum node i® we wish
to regard it as such, although any or none o“ the eight nodes needs to be

considered in this light. Ve next assign each o° these seven nodes to one of the
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seven meshes in the given graph, as is indicated in Fig. 14 through the let-
ters a, b, -»» g. The procedure so far implies that we are considering as
tie sets those confluent branches in the graph (a) that form the contours of
meshes, and as cut sets, those branches in the dual graph that are stretched
in the process of picking up single nodes. At least, this implication 1is
true of the nodes &, <+« g that are assigned to specific meshes; the cut set
pertaining %o the remaining unaesigned node will correspond to a tie set inm
the graph {a) that will reveel itself as we now proceed to carry out the
process of making all tie sets in the given graph identical to all the cut
sets in its dual.

Initially let us disregard reference arrows entirely; these will be
aedded as a final step. To begin with mesh a, we observe that it specifies a
tie set consisting of btranches 1, 6, 73 therefore the cut set formed through
picking up node & in the duel graph must involve branches 1, 6, 7, and so
these are the branches confluent in node &. Similarly the tranches 7, 10
form the tie set for mesh b, and therefore, these branches are confluent in
node b of the dual graph; and so forth. The actual process of. drawing the
dual graph is best begun by inserting only those branches that are common to
any two tie sets and hence must be common to the respective cut sets. That
is to say, we note that any branches that are common to two meshes in the
given graph must be common to the two corresponding nodes in the dual graph
end hence are branches that form direct connecting links between such node
pairs. For example, branch 7 is common to meshes & and b and hence branch 7
in the dual graph connects nodes a end b; similarly branch 10 links nodes b
and c¢j branch 11 links nodes ¢ and d, and so forth.

In this way we readily insert branches 7, 10, 11, 3, 12, 9, and then note
that the remaining branches 1, 2, 3, 4, 5, 6 in the original graph form a tie
set that must be identical with the cut set of the dual graph that is asso-
clated with the remaining unassigned node. Hence these branches, which have
one terminus in an assigned node, are the ones that must be con®luent in the
remaining node. The latter is thus seen to be assignable to the loop “ormed
by the periphery of the given graph. In a sense we may regard this periphery



~ £
: - C=0418

6.00 - Elementaery Circuit Theory -~ Ch. Page I-50

as 8 "reference loop" corresponding to the originslly unassigned node pley-
ing the role of a "reference node," although ths following discussion will
show that this view is & rather specialized one and need not be considered

unless it seems desirable to do so.

Now as to reference arrows on the branches of the dual graph we note,
for exemple, that the traversal of mesh & in a clockwise direction is con-
fluent with the reference arrow of branches 1 and 6, and counterfluent with
the reference arrow of branch 7. Hence on the dual graph we attach refer-
ence arrows to branches 1 and é that are divergent from node g, and provide
branch 7 with en arrow that is convergent upon this node. That is to say,
we correlate clockwise traversal of the meshes with divergence from the re-
spective nodes, and then assign brench arrows in the duel graph that egree
or disagree with this direction according to whether the corresponding branch
arrows in the given graph sgree or disagree with the clockwise direction for
each corresponding mesh. We could, of course, choose & consistent counter-
clockwise traversal of the meshes, or in the dual graph choose convergence
as a corresponding direction. Such a switch will merely reverse all refer-
ence arrows in the dual graph (which we can do anyway), but we must in any
case be consistent and stick to the same chosen convention throughout the
process of assigning branch reference arrows. This is done in the construc-
tion of the graph of Fig. 7 (b), as the reader may readily verify by inspec-
tion.

Being mindful of the fact that duality is in all respects & mutual rele-

tionship, we now expect to find that the graph (a) of Fig. 7 is related to
th

the graph (b) in the same detailed manner that (b), through the process of

construction just described, is related to (a). Thus we expect the meshes
of (b) to correspond to nodes in (a) as do the meshes of (a) to the ncdes

in (b). However, we “ind upon inspection that such is not consistently the
case. For example, the mesh in graph (b) having its contour formed by the
consecutively traversed branches 1, 7, 10, 12, 9, 4 corresponds in graph (a)
not to a single node but instead is seen to bte the dual of the group of three
nodes situated at the vertexes of the triangle formed by the branches 2, 3, 11,
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since the act of simultaneously picking up these nodes reveals the same group

6.00 - Elementary Circuit Theory - Ch. I

of branches 1, 7, 10, 12, 9, 4 in graph (a) to be a cut set.

This apparent inconsistency is easily resolved through consideration of a

slight variation in the construction of

e
o o 4) R %o the dual of graph (a) &s shown in Fig. 15,
b _/ *J'l \\O ¢ Here all meshes correspond to the nodes
//J §d % of graph (a) in Fig. 14 in (lhe same way
Ty 7}';3 \\ ? that the meshes of graph (a) correspond
[ ‘e .‘ to nodes in the zraph of Fig. 15, aes the
&

reader should carefully verify. The ad-
ditional principle observed in the con-
struction of the graph of Fig. 15 is
that the sequence of branches about eny
node is chosen to be identical to that
of the similarly numbered branches around

the respective mesh, assuming a consistent ;

clockwise {or counterclockwise) direction .
of circuitation around meshes and around nodes. For example, the branches
taken in clockwise order around mesh a of the graph of Fig. 14 (a) are num-
bers 1, 7, 6; around node & in the graph of Fig, 15 this sequence of branches
corresponds to counterclockwise rotation. Correspondingly the clockwise se-
quence of branches around mesh ¢ in Fig. 14 (a) is 10, 11, 12, and this is
the counterclockwise sequence of the corresponding branches around node ¢ in
Fig. 15. This correspondence in the sequence of branches is sesn to hold
for all meshes and their corresponding nodes not only between meshes in '
Fig. 14 (a) and nodes in Fig. 15 but also between the meshes in Fig. 15 and
and their corresponding nodes in Fig, 14 (a). The duality between these two

graphs is indeed complete in every respect.”

So far as the relationships bhetween branch currents and loop currents or

between branch voltages and node-pair voltages are concerned, however, these
2 2 & 3 ’

must be the same for the graph of Fig., 14 (b) as they are for the zraph of

=

*The correlation of clockwise rotation in one graph with counterclockwise ro- .
tation in its dual is an arbitrary choice. One can as well choose clockwise

rotation in both, the significant point being that a consistent pattern is

adhered to.




g a5 C-64B

5,00 - Elementary Circuit Theory - Ch, I Page 1-52

Fig. 15, since both involve fundamentally the same geometricel relationship
between nodes and branches, as a comparison readily reveals. For this reason
it is nov essential in the construction of a dual graph to preserve branch
number sequences around meshes and nodes as just described unless one wishes
for some other reason to make meshes in the dual graoh again correspond to
single nodes in the originel greph. From the stendpoint of their electrical
behavior, the networks whose graphs are given by Tigs. 14 (b) and 15 are en-
tirely identical. These graphs ere, there“ore, referred to as being topologi-

cally* equivalent, and either one may be regarded as the dual of Fig. 14 (a),

or the latter as the dual of either of the networks of Figs, 14 (b) and 15.

An additional interesting example of dusl graphs is shown in PFig. 16,
The meshes a, b, ¢, «+¢ in the graph of part (a) correspond to similarly let-

tered nodes in the graph of peart (b); and conversely, the meshes in graph (b)

(e) Fig. 16 (b)

correspond to nodes in part (a). It will also be cbserved that the sequences
of branches around meshes and around corresponding nodes agree; and it is in-
teresting to note in this speclial case that although both grephs have the form

of a wheel, the spokes in one are the rim segments of the other, It is further

*he mathematical subject dealing with the progerties of linear graphs is known
as topology.
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. is imagined to consist of an elastic net and is stretched over the surface

of & sphere until the peripnery contracts upon the opposite hemisphers, and
if one now views ihe sphere from the opposite side so &s to look directly at
this hemisphere, then the periphery no longer sppears to be Tundementaily
different in character “rom an ordinary mesh, for it now appears as & simple
opening in the net, like all the other meshes. Thus the brenches 9, 10, 11,

12, 13, 14, 15, 16 forming the contour of this mesh zppear more logically to

correspond to the similerly numbered group of branches in the dual graph 16 (x)

emenating from the central node which, like all the other nodes, now corre- |

sponds to a simple mesh in the given graph. ‘

When, in the choice of network variebles, 2e identi’ies loop currents
with link currents ahd node~pair volteges with tree-branch voltages, it will
be recalled that each tie set consists of one linkk and & number of tree
branches, while each cut set consists of one tree branch and & number of

links. Since the tie sets of a given graph correspond to cut sets in the

links in the other. That is to say, corresponding trees in duel graphs in-

. volve complementary sets of branches. In Fig. 16, for example, if one chooses
the branches 1, 2, 3, 4, 5, 6, 7, 2 in graph (a) as forming a tree, then the
corresponding tree in graph (b) is formed by the branches 9, 10, 11, 12, 13,
14, 15, 16. Or, if inr graph (a) we choose branches 1, 2, 3, 4, 12, 13, 14, 15
as forming a tree, then in graph (b) the corresponding tree is formed by
branches 5, 6, 7, 3, 9, 10, 11, 16.

\
|
duel graph, one recognizes thet the tree brenches in one of these graphs are
It should now be clear, according to the discussion in the preceding ar-

. ticles, that if in a given graph we pick a tree and choose the complementary

set of branches as forming a tree in the dual graph, then the resulting equa-

tions between branch currents and loop currents in one of these graphs be- |
comes identical (except for a replacement of the letters j and i respectively
by v and e) with those relating branch volteges end node-pair voltages in the
dual graph. In the graphs of Wig, 16, for example, we may chcose branches 1
to 2 inclusive as the tree of graph (a) and branches 9 to 16 inclusive as the
tree of graph (b). Then in graph (a), the branch currents j

sece¢

T LB T
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are respectively identified with loop currents'il, 12, eee 18, while in

graph (b) the branch voltages Vgs Vigr °°° Vip BT respectively identified
12 @0 °t° Gge For the tree-branch currents in
graph (a) we then have, for example, 32 = w11~+12 = -194‘310; 13 = —12+ 13 =
+3yqs oteey while for the link voltages in graph (b) we have correspond-

with 'node-pair voltages e

ok |
10
ingyv, = VgtVig = =8yt ey Vy = ~Mat vy = —e,t+ ey, etc. The reader may

complete these equations &s an exercise, and repeat the process for several
other trses as well as for the graphs of Fig. 14.

It should likewise be clear that similar results for a pair of dual
graphs and their current and voltage variables are obtained if for one graph
one chooses meshes as loops and in the other the corresponding nodes as a
node-to-datum set of node pairs. In this case it may be desirable to regard
the unassigned node as & datum and the corresponding peripheral mesh as play-
ing the role of a datum mesh. Since more general choices of loops or of node
pairs mey be expressed as linear combinations of these simple ones, it is
seen thet the parallelism between the current and voltage relations of dual ‘
networks holds in all cases regardless of the approach taken in formulating

defining relations for network variables.

It is importent, however, to note a restriction with regard to the exist-
ence of a dual graph, This restriction may most easily be understopd through
recognlzing that all possible choices of tie sets in a given network must cor-
respond to cut gets in its dual, and vice versa. In this connection, visual-
ize the given graph as some net covering the surface of a sphere, and a tie
set as any confluent group of branches forming a closed path. As mentioned i
at the close of Art. 5, let us think of inserting a draw string along this
path and then tying off, as we might if the sphere were an inflated bélloon.
We would thus virtually create two balloons, fastened one to the other only
at a single point where the contracted tie set has become a common node for
the two subgraphs formed by the nets covering these balloons. Whether we thus
regard the tie set as contracted or left in its original form upon the sphere,

its primery characteristic so far as ths presant argument is concerned lies in
by w (&)
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. the fact that it forms & boundary along which the ziven network is divided inte

two parts, and correspondingly the totaiity of meshes is divided into two groups.

In the dual graph these correspond to two groups of nodes. If we think
of grasping one of these node groups in each of our two hands and pulling
them apart, the stretched branches plu.e in evidence the cut set correspond-
ing to the tie>set of the original graph. The act of cutting this set of
branches is dual to the tylng off process described above, since by this
means the dual graph is separated into two parts which are respectively dual
to the two subgraphs created by contracting the tie set.

Duality between the original graph and its dual demands that to every
creatable cut set in one of these there must correspond in the other a tie
gset with the property just described. It should be clear that this re-
quirement cannot be met if either network is not mappable upon a sphere but
requires the surface of some multiply connected space like that occupled by
a doughnut or a pretzel., For example, if the mapping of a graph requires
the surface of a doughnut, then it 1s clear that & closed path passing
.\ through the hole is not a tie set because the doughnut is not separated into

two parts through the contraction of this path. The surface of a simply
connected region like that of a sphere, 1s the only surface on which all
closed paths are tie sets. There 1s obviously no corresponding restriction
on the existence of cut sets, since we can visualize grasping couplementary
groups of nodes in our two hands and, through cutting the stretched
branches, separating the graph into two parts regardless of whether the
geometry permits its being mapped upon a sphere or not.

Thus, mappability upon a sphers is revealed as a necessary condition
that a tie set in the original graph shall correspond to every possible
cut set in its dual, and hence the latter is contructible only if the graph
of the given network 1s so mappable.

10. Concluding remarks.

As expressed in the opening paragraphs of the previous articles, the ob-
ject in discussing the subject of duality is twofold, First, duelity is =
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means for rscognizing the unalytical equivalence of pairs of physically dis-
gimilar networke; eo far as mappable networks are concerned, it essentlally
reduces by a factor of two the totality of distinet network configurations
that can occur. Second, and no lese useful, is the result that the prinei-
ple of duality gives us two geometrically different ways of interpreting a
given situetion; if one of these proves difficult to comprehend, the other
frequently tume out to be far simpler. This characteristic of the two geo-
metrical interpretations of dusl situations to reinforce the mental process
of comprehending the significance of either one, we wish now to present

through a few typical examples.

Suppose, for a gziven mappable graph, we consider a node-to-datum set of
voltage variables. That is to say, we pick a datum node, and choose as
variables “he potentizls of the remeining nodes with respect to this datum.
If we novw wish to obtain algebraic expressions for these node voltages in
terns of a like number of independent branch voltages, the simplest proce-
dure is to select & tree and recognize that each node potential is then
uniquely given by en algebreic sum of tree-branch voltages, since the path
from any node to the datum via tree branches is a unique one. ‘The geomet~
rical picture involved and the pertinent algebraic procedure are simple and
easily comprehensible.

Contrast with this the completely dual situation., For a given mappable

graph, we consider the mesh currents as a set of appropriate variables, and
ask for the algebraic expresszicns for these in terms of a like number of in-
dependent branch currents. Since the latter may be regarded as the cur-
rents in a set of links associated with a chosen trse, the initial step in
the procedure is clearly the seme as in the previous situation. At this
point, however, the lucidity of the picture is suddenly lacking, for we

do not appear to have a procedure for expressing each mesh current as

en algebraic sum of link currents that has a geometric clarity and
straightforwardness comparable to the process of expressing node poten-
tials in terms of tree-branch voltages, and yet we feel certain that there
mist exist & pleture of ecquivalent clarity since; to every mappable situation

there exists a dual which posssesses all of the same features and with the
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same degree of lucidity. Our failure to find the mesh situation as lucid as
the one involving node potentials must be due to our inability to comstruct
in our minds the completely dual geometry. Once we achieve the latter, our
initial objective will easily be gained and our understanding of network
geometry will correspondingly be enhanced.

It turns out that our failure to recognize the dual geometry stems from
an initial misconception of whaet is meant by a mesh. Since we use the term
mesh to connote a particular kind of loop, namely the simplest closed path
that one can trace, we establish in our minds the view that the term mesh
refers to the contour (the associated tie set) instead of the thing that it
should refer to, namely the gspace surrounded by that contour!{ A mesh 1s an
opening--noc the boundary of that opening. This opening is the dual of a
node--the point of confluence of branches.

A tree consists of nodes connected by tree branches, The dual of &
tree branch is a iink, Therefore the dual of a tree should be something
that consists of spaces (meshes) connected by links. If we add to the mental
picture created by these thoughts the fact that traversing a branch longitu-
dinally and crossing it at right angles are geometrically dual operations
(since a branch voltage is found through a longitudinal summation process
while & branch current is given by a summation over the cross section), we
arrive without further difficulty at the geometrical catity that must be

recognized as the dusal of a tree. It is the space surrounding the tree.

This space is subdivided into sections by the links., Each of these sec-
tions is a wesh; and one passes from mesh to mesh by crossing tne links,
Just as in the tree one passes from node to node by following along the tree
branches. Fig. 18 shows in part (a) a graph in the form of a rectangular

grid, and in part (b) & possible tree with the links included
, &8 dotvted lines. lhe space

4 1~§L>-__]_-_I___] surrounding the tree, and
dual to it, is best described
by the word maze as used to
denote a familiar kind of

" picture puzzle where one is

asked to trace a continuous
path from one point in this

(a)
Pig. 18
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space to another without crossing any of the barriers formed by the tree-

like structure.

Such a path connecting meshes m and n is shown dotted in part (b) of
‘the rigure. It is clear that the path leading from one mesh to any other,
is unique, just as is the path from one node to another along the tree
branches. In passing along a path such as the one leading from mesh m to mesh
n, one crosses & particular set of links., These links characterize tais
path just as a °et of confluent tree branches characterize the path from

one node tno another in a given turee.

Having recognized those duel processes, we now realize that we have not
been entirely accurate in the foregoing discussions vhere we refer to a oo0p
cufrent as beinz dual to a node-pair voltage. The latter is the difference
between two node potentials, and its dual is, therefore, the difference be-
tween two mesh currents, like tie currents in meshes m end n in Fig. 18 (b).
The difference (im-—in) iz algebraically given by the summation of those link
currents (with due attention to sign) characterizing the path from m to m,
just as a node-palr voltage {potential difference between two nodes) equals
the algebralc sum of tree-branch voltages along the path connecting this node

air. The difference (i -1 which might be called a mesh-pair current, is
P ' RS

the real dual of a node-pair voltage., With the addition of the maze concept
to our interpretation of network ;jeometry, we have acquired a geometrical
picture for the clarification of the algebralc connection between mesh-current
differences and link currents that is as lucid as the familiar one used to

connect node-potential differences with tree-branch voltages.
p
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Fig. 19

These matters are further clarified through more specific examjles., In
Fig. 19 is shown a simple network graph (part (a)), its dual (part (b)), and
a schematic indicating a choice of node-to-datum voltages characterizing the
dual graph (part (c)). In the graph of part (a) the tree branches are the
solid lines &nd the links (branches 1, 2, 4, 5, 6) are shown dotted.In the
dual graph of part (b), these same branches (1, 2, 4, 5, 6) form the tree,
and the rest are links. The datum ncde surrounds the whole dual jraph.

Mesh currents il, 12, ene 15 are chosen to cﬁaracterize the graph (a), while
correspondingly the node potentials &y ©
graph (b).

Starting with the dual graph, it is evident that tihe expressions for the

23 " e5 characterize the dual

e's in terms of the tree branches read
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Consider now the same networks, but with an altered cholce for the volt-

age and current variables.

N
W= >—C
6
(2)

and so, by analogy, the
of the link currente of

3

(b)
Fig. 20

- "
e k)

=1, = i

= dpris = <ls
ok g iy

the graph in part (=

In FPig. 20 (a) are shown the paths for the new

The dual
graph is not repeated in this

loop currents.

figure, but part (b) shows

the dlagram for the choice of
node-pair voltages in the dual
graph that corresponds to the
new loop currents in graph (a).
A1l variables corresponding to
this revised choice are dis-
tinguished by primes. So far
as the voltage picture is con-
cerned, one has little diffi-

culty in recognizinz that one

now has
ei =e,-8 =7,
adie el
e ki (60)
ez =8, -0 = -V
e; = ey-e, = -V,

corresponding relations for the lcop currents in terms
) of Fig. 20 must be

(61)

These can readily be verified through the usual procedure of writing ex-

pressions for the link currents in terms of tae loop currenss and sciving.

It is more interesting, nowever, to estabiish them entirely by analogy to
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the dual voltage situstiocn, for we learn in tlis way more about the manner
in which the loop currenis are related to the link currents. Thus a leop
current like 15, for example, surrounds three meshes, and correspondingly
the node-pair voltage e; contributes to the potentials of the three nodes
o, ps g (Fig. 20 (b). In forming the cut set assoclated with eé, we would
plck up nodes o, p, q; while in forming the tie set associated with 13 e
may say that we "plck up" the meshes whose combined contour places that
tie set in evidence.

Having established the fact that plcking up meshes is dual to picking
up nodes, and recognizing that loop currents, as contrasted to mesh cur-
rents, are currents that circulate on the resulting contours of groups of
meshes, we are in a position to skatch the node- pair voltage disgram (like
part (b) of Fig. 20) corresponding to a chosen locp- current dlagrem (like
pr~t (a ) of Fig. 20), provided one exisis, and by anslog:s to the dual volt-

age equations, obtain directly the pertinent relations for tne loop currents.

Since for cut sets pickéd at random there does not necessarily corre-
spond a set of "node-pair voltages" that are simple potential differences
between paire of nodes, it is enalogously true that for loops (i.e. tie
sets) picked at random there does not necessarily correspond a set of "nesh-
pair currents" that are simple differences between currents in pairs of
meshes. In the example of Fig. 20, pertinent to the Egs. €60 and 61, the
conditions are chosen so that one does obtain e's that are potential dif-
ferences between nodes and i’'s that are mesh-current differences, but when
loops are picked at random, it is in general no longer possible to give
eny simple geometrical interpretation to the imbhlied current relationships
just as on the voltage side of the picture a straightforward interpretation

fails when cut sets are chosen at random.

Wherever simple relationships do exist, the principle of duality is dis-
tinctly helpful in clarifying them. For example, in compéring parts (a) of
Figs. 19 and 20, one might be tempted to conclude offhand that ii = 12, or
i; = 13 because the contcurs on which these pairs of currents circulate are
the ssme. As pointed out in Art. 7, it is fallacious to imply that there be
any direct relation between the contours chosen for loop currents and their
algebraic expressions in terms of link currents. Egs. 61 snow that the
above offhand conclusions are false. Use of the duality principle, as in

the preceding discussion, shows wny they sre false.
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CHAPTER IT

The Equilibrium Equations

1. Kirchhoff's laws

Having chosen an appropriate set of geometrically independent variables,
elther on the voltage or current bzsis, one is interested next in eXpress-
ing the equilibrium of the network in terms of these. The means available
for doing this, is given by the so-called Kirchhoff laws, of which there are
two. One of these laws expresses a fundsmental equilibrium condition in i
terms of voltages; the other expresses an analogous condition in terms of
currents., When currents are chosen as Qariables, equilibrium of the network:
is expressed by means of the voltage law; when voltages are chosen as vari-
ebles, equilibrium is expressed by the current law., This seeming inconsist-
ency will adequately be elaborated upon in the following paragraphs, but
first let us become acquainted with the Kirchhoff laws themselves.

We shall begin with a discussion of the voltage law, and in preparation
for this discussion let us recall what 12 meant by voltage. "Voltage" is a
shorter way of saying "electrical potential difference®. Electric potential
is work or emergy; that is to say, it is a scalar quantity like tamperature,
or quantity of water, or altitude above sea level, etc. The fact that it is
a scalar is the important thing so far as Xirchhoff's voltage law is con-
cerned. Moreover, it is important to recognize that it is a single-valued
scalar. Thus we can spesk of the electric potentlal of any point in a net-
vork with respect to the potential of some arbitrary point chosen as refer-
ence, just as we can speak of the altitude of any point in a mountainous
terrain with respect to sea level chosen as an arbitrary reference. By the
single-valued character of either of these functions we imply that the value
found for the function at some point relative to that at  another, is independ-
ent of the route chosen in traversing from one of these points to the other

in the course of actually carrying through a measurement or computation,
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Suppose, for example, that we are to measure the altitude of the tip
of Mt. Washington in New Hampshire with respect tc some bench mark at its
base by the customery methods used in surveying. We do this through suc-
cessively measuring the differences in altitude between ap ropriately cho-
sen intermediate points extending over some circuitous route having its
ends respectively at the bench mark and at the mountain top. Assuming er-=
rors in measurement to be negligible, the net difference in altitude is
expected to be indepeﬁdent of the route chosen. A similar conclusion
applies in the case of any other single-valued scalar function, and the

electric potential is such a one.

Now suppose we were to go on a surveying trip, stert from some ar-
bitrany bench mark, traverse all over the mountainous terrain, and finally
return to the same bench mark. In this case we would expect to find a
2zero net difference in altitude, as is manifestly clear from the fact that
the end points of our circuit are identiczl. Formal expression of this ob=

~vious fact in the analogous electrical case 18 the essence of Kirchhoff's

voltage law. Let us elaborate slightly.

Refer to the network geometry shown in Fig. 1, and supposc we proceed
around the periphery, touching in
suceession upon nodes g, b, £, 4,
&, £, g, b, and returning to node
&. The potential of node g minus
the potential of node b is the
“drop* in potential from a to b,
or the voliage drop Vs in branch
2. Similarly v3 is the voltage
drop in branch 3 and equals the

potential of node b minus that of

node ¢. Proceeding in this way

: Fig. 1 around the periphery, we see that
the following eguation is true
V¥V ¥V F Vg F Wy F VbV bV =0 (1)

2 3 i2 19 20
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This is Kirchhoff's voltage law expressed for the closzd loop formed by the
periphery. Numerically the values of some of these volta;e drops must, of
course, be negative; otherwlse the sum of all of them could not be zero.

We speak of Eg. 1 as representing sa alribtraic sunm. If some voltage drop
like AP}
less than that of node b (both referred to the same reference, of course).

is numerically nigoiive, then evidently the potential of node a is

it

Interpretation of the physical meaning of Fg. 1 is aided *rough use of
the altitude ahalogue; that is, through regarding the nodes in the graph of
Fig.‘l as bench marks in a mountainous terrain, and the voltaze drops like
Voo v3, etc. as drops in altitude between the pertinent bench marks in the
reference arrow directions, Thus a rise in altitude in a given direction

ctween two bench marks can alternately be regarded as a numerically nega-

tive drop.

One can trace through many additional closed patis in the network graph
of Fig. 1. For example, starting again at node a and proceeding in succes-
sion to nodes b, ¢, 4, e, and f, one may return to node a via the confluent

set of branches 17, 10, and 4. In this case the volts e-law equation reads

TV Vi Vs =V

i il - Sl - el s S 1

2+, -V¥y9-7, = 0. (2)

Observe that a voltage-drop term is algebraically negatlive when traversal of
the pertipmt branch is contrary to its reference arrow. Thus the reference
arrow on any branch is just what its name implies, namely an arbitrarily se-
lected direction which we agree to call positive for the voltage drop in
question., If the voltage drop actually has this direction, its value is
numerically positive; if it has the opposite direction, its value is negative.
In traversing a closed circuit within the terrain, the algebraic summation of
altitude drops (potential drops between pertinent node pairs) must take ac-
count of reference arrow directlons, as must also the process of deciding

whether a given drop has a numerically positive or negative value,

Thus if bench mark e, for example, 1s higher than bench mark 4, then

Y9 is numerically negative; and since its algebraic sign in Eq. 2 is plus,
we see that this term involves an arithmetic subtraction. In branch 10, on
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the other hand, the actual drop in altitude may be contrary to the arrow
direction so that Y10 has a negative value. The corresponding temm in
Eq. 2 becomes numerically positive, as is appropriate since we actually
experience a drop in altitude when we encounter branch 10 in traversing
the circuit to which Egq. 2 applies.

The Kirchhoff voltaje law thus expresses the simply understandable fact
that the alzebraic sum of voltage drops in any confluent set of branches
forming a closed circuit or lcop must equal zero. Symbolically this fact
may be expressed by writing '

Ttv=o0, ' (3)

where the Greek capital sigma is interpreted as a summation sign and the
quantities v which are summed, are voltage drops with due regard to the
possible agreement or disagreement of their pertinent reference arrows with
the (arbitrary) direction of traversal around the loop, thus indicating the

choice of the plus or minus sign respectively.

It 1s interesting to observe an important property of equations of this
type with reference to a given network geometry such as that shown in Fig. 1.
Suppose we write voltaje-law ecuations for the upper left-hand corner mesh
and its right-hand neighbor, thus

V3tV -V = 0, (4)

vyt Vg~ V-V, =0.
Addition of these two equations gives

vy + v‘2+v5~ V=V =0, (5)

which we recognize as an equation pertinent to the closed loop which is
the periphery of tlis two mesnes combined, The reason for this result is
that branch 4, which is common to both meshes, injects the terms +yz’and
—vz respectively into the two Eqs. 4, and hence cuncels out in thelr addi-
tion.

It is immediately clear that such cancellation of volitaze terms will

teke place in the summation of any group of equations relating to meshes
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for which these terms correspond to branches common to the group of meshes.
Suppose we write separate equations for the meshes immediately below those
to which Eqs. 4 refer, thus

L4 Y10 ~'v13 . 3 Yy = o,

(6)
i s Tl P T PN O
Adding Egs. 4 and 6 we have
vyt v, 4+ Vst Vg - Vi< Vig t V9=0. (7

This equatioﬁ is pertinent to the periphery of the block of four upper
left~hand meshes in the graph of Fig. 1. If all the equations for the
separate meshes in this graph are added, one obtains Eq, 1 relating to
the periphery of the whole graph. The student should try this as an
exercise, '

We now turn our attention to an analogous law in terms of branch cur-
rentss the so-called Kirchhoff current law. The electric current in a branch
is the time-rate at which charge flows through that branch. Unless the al-
gebraic sum of currents for a group of branches confluent in the same node
is zero, electric charge will be either created or destroyed at that node,
Kirchhoff's current law, which in essence expresses the principle of the cone
servation of charge, states therefore that an algebraic summation of branch
currents confluent in the same node must equal zero. Symbolically this fect
1s expressed by writing (as in Eq. 3)

o
2.%=0. (8)
As illustrations of this law suppose we write equations of this sort

for nodes g and b and the one immediately to the right of ain Pig. X,
These read

“htity =0, ;\
31‘3‘36“39:0’ (9)
”34"'37"'310"':6:0'
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Eech equation states that the net current diverging from s, pertinent node
equals zero.

Now suppose we add the three equations 9. This glves
g+ dpt hg= 4920 (10)

Branch currents Jl’ 34, and 36 cancel out in the process of addition. Ref=
erence to the graph of Fig. 1 reveals that these branches are gommon to the
group of three nodes in question, while the branches to which the remaining
currents in Eq. 10 refer, terminate only in one of these nodes.

An interesting interpretation may be given the resulting Eq. 10. If we W
regard the portion of the graph of Fig. 1 formed by branches 1, 4, and & 1
alone (referred to as a gubgraph of the entire network) as enclosed in a box, |
then Eq. 10 expresées the fact that the algebraic sum of currents divergent ‘
from this box equals zero. In other words, the current law applles to the

) box containing a subgraph the seme as it does to a single node. That is to
say, it is not possible for electriec charge to pile up or diminish within a ‘
box conteining a lumped network any more than it is possible for charge to
pile up or diminish at a single node. This fact follows directly from the
current law applied to a group of nodes, as shown above, and yet students |

" usually have difficulty recognizing the truth of this result. They some- j
how feel that in a box there is more room for charge to pile up and so it |
may perhaps do this, whereus at a single ncde it 1s clear that the charge
would have to jump off into space if more entered than lef't the node in |
any time interval, The above analysisvshcws, however, that what holds for
a simple node must hold also for a box full of network. : {

2. Independence amaag the Kiyrchhoff law equations.

Equilibrium equations are a set of relations which uniquely determine
the state of 2 network at any moment., They may be written in terms of any
appropriately chosen variablesj the uniqueness requirement demands however,
that the number of independent equations shall equal. the number of independ-
ent variables invoivedQ‘ We have seen earlier that the state of a network

-
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is expressible either in terms of'i;= b= n, + 1 independent currents (for
example, the loop currents), or in terms of n = n,-1=b ~ % independent
voltages (for example, the node pair voltages). On a current basis we shall,
therefore, require exactly &independent equations; and on a voltage basis
exactly n independent equations will be needed.

For these equations we turn our attention to the Kirchhoff iawsa It
is essential to determine how many independent equations of esch type (the
voltage-law and the current-law types) may be written for any given network
geometry. Consider first the voltage~law equations and assume that these
have been written for all of the nine meshes of the metwork graph in Fig. 1.
Incidentally, this graph has 20 branches and a total of 12 nodes (b = 20,
n, = 12). Hence £= 20- 12 +1 = 9, which just equals the number of
meshes. Any tree in this network involves n = 11 branches. There are
9 links and hence there are 9 geometrically independent loop currents.

From what hes been pointed out in the previous article, it is clear
that e voltage-law equation written for any other loop enclosing a group of
meshes in Fig. 1 may be formed by adding together the separate equations for
the pertinent meshes. Such additional voltage-law equations clearly are not
independent. The inference is that one can always write exactly _.é independ=
ent equations of the voltage-law type.

This conclusion is supported by the following reasoning. Suppose, for
any network geometry a tree is chosen and the link currente identified with
loop currents. For the correspondingly determined loops a set of voltage-
law equations are written. These equations are surely independent, for the
link voltages appear separately, one in each equation, so that it certainly
is not possible tc express any equation as a linear combination of the others.
Each of these equations could be used to express one link voltage in terms of
tree-branch voltages. This fact incidentally, substantiates what was said
earlier with regard to the tree-branch voltages being an independent set and
the link voltages being expressible uniquely in terms of them (see Lrt. 8,
Ch. I),
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Now any other closed loop for which & voltage-law equation could be
written must traverge one or more links gince the tree branches alone ;
can form no closed paths. If in this-squation the previous expressions for
the partimnt link voltages are substituted, the resultant equation must re-
duce to the trivial identity 0=0, since no nontrivial relation can exist
among tree-branch voltag‘es alone (the tree~branch voltages are independent
and hence are not expressible in terms of each other), It follows, there-
fore, that the voltage-law equation written for the additional closed loop
expresses no independent result. There are indeed emc’tly& independent
voltage~law eciuationse

Let us turn our attention now to the Kirchhoff current-law equations
and see how many of these mey be independent. Referring again to the graph
of Fig. 1, suppose we begin writing equations for several nodes adjacent to
each other, If we examine these equations carefully we observe that each
contains at least one term that does not appear in the. others. For example,
if we consider the equations written for nodes g and h, it is clear that the ‘
terms involving 32 and J 4 do not appear in the equation for node h, and that
the § 6;md j9 terms in the equation for node h do not appear in the one for
node g, If we also write an equation for the node immediately to the right
of h, this one contains terms with }J 7 and 310 which are not contained in
either of the equations for nodes g or h. Such sets of equations are surely
independent, for it is manifestly not possible toc express any one as a linear
combination of the cthers so long as each has terms that the others do not
contain.,

As we proceed to write current~law equutions for additional nodes in the
graph of Fig. 1, the state of affairs just described continues to hold true
until equations have been written for gll but one of the nodes. The infer-
ence is that exactly n = n, = 1 independent equations of the current-law
type can always be written. This conclusicn is supported by the following
reasoning.

Suppose, for any network geometry, a tree is chosen and the tree-~branch
voltages are identified with node-palr voltages. For the correspondingly




- E 7 C 4 - Ch. II ' C-64B

Page II-9
determined node pairs, a set of Kirchhoff current~law equations are written.
The set of branches taking part in the equation for any node pair is the
pertinent cut set, just as the group of branches involved in the voltage-
law equation for any loop is the tie set for that loop. The cut set per-
tinent to the node'pair defined by any tree branch evidently involves that
tree branch in addition to those links having one of their ands terminating
upon the picked up nodes (see Art. 8, Ch. I).

figure 2 1llustrates the choice of a

g*_ﬁg___g tree for the network graph of Fig. 1,
and, with respect to the node pair f,
7 e Joined by branch 20, indicates by

ho K& 3 04 06 dotted lines the links that teke part
in the pertinent cut set. Since the

14 tree~branch voltage v,. is identified
o) Q= = 3ov = <O od 20
g P q with the respective node-pair voltage,
: . the latter has its reference arrow
\\»~ A 20 _“,// pointing from'f to e. That is to say,
3 ® the picked-up nodes are e, q,.d, b, .c,
_ d. Hence the pertinent current-law
Tig. @ equation reads
Jzo“du“i7“’jz=0° (n)

Schedules like 40, 42, 46 in Art. 8 of Ch. I are helpful in writing the
current-law equations for & chosen set of node pairs, for the elements in
the rows of such a schedule are the coefficients appropriate to these
equations.

Suppose that current-law equations like 11 are written for all of the
node palrs corresponding to the n tree branches. These equations are surely
independent, for the tree-branch currents appear separately, one in each
equation, so that it certainly is not possible to express any equation as a
linear combination of the others. Each of these equations could be used %o
express one tree-branch current in terms of the link currents. This fact
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incidentally, substantiates what was sald esrlier with regard to the link-
currente being an independent set and the tree<branch currents bsing express-
ible uniquely in terms of them (see Art. 5, Ch. I).

Now any other node pelr for which a current~law equation could be written

would have to involve one or more tree branches since the tree connects all
of the nodes and therefore no node exists that has not at least one tree-
branch touching it. If in such an additional current-law equation one sub-
stitutes the expressions already obtained for the pertinent tree-branch cur~
rents, the resultant equation must reduce to the trlvial identity 0.=0, since
no nontrivial relation can exist among link currents alone (the link currents
are irdependent and hence ars not expressible in terms of each other). It
follows, therefore, that the current-law equation written for an additional
node peir expresses no independent result. There are indeed exactly p inde-

pendent current-law equations.

3. The equilibrium equations on the loop and nocde bases.

Having established the fact thalt the siite of & network can be charac=
terized uniquely either in terms of a se? ofjgiloop currents or in terms of

a set of p node-pair voltages, and having recognized that the numbers of in-
dependent Kirchhoff voltage-law and current-law equations are & and n re=
spectively, the conclusion is imminent that the egnilibrium condition for a.
network can be expressed in either of two ways: (a) through a set of £ volt-
age-law equations in which the loop currents are the variables, or (b) through
a set of n current-law equations in which the node-pair voltages are the vari-
ables. These procedures, which are referred to respectively as the ? )op and
node methods of expressing network equilibrium, are now discussed in further
detail.

Consider first the loop method. The voltage~law equations, like Eq. 1
above, involve the branch-voltage drops. If these equations are to be written
with the loop currents as variables, we must find some way of expressing the
branch voltages in terms of the loop currents. These expressions are obtained
in two successive steps.
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The branch voltages are related to the branch currents by the volt-ampere
equations pertaining to the kinds of elements (inductance, resistance, or
capacitance) that the branches represent; and the branch currents in turn are
related to the loop currents in the manner shown in Ch., I. Detailed consid-
eration of the relations between branch currents and branch voltages is re-
stricted at present to networks involving resistances only. Appropriate ex-
tensions tc include the consideration of inductance and capecitance elements
will follow in the later chapters.

Let the resistances of branches 1, 2, 3,¢¢¢ be denoted by Tys Tps Ty
etec. Then the relations between all the branch voltages and all the branch
currents are expressed by

V.

k = I'k jk, fOI‘ k = 1, 2,".b. (12)

The complete procedure for setting up the equilibrium equations on the
6

loop basis will be illustrated for the network graph shown in Fig. 3., Part
(a) is the complete graph, and part (b) is a chosen tree. Branches 1, 2,+¢¢6
are links, and the link currents jl, jz,--- 36 are identified respectively
with the loop currents il’ 12,--o i6.

The following tie set schedule is readily constructed from an inspection
of the resulting closed paths pertinent to these six loop currents (as the
reader should check through placing the links 1, 2,..+6, one at a time, into
the tree of Fig. 3b).

7 b
8
a 4127 d
C
v 0}
» 10 e
(a) Fig. 3 (b)
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The Kirchhoff voltage-law equations written for thesec sume loops are 'im~
mediately obuained through use of the coefficients in the rows of this
schedule, thus

- V. = 0

b 10

3779 °
v4 + v7 - v8

= =0
V5 - v8 + v9 + le U

- + - = 0
Vé A4 VB Vg Uy

t
-

while the columns of the same schedule furnish the coefficlents in the

following equations for the brench currenis in termg of the loop currents

(13)

(14)
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(15)
= <1
=i
= 4

- Sl Tl Sl

1'13+159

If we assume for the branch resistances the values

=2, r,=l, r,=251r 33, r. =4,
l b 2 3 3 2 4 > 5 (16)
T =7, r7=6, rg = 10, r9=8, Tyg = 9 ohms,

‘ then - 2;}1, v, = 32, v3 = 5,15, VA = 354 volts, and so forth,
Use of Eqs. 15 then gives

- 211

= 12

= 513

= 31/1

= 415

= 71, (17)

= 6(1) + 1, - 1) '

= J.O(‘--il + 12 - 14 = 15 * 16)

v9=8(il-12=-13+15-i6)

" 9(1.l - 13 + 15)0

F

v

>~

v

W

v

o

v

oa< -3

The desired loop equilibrium equations are obtained through substi-
tuting these values for the v's into Egs, 14. After proper arrangement
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of the results, one finds

]

3511 - 1812 - 1713 + 1614 + 2715 - 2416

=1811 + 1912 * 813 - lOi4 « 1815 +18i, =20

»1711 + 812 * 2213 5 Oi4 - 1715 + 816 =0
161 - 101 + 0*3 + 195.4 +101, - 1616 =0 (18) .
271l - 181 - 1713 * 10;!.4 + 3115 - 1816 =90

-2411 % 1812 * 813 - 16:14 - 1815 + 2416 = 0.

Considering next the node method of writing equilibrium equations we ob-
serve first that the current-law equations, like Eq. 1)l above, involve the
branch currents. If these equatione are to be vritten with the node-pair
voltages as varlables, we must express the branch currents in terms of the
node-pailr voltages. To doc this, we note that the branch currents are re-
lated to the branch voltages through the Egs. 12, and the branch voltages
in turn are related to the node-pair voltages in the manner showa in Ch, I.

The Eqs. 12 are now more appropriately written in the form
Jp = 8 Vi for k=1, 2,000, . (19) ‘

in which 1o Bos g3,-¢. are respectlvely the reciprocals of Tys Tos r3000’
and are referred to as the branch conductances (expressed in mhos),

With reference to the network graph of Fig, 3 and the tree showm in
part (b) of that figure, let the tree-branch voltages Vgs Vgs Vgs Vi be
identified respectively with the node-pair voltages e. 49 e2, e3, e, ‘I‘he
following cut-set achedule is then readily constructed from an inspection

of Flg. 3, noting the picked-up nodesg pertinent to these four node pairs

Branen| e
{ "
Node No. ! 'y Pi:ked
Pair 1{2(3|4]5]6|7v|8]9]i0 .
deo. VNodes
1{-2lofloi-2alolilajojojo| a
(20)
2l1lalolalabrlolrilololecas \
3d-alalalolifalololalol ebe
wl 1 olo 1
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The Kirchhoff current-law equations corresponding to this choice of
node pairs are immediately obtained through use of the coefficients in the
rows of this schedule (the algebraic sum of currents in the branches of any
cut set must equal zero), thus

@‘11“344'36*'37 =0
Jl°12+34+35"16+38=0
~ytiptig-dstigtly =0
“dy Y3 d5 vl = 0,

(21)

while the columns of the same sched:le furnish the coefficients in the follow-
ing equations for the branch voltages in terms of the node-pair voltages

S =9, Y €. = 8. = @

b gl Rarles Tl

v2 = uez *+ 63

V3=63+84

v4 = »el + 92

V5T 8y - ey =@

Vg T 8 < ey + 63 . (22)
7%

8. %2

Y9 13

Vio = &

For branch conductances corresponding to the resistance values 16, one

has §; = 0.5vy, J, = Voo 33 = 0¢2v3, J4 = 00333v4, and so forth. Use of
Eqs. 22 then gives

34 = 0.5 (uel te,-ey-8, )

32 = -8, + 33

33 = 0,2 (93 + eA)

34 = 0.333 ("'el + 62) (23)

J5 = 0:25 (92 - €5 - 94)
Jg = 0,143 (el -6, * 93)
Ip = Oolé?el

38 = O.le2
19 = 0012563
di9 = 0.111e, .
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The desired node equilibrium equations are obtained through substituting
these values for the j's into Eqs. 21, After proper arrangement, the re-
sults read

1,142e; ~ 0.9760, + 0.64333 + 0.500e, = 0

--0.9766l + 2.32692 - 1089393 - 0,75094 =0
0.643e1 - 1.89392 - 2.21893 + 0e9506A =0 , (24)
0.5OOel - 0.75092 + 0.95093 + 1.061.64 =0,

In summery it is well to observe that the procedure for setting up
equilibrium equations involves, for either the loop or node method, essen~
tially three sets of relationst

(a) The Kirchhoff equations in terms of pertinent branch quantities.
(b) The relations between branch voltages and branch currents. ’
(c) The branch quantities in terms of the desired variables.

The coefficients in the rows and in the columns of the appropriate tle set
or cut set schedule, supply the means for writing the relatlons (a) and (c)
respectively. The relations (b), in the form ejther of Eqs. 12 or Eqs. 19,
are straightforward in any case.

The desired equilibrium equations are obtained through substituting
relations (¢) into (b), and the resulting ones into (&). In the loop meth-
od, the branch quantities in the voltage-law equations (e) are voltages
while the branch quantities in (¢) are currents. In the node method, the
branch quantities in the current-law equations (a) are currents while the
branch quantities in (c¢) are voltages. The relations (b) are needed in
either case to facilitate the substitution of (e¢) into (a)3 that is to say,
this substitution requires first a conversion from branch currents to branch
volteges or vice versa. It is this converslon that is supplied by the re-
lations (b) which depend upon the circuit elements (resistances or conducte
ances in the above example).

The %le set or cut set schedule is thus seen to play & dominant role in
either method since it summarizes in compact and readily usable form all per-
tinent relations except those determined by the element velues. The rows of
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a tie set schedule define an independent set of closed paths, and hence pro-
vide a convenient means for obtaining an independent set of Kirchhoff volt-
age-law equations. Any row of a cut set schedule, on the other hand, rep-

resents all of the Lranches terminating in the subgraph associated with one

or more nodes...Since the algebraic sum of currents in such a set of branches
must equal zero, the rows of a cut set schedule are seen to provide a con-
venient means for obtaining en independent set of Kirchhoff current-law equa-

tions,

The columns of these same schedules provide the pertinent relations
throﬁgh walch the desired variables are introduced. They are useful not
only in fhe process of obtaining the appropriate equilibrium‘equationa, but
also in subsequently enabling one to compute any of the branch quantities from

known values of the variables.

In situations vhere the geometry is particularly simple, and where corre-
spondingly straightforward definitions for the variables are appropriate, one
may, after acquiring some experience, amploy a more direct procedure for ob-
taining eguilibrium equations (as given in Art. 6) which dispenses with the
-use of schedules,

4. Parameter matrices on the loop and node bases,

It should be observed that the final equilibrium Egs. 18 and 24 are
written in an orderly form in that the variable il (resp. el) appears in the
first column, the varisble 12 (resp. 92)'in the second column, and so forth,
Taking this arraengement for granted, 1t becomes evident that the essential
information conveyed by the Egs. 18, for example, is contained with equal
definiteness but with incressed compactness in the array of coefficients

[5de . am . g 16 " R

= T R R T R N S T
PR T PRI TR T W
Bl= 1% 20 ° 1 10 - (25)

27 -18 -7 10 31 -18
-2, 18 8 -16 -18 24
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known a8 the loop resistance parameter matrix. The equilibrium equations

24 are similarly characterized by the following node conductance parameter
matrix

1.142 "'Ot976 01643 0-500
[G]= -0.976 2.326 -1.893 -0.750 (26)
0.500 -0.750 0.950 1.061
The term matrix 1s a name given to a rectangular array of coefficients
as exemplified by the forms 25 and 26. As will be discussed in later chapters,
one can manipulate sete of simulteneous algebraic equations like those given
by 18 and 24 in a facile manner through use of a set of symbolic operations
known as the rules of matrix algebra. These matters need not concern us at
the moment, however, since the matrix concept is at present introduced only
to achieve two objectives that can be grasped without any knowledge of matrix
algebra whatever, namely:

(2) to recognize that all of the essential information glven by the sets of
equations 18 and 24 is more compactly and hence more effectively placed
in evidence through the rectengular arrays 25 and 26;

(b) to meke available a greatly abbreviated method of designating loop- or
node-parsmeter values in numerical examples.

Appreciation of the second of these objectives may better be understood
through calling attention first to a common symbolic form in which equetions
1like 18 are written, namely thus

ry1 11+r12 i2+ --o+rlLiL= 0

r21 il"'r | +¢¢o+r2‘9’1‘&=0

22 *2 (27)

Tpy Iyt Tgy Lot ety ig=0

Here each coefficient is denoted by a synbol like r4, Ty, and so forth,
The corresponding matrix reads




The general coefficient in this matrix is denoted by T in which the

indexes s and k can independently assume any integer values from 1 tod.
Observe thaet the first Index denotes the row position, and the second one
denotes the golumn vosition of the coefficient with respect to the array 28.

Anslogously, a set of node equations like 2/ would symbolically be
written

Byy O Eyp Ottt tEyy =0
By Oyt Epy et YByy 6 =0 (29)

with the matrix

i

; €11 B1o°"" Bqp 5
. N

3

o
N
[
=
.
-
o
J
8

(al= (30)

th
-

; i <
s Vo e g et ol
TR
{ n1 Snz “nn |
Identification of the loop equations 27 in enalytic form, with the spe-
cific numerical Egs. 18 would necessitate (without use of the parameter matrix

concept) writing

1‘11 = 35; 7":71_;’; = -18; r13 = =17; e . (31)

- - . - - - e = pm em am -

which is clearly an arduous and Spa;e‘consuning task compared with writing down
the numerical matrix 25. Use of the matrix concept tekes advantage of the fact

that the row and column position of a number identifies it as a specific T

value; it is no longer necess to wvrite identifying equations like those

’ J 1

given by 31. Similar remarks apply to the mmerical identification of para-
meters on the node besis snd the usefulness of the corresponding perameter

matrix notation.
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loops are ufed in the definition of loop currents and in the writing of the
voltage-law equations, then ths resulting parameter matrices become symmet-
rical; but if geparave choices are made for the closed paths defining ioop
currents and those for which the voltage-law equations are written, then

the parameter matrices will not become symmetriceal.

Thus & more general procedure for obteining the loop equilibrium equations
involves the use of two tis-get schedules, One cf these pertains to the def-
inition. of a set of loop-current variables (as discussed in Art. 5, Ch. I)}
the tie sets in the other one serve merely as a basis for writing the volt-
age-law equations. Instead of using the rows end colums of the same sched=
ule for obtaining the relations (a)‘and {¢) respectively in the summary re-
ferred to above, one uses the rows of one schedule and the columns of another,
The reader should illustratec these matters for himself by carrying through
this revised procedurs for the numerdcal example given above and noting the
detailed changes that occur.

Anelogously, on the node basis, one must choose a set of geometrically
independent node palrs =and their assoclated cut sets for the definition of
node-pair voltage variables, and again for the writing of the Kirchhoff cur~
rent-law equations. The sscond selection of node pairs and associatved cut
sets need not be the seme as the first, but if they are (as in the numerical
example leading to Eqe. 24), then the resulting parsmeter matrix becomes
symmetricel. ' _

Thus a more gensral procedure for obtaining the node equilibrium equa-
tions involves the use of .iwo cut-set schedules. One of these pertains to
the definition of a set of node-pair voltage variebles (as discussed in Art.
6, Ch, I)3 the cut sets in the other one are utilized in writing current-law
equations. Instead of using the rows and columns of the seme schedule, one

uses the rows of one scheduls and the columns of snother.

The significant point in these thoughts is that the choice of variables,
whether current or voltage, need hive no relation to the process of writing
Kirchhoff-law equetions. It is merely necesgary that the latter be an
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independent set; the variablea in terms Bftaiich they are ultimately expressed, -
may be chosen with complete freedom.

When the same tie sets are used for voltage-law equaticns and loop-current
definitions, or the same cut sets are used for current-lawv eqlations and ncde-
pair voltage definitions, then we say that the cholce of variables is consistent |
with the Kirchhoff-law equations. It 1s this comsistency that leads to symmet~ |

rical parameter matrices.

The question of symmstry in the paramster matrices 1s amportant primarily
in that one should recognize the deliberatencss in the achievement of this re-
gult and not (as is quite common) become confused into thinki-g that it is an
inherent property of linear passive networks to bs characteri«ed by symmetri-
_cal parameter matrices. We shall, to be sure, follow the ueguel procedure that
leads to symmetry, not only becsuse it obvlates two cholces being made for a
set of loops or node pairs, but also tecause gymmetrical equations are easier
to sclve, and because a number of interesting netvork properties are more
readily demonstrated, So in the end we follow the ~ugtomary procedure, but ‘
with an added sense of perspective that comes from e decper understanding of
the principles involved,

6. Simplified procedures that_are adeguate in meny practical cases.

We have given the preceding very general approzch to the natter of form-
ing the equilibrium equations of networks because, through it as & background,
we are now in a position to understand far more adequatéely and with greater
mental sstisfaction the following rather vestricted but practically very use-
ful procedures applicable to many geometrical network configurations dealt
with in practice. Thus, in many situations encountersd 1n engineering work,
the network geometry is such that the graph may be drawn on & plene surface
without having eny branches cross each other, As mentioned in Art. 9, Ch. I
surh a network is spoken of as being "mappeble on & plene," or more briefly
as a mappable network. The network whose graph is shown in Fig. 3 is not of
the mappeble variety, but the one given by the graph in Fig. 1 is.

When the equilibrium equations for a mappable network (such as that shown
in Fig. 1) are to be written on the loop basis, it is possible t2 chanse .
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as a geometricaelly independent set of closed loops the meshes of this net-
work greph (as pointed out in Art. 7 of Ch., I). A simple example of this
sort is showa in Fig. 4 in vhich the meshes are indicated by clrculatory

arrovs. .

Fig. 4

The corresponding voltage-law eguations are

vy v4 =0
Vo v5 =0
v3- v6 =0
v!+ s v5+ : /o 0.
The branch currents in terms of the loop currents are seen to be given by
e ? 4
32 %3y
s3-al;
= nhy
iy Sodgr iy
36 = 11: 132

(33)

(34)
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Suppose the branch resistance values are
R 103 Ty = 4;‘r4 = 23 Ty = 103 rg = 5. (35)

The equations 34 multiplied respectively by these values yleld the corre-
sponding v!'s by means of which the Eqs. 33 becomne expressed in terms of the
loop currents. After proper arrangement this subgtitutlon ylelds

711 * ”12 +0i, - 25.4 =0

3
Oiy + 201, + 01, - 104, = 0 (36)
Oi1 + 012 + 913 e 5:!.4 =0
~211 - 1012 - 513 + 1714 =0,
with the symmotrical matrix |
)
i 0 0 . 2
i 0 20 0 <10 |
fa)= 0 0 S -51" (37)
-2 =10 wb 17

A simple physical interpretation may be glven to these equations through
reference to Fig. 5 in which the same netvork ss in Fig. 4 is redrawn with ‘
the branch numbering and reference arrows left off but with the branch re-
sistances and thelr values indicated. The term 711 in the firsi of the Egs.

36 nay be interpreted as the volt-
age drop caused in mesh 1 by loop
currsnt 11 gince the total resis-
tance on the contour of this mesh

5

is 7 ohmey the rest of the terms
in this equation represent addi-
tional voltage drcps caused in

mesh 1 by the loop currents 12,
13, 14 respectively. Since no
part of the contour of mesh 1 is

traversed by the currents i, and

2
13, hese can cause no voltage

drop in mesh 13 heace the coeffi-
clents of thelr terms in the first of the Eqs. 36 are zero. The term -2i

4
takes account of the fact that loop current i, in traversing the 2-obm ‘
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resistance, contributes to the voltage drop in mesh 1 and that this con-

tribution is negative with respect to the loop reference arrow in mesh l.

The second of the Eqs. 36 similarly expresses the fact that the alge-
braic sum of voltage drops caused in mesh 2 by the various loop currents
equals zero., Only those terms have nonzero coefficlents whose associated
loop currents traverse at least part of the contour of mesh 2. The value
of any nonsero coefficient equals the ohmic value of the totel or partial
mesh 2 resistance traversed by the pertinent loop current, and its alge-
braic sign is plus or minus according to whether the reference direction
for this loop current agroes or disagrees respectively.with the reference
srrow for meeh 2. Analogous remarks apply to the rest of the Egs. 36,

With this interpretatior in hind, one can write the loop-resistance
matrix 37 directly. Thus the coefficlents on the principal diagonal are
respectively the total‘resiatance values on the contours of meshes 1, 2,
3,¢*+, The remaining coefficients are resistahces of branches common to
a pair of meshes, with their algebraic signs plus or minus according to
the confluencé or counterfluence of the respective mesh srrows in the per-
tinent common branch. Speciiically, a term Tox in value equals the resis-
tance of the branch common to meshes g and k3 its algebraic sign is plus
if the mesh arrows have the same direction in this common branchj it is
minus if they have opposite directlions.

In a mappable network, with the meshes chosen as loops and the loop
reference arrows consistently cloclkwise (or consistently counterclockwise),
the algebraic signs of gll nondiagonal terms in the loop resistance matrix
are pnegative. It is obviocus that this procedure for the derivation of
loop equilibrium equations yields a aymmetrical parameter matrix (rsk=rka)
since a branch common to meshes g and k, whose value determines the co-
efficient r_,, is at the same time common to meshes k and g.

This simplified procedure for writing down the loop equilibrium equations
directly (having made a choice for the loops and loop currents) does not, of
course, require mappability of the network, but it is not difficult to appre-
ciate that it soon loses its simplicity and directness when the network
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geometry becomes random. For, in a random case it may, become difficult to
continue to speak of meshes as simplified versions of loops; moreover, their
cholce 18 certalnly no longer straightforward nor is the &esignation of loop
reference arrows as simple to indicate, &ny given branch may be common to
more than two meshes; the pertinent loop reference arrows may traverse such
a branch in random directions, so that the nondlagonal coefficients in the
parameter matrix will no longer be consistently negative. Although the sim-
plified procedure may still be usable in some moderately complex nonmappable
cases, one will find the more gensral procedure described earlier preferable
when arbitrary network geometries are encountered.

An analogous simplified procedure appropriate to relatively simple geom-
etries may be found for the determination of node equilibrium equations.
In this simplified procedure the node-pair volitage variables are chosen as
a node~to-datum set, as described in Art., 8 of Ch. I. That is, they are de-
fined as the potentials of the various single nodes with respect to a ccmmon
(arbitrarily selected) datum node, as illustrated in Ch. I by Fig. 11 for the
network graph of Fig., 8. The cut sets (which determine the Kirchhoff current-
law'squations) are then all given by the groups of branches divergent from
the single nodes for which the pertinent node potentials are defined.

With regard to the network of Fig. 4 one may choose the bottom node as
the datum or reference, and define the potentials of nodes 1 and 2 respectively
as the voltage variables ey and Cne Noting that the pertinent cut sets are the
branches divergent from these nodes, the current-law equations consistent with
this selection of node-pair voltages are seen to read

J3%3,-dg33=0 (38)
_31'14*' 12"’35 = 0.

The branch voltages in terms of the node potentials are by inspection of
Fig. 4

b M A

¥y = 8y

V3% (39)
v, =88 :

V5 = 62

V6 = '—61.
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The branch conductences corresponding to the resistance values 35 are
g = 0.2} g, = 011, g3 = 0,253 g, = 0.5 g5 = 0.13 g¢ = 0.2 (40)

Equations 39 multiplied respectively by these values vield the correspond-
ing j's in terms of the node potentisls. Their substitution into Eqs. 38 re=
sults in the desired equilibrium equations, which read :

191561 - 0.7062 =0 PR
-0.7091 + 0.90e2 =»0,
with the symmetrical node conductance matrix
e dals - =0,70 ‘
[e)= Lono 0,90} : (42)

A simple physical interpretation mey be given to the node equilibrium
Eqs. 41 that parallels the interpretation given above for the loop equations.
Thus the first term in the first of the equaticnms 41 represents the current
that is caused to diverge from node 1 by the potential e acting alone (that
is, while e, = 0); the second term in this equation represents the current
that ies caused to diverge from node 1 by the potential e, acting alone (that
is, while € = 0). Since a positive e, acting alone causes current to con-
verge upon node 1 (instead of causing a divergence of current) the term with
e, {8 numerically negative. The amount of current that e alone causes to
diverge from node 1 evidently equals the value of e times the total conduct-
ance between node 1 and datum when e, = 0 (that is, when node 2 coincides
with the datum). This total conductence clearly is the sum of the conduct-
ances of the vérimﬁ branches divergent from node 1y with reference to Fig. 5
(in which the given parameter values ere resistances) this total conductance
is 1/5 + 1/2 + 1/5 + 1/4 = 1,15, thus accounting for the coefficient of the

term with e in the first of the Eqs, 4l.

The curreat that e, slone causes to diverge from node 1 can traverse
only the branches connecting node 1 directly with node 2 (these are the
2 ohm snd § ohm branches in Fig. 5), and the value of this current is evi-
dently given in megnitude by the product of e, and the net conductance of

2
these combined brenches. In the present example the pertinent conductance
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is 1/2 + 1/5 = 0.70 mho, thus accounting for -the value of the coefficient '
in the second term of the first of the Eqs. 41 {the resson for its negative

sign has already been expleined). A similar interpretation is readily given

to the second of the Egs. 41,

Thus these equations or thelr conductance matirix 42 could be written dowm
directly by inspection of Fig. 5, especially if the branch-resistance values
are alternately given as branch-conductence valucs expressed in mhos. The
elements on the principal diagonal of [G] are regpeciively the total conduct-
ance values (sums of branch conductences) divertent from nodes 1, 2, ««+ (in
a more general case there will be more than two nodes). The nondiagonal ele-
ments of [Gl all have negative algebraic signs, for the argument given above
in the detailed explanation of Eqs. 41 clearly applies unaltered to all cases
in which the node-pair voltage variables are chogsen a8 a node-to-datum set.

In magnitude, the nondiagonal elements in[G] equel the net conductance values
(sums of branch conductences), for those branches directly connecting the per-
tinent node pairs. More specifically, the element 8ok 1n[G] equals the nega-
tive sum of the conductances of the various branches directly connecting nodes .
g end k. If these nodes are not directly comnected by any branches; then the
pertinent g velue 1s zero. HNote that the consistent negativeness of the
nondiagonal terms follows directly from the tacit assumption that any node po-
tential is regarded as positive when it 1s higher than that of the datum node.
This situation parallels the consistent négativeness of the ncndiagonal terms
in the [R] matrix obtained on the loop basis for a mappable network in which all
the mesh reference arrows are chosen consistently clockwise(or consistently
counterclockwise}, whence in any common branch they are counterfluent.

7. Sourceg.

When currents and their accompanying voltage drops exist in a resistive
n'/atwork, energy is being dissipated. 8ince at severy instant the rate of energy
supply must equal its rate of dissipation, there can be no voltages or currents
in & purely resistive or in any "lossy" network unless there are present one or
more sources of energy.

Until now the role pleyed by sources has not besn introduced into the net-
work picture, and indeed, thelr presence has nothing whatever to do with ths ’
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topics discussed so far. Sources were purposely leit out of consideration
for this reason, since their inclusion would merely have detracted from the
effectiveness of the discuszion. Now, ‘however, it is time to recognize the
significance of sources, their characteristics, and how we are to determine
their effect upon the equilibrium equations.

Their most important effect, as already stated, is that without them
there would be no response, Thls fact may clearly be seen for example, from
the loop-equilibrium Eqs. 36 for the network of Fig, 5. Since these four
equations involving the fcour unknowns 11, 12, 13, 14 are independent, and all
of the right~hand members are zero, we know according to the rules of algebra
that none but the trivial solution 11 = 12 = 13 = i4 = 0 exists. That is to
say, in the sbsence of excitation (which, as we shall see, causes the right-
hand members of the equations to be nonzero) the network remains "dead as &

doornail.”

It was pointed out in the introduction that an electrical network as we
think of it in connection with our present discussions is almost always an
artificial representation of some physical system in terms of idealized quan-
tities which we call the circult elements or perameters (the resistance, in-
ductence, and capacitance clements), We justify such an artificial represen=
tation through notingt: (a) that it can be so chosen 28 to simulate function-
ally (and to any desired degree of accuracy) the actual system at any selected
points of interestj and (b), that such an ideslization is essential in reduc-
ing the analysis procedure to a relatively siﬁple and easily understandable

form. —

Regarding the socurces through which the network becomes energized or the
physical system derives its motlve power, a consistent degree of idealization
is necessary. That is to say, the sources, like the circult elements, are
represented in an idealized fashion. We shall see that actual energy sources
may thus be simulated through such idealized sources in combination with ideal-
ized circuit elements. For the moment we focus our attention upon the ideal-
ized sources themselves.

Although the physical functicn of a source is to supply energy to the
system, we shall for the time being find it more expedient to characterize
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a source as an element capable of providing a fixed amount of voltage or a

fixed amount of current at a certain point. Actually it provides both volt-

age and current, end hence an amount of powsr equal to their product, but it

is analytically essential and practically more realistic tc suppose that either

the voltage or the current of the source is known or fixed. We -oculd, of course,
postulate a source for which both the voltage and the current are fixed, but

such sources would not prove useful in the simulation of physicel systems, and

we must at all times be mindful of the utility of our methods of analysis.

When we say that the voltage or the current of a source is fixed, we do
not necessarily mean that 1t is a constant, but rather that its value or se-
quence of values as a continuous function of the time are independent of all
other voltages :and currents in the entire network. Most important in this
comnection 1s the nondependence upon the sources own voltage, if it is a cur-
rent, or upon its own current if it 1s a voltage. Thus a so-called idealized
voltage source provides at a given terminal pair a voltage function that is
independent of the curvent at that terminal pair; and an idealized current g
source provides a current function that is independent of the voltage at the .

pertinent terminal pair.

By way of contrast, it is useful to compare the idealized source as just
defined with an ordinary passive resistance or other circuit element. In the
latter, the voltage and current at the terminals are related in a definite way
vhich we call the "volt-ampere relationship" for that element. For example, in
a resistance the voltage 1s proportional to the current, the constant of pro-
portionality being what we call the value of the element in ohms. At the ter-
minels of an ideal voltage source, on the other hand, the voltage is whatever
we assume for it to be, and it cannot depart one jot from this specification
regardless of the current it is called upon to deliver on account of the con-
ditions imposed by its environment. An extreme situation arises if the en-
viromment is a short-circuit, for then the source is called upon to deliver an
infinite current, yet it does so unflinchingly and without its terminal volt-
age departing in the slightest trom its assigned value. It is, of course, not
sensible to place an ideal voltage source in such a situation, for 1t then is
called upon to furnish infinite power. The ideal voltage source is idle when .
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its environment is an open circuit, for then the associated current becomes
Z6ro0.

Similarly, at the terminals of an ideal current source the current is
whatever we essume for it to be, and it cannot depart from this specification
regardless of the voltage it 1s called upon to produce on account of the con=
ditions imposed by its environment. An extreme situation arises in this case
Af the environment turns out to be an open circuit, for then the source must
produce an infinite voltage at its terminals since the terminal current, by
definition, cannot depart from its specifiéd velue. Like the short-circuited
voltage source, it is called upon to deliver infinite power, and hence it is
not realistio to place an idenl current source .in an open-circuit environment.
This type of source is idle whon short-circuited, since the associated voltage
is then zero.

In the discussion of Kirchhoff's voltage law we found it useful to think
of voltage as being anzlogous to altitude in a mountesinous terrain. The po-
tentials of various points in the network with respect to & common refsrence
or datum are thought of as being analogous to the altitudes of various points
in a mountainous terrain with respect to sea level as a commun reference. In-
stead of an actual mountalnous terrain, suppose we visuelize a miniature rep-
lica constructed through hanging up & large rubber sheet and suspending from
it verious weighte attached at random places. Since altitude is the analogue
of voltage, the problem of finding the altitude of various locations on the
sheet 'above,8ay, the floor as a common reference) is analogous to determin-
ing the potentials of various nodes in an electrical network with referencah
to a datum node. '

Suppose first that we consider the electrical neiwork to have no sources
of exeitationg all node potentisls are zero. The analogous situation involving
the rubber sheet would be to have it lying flat on the floor. To apply a volt-
age excitation to the network may be regarded as causing certain of its node po-
tentials to be given fixed values. Analogously, certzin points in the rubber
sheet are raised above the floor to fixed positions and clamped there. As a

result, the various nodes in the electrlical network whose potentials are not
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arbitrarily fixed, assume potentials that are consistent with the applied
excitation and the characteristics of the network. Analogously, the freely
movable portions of the rubber sheet assume positions above the floor level

that are consistent with the way in which the sheet is supported at the
points where it is clamped (analogous to excitation of the electrical net-
work) and the structural characteristics of the sheet with its system of
attached weights.

It is interesting to note from the description of thess two analogous
situations that electrical excitation by means of volitage sources may be
thought of as arbltrarily fixing or clamping the voltage at & certain point
or points. A voltage source is thus regarded as an epplied congtraint, like
nailing the rubber sheet to the wall at some point.

Ideal current sources when used to excite an electrical network may like-
wise be regarded as applied consiraints. In any passive network the curreats
and voltages in its various parts are in general free to assume an array of
values subject only to certain interrelationships dictaied by the structurs .
of that network, but without any excitation, all voltages and currents re-
main zero. If we now give to some of these voltages and currents arbitrary
nonzero values, we take awey their freedom, for they can no loager assume
any values except the specified ones, but the remaining voltages and currents
whoge values are not pegged, now move into posltions that are compatible with
the network characteristics interrelating all voltages and currents, and with
the fixed values of those chosen to play the role of excitation quantities.
As more of the voltages and currents are clamped or fixed through the appli-
cation of sources, fewer remein free to adjust themselves to compatible val-
ues., Finally if all voltages and currents were constrained by applied sources,
there would be no network problem left, for everything would be known befcre-
hand. In the commonest situation, only a single voltage or current variable

is constrained through an applied sourcey determination of the compatible
values of all the cthers, constitutes the network problem.
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Various ways in vhich sources are schematically represented in cirecuit
disgrams are shown in Fig. 6. Parts (a), (b), and (c) are representations

" i) Yo o
+ + 1 | m
E| = E G’) Ies(t) (‘) &
o — o
(a) (b) (c) (@)

Fig. 6
of voltage sources, while part (d) shows the representation for a current
source. Specifically, (a) and (b) are common ways of indicating constant
voltage sources, also called "direct current" or "d-c" voltage sources.
The schematic (a) simulates & battery, for example, a dry cell in which
the zine electrode (thin 1line) 18 positive and the carbon electrode (thick
line) is the negative terminal. The d-c source shown in (b) is drawn to
resemble the commutator and brushes of a generator, The symbolic representa-
tion in (c) is intended to be more gemeral in that the wavy line inside the
. eircle indicates that es( t) may be any function of time (not necessarily a
sinusoid, although there is an established practice in using this symbol as
the representation for a sinusoidal generator). It should be particularly
noted that es(t) in the symbolic representation of part (c) may be any time
function and, in particular, may also be used to denote a constant voltage

source (d-c source).

Part (d) of Fig. 6 shows the schematic representation for a current
source in which 1s(t) 1s any time function and hence may be used to denote
a constant or d-c source as well as any other,

In all of these source representations it will be noted that a referonce
arrow is included, This arrow does not imply that the source voltage or
current is assumed to act in the indlcated direction but only that, if it
should at any moment have this direction, it will at that moment be regarded
as a positive quantity. The reference arrow establishes a means for telling
vhen the quantity es(t) or is(t) is positive and when it is negative. A
source voltage is sald to "act in the direction of the reference arrow" wien

. it is a voltage rise in this direction. The + and - signs of parts (a) and
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(b) of Fig. 6 further clurify this statement. In most of the following
work the representations showm in parts (¢) end (d) will be used.

It should not be overlooked that the representations in Fig. 6 are for
jdeal sources. Thus the voltage between the ‘erminals in the sketch of part
(c) 1s elways e (t) no matter what ie placed across them. Likewise the cur-
rent issuing from the terminals in the sketch of part (d) is always i (t) no
matter what the external circuit may be., An acrual physical voltage source
may, to a first approximation, be represented thrcugh placing a resistence
in series with the ideal on¢ so that the ;vrm&naa voltage decreases as the
source current increages. A physical curr ent source mey similerly pe rep-
regsented to a first aperox1mat10n through the ideal one of part (d) vith a
resistance in parallel with the terminals, thus taking account cf the fact
that the net current issuing from the terminals of the combination depends
upon the terminal voltage, and decreases as this voliage increases. Thesge

L

matters will further be elaborated upon in

It is common among students that they have more difficulty visualizing
or grasping the significance of current sources than they do in the under=
standing of voltage sources. A4 contributing reason for this difficulty is
that voltage sources are more commonly experienced. Thus our power gystems
that supply electricity to our lLomes and factories are essentially voltage
sources in that they have the property of being idle when open~clirculted.
Sources that are basically of the curreat variety are far less common. One
such source is the photoelectric cell which emits charge propertionsal to the
intensity of the impinging light and hence is cefinitely a current source}
it clearly is idi: when short-circuited because it then dellvers no energy.
Another device that is commly regarded as a current source is the pentode
vacuum tube. Its plate current is very nearly proportional to ite grid
excitetion under normsl operating conditions, and hence, for purposes of
circuit znalysis, it is appropriate to consider it as being essentially
& current source. In any case it can with very good accuracy be regarded

as an ideal current source in parallel with a reslstance.

the applications to come latexr on.
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Whether actual sources are more correctly to be regarded as voltege sources
or as current sources is, however, a rather pointless argument since we shall
soon see that either representation (in combination with an appropriate arrange~
ment of passive circuit elements) is always possible no matter what the actual
source really is. Again we must be reminded that circuit theory makes no claim
to be dealing with actual things, In fact it very definitely deals only with
fictitious things, but in such a way that actual things can thereby be repre-
sented. Like all other methods of analysis, circuit theory is merely the means
to an end; 1t lays no claim to being the real thing.

Now as to determing how source quantities enter into the equilibrium equa-
tions for a given network, we first make the rather general observation that the
insertion of sources into a given passive network is done in either of two ways.
One of these is to insert the source into the gap formed by cutting a branch (as
with a pliers); the other is to connect the source terminals to a selected node
pair (as with a soldering iron). These two methods will be distinguished as the
"pliers method"™ and the "soldering-iron method® réspectively. We shall now show
that one may consider the pliers method restricted to the insertion of voltage
‘sources and the goldering-iron method to the insertion of current sources. That
is to say, the connection of a voltage source across a node pair, or the inser-
tion of a current source in series with a branch, implies a revision of the net-
vork geometry with the end result that voltage sources asgain eppear only in series
with branches and current sources appear only in parallel with brenches (or
across node pairs).

For example, in part (a) of Fig. 7 is shown a graph in which a voltage
‘ \

\ 4

Fig. 7
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source e, appears 1n parallel with branch 6 of some network, and ir part (b)
of this figure is shown the resultant change ia the network geomet'y and source
arrangement which this situation reduces to. Thus, in consideri}*-', the given
arrangement in part (a), one should first observe Shat branch 6 .3 rendered
trivial by having e, placed in parallel with it since the value of Vg is thus
forced to be equal to ey @nd hence (along with Jg) is no longe an unknown.
That is to say, the determination of the current in branch 6 .3 rendered triv-
1ally simple and independent of what happens in the rest of :he network, There-
fore we can remove branch 6 from our thoughts and from the .zst of the graph so
_ that e_ alone appears as a cénnecting link between nodes *; and b, Next we ob-
serve that the potentials of nodes ¢, d, £, relative to ‘fiat of node a are pre-
cisely the same in the arrangement of part (b) in Fig. ' as they are in part (a).
For example, the potential of node & with respect to tiat of node a is (es-vg)
&8 1s evident by inspection of either part (2) or pa s (b) of this fizure.
Similarly the potential of node d with respsct to tiab of node & 1s seen to be
(es+ v7) in the arrangement of part {a) or ¢f part ’b). It tous becomes clear
that the branch voltaies and currents in the grap’s of part (b) must be the same
as in the graph of part (a), except for the cuission of tae trivial branch 6.

We may conclude that placing a voltage sc.vce across a node palr has the
same effect upon the network geometry ag doe: the placing of a short eircuit
across that node psar Comparing graphs () :ad (b) in Fig. 7 we see, for
example, that the voltage source eg in graph () effectively unites nodes a
and b in that graph, thus eliminating branch 6, and yielding the revised graph
(b)., The effect of the voltage source so far 13 this revised graph is concerned
is taken into account through placing identical voltaze sources in series with
all branches confluent in the original node b. We can alternately place the
identical voltage sources in series with the branches originelly confluent in

node g; that is, in branches 4 and 5 instead of 7, 8, and 9,

It‘is-us'eful in this connection to regard a voltage source as though it were
a sort of generalized short circuit, which indeed it is. Thus, by a short circuit
we imply a link or branch for which the potential differemce between its terminals
is zero independent of the branch current; while for a vcltage source the potential
difference is ey independent of the branch current. For g, = 0, the short circuit

is identical with the voltage source. Or we may say that a dead voltage source is a .
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shows that the effect of a voltage

source upon the network geometry is the same as that of an applied short-

circuit constraint.

Analogously, part (a) of Fig. 8 depicts a situation in whieh e current
source is_appears in series with branch 4 of some network, and part (b) shows

the resultant change in geomet and source arrangsment which is thereby im-
- < <9 y

plied. With reference te the glven situation in part 2) it is at once evi-

dent that branch 4 becomes trivial since its current is identicel with the
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also evident that the effe.t of the

current source 13 upon the rest of the network is the same a: though there rad

been no branch linking nodes & and b through which the source is applied. We

can, therefore, regard the current source
a-b in a modified graph in which branch 4
A further step that results in having

with branches may be carried out ag shown

to be bridged across the node palir
is absgent.
8ll current scurces in parallel

in part (b) of Fig. 8. ‘The equi-

alence of the four identical current soufrces iﬁ bridged across branches
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n, 9, 8, 7, with a single source i bridged across the node pair a-b is evi-
dent by inspection since the seme emourt: of source current still leaves node g
and enters node b, while no net source current enters or leaves the nodes f,

£ and h.

We may conclude that inserting a current source in series with a branch
has the sams effect upon the network geometry 2s does the open~circuiting o
the vremovel of that branch. In this altered network the source appears bridged
across the node pair originally linked by the removed branch, or in the form
of several identical sources bridged across & confluent set of branches  join-
ing this node peir.

According to these results we may regard & current source as a generalized
open cireult. by an open circuilt we understand a branch for which the current
is zero independent of the branch voltage; and by & current source we under-
gtand a branch for which the current is is independent of the branch voltage.
For is= 0, the current scurce is identlcal with an open cireulty the latter

may be regarded as a dead current source.

In summary we may say that so long as voltage sources appear only in series
with branches and current sources are associated only in parallel with branches
or across node pairs, their presence does not disturb the network geometry in
the sense that sll matters pertaining to that geometry remain unaltered, such

as the numbers of independent voltages and currents uniquely characterizing
the state of the network, or their algebralc relations to the branch currents
and voltages. In a sense, the open-ciradt character of a current source and
the short-circult character of a voltsge source become evident here as they do

in the reasoning of the immediately preceding paragraphs.

On the other hend, we see that the network geometry is affected whenever
a8 curient source i3 placed in series with a branch or a voltage source in
parallel with one. In both cases the branch in guestion becomes trivial and
can be removed, leaving in its place an op.n circuit if the inserted source
is a ocurrent, and a short circuit if the inserted source is a voltage. After
this revision in the geomstry is car;ied out, the source appears elther as a
current in parallel with a branch (or with several branches), or as a voltage
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in series with a branch (or with several branches). These two source arrange-
ments alone, therefore, are all that need to be considered in the following
disoussion.

Thus we mey regard any hranch in a network to have the structure shown in
Fig. 9. Here the link a~-b represents the passive branch without its associated
voltage and current sourcesj
that is to say, when the
s sources are zero (as they
i - usually are for most of the

AL O P riemg i G
. /////7 branches in a network), then

o — the branch reduces to this
P C il
- link a~-b alone. However, we
Lok shall take the attitude at
Fig. 9 this point that any or all

of the branches in & network
may turn out to have the associated sources shown in Fig. 9. The network is
thus regarded as é geometrical configuration of active instead of passive
branches. This turn of events changes mothing with regard to all that has
been sald previously except the relations between branch voltages and branch
currents (designated as the relations (b) in the summary of Art. 3 regarding -
the formulation of eguilibrium equations).

Since Vi and 3 denote the net voltage drop and the net current in branch
k, the voltage drop and current in the passive link a-b (noting the reference
arrows in Fig. 9) are (vkv-esk) and (qu'isk) respectively. These are the
quantities that are related by the passive circuit element which the branch
represents. If the functional relationship between voltage drop and current
in the passive link is formally denoted by v = 2(j) or § = y(v), we have for
the general active branch of Fig. 9

(vk+ .sk) = z(jk~:— isk),

- | (43)
(dk+'isk) y(vk+ Gek)‘

i
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In a resistance brench, the notation z(j) reduces simply to a multipli-
catlon of the current j by the branch resistance, and y(v) denotes & multi-
plication of the voltage drop v by the branch conductance. In capacitive
or inductive branches the symbols z(j) and y(v) alsc involve time differ-
entiation or integration, as will be discussed in detail later on when cir-
cults involving these elemants are congidered., For the moment it will
suffice to visualize the significance of Egs. 43 with regard to resistance
elements alone.

It may be mentioned, with reference to the arrangement in Fig. 9, that
the same results are obtained if the current scurce isk is assumed to be in
parallel with the passive link a-b alone rather than with the series comii-
nation of this link and the voltage source L it isk = 0, the link is
activated by a series voliage source alome; if L 0, one has the repre-
gentation of a passive brench activated by a current source alone, For
Py i, = 0, the arrangement reduces to the ususl passive branch., Thus
the volt—ampere relations 43 are sufficiently general to take care of any
functional dependence between net branch voltages and .urrents that can
arise in the present discussions.

The method of including the effect of sources in the derivation of
equilibrium equations is now easily stated. Nemely, one proceeds precisely
as descrabed in the previous articles for the unactivated network except
that the relations between branch voltages and branch currents are consid-
ered in the form of Egs. 43, so as to take account of the presence of any
voltage or current sources. Thils statement applies alike to the determin-
ation of equilibrium squations on the loop or node basis. Thus, regardless
of the nature and distribution of sources throughout the network, the pro-
cedure remains streightforwaerd and is essentially thé gsame as for the un-

excited network.

8. Summary of the procedures for deriving equilibrium squations.

At this point it is effective to bring together in compact symbolic
form the steps involved in setting up equilibriuvm equatione. Thus we have
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on the loop basis:
(a) The Kirchhoff voltage-law equations in tems of branch voltages

£dv =0 (44)
(b) The relations between branch voltages and branch currents (Eqs. 43)

vk = -@ Sk 4+ Z(jk "'Sk) ' 1 (45)
(¢) The branch currents in tems of the loop currents

3y T (46)

The rows of a tie set schedule (1like 13, for example) place in evidence
the Kirchhoff equetions 44, while the columng of this schedule yield the
branch currents in terms of the loop currents, Eqs. 46. The expressions
for the v, 's in terms of the j, 's, Eqgs. 45, are obtained from a knowledge

k
of the circuit parameters and the associated voltage end current sourses,

as illustrated in Fig. 9.

The desired equilibrium equations are the Kirchhoff Egs. 44 expressed
in terms of the loop currenits. One accomplishes ’chis end through substi-
tuting the j vg given by Eqs. 46 into Eqs. 45, and the resulting expressions
for Vi into Eqa. L4. Noting that the linearity of the network pernits one
to writa z(jk+i ) = Z(jk.’ + z(1 k), the result of this substitution among

Eqs. M, 45’ 46 1e ds O
£talty) =Et iegk - a3 sk)} = o 47

-

Interpretation of this formidable looking result is aided through
poiﬁting out that z(5\1 ) represents the passive voltage drop in any branch
k due to the superposition of loop currents i in that branch, and that the
1eft-hand side of Eq. 47 is the algebraic summation of such passive branch
voltage drops around a typical closed loop . The right-hand side, which 1is
abbreviated by the ssubol &g, is the net apparent source voltage acting in
the same loop. It is given by an algebralc sumnation of the voltage sources
present in the branches comprising this closed contour (tie set) and the
additional volteges induced in these branches by current sources that may
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simultaneously be assoclated with them. The latter voltages, which are
represented by the term —z(isk), must depend upon the circuit parameter
relations in the same way as do the passive volitage drops caused by the
loop currents except that thelr algebraic signs are reversed because they

are rises,

Thus the resulting equilibrium Egs. 47 state the logical fact that the
net passive voltage drop on any closed contour musi equal the net active
voltage rise on that contour, If we imagine that the loops are determined
through selecting a tree snd identafylng the link currents with loop cur-
rents, then we can interpret the source voltages 0y 9288 equivalent link
voltages in the sense that if actual voltage sources having these values
are placed in the links and all original current and voltage sources are
removed, the resulting loop currents remain the same, Or we can say that
af the negatives of the vollages e, pare placed in the links, then the
effect of all other sources becomes neutralized, and the resulting network
response is zero; thet 1s, the loop currents or link currents are zero,
the same as they would be if all links were opened.

Hence ww have a physical interpretation of the esl'in that they may be
regarded as the negatives of the voltages appearing across gaps formed by
opening all the links. In many situations to which the simplified proce-
dure discussed in Art. 6 is relevant, this physical interpretation of the
net excitvation quantities esjtsuffices for their determination by inspec-
tion of the given network,

An entirely analogous procedure and corresponding process of physical
interpretation applies to the derivation of equilibrium equavions on the
node basis, Here one has:

(a) The Kirchhoff current-law squations in terms of branch currents

T =0 ()
(b) The relations between the branch currents and branch voltages
(Egs. 43)
& = -isk+y(vk+ esk) (49)

(2) The branch voltages in terms of the node-pair voltages
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The rows of a cut-set schedule (like 20, for example) place in evidence
the Kirchhoff equations /8, while the columns of this schedule yield the
branch veltages in terms of the node-pair voltages, Eqs. 50, The expressions
for the jk'a in temms of the 7' 8s Eqs. 49, are obtained from a knowledge of
the circuit parameters and the associated voltage and current sources, as

illustrated in Fig. 9.

The desired equilibrium equations are the Kirchhoff Eqs, 48 expreésed
in terms of the node-pair voltages. One obtains this end through substi-
tuting the vg's given by Eqs. 50 into Eqs, 49, and the resulting expressions
for Jk into Eqs. 48, DNoting that the linearity of the network permits one
to wrate y(yki-esk) = y(vk)4-y(esk), the result of this substitution among
Eqs. 48, 49, 50 leads to

£tya=s) =zi{lsk-y( esk)} b T (51)

Interpretation of this formidable looking result is aided through rec-
ognizing that yaﬁter) represents the passive carrent in any branch k due to
the algebraic sum of node-pair voltages e, Acting upon 11, and hence the left-
hand side of Eq 51 18 the summation of such branch currents in all pranches
of a typical cut set, for example, the set of branches divergent from a given
node n 1f the node pair voltages are chosen as a node-to-datum set.

.

- Tke right-hand side of Eq. 51, which is abbreviated by the symbol 1_ , is
the net appérent source current for this cut set, for exemple, it is the net
apparent source current entering node n in a node-to-datum situation. The net

‘r

sourse current is given by an algebraic summation of the current sources asso-
ciat~d with the branches comprising the pertineant cut set and the additional
currentE Anduced in these brancues by voltage sources that may simultaneously
ve acting an them The latter currents, which are represented by the term
—y(esk), must depend upon the circuit parameter relations in the same way as
do the passive currents caused by the node-peir voltages except that their
algebraic signs are reversed because hey represent a flow of charge into

the cut set rather than out of it.

Thus the resulting equiliirium Egs. 51 state the logical fact that the
net current in the several branches of a cut set must equal the total source
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“ocurrent feeding this cut set. If we imagine that the cut sets have been
determined through selecting a tree and identifying the tree-branch volt-
ages with node-pair voltages, then we can interpret the source currents
isn as equivalent sources bridged across the tree branches in the sense
that 1f actual current sources having these values are placed in parallel
with the tree branches and all original current and voltage sources are
_ removed, the resulting node-pair voltages remain the same. Or we can say
that if the negatives of the curreats isn are placed across the tree branches,
then the effect of 21l other sources becomes neutralized, and the resulting
network response is zeroc; that is, the node palr veltages or tree-branch volt-
ages are Zero, the same as they would be if all tree branches were short-

circuited.

Hence we have a physical interpretation of the isn in that they may be
regarded as the negatives of the currents sppsnring in short circuits placed
across all the tree branches. In a node-to-datum choics of node pairs, the
1., may be regarded as the negatives of the currents appearing in a set of
short circuits placed across these node paira, and a node-to-datum set of
current sources having these values can be used in place of the original
voltage end current sourres in computing the desired network response. In
many situations to which the simplified procedure discussed in Ard. 4 is
relevant, this physical interpretatlon of the net excitatlon quantities
isn suffices for their determination by inspection of the given network,

9. Examples

The complete procedure for setting up equilibrium equations will now
be illustrated for several cgpecific examples. Consider first the resist-
ance network of Fig. 10. The element values in part (a) are in ohms, and
the source values gre : 1_ = 10 emperes, ey = 5 volts (both constant).

8
In part (b) of the same figure is shown the gragh with its branch mmber-

ing and a choice of meshes to define loop currents.
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Fig. 10

The tie-set schedule correspbndingcto this choice reads

phed
AR ERERERFAL
1 {1fofofajolo ) k
2 lofalolofajo] (52)
3 jojlojilojoja
4 fofojoj1j1}a)
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The rows give us the wltage-lavw equations

¥y WS 0
Vy= Vg = 0
V3= v6 =0

W

and the columns yield the brench currents in temms of the loop currents,

thus

(53)

4 '

LA
-
i
et

.
N
]
-
o

g
1
fre

W

(54)

—il-i- 14

= ~12+ 14

These correspond respectively to the Egs, 44 and 46 in the above summary.

e Cue "
Uul.:.

% With regard to the Eqs. 45 relating branch voltages to branch currents,
we observe that if we associate the gurrent scurce with branch 5 (we could
alternately associate it with branch 2); then all branches except 1 and 5
are passive and no special comment is needed for them. The net voltage drop
in brench 1 is vl
branch 5 is §; = 1, +(v /2), the term (v /2) being the current in the 2-olm

resistance which i.s the pasgive part of this branch. Noting the source

-8 + ;]1, and the net current in the arrow direction in

) velues given ebove, the relations expressing not branch voltage drops in terms

of net branch currents read

vy =373

V2= .

V3 = I3 (55)
v4 = 234 :

Vg = 2;15—20

v6 = 236.

The relations involving the active branches are scen to contein terms that
are independent of current.
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The desired equilibrium sguations are found through substitution of
Eqs. 54 into 55, and the resulting expressions for the v's into the voltage-
law equations 53. After proper arrangement this gives

31 +Oi +01,~-2i 5

S B
01 +31 401, -2, = -20
01 +01, +313-:>14- 0 (56)
1 « Mince’
SN Yot L, = 20,

U b 4
These are readily solved for the loop currents, One finds
i, = 5 1, = -10/3, 1, =10/3, 1, = 5, (57)
whence substitution into Eqs. 54 yields all the branch currents * :
115 5y 3, = -10/3, §, = 20/3, 3, = 0, §; = 25/3, J =53 (58)

The value of } 5 is the net current in branch 5, That in the passive part
of this branch is smaller than j 5 by the value of the source current, and
hence is (25/3)- 10 = -5/3, |

Now let us solve the nstwork given in Fig. 10 by the node method,
choosing as node-pair voltages the potentials of nodes g and b respectively,
with the bottom node a3 & rveference. The appropriate cut set schedule reade

aN\ |1 |2]|3(4]5]6

2 l-xbaboclsria te (59)

2 0-111(0-1}1

-

The rows give us the current-law equations

=y t3p-J, 5= 0 (60)
~3p*+iy-ds*ig= O

and the columns vield - he brench voltages in terms of the node-pair voltages,



6,00 - Elementary Circuit Theory - Ch. II C-64B .
Page II-48

thus

i
o |
0]

(61)

]
(o]
|
o

= e

IR LI I
i
|
@

These correspond respectively to Egs. 48 and 50 in the above summary.

Regarding Egs. 49 relating the. branch currents to the branch voltages,

we note a8 before that J; = vy +e  and ;]5 = ia+0.,5v5, po that the complete

set of these eguaticns reads

1= %t2
dp = ¥y
33 = 73
= (62)
34 0.5v4
15 = 0,5v5+10
j6 = 0.5v6,

which are simply the inverse of Egs. 55.

The desired equilibrium equations are found through substitution of
Eqs. 61 into 62, and the resulting expressions for the j's into the current-
lav equations 60, After proper errangement one finds

381- l.5e2 = -5 (63)

The solution is readily found to be
e, = 0, e, = 10/3, (44)
and the branch voltages are then computed from Egs. 61 to be
vy =0, v, = -10/3, vy = 10/3, v, =0, vg = -10/3, Vg = 10/3.  (65)




‘ ¢.00 - Flementery Circuit Theory - Ch. II C-64B
o Page II-49
With vegerd to breanck 1 it must be remembered that the value of vy is for
the total branch, including the voltage source. The drop in the passive
part, therefore, is 5 volts.

As a second example we shall consider the network graph showm 1n
Fig. 1la. The sources in series with the branches are voltages having the

a
Q (~)
6/ °3
o e ' [~
a ey c
(a) (o)

Fig. 11

values indicated. Since for this graph, b =10, n =3, and &= 17, 1t wvill
be advantageous to choose the node method. A geometrical specification of

node-pair voltages is shown in part (b) of the same figure. In the following
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cut-set scheduls pertaining to this choice of node pairs

b : .
i
i packed-u]

n 14213 4)516}|7]8}9 |10 P+oX 0P
1l1lrlahlralalajrlolo] aec (66)
2l1l1l2lalolojolol1]o} & e, a
gl-1|-x|olojojo{1]1joj1}] b,ec,d

a last column indicating the corresponding "picked-up" nodes is added ‘o
facilitate understanding its construction.

According to the rows of this schedule one obtains the Kirchhoff cur-
rent-law equations
Sty 35" §,+3stdg-dy-1g="0
3 +32 jfa JA+39:O (67)
JE_ do* 57“'33‘*333 0,

while the columns yield the following relations for the bramch voltages in

terms of the node pair voltages

vy = 81}‘62'—93
b B Bl
vV, = -ey- e

Vs = 6

Ve = 9

v7 = —914-93

Vg =~y + oy

Vg = e

0T °3
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The branches are again considered to be resistive. Let us assume for
their comductances the following values in mhos

81""‘2) 82=2183=1: 84=3,9 g5=/+, 86-'"5,

87-—-1, g8=3) g9=2} 81():60 (69)
The relations expressing the branch currents in terms of the net branch-
voltage drops are then readily found through noting the appropriate ex-
pression for the drop in the passive part of each branch and multiplying
. this by the corresponding conductance. For example, the voltage drop in
the passive part of branch 1 is v, +10; in branch 3 it is vyt 2; in branch
5 1t is v5—8; and, so fort*. Thus we see that
jl = .2v1+ 20
J 2 = 2v1
J 3 = v3 +2
T 3v, -12
35 = 4V5-— 32 . (70)
J6 = %
j,./. = Vot 6
Ig = 3vg
,19 = 2v9
o= (wlo - 30.

Substitution of the v's from Eq-. 68 into Egs. 70, and the resulting
expressions for the j's into Eqs. 67 gives the desired equilibrium equationms.

After proper arrangement these read

2le. + 892— 8e, =

1 3
8oy~ 10e, - ey = -30 (71)
—831— “/*82+ :L/;,e3 R
Their solution yields
&y = 3.49, o, = -4.22, ey = 3.93, (72)

from which the net branch-voltage drops may readily be computed using Eqs. €8,

and the branch currents are then found from Eqgs. 70.
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Generalization of Circuit Eduations ‘and snergj Relations

l. Use of matrix algebra

Matrix algebra is a kind of shorthand that enables one to write
algebraic relations involving systems ofvsimuitaneous edquations in
a very compact form. Its principal véidé lies in the circumspect—-
ion that results frdmuthiS‘compactness, and in the facility with
which one is thus enabled to carry putiand:viSUalize-the signifi-
cance of more elaborate sequences of related algebraic .operations.
In numerical problems its usefulness lies solely in the systema-
tization that it injects into the computatlons, it .provides no
short cuts. It, therefore,. is primarlly a tool for fa01litat1ng
analytical manipulations,. but as such its usefulness easily
justifies the small amount of time and attention required on the
part of the unlnltiated pgcﬁer to understand the basic principles

' : and rules involved. -

As hasipréviously been pointed out, the so-called matrix
corresponding to the set of lineer equations

ayy 1*312"2*“’*&1an =¥

a21x1+a22x2+...+a2nxn

— m e mm e e em e e e S e e

(1)

(il
<
av]

is written

[A)= |a,., & ves 850 (2)

and represents merely the array of coefficients askin the same

order regarding their row and column positionsas they appear in
,.~ the related set of systematically written equations. Unlike
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the determinant
rﬁllalz ...alﬂ“
bootan oRECRE. S TR o spiaRin G0 ae £ s
e L aath ) e (3)
801802 ***2pn i : , : ,

which is a rational function of its elements;askand has definite
numerical valuesg for .given values of these-.elements, the matrix
. [A] has.no "value" other than the.pictorial value that is pro-
vided.by 'its outward appearance and.structure-in relation to
nthe‘assoc;ated.equations«to which it belongs..

- Usually the number of equations equdlg ‘the number of un—
knowns (the quantities xi;xz;,,.xh), in ‘which case the matrix has
as many rows as it has columns. " TPhat is ‘to'say, the associated
matrix is composed of a square array, and the number of ‘its rows
or columns is referred to-‘as ‘the order of ‘the’ matrix. ‘This cir-
cumstance 1s:not necessarily always encountered. ' For' eXample; in
Ch. I where we discuss the reletions befween branch currents -and
loop currents or between branch voltages and mode-pair vcltages,
we encounter sets. of equations with nonsquare matrices.  In this
respect a matrix again .differs from a determinant, since the.- latter
must always involve a square array of coefficients.

An ‘extreme example of a nonsquare matrix is one with only a
single row or a single column. Thus we may write the sets of
quantities xl...x and yl‘...y ¥ appearing in the Egs. 1, eas

matrices ' R TR s T
s | yl
X g
2 § wun, gl 2 2
x]= . & % i y)= .‘ (4)

These are referred to as-QQIUMn.matrices.

~In terms of the matrices 2 and 4, the shorthand known as
matrix algebra enables one to write the set of Eqs.~1 in the
abbreviated form

fA] o ix,];_;_, YJ- [T RGP (5)
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In order to show how this expression~mey'oé regarded as the
equivalent of 1, we must provide an appropriate interpretation for
each of two things or questions: (&) vhat is meant.by the equality
of matrices? (b) How must one definé the éroduct of §wo matrices,
lixe [A] . x]? e Gl W ;
Regarding the first of these questions, it follows. from what |
has been said about a matrix that two can be equal only it all of thei
corresponding elements are ecual.’ A necessary (though not suffic-
ient) condition for equality, therefore, is that both matrlces
have the s-me number of rows and the. same number of columns Since
in 5, the right-hand matrix has only one column, it must turn - out
that the product [A] . x] be a matrix Wwith o single column. More
specifically, if 1 and & are to be eoulvalent then it becomes
clear that we must have

a - 1: =] = ‘ 0 8

o i e 1Y IR <"“11 g 12"2+ " 1n*n . n'
821%22°**%2n|  [¥2| _  [®21¥1*ese%s "'*aznx ol (6)
anlanZ"'annJ X, (a 1x1+a 2x2'u..+annx§l -

in which the sums of terms in narentheses in the internedlate
matrix are single elements, so that this ‘is a column matrix like -
x] or y] in 4(a1though its. apoearanoe at first glance doeg not -
suggest this fact). EQueting elements in this matrix w1th
corresponding ones in y] evidently yields- the " Eags. ;

The rule for matrix multiplication made evident in Eqg. 6 may
be described by saying that one multiplles the elementé in the
rows of [A] by the respective onesin the column of x] and adds the
results; and that the first, second, etc. elements in the reeultant
(column)matrix involwe the first, second, etc. rows of [Al. i

/

Steted in more general terms, - one may say that in“forming
the product of two matrices [A] and [B], resulting in the matrix
[C], one multiplies the rows of [A] by the columns of [B] in a

manner that is most easily understood from the following example.
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At £

€51%22%3 (7)

- in which one obtains for the elements of ‘the product matrix-

Cy = :11b11+312b21+a13b31+a14b41‘l |
Cy5 7 8,1 P1atByoPoat8ygBaa 8y Pyp o Lo i (8)
o Pt Y i 13b33+814b45' i '
%y * 21b11+322b21 253P51 224041

Cpp = 831P10%8aa000 805 50 80a s - b (9)
oo = 231P15%°22P25 825 55 424 a5

Thus the so—called (s k)—elemenu in the product matrix (the element

) is formed through the addition of products of the’ respective

element: in the sth row of (Al oand the kth column of [B], a general

formula for this element being

sk oL
.@r::]_.

in which r is regarded as the summatlon 1ndex.'

5 and 6,
nized

according to this rule of
whereupon the acceptence of

asrbrk"; s e -(10)
The equivalence of
Iormation, is readily recog-
the matrix Eq. 5 as being a

compact way of wrltlng the set of Eqs. l follows w1thout diff—

iculty.

t

by columns of the second determinant in the product A.B.

In determinant multlplioation, by the way,_one does not have
to stick to the rule ‘that only rows of the first may be multiplied

One mayeqally

well form elements in the product determincnt through multiplying

the columns of A by the rows of B,
by columns.

or rows by rows, or columns

Any one of four different schemes may thus be used
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in determinant multiplication (albeit one must,be»conSistent
throughout the evaluation-of a giuen’problem). This freedom
results from the fact that it is only the value of the product
determinant that matters, and this value turns out . to be the same
with each one of the four schemes although the specific values

for the elements in the product determinant are ‘not the same.

In matrix multiplication where the result is a matrix, only one
rule of formation can apply, since the elements of =thils matrlx are

tnse Quantities of 1nterest.-*“

Another point illustrated b\ the example of Eq. 7 1s the fact
that in any oroduct [A] x [Bl], the number of columns in [A] must
equal the number of rows in [B] in order that the number of
elements in any row of [A] wlll:equel.thewnumber‘of elements in
any column of [B], a necessary condition that is obvious from the
wey in uhich the row-by—column ﬁroéuct is formed. If the .given
matrices in a product fulfill\this condition, then that product
is said ‘to be conformsble. y | :

It is likewise clear from the example in Eq. 7 that the number
of rows in [A] and the number of columns in [B] may be anything;
but that the number of rows in the product matrix (C] equals the
number of rows in.[A], and the number'of columns in [C]'equels the.
number of columns in [B]l. 'If we use for the designation of a
metrix [A] with p rows and q columns the notation [aﬁd., and a
similar notation for the matrices [B] and [c], then thesé remarks
are summarized in the equation: gy :

lagq) * [Pl = Logde (11)

Conformablllty of this product is placed in ev1dence through
the so-called adjacent 1ndex q being the same in the two matrices

forming the product, while the remeining indexes p and r correlate
 the rows of [a q] with the rows of[c ] and the columns of [bqr]
with the columns of [cp j A

Using this notation, a conformable multiple product is,for
example, indicated by

[apq] X [bqr] X [crs] X [dst] = [gpt] N (12)
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Conformability is recognized at once from the fact that all
adjacent 1ndexes are’ alike, and the number of rows and columns in
the resultant matrix is make evident from the number of rows in
the first matrix and the number of columns in the last.

6.00 Elementéhy Circuit Theory Ch. X

From the restricted nature of the ‘rule for forming a
matrix product, it is clear that the commutatiyve law does not

apply;~that'is >89 i Fy
[A) x [(B] # (B] x [Al. ; : : - (13)

However, the associative law does hold; which means that, in the
multiple product 12, we m(y group the terms in any way we wish so
long as we preserve their relative order. Thus we may begin the
multiplication at theé r;ght with [crs] X [dst] and work towards
the left in successive steps, or we may begin at the left and
work towards the right. :Again, we may first carry out separately
the products [ap 3% [b ] and [c ]x [d‘ J and then multiply
the result of the first of the se by the regult of the second.
Although the finel product matrix is the same in all cases, the
computational labor involved is not (herein lies one of the finer
points of this subject that we shall not pursue further at this
time.)

A matrix is said to be symmetrical if its elements fulfill
the condition a, = a,, . If both matrices in the product [A] x [B]
are symmetrical, then 13 obviously does not apply since there is
no distinction between the respective elements of the kth row and

those of the kth column in either [A] or [B].

The so-called inverse of a matrix [A] is written [A]~1 and
is defined by the relation ~ -
' -0 .0 nen .0
0% 0.0 0] = [U], (14)

— e em e e w= e

0 0 O sen B

_— -

(alx(a)™t= (a1t x (4] =
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in whlch (U], calXied the unit matrix, has: the indicated strubtufe
in wthh the eleménts on’ the prin01pel diagonal are unlty and'

all others-are: ZEDo. Equatlons like the set 1 having ‘a unit
ve o X TV e Multiplication

matrix evidently read: Ry ¥ yl, x2 Yo
of any given matrix by the unit matrix 1eaves the given matrix
unchanged. Hence if we multiply on both sides of Eq. 5 by [A] l

we have:

[A]_l x [A] x XJ=[U]x‘x]=.x] = [A];l x ¥ (15)

The set of equations corresponding to thls result in the manner
that 1 and 5 correSpond has the form:

b +.C.+b

1191%P12%2 1n¥n = *3
(16)
bg ¥1¥P5075

vt Gwe ems ew mm we e s Sw  tm  wm ww e

+...+b2nyn =.x2

+.'.+ " =
n2¥e Yo'

with the matrix =~ e

R T B s vt Lo (17)

The inverse matrix is thus recognlzed to be the matrix of the
inverse set of equations; that is, the equations that represent
the solution to the given set. °The property of being inverse 1is
evidently a mutual one. Thus we may equally well regard the set
1 as being the inverse of 18, and hence it follows that [A] is
the inverse of [BJ]; that is

[al = [B]™%; (Al x (B) = (B x (4] = [ul. (18)
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_ The problem of finding the inverse GE & given matrix is the
problem of solving a set of mmultaneous equations like 1 or 16. .
Using determinants and Cremer's rule, one can compactly express
the elements of the inverse matPlX in terms of those of a given
matrix. For example, if the determinant of LAl 1s denoted by A,
ﬂaS'in Eq. 3, and its cofactors are written Agie? it follows (see
art. 2, Ch. III) that the elements of the inverse matrix EB]

Eq. 17, are given by
A

R et | s 2
T R | 29)

Conversely, if the determinant of [B] is .B, with cofactors By’ then

fak ~%§ ? pE T et ot 54 SR

Because of 18, the formula 10 for the -elements.of the product
matrix yields in this case e

e ‘ 1 for-s = k.. s
Famy R O for s # k , (2?’) ’

because the product matrix is the.unit matrix 14.

From the relations 19 and 20 it is clear that the inverse
of a matrix exists only if the corresoonding determinant is non-
zero. Incidentally, there must be a corresponding determinant
in the first place, which implies that the given matrix be a
square array. A nonsquare metrix possesses no inverse. A
‘matrix that does possess an inverse i8 said.to be nonsingular;
one ‘that does not, is called:a.gingular:matrix.

‘Then 2 given matrix has the so-called diagonai‘formﬂ

[D] dj;. 0 O .,0 eer O

l;(gg)
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which is like the unit matrix except that the diegonal elements
are not equal to unity, then the associated equationg read

d11 ;S y d22 2’y2""dnn - yﬁ, which-can be inverted by
1nspectlon. One recognizes that the inverse of [D] is simply

-1_ -1 , :
0 dzg"lo AR 4
____________ (23)°
d _1 -
_9 o) O seoe dnn Y

‘That is to say, the inverse of a diagonal metrix is again a
diagonal matrix with elements on its diagonal that are respectively
the reciprocals of the diagonal elements in the given matrix.

Alteration of a matrixfthrough'wfiting’its rows as columns,
or ‘vice versa, 1s called transposition,and the result is referred

to-as "the transposed matrix. Thus the transposition of the matrix
fAd;, By.7 2, yields
s - o b e Y Ak
S (24)
[Ajt o N T e N

(25)

Note thet the transposed matrix is indicoted by the subscript %,
and that column and row mctrices are dlstinguished through
writing x] and x, respectlvely._

"hen matrices have. a large number of rows and columns, it
may be effective.to partition them into smaller sections, called
submatrices. Such a.partitioned matrix may be wrigten.

¥ e
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A a Page-X=10 . .
. (a_.] [a 7] : _ PaT A e
[a] = [a_ )= A §'7‘"P§“ S L - 128) ®
laged | T8 | - |

Thus the m rows and n columﬁs'of_the matrix [A] are partitioned

into‘grgups of p and q rows; and r and & columns. That portion

of [A] consisting of the elements in the first p rows and first

r columns (the upper left portion) is the submatrix [apr]; that

portion involving elements in the first p rows and the last s

7 columns (the unper right portion) 1sAthe submatrix [apS],.and 80
”forth.

If a second matrix (B] is likewise.partitioned as shown by
Ebrt] [brlj'

1= {: : (éV)J
X ;Y
g [bst] [bsi]

[B]=[b

Then the product [A] x [B] may beuevaluated as though the submatrices

were ordinary elements. That is to say, Eqs.26 and 27 yield the .
product X C e -
[a,p] x [brt] (apgd x [b ] | ]~x [briJ + la, Jx[bsil
S e AL AP t”rf*~- Nracaaay
[age] x [brtJ + [ag ] x [b e) lage] x [_bﬂ] + tg_qsixcbsii
: _ i o

which in turn may be written |

(alx(Bl]=(c] = (29)

Note that the partitioning of the columns of [A) and of the
rows of [B] (both into groups of r ahd s) must ¢correspond in order
that the products of submatrices appearing in 28 all be conform-—
able. The partitioning of the rows of [A] and of the columns-
in [(B] is arbitrary. From the indexes appearing on the: sub=_ . "
matrices in [A] and in [B] one can tell the number of rows and
columns in the submatrices of the product matrix 29. Partitioning
thus lends circumspection where detailed manipulations with .
elaborate matrices must be carried out.
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. It may happen that a large number of elements in a rather

extensive given matrix are zero so that, after partitioning, one
encounters submatrices ;consisting entirely of zeros. A matrix
whose elements are all zerosis cslled a null matrix. A partitioned
matrix heving such null submatrices may have the form - f

3 . % .[.?..I';I.'.J..-:;;9----.4%.0.-..~..._ 2% L ] ;
.(-‘ [A] = v ”. i- ! \ A
; o yd i Rgel laggdl0 . |+ - | ‘s

where we have written the null matrices as though they were simple
zeros. Actually. the two zeros in the top row of the matrix 30

are null matrices involving r rows and respectively g and t
columns. Similar comment applies to the other zeros appearing in
this metrix. The matrix [A] in this example ié chosen to be a
gquare array consisting of r+s+t rows and a like number of columns.

' Regard.ing the submatrices in 30 for the moment as one would
ordinary elements, we would recognize this matrix [A] to be in the
diegonal form. It turns out (as mey readily be seen) that its |
inverse,llike thet of the diagonal matrix 22, is simply given by

a0 e i |

,[A]~lﬁ 0 §[asslfli 0 _ 4 (31)
e e e e
0 0 :[att]

which has the form of [D1™1 in Eq. 23, although the diagonal
members must be found by the metbod of matrix inversion because
they are submatrices and not- ordinary elements. However, it is
useful in analytic work to be- aware of-this‘method of indicating
the inverse of the matrix- 30. | {3 ;

2. Branch parameter matrlces and volt—ampere relatlons.

e w1sh-now to reconsider_the problem of setting up the
' differential equations expressing the equilibrium of a linear
passive network, removing restrictions of any sort so that ,we will
arrive at a formulation that is perfectly general. For certain
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theoretical considerations té(be.teken;ue_iater‘cn,vsncnian_un~
restricted point of-.view is essentla;,tas_may also be'true in
gome practical situations. :

Although the basis for a .general procedure is given in

Ch. 11, it is there discussed- speciflcally Wlth reference to
resistance networks. In order to remove this restriction, it is
necessary that we show in detail how the volt-ampere relations
pertalning to the branches (expressed formally by Eqs. 43 of
Art. 7, Ch. II) may be evaluated for inductehces and capacitances
as well ae:for*resistances. For:the sake of.convenience,. these .
equations are repeated below . W sme ekl SO v U B N Rk

| A LR YOS A RS S
T G 15 OV, = ylv . ®ex)? s et
and Fig. 9 of Ch. II to which they refer, is reproduced here as
Flg. 1. It depicts the’most general form that a passive branch
with cSSOCldted voltﬂge‘dnd current oources may take.  Since Jk

and v, are the net
. : ’ eurrent~and voltage
(It - °7. . .drop, the quantities
N Sggon » HE ey f
€.k Xk Jk are seen to pertain
S I “ . to the passive element
¥ f\*fCDM' . . [resistance,inductance,
isk; Flg.hl». " oop capac1tance) alone.

T R 1 the relation between the currents and volt?ges in
the passive elements that is expressed by tne mqs. 52 and 33. The
first of these symbolically expresses the voltdge drop in the
passive element of the kth branch as a function of the 03951ve
branch currents, the second equatren Fv tnisnpalr,does the . re-
verse. ‘fe shall now put these relations into a more explicit

form.
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The passive branches (single elements) in the network are
assumed to be numbered consecutively from 1 to b. Of this totel
number of b branches let us say"fhéth“afe inductive, p are
resistive, and 0 are elastive, A +pP +0being equal to b. The
numbering of the branbh_esJ moreover, 1is qérfied out in such a
faghion that numbers 1 to A refer to inductances, numbers A +
1 to A+ p refer to resistances, and numbers A + P+ 1 to A+p+ 0 =
b refer to elastahces.

Since each inductive branch may be mutually coupled with
every other branch in this.group, the matrix of self and mutual
inductance coefficients, according to the discussion in Art. 4
of Ch. VIII, called the branch inductance matrix,has the form
le 312”*'&1X

Fﬁ] = (34)

- e W vm e e e

The resistance and elastance branches, on the other hand,
cannot be mutually coupled; their parameter matrices must have
the diagonal form. Hence the branch resistance matrix is

given by — : il
rh+l O O e o 0 o
_? 0 & ?X4—g
and the branch eléstance matrix is written
§k+‘p-+ 1 0 3 O‘... 0
e = - (36)
0 0 0 Sp «
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In these last two matrioes, an element r'1 or sy is simply the .
resistance in ohms or the elx stance in darafs of the single
element (passive branch) to which the pertinent subscript referse.

The. voltage drops. in the passive elements in terms of
the currents in these elements are expressed for the inductances
(vi+esi) = Ei=1 Zlk p(jk+isk); 1 =1, 2, oo}, (37)

for the mesistances by

(v,+e r, (3, +1 ); L=n+ 1, sk +0, (38)

Si)
and for the elastancés“bi*the equations

il
(vi*egy) = 84P

(3% )3 1=éx4-p+1,-,.;'b; (39)
in which the abbreviations

p=-3 ana gl = [at PR L g (40)

are used to denote the operations of differentiation and integration
respectively.

Because of the possibility of mutual coupling between
inductive branches, each passive voltage drop (vi+esi) in one of -
these (i.e., for 1 =1, 2, «e A ) depends in general upon all of
the passive currents (Jyti k) in these branches. That is why
Eqs. 37 involve a summation eXuending over the inductive branches
(reference to Eqs. 30 in Art. 4,‘Ch. VIII may also be helpful in
the interpretation of 37). Each of the Eds. 38 and 39, in con-
trast, involves only a single term on the right- “hand side because
the voltage drop in a resistance or elastance depends upon the
current in that branch alone.:

The relations 37, 38, and 39 may be combined into a
single matrix equation through defining the column matriees
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V]:esl el 1750 endigbhyy |
[vie ] = | 2. B5L. . andbaddad= el De. 52 (41)
Vp*een| -9 ap

and the branch operator matrix

[p] = o {Elrii o8 (42)

g % iggaly™
g : Rl
in which the branch parameter matrices 34, 35, and 36 are embedded
as submatrices (the matrix ‘D] 1is written in partitioned form).

The scalar operators p and-p- o, -become assoclilated with each element
in the matrices [£] and [s], since multipliCﬁtion of a matrix by

a scalar, multlplies each element in. the matrix by that scalar

(as may be seen from the fact that the matrix must vanish if the
scelar is zero, and a matrix vanishes only when all elements are

zero) .

The desired relations expressing the voltage drops in the
passive elements in terms of the currents in these elements
(equivalent to Egs. 37, 38, and 39 combined) are given by the
single matrix equation ‘

'[v+es] = (D] x [j+is]. (43)

Through carrying OQt'the indicatéd matrix operations one thus
obtains an explicit evaluation of the symbolic Eq. 32. (the un-—
initisted reader should write out ‘the matrix [D] completely and
carry through the 1ndicated multiplic tion ‘in order to understand
this result and appreciate ltS‘SlmRIICIty.)



v ; : Rl B C—-64B
6.00 Elementary Circuit Theory Ch. X Page X-16

The inverse relations 33 may similarly¢be'evaluated. To
this end the branch parameter matrices are considered in their
inverse forms as the reciprocal inductance matrix

Yll le s 00 Ylh
(r¥= {¥a "% o YeAl =A™, (44)

e B e eem  mee e e

the conductance matrix

557 o0 67388
i g sl 4o g pin ek ; :
2 S Of; O ves gk4-p

‘and the capacitance matrix

- L T R RN MO N

3
| I
o

o Sre17L. (a8

— e e e e S e e mm e e e e

Since the last two are diagonal matrices, their diagonal
elements are simply'the reciprocals of the diegonal elements in
[(r] and [s]. A&s shown in the prépéding article, the elements in
[y ] are not.so~simp1&‘félétéd tb'fhosei;n {£2]. However, if the

determinant of [£] be A , with cofactors Ask’ then

A
by T
Y ¥ o, (47)
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where the indexes s and k on either Y or A may be interchanged
since the matrices in question APE" syﬁmetrica&vuvm-mWw,

e'

; In algebraic form, the desired -inverse relations are

expressed by

. oy 4 <7L-': i 0 53RN ey 2 N, (48
(‘ji isi) L '/.=1'Y,ik P (Yk eS.k;):’ i - :1-;, Fe AP ] )
is. +181) = gi (vi+esi») 5,’51::‘-.;))\.#4-;[.,,:?:._ ‘K+_Q_)f,_;. add, (49)
and :
(33%1,)= C*p%V +e ), AL E=NEO AL 5. b (50)

In matrix form they may beﬂcgmc;ned,in a singie equetion
through defining the operator matrix (inverse to (D])

F S S T A (51)
0 o) fol P

. whereupon the expressions for_the currents in the passive elements
in- terms of the voltage drocs in these elements are given by the

s:matrix eduation

Ly 1= (017! x (vee ] ,) : (52)
which 1s the 1nverse of 43," and represents the explicit evaluation

of the symbolic Eq. 55. 5 Pl

~ & %

In order to obtain ‘the equilihrium eduatlons we can now
~follow precisely the same pattern set in Art. 8 of Ch. II for
resistance’nét%orks as sdmmariied there by Eaqs. 44, 45, 46 for
the loop basis and by Eqs 4é ‘49, 50 for the node basls. The
,:central equation in each of ‘these groups -of three, expresses the
volt—ampere relations for the branches, which we have just
finished putting into the matrix forms-43 =nd 52. The first and
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last equation in each group expres§é§'respectivelyithelpertinent
Kirchhoff law and the branch variables (current or voltage) in
terms of the loop or node variables. These relations involve the
tie—-set and cut—set schedules. e shéli'next show how these may
conveniently be written as matrix equations and combined through
stralghtforward substitution with mqs. 43 or 52 to obtain the
desired results. '

Se mqaillbrium equations on the node basis.

The first step 1s to write the pertinent cut-set schedule
in the form of a matrix, thus

‘a;ll ' 012 LR Cblb

[a] = - Sgg e wilgglce RRASEE ()
1 o ** 9p
L. -

The elements in any row of this matrix are the coefficients in a
Kirchhoff current-law equation since they pertain to the selection
of a cut-sets. Their velues, therefore, will normally be either

*1 or zero depending on whether a pertinent branch does or does

not belong to the cut set defined by a given row. Each row has

b elementé; but there are only n rows since this is the number

of independent cut sets or node pairs. It should be recalled

from the discussion in Ch. I that n=n,-1 where ne éqﬁals the total

‘'number of nodes.

It is also shownin Ch. I that the elements in any column
of the matrix [ o] are coefficients in an'equation’expressing the
pertinent,branch-voltage,drop'in terms of the node-pair voltages

that are consistent with cut sets defined by the rows. Therefore
if we write column matrices » ‘
e ' 9
J . . o :
Ll= i and  [v]= 8 . ed
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for the net branch currents and voltage drops, and express

31m11arly the associated current and voltage sources as

isil. ésl
i e
i g2
(1 ]=|.8% AT < . ; (55)
S L] S .
s D
}SE sb

so that the c¢olumn matrices 41 can be separated as indicated by

[j+1 1=[3] +01,); Cvre ) i=[v] + [e ]; (56)
and if we write the node—pair voltage ve riables in the form of
a column matrix A2 e
I
.

Lels - o

o

(57)

(D eae

n

— o)

then the Tirchhoff—law equatlons are exoreosed in matrix form by

[aJx[J]-=o, b N
the -volt-ampere relations 82 for .the brancbes can be written

(3] + 010 =(0]F x [v] +.001 7 x (e,], (59

and the branch voltages in terms of the node-pair voltages are
given by .
[v] = (o], x [el.” °~ (60)
The desired equilibrium equations ere the, Kirchhoff-law
gs. -58 expressed in terms of the node—pair voltagés as variables.

One obtains this result tnrough substituting the expression for
(v] from Eq. 60 into Eq. 59, and the ensuing relation for [j]-

into Eq. 58. After a slight reerrangement of the terms, .one finds

[ @lxiD]” x[ o] xLe] %_a Ix ([183 - [D]ulx[es])=[1n]

e —————————

(61)

in which the right—hand side, representing the net equivalent
current sources feedlng the node pairs,

is ebbrevieted as a column
matrix :

o
2
[1,]= » (62)

b oo o !

nn




6.00 Elementary Circuit Theory Ch. X - =+ -+ ‘g;Z§BX~20

It is interesting to note the structure of this matrix as
expressed by Eq. 61l. Thus the térm'[ié] within the parenthesis
represents current gsociated with the branches, while
the term 1nvolving(?D] ‘x [e ]|represents the transformation
of voltage sources assoeciated with the branches (see Fig. 1) into
equivalent current sources, the minus sign arisiné from the

oprosite reference arrows associated with esk and isk' The
parenthesis expression, therefore reoresents net current sources
for the branches, and is. to. be thought of as combining these into
a single column matrix. Wultiplication of the matrix (a] into
this column matrix yields again a column matrix whose elements are
algebraic sums of the branch sources according to the groups of
branches forming cut sets (these are the brahches associated with
the pértinent node pairs). The elements in this resultant column
matrix [1n]are thus seen to be equivalent noﬁe—pair current

sSourcese.

Interpretation of the left—hand side of Eq. 61 is fecili-
tated through an appropriate evaluation of the triple matrix pro-
duct (@] x [D]- X [a,] A preliminary step toward achleving
this ‘end is the partitionlng ‘of the columns ‘in :the ‘matrix [a ]
into groups of A, p-, 0 , thus

0

o/

npn nUJ ‘ (63)

Lal=C(a

The. submatrix La }J consists of the first K oolumns 1n [ al;
[*no] represents the -succeeding group of P columns, and e 0]
contains the last ¢ columns. U31ng the form for . [D] given in
Eq. 51, one then finds Liges ¢

' . ;
o vt

O d-x;.né rrrrr p (a G)

= Lo 0xlr] x [0, v l4(a Jxlelxlo, ], + (9,0] x(e) x (o ,1% (64)
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’ ' The expressiohs
[I‘J=[a)\JXEY]X[G’)\]
[ = g [gJ [a ot

]

(0] = [0 x (0] xlagly.

are recognized respectively as thé recibrbéal 1nductahcé, the

conductance, and the cepacitance pafameter‘matrices pertaining
to the node basis. 1In terms of these and the source matrix 62,

the edquilibrium equations 61 take the somewhat more familiar

form — e N
&([ I‘Jp"'1+ (¢l + [clp) x [e] [1 ﬂ W A

The principal results of the present:discu331on are the

eveluation of the resultant sourée matrix [1n] as given in
Eq. 81, and the expressions 65 for the pertinent parameter

‘ matrices. These are given in terms of the branch parameter
matrices [ Y 1, (gl, and [c] through triple matrlx products with
appropriate portions (and their transpog;tlons) of the ¢—matrix
characterizing the cut¥set schedulé. The formation of these key °
quzntities appearing in the egquilibriun EQS;”66TiS'thﬁS in every
case reduced to a simple, systematic*and straightfofward‘pro¢edure.
The equations themselves are a set of: simultaneous di?fefential
equations in terms of the 1nstantane@us leues of the’ vcrlables.'

4, Eauilibrium equations on the. loop basis.

The procedure is in form entirely analogous to that just
described. The pertinent tie—set schedule is characterized by
the matrix

P11 Piz e Pip
(pl= P Poz ooePoy (67)

g g o |

/62 LA

P
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in which the elements of any row are the coefficients in a
Kirchhoff voltage—law equation since they correspond to the
selection of a tie—set (set of. branches forming a closed loop).
Their vclues will normally be elther 1 or zero depending on
whether-a pertinent branch does or does not belong to the tie-

set defined by a given row.. Each row has.ggelements, but there
are only £ rows since this is the number of iﬁdependent tie-sets
or loons: It should bée recalled from the discussion in Ch. I that
|#=Db-n=b=n +1. .
It is also shown in Ch. I that the elements in any

column of the matrix [ B ] are coefficients in an equation ex~
pressing the pertinent branch—current in terms of the loop-
currents that are conslstent with the tie- sets ‘defined by the

rows (i.e., currents that circulate upon the closed paths defined
by the rows). Therefore, if we make use of the column matrices

54 and 595,. the relatlons indicated in Eqs. 56, and write the loop-
current variqbles in the form of .a. column matrix

1]
st o A oyt : b gy '
(i]= :2"', i T . = alipe g (68)
iﬁ _ = A 3D, B i tiial
then the Kirchhoff-law equationS“are expressed in matrix form by |
E ~iRY x ['vJ POV ARG, (69)

the volt—ampere relations 45 for the branches can be written

(v] + {e~] = (D] x[3) +p] x [1 - (70)

and the branchrcurrents in terms of ‘the loop-currents are given by

L3 LB g BRI T TR R | (71)

The desired equilibrium equations are the Kirchheff—law
Egs. 869 expressed in terms of the loopecﬁffents a8 ‘varisables.
One obtains this result through substituting the exnres81on for
(j] from Eq. 71 into Eq. 70, and the ensuing relatlon ‘for [v]
into Eq. 69. After a slightmnaamraagenaggmpf the terms, one finds

(81 x[plx([B] x (1] = [B i ([e od > (D] = [1 1) = Eeﬂl ;72)
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in which the right-hand side, representing the net equivalent
voltage. sources feeding the loops, is abbrev1ated as a column

matrlx

Ae,zl*e-‘ ,
e P )
i | il s Pl e (73)

[e£]=
' ew

It is interesting L note the structure ‘of this‘matrix as
expressed by Eq. 72. Thus the term (e ] within the parenthesis
represents voltage- ‘sources associated with the branches, while
the term invqQlving: [D} X [i ] represents the . transformation of
current sources agsociated w1th branches (see: Fig. 1) into
equivealent. voltage sources, the minus sign arising from the
opposite reference’ arrows associated with- ish and esk;' The
parenthesis ,expression, therefore, represents net voltage
sources for the- oranches, and is to be thought of a8 combining _
these into a single: column matrix._ hultlpiication of the metrlx
[ B] into this columh matrix yields again a column metrix whose
elements are algebraic sums of the branch gources according to
the groups of branches forming tie-sets (these are the. branches -
agsgociated with pertinent loops). The eléments in this. resultant
column matrix [e ] are thus seen to be equivalent loop voltage
sources. ‘ T Cb b 29 N Yo

Interpretation.of_the left~hand ‘side of Eq. 72 1s facilitated
through an appronriate evaluation of the triple matrix product
[ Bl x" (D) P ]t° A preliminary step toward achieving this
end is the partitioning of the columns in the metrix Tf ] into
groups of A, P , O, thus

(B = (B Bgp | Byol: (74)

The submatrix [Bz)JAoonsists of the first Acolumns in [
[sz] represents the sueceeding group of Pcolumns, and [Bgol
contains the last 6columns. Using the form for [D] given in
Eq. 42, one then finds
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(B 1 x [Dlx( ng= [bgkéaﬁpé Bpoix|(£] p § o o |x|lBpl g
0 * (r] 0 Cﬁzpl +
0 0 ‘fslp”t EB@OJ %

= Cﬁﬂk]x[ﬂlxtﬂzh]tP*Esszx[er[BZp%;tﬁﬂo]x[st[BE&jtp'l . (75

..The expressions
(L) = (Bpd x [4) x i, 2% gd Seens.
TERY = TBped xR & Bl T Y S i)
[s]-= [5£<; x [s] x Byl |

are recognized respeotively as the induotance, the registance, and
the elagtance parameter matrlces pertaining ‘to the loop basis. Inr
terms of these and the source matrix 73, the equilibrium Egs..72
take the somewhat more famlliar form

S (CLp+ (R] + (8] b >x |11 [953 215

|-

The principal results of the present discussion are the
evaluation of the resultant source matrix [ez] as given in Eq. 72,7
and the expressions 76 for the pertinent parameter matrices. These
are given in terms of the branch parameter matrices [£], [r], and

(s8] through triple matrix products withyappropriate portions -

(end their transpositions) ‘of the B-matrix characterizing the
tie-set sohedule. The formation of these key quantities appearing
in the equilibrium Eqs. 77 is thus in every case reduced to a
seimple, systematic and straightforward procedure‘; The equations
themselves are a set of simultaneous differential equations in
terms of the instantaneous values of the variables.

©. Bemarks and examples..

In Ch. II it is pointed out that symmetry of the parsmeter
matrices on the node or loop basis comes Eboutlif the‘definitions
of the node-pair voltages or loop currents are chosen to be con-
sistent with the Kirchhoff-law equations, a condition that 1is
commonly me? but is by no means necessary. The procedures given
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in the- tiro preoeding'ertiCles are,. therefore, not completely
general, for they satisfy the conditions leading to symmetry.

In the node method for example, :the Eq. 58 expressing Kirchhoff'!s
current law and Eq. 60 defining the node~pair voltage variables
are consistent, for they involve the samea,matrix (cut—set
schedule). Similarly for the" loop: method, the Kirchhoff voltage-
law Eq. 69, and Eq. 71 defining ‘the loop—currents are consistent,
for they are based upon the sdme  tle-set schedule (B matrix).

Yhat we should recognize is the fact that one may, on the

node basis choose one set of node-pairs- for the current—law
equations 'and an altogethier different. one for the definition of

the node-pair voltages;'or'on'the~loop;bssis'one’may choose one

set of loops for the voltage=law eqnations\and another as the
circulatory paths for the loop.currents. Specifically, The Eags

58 and 60 may involve two different<;~metrices or cut—set schedules;
“and the Egs. 69 and 71 may involve. two entirely different B —matrices
or tie-set schedules (so ‘long as. the schedules used pertain to

the game network of coursel, - In most instanoes, however, it is
advantageous to adhere to the, consistency conditions and obtain
gymmetrical parameter matrices. Therefore the relations as given
in the preceding articles are3almost always appropriate and can

readily be generalized if desired.
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As an illustrative: example of the procedure given in the .

preceding article, suppose we consider. the circuit of Fig. 2(a)
which involves six mutually coupled windings on the same magnetic
core. An appropriate schematic diagram is shOWn4in»part«(b) ofli
the same figure. It is easily recpgnizedi(qccdrd;ng to the
discussion in Art. 4, Ch. VIII). that the. scheme fof indicating
relative polarities of .the coilg;by means. of- dots 1s applicable
to this simple arrangement, and that the system of dots 1in the
schematlc of parg (b) is consistent with the phyqical arrangement
indicazted 1n part(a) of Flg. 2.

The reference arrows on. the inductive branches of thls
circult diagram are all chosen so that the. tips of these arrows
are .at the dot-marked ends.. As a result pfrthis.simple.expedient,
all mutual inductances bexwgeh branches become numerically positive. 3
If we assume that all six coils have self 1nductances equal to .
unity,-and that all mutual inductances are equal to one~ha1f (there
is no sense in using more arbitrary numbers in this examp;e),»one

|
has the branch inductance: matrix o Bueine 16 : LU .
: 2ital 1 0.5 0.5 ¢ :9yb Ov5 . " . 0.5
L e BaY gt et SOl o TS L gt s
L8432 | pp i ous ¥ solt il ot Dl e
0:5 OB i Publi bog 0.5 0.5| (78)
0.5 0.5 0.5 0.5 1 0.5
0.5 0.5 0.5 0.5 0.5 X

Although the volfage source, which is bridged across a node
pair, may readily be replaced by voltage sources in series with
branches (as shown in Art. 7, Ch. II), it is more interesting in
this example to consider the voltage source as a degenerate branch;
that is one for which the associated;passive element is zero. For
phe branch numbering indicated in Fig. 2(b), one then obtains the
graph shown in Fig. 3.




6.00 Elementary Circuit Theory Ch. X

5 23
- LU :
o\
6
< o
Pigs O

L2

- Sl S S

C—-64B

Fig.'éﬂ

Since in the given problem we -are particularly interested

in the current through the resistence R as a function of the

source voltage, it is expedient to choose a tree in such a way

that branches 7 and 8 become links.

Thq.tree shown in Fig. 4,

for which brenches 1,7,8 are links, is a satisfactory choice,
andthe 1dentification of link-currents with loop currents is-

given by 3 :
g
i =y
i = 1,

(79)

Page X-27
SR . /;f'ca
\/\k‘f' ((,
. g \O ; 1
O : ({
b St
D
N
0

seems best because it assoclates i1 with the sourceand 12with the

load.

The matrix of the resultlng tie~set schedule is now

recognized by inspection ‘to be

L‘ oF
0 g '

s v % e
1 -1

|

—_—
P il £
PR

5
kd.o;
B

PR e o L
¢ g

&
1 3
0.
0

5

(80}
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and the submatrix [BZ)\] ls given by the first six columns. Noting .
the expression for the inductance matrix in the Egs. 76, we next
evaluate the product

Bpd= (8= 11 (1 & & 3 i
WEE BT S SRR gl (o)
& d =X . i 0 0
LY R Bt TR

which can be done by 1nspection,‘using Eqs. 78 and 80. The
desired loop inductance matrix is then found as shown below

(L = Ryd = [2] x [By,l;
= Bt 3 Y B y ¥ &iis
gt 5 3 ol 3 ot 2 ool ¢ 3 5 3
= N 5 7 1 5 5|lxp 1 1 i g 1| . (82)
1 f AR, S 0:4.0 s R § -1 -], 3 2
43 . 2 2 2 ; . - ¥ A5 e
i -—
oo dp oo o
0 1 0
A
The equilibrium equations on the loop basis are thus seen to be
given by
3p (3/2)p e 11 €al. - _
(3/2)p (4p+RYy * - p| X figl .= |0 (83)
-p ) " 2p : 13' 0 iy ' :

where the abbreviation p = d/dt is still used. Since we are
only interested in i, and 12, it is a ‘good idea to eliminate 13
immediately. To do this we can consider the so-called augmente

matrix
3p (5/2)p e T,
(3/2)p  (4p+R) p 0 (84)
- P 2p 0
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and carry out linear combinations of its rows (equivalent to

meking linear combinations of the Eds. 83) in such a wey as to

produce zeros for all elements of the third column except the

last. ot !

Thus if we add: the (1/2)-multiplied elements of the third

row to the respectiﬁe ones of the first row; and then add the
/2)~mu1t1plied elements of the third row to the respective

ones of the second ‘row, there results -

(5/2)p T b fet B
"2p (7/2)p+R O e : 5 (85)
SR LAl SR ' § K-

The third row is now.trivial, and the first two yield the equations

p - v /2ypeR| |1 o <! A RN

By inspection one. can recognize that the 01rcuit of Fig. 5
involving only gelf—induct~

ances with the velues in-—

1/% 3/2
at i : T o dicated, has the same loop
rzy Zy | equilibrium equations. One
i T “"‘-£§§“~‘ A *"*é5> © -+ may, therefore, regard this
4 : " £ <~-4»-' : simple circuit as the eguiva-
in .O Fo. 5 A le'nt”'of ‘the one given in:
o Fig. 2 'so- far.-.as the terminal-

Fig. 5
5 . pairs a-a! and b-b! are con-
i bt cerned.. ~
As an example of the node method we will consider the
circuit of Fig. 6 in which the three inductances are mutually
coupled, and for -‘the 1nd1cated referenoexarrows are oharacterlzed

by the branch inductance matrix

4
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(81=|4¢ 9o -1 (87)

-—

AT $ 7 ik il
a? ek % 3 2|. (88)
iy B 2

The resistive branches have
- conductance values in mhos

as indicated in the following
branch conductance matrix

for the branch numbering in

‘Fig. 6

(g] =12 © O
0 gl.s  (s9)
. 8-

¥ig. 6

Ror the variables -we will choose a node~to—datum set of
voltages, taking the point O as the datum and denoting the potentials
of nodes A and B respectively by e, and eqe The appropriate cut—
set schedule then has the following matrix

sy 4 1 S | 1 o =1 ’ (90)
:1 - & 0 -1 P 0
and ; Ly ‘ . s
. & . ; iy g R 0 o]
[ an)\J = ‘:; 2 _ ;‘J g i L anp] L g . Q_J . (91)

The three voltage sources we will .assume. to be steady
sinusoids with values as indicated in the column matrix



©£.00 Elementery Circuii’TheogxwggL_xu

C-64B
0 Page- X=81

=~17.cos,fﬂ .

[e,] =| 2 sin't|

.34 cos t S ¥ e

SN O . ;4 . (92)
& " S :

0 -
AN )

The matrix [is] accérding‘tdﬁ55 is identically zero because there
are no current sources associated with any of the branches.

To evaluate [ig]'in'Eq. 81 we must formA[D]~1 which by
Eq. 51 becomes . A

R : p—l‘ 0 o+ (50
v egh S 2l il ol (B
Fos SRR NS S IS O e
0 0 6 §... 8.0
0 0 BT 0" 0 . 3

Actually only the first three: rows and cplumps'entér into the
evaluation of . '

[D]klx[esl = (69 sin t + 2 cos t
8l 8in t -~ 6 cos ¢t

70 sin t - 4 cos ¢
Y g 4

0

(94)

g &

_ ,o * e & p ‘—‘
as the reader may réa&ily véfify“by iﬁspection, noting incidentally
that pﬁl cos t = sin t'ahd p~1é1n"t,# — cos t.:.. One thus obtains
for the matrix representing:thé net equivalent current sources
feeding the nodes

[1,] E ),

- [GJx[D]hlf[ééj='67sin't'- 6’cos*tl= &2 sin (t—45°)
8 sin t +=8'oos'tl [g/é sin (t+45°)[
- P47 (95)

&,
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Straight-forward substitution into Eqs. 65 next ylelds .
for the parameter matrices ; -
1 o e=apds -2 alh b de - @]
(rl-= - X " (96)
-1 1 0| i1 3 2 0 1 4 10
d =13 28 ¥ Bl W o
s 3 .0 =i} §8 o 0o [T -I] [5 -2
Sod Bl SR o|¥ o g8 o*lo 1= 10l (o7
= ool o0 B .1 0 e _
of which the last could have been written down by inspection of
Fig. 6. Thus the equilibrium equations for this network become
(5p T+5) —(7p T+2) e 6+/2 sin(t — 45)
~(7p 142) (1007 1+120)| % leg] = | 8Y T sin(t + 450y ¢ (%8)

The computations shown in Eqs. 93, 94, and 95 suggest that
it might be a good idea to decompose the matrices [i ] and [e ] in
a manner consistent with the partitioning of [D]” 1 and (a] as
given in Eqs. 51 and 63, with the object of making the pertinent
expressions less unwieldy. 1In order to carry out this thought ‘
both for the loop and node béses, we partition the source matrices
55 pertaining to the branches as indicated by

an | . 8\
[is]= m???_,‘ pog [es]= ??.Pv' (99)
iSO’ _esO' 1
|

Here the submatrices tiskj and &skj contain the first A elements in
the column matrices [i ] ond[e ]; the succeeding P elements are

pJ and [e p]’ and the last ©
elements are combined in the portions [1 ] and [eso].

represented by thé submatrices [i

The source matrices [in] and[ez], Eqs. 62 and 75; per—
taining to node-pairs and loops are appropriately resolved into
_adultive ‘components as indicsted by i

i, J=(1 wix ¥ Lag ] * [1dy (100)

legl=legly + [ogly + Legly (10) @
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Ve then‘find that the expression for [1n]_g1ven"1n.Eq. 61 permits
the detailed reoresentatlon : s

10y =La, ] % ([18KJ b PR Cagyd Y v (b

L A O IR VO el S O (108)
Ll =T ) % ([i ] - Ec] p x [e sl (104)

while the: expression for EeZ] given in’ Eq. 72 may be decomposed
into ' '

Lo = Bl x (lepd - lpx L1, (105)
EEEJp = Fﬁzp]-x ([eSpJV~ZLrJ X~£iép]); (106)
Legly = BBy6) x (Legol = [8] P71 x [1l)e (107)

The se components of the matrices [1 ] ana [eﬁ] that are distlnguish—
ed by the subscriptsh Rlr TR e .. - to be confused with submaetrices)
are those additlve portions of these. source matrloes that are con-
'trlbuted by actual current and .voltage sources ass001ated with the
1nduct1ve, the resistive, and the ‘elastive branches regpectively.
The separate expr6831ons for these components are far less un-—
wieldy than those for [i ] and [eﬂJ - Moreover, one may have
sources associated only w1th one. kind of element (inductance, re-
sistance, or capacitance) 1n whlch .case -two .of the components are
obviously zero and need not confuse the calculations. Thus in

the last eXample above, there are no sources assocliated with the
resistive branches, and so three—fourths of the space occupied by
 the matrix (93) and half the space. occupied by 94 could be saved.

Another point worth emphas1z1ng is concerned with the way
in which the voltage source in.the problem of Fig. 2 is dealt with.
wherever“we‘enoounter"a yoltagessource_that is not in series with
a passive element or a current;source that is not in parallel with
a passive element, we have the cnoicegeither of revising the cir—
cuit according to the discussions given in Art, 7 of Ch. II, or of
considering the source as’a'degenerate branch, as is done in the
examples above. The latter scheme preserves the given geometry
of the network, a feature: that may ‘be important to the subsequent
interpretation of the analysis. It is well, therefore, to be
aware of the possibility of treating sources in these various ways.
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6. Energy functions

Denoting the elements in the loop parameter matrices [L],
(R], (8] by Lyys Ryper Sypc
any integer values from 1 to £, one may write the equilibrium Egs.

77 in the following more explicit algebraic form

where the indexes 1 and k may assume

oo : 7
d %
S (Lygp * Ryt Sik\[dt)ik= €515 1=1,2,...4.(108)

k=1

Since this is still_a~rather compact form for these equations, the
reader will better understand the notation involved through
writing them out completely on a large .sheet of paper. Thus

for 1 = 1 he should write out the terms in the left—hand sum

that correspond successively to k = 1,2,...% and equate these to
€pq He should then do the same for i = 2, i = 5,4and so forth
down to the equation for i = 4. 'He will thus understand with ease
and clarity how this system of equations appears in detailed form
and how the notation in Eq. 108 is to be interpreted.

He should next carry through the detailed evaluation of
these same equations.starting from the ecuivalent metrix form 77,
writing out all of the matrices explicitly and carrying out the
indicated matrix additions and multiplications. A facile under-
standing of the equivalence of the matrix and the algebralc forms
of these equations and their individual detailed interpretation
thus gained (and not achievable through any less, painful methodl)
is essential in developing one's ability to comprehend without
difficulty.the following discussion.

If we interpret the“quantities‘eﬂl, €possee€py a8 being
actual voltage sources acting in the. links of the network and
regard the loop currents il’ 12""12 as the currents in these
same links (which is appropriate because the conditions leading
to symmetrical parameter matrices are fulfilled), it is clear that
the expression

P=ey i, + ézgi2+..f+ezeiﬁ ' et (109)
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represents the total instantaneous pewer delivered to tﬁernetwork ‘-
by the sources. In order to study this flow of? energy throughout
the network we need to construct the eXpre331on 109 using the

Egs. 108. Visualizing these equations written out as suggested
above, we may form the desired result through multiplying the

equations (on both sides) successively by i

all of them.

l}

12"“16’ and adding

Through use of the summation ~sign we can 1ndlcate this set
of operations very:compactly if we multiply on both sides of EQ.
108 by i; and then sum everﬂthe index i from 1 to 4., On.the left
we obtain a double summation, since Egq. 108 already involves a
sum with respect to-the;indexwk. The reeult is written

ai '
¥ _ K
1 :E::;{Lik L@ Y Bttty

‘ b
[ikdt)=§::ieﬂi~ii’
| i=

(110)

where it is important to note that the time—~differentiation and

integration do not affect ii'

as’

If we now define three'functions
o= jimw;R W
2 i % "t
/] s ;
RS NI s
$od 2o Mk A
i,k=1 :
S
Y8 & 8. aa .
2 ffigi in 17k

(111)

(112)

.(115)

where q, in the last of these is used to denote the loop charge or
indefinite time integral of the loop current as indicated in

qk = Jﬂikdt “ or

i

k

qu

dat

2

(114)
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we obsaserve that quillo is eqguivalent to

4
i=1

For, through straightforward differentiation we see that

""" AT
g % N
at T F g Mx - (1), (116)
i s ’ i

since summation and differentliation are interchangeable operations,
and. by the rule for the derivative of a product

a1, ai, |
T M= 4 T Yy w o N o ooy
8o that 4

:\ A = 1 et ‘E%EEi 1k k dt

If in the second of these two sums we interchange the summation
indexes i and k (which is permissible since each independently
assumes all integer values from 1 to £), and make use of the
symmetry condition Lik - Lki’ it becomes clear.that the two sums
are identical. Hence

Y dik ( )
T el M W 8 119
s k1, T
T,k
Analogously we find 2 ’
il i
av _ N 8 D o= N 1 dt 120
| Ay U I% o 1K "4 xdt, (120)
1, %=1 1,%=1

and thus the equivalence of Egs. 110 and 115 is established.

Comparison with Eq. 32 of Ch. VII reveals that our present
Egqs. 111, 112, 113, and 115 represent a generalization of the
previous result pertalilning to a simple RLC-circuit, and that the
functions 2F,T, and V are respectively the total instantaneous
rate of energy dissipation, the instantaneous value of the energy
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stored in the magnetic fields associated with the inductances,
and the instantaneous value of the energy stored in the electric
fields assoeiate& with the capacitances. . Thus- Eq. 115 expresses
the conservation of energy through showing ‘that the time-rate' '
of energy supplied by the sources equals-the sum of the rate of
energy dissipation in the circuit. resistances and the time rate-
of-change of the net stored energy.

Althoﬁgh'F'dimenéionally is power while T and V repregent
energy, we speak of the three functions F, T; and V as the
energy functions associated with the networi - Specifically, T

and V are. referred to as. storeu energy functions, while F is

also called the loss function (first introduced into this sort

of analysis by Lord Rayleigh). In order to preserve homogeneity
in form for the three functions, -a factor 1/2 is written before
the summation in the expression for F as well as in those for T ks
and V, and for this reason it is 2F not F that represents the

total instantaneous rate of, energy dlosipation.

Until the reader has become assustomed to the notation
used in Egs. 111, 112, 113, it is well occasionally to write out
an expression of this sort more fully, as for example

RT = Lllili1 + B 111_2 t s Lyl

———————— G I R N . s, o (121)

Thus the first line in this expression is a summation on the
index k from 1 to % while the index i remains constant at the
velue 1; the second line similarly is a summation on k from

1 to £ while i = 2, and so forth. Since one may just as well
add the terms by columns, we see incidentallyuthat one can
alternately sum on 1 from 1 to % holding k-cbnstant at 1, and
then at 2, and so forth. In other words, the double summation
is carried out through letting the indexes 1 and k independently

agssume all integer values from 1 to £, as stated above.
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vis” 0

The expression 121 (compare also with Eq. 154 of Ch. III
and with Egqs. 39 and 44 of Ch. VIII) is thus seen to be homogéneous
and quadratic (all terms are quadratic) in the loop-current variables.
As mentioned-previously, a function of this sort 1s called by_'
mathematicians a guadratic form. The energy functiohs P and v

characterizing a linear passive network are thus seen to be quadratic
forms in terms of the network variables.

~One may alternately derive the energy functions in terms of
the node-pair voltages as variables. Starting from the Eqs. 66
pertaining to the node basis, and denoting the elements in the
matrices [I'], (@], [c] by T 4y Gik’ Cik’ the equivalent algebraic
form for these equations reads

n ' ' :
d dt)e, =i .3 1=1,2,...n, (122)
N (G, ¢ + G, +T Jﬂ k. 'l "3 g
i—l( ik at ik -1k :

in which ei...en are the node-pair voltages. and inl""inn are the
equivalent node-pair current sources. Since both sets of quantities
refer to the same node pairs, the total instantaneous power supplied
to the network by an actual set of current sources feeding the
pertinent node pairs is given by i |

= 3 oo e
P i Ragfo o M 2 - . D)
This expression is formed through multiplying the successive
equations in the set 122 respectively by e1,65,s++€ and adding.
The result is compactly written '

R de : _n
< e : e, R
“P= - . (C,.e, ===+ G, e.e +I e |e dt)= T O
Tamy LKL & 16°1% T ax 1J X =
O (124)
In terms ‘of the energy functions . . ; '
‘ n
1 o : 3
g NS, of § mers 1 e i ‘
PSR .Y - (125)
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<P
@ yald oS BT
e e,e Git . Bt
e SRS PR R
n
1 — :
T e :: A A3
2 ‘izifik"wi'wkf .- & (127)

where ¥y in-the last of these is used to denote the node-pair
flux llnkages ar 1ndef1n1te tlme~1ntegrals of the node-pair

voltages as 1ndicated in e
kL X s x -"dka
Vi = |edt or % =7k | il

k
we again find th°t Eq. 124 is an expre831on of the conservation
of energy, for it is equlvalent to

pie ...

. : "d

P EGE S P AT /;)\1niel, : 4 (129)

‘ Al e | l i=l

the detailed- Justlflcation for this conclusion being entirely
similar to that glven for the 1000 bL51s._ ‘

Although 1nit1ally a given network mey benthqught of as -
excited by voltage sources located in-'the links, we can sub~-
sequently assume . the éources'tp be. currents having the values
of the resulting 1link cu?rents‘withoutialtering in any way the
rest of the voltages and cufrents throughout the network. The
state of the nefwork,'however, is regafded as characterized 1in
terms of loop-—current variableslor in terms of node-pair
voltage variables according QBNWhether the sources are considered
to be a set of voltages or currents respectively. In a situation
of this sort, the functlons 111 1125 115 have values that are
identical with those obtalned from: -Eqés 1253 126, 127. The
former express the values for the associated energies in terms
of loop currents and loop charges as variables while the latter

. express these same values in terms of node-pair voltages and
flux llnkuges as varlables.
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So far, the variables and the sources are any time
functions. Let us now assume that they are steady sinusoids as
they are in many practical applications. For the loop basis we
then write :

e = % (I, e 9% % I W ME " (130)
%3 [ikdt % -2—%5 frge B I ® 0%, aa

where.the bar signifies the conjugate value, Pfeparatory to making
substitutions into the relations 111, 112, 113 for F,T and V, we

compute

wt -jwt jJot +-ike~jwt)

S T = =

13 i (Iiej

+ iie ) (I.e , (132)

which yields J. 5 5 1
T Jewt z 7 ~JROG . 3 .z -
iiik 7 LIiIke IiIke +IiIk+Iilkj

g " 347 WY w1
= 5 Re [IiIkJ+ 5 Re Eilke ] (133)

where Re is a symbol for "real part of" as used in previous:
discussions. Similarly we find from Eqg. .131 that

4 5 1 ; iy s ] jewt
e v St [Ii,IkJ - B [Iilke J’ by
2‘.0 o - 20) - 5 il o AR S

and substitution into Eqs. 111, 112, 113 then gives for the energy
functions in the sinusoidsl steady-state '

; : 3 SN B
= 1 I+ 1 : j2(Dt-:>>
it SOP NIRRT SO L il ML 2R 3 RiltIiIk‘I ’
| PR 1100y
L ' g S S

TR TR e T 2ot T
BE T A olyplglet gaboss ok Tyl
i, = — )k=

(136
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. iL\ L l Wl R 4&_‘ i : |
2wt \~ ;
V=~ 8% % -»——~—~Re ed s (137)
= 4 k ol o 2: . : ik i° k 4
a0 4""‘1 i e /I_—A,k“'l : &

where 1t is to be noted that the Re-sign is not needed in each
first term. For example - : i

2 P
e T‘
B~ s 1k 1 k = ; . (138)

) e o B 1

that is to say, this sum is real i spite of its complex variables
Ii and I~ The proof of this statement is readily given through
showing that the um_on:the_right—hand.51de-of Ec. 138 is self-
conjugate; that is to say it ié‘itsfown conjugate. Obviously ar

a number equals its coﬁjugéte;;thht number -must be real. Con-
sidering the conjugate of this sum which evidently reads

Y allda o iaat e no Fave-bb BE W (139)
1k—1ikik e T, '
its value is not changed if we intérchéhge~the summation indexes
i and k, since any other two symbols could be used in their place.
If we then observe that R ,= R it is seen that 138 and 139 are

el F¥ic*
identical. ‘

Each of the energ§'functibﬁs F,T,V according to the Egs.
135, 136, 137, is given by the sum of a constant term and a
double-frequency sinusoid, as is shown in Ch. VIII for the simple
RLC-circuit. The constant term in each case is the average value
of the energy function. We thus have

F o= % A AL % (140)

3
!

N
i

R T &
av "% g 1K (141)

-

V. === X 8§ Ifk. (142)
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In Art. 7 of Ch. VIII, expressions equivalent to Eqs. 136 and 137
are given in terms of branch currents instead of loop currents.
These are less general than the present results because the
relation for T given there does not provide for the possibility

of mUtual inductive coupling. Since branch currents, unlike loop
currents, do not traverse any common paths, and since the possibi-
1ity of mutual inductive coupling is not considered in the dis~
cugssion given in Ch. VII,:the sums appearing<there.(see}Eqs‘ 84
and 85 of Ch. VII) involve no cross—product terms as do the ones
giveh ‘here, rather only square terms are present. For this reason
it is clear by 1nspection that the constant term or average value
is greatér thsn or at least equal to the amplitude of the
oscillatory cpmponent, as a physieal consideration obviously
reduires'sinoe the'inetanteneeuS'value of the function would other-
wise become negatlve during some interVQl a conditlon that 1is

physically 1mpossible.

Although, for the more general expressions 135, 136, 137
considered here, it is not as simply obvious algebraically that the
constant terms are at least as large as the amplitudes of the per-
tinent oscillatory components, such an independent purely algebraic
proof can readily be given. ' Considering any one function by itself,
one -introduces a linear transformation of the wvariables which
eliminates the cross—product terms, whereupon the desired& result
is aaain obvious (as pointed out in the second paragraph of Art. 7,
Ch. VII) The algebraic details involved in this demonstration are,
however, net_justified at this point.

It is useful to obtain analogous results in terms of the
node-pair voltages as variables. Considering the functions, F, T,
V, as given by Eqs. 125, 126, 127 we write for the node-pair
voltages and flux linkages

2 (5,090 | o7Iub), (143)

T K

and ‘
' v, = Jekdt oyl (B,000- E JFINE), (144)
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It thsn follows that

i e - | o B Jeuwt
e,8, =3 Re [%ibk 5 Re [éiEke ¢ .(145)
g V.V, = L. pe |E EJ e Rer_E E ejqu (146)
£ g 13 ow? Lik et

whence substitution into Eqs. 125, 126, 127 yields

“B : e, n L
_3 ; % 3 5 Tl
P > Pyt ZRe e >~___~\ G, E By |, (147)
=1 55
Al ¢ ad PUMLLE  §
' U 54l - T
e BB AR e T D SR )
i, k=1 1,k= b
1 o g BT s '\“n"”‘ >y
e 7 —_— J ¥
i 5 I‘ijEiEk 5 Re | e 3 I'.lkhiEk . (149)
e e 40 a
i%=1 3 : 1= u

The Re-sign is not needed in each first term for the reason
given in the discussion of the enalogous situation on the loop
basis. The first terms acain are the average values and the
seébnd terms are double-freguency sinusoids whose ampiitudes
cannot (for a passive netwgrk) exceed the respective values of
the constant terms. These average values in terms of the complex
amplitudes of the node-pair voltages are

4 b i
F = \ - =
av 4 ( p;%lk BBy (150)
,b
n
1 - 2
Vav Sl > ,C E' B W 5 (151)

- e S NS YL (152)
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It is now a simple matter to obtain general expressions .
for active, reactive, and vector power in the sinusoidal steady-
state. To this end, consider the loop equ ilibrium Eqs. 108 for
the assumptions

Jwt Jut

—
-

esq and R T (153)

After cancellation of the exponential factor, one has

Z o
St X TR EREU N Al

Forming the conJugate value upon both 51des and rearranging
the terms slightly we have ;

- 4 f '
E =\,; B ~ & (L f} . (166)
-1»',‘E5i 1‘1k iy T @2 =
The total vector power, according to its fundamental .

definltlon given in Art. 4, Ch. VII, is now obtained through
multlplication by I /2 ‘and summatlon over the index i, thus

Y{L\ _JL___ ) .
L ) E1-=% PR 2.(-§ L, klii o5 SiinT-L
R %=1 L > » & i E=1 9
' | (156)

In view of the relations 140, 141, 142 this gives

1 2 r— ‘ %,

3 EiIi Powt iy © BF - JRu (vav av) (157)
whereupon

P = WWprs (158)

Qy = 20 (Vg -~ T ), (159)

which agree with the results obtained in Ch. VII for fhe simple
circuit considered there. ‘
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. Thus the real part of the vector power is the average

power dissipated in the resistances, and the imaginary part

or the so-called reactive power is proportioﬁal ‘to the- difference
between the average energy stored in the electric fields and that
stored in the magnetic fields. “hen these tWo average stored
energies are equal, the sources are not called upon to take

part in an interchange of stoféd'énérgy,‘éhd the net reactive
power is zero. As stated in Ch. VII, the reactive power G, 18 &
measure of the extent to which the sources are called upon to
participate in an interchange of stbréd energy. The actual
average power consumed by the network is the so—-called active

power Pav' v bt g

It is interesting to interpret ‘also Eq. 115, expressing the
conservation of energy, in the sinusoidal steady state through
substituting the expressions 135, 136, 137 for F, T, V. If we
observe that the last two equations:yieldw,

o 4T o 1 go | o260t %» ¥ BB sl St -
at 5 Re JwLik X ¥ (180)
and o | ;i
A St S0
o 82 == Re E \ 1]5 , 4

(since the constant terms in 138 and 137 do not contribute to
these time~derivatives), and group the sinusaidal terms in a
single sum, this substitution into Eqﬂ 115 gives

- /@ S —
S 22 x A : a8
o % O . 3 Re[éJZwt D Ry FIOL, o ¥ )Ik «
i 5

1,k=1 :k‘l =
or Y/ J- L= 1
ik
P =2rF, + % Reled?W ]ﬁg_mfRik+JwLik+ For Yk (s -1
=1 | k=1 -
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where we have separated the double sum into two single sums in
order to show that the one inside the curved brackets, according
to Eq. 154, is sinmply E,. Hence we have

i
\Z
- 1 2wt - - - R
P = Pav + 7 Re |e ~Z;=1Eil1 y (153)

which shows that the total 1nstaﬁpaneous{power supplied by fhe
sources equals a constant (the average power dissipated by the
circuit) plus a double~frequency sinusoid.

From the expression for the double~frequency sinusoid we-
can see, for example, that if our network is a balanced polyphase
system, this term becomes zero, for the source voltages Eivand t he
source currents Ii are equal in magnitude and are equally spaced
in time phase so that the sum  of the products EiIi over all
sources vanishes. In any balanced.polyphase system the total
instantaneous power is constent and equal to the average power
consumed by the network. o it

Of particular interest 1s the result 163 if the network
is excited by a single source. Letting this one be El’ we have in
this special case ;

av

R !Elzlg é.j?mtil‘. (164)
L -
Taking E, as phase réference and dehoting the inpu; admittance |
angle by ¢ , we have
Eaty|

|
= o
¥ - PaV 7

o

cos (2wt +-¢). (}65)

~

However, noting Eq. 157,

\

= / 2 2
B.I R ’ /
= -+ 0
—%?l = L%fl A/ Pav * Ray (166)
so that Eq. 165 can be written ‘ - e
: 2 2\;',:_. r
Bow P * ,\/Pav +Q,, cos (2wt +¢>), (167)
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a result which shows that the amplitude of the double~frequency
sinusoid equals the magnitude‘of“the vector power.

7. Equivalence of Kirchhoff and lLagrange edquations.

In this article we wish to show that Lagrange's equatlons,
which express the equllibrium of a system in terms of its
assoclated energy functions are identical vith the Kirchhoff~
law' equations so far as the end results are concerned. 'fe need
first some preliminary relations which can readi 1y be seen f rom
Egs. 111, 112, 113 for the functions F, T, V in terms of the
loop currents. If we differentiate partially wi%h respect to
a particular loop current, we find '

g X
e N a
= = A | (168)
o ’
I,” €3 1Kk
oT ; y
=== ) Lig o4 (169)
i B R R o
i
él’a — X .
54, »siqu. : (170)
k=1

These results may most easily be obtained if one considers
the pertinent function written out completely as T is in Eq. 121
It is then obvious that a particular 1oop~current, say 12, is
contained in all terms of the second row and second . column, and
only in these terms. Hence if we differentiate partlally w1th
respect to iy, no other terms are involved, and we fiat. . .

B A .
12 (2T)= L2111+ 2Llog i, + L25+15+...+L2313

* Lyt *oLgply teostlpgly, o (171)
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where we note that the term w1th Lzzyields a factor 2 because the ’

2
derivative of 12 is 1nvolved- However, since Lik Lki’ we can
rewrite this result as

from which Eq. 169 follows. Eqs. 168 and 170 are obtained in the
gsame-manner.. In all three, the summation involved is a simple
summation on the ‘index k. '

If we differentiate Eq. 169 totally with respect to time,

we have = . "l di '
4 (87 o R ' 4
at (é"{i)“ Sl BET 9 - St 9 had s
| 33 T
and Eq. 170 can be rewritten as
3V - .
I D N o Sl
3
ongy k=1
so that with Eq. 168 we obtain k .

0

/- 2

d (OT oF . &y o o!

+ = + &= = — 4+ .

x* ('a“i'i) a1y * 5a," 2, ueaf * RBuct SikJ\ at) 1,. (176)
k=1

Reference to the Kirchhoff voltage-~law Eqs. 108 now shows that these

may alternatively be written

o v "
%E(a_%ygl‘i’i Sq - Soi 1=1, 2, .l . (176)

This form, in which the voltage equilibrium equations are
expressed in terms of the energy functions, is known as the
lagrangian equations. From the way in which they are here obtained,
it is clear that they are equivalent to the Kirchhoff-law equations
although their outward appearance does not place this fact in evidence.

‘The Lagrangian-equations may alternately be expressed in
terms of the node-pair voltages as variables. To obtain this result
we begin with the Eqs. 1256, 126, 127 for F, V, T and form

oF
3y - 5 Gix®, (177)
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® A X
8¢y = KK s, B LR S, Tl DAY BT
aT tjlﬂr v “(179)
3—\‘7.; 1{—1! M

} Differentisting Eq. 178 totally with respect to time and rewriting
| Eq. 179 gives :

‘ = —tegeed.
‘ at {3 P s B A (180)
\ i k= % E By
! and . £y .
B_.I Al \n 3 B L 8 R - : i
| oV 4 4___?11: e, dt, | i s
1 k=1 i ik A :
from which one hes
! n 3 RES : .
o oV ap 3P N . G :
—_— p 0 o+ - ___' + . . »
® 8 % 00 R ;(Gik 3t POt jdt)ek (182)

In view of this result;‘the”KIrbhhbff41aw“Eqé; 122 may be re-
written in the form 7
g gaV)+ RE 488 < 30e-3 =1, 2, 000 0. (188)

These égain are the Lagrangian'eQuations expressing the network
equilibrium in termg of the associated energy functions.

It is significant to observe that Eqs.'176 and 183 are dual
forms of the Lagrangian equations Jjust as the Kirchhoff Egs. 108 |
and 122 are dual forms. It is interesting in comparing these
two equations to note that the functions T and V interchange
places, as should be expected from the fact that T and V are

s L

duals.
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8. Relation to impedance functions. ' .

In terms of the previous results of this article, it is a
simple matter to express the driving-point impedance of a network
in terms of its associated energy functions. . Thus Eq; 157 for a
single driving-point (which we can call loop l) yielﬁs

By, = 4F 4w (¥t Tyl 3§ : 5 4 (184)

or, taking the conjugate of each side of this equation,
Elll— 4F, ti4o e vav). ' (185)
Dividing both sides of Eq. 184 by 5,8, = £ or both sides

of Ed. 185 by I,I; —]I

l

ylelds respectively

I woim 4Fav+J4w(V it £
o 11 - wr . el oo AR
| o
and .
By : . _E_l.l = Z . ( = +J40~)(T v i a-v) b g
: 11 lz R,

" A more éffedﬂive form fof these results reads

Py ¥ WO~ T g oy

1

¥y, (@)
and P ' T L 4 Ve - . - | _-.‘ | G ) = P .
le(m) = 4Fav+ j4w(Tav - v )

av

i Sl 5 | Il = 1. (189)

In the interpretation of Ed. 188 one should consider Fav’ %
T,y to be expressed in terms of voltages as in Eq. 150, 151,.152,
for their respective values are then readily recognized to be
proportional to the square of the voltage El at the driving-point
since all other voltages F.‘.2 “'En are linearly proportional to ‘
El' In Eq. 188 we say that F, .., Vav’ Tav are regarded as being

evaluated per volt at the driving-point.

av’
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Analogously, in fhe in%erpfetation of Eq. 189 we associate
with Fav? Tav’ the expresslons 140, 141, 142 in terms of
currents. Since all other 1oop currents are linearly proportional
to Il’ the average energy functions are seen to be proportional
to Ilz. Their valued per ampere - & the driving~point ‘may be
regarded as normalized velues. Eq. 189 expresses the driving-

point impedance in terms of rthese normelized values of the

average energy functions. .” .-

As pointed out in Art. 6 of Ch. VII where these same
expressions for the driving—ooint admittance and impedance
functions are derivead, in terms of the simple RLC-circuit, one
recognizes by ingpection that a‘'resonance condition is one for
which the average stored energies are equal, for the lnput im-
pedance or admittance then becomes purely real, It is also clear
that the stored magnetie'energy predominates when phe reactive
part of the impedance 1s positi#e, while a negative reactive part
indicates that the stored electric energy_predominates. Thus
these characteristics oﬁtthe;impeQance are more clearly and
directly related to the physical broperties of the network.

The reletions 188 and 189 in a sense permit the same
simple correlations between impedance or édmittance and the
‘physicel network to be mede in ali:eéees;“that are'otherwise only
possible with the simple parallel or series RLC-circuit. They
are, however, res tr}cted in that the impedanoe or admittance 1is
.expressible only for pure 1mag1nary conblex frequen01es (also
referred to as real fv°Ouen-L@e ‘since’ they correspond to
sinusoids with steady ~mp11tud a). In the follow1ng we shall
remove this restricsion throug 'h the’ introouction of a related
.set of energy functions that’ have sighificance fer any cgmplex
velues of the frequency varlable B'= 0% J0; and'simulfénebuqu
we shdll generalize the reSult g0 as to include all possible
transfer impedances-or admittances as well-'ds the driving—point
functionse.
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Starting again with the loop equilibrium Egs. 108, let us .
substitute sy i Sl ey '
egy = Eiéét and 1, = IkeSt (190)

and qbtain after‘oanceilétioh of the exponentialifactor

2
<N ; 2HGr o " . ; v
L (L s+t —HT =, 121, 2, ... L BRI -

K=1

The successive equations that result for 1 = 1, 1 = 2, and so forth,
we now multiply respectively by il’ iz, e Tz and add. If we
introduce ‘the notation .

ST . 4
s PR TP W, i ;
ML o0y oty ol o ubeglaly (192)
we Yjkrd i,k=1
e iﬂ . 2 .
iy Sl o g P ;i '
AR e N B S 1o R (193) ®
| 1,51 1,%=1
:’."_"\ & . “—'“_‘\
wbe g o ety ¥ b S b (194)
1% ;%=1

the result may be written

Vv s
P
o T P R R SN (195)
=1 41

The equivalence of the forms for T , F;, V. shown in Egs. 192,
193, 194 is seen to follow if we interchange the letters i and k,
which are merely summation indexes, and then note the symmetry
condition L,y = Lyy (and so forth) for the parameters. Although
T, 1s the only one of these three functions that has the dimensions
of energy (Fo is dimensionally power, and Vo has the dimensions of
the timeSrate~of-change of power) we shall for the sake of simplicity
refer to all three as energy functions. Their relation to the

v v is discussed later one. .

functions Tav’ Fav’ a
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Our next objective is to extract“T?om Eq. “¥55 some ather
general relations concerning driv;gg—polnt and transfer ilmpedances.
In this regard we observe first of all, that in most. cases we
are not interested in having sources in all the loops of a
network. In order, however, to leave this question in a flexible
state, we shall assume that, of the £ loops in. ‘the network, only
p will be considered as being points of access, and permit p to
be any integer from 1 to 4. These.p. polnts of access are the
terminal pairs of the voltage sources located in 2 of the loops.
The network as a whole we assume to be enclosed in a box with
only the accessible terminal pairs brought out.

6.00 Elementary Circuit Theory Ch. X

Since we are interested only in the currents at these p
terminal pairs, we wish to eliminate all other currents involved
in the Egs. 191. 1In order to indicate specifically,k how this
elimination is done, we may assume;iwithout introducing any
restriction, that the points of aceess correspond to loops 1 to p.
Use of the abbreviation

Cik "

S ‘ _
1l s =g I i p

then permits the resulting equilibrium Eqé} 191 to be written

(197)
€py Tyt & poTotesatlyyly <0,

thus showing that all but the first P lbopé.have no excitation.

t
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"The ¥ -matrix of this set of equations we now represent in the

'partitioned form

‘r... i ; ._.(
¢ ¢ By 4
11 12 1£‘. & | (198)
re moi ek ¢ v ol A :
W T ?; o ;25 ' j9¢ : ‘5q
—————— . - —4 - —l-— ondibaa
Aﬁtgﬁl' o = %p Mgt 0" ) g
¥ T |

where the subm trix [g ] contains the elements of the first p rows

and p. columns, [Cpq] contains the elements of the first p rows and
the last q columns where q = Z—p, and so forth._ The column matrices

.,izi. : , EB ,
{1]= |« | -and [El= ’ (199)
1) " |0
are correspondiﬁéi& partitioned as indicated by the férmsu L‘
o E’* _ .
fr)= £ and [BI=} B , ’ ) (200)
Iq : 0

in which [Ip] and [(E_] are column submatrices containihg the first
p elements in [I] and (E]; [Iq] contains thé‘last g elements in [I],
and [0] 1s a column of q zeros. The eqs. 197 may then be written
more compactly as ¢ o

(8 plxlr J+08  dxl1,]= [E 2 |
€ olxCT, T8, JxlT, )= b e

The second of these equations may be -solved for [Iqj giving

e 3
[1qd = = [Lyqd " xllyp e [T, A3 iskvonic (298)

and substitution into the first equation yields

([ﬁpp]~[€pq)XEqul* x[qu] ) x [Ip] [Ep] (203

which symbolizes the desired set of equations invélving only the
currents at the accessible terminal—pairs.
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If we introduce the square impedance matrix of order p

= £ -]
[pr] = [Cpp] [ﬁpq] x [quJ X [qu_J

le Zlg Oilzlp

~~~~~~~~ RIS S i (204)

we may write'ﬁne:Eqs:'205.in the. equivalent algebraic form

:,./_.,‘;L ik x

I = Ei, i = l 2 s Do ,..’ A:_ B 2 (205)

’This is an abridged form of ‘the Eqs. 191 apnrooriate to the

s1tuation 'in which voltage sources are present in the first o)
loops only. .The coefficients zikin these: equations are determined
from thel,, (Eq. 196)characteriz1ng the Eqs..191, in a manner
indicated by the matrix Eq. 204 ' The transition from Eqs. 191 to
Egs. 205 ma.y be described ‘as a; process of suppressing or
eliminating the inaccessible or unwanted currents.

Although the Eqs. 191 or 205 are derived specificaily'on
the assumption that the E's are sources and the I's are'responses,
they correctly relate these voltages and currents even though
gome or all of the I's may be sources angd: .corregpondingly some
or all of the E's become responses. If the Il"'Ip in Eqgqs. 205
are regarded as sources, then the resulting E ...mp at the re-
spectlve terminal pairs are exnlicitly given by these equations.

Under these ‘circumstances the;;erminal pairs are all open—circuited,
and for this reason zik.are~referred,to as a set of_gpen—circuit

driving-point and transfer impedances characterizing the p

terminal-pair network (compare with the analogous 'quantities
described in Art. 7, Ch. III for resistance networks).
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Specifically, if I1 is the only nonzero current source, then .
B
E2 = 22111
Ep - ZplIl’ (206)
or
21, = B/ '
%p1° By Bgidy | (207)
251 zlp-Ep/Il. - .

¢ 1s thought of as being equal in value to one reference ampere,

then the complex voltage. El-at terminal-pair 1 is numerically identical
with the transfer impedance 2907 zgl; and so forth. In any of these
transfer relations like E2 = 21211, it is important to observe thgt

Il must be the source and Es the response; and that this specific .
relation is invalid if Egnow 1is regarded as a source and'Il as a

response because this change of attitude violates the conditions

under which the particular relations 206 are extracted from the

general relations 205 (namely, Izis no longe. zero).

Another set of particular relations may be extracted from the
Eds. 205 on the assumption that Iy is the only nonzero current,

By = 29015

By = 25015 ; ‘

~~~~~ hi . _ d (208)
Ep zpzlz,

from which we may again obtain relations for the z's like Eqs. 207
which lend themselves to physical 1nterpretation; and once more it
must be emphaSized that the transfer relatibns'apply only if I2 is
a source.
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The driving—point relations like-E]s - zllll or E2 = 22212’
in contrast, are valid regardless of whether the voltage or the
current is the source because no restriction is placed upon the
nonzeno Il'in Egs. 206.or upon the nonzero 12 in Egqs. 208. A
driving-point relationAelways remains valid regardless of which
of the quantities E or I is the source ahd which is the response,
while the derivation of a transfer relation invariable involves
a restriotion wthh fastens the roles of source and responge upon

specific ones of the two quentities E and I.

If we now substitute the expression for Ei as given by Eds.
205 into E Eq. 195, the right-hand summation 1n the latter is
restricted to the first p termsy and we have

o <l . P
. ] aged \ % L= _= : 3
L iR TR Lo st des f0003

in, which thefequivalence.of.the1wo-double sums is seen to
zki' As later dis-
cussions will show, it is possible to determine all.the properties

follow from: the symmetry condition'.zik =

of driving-point and trensfe; impedances from this result. At
this time we shall consider only the specific relation obtained
for a single dr1v1ng—p01nt (p-l) which reads

<

e ey ' '2
R T zllilll (210)
whence gm P 4V 78
i G el Do O o
11 ‘2 ¥y ¢ 2% v 3 . :
ﬁﬂ e = (211)
or 2397 (8Tt 570 T ds : (212)

With the expressions 192, 193, 194 for T ,F_, V_, this
result is the desired generalizatlon of the one glven by Eq. 189
to permit the consideration of any complex frequencies. Its
usefulness may pe attr;buted_to the fact that the functions To’
Fos VO are real and positive in spite of any complex values that
the Ik
arbitrary complex frequency s. This fact may readily be proved

's may have as a result of satisfying Egs. 191 for an

through writing
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i | + Jbi, Ik : a, = Jb, A (213)
in which the a's and b's are réal but otherwise arbitrary. Then

- Y IiIk (aiak+b1bk) * j(ak 1— aibk)' PLLri(214)
Supcose we substitute into Eq. 192 for T , and consider first
the imaginary part which may be written as the difference of “two

sums, thus

b )
Ladly 8 R e Ll s £ Er0pad el
£ k—l 1k%k°1 T %=1 ik 1 k g Y

If in the first of these we interchange the letters 1 and k (which
we can do because they are merely sumnation indexes) and then note
the symmetry condition le Lki’ it becomes clear that thetwo sums
in 220 are identical and hence that their difference vanishes. The
first‘part of our above statement, namely that TolS real for any
complex Ik's, is thus proved.

Substitution of 214 into 192 now yields T, in the form

) 3 ng’ e tr
. D B ot L L b, b | (216)
| 1k71%% 1k_likik

Reference to Eq. 112 shows that each of these double sums is a
quadratic form like T representing the instantaneous value of stored
magnetic energy. In Eq. 112 the variables are denoted by the '
letter i while in the sums 216 the variables‘involve regpectively
the letters a and b which, like the instantaneous currents ik, are
real qQuantities. Since the quadratic form T is related to a
passive network its values cannot become negctive no matter what
values . (positlve or negatlve) are assiged ‘to the iks since one can
through the insertion of current sources force the currents in a
network to have any set of values, and yet the instantaneous stored
mqgnetic energy;mnsf alweys_naveAé positive value.
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e e

The property of a quadratic form like T to have only

positive ‘values no matter what the velues of its variables may
be (it is then referred to as a positive definite quadratic
form) must clearly be the result of 1its coefficiehts Likhaving
certsin relative values; that is to say, it is a property of
the matrix (L] cheracterizing the quadratic form. It follows,
therefore, that the quadratic forms 1n Eq.'216 can have only
positive values, and hence T, can have only positive values.

Since the quadratic forms 193 and 194 for F,and V_ are
identical in form with T , the same argument shows that all
three functions T ’ F ; V are real and positive for any
complex frequency 8, and that thls presult follows from the positive
definite character of the instantaneous energy functions T, F,
and V as given by Eqs. 111, 112, 113,

The expression 212 for a driving—point impedance is obviously
not an explicit one so far as its dependence upon the complex
variable s is concerned, for the funetions T, FO, Vo, implicitly
are functions of s since they depend upon the Ik's which are
solutions of the Eds. 191 for a specific value of s. Nevertheless
.the representation for z44 as given by Eg. 212 enables one to
determine all of the properties pertinent to the driving-point
impedance of a linear passive network. Such determinations,
which are invaluable to devising methods of synthesis for pfe~v
scribed impedance functions, will be carried out in the discussions
appropriate to these topics.

At present we wish rather to show next that analogous
results pertinent to admittance functions are obtained through
following a procedure which is precisely dual to the one just
given. Thus in the node equilibrium Eds. 122 we introduce the
assumptions : : '

= .0 and e, = E est

iy = 14 g -y (217)

and, after cancellation of the exponential factor, have

oA

N

r
gii(ciks+e G AEE =151 =1, 2, o0 n. (218)
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The successive equations in this set we multiply by El’EZ"‘fn’
and then add the results. Introducing the notation

= wr F TG
v = k. Oy = : == :
o 2o Gl T o Do O IS (219)
. ik k —a "1k 17k’
f,x=1 k1 k=] ik 1k
: * # - | ,i_n__\ 5 _
Y §i~;iGikE1Ek = St (220)
) J
3 My ¢ - 3% o S0Y
e \ - = ™ i by bt i" - = AR -
T,O < f:‘k_'—:giknidk g ﬁgiikmimk’ ; (221)
J "

in .which - the equivalence of the two sums in each equetidn féllows
from the symmetry condition_cik = Cki eté., the result of these

operations yields
™ s
* ; 'TO _\_nﬁ__»_“ .
o Lo vkl S ibets Sl s e (222)
i"_’:" l L. ik . .

This relation is dua% to Eq. 195 obtained on the loop besis,
* - s
and. the quadratic forms VO Y I are regpectively dual to To’

o 0]
Vo" Like the latter their values are reel and positive for

o}
all complex Ek—values resulting from the solution of Eds. 218 for a
chosen complex s—velue, In order to consider these equations

cappropriate to a p terminal-pair network, we shall assume that
nonzero current sources are applied only to the first p node-pairs,
and with the abbreviation
S Jik _
My Tilyxd® ¥ Gyx ¥ 750 (223)
write the pertinent Eqs. 218 in the more explicit form

N11E) MyoBotecetny By = Ig
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The n ~matrix of this set of equations we now represent in

the partitioned form

(o d=

T e W

— - e e e e e e

(225)

entirely analogous to the partitioning used in Eq. 198 except

that here p+q = n instead of 4.

(E]=

0 |

1
2

'E
E

E

A

and [I]=

|

are correspondingly partitioned as‘indicated by

=

B = E'

(E] B
B
q

whereupon one may write the Egs.

form

and [Ij =

[npp] X [Ep] + Enpq] X [Eq3‘=

anpJ X [EPJ.+ anq].g EEqJ .

The second of thesesequations
PRI S U
Lo | Taq "ap 0

whence substitution into the first equation yields

&

]
(c].

1,

e —

Y

[

2

The column matrices

us ~1 - E n
( anp]“ [npq] X Enqq] i [Thp])_x LEp] —[Ipl

(228)

(227)

224 4in the equivalent matrix

(228)

may be solved for [Eq] giving

(229)

(230)

which symbolizes the desired set of equations involving only the

voltages at the accessible node-pairs.
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If we introduce the square admittance matrix of order p

i B ' 1
[¥5p) = [ mppd = [mpgd % [nggd ™ x F“Qp]
Y11 Y18 °°* Y1p
Y21 Y22 *** Y2p

—— e e e Sm e e e

- , (231)

we may write the Egs. 230 in the equivalent algebraic form

B

"\“'—“\
AR

=471k
This is an abridged form of the Eqs. 218 appropriate to the
situation in which current sources are feeding only the first p
node~pairs. The co—-efficients Vi in these equations are deter—
mined from thenik(Eq. 223) characterizing the Egqs. 218, in a
manner indicated by the matrix Eq. 231. The transition from Eqs.
218 to 232 may be described as a process of suppressing or
eliminating the inaccessible or unwanted node—pair voltages.

Bod 3%k s (232)

E 4

k:

Although the Eqs. 218 or 232 are derived specifically on
the assumption that the I's.are sources and the -E's are responses,
they correctly relate these currents and voltages even though some
or all of the E's may be sources and correspondingly some or all
of the I's become responses. If the El...Ep in Eqs. 232 are
regarded as sources, then the resulting Il...Ip at the respective

terminal—-pairs are explicitly given by these equations. Under

these circumstances the terminal-pairs are all short—circuited,
and for this reason the y;, are referred to as a set of short-
circuit driving—point and transfer admittances characterizing the

p terminal-pair network (compare with the analogous quantities
described in Art. 7, Ch. III for resistance networks).
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Specifically, if E1 is the only nonzero voltage source,
then : ‘ ; ;

: I, = ¥13%y , , .
12 ® 5% 4 “ v . (288)
or
11 = 11/ _
Vo1 = V127 Ip/Ey T Ao
A VIp/El .
If E, 1s thoughtof as belng equal ih'valué tb one reference volt,

1
then the complex current Il at terminal-pair 1 is numerically

identicel with the driving-point admiﬁtance Y13 the complex
current I2 at terminal-pair 2 is numerically identical with the
transfer admittance y o = ¥, ; and so forth. 'In any of these
transfer relations like I, = yiBEl’ it is important to observe
that E; must be the source and Ig the response; and that this
relation is invalid‘if'l2 now }s regarded as a source and El

as a response because this change of attitude violates the
conditions -under which the particular relations 233 are extracted

from the general relations 232 (namely, E2 is no longer zero).

Another set of particular relations may be extracted
from the Eds. 232 on the assumption that Ez.is the.- only non-
zero voltage source, namely '

Y1280

(235)
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from which we may again obtain relations for the y's like Eqs. 234 '
which lend themselves to physical interpretation; and once more it
must be emphasized that the transfer relations apply only if E2 is

a source.
The driving-point relations like Il = yllEl’ or Iz = Yoo

EZ’ in contrast, are valid regardless of whether the voltage or

the current is the source because no restriction is placed upon the
nonzero E1 in Egs. 233 or upon the nonzero Eo in Egqs. 235. As

stated before, a driving-point relation remains valid regardless of whio
quantity, E or I, is the source and which is the response, while :
a trénsfer relation is valid only for a specific assignment of

the roles of source and response, namely that one which is implicit

in its derivation.

It is significant to mention in passing that if the Eqgs. 2095
and 232 are derived. for the same p terminal-pair network, then they
must obviously be' inverse sets, and the matrices [z__] and,[ypp] 2
Eqs. 204 and 231, are inverse. Specifically, if these matrices have ‘
the determinants Z and Y with cofactors Zsk and Ysk’ then

= b =Xy PO Z :
- ks - & 4
Bt =L T and y_,. = —= - (236)

If we now substitute the expression for I, as given by
Eqs. 232 into Eq. 222, the right—hand summation in the latter is
restricted to the first p terms, and we have

w
v® . S p " it
s + F — S\ oy % \ -
R 8 i Py BBy = » YiuBiE. , (237)
1, %=1 M e ¢ 417?51 ikTivk

in which the equivalence of the two double sums is seen to follow

from the symmetry conditioén yik= Yict® For p = 1 we obtain the

specific result pertinent to a single driving—point.

*
* * T (2

- = _
8V, *+F, + g~ = V1188 =¥y El} ; (238)
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y. .= o o - i (239)
11 IE | ©
P, o
* *
e R (sVo +F, o+ ES )
B, =1° (240)
% +* *
Together with the relations 219, 220, 221 for V.0 Fo o To’ this

result is the desired generalization of the one given by Eq. 188

permitting the consideration of any complex frequency. Like the
expression 212 fgr ill’*its usefulness stems from the fact that
the functions Vo ,Fo, TO have pogitive real values for all complex
8, the method of proof for this statement being precisely that
given in the consideration of Tys P Vo'

It remains to establish relations between Ty FO,Vo with
and without asterisk, and Tav’ Fav’ Vavthat apply to 8 = jw .
If Eqs. 195 and 222 relate to the same network with sources at p
points of access, then the right-hand sums are conjugates, and
hence the left—hand sides of these equations must likewise be
conjugates; that is

<
£ 3
%

%
& T
8T, + P, * R =EY +F + B , (241)
S

and so we have
<

e * L l!g
F “FO,VO-' Isl VO,

» 12
¥ : 8 /!ﬁ . (242)
Comparison of the expressions for these functions with
oy Vav’ moreover, shows that for s=jw

one may make the identifications
*

pertinent ones for Fav’ iy

R R T wow TaRs w % -
Fo =0, =FPh B, = 82,20, fu3 ¥, = 40 = ¥ 42 + (R48)

For complex s—valgei, a*physical interpretation of the functions
To, Fo’ Vo’ or Vo FO, TO is not readily possible, but this fact
is of little consequence since it is their mathematical rather
than their physical significance that justifies introducing

them into the present discussions,





