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1. The classification of networks,

Linear passive networks are distinguished Yvan ons another according
to the kinds of elewents that are involved, and in of their
interconnection. Thus & given network may be us consisting ofxe}

resistance elenents alone, These are referred to VEN ee networks,
fous as

t special wortiy of separave ae ext in crder
o 1}oneSinilarly inc OL

en :
:

of compiosxity come the so-called two-clemant rove the
LO-networ' (t. 3: ta vy 3

assumption, no resistances), tae a woier in uctive effects
are absent, and RL-networks in which ara absent. The
RLC-network then represents the general cise the eetevory cf linear
passive networss.

2. The graph of a network.

Quite apart from the kinds of elements involved in a given network ia
the all-important question of network peoustry that concems itself solely
with the manner in which the various elements ere a and interconnected
at their terminals. In order to enhance this assoct of 2 netvork's physiecl
makeup, oae crequently draws a schematic rep: & entation of it in which no
Gisbinct o pel ede between kinds of ment is
represented mereiy by a line with small circles at one " noting tarmi
nals. Such a graphical portrayal showing the 1 1.

of slenants only, is called a graph of the given P 1 shows
an example of a network as it is usually draw so 4s to distinguish the vari-
ous kinds of (part (a)), and how this eppesrs when only
its gocuetre 7 3 (the gry: of put (t)). vurbers
associated with the vurious branches are added for treir identification only.
The terminals of the branches (which are cumuon to tro or iore branches where
these are confluent) are referred to as nodes,
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Fige 1

There are situations in which various perta of 6 network are only in-
ductively connected as in part (a) of Fig. 2 Wore two paics of mutually
coupled inductances srs involved. Here the corresponding graph (show in
part (b) of Fig. 2) consists of three separate parts; end it is seen also
that a node may be simply the terminus of a single branch as well as the

a >

Given network Network graph
(a) Fig. 2

point of confluence of several branches.

44

(>)
With tae graph of a network there are thus associated three things or

concepts; nanoly, branches, nodes, and separate parts. The graph is the
skeleton of a network; it retains only its It is
useful when discussing how one should best go ahout characterizing the net-
work behavior in terms of voltages and currents, and in deciding whether a
selected set of these variables are not only independent but also adequate
for the unique characterization of the state of a network at any momente
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4 Betcokic, 4,
in parts (b) and fo) L swee of the Pmwacvas by a a Linen,

the berauches show; dotten of
the e3ses3 shown in (b: sud in ie}, & geaoh having ali

» J,ed

graph (a) but no paths. This of
je called a "tree! the 1 tts (hi :

More specificaliy, @ beoe Gefinec ue seu Qi

ginal yvaph that is just sufficient du number tc 4

ane no branches, it is clear thet tae first added ne

tosreafter one al ovary is necoed scr a oie 4 be
no wore than the 2 of 4 oc con

Ne & :

} a a i

Jnnotes ror we:

B4
that thethe nodes, then it ia ikewis

no closed paths, for the eveation of a closed petn involves Linking of
tvo nocas that are already and hence involves OF mere

28 : r : i}

branches Than are al 2 At oh Jed ceveay to connect co:

a giver network grapn it ls possiple to araw m + san &
: :

the procass just describec ig not m mique ons. G 1 teed, ever, con
neets all of the ny ucdes, sonsists of

1

whien cre any given choice, 8S wile ouBSa +3

: ones shom dotve oo

fig, A, : there ave 2 of there, i 3

gram is denoted ad

o

:

ax to wa €
a Gh 3t 13

ALseussione

4. Wetvers veriebles.
Ts pestonse or kenavior of retwork is compet d

tha voltages in all of ite branches : : :

rents, nowever, are related to the branch volteges u-rough : :
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that characterize the voltanpere behavior of the separate ele-

au... inetanee, in a resistance branch the voltage drop (by Ohm's
Joo

& the current that branch times the pertinent branch resis-1 :

a the .cltage equals the reciprocal capaci-
ties the :wse of the branca current; and in an induc-
the volt: given the tive derivative of the current with

1 though the latter relations
:ustances n the neuwork arebecome somewhat 3 nen goveral: :

Gouplea (es be Ou n detail), their determination: +

weg involve the : of the slenanits. One can
:"Ly branch-voltages directly and: t :

bly to the oranen suerte.

Ve may, therefore, regard either the h currents alone or the branoh-
network behavior. If the to-alone as adequately chaacterizing

4 "umber of branches is dsnoted by », then from either point of view we have
that ples the vole of variables in the problem of

finding the netvork renpoic We a new wt {nat either set of b quanti-
v.65 3 not an ind oot ona, but . at re... variables suffice to character-
'se ine network 8 whebher on @ t or a voltage basis.

If-4n a given + a : is ther the totality of b branches
ecparated into Gwo grouns; the tree beuches end the Links. Correspond-

ingly, the branch curveats : aspareced into sree-branch currents, and link
currents. Since <. removal or of ics dec all closed paths
endl ence by force renders brench eur it becomes clear that

wet of setting only the mt® : save forces all
network to be zero. :Phe Link 2lcue hoid the power of life

:

ouath, 80 to speak, over the entice nett Their values fix all the

it those considerations it is not necessar wnat wa corcerm ourselves with
garner in which the network i. alt oupn cum? sort of excita-
a implied since all + a wil? be zero
"ese of tue 1 a*, t. reader insists
ing spectfie ka of ci atin Ye cw, gicture in

mud & esi] bey toys.72 coabocs 3 rendom in-
anher 2

:
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that is, it wust De possible to express all of the tre-v x

4 uniquely in terns of tne link currents.

unference to be drawn fvom this argument is taat, of the u bra: th

un @ network, only are indep 4 ia the smallest number

in terns of which all others can be expressed uniquely. This
be sean to follow from the fact that all currents become zero

Lie currents are zero. This it is clear that the nus her of indepenen
reves is surely not larger +nan #, Cor if one of the tree-branch 7

"+ aimed also to be inderendant, +en its value would have to re e
w.art all the link currents are Set equal to zero, and this
tiv impossible physically. It -3 equally clear on the other

of independent currents is « rely not less than -2, for the. wor

* poserble to render ail Curi in the network zero with one

RB in place, and this result is not possible tecause

: any

+

:

ieng ag some of the links
* in terms of currents, it mus. be possible to express uniquels tn

a ietwork in terns of -? veriz alone. As will be chown saver,
may be any appropriate set of link currents te ty

@hoice made for a tree), but 'cre generally they isa; Le chosen in

ariety of ways so that numerous specific requirenenis car be acc n>

sOALogously one may regard the bre: ch voltazes as seperated int.
oapa: the tree-branch volta.ss, Mink voltages.
ranehas connect all of tie nodes, it : clear taat if t:
-an are forced to de zero (through gf} ".-cireuiting. the 2:

arc.) than all the node potenticis : 8 coincident 2 +

s are forced to be zero Thus, act of Setting the

equal to zero, forces all vol ayes in the networ. be

tstnen voltages alone hold the pc of Life and dee sa
ire network, It must be possi: therefore, to nese 411

:

::

quely in terme of tre € -oranch veltagesei es wri 2

7
:

te the orancnes of by tran ne
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then tiie can be independent because one or more of the link voltages would
then have to be independent, and this assumption is contradicted by the fact
Lbac all volieg2e become zero through short-circuiting the tree branches

On the other hand, no smaller number than n voitages can form the
set, for it is physically not possible to forces all of the node

te eciueide so long as sone tree~branch voltages remain nonzero.37:

Phos one resognizes that the state of a network can uniquely be charac-
Fer eitne by means of.2= b-n,+ 1 currents or by n = ni-i = b~-@ volt-

ges. The its may, for example, be any set of link evrrents, and the
veltesc3 may Le any set of tree-brench voltages. Since, in general, n #@,

: of : of : variables involves a
of : than does its in tems of

"o.tege There is nothing inconsistent about this conclusion
Since Wa are at present coisidering the question of independence among
voltages or currents from ra geometrical point of view only. Dynamically,
the nuvber of + variables associated with a given physical system
determines uniquely its 80- degraes of freedom; their number depends
ne upon any ALLOOTBAC mahbod cf derivation, nor upon the manner in

a Tie veriables ce defined. It is, hovever, not appropriate to raise
nese cvestions at this tle, since we are at the moment considering only
those features of our problem that ar2 controlled by the geometrical aspects

"any : ent7 :

f : : YLUE

dent

of che given network,

5, The concept loop currents; tie seta end tie-sat schedules.

:

3 :

(d):

:
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If the branch currents the network zraph of Fig. 5 (a' are denoted

tha loop currents of tthe grapa of Fig. 6 (a) ere denoted by iy, ig, ig,
3 Jo,by : CAE breneh

then we can make identifications
J, = Je = in, 33

* i). {3}

Through comparison of Figs, 5 (a} end 6 (a) one can then readily express the

3
:

remsining tree-branch currents es aporopriate superpositions of the loop

currents, thus

ds, i,-i ty1

4?

\4)dy i. toy3

dg 4

or, being mindful ef the reluticns 3, have

ae -

Sys

dg
= ~ Jy 3

2

{53

's = i,- dy
ese q last four equations express the tree-branch currents, and

aJo:

guar a in terms of the link currents. Thus, of the eight beanch cur-
renis in the graph of Fig. 5 (a), only four are geometrically independens.
There four are eppropriate to the set of Linky associated with any sslected
teo.. Fos the tree: Fig. S-(b), the link currents arc jy. joy J soe
the tree of Fig. 5 (ce) they are jy, joy Js, Jy. Hexe we nay write, in place

ly;

: dy

of Fas, 3,

fhesc leop currents circulate on the contours indicated in Pig. 6 (b}, :

again are found throughinserting, one et a time, the branches 1, 2, 3, »

into the tree of Fig. 5 (e}. The tree~branch curreits in this ease ore =.

L1? Ja i.2* Js i3? Jy = 4).

preesed in terme ox the loop currents by the relations
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a @@ wore the fact that only four of the eigut brancrhus making evidei >

the veader is centioned ageinst concluding that any four of the :

currents are geometrically independen
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tae Acru construction thugs be dome inalk a/P tk: to :

Lwe WATS, : we by rows, a get of
(for exurple, those asscciated Wit. 8 3eiected trea}, or by cussing, a

cordirg « @ set aquatious expressing branch currents cama ler
currents construcied ty

the closed paths upon which the associa' ad loop
and if conssructed oy rows from a giver set of closed paths, the cole +3 of

the eeauit gohedule automatically yield the pertinent relations Tor Ue
branch currents in teems cf the p currents. This type of senedule jwnich
Cor reasons later is calle i te-get schedu.e) 8 tw. revealed >
& compact and affective means for indicatang beth the

the clesed paths and the vesus ing algebraic relations

: Seve FAT n

:

:

:

renis and iscp currents.

Regarding this relationship, one may initially be concemsd apout its
uniqueness, since there are fewer lecp currents than branch currents. Thos,
if askea te solve the Eqs. 12 for the ieop currents in tamis of branch gur-
rents, one might be puzzled by the fact tnat there are mcre equations thar

unknowas However, the number of independant equations emong This set

equais the number cf unknown loop currents (for reasons giver in the pre-
veding discussion), and the saquations collectively form a econs.stect $97

Therefore the desired solution is effected through separating fron tas Les

an iadependent subset, and solving these. Knowing that Lhe equations ware

originally obtained through choice of the tree of Fig. & (ec), thus dee, :

brane eurrenca J1, Jos Jy. jz as a possible independent set. indicates
the corresponding equations among those given by 12 may be a3 a .n-

dependent subset. Thesa yiead the jdeatifi cations +, > Jy +. 2

ig = J7 as indicated in Eqs. 6 for this choice of tree.

+ :

tt is, however, not essential that the independant suose: chosen trom

tne #q8. 12 be this particular one Thus. if we consider the tree of Fig. "

as a possible choice, it becomes clear that branch currents', },, Jq. Ig are
an independent set The corresponding equations separated 12, nanely,
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Link or loop currents to be sero. The existence of a sin loop current
pet of byemcnes forming the closed path on whch ua! loo» cur-
vec, sat branches, called a tie set, is i

206

CHES by
the POUT of the tie set enedule.

of the network graph permite its a
eg L we houy erossed brancies, ve a

any tie set aa thet divides vhe total nator. unio t + 3

portions®, Henc: "nc branches in such a set are to

tudinally until ! 1.9 3 Single point, che + bp

so to speak (a: cole by nesne of a dvaw curtis}, 2 por

:

:
: :

tions bounded tie set effectively separated Gent "ov a common

node. It is of the set that suse este thy a 3,

Although thes cuveral izaportant varietions in procedure for
establishing ar : 2 set of current variables, ve Leave these
for : wy wid turn our attention new tc the aitermste nro-
cedure io the ont jiss of a set cf network
var. Wes or cov, F wis,

"je~pair voltages; sets schedules.

Bion 2

invependent variables in terus of whch tia state of net-
work may uniqi Since whe trea : copnect of the

nodes, itis. ptt, ooe, Oyen 8

egarding

7:

the network 8 BIL 11

to express thie 2+ at bots os Yoo. af Li
of the Trae @lone. Meracver, thegilt
nodes via tree brar: ci.ss is que since the trea has no closed jJoops ond hence
(fers no alternate paths bel acde-petirs. Therefore, vhe potential

on 3ur AY le one y+
7ia} if

This in Art. G.



6.00 ~ Elementary Circuit Theory

pertinen 4

ab.voltage,
4 :

:thos peer + moar :

:

L

branch voltages : +

:: :

® chogen set of 2 : : : :

priate i CAG! and write
= ve, a =

72 :
:

This part of the procedure the use
loop currents a Wile Choc bles :

2
:

tue : are ay

och

expre : : :

: a

W, = + at

3

7
4

v "oy :

:

1

23 wh 22

ac2 a des +! OMe:



C-64B
bx O - Elementary Cirenit Theory - th. +

Page

toe tree of Fig. § is cuosen. the branch voitages
+" 7" hecome the eppropriate indeperdent sat, and make

tdent
e, 3?

=
83

=
Vos

the expressiona for the link voltages in terms of these read
€

a

" Vg = 6

Vy = Vg = -0,+ 6).

:

8
4,24

+
3

The resuits expressed in Eqs. 16 and 18 bear out the truth of a state-
ment wade in Art. 4 to the effect that any set of tree-branch voltages may

he regarded as an independent group of variables in teres of ch the re-

maining wranca voltages (link voltages) are uniquely expressibie. In the
network graph of Fig. 5, any tree has four brenches, Hence, of the eight
braneh voltages, only four are geometrically independent. These nay be he

ones pertinent to any selected tree; and the rest are readily expressed in
temas of then.

In dealing with more complex network geazetries it becomes useful to
establish a s;stematic procedure for the selection of node-pair voitage
variables ard the unique expression of the branch voltuges in temis of them.

The accomplisinent of this end follows a pattern that is enti y analogous
(yet aul) to that described in the previous article for the current basis.
Ti- is ta say, we seek to construct 6 te tne voltage
basis in the same wey that the tie-set schedvie is pertinent to the eurrent
basis. To this end we must first establish the gecaetrieal inte pretation
for a set of branches whien, for the voltage oasis, play a role a a

to that defined for the current basis by a tie 33° (or conTuuent eee of
branches forminz a closed loop). The iatter is placed in evidence
opening all cf tne lin«xs but one, so that sli loopy currents oxeepy

procedure 4 basis is tro foree ali but:
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determine the cut set eusocieted with acde regan?

a, 48 the only sonzare node~pair voltages, "he. 35. 6. 7. and *
are

are stort-cireuited Under these conditious ve that ine

Linke 2 and 3 are Likewise snort-circuiied, sut ims. inks ] aad 4 cage

with tree brar: ch remain neonshorted These efore, ocn-

ute the ent set pertinent te node pair No 1, " 3 the

Y3

dit CWWS

ments in the Sirst row of schedule 19 thus are tia ones.

New as to the ai-eoraic signs af these nonzero We more 3

positive @ }
would cause currents tha: ave : gr-

rawS in oranchee 4 end and counterfluens em &

cl 3 Th sign ,iven to the narzero Loe

fyaence und neagerive for counterfluence

: ey

7:

Similariy node pair Ne is rey:

oiees in evidence the associated cut set, we 7 iF) : sa me

brar.ci@s tc be short-circuited, whence the te brouches ere 2. anda

The sign just deserived yields plus : vor and &

toe tows in thisand a minus SB.0 for branch 2. Construction
achedule follows the same patter.

If we new regard the colums in thie scheduls ae : : tne

eients in an srderly written system of equations anyressing : brane:

+ {

ages in terns cf tne node~peir voitages, ve uuve
a #8,:
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A eut get quite genereliy is thus see
selected that the act of 7 them the Ja into tye
We can visualize the of a aut oy ap in

t

:

one hand somes of the nedes Ayn tre network ann awey From theas >"MI

rest (which may be thought of as fastener soma 1 7 3 ry : ov the na-

per); the stretched branches form a cut set

tune formation ofWith this interpretation in sind us

the cut set senedule 19 based upon the gran 3 te) the tree of
part (ov) of that figure and hence for the re:

Eq. 15. In Fig 7 this graph is rscrewa 50 We ean

ar to Chi 2 a 1m 7,6,CSE Lee
a

eenstitute the He Tage a: : :

ane
4

>

4
Cr

54

5 is at node oa. : cut get correspond
ron te this acd: & remaining: a

tree branches
noas 0, Cy » arc cee. 20 coincide

With the node owe va, there-
woen

23 :

b, , d, andfore,
Fig. 7. OUT Lert rna na 7 node @,

end of the reference arrow for 8, 1s in sur tight cand; hense he positive
referaice direction for branches in the associated cut set is ous right
hand to cur loft hend "he stretensd
1, 4. 5. The reference arrows on 4 and ere € wha.

ar

po:
paterence direction for this node paix a"

fluent. Construction of *.e first vow se : :

To construct the secone row we obser.e trast
of @ ig again at node o This time 9.2
circuits: so the rodes pickod up in our
the positive reference direction for the @eut ~e*

gent from our right haua The cut set co.
4+

1 and 6 positive and 2 negative.
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those correspondins vo the branch voltages of a possinie tres. The solu
tion to these yields the expressiozs for the e's in terms of the vis; and

substitution of these solutions for the e's into the remaining equations
yields the previously discussed relations between link voltages and tree-
branch voltages, The cut-set schedule which conteins the infornetion re-
garding the geometrical character of the cut sets, as well as the algebraic
relationships between the implied node-pair voltages and the branch-voltages,
ia thus seen to be a compact and effective mode of expressinz these things.
t aces for the formulation of variables on the voltage basis what the tie-

aet achedule does for the establishment of a syatem of variables on the cur-
rent basis. Continued use will be made of both types of schedules in the
following discussions.

7 Alternative methods of choosing current variev.es.
The procedure for selecting an appropriate set of independent current

variables in a given network problem can be approsched in a di?ferent manner

whien may sometimes be preferred. Thus, the method given in Art. 5, which
{dentifies the link currents with a set of loop cvrrent varieties, leavea
the tie sets or closed patns upon which these currents circulete, to be de-
'termined from the choice of a tree, whereas one may prefer to specify a set
of closed paths for the leop currents at the ouvset,

Consider in this connection the of Fix. 8. In addition to provid-
ing the branches wth numbers and reference crrows, a set of loops have alsc
been chosen and designated with the circulatory arrows numbered 1, 2, 3, A.
These loops, incidentally, are referred to es mesnes because have the

appearance of the meshes in a fish net. It is a common practice in network

analysis to choose, as a set of current variables, the currer ta that are
as@umed to circulate on the contours of these meshes. Haviny rade such a

choice, we must kmow how to relate in an unantiguous snd reversible
the mpanch eurrents to the chosen mesh :
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@
In the case of graphs having many branches this metnod nay prove tedi-

ous, and so it is me: to be aware of alternative procedures for arriving
at more general current variable definitions, should this be desirable.
Thus one may make usa of the fact that the most yeneral tie-set schedule

is obtainable throuzh successive elementary transfornations of the rows of

any given cne, and that such transformations leave the independence of the

rovs invarient. We may, for example, start with a schedule like 23 that
is besed upon a choice of meshes so that its rows are surely inde -endent.

Suppose we construct a new row through adding to the elements of the

present one, the respective slemants of the second row. The new

Pare

is then

\ Branch

Loop
No

Ne 2 :

3 : b 5 6 7 8 9

1

(31)12

1 : 13

4 o: 0a 1 : 0

Loops 2, 3, 4 are still the meshes 2, 3, 4 of Fig. 8. However, loop 1

is now the combinec contour of meshes 1 and 2, as a compariacn of the first
row of the new schedule +ith the graph cf Fig. 8 reveals. If we modify this
new schedule furtrer constructing a new second row with elementa

equal to the sum cf ths respective ones of the present row 2, 3, and 4, there

results anotner schedule that implies a loop No. 2 with the combined contours

of meshes 2, 3, and 4. It should thus be clear that more general loops or

tie sets are readiiy formed through combining linearly a set of existing sim-

ple ones. So long as only one new row is constructed from the

of rows in a giver scnedule, and if the pertinent old row is a constituent

part of this combination, tne srocedure cennot destroy the independence of
a given set of rows.



Theory - {
:

@ has the vroperty trac die
Bagot se ne Sranc, *.rmantg ip t ras of re implied 1 Y-

: 3 : a 3 orr : :

yor. 3 4ky, ganes transforma..on « echedvle : wak-

mops, 41k a 4 a: ons tne choice
Ji news n re oe th cur

#3@ the rete lors the Oran currents ir tare
is Btill given by che coefficients in tna

t

:

"or Wa Would ror sciedule 31 tis reiat. na

: h

a

@
a

Where RE

Re

:

:

4r :

ie, :

heKo 32 revenls une

mation af tne form a wy

+ Ene SC
+a a S 4 ta ao f

ara vee Pars] a fra

a:



:

:

3

:

:



Ca. 16,00 - ro it

@ da weich the 1 3 are cay reel If i, owe M a 5tMove : :

of current varicoles, then i ere itAlt ce 2Ax
indevenaers, te, -f they possess ar ic. a

4:

their determinant is nonzeio), Tn tha 1 will ne

have 6 neo

though Zor convenience they way still be referred to vy ach.a' They

yuS or

will turn out to be some iner combinations of branes carr ite,

Tf sear a very set of definitions for the losp is de-:

sired, G@o cpr oar tue wore eke. on of to. Se. eau

directly from of view, whieh we Wilh 4 : Luste. Co.

graph o: tty. This set us > taut oae wore > to at: ch
polit :

variables wiich are
j + 24

41

1, = 23,7 J dg f-
+4

7
}

94

g°
+

64

The first step is to rewrite these expressions iu terns o tots ease

four) branc. currents. 'Yo do this we may the usual serene of
a tree and nan the relations for tue brenec currents in ms of+

the link currents. Yor tree No. 1 of Fig. &, tuese ere given "ys. 26.

Thair use bys. 35 inte

21

:

a J3 1
<p

3 :

raj, + <3

haying the : utions

+3 4 23.4

3 2 42 2

4 413
4

3
.52

4, 1, +) L



3

co 4 ter 1

ant.ay
raved

av 5 :

2 :

32

2

vv

:

Ves: :

:
: :

:: : :

4

fo oaper >:

LEC!: ate: :

C

Tr7:

: :



Cireuii Theory - Ch. 1 C.€
Vage T :

tary

as simple as they can be, but one exercises no dirsct control over the
tore of the closed peths or loops. (2) The approach turough a forthright.
eheice of locps or tic sets. the proceiure exercises direct control
over the paths upon which the current variables are assumed tc circulate
(a simple choice being the meshes of a mappable network), but no facile con-
trol is had regarding the associated algebraic definitions of the Leap Tyr-
rents. (3) The approach through makin-7 an initial and arbitrarily genera)
chelee for the algebraic definitions of the current variables (like those
given by Eqs. 35). In tris case the variables no ienger possess the simple
geometrical significance of circulatory currents. 'his approash will prob-
ably seldom be used, and is given largely for the seke of its theoretical
interest.
8. Alternative methois 9° choo voltage variables.

When volvages are sho3en &s variables, we similarly have thres possible
variations which the form of the approach may t The first, h is
discussed in Art.6, proceeds choice of a tree and the
tion of tree-branch voltages wth node~pair voltage variables. Ia this
process (like procedure iL mentioned above for the choice of currant vari-
ables), the algebraic definitions for the node~pair voltages are is simple
as they can be, but little or no direey control can be exercised saver the
geometrical distribution of nade pairs. A secorl form of proced which
pernits a forthright choice cf node pairs at the outset, and a third in
which the process is through an arbitrarily generel shoice for
the algebraic definitiated of voltage variables, are now pres2nted in de-
teil.

To iliustrats how a desismation of node~pair voltage veriatls may be ar-
proached through the initial svlectéon of an aporopriate set oc
let us consider the network of '4g. 8 In Fig. 10 ere indicate r3 nodes
of this network, Lettered e, bh, coe f for ease veference, axl. 3ystem
of lines with arrow «wads intended to indicate ~ choice of rod? "Oss PRD ref

pairs,

4

erence directions for the voltage variables e.. TL' 'a?
net to Ye confused wiih branches of the network 4f we voman; T thin.
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same degree of lucidity. Our failure te fired che mesh situation as lucid as
the one invoiving nede potentials mast pe dus co cur inability to construct
in our minds 6 completely dusl geometry. Once ve tne latter, our
initial objective will castly se gained ard ow understanding ef network

geometry correspondiigiy be easanced.

It turns owt that oui to recogrice the dual geometry stems from
an initial misconception of ig meant by + & Since we use the term: : ::

mesh to a kiad of hoop, sluplest closed path
that one can we : dn vary that the term mesh

refers to tae cortour (the asvyociated tia sev) : of the thing that it
should refer tc, namely vie spece wt oy coutoart A mesh is an

opening--noc tie boundary of that upening. "is o ening is the dual of a
node--the point of confluence cf poranches.

A tree consists of nodes connected by tree brancies. The dual of a
tree branc 7 is a link. the dial of a tree should be something
that consists of spaces (mesiies) connected by links. If we add to the mental

picture created by these tnoughts the faet thet teaversing a branch longitu-
Ginally and crossing it at right angles are georietrically dual operations
(since a branch voltave is found through a suamation process
while a branch current is given by a summation over the criss section), we

arrive without f difficulty at the thet must be

recognized as the dual of a tres It is the SOLU surrounding tne tree.
This space is subdivided into sections by the links. Each of these sec-

tions is a wes, ald one pusses from mesh to moch by tne links,
just as in the tree one passes from node to node by follcwing along the tree
branches, Fig. 18 sheova in part (2) @ graph ic fom of a rectangular
grid, and in part (b) « possible tree with the links included

&s Gov ea tines, ine space
surrounding the tree, and
dual tc it, is best described
by the word maze es used to
denote a familiar kind of
picture puzzle where one is

4
asked to trace a sontinuous
path from one point in thia
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space tc another wit an + .sing any of the barriers formed by the tree~
like

Such peth m and nis showm actted in part (b) of
the ds clear + the sata leading "rom one mesh to eny otner,

unique, jnar ac is > from one node to cnotaer along the tree
"ro cacy guen as te oi: from 4 esr m te mesh

n, one parties? of links These links charectsrize tris

4

a

4 ne4pata a cut ate irom

one aaneas

Havin, reco We" orucesess, Ye ra" raaligzs Yau we have not
been entizely + 2 ic discuss ons wiere wa cefer to a soop
current es bein duat to voltsze. 'lhe latter is tre difference
between tyo node gore : amd its dus is, tie difference be-
tween tro in mes.es m and n in Fig. lv (bo).
The difference jiven by the summation of those Link
currents (wit: te characterizing the pats from m ton,

2

:

: ts
::

:

: :

just as a node e differenve hetween two nodes) equals:

tne of connectin, this nodetoc ef 3

pair. The 7
: : pair current, is:

the real cuss. .e@, ght? : of tie maze conceptLLLJ5: aadi tion4 :

to our + e we neve ACoA ea a geometrical
picture for o somnection betveen mesh-current
differences sud u le : : tie f one used to
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69:
:

+

V
t

a

2

(a)

Fig. 19 1s show « slaple network (vere My, its a : (b)), and
a sehematic indicecing a choice

solid limes «end % links (branches 1, 2, 4, + :

node-to-aa

dual graph of pavt (b), these seme branches "1,

Mesh currents 1,, 15,
correspondingly the node potentials e

graph (b).
Scarting with tne dual grapn, it is evicens

e's i: terms of the tree branenss read

$-3

Gn
3

:

4

5

5

5 :

:

Inhese sre clarified
:

the: L eae" Ke 3

Ia the of partdual graph rea Prenches are the5 :

Cotced.in the
ii Lo tree,7s

2 € toh.
tne gran (a),

dL

and te resy mes. Me 8 tun n 7

are chosen to 5

"2? : 7

that tue ex n for tha



6.00 - Flementary Circuit

1

Oo

:

.
f

~

a «

+
~
-

4

ty

f

yoda Lote
contov. 43

mesh is tuo

:

de fal must

:

:

(58)

:
:

fy i a:

on che:

:

a
mar

:

: :-1 dc in the
: :

Ms, boa for ex-
w

im graph (a)oressin:
: :

:

- in these
2



age

and so, by anslogy, the

of tne lin

Consider now the

(9)

end current varisbies.

fe

BONS

a

A

correspondin., ;

currents of TA fraud in vert

= i,-4, =

con readily be verified throah

pressions "or tie link currents in
more unteresting, nowever, to egtaci.

G-642
Page6.00 :

nodiee for + reWeak: : : : : : : : :

the new

dusi
sop: ig not repeated n this

u the Oatis for: :

carrents. The

"we, but part (b) shows4
2

a mY,
s diarteam for the choice of4 :

Voltages in the dnai
Tere t that corresponds to theOn

3 y currents in graph (a?
:

2 3 :

corresponding to
revised choice ara dis-

by primes. So far
3 voltage picture is con-

sé.t.ed, one nas little diffi-

j
4 Oe :

4 1 iv
1

:

An vecognizin; that one

fox the leop currents in terms

of 4 40 nast be

{el

: ucual procecare of ax-

70 curren ard sea

45

1, :

@, = = Vv
2>

6
= 3 = V

::

€. = 6@. = -
(6C:

4 a 5 5

2 443

"t 4, = 4,

1

65
4

5
1

4

as

vhem entirely by analogy to43



6,00 - Flementary Circuit Yneory <.. f

dual volta: an f is a : : + anner: L :
2

inv loop7

4 :

+ 4 4

2

0. : :

L:4

341

~ Cr 7 2 wna1

+

met
7 : : : :

::: : : : :

3 : :

: : :

7

ue: :

7 - ye +
4

1a

:
7

N -

€ t
7 : : :

r€ 5)
7 4

1

Ghe 2

aie a Joa
:

:
Ap teke

: :

1 : <

4



4

5.00 ~ Elementary Circuit Theory - Ch. IT C~64B
Page II-1

CHAPTER IT
The Equilibrium Eouations

1. Kirchhoff'!s laws

Haviag chosen an appropriate set of geometrically independent variables,either on the voltage or current basis, one 1s interested next in express-
ing the equilibrium of the network in terms of these. The means available
for doing this, is given by the so-called Kirchhoff laws, of which there are
two. Qne of these laws expresses a fundamental equilibrium condition in
terms of voltages; the other expresses an analogous condition in terms of
currents, When currents are chosen as variables, equilibrium of the network
is expressed by means of the voltage law; when voltages are chosen as vari-
ables, equilibrium is expressed by the current law. This seeming inconsist-
ency will adequately be elaborated upon in the following paragraphs, but
first let us become acquainted with the Kirchhoff laws themselves.

We shall begin with a discussion of the voltage law, and in preparation
for this discussion let us recall what is meant by voltage. Voltage" ig a
shorter way of saying "electrical potential difference", Electric potentialis work or energy; that is to say, it is a scalar quantity like temperature,
or quantity of water, or altitude above sea level, etc. The fact that it is
a scalar is the important thing so far as Kirchhoff's voltage law is con-
cerned. Moreover, it is important to recognize that it is a single-valued
scalar. Thus we can speak of the electric potential of any point in a net-
work with respect to the potential of sone arbitrary point chosen as refer-
ence, just as we can speak of the altitude of any point in a mountainous
terrain with respect to sea level chosen as an arbitrary reference. By the
single-valued character of either of these functions we impiy that the value
found for the function at some point relative to that at another, is independ-
ent of the route chosen in traversing frou one of these points to the other
in the course of actuelly cerying through a measuroueat or commutation.
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Suppose, for CRAB E a ve are to : Le altitude of the tip
of Mt. Washington in Nev Usupshire wits rss 260. tc some bench mark at its
base by the TY methods used in surveying. we do this through suc-
cesSively measuring the differences in aporopriately cho=
sen intermediate points emmesding over sone route having its
ends respectively eat the bench mark end ut the tain top. Assuming er=
rors in measurement to benegligible, the ast in altitude is
expected te be indersnaent of the route caosen. 4 similar conclusion
applies in the cass of any otier sin funetion, and the

3

Teer
7 ous

electric potentlal 23 s one,

Now suppose we vere to go on @ sury start from some ar-
bitrary bench wark, treverse all over TWh terrain, and finally
return to the same bench maric. In this we \ expect to find a
Zerg net difference in altitude, as is ani' clear che fact that
the end points of our circuit are identi x LOL uk expreseton of this ob=

vious fect in the analogous couse le ste essence $of

:

3
2

:

voltage daw. Let us elaborate slightly.
Refer co the rouwork geometry ghewn big we proces}

a 4 peripnery, touching in
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Tais is Kirchhoff's voltage law expressed for the closd loop formed by tie
periphery. Numerically the values of some of these voltae dro os must, of
course, be negative; otherwise the sum of all of them could not be zero.
We speak of Ey. 1 as representing 2a sum. If some voltage drop
like V is numerically then evidently the potential of node a is
less tian that of node b (both referred to the same reference, of course).

2

Interpretation of the physical meaning of Fa. 1 is aided :rough use of
the altitude analogue; that is, through regarding the nodes in the graph of
Fig. 1 as bench marks in a mountainous terrain, and the volteze drops like

reference arrow directions, Thus a rise in altitude in a given direction
2) 3 » etc. as drops in altitude between the pertinent bench marks in the

bstwsen two bench marks can alternately be regarded as a numerically nega-
tive drop.

One can trace through many additional closed paths in the network graph
of Fig. 1. For example, starting again at node a and proceeding in succes-
sion to nodes b, c, d, e, and f, one may return to node a via the confluent
set of branches 17, 10, and 4. In this case the voltce-law equation reads

+ V9 + V9 + Voq ~Vy7 ~
Vy

= QO. (2)

Observe that a voltazge-drop term is algebraically negative when traversal of
the pertinmt branch is contrary to its reference arrow. Thus the reference
arrow on any branch is just what its name implies, namely an arbitrarily se-
lected direction which we agree to call positive for the voltage drop in
question. If the voltage drop actualiy has this direction, its value is
numerically positive; if it has the opposite direction, its value is negative.
In traversing a closed circuit within the terrain, the algebraic summation of
altitude drops (potential drops between pertinent node pairs) must take ac-
count of reference arrow directions, as must also the process of deciding

2 3 10

whether a given drop : as a nomerically positive or negative value.

Thus If bench mark e, for exam de. As aigner than mark d, then

nexative; and sines + zebraia sign in Faq. 2 is plus,"19 ig G3

ane nrJ btsa) a 1G, on
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where tue Gress is sign and ths
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for which these terms correspond to branches common to the group of meshes.
Suppose we write separate equations for the meshes immediately below those
to which Eqs. 4 refer, thus

% + w + Vg
= 0,

(6)

Adding Eqs. 4 and 6 we have

v, + v + + Vay - Yu, + % = O. (7)

13

1352

This equation is pertinent to the periphery of the block of four upperleft-hand meshes in the graph of Fig. 1. If all the equations for the
separate meshes in this graph are added, one obtains Eq. 1 relating to
the periphery of the whole graph. The student should try this as an
exerciss,.

We now turn our attention to an analogous law in terms of branch cur-
rents: the so-called Kirchhoff current law, The electric current in a branchis the time-rate at which charge flows through that branch, Unless the al-
gebraic sum of currents for a group of branches confluent in the same nodeis zero, electric charge will be either created or destroyed at that node.Kirchhoff's current law, which in essence expresses the principle of the con-
servation of charge, states therefore that an algebraic summation of branch
currents confluent in the same node must equal zero. Symbolically this factis expressed by writing (as in Eq. 3)

(8)
As illustrations of this law suppose we write equations of this sortfor nodes a and h and the one immediately to the right of h in Fig. 1.

These read

"Jy + Jo + J, = 9;

Jy + dg
-

dg
= % (9)

wi, + dq + Jip - 1g =
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Bech equation states chat : pertinent node:

equals Zero.

Now suppose we add the three equations 9. gives

Jo + 4
= 0, (10)Jip 9

Branch currents Jy» end dg cancel out in the process of cddition. Ref-
erence to the graph of Fig. 1 reveals that arc gompon to the

group of three ncdes in question, while the to which the remaining
currents in Eq. 10 refer, tecninate only in one of t »

An interesting interpretation may be given resulting Ba. 10. If ve

regard the portion of the graph of Fig. 2 by bvenches 1, 4, and+

enclosed in a box,alone (referred to of ths
then Eq. 10 expresses the fact that the sun of curvents Giver gent
om this box equals zero, In other words, :the curwont : apziles to the

box containing a subgraph the gene ag toe single node, That is to

say, it is not possible for electrie chuxye bo pile wo ov aiainieh within ea

box containing a lumped network ony move is possible ror charge to

pile up or diminish at a single node. Tris fact vollens 7 1 from the

current law applied to a group of nodes, as : above, and yet students

usually have difficulty recognizing the of this vosult. They somo~

how feel thet in a box there is more roon to pile wo and so it
may perhaps do this, wherees at a single 2 :

2% is cleor thy the cuarZe
would have to juwo off into spece if Une noce in

any time interval, The above analysis a i l however, thet holds lor

:

thy

a gimple node mist hold also for a box full of ae twork.

the2. :

Equilibrium equations are a get of Sich decormine

the state of 2 network at any moment. They ray written in terms of any

appropriately chosen variables} the uniqusensss however,
that the of independent equations tne munccr of indepond+

id:

ent veriables involved. We have seen ea het thestate of a networks7
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is expressible either in terms of L= b= n + 1 independent currents (for
example, the loop currents), or in terms of n = n, = l=b ~ 4s independent
voltages (for example, the node pair voltages}. On a current basis we shall,
therefore, require exactly independent equations;and on a voltage basis
exact n independent equations will be needed.

For these equations we turn our attention to tie Kirchhoft laws. It
is essential to determine how many independent equations of each type (the
voltage~law and the current-law types) may be written for any given network
geometry. Consider first the voltage~law equations and assuwe that these
have been written for all of the nine meshes of the network graph in Fig. 1

Incidentally, this graph has 20 branches and a total of 12 nodes (b = 20,
n= 12). Hence = 20-12+15 9, which just equals the number of
meshes, Any tree in this network involves n = 11 branches. There are
9 links and hence there are 9 geometrically independent loop currents.

From what has been pointed out in the previous article, it is clear
that a voltage-law equation written for any other loop enclosing a group of
meshes in Fig. 1 may be formed by adding together the separate equations for
the pertinent meshes. Such additional voltage-law equations clearly are not
independent. The inference is that one can always write exactly independ-
ent equations of the voltaze-law type,

This conclusion is supported by the following reasoning. Suppose, for
any network geometry a tree is chosen and the link currenta identified with
loop currents. For the correspondingly determined loops a set of voltage~
law equations are written. These equations are surely independent, for the
link voltages appear separately, one in each equation, so that it certainly
is not possible to express any equation as a linear combination of the others.
Each of these equations could be used to express one link voltage in terms of
tree~branch voltages. This fact incidentally, substantiates what was said
earlier with regard to the wree-branch voltages being an independent set and
the Jink voltages being expresstole uniquely in terns of them (see zrt. é,
Ch. I),
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Now any other closed loop for which e voltage-law equation could be
written must traverse one or more Jinks the tree brmmches alone
can form no closed paths. If in tnis-equaticn the previous expressions for
the pertinent link volteges are substituted, the resultant equation must re~
duce to the trivial identity 029, since no nontrivial relation can exist
among tree-branch voltages alone (the tres-branch voltages are independent
and hence are not expressible in terms of each other), It follows, there-
fore, that the voltage-law equation written for the additional closed loop
expresses no independent result. There ere indeed exactly& independent
voltage-law equations.

Let us turn our attention now to the equations
and see how many of these may be independent. Refemming again to the graph
of Fig. 1, suppose we begin writing equations for eG nodes adjacent to
each other, If we examine these equations carefully we observe that each
contains at least one term that does not agpear in the others. For example,

terms involving Jo and jL do not appear in the equation for node h, and that
the j6 Jo terms in the equation for node bh do not Bear in the one for
node a. If we also write an equation for the node imrediately to the right
of h, this one contains terms with Jy and Jax which are not contained in
either of the equations for nodes a or h. Such sets cf equations are surely
independent, for it is manifestly not possible to express any one as a linear
combination of the cthers so long as each has teras that the others do not
contain.

CL
as

if we consider the equations written for nodes a and h, it is clear that the

As we proceed to write current-law equtions for additional ncdes in the
graph of Fig. 1, the state of affairs just described continues to hold true
until equations have been written for all but one of the nodes. The infer=
ence ig that exactly =n t~1 independent equabions of the current-law
type can always be written. This conclusion is supported by the following
reasoning.

Suppose, for any network geometry, a tres is chosen and the tree~branch
voltages are identified with node-pair voltages. For the correspondingly



Page II-g
determined node pairs, a set of Kirchhoff current-law equations are written.
The set of branches taking part in the equation for any node pair is the
pertinent cut set, just as the group of branches involved in the voltage~
law equation for any loop is the tie set for that loop. The cut set per~
tinent to the node pair defined by any tree branch evidently involves that
tree branch in addition to those links having one of their ands terminating
upon the picked up nodes (see Art. 8, Ch. I),

Figure 2 illustrates the choice of a

2 tree for the network graph of Fig. 1,
and, with respect to the node pair f,

2

9
e joined by branch 20, indicates by

Bo dotted lines the links that take part
in the pertinent cut set. Since the
tree-branch voltage v is identified

g 1 q with the respective node-pair voltage,
2014

the latter has its reference arrow
20 pointing from f to 6. That is to say,

f e the picked-up nodes are e, q, 2, b, .c,
d. Hence the pertinent current-law
equation readsFig. 2

Jag ~
dup

~ dz >
dQ

= (23)

Schedules like 40, 42, 46 in art. 8 of Ch, I are helpful in writing the
current~law equations for a chosen set of node pairs, for the elements in
the rows of such a schedule are the coefficients appropriate to these
equations.

Suppose that current-law equations like 11 are written for all of the
node pairs corresponding to the n tree branches. These equations are surely
independent, for the trea-branch currents appear ssparately, one in each
equation, so that it certainly is not pessible to eypress any equation as a
linear combination of the others, Hach of these equations could be used to
express one tree-branch current in terms of the link currents, This fact
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incidentally, substantiates afhat wags geaad esrlice with regerd to the link=
currents being an independsnt get Eno. the tree-beeuen currents being expressa=
ible uniquely in terms of trem (see 'rt. 5, Ch. 2}.

Now any other node pair for which s current-Law equation could be written
would have to involve one cr more tres branches since the tree connects all
of the nodes and therefore no node exists that has not at least one tree-
branch touching it. If in such en additional current-law equation one sub-
stitutes the expressions already obtaincd for the pertinent tree-branch cur~

rents, the resultant equation mist reduce to the trivial identity 020, since
no nontrivial relation can exist among link cucronts alone (the link currents
are idependent and hence ars not expressible in terms of each other). It
follows, therefore, that the current-law equation written for an additional
node pair expresses no independent result. There are indeed exactly n inde-
pendent current-law equaticns.
3. The equilibrium eauations on the loos and nace beaes.

Having established the fuct that the ai..te af s network can be cherac=
terized uniquely either in terms oF 2 se: ef Loop currents or in terns of
a set of n node-pair voltages, and nevin recognized that thea numbers of in-
dependent Kirchhoff voltage-law and SeGuationg are 2 and n re
spectively, the conclusion is imminent that ths aguilibrium condition for a
network can be expressed in either of tyc ways: (a) through a sot of volt-
age-law equations in which the loop currants er. tle variables, or (b) through
a set of n current-law equations in whicn tne i.cde~pair voltages are the vari-
ables. These procedures, wnich are Per area to respectively as the 7 op and
node methods of expressing network equilibrium, are now ciscussed in further
detail.

Consider first the loop msthod. The voltage~Law equations, like Eq. 1

above, involve the branchevoltage drops If these equations are to be written
with the loop currents as variables, we must find some way of expressing the
branch voltages in terms of the loop currents. These expressions are obtained
in two successive steps.
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The branch voltages are related to the branch currents by the volt--ampere
equations pertaining to the kinds of elements (inductance, resistance, or
capacitance) that the branches represent; and the branch currents in turn are
related to the loop currents in the manner shown in Ch. I. Detailed consid-
eration of the relations between branch currents and branch voltages is re-
stricted at present to networks involving resistances only. Appropriate ex-
tensions to include the consideration of inductance and capacitance elements
will follow in the later chapters.

Let the resistances of branches 1, 2, 3,+++ be denoted by Py» Tos Tas
etc. Then the relations between all the branch voltages and all the branch
currents are expressed by

(12)for k = 1, 2,eeeb.k k

The complete procedure for setting up the equilibrium equations on the
6

27

885
994

3
e 0

(a) Fig. 3 (b)
loop basis will be illustrated for the network graph shown in Fig. 3. Part

101

(a} is the complete graph, and part (b) ig a chosen tree. Branches l, 2,++«6
are links, and the link currents Jas Jose"? Je are identified respectively
with the loop currents das doses 1-

The following tie set schedule is readily constructed from an inspection
of the resulting closed paths pertinent to these six loop currents (as the
reader should check through placing the links 1, 2,-+-6, one at a time, into
the tree of Fig. 3b).
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4 =
4h

Jo =
42

J3 =
45

4 4,
jg = 4,

jg =4,- 42-4, +4, - 46
Jig = 4, - 23 +4, e

jg 7 4,
(15)i +1dy 1 64 i +i1 2 65

If we assume for the branch resistances the values

1 3 3
r 2, r2 2» 3y As

(16)4
7, ry = 6, Tg = 10, Tg

= 8, r10 7 9 ohms,6

then
Use of Eqs. 15 then gives

2> 3 3359 Vv4 43j volts and so forth,211

1
2
=
5h,

%
3

31,

v7 = 6(4, + i, ~
i)

Vg
= 10(-1, + i, - i, - 4, + i

Vg
= 8(4, - 42

- 4, +45 - ay)

6 671 (17)
55

Yo
= 9(4, - i, + 4 )5

The desired loop equilibrium equations are obtained through substi~
tuting these values for the v's into Has. 14. After proper srrangement
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of the results, one finds

353 18: 63. 2 TL
53

TOL, +
534

(18)
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13416
4, 633
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serve fires thet the ecuetions.
branca currents. these ars tc be the node-peir
voltages Ve: WEaw or:

node-pair voltages. ny
Bs nove 7

ated to val + Wate) Wo

in turn are related to tue U howa in Oh, J.
The Egs. 12 are now move

{19}3

3°
in which iw "ge:

and are to
With reference to the netuork graph of Gd the

part (b) of that figure, let the tree-branch +Pd be
identified i cessectively with the node-neis Sng The

7
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The Kirchhoff current-law equations corresponding to this choice of
node pairs are immediately obtained through use of the coefficients in the
rows of this schedule (the algebraic sum of currents in the branches of any
cut set must equal zero), thus

- Jy + dg + jy = 0

"Jy + Jo + Ja ds
+

Jeg
+ Jg

= 0,

jy ~ Ja + 5, + ds Je t dg
= 0

(21)
> Js * dug

whle the columns of the : schedule furnish the coefficients in the follow-
ing equations for the brensa voltages in terme of the node-pair voltages

431
= e + ey
=

e3
+

vy
=

Oy
+ e

=
ey e,

= e)
=

ay ® + a
(22)

= 8
=

°3
=

22

43

2

5

3
16

7

9.
4a 4

For branch conductances corresponding to the resistance values 16, one

has J = 0.5v1? Jo Vos dg
2 O.2Va5 J, = 0.333v,, and so forth. Use of

Eqs. 22 then gives
8dy 0.5 ( 431

+ 3Jo 3

3J3 = 0.2 (e re )

Jz, = 02332 (ey +
@2) (23)

4

-0.25 16, = e

f
325

J6 = 0,343 e

Jy = O,167e

dg
= Owe

31

1

=
39

Jig =
4
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The desired node squilibrius equations are obtained through substituting
these values for ths j's into Eqs. el. arrangement, the re-
sults read

-0.9762, + 0.6436, * 0.5002, Q

+ 2.3260, = -0.7509, = 9
ar

0.643e, ~ 1.893e 218e, + 9.950e , (24)
32

Oo300e, 0.750e, + 0.9508, +
32

& upIn sumnary it is well to observe that the procedurse for at

equilibrium equations involves, for elther the Loop or node method, esser~

tially turee sets of relationas

(a) The Kirchhoff equations in terms of pertinent branch cuantities.
(b) The relations between branch voltages branch currents.
(c) The branch quantitics in terms of the oles.

The coefficients in the rows end in the culums the enovoprlate tle set
or cut set schedule, supply the means for writing the releticas (a) and (c)
respectively. The relations (b), in the form either of Egs. 24 or Eqs. 19,
are straightforward in any case.

The desired equilibrium equations ave through substituting
relations (c) into (b}, and the resulting ones into (s). In the loop veth-

od, the oranch quantities in the voltage-law equesions (ae)are voltages
while the branch quantities in (c) are currents. In the node nethod, the

branch quantities in the curreni-lew
branch quantities in (c} are voltages. 'he (b) ere needed tn
either case to facilitate the substitution of {c} into (a); that is to cay,
this substitution requires first a conversion feo breach to

voltages or vice versa. Itis this conversion i by the ve-

lations (b) which depend upon the cirewlt 'le 3 (resisiunces or

ances in the above example),

The tle set or cut set schedule 1s thus cee to play t vole
either method since it summarizes in compact and readily > fora abl per-

tinent relations except those determined by the velues. The of
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a tie set schedule define an independent set of closed paths, and hence pro-
vide a convenient means for obteining an independent set of Kirchhoff volt-
age~law equeticas. Any of a out set schedule, the other hand, rep-
resents all of the uranches terminating in the subgraph associated with one
or more nodes, Since the algebraic sum of currents in such a set of branches
must equal zero, the rows of a cut set schedule are seen to provide a con-
venient means for obtaining an independent set of Kirchhoff current-law equa-
GACH S »

The coluans of these sere schedules provide the pertinent relations
through which the desired variables are introduced. They are useful not
on y in the process of got: + the appropriate equilibrium equations, but
also in subsequently enabling onze to compute any of the branch quantities from
known values of the variables.

In situations where tre geometry is particularly simple, and where corre-
spondingly straightforward definitions for the variables are appropriate, one

may, after acquiring some excerience, amploy a more direct procedure for ob-
taining eguilibriva equations (as given in Art. 6) which dispenses with the
use of schedules.

4. Parameter matrices on tse loop and nods bases,

It should be observed that the final equilibrium Eys. 18 and 24 are
written in an orderly forn dn that the variable 4 (resp. @) appeers in the
first column, tue 1 (resp. e,) in the second column, and so forth.
Taking this arrengement Lov crented, 14 becomes evident that the essential
information conveyed ty the qs. 18, for example, is contained with equal
definiteness but with ina : compactness in the array of coefficients

35 =1é 16i7 27 ~24,
-18 8 -10 -18 1%

& 22 0 -17 8
[R

17
19 10 ~16 (25)04 6

27 ~17 10 -1831
1S g ~16 ~18 244
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known as the loor rosistance pararster : Tho equations: t

24 are similarly characterized bythe node

matrix
28 araoara

:7

-0.976 0 643

0. 300 -0.750 0.959
(26)0.976 26326 1.893 G. 7

643 ~1.593 Wo

1, OS

The term matrix is a name given to a : :: tr + array of coeffieiants
as exemplified by the forms 25 and 26. is will be disougsec in later chapters,
one can manipulaes sets of simelteneous 4 equations Like those given

by 18 and 24 in a facile manner through use cf a of at 4 operations
known as the rules of matrix algebra. These need not concern us at
the moment, however, since the matrix conespt is at present introduced only
to achieve two objectives thet can be any Ledge of matrix

algebra whatever, namely:

:

+ ic

: ows

(a) to recognize that all of the essential a give uv the seis of

equations 18 and 24 is more compactly neice more effectively placed
in evidence through the roctencgular "o «ad 263

+ :

(b) to make available a greatly abbreviatsc rev.od of des: : : loop- orng:

node-parameter valuss in mmerical

Appreciation of the second of these may better be understood

through calling attention first to a COLES Yorm mich equations
like 18 are written, namely thus

il i, + Yio i2 + rygdp = 0o +

A 27)+ 4
aL L +rZA 2 22i + @

~

Tay Fy thyo tat + Tygig
Here each coefficient is denoted by a like : Ty59 ead so forth,
The corresponding matrix reads
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es a geometrically t set of closed loops the mesnes of this net-
work greoh (as pointed ont in Art. 7 of Ch. I). A simple example of this
sort is shom dn Fas, 4 the meshes are indicated by circulatory

1

1

4,
a

5
4

Fig. 4

::

{*:

(33)2

4
The branch curve : ov the lees ave fee to be yiven by: : :

Jy -1
:

3 (34)
4

Js 3 i,
i,
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resistance, contributes to the voltage drop in mesh 1 and that this con-
tribution is negative with respect to the loop reference arrow in mesh 1.

The second of the fqs. 26 similarly expresses the fact that the alge~
braic sum of voltags drops cavsed in mesh 2 by the various loop currents
aqualg zero, Only those tens have nonzero coefficients whose associated
loop currents tveverse at part of the contour of mesh 2. The value
of eny nonsero ecusls the obmic value of the totel or partial
mech 2 resistance traversed by the pertinent loop current, and its alge-
braic sign is plms ov mnus : ecording to whether the reference direction
for this loop cuxront Ler. GARR or disagrees respectively wlth the reference

for meeh apply to the rast of the kas. 36.ar s

With this intern in wind, one can weite the loop-resistance
matrix 37 directly. Thus the ccefficients on the principal diagonal are
respectively the total resistance values on the contours of meshes 1, 2;

> The remaining covfficients are resistances of branches common to
a pair of meshes, with their algebraic signs plus or minus according to
3

the confluence ox cour of the respective mesh arrows in the per=
tinent common branch, a tern r in value equals the resis=
tance of the branch commun meshes g and its algebraic sign is plus

sk

if the mesh arrows have the sune direetion in this common branchg it is
minus if they have cirections.

In a mappable network,"ith the meshes chosen as loops and the loop
reference errows Conen clockwise (ur consistently counterclockwise),
the algebraic si & aa eX Yordiaconal berms in the loon resistence matrix
are pegative. It is obvicns that this procedure for the derivation of
loop equilibrium hions yiolds a symmetrical parameter matrix (Tok x, )
since a branch co: ky, vroco theane

efficient r is So ju

This simplified procaduve for writing dorn the loop cyuilibriwa equations
directly (having mode a choces for the loons and loop currents) does not, of

course, require Ly of the networl:, but it is not aiffieult to appre
eLate that it soon loses its simplicity and when the network
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geometry becomes random. For, in a random cess wou ctecome difficult to
continus mybo

: stuplified vorsicus of moreover, their:

5choice is certainly no nor is the designation of loop
reference arrows as siriple to indicate, Any given breich may be common to
more than two meshes; loop traverse such
a branch in random Cirections, so that the NONG 1 coafficients in the
paremeter wilh nme longer be consistently : Although the sim-:

plified procedure moy be usable in soo complex nommaprable

cases, ono AL "ier prcfercble2

wien arbitrary netvork geonctries are

An analogous simplified proccdure to simole ceon-tively
etries may be found for quations.:

In this simplifiedvocedure the node-pair alos varicbles are chosen as
a node-to-datum set, es described in Art. S of G: . te Thet is, they are de-
fined as the potentials of the various single neces wth respect to a cmnon

(arbitrarily selected) datum node, as illusteo Ch. I by Fig. 11 for the
netvork graph of Fig. 8. The cub sets (wiicn 2 PEATE the Kirchhoff current-
law equations) are then all given by the greuns of divergent fron

ave defined.

: a

the single nodes for which the portinent node

With regard to the nework of Pig. 4 ome we bottom node as
the datum or reference, ond define the potenti-is 1 and 2 respectively
as the veltage varicbles ey and Noting tiah out sets are the
branckhss divex. BIT from these nodes, the consistent wth
this selection of voltages are seen ko :

Jy J,* Jatds = 0.

The branch voltages in terms of the node potenti by inszection of
Fig. 4

:2 t20ns:

53
0

(38)

21
22
1 (39)3

214
2
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The branch conductances corresponding to the resistance values 35 are

& = 0-23 6, = Out, Bz
= 06253 & 0653 Bp

= Bg
= 002, (40)4

Equations 39 multiplied respectively by these values vield the correspond~

ing j*s in terms of the poteatiels. Their substitution into Eqs. 38 re=

sults in the desired cauilibrium equations, which read

1.35e. ~ Se 700

=0, 700, + 0.908, = 9,
(42)12

with the rece + : matrix
:

(42)

4, simple physical : may be given to the node equilibrium
Eqs. AL that paralicla interpretetion given above for the loop equations,
Thus the first tach of the equations 41 represents the current
that is caused te avon : node 1 by the potential ey acting alone (that
is, while 5 = O)3 tee seeord tema in this squetion represents the current
that is caused to node 1 by the potential acting alone (that
is, while e, = 9). Since « positive e., acting alone causes current to con-

verge upon node 2 (ine a of causing a diveegenca of current) the term with

2

at

e,, is numerically necatdyve, Tho amount of current that alone causes to
2
diverges from node i

1
the value of times the total conduct=als 1

ence between node 7 when = 9 (thet is, when node 2 coincides
with the datum). Trig conductances cloarly is the sum of the conduct-

: 3 2: :

ances of the : t fron acde 1g with reference to Fig. 5

{4a which the g1 a) s Sotal conductanee

is 1/5 +1/2 + 1/5 + 1/4 1.15, thus accomting for the coefficient of the

term with e in the first of the Eos. Al.

The current thot zlene ezusgea to diverge fron node 1 can traverse

La

1

col, the brane... 2 ith node 2 (these are the

2 ohm end 5 ohm in Pig. 5); and the value of this current is
Gently given in mare tuce ty product of e5 end the net conductence of
these combined Yn the vresent the portinent conductance
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tp 3/2 +4/5 = 6.70 cho, this acuounting for the
in the tera of Mest of the Eqs. 42 con wor its negative
sign hes Oncy been er Vancd). A similar is readily given1

to tre second of the bos. 41,
7€ wr ttenThus tne quate :

Girectly by inopeacion cl o1g. §, esveclaily ii . valves
are alternately given as in mhos. The
elenents on the of [G! are YE the total coanduct-

92. C4nce

ance values (suns of beonch condvetences) diver: yt Seon nodes 1, 2, {in
amore case there bo more than The nondiagonal ele-
ments of te oft, VS :4 alsebraie given above
in the detsiled explanation of Mgs. 41 clearly to ell casescay

in whieh the no@e-palr voltage are a
:daw bends"co~Catua set.

In magnituce, the L el sents in {qj equal : couduetance values
(sums of branch couducternccs}, for those branche: cuouecting the por-

at

tinent noce pairs. More srocifleally, the OM [eh couses the n-ge-
tive sum of the ca connecting nodes

L cies then uredes 0v3Ly Colss end eve

pertinent Bale velue is zero. Note that the Veneers or tine

nondiagonal llows Girectly from the taol" that any node po
tentiel is regarded as posdidve lt ds of the datum node,

+ nendiagonal ternsThis situstion parallels the ccusistent
in thea naovis obtained on the Loop basis for a netvork in which 212:

the mesh reference
ennui Baga. t.

7. Sources.

1 Cu

network, «nergy ig boing dissipated. Since at dnstent the rete of encom
supply or ot

nying vol72

r

a' ssivation :

& perely vesisciva ox ony "Losay™ network ere presen ae i.

more sources of energy.
Until now ths vole pleyed by sourees has not b introduced into the

work picture, and Ltindeed, their presence has notiing whatever to do rith ths
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topics discussed so far. Sources were purposely left out of consideration
for this reason, since their inclusion would merely have detracted from the
effectiveness of the discussion. Now, however, it is time to recognize the
Significance of sources, thelr characteristics, and how we are to determine
their effect the equations.1 orium

Their most important effect, as already stated, is that without them

there would be no resvoues, This fact may clearly be seen for example, from
the loop~equilibrimm Mes. 25 for the network of Fig. 5. Since these four
equations involving th unimoms dys dos i3° i) are independent, and all
of tthe h : rere, we know according to the mules of algebra

say, in the ebsence of oxcitation (which, as we shall see, causes the right-
hand members of the to be nonzero) the network remains "dead as 4
doornail.

> :

that none but the soneution i, =
15

= i, = 1 Es 0 exists. That is to4

It was pointed out in the introduction that an electrical network as we

think of it in connecticn with our present discussions 1s almost always an
artificial roprosentziion of some physical system in terms of idealized quan-
tities which we cali u civowlt elements paraneters (the resistance, in~
ductance, and eapeci clements). We justify such an artificial represen=
tation through noting: {a) that it can be eo chosen as to simulate function~
ally (and to any dogroe of accuracy) the actual system at any selected
points of intercst; and (b}, that such en idealization is essential in reduc-
ing the analysis to velatively simple and easily understandable24

form.

Rega: 2 seg whieh becomes energized or the:

physical system derives i%: motive power3
is necessary, ie to cay, the sources, like the circuit elements, are
represented in an L We shail see that actual energy sources

may thus be similoted such idealized sources in combination with ideal-
ized circuit

consistent degree of idealization
PiYao

hion.

the moment we focus ovr attention upon the ideal-
ized sources thenselyes.

Although the phgsic1 of a source is to supply energy to the7

system, we shat for the tiue osing find it more expedient to characterize
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a source as an element ccpeble of providing a fixed amount of voltage or a

fixed amount of current zt a certain point.
e an amount of power equelage and current, }

the voltege or the carrert of the source is knew or fixed
postulate e source fer ry q both the voltage and whe

mac: sources vould nob prove useful in the simulation OF

ve must at sil times be windful of the utility of cur

e or the current ofWhen we sey
not ily they 4 is a constant, bo

eueanee of as 2 mous function of tha tine

other volta:
connection is t upon the sources own volta;Yo
rent, or upon ite om Af it is a voltege. 'vis
voltags soures wovides given terminal pair a ve1

curtent that terminal peir, aid
tion that is i pindent of

independent of tne

source a

pertinent u oair.

sive ov
autor, bevel at the tar An Us

wien ve esll
resis the auvy aut, the constant of pro-

voll the valme cf the
Minels o am ideal vo t on other O

we eseuce for it to ba,

to their

vegardiess of the curren called upen to o
attions imposed by ite : An

viroment iss for then tn, SOU Ww on bo

current, yet Coos so unflineb/. weber owas

vo procs 3 "Ture
to

physica

8

An Agnewe

the vo.sage at the

of

Age be

IB, ot ONES

a gouree ls Pixcd, Wwe do

tof éla

Actually it provides both volt-
product, but it

analytically essential ond practically move realistic te suppose that either
culd, of course,

current are fixec, but

systens, end

T

mathods of analysis.
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its environment en open circuit, for then the associated current becomes>

ESCO

the of an ideal current source the current 3

sop Lh to be, and 1t cannot from this spccificetion
upon to pr.uce on account of tre con-

Th t &n extremes gi we arises in this ease
Af the So be an open cireuit. for then the scurce mist

i Le 3 3.9

Q : eallcd
1 ation

i

prod 2 & 2.68 3 eat, by
dts 3 Like the 1 circuited

voltage yoo to dshavey infinite power, and Lesce it ig
nor reaiigvie 19 + u suti da oc? open
This tyre of Bowes shovb-civeriicd, + .ue tris acecet ved voltage
is then zero.

in the voltege ce found it useful to think

1

'o vo eltitude ty a The po-of as Lei.
tentials of FARA nebvowk wth reascet to & comnon
er Geum are acehosoug to the of points
i. a WCU pusveet to cane Ine
etead of mm terrain, supneso we vievelize a miniature
iles constructed up a large boo and suspend ne from
du : we a idoa piece, is she

:

.29 Cov
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ot voltage, the ck the ef Locations on the
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te ch. if G o/8
Zr 3 :

arbitrarily 2 Libs the :

excitation and the re ef the 1 ucugoushy, the freely
moveble pertions of the sheet assume the floor level
that are consistent with +

wey in which the at the
points where 14 is to exc: of tes clectrical net-
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te

stics

it ia interesting of tye analogous
situations that eq : keton by means of vol. way be
thought of as a ov vinesa & cextain point
or points. & source is thes coustraint, lice
nalling the rubber sheet to tus vall at some

Ideai current sourece used network nay lice:

wise be regarded as applica razlates In the curveats
and voltages in its vario.s farts in gcc
values subject only to oy the a strustura

Fe t
ana

of that network, bat currents
main zero. If >

w now give te sane of those
nonzero volucs; We Gano OWL.y La frecdoa, .. 4 °

@ . J 3033 Paes cscume

any valves except tne specified ones, out the 7 voltages ard eurrents
whose values are not pegged, now move into PoE sve compatible with
tne network chara

4 48 oultee m

teristics inverrelating and withc
tne Fire. value. of 4903 Cross. to play 1

As more or the voll ges curvsats are Cough the epi

:

.7

ae t

cation of sources, fever renein free to sdjuc ple v

es. Fi : Lf all voltages aad currents wore
there world be no ebvor problem left, for we be

hand. In the comnonest aituation, only a singhec on «
is consuvained an sourceg dew. of bac

.11 Oe. Ake
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Various ways in which sources are schematically represented in clreuit

diagrams are show in Fig. 6. Parts (a), (b), and (c) are representations

Fig. 6

(t) )
(t)S

(a) (b) (c) (a)

of voltage sources, while part (d) shows the representation for a current
source. Specifically, (a) end (b) are common ways of indicating constant
voltage sources, also called "direct current" or "d-c" voltage sources.
The schematic (a) simulates « battery, for example, a dry cell in waich
the zine electrode (thin linc) 18 positive and the carbon electrode (thick
line) is the negative terminal. The d-c source show in (b) is draw to
resemble the commutator and brushes of a generator. The symbolic representa-
tion in (c) is intended to be more general in that the wavy line inside the
circle indicates that e.(t) may be any function of time (not necessarily a

sinusoid, although there is «n established practice in using this symbol as
the representation for 2 sinusoidal generator). It should be particularly
noted that e,(t) in the syubolic representation of part (c) may be any time
function and, in particular, may also be used to denote a constant voltage
source (d-c source).

Part (d) of Fig. 6 shows the schematic representation for a current
source in which 4 (t) 1s any tine function and hence may be used to denote
a constant or d-c source as well as any other,

In all of these source representations it will be noted that a reference
arrow is included, This arrow does not imply that the source voltage or
current is assumed to act in the indicated direction but only that, if it
should at any moment have this direction, it will at that moment be regarded
as a positive quantity. The reference arrow establishes a means for telling
when the quantity e (%) or (%) is positive and when it is negative. A

source voltage is said to "act in the direction of the reference arrow" when

@ it is a voltage rise in this direction. The + and - signs of parts (a) and
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actual sourccs more correctly to be ragurded as volteze sources
or as current sources is, however, a rather pointless crmument since we shall
scon see that either represetation (in combination an aporepriate arrange-
ment of pasdeive circuit el. ADnts ) is alvoys possible no wiat the actual
source really is. Again we mush be reminded that cirenit theory makes no claim
to be dealing with actual thinss. In fact it very definitely deals only with
fictitious bub da cuc. a way that actual things can theraby be repre-
sented. Like ell otner of analysis, theory is merely the msans
to an end, 1t lays no tc being the real thing,

Now as to determing "ow : : : :a quantities enter inte the equa-
tions for a given make the rather ohesrvation that the
insertion of scurces dase o givon passive newvork ig cone in ev of two vaya.

:

One of these is to insert the source into the gap formed > cutting a branch (as
with a pliers); the other is to cormect the source
pair (as with a soldering iron). These two methods be Gistinguisned as the

roinal to selected node

"pliers method" and the 44 rescectively. We 12. now show
that one may consider +s va the ins. scion of voltage
gources and tie solde a to the of current sources, That
is to say, the connectio: . of « vultege source acvoss & nade poly, or the inser-
tion of a current source tu ens with a beench, « revision of the net~
work geometry with the that voltage sources again eppear only in series
with branenes and appear only in branches (orwih
across node pairs).

Por example, in sort (2) Pig. 7 is show a 1 whieh a oltageye
7

a

7

6

5

Fig. 7(a) b}
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source appears in parallel with branch 6 of cone ce twork, and ir part (b)of this figure is shown the vesultant change is the etwork geome! and source
arrangement which this situation -ceduces to. Truc 3 7 consideri, the given
arrangement in part (aj, one sicnld first observe at branch 6. > rendered

forced to be equal to cad hence (along with de) is no long' an unknown.
That is to say, the determination of the Currey in branch 6.5 rendered triv-
dally simple and independent of whet happens dn the rest of + network, There-

2

trivial by having placed ia diel with 15 since the valuc of is thus

fore we can remove brie 6 from our thoughts a from the 7 t of the graph so
that e_ alone appears : connectns dink betuces odes end b. Next we ob-
serve that the potentials of nodes &s a f r fat or node a are precisely the same in the 2 4t of part (b) is they are in part (a).7

4 of node a is (e-vg)4
For example> the potential of adote @ with resre
as is evident by inspectien of either pari (2) ox or (b) of thas figure.
Samilarly the potential of node € with
(es + Vy) in the arrangement of port fa) or x ot } J It tous becomes clearthat the branch voltajes and in the o. : of part (b) must be the same
as in the graph of part (a), except for the ion of tie trivial branch 6.

ca of mode a is seen to be

We may conclude thet placing voltage g a node pair has the
same effect upon the network geonetry as doe: of a short cirenit
across that node pair Comparing graphs (8) : (») da Pig. 7 we see, for
example, that the voltage source e in graph e2factavely unites nodes a
and b in that graph, thus eliminating branca aad yielding the revised graph

is taken into account placing identice'. volt:.z@ sources in series withall brenches confluent an the OMMginal node b. We con alternately place the
identical voltege sourceg in series with the t originally confluent in
nede a; that is, in brencies 4 and 5 instead of 7, 8, and 9,

:

(b), The effect of the voltage source so far : > this revised graph is concermed

It is useful this connection to regard a voltg9 source as though it were
a sort of generalized short circuit, which indeod it is, Thus, by a short
we imply a link or branch for whach the potenti. between its terminetsis zero independent of the branch current; woile for a vcltage source the poter.tial
difference is independent of the branch curvent. For 8 = 0, the short circuitis identical with the voltage source. Or we may Say that a dead voltage source is a @
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in series with a breach (or with several branches). These two source arrange-
ments alone, therefore, 211 that need to be considered in the following
diseusgion.

Thus we mey any neench in a

9. Here the : 3 the cassive branch without its associated
voltage and current sources;
that ig to say, when the

are zero (as they

ee alone. Honever, we

to have the structure shown in
eseats:

#OF Moni or4. the
a network), then7

4 & € 3
4 q

shail take the attitude at
this point that any or al
of the branches in a network

way turn out to have the ov: etatod sources chovm iy Fig. 9. The network is
thus regarded os amc of activa ad of vassive
branches. This turn ot un chenges noth ng Wi. us to all that has

b ges and branch
currents (designated (b : a the summary of Art. 3 regarding

4

scja previc: 7

7 ion
the formulation of e : wil. onuations}.

Since v, end Jee
: 6 nah voltage drop : the ret carrent in branch

k, the voltaga drop wv kay t dn the Lin's a-L {noting the reference
arrows in Fic. 9) & em Those are the::

:

quantities that are A the branchTaeav :

represents. If the volte ge drop snd current
in the passive Link : : denoted by v = 219) 9 = e(v), we have for
the general eetive : 3 : Big. 9

(v + 6
ve te

:

(43)or
sk }
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:

on the loop basis:

(a) The Kirchhoff
= 0 (44)

fb) The relatious +

j,

The rows of a &

the Kirohhesf eg

branch in i

Page II- 41

- ew equations in tems of branch voltages

wench voltages and currents (Eqs. 43):

(45)
€ :

{c) Tse breneh tess of the loop

: (like 13, for € place 4 a evidence

: :

(46)

1
1 >)

1. eis the comme of this schedule yield the

tise loop currents, Fqe. 46. The expressions
ace bbaiaed from a knowlsdgefor the in : of

of the elrevit s ut tated voltage end current sources

as illustrated in 1,a*4

The desired soni) : equations are the Kairch off Eqs. 44 expressed: :

in terms of the loop + Qne tiie end through substi-
:

tuting the Jy,' 8 Given oy i (4 into Hys. 45, ond ths resulting expressions

for v, into Eqs. 44.k
to write 2(j, +415) ROL), ths result of this mibstitution among

Eqs. Aky 45s 26 le?

pointing out that :

& due to the of locp currents n that bdanch, and that the

gz that tne of the network permits one

zt :

(44)alt + a (47):
:

of : is aided through:

caprescnts the pocelva vwotave drop in any branch:

>

left-hand side of (7 the algebraic summation of such passive branch
:

voltage drops arownd

abbreviated by tha the net cue, : : € cores

the same loop. It
present in the br.

additional vo

closed leon BR, right-hand side, which is
rece voltage acting inis :

b an ate : of the seurces

enacting (bie sev) und the
-1

: tn dn thace brenebes sources that may
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simultaneously be voltages, which are

relations in the suse voy aa de the passive 3 esused by the

:

represeatsd by tid us circuit parametor43 must lepe:

loop currents because thcy
are rises,

facthe :Thus Logical
net passive voltage ceo; on any closed conten squal the net active
voltaze rise on that ovacour, If we dmagine : loops ace determined

through selecting a : : icemtafylng the : wita loop cur-

rents, tien we cam the source wolu: 0, equivalent Lank

voltages in the sense if actual voltsse iaving these values
are placed in the Linke sll orayimal voltage sources are

removed, the Loop OP we ean say that
uf the negatives of the volucg35 e

& gore an tho links, then the

effect of all becores vesulting network

response is zero; thet i5, the Loop : Link currents are Zero,

:

: : :

panel?

the same as they vould

Hence we have a G Lea1 Inverpretation that they may be
g,
22

regarded as the negatives of the voltages : across gaps formed by

opening 211 the links. In many situations to + : v e simplified proece-

dure discussed ia Art. 6 is rolevaat, this pu Jock imterpretotion of thea

net excitation » ces by Inspec-
tion of the given mew ork.

An exbively AALS, Cus procedure and tc f: :

interprstation Sau to the of equations on the

node basis, Here ova has:
(a) The Ore Gcusecat-law 1 u boras of branch ou .

:

(b) The relations betveen the and braneb vo :

(Eqs, 43)

Jy +e )sk (49)

(c) The branch voltages in terms of tne node-pair voltages
+

Vy (50)
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The rows of a cut-set schedule (like 20, for example) place in evidence
the Kirchhoff equations 45, while the columns of this schedule yield the
branch voltages in terms of the node-pair voltages, Eqs. 50, The expressions
for the J,' 8 an terms of 1 '3, Eqs. 49, are obtaired from a knowledge of
the circuit paramctore cod the associated voltage and current sources, as
illustrated in Fig. 9,

The desired equi! + tions are the Kirchhoff Eqs, 48 expressed
in terms of the nods-ociv voltazes. One obtains this end through substi-
tuting the v's given kc. 50 into Eqs, 49, and the resulting expressions

to write ylv. + en) = + le gis)? the result of this substitution among

Eqs. 48, 49, 50 leads to

for dx into Eqs. 48 i : that the of the vermits one

= i (52)a)st y= te

Interpretation of s formidable looking result is aided through rec-
ognizing that the passive current in any branch k due to
the algeoraic sum of : voltages seting it, and hence the left-
hand side of Eg 51 as thio : of sush brenck currents in all branches
of a typical cut set, fo. exutple, the set of branches divergent from a given
node n 1f the node voltrzes are chosen as a node~te-datum set.

The raght-handsice of Iv. 51, which is abbreviated by the symbol 1on? is
the net apparent source for this owt set, for exemple. it is the net
apparent source curve) node Fé) in node-tu-datum situation. The net
sourse current 18 : y 4 eleebraic of the current sources asso~
ciated with the the : t cut set and the additional
currents induced in coosr. by voltese sovrces that may simultaneously
pe acting an them) The + currents, which an repesented by the term

-ylen)s must depend encn : circuit Dare relations in the same way as

do the passive by the nede-~pair voltages except that their
algebraic signs are Lecwse hey represent a flew of «harea into

:

the cut set rather t ous of it.
Thus the resultigg Eqs. 51 state the logical fact that the

net current in the several brenches of a cut set must ecual the total source
no<>
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current VES} ig evi sets have: 1

determined a "eco end

ages with we een the sowrce currants
:

i sn equivalent ceurces across the in the sense
that if aciual current having theso neve placed in
wth the treo evrvo.y voltage sources are

the sume. Or we can saz
that if cna a Cus i wah brea breach
then the effect of 7 3 beconc a i : : 8 1 CLAYy

network 4501 7G, VLo vely 4e9 vreo-branc? volt-
es are Zoro, Une as vould be if 11 branches vere2

circuited.
Hence have a ey in bs

regarded 23 Lie tives 7 2) plovb
& :: :

acress ell tie Tale motc- o A of aosdete dn

in a set ofbe rota VES of or :

short cirenits pai.2 2 to-datum sot
eurrent sources oe be : : Oz the iaal: Geax7 +

voltage end current commuting whe response. Tu

many situetions to fied in Art. 412:

relevant, this physical of 1viou aatities
doa sufficos chee (ru. Jnesion by of tho necvork,

9, Exoucles

Loe sebbing up eyations will now
be 2 exammhes. Coasllee use

(a) are In ows, >

( both constont),

The comp

ance ork oF" Fig, 20,
the source values gro; 1, = 10 aeyeres, = 38 8
In pat (b) of the seme is shown theFos 4 4 aits breac wa
ing and a choles of to dofine loop careects.



6.00 - Elementary Circuit ao ry - Ch, It C-64B
Page TI-45

21

2
:

4
4

:6

a wi 7 7 :31

1 oer
:

{a) - (b)
Fig. 10

The tie-set schedvie ceovasrondingeto this choice reads

1 643

41011 1

(52)03012
4

23

n :

:
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The rows give us ths oquations

1 vy
=
= 02 5 (53)

0,654
and the columns yicls the brrach in temas of the loop currents,
thus 4 :

Jy i1
Jo 4

b; = 4, (52)
414

2i bia

These correspond respectively to the Eqs. 44 : 46 in the above summary,

With regard to the Eqs. 45 relating brench >es to branch currents,

we observe that if we assoczate tie eurrent source with branch 5 (we could

alternately associate it wth brench 2), then branches except 1 and 5

are passive and no pecial commont is needed for than The net voltage drop

4n branciu 1 is v= "6+ dye and the net current In the arrow directien in

branch 5 is j a : the current in the
}

resistance which is peswive part of thig breuca. Noting the source
2 voltaze arovalues given above, ths expressing

of net branch curvents read

v= jy~ >

2 Je
qu?3

4 2j

5 5
20

6°6

The relations involving the active branches arc 3cen to contein terms that

are independent of current.
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The desired equilib=ivm squations are found through substitution of
Bas. 54 inte 55, and tho resulting expressions for the v's into the voltage-
1aw equations 53. arrangement this givesOn

534, + 03., 432

(56)
o4, +31, +02 20

31
01, +01.+35 4

:

We 20,2:21

Paese are selveé for the leop curreats. One finds

whence substitution into Bis, 54 yields all the branch currents *

i2 10/3, a4 5y (57)1

Jy = 5s Jp = Jy = 10/3, 4, = 05 4,
= 25/35 Ig = 5/3. (58)

The value of Js ja the net in branch 5, Toot in the passive part
of this branch is j

:

hence is (25/3)- 10 = -5/3.
5 by the voluc cf the source current, and

Now let us solve th : given in Figs. 10 by the node method,
choosing as node~padir the potentiols of nodes g end b respectively,
with the bottom node 23 « The an cay set schedule reade

od

0

6

a) (59)

n 53

1

The rews give us le. + a

J, tdg-J, 5
= 9 (60)

do tda- Ja tdg Oy

and tee colums vield -

: brench voltages in tours: of the node-pair voltages,
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v, =

These correspond vesrectively te Eas.
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Page II-48
G Lit imOLY:

22

3
(61)14

1 25

2°6

48 und 50 in she above summary.

Regarding Hos. 49 veletiny the branch tae branch voltages,
we note as before that 3 jand ve an that the complees:

545
:

set of these

Jy = Vy

Jo

Js
46

= 2

equations veeds

= V,2

( 62)

= 0.5v,+ 10

33

4 4.

which are simply the inverse of Eqs. 55.

The desired
Eqs. 61 into 62,

36 -7i
-1, 384 + Jey =

equations are found substitution of:

end the resulting expressions for o jis into the current-
law equations 60, arrangement ons

Oe
(433

The solution is readily fovadc to be

1 0, 1.0/3,

and the branch voltaces
=

1

ape then computed from Eqs. ol to be

0, v5
= ~10/3, 10/3, v= 0, = -10/3, Vy

= 10/3. (65)3
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With egerd to brench 1 4% must be remembered that the value of vy is for

the total branch, ircluding the voltage source. The drop in the passive

> therefore, is 5 volts.

és a second : WO 1} consider the notvork graph skown in

Pig, Wa, The esnreos in series with the brenches are voltages having the

10 :

x :

5

:

7 fe
:

10
:

3
3

a %

:
7

6

(e) (b)

"tg. il

values indicated. 'nce for this graph, b= 10, n = 3, and 7, it will

ve advantngeous to the node method. 4 specification of

node-pair voltcyos ia da part (b) of Sus gure. In the following
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1% 2 166 7 8n

1:9: a,e,ad

last colum ure eorrespondi. :

facilitate ita construction,

(66)a

9d03 is added tc: :

According to the vous of schedule obintes the Kirehho?f

rent-law equations

Jy 2 J, dy de Jg Jg o7
2

3 a
Sa
de

Ho
i

N
e

ty2 j4 {67}

2

while the columns yield the the brench volveges
terms of the node pair voltages
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The branches are again considered to be resistive. Let us assume for
conductances the fx:

By = = Ay t :
th

817 i, a

8 relations
drops arc : tound through noting the appropriate ex-
for the

is by the esr 4

passive cart of

2

Jy =

ho owyo

Substitution of
espressions for :
tex proper r

Their solution Vis

from which the
oné tha brauch

g values in mhos

i, 8, = 3s Bn
= As Bg

= 5s

2y By = 6. (69)

besnch currents in tezms of the net branch-' a

: 4

. passive part of each branch and multplying
". tance. For e: anple, the arop in
4 : v, +10; in brench : itis ia branch

:

g we Ber Ubat:

123

= Vv
33

4
(70,

5

Jg av6
Jy
dg 3 8

9
0.

ie Q iS ic
s]

ae aN aa ci oO tyBo. 70, aud the resulting
5, 67 3. de. equations.

: L:

4 :

3

(71)9
7

8 S

8e1

Ry fa (72)3,
3

be "puted using Eqs 68,:

found Brea Rus 72
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CHAPTER xXX :

Generalization of Circuit Equations 'and Bneregy, Relations

1. Use of matrix algebra
Matrix algebra is a kind of shorthand that enables one to write

algebraic relations involving systems of simultaneous equations in
a very compact form. Its principal value lies in the circumspect-
ion that results from this compactness, and in the facility with
which one is thus enabled to carry out and visualize the signifi-
cance of more elaborate sequences of related algebraic operations.
In numerical problems its usefulness lies solely in the systema-
tization that it injects into the computations; it -provides no

short cuts. It, therefore,. is primarily a tool for facilitating
analytical manipulations,. but as such its usefulness easily
justifies the small amount of time and attention required on the
part of the uninitiated reeder to understand the basic principles
and rules involved.

€

As has previously been pointed out, the so-called matrix
corresponding to the set of linear equations

x17819%".a
(1)

+a in: n Vy

&< nwenn+a x<x +a21 1 22 2

nl 1 ne-2 nn n na xX +a x +a x y

is written
11 "12 "In

(2)[A] 21 "22 "2n

nl "ne "nn

and represents merely the array of coefficients 85,10 the same
order regarding their row and column positionsas they appear in

Unlikethe related set of systematically written equations.
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the determinant
a11°12

a *.°°Fnn

a21°22, :

(3)3

which is a rational. function of its elements. a,,and has definite
numerical.values for given values. of :these elements, he matrix
{Aj-has.ne "value" other than-the.pictorial value that 1s pro-
vided by : its outward appearance and, structure.in relation to
-the associated equations .ta which it-belongs...

: :

Usually the number of equatioris equals 'the number of -un~
knowns -(the quantitzes Ky xn ), Inwhich case the matrix has
as many rows as it has -columns. * Phat is to'say, the associated
matrix is composed of a square array, and the number of its rows
or columns ig referred to-as the order of the matrix. This cir-
cumstance is not necessarily always encountered. "For example, in
Ch. I dtsouss the reletions'between branch currents and
loop currents or between branch voltages and node-pair voltages,
we encounter sets..of equations with nonsquare matrices. In this
respect a matrix again-differs from a determinant, since the latter

:

where we

Must always involve a square array of coefficients.
:

An extreme example of a nonsquare matrix is one with only a
Single row or a single column. Thus we may write the sets of
quantities and Vz appearing {n the Eqs. 1, as
matrices :

*y

*n Yn

:

x
x] (4)

2
:

These are referred to as colunin matrices.
In terms of the matrices 2 and 4, the shorthand known as

matrix algebra @nables one to write the set of Eqs, 1. in the.
abbreviated form

:

{AJ . (2)
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:

In order to show how this expression may bé regarded as the
equivalent of 1, we must provide an appropriate interpretation for
each of two things or questions: (a) 'hat is meant by the equality
of matrices? (b) How must one define the product of tvo matrices,

has been said about a matrix that two can be equai only if all of they
corresponding elements are equal. A necessary (though not suffic-
lent) condition for equality, therefore, is that both matrices
have the e-me number of rows and. the. seme number of :columns. Since
in 5, the right-hand matrix has only one column, it must turn.out
that the product [A] . x] be a-matrix with e single column. More
specifically, if 1 and 5 are to be. equivalent then it becomes
clear that we must have

like [A] . x]? 3:

Regarding the first of these questions, it follows. from what

+a xa x11 12°" In (a x11 1+a12° In Vy
+1

a21%22°**8En y Ya (6)
"*" *n 78 +0048nn n Yn

(a x21 1 + en n2

ni n2° nn (anl aXea

in which the sums of terms in parentheses in the intermediate
matrix are single elements, so that this "is a column matrix like .

x] or yj in 4 (although its. appearance at first glance does not
suggest this fact). Equating.elements in this matrix with
corresnonding ones in y] evidently yields- the Eqs. 1.

The rule for matrix multiplication made evident in Eq. 5 may
be described by saying that one multiplies the elements in the
rows of [A] by the respective onesin.the column of x] and adds the
results; and that the first, second, etc. elements in the resultant

:

(column)matrix involve the first, second, etc. rows of [A]. :

Stated in more general terms one may say that in forming
the product of two matrices [A] and (B], resulting in the metrix
[C], one multiplies the rows of [A] by the columns of [B] in a
manner that is most easily understood from the following example.
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11 12 13 14 11Pie 13
:

11 12 1

891%92%53%04 51°22%o3 (7)b b21 22°23
: :

31 32 33

41 42 43 :

in which one obtains' for the elements of. the product matrix

Cay = a 11 12 21 13 31 .14 41b b b b

a11 12+2900AyP50+a14P4a (8)12 :

+a 12b Dy13 11 23 13335 14
:

Cai = 891 11 22 21 23 31
= 8g 12 22°22 23 32 24 42° (9)

D b 24 41
b b b22

Ogg
= a :

Thus the so-called (s,k)-element in the product matrix (the element

sk? is formed through the addition of products of the respective

formule for this 'element being

ek Bar?rk? (10)

in which r is regarded as the summation index The equivalence of
5 and 6, according to this rule of formation, is readily recog-
nized, whereupon the acceptance of the matrix Eq. 5 as being a

compact way of writing the set of 'Eqs. 1, follows without diff~
iculty.

In determinant multiplication, by the way, one does not have
to stick to the rule that only rows of the first may be multiplied
by columns of the second determinant in the product A.B. One mayeqally
well form elements in the 'product determinant through multiplying

bd +o bd R21°13 22°23 25°38 : 24 43

:

elements in the sth row of [A] and the kth column of (BJ, a general

: :

r= 1 :

the columns of A by the rows of B, or rows by rows, or columns

by columns. Any one of four different schemes may thus be used



:

'-G-64B6.00 Elementary Circuit Theory Ch Page X-5
in determinant multiplication (albeit one must be consistent
throughout the evaluation: of a given problem). This freedom
results from the fact that it is only the value of the product
determinant that matters, and this value turns out. to be the same

with each one of the four schemes although the specific values
for the elements in the product determinant are not the same.
In matrix multiplication where the result is.a matrix, only one

rule of formation can apply, since the elements of this matrix are
tne quantities of. interests

Another point 4llustrated by the example of Eq. 7 is the fact
that in any product [A] x [B], 'the nusiber of columns in (A) must

equal the number of rows in [B] in order that the number of
elements in any row of [A] will equal the number of elements in
any column of (B], a necessary condition that is obvious from the
wey in which the row-by-column product is formed. If the given
matrices in a product fulfill this condition, then that product
is gaid to be conformable.

It is likewise clear from the example in Eq. 7 that the number

of rows in [A] and the number of columns in [B] may be anything;
but that the number of rows in the product matrix (oJ equals the
number of rows in: Cal, and the number of: columns in Cc] equals the.
number of columns in [B]. If we use for the deSignation of a

matrix [A] with p rows and q columns the notation [a and a

similar notation for the matrices [Bl and {cl, then these remarks
are summarized in the equation

pq

[apg! x [byr =
Ce,r (11)

sonformability of this product is placed in evidence through
the so-called adjacent. index q being the seme in the two matrices
forming the product, while the remeining indexes p and r correlate

j and the columns of (bopthe rows of [apq with the rows of{cvr
with the columns of Ce,r

Using this notation, a conformable multiple product is,for
example, indicated by

j x [bad x Cong x Ca,,] = Cen! . (12)[apq
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Conformability is recognized at once from the fact that all
adjacent 'indexes are' alike, and the number of rows and columns in
the resultant matrix is make evident from the number of rows in
the Tirst matrix and the number of columns in the last.

6.09 Elementary Circuit Theory Ch. X

From the restricted nature of the. rule. for forming a

matrix product, it is clear that the commutatiye law does not

apply; that is
(al x (B] # (B] x (al. (13)

However, the associative law does hold; which means that, in the
multiple product 12; we may group the terms in any way we wish so

longas we preserve their relative order. Thus we may begin the.
multiplication at the right with Ce x Ca,,4 and work towards
the left in successive steps, or we may begin at the left and

work towards the right. again, we may first carry out separately

Although the finel product matrix is the same in all cases, the
computational labor involved is not (herein lies one of the finer
points of this subject that we shall not pursue further at this

rs

the products [ang x [dos and Co }x Cd j and then multiplyrs st
the result of the first of these by the result of the second.

time.)
A matrix is said to be symmetrical if its elements fulfill

the condition a,,= a,,- If both matrices in the product [Al x [B]
are symmetrical, then 13 obviously does not apply since there is
no distinction between the respective elements of the kth row and
those of the kth column in either [A] or [B].

The so-called inverse of a matrix [A] is written tay and
is defined by the relation

1 0 0 «ee 0
0 oO} = (ul, (14)

0 0 Ove 1

1 (ay? x (al =
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in hich Cul, carried the unit matrix, has: the indicated structure
in which the eleménts on the principal diagonal are unity and
all others are Zero. Equationg like the set 1 having 'a unit
matrix evidently read! = Yys Xp=Vo, xn Multiplication
of any given matrix by the unit metrix leaves the given matrix
unchanged. Hence if we multiply on both sides of Eq. 5 by Cal
we have

x Ca) x x]=(U]x x) = [a] x yl. (18)1 1LA]

The set of equations corresponding to this result in the manner
that 1 and 5 correspond, has the form- :

1 12%2+ eeetd iny+b xy
(16)b tee +by +b22%0 enyn Xo

nn n n?b eve x

with the matrix
11 12 in

b
= 22

(17)
b bnl 2 nn

The inverse matrix is thus recognized. to be the matrix of the
inverse set of equations; that is, the equations that represent
the solution to the given set. "The property of being inverse is
evidently a mutual one. Thus we may equally well regard the set
1 as being the inverse of 16, and hence it follows that [A] is
the inverse of [BJ]; that is

[a] = (B) (al} x (B] = [B] x (4] = (ul. (18)1
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The problem of finding the inverse of a given matrix is the
problen of solving a set of simultaneous equations like 1 or 16.
Using determinants and Cramer's rule, one can compactly express
the elements of the inverse matrix in terms of those of a given
matrix. For example, if the determinant. of fal. is 'denoted by A,
as in Eq. 5, and its cofactors are written Ag? at follows (see
art. 2, Ch. III) that the elements of the inverse matrix (Bl,
Eq. 17, are given by

Pak (19)

Conversely, if the determinant of [B] is .B, with cofactors Bay? then
B

:

A

ks
: (20)sk

Because of 18, the formula 10 for the -elements.of..the product
matrix yields in this case

1 for g§ = -k... :

(21)a b
0 for 8sr rkr1

because the product matrix is the. unit matrix 14.
From the relations 19 and. 20 it is clear that the inverse

of a matrix exists only if the corresponding 'determinant. is non-
zero. Incidentally, there must "be a corresponding determinant
in the first place, which implies that.: the given matrix be a
square array. A nonsquare metrix possesses no inverse. A
'matrix that does possess an inverse i8 said.to be nonsingular;
one that does not, is called-a.singular:matrix.

'hen a given matrix has the so-called diagonal form

d 0 011
6 d : 0 :22 (22):

00 0 nn
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which is like the unit matrix except that the diegonal elements
are not equal to unity, then the associated equations read
qy4%1 y
inspection One recognizes thet the inverse of (D] is simply

a22 aq xn yn 3 which-can be inverted bynn3

0 0day
11

1
- = (23)2

-10 0 eee Gan

That is to sey, the inverse of a diagonal metrix 1s again a
diagonal matrix with elements on its diagonal that are respectively
the reciprocals of the diagonal elements in the given matrix.

Alteration of a matrix through writing its rows as columns,
or vice versa, is called transposition,and the result is referred
to asthe transposed matrix. Thus the transposition of the matrix
[A], Eq. 2, yields

ane 991 331: nl
(24)12 22 "32

(al, =
a aL en on nn

Transposition of the column matrices 4 yields row matrices

t (25)
x] :

[x1 Xp

Note that the transposed matrix is indics'ted by the subscript
and that column and row matrices are distinguished through
writing x] and,x, respectively.

When matrices have.a 'large number of rows and columns, it
may be effective :to: partition them into.-smaller sections, called
submatrices. Such a partitioned matrix may be written .. :

:
:
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[a j
[A]

pr [a Jps
[a : . (26)

{aqr
:

aqs

Thus the m rows and n columns of the matrix [A] are partitioned
into groups of p and q rows;-and r and s columns. That portion
of [A] consisting of the elements in the first p rows and first
r columns (the upper left portion) is the submatrix Cand} that
portion involving elements in the first p rows and the last s
columns (the upper right Portion) is the submatrix Caygla and so
forth.

If a second matrix (B] is likewise. partitioned as shown by
Lb j rj?

(27)nk si
:

Then the product [A] x [B] may be :evaluated as though the submatrices
were ordinary elements. That is to say, Eqs.26 and. 27 yield the

[aqr! x [b,,t j + [aga) x "th,1 lege x bp] + "qs
(28)which in turn may be written

product :

[apr! Lb jrt + Ca ]ps" *"stx C ] Capr ri + Ca Jx{bps si

:

Le j :

pty. :
[epi

Leqt
(29)

:

qi :

Note that the partitioning of the columns of [A] and of the
rows of [B] (both into groups of r ahd s) must correspond in order
that the products of submatrices appearing in 28 all -be conform-
able. The partitioning of the rows of. [A] :and of the columns
in (B] is arbitrary. From the indexes appearing on the sub-
Matrices in [A] and in (B] one can tell the number of rows and
columns in the submatrices of the product matrix 29. Partitioning
thus lends circumspection where detailed manipulations with
elaborate matrices must be carried out.

:
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It may happen that a large number of elements in a rather
extensive given matrix are zero so that, after partitioning, one
encounters : submatrices ;consisting entirely of zeros. A matrix
whose elements are all-zerosis called a null matrix. A partitioned
matrix heving such null submatrices may have the form

rr
[A] =

iLa }ss (30):

[a jtt:

where we have written the null matrices as though they were simple
zeros. Actually. the two zeros in the top row of the matrix 30
are null matrices involving r rows and respectively s and t
columns. Similar comment applies to the other zeros eppearing in
this matrix. The matrix [A] in this example 18 chosen to be a
sduare array consisting of. rts+t rows and a like number of columns.

Regarding the submatrices in 30 for the moment as one would
ordinary elements, we would recognize this matrix [A] to be in the
diagonal form. It turns out (as may readily be seen) that its
inverse, like that of the diagonal matrix 22, is simply given by

0La 1
:

t rr
be7

[A] ss (31)1

0 1
tt

which hae the form of { D j in Eq. 23, although the diagonal
members must be found by the method of matrix inversion because
they are submatrices and not. ordinary elements. However, it is
useful in analytic work to be aware of this method of indicating
the inverse of the matrix 50.

1

Ze Branch parameter matrices and volt-ampere relations.
We wish. now to reconsider the problem of setting up the

differentiel equations expressing the equilibrium of a linear
passive network, removing restrictions of any sort so that,we will
arrive at a formulation that is perfectly general. For certain



C-84B
Page X~126-00 Elementary Circuit Theory 'Ch. X

theoretical considerations to be taken up later on, suc
on,

an un
restricted point of-.view is essential,.ag may also be true in
some practical situations.

Although the basis for a. general procedure is given in
Che II, it is there discussed specifically 'with reference to
resistance networks. In order to remove this restriction, it is
necessary that we show in detail how the volt-ampere relations
pertaining to the branches (expressed formally by Eqs. 43 of
Art. 7, Ch. II) may be evaluated for nductances and- capacitances
as well as for resistances. For: the sake .of. convenience, : these
equations are repeated. below

Av, +-e5,) = (dye * Agi) » (32)

Fig. 1. It depicts. the most general form that a passive branch

:

:: : :

:

(33)k k ky(v +e+ )
::

and Fig. 9 of Ch. II to which they refer, is reproduced here as
: :

with essociated voltage and current sources may take. Since Jy
f

k re the net
" gurrent and voltage ~

aie) @pop, the quantities:

Jy
(j,44skJand(v +ek
are seen: to pertaink sk

: (v +e )
sk

sk
to the passive element
resistance, inductance
or capacitance) alone.sk Fig. 1

It. is-the relation between the currents and voltages in
the passive,elements that, is expressed by, the Eqs. 52 and The
first of these symbolically expresses the voltage drop in : the
passive element of the kth branch as a function of the passive
branch currenté; the second equation 'nh-this.pair. does the -

verse. Ye shall now put these relations into.a more explicit

:

form. :
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@ The passive branches (single elements) in the network are
assumed to be numbered consecutively from 1 to b. Of this total
number of b branches let us say that dare inductive, 9 are
resistive, and o are elastive,X\ +P+0 being equal to b. The

numbering of the branches, moreover, is carried out in such a
fashion that numbers 1 to A refer to inductances, numbers d +
1 tort refer to resistances, and numbers \ + P+ 1 to toA+p+ o =

b refer to elastances,
Since each inductive branch may be mutually coupled with

every other branch in this,group,the matrix of self and mutual
inductance coefficients, according to the discussion in Art. 4

of Ch. VIII, called the branch inductance matrix,has the form

444 g le :

(54)(2] = 21 24

:

The resistance and elastance branches, on the other hand,
cannot be mutually coupled; their parameter matrices must have
the diagonal form. Hence the branch resistence matrix is

0 e e
given by

{rj = Ty +2 O 0 (35)

O +0
and the branch elastance matrix is written

A+p+1 0 0

(36)
0

0 «62 0= SA+ 0 +2
- ee

Sb
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In these last two matrices, an element Ms or 8, is simply the @
resistance in ohms or the elsstance in darafs of the single
element (passive branch) to which the pertinent gubscript refers.

The.yoltage drops. in the passive elements in terms of

the currents. in these elements are expressed for the inductances

by :

(v,+e Paw PY, 3 i=l, 2, eood
ygsk (37)

for the 'resistances by

(v,teai
and for the elastancés by "the equations

Yr A+ Ll, tO, (38)4
:

d, (39)(v si4

in which the abbreviations

p= ana pt = fat (40)a
at

are used to denote the operations of differentiation and integration
respectively. -

Because-of the possibility of mutual coupling between

inductive branches, each passive voltage drop (v,te.,) in one of

these (1..e., for i = 1, 2, «+» X) depends in general upon all of

the passive currents (3,43,7 in these branches. That 'is why

Eqs. 37 involve a summation extending over the inductive branches

(reference to Eqs. 30 in Art. 4, Ch. VIII may also be helpful in
the interpretation of 37). Each of the Eqs. 358 and 39, in con-

trast, involves only a single term on the right-hand side pecause

the voltage drop ina resistance or elastance depends upon the

current in that branch alone.

:

The relations 37, 38, and 39 may be combined inte a

single matrix equation through defining the column matrices
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vars,1

ivees] = anatgeal= Je+1 (41)
e

top

C-64B

3 +41

Vo+e g2

Jp+

and the branch operator matrix

C2Ip - 9:

[p] = o (rl: o (42)

in which the branch parameter matrices 34, 35, and 36 are embedded
as submatrices (the matrix °'[D] is written in partitioned form).
The scalar operators p and p- become associated with each element
in the matrices [] and [s], since multiplication of a matrix by
a scalar, multiplies each element in, the matrix by that scalar
(as may be seen from the fact that the matrix must. vanish if the
scelar is zero, and a matrix vanishes only when all elements are

:
1

am oean Spits

1

zero). :

The desired relations expréssing the voltage drops in the
passive elements in terms of the currents in these elements
(equivalent to Eqs. 37, 38, and 39 combined) are given by the
single matrix equation

(vte,] = (D] x [j+i,]. (43)
Through carrying out the indicated matrix operations one thus
obtains an explicit evaluation of the symbolic Eq. 32. (the un-
initiated reader should write 'out the matrix Cp] completely and
carry through the indicated 'multiplication in order to understand
this result and appreciate its simplicity.)
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The inverse rélations 33 may similarly ,be evaluated. To
this end the branch parameter matrices are considered in their
diverse forms aa the reciprocal inductance matrix

Yn Ye eee x

ty]= Yer Yee Yea =peyt , (44)

1

the conductance matrix

OF

0 0 eee

-and the capacitancematrix
Atp+ 1

(46)[e]

Since the last two are diagonal matrices, their diagonal
elements are simply the reciprocals of the. diagonal elements in
{r] and {s]. As shown in the preceding article, the elements in

] are not. so-simply related to those. in [2]. However, if the
determinant of [] be A , with cofactors Ao? then

Y = ksA
sk 47)A
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where the indexes s and k on either Y or A may be interchanged
since the matrices in questioh aré-

In 'algebraic form, the desired inverse relations are

expressed by

(Jyt454) = g, (vite si ) Leah +1, (49)

(j,+4si} ik +e skit n, (48)
:

:kY

and
+1 De (50)si si

In matrix form they may be. combined in a single equetion
through defining thé operator matrix (inverse to [D])

20

0 ;
F Eo] P

C

:

3 (51): :

ove

> whereunon the expressions for the currents in the passive elements
in terms of the voltage drops in these elements ere given by the
matrix equation

(52)

which '4s the inverse of 43 'and "represents the. explicit evaluation
of the symbolic Eqe 35-6

In order to obtain the equilibrium eduations we can now

follow precisely the same pattern set in Art. 8 of Ch. II for
resistance networks as sumnerized there by Eas. 44, 45, 46 for
the loop basis and by 'Eqs 48: 49, 50 for the node basis. The
central equation in each of 'these groups 'of three, expresses the
volt-ampere relations for 'tHe branches, which we have just
finished putting into the matrix forms 43 end 52. The first and



6.00 Elementary Circuit Theory Ch. C-64B
Page X-18:

last equation in each group expresses réspectively the. pertinent
Kirchhof law and: the branch: variables (current or voltage) in
terms of the loop or node variables. These relations involve the
tie-set and cut-set. schedules. We shall next show how these may
conveniently be written as matrix equations and combined through
straightforward substitution with Bas. 43 or 52 to obtain the
desired results.
5. BQuilibrium equations on the node bas:LS.

The first step is to write the pertinent cut-set schedule
in the form of a matrix, thus

Fy, Hg My

(@} = %p] : (88)a21 . Yee

nl "ne "°° "nb

The elements in any row of this matrix are the coefficients in a
Kirchhoff current-law equation since they pertain to the selection
of a cut-set. Their values, therefore, will normally be either
+1 or zero depending on whether a pertinent branch does or does
not belong to the cut set defined by a given row. Each row has
b elements; but there are only n rows since this is the number
of independent cut sets or node pairs. It should be recalled

'number of nodes.
from the discussion in Ch. I that. n=n,-1 where n, equals the total

It is also showMin Ch. I that the elements in any column
of the matrix [a] are coefficients in an equation expressing the
pertinent branch-voltage drop in terms of the node-pair voltages
that are consistent with cut sets defined by the rows. Therefore
if we write column matrices :

Jy
and Cv] 2 (54)



C-64B§.00 Zlementary Circuit Theory Ch. Page

for the net branch currents and voltage drops, and express
similarly the agsociated 'current and voltage sources as

Shoghe
+31 sl

e

Ci_J= .5* and ; (55)

dsb sb

so that the column matrices 41 can be separzted es indicated by
C j+i J = (j] + Cig); Lv+e tv] + Ce]; (56)

and if we write the node~pasi voltage veriables in the form of
a column matrix

: :

1
e

e,
teJ= (57)2

:

then the Kirchhoff-law equations are expressed in matrix form by
i :

a x
the -vqltrampere relations a2 for the branches can be written

[3] + x Cv] + (D]1
2 (59)

and the branch voltages in terms of the node-pair voltages are
given by

[v]=(e],x (el.
-The desired equilibrium equations ere the, Kirchhoff-law

Eas. 58 expressed in terms of the node-pair voltagés as variables.
One obtains this result tnrough substituting the expression for
{v] from Eq. 60into Eq. 59, and the ensuing relation for [j]-
into Eq. 58. After a slight rearrangement of the terms, one finds

(60)

{ @}xip]~1x{ a
8 n{ @ Ix

in which the right-hand side, representing the net equivalent
current sources feeding the node pairs, is ebbrevieted as a column
matrix nl

(62)

nn:
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It is interesting to note the structure of this matrix as
expressed by Eq. 61. Thus the term within the parenthesis
represents current sociated with the branches, while
the term involving [pd] x {e ] represents the transformation
of voltage sources associated with the branches (see Fig. 1) into
equivalent current sources, the minus sign arising from the
opposite reference arrows associated with eok and i The

parenthesis.expression, therefore represents net current sources
for the branches, and is. to. be thought of as, combining these into
a single column matrix. Multiplication of the matrix [a] into
this column matrix yields.again a column matrix whose elements are
algebraic sums of the branch sources according to the groups of
branches forming cut sets (these are the branches associated with
the pertinent node pairs). The elements in this resultant column
matrix [i,Jare thus seen to be equivalent no@e-pair current

C-64B
Pege X-20

sk

:

sources.
Interpretation of the left-hand side of Eq. 61 is fecili-

tated through an appropriate evaluation of the triple matrix pro-
duct C x x {a ],. A preliminary step toward achieving
this end is the partitioning -'of the columns in -the :matrix [a ]
into groups of A, p., 6 , thus

1

; np, ag. (88)

The. submatrix [@ } consists of the first d columns in [ a]

Eq. 51, one then finds

9x
{%no] represents the succeeding. group of columns, and
contains the last-o columns. Using the form for [D * given in1

x: a x Cyr{ajx{p] 1x{e] [a 1:
nn: np no ( a )

& 1 Cane),
:

:

= x t PCG, p ol, + [a xLe] x (a. 1 (64)nx no
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The expressions

x Ce] x [pple

:
:

LT ] {a nvJ yj] [env t :

npJ (65)

are recognized respectively as thé reciprocal inductance, the
conductance, and the cepacitance perameter matrices pertaining
to the node basis. In terms of these and the source matrix 62,
the equilibrium equations 61 take the somewhat more familiar
form

({ Pip is CG] + x (66)n

The principal results of the present :discussion are the
evaluation of the resultant source matrix Cay] as given in
Bq. 61, and the expressions 65 for the pertinent parameter
matrices. These are given in terms of the' branch parameter
matrices [vy ], (g], and-[c]-through triple matrix products with
aprropriate portions (and their transpositions) of the @-matrix
characterizing the cut-set schedule. The formation of these key °

quentities appearing in the equilibrium Eqs. thus in every
case reduced to a simple, systematic "ard straightforwerd procedure.
The equations themselves are a set of simultaneous differential
equations in terms of the instantaneous values of the veriables.
4. Equilibrium equations on the.loop basis.

The procedure is in form entirely analogous to that just
described. The pertinent tie-set schedule is characterized by
the matrix

Pay Pag Pap

CB J= Poy Pog Pop (87)

By Pee



6.00 Elementary Circuit Theory Ch. X C-64B
Page X-22

in which the elements of any row are the coefficients in a @
Kirchhoff voltage-law equation since they correspond to the
selection of a tie-set (set of. branches forming a closed loop).
Their values will normally be either. +1 or zero depending on
whether-a pertinent branch does or does not belong to the tie-
set defined by a given row.. Each row has.b: .elements; but there
are only & rows since this is the number of indevendent tie-sets
or loons: It should be recalled from the discussion in Ch. I that

= b- >n. +-1. :

It is also shown in Ch: I that the elements in any
column of the matrix [8] are coefficients in an equation ex~
pressing the pertinent branch~current in terms of the loop-
currents that are consistent with the tie-sets aefined by the
rows (i.e., currents that circulate upon the closed paths defined
by the rows). Therefore, if.we make use of the column matrices
54 and 55,. the relations indicated in Eqs. . 56, and write the loop=
current variables in the form of a column matrix

Ey

then the Sirchhofflaw equations are expressed in matrix form by
(69)

the

the volt-ampere relations 43 for the branches can be written
tv] + {e,] = (D] x C3] (dl x (4,],- (70)

and the 'in terms of the Loop-currents are given byCj] CRI, x C4). (71)

(68)Ci] : : :

x vj] =o,
:

The desired equilibrium equations are the Kirchhoff-law
Eqs. 69 expressed in terms of the loop-currents es-variables.
One obtains this result through substituting. the expression for
CjJ from Eq. 71 into Eq. 70, and the ensuing relation : for [v]
into Eq. 69. After a slight terms, one finds
CB] x (D) x (B], x (al CBJ} x (Ce,} - Cp) x = fey] v2)
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in which the right-hand side representing the net equivalent
voltage.sources feeding the loops,. is abbreviated as a column
trix

:

Ce,J= (73)
:

2

ey

It is interesting to note the structure 'of this matrix as
expressed by Eq. 72. Thus the term Ce,] within the parenthesis
represents voltage sources associated. with the branches, while
the term involving: [DI x (1,} represents the transformation of
current sources associated with branches (see: 'Fig. 2) into
equivalent. voltage sources, the minus sign arising from the
opposite reference arrows associated with. Lex and e The

parenthesis expression, therefore, represents net voltage
sources for the-pranche's, and is to be thought of as combining
these into a single, colusin matrix. Multiplication' of the matrix
[ B] into this column matrix yields again a column matrix whose
elements are algebraic sums of the branch sources according to
the groups of branches forming tie-sets (these are the. branches
associated with pertinent, loops). The elénents in. this.resultant
column matrix Le j thus seen to be equivalent lgop voltage

sk

are
sources.

Interpretation of the left-hand side of Eu. 72 is faciliteted
through an appropriate evaluation of the triple matrix product
CB] x tp] x (f Jy A preliminary step toward achieving this
end is the partitioning of the columns in the matrix TB ] into
groups of \, P , 9, thus

:

CB] = LBbr: Bao By gis (74)

The submatrix [B,,] consists of the first \ columns in [B];
[Bap represents the sueceeding group of Pcolumns, and (By }

1

contains the last ocolumns. Using the form for [D] given in
Eq. 42, one then finds

nevis
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CB ] x O° 0 x (By) t(Ba Bap Pyg]x 2) p
:

{e
t0 (Bp

1
(75)

The expressions,
"CL [Bal x [4] x (Bde ;

CR) = (By) x fr] x B :

(76)
[s]-= (By x [a] x

:

:

:

are recognized respectively
epectively.

as the inductance. the resistance, and
the elastance parameter matrices pertaining to the loop basis. Inf
terms of these and the source matrix 73, the equilibrium Eqs. 72
take the somewhat more familiar form

pt tn] + (8] p+) x = [e RY

4~

The principal results of the present discussion are the
evaluation of the resultant source matrix [ey] as given in Eq. 72,7
and the expressions 76 for the pertinent parameter matrices. 'These
are given in terms of the branch paremeter matrices [4], (rj, and
Ce] through triple matrix products withyappropriate portions a

(and their transpositions) of the 6 ~matrix characterizing the
tie-set schedule. 'The formation of these key quantities appearing
in the equilibrium Eqs. 77 is thus in every case reduced to a

simple, systematic and straightforward procedure. The, equations
themselves are a set of simultaneous differential equations in
terms of the instantaneous valued of the variables.
5. Remanks and examples. :

In Ch. II it is pointed out. that symmetry of the parameter
matrices on the node or loop basis comes about if the definitions
of the node~pair voltages or loop currents are chosen to be con~
sistent with the Kirchhoff-law equations, a condition that is
commonly met but is by no means necessary. The procedures given
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in'the- two preceding articles are,. therefore, not completely
general, for they satisfy the: conditions leading to symmetry.
In the node method, for example, 'the Eq. 58 expressing Kirchhoff's
current law and Eq. 60 defining the nodepair voltage variables
are consistent, for they involve the samea matrix (cut-set
schedule). Similarly for the' loop: method, the Kirchhoff voltage-
law Eq. 69, and Eq. aL defining the Loop-currents are consistent,
for they are based upon the same tle-set schedule (8 matrix).

Vheat we should recognize is the fact that one may, on the
node basis choose one set of node~pairs for the current-law
equations end an altogether different.ne for the definition of
the node~pair voltages} or on the- loop, basis one may choose one

set of loops for the voltage+law equations and another as the
circulatory paths for thé -loop-ourrents. Specificelly, The Ecs
58 and 60 may involve two different 2 -matrices or cut-set schedules;
and the Eqs. 69 and 'en may: involve. two entirely different ~matrices
or tie-set schedules (so long as: the. schedules used pertain to
the game network, of course). : In most instences, however, it is
advantageous to adhere to the. +consistency conditions and obtain
symmetrical parameter:matrices. Therefore the relations as given
in the preceding articles are, almost always appropriate and can
readily be generalized if desired.

1 5

t

2

al
> : :

38
:

:

4 . 6

(a) (b)
Fig. 2
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:
:

4g an illustrative example of the procedure given in the
preceding article, suppose we, consider. the circuit of Fig. 2(a)
which involves six mutually. coupled windings.n the same magnetic
core. An appropriate schematic diagram :is shown in. part. (b) of
the same. figure..-It is easily recognized. (according to the
discussion in Art. 4, Ch. VIII)..that the, scheme for indicating
relative polarities.of .the coils. by means of dots is applicable
to this simple arrangement, and that. the system of dots in the
schematic of part (bd). is consistent with the physical arrangement
indicated in part (a) of Fig. Ze

The reference arrows on. the inductive branches of this
circuit diagram are all chosen that the. tips. :of these arrows
areat the dot-marked.ends.. As a result of. this simple expedient,
all mutual inductances. between branches become numerically positive.
If we assume that all six coils have self. inductances equal to
unity, and that all mutual inductances are equal to one-half (there
is no sense in using.more arbitrary numbers in this example), one

:

has the, branch inductance: matrix @
0.5' 0.5 0.5 05 "oO

5 6 8 1 f78)
0.9 0.5 0.5 1 0 5
0.5 0.5 0.5 0.5 1

1
+ 0.0 0.5 0.5 0.0.

0.5 : O.
0.5 0-.5 0.5 0.5

0.5
0.5

Although the voltage source, which is bridged across a node
pair, may readily be replaced by voltage sources in series with
branches (as shown in Art. 7, Ch. II), it is more interesting in
this example to consider the voltage source as a degenerate branch;
that is one for which the associated passive element is zero. For
the branch numbering indicated in Fig. 2(b), one then obtains the
graph shown in Fig. 3.
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Wise . : : : :
:

a
5 :5:: :

:

he A2
:

8

3 :

4°N VS4 :

66

Fig 3 4Fig.:

Since in the given problem we -are particularly interested
in the current through 1the resistence Ras a function of the
source voltage, it is expedient to choose a tree in such a way
that brenches 7 and 8 become links. The tree shown in Fig. 4,
for which branches 1,7,8 are links, is a satisfoctory choice,
andthe identification of Link-currents with loop currents is
given by

1 8
2 Jn (79)

= J,3 :
:

:
:

:

seems best because it associates with the source and igwith the
load.

1
:

The matrix of the resulting tie-set schedule is now

recoenized by inspection to be
3

0 o 2 0 0. 2

{8 ] 0 .0 1 1 (80)
1 1 -1 -1 0 0

1 Q

.1: :
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and the submstrix (f ard is given by the first six columns. Noting
the expression for the inductance matrix in the Eqs. 76, we next
evaluate the product

jr 3
$ 2

1 3 1 8 3 5 (el)

2

CBoy,j x 11

011

which can be done by inspection, using Eqs. 78 and 60. The
desired loop inductance matrix is then found as shown below

(1 = (Pyx] x [4] x

2

1 1 :

3 3 13
2:1113

21.1

(82)14311331131 :
:

111111 21
112222

The equilibrium equations on the loop basis are thus seen to be

given by

2p : Oy.

3p (3/2)p ~p dy +

+

(3/2)p (4p+R) D 0 (83 )2
34

where the abbreviation p = a/at is still used. Since we are
only interested in 1, and tos it is a good idea to eliminate As
immediately. To do this. we can consider the so~called auemented

:

matrix
3p e,
(3/2)p (4p+R) p (84)

2p

:

(3/2)p :
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:

and carry out linear combinations of its rows (equivalent to
making linear combinations of the Eds. 83) in such a way as to
produce zeros for all elements of the third column except the
last.

Thus if we add; the -(1/2)~multiplied elements of the third
row to the respective ones of the first row; and then add the

elements of the third row to the respective
ones of the second row, there results *

:

(5/2)p O

Bp (7/2)p+R 0
o '2p

2p
(85)

: : :

The third row is now,trivial, and the first two yield the equations
(5/2)p

* (88)
1

: : :

2

By inspection one. can recognize that. the 'circuit of Fig. 5

involving only self-induct-
ances with the velues in-1/3 3/2at dicated, has; the same loop
equilibrium equations. One

may, therefore, regard this>

Simple circuit as the equiva-
lent of the one given in

go far.as the terminal-
pairs a-a! and b-b! are con-

:Fig. 5

As an example of the node method, we will consider the
cerned.. :

circuit of Fig. 6 in which the three inductances are mutually
coupled, and for 'the indicdted reference arrows are. gharacterized

:

by the branch inductance matrix
:
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542

[aj= 4 9 87)1
54

with the inverse
5 -L 1

3 (88)Cy] 21A
1 2 2

The "resistive branches have
conductance values in mhos
as indicated in the following
branch conductance matrix
for the branch numbering in
Fig. 6

sl ~s2

4

Ce] =
(89)

Fig. 6

Ror the variablés.we will choose a node-to-datum set of
voltages, taking the point 0 as the datum and denoting the potentials
of nodes A and B respectively by e, and Go° The appropriate cut-
set schedule then has the following matrix

The three voltage sources we will .assume, to be steady
sinusoids with values as indicated in the column matrix

and

lo
on

5

6

0
8

1 1
11

[a] 1
2 (90)11

01{a
1 0

1
1 (91)

1

t
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: 2 a:

34 cos
(925= :

: :

The matrix according to 155 is identically zero because there
are no current sources associated with any of the branches.

To evaluate Ci, J 'n Eq. 61 we . must form D j which by
Eq. 51 becomes

1

:
:

Sp 111
:

111

2p 9 0

[p] 6 0 20 (93)
O 0 6 0 8 0

0 O 0 8

2p 0
11 : :

:

2 :

Actually only the first three: rows. and columns enter into the
evaluation of

(D]*xLe,] = sin t + 2 coscos

81 'sin t - 6 cos t
79 sin t.- 4 cos t

0
0

69 :

(94)

as the reader may readily verity by Angpection, noting incicentally
thet p cos t = sin t and p tein t.= - cos te One thus obtains
for the matrix representing the net equivalent current sources
feeding the nodes

sin (t~45°)Ci.] = - (@)x(D] "xfe-j= 6 sin t - 6 cos1 :

8 sin t + 8 sos t| sin (t+45°)
(95)
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for the parameter matrices
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Straight~forward substitution into Eqs. 65 next ylelds

1
-1 1 3 1 LOC rj 1 2 (96)

51115

1 2 1 02
1and 25112

1 lo , (97)2181
13

of which the last could have been written down by inspection of
Fig. 6. Thus the equilibrium equations for this network become

(Sp t+5) - (7p 142) e, 6V@ sin(t - 45°)
(7p "+2) (10p "+10) sin(t + 45°) (98)11.

The computations shown in Eqs. 93, 94, and 95 suggest that
it might be a good idea to decompose the matrices Ci ] ana le, J] in

given in Eqs. 51 and 63, with the object of making the pertinent
expressions less unwieldy. In order to carry out this thought @
both for the loop and node bases, we partition the source matrices
55 pertaining to the branches as indicated by

and [a]a manner consistent with the partitioning of {D 1 as

San

(99)and

go "sd4

Here the submatrices [1,)] and contain the first A' elements in

elements are combined in the portions (igo! and Ce, ]

the column matrices C4 and le the succeeding P elements are
represented by thé submatrices [i sp and [e and the lastsp

The source matrices Ca] and ley], Eqs. 62 and 73, per-
taining to node-pairs and loops are appropriately resolved into
additive components as indicated by

(i,J=Cin), + (11, + (411, (100)

(egl=Legl, + Legly + Legla (101) @.
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Je then find that the expression for given in Eq. 61 permits
the detailed representation

(102)yJ pvt x ) r

= (typ) :x (Ligg] - Led x fe }), : (103)

Cinlg = [a x (Ci Cel p x te J), (104)

{i spn e

no

while the. expression for te, given in Eq. 72 may be decomposed
into

x (Le.J :
~ [4] x Ca54), (105)Le j

Cr] x [4,,3), (106)

Teg], = P gol x (Le,g].- Cs] pox (igol)* (107)
ley], = # (Le sp

These components of the matrices and [e that are distinguish-
"ed by the subscriptsA , p, o (not 6 be confused with submatrices)
are those additive portions of these.source matrices that are con-
tributed by. actual current and .voltage sources associated with the
inductive, the resistive, elastive branches respectively.
Tne separate expressions for these components are far less une
wieldy than those for (i,J and [ey]. Moreover, one may have
sources associated only with one. kind ef element (inductance, re-
sistance, or capacitance in which,case two of the components are
obviously zero and need not confuse the calculations. Thus in
the last example above, there are no sources associated with the
resistive branches, and so three-fourths of the space occupied by
the matrix (93) and half the space. occupied by 94 could be saved.

:

Another point worth emphasizing ig concerned with the way
in which the voltage source in. the problem of Fig. 2 is dealt with.
yherever we enéounter a voltage source that is not in series with
a passive element or a current source that is not in parallel with
a passive element, we have the choice. either of revising the cir-
cuit according to the discussions given in Art. 7 of Ch. II, or of
considering the source as a degenerate branch, as is done in the
examples above. The latter scheme preserves the given geometry

@ of the network, a feature that" nay be important to the subsequent
interpretation of the analysis. It ig well, therefore, to be
aware of the possibility of treating sources in these various wayse
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6. Energy functions
Denoting the elements in the loop parameter matrices [L],

CR], (8] by Lyx Sq, where the indexes i and k may assume

any integer values from 1 to 4, one may write the equilibrium Eqs.
7? in the following more explicit algebraic form

k Cas; i=1,2, ° be (108)+R +5(Lik dt ik ik dt)ia
:

k=1

Since this is still a rather compact form for these equations, the
reader will better understand the notation involved through
writing them out completely on a large sheet of paper. Thus
for 1 = 1 he should write out the terms in the left-hand sum

that correspond successively to k = 1,2,...% equste these to
He should then do the same for i = a 4 = 5, and so forth

down to the equation for 1 = 4; 'He will thus understand with ease
and clarity how this system of equations appears in detailed form
and how the notation in Eq. 108 is to be interpreted.

:

He should next carry through the detailed evaluation of
these same equations. starting from the equivalent matrix form "77,

writing out all of the matrices explicitly and carrying out the
Andicated matrix additions and multiplications. A facile under~
standing of the equivalence of the matrix and the : algebraic forms
of these equations and their individual detailed interpretation
thus gained. (and not achievable through any less, painful method$)
is essential in developing one's ability to comprehend without
aifficulty. the following discussion.

If we interpret the quantities @7,, Gg5,++-ep, as being
actual voltage sources acting in the.links. of the network and
regard the loop currents dy, doseeedy as the currents in these
same links (which is appropriate because the conditions leading
to symmetrical parameter matricesarefulfilled), itisclearthat
the expression :

@g, 14 + Oyploteetegyty (109)
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*

represents the total instantaneous power delivered €3 tre-network emee

by the sources. In order to study this flow of: energy throughout
the network we need to construct the expression 109 using the
Eqs. 108. Visualizing these equations written out as suggested
above, we may form the desired result through multiplying the
equations (on both sides) successively by y+ igseeety, and adding
all of then.

Through use of the summation sign we can indicate this set
of operations very: compactly if we multiply on both sides of Ed.
108 by i, and then sum over the index i from 1 to %.. On.the left
we obtain a double summation, since Eq. 108 already involves a
sum with respect to-the index.- kK ° The result is written

:

P Lyk i
3

igs
(110)

where it is important to note that the time-differentiation and

If we now define three functions ag'

1)k=1

di
AY

i=1i k=1
i.1 +3ik i i at )=

integration do not affect 4

:
:

4

(112)2ik i2

i,k=1 (113)
1

where q, in the last of these is used to denote the loop charge or
indefinite time integral of the loop current as indicated in

at dqor at (114)

woe -adn5
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we observe that Eq. 110 is euuivalent to

Or + (T+V)= Og, 14°i=l
For, through straightforward aiffrerentiation we see that

a
(4 i )at (116)

3i k=1
+

since summation and differentiation are interchangeable operations,
and. by the rule for the derivative. of a product

(44) -4.a +4 1ai ai
(117)dt at at

so that 4

2 L i 4 dt Liy k at+ iaT di di
{118)1

dt i, k=1
If in the second of these two sums we interchange the summation
indexes i and k (which is permissible since each independently
assumes all integer values from 1to 4), and make use of the
symmetry condition Lik =

Lyy> it becomes clear that the two sums
are identical. Hence

b ai

1,k=1
L i (119)aT ik i atat

Analogously we find
dq

1,at, (120)av- ssat ik 4

1,k=1
and thus the equivalence of Eqs. 110 and 115 is established.

Comparison with Eq. 32 of Ch. VII reveals that our present
Eqs. 111, 112, 113, and 115 represent a generalization of the
previous result pertaining to a simple RLCO-circuit, and that the
functions 2F,T, and V are respectively the total instantaneous
rate of energy dissipation, the instantaneous value of the energy



stored in the magnetic fields associated with. the inductances
and the instantaneous valué of the energy stored in the electric
fields associated with the capacitances. . Thus .Ed. 115 expresses
the conservation of enerey through showing 'that the time-rate
of energy supplied by the sources equals.the: sum of the rate. of
energy dissipation :in the circuit.resistances and the time-~rate~
of-change of the net stored energy.

Although F dimensionally is power while. T and V represent
energy, we speak of the three functions F, Ty and V as the
energy functions associated with the network. Specifically, T
and V are. neferred to as stored energy functions, while F is
also called the loss function (first introduced into this sort
of analysis by Lord Rayleigh). [In order to preserve homogeneity
in form for the three functions, a factor 1/2 is written before

C~64B6.00 Elementary Circuit Theory Ch. Page
:

:

the summation in the expression for F 28, well as in those' for T
and V, and for this reason it is 2F not. F that represents the
total instantaneous rate of, energy dissipetion.

:

Until the reader has become assustomed to the notation
used in Eds. lll, 112, 115, it is well occasionally to write out
an expression of this sort more fully, as for example

+ tL+ Lie iL iaT 11 1 1

+ + lygigi i22+4+

(121)
+ * Legigtg tees + Lpgighg

Thus the first line in this expression is a summation on the
index k from 1 to 4 while the index i remains constant at the
velue 1; the second line similarly is a summation on k from
1 to 2 while i = 2, and so forth, Since one may just as well
add the terms by columns, we see incidentally. that one can
alternately sum on i from 1 to 4 holding k constant at 1, and
then at 2, and so forth. In other words, the double summation
is carried out through letting the indexes i and k independently
agsume all integer values from 1 to 4, as stated above.
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The expression 121 (compare also with Eq. 154 of Ch. III
and with Eqs. 39 and 44 of Ch. VIII) is thus seen to be homogeneous
and quadratic (all terms are quadratic) n the loop-current variables.
AS mentioned-previously, a function of this sort is called by
mathematicians aquacratic form. The energy functions Fr, T and V
characterizing a linear passive network are thus seen to be quadratic
forms in terms of the network variables.

"One may alternately derive the energy functions in terms of
the node-pair voltages as variables. Starting from the Eqs. 66
pertaining to the node basis, and denoting the elements in the
matrices CT], (Gl, (cl byP ays Gye C4k? the equivalent algebrale
form for these equations reads

dt)e,=i53( ik at + Gik (122)a
ik

k=l
in which e, e

equivalent node~pair current sources. Since both sets of quantities
refer to the same node pairs, the total instantaneous power supplied
to the network by an actual set of current sources feeding the

are the node-pair voltages. and i are thenl- nn

pertinent node pairs is given by
P=4 +1 (125)

This expression is formed through multiplying the successive
equations in the set 122 respectively by Sys e e and adding.
The result is compactly written

nl. L n2°2 nn n+ie +

nde

i,k=1 ik 1(Cc e +6at ik ie e +T ik i e at )= n .

124)
In termsof the energy functions

i,k=1-
AkikGee (125):

:
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ik i (126 )
1

4,k=1
2

:

1
2 (127)

1,k=
+

where Vy inthe last of these is used to denote the node~pair

voltages as indicated in
:

flux linkages ar indefinite time-integrals of the node~pair

dy
or (128):

at 2

we again find thet Eq. 124, is an expression of the conservation
of energy, for it is equivalent to

dt+ (V+T)=a

@ eran i? (129)

:

the detailed justification for this conclusion being entirely
similar to that given for the loop besis.

Although initially a given network may be thought of as -

excited by voltage sources located inthe links, we can sub-
sequently assume the gources to be. currents having the values
of the resulting link currents without altering in any way the
rest of the voltages and currents throughout the network. The
state of the network, however, is regarded as characterized in
terms of loop-current variables or in terms of node-pair
voltage variables according to whether the sources are considered
to be a set of voltages or currents respectively. In a situation
of this sort, the functions 111,112,113 have values that are
identical with those obtained: from Eqs = 125, 126, 127. The
former express the values for the associated energies in terms
of loop currents and loop charges as variables while the latter
express these same values in terms of node-pair voltages and
flux iinkages as variables
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So far, the variables and the sources are any time
functions. Let us now assume that they are steady sinusoids as
they are in many practical applications. For the loop basis we
then write

Hoag (I FOP (130)

a, = = i, e 2 (sr)

+ T Jwt

k ki at (I ed wt wot

where the bar signifies the conjugate value, Preparatory to making
substitutions into the relations 111, 112, 113 for F,T and V, we

compute
4 (Tred? i (132)Ie ) k) jot +Iek 3

1 jot jot

which yields
i k iI jewt+T I +I +I I4i ki 4 i k

+ Re I I- Re 1
(133)i k

1
2

where Re is a symbol for "real part of" as used in previous.
discussions. Similarly we find from Eq. 131 that

Re
20

2 (134)1 kI I1
2i k

20 :

and substitution into Eqs. 111, 112, 113 then gives for the energy
functions in the sinusoidal steady-state

R I I4 ik Re
1,k=1

1
Lk

» (135)

a4 k 4L I Iik + Re j2u t
ik k

.11
47

i,
(136
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S I I
40ik Re ik (137)2

: :

:

where it is to be noted that the Re-sign is not needed in each
Tirst term. For example

4...
Re > Rudy = \ BaylyIx? (138)

i,k=1 yk=1
that is to say, this sum is real in spite of its complex variables
I, and I,. The proof of this statement is readily given through
showing that the sum on.the right-hand side-of Eq. 158 is self~
conjugate; that isto say it is its own conjugate. Obviously if
a number equals its conjugate, that number must be real. Con-
sidering the conjugate of this sum which evidently reeds

1,k=1
(139)I I

its value is not chsnged if we interchahge the summation indexes
i and k, since any other two symbols could be used in their place.
If we then observe that R it is seen that 138 and 139 are
identical.

F

:

Each of the energy functions F,T,V according to the Eqs.
135, 136, 157, is given by the sum of a constant term anda
double~frequency sinusoid, as is shown in Ch. VIII for the simple
RLC-circuit. The constant term in each case is the average value
of the energy function. We thus have

ik ikR IT (140)1
av 4

i,k=1

T 1 L ITI
av 1, k=1

ik «kK, (141)4

av (142)
1
2

4w i,k=1
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In Art. 7 of Ch. VIII, expressions equivalent to Eqs. 136 and 137
are given in terms of branch currents instead of loop currents.
These are less general than the present results because the
relation for T given there does not provide for the possibility
of mutual inductive coupling. Since branch currents, unlike loop
currents, do not traverse any common paths, and since the possibi-
lity of mutual inductive coupling is not considered in the dis~
cussion given in Ch. VII,: the sums appearing there (see Eqé. 84
and 85 of Ch. VII) involve no cross-product terms as do the ones
given here, rather only square terms are present. For this reason
it is clear by inspection that the constant term or average value
is greater than or at least equal to the amplitude of the
oscillatory component, as a physical consideration obviously
requires since the. instantaneous value of the function would other-
wise become negative dur ing some intervel, a condition that is
physically Ampossible.

Although, for the more general expressions 155, 156, 157
considered here, it is not as simply obvious algebraically that the
constant terms are at least as large as the amplitudes of the per~
tinent oscillatory components, such an independent purely algebraic
proof can readily:be given. Considéring any one function by itself,
one : introduces a linear. transformation of the variables which
eliminates the cross~product terms, whereupon the desired résult
is again obvious (as pointed out in the second paragraph of Art. 7,
Ch. VII). The Algebraic details involved in this demonstration are,
however, not justified at this point.

It is useful to obtain analogous results in terms of the
node~pair voltages as variables. Considering the functions, F, T,
V, as given by Eqs. 125, 126, 127 we write for the node-pair
voltages and flux linkages

e, = + (E,e Jat, E e"Jot, ) 2 (143)

v= feat =55 Eye

and
Jot_ Eye

Jwt ) (144)
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It then follows that
+22 Re1

2 re z (145)3i ke e

Re Re = E (146)1 1 je tand
Ve 2W2

whence substitution into Eqs. 125, 126, 127 yields
6 n ~

(147)G Ek 4
1 EE + >Re jewt.1

i,k=1 i,k=1 ik i 34

0532 -4B += Re jewt1
(148)4

4w2
-=y Re

i,k=1 40) ik 4 (149)11
27

i,k=1

The Re-sign is not needed in each first term for the reason
given in the discussion of the analogous situation on the loop
basis. The first terms asain are the average values end the
second terms are double-frequency sinusoids whose. amplitudes
cannot (for a passive network) exceed the respective values of
the constant terms. These average velues in terms of the complex
amolitudes of the node-pair voltages are

tz
io
) <
il Pl
y

1,k=1Sik k? (150 )E E

<4 Cs
ad EE, (151)i k=] ik

(152 )
1

av 40 1,k=12
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It is now a simple matter to obtain general expressions
for active, reactive, and vector power in the sinusoidal steady~
state. To this end, considerthe loop equ ilibrium Eqs. 108 for
the assumptions

eg, = E and = 1,034, (153)4

After cancellation of the exponential factor, one has

ik +8 :

ik + Ey} -1, 2, L. (154)

Forming the conjugate value upon. both sides and rearranging
the terms slightly we have

E (155)i (hay we k
ik )

:

:

The total vector power, according to its fundamental
definition given in Art. 4, Ch, VII, is now obtained through

(156)

multiplication by 1,/2 and summation over the index i, thus

1 ikik ik S ITI1 R
i,k=1 i, k=2i iE I2

In view of the relations 140, 141, 142 this gives

E,I, = Pay = eF + jew (Vvav Tay)? (157)
whereupon

Pay = cPay? (158)

Rey
= 2w (Vay - Tay)? (159)

av av

whereupon

which agree with the results obtained in Ch. VII for the simple
circuit considered there.
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Thus the real part of the vector power is the average
power dissipated in the resistances, and the imaginary part
or the so-called reactive power is proportional -to the difference
between the average energy stored in the electric fields and that
stored in the magnetic fields. when these two average stored
energies are equal, the sources are not Galled upon to take
part in an interchange of stored enerey, and the net reactive
power is zero. As stated in Ch. VII, the reactive power Gay is a

measure of the extent to which the sources are called upon to
participate in an interchange of stored energy. The actual
average power consumed by the network is. the so-called active

:

power Pay'
It is interesting to int erpret 'also : Eq. 115, expressing the

conservation of energy, in the sinusoidal steady state through
substituting the expressions 135, 156, 157 for F,.T, V- If we

observe that the last.two equations: yield

1 jeutaT Re : JwL; T
1,k=: :

Ak"1 k 3
:

and
Ss.

at (161)av Re I I1k1
:

(since the constant terms in 136 and 137 do not contribute to
these time-~derivatives), and group the sinusaidal terms in a

single sum, this substitution into Eq. 115 gives

k ki k=Ti k 2R I I
2

+ Re
+ jwLikik + i}

1

1,k=1

or
3

(R + Iik3

ik ik 4
1y

(162)
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where we have separated the double sum into two single sums in
order to snow that the one inside the curved brackets, according
to Eq. 154, is simply E,- Hence we have

(163)1 X+ Reav 4 4

which shows that the total instantaneous power
power

supplied by the
sources equals a constant (the average power dissipated. by the
circuit) plus a double~frequency sinusoid.

From the expression for the double~frequency sinusoid'we-
can see, for example, that if our network is a balanced polyphase
system, this term becomes zero, for the source voltages E, and t he
source currents I, are equal in magnitude and are equally spaced
in time phase so that the sum of the products Et, over all
sources vanishes. In any balanced polyphase system the total

..

instantaneous power is constant and equal to the average rower
consumed by the network.

of particular interest te the: result 163 if the network
4s excited by a single source. Letting this one be E1? we have in
this special case

(164)Re 1 1
E I

av 2

Taking E, as phase reference and denoting the input admittance
angle by Q we have3

P=p + cos (20t +o). (165)1E I
av 2.

However, noting Eq. 157,
2 2

11 av + fay,E I
(166)22

so that Eq. 165 can be written :

cos (2ut +), (167)J? 2 2 * :

av av
: :

+P p +av
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a result which shows that the amplitude of the double-frequency
sinusoid equals the magnitude of.. the vector power.
7. Equivalence of Kirchhoff and Lagrange equations.

In this article we. wish to show that Lagrange 's equations,
which express the equilibrium of a system in terms of its
associated energy functions, are identical with the Kirchhoff~
law' equations so far as the end results are concerned. 'Ye need
first some preliminary relations which can readily. be seen from
Eqs. 111, 112, 113 for the functions F, T, V in terms of the
loop currents. If we differentiate partially with respect to
a particular loop current, we find

oF (168)
k Loi ik k?

p

oT
di, (169)

L
av
oq (170)

These results may most easily be obtained if one considers
the pertinent function written out completely as T ig in Eq. 121
It is then obvious that a particular loop-current, say ip is
contained in all terms of the second row and second column, and
only in these terms. Hence if we differentiate partially with
respect to ig, no other terms are involved, and we find

(ets feria" Rlgg2 + Ipgtigtes+tLoply3

+ L i + (172)+L+ i12 32 3 +,



6.@0 Elementary Circuit Theory Ch. X C~64B
Page X-48:

where we note that the term with a factor 2 because the
derivative of i1.~ igs involved. However, since Lyy* Legs we can.2

2 :

rewrite this result as

(172)Oi 2 +o. +Lpgig)2 2
3

:

2
from which Eq. 169 follows. Eqs.' 168 and: 170 are obtained in the
same' manner.. In all three, the summation involved.is a simple
summation on the index k. : :

If we differentiate Eq. 169 totally with respect to time,
we have

dt
k=

ik dt
ad 3 di

(173)

and Eq. 170 can be rewritten as

ov 4

k=1
go that with Eq. 168 we obtain @

k=1

Ody ik (174)
A

d + R + dt) iy+ (175)t iae ar. ta OF
34, ik. at ik ik+

Reference to the Kirchhoff voltage~law Eqs. 108 now shows that these
may alternatively be written.

ad 9oT
i = = @

oF av L. (176)

This form, in which the voltage equilibrium equations are
expressed in terms of the energy functions, is known. as the
Lagrangian equations. From the way in which they are here obtained,
it is clear that they are equivalent to the Kirehhoff-law equations
although their outward appearance does not place this fact in evidence.

The Lagrangian equations. may alternately be expressed in
terms of the node-pair voltages as variables. To obtain this result
we begin with the Eqs. 125, 126, 127 for F, V, T and form

n
(177)

4 ik kae
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av. (178).oe. k=1 :

n
(179)

k=1 +

ik
:

:

bifferentiating Eqe 178 totally, with respect to time and rewriting
Eq. 179' gives

4

(180)OV de: :

at ae Care at
a

ak 1
and

k=1 a

from which one hes

(181)
oT : :

ov de
OF oT

Goi ik+T dtiek' : (182)aa
at ae oy 4 at

k=

In view of this result the Kirebhort-1aw Bas. 122 may be re~
written in fhe form

OV) +i
These again are the Lagrangian equations expressing the network
equilibrium in terms of the associated energy functions.

n. (183)aF + oT 1, 2,at ae n4 :

It is significant to observe that Eqs. 176 and 183 are dual
forms of the Lagrangian equations just as the Kirchhoff Eqs. 108
and 122 are dual forms. It is interesting in comparing these
two equations to note that the functions T and V interchange
places, as should be expected from the fact thet T and V are
duals. : :

@ ebrasnas :

: :
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8. Relation to impedance functions. @
In terms of the previous results of this article, it is a

Simple matter to express the driving~point impedance of a network
in terms, of its associated energy functions. - Thus Eq. 157 for a

Single driving-point (which we can call loop 1) yields

Eyl, = aytj4u Tay)» (184)

or, taking the conjugate of each side of this equation,

Dividing both
r1 2yields respectively

of Eq. 184 by E 2
= or both sides

A more effective form for these results reads

E 1 (188)av av av.aP + J4o(V(0) T )

and

Z,(0) =
k

Fr + j40(T ~
Vay ) -1. (189)

In the interpretation of Eq. 188 one should consider Fay? Vay?
Tay 9 be expressed in terms of voltages as in Eq. 150, 151,.152,
for their respective values are then readily recognized to be
proportional to the square of the voltage E1 at the driving~point
since all other voltages Ey En are linearly proportional to @
E,- In Eq. 188 we say that Fav? Vay? Tay are regarded as being
evaluated per volt at the driving-point.

E I +j4w (T V ). : (185)1 1 av av av
ides 2

1
of Eq. 185 by 11I

I 4F +j4w(V T )
:

111 : 1
2 (186)Y (w)=1 av av av

:

and E Vv»)av av av :

I1 :
(187 )2

:

1

:

av av 1
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Analogously, in the interpretation of Eq. 189 we associate
with Foy? Tay? y the expressions. 140 ? . 141, 142 in terms of
currents. other loop currents are linearly proportional
to Iy, the average energy functions are seen to be proportional

regarded ag normalized vslues. Eq. 189 expresses the driving

:

Since all
:

to I Their values per 'ampere 'at the driving~-point 'may be
1

point impedance in terms of 'these: normalized values of the
average energy functions., ::

As pointed out in Art. 6 of Ch. VII where these same

expressions for the ariving-point admittance and impedance
functions are derived. iar terms of the simple RLC-circuit, one

recognizes by inspection that a' resonance condition is one for
which the average stored energies are equal, for the input im-
pedance or admittance then becomes purely real, It is also clear
that the stored magnetic energy predominates when the reactive
pert of the impedance is positive, while a negative reactive part
indicates that the stored electric energy predominates. Thus
these characteristics of the: impedance are more clearly and

directly related to the physical properties of the network.

The relations 188 and 189 ina sense permit the same

simple correlations between impedance or admittance and the
physical network to be made in all : odeea;y that are otherwise only
possible with the simple parallel or series RLC~circuit. They
are, however,: restri-cted in that the impedence or admittance is
expressible only for pure Ameginary complex fréquencies (also
referred to es real. frequencies 'since they correspond to
Sinusoids with steady shplitudes). n the following we shall
remove this restriction through the introduction of a related
set of energy functions that' have significance for any complex
velues of the frequency variable 8 O+ j®; and simultaneously
we shall generalize the resu so as to include all possible
transfer impedences or admittances ag the driving-point
functions.

:
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Starting again with the loop equilibrium Eqs. 108, let us
substitute

Ops and a (190)I eE e
:

and obtain after cancellation of the exponential factor

:
e 4 2, (191)(L +ik ik

s :

4? 1, bh.
K 1

The successive equations that result for 1 = 1, 1 = 2, and so forth,
we now multiply. respectively by Ty) 19) eee Ty and add. If we

introduce the notation

(192)

(193) ®

the result may be written

ik 4I II I

4R I II I

vy = (194)ik i ik 1I I

st, + F (195)+
i 1

The equivalence of the forms for T,, Foe V, shown in Eqs. 192,
193, 194 1s seen to follow if we interchange the letters 1 and k,
which are merely summation indexes, and then note the symmetry
condition Ly, = (and so forth) for the parameters. Although
T, 18 the only one of these three functions that has the dimensions
of energy (Fy is dimensionally power, and V, has the dimensions of
the time*rate~of-change of power) we shall for the sake of simplicity
refer to all three as energy functions. Their relation to the
functions Tay? Poy? Vvav

4s discussed later on.



6.00 Elementary Circuit Theory Ch. X Page X-53

Our next objective is to extract' from Eq 195 some rather
general relations concerning driving-polnt and transfer impedances.
In this regard we observe first of all, that in most.cases we

are not interested in having sources in all the; loops of a
network. In order, however, to leave this question in a flexible
state, we shall assume that, of the, Loops in. the network, only
p will be considered as being point 6 of access, and permit p to
be any integer from 1 to 4 These.p.points of access are the
terminal pairs of the voltage sources located in R of the loops.
The network as a whole we assume to be' enclosed in a box with
only the accessjble terminal pairs brought oute

:

Since we are interested only 'in the currents at these p
terminal pairs, we wish to eliminate all other currents involved
in the Eqs. 191. In order to indicate specifically, how this
elimination is done, we may assume, without introducing any
restriction, that the points of aceess correspond to loops 1 to p.
Use of the abbreviation

ik (196)4 + ik :

ik ik
then permits the resulting equilibrium Eq. 191 to be written

€ I >12 +f, 12 :

I +€pl 1 pe

1 2 +$41,2
(197)

: :

0,

thus showing that all but the first p loops have no excitation.
x

x.
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"The (-matrix of this set of equations we now represent in the

va

hey. bee ++ Age. fon fag

partitioned form

(198)
ee21 "e2

where the submetrix contains the elements of the first p rows
:

and p.columns, Cog] contains the elements of the first p rows andpp

the last q columns here 4p, and so forth. The column matrices

a ray) e Ey
42 Be ;

ye and [EJ= . (199)

are correspondingly partitioned as indicated by the forms.

:

Ty
:

(200)and :

0

4n which (I,J and [E_] are column submatrices containing the first
p elements in [I] and (E]; (I,J contains the: last q elements in [TI,
and [0] is a column of q zeros. The eqs. 197 may then be written
more compactly as e

pp bq

(201)j= (0]qp p q( Jx{I

The second of these equations may be solved for CI J giving

(202)Jx (r J, :

and substitution into the first equation yields

(Co pq)x ) x (203
pp

which symbolizes the desired set of equations involving only the
currents at the accessible terminal~pairs.
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If we introduce the square impedance matrix of order p

~1
pp pp pq qq

12 °"""lp1 :

21 22 49
(204):

pl "pe

we may wesse the :Eqs. 203. tn the.equivalent sresmrets form

2, wee (205)
:

ik k
:

This is an abridged 'rorm of the Eqs. LOL appropriate to the
:situation in. which voltage Sources are present in the first p

indicated by the matrix Eqs 204... The transition from Eqs. 191 to
Eqs. 205 may be described 'as a process of suppressing or

Although the Eqs. 191 or 205 are derived specifieatly on
the assumption that the E's are sources and the I's are responses,
they correctly relate these voltages and currents even though
some or all of the I's may be sources and correspondingly some
or all of the E's become responses. If the Ty+--T, in Eqs. 205
are regarded as sources, then the resulting B1° at the re=-
spective terminal pairs are explicitly. given by these equations.
Under thesé circumstances the, terminal pairs are all open-circuited,
and for this reason 24, are referred, to as a set of open-circuit
driving-point and transfer impedances characterizing the p
terminal-pair network (compare with the analogous 'quantities

loops only... The coefficients 4,10 these
:
are determined

from thee (Eq. 196) characterizing the Eqs.191, in a mannerik : :

eliminating the inaccessible or unwanted currents.

described in Art. 7, Ch. III for resistance networks).
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Specifically, if qT, is the only nonzero current source, then @
By

=
43410

Ey
= Zeit,
= ZT) (206)

or
294 B/Ty

E/T, (207)
pl "ip p 1

If Ty is thought of as being equal in value to one reference ampere,
then the complex voltage. E,. at terminal-pair 1 4s numerically identical
with the transfer impedance 12 Zoq3 and so forth. In any of these
transfer relations like E, =

24014 it is important to observe that

response because this change of attitude violates the conditions
under which the particular relations 206 are extracted from the
general relations 205 (namely, Ij1s no longe. zero).

:

1 must be-the source and the response; arid that this specific
relation-is invalid if. Eo now is regarded as a source and'I_ as a1

Another set of particular relations may be extracted from the
Eqs. 05 on the assumption that Ig is the only nonzero current,
namely

Ey = 2

Eo
=

(208)
E, =

12 2

"92 2.

from which we may again obtain relations for the z's like Eqs. 207
which lend themselves to physical interpretation; and once more it
must be emphasized that the transfer relations apply only if Ip is
a sourcee
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The driving-point relations like ,, 244, or Eo
> Zool,»

in contrast, are valid regardless of whether the voltage or the
current is the source because no restriction is placed upon the
nonzero I, in Eqs. 206 or upon the nonzero Ip in Eqs. 208. A

driving-point relation always remains valid regardless of which
of the quantities E or I is the source ahd which is the response,
while the derivation of a transfer. relation. invariable involves
a restriction which fastens. the roles of. source and response upon

specific ones of the two quantities E ana I.
:

If we now substitute the expression for Ey ag given by Eqs.
205 into E Eq. 195, the right~hand summation in the latter is
restricted to the first p terms, and we have

V
s ik (209)

4,k=1 4,k=1

in which the.equivalence. of the two double sums is seen to

cussions will show, it is possible to determine all,the properties
of driving-point and transfer impedances from this result. At
this time we shall consider only the specific relation obtained
for a single driving-point (p=1) which reads

follow from: the symmetry condition .2,, = 2Ki' As later dis-

It = 441 (210)

or 2547 (sfo + gly = 1. (212)

2il 1

whence +V
Z

(211)11 :

V

With the expressions 192, 193, 194 for ? F Vo, this
result is the desired generalization of the one given by Eq. 189
to permit the consideration of any complex frequencies. Its
usefulness may be attributed to the fact that the functions To?
Fy Vo are real and positive in spite of any complex values that
the 1,18 may have as a result of satisfying Eqs. 191 for an

arbitrary complex frequency s. This fact may readily be proved
through writing



6.00 plementary Circuit Theory Che X. C-64B
Page X~58

= ag + i, = jo (213)

in which the a's and b's are réal but otherwise arbitrary. Then

Tah = (aya,+b,b,) + j(a,by~ a,b,) (224).:

Suppose we substitute into Eq. 192 for To 3 and consider first
the imaginary part which may be written as the aifference of two
sums, thus :

L L

1,k=1
2 arly (215)

If'in the first of these we interchange the letters 1 and k (which
we can do because they are merely summation indexes) and then note
the symmetry condition it becomes clear that thetwo sums
in 215 are identical and hence that their difference vanishes. The
first part of our above statement, namely that T18 real for any
complex 1,,'8, ig thus proved.

Substitution of 214 into 192 now yields T, in the form

(216)L a
1,k=1 ik i + 7 ik

Reference to Eqe 112 shows that each of these double sums is a
Quadratic form like T representing the instantaneous value of stored
magnetic energy. In Eq. 112 the variables are denoted by the
letter 1 while in the sums 216 the variables involve respectively
the letters a and b which, like the instantaneous currents digs are
real quantities. Since the quadratic form T is related to a
passive network, . its values cannot become negative no matter what
values. (positive. or negative) 'are assiged to the since one can
through the. insertion of current sources force the currents ina
network to have any, set of values, and yet the instantaneous stored
magnetic energy. must always have a positive value.
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The property of a quadratic form like T to have only
positive values no matter what the velues of its variables may

be (it is then referred to as a positive definite quadratic
form) must clearly be the result of its coefficients L,khaving
certain relative values; that is to say, it is a property of
the matrix [L] cheracterizing the quadratic form. It follows,
therefore, that the quadratic forms in Eq. 216 can have only
positive values, and hence T, can have only positive values.

Since the quadratic forms 193 and 194 for F and Vy are
identical in form with Ty » the same argument shows that all
three functions Ty ' Fo 2 Vo are real and positive for any
complex frequency 8, and that this result follows from the positive
definite character of the instantaneous energy functions T, F,
and V as given by Eqs. 111, 112, 115.

The expression 212 for a driving-point impedance is obviously
not an explicit one so far as its dependence upon the complex
variable s is concerned, for the functions T,, Foe Vo2 implicitly
are functions of s since they depend upon the 1,,'8 which are
solutions of the Ease 191 for a specific value of 8. Nevertheless
the representation for 24, as given by Eq. 212 enables one to
determine all of the properties pertinent to the driving-point
impedence of a linear passive network. Such determinations,
which are invaluable to devising methods of synthesis for pre=-
scribed impedance functions, will be carried out in the discussions
appropriate to these topics.

At present we wish rather to show next that analogous
results pertinent to admittance functions are obtained through
following a procedure which is precisely dual to the one just
given. Thus in the node equilibrium Eqs. 122 we introduce the
assumptions

(217)T e andst stE eni

and, after cancellation of the exponential factor, have

(C,,.8+G5,+ 8 )E,, = Iy3 i = i, ey ne (218)
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The successive equations in this set we multiply by E
and then add the results.. Introducing the notation

n
E.E (219)k?

ik (220

* n

i,k= (221)

in.which-the equivalence of the two sums in each equetion follows
from the symmetry condition C,, Cu etc., the result of these
operations yields

%

+ FsV + - i 1° (222)

This relation is dual to Eq. 199 obtained on the loop be sis,
and. the quadratic forms V, ; are respectively dual to Ts '
Fo a Vo Like the latter their values are real and positive for
all complex E, values resulting from the solution of Eds. 218 for a
chosen comvlex s-velue, In order to consider these equations
appropriate to a p terminal-pair network, we shall assume that
nonzero current sources are applied only to the first p node~pairs,

72

and with the abbreviation

(223)C stG T ikik ik
write the pertinent Eqs. 218 in the more explicit form

Nyy = I
+

(224)
pe

4

pn n

E = 0E +

nl J +7 Ene 2 na n O.
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The n-matrix of this set of equations we now represent in
the partitioned form

Tai he Tin
beCn ]=

n » (225)
1

uel "ne 1

entirely analogous to the partitioning used in Eq. 198 except
that here ptq = n instead of . The column matrices

11

(Ej= and [I] = ; (228)22

o
are correspondingly partitioned as'indicated by

and
P| 2 (227)

0
whereupon one may write the Eqs. 224 in the equivalent matrix
form

[n op! x LE + [nog x (E_] = (1

Nap1x + Magi * (z,J :

fo]. (228)

The second of these-equations may be solved for (E,J giving
x Cry, x (EJ, (229)

whence substitution into the first equation yields
~ -1 2x CnLn } Cnpp

x Cn qq LE CI 30)

which symbolizes tne desired set of equations involving only the
voltages at the accessible node-pairs.
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If we introduce the squere admittance matrix of order p

~1Ly ] Top J MgJ xpp Cn j x C

Yui Yig Yip
Yo1 Y22 Yan

3

(231)
pl "pe Yop

we may write the Eqs. 250 in the equivalent algebraic form

l, ey Deo (232)

This is an abridged form of the Eqs. 218 appropriate to the
Situation in which current sources are feeding only the first p
node~pairs. The co-efficients Vix in these equations are deter-
mined from the Nik (Eq. 225) characterizing the Eqs. 218, ina
manner indicated by the matrix Eq. 231. The transition from Eqs.
218 to 252 may be described as a process of suppressing or
eliminating the inaccessible or unwanted node-pair voltages.

Although the Eqs. 218 or 252 are derived specifically on
the assumption that the I's are sources and the-E's are responses,
they correctly relate these currents and voltages even though some
or all of the E's may be sources and correspondingly some or all
of the I's become responses. If the in Eqs. 232 are
regarded as sources, then the resulting I1° TI at the respective
terminal-pairs are explicitly given by these equations. Under
these circumstances the terminal~pairs are all short-circuited,
and for this reason the y,, are referred to as a set of short~
circuit driving-point and transfer admittances characterizing the
p terminal-pair network (compare with the analogous quantities
described in Art. 7, Che III for resistance networks).

1°
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Specifically, if Ey is the only nonzero
nonzero

voltage source,
then

1
I E2 You (233)

I
p Yn1Ay ?

or
Viz 1

Y12=Jou I5/Ey (234)
- -

= 1 /Epl "lp P

If &1 is thouchtof eas being equal in value to one reference volt,
then the complex current Ey at terminal-pair 1 is numerically
jdentical with the driving-point admittance the complex
current I, at terminal-pair 2 is numerically identical with the
transfer admittence Yie =

You } and so forth. 'In any of these
transfer relations like I = it is important to observe
that E, must be the source and Ip the response; and that this
relation is invalid if Ip now 1s regarded as a source and Ey
as a response because tnis change of attitude violates the
conditions under which the particular rélations 233 are extracted
from the general relations 232 (namely, Eo is no longer zero).

y

2

Another set of particular relations may be extracted
from the Eqs. 252 on the assumption that Eo is the. only non~
zero voltage source, namely

Ty *

Ig = YooEs

Ty
= y abo»

(235)
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from which we may again obtain relations for the y's like Eqs. 234
which lend themselves to physical interpretation; and once more it
must be emphasized that the transfer relations apply only if Eo is
a source.

The driving~-point relations like Ty =
3 or Ip = Yoo

Eo» in contrast, are valid regardless of whether the voltage or
the current is the source because no restriction is placed upon the
nonzero Ey in Eqs. 233 or upon the nonzero Eo in Eqs. 235. As
stated before, a driving-point relation remains valid regardless of whio
quantity, E or I, is the source and which is the response, while
a transfer relation is valid only for a specific assignment of
the roles of source and response, namely that one which is implicit
in its derivation.

It is significant to mention in passing that if the Eqs. 205
and 232 are derivedfor the same p terminal~pair network, then they
must obviously be inverse sets, and the matrices [z J and j ;
Eqs. 204 and 231, are inverse. Specifically, if these matrices have
the determinants Z and Y with cofactors Zor and Yoh? then

pp

= (836)sk ZZ and yks ks

If we now substitute the expression for I, as given by
Eqs. 252 into Eq. eee, the right-hand summation in the latter is
restricted to the first p terms, and we have

*
p p* *

8V + F
Vix ikre) EE VixEE

+ (237)
4

in which the equivalence of the two double sums is seen to follow
from the symmetry condition yik Yy4° For p= 1 we obtain the
specific result pertinent to a single driving~point.

(238)+ F 2E1 1+
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* % *
Together with the relations 219, 220, 221 for Vo? Fo? Ty this

C-64B
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+ T+ FWhence
(239)

*

(240)
(av + For +

1°1

result is the desired generalization of the one given by Eq. 188

permitting the consideration of any complex frequency. Like the
expression 212 for Z its usefulness stems from the fact that
the functions Vo rFos 7 have positive real values for all complex
8, the method of proof for this statement being precisely that
given in the consideration of Tye Fy? Vo°

* *

It remains to establish relations between Ty? F V with
and without asterisk, and Tay? Poy? Vvav

that apply tos = jw.
If Eqs. 195 and 222 relate to the same network with sources at p
points of access, then the right-hand sums are conjugates, and
hence the left-hand sides of these equations must likewise be
conjugates; that is

V % * 7
*

sT, + Fy + (241);+ TW + Qsv

and so we have * % 2
(242)o?

2

Comparison of the expressions for these functions with
pertinent ones for Fay? Pay? Vay? moreover, shows that for s=jw
one may make the identifications

For complex s-values a physical interpretation of the functions
Fy Vo? or Vo F Ty is not readily possible, but this fact

is of little consequence since it is their mathematical rather
than their physical significance that justifies introducing
them into the present discussions.

av owe ° (243)/w2,av 4Tav 4V3

2




