To: JoW。Worrester
From: Varren S Levd

Subject: Discussiom of Numerical Methode
Date: Maroh 17, 2.947

Digital Computation and Numerical Methods as a New Fiol of Mathemat10s

With the advent of highmpeed digital computing oquipment, the noed for more study of numerical methods becomes apparent. Many questions of a mathematical nature arise when an attampt is made to employ this new machinery.

Two main aspects of the theory present themselves. Firsi there is the question of errors. A numerical solution of an analytic problem will be in error because the numerical mothod is discreto and not continuous, and because any numerical expression is only an ajproximation to a guantity which is not rational with a small denominator. The two kind of errors are called truncation errors and roundwoff errors respectively. The study of errors in of utmost importance. No confidence oan be place in a numerical result unless an estimato of its error 1 s avallable. A numerical solution of a process can be badly in error yet no clue to its orror might be in evidence.

A second aspect of the theory is the question of numerical methods used with physical problems without an intervening differential equation。 It would be of interest to know just how numericel methods can be used dirsctly with physical or engineoring problems.

Ideas for a Course in Numesical Mathods

I

Background

At first sight numerical mothods appaar to be merely a tooz for underFtanding and treatmsnt of methematical subjecta. This is not entirely true, for muerionl computation and its accompanying problems form a proper fleld ef pure mothematics. Indeed one can look at the problam from two pointe of view, that of using numerical methode to learn more about other fields of mathematics or that of using the other fielde of methomatice to learn more about numerical methods. However, since numerical methods do have much application to other branches of mathematics end also to engineering, it in advisable to obtain as broad a background as possiblo in the application of numerical methods to these other fields. There is a three-fold objective here first, it is well to know the natorial so that places where numerical methode are of use at present can bo known. Second, a wide acquaintance with relatsd fields is desirable if new results within thsm are to be found by numerical nothods. Third, it is well to have as may tools as possible for advancing the art of computational methods.

II。 Specific Top1oa
Mathamatical fields which would be studied include:
A. Algebraio and transcendental equations.
B. Jifferential Wquations both órdinary and partial.
0. Integral Equation.
D. General Computations.

D1ธาะ.2310ู
A. Under algebraic equations we might omphasize the fiold of simultaneous 11near quations in large numbers of unknowne In general. iterative procedures should be emphasizedin this inseld in viow of the nature of high-speed computers currently being developed.
B. Ordinary Difforential Equations

Numerical methods to date have not been helpful in the theory of differential equations because the time involved to obtain sufficient information to generalize from partloular solutions has been prohibitivo. With the new machines it is to be anticipated that sufficient partioular information can be gathered in a reasonable time so that goneralizations can be drewn. Thin can bo considered a reason for study of this field over and above the desire to solve quations which cannot be solved in terms of elementary functiong.

Sartial Differential kiquations
The statements made under ordinary differential equations apply here but with more force. Partial differentiel equations are more difficult to solve. Nevertheless many physical problems are currontly phrased in terms of partial differential oquations. Also since the theory is so much more 11 mited , it will be important to have means for gaining new knowledge.
C. Integral Equations

Integral equations have been used more in recent years in physical problems. It would seem that here is a place where numerical methods could be widely used.
D. General Computationg

There are problems in axistence today which do not yield to aralytical solution. Suoh probleme arise in the theory of deslgn of optical systems. Numerical methods are absolutely necessary in much problems. In addition matrix oalculations can ba studied from the point of view of hieh-speed machines.
III. Mathematioal Methods Used.
A. Rolaxation Methods
B. Itoration Mothods
C. General Numerical Methods

Relaxationsmethods are a recently developed tool finding much uso In numericnl work with engineering probleme.

Interation procedures are given a special place because it appears that they will be of highest importance with highompeod machinem. They represent an essentially simple process repeated many timeso In addition general numerical mothods as described in books like Scarborough would be considered.

Under numerical methods in general. twe remarks should be made. First, there needs to be an assembly of pertinent material. Mach valuable literature on the subjoct is not collected in books and it is often not available in hinglish. Second, numerical methods should be examined with the thought in mind that they are to be used with high-speed machines. Present-day methods are designed for desk calculator spoeds or slower. As a consequences they are complicated, calling for reasoning and judgment on the part of the
operator. Jor high-gpeed machines, simpler repetitive methods should be considered. The high-speedg pernit so many steps to be talcen that the accuracy is still increased.

IV . krrore
Numerical methode introduce errors. Such errors are important, since it is necessary to know how close to the true solution a mumerical solution 2les. They fell in general into two classes truncation arrors and round-off errors. Trunoation errors are those due to the fact that a numerical process 1a difforent from an analytical process. Such erroris can be studied by analytical methodg. Round-bif errors are due to the necessary rounding off of each numerical stog. This introduces errors which are of a random nature and difficult to analyze.

New Mathematical Results which can be Obtained by Numorical Mothods

At the present time it is difficult to state just what new mathematical results can be obtained with high-gpeed machine e. An opportunity for mathematical experiment presents itself. The technique of generalizations from particular exporimental results so long used in science can be greatly extended is mathematios. Much work of this nature ought to be done.

As an examile of resinlts which can be obtained the theory of parsial differential equations is in need of partioular results that more generalitations way be drawn. There will also be an opportundty to study long-time iteration procedures in general. Iteration procedures have not been studied much in the past because they converge slowly if at all. However with high-speed
machines the slowness of convergence is not of importance and the proportion of soon procedures can be studied.

Many theorems in mathemation are of such a general nature that their use in specific cases is not possible. With machines of the type considered more concrete information can be obtained from the general theorems. For example an existence theorem in order to be general often gives too restricted a result. It should be passible to obtain more comprehensive results in particular cases with such methods.

Warren S. Loud
vi=

MANORANDLDM NO. M-70
SWRVOMFCREAISMS LABORATORT
Massachusetta Institute of Technology
Cambridge: Massachusetts

T0:	63A5 Staff Mexibers	$\begin{aligned} & 6345 \\ & \text { Page i of } 6 \text { paseal } \end{aligned}$	
Priom:	Jay W. Jorrester	Illumtrations:	
Subjuas:	Data Storage in Threo Dimensiong	A-30363	A-30191
		A-30488	A-30492
DATE:	Apr11 29, 294?	A-30489	A-30493
		A-30490	

The storage of operating instructions and numerioal data is perbaps the most important and difficult operation in large acale digital computerg. Large scale computers have in the past been made impractical by laok of satisfactory data storage means. Rleotrostatic storage tubes show satisfactory promiso of operating as storage devices for the Whirlwind series of computers. It is, however, clear that storage tubes do not represent the uleimate in data storage devices. If other promiging storage mothods can be discovered thoy will be studied for evaluation. The storage metbod outlined below showa some promise and will bo investigated to determine its possibilities. Glow discharges which might permit 3-dimensionel storage arrays as outlinad below ere now being investigated as a thesis subject by Mr. Markel. The outcome of his work should indioste the lines for future study if additionsl work is shown to be desirable。

The concept of digital storage has passed from that of a vacuum tube, namely, the storing of a pi.e0e of. information in a flip-flop oircuit to eurface storage where a single circuit controls many pointe of inform mation on as area. This method of storing on an area as used in our oleotrostatic tube and the RCA Selectron still falls far short of offective use of the volume oocupied by the storage equipment. Efficient storage will. be possible only if points oan be closely spaced. in a 3-dimenaional volumo. Storage in a volume can be readily imagined if a suitable form of non-1inear impsiance having a double valued current-voltage characteristic is available. Such an impedance might support two different values of conduction oursent at a given operating voltago.
fremples of such an impedance characteristic are provided by the ordinary gas disaharge tube and also by the gormanium orystal reotifier in the reverse ourreat direction. The gas discharge requires a voltage to
initiate conduction which is higher than that required to maintain current flow．The reverse current characteristic of the germanium crystal rectifier 1s ghown in drawing No．A－30363．Operation of a storage system using a double valued impedance is most simply explained for 2mimensional storage before proceeding to the 3 －dimensional system．

Consider draving No．A－30488．Illustrated are two sets of con－ ductors crossing one another．Imagine a double valued impedance element tied between each crossover point of the two sets of conductors．Let the impedance characteristics of each of these elements be as show in $A=30363$ ． As typical operating voltages for the impodance，assume that V_{m} is the breakciown voltage between the first and second stable operating points， identipied on the drawing as currents I_{1} and I_{2} ．Identify the transition voltage from the second to the first operating states as the extinction voltage V_{e} ．The normal operating voltage V_{0} is capable of sustaining either current I_{1} or I_{2} 。

Suppose that the storage junction at the point 43° is to be placed in conducting condition I_{2} ．All lines 2 to 6 are normally at 0 volts and all lines $1^{\prime \prime}$ through 6^{\prime} are normally at V_{0} volts．The voltage on 3° is raised and the voltage of line 4 is lowered by an equal amount until their difference exoeeds voltage V_{m} ．This is above the breakdown voltage and conduction will be in the region＂C＂。Voltages at 4 and 3° can then be returned to normal with assurance that the lmpedence between $11 n e 4$ and 30 is in the second conducting state．In the above operation，all other inm pedance elements either continued to operate at voltage V_{0} or if connected to either line 4 or line 3^{0} were raised half way between voltage V_{0} and V_{m} ． Elther way，the unselected impedance elements would have remained in their respective operating regions adjacent to current I_{1} or current I_{2} 。

Current conduction in the region I_{1} is established by a similar process wherein the voltage 3^{\prime} is lowered and the voltage on line 4 raised by as equal amount until their difference i_{s} less than the voltage V_{θ} ．

The information stored at the non－linear impedance point can be read by noting the current change at line 4 caused by a voltage pulse at 1ine 31．An 1mpedance in state $I_{1} w 111$ conduct only a small change in current in response to a voltage pulse compared to the change in current which will be conducted by an inpedance in state I_{2} ．

Threemimensional Glow Discharge Storage
It should be possible to develop a useful double valued impedance storage cell as a low pressure gas glow discharge．In drawing No．A－30489 is shown a typical atatic current versus voltage relationship for a ges
discharge from 0 ourrent into the region of arc conduction. Ourrent is plotted on a logarithmic scale. It will be noted, as in drawing A-30363, that two atable operating currents can exipt, one prior to broakdown of the giow disoharge which represents an extremely small ourrent with little current change as voltage changes and one in the abnormal alscharge region where current is relatively high and where ourrent change is great with a change in voltage. The normel discharge region is one of easentially constant voltage with varying current. In this region the oathode area is not entirely covered by the glow discharge. After the cathode is entirely covered by the glow disoharge conduction exhibits the characteriatios of the ebnormal eischarge region where a positive resistance characteristio predominates. Por a glow discharge storage cell. the normel discharge region should be shortened as much as possible through the use of gmall cathode areas. Such a static discharge ourve might oxhibit the character1stion of drawing No. A-30490. Operation at current I_{1} and I_{2} and at voltages between V_{e} and V_{m} would be as described earlier. It would be neoessary to desigit the glow discharge electrodes in such a manner that the positive resistance characteristic in the region of I_{2} would stabilize current glow without a series resistor.

Consider now a posaible physioal arsangoment of glow discharge gaps and a selecting system for switohing to the proper storage cell. If a glow discharge is used for atorage then a gas breakdown system might well be used to switch the incoming lines, for writing, and for reading. Suitable gwitching shast be incorporated inside the tube to reduce the number of external. lines ano the number of vacuam seals. Consider a switching systom and 3-dimensional storage matrix as shom in drawing No. A-30491. The matrix consists of a 2-dimensional array of parallel wires extendiag through perforated plates. In addition to passing through the storage plates the 2 -dimensional array of wires also passes through clearance gaps in the horizontal and vertical solscting bars and in the colleotor plate. Glow discharges may be established at each of these intersections between storage wires and the pletes and bars.

The schematic diagram in drawing No A-30493 shows the arrangament of gas discharge gaps involved in a single seleotion and operating prooess. Gap A axists between a vertical solection bar and the storage wire. Gap B is between a horizontal selecting bar and the storage wireo Gap C lies between the collector plate and the storage wres while Gap D Is between the storage wire and the storage plate。 Gap $\mathbb{I f}$ is between the storage plate and the outgoing lead to this plate while Gap Fis between the storage plate and the common control wire to all storage plates. The following table shows a compatible set of gap characteristics.

Gaps $A_{9} B_{0}$ and 4 show voltage regulator characteristics with constant voltage drop over a wide current range。 Gapa C and show a relatively high breakdown voltage but with a large cathode area which does not reach the abnormal glow region in operation. Gap D is the storage gap previously described which exhibits a high breakdown voltage and an operating point in the abnormal glow regiono all gaps operating in the normal region are stabilized by currant limitation at the abnomal glow gap D. Drawing No. Abo30493 shows the three shapes of glow discharge characteristics at the six gaps.

Drawing No. Am30492 shows normal holding voltages at the various electrodes with arrows ghowing electron flow paths during standby conditions. A potential difference of $2 V$ exists across gap D which may be in either the conducting or non-conduciing gtateo Consider the following sequences of switching and controling operation.

1. Selection

Selection of a storage gap is done in such a manner that the controlled. voltage V_{4} on the collector plate and voltage V_{y} on the common wire can be used for f^{4} stablishing either the conducting or non-conducting state at the gap or to read the state of the gap. The following steps are requireds
a. Reduce V_{6} to voltage $2 V_{e}$ and raise V_{7} to $3.5 V$.

Results Gap k extinguisheso Voltage V_{5} drops。Gap Fires when V_{5} equals $1.5 V_{e}$ Voltage across D has dropped.
to 1.5 V but does not alter $1 t s$ on or off condition. After breakdown of gap $F_{0} V_{5}$ rises to $2.5 V$ bringing drop aoross all gaps D in thia plate to $2.5 V_{0}$.
b. Reduce V_{7} from $3.5 \mathrm{~V}_{8}$ to $3.0 \mathrm{~V}_{e}$ o

Result: V_{5} returns to $20 V_{0}$
c. Raise V_{2} and V_{2} Irom $-V_{e}$ to 0 . Reduce V_{4} Irom $00.5 V_{e}$ to $=1.5 V_{e}$.

Result: Gap A and B extinguish (probably only one was originally on) V_{3} rises to $0.5 V_{0}$ Gap C breaks down and is the only conducting gap in the colleotor plate. This operation disconnects the storage wire from gaps A and B and connects it to the collector plate through gay C.
d. Ralse V_{4} to $\circ V_{e}$.

Result: V_{3} is now at 0 volts under the control of V_{4} and V_{7}. Only the gap C for the particular storage wire under consideration and the gap For the particular storage plate under consideration are isred. No other C or \mathbb{F} type gaps are conducting. All other storage wires and storage plates are controlled by their respective V_{1}, V_{2}, and. V_{6} voltages.
2. Gap Control

Switching is now complete and the sequence cen be followed to write 0_{0} write 2 , or read at the gap selected. By a corresponding process to steps through d the line ∇_{4} and V_{7} could have been connected to any other storage gap. Voltages at operating points are now as follows:

$$
V_{4}=-V_{6}, \quad V_{3}=0_{0} \quad V_{5}=2 V_{0}, \quad V_{7}=3 V_{0}
$$

a. Assume the digit 1 is to be written corresponding to conduction at gap D 。 Reduce V_{4} to less than $-1.5 V_{9}$. Ralse V_{7} to more than $3.5 V_{e}$ 。

Result: Voltage across gap B is above $3.0 V_{0}$ and breakdown will occur. The maximum voltage soross any other gap D is $2.5 V_{e}$ and other gaps will not be ignited.
bo Asgume that the digit 0 is to be written corresponding to no conduction at. geg D. Raise V_{4} above $=0.5 V_{e}$ Reduce V_{7} below 2. $5 V_{e}$.

Result: Voltage across D is below V and the gap will be extinguished. The minimum voltage on any other storage gap will be 1.5 V , so that other conducting states w111 not be affected.

C．Assume as the third possibility that the condition of gap D is to be read．Hold V_{4} at $-V_{e}$ ．Raise V_{7} from $3 V_{e}$ to $3.5 V_{\theta}$ ．

Results If D is conducting there will be a large current increase through gap D which can be observed as an increase of current to the collector plate．If gap D is not conducting little current increase will occur at the collector plate。

The storage and switching systam described above require dis－ charged gaps which can be constructed to meet specipied breakdown and extinction voltages and which exchibit extreme stability in these voltage characteristics．

Firing and deionizing time must be short and the pulse impedanoe of a gap mat be low．The above discussions have been carriad out in terms of the statio glow alscharge characteristic．This static characteristic is known not to hold under pulse conditions but it 1.8 anticipated that similar curves，differing in numerical values，will prevall．

Unt11 additional information is collooted and until tests with especially dealgned gaps have been completed，it will be impossible to evaluate the promise shown by the system outined above．The major problems seem to be the short operating times required and the problem of obtaining uniformity in gaseous discharge performance．

Advantages of the system are rather obvious．Storage sensity will be high since storage is in a volume rather than in individual circuits or on a surface．Nechanical assembly will be relatively easy except for the problems involved in obtaining accurate gap tolerances and performance。 The system inherently includes most of the awitching as well as the storage function．The number of seals necessary to be brought through the glass are practical and amount to the cube root of the number of storage gaps plus the two control wires．In construction the storage volume might take the form of parallel metal plates perforated for passage of the storage wires with these plates interleeved by ceramic barriers to confine the glow discharge to the individual gap structure．Work on this storage method will be assigned low priority until it reaches the stage where evaluation 1s possible。

JWI：vh

VOLTAGES FOR OPERATION
VOLTAGE ON ONE VOLTAGE ON ONE OF LINES 1 THRU 6 OF LINES I'THRU 6 '

SUSTAIN

ESTABLISH CONDUCTION
(CURRENT STATE I

$$
<-\frac{v_{0}-v_{m}}{2}
$$

$$
>v_{0}+\frac{v_{m}-v_{0}}{2}
$$

EXTINGUISH
(CURRENT STATE I_{1})
$>\frac{v_{0}-v_{e}}{2}$
$<v_{0}-\frac{v_{0}-v_{l}}{2}$

READ

$$
\begin{gathered}
\text { O } \\
\text { SEE A-30363 FOR SYMBOLS } \\
\text { O DOUBLE VALUED IMPEDANCE }
\end{gathered}
$$

SERVOMECHANISMS LABORATORY OF THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY division of industrial cooperation phoject no. 6345

IDEAL	STORAGE - CELL		HARACTERIS
scale:	or. D.L.O. 5-6-47		A-30490
$\sqrt{7} 5 / 9 / 47$	26	APP.	

SERVOMECHANISMS LABORATORY OF THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY dIVISION OF INDUSTRIAL COOPERATION PROJECT NO. 6345

Project Whirlwind Servomechanisms Laboratosy Hassachusetts Institute of Technology Cambridge，Massachusettis

SUBJECT：MATHEMATICAL WORK OF PROJECT WHTRLXIND
To：Jay Wo Forrester
From：Philip Franklin
Date：November 12， 1947

I．The Mathomatics Progrem

The projected Whirlwind high－speed olectronic digital computer， from the mathematical point of view，has several objectives．One aim is to solve the equations of motion for aircraft and so serve as the computing element of an aircraft analyzer．A more general objective is the solution of othor problems of ongineering interest，particularly in the field of dynamics and ordinary differential equations．

The mathematical studies in the past have related to the specific equations to be solved，some tests of existing numerical methods，and attempts to ariticipate possible difficulties with a viem to prescribing how to meet them．At present a study of known methods of solving simultaneous linear equations and differential equations is under way，with a view to the coding of such methods for the computer．These studies will be extended to other types of problems，such as those listed in Section III。

II．Studies Already Completed

A survey of numerical methods made by Dr 。Loud and his associates， summarized in Memorandum M－6］（Vol。（3），revealed as subjects of major importance the solution of linear simultaneous equations，and the solution of ordinary differential equations．

For the solution of linear simultaneous equations，elimination methods，iteration methods，relaxation methods，matrix methods，and the method of stcepest descent have all been considered and expositions of these mothois studied．For some of these，codes are in process of preparation．

The orrors inherent in solving systems of equations of very high order，when all of the coefficients have random errors，has been pointed out．

A number of solutions have been carried out for simple differential equations to provide caso histories of accumulated round－off and truncation errors．These indicate the objections to numerical integration over a large
number of cyclos without some check, such as the use of the onecgy integral for conservative systems. The possibility of filtering out froquencies corresponding to computatione? inotability terms has ntso baen considered.

A method of using Fourior Transforms to estimate the best value of a function or its derivative (the message) when its values over a long range aro known only to within cortain random orrors (noise) was presentod to the group. Later studies indicated this as having restricted application to computation because of the rare occurrence of data with truly random orrors.

Last year several conferences wore held at M.I. T. on digital computation. Some wore sossions of the Electrical Engineering Dopartment sominar, but were woll attended by representatives of the Mathomatics Dopartment and Projoct Whirlvind. Anothor series of smallor conforences were attended by some electrical engineers, including Professors Hazen and Y. W. Lee, as well as several mombers of the Center of Analysis. The mathematicians present included Professors Phillips, Martin, Wienors Franklin, Wallman, and Thomas.

In addition to these men, several other M. I. T. staff members have shown an interest in electronic computers, and a willingness to give advice when problems in their special fields are considered. Thus, if shock waves are under consideration, advice can be obtained from Professors Tsien or Lin or Dr. Kopal, who are all familiar with this field. For elasticity problems and their theory Professor Reissner, for statistical and meteorological applications Professor' Wadsworth, and for general numerical computation Professors Hitchcock, Crout, and Hildebrand are available.

The many members of the \mathbb{M}. I. T. Jathematics Department who are interested in numerical computation contribute much information about recent developments through informal discussions.

In addition, the suaff members of the project have attended meetings at Princeton, Philaclelphia, New Haven, and Cambridge at which computing methods were discussed. And the group has followed recent developments in the theory of codes and numerica? computation at Princeton, Harvard, the University of Pannsylvania, and elsewhere。

III. Plan for Future Investigations

Cortain probloms of intorest to applied acientists and engineers can be most conveniently solved by numerical methods. Classified mathematically, the principal types are as follows:

1. Solution of ordinary differential equations with given initial conditions.
2. Solution of parabolic and hyperbolic partial difforential equations, obtaining the characteristics curves as in l_{0}
3. Solution of systems of linear simultaneous equations.

Le Solution of ofdinary diferential equations with boundsry conditions at more than one point.
5. Solution of elliptic partial differential equations for various types of conditions on the boundary of a region.
6. Solution of non-linear simultaneous equations.
7. Least square solutions of overdetermined systens of the types of 3 and 6.
8. Solution of integral equations.
9. Tabulation of functions.

While the relative advantages of different methods may change in the transition from hand or desk calculations to high-speed machines, it is improbable that any radically new mathematical principles will come into play. Much past and recent experience bears this out.

Thus, the methods used by Aiken in computing tables, or by the Watson Laboratory in checking the moon's motion, bear strong resemblance to those long known to astronomers; and except for the use of conditional orders the methods used for elementary functions, such as those coded for the A.R.C. by Booth and Britten, would have been used by Babbage in the nineteenth century if he had completed his analytical engine.

Again the report on linear equations by Bargmarn, Montgomery, and von Neumann recommends as the two best methods an iteration rule, stated by Hotelling, which amounts to an application of Newton"s method of approximation, or an olimination method which is that used by most computers in such forms as those of Doolittle or Grout.

And except for minor details of technique, the differential analyzer uses mathomatical methods differing litile from those us ed by Kelvin in evaluating special integrals with his globe disk and cylinder integrator.

This suggests that the first attack with the computer on the problems listed above should be by processes close to the traditional ones. Of course, two special points to be covered in taking over existing methods are the coding of complete instructions to remove any human judgment, and keeping the high speed from letting us carry the computations beyond their range of validity.

The present thinking on procedures for the various types of problems is as follaws:

1. Ordinary Differential Equations, One Point Conditions

For systems of ordinary differential equations, some method using second differences or their equivalent such as the

Runge-Kutta method or the Moulton (Adame, Krilors) method. This last may bo used in tho form set up by Ford, which. uees linear combinetions of the numbers instoad of cifferences. After several steps have been taken, the resulits can be chocked and improved by a Simpson's rule calculation which would have a smaller round -ofs orror than the rosult obtained step by stop.

2. Charactoristics of Partial Differential Equations

Most of the procedure is as in 1 , the now feature being the cut-off due to an initial boundary or the meeting of some conditional bounding condition like that for shock maves.

3. Linear Algebraic Equations

For systems in 20 or fewer variables, an elimination method can be used and coded with about 80 ordera. The matrix iteration procedure $F k \in 1=F\left(2-A F_{k}\right)$ to obtain A^{-2}, the limit of F_{k}, may be useful for more variables or where a system must be solved for several right members. A steepest-descent method on the sum of the squares of the residuals may be useful for a large number of variables.

In many applications where numerous variables are met, the syatem is loosely coupled in the sense that offects in one place affect values at a distance only slightly. Here much of the difficulty of treating a large matrix with all values oqually in error disappears.

Systems with determinants near zero will have to be recognized as such at some stage of the solution process, and the recognition used as a halt signal.

4. Ordinary Differential Equations, Boundary Conditions

This situation will be set by reduction to an integral aquation, by an expansion in known functions whose co-efficients are fo and by solving linear equations (Ritz, Galerkin, Fourier), or fron solutions found as in 1 . For conditions at two points we use a family of solutions starting from one point, and interpolate to meet the conditions at the second point. For linear differential equations with condítions at several points, we may use a linear combination of independent solutions found numerically, eviluating the constants by solving a system of linear algebraic equations.
5. Elliptic Partial Differential Equations

Linear partial differential equations of elliptic type are roduced to difference equations on nets. In a two-dimensional problem, if our machine eventually used say 64 points on a square
it might be advantageous to get a first approximation for a 4×4 grid by solving simultaneous equations, then interpolating on this for a first approximation on on 8×8 grite, thich could be improved by some successive approximation scheme or rolaxation method. Relaxation methods by machine have the difficulity of requiring a large number of comparison orders.

WWI will probably be able to work two dimensional grids of falriy fine dimensions, but possibly only crude three-dimensional grids, like those now used by hand in two-dimensional problems.
6. Non-LSnoar Aigebraic Equations

Iteration procedures are usually successiul. The code would have to make possible the insertion of an approximation at different pointe in a loop, only continuing if the successive values slustered after a few tries.
7. Least Squares

Geuss procedure reduces this to 6 and 3.

8. Integral Equatione

Approximation of the kernel by a degenerate one reduces linear integral equations to 3 , or we can express the solution as a linear combination of known or determined functions as described under 4 above。
9. Functions

Our machine will probably tabulate functions only for its own use. Functions will be inserted either through discrete values and an interpolation program, or by using polynomials that approximate the functions in restricted ranges and calculating the polynomials.

In some cases the approximating polynomials may be found by approximating some higher derivative and integrating.

In addition to general methods, several aspects of the specific application of the computer to the analysis and control problem will be considered. Thus, the detailed equations and constants for different types of service and air-borne craft will be investigated.

Some preliminary etudies of the mathematics of correlating statistically, at information centers, data from radar stations will be continued.

IV. The Practical Estimate of Error

While existence theorems are nice to have when they can be obtained,
much numencal work proceeds successixuly vithout them. For example astronomess guessed right on semi-convergent asynptotic series bofore they wore undorstood by tho purtsts. Serios with coepetictents obtainod by numerical. mothods are used to predict the moonys position years in advance, but the stability of the system of sun, earth, and moon under the know initial conditions has never been established with complete mathematical rigor. Many of the itoration processes used to find roots of equations can either converge or diverge rapidiy. By comparing, say, a fourth and a fifth approximation, and sensing the size of the discrepancy our machine will recognize the process as finished, promising for further approximations, or useless for computation because of divergence or excessively slow convergence.

A large percentage of recent numerical computation for partial differential equations has no other justification than that the results seom to converge。Undoubtedly many WWI and WWII solutions will use such evidences for lack of anything bettor.

Because of the labor of making codes, high-speed machines will be chiefly used for whole fields of solutions. A certain amount of experiment on the machine may be needed at the atart, but once verifiod for a fow cases, the method will extend to the whole field.

Similar considerations apply to formulas for the size of the error. These are seldom usod literally, because if rigorous they are apt to be much too peseinistic in practice. At best such formulas are merely useful to prove convergence; a comparison of successive values thon ontimates the orror.

In many problens the stability of the method of solution can be predictod in advance, and a large nuaber of solutions differing slightly are to be found. Hore the smooth character of the results is a reasonable protection against excessive errors at any place.

In other cases, some form of a successive approximation mothod will be used. When the process succeeds, the clustering of the approximations serves both to check the results and to provide an estimate of the closeness of approximation.

When the successive approximation method fails, some order to tost the closeness of approximations after some set number of steps will lead either to a hali signal or to an alternative procedure. Thus in a loop process the alternative may be another starting point in the loop. In a step-by-step process the altemative may be the use of smaller steps.

In many solutions of ordinary differential equations by the Moulton method, the use of a Simpson's rule integration over large intervals may prevent the piling up of round-off errors.

IV The Influence of kathemetics on the Design of WIII
The specirications for WMI were set up with the airu of providing a prototype capable of performing all the operetions desired from a conputer on a scale large onough to be applied to many typicsl situations, and suffit ciently limited to be constructable in reasonable time. However, within this last limitationg it was found feasible to provide for ereator spoed and storege capacity than any existing digital computer possesses.

The types of desired wathematical. operations are fairly well known: namely, the four fundamental arithmetic operations, and certain logical operations such as shifting, digit transfors, subprograming, and conditional subprograming. From these fundamental elements any finite combination of computational processes can be buillt up.

The mathematician's requirement is that these operations be porformed either directly, or by combination of other operations. Thus division or square rooting can be either built in as special operations, or carriod out by a subprogram. The present plans call for a built-in division unit, and the possibility of including a fow special orders which would enable the operator to call for any particular subprogram, as that for square root

Considerable study of binary arithmetic and the conversion problem showed the feasibility and advantage of having the computer work in binary arithmetic but translate data and outputs from or into the decimal notation.

A guiding principle of the WWI specifications has been maximum flexibility. This will simplify the extension to larger models, and will increase the effective power of the computer, for example by allowing an arbitrary distribution of the storage capacity between numbers and orders.

Beyond the fundmental questions just mentioned, and verification that the computor has sufficient speed and capacity for certain specific problems such as that of aircraft control, mathematical considerations can have little effect on the basic design.

With regard to overall capacity of later model.s, experience with WWI and theoretical considerations can only dictate ratios of components, rather than absolute size. For the eize at any stage will always be limited by economic and engineering factors. Any machine is certain to have just a littlo less capacity than that required for some desired applications For WWII, sufficient capacity for the aircraft problem seems to be the only fixed requirement: that is, it should have sufficient speed and capacity to be used as a computing link in the aircraft analyzer.

PF:hcs

6345

Momorandum
x-2058
Fro eject Whirlwind
Servomechanisms Laboratory
Massachusetts. Institute of Technology Cambridge, I/assachusotts

SUBJECT: STAFF INDOCTRINATION PROGRAM

From: J.C. Proctor
Pate: July 5, 1950

In order to assist new staff members in becoming familiar (1. with our project and its organization, a two week program of selected. reading, with discussions by various members of the staff, has been arranged. The program will, in general, be as follows, with whatever modifications may be necessary to fit individual requirements.

INDOCTRINATION PROGRAM

FIRST DAY

JoN. Forrester

Reading: V_{R-142} Talk delivered by Jo. Forrester at U.C.I. An, Modern Calculating. Machinery and Numericná Methods Symposium, July 1948.

R-15A OUTLOOK FOR ELECTRONIC DIGITAL COMPUTERS - SCOPE OF THE ENGINEERING INVOLVED, J.W。 Forrester.

R-166 DIGITAL COMPUTERS AS INFORMATION PROCESSING SISTEMS, JoN. Forester.

R-I15 PROJECT 6345 ELECTRONIC DIGITAL COMPUTERS, J.W. Forrester.

R-116 PROJECT 6345 DUEGTROMIC DIGITAL COMPUTERS J.W. Forrester.

SECOND DAY
H. Fahnestock The History of Whirlwind I

Assorted Reading on the History of Computers:
(Most of this material is in the Vas .l Library. Check with the Project Librarian, Rio 217, for any of this material she may have).
PROCEEDINGS OF A SYMPOSIUM ON LARGE-SCATE DIGITAT Vail
GAICULATING MCHINERY, Annals of the Computation Inboratory of Harvard Universitity, Vol. XVI.

HISTORY AND DEVELOPMENT OF METHODS USED IN AUTO MATIC-SECUENCE-CONTROLLED COMPUTING MACHINES, Do. Crawford, E E E Seminar, January 1947.
A HISTORICAL SURVEY OF DIGITAL COMPUTITG MACHINES, Cextival
D. R. Hartree, Froceodines of the ROTGI SOciety, A, Cen D.R. Hartree, Proceedings of the Royal Society, A, 195, 265-271 (1948).
BABZAGE'S CATCULARTHG ENGINRS, HP? Deboage. unavailable
MA -AN RPOCH IN TETEPHONE ACCOUNTING, BelT Tab- Vail i oratorios Record, 27, 2-4 (1949).
ATFE Technical Paper, 50-42 (1949). Whirl

THIRD MORNING

R-Formal
$E-E v g$ Motion
M - Mince
A-Cermin
C Confer

John Proctor NonTechnical Discussions of Personnel Matters, Laboratory Procedures, etc.

Reading: Security
Memorandums $A=55, A=58, A-92, A-9 A, A-107$.
Organization of Project: Personnel?
A-62.
Personnel Policies
The Institute publication POLICIES AND PROCEDURTS, and A-72 m-OFF HOURS WORK.

Drafting
$(A-43), A-46), A-46-2,(A-83)$ and MECHANICAL DRATITAG STANDARDS PRINT ROOM FILE Stockroom

Electrical and mechanical supplies, tools, Instruments, etc.-.THE STAMIDAFDS BOOK.

Purchasing

MHIRD MORNING (Continued)

Reports. Memorends end Trowing $A-78,(A-45),(A-6),(A-90-2),(1-104, A-42-2$,

Production Control
$\mathrm{A}=81$

THIRD AFTERNOON
F. Mayer Binary Arithmetic 1.30

Reading: R-90 THE BIMARY SYSTEM OF NUMBERS, M, Florencourt.

FOURTH DAY
Ron. Everett
Block Diagrams
Reading: $\sqrt{N-62}$ THE PROJECT WHIRLWIND PROGRAM OF ELECTRONIC DIGITAY COMPUTATION, J.W. Forester.

FIFTH DAY
S. Dod , Storage Tubes

SIXTH DAY
E. Rich, J.A, O'Brien Electronics

Reading: Basic Circuits
$\sqrt{R-109 \text { GATE CIRCUITG, D.R. Brown, December 17, }}$

SIXAY DAY (Continued)

Ry 1.3 Harch 19, 1947. F-104: BASIC CIRCUIT REVISIONS $\sqrt{\text { E-14A BASIC GIRCUIT PEVISIONS }}$
Gato $\frac{\pi}{\sqrt{E}}$ Tubes T-1.03 GATE TUBE DEVEIOPRENT E-137 PERFORMATGGE OF CHAINS OF GATES E-139. 7AKT CHARACTMPISTICS

Vacuun Tube Ifife $\sqrt{\text { R-139 VACUON TUBE LIFE, Dave Brown, ت̈use } 1,1948 . ~}$ Matrife Switch R-123 32 POSIMION SUITCH, J.A. OVBrien, Ceyste1s. $\sqrt{\text { E-128 }}$ CRYSTAL R CTIFIERS FOR WWI

Miscellaneous
K 777 USE OF D.C. RESTORER CIRCUITS AS A MEANS OF FLEMENTARY D.C. COUPJING
N-555 DEMONSTRATION OF TRANSISTOR AT BTL, E。Rich, July 27, 1948.
E-77 BLACKOUT TIN GAS6 AND SRIOBO GATE TUBES RoL. Best, Deceniber 1. 1.947。
M-207 DECOUPLING IN WW CTRCUINS, Harxy Kenosian, January 7, 1948.

Further Reading for Future Referezce:
Basic Circuits Gate Tobes Vacuum Tube Life Pylse Transformers.

$E-95$	$E-61$	$E-109$	$R-122$
$E-114$	$E-73$	$E-110$	$E-138$
$E-215$	$E-132$	$E-112$	
$N-306$	$E-137$	$M-361$	
$N-329$			

$\int_{8} 7_{x} d x$
$f(0) 40$

SEVENDH DAY
Po Nayer Block Diagrams
Reading：f64＊MATHRMAMTCAL PROBTENS OF ZIGKi－SPFEA DIGJMAL COMPUTATICN，WOS．LOUKI．
1 -66^{*} HIGH－SREED DIGTTATMCOMPUQER CIRCUXRS， Doro Brown． DIGITAL COMPUTER BLOCK DIAGRAMS，R。R。 Everett．
R－127 WHI COMPUTER BLOCK DLAGRAMS，$R_{0} R_{0}$ Everett．\＆F．E．Swain。
＊Read over IIghtyy only

AIGAM IAK
R．Rentribone Test Equipnent

MINMA DAX
C．iV．Adams

SPRCTDICATTONS FOR STANTAFTD TEST BquIPMENT．
SLANDARD TESTI ERUIFITMTT PROGFAM
R－I72 REGISMER PANEL
F－121．GATS AND DELAY UKXT
 $V \mathrm{R}-146, \mathrm{M}-440 \mathrm{COLER}$
 E－303 TOLPAGE OALTBPATOR
E－293 ETALTATIOE OF STANDAR TUST BQUIPMES \checkmark R－182 WEV DEVEUQPMEOSS IN TMLSE CTRCIJT？TESI BQUIPMEXI
迆工 TEASE CONTROL

$$
\begin{aligned}
& w=\frac{a z+b}{c z+d} \quad w \\
& w=\frac{z+z_{0}}{z-z-\infty} \quad w^{\prime} \quad z=f(z)
\end{aligned}
$$

$\omega \infty=W \Leftrightarrow$

$$
=f\left(w_{1}\right)
$$

6345
Mamorenixan Mben129
Pase 1 of 9

RoLe Best
November 20。 2950

MASTER ${ }^{\circ}$ S THESIS PROPOSAL

> TITLE:
> A Direct-Coupled Amplifier for Magnetically Deflecting an Oscillograph Tube.

BRIT AP STATRMCHNT OF THE PROBLeM:
The problem is to design and build an amplifier to drive the deflection yoke of a KIO48-P7 tube which is a 16 inch magnetically deflected oscillograph tube having a 54 degree total deflection angle. Desired rise time of current in the yoke is 10 microseconds, with 5\% linearity and 1% stability. The input signal will be the output of a digital-tomanalogue converter in the range between 0 and -1.5 volts. Since the signal will be arbitrary and non-repeatingo the entire amplifier must be direct coupled.

HISTORY OF THE BRORLITA US TO THE PRESENT TINES

The problem arises from the need for a display oscilloscope for general use in the Whirlwind computer. One display that this system should handle involves showing a series of points at random positions. each point to be intensified approximately once every 15 seconds. This call for a long persistence phosphor. 27 having been selected. One of the digital-to-analog decoders that will feed
information to this unit is non holding: that is it holds the information fed to it for only a fixed amount of time after which it clears itselfo Since it is desired to use this aeme decoder for displaying solutions that may come at a much higher repetition rato θ_{0} the intensification time mat be as ghort as possiole and still be able to get 15 second pergiatance. Damont recomenda a 1000-microsecond intensification time for $15-30$ seconds persistance with a 20 inch olectrostatic tube; tomts hero with a Dumont 304 H oscilloscope indicate that an intenification time of 100 microseconds will suffice with some sacrifice in spot size。 A magnetically focused and deflectod tube, howover, would be able to give the required persistance with a 10 microsecond intensification time since very high beam currents are possible with this constructiono

The Radar Lab of the Air Force Cambridge Research Lab was consulted at this point. and they agroed to make a deflection yoke for this project. suitable for any of the standard magnetically deflected tubes that have a 54 degree or less total deflection ancle.

Their estimated figures wore 22 millihenries inductanceo and 150 milliampg for full deilection from center to edge (or irom odge to edge if two coils in puehopull are used). To mako an approximation of how much time it might take to eatabligh deflection tho following equation is usefuls

$$
\frac{d i}{d t}=\frac{V}{J}
$$

Substituting eamplo values of $V=4,00$ voltg, which would bo an easily obtainable drop across the coil from a 500 volt supply, which is available e_{0} and $L=12 \mathrm{mh}_{0} \mathrm{~d} / \mathrm{dt}=42 \mathrm{~m}_{0} \mathrm{a}_{0} / \mathrm{usec}$. The coil reaistance will be the order of 100 ohms, and $250 \mathrm{~m} . \mathrm{a}_{\text {。 would cense only } 15 \text { volts }}$ drop across 1t. Whis is small onough compared to the 400 volts applied for this approximation to neglect it。 According to this it should theoretically take $150 \div 42=3.6$ mioroseconds to establish defieotion. Puabmpull deflection drive will be used in order to force the current to change as rapidly as possible in either direction. Estimating 10 microseconds to establish stable deflection, and 10 more to intensifyo leaves a 20 microsecond interval to work with. This is the maximum consecutive amount of time that Whirlwind can conveniently allow, the way the controls now are; therefore $e_{\text {, }}$ one speciplcation on the amplifier shall be that it shall establish doflection in 10 microseconds.

Considering the uses to which the display scope will be puto a 5\% innearity and 1% stability will be adequate. It is desirable to use pentodes in the output stage, to take advantege of their higher gain and plate resistance, both of which will be an advantage in forcing large current changes through an inductancs. The inearity requirement makes some type of feedback necessarys feedback is also indicated from the speed requirement, to shorton the coil ${ }^{6}$ e offective time constant. The deflection yoke has not as yet been received so it is not known what the coupling between the pair of coils is, If this coupling is

Memorandum M -1129 Pago 4
tighto the foedback amplifier may be counted on to damp any oecillations better than if the coupling is loose particularly if they are driven by a class AB stage. Damping reaistors may need to be added. Any feedback used must have a doc path in it $-\infty$, this makes it awkward to measure coil current by means of the drop across a resistor in series with the coil. which will be at a duc levol of the order of +500 volts. A more convenient method would be to insert cathode resistors in the output tubes, and use the drop across then as a measure of total load current. Non linearities introduced by screen current will be small enough so that it will still be possible to meet the 5% innearity desired since the total screen current is only of the order of 5-10\% of the plate current in most good pentodes, when the plate voltage is higher than the screen voltage. Only during a transient is the plate voltage apt to be lower than the screen voltage, but the plate voltage will always be high as the point of stability is reached.

A cathode resistor in an output tube gives a voltage proportional to the total load currento the total load consisting of the coil in parallel with shunt capacitance ${ }_{0}$ and possibly some shunt resistance for damping. It is desirable to obtain a voltage for feedback use which is only proportional to coll currento This may be done by inserting in the feedback path a network which is the dual of the coil network. Thiss, the feedback amplifier generates the waveform needed to make the coil current change to its new value as rapidiy as possible。

The problem of phase inversion arises in a pushopull amplifier such as this, and it is complicated by the feedback question. One way would be to phase invert at low signal levelo near the input, and trust that the small signals used would allow this to be done Inearly. Once the two out-ofophase signals are obtained each is fod to a singleonded amplifier, each amplifier driving one set of deflection coile ε_{0} and each amplifier being stabilized in itself. Such a method nocessarily restricts both amplifiers to be class A in operation. In order to guard against either output stage being cut off at maximum deflection the total current dram by the two output amplifiers would be a minimum of about $160 m_{0} a_{0}$, assuming a differential current of $150 m_{0} a_{0}$ for full deflection. The dissipation resulting from 500 volts and 0.16 amps is 80 watts for the pair of output tubes, again assuming negilgible coil resistance. That considerable wattage could be reduced somewhat if the output stage could be arranged to be class AB。Class AB could be realized if a singie feedback elgnal could be obtained that would be proportional to the difference of the coll currente. This can be accomplished by the following methods two signale are obtained by the method deacribed in the preceding paragrapho mich would be proportional to the deflection coil currents. One of these is fed to a phase inverter, the output of which is mixed in a resistor mixer with the other one. The remultant is a voltage proportional to the difference of the plate currentso and is a single ended signel that may be compared

With the singlenended input signal. A phase inverter feeds the pair of outgut tubes, and class AB operation moy be realized. There will be considerably less dissipation for any but full deflection conditions. and the most important quantity is being directly stabilized; the differential coil current.

Following, then is the proposed solutions Whe output stage will be pushempli, using pentodes. Cathode resistors in each half of this stage will generate voltages proportional to their respective plate currents. These voltages will be fed to notworke which are the dual of the coil networise, their output being voltages proportional to the actual deflection curronts. One of these voltages will be inverted and mixed with the other voltege, the resultant being proportionel to the difforence of the plate currents, and boing used as a feedback signal to compare with the input voltage. When more than three stages are closed in a loopo it is very difficult to prevent oscillations at irequencies where the feedback becomes in phase - - to avoid this. it probebly will be necessary to procedo the above amplifier with a pro-amplifier, to boost the incoming voltage from a suing of l. 5 volts to somothing larger, of the order of 15 to 30 volts. The promamplifier may be also stabilized with foedback and probably will contain the gain and centering controls. All of the above will be for one co-ordinate of deflection only: and must be duplicated for the other co-ordinate.

PROPOSED PROCEDURE:

Rquafomont Needs

The accompanying block diagram indicates the needed equipment. and the probable method of comnection. The Model 5 Synchroscope and the two Gate and Delay Units are readily available Prom project Whirlwind. where the work is to be done. The Sweep Gonerator will be built especielly for this thesiso and can be quito simple, since a sweop of only 1.5 volts amplitude is required. It vould only be used in the Iater stages of testingo after any major troubles are remodied in the amplifiers. Amplipiers 1 and 2 are to be identical, and are the subject of this thesis. This block diagram shows a gate being fed to one amplifier, and a sweep to the othere so that the trangient response of amplifier 1 may be observed on the 16 inch cathode ray tube. A aweep calibrator is available so that data may be taken from the observed defleotions of amplifier I_{0} and ro-plotted on a real time base if necessary. Other equipment such as voltmeters , soldering irons ${ }_{0}$ power supplies otco and also technicion help are readily available from Whirlwind.

Probable Procedure

The first stop will be to draw up a circuit for tho Sweep Generator described above, and to give it to the ghop for conetruction. In that way, it won ${ }^{0}$ t be the cause of any delay later. The 16 inch cathode ray tube and a high voltage power supply to be used with it have been ordered. The deflection yoke is completede and will be delivered to us shortly; the other test equipment has already been assembled。

The next atep is to arrive at an amplifier design following the general proceaure outlined in the last paragraph of the section on historyo above. An analysis of the resulting circuit-will be made to detormine its stability and gain and therewith perhaps to modify the design somerrhat.

A circuit will be given to the ghop for construction before the previous step is complote, even though the above mentioned analyais may bring about some changes, merely to avoid being delayod waiting for it all to be built later.

One completed ampifier at a time will be tested with the deflection yoke on the 16 inch tube observing waveforms with the aid of the Model 5 Synchroscope. When satisfactory operation appears to have been achieved the system shown in the block diagram on page 7 will be connected. Final testing of the system mey then be carried outo with a sweep being applied to the horizontal amplifier, and a gate to
the veridical amplifier, to observe the transient response of the system. The function of the two amplifiers may easily bo interchanged for a final check.

ESTIMATED DIVISION OF TIME:
Preparation of proposal 60 hours
Further study of the literature $\quad 30$ hours
Experimental work and analysis $\quad 140$ hours
Correlation of results and formulations of deduction and conclusions 50 hours

Preparation of thesis report
80 hours
Total
360 hours

SIGnATURE AND DATE:

SURTMRVISION AGRIATMTRNTI:
This problem appears adequate for a Master ${ }^{\prime}$ s research. and the undersigned is willing to supervise the research and evaluate the thesis.

Approved

Associate Prof. of E.E.

6889

Memorandum M-1282

Page 1 of 7
$K_{\text {o }}$ H. O1sen Soptomber 21, 1951

ELECTRICAL ENGINEERTNG DEPARTMENT MASTER'S THESIS PROPOSAL

1. TITLE: A WULTI-POSITION MAGNETIC SWITCH AND ITS INCORPORATION INTO A YAGNETIC MEMORY

2. BRIRT STATEMENT OF THE PROBLEM

Considerable research has been carried on with core materials suitable for a multi-dimensional magnetic memory. However, in its preseat development the memory is expensive because of the complex method of switching with a crystal matrix and driving with hard tubes. It is herein proposed that a magnetic switch will significantly simplify the memory unit. The switch may have many other uses such as selecting recording heads on a magnetic drum or a tape recorder. It might also be used in many places where relays are now used such as decoding "flexowriter" tape where it could drive the typewriter keys directly. Techniques developed might be used to build arithmetic tables, so that arithmetic operations with binary numbers could be carried out almost instantly.

3. BRTEF HISTORY OF THE PROBLEY

The practical application of a magnetic core as a "gating" device dates back to the use of a large saturable reactor as the antennakeying switch on one of the early radio-transmitting alternators as developed by E.F.W. Alezanderson in the late $1900^{\prime} s_{0}{ }^{1}$ Since then

1. E。 Fow. Alexanderson, "Transatlantic Radio Commuication", Trans. A.T. E.E.E. Vol. 38, p. 1269, 1919。
saturable reactors have been used in many similar applications．Receatiy their use as high－speed low－power gates has been partially investigated． by laboratories interested in their application to digital－computer circuits．${ }^{1,2}$

The idea of storing digital information in a magnetic－core array of two or more dimensions was first proposed in 1949 by J．W．Forrester， Director of the Digital Computer Laboratory at MoI．T．${ }^{3}$ At that time the most serious problem was the lack of a core material with a sufficiently rectangular hysteresis loop that could be switched fast onough to be of use in a highespeed computer．Intensive research has been carried out and a master＇s thesis witten on this subject by $\mathrm{F}_{0} \mathrm{~N}_{0}$ Papian．${ }^{4}$ Although considerable improvement is expected in the future，core materials are now available which can be incorporated into a memory．Of particular interest are the ceramic cores which can be switched in a fraction of a micro second．

1．Harvard University Computation Laboratory，Progress Report 5 （Summer of 1949），Investigations for Besign of Digital Caloulating Machinery．

2．James G。Miles，＂Saturable Core Reactors as Digital Computer Elenents＂。 A Report of the Engineering Research Associates．Contract NObsr 42001， 17 June，1949．

3．J_{0} W．Forrester，＂Digital Information in Three Dimensions Using Magnetic Cores，＂Profect Whiriving，Report R－187，（Hay 16，1951），M．I．T． Servomechanisms Laboratory。

4．Wo No Papian，＂A Coincident－Current Magnetic Memory Unit，＂Profect Whirlwind，Report R－192，（September 8，1950），M．I．T．Servomechanisms Laboratory．

The problem to be considered in this thesis will be divided into two parts: the development of a suitable switch and the incorporation of the switch into a working memory。

Because the switch is an integral part of the memory and because the mode of operation of the memory with the switch will be different from that originally proposed, the second part of the problem Will be a lerge part of the thesis. It is difficult to reslize now what problems will be found when such a large mumber of interacting elements are tightly coupled together.

4. DESCRIPTION OF SWITCH

The magnetic switch is very much like the crystal matrix switch which is now in common use particularly in digital computers. One of $2^{\text {m }}$ output terminals can be selected by'n inputs, each operating a. flip-flop or a two-position switch. In the crystal matrix switch this selecting is done by arranging crystals from the flipoflop outputs to the switch terminals in a binary scheme so that all but one terminal is drawn negative (Fig, 1). The terminal not dramn negative is the one selected by the binary number set up in the flip-flops.

The equivalent magnetic switch (Fig. 2) has a core or a saturable transformer for each switch terminal. On each core there are n control windings connected to the flip-flops as the crystals were in the crystal switch. The output of one flip-flop is enough to saturate a core so with this connection all but one core will be saturated.

Each core also has an output winding and an input winding as in a transformer. All the input windings are driven in series but only the unsaturated core will pass a signal to the output winding. This signal can be a square wave as will be used in the memory or a sine wave for power switching.

5. DESCRIPRION OF MENORY UNXT

The memory will be made up of an array of small cores or rings of a magnotic material which has a rectangular hysteresis loop. When the residual magnetization of a core is in one direction the core is said to be holding a ONE, and when in the other direction it is said to hold a ZERO. The contents of a core is "read out" by driving current through a winding on the core in such a way as to drive the core to the ZERO position. If the core is already in the ZERO position there will be very littile change in fliux, but if the core is in the ONE position there will be a large change in flux and a voltage will be induced in a sensing winding on the core. The information in a core is of course destroyed and it has to be "rowritten."

Eech core in the array has one winding in series with a line From each of two or more comordinates (see Pig.S). In the original scheme, a selected core is switched from one position to another when a measured current is applied to each of the windings of that core so that the sum is enough to switch the core. Many other cores also have current in one winding, but this is not enough to switch thom. This
nessitates carefully regulated current sources and very rectangular hysteresis loops．However，when the array is driven from the magnetic switch，a considerably greater current can be used in each line because overy non－selected core is kept from switching by the saturated switch core it sees on the other comordinate or cooordinates．Eliminating the necessity of many critically adjusted current sources simplifies the problem significantly，and the increesed current will speed up the switching。

6．PROPOSED PROCEDURE

A $16 x 16$ memory array of ceramic cores using the magnetic switch will be built and the problems investigated．Study will be made of the reliability of the system and the deterioration of the information in a single core as information is read out of and written into neighboring cores．Provision will be made in the equipment to display the output of the cores as an array of spots on an oscilloscope。

Every time the core is cycled about the hysteresis loop an amount of energy equal to the area of the hysteresis loop is dissipated in the core．The frequency at which cores can be switched will be Iimited by the temperature rise in the core due to this and other losses．Apparatus will be built to switch several test cores for a long period of time to investigate this problem。

7. EQUIPMENT NEEDS

Equipment for the proposed system for testing the complete memory (Pig. 4) is under construction or readily available at the Digital Computer Laboratory.

Cores have been already ordered for the 16×16 array, and more are procurable as needed.
8. ESTIMATED DIVISION OF TIME
a. Preparation of Proposal 40 hours
bo Experimental Work and Analysis 240 hours
c. Correlation of Results and Formulation 40 hours of Deductions and Conclusions
d. Preparation of Thesis Report 80 hours
e. TOTAL

400 hours
9. SIGNATURE AND DATE

10. SUPERVISION AGREEMENT

The problem described here seems adequate for a Master's research. The undersigned agrees to supervise the research and evaluate the thesis.

KHO:kst

Drawings Attached:

$$
\begin{aligned}
A-30527 & \text { Figura } 1 \\
\text { SA-50348 } & \text { Figure } 2 \\
A=36656 & \text { Figure } 3 \\
\text { SB }-50349 & \text { Figure } 4
\end{aligned}
$$

A TWO-DIMENSIONAL ARRAY OF CORES

Digital Computer Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts

SUBJECT: INTGRNAL DOCUMENTS ON FERROMAGNETIC AND FERROELECTRIC CORES
To: Group 62 and 63 Staff
From: Jean C. Kresser .
Date: January 18, 1952, Revised June 1, 1953
Abstract: A list of Reports, Engineering Notes, and Memoranda on various aspects of the ferromagnetic-core and ferroelectric-slab activity is presented.

Title
Date
Author
Reports
R-187 Digital Information Storage in Three Dimensions Using Magnetic Cores

5-16-50
J. W. Forrester

R-192 A Coincident-Current Magnetic Memory Unit (S.M. Thesis) 9-8-50 W. N. Papian

R-211 A Magnetic Matrix Switch and Its Incorporation into a CoincidentCurrent Memory (S.M. Thesis) 6-6-52 K. H. Olsen

R-212 Ferroelectrics for Digital Information Storage and Switching (S.M. Thesis) 6-5-52 D. A. Buck

R-216 The 16-by-16 Metallic-Core Memory Array Model I
$9-25-52$
B. Widrowitz

R-217 Design of Low-Power Pulse Transformers Using Ferrite Cores
(S.M. Thesis)
8-29-52
R. D. Robinson

Theses (not in Report form)
1812 A Magnetic Flip-Flop
5-16-52
R. J. Pfaff

2045 An Investigation of Magnetic Core Stepping Registers for Digital Computers
$8-22-52$
R. C. Sims

2247 Rectangular Hysteresis Loop Materials in a Nondestructive Read System

5-25-53
W. I. Frank

2383 An RF Readout System for a Coincident-Current Magnetic-Core Memory

5-25-53
B. Widrowitz

2392 High-Speed Magnetic Pulse Control Circuits for Computer Applications

5-25-53
H. K. Rising

Memorandum	M-1377-4 	Date	8 Author
Engineering Notes			
E-406	Preliminary Tests on the Four-Core Magnetic Memory Array	6-18-51	W. N. Papian
E-413	Selection Systems for Magnetic-Core Storage	8-7-51	R. R. Everett
B-422	Rectangular-Loop Magnetic Core Materials	9-4-51	W. N. Papian
E-438	Binary Counting with Magnetic Cores	12-6-51	D. A. Buck
E-545-1	Nondestructive Sensing of Magnetic Cores	3-24-53	D. A. Buck
E-460	The Ferroelectric Switch	4-16-52	D. A. Buck
1-464	A Squareness Ratio for CoincidentCurrent Memory Cores	7-16-52	D. R. Brown
B-470	Paper on Ferromagnetic and Ferroelectric Memory Devices	8-6-52	W. N. Papian
E-472	The Mirror: A Proposed Simplified Symbol for Magnetic Circuits	8-14-52	R. P. Mayer
I-475	A Magnetic-Core Gate and Its Application in a Stepping Register	10-30-52	G. R. Briggs
E-477	Magnetic and Dielectric Amplifiers	8-28-52	D. A. Buck
I-488	Deltans in Ceramic Array \$1	10-14-52	E. A. Guditz
E-489	Oscilloscope Calibrator	10-15-52	B. Smulowicz
E-491	Hysteresis Loop Characteristics of MF-1118 for Different Temperatures	10-16-52	C. Morrison
E-495	Test Procedure for Ferrite Pulse Transformers, I	11-5-52	I. K. Gates
I-496	Instructions and Specifications for the Manufacture of $3: 1$ and $1: 1$, O.1 Microsecond Pulse Transformers on Ferrite-Ring Cores	11-3-52	R. E. Hunt
巴-500	Switch-Core Analysis I	11-4-52	A. Katz F. A. Guditz

B-512	A Method for Acceptance Testing of Ferrite Core Production Lots	12-4-52
I-518	New Metallic Cores from Magnetic Metals	1-2-53
P-519	General Ceramics Materials MP-1348B and MF-1359B	1-5-53
E-523	Core Drivers-Model V and VI	2-10-53
E-529	Matrix Driving with Unidirectional Pulses	2-25-53
E-530	Magnetic Materials for High-Speed Pulse Circuits	$2-27-53$
B-531	Driving Current Margins on Memory Test Setup I	3-6-53
B-532	Nucleation of Domains of Reverse Magnetization \& Switching Characteristics of Magnetic Materials	3-9-53
1-533	Bffect of Current Pulse Duration on the Pulse Response of MTC Memory Cores	3-10-53
B-539	An Approach to a Rationale in Ferrite Synthesis: Evaluation of Magnetic Moments	4-28-53
L-540	A Fast-Core Tube Register	4-27-53
E-544	Circuit for Measuring Switch Time, Rise Time, Btc. (Switch-Time Comparator)	5-11-53
E-545	Dependence of Coercivity and Stress Hysteresis on Nucleation of Domains of Reverse Magnetization	5-14-53

Memoranda

*M-1369	Trip to General Ceramics, January 9, 1952	1-11-52	D. A. Buck
M-1371	Magnetic Core Activity	1-15-52	W. N. Papian
M-1381	Magnetic-Core Memory Matrix Analysis (Effect of Driver Impedance)	1-24-52	D. A. Buck
M-1490	Procedure for Receiving Magnetic Cores	5-16-52	D. R. Brown
M-1529	Conference on Magnetic Core Switching Phenomena	6-16-52	A. Katz
* M-1550	Trip to Magnetics, Inc., June 26, 1952	7-8-52	D. R. Brown
* $\mathrm{M}-1557$	Trip Report of Visit to Bell Telephone Laboratories, IBM, Glenco, NRL, Dr. Pulvari	$7-17-52$	D. A. Buck
M-1582	High-Speed Magnetic Pulse Control Circuits for Computers (Thesis Proposal)	8-6-52	H. K. Rising
M-1586	Trip to Magnetics, Inc., August 5, 1952	8-8-52	D. R. Brown
M-1650	The Effect of Size of Metal Cores on Pulse and Hysteresis Measurements	9-25-52	R. F. Jenney
M-1664	Conference on Thin Evaporated Metal Films	10-6-52	A. L. Loeb
M-1676	Polishing Specimens of Ferrites	10-14-52	F. E. Vinal
M-1681	Uniformity Tests on Ferrite Cores	10-21-52	J. H. McCusker
*M-1705	Visit of October 28, 1952, to Bell Telephone Labs., Murray Hill, N.J.	10-31-52	D. A. Buck
N-1736	Trip to General Ceramics, November 19-20, 1952	12-2-52	W. J. Canty
M-1741	Metallographic Studies of Ferrites	12-4-52	D. R. Brown
M-1744-1	A Statistical Model for Ferromagnetism	4-9-53	A. L. Loeb

Memoranda (continued)
M-1767 An RF Readout System for a CoincidentCurrent Magnetic-Core Memory

12-19-52
B. Widrowitz

M-1785 Testing of Magnetic Cores
1-7-53
A. D. Hughes

M-1803 Visit to RCA Victor in Camden, January 14, 1953

1-22-53
F. E. Vinal

M-1806 Pulse Tests of the RCA Victor Ferrite, XF-96 l-22-53
B. Smulowicz

M-1811 Coordinate Conversion with Memory-Core Matrix
$1-27-53$
D. McCann

M-1830 MF-1326B, F-291, Life Test No. 1-Initial Tests

2-6-53
J. R. Freeman

M-1861 Visit to General Electric, Schenectady, Feb. 20, 1953

2-24-53
R. A. Pacl

M-1883 Magnetic-Core Matrix Switch Adder

3-9-53
C. J. Schultz

M-1893 Hysteresis Test Results from Five New Glenco Ferroelectric Materials

3-10-53
C. D. Morrison

3-25-53 D. A. Buck
J. Goodenough
A. L. Loeb
N. Menyuk
**M-1934 Testing Cores for WWII
/M-1957 Procedure for Preparing \&
Stripping Wires for MTC
Memory Planes
4-6-53
巴. A. Guditz

M-1987 First Note on Pulse Transformers for Memory Drivers

M-1989
MF-1326B, F-291, Life Test No. 2
$5-27-53$
F. Durgin
E. K. Gates

A Linear Selection Magnetic Memory Using an Anti-Coincident Current Switch
K. H. Olsen

Collections
Group 63 Seminar on Magnetism
A. Loeb

Memoranda covering Lectures I to I and Appendices I to VII have been released. to date.

$$
\text { Division } 6 \text { - Lincoln Laboratory }
$$

Massachusetts Institute of Technology
Cambridge 39, Massachusetts

SUBJECT: INTERNAL DOCUMENTS ON FERROMAGNETIC AND FERROELECTRIC CORES
To: Group 62 and 63 Staff
From: Jean C. Kresser
Date: January 18, 1952, Revised June 1, 1953, April 1, 1954
Abstract: A list of Reports, Engineering Notes, and Memoranda on various aspects of the ferromagnetic-core and ferroelectric-slab activity is presented.

Title Date Author

Reports

R-187 Digital Information Storage in Three Dimensions Using Magnetic Cores $5-16-50 \quad$ J. W. Forrester

R-192 A Coincident-Current Magnetic Memory Unit (S.M. Thesis) $9-8-50 \quad$ W. N. Papian

R-211 A Magnetic Matrix Switch and Its Incorporation into a CoincidentCurrent Memory (S.M. Thesis) 6-6-52 K. H. Olsen

R-212 Ferroelectrics for Digital Information Storage and Switching (S.Mo. Thesis) 6-5-52 D. A. Buck

R-216 The 16-by-16 Metallic-Core Memory Array Model I

9-25-52 Bo Widrowitz
R-217 Design of Low-Power Pulse Transformers Using Ferrite Cores (S.M. Thesis)

Theses (not in Report form)
1812 A Magnetic Flip-Flop 5-16-52 R. J. Pfaff

2045 An Investigation of Magnetic Core Stepping Registers for Digital Computers

8-22-52 R. C. Sims
2247 Rectangular Hysteresis Loop Materials in a Nondestructive Read System

5-25-53 W. I. Frank
2383 An RF Readout System for a CoincidentCurrent Magnetic-Core Memory

5-25-53 B. Widrowitz
2392 High-Speed Magnetic Pulse Control Circuits for Computer Applications 5-25-53 H. K. Rising

Engineering Notes
E-406 Preliminary Tests on the Four-Core Magnetic Memory Array

E-413 Selection Systems for Magnetic-Core Storage

8-7-51 Ro R。Everett
E-422 Rectangular-Ioop Magnetic Core Materials

E-L338 Binary Counting with Magnetic Cores
E-454-1 Nondestructive Sensing of Magnetic Cores

E-460 The Ferroelectric Switch
E-464 A Squareness Ratio for CoincidentCurrent Memory Cores

E-470 Paper on Ferromagnetic and Ferroelectric Memory Devices

8-6-52 W. N. Papian
E-472 The Mirror: A Proposed Simplified Symbol for Magnetic Circuits

E-475 A Magnetic-Core Gate and Its Application in a Stepping Register

E-477 Magnetic and Dielectric Amplifiers
E-488 Delta ${ }_{\text {ns }}$ in Ceramic Array \#l
8-14-52 R. Po Mayer

E-489 Oscilloscope Calibrator
E-491 Hysteresis Loop Characteristics of MF-1118 for Different Temperatures

E-495 Test Procedure for Ferrite Pulse Transformers, I

E-496 Instructions and Specifications for the Manufacture of $3: 1$ and 1:1, 0.1 Microsecond Pulse Transformers on Ferrite-Ring Cores

E-500 Switch-Core Analysis I

11-4-52 A. Katz E. A. Guditz

	Title	Date	Author
Engineering Notes (continued)			
E-512	A Method for Acceptance Testing of Ferrite Core Production Iots	12-4-52	P. K. Baltzer
E-518	New Metallic Cores from Magnetic Metals	1-2-53	A. D. Hughes
E-519	General Ceramics Materials MF-1348B and MF-1359B	1-5-53	B. Smulowicz
E-523	Core Drivers-m-Model V and VI	2-10-53	H. Boyd
E-529	Matrix Driving with Unidirectional Pulses	$2-25-53$	D. A. Buck
E-530	Magnetic Materials for High-Speed Pulse Circuits	$2-27-53$	D. Ro Brown
E-531	Driving Current Margins on Memory Test Setup I	$3-6-53$	S.Fine
E-532	Nucleation of Domains of Reverse Magnetization \& Switching Characteristics of Magnetic Materials	$3-9 \sim 53$	J. B. Goodenough N. Menyuk
E-533	Effect of Current Pulse Duration on the Pulse Response of MTC Memory Cores	$3-10-53$	P. K. Baltzer
E-539	An Approach to a Rationale in Ferrite Synthesis: Evaluation of Magnetic Moments	4-28-53	L. Gold
E-540	A Fast-Core Tube Register	4-27-53	K. H. Olsen R. Pfaff
E-544	Circuit for Measuring Switch Time, Rise Time, Etc. (Switch-Time Comparator)	5-11-53	B. Gurley
E-545	Dependence of Coercivity and Stress Hysteresis on Nucleation of Domains of Reverse Magnetization	$5-14-53$	J. B. Goodenough
E-548	Preliminary Report -- Temperature Effects in MTC-Type Ferrite Cores	$6 \sim 26 \sim 53$	J. D. Childress
E-559	A Free Energy Model for the Hysteresis Ioop	$6-16-53$	A. L. Loeb

Engineering Notes (continued)
E-563 Specifications for a Ferrite Memory Core

$$
6-30-53
$$

D. Re Brown

Memoranda

*M-1369 Trip to General Ceramics, January 9,

1952

1-11-52
D. A. Buck

M-1371 Magnetic Core Activity
M-1381 Magnetic-Core Memory Matrix Analysis (Effect of Driver Impedance)

M-1490 Procedure for Receiving Magnetic Cores
M-1529 Conference on Magnetic Core Switching Phenomena

Trip to Magnetics, Inc., June 26, 1952
*M-1557 Trip Report of Visit to Bell Telephone Laboratories, IBM, Glenco, NRL, Dr. Pulvari

M-1582 High-Speed Magnetic Pulse Control Circuits for Computers (Thesis Proposal)

M-1586 Trip to Magnetics, Inc., August 5, 1952

M-1650 The Effect of Size of Metal Cores on Pulse and Hysteresis Measurements

M-1664 Conference on Thin Evaporated Metal Films

M-1676 Polishing Specimens of Ferrites
M-1681 Uniformity Tests on Ferrite Cores
*M-1705 Visit of October 28, 1952, to Bell Telephone Labs., Murray Hill, N.J.

M-1736 Trip to General Ceramics, November 19-20, 1952

M-1741 Metallographic Studies of Ferrites

10-6-52
A. L. Loeb

8-6-52 H. K. Rising

8-8-52 D. R. Brown

9-25-52 R. F. Jenney

10-14-52 F. E. Vinal
10-21-52 J. H. McCusker

10-31-52 D. A. Buck

12-2-52 W. J. Canty
12-4-52 D. Ro Brown

Date
Memoranda (continued)
M-1767 An RF Readout System for a CoincidentCurrent Magnetic-Core Memory

12-19-52
B. Widrowitz

M-1785 Testing of Magnetic Cores
1-7-53 A. D。Hughes
M-1803 Visit to RCA Victor in Camden, January IH, 1953

1-22-53 F. E. Vinal
M-1806 Pulse Tests of the RCA Victor Ferrite, XF-96

1-22-53
B. Smulowicz
**M-1811 Coordinate Conversion with Memory-Core Matrix

1-27-53
D. McCann

M-1830 MF-1326-B, F-291, Life Test No. 1-Initial Tests

2-6-53 J. R. Freeman
M-1861 Visit to General Electric, Schenectady, February 20, 1953

2-24-53 RoA. Pacl
M-1883 Magnetic-Core Matrix Switch Adder
3-9-53 C. J. Schultz
M-1893 Hysteresis Test Results from Five New Glenco Ferroelectric Materials

3-10-53
C. D. Morrison

M-1929 AD HOC Conference on FeNi_{3}
**M-1943 Testing Cores for WWII
M-1957 Procedure for Preparing and Stripping Wires for MTC Memory Planes

4-6-53 E. A. Guditz
M-1987 First Note on Pulse Transformers for Memory Drivers

5-27-53 F. Durgin E. K. Gates

M-1989 MF-1326 B, F-291, Life Test No. 2
4-21-53 J. R. Freeman
M-2110 A Linear Selection Magnetic Memory Using an Anti-Coincident Current Switch

M-2160 Energy Dissipation in Square-Loop Ferromagnetic Materials with Specific Application to Switch Cores

5-12-53 N. Menyuk

Memoranda（continued）
M－2162 WWI Address Selection Systems，P。B。

No． 61
5－6－53 J．I．Mitchell
M－2167 First－Order Cancellation Residue in Rectangular Memory Arrays

M－2186 Two Methods of Reducing Delta Noise
M－2195 Further Work on Nondestructive Read System

M－2197 Read－Out and Digit Plane Driving Systems，P。B。No． 62

M－2219 Testing of Individual Cores in MTC Memory Planes

M－2225 The Construction of Memory Planes for the MTC Memory

M－2240 A Magnetic Core Test Storage
M－2248 Tests of Some Magnetic－Matrix Switch Operating Modes

M－2254 Sensing the Slope of Magnetic Memory Output

M－2275 Equation of Motion for a Cylindrical 180° Domain Wall

M－2291 Proposal for Reducing the Number of Tubes Used in Driving a Magnetic Matrix Switch

M－2314 Readout－Noise Reduction in a Magnetic－Core Memory

M－2316 Proposed Sense Winding for a 64 x 64 Memory Plane

M－2319 Procedure for Handling Cores During Testing Program

7－30－53 P．Baltzer
7－30－53 P．Baltzer

7－9－53 J．Raffel
6－10－53 E．A．Guditz
6－15－53 K．Olsen

6－17－53 Jo L．Mitchell R．S．DiNolfo

6－19－53 K．Olsen

7－23－53 S．Fine

7－23－53 W．Canty

7－23－53 Jo Schallerer

Memoranda（continued）
＊M－2332 West Coast Trip，July， 1953
M－2348 Switch－Core Design and Power Loss
M－2383 Testing the Magnetic－Core Memory System in a Computer

M－2384 A Large Planar Switch for Register Selection in a MagneticoCore Memory （MoS．Thesis Proposal）

M－2398 Trip to Linde Corpo，Tonawanda，N．Yo， $8-17-53$ ，to Discuss Growth and Procure ment of Ferrite Single Crystals $9-8-53$

D．A．Buck
M－2412 An Analytical Review of Neél＇s Molecular Field Theory of Ferri－and Ferromagnetism
$9-16-53$
A．Lo Loeb
M－2420 Interpretation of Memory－Core Specifica－ tions

M－2442 Ferrite Synthesis
M－2473 B－H Loop Squareness in the Magnesium－ Manganese

9－22－53
D．R．Brown
9－15－53 F。E．Vinal

10－22－53 J．B．Goodenough
M－2514 The Incorporation of a Magnetic Matrix
Switch into a Multiplanar Coincident－ Current Magnetic Memory（MoS．Thesis Proposal）
M－2568 Pulse Response of Ferrite Memory Cores
M－2598 Transformer Drive for a Coincident－ Current Magnetic Memory（MoS．Thesis Proposal）

M－2602 Stress Effects in Ferrites and Generalization of Switching Coefficient for Non－Square Materials
$1-6-54$
N．Menyuk
M－2629 Trip Report to Bell Labs．，Murray Hill， New Jersey，January 6， 1954

M－2634 Multi－Coordinate Selection Systems for Magnetic－Core Storage

7－31－53
D．A．Buck
8－7－53 J．Raffel
$9-18-53$
$8-31-53$
J．Raffel

D．A

11－12－53 A．D．Hughes
12－15－53 J．R．Freeman

1－5－54 E。K。Gates

1－6

1－14－54 J．B．Goodenough

1－19－53 R DiNolfo

Date
Author

Memoranda (continued)
M-2649 Graphical Summary of Core Data in the $\mathrm{MgO}-\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{MnO}$ System

1-25-54 J. B. Goodenough
M-2674 A Comparison Between Square-Loop Metals and Ferrites for High-Speed Pulsed Operation

M-2692 Ferrite Synthesis, II
2-11-54 F. E. Vinal
M-2736 Core Memory Using External Bit Selec-3-18-54 J。Raffel tion

Collections

Group 63 Seminar on Magnetism

Memoranda covering the Introduction and Lectures I to LV and Appendices I to VII have been released for the academic year 1952-53.

Memorandum covering Lecture I of Vol. 2
has been released to date.
A. L. Loeb

Division 6 - Lincoln Laboratory
Massachusetts Institute of Technology
Lexington 73, Massachusetts

SUBJECT: DOCUMENTS ON MAGNETIC CORE WORK

To:	Group 63 Staff
From:	Joan M. Sullivan
Date:	July 16, 1956
Approved:	William N. Parian

Abstract: A partial list of Reports, Theses, Engineering Notes, Articles, and Memoranda on various aspects of the magnetic-core activity is presented.
Title Date Author

Reports
6R-187 Digital Information Storage in Three Dimensions Using Magnetic Cores 5-16-50
J. W. Forrester

6R-192 A CoincidentmCurrent Magnetic
Memory Unit (S.M. Thesis)
$9-8-50$
W. N. Papian

6R-211 A Magnetic Matrix Switch and Its Incorporation Into a CoincidentCurrent Memory (S.M. Thesis)
$6-6-52$
K. H. Olsen

6R-216 The 16-by-16 Metallic-Core
Memory Array Model I
$9-25-52$
B. Widrow

6R-217 Design of Low -Power Pulse Trans* formers Using Ferrite Cores (S.M. Thesis)

8-29-52
R. D. Robinson

6R-234 Switch for Register Selection in a Magnetic Core Memory (S.M. Thesis)
J. I. Raffel

6R-235 Multi-Coordinate Selection Systems for Magnetic-Core Storage (S.M. Thesis)

This document is issued for internal distribution and use only by and for Lincoll Laboratory personnel. It should not be given or shown to any other individuals or groups without express authorization. It may not be reproduced
in whole or in part without permission in writing from Lincoln Laboratory.

Reports (continued)
6R-236 Magnetostriction in Ferrites Possess-
ing a Square Hysteresis Loop
(S.M. Thesis)

Title
(not in report form)
A Magnetic Flip-Flop
5-16-52
R. J. Pfaff
An Investigation of Magnetic Core Stepping Registers for Digital Computers
Rectangular Hysteresis Loop Materials in a Nondestructive Read System
5-25-53
An RF Readout System for a Coin-cident-Current Magnetic-Core Memory
High-Speed Magnetic Pulse Control Circuits for Computer Applications
5-25-53
Magnetic Amplifiers with High Carrier Frequency
5-25-53
A. L. Pugh, III
A Study of Single-Pulse FerriteCore Stepping Registers
8-31-53
Temperature Behavior of Ferrites
1-18-54
A Differential Thermal Analysis Study of Synthesized Magnesium Ferrite, Manganese Ferrite, and Magnesium-Manganese Ferrite
1-18-54
R. A. Maglio
A Carry-Matrix Counter
5-24-54
G. Lampke
Transformer Drive for a CoincidentCurrent Magnetic Memory
E. K. Gates
Magnetic Drum Writing Circuits Using Magnetic Cores
$8-23-54$
The Incorporation of a Magnetic Matrix Switch into a Multiplanar Coincident-Current Magnetic Memory $8-23-54$
A. Hughes
A Magnetic-Core Memory with External Selection
1-17-55
S. Bradspies

Theses (continued)

A Transistorized AmplifierDiscrimintator for Core Memory Output

5-23-55 F. W. Sarles, Jr.
A Transistor Selection System for A Magnetic-Core Memory

1-56
G. A. Davidson

The Application of Transistors to Multiposition Selection Switches

5-24-56 P. G. Griffith
A Magnetic-Core Test Storage
6-19-56
J. N. Ackley

Date
Author

Engineering Notes

6E-406	Preliminary Tests on the Four-Core Magnetic Memory Array	6-18-51	W. N. Papian
$6 \mathrm{E}-413$	Selection Systems for Magnetic-Core Storage	8-7-51	R. R. Everett
6E-422	Rectangular-Loop Magnetic Core Materials	9-4-51	W. N. Papian
6E-438	Binary Counting with Magnetic Cores	12-6-51	D. A. Buck
6E-454-1	Nondestructive Sensing of Magnetic Cores	$3-24-53$	D. A. Buck
6E-464	A Squareness Ratio for CoincidentCurrent Memory Cores	7-16-52	D. R. Brown
6E-470	Paper on Ferromagnetic and Ferroelectric Memory Devices	$8-6-52$	W. N. Papian
$6 \mathrm{E}-472$	The Mirror: A Proposed Simplified Symbol for Magnetic Circuits	$8-14-52$	R. P. Mayer
6E-475	A Magnetic-Core Gate and Its Application in a Stepping Register	10-30-52	G. R. Briggs
6E-477	Magnetic and Dielectric Amplifiers	8-28-52	D. A. Buck
6E-488	Delta ${ }_{\text {ns }}$ in Ceramic Array \#l	10-14-52	E. A. Guditz
6E-491	Hysteresis Loop Characteristics of MF-1ll 8 for Different Temperatures	10-16-52	C. Morrisan
6Em495	Test Procedure for Ferrite Pulse Transformers, I	11-5-52	E. K. Gates
6E-496	Instructions and Specifications for the Manufacture of $3: 1$ and $1: 1$, O.1 Microsecond Pulse Transformers on Ferrite-Ring Cores	$11-3-52$	R. E. Hunt
$6 \mathrm{E}-500$	Switch Core Analysis I	11-4-52	A. Katz E. A. Guditz
$6 \mathrm{E}=512$	A Method for Acceptance Testing of Ferrite Core Production Lots	12-4-52	P. K. Baltzer

Title
Date
Author
Engineering Notes (continued)
6E-518 New Metallic Cores from Magnetic Metals

1-2-53 A. D. Hughes
6E-519 General Ceramics Materials MF-1348B and MF-135े9B

6E-523 Core Driverso-Model V and VI
6E-529 Matrix Driving with Unidirectional Pulses

Magnetic Materials for High-Speed Pulse Circuits
$2-27-53$
D. R. Brown

6E-531 Driving Current Margins on Memory Test Setup I
$3-6-53$
S. Fine

6E-532 Nucleation of Domains of Reverse Magnetization \& Switching Characteristics of Magnetic Materials

3-9-53
J. B. Goodenough
N. Menyuk

6E-533 Effect of Current Pulse Duration on the Pulse Response of MTC Memory Cores
$3-10-53$
P. K. Beltzer

6E-539 An Approach to a Rationale in Ferrite Synthesis: Evaluation of Magnetic Moments

4-28-53
L. Gold
$6 \mathrm{E}-540$
A FastmCore Tube Register
$4-27-53$
K. H. Olsen
R. Pfaff

6E-544 Circuit for Measuring Switch Time, Rise Time, etc., (Switch-Time Comparator)

5-11-53
B. Gurley

6E-545 Dependence of Coercivity and Stress Hysteresis on Nucleation of Domains of Reverse Magnetization

5-14~53
J. B. Goodenough

6E $=548$ Preliminary ReportowTemperature Effects in MTC-type Ferrite Cores

6-26-53 J. D. Childress

6E-559 A Free Energy Model for the Hysteresis Loop

6-16-53 A.L.Loeb

Engineering Notes (continued)
6E-563 Specifications for a Ferrite Memory Core
$6-30-53$
D. R. Brown

Note: This series discontinued under date of July 28, 1954.

Memoranda	Title	Date	Author
6M-1371	Magnetic Core Activity	1-15-52	W. N. Papian
6M-1381	Magnetic-Core Memory Matrix Analysis (Effect of Driver Impedance)	1-24-52	D. A. Buck
6M-1490	Procedure for Receiving Magnetic Cores	5-16-52	D. R. Brown
6M-1529	Conference on Magnetic Core Switching Phenomena	6-16-52	A. Katz
6M-1582	High-Speed Magnetic Pulse Control Circuits for Computers (Thesis Proposal)	8-6-52	H. K. Rising
6M-1650	The Effect of Size of Metal Cores on Pulse and Hysteresis Measurements	9-25-52	R. F. Jenney
6M-1664	Conference on Thin Evaporated Metal Films	10-6-52	A. L. Loeb
6M-1676	Polishing Specimens of Ferrites	10-14-52	F. E. Vinal
6M-1681	Uniformity Tests on Ferrite Cores	10-21-52	J. H. McCusker
6M-1741	Metallographic Studies of Ferrites	12-4-52	D. R. Brown
6M-1767	An RF Readout System for a Coinciden Current Magnetic-Core Memory (Thesis Proposal)	t-	B. Widrow
6M-1785	Testing of Magnetic Cores	1-7-53	A. D. Hughes
6M-1806	Pulse Tests of the RCA Victor Ferrite, XF-96	1-22-53	B. Smulowicz
6M-1811	Coordinate Conversion with Memory-Core Matrix	1-27-53	D. McCann
6M-1830	MF-1326-B, F-291, Life Test No. l-Initial Tests	2-6-53	J. R. Freeman
6M-1883	Magnetic-Core Matrix Switch Adder	3-9-53	C. J. Schultz
6M-1893	Hysteresis Test Results from Five New Glenco Ferroelectric Materials	3-10-53	C. D. Morrison

	Title	Date	Author
Memoranda	(continued)		
6M-1929	AD HOC Conference on FeNi_{3}	3-25-53	D. A. Buck J. B. Goodenough A. L. Loeb N. Menyuk
6M-1943	Testing Cores for WWII	$3-30-53$	J. McCusker
6M-1957	Procedure for Preparing and Strip ping Wires for MTC Memory Planes	$4-6-53$	E. A. Guditz
6M-1987	First Note on Pulse Transformers for Memory Drivers	5-27-53	F. Durgin E. K. Gates
6M-1989	MF-1326-B, F-291, Life Test No. 2	4-21-53	J. R. Freeman
6M-2110	A Linear Selection Magnetic Memory Using an Anti-Coincident Current Switch	5-8-53	K. H. Olsen
6M-2160	Energy Dissipation in Square $\$$ Loop Ferromagnetic Materials with Specific Application to Switch Cores	5-12-53	N. Menyuk
6M-2162	WWI Address Selection Systems, P.B. No. 61	5-6-53	J. L. Mitchell
6M-2167	First-Order Cancellation Residue in Rectangular Memory Arrays	5-15-53	D. A. Buck
6M-2186	Two Methods of Reducing Delta Noise	5-20-53	S. Fine
6M-2195	Further Work on Nondestructive Read System	5-27-53	W. I. Frank
6M-2197	Read-Out and Digit Plane Driving Systems, P。B. No. 62	5-28-53	W. J. Canty S. Fine
6M-2219	Testing of Individual Cores in MTC Memory Planes	6-16-53	A. D. Hughes
6M-2225	The Construction of Memory Planes for the MTC Memory	6-10-53	E. A. Guditz
6M-2240	A Magnetic Core Test Storage	6-15-53	K. Olsen

Memoranda (continued)

$6 \mathrm{M}-2248$	Tests of Some Magnetic-Matrix Switch Operating Modes	$6-17-53$	J. L. Mitchell R. S. DiNolfo
$6 \mathrm{M}-2254$	Sensing the Slope of Magnetic Memory Output	$6-19-53$	K. H. Olsen

	Title	Date	Author
Memoranda	(continued)		
6M-2474	A Theory of Ionic Ordering, Tetragon Phase Formation, Magnetic Exchange, and Lamellar Precipitation Due to Covalent Forces in Spinels	5-7-54	J. B. Goodenough A. L. Loeb
6M-2514	The Incorporation of a Magnetic Matrix Switch into a Multiplanar Coincident-Current Magnetic Memory (Thesis Proposal)	11-12-53	A. D. Hughes
6M-2568-1	Pulse Response of Ferrite Memory Cores	9-20-54	J. R. Freeman
6M-2598	Transformer Drive for a CoincidentCurrent Magnetic Memory (Thesis Proposal)	1-5-54	E. K. Gates
6M-2602	Stress Effects in Ferrites and Generalization of Switching Coefficient for Non-Square Materials	1-6-54	N. Menyuk
6M-2634	Multi-Coordinate Selection Systems for Magnetic-Core Storage	1-19-54	R. S. DiNolfo
6M-2649	Graphical Summary of Core Data in the $\mathrm{MgO}-\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{MnO}$ System	1-25-54	J. B. Goodenough
6M-2674	A Comparison Between Square-Loop Metals and Ferrites for High-Speed Pulsed Operation	2-4-54	D. R. Brown D. A. Buck N. Menyuk
6M-2692	Ferrite Synthesis, II	2-11-54	F. E. Vinal
6M-2736	Core Memory Using External Bit Selection	3-18-54	J. I. Raffel
6M-2755	Core Drivers--Model V and Model VI Applications, Limitations, and Modifications	5-1-54	J. D. Childress
6M-2762	A Magnetic-Core Memory with External Selection (Thesis Proposal)	4-6-54	S. Bradspies

Memoranda (continued)

6M-2803	Magnetic-Core Shift Register Evaluator	5-3-54	C. J. Schultz
6M-2804	Effects of Tape Thickness and Temperature on Flux Reversal of 4-79 Molybdenum Permalloy	5-3-54	N. Menyuk
6M-2839	One One or the Other	5-28-54	R. P. Mayer W. N. Papian
6M-2840	Test Results on the DCL Memory Plane	5-28-54	E. A. Guditz
6M-2873	Basis for Release of Ferrite Memory Core Specifications	6-17-54	D. R. Brown
6M-2880	Evaluation of Ferroxcube Cores	6-28-54	P. A. Fergus
6M-2919	Sensing Winding Geometry and Information Patterns	7-22-54	J. I. Raffel
6M-2943	X-Ray Equipment for Magnetic Research	7-29-54	D. Tuomi F. E. Vinal
6M-2945	Current Calibrator (Chopper Model)	8-10-54	J. D. Childress
6M-2969	Tentative Cathode Estimates for $256^{2} \times 33$ and $128^{2} \times 33$ Core Memories	$8-6-54$	W. J. Canty J. L. Mitchell

6M-3005 Bondeze Magnetic Wire for Memory Plane Construction
A. Bowen
E. A. Guditz

6M-3035 An Investigation of Some Parameters which Influence the Magnetic Characteristics of Ferrites
P. K. Baltzer

6M-3059 Thoughts on Incremental Permeability
J. B. Goodenough

6M-3097 Description of Memory Test Setup IV
10-11-54
E. A. Guditz

6M-3107 High-Speed Core Driver
10-21-54
S. Bradspies

6M-3185 A Theory of Pervoskite-Type Manganites (La, M(II), MnO_{3})

Memoranda (continued)
6M-3215 Conference on Ferrimagnetism ll-12-54 J. B. Goodenough
P. K. Baltzer
F. E. Vinal

6M-3252 Paramagnetic Behavior of Ferrites Containing two Kinds of Magnetic Ions 1-17-55
N. Menyuk

6m-3316 Transistor Circuits for Driving Coincident-Current Memories 1-21-55
K. H. Olsen

6M-3390 Memory Plane Margins: DCL-2-720 Cores vs S-1 Cores
$2-21-55$
J. L. Mitchell

6M-3417 A Transistorized Amplifier Discriminator for Core Memory Output Sensing (Thesis Proposal)

3-7-55
F. W. Sarles, Jr.

6M-3505 Experiments on a Three-Core Cell for High-Speed Memoires
----- J. I. Raffel
S. Bradspies

6M-3526 X-Y Tests on Memory Plane Units 4-11-55 J. W. Schallerer
6M-3530 Improved Memory Cores Produced in Lincoln Laboratory

4-13-55 F. E. Vinal
6M-3654 Procedure for Stripping Wires for 64 x 64 Memory Plane Modules
$6-7+55$
E. A. Guditz

6M-3699 Specifications for 64^{2} Memory Plane Module Frame

6-20-55 E. A. Guditz
L. B. Smith

6M-3717 A Transistor Selection System for a Magnetic-Core Memory (Thesis Proposal) 6-27-55
G. A. Davidson

6M-3805 Mod. III Current Calibrator
8-9-55
R. A. Pacl

6M-3820 EMAR: An Experimental Memory Address Register

6M-3856 Pulse Transformer Amplifier
9-7-55
M. M. Cerier

6M-4064 Remarks on Domain Patterns Recently Found in BiMn and Sife Alloys

12-27-55
J. B. Goodenough

6M-4089 Geometry of Magre tic Memory Elements 1-18-56 J. D. Childress

	Title	Date	Author
Memoranda (continued)			
6M-4137	Memory Core Heating by Switching at High Frequencies	$1-31-56$	J. D. Childress
6M-4153	The Noise Problem in the CoincidentCurrent Memory Matrix	2-13-56	J. D. Childress
6M-4218	A Sequential-Access Three-Microsecond Core Memory	3-8-56	R. L. Best T. H. Meisling
6M-4298	Proposed Research Program on Thin Film	4-17-56	A. L. Loeb
6M-4328	'The Influence of Chemistry on B-H Loop Shape, Coercivity, and FluxReversal Time in Ferrites	5-16-56	J. B. Goodenough
6M-4362	Magnetization Reversal in Thin Films	6-4-56	D. O. Smith

Group 63 Seminar on Magnetism Memoranda covering the Introduction and Lectures I to LV and Appendices I to VII have been released for the academic year 1952-1953.

Memorandum covering Lecture I of Vol. 2 has been released. Seminar was discontinued after Lecture I of Vol. 2.

Articles

Forrester, Jay W., "Digital Information Storage in Three Dimensions Using Magnetic Cores," Journal of Applied Physics, Vol. 22, pp. 44-48, January 1951.

Papian, William No, "A Coincident-Current Magnetic Memory Cell for the Storage of Digital Information," Proceedings of the Institute of Radio Engineers, Vol. 40; No. 4, April 1952.

Goodenough, John Bo, "A Theory of the Deviation from Close Packing in Hexagonal Metal Crystals," Physical Review, Vol. 89, No. 1, pp 282-294, January 1, 1953.

Brown, David R., and Albers-Schoenberg, Ernest, "Ferrites Speed Digital Computers," Efectronics, April 1953.

Menyuk, Norman, "Magnetization Reversal of Square-Loop Polycrystalline Materials by Domain Growth," Physical Review, Vol. 91, pp. 434, July 15, 1953.

Papian, William N., "The MIT Magnetic-Core Memory," Proceedings of the Eastern Joint Computer Conference, December 1953.

Brown, David R., Buck, Dudley Ao, and Menyuk, Norman, "A Comparison of Metals and Ferrites for High-Speed Pulse Operation," Transactions of the American Institute of Electrical Engineers, Part I Communications and Electronics, Vol. 73, pp. 631-635, 1954.

Buck, Dudley A., "Nondestructive Sensing of Magnetic Cores," Communications and Electronics (bi-monthly), January 1954.

Goodenough, John Bo, "A Theory of Domain Creation and Coercive Force in Polycrystalline Ferromagnetics," Physical Review, Vol. 95, No. 4, pp. 917-932, August 15, 1954.

Freeman, James R., "Pulse Responses of Ferrite Memory Cores," Proceedings of the Wescon Computer Sessions, August 25-27, 1954, Los Angeles, California.

Widrow, Bernard, "Radio-Frequency Nondestructive Readout for Magnetic-Core Memories," Proceedings of the Institute of Radio Engineers, Professional Group on Electronic Computers, Vol. EC-3, No. 4, December 1954.

Menyuk, Norman and Goodenough, John Bo, "Magnetic Materials for Digital-Computer Components I. A Theory of Flux Reversal in Polycrystalline Ferromagnetics," Journal of Applied Physics, Vol. 26, No. 1, pp. 8-18, January 1955.

Articles (continued)

Papian, William N., "New Ferrite-Core Memory Uses Pulse Transformers," Electronics, March 1955.

Raffel, Jack I. and Bradspies, Sydney, "Experiments on a 3-Core Cell for High Speed Memories, " Convention Record of the Institute of Radio Engineers, April 1955.

Goodenough, John Bo and Loeb, Arthur L., "Theory of Ionic Ordering, Crystal Distortion and Magnetic Exchange Due to Covalent Forces in Spinels, " Physical Review, Vol. 98, No. 2, pp 391-408, April 15, 1955.

Menyuk, Norman, "Magnetic Materials for Digital-Computer Components II. Magnetic Characteristics of UItra-Thin Molybdenum-Permalloy Cores, " Journal of Applied Physics, Vol. 26, p. 692, June 1955.

Childress, James D., "The Noise Problem in the CoincidentCurrent Memory Matrix," Proceedings of the Conference on Magnetism and Magnetic Materials, American Institute of Electrical Engineers, October 1955.

Smith, Donald O., (abstract on) "A Vibrating-Coil Magnetometer and its Application to the Study of the Curie Point of Magnetite," Proceedings of the Conference on Magnetism and Magnetic Materials, American Institute of Electrical Engineers, October 1955.

Goodenough, John Bo, "The Role of Covalence in Oxides Containing Manganese," Conference on Magnetism and Magnetic Materials, American Institute of Electrical Engineers, October 1955.

Goodenough, John B., "Theory of the Role of Covalence in the Perovskite-Type Manganites (La, M(II)) MnO_{3}," Physical Review, Vol. 100, No. 2, pp. 564-573, October 15, 1955.

Smith, Donald O., "Development of the Vibrating-Coil Magnetometer and Its Application to Magnetite," Technical Report 102, Laboratory for Insulation Research, MIT, November 1955.

Guditz, Elis Ao, and Smith, Lloyd Bo, "An Improved Technique for the Assembly of Core Memory Planes," Electronics, February 1956。
Goodenough, John Bo, "Interpretation of Domain Patterns Recently Found in BiMn and SiFe Alloys," Physical Review, Vol. 102, No. 2, pp. 356-365, April 15, 1956.

Articles (continued)

Smith, Donald 0., "Development of a Vibrating-Coil Magnetometer," The Review of Scientific Instruments, Vol. 27, No. 5, pp. 261-268, May 1956.

Smith, Donald O., "Magnetizetion of a Magnetite Single Crystal Near the Curie Point," Physical Review, Vol. 102, p. 959, May 15, 1956.

Taylor, Norman H., "Magnetic-Core Storage Development," presented in England in April 1956, to be published later in Proceedings of Electrical Engineers.

Goodenough, John B., "The Influence of Chemistry on B-H Loop Shape, Coercivity, and Flux-Reversal Time in Ferrites," to be published in England.

Goodenough, John B., "The Origin of Losses in Magnetic Materials," to be presented at October meeting of the American Institute of Electrical Engineers, Boston, Massachusetts, and later published in the Conference Proceedings.

Goodenough, John B., and Loeb, Arthur L., "Semicovalence and Anisotropy in Magnetic Oxides," to be presented at October meeting of the American Institute of Electrical Engineers, Boston, Massachusetts, and later published in the Conference Proceedings.

JMS; jms

Ligital Computer Laboratory Massachusetts Institute of Technology

Combridge 39, Massachusetts

SUBJECT: MAGNETIC-COPE MEMORY MATRIX ANALYSIS (EFFEGT OF DRIVAR TMPEDANCE)
To: Kenneth H. Olsen
From: Dudley A. Buck
Date: Januery 24, 1952
Abstract: The following analysis of a magnetic-core memory shows the extent to which the quiescent internal impedance of the row and column drivers affects the selection ratio.

Consider a square N by \mathbb{N} matrix of identical magnetic cores (Fig. la). Having selected a row and a column, the matrix can be redrawn (Fig. 1b) as it is seen looking between the selected row and the selected column. One core, the selected core, links the selected row and column. From the selected row one core links each of the ($\mathrm{N}-\mathrm{I}$) umused columns and from the selected column one core links each of the ($N-1$) unused rows. In addition, each of the ($\mathrm{N}-1$) unusec rows is linked to each of the ($\mathrm{N}-\mathrm{I}$) unused columns (dashed lines).

Whatever the currents in the unused rows, they will, by symmetry, be identical. We can therefore connect them in series for this analysis (Fig. Ic). Similarly, we can connect the unused columns in series.

The final step (Fig. 1d) is to slide together cores which link the same pair of wires giving a composite reduction of the matrix intio four cores; core A is the selected core, cores B are the cores lying along the selected row and column but not at the intersection, and C represents all other cores in the matrix. If core A has a cross-sectional area A, cores B each heve area ($N-1$)A and core C hes area $(N-1)^{2} A$.

$$
1+2(N-1)+(N-1)^{2}=\mathbb{N}^{2}
$$

1et:
$H_{A}=$ magnetic fleld acting on core A
$\mathrm{H}_{\mathrm{B}}=$ magnetic fleld acting on cores B
$\mathrm{HC}=$ magnetic field acting on core C
$i_{1}=$ current in selected row and column
$i_{2}=$ current induced in unused rows and columns
$\ell=$ mean magnetic path (circumference) of all cores
Single-turn coupling throughout

From Fig. $1 d$,

$$
\begin{aligned}
& H_{A}=\frac{2 i_{1}}{l} \\
& H_{B}=\frac{i_{1-i_{2}}}{l} \\
& H_{C}=\frac{2 i_{2}}{l}
\end{aligned}
$$

We will now consider two driving condition extremes; the first is one in which the quiescent internal impedance of the row and column drivers is infinite and the second is one in which the quiescent internal impedence of the row and column drivers is zero. We will define the selection ratio as

$$
\begin{aligned}
& H_{A}: H_{B} \text { if } H_{B}>H_{C} \\
& H_{A}: H_{C} \text { if } H_{B}<H_{C}
\end{aligned}
$$

Infinite Quiescent Internal Impedance Row and Column Drivers

In this condition, no incuced currents are allowed to flow in the unused rows and columns.

Therefore: $\quad i_{2}=0$

$$
H_{A}=\frac{2 i_{I}}{\ell}
$$

$$
H_{B}=\frac{i_{1}}{l}
$$

$$
H_{C}=0
$$

In this driving condition, the selection ratio, $H_{A}: H_{B}$, is $2: 1$ regerdless of matrix size.

Zero Cuiescent Intarnal Impedance Rov and Column Drivers

The current induced in the unused rows and columns, i_{2}, is due to a voltage produced by flux changes in cores B. This current is iimited only by a voltage of opposite polarity produced by flux changes in core $\mathrm{C}_{\text {. }}$ Since the loop is assumed to have zero impedance, these voltages, and therefore the changes in flux, must be equal.

$$
\frac{d \phi_{B}}{d t}=\frac{d \phi_{C}}{d t}
$$

but:

$$
\begin{aligned}
& \frac{d \phi_{B}}{d t}=\mu_{B}(\mathrm{~N}-1)_{A} \frac{d H_{B}}{d t} \\
& \frac{d \varnothing_{C}}{d t}=\mu_{C}(\mathrm{~N}-1)_{A} \frac{d H_{C}}{d t}
\end{aligned}
$$

Assuming $\mu_{B}=\mu_{C}$, and equating these two, we have:

$$
\frac{d H_{B}}{d t}=(\mathrm{N}-1) \frac{d H_{C}}{d t}
$$

Assume that H_{B} and H_{C} both start from zero. At any time, T, then:

$$
\mathrm{H}_{\mathrm{B}}=(\mathrm{N}-1) \mathrm{H}_{\mathrm{C}}
$$

We see that for any size matrix, $H_{B}>H_{C}$, and the selection ratio therefore is $H_{A}: H_{B}$

From:

$$
\begin{aligned}
& H_{B}=(N-1) H_{C} \\
& H_{B}=\frac{i_{1}-i_{2}}{l} \\
& H_{C}=\frac{2 i_{2}}{l}
\end{aligned}
$$

We can writes

$$
\begin{aligned}
\frac{i_{2}-1_{2}}{l} & =(N-1)\left(\frac{2 i_{2}}{l}\right) \\
i_{1} & =(2 N-1) i_{2}
\end{aligned}
$$

And:

$$
\begin{aligned}
& H_{B}=\left(\frac{2 N-2}{2 N-1}\right) \frac{1 I}{l} \\
& H_{A}=\frac{2 I_{1}}{l}
\end{aligned}
$$

And the selection ratio, $H_{A}: H_{B}$, equals $\frac{2 N-1}{N-1}: 1$
We see that the selection ratio in this driving condition is a function of the matrix size. Tabulated below is $\frac{2 N-1}{\mathbb{N}-1}$ in for several values of \mathbb{N} :

\mathbb{N}	Selection Patio $\frac{2 N-1}{N-1}: 1$
2	$3.00: 1$
3	$2.50: 1$
4	$2.33: 1$
5	$2.25: 1$
6	$2.20: 1$
7	$2.16: 1$
8	$2.14: 1$
16	$2.06: 1$

Summaxy

For drivers with infinite quiescent internal impedance, the selection ratio is always $2: 1$. For drivers with zero quiescent internal impedance, the selection ratio is always better than $2: 1$ and it depends upon the matrix size. It can be as high as $3: 1$ for a 2 by 2 matrix but it drops off rapidly as the matrix size increases. For a 16 by 16 matrix, the selection ratio varies but 3% as the quiescent internal impedance of the drivers is varied over the entire range from aero to infinity.

DAB/cp
Drawing: SA-50769

b) MATRIX REDRAWN

c) UNUSED ROWS AND COLUMNS JOINED

d) COMPOSITE REDUCTION

FIG. 1. MAGNETIC MATRIX REDUCTION

Digital Computer Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts

SUBJECT: SAMPLE PROBLEMS FOR APPLICANTS FOR EMPLOYMENT

To: C. R. Wieser
From: D. R. Israel
Date: February 11, 1952

The following are some problems which might be used in determining whether an applicant is interested and suited for the type of work done in the Applications Group of Project 6889.

Problem I. Assume that you are offered two jobs. Job A has a salary of $\$ 1200$ a year with an annual raise of $\$ 200$. Job B starts with a semi-annual salary of $\$ 600$ and has a semi-annual raise of $\$ 50$. Which job would you choose?

Problem 2. Assume that you have been given a set of 64 cards. On one side of each card is written a number between 0 and 1000. The cards are then put into numerical sequence and are laid out in a row, face down. On one of these cards the number 230 has been written. The job at hand is to find this card, but in doing this only the minimum number of cards must be turned face up. What is the minimum number of cards which must be turned face up before you can guarantee to find the desired card? Can you generalize your answer in the case where there are \underline{n} cards?

Problem 3. Assume that you have a rectangular surface measuring $90^{\prime \prime} \times 33^{\prime \prime}$. We wish to cover this surface completely using rectangular pieces of paper $9^{\prime \prime} \times 5^{\prime \prime}$. What number of these pieces of paper will

This document is issued for internal distribution and use only by and for Lincoln Laboratory personnel. It should not be given or shown to any other individuals or groups without express authorisation. It may not be reproduced in whole or in part without permisaion in writing from Lincoln Laboratory.
be needed to cover the surface, and how much paper, if any, must be wasted in cutting these pieces of paper so that the area covered it exactly $90^{\prime \prime} \times 33^{\prime \prime}$ and no papers are overlapped? If a piece of paper is cut in several pieces, only one of the pieces may be used.

Problem 4. The rate of climb of a jet aircraft decreases with altitude. Assume that this variation is linear and that the rate of climb at sea level is $8,000 \mathrm{ft}$. per minute, while at $50,000 \mathrm{ft}$. it is l,000 ft. per minute. Derive a formula which will enable you to determine the time that it will take the aircraft to reach any altitude up to $50,000 \mathrm{ft}$. If the performance figures given above are accurate to only about 10%, can the required expression, giving time as a function of altitude, be replaced by a simple approximation if the maximum altitude in which we are interested is limited to $20,000 \mathrm{ft} . ?$. If there is such a suitable approximation, can you estimate its approximate error at $20,000 \mathrm{ft}$?

Problem 5. Assume that you are asked to consider the problem of directing and aiming anti-aircraft guns on a naval vessel. The naval vessel will be maneuvering and will be firing at maneuvering aircraft. What are the important factors and pieces of information about which knowledge would be necessary in considering the computational aspects of the problem?

Problem 6. The sequence of numbers, $0,1,2,5,6,7,0,1,2$, $5,6,7, \ldots \ldots$ is generated by the expression $x_{n+1}=\left(x_{n}^{2}+1\right)_{\bmod 10 .}$ Given the sequence of numbers $1,3,7,5,1,3,7,5, \ldots \ldots 1,3,7,5, \ldots \ldots$ can you derive an equation for generating this sequence? Can you do the same for the following sequence: $2,3,7,43,1807, \ldots \ldots$?

Problem 7. Assume that Figure 1 below represents a network of cross streets. The section shown is six blocks by six blocks. The blocks are all of equal length, L. What is the length of the shortest path(s) between \underline{a} and \underline{b} ?

Figure 1

In Figure 1 assume that motion to the right is indicated as +H , motion to the left as -H ; motion up as +V , motion down as -V . With this notation, any path between a and b can be specified as a sequence of $H^{\prime \prime}$ s and V^{\prime} s with appropriate algebraic signs. For example, the path $+\mathrm{H},+\mathrm{H},+\mathrm{H},+\mathrm{H},+\mathrm{H},+\mathrm{H},+\mathrm{V},+\mathrm{V},+\mathrm{V},+\mathrm{V},+\mathrm{V},+\mathrm{V}$ specifies the path from a to $\underline{\mathrm{b}}$ going around the outside of the network horizontally to the right and then up. Assume that a number of these paths are available on paper or have been punched out on cards or paper tape. It is then desired to use a machine to pick out the shortest path(s) between a and b. Among the properties which it is possible to give this machine are those of addition, subtraction, multiplication, division, or the recognition of a negative number. Of the above properties, which should the machine have? (Assume that there is at least one path of length 12L.

In Figure 2 how many different (distinct) paths are there between \underline{a} and \underline{b} ? Any one path must not retrace any section of itself.

Figure 2

Problem 8. Assume that you are given a list of 100 angles. The angles are all positive and are measured in degrees between 0° and 360°, but the angles are not listed in any special numerical order. It is desired to find all those consecutive pairs of angles in this list which have an angular separation whose magnitude is less than 5°. Assume that this is to be done by a machine whose arithmetic capabilities consist of addition, subtraction, the taking of magnitudes, and the determination of positive and negative results. No comparison is desired between the first and the last (hundredth) angle. Write the necessary expression(s) using the angles θ_{i} and θ_{i+1} and only the machine capabilities mentioned above. As an example, if we wished to find whether angle θ_{i+1} were arithmetically greater than angle θ_{i}, we would form the expression:

$$
p=\theta_{i+1}-\theta_{i}
$$

If p were positive, θ_{i+1} would be greater than θ_{i}; if p were negative, θ_{i+1} would be smaller than θ_{i}. For purposes of the problem at hand, we can consider a zero difference as being positive.

Problem 9. Assume that a computing machine were to be used to operate the traffic lights in a metropolis so as to expedite the flow of traffic; that is, depending upon the results of its computation or other activity, the computer will be able to turn any traffic light in the city either red or green. Make a list of the different types of information which you would need in studying this problem, and also a list of the information which would be needed by the computer in carrying out the problem. Discuss the means whereby this latter information might be gathered; that is, from what sources.

Problem 10. On the next two pages are given flow diagrams for forming the expression

$$
a x^{3}+b x^{2}+c x+d
$$

Each line in these flow diagrams represents a single operation, either that of multiplication, addition, or the saving of an intermediate result for later use. Flow Diagram A and Flow Diagram B form the expression

$$
a x^{3}+b x^{2}+c x+d
$$

in two different ways; Flow Diagram A requires 11 steps while B requires 9 steps. Draw a third flow diagram for forming the same function but requiring fewer steps. (Each step requires a single computer operation and the fewer the number of steps, the faster the solution of the problem.)

Problem 11. Assume that a different positive number is written on each of three pieces of paper. One of these pieces of paper goes into Box \#1, another into Box \#2, and a third into Box \#3. Assume that a Box \#4 is initially empty. On page 9 is a flow diagram for manipulating upon the contents of these boxes. The notation used is as follows:

$$
\begin{aligned}
& \mathrm{c}(2) \Longrightarrow \begin{array}{l}
\text { means the contents of Box \#2, } \\
\mathrm{means} \text { place into, } \\
\text { means place the contents of Box \#2 } \\
\text { into Box \#L, }
\end{array} \\
& \begin{array}{l}
\text { means subtract the numerical value } \\
\text { of the contents of Box \#2 from the } \\
\text { numerical value of the contents of Box \#4. }
\end{array}
\end{aligned}
$$

Flow Diagram A

Flow Diagram B

In this problem, assume that a zero resulting from a subtraction is a negative number. After studying the flow diagram, describe the resulting action and the relationship of the numerical value of the final contents of Boxes \#1, \#2, and \#3. Describe what happens if two or more of the papers have the same number.

Digital Computer Laboratory
Massachusetts Institute of Technology
Cambridge，Massachusetts

SUBJECT：STABILIZED TRANSISTOR AS A FOUR TERMINAL NON－LINEAR NETWORK＊
To：Transistor Group
From：John F．Jacobs
Date：March 6， 1952
Abstract：This memorandum outlines a method for describing the char－ acteristics of a transistor with base stabilization．The method consists of plotting the linearized emitter and col－ lector characteristics for the stabilized transistor treat－ ing the whole unit as a four terminal network．On these linearized characteristics the locus of the points at which the various diodes（emitter，collector，and base）switch is clearly presented．Several experimental checks are made which indicate the closeness of the linear approximation to the actual characteristics．

1．0 The Stabilized Transistor Circuit Element

The circuit shown in Fig．l occurs so often in transistor trigger ${ }^{* *}$ applications that it is profitable to study it in detail。 It differs from the unstabilized transistor in that an external resistance， R_{b} ，a switching diode， r_{bd} ，and a biasing network， V_{bs} and R_{bs} ，are in－ serted in the base circuit．

When the large signal equivalent circuit for the transistor＊＊＊ and a Thevinins equivalent circuit of the base diode and its biasing net－ work are substituted in Fig．1，the circuit，Fig。2，results。
＊This memorandum is part of a thesis progress report．See S。M． Thesis Proposal M－1353．
＊＊A trigger circuit is one which is characterized by a negative resist－ ance characteristic and usually exhibits more than one stable state．
＊＊＊Alder，Richard B．Large Signal Equivalent Circuit for Transistor Static Characteristics，R．L．E．Transistor Group，August 30，1951。 （Revised October 2，1951）

Representative magnitudes of the equivalent large signal circuit parameters are given in the Table l so that the following derivations can be simplified by dropping insignificant quantities:

Table 1

Parameter	Typical Value (Ohms)
$r_{e f}$	100
$r_{e r}$	200,000
$r_{c f}$	80
$r_{c r}$	20,000
$r_{b d f}$	100
$r_{b d r}$	500,000
r_{b}	200
$R_{b s}$	$10,000-30,000$
R_{b}	$1000-3000$
αe	$\begin{cases}2.5 & I_{e}>0 \\ 0 & I_{e}<0\end{cases}$

1.1 Conditions Under Which the Base Diode Switches

When the base diode is about to switch, the voltage across it and the current through it are both zero. Under this condition

When:

$$
\begin{equation*}
I_{e}+I_{c}=-\frac{V_{b s}}{R_{b s}} \tag{1}
\end{equation*}
$$

when

$$
\begin{equation*}
I_{e}+I_{c}<-\frac{V_{b s}}{R_{b s}} \tag{2}
\end{equation*}
$$

The base diode must be open because point (a), Fig. 1, is negative with respect to ground.

When:

$$
\begin{equation*}
I_{e}+I_{c}>-\frac{V_{b s}}{R_{b s}} \tag{3}
\end{equation*}
$$

The base diode is closed because point (a) is positive with respect to ground.

1. 2 The Collector Charscteristics of the Stabilized Transistor Circuit Element

The stabilized transistor circuit element is treated in this section as one treats a transistor, and the collector characteristic (V_{c} as a function of I_{c} with I_{e} a parameter) is found in the same way.

For the plot of the collector characteristic, the collector loop equation is written*。 It is:

$$
\begin{equation*}
V_{c}=I_{e}\left(R_{b}^{8}+\alpha_{e} r_{c}\right)+I_{c}\left(R_{b}^{\beta}+r_{c}\right)+V_{b} \tag{4}
\end{equation*}
$$

Where $\quad R_{b}{ }^{\circ} \triangleq r_{b}+R_{b}+\frac{r_{b d} R_{b s}}{r_{b d}+R_{b s}}$

And $\quad V_{b} \triangleq V_{b s} \frac{r_{b d}}{r_{b d}+R_{b s}}$

$1_{0} 21$ Locus of Points at Which the Base Diode Switches

When equation 1 is substituted into equation 4 , an expression for V_{c} as a function of I_{c} is obtained. This is the locus of the points at which the base diode switches:

$$
\begin{equation*}
V_{c}=I_{c} r_{c}\left(1-\alpha_{e}\right)-\frac{V_{b s}}{R_{b s}}\left(R_{b}^{\prime}+\alpha_{e} r_{c}\right)+V_{b} \tag{5}
\end{equation*}
$$

Three distinct regions are apparent when one studies Equation 5. These regions are dependent upon the positions of the base and collector diode. The condition at which the base diode switches is explained above, while the collector diode switches when $I_{c}=\infty \mathcal{Q}_{e} I_{e}$

Region 1: $I_{e}<0 ; \quad V_{c}<0$.

$$
\text { In this region } \alpha_{e}=0 ; \quad r_{c}=r_{c r}
$$

* For the current generator, $\alpha_{e} I_{e}$, and the collector diode, substitute the Thevinins equivalent circuit before writing the loop equations.

Then:
$V_{c}=I_{c} r_{c r}-\frac{V_{b s}}{R_{b s}}\left(R_{b}{ }^{g}\right)+V_{b}$
Or when one substitutes for $R_{b}{ }^{\prime}$ and V_{b} as defined above:
$V_{c}=I_{c} r_{c r}-\frac{V_{b s}}{R_{b s}}\left(R_{b}+r_{b}\right)$
Note that when $I_{e}=0$ the point at which the diode switches is (from Equation 1)
$I_{c}=-\frac{V_{b s}}{R_{b s}}$
and substituting 5 b in 5 a :
$V_{c}=-\frac{V_{b s}}{R_{b s}}\left(R_{b}+r_{b}+r_{c r}\right) \cong-\frac{V_{b s} r_{c r}}{R_{b s}}$

Region 2: $I_{e}>0 ; \quad 0>V_{c} ; \quad I_{c} \ll \alpha_{e} I_{e}$.
In this region:
$\alpha_{e}>0 ; \quad r_{c}=r_{c r} ;$
and:
$V_{c}=I_{c c r} r_{c r}\left(1-\alpha_{e}\right)-\frac{V_{b s}}{R_{b s}}\left(R_{b}+r_{b}+\alpha_{e} r_{c r}\right)$
The value of V_{c} is also found at the point where the collector diode switches; that is, where:

$$
\begin{equation*}
I_{c}=-\alpha_{e} I_{e} \tag{a}
\end{equation*}
$$

When this equation is substituted into (4) one obtains:
$V_{c}=I_{c}\left[\begin{array}{ll}1 & 1 \\ \alpha & \frac{1}{e}\end{array}\right]\left[\begin{array}{l}R_{b}^{\prime}\end{array}\right]+V_{b s} r_{b d} \frac{r_{b d}}{}+R_{b s}$
The point of intersection of (b) with (5d) is:
$I_{c}=-\frac{V_{b s}}{R_{b s}}\left[\frac{\alpha_{e}}{\alpha_{e}=1}\right]$

$$
\begin{equation*}
V_{c}=-\frac{V_{b s}}{R_{b s}}\left(R_{b}+r_{b}\right) \tag{5f}
\end{equation*}
$$

Region 3: $\quad I_{e}>0 ; \quad V_{c}<0 ; \quad I_{c}>-\alpha_{e} I_{e}$
In this region:
$\alpha_{e}>0$ and $r_{c}=r_{c f}$
Then:
$V_{c}=I_{c} r_{c f}\left(1-\alpha_{e}\right)-\frac{V_{b s}}{R_{b s}}\left(R_{b}+r_{b}+\alpha_{e} r_{c f}\right)$
Thus, the locus of the points at which the base diode switches is established by means of the equations $5 \mathrm{a}, 5 \mathrm{~d}$, and 5 g , or it can be determined by means of the four check points developed in the text 5 b , $5 \mathrm{c}, 5 \mathrm{e}, 5 \mathrm{f}$, and the intercepts of 5 g and 5 a . This locus is sketched in Fig. 3. The four points are numbered 1, 2, 3, and 4。 Equations 5b and 5 c determine check point 2 , and equations 5 e and 5 f determine point 1. The intercept of 5 a determines point 3, while the intercept of 5 g determines point 4 。

For example: Let the parameter values in Table 1 apply. Let $R_{b s}=20,000$ and $R_{b}=1000$. Let $V_{b s}=20 \mathrm{~V}$. Find the locus of the points at which the base diode switches.
(5a) Intercept $=-\frac{V_{b s}}{R_{b s}}\left(R_{b}+r_{b}\right)=-\frac{20}{20,000}(1200)=-1.2$ Volts

$$
\begin{equation*}
I_{c}=-\frac{V_{b s}}{R_{b s}}=\infty \frac{20}{20,000}=-1 \mathrm{mil} \tag{5b}
\end{equation*}
$$

$$
\begin{equation*}
V_{c}=-\frac{V_{b s}}{R_{b s}}\left(R_{b}+r_{b}+r_{c r}\right)=-10^{-3}(21,200)=-21,2 \text { Volts } \tag{5c}
\end{equation*}
$$

$$
\begin{align*}
& \text { (5e) } \quad I_{c}=-\frac{V_{b s}}{R_{b s}} \times \frac{\alpha_{e}}{\alpha_{e}}-1 \tag{5e}\\
&=-10^{-3} \times \frac{2.5}{1.5} s-1,66 \mathrm{Mils} \tag{5f}\\
& \text { (5f) } \quad V_{c}=-\frac{V_{b s}}{R_{b s}}\left(R_{b}+r_{b}\right)=-10^{-3} \times 1200=-1.2 \mathrm{Volts} \\
& \text { (5g) Intercept }=-\frac{V_{b s}}{R_{b s}}\left(R_{b}+r_{b}+\alpha_{e} r_{c f}\right)=-10^{-3} \times 1400=-1.4 \text { Volts }
\end{align*}
$$

1. 22 Plot of the Linearized Collector Characteristics

Equation 4 ,

$$
\begin{equation*}
V_{c}=I_{e}\left(R_{b}^{\prime}+\alpha_{e} r_{c}\right)+I_{c}\left(R_{b}^{\prime}+r_{c}\right)+V_{b} \tag{4}
\end{equation*}
$$

is the equation which is used to plot the collector characteristics. The left half of this current-voltage plane can be divided into 6 regions in each of which one can modify 4 in such a way that the linearized plot is simplified.
Region 1: $I_{e}<0 ; V_{c}<0 ; I_{e}+I_{c}>-\frac{V_{b s}}{R_{b s}}$.
In this region:

$$
\alpha_{e}=0 ; \quad r_{c}=r_{c r} ; \quad r_{b d}=r_{b d f} .
$$

With simplification by neglecting insignificant terms, Equa* tion 4 becomes:

$$
\begin{equation*}
v_{c} \cong I_{e}\left(R_{b}+r_{b}+r_{b d f}\right)+I_{c}\left(R_{b}+r_{c r}\right) \tag{4a}
\end{equation*}
$$

Region 2: $I_{e}>0 ; \quad V_{c}<0 ; \quad I_{e}+I_{c}>=\frac{V_{b s}}{R_{b s}} ; \quad I_{c}<=\alpha_{e} I_{e}$.
In this region:

$$
\alpha_{e}>0 ; \quad r_{c}=r_{c r} \quad ; \quad r_{b d}=r_{b d f_{0}}
$$

Neglecting insignificant terms, Equation 4 becomes:

$$
\begin{equation*}
V_{c} \cong I_{e}\left(\alpha_{e} r_{c r}\right)+I_{c}\left(R_{b}+r_{c r^{\prime}}\right. \tag{4b}
\end{equation*}
$$

Region 3: $I_{e}>0 ; \quad V_{c}<0 ; \quad I_{c}>-\alpha_{e} I_{e} ; \quad I_{e}+I_{c}>\infty \frac{V_{b s}}{R_{b s}}$
In this region:

$$
\alpha_{e}>0 ; \quad r_{c}=r_{c f} ; \quad r_{b d}=r_{b d f}
$$

Neglecting insignificant terms, Equation 4 becomes:

$$
\begin{equation*}
V_{c} \cong I_{e}\left(R_{b}+r_{b}+r_{b d f}+\alpha_{e} r_{c f}\right)+I_{c}\left(R_{b}+r_{b}+r_{b d f}+r_{c f}\right) \tag{4c}
\end{equation*}
$$

6889
Memorandum M 1400
Page 7 of 12
Region 4: $I_{e}<0 ; V_{e}<0 ; I_{c}<-\alpha_{e} I_{e} ; I_{e}+I_{c}<-\frac{V_{b s}}{R_{b s}}$.
In this region:

$$
\alpha_{e}=0 ; \quad r_{c}=r_{c r} ; r_{b d}=r_{b d r}
$$

Neglecting insignificant terms, Equation 4 becomes:

$$
\begin{equation*}
V_{c} \cong I_{e}\left(R_{b s}+R_{b}\right)+I_{c}\left(R_{b s}+r_{c r}\right)+V_{b s} \tag{4d}
\end{equation*}
$$

Region 5: $I_{e} 70 ; I_{c}<-\alpha_{e} I_{e} ; I_{e}+I_{c}<-\frac{V_{b s}}{R_{b s}} ; V_{c}<0$.
In this region:
$r_{c}=r_{c r} ; \quad \alpha_{e}>0 ; \quad r_{b d}=r_{b d r}$.
Neglecting insifnificant terms, Equation 4 becomes:

$$
\begin{equation*}
V_{c}=I_{e}\left(R_{b s}+\alpha_{e} r_{c r}\right)+I_{c}\left(R_{b s}+r_{c r}\right)+V_{b s} \tag{Ae}
\end{equation*}
$$

Region 6: $I_{e}>0 ; I_{c}>-\alpha_{e} I_{e} ; I_{e}+I_{c}<-\frac{V_{b s}}{R_{b s}} ; V_{c}<0$.
In this region:
$r_{c}=r_{c f} ; \alpha_{e}>0 ; \quad r_{b d}=r_{b d r}$.
Neglecting insignificant terms, Equation 4 becomes:

$$
\begin{equation*}
V_{c}=I_{e}\left(R_{b s}+R_{b}\right)+\left(R_{b}+R_{b s}\right) I_{c}+V_{b s} \tag{4f}
\end{equation*}
$$

The diagram, Fig. 4, shows Equation 4 plotted in the six regions. The values of the parameters used in the previous example were used for this plot.

1.23 Experimental Check of the Results Predicted From 1.22

The circuit shown in Fig. 5 was built* and the collector family was determined experimentally. A General Electric GIIA and a Bell. 1698 were used which have the parameter values shown on

* John F。 Jacobs and Nolan T. Jones, Standardized Transistor Parameter Measurements, E-441, January 3, 1952.

Figures 6 and 7. Figures 6 and 7 show the calculated and experimentally determined characteristics shown on the same grapho

1.3 Linearized Emitter Characteristic of Stabilized Transistor Element

For the emitter characteristic (I_{e} as a function of V_{e} with I_{c} as a parameter) the emitter loop voltage equation is written:

$$
V_{e}=I_{e}\left(r_{e}+R_{b}^{\prime}\right)+I_{c}\left(R_{b}^{\prime}\right)+V_{b}
$$

Where

$$
\begin{align*}
& R_{b}^{\prime} \triangleq R_{b}+r_{b}+ \tag{6}\\
& V_{b} \triangleq V_{b s} \frac{r_{b d}}{r_{b d}+R_{b s}}
\end{align*}
$$

1.31 Locus of Points at Which the Base Diode Switches

If Equation 1 is substituted into Equation 6, one obtains

$$
\begin{equation*}
V_{e}=I_{e} r_{e} \frac{-V_{b s}}{R_{b s}}\left(r_{b}+R_{b}\right) \tag{7}
\end{equation*}
$$

This is the locus of the point at which the base diode switches. Two distinct regions are evident:

Region 1

$$
\begin{align*}
I_{e} & <0 \\
& V_{e}=I_{e} r_{e r}-\frac{V_{b s}}{R_{b s}}\left(r_{b}+R_{b}\right) \tag{7a}
\end{align*}
$$

Region 2

$$
\begin{align*}
& I_{e}>0 \\
& \quad V_{e}=I_{e} r_{e f}-\frac{V_{b s}}{R_{b s}}\left(r_{b}+R_{b}\right) \tag{7b}
\end{align*}
$$

This locus is shown in Fig. 8o This figure is drawn using the parameter values of the previous example。

Four district regions are evident. These are mapped on Fig. 8.
Region 1

$$
\begin{aligned}
& I_{e}<0 ; I_{e}+I_{c}>-\frac{V_{b s}}{R_{b s}} \\
& \text { In this region } r_{e}=r_{e r} ; \quad r_{b d}=r_{b d f}
\end{aligned}
$$

when the insignificant terms are neglected in Equation 60

$$
\begin{equation*}
V_{e}=I_{e} r_{e r}+I_{c}\left(r_{b}+R_{b}+r_{b d f}\right) \tag{6a}
\end{equation*}
$$

Region 2

$$
\mathrm{I}_{\mathrm{e}}>0 ; \mathrm{I}_{\mathrm{e}}+\mathrm{I}_{\mathrm{c}}>-\frac{\mathrm{V}_{\mathrm{bs}}}{\mathrm{R}_{\mathrm{bs}}}
$$

In this region $r_{e}=r_{e f} ; \quad r_{b d}=r_{b d f}$,
and neglecting insignificant terms 6 becomes

$$
\begin{equation*}
V_{e}=I_{e}\left(r_{e f}+R_{b}+r_{b}+r_{b d f}\right)+I_{c}\left(R_{b}+r_{b}+r_{b d f}\right) \tag{6b}
\end{equation*}
$$

Region 3

$$
\begin{align*}
& I_{e}>0 ; I_{e}+I_{c}<\frac{-V_{b s}}{R_{b s}} \\
& \text { In this region } r_{e}=r_{e f} ; r_{b d}=r_{b d r}, \\
& \text { and : } \\
& V_{e}=I_{e}\left(R_{b s}+R_{b}\right)+I_{c}\left(R_{b}+R_{b s}\right)+V_{b s} \tag{6c}
\end{align*}
$$

Region 4

$$
I_{e}<0 \quad I_{e}+I_{c}<-\frac{V_{b s}}{R_{b s}}
$$

In this region $r_{e}=r_{e r} ; \quad r_{b d}=r_{b d r}$,
and:

$$
\begin{equation*}
V_{e}=I_{e} r_{e r}+I_{c}\left(R_{b s}+R_{b}\right)+V_{b s} \tag{6d}
\end{equation*}
$$

For the typical example which has been carried along throughout this discussion, the plot of $6 a$ to $6 d$ appears in Fig. 90
1.33 Locus on the Collector Characteristic where the Collector Diode Switches

The collector diode switches when:

$$
\begin{equation*}
I_{c}=-\sigma_{e} I_{e}\left(I_{e}>0\right) \tag{a}
\end{equation*}
$$

If (a) is substituted into Equation 6, one obtains:

$$
\begin{equation*}
V_{e}=I_{e}\left(r_{e}+R_{b}^{\prime}\left(1-\alpha_{e}\right)\right)+\frac{V_{b s} r_{b d}}{r_{b d}+R_{b s}} \tag{b}
\end{equation*}
$$

Three regions, are apparent::

Region 1

$$
\begin{align*}
& I_{e}<0 ; I_{e}>-I_{c} \frac{-V_{b s}}{R_{b s}}, \\
& V_{e} \xlongequal{N} I_{e}\left(r_{e r}+R_{b}^{\prime}\right) \stackrel{N}{\equiv} I_{e} r_{e r} \tag{c}
\end{align*}
$$

Region 2

$$
\begin{align*}
& I_{e}>0 ; I_{e}>-I_{c} \frac{-V_{b s}}{R_{b s}} \\
& V_{e} \xlongequal{N} I_{e}\left(r_{e f}+R_{b}+r_{b}+r_{b d f}\right)\left(1-\alpha_{e}\right) \tag{d}
\end{align*}
$$

Region 3

$$
\begin{align*}
& I_{e}>0 \quad I_{e}<-I_{c} \frac{-V_{b s}}{R_{b s}} \\
& V_{e}=I_{e} r_{e f}+\left(R_{b s}+R_{b}\right)\left(1-\alpha_{e}\right)+V_{b s}
\end{align*}
$$

This locus is sketched on Fig. 90
1.34 Experimental Check of Results Predicted from 1.3

The circuit Fig。 10^{*} was set up and the emitter family was plotted experimentally for a General Electric $G=11 A$ transistoro Calculated and plotted values appear in Fig. 11 。

[^0]
1.4 Conclusion

1.41 Simplicity of Plotting the Characteristics.

When the parameter values are known, one can approximate the collector characteristics by calculating (7) points*, and the emitter characteristic by calculating (2) points and (3) slopes.**

1.42 Comparison of the Stabilized and Unstabilized Transistor Characteristics

The most significant thing about the base stabilized characteristics is that the slopes and spacings of the constant parameter lines are made somewhat independent of the transistor parameter values. This is especially true of the slopes and spacings of the constant collector current lines on the emitter character istics. To a lesser extent, it is true on the collector characteristics. Thus, the linearized equivalent circuit is a better approximation for the stabilized transistor circuit than it is for the transistor itself. The approximation is best when R_{b} and $R_{b s}$ are large and α_{e} in the transistor is quite constant.

The addition of the base stabilization circuit has the effect of reducing the effective α value in the region where the base diode is open. This is shown as follows. For the unstabilized transistor:

$$
\alpha=\frac{r_{b}+\alpha e_{e} r_{c}}{r_{c}+r_{b}}=\frac{\Delta I_{c}}{\Delta I_{e}} \quad \nabla_{c}=\text { constant }
$$

or in the region where the collector diode is open $r_{c r} \gg r_{b}$
so,

$$
\alpha \cong \alpha_{e}
$$

when the base stabilization circuit is added from Equation 4

$$
\begin{aligned}
& \alpha_{s}=\frac{\Delta I_{c}}{\Delta I_{e}} \\
& V_{c}=\frac{R_{b}^{\prime}+\alpha_{e} r_{c}}{R_{b}+r_{c}}
\end{aligned}
$$

$$
V_{C}=\text { constant }
$$

[^1]6889
Memorandum $M=1400 \quad$ Page 12 of 12
when the base and collector diodes are open $R_{b}{ }^{\prime} \cong R_{b s}$ which is about the value of $r_{\text {cr }}$ so;

$$
\alpha_{s}=\frac{R_{b s}+\alpha_{e} r_{c r}}{R_{b s}+r_{c r}}
$$

and the ratio of α to α_{s} is

$$
\frac{\alpha_{s}}{\alpha} \cong \frac{R_{b s}+r_{c r}}{\frac{R_{e}}{R_{b s}+R_{c r}}}
$$

These approximations can be used to space the constant emitter current lines in Figure 4° In fact, this is the simplest way to space these lines.

JJ:ak/rdf
Illustrations:

$$
\begin{aligned}
& \text { Figure } 1=S A-50963-1 \\
& \text { Figure } 2=S A-50963-1 \\
& \text { Figure } 3=S A-50964 \\
& \text { Figure } 4=S A-50965 \\
& \text { Figure } 5=S A-50966 \\
& \text { Figure } 6=S A-48306-G \\
& \text { Figure } 7=S A-48307-G-1 \\
& \text { Figure } 8=S A-50967 \\
& \text { Figure } 9=S A-50968 \\
& \text { Figure } 10=S A-50969 \\
& \text { Figure 11 }=S A-48308-G
\end{aligned}
$$

cc\& Standard Trans. Dist. (15)

Stabilized Transistor Circuit

Equivalent Circuit
FINUVE 2

Region in which Base Diode is closed

Region in which Base Diode
is open
$I_{e}+\dot{I}_{c}<-\frac{-V_{b s}}{R_{b s}}$
is open
$I_{e}+\dot{I}_{c}<-\frac{-V_{b s}}{R_{b s}}$

$$
-10
$$

$V_{c}=-\frac{V_{b s}}{R_{b s}}\left(R_{b}+r_{b}+\alpha_{a} r_{c f}\right)$
-10

$$
\begin{aligned}
& \text { Region } 3 \\
& I_{e}>0 \quad I_{c}>-\alpha e I_{e} \\
& I_{e}+I_{c}>-\frac{V_{b s}}{R_{b s}}
\end{aligned}
$$

$I_{e}+I_{c}<\frac{-V_{b s}}{R_{b s}}$

$S A-50965$

Circuit For Takine Collector Characteristics

FIGURE 5
G

$\frac{b}{b}=-13000000$
$85-2 p a 00$ ontis
$7_{05}=23.7=7$
$\mathrm{p}=1950 \mathrm{ch}$
$r-145$ anims
α
rbcolo ontis:
$M_{B C}=500,000 \quad a+8$
$r_{c t}=100$ pins
Fic 6

One Point And Two Slopes For Plotting Switch Locus

FIGURE 8
(1) $\nabla_{e}=\frac{-\nabla_{b s}}{R_{b s}}\left(R_{b}+r_{b}\right)=-1.1$
(2) $\nabla_{e}=-I_{c}\left(R_{b}+r_{b}{ }^{+r_{b d f}}\right)$

$$
=-1.24 \mathrm{v}
$$

Liniarized Emitter Family From Two Points And Two Slopes

FIGURE 9

SA-50969

Digital Computer Laboratory Massachusetts Institute of Technology Cambridge, Massachusetts

SUBJECT: LINEARIZED CHARACTERISTICS OF A BASE FRED, GROUNDED EMITTER TRANSISTOR

To: Transistor Group
From: John F. Jacobs and W. A. Klein
Date: April 3, 1952
Abstract: The linearized input and output characteristics of a grounded emitter transistor are derived.

3.1 The grounded emitter transistor

In this note, as in $\mathrm{M}-1400$, the transistor circuit is treated as a four-terminal network and the input and output characteristics are plotted. The input or base characteristic is a plot of input voltage, V_{b}, as a function of the input current, I_{b}, with the output current, I_{c}, as a parameter. The output or collector characteristic is a plot of the output voltage, V_{c}, as a function of the output current, I_{c}, with the input current, I_{b}, as a parameter. The circuit under investigation and its large signal equivalent are shown in Figure 1.

3.2 The base characteristics

The base loop equation is:

1) $V_{b}=I_{b}\left(r_{b}+\bar{R}_{e}\right)+I_{c}\left(\bar{R}_{e}\right)$ where $\bar{R}_{e} \triangleq r_{e}+R_{e}$ and, for later use, $\bar{R}_{e r} \triangleq r_{e r}+R_{e}, \bar{R}_{e f} \triangleq r_{e f}+R_{e}$.
3.21 Locus of points at which the emitter diode switches

Examination of equation 1) shows that the emitter diode, r_{e}, is the only two-valued resistance which must be considered when one plots the base characteristic. The emitter diode is in the act of switching when the current through \bar{R}_{e} and the voltage across \bar{R}_{e} are zero. This leads one directly to:
aa) $V_{b}=I_{b} r_{b}$
as the locus of points on the $V_{b}-I_{b}$ plane at which the emitter diode switches, and to
bb) $I_{b}=-I_{c}$
for locating the particular point on this locus at which switching occurs for a given value of I_{c}.
3.22 Regions in which the emitter diode is open and closed

When:

$$
\nabla_{b}>I_{b} r_{b} \text { or } I_{b}>-I_{c}
$$

the voltage across $\overline{\mathrm{R}}_{\mathrm{e}}$ must be greater than zero and the emitter diode is open.

When:

$$
V_{b}<I_{b} r_{b} \text { or } I_{b}<-I_{c}
$$

the voltage across $\overline{\mathrm{R}}_{\mathrm{e}}$ must be less than zero and the emitter diode is closed.

3.23 Typical Base Characteristic

As an example, consider the transistor D-51, which is a GllA. This transistor has the following large signal equivalent circuit values, as measured by the methods outlined in E-441:

$$
\begin{aligned}
r_{\mathrm{ef}} & =120 \Omega \\
\mathrm{r}_{\mathrm{er}} & =5 \mathrm{meg} \cdot \Omega \\
\mathrm{r}_{\mathrm{b}} & =200 \Omega \Omega \\
r_{\mathrm{cf}} & =100 \Omega \\
r_{\mathrm{cr}} & =20,000 \Omega \\
\propto & =2.4 \\
\text { and let } \mathrm{R}_{\mathrm{e}} & =1,000 \Omega
\end{aligned}
$$

In the region where the emitter diode is closed, equation l) becomes:
la) $V_{b}=I_{b}\left(r_{b}+r_{e f}+R_{e}\right)+I_{c}\left(r_{e f}+R_{e}\right)$
Substituting the above values in this equation, one obtains:

$$
V_{b}=I_{b}(200+120+1000)+I_{c}(120+1000)
$$

1b) $V_{b}=I_{b}(1320)+I_{c}(1120)$
In the region where the emitter diode is open, equation 1) becomes:

$$
\text { 1c) } V_{b}=I_{b}\left(r_{b}+r_{e r}+R_{e}\right)+I_{c}\left(r_{e r}+R_{e}\right)
$$

Substituting the typical values into $1 c$), one obtains:
1d) $V_{b}=I_{b}\left(5 \times 10^{6}\right)+I_{c}\left(5 \times 10^{6}\right)$
Using lb) and lc) and equation $2 a$) one can plot the input characteristics of the grounded emitter transistor. This plot appears in Figure 2.
3.24 How to plot the base characteristics

The simplest way to plot these curves is to proceed as follows:
a) Define the factor Γ :
3) $\Gamma \stackrel{\Delta I_{c}}{\partial I_{b}} \mid V_{b}$

From equation 1) we find:
3a) $\Gamma=\frac{\overline{\mathrm{R}}_{\mathrm{e}}}{\mathrm{r}_{\mathrm{b}}+\overline{\mathrm{R}}_{e}}$
When the emitter diode is open:
3b) $\Gamma \cong \frac{\widehat{\mathrm{F}}_{e r}}{\cong} \hat{\mathrm{R}}_{\mathrm{er}} \quad 1$
When the emitter diode is closed:
3c) $\Gamma=\frac{r_{e f}+R_{e}}{r_{b}+r_{e f}+R_{e}}$
b) Draw the locus of the points at which the emitter diode switches (equation 2a)
c) Draw the line representing $I=0$ when the emitter diode is open. The line is almost a $\frac{\mathcal{V}}{}$ vertical one.
d) Draw the line representing $I_{c}=0$ when the emitter diode is closed (slope is $r_{b}+R_{e}+r_{e f}^{c}$)。
e) Space the lines according to 3 b) or 3c).
3.25 Locus of points where the collector diode closes

The collector diode closes when:
4) $I_{c}=-\alpha_{e} I_{e}$

If one substitutes this equation along with the relationship

$$
\text { 5) } \mathrm{I}_{\mathrm{e}}=-\mathrm{I}_{\mathrm{c}}-\mathrm{I}_{\mathrm{b}}
$$

into 1), one finds that:
6) $V_{b}=I_{b}\left[r_{b}+\frac{\bar{R}_{e}}{1-\alpha_{e}}\right]$

When the emitter diode is open this is:

$$
\text { 6a) } \begin{aligned}
V_{b} & =I_{b}\left[r_{b}+r_{e f}+R_{e}\right] \\
& \cong I_{b} r_{e r}
\end{aligned}
$$

For our example, this is:

$$
V_{b} \cong I_{b} 5 \times 10^{6}
$$

When the emitter diode is closed this is:

$$
\text { bb) } \mathrm{v}_{\mathrm{b}}=I_{\mathrm{b}}\left[r_{\mathrm{b}}+\frac{r_{e f}+R_{e}}{1-\alpha_{e}}\right]
$$

For our example:

$$
\begin{aligned}
V_{b} & =I_{b}\left[200+\frac{120+1000}{1-2.4}\right] \\
& =I_{b}(-600)
\end{aligned}
$$

3.26 The actual base characteristics

Actual base characteristics for DEl with $R_{e}=1 K$ are plotted in Figure 3 and compared there with the predicted curves.
3.3 The collector characteristics
3.31 Analytical derivation

The collector loop equation is

$$
\text { 7) } \begin{aligned}
& V_{c}=I_{c}\left[r_{c}\left(1-\alpha_{e}\right)+\bar{R}_{e}\right]+I_{b}\left(\bar{R}_{e}-\alpha_{e} r_{c}\right) \\
& \text { where } \alpha_{e}=0 \text { if } I_{e}=-I_{c}-I_{b}<0
\end{aligned}
$$

An attempt to discover regions of the $V_{c}-I$ plane in which the conditions of the various diodes are constant proves ${ }^{c}$ fruitless. Instead, the following approach is used:

For

$$
\begin{aligned}
& I_{e}>0 \quad\left(I_{c}+I_{b}<0\right) \quad I_{e}<0 \quad\left(I_{c}+I_{b}>0\right) \\
& \text { equation 7) becomes: } \\
& \text { aa) } V_{c}=I_{c}\left(r_{c}+r_{e f}+R_{e}-\alpha_{e} r_{c}\right) \quad \text { db) } \quad V_{c}=I_{c}\left(r_{c}+r_{e r}+R_{e}\right) \\
& +I_{b}\left(r_{e f}+R_{e}-\alpha_{e} r_{c}\right) \\
& \text { Then } I_{c}<0 \\
& \text { and aa) becomes: } \\
& V_{c}=\left(r_{c}{ }^{+r_{e f}}+R_{e}-\alpha_{e} r_{c}\right) I_{c} \\
& \text { db) } V_{c}=I_{c}\left(r_{c}+r_{e r}+R_{e}\right) \\
& +I_{b}\left(r_{e r}{ }^{+R_{e}}\right) \\
& I_{b}=0 \\
& \text { Then } I_{c}>0 \\
& \text { and db) becomes: } \\
& V_{c}=\left(r_{c}+r_{e r}+R_{e}\right) I_{c}
\end{aligned}
$$

$$
\left(I_{e}>0\right)
$$

The current through the collector diode is $I_{c}+\alpha_{e} I_{e}$. Since $I_{b}=0, I_{e}=-I_{c}$. Then $I_{c}+\alpha_{e} I_{e}=$ $\left(1-\alpha_{e}\right) I_{c}$. Since $\alpha_{e}>1$,
$1-\alpha_{e}<0$. Thus: $\left(1-\alpha_{e}\right) I_{c}>0$ Therefore, $r_{c}=r_{c f}$, and the $\mathrm{V}_{\mathrm{c}}-\mathrm{I}_{\mathrm{c}}$ relation is (for $\mathrm{I}_{\mathrm{c}}<0$):
Ba) $\nabla_{c}=\left[r_{c f}\left(1-\alpha_{e}\right)+r_{e f}+R_{e}\right] I_{c}$
$\left(\mathrm{I}_{\mathrm{e}}<0\right)$

The current through the collector diode is I_{c}, which is >0. Therefore, $r_{c}=r_{c f}$ and the $V_{c}-I_{c}$ relation is $\left(f o r I_{c}>0\right)$:

Substituting $I_{e}=-I_{b}-I_{c}$
and solving:

$$
I_{c}=\frac{\alpha_{e}}{1-\alpha_{e}} I_{b}<-I_{b}<0
$$

$r_{c}=r_{c f}$ when

$$
r_{c}=r_{c f} \text { when } I_{c}>0
$$

$$
I_{e}+\alpha_{e} I_{e}>0 \text {, that is when }
$$

$$
I_{c}<\frac{\alpha_{e}}{1-\alpha_{e}} I_{b}
$$

$\mathrm{r}_{\mathrm{c}}=\mathrm{r}_{\mathrm{cr}}$ when

$$
\begin{aligned}
& I_{c}+\alpha_{e} I_{e}<0, \text { that is when } \\
& I_{d} \frac{\alpha_{e}}{1-\sigma_{e}} I_{b}
\end{aligned}
$$

But, in this case,

$$
I_{c}<-I_{b}<\frac{\alpha_{e}}{1-\alpha_{e}} I_{b}
$$

Therefore, $r_{c}=r_{c f}$ for $I_{c}<-I_{b}$.
But, in this case.

$$
I_{c}>-I_{b}>0
$$

Therefore, $r_{c}=r_{c f}$ for $\left.I_{c}\right\rangle-I_{b}$.

$$
\begin{aligned}
& \text { for } I_{c}<-I_{b} \\
& \text { 10a) } V_{c}=I_{c}\left[r_{c f}\left(1-\alpha_{e}\right)+r_{e f}+R_{e}\right] \\
& +I_{b}\left[r_{e f}+R_{e}-\alpha_{e} r_{c f}\right]
\end{aligned}
$$

$$
\text { for } I_{c}>-I_{b}
$$

$$
\text { lOb) } \quad V_{c}=I_{c}\left(r_{c f}+r_{e r}+R_{e}\right)
$$

$$
+I_{b}\left(r_{e r}+R_{e}\right)
$$

$$
\begin{aligned}
& \begin{array}{l}
\left(I_{e}>0\right) \\
\text { for } I_{c}<\frac{\alpha_{e}}{1-\alpha_{e}} I_{b}: \quad\left(I_{e}<0\right) \\
\text { Thus the } V_{c}-I_{c} \text { relation is: }-I_{b}<I_{c}<0 \text { : }
\end{array} \\
& \text { aa) } V_{c}=I_{c}\left[r_{c f}\left(1-\alpha_{e}\right)+r_{e f}+R_{e}\right] \\
& +I_{b}\left[r_{e f}+R_{e}-\alpha_{e} r_{c f}\right] \\
& \text { for } \frac{\alpha_{e}}{1-\alpha_{e}} I_{b}<I_{c}<-I_{b} \text { : } \\
& \text { db) } V_{c}=I_{c}\left[r_{c r}\left(1-\alpha_{e}\right)+r_{e f}+R_{e}\right] \\
& +I_{b}\left(r_{e f}+R_{e}-\alpha_{e} r_{c r}\right) \\
& \begin{array}{l|l}
\text { CASE III: } & I_{b}<0 \\
\hline &
\end{array} \\
& \text { sc) } \mathrm{V}_{\mathrm{c}}=\mathrm{I}_{\mathrm{c}}\left(\mathrm{r}_{\mathrm{cr}}+\mathrm{r}_{e r}+\mathrm{R}_{\mathrm{e}}\right) \\
& +I_{b}\left(r_{e r}+R_{e}\right) \\
& \text { for } I_{c}>0 \text { : } \\
& \text { id) } V_{c}=I_{c}\left(r_{c f}+r_{e r}+R_{e}\right) \\
& +I_{b}\left(r_{e r}+R_{e}\right) \\
& \text { Then } I_{c}>-I_{b}>0 \\
& \text { The collector switches when: } \\
& I_{c}+\alpha_{e} I_{e}=0 \\
& I_{c}=0 \\
& \text { Substituting } I_{e}=-I_{b}-I_{c} \\
& \text { and solving: } \\
& I_{c}=\frac{\alpha e}{1-\alpha_{e}} I_{b}>-I_{b}>0 \\
& r_{c}=r_{c f} \text { when } I_{c}<\frac{\alpha_{e}}{1-\alpha_{e}} I_{b} \\
& \left.r_{c}=r_{c r} \text { when } I_{c}\right\rangle \frac{\alpha_{e}}{1-\alpha_{e}} I_{b} \\
& r_{c}=r_{c f} \text { when } I_{c}>0 \\
& r_{c}=r_{c r} \text { when } I_{c}<0
\end{aligned}
$$

3.32 A systematic procedure for plotting the collector characteristics

The expressions for all points and slopes are as follows:
Case I: $I_{b}=0$ See Figure 3 and equations $8 a$) and $8 b$)。

$$
\begin{aligned}
\text { Slopes: } & I_{c}>0: \overline{\mathrm{R}}_{e r}+r_{c f} \cong \overline{\mathrm{R}}_{e r} \\
& I_{c}<0: \overline{\mathrm{R}}_{e f}-r_{e f}\left(\propto \propto_{e}-1\right) \cong R_{e}
\end{aligned}
$$

Case II: $I_{b}>0$ See Figure 4 and equations 9a), b), c), d).
Slopes: (0)-(1) $r_{c f}+\bar{R}_{e r} \cong \overline{\mathrm{R}}_{\mathrm{er}}$
(1)-(2) $\quad r_{c r}{ }^{+\bar{R}}$ er
(2)-(3) $\bar{R}_{e f}-\left(\alpha_{e}-1\right) r_{c r}$
(3)-(4) $\bar{R}_{e f}-\left(\alpha_{e}-1\right) r_{c f} \cong R_{e}$

Points:

$$
\begin{equation*}
I_{c l}=0, V_{c l}=I_{b} \overline{\mathrm{R}}_{e r} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
I_{c 2}=-I_{b} \cdot V_{c 2}=-I_{b} r_{c r} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
I_{c 3}=\frac{\alpha_{e}}{1-\alpha_{e}} I_{b}, V_{c 3}=\frac{\overline{\mathrm{R}}_{e f}}{1-\alpha_{e}} I_{b} \tag{3}
\end{equation*}
$$

Case III: $I_{b}<0$ See Figure 5 and equations 10a) and 10b)。
Slopes: (0)-(1) $\quad r_{c f}+\overline{\mathrm{R}}_{\mathrm{er}} \cong \overline{\mathrm{R}}_{\mathrm{er}}$
(1)-(2) $\overline{\mathrm{R}}_{e f}-\left(\alpha_{e}-1\right) r_{c f} \cong R_{e}$

Point: (1)

$$
I_{c l}=-I_{b}, V_{c l}=-I_{b} r_{c f}
$$

For cases I and III, the indicated slopes and point are necessary for the plot. For case II, all slopes and points need not be calculated for making a plot. Generally $\nabla_{c l}$ will be of no interest and, furthermore, so large that it will not be within the scale range used. Also, line (0)-(1) is of no particular interest, while the slope of line (2)-(3) need not be calculated if points (2) and (3) have been found. Thus, in case II, all that is needed is: slopes of (1)-(2) and (3)-(4), and points (2) and (3).

3.33 Loci of switching points

Case II: $\mathrm{I}_{\mathrm{b}}>0$ See figure 4 and section 3.32, Case II. Locus of point (1): (collector switching)

$$
I_{c}=0
$$

> Locus of point (2) : (emitter switching) $$
\text { slope }=\frac{\nabla_{c 2}}{I_{c 2}}=r_{c r}
$$

Locus of point (3): (collector switching)

$$
\text { slope }=\frac{V_{c 3}}{I_{c 3}}=\frac{\overline{\mathrm{R}}_{e f}}{\alpha_{e}}
$$

Case III: $I_{b}<0$ See Figure 5 and section 3.32, Case III.

$$
\begin{aligned}
& \text { Locus of point }(1) \text { : (emitter switching) } \\
& \qquad \text { slope }=\frac{V_{c l}}{I_{c l}}=r_{c f}
\end{aligned}
$$

3.34 Predicted and actual collector characteristics:

The predicted characteristics:
As in section $3 \cdot 23$, some collector characteristics are calculated and displayed for transistor \#D51. The procedure of 3.32 is used. The results are displayed graphically as dotted lines in Figure 7.

Case I: $\quad I_{b}=0$
Slopes: $\mathrm{I}_{\mathrm{c}}>0: \overline{\mathrm{R}}_{\mathrm{er}}=\mathrm{R}_{\mathrm{e}}+r_{\mathrm{er}}=5 \mathrm{M}+1 \mathrm{~K} \cong 5$ Megohms

$$
I_{c}<0: \quad R_{e}=1 K
$$

Case II: $\quad I_{b}>0$

	$\begin{aligned} & (1) \\ & v_{c l} \end{aligned}$	(2)		(3)		(1)-(2)	(3)-(4)
		$\mathrm{I}_{\mathrm{c} 2}$	$\mathrm{V}_{\mathrm{c} 2}$	$\mathrm{I}_{\mathrm{c} 3}$			
1 ma	$\begin{aligned} & 5000 \\ & \text { volts } \end{aligned}$	-1 ma	$\begin{aligned} & -20 \\ & \text { vt s } \end{aligned}$	-1.7 ma	-. 86 vts	$5 \mathrm{M} \Omega$	1K

Case III: $I_{b}<0$

Point or I_{b} Slope	(1)		$(0)-(1)$	$(1)-(2)$
	$I_{c l}$	$V_{c l}$		1 K
	ma	0.1 vt	$5 \mathrm{M} \Omega$	1

The actual characteristics:
The results of a dynamic plot of some collector characteristics
for transistor $D-51$ with $R_{e}=1 K$ also appear in Figure 7. The discrepancy between the predicted and observed results in the steep positive slope portion of the $I_{b}=l m a$ curve is very likely due to the I_{b} supply not acting as a constant current source.

JFJ:WAK/jk
Drawings Attached:
Fig. 1 - A-51133
Fig. 2 - A-51134
Fig. 3 - A-51176
Figs. 4 \& 5 - A-51135
Fig. 6 - A-51136
Fig. 7 - A-51177
Standard Trans. Dist. (32)

REGION 3 IN WHICH THE EMITTER DIODE IS CLOSED AND THE COLLECTOR DIODE IS CLOSED.

FIG. 2
BASE CHARACTERISTICS

FIG.
COLLECTOR CHARACTERISTIC FOR $I_{b}=0$

FIG. 6

COLLECTOR CHARACTERISTIC FOR $I_{b}<0$

COMPARISON OF PREDICTED AND OBSERVED COLLECTOR CHARACTERISTICS

Digital Computer Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts

SUBJECT: PROCRDURIR POR RTECIIVING MAGNETIC CORTS

To: Group 63
From: David R. Brown
Date: May 16. 1952
Abstract: Two procedures are outlined. The first is for the receipt of one or a small number of cores submitted for evaluation. The second is for the case of a lot of cores where the particular body has previously been evaluated.

BVATUATION

1. Enter information in receiving record, magnetic-materials looseleaf notebook.
2. Tag each core. If more than one core with the same composition and processing is received, serial number the cores with color coding paints.
3. Label a container for core No. 1. This is to be used for the hysteresis test. Place the other cores in a separate, labeled container.
4. Make the hysteresis test on core No. 1. filling out form DL_439 as completely as possible. Be sure to measure the core before it is wound. Keep the tag on the core.
5. If the core looks promising and is suitable for pulse tests, make the pulse test. Use core No. 2, unless only one core has been received. For coincident-current memory application, use forms DL-435 and DL-446.
6. Place all data and curves in the magnetic-materials looseleaf notebook.
7. Place the cores, in containers, in the magnetic-materials storage cabinet.

ACCEPPANCTR

1. Enter information in receiving record, magnetic-materials looseleaf notebook.
2. Label a container and place the lot in it. Select samples from the lot, tag and serial number theme
3. Pulse test the samples. For coincident-current memory application, use forms DL-435 and DL-446:
4. Accept or reject the lot.

DRB/fes

Digital Computer Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts

Subject: SIGNED TERNARY ARITHMETIC
Tot J. W. Forrester
From: H. R. J. Grosch
Date: May 22, 1952

Introduction
Large digital calculating machines have been built to exploit the various advantages of pure decimal, binary-coded decimal, biquinary, and pure binary arithmetics. The availability of high-speed electromechanical and electronic elements having two stable states has been largely responsible for the swing away from the decimal number system.

Now we find ourselves increasingly interested in ferromagnetic and ferroelectric storage elements. There is a good possibility that these can be jockeyed into more than two stable, or better, "insensitive", states. Papian has shown me some B-H curves having the general forms

Such a material may be thought of as having three stable states. I have been interested for some years in the possibilities of a rather special sort of ternary arithmetic. This report is intended to give a resume of its properties, and to advocate detailed consideration of its use in Whirlwind II.

Definitions

A real number is conventionally represented by a sequence of symbols.

$$
A_{4} A_{3} A_{2} A_{1} A_{0} \cdot A_{-1} A_{-2} A_{-3}
$$

This is defined as having the value

$$
A_{4} n_{4}+A_{3} n_{3}+A_{2} n_{2}+A_{1} n_{1}+A_{0} n_{0}+A_{-1} n_{-1}+A_{-2} n_{-2}+A_{-3} n_{-3}
$$

where the n 's are the radices of the system. A convenient arithmetic requires that the $A^{\prime} s$ and $n^{\prime} s$ be rational numbers and that the representation possible therewith be both complete and unique over the real number field: that is, that every real number give rise to one and only one sequence of A's (not necessarily closed at the right, of course). The term "convenient" should be understood as referring to use on digital machines, which have a built-in prejudice in favor of the rational numbers. Unless at least one of the A's or n's is negative, it will be necessary to prefix the sequence with a minus sign to get over into the left half of the real number axis. No complementation convention can be adopted to get around this if a long repetition of arithmetic operations such as multiplication is required to yield answers consistent with the system.

The simplest forms of representation arise when all the A^{\prime} 's are integers, and when the $n^{\prime} s$ are monotonic non-decreasing. The radix point is placed to the right of an A (called A A_{0}) whose corresponding base number n_{0} is \$1. Still more simplicity is gained when the n^{\prime} s are products of powers of a few integers. The abacus uses powers of two and five:

$$
\begin{array}{ll}
n_{1}=5 & n_{0}=1 \\
n_{2}=2.5 & n_{-1}=2^{-1} \\
n_{3}=2.5^{2} & n_{-2}=2^{-1} \cdot 5^{-1} \\
n_{4}=2^{2} .5^{2} & n_{-3}=2^{-2} \cdot 5^{-1} \\
\text { etc. } & n_{-4}=2^{-2} \cdot 5^{-2}
\end{array}
$$

This is also used in Bell and IBM relay calculators; it is called biquinary arithmetic. The A_{i} are either 0 or +1 for odd i, or from 0 to +4 for even i.

Finally, one may adopt a single positive integer radix r, so that $n_{i}=r^{2}$ and $A_{i}=0,1, \ldots 0, r-1$. The values $r=2$ and $r=10$ give
rise to the conventional binary and decimal systems, and $r=8$ is familiar as an output system for "base two" machines. The unit base $r=1$ is a degenerate counting system which cannot represent fractional numbers between -1 and +1 , and in which many other features of the positional notation, such as rounding, become meaningless.

In conventional ternary arithmetic $r=3, n_{i}=3^{i}, A_{i}=0,1$, or 2. There are interesting possibilities, however, in using $A_{i}^{i}=-1,0$, and \$1; this "signed ternary" system fulfills the conditions of completeness and uniqueness, and possesses several properties which can be very useful in a large computer and which are not present in conventional positive-symbol arithmetics.

To simplify the writing of signed ternary numbers, special symbols can be helpful:

$$
\begin{array}{lll}
\Lambda & (\text { " } 1 \mathrm{am} \text { " }) & \equiv+1 \\
0 & \text { ("oh") } & \text { ミ } \\
\text { V } & (\text { "vee" }) & \equiv-1
\end{array}
$$

Thus Λ VVO. 0 V $=+27-9-3-1 / 9=\$ 148 / \theta$ (decimal),
and \quad VO OVVAVVV1000 $=-3-1 / 9-1 / 27+1 / 81-1 / 243-1 / 729-1 / 2187+1 / 6561$

$$
=-3.14159 \ldots \ldots
$$

In the signed ternary system defined above, there are exactly 3^{p} different combinations of p symbols $A \quad \ldots . A_{3} A_{2} A_{2} A_{0}$. A demonstration that the system is unique will therefbre prove completeness, or vice versa. By ordering all possible sequences of symbols, and by noticing that

be carried out.
Finally, it may prove amusing to recall the old mathematical recreation of finding the minimum number of (integer) weights which, when placed in either pan of a balance, will weigh any (integer) unknown up to a certain limit. There is a perfect correspondence with signed ternary arithmetic!

Arithmetic
For practical two-quantity addition the following tables are requireds

1. If there is a carry \bigwedge from previous position,

		A	ADDEAND	V	
		0			
$\stackrel{\text { A }}{\text { U }}$	\wedge		$\wedge 0$	$\lambda \mathrm{V}$	$0 \wedge$
${ }_{\text {G }}^{\text {G }}$	0	$\wedge \mathrm{V}$	$0 \wedge$	00	
N	V	$0 \wedge$	00	0 V	

Right-hand symbol is digit of sum. Left-hand symbol is carry to left position.
2. If the carry from previous position is 0 ,

	Λ	0	V
Λ	$\wedge \mathrm{~V}$	0Λ	00
0	0Λ	00	0 V
V	00	0 V	$\mathrm{~V} \Lambda$

3. If the carry is V,

	Λ	0	V
Λ	0Λ	00	$0 V$
0	00	$0 V$	$V \Lambda$
V	$0 V$	$V \Lambda$	$V O$

A practical addition example looks like this:

$$
\begin{array}{ll}
\text { VO.OVVAVVVA } & (-3.1416 \ldots \ldots) \\
\text { MA } 1 \text { MAAAAAA. } & (\$ 4.4999 \ldots \ldots)
\end{array}
$$

Subtraction will almost always be accomplished by complementing the subtrahend and adding. Complementation is performed by changing all

N's to V's and vice versa.
Multiplication is accomplished by shifting, complementation, and addition in a way very similar to multiplication in pure binary. No over-and-over addition is required. If the current digit of the multiplier is Λ, the multiplicand is added; if 0 , ignored; if V, subtracted (complemented and then added); the partial product is then shifted one position to the right and the next digit of the multiplier examined in like manner.

\wedge VOA.	$+19$
VOAV	- 2.78..
VAOV	
AVON	
0000	
Viov	
Vnoon . 1 V	- 52.78..

In case single-digit multiplication is required, the table is as follows:

$$
\begin{aligned}
& \Lambda \times \Lambda=V \times V=\Lambda \\
& \Lambda \times 0=0 \times \Lambda=0 \times 0=V \times 0=0 \times V=0 \\
& \Lambda \times V=V \times \Lambda=V
\end{aligned}
$$

The arithmetic of division is by means so easy. In fact, it probably would not be too pessimistic to say that the introduction of signed symbols makes most arithmetic operations simpler at the expense of more complicated division. Since division occurs so infrequently, there is a temptation not to build it into a machine; this temptation is very strong in the present signed ternary case.

One elementary but wasteful method of division is to start at the extreme left quotient position (assuming as usual that the dividend and divisor have been suitably positioned). This exposes the fundamental difficulty of signed-symbol division clearly: is the divisor to be added or subtracted? Once the process has started correctly, so that the remainder tends toward zero, an alternation of adding and subtracting will be sufficient; the catch is to choose the first "direction" correctly.

In order to transform signed ternary to conventional binary or decimal output, some sort of sign determination is required. In a fast machine this determination should be parallel, and by determining successively the signs of the dividend and division we can set up the start of the division process. One diode network capable of doing the sign determination requires four diodes per digit, but this can probably be reduced to three cores if a long string of cores can be made to flip domino-fashion. The diode array for three digits is

In a two-, three-, or four-address machine two of these networks would be required.

Given the sign of the dividend and of the division, a simple logical combination embodies the rule: if the two signs agree, start by subtracting (complementing and adding) the divisor; if they disagree, start by adding. Shift the divisor one position to the right and "reverse" (add instead of subtract, or subtract instead of add) whenever the remainder changes sign. In detail, then,

It will be evident that for randomly distributed n-digit quotients $2 n$ additions and subtractions will be required, three times as many as the irreducible minimum $2 / 3 \mathrm{n}$. Undoubtedly much simpler processes can be evolved.

Given the arithmetic operations and a sign-determining network, and reserving three ternary digits to represent a decimal digit, transformation into and out of the conventional decimal system poses no special problems. After the sign of the number is determined and stored, the number is complemented to positive form if necessary. Three signed ternary digits cover the range -13 to $\$ 13$ decimal, and only 0 to $\dagger 9$ decimal is required.

Advantages

It may be easily shown that three is the most economical radix of all single-integer-radix systems. If two elements can store a binary digit, and three a ternary digit, the ratio of equipment is 1.500 and the ratio of information stored is $\log _{2} 3$ or 1.585 . Comparing quaternary and ternary on the same basis, one finds an equipment ratio of 1.333 and an information ratio of $\log _{3} 4$ or 1.262. This argument of.economy applies to components such as tubes, diodes, and electromechanical gadgets. If core materials with three "insensitive" states are feasible, the gain of 1.585 in information stored compares with an equipment ratio not much over 1.000 for a large memory.

Is it really true that the outside world is best represented by dichotomies? Computing machines are basically logical, the argument runs, and the logic of the real universe is two-valued. My idea, on the contrary, is that computing machines operate on the basis of a logic concerned not with the real world, but rather with a special representation of the world by rational real numbers. And there are three relationships between pairs of rational numbers: X less than Y, X greater than Y, and X equal to Y. Putting it another way, zero is a member of the class of rational real numbers but is not a member of either the positive or negative subclass. Thus there is some real support for the theory that, while computer arithmetic may be done in any radix system, computer logic is basically ternary.

In real-time control applications the original conversion from continuous to digital representation is the place where the special representation by rational real numbers is introduced. There is of course no reason why the fundamental counters or other transformation devices cannot be ternary, with the same favorable equipment ratio as the central computer. As for the transmission of digital information, there is little doubt that more data can be transmitted over a given channel. Consider the old system of transmitting sixteen binary digits, frequency multiplexed, over a single phone line. If a single frequency is reserved for a fundamental continuous reference sine wave, the other fifteen frequencies can be phase-compared
with this reference to give signed ternary digits: in phase represents $\Lambda_{0} 180^{\circ}$ out of phase represents V, absence of signal represents 0 . These fifteen ternary digits are equivalent to 23.77 bits, a gain of 48.6 per cent. It may be useful here to give the following tabulation:

$$
\begin{aligned}
& 1 \text { binary digit }(\text { bit })=0.631 \text { stits }=0.301 \text { dits } \\
& 1 \text { signed ternary digit }(\text { stit })=1.585 \text { bits }=0.477 \text { dits } \\
& 1 \text { decimal digit (dit) }=3.322 \text { bits }=2.096 \text { stits }
\end{aligned}
$$

So much for what might be called the philosophical advantages of the signed ternary system. There are even more attractive arithmetical advantages. One, which has been mentioned earlier, is the elimination of a special "sign" representation. This makes it unnecessary to decide whether to shift the sign when shifting the rest of the number. In a sense, the left non-zero digit may be thought of as the sign, and this is convenient for the operator or customer. There is no longer any difference between a "negative" number (that is, a positive number with minus sign prefixed) and a complements also there is no such thing as an endaround carry, and no difference between "nines"and "tens" (or rather, twos and"threes) complements.

These advantages would accrue to any practicable signed radix system where zero is near the center of the ordered set of symbols A. Signed ternary, however, is the largest radix which will permit multiplication to be done without over-and-over addition.

Since the base of the system is an odd number, the representation of $1 / 2$ is a repeating ternary - that is, $1 / 2$ is not one of the class of rational real numbers representable by a finite computer. This has inconveniences, but it eliminates the problem of ambiguous rounding. In the decimal system, for instance, one rounds 6.49 to 6 and 6.51 to 7 , but what does one do with 6.50? Adding 0.50 will often introduce a statistical bias and render error estimates based on random rounding errors unsatisfactorily optimistic.

In fact, signed ternary arithmetic completely eliminates the operation of rounding: rounding and dropping are identical operations. Thus $\wedge \Lambda_{0} W V(+35 / 9)$ rounds to $\wedge \wedge(+4)$ by dropping the last two digits 3 $\wedge 0 . \wedge \wedge(\$ 34 / 9)$ rounds to $\wedge 0(+3)$ similarly. Any leftmost portion of a number is therefore the correctly rounded less-accurate representation of that number, a profound advantage in floating-point calculations.

Conclusion
This short introduction to the features of signed ternary arithmetic glosses over many points of interest. There has been no attempt to tie in three-valued logic, nor has there been any attempt to point out the possible advantages of ternarymcoded, decimal, nonary, or other bastard form

The next stage is obviously a discussion of hardware: core circuitry, ring-of-three counter elements (flip-o-flops?), magnetic tape storage, and so on.

HRJG:ajg

[^0]: * The pentode was necessary to maintain the constant collector currents.

[^1]: * Further assumptions would lead to a four point approximation which would be satisfactory for most purposes. These points are (1), (2), (5), and (7)。
 ** This can be simplified if one assumes that $r_{\text {ef }}$ is very small。

