1
A)
]
(
i
]
|

INTEROFFICE
H MEMORANDUM

DATE November 30, 1966

SUBJECT D664 Procurement
L Ken Olsen o Henry Crouse
Harry Mann
Pete Kaufmann
Dick Best
Stan Olsen
Win Hindle
Nick Mazzarese

The enclosed summary is the result of the Purchasing
Department (Paul McGaunn) negotiations with suppliers for
the procurement of our D664 diodes for the period of
January 1967 to June 1968.
Q\
— A\ o~

. Henry Crouse

DIGITAL EQUIPMENT CORPORATION « MAYNARD, MASSACHUSETTS

CONTENTS

I. Usage - History
II. Usage - Projected
III. Bidders
IV. Criteria for Source Selection
V. Goals
VI. Bid Summary
VII. Conclusion

DIGITAL EQUIPMENT CORPORATION . MAYNARD, MASSACHUSETTS

I. USAGE - HISTORY

Our current usage rate is approximately 1.5 million per month
subject to fluctuation between 800,000 and 1,500,000. The
actual usage for the period July 1, 1965 to June 30, 1966 was
12,000,000 units.

ITI. USAGE - PROJECTED

Anticipating an increase of 30%, our estimated usage for a
twelve month period would be 17,500,000 units.

III. BIDDERS
The bidding companies are as follows:

Fairchild Semiconductor, Mt. View, California

International Telephone & Telegraph Company, Lawrence, Mass.
Continental Device Corporation, Hawthorne, California
Sylvania, Hillsboro, New Hampshire

General Electric (not bidding at present), Syracuse, N. Y.

IV. CRITERIA FOR SOURCE SELECTION

We have two suppliers at present, ITT and GE. We feel a need
for at least one more vendor for insurance. Secondly, the cost
is 0.09 and we set a goal of less than 0.08 minimum.
Minneapolis Honeywell negotiated a contract for 40,000,000
units @ 0.077 recently.

V. GOALS
1. Assurance of Supply

2. Lowest cost of acquisition.
3. Stocking arrangement to minimize DEC inventory.

DIGITAL EQUIPMENT CORPORATION . MAYNARD, MASSACHUSETTS

VI. BID SUMMARY

Vendor M 3M 5M 1om 15M
ITT .08 .0675 .06
Fairchild .0825 .075 .074

Sylvania .10 .10 .10 « 0 le
Cont. Device .08 .07 .06

GE Not Bidding at Present

Continental Device Corporation, Hawthorne, California, is an
untried source of supply; however, they offered the lowest price
and have a good reputation in the industry.

ITT has performed for us as a steady reliable vendor, providing
quantity turn-around to meet our emergency needs.

Sylvania is not actively interested in this diode business;
however, they are supplying the DD-1 dice to Tom Stockebrand,
Strate Production, @ .03/ea.

GE has 2.5 million units left in present order and will meet
competitive pricing in the future. Past performance has been
satisfactory.

Fairchild, although their price is higher than the other vendors,
we feel a need to add for insurance purposes to the role of
active suppliers.

VII. CONCLUSION
l. To contract with Fairchild, ITT, and CDC for 25,000,000

devices to be delivered on an 18-24 month period.
The volume assignment is as follows:

cbe 5,000,000 @ 0.06 20%

Fairchild 5,000,000 @ 0.75 20%

ITT 15,000,000 @ 0.06 6 0%
2. A stocking agreement whereby each vendor would inventory
devices for DEC as follows:

Fairchild 100,000 CDC 50,000

T 200,000
3. The average unit price is $0.063. Previous average price

was $0.089. $0.063 will be effective January 1, 1967 -
Savings $625,000.00.

DIGITAL EQUIPMENT CORPORATION . MAYNARD, MASSACHUSETTS

e

INTEROFFICE
H MEMORANDUM

DATE November 29, 1966

SUBJECT

TO Ken Olsen FROM Ted Johnson

If you decide to pay a visit to Scandinavia in the near future, Arnaud de Vitry had
some suggestions of people he would very much like you to meet. All of the people are
at the Stockholm Enskilda Bank. You have probably been there before but it is not very
far from the Opera House in Stockholm and is the bank associated with the Wallenberg
family. Two of the people are directly with the bank - Mr. Pedar Bonde and Mr. Marc
Wallenberg Jr. Another man is Sven Malstrom - he has just been made Technical
Director of Enskilda Bank and has an office there but he is Chairman of the company
LKB, which is associated with Auto Kemie and Arnaud has been working on LKB to buy
a large number of computers from us. He claims it could involve up to fifty PDP-8's.
Apparently, all of these people have been primed for a visit from you since Arnaud has
had a chance to talk about our company with them in the past. | would encourage you
to make such a trip if you think it is at all possible - visiting ASEA and the Enskilda
Bank - possibly going with our man Kjell Reistedt to Chalmers University and places
like SAAB. You might find my notes on ASEA useful if you were to make such a trip
and | did receive a letter from the gentleman that paid us a visit earlier this year.

If you are to travel to Stockholm, Arnaud suggests that you go either mid-December

or the period between January 8th and 22nd. Apparently, Swedish businessmen take
their holidays on, or about, January 23rd and for a period thereafter.

TJ:mr

DIGITAL EQUIPMENT CORPORATION « MAYNARD, MASSACHUSETTS

INTEROFFICE

H MEMORANDUM

SUBIJECT

TO

Ken Olsen - Maynard

Dear Ken:

DATE November 24th, 1966

FROM Si Lyle - Toronto

I have more or less by default got involved in making my
views known of how Digital Equipment of Canada should be organized.
I have enclosed my latest outline which is the result of a meeting

I had with Ted Johnson last week.

The scheme is put forward on the

basis that out of a number of such proposals a workable organization
can be found that will be capable of capturing the Canadian market

at this critical time.

SML: mp
Enclosure

:;

Si

DIGITAL EQUIPMENT OF CANADA LTD. ® COOKSVILLE, ONTARIO

INTEROFFICE
H MEMORANDUM

DATE November 24th, 1966

SUBJECT

TO

Ted Johnaon « Maynard FROM 8i Lyles - Taronto

Dear Ted:

Further to my initial letter to Stan and our conversation,
here are my views on how the Canadian operation should be set up.

Canadian Marketing Organization

The best thing that could ever happen to the Canadian
company is for it never to happen: This does not mean that we do
not need a Canadian company. It i8 to stress what we need is not
a scaled down version of Maynard but an operation that uses a
combination of DEC Maynard and a central Canadian organization.

I will deal with how the Canadian situation could be integrated with
Maynard first and then discuss the Canadian company.

Apart from the border there is really no reason to have
various offices in Canada working out of a central location rather than
working within the present regional framework in the United States. 1In
other words, sales offices in Halifax, Montreal and Ottawa should work
out of the mortheeast region, Toronto sales office should work out of
the same region as Rochester and Ann Arbor, the Winnipeg office should
work out of the same region as Minneapolis/St. Paul and the Vancouver
office should work out of the northewest sales region.

In incorporating the Canadian operations in the regional
scheme full geographical advantage is taken of the fact that most
Canadian offices are dealing with customers who are within a few
miles of the border. In some cases these customers are actually closer
to a U,S. office than they are to a Canadian office. With a regional
setup customers, for example, in Niagara Falls could be handled equally
by say Rochester and Toronto. The Canadian office included in the U.S.
regional setup would elininate the present difficulty of offices
dealing with customers outside of their country. It would be the job
of the regional manager to be sensitive to the customers' requirements
and thus to be in a position to make sure that his district offices,
regardless of whether they are U.8. or Canadian, can properly handle
the customer, regardless of whether he is a Canadian or U.S5. customer.

Canada is an extremely long thin country, mainly inhabited
about 50 miles high and 4,000 miles wide wich about 90% of its popule
ation living within 50 miles of the U.S./Canadian border, In other
words, by simply extending the U.S. northern regions an additional

(con'd)

DIGITAL EQUIPMENT OF CANADA LTD. e COOKSVILLE, ONTARIO

INTEROFFICE
Hl MEMORANDUM

DATE November 24th, 1966
SUBJECT

TO Ted Johnson FROM 8i Lyle

nzo

50 miles or so all of the Canadian sales offices are automatically
included in the U.S. regions. The fact that Canadian cities are so
close to the U.S5. border has caused many industries to organize their
communication, transportation and marketing efforts to rum north/south
as opposed to east/west. An example of how this regional change could
be made into a good deal is the case of Vancouver. It is a lot more
sensible and econemical for Seattle to look after Vancouver than for
any of the offices from eastern Canada to do so. It might not work
now as the Seattle sales office has the obstacles of crossing a
regional border as well as the hypothetical international border set
up by DEC. A salesman working out of Seattle trying to handle a
Canadian customer has 2 strikes against him, On the other hand if
the area, including the Vancouver office, were included in the same
region, then the difficulties would be considerably reduced.

The above regional change does not mean the Canadian
company should not exist. In fact there are a large number of unique
Canadian problems which can only be handled by a Canadian based
operation. Thus effectively what I am proposing is that there must
be a central Canadian operation, and the U.S. regions could be extended
to include the Canadian offices. The regional tie would be for the
day to day problems which are identical whether the office is in
Canada or the States. There are a lot of common problems, after all
regardless of the location of the office we are selling the same products,
basically to the same type of people for basically the same type of
usage. Problems involving equipment, delivery, customer training,
customer confidence in our equipment reliability, marketing support,
sales follow-up, customer follow-up, etc. are all the same whether it
be a Canadian office or a U.S. office. A well run region would then
strengthen both the Canadian and U.S. operations as that region could
take advantage of effectively having an additional office.

Now to the uniquely Canadian problems.

The Canadian operation requires a central organization to
deal with those problems that are unique to doing business in Canada.
The Canadian company in this context should be considerably more

(con'd)

DIGITAL EQUIPMENT OF CANADA LTD. ® COOKSVILLE, ONTARIO

INTEROFFICE
H MEMORANDUM

DATE November 24th, 1966

SUBJECT

TO

Ted Johnson FROM 8i Lyle
-3

autonomous than the present setup. Budgets should be jointly established
for all facets of the Canadian operation and then maintained by the
Canadian company. Some of the main activities of the Canadian company
are as follows:-

(1) Equipment

The Canadian company should actively engage in assuring
that all of the equipment meets the local electrical standards and
making modifications where required.

The Canadian company should also be part of certain areas
of product development - such as logic kits.

(2) Material Handling - Modules

It goes without saying that a central module inventory
and a bonded warchouse are absolutely essential. The module volume
does not warrant each individual Canadian office becoming involved
with the border crossing problems. Also a bonded warehouse is essential
since some customers do not pay duty and others do, and it would be
uneconomical to have bonded warehouses all across the country.

(3) Invoicing - All Goods

All invoicing should be done from a central point and
naturally all invoicing should be done in Canadian funds and include
those additions applicable to the customer. Since this again requires
a fair amount of administration it is essential that it is a central
operation rather than spread out amongst the Canadian offices.

(4) alary - Adninistration

Salaried administration for sales and field service should
be handled from a central location as well as the distribution of pay

cheques.

(con'd)

DIGITAL EQUIPMENT OF CANADA LTD. e COOKSVILLE, ONTARIO

INTEROFFICE
#l MEMORANDUM

® DATE November 24th, 1966
SUBJECT
T0 Ted Johnson FROM 8i Lyle

-l -

Salary administration needs to be a science in Canada as
salaries vary tremendously from one area to another and the differences
are not consistent for various types of vocations. A secretary in
Toronto must be paid at a different rate than say the same job in
Winnipeg. The same applies to engineers, field service, ete. To cope
with this the administration must be handled by a Canadian company.

The problem goes much further, however, in the area of
sales engineers. The Camadian employment market is not at all like
the U.S. which works to DEC's advantage if it knows how to operate
within the Canadian employment market. DEC can attract almost anybody
it wants in Canada. This is possible because the computer community
is ineredibly small in Canada and DEC people are respected members of
that community. Thus the present staff attract other members of the
community. This whole statement might seem immodest but I can assure
. the reader that this is the case concerning the present DEC Canadian

sales group. From this same computer community come the venturesome
ones thus DECAN who can attract and influence the community is itself
& victim of it as DEC must remain competitive once a person is on staff,

To understand this enviromment and to be able to compete
within it, it is necessary for salary administration to be in the
hands of the Canadian company operating within the guide lines of an
overall budget.

(5) Office - Administration

A central operation is required to handle the budgeting
of the various sales offices as the costs of all goods and services
are different than in the U.S. Also for expediency all expenditures
such as travel expemnses, etc. must be cleared through a central
Canadian company.

(6) Material Handling - Non-modules

In addition to the above responsibilities it would be the
requirement of the Canadian central operation to monitor and if necessary
maintain optimum border crossing points for the various Canadian sales

(con'd)

DIGITAL EQUIPMENT OF CANADA LTD. e COOKSVILLE, ONTARIO

INTEROFFICE
H§ MEMORANDUM

DATE November 24th, 1966

SUBJECT

TO0

Ted Johnson FROM 3i Lyle

o 8w

offices so that shipments of computers and test systems can be made
directly to the customer.

As the Canadian sales volume increases and the number of
computers increase it is getting less and less realistic to think
that all computer shipments to Canadiar customers be made via
Carleton Place. Canadian transportation and facilities are obviously
not up to the standard of the U.S. and it hardly makes sense to ship
from Boston to Ottawa and them to Vancouver, when an nearly all U.S.
route of Boston/Seattle/Vancouver is possible, which is probably more
efficient but what is more important is that it would be easier for
those involved with the shipment in Maynard to understand. This might
be & good point at which to state that one of the underlying factors
in this organizational approach is that it must be admitted by the
Canadian operation that it is more important to do things in such a
way that the Maynard personnel readily understand rather than beating
them on the head trying to make them understand the Canadian way of
doing things. After all it will be a long time before either DEC or
Canadian DEC are large enough that they can really be looked upon as
two separate operations.

Now back to the point.

The sixth point then deals with the fact that if shipment
is made via the United States there will be a number of border crossing
points required and at each point DECAN will have to maintain working
relationships with a custom broker. Although the individual offices
will be involved with maintaining their own custom broker, the central
operation will be able to play a very significant role in making sure
that any ruling they get at one office is maintained throughout the
Canadian offices so that discrepancies amongst the brokers can be
avoided. The extra dealing with the custom brokers will not be burden-
some and in fact will be much essier to handle and will help avoid delays
that are now becoming apparent. At present shipping through a Canadian
niddleman organization, regardless of its level of efficiency, cannot
help but put a delay into the system.

(contd)

DIGITAL EQUIPMENT OF CANADA LTD. ® COOKSVILLE, ONTARIO

- INTEROFFICE
H MEMORANDUM

o DATE November 24th, 1966
SUBJECT
TO Ted Johnson FROM 3§ Lyle
o6 o
(7) Loeation

Since the central Canadian office will be dealing with
primarily administrative problems and module inventory control, it
should be set up in & location where it has optimum communication
and transportation with Maynard. There is only one city that falls
into this category and that is Montreal. Montreal, as a head office
operation for the Canadian company, is an excellent location, not just
because of its close proximity to Boston but because ultimately the
Montreal area should turn out to be the largest DECAN market. The
Montreal area has the largest population in Canada, it is the financial
centre of Canada, and it is the head office centre in that most Canadian
companies have their head administrative offices in Montreal. It has,
probably what is even more significant, a trait which certainly is not
apparent in the Toroato area and that is the capability to think for
® itself. Since our prime competition in computers is IBM we will
naturally do better in those areas where IBM is weaker. Since the
French-Canadian element of Montreal is less likely to fall in love
with brand names, he is not taken in by IBM in the same way as the
Anglo-Saxon Toronto area. Due to this DEC will ultimately find
Montreal much more receptive than Toronto.

In passing it is worth pointing out that the same is true
about the rest of Canada as what I have just said about Montreal.
Customers in Western Canada and the extreme eastern part of Canada are
much more likely te think for themselves and hence are not braimwashed
by IBM. However my main point is where our central office should be
and because of communication, transportation, etc. the west and far
east is out. That leaves Montreal, Ottawa, or Toronto; and Montreal
far exceeds the other two. Also I think the ease of transportation
and communication between Montreal and Boston is an important factor.
The Montreal operation will somehow get closer to the Maynard operation
as it should be, as our size at the present time and for a good long
time to come, does not warrant divorse between the two operations.

(con'd)

DIGITAL EQUIPMENT OF CANADA LTD. e COOKSVILLE, ONTARIO

‘ ﬂ c INTEROFFICE

MEMORANDUM

DATE November 24th, 1966

SUBJECT

T0

Ted Johnson FROM 8i Lyle
.7 =

In a nutshell let me sumarize then the Canadian operation.
Let us look at it from the point of view of a district office. At the
district office level, for all company activities excluding the actual
mechanics of doing business, the district manager will answer to the
regional manager and the district office field service personnel will
answer to the regiomal field service manager. There would be a
Canadian marketing coordinator who would have the responsibility of
maintaining contacts and functions between the district offices and the
Canadian central office. The district office will therefore look to
Maynard for all marketing support, all deliveries (except modules) and
will be responsible for clearing the equipment through customs and
getting it to the customer. The district office on the other hand
will deal with the Canadian central office for all module orders and
all module shipments will be made from the Canadian central office
directly to the customer. The district offices will not be responsible
for billing but they will be responsible for notifying the central office
when non-module orders have been shipped from Maynard so that the
central office can bill the customer. The district office will alseo
look to the central Canadian operation for control of budgets, salary
administration, travelling expenses, ete. In fact I can even sumarize
the above further by saying that the ultimate operation would be that
the district Canadian office would operate within the U.S. region
framework when dealing with customer activities and would answer to
the Canadian central office when it is involved with inhouse matters.

The above scheme, or a modification thereof which does not
lose the principle, should be incorporated immediately. This would put
an end to some of the functions which are now being built up in the
Canadian company and 1 feel that some of these functions are not really
necessary. The least necessary of these is the re-checking of computers

(con'd)

DIGITAL EQUIPMENT OF CANADA LTD. ® COOKSVILLE, ONTARIO

3 INTEROFFICE
H MEMORANDUM

. DATE November 24th, 1966
' SUBJECT
TO Ted Johnson FROM 8i Lyle

e 8 =

before shipping to customers. The movement of the Canadian central
operation from Carleton Place to llontreal should alsc be planned
imnmediately as now is the time to do it before the Montreal office

is formed. The actual use of Montreal rather than Carleton Place

as a head office location need not be done immediately but all changes
should be in that direction. If preduction is to be carried om in
Canada and is to be taken seriously it would be a good deal better

if it were done in lontreal where it would be much closer to Canmadian
suppliers and to Doston.

The next phase of operation which should also start
immediately, although it will obviously take many months to complete,
is the establishment of more sales offices in Canada, each of which
should start off with one salesman and one field service engineer.
Sales offices in Halifax, Winnipeg, Edmonton and Vancouver would very
. quickly pay for themselves.

The essential key to all of this is that DEC is now
starting to capture, as evidenced by the Toronto sales, the confidence
of companies invelved with process contrel. Since our market does
not have a Foxboro and the like, it leaves it wide open to DEC and
since Canadian industries are just awakening to the whole comcept
of automation and since Canadian industry is infinitely larger than
Canadian research, it is 2 market well worth going into. This market
is to be found in cities such as Montreal, Vancouver, Toronto and to
a lesser extent Winnipeg and Halifax.

This is not to imply that DEC of Canada turns away from
its already founded umiversity and research market comnmitment but it
is to stress the point that if DECAN is ever to really grow it must
get into the industrial market. The Canadian industrial market is
growing faster than the university market and it is unlikely that we
will be able tc incremse our percentage of the university market,
in fact in total dollars spent in the area of research and universities
in computers, DEC will get a smaller percentage as the main computer

(con'd)

DIGITAL EQUIPMENT OF CANADA LTD. e COOKSVILLE, ONTARIO

~

{- INTEROFFICE
H MEMORANDUM

DATE November 24th, 1966

SUBIJECT

T0

Ted Johnson FROM 81 Lyle
- 9 -

centres will no doubt remain IBM or CDC and will continue to get much
larger., It is nice to be able to say we have 3 computers in the
University of Toronto and IBM has 1, but 3 PDP-8's is not an awful lot
of money when stacked against one 360/91. The trend im the universities
for some time to come will be towards the larger machines. On the other
hand the industrial market is a much freer market as they are not
pressured by a third party to buy any particular brand of computer and
also they are much more ready, willing and able to do business with
anybody as long as his product is what he needs. And DEC has just this
type of product. To capture the industrial market we have to appear
knowledgable, competent, reliable and secure., We will never be able

to do all these things if we spread ourselves out 50 miles high and
4,000 miles wide, but if we do it within a framework which is already
existing then the total DEC organization will always be readily
available to the total Canadian market. I would hate to see DEC of
Canada lose out on what can be a tremendous market only because the
above approach appears too anti-nationalistic. We are now living in
the time of common markets and nationalism should play no part in a

good sound marketing organization in Canada and the United States.
There is only one thing that Canada really needs and that is a good

310.000. U.5., computer.

51

cc: Ken Olsen
ce: Denny Doyle

DIGITAL EQUIPMENT OF CANADA LTD. ® COOKSVILLE, ONTARIO

C

INTEROFFICE
MEMORANDUM

DATE November 22, 1966

SUBJECT

TO

Trade Shows
FROM

Tim McInerney R. L. Lane

I just want to add a few points to Ken's memo.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Literature, parts and material should be better marked
before it leaves Maynard so it can be placec¢ in the
correct section of the booth storage.

A secure cabinet with lockable doors should be built
either into a back section or one of the divicers.

We should purchase our own speaker system so not to rely
on rental options every show. We will soon pay for it and
will get better quality.

Consider a portable lounge which can be set up in the
storage area for conferences. It should appear neat and
planned.

At large shows consider using the local secretaries to
staff an answering service at the booth, make reservations,
coordinate transportation, meetings, etc.

After each show a report should be made indicating how
many handouts of each were passed out, how many inquiries
per product line. This way we can learn how much litera-
ture we should take to each show and what products are
creating the most interest.

I think we should continue with headers, they really add
something to the booth. Also, we might consider the equip-
ment setback through the wall so we will have access to the
back of the equipment from the storage area.

DIGITAL EQUIPMENT CORPORATION . MAYNARD, MASSACHUSETTS

(8) When we expect people to fill out bingo cards, let's
provide a standing-height writing table on a base which
can be relocated to accommocdate people flow, with chained
pen.

(9) Insist on no more surprises at the trade show such as
the Berkeley PDP-8S box.

(10) Not encourage people to hold cdepartmental meetings during

|
\
the show. It justifies their attending but also competes !
with booth duty and show activities.

CC: T. Johnson
K. Olseny,

°

DIGITAL EQUIPMENT CORPORATION . MAYNARD, MASSACHUSETTS

‘__A_.___.-m__-...u....._...*..,_.,.,.........44«.,..\-“.,_.
i

w

i

U

O

,—‘I
o2

DATE November 22, 1966
JECT
ALL OFFICE MANAGERS FROWM DON BARKER, PALO ALTO

M. RUDERMAN
K. OLSEN +—"
H. BURKHARDT

Enclosed is a description of BSL's system. They have sold
this system to the Clinical Lab. at the University of
California Medical Center and a second order is forthcoming
from NIH at Washington.

Each system includes a PDP-8 and DECtapes. Perhaps some
of your local hospitals would be interested in it.

Good Luck! /=

|
|

AL

DB/mro

=N TUNL = N Y s gk

Pricing Information For Bulletin 136

BSL LABORATORY DATA PROCESSING SYSTEMS

1 November 1966

2229 Fourth Street, Berkeley, California 94710

This Bulletin provides pricing information for the Laboratory Data
Processing Systems designed and manufactured by Berkeley Scientific
Laboratories. A typical BSL laboratory data processing system is
shown in figure 1. These systems are constructed around the
Laboratory Data Collector and the LDC Data Input Consoles which
were designed for digital data acquisition in experimental and clinical
laboratories. In the paragraphs below we will try to give you some
indication of the cost of these systems and the manner in which they
are designed and installed within laboratories.

There is no standard laboratory data processing system, and we
doubt there ever will be one. The reason is that the requirements
within the individual laboratories vary from one laboratory to another.
Laboratories are using a variety of different analytical instruments,
semiautomatic analyzers, manual testing procedures, and a great

' variety of different clinical report formats and procedures. The
Laboratory Data Collector and the LDC Data Input Consoles allow us
to build a data collection and data processing system which connects
directly to the analytical instrument outputs and provides a convenient
interface to the technician for recording and reporting of test data and
specimen identification. This much of the system is standardized.
We designed the LDC Data Input Consoles such that they include
standard options to connect to common analytical instruments such as

Coulter Counters, spectrophotometers, flamephotometers, and any

other instrument which produces an output reading which can be
digitized. The remainder of a laboratory system is dictated by the
manner in which this test data must be processed and reported. The
data processing hardware and computer programs account for about
one-half of the cost of most laboratory systems. This is the portion

of our systems which must be tailored to the particular laboratory.

Estimates of the cost of a laboratory data processing system such as
‘ we design at BSL can be made by the following schedule:

CONSOLE
CONTROLLER
£ LDC

OFF - LINE
MAGNET/C
TARPE
RECORDER

CELL COUNTER

ON - LINE

TEST RESULTS

/‘

/ j

(BsSL)
EEErr El] <
B o8 |
(0)(®)

z—

STORED
FPROGEAM
OIG/ITAL
COMPUTER

/

TEST REQUESTS

/

CLIN/ICAL FEFPORTS

Pl

>

HIGH SFEED
O/GITAL PRINTER

SPECTRO -

AND DIRECTORIES

PHOTOMETER

A BASIC CLINICAL LABORATOKRY LA7A

PROCESSING SYSTEM FOE HEMATOLOGY

CONSOLE

|
LABORATORY WORKSHEETS {

Bulletin 136
Page 3

TEST DATA COLLECTION

We define a test station as one analytical instrument operated by a
technician or one semiautomatic instrument. A BSL Data Input Console
properly connected to an analytical instrument to form one test station
costs approximately $5,500. The Console Control unit which can
control up to 20 test stations costs $9,500 and performs all of the
operations described in the Laboratory Data Collector brochure attached
to this bulletin. A number of Data Input Consoles and the Console Control
Unit form a subsystem and provide the means for collecting all of the
data from the test stations and presenting it in a form which can be
delivered to any digital data recording device and/or a computer. This
Test Data Collection subsystem costs $9,500 plus $5,500 per test
station. This Test Data Collection subsystem can be made into a
complete off-line test data collection and recording system by the
addition of a magnetic tape recorder option which costs $7,000. These
magnetic tapes are IBM compatible and can be processed on any
available computer to produce complete clinical laboratory reports and
master files. This is the way in which several laboratories are now
starting. They are using available computers several times a day to
process the laboratory data recorded on magnetic tapes and produce

clinical reports and master files.

DATA PROCESSING

The Clinical Laboratory Systems which we are now delivering include
small digital computers which range in cost from $20,000 to $46,000.
These computers perform the task of processing the test data and
preparing complete clinical laboratory reports on demand or according
to pre-assigned schedules. In addition, they perform all the test
data calibration and conversion required plus storage of laboratory
test information and patient files during the operating day of the
clinical laboratory. Finally, they prepare summary tapes and reports
for storage of the clinical laboratory reports and transactions which

can be used for future reference. We have developed complete programs

Bulletin 136
Page 4

for a small computer system which costs $46,000 including magnetic
tapes and input-output equipment for the generation of clinical
reports and input of patient information. Complete clinical laboratory
data processing programs are supplied with this computer. The
computer and the programs mentioned above are capable of handling

test stations in hematology and chemistry.

The typical way in which laboratories are installing the processing
systems designed by Berkeley Scientific Laboratories is to begin with

a small number of test stations in a particular area of the laboratory,
such as hematology, plus the small computer without extensive input-
output equipment. This allows them to check out and perfect each of
the procedures and train the personnel while they are expanding the
system. The basic computer and programs can be supplied for $29,000,
and a four station Data Input Console configuration for an additional
$31,500. This is a total of $60,500 for a complete computer system
which can be expanded up to 20 test stations as well as magnetic tape

output and recording for master file processing and storage.

Many recent attempts have been made to use commercial computing
equipment and input-output equipment to alleviate the data collection
and processing problems within clinical laboratories. However, most
of these have failed to make any substantial improvement in the
operation of the laboratory because standard commercial computing
equipment is by no means designed for collecting test data within a
clinical laboratory. Furthermore, the cost of most commercial equipment
alone far exceeds the cost of the complete basic system with the
computer supplied by Berkeley Scientific Laboratories. We believe
that we are the first to design data input consoles specifically for the
analytical instruments and the environment found in the laboratory.
Secondly, we have written realistic computer programs for performing
the laboratory data processing operations rather than attempting to
modify or expand elaborate programs produced for entirely different

purposes.

Bulletin 136
Page 5

We would like to invite you to visit Berkeley Scientific Laboratories
and see the equipment which we have designed and the complete
systems which we have installed in major clinical and research
laboratories. The specifications and the operational requirements of
the BSL systems have been specified by scientists and clinicians.
They are the best judges as to the appropriateness of any automation

system within the clinical laboratory.

".2; t;’ Y n
LI M
| o g Sl eS|
DATE ~ November 21, 1966
SUBIJECT Paper Tape Readers
TO K. OlsenV FROM J. Smith
We are currently manufacturing two (2) readers - the PR68 for

typesetting and the PCOl for general use.

Initial production of the PR68 did run into problems. When
released to Production, there was not a sufficient quantity of
sprockets on order to meet the expected building rate. Delivery
lead time was four (4) months, and the supplier was a single-
source manufacturer. I suspect the reason there was not a suf-
ficient quantity of sprockets on order prior to Production release
was due to inaccurate forecasting by Sales. This is my opinion
.only, and it would be difficult to reconstruct situations prior
to-Production release.

Since Production release, we have managed to reduce the lead

time to two (2) months. To date, Purchasing and Engineering have
been unsuccessful in finding a second source for sprockets.
Current status is as outlined below:

20 - Complete in Stock
35 - Under Construction

The projected usage rate from Sales is sixteen (16) per month. We
will meet this rate with little difficulty.

The PCOl was a problem from the very beginning. I must have
attended four or five meetings with Engineering and Mike Ford
trying to get this unit released to Production. The conclusion

at the end of each meeting was that more engineering was required.
Last month, reference the attached memo, we agreed to accept
building responsibility for the unit. I assigned one of my senior
technicians (Dave Ambrose) to investigate the current testing
status. He worked on the unit- for two or three weeks and through
a series of mods and adjustments now has the unit ready for re-
lease to Production Testing. If we had not taken the initiative,

I am afraid this unit would still be in a state of unacceptance.
Current status is as outlined below:

REFERENCE: Attached Memo

s

DIGITAL EQUIPMENT CORPOCRATION . MAYNARD, MASSACHUSETTS

l. Section "B": To date this has not been accomplished.

2. The eight (8) remaining units will be tested and
delivered by mid December.

3.. We have exploded parts for the below requirements

submitted by Sales. We feel we can build, test and
deliver these quantities.

Jan. Feb. March April May June

15 24 30 37 36 38

Sixty cycle units only. No fifty cycle motor has been found
by Engineering for use with the punch section.

Jack

JFS/sm

Attachment

DIGITAL EQUIPMENT CORPORATION « MAYNARD, MASSACHUSETTS

-

e e e e 4 e ... il St e et il

| AdOD
lou3ax|
- et

XA s oy

.l INTEROFFICE
ClEI] MEMORANDUM

DATE October 31, 1966

SUBJECT
TO " Nick Mazzarese FROM Mike Ford
cc: J. Smith

E. Harwood

E. deCastro. _ 3

B. Dill —

J. Jones

As of October 28th, Production accepted responsibility for manu-

facturing the PCOl high-speed reader/punch with the following
provisions:

a. Ed deCastro will be responsible for completing and ship-
ping the first two units. This will be done by the end
of next week (November 11).

b. Ed deCastro and Dave Dubay will meet and finalize the
acceptance test procedure. This procedure will then be
presented to Production. This should be done by November
18th at the latest.

c. Production will commence checking out PCOl's in mid-November,
and will be responsible for shipping eight units between
mid-November and mid-December.

Silence from the above recipients will indicate that these pro-

visions have been recorded correctly.

Mike

ejb

INTEROFFICE

SUBJECT

(L] MEMORANDUM

TO Ken

DATE QNovember 22, 1966

Front Lobby Improvement

Olsen FROM gim Jordan

The following is a complete list of all items that

will improve the lobby short of a complete redesign job.

Asterisks indicate those items which can be achieved

immediately at a minimum cost. See the enclosed sketches
for visual reference. If you have any questions oxr comments
please call.

STEP I
* XRemove all furniture presently in lobby.
* Remove all photos.
* Remove present "DIGITAL" sign over door.
* Lower windowsill at operators area to heignt of shelf.
*

Cover sill with wood grain formica.

Install nonmovable PPG black glass. (Leave 6" open at
bottom)

Provide cabinet for operators to put all personal
belongings. (To eliminate clutter)

Install flush bifold doors on closet and in front of PBX

Clean ceiling tile.

Cover inside and outside of foyer with flush, paintable
material,

Refinish both front doors.

0 153 i

Paint all unpaneled walls white.
Install spots (Lightolier, as used in exhibits)
Hang recent product photos and equipment.

a. Color photos of strate manufacturing.

b. Black & White photo murals on panels,

c. Product (modules, power supplies etc.)

mounted on panels similar to above.
Hang clear plexiglass with logo silk screened-North wall.
Install clock similar to one in Thompson Streec lobbv -
North Wall - $40.00

DIGITAL

EQUIPMENT CORPORATION « MAYNARD, MASSACHUSETTS

'Ken Olsen ' November 22, 1966

Gold exhibit carpet - areas in front of North &
South Walls.
Six (6) chairs similar to new computer chair. (One
to have wheels for receptionist) $66.00 -Use LaFonda
chairs from exhibits until new ones can be ordered.
* Table from exhibits. (36" round x 18" high)
Provide small phone pedistal.
New L shaped desk. Make tops here. Buy 2 or 3 good
looking 2-drawer files. '
| * Two (2) ash trays (From exhibits)
| One (1) trash basket
| | * New magazine covers.
| Install short drapes over desk (West Wall)

SuU
TO

INTEROFFICE
® Hl MEMORANDUM

DATE November 22, 1966

g

BJECT 1International Computer Exposition ‘<q:&4/v\

Ken Olsen? FROM Tim McInerney
Stan Olsen

Nick Mazzarese

Ted Johnson

Mike Ford

Howie Painter

John Jones

Win Hindle

In September I advised you of the subject Exposition, which
will take place June 5-8, 1967 at the New York Coliseum. Some
of you have requested more information regarding the history
of this show and its cost.

Mr. Charles Mathalon of Computer Exposition, Incorporated
advised me that since it is not a policy of his Company to
circulate lists of participants at this Exposition, he was
unable to comply with my request about who would be participating
in this Exposition. The only indication that he gave me
regarding participants was that the 1967 Exposition is of a
highly technical nature and is backed by almost all the major
foreign and United States manufacturers in the computer field,
who are all participating.

This is the first time for this Exposition, and the expected
attendance ranges from 40,000 to 50,000 people. Attached is a
copy from a portion of the information brochure forwarded to me
by Mr. Mathalon. This shows the expected participants at this
Exposition. I hope to obtain a definite list of participants
shortly, since Mr. Mathalon is sending one of his representatives
here to discuss our participation.

The price of booth space for this Exposition is $5.00 per
square foot or $500.00 per 10' booth.

TJIM: jdr
Attachment

D

IGITAL EQUIPMENT CORPORATION . MAYNARD, MASSACHUSETTS

TRIBUTE TO:

US.A.: I.B.M.-G.E.-
R.C.A.—LITTON INDUSTRIES -
MONROE — UNIVAC — HONEYWELL

JAPAN: HITACHI SEISA KUSHO — MATSUSHITA — MITSUBISHI DENKI-—
SONY K.K.-TOKYO SHIBAURA DENKI—NEAT ONKYO DENKI

GREAT BRITAIN: E.M.I. ELECTRONICS —ENGLISH ELECTRIC—ELLIOT BROS.
G.E.C. (ELECTRONICS) — MARCONI COMPANY —-COMPUTER CONTROLS -
PLESSEY COMPANY — SOLARTRON ELECTRONIC GROUP

FRANCE: CIE. FRANCAISE THOMSON-HOUSTON —SOC. D’ELECTRONIQUE ET
D’AUTOMATISME — LABORATOIRE CENTRAL DE TELECOMMUNICATIONS -
CIE. EUROPEENNE D’AUTOMATISME ELECTRONIQUE —SOS. ALSACIENNE
DE CONSTRUCTIONS MECANIQUES — COMPAGNIE I.B.M. FRANCE— -
COMPAGNIE DES MACHINES BULL

GERMANY: SIEMENS & HALSKE—ZUSE KG ELEKTRONEN-UND /"
RELAIS RECHEN-AUTOMATEN —WEBER ELEKTRONIK — |
BECKMAN INSTRUMENTS — B. SEIBERT — STANDARD ELEKTRIK LORENZ-—
BOLKOW APPARATEBAU -DR. ING. PAUL NAMUR
KOMMANDITGESELLSCHAFT FUR AUTOMATISIERRUNG A

ITALY: ING. C. OLIVETTI—PAOLETTI-O.T.E. SPA— ELETTRONICA S.R.L.- f—‘“‘”
SOC. PER L’ELLETROTECNICA INDUSTRIALE E NAVALE -
TECNOMASIO ITALIANA BROWN BOVERI— APPLICAZIONI ELETTRONICE

SWEDEN: STANDARD RADIO & TELEFON - SVENSKA DATAREGISTER - *
ARENCO AB-ADDO, O FARM V. 12 \

SWITZERLAND: GUTTINGER AG. FUR ELEKTRONISCHE
HOLLAND: NV. ELECTROLOGICA

. /
=M e FHF”W!“\"\ Al -PONIDIFTED i VA —\ﬂw;-\r-nﬂmr! _ / ‘
e 1) ’ 5 a JHN M /
THE r [n h 1 AB\, Ed L; .AJJL\.“.L...‘;L.a Wi WillElR EANWOLE N ' v |

The Computer equipment industry is the fastest growing and most dynamic in the ' ~ |
country. Exposition '67 gives it an International focus for the presentation of '
its new developments, products and services . . . to the public and

to the buying and planning influences in business, govern-

ment, education and the highly technical professions.

INTEROFFICE
Hl MEMORANDUM

DATE 22 November 1966
SUBJECT PDP-9 FORTRAN

TO K. Olsen FROM Larry Seligman

From the PDP-7 library, PDP-9 inherits a subset (with mod-
ifications) of FORTRAN II (basic FORTRAN). We have con-

tracted out a FORTRAN IV compiler to a software house with
the contractual stipulation that the compiler meet the ASA

standard. A copy of the standards are attached for your
convenience.

Most FORTRAN IV compilers for small computers are quite
similar since they are written by a small group of software
houses using many of the same techniques. What could have
set our FORTRAN out above the others would have been the
ability to use it effectively with our automatic priority
interrupt system.

1hl

DIGITAL EQUIPMENT CORPORATION . MAYNARD, MASSACHUSETTS

R. W. BEMER, Asst. Editor, Glossary & Terminology
E. LOHSE, Asst. Editor, Information Interchange
R. V. SMITH, Asst. Editor, Programming Languages

History and Summary of FORTRAN Standardization Development for the ASA
By W.P. Heising

The American Standards Association (ASA) Sectional Com-
mittee X3 for Computers and Information Processing was es-
tablished in 1960 under the sponsorship of the Business Equip-
ment Manufacturers Association. ASA X 3 in turn established an
X3.4 Sectional Subcommittee to work in the area of common
programming language standards. On May 17, 1962, X3.4 es-
tablished by resolution a working group, X3.4.3-FORTRAN to
develop American Standard FORTRAN proposals.

RESOLVED:
That X3.4 form a ForTraN Working Group, to be known as X3.4.3-
ForTRAN, with the

Scope. To develop proposed standards of FORTRAN language.

Organization. Shall contain a Policy Committee and a Tech-
nical Committee. The Policy Committee will be responsible to
X3.4 for the Working Group’s mission being accomplished. It will
determine general policy, such as language content, and direct the
Technical Committee.

Policy Committee Membership. Will be determined by the X3.4
Steering Committee subject to written guidelines which may be
amended later and including the following:

a. For each FORTRAN implementation in active development
or use, one sponsor voting, representative and one user voting
representative are authorized.

b. A representative who is inactive may be dropped.

c. Associate members, not entitled to vote but entitled to
participate in discussion, are authorized.

Technical Committee. Will develop proposed standards of
ForTRAN language under the Policy Committee direction. The
Technical Committee will conduct investigations and make re-
ports to the Policy Committee.

On June 25, 1962 invitations to an organizational meeting of
X3.4.3 were sent to manufacturers and user groups who might be
interested in participating in the development of FoRTRAN
standards. The first meeting was held August 13-14, 1962
in New York City. X3.4.3 decided to proceed because (1) For-
TRAN standarization was needed, and (2) a sufficiently wide
representation of interested persons was participating.

A resolution on objectives was adopted unanimously on August
14, 1962.

The objective of the X3.4.3 Working Group of ASA is to produce
a document or documents which will define the ASA Standard or

Standards for the ForTran language. The resulting standard
language will be clearly and recognizably related to that language,
with its variations, which has been called FORTRAN in the past.
The criteria used to consider and evaluate various language ele-
ments will include (not in order of importance):

a. Ease of use by humans.

b. Compatibility with past FORTRAN use,

c. Scope of application,

d. Potential for extension,

e. Facility of implementation, i.e. compilation and execution

efficiency.

TeE ForTrAN standard will facilitate machine-to-machine
transfer of programs written in ASA Standard ForTran. The
Standard will serve as a reference document both for users who
wish to achieve this objective and for manufacturers whose pro-
gramming products will make it possible. The content and method
of presentation of the standard will recognize this purpose.”

It was the consensus of the group that (1) there was definite
interest in developing a standard corresponding to what is popu-
larly known as Forrran IV, and (2) there was interest in develop-
ing for small and intermediate computers a ForTrAN standard
near the power of ForTraN II, however suitably modified to be
compatible with the associated Forrran IV. Accordingly, two
Technical Committees, designated X3.4.3-IV and X3.4.3-1I
respectively, were established to create drafts. Most of the de-
tailed work in developing drafts has been done by technical
committees.

The X3.4.3-I1 Technical Committee completed and approved
a draft in May, 1963. A Technical Fact Finding Committee was
appointed and reported in August, 1964 on a comparison of the
X3.4.3-1I approved draft and an approved working draft of the
X3.4.3-1V Technical Committee. This brought to light stylistic,
terminological, and content differences and conflicts. In April,
1964 the X3.4.3-1V Technical Committee completed a draft of
FortraN. In June, 1964 X3.4.3 received and compared the two
drafts and (1) resolved conflicts in content, and (2) resolved the
conflicting style and terminology. This was accomplished by re-
casting the X3.4.3-1I document to reflect the style of the X3.4.3-
IV document while retaining the original content. To reduce
confusion, X3.4.3 decided to call the languages Basic FORTRAN
and FORTRAN.

Editor’s Note

The following working documents have been produced by a Subcom-
mattee of the American Standards Association Sectional Committee
X3, Computers and Information Processing, in its efforts to develop
a proposed American Standard. In order that the final version of the
proposed American Standard reflect the largest public consensus, X3
has authorized publication of these documents to elicit comment,

590 Communications of the ACM

criticism and general public reaction with the understanding that
such working documents are intermediate results in the standardiza-
tton process and are subject to change, modification or withdrawal in
part or in whole. Correspondence about the documents should be ad-
dressed to the X3 Secretary, BEM A, 235 East /2nd Street, New
York, N. Y. 10017 —R.V.S.

Volume 7 / Number 10 / October, 1964

(Reprinted with Permission of Communications of the ACM)

A Programming Language for Information Processing on Automatic Data Processing Systems
CONTENTS

1. Introduction 6. Expressions

7.2 Nonexecutable statements

2. Basic t incl 6.1 Arithmetic expressions 7.2.1 Specification statements
- Basic terminology *6.2 Relational expressions 7.2.1.1 Array declarator
3. Program form *6.3 Lugilca.l gxprefssions . ;g}% 8(1)1\1&1%1%8130N statement
3.1 The ForTRAN character set 6.4 Evaluation of expressions 7.2.L:] statement
3.2 Lines 7. Statements ; 7.2.1.4 ES[HIVALLNCE state-
3 S ts 7.1 Executable statements "
gi’ 2:82“1)6“ Rl bel 7.1.1 Assignment statements :_’,-2-1~5 EXTERNAL statement
4 Hratement; abe 7.1.2 Control statements 7.2.1.6 Type statement
p & ; oL s &
3.5 Symbolic names 71.21 GO TO statements ZZ 2 Data initialization statement
3.6 Ordering of characters 7.1.2.2 Arithmetic IF statement 7.2.3 FORMAT statement
4. Data types *7.1.2.3 Logical IF statement 8. Procedures and subprograms
4.1 Data type association 7.1.2.4 CALL statement 8.1 Statement functions)
4.2 Data type properties 7.1.2.5 RETURN statement 8.2 i:é?::;ce functions and their
5. Data and procedure identification 7.1.2.6 CONTINUE statement 8.3 External functions
5.1 Data and procedure names 7.1.2.7 Program control state- 8.4 Subroutine
.5 1.1 Constantg ments *8.5 Block data subprogram
512 Variable Z.I.Z.B DO statement 9. Programs
5:1.3 Arig 7.1.3 Input/Output statements 9.1 Program components
i Proed 7.1.31 READ and WRITE state- 9.2 Normal execution sequence
5.14 rocedures ments 10. Intra- and interprogram relation-
5.2 Function reference 7.1.3.2 Auxiliary Input/Output i shxgs bl
5.3 Type rules for data and procedure statements 0.1 Symbolic names
3 4 Vel 10.2 Definition
identifiers 7.1.3.3 Printing of formatted re- 10.3 Definition requirements for use
5.4 Dummy arguments cords of entities

*Blank in Basic FORTRAN

FORTRAN

1. INTRODUCTION

1.1 Purrose. This specification establishes the form for and
the interpretation of programs expressed in the FORTRAN language
for the purpose of promoting a high degree of interchangeability
of such programs for use on a variety of automatic data processing
systems. A processor shall conform to this specification provided
it accepts, and interprets as specified, at least those forms and
relationships described herein.

Insofar as the interpretation of the form and relationships de-
sceribed are not affected, any statement of requirement could be
replaced by a statement expressing that the specification does not
provide an interpretation unless the requirement is met. Further,
any statement of prohibition could be replaced by a statement
expressing that the specification does not provide an interpreta-
tion when the prohibition is violated.

1.2 Scope. This specification establishes:

(1) The form of a program written in the ForTrAN language.

(2) The form of writing input data to be processed by such a
program operating on automatic data processing systems.

(3) Rules for interpreting the meaning of such a program.

(4) The form of the output data resulting from the use of
such a program on automatic data processing systems, provided
that the rules of interpretation establish an interpretation.

This specification does not prescribe:

(1) The mechanism by which programs are transformed for
use on a data processing system (the combination of this mecha-
nism and data processing system is called a processor).

(2) The method of transcription of such programs or their
input or output data to or from a data processing medium.

(3) The manual operations required for set-up and control of
the use of such programs on data processing equipment.

(4) The results when the rules for interpretation fail to estab-
lish an interpretation of such a program.

(5) The size or complexity of a program that will exceed the
capacity of any specific data processing system or the capability
of a particular processor.

(6) The range or precision of numerical quantities.

2. BASIC TERMINOLOGY

This section introduces some basic terminology and some con-
cepts. A rigorous treatment of these is given in later sections.
Certain assumptions concerning the meaning of grammatical
forms and particular words are presented.

A program that can be used as a self-contained computing pro-
cedure is called an executable program (9.1.6).

Volume 7 / Number 10 / October, 1964

Us.

Basic FORTRAN

1. INTRODUCTION

1.1 Purrose. This specification establishes the form for and
the interpretation of programs expressed in the FORTRAN language
for the purpose of promoting a high degree of interchangeability of
such programs for use on a variety of automatic data processing
systems. A processor shall conform to this specification provided
it accepts, and interprets as specified, at least those forms and
relationships described herein.

Insofar as the interpretation of the form and relationships de-
scribed are not affected, any statement of requirement could be
replaced by a statement expressing that the specification does not
provide an interpretation unless the requirement is met. Further,
any statement of prohibition could be replaced by a statement
expressing that the specification does not provide an interpreta-
tion when the prohibition is violated.

1.2 Score. This specification establishes:

(1) The form of a program written in the FoRTRAN language.

(2) The form of writing input data to be processed by such a
program operating on automatic data processing systems.

(3) Rules for interpreting the meaning of such a program.

(4) The form of the output data resulting from the use of
such a program on automatic data processing systems, provided
that the rules of interpretation establish an interpretation.

This specification does not prescribe:

(1) The mechanism by which programs are transformed for
use on a data processing system (the combination of this mecha-
nism and data processing system is called a processor).

(2) The method of transcription of such programs or their
input or output data to or from a data processing medium.

(3) The manual operations required for set-up and control
of the use of such programs on data processing equipment.

(4) The results when the rules for interpretation fail to es-
tablish an interpretation of such a program.

(5) The size or complexity of a program that will exceed the
capacity of any specific data processing system or the capability
of a particular processor.

(6) The range or precision of numerical quantities.

2. BASIC TERMINOLOGY

This section introduces some basic terminology and some con-
cepts. A rigorous treatment of these is given in later sections.
Certain conventions concerning the meaning of grammatical forms
and particular words are presented.

A program that can be used as a self-contained computing pro-
cedure is called an executable program (9.1.6).

Communications of the ACM 591

An executable program consists of precisely one main program
and possibly one or more subprograms (9.1.6).

A main program is a set of statements and comments not con-
taining a FUNCTION, SUBROUTINE, or BLOCK DATA state-
ment (V.1.5).

A subprogram is similar to a main program but is headed by a
BLOCK DATA, FUNCTION, or SUBROUTINE statement. A
subprogram headed by a BLOCK DATA statement is called a
specification subprogram. A subprogram headed by a FUNCTION
or SUBROUTINE statement is called a procedure subprogram
(9.1.3,9.1.4).

The term program unit will refer to either a main program or
subprogram (9.1.7).

Any program umit except a specification subprogram may
reference an external procedure (Section 9).

An external procedure that is defined by FORTRAN statements
is called a procedure subprogram. External procedures also may
be defined by other means. An external procedure may be an ex-
ternal function or an external subroutine. An external function
defined by ForTraN statements headed by a FUNCTION state-
ment is called a function subprogram. An external subroutine
defined by ForTraN statements headed by a SUBROUTINE
statement is called a subroutine subprogram (Sections 8 and 9).

Any program unit consists of statements and comments. A state-
ment is divided into physical sections called lines, the first of
which is called an nitial line and the rest of which are called
continuation lines (3.2).

There is a type of line called a comment that is not a statement
and merely provides information for documentary purposes (3.2).

The statements in Forrran fall into two broad classes—
executable and nonexecutable. The executable statements specify
the action of the program while the nonexecutable statements
describe the use of the program, the characteristies of the operands,
editing information, statement functions, or data arrangement
(7.1, 7.2).

The syntactic elements of a statement are names and operators.
Names are used to reference objects such as data or procedures.
Operators, including the imperative verbs, specify action upon
named objects.

One class of name, the array name, deserves special mention.
The name and the dimensions of the array of values denoted by
the array name are declared prior to use. An array name may be
used to identify an entire array. An array name qualified by a
subscript may be used to identify a particular element of the
array (5.1.3).

Data names and the arithmetic (or logical) operators may be
connected into arithmetic (or logical) expressions that develop
values. These values are derived by performing the specified
operations on the named data (Section 6).

The identifiers used in FoRTRAN are names and numbers. Data
are named. Procedures are named. Statements are labeled with
numbers. Input/output units are numbered or identified by a
name whose value is the numerical unit designation (Sections 3,
65:1)-

At various places in this document there are statements with
associated lists of entries. In all such cases the list is assumed to
contain at least one entry unless an explicit exception is stated.
As an example, in the statement

SUBROUTINE s(a, , az, -+ a»)
it is assumed that at least one symbolic name is included in the
list within parentheses. A list is a set of identifiable elements each
of which is separated from its successor by a comma. Further, in
a sentence a plural form of a noun will be assumed to also specify
the singular form of that noun as a special case when the context,
of the sentence does not prohibit this interpretation.

The term reference is used as a verb with special meaning as
defined in Section 5.

592 Communications of the ACM

An executable program consists of precisely one main program
and possibly one or more subprograms (9.1.6).

A main program is a set of statements and comments not con-
taining a FUNCTION or SUBROUTINE statement (9.1.5).

A procedure subprogram is similar to a main program but is
headed by a FUNCTION or SUBROUTINE statement. A pro-
cedure subprogram is sometimes referred to as a subprogram

(9.1.3).

The term program unit will refer to either a main program or
subprogram (9.1.7).

Any program unit may reference an external procedure (Section
9).

An external procedure that is defined by ForTraN statements
is called a procedure subprogram. External procedures also may be
defined by other means. An external procedure may be an external
function or an external subroutine. An external function defined
by ForTRAN statements headed by a FUNCTION statement is
called a function subprogram. An external subroutine defined by
ForTrAN statements headed by a SUBROUTINE statement is
called a subroutine subprogram (Sections 8 and 9).

Any program unit consists of statements and comments. A state-
ment is divided into physical sections called lines, the first of
which is called an ¢nitial line and the rest of which are called
continuation lines (3.2).

There is a type of line called a comment that is not a statement
and merely provides information for documentary purposes (3.2).

The statements in ForTraN fall into two broad classes—execut-
able and nonexecutable. The executable statements specify the
action of the program while the nonexecutable statements de-
scribe the use of the program, the characteristics of the operands,
editing information, statement functions, or data arrangement
(7.1,7.2).

The syntactic elements of a statement are names and operators.
Names are used to reference objects such as data or procedures.
Operators, including the imperative verbs, specify action upon
named objects.

One class of name, the array name, deserves special mention.
The name and the dimensions of the array of values denoted by
the array name are declared prior to use. An array name may be
used to identify an entire array. An array name qualified by a sub-
script may be used to identify a particular element of the array
(5.1.3).

Data names and the arithmetic operators may be connected
into arithmetic expressions that develop values. These values are
derived by performing the specified operations on the named data
(Section 6).

The identifiers used in FOrRTRAN are names and numbers. Data
are named. Procedures are named. Statements are labeled with
numbers. Input/output units are numbered or identified by a
name whose value is the numerical unit designation.

At various places in this document there are statements with
associated lists of entries. In all such cases the list is assumed to
contain at least one entry unless an explicit exception is stated.
As an example, in the statement

SUBROUTINE s(ai, a2, -++ , an)
it is assumed that at least one symbolic name is included in the
list within parentheses. A list is a set of identifiable elements, each
of which is separated from its successor by a comma. Further, in
a sentence a plural form of a noun will be assumed to also specify
the singular form of that noun as a special case when the context
of the sentence does not prohibit this interpretation.

The term reference is used as a verb with special meaning as
defined in Section 5.

Volume 7 / Number 10 / October, 1961

3. PROGRAM FORM

Every program unit is constructed of characters grouped into
lines and statements.

3.1 Tue ForRTRAN CHARACTER SET. A program unit is written
using the following characters: A, B, C, D, E, F, G, H, I, J, K,
L,M,N,0,P,QR,S,T,U,V,W,X,Y,7%,0,1,2,3,4,5,6, 7,
8,9, and:

Character Name of Character

Blank

Equals

Plus

Minus

Asterisk

Slash

Left Parenthesis
Right Parenthesis
i Comma

: Decimal Point

$ Currency Symbol

=S X4

The order in which the characters are listed does not imply a
collating sequence.

3.1.1 Digits. A digit is one of the ten characters: 0, 1, 2, 3, 4,
5,6, 7,8,9. Unless specified otherwise, a string of digits will be
interpreted in the decimal base number system when a number
system base interpretation is appropriate.

An octal digit is one of the eight characters: 0,1, 2, 3,4, 5,6, 7.
These are only used in the STOP (7.1.2.7.1) and PAUSE (7.1.2.7.2)
statements.

3.1.2 Letters. A letter is one of the twenty-six characters:
A, B;C D; B, F, G H, T, J, B Liy M, N, O, P, Q; R; 8, T; T,
vV, W, X, Y, Z

3.1.3 Alphanumeric Characters. An alphanumeric character is
a letter or a digit.

3.1.4 Special Characters. A special character is one of the
eleven characters blank, equals, plus, minus, asterisk, slash, left
parenthesis, right parenthesis, comma, decimal point, and cur-
rency symbol.

3.1.4.1 Blank Character. With the exception of the uses speci-
fied (3.2.2, 3.2.3, 3.2.4, 4.2.6, 5.1.1.6, 7.2.3.6, and 7.2.3.8), a blank
character has no meaning and may be used freely to improve the
appearance of the program subject to the restriction on continua-
tion lines in 3.3.

3.2 Lixes. A line is a string of 72 characters. All characters
must be from the ForTrAN character set except as described in
5.1.1.6 and 7.2.3.8.

The character positions in a line are called columns and are
consecutively numbered 1, 2, 3, --- | 72. The number indicates
the sequential position of a character in the line starting at the
left and proceeding to the right.

3.2.1 Comment Line. The letter C in column 1 of a line desig-
nates that line as a comment line. A comment line must be im-
mediately followed by an initial line, another comment line, or
an end line.

A comment line does not affect the program in any way and
is available as a convenience for the programmer.

3.22 End Line. An end line is a line with the character blank
in columns 1 through 6, the characters k£, N, and D, once each
and in that order, in columns 7 through 72, preceded hy, inter-
spersed with, or followed by the character blank. The end line
indicates to the processor, the end of the written description of
a program unit (9.1.7). Every program unit must physically
terminate with an end line.

3.2.3 Initial Line. An initial line is a line that is neither a
comment line nor an end line and that contains the digit 0 or the
character blank in column 6. Columns 1 through 5 contain the
statement label or each contains the character blank:

Volume 7 / Number 10 / October, 1961

3. PROGRAM FORM

Every program unit is constructed of characters grouped into
lines and statements.

3.1 TaE ForTrRaAN CHARACTER SET. A program unit is written
using the following characters: A, B, C, D, I, ¥, G, H, I, J, K,
L,M,NO0,PQR,ST, UV, WX, Y,Z0,1,2,3,4,5,0, 7,
8, 9, and:

Name of Character

Blank

Equals

Plus

Minus

Asterisk

Slash

Left Parenthesis
Right Parenthesis
Comma

Decimal Point

Character

oS x4

The order in which the characters are listed does not imply
a collating sequence.

3.1.1 Digits. A digit is one of the ten characters: 0, 1. 2, 3,
4,5,6,7,8,9. Unless specified otherwise, a string of digits will
be interpreted in the decimal base number system when a number
system base interpretation is appropriate.

An octal digit is one of the eight characters: 0,1, 2, 3,4, 5,6, 7
These are only used in the STOP (7.1.2.7.1) and PAUSE (7.1.2.7.2)
statements.

3.1.2 Letters. A letter is one of the twenty-six characters:
A,B,C,;D,E;F,G, H, I, J, K; , M, N, 0, P, Q, R, S, T, U,
V., W, X, Y, Z.

3.1.3 Alphanumeric Characters. An alphanumeric character
is a letter or a digit.

3.1.4 Special Characters. A special character is one of the ten
characters: blank, equals, plus, minus, asterisk, slash, left pa-
renthesis, right parenthesis, comma, and decimal point.

3.1.4.1 Blank Character. With the exception of the uses speci-
fied (3.2.2, 3.2.3, 3.2.4, 7.2.3.6, and 7.2.3.8), a blank character has
no meaning and may be used freely to improve the appearance of
the program subject to the restriction on continuation lines in
3.3.

3.2 Lines. A line is a string of 72 characters. All characters
must be from the ForTran character set except as deseribed 1n
7.2.3.8.

The character positions in a line are called colunmmns and are
consecutively numbered 1, 2, 3, --- | 72. The number indicates
the sequential position of a character in the line starting at the
left and proceeding to the right.

3.2.1 Comment Line. The line C in column 1 of a line desig-
nates that line as a comment line. A comment line must be imme-
diately followed by an initial line, another comment line, or an
end line.

A comment line does not affect the program in any wayv and is
available as a convenience. for the programmer.

3.2.2 End Line. An end line is a line with the character blank
in columns 1 through 6, the characters I, N, and D. once each in
that order, in columns 7 through 72, preceded by. interspersed
with, or followed by the character blank. The end line indicates,
to the processor, the end of the written description of a program
unit (9.1.7). Iivery program unit must physically terminate with
an end line.

3.2.3 Initial Line. An initial line is a line that is neither o
comment line nor an end line and that contains the digit 0 or the
character blank in column 6. Columns 1 through 5 contain the
statement label or each contains the character hlank.

Communications of the ACM 593

32.4 Continuation Line. A continuation line is a line that
contains any character other than the digit 0 or the character
blank in column 6, and does not contain the character C in
column 1.

A continuation line may only follow an initial line or another
continuation line.

3.3 STATEMENTS. A statement consists of an initial line op~
tionally followed by up to nineteen ordered continuation lines.
The statement is written in columns 7 through 72 of the lines.
The order of the characters in the statement is columns 7 through
72 of the initial line followed, as applicable, by columns 7 through
72 of the first continuation line, columns 7 through 72 of the next
continuation line, ete.

34 StaTEMENT LaBEL. Optionally, a statement may be
labeled so that it may be referred to in other statements. A state-
ment label consists of from one to five digits. The value of the
integer represented is not significant but must be greater than
zero. The statement label may be placed anywhere in columns 1
through 5 of the initial line of the statement. The same statement
label may not be given to more than one statement in a program
unit. Leading zeros are not significant in differentiating state-
ment labels.

3.5 SymBoric NamEs. A symbolic name consists of from one
to six alphanumeric characters, the first of which must be alpha-
betic. See 10.1 through 10.1.10 for a discussion of classification
of symbolic names and restrictions on their use.

3.6 ORDERING OF CHARACTERs. An ordering of characters is
assumed within a program unit. Thus, any meaningful collection
of characters that constitutes names, lines, and statements exists
as a totally ordered set. This ordering is imposed by the character
position rule of 3.2 (which orders characters within lines) and
the order in which lines are presented for processing.

4. DATA TYPES

Six different types of data are defined. These are integer, real,
double precision, complex, logical, and Hollerith. Each type has
a different mathematical significance and may have different in-
ternal representation. Thus the data type has a significance in
the interpretation of the associated operations with which a
datum is involved. The data type of a function defines the type
of the datum it supplies to the expression in which it appears.

41 Data Type AssociatioN. The name employed to iden-
tify a datum or function carries the data type association. The
form of the string representing a constant defines both the value
and the data type.

A symbolic name representing a function, variable, or array
must have only a single data type association for each program
unit. Once associated with a particular data type, a specific name
implies that type for any differing usage of that symbolic name
that requires a data type association throughout the program
unit in which it is defined.

Data type may be established for a symbolic name by declara-
tion in a type-statement (7.2.1.6) for the integer, real, double
precision, complex, and logical types. This specific declaration
overrides the implied association available for integer and real
(5.3).

There exists no mechanism to associate a symbolic name with
the Hollerith data type. Thus data of this type, other than con-
stants, are identified under the guise of a name of one of the
other types.

42 Dara Type PropertiEs. The mathematical and the
representation properties for cach of the data types are defined
in the following sections. For real, double precision, and integer
data, the value zero is considered neither positive nor negative.

4.2.1 Integer Type. An integer datum is always an exact rep-
resentation of an integer value. It may assume positive, negative,
and zero values. It may only assume integral values.

594 Communications of the ACM

3.2.4 Continuation Line. A continuation line is a line that
contains any character other than the digit 0 or the character
blank in column 6, and does not contain the character C in
column 1.

A continuation line may only follow an initial line or another
continuation line.

3.3 STATEMENTS. A statement consists of an initial line op-
tionally followed by up to five ordered continuation lines. The
statement is written in columns 7 through 72 of the lines. The
order of the characters in the statement is columns 7 through 72
of the initial line followed, as applicable, by columns 7 through 72
of the first continuation line, columns 7 through 72 of the next
continuation line, ete.

3.4 STATEMENT LABEL. Optionally, a statement may be
labeled so that it may be referred to in other statements. A state-
ment label consists of from one to four digits. The value of the
integer represented is not significant but must be greater than
zero. The statement label may be placed anywhere in columns 1
through 5 of the initial line of the statement. The same statement
label may not be given to more than one statement in a program
unit. Leading zeros are not significant in diffentiating statement
labels.

3.5 SymBoric NaMEs. A symbolic name consists of from one
to five alphanumeric characters, the first of which must be alpha-
betic. See 10.1 through 10.1.10 for a discussion of classification of
symbolic names and restrictions on their use.

3.6 ORDERING OF CHARACTERsS. An ordering of characters is
assumed within a program unit. Thus, any meaningful collection
of characters that constitutes names, lines, and statements exists
as a totally ordered set. This ordering is imposed by the character
position rule of 3.2 (which orders characters within a line) and the

order in which lines are presented for processing.

4. DATA TYPES

Two different types of data are defined. These are integer and
real. Each type has a different mathematical significance and may
have different internal representation. Thus the data type hus a
significance in the interpretation of the associated operations with
which a datum is involved. The data type of a function defines
the type of the datum it supplies to the expression in which 1t
appears.

4.1 Dara Tyre AssociaTion. The name employed to identify
a datum or function carries the data type association. The form
of the string representing a constant defines both the value and
the data type.

A symbolic name representing a function, variable, or array
must have only a single data type association for each program
unit. Once associated with a particular data type, a specific name
implies that type for any differing usage of that symbolic name
that requires a data type association throughout the program
unit in which it is defined.

Data type is established for a symbolic name by the first char-
acter of that name (5.3).

4.2 Dara Type ProperTiEs. The matherwtical and the
representation properties for each of the data types are defined in
the following sections. For both real and integer duta, the value
zero is considered neither positive nor negative.

4.2.1 Integer Type. An integer datum is always an exact
representation of an integer value. It may assume positive, nega-
tive, and zero values. It may only assume integral vulues.

Volume 7 / Number 10 / October, 1964

A real datum is @ processor approximation

£.2.2 Real Type.
to the value of a real number. Tt may assume positive, negative,
and zero values.

£.2.3 Double Precision Tj/[u_
processor approximation to the value of a real number. It may

A double precision datum is a

assume positive, negative, and zero values. The degree of ap-
proximation, though undefined, must be greater than that of
type real.

424 Complex Type. A complex datum is a processor ap-
proximation to the value of a complex number. The representa-
tion of the approximation is in the form of an ordered pair of real
data. The first of the pair represents the real part and the second,
the imaginary part Idach part has, accordingly, the same degree
of approximation as for a real datum.

425 Logical Type.
truth values of true oc false.

4.2.6 Hollerith Type. A Hollerith datum carries symbolie
information (as opposed to a numerie or logical value). The sym-
bolic information may consist of any symbol combination capable
of representation in the proces<or. The representation for blank
is a valid and significant character in a Hollerith datum.

A dozical datum may assume only the

5. DATA AND PROCEDURE IDENTIFICATION

Names are employed to refe snee or otherwise identify wata
and procedures.

The term reference is used to indicate an identification of a
datum implying that the current value of the datum will be made
available during the execution of the statement containing the
reference. If the datum is identified but not necessarily made
available, the datum is said to be named. One case of special
interest in which the datum is named is that of assigning a value
to a datum, thus defining or redefining the datum.

The term, reference, is used to indicate an identification of a
procedure implying that the acticns specified by the procedure
will be made available.

A complete and rigorous discussion of reference and definition,
including redefinition, is contained in Section 10.

5.1 DaTa axD PrROCEDURE Names. A data name identifies a
constant, a variable, an array or array element, or a block (7.2.1.3).
A procedure name identifies a function or a subroutine.

5.1.1 Constants. A constant is a name that references a value
or symbolic information derived from the name. A constant may
not be redefined.

An integer, real, or double precision constant is said to be
signed when it is immediately preceded by a plus or minus. Also,
for these types, an optionally signed constant is either a constant
or a signed constant.

5.1.1.1 Integer Constant. An integer constant is formed by a
nonempty string of digits. The datum formed this way is inter-
preted as the value represented by the digit string.

5.1.1.2 Real Constant. A basic real constant is formed by an
integer part, a decimal point, and a decimal fraction part in that
order. Both the integer part and the decimal fraction part are
formed by a string of digits; either one of these strings may be
empty, but not both. The datum formed this way is interpreted
as representing a value that is an approximation to the number
represented by the integer and fraction parts.

A decimal exponent is formed by the letter E followed by
an optionally signed integer constant. This exponent is inter-
preted as a multiplier (to be applied to the constant immediately
preceding it) that is an approximation to ten raised to the power
specified by the field following the E

A real constant is a basic real constant, a basic real constant
followed by a decimal exponent, or an integer constant followed
by a decimal exponent.

5.1.1.3 Double Precision Constant. A double precision ex-
ponent is formed and interpreted identically to a decimal exponent
except that the letter I is used instead of the letter E

Volume 7 / Number 10 / October, 1964

£.2.2 Real Type. A real datum is a processor approximation
to the value of a real number. It may assume positive, negative,
and zero values.

4.2.3

$.2.4

4.2.5

4.2.6

5. DATA AND PROCEDURE IDENTIFICATION

Names are employed to reference or otherwise identify data
and procedures.

The term reference is used to indicate an identification of a
datum implying that the current value of the datum will be made
available during the execution of the statement containing the
reference. If the datum is identified but not necessarily made
available, the datum is said to be named. One case of special
interest in which the datum is named is that of assigning a value
to a datum, thus defining or redefining the datum.

The term, reference, is used to indicate an identification of a
procedure implying that the actions specified by the procedure
will be made availablc.

A complete and rigorous discussion of reference and definition,
including redefinition, is contained in Section 10.

5.1 Dara anDp ProcEpuke Naves. A data name identifies a
constant, a variable, an array, or in array element. A procedure
name identifies a function or a subroutine.

5.1.1 Constants. A constant is a name that references a value.
A constant may not be redefined.

An integer or real constant is said to be signed when it is imme-
diately preceded by a plus or minus. Also, for these types, an
optionally signed constant is either a constant or a signed con-
stant.

5.1.1.1 Integer Constant. An integer constant is formed by a
nonempty string of digits. The datum formed this way is inter-
preted as the value represented by the digit string.

5.1.1.2 Real Constant. A basic real constant is formed by an
integer part, a decimal point, and a decimal fraction part in that
order. Both the integer part and the decimal fraction part are
formed by a string of digits; either one of these strings may be
empty, but not both. The datum formed this way is interpreted as
representing a value that is an approximation to the number
represented by the integer and fraction parts.

A decimal exponent is formed by the letter E followed by an
optionally signed integer constant. This exponent is interpreted
as a multiplier (to be applied to the constant immediately pre-
ceding it) that is an approximation to ten raised to the power
specified by the field following the E

A real constant is either a basic real constant or a basic real
constant followed by a decimal exponent.

5.1.1.3

Communications of the ACM 595

A double precision constant is a basic real constant followed
by it double precision exponent or an integer constant followed by
a double preecision exponent.

5.1.1.+ Complex Constant. A complex constant is formed by
an ordered pair of optionally signed real constants, separated by
a comma, and enclosed within parentheses. The datum formed
this way is interpreted as an approximation to the complex num-
ber represented by the pair.

5.1.1.5 Logical Constant. A logical constant is formed as one
of the strings . TRUE. or .FALSE. ;these are interpreted as
representing the truth values of true and false, respectively.

5.1.1.6 Hollerith Constant. A Hollerith constant is formed by
an integer constant (whose value n is greater than zero) followed
by the letter H | followed by exactly n characters. Any n char-
acters capable of representation by the processor may follow the
H . However, the differing character sets ‘of different processors
may cause the interpretation of these constants to vary. The
character blank is significant in a Hollerith constant.

This constant form is only defined for use in the argument list
of a CALL statement and in the data initialization statement.

5.1.2 Variable. A variable is a datum that is identified by a
symbolic name (3.5). Such a datum may be referenced and defined.

5.1.3 Array. An array is an ordered set of data of one, two,
or three dimensions. An array is identified by a symbolic name.
Identification of the entire ordered set is achieved via use of the
array name.

5.1.3.1 Array Element. An array element is one of the mem-
bers of the set of data of an array. An array element is identified
by immediately following the array name with a qualifier, called
a subscript, which points to the particular element of the array.

An array element may be referenced and defined.

5.1.3.2 Subscript. A subseript is formed by a parenthesized
list of subseript expressions. Each subscript expression is sepa-
rated by a comma from its successor, if there is a successor. The
number of subseript expressions must correspond to the declared
dimensionality (7.2.1.1), except in an EQUIVALENCE state-
ment (7.2.1.4). Following evaluation of all of the subscript ex-
pressions, the array element successor function (7.2.1.1.1) deter-
mines the identified array element.

5.1.3.3 Subscript Expressions. A subscript expression is
formed from one of the following constructs:

cxv+k

cxv—k

c*v

v+k

v—k

v

k
where ¢ and k are integer constants and v is an integer variable
reference. See Section 6 for a discussion of evaluation of expres-
sions and 10.2.8 and 10.3 for requirements that apply to the use
of a variable in a subscript.

5.1.4 Procedures. A procedure (Section 8) is identified by a
symbolic name. A procedure is a statement function, an intrinsic
function, a basic external function, an external function, or an
external subroutine. Statement functions, intrinsic functions,
basic external functions, and external functions are referred to
as functions or function procedures; external subroutines as sub-
routines or subroutine procedures.

A function supplies a result to be used at the point of reference;
a subroutine does not. Functions are referenced in a manner dif-
ferent from subroutines.

52 Fuxerion ReEFereNce. A function reference consists of
the function name followed by an actual argument list enclosed
in parentheses. If the list contains more than one argument, the
arguments are scparated by commas. The allowable forms of
function arguments are given in Section 8.

See 10.2.1 for a discussion of requirements that apply to func-
tion references.

596 Communications of the ACM

5.1.1.2

5.1.2 Variable. A variable is a datum that is identified by a
symbolic name (3.5). Such a datum may be referenced and defined.

5.1.3 Array. An array is an ordered set of data of one or two
dimensions. An array is identified by a symbolic name. Identifica-
tion of the entire ordered set is achieved via use of the array
name.

5.1.3.1 Array Element. An array element is one of the mem-
bers of the set of data of an array. An array element is identified
by immediately following the array name with a qualifier, called
a subscript, which points to the particular element of the array.

An array element may be referenced and defined.

5.1.3.2 Subscript. A subscript is formed by a parenthesized
list of subscript expressions. The subseript expressions are sepa-
rated by a comma if two are present. The number of subscript
expressions must correspond to the declared dimensionality
(7.2.1.1), except in an EQUIVALENCE statement (7.2.1.4). Fol-
lowing evaluation of all of the subscript expressions, the array
element successor function (7.2.1.1.1) determines the identified
array element.

5.1.3.3 Subscript Expressions. A subseript expression is
formed from one of the following constructs:

cxv+k

cxv—k

CxV

v+k

v—k

v

k
where ¢ and k are integer constants and » is an integer variable
reference. See Section 6 for a discussion of evaluation of expres-
sions and 10.2.8 and 10.3 for requirements that apply to the use of
a variable in a subscript.

5.1.4 Procedures. A procedure (Section 8) is identified by a
symbolic name. A procedure is a statement function, an intrinsic
function, a basic externa! function, an external function, or an
external subroutine. Statement functions, intrinsic functions,
basic external functions, and external functions are referred to
as functions or function procedures; external subroutines as sub-
routines or subroutine procedures.

A function supplies a result to be used at the point of reference;
a subroutine does not. Functions are referenced in a manner
different from subroutines.

5.2 Funcrion RErerence. A function reference consists of
the function name followed by an actual argument list enclosed in
parentheses. If the list contains more than one argument, the
arguments are separated by commas. The allowable forms of
function arguments are given in Section 8.

See 10.2.1 for a discussion of requirements that apply to func-
tion references.

Volume 7 / Number 10 / October, 1964

5.3 Type RurLeEs FOrR DaTa AND PROCEDURE IDENTIFIERS.
The type of a constant is implicit in its name.

There is no type associated with a symbolic name that identifies
a subroutine or a block.

A symbolic name that identifies a variable, an array, or a state-
ment function may have its type specified in a type-statement.
In the absence of an explicit declaration, the type is implied by
the first character of the name: I, J, X, L, M, and N imply type
integer; any other letter implies type real.

A symbolic name that identifies an intrinsic function or a basic
external function when it is used to idcntify this designated pro-
cedure, has a type associated with it as specified in Tables 3 and 4.

In the program unit in which an external function is referenced,
its type definition is defined in the same manner as for a variable
and an array. For a function subprogram, type is specified either
implicitly by its name or explicitly in the FUNCTION statement.

The same type is associated with an array element as is asso-
ciated with the array name.

5.4 DumMmy ARGUMENTS. A dummy argument of an external
procedure identifies a variable, array, subroutine, or external
function.

When the use of an external function name is specified, the use
of a dummy argument is permissible if an external function name
will be associated with that dummy argument. (Section 8.)

When the use of an external subroutine name is specified, the
use of a dummy argument is permissible if an external subroutine
name will be associated with that dummy argument.

When the use of a variable or array element reference is speci-
fied, the use of a dummy argument is permissible if a value of the
same type will be made available through argument association.

Unless specified otherwise, when the use of a variable, array,
or array element name is specified, the use of a dummy argument
is permissible provided that a proper association with an actual
argument is made.

The process of argument association is discussed in Sections 8
and 10.

6. EXPRESSIONS

This section gives the formation and evaluation rules for
arithmetic, relational, and logical expressions. A relational ex-
pression appears only within the context of logical expressions.
An expression is formed from elements and operators. See 10.3
for a discussion of requirements that apply to the use of certain
entities in expressions.

6.1 AriTHMETIC EXPREssIONs. An arithmetic expression is
formed with arithmetic operators and arithmetic elements. Both
the expression and its constituent elements identify values of
one of the types integer, real, double precision, or complex. The
arithmetic operators are:

Operator Representing
+ Addition, positive value (zero + element)
- Subtraction, negative value (zero — element)
* Multiplication
/ Division
ok Exponentiation

The arithmetic elements are primary, factor, term, signed term,
simple arithmetic expression, and arithmetic expression.
A primary is an arithmetic expression enclosed in parentheses,
a constant, a variable reference, an array element reference, or a
function reference.
A factor is a primary or a construct of the form
primary**primary
A term is a factor or a construct of one of the forms
term/factor
or
termxterm

Volume 7 / Number 10 / October, 1964

5.3 Type RurLes ror Darta aAND Procepurk IDENTIFIERS,
The type of a constant is implicit in its name.

There is no type associated with a symbolic name that identifies
a subroutine.

A symbolic name that identifies a variable, an array. or a stute-
ment function has a type implied by the first character of the
name: I, J, K, L, M, and N imply type integer; any other letter
implies type real.

A symbolic name that identifies an intrinsic function or a basic
external function when it is used to identify this designated pro-
cedure, has a type associated with it as specified in Tables 3 and 4.

In the program unit in which an external function is referenced
or defined, its type definition is defined in the same manner as for
a variable and an array.

The same type is associated with an array element as is asso-
ciated with the array name.

5.4 DumMmy ARGUMENTS. A dummy argument of an external
procedure identifies a variable or an array.

Unless specified otherwise, when the use of a variable, array,
or array element name is specified, the use of a dummy argument
is permissible provided that a proper association with an actual
argument is made.

The process of argument association is discussed in Sections
8 and 10.

6. EXPRESSIONS

This section gives the formation and evaluation rules for arith-
metic expressions. An expression is formed from elements and
operators. See 10.3 for a discussion of requirements that apply to
the use of certain entities in expressions.

6.1 AriTHMETIC EXPREsSIONS. An arithmetic expression is
formed with arithmetic operators and arithmetic elements. Both
the expression and its constituent elements identify values of one
of the types integer or real. The arithmetic operators are:

Operator Representing
+ Addition, positive value (zero + element)
— Subtraction, negative value (zero — element)
* Multiplication
Division
*% Exponentiation

The arithmetic elements are primary, factor, term, signed
term, simple arithmetic expression, and arithmetic expression.
A primary is an arithmetic expression enclosed in parentheses,
a constant, a variable reference, an array element reference. or a
function reference.
A factor is a primary or a construct of the form:
primary**primary
A term is a factor or a construct of one of the forms:
term/factor
or
termxterm

Communications of the ACM 597

A signed term is a term immediately preceded by + or —.

A simple arithmetic expression is a term or two simple arith-
metic expressions separated by a + or —.

An arithmetic expression is a simple arithmetic expression or
a signed term or either of the preceding forms immediately fol-
lowed by a + or — immediately followed by a simple arithmetic
expression.

A primary of any type may be exponentiated by an integer
primary, and the resultant factor is of the same type as that of
the element being exponentiated. A real or double precision pri-
mary may be exponentiated by a real or double precision primary,
and the resultant factor is of type real if both primaries are of
type real and otherwise of type double precision. These are the
only cases for which use of the exponentiation operator is defined.

By use of the arithmetic operators other than exponentiation,
any admissible element may be combined with another admissible
element of the same type, and the resultant element is of the same
type. Further, an admissible real element may be combined with
an admissible double precision or complex element; the resultant
element is of type double precision or complex, respectively.

6.2 RevatioNaL ExpressioNs. A relational expression con-
sists of two arithmetic expressions separated by a relational
operator and will have the value true or false as the relation is
true or false, respectively. One arithmetic expression may be of
type real or double precision and the other of type real or double
precision, or both arithmetic expressions may be of type integer.
If a real expression and a double precision expression appear in a
relational expression, the effect is the same as a similar relational
expression. This similar expression contains a double precision
zero as the right hand arithmetic expression and the difference of
the two original expressions (in their original order) as the left.
The relational operator is unchanged. The relational operators
are:

Operator Representing
LT, Less than
.LE. Less than or equal to
EQ. Equal to
.NE. Not equal to
.GT. Greater than
.GE. Greater than or equal to

6.3 LocicaL ExpressionNs. A logical expression is formed
with logical operators and logical elements and has the value true
or false. The logical operators are:

Operator Representing
.OR. Logical disjunction
AND. Logical conjunction
.NOT. Logical negation

The logical elements are logical primary, logical factor, logical
term, and logical expression.
Alogical primary is a logical expression enclosed in parentheses,
a relational expression, a logical constant, a logical variable ref-
erence, a logical array element reference, or a logical function
reference.
A logical factor is a logical primary or .NOT. followed by
a logical primary.
A logical term is a logical factor or a construct of the form:
logical term .AND. logical term
A logical expression is a logical term or a construct of the form:
logical expression .OR. logical expression

6.4 EvarLuarioN or ExpressionNs. A part of an expression
need be evaluated only if such action is necessary to establish the
value of the expression. The rules for formation of expressions
imply the binding strength of operators. It should be noted that
the range of the subtraction operator is the term that immediately
succeeds it. The evaluation may proceed according to any valid
formation sequence.

598 Communications of the ACM

A signed term is a term immediately preceded by + or —.

A simple arithmetic expression is a term or two simple arith-
metic expressions separated by a + or —.

An arithmetic expression is a simple arithmetic expression or a
signed term or either of the preceding forms immediately fol-
lowed by a + or — immediately followed by a simple arithmetic
expression.

A primary of any type may be exponentiated by an integer
primary and the resultant factor is of the same type as that of the
element being exponentiated. A real primary may be exponenti-
ated by a real primary, and the resultant factor is of type real.
These are the only cases for which use of the exponentiation
operator is defined.

By use of the arithmetic operators other than exponentiation,
any admissible element may be combined with another admissible
element of the same type, and the resultant element is of the same

type.

6.2

6.3

6.4 EvavuarioNn or ExPRrREssIONs. A part of an expression
need be evaluated only if such action is necessary to establish the
value of the expression. The rules for formation of expressions
imply the binding strength of operators. It should be noted that
the range of the subtraction operator is the term that imme-
diately succeeds it. The evaluation may proceed accordingly to
any valid formation sequence.

Volume 7 / Number 10 / October, 1961

TABLE 1. RULES FOR ASSIGNMENT OF € TO ¥

TABLE 1. RULES FOR ASSIGNMENT OF ¢ TO ¥

If v Type Is ‘ And e Type Is " The Assignment Rule Is* If v Type Is \‘ And e Type Is [The Assignment Rule Is*
s \ :

Integer Integer i Assign Integer ‘ Integer Assign

Integer Real | Fix & Assign Integer Real Fix & Assign

Integer Double Precision | Fix & Assign ‘

Integer Complex P Real ’ Integer ‘ Float & Assign
Real Real ‘ Assign

Real Integer Float & Assign

Real Real Assign * NOTES.

Real Double Precision | DP Evaluate & Real (1) Assign means transmit the resulting value, without

Assign change, to the entity.
Real Complex P

Double Precision Integer
Double Precision Real
Double Precision

DP Float & Assign
DP Evaluate & Assign
Double Precision | Assign

Double Precision Complex B
Complex Integer P
Complex Real P
Complex Double Precision | P
Complex Complex Assign
* NoTES.

(1) P means prohibited combination.

(2) Assign means transmit the resulting value, without
change, to the entity.)

(3) Real Assign means transmit to the entity as much pre-
cision of the most significant part of the resulting value as a real
datum can contain.

(4) DP Evaluate means evaluate the expression according
to the rules of 6.1 (or any more precise rules) then DP Float.

(5) Fix means truncate any fractional part of the result and
transform that value to the form of an integer datum.

(6) Float means transform the value to the form of a real
datum.

(7) DP Float means transform the value to the form of a
double precision datum, retaining in the process as much of the
precision of the value as a double precision datum can contain,

7.1.2 Control Statements. There are eight types of control
statements:
(1) GO TO statements.
(2) arithmetic IF statement.
(3) logical IF statement.
(4) CALL statement.
(5) RETURN statement.
(6) CONTINUE statement.
(7) program control statements.
(8) DO statement.

The statement labels used in a control statement must be asso-
ciated with executable statements within the same program unit
in which the control statement appears.

712.1 GO TO Statements. There are three types of GO TO
statements:

(1) Unconditional GO TO statement.
(2) Assigned GO TO statement.
(3) Computed GO TO statement.

7.12.1.1 Unconditional GO TO Statement. An unconditional

GO TO statement is of the form:
GO TO k
where k is a statement label.

Execution of this statement causes the statement identified by

the statement label to be executed next.

600 Communications of the ACM

(2) Fix means truncate any fractional part of the result and
transform that value to the form of an integer datum.

(3) Float means transform the value to the form of a real
datum.

7.1.2 Control Statements. There are seven types of control
statements:
(1) GO TO statements.
(2) Arithmetic IF statement.
(3) CALL statement.
(4) RETURN statement.
(5) CONTINUE statement.
(6) Program control statements.
(7) DO statement.

The statement labels used in a control statement must be
associated with executable statements within the same program
unit in which the control statement appears.

7.1.2.1 GO TO Statements. There are two types of GO TO
statements:

(1) TUnconditional GO TO statement.
(2) Computed GO TO statement.

7.1.2.1.1 Unconditional GO TO Statement. An unconditional
GO TO statement is of the form:
GO TO k
where k is a statement label.
Execution of this statement causes the statement identified by
the statement label to be executed next.

Volume 7 / Number 10 / October, 1964

7.1.2.7 Program Control Statements.
program control statements:
(1) STOP statement.
(2) PAUSE statement.
7.1.2.7.1 STOP Statement.
the forms:

There are two types of

A STOP statement is of one of

STOP n
or
STOP
where n is an octal digit string of length from one to five.

Execution of this statement causes termination of execution
of the executable program.

7.1.2.7.2 PAUSE Statement.
of the forms:

PAUSE n
or
PAUSE
where 7 is an octal digit string of length from one to five.

The inception of execution of this statement causes a cessation
of execution of this executable program. Execution must be re-
sumable. At the time of cessation of execution the octal digit
string is accessible. The decision to resume execution is not under
control of the program; but if execution is resumed, execution
of the PAUSE statement is completed.

7.1.2.8 DO Statement. A DO statement is of one of the forms:

DO ni = my,me, ms
or
DOnz=m,m

A PAUSE statement is of one

where:

(1) n is the statement label of an executable statement. This
statement, called the terminal statement of the associated DO,
must physically follow and be in the same program unit as that
DO statement. The terminal statement may not be a GO TO of
any form, arithmetic IF, RETURN, STOP, PAUSE, or DO
statement, nor a logical IF containing any of these forms.

(2) 7 is an integer variable name; this variable is called the
control variable.

(3) my , called the initial parameter; m. , called the terminal
parameter; and ms, called the incrementation parameter, are
each either an integer constant or integer variable reference. If
the second form of the DO statement is used so that m; is not
explicitly stated, a value of one is implied for the incrementation
parameter. At time of execution of the DO statement, m, , m. ,
and m; must be greater than zero.

Associated with each DO statement is a range that is defined
to be those executable statements from and including the first
executable statement following the DO, to and including the
terminal statement associated with the DO. A special situation
occurs when the range of a DO contains another DO statement.
In this case, the range of the contained DO must be a subset of
the range of the containing DO.

A completely nested nest is a set of DO statements and their
ranges, and any DO statements contained within their ranges,
such that the first occurring terminal statement of any of those
DO statements physically follows the last occurring DO state-
ment and the first occurring DO statement of the set is not in the
range of any DO statement.

A DO statement is used to define a loop. The action succeeding
execution of a DO statement is described by the following five
steps:

1. The control variable is assigned the value represented by
the initial parameter. This value must be less than or equal to the
value represented by the terminal parameter.

2. The range of the DO is executed.

3. If control reaches the terminal statement, and after execu-
tion of the terminal statement, the control variable of the most
recently executed DO statement associated with the terminal
statement is incremented by the value represented by the associ-
ated incrementation parameter.

602 Communications of the ACM

7.1.2.7 Program Control Statements. There are two types of
program control statements:

(1) STOP statement

(2) PAUSE statement

7.1.2.7.1 STOP Statement. A STOP statement is of one of the
forms:

STOP n
or
STOP
where 7 is an octal digit string of length from one to four.

Execution of this statement causes termination of execution of
the executable program.

7.1.2.7.2 PAUSE Statement. A PAUSE statement is of one
of the forms:

PAUSE »n
or
PAUSE
where n is an octal digit string of length from one to four.

The inception of execution of this statement causes a cessation
of execution of this executable program. Execution must be re-
sumable. At the time of cessation of execution, the octal digit
string is accessible. The decision to resume execution is not under
control of the program; but if execution is resumed, execution of
the PAUSE statement is completed.

7.1.2.8 DO Statement. A DO statement is of one of the forms:

DOni=m, m, my
or
DOnz=m,m
where:

(1) nis the statement label of an executable statement. This
statement, called the terminal statement of the associated DO,
must physically follow and be in the same program unit as that
DO statement. The terminal statement may not be a GO TO of any
form, arithmetic IF, RETURN, STOP, PAUSE, or DO statement.

(2) 7 is an integer variable name; this variable is called the
control variable.

(3) my , called the initial parameter; m, , called the terminal
parameter; and m;, called the incrementation parameter, are
each either an integer constant or integer variable reference. If
the second form of the DO statement is used so that ms; is not
explicitly stated, a value of one is implied for the incrementation
parameter. At time of execution of the DO statement, m, , m. .
and mj; must be greater than zero.

Associated with each DO statement is a range that is defined to
be those executable statements from and including the first ex-
ecutable statement following the DO, to and including the
terminal statement associated with the DO. A special situation
occurs when the range of a DO contains another DO statement.
In this case, the range of the contained DO must be a subset of
the range of the containing DO.

A DO statement is used to define a loop. The action succeeding
execution of a DO statement is described by the following five
steps:

1. The control variable is assigned the value represented by
the initial parameter. This value must be less than or equal to the
value represented by the terminal parameter

2. The range of the DO is executed.

3. If control reaches the terminal statement, and after
execution of the terminal statement, the control variable of the
most recently executed DO statement associated with the terminal
statement is incremented by the value represented by the associ-
ated incrementation parameter.

Volume 7 / Number 10 / October, 1964

4. If the value of the control variable after incrementation
is less than or equal to the value represented by the associated
terminal parameter, the action as described starting at step 2
is repeated with the understanding that the range in question is
that of the DO, the control variable of which was most recently
incremented. If the value of the control variable is greater than
the value represented by its associated terminal parameter, the
DO is said to have been satisfied and the control variable becomes
undefined.

5. At this point, if there were one or more other DO state-
ments referring to the terminal statement in question, the control
variable of the next most recently executed DO statement is
incremented by the value represented by its associated incre-
mentation parameter and the action as described in step 4 is
repeated until all DO statements referring to the particular
termination statement are satisfied, at which time the first execu-
table statement following the terminal statement is executed.

Upon exiting from the range of a DO by execution of a GO
TO statement or an arithmetic IF statement, that is, other than
by satisfying the DO, the control variable of the DO is defined
and is equal to the most recent value attained as defined in the
foregoing.

A DO is said to have an extended range if both of the following
conditions apply:

(1) There exists a GO TO statement or arithmetic IF state-
ment within the range of the innermost DO of a completely nested
nest that can cause control to pass out of that nest.

(2) There exists a GO TO statement or arithmetic IF state-
ment not within the nest that, in the collection of,all possible
sequences of execution in the particular program unit could be
executed after a statement of the type described in (1), and the
execution of which could cause control to return into the range
of the innermost DO of the completely nested nest.

If both of these conditions apply, the extended range is defined
to be the set of all executable statements that may be executed
between all pairs of control statements, the first of which satisfies
the condition of (1) and the second of (2). The first of the pair is
not included in the extended range; the second is. A GO TO
statement or an arithmetic IF statement may not cause control
to pass into the range of a DO unless it is being executed as part
of the extended range of that particular DO. Further, the ex-
tended range of a DO may not contain a DO that has an extended
range. When a procedure reference occurs in the range of a DO,
the actions of that procedure are considered to be temporarily
within that range, i.e., during the execution of that reference.

The control variable, initial parameter, terminal parameter,
and incrementation parameter of a DO may not be redefined
during the execution of the range or extended range of that DO.

If a statement is the terminal statement of more than one DO
statement, the statement label of that terminal statement may
not be used in any GO TO or arithmetic IF statement that occurs
anywhere but in the range of the most deeply contained DO with
that terminal statement.

7.1.3 Input/Output Statements.
output statements:

(1) READ and WRITE statements.

(2) Auxiliary Input/Output statements.

The first type consists of the statements that cause transfer of
records of sequential files to and from internal storage, respec-
tively. The second type consists of the BACKSPACE and RE-
WIND statements that provide for positioning of such an external
file, and ENDFILE, which provides for demarcation of such an
external file.

In the following descriptions, u and f identify input/output
units and format specifications, respectively. An input/output
unit is identified by an integer value and w may be either an
integer constant or an integer variable reference whose value
then identifies the unit. The format specification is described in
Section 7.2.3. Either the statement label of a FORMAT state-

There are two types of input/

Volume 7 / Number 10 / October, 1964

4. If the value of the control variable after incrementation is
less than or equal to the value represented by the associated
terminal parameter, the action as described starting at step 2
is repeated with the understanding that the range in question is
that of the DO, the control variable of which was most recently
incremented. If the value of the control variable is greater than
the value represented by its associated terminal parameter, the
DO is said to have been satisfied and the control variable becomes
undefined.

5. At this point, if there were one or more other DO state-
ments referring to the terminal statement in question, the control
variable of the next most recently executed DO statement is
incremented by the value represented by its associated incre-
mentation parameter and the action as described in step 4 is
repeated until all DO statements referring to the particular termi-
nation statement are satisfied, at which time the first executable
statement following the terminal statement is executed.

Upon exiting from the range of a DO by execution of a GO TO
statement or an arithmetic IF statement, that is, other than by
satisfying the DO, the control variable of the DO is defined and
is equal to the most recent value attained as defined in the fore-
going.

A GO TO statement or an arithmetic IF statement may not
cause control to pass into the range of a DO from outside its range.
When a procedure reference occurs in the range of a DO, the
actions of that procedure are considered to be temporarily within
that range, i.e., during the execution of that reference.

The control variable, initial parameter, terminal parameter,
and incrementation parameters of a DO may not be redefined
during the execution of the range of that DO.

If a statement is the terminal statement of more than one DO
statement, the statement label of that terminal statement may
not be used in any GO TO or arithmetic IF statement that occurs
anywhere but in the range of the most deeply contained DO with
that terminal statement.

7.1.3 Input/Output Statements.
output statements:

(1) READ and WRITE statements.
(2) Auxiliary input/output statements.

The first type consists of the statements that cause transfer of
records of sequential files to and from internal storage, respec-
tively. The second type consists of the BACKSPACE and RE-
WIND statements that provide for positioning of such an external
file, and ENDFILE, which provides for demarcation of such an
external file.

In the following descriptions, » and f identify input/output
units and format specifications, respectively. Aninput/output unit
is identified by an integer value and w may be either an integer
constant or an integer variable reference whose value then identi-
fies the unit. The format specification is described in 7.2.3. The
statement label of a FORMAT statement is represented by f. The

There are two types of input/

Communications of the ACM 603

ment or an array name may be represented by f. If a statement
label, the identified statement must appear in the same program
unit as the input/output statement. If an array name, it must
conform to the specifications in 7.2.3.10.

A particular unit has a single sequential file associated with
it. The most general case of such a unit has the following prop-
erties:

(1) If the unit contains one or more records, those records
exist as a totally ordered set.

(2) There exists a unique position of the unit called its initial
point. If a unit contains no records, that unit is positioned at its
initial point. If the unit is at its initial point and contains records,
the first record of the unit is defined as the next record.

(3) If a unit is not positioned at its initial point, there
exists a unique preceding record associated with that position.
The least of any records in the ordering described by (1)
following this preceding record is defined as the next record of
that position.

(4) Upon completion of execution of a WRITE or ENDFILE
statement, there exist no records following the records created
by that statement.

(5) When the next record is transmitted, the position of the
unit is changed so that this next record becomes the preced-
ing record.

If a unit does not provide for some of the properties given in
the foregoing, certain statements that will be defined may not
refer to that unit. The use of such a statement is not defined for
that unit.

7.1.3.1 READ and WRITE Statements. The READ and
WRITE statements specify transfer of information. Each such
statement may include a list of the names of variables, arrays,
and array elements. The named elements are assigned values on
input and have their values transferred on output.

Records may be formatted or unformatted. A formatted record
consists of a string of the characters that are permissible in
Hollerith constants (5.1.1.6). The transfer of such a record re-
quires that a format specification be referenced to supply the
necessary positioning and conversion specifications (7.2.3). The
number of records transferred by the execution of a formatted
READ or WRITE is dependent upon the list and referenced
format specification (7.2.3.4). An unformatted record consists of
a string of values. When an unformatted or formatted READ
statement is executed, the required records on the identified unit
must be, respectively, unformatted or formatted records.

7.1.3.1.1 Inpui/Output Lists. The input list specifies the
names of the variables and array elements to which values are
assigned on input. The output list specifies the references to vari-
ables and array elements whose values are transmitted. The input
and output lists are of the same form.

Lists are formed in the following manner. A simple list is a
variable name, an array element name, or an array name, or two
simple lists separated by a comma.

A list is a simple list, a simple list enclosed in parentheses, a
DO-implied list, or two lists separated by a comma.

A DO-implied list is a list followed by a comma and a DO-
implied specification, all enclosed in parentheses.

A DO-implied specification is of one of the forms:

1= m , M2, M3
or
1= m;, m

The elements 7, m; , ma, and ms are as defined for the DO
statement (7.1.2.8). The range of DO-implied specification is the
list of the DO-implied list and, for input lists, 7, m; , ma , and ms
may appear, within that range, only in subscripts.

A variable name or array element name specifies itself. An
array name specifies all of the array element names defined by the
array declarator, and they are specified in the order given by the
array element successor function (7.2.1.1.1).

604 Communications of the ACM

identified statement must appear in the same progiwin unit as the
input/output statement.

A particular unit has a single sequential file associated with it.
The most general case of such a unit has the following properties:

(1) If the unit contains one or more records, those records
exist as a totally ordered set.

(2) There exists a unique position of the unit called its initial
point. If a unit contains no records, that unit is positioned at its
initial point. If the unit is at its initial point and contains records,
the first record of the unit is defined as the next record.

(3) If a unit is not positioned at its initial point, there exists
a unique preceding record associated with that position. The
least of any records in the ordering described by (1) following this
preceding record is defined as the next record of that position.

(4) Upon completion of execution of a WRITE or ENDFILE
statement, there exist no records following the records created by
that statement.

(5) When the next record is transmitted, the position of the
unit is changed so that this next record becomes the preceding
record.

If a unit does not provide for some of the properties given in
the preceding, certain statements that will be defined mav not
refer to that unit. The use of such a statement is not defined for
that unit.

7.1.3.1 READ and WRITE Statements. The READ and
WRITE statements specify transfer of information. Each such
statement may include a list of the names of variables, arrays, and
array elements. The named elements are assigned values on input
and have their values transferred on output.

Records may be formatted or unformatted. A formatted record
consists of a string of characters. The transfer of such a record
requires that a format specification be referenced to supply the
necessary positioning and conversion specifications (7.2.3). The
number of records transferred by the execution of a formatted
READ or WRITE is dependent upon the list and referenced for-
mat specification (7.2.3.4). An unformatted record consists of a
string of values. When an unformatted or formatted READ state-
ment is executed, the required records on the identified unit must
be, respectively, unformatted or formatted records.

7.1.3.1.1 Input/Output Lists. The input list specifies the
names of the variables and array elements to which values are
assigned on input. The output list specifies the references to
variables and array elements whose values are transmitted. The
input and output lists are of the same form.

Lists are formed in the following manner. A simple list is a
variable name, an array element name, or an array name, or two
simple lists separated by a comma.

A list is a simple list, a simple list enclosed in parentheses, a
DO-implied list, or two lists separated by commas.

A DO-implied list is a list followed by a comma and a DO-
implied specification, all enclosed in parentheses.

A DO-implied specification is of one of the forms:

1= my, My, My
or
T =m, m

The elements 7, m, , ms, and my are as defined for the DO
statement (7.1.2.8). The range of DO-implied specification is the
list of the DO-implied list and, for input lists, ¢, m, ms, and m,
may appear, within that range, only in subscripts.

A variable name or array element name specifies itself. An
array name specifies all of the array element names defined by the
array declarator, and they are specified in the order given by the
array element successor function (7.2.1.1.1).

Volume 7 / Number 10 / October, 1964

-

The elements of a list are specified in the order of their occur-
rence from left to right. The elements of a list in a DO-implied
list are specified for each cycle of the implied DO.

7.1.3.1.2 Formatted READ. A formatted READ statement
is of one of the forms:

READ (u, f) k
or
READ (u, f)
where k is a list.

Execution of this statement causes the input of the next records
from the unit identified by %. The information is scanned and
converted as specified by the format specification identified by f.
The resulting values are assigned to the elements specified by the
list. See however 7.2.3.4.

7.1.3.1.3 Formatted WRITE. A formatted WRITE state-
ment is of one of the forms:

WRITE (u, f) k
or
WRITE (u, f)
where k is a list.

Execution of this statement creates the next records on the
unit identified by . The list specifies a sequence of values. These
are converted and positioned as specified by the format specifi-
cation identified by f. See however 7.2.3 4.

7.1.3.1.4 Unformatted READ. An unformatted READ state-
ment is of one of the forms:

READ (u) k
or
READ (u)
where k is a list.

Execution of this statement causes the input of the next record
from the unit identified by u, and, if there is a list, these values
are assigned to the sequence of elements specified by the list. The
sequence of values required by the list may not exceed the se-
quence of values from the unformatted record.

7.1.3.1.5 Unformatted WRITE. An unformatted WRITE
statement is of the form:

WRITE (u) k
where k is a list.

Execution of this statement creates the next record on the
unit identified by u of the sequence of values specified by the list.

7.1.3.2 Auxiliary Input/Output Statements. There are three
types of auxiliary input/output statements:

(1) REWIND statement.
(2) BACKSPACE statement.
(3) ENDFILE statement.
7.1.32.1 REWIND Statement.
the form:

A REWIND statement is of

REWIND u
Execution of this statement causes the unit identified by u to
be positioned at its initial point.
7.1.3.22 BACKSPACE Statement.
ment is of the form:
BACKSPACE u
If the unit identified by w is positioned at its initial point, exe-
cution of this statement has no effect. Otherwise, the execcution
of this statement results in the positioning of the unit identified
by u so that what had been the preceding record prior to that
execution becomes the next record.
7.1.3.2.3 ENDFILE Statement.
of the form:

A BACKSPACE state-

An ENDFILE statement is

ENDFILE u
Execution of this statement causes the recording of an endfile
record on the unit identified by u. The endfile record is an unique
record signifying a demarcation of a sequential file. Action is
undefined when an endfile record is encountered during execution
of a READ statement.

Volume 7 / Number 10 / October, 1964

The elements of a list are specified in the order of their occur-
rence from left to right. The elements of a list in a DO-implied
list are specified for each cycle of the implied DO.

7.1.3.1.2 Formatied READ. A formatted READ statement is
of one of the forms:

READ (u, f)k
or
READ (u, f)
where £ is a list.

Execution of this statement causes the input of the next records
from the unit identified by w. The information is scanned and
converted as specified by the format specification identified by f
and the resulting values are assigned to the elements specified by
the list. See however 7.2.3.4.

7.1.3.1.3 Formatted WRITE. A formatted WRITE statement
is of one of the forms:

WRITE (u,)k
or
WRITE (u, f)
where k is a list.

Execution of this statement creates the next records on the
unit identified by w. The list specifies a sequence of values, and
these are converted and positioned as specified by the format
specification identified by f. See however 7.2.3.4.

7.1.3.1.4 Unformatted READ. An unformatted READ state-
ment is of one of the forms:

READ (w)k
or
READ (u)
where k is a list.

Execution of this statement causes the input of the next record
from the unit identified by w, and, if there is a list, these
values are assigned to the sequence of elements specified by the
list. The sequence of values required by the list may not exceed
the sequence of values from the unformatted record.

7.1.3.1.5 Unformatted WRITE. An unformatted WRITE
statement is of the form:

WRITE (u)k
where k is a list.

Execution of this statement creates the next record on the unit
identified by u of the sequence of values specified by the list.

7.1.3.2 Auziliary Input/Output Statements. There are three
types of auxiliary input/output statements:

(1) REWIND statement.
(2) BACKSPACE statement.
(3) ENDFILE statement.

7.1.3.2.1 REWIND Statement. A REWIND statement is of
the form:

REWIND u

Execution of this statement causes the unit identified by u to
be positioned at its initial point.

7.1.3.2.2 BACKSPACLE Statement.
ment is of the form:

BACKSPACE u

If the unit identified by w is positioned at its initial point,
execution of this statement has no.effect. Otherwise, the execution
of this statement results in the positioning of the unit identified
by w so that what had been the preceding record prior to that
execution becomes the next record.

7.1.3.2.3 LENDFILE Statement. An ENDFILE statement is
of the form:

A BACKSPACE state-

ENDFILE u
Execution of this statement causes the recording of an endfile
record on the unit identified by u. The endfile record is a unique
record signifying a demarcation of a sequential file. Action is
undefined when an endfile record is encountered during execution
of a READ statement.

Communications of the ACM 605

7.1.3.3 Printing of Formatted Record. When formatted records
are prepared for printing, the first character of the record is not
printed.

The first character of such a record determines vertical spacing
as follows:

Character Vertical Spacing Before Printing
Blank One line
0 Two lines
1l To first line of next page
-+ No advance

7.2 NONEXECUTABLE STATEMENTS.
nonexecutable statements:
(1) Specification statements.
(2) Data initialization statement.
(3) FORMAT statement.
(4) Function defining statements.
(5) Subprogram statements.

See 10.1.2 for a discussion of restrictions on appearances of
symbolic names in such statements.

The function defining statements and subprogram statements
are discussed in Section 8.

7.2.1 Specification Statements. There are five types of specifi-
cation statements:

(1) DIMENSION statement.
(2) COMMON statement.

(3) EQUIVALENCE statement.
(4) EXTERNAL statement.

(5) Type-statements.

72.1.1 Array-Declarator. An array declarator specifies an
array used in a program unit.

The array declarator indicates the symbolic name, the number
of dimensions (one, two, or three), and the size of each of the
dimensions. The array declarator statement may be a type-state-
ment, DIMENSION, or COMMON statement.

An array declarator has the form:

There are five types of

v (2)

where:

(1) v, called the declarator name, is a symbolic name,

(2) (7), called the declarator subscript, is composed of 1, 2,
or 3 expressions, each of which may be an integer constant or an
integer variable name. Each expression is separated by a comma
from its successor if there are more than one of them. In the case
where 7 contains no integer variable, 7 is called the constant
declarator subscript.

The appearance of a declarator subscript in a declarator state-
ment serves to inform the processor that the declarator name is
an array name. The number of subsecript expressions specified for
the array indicates its dimensionality. The magnitude of the
values given for the subscript expressions indicates the maximum
value that the subscript may attain in any array element name.

No array element name may contain a subscript that, during
execution of the executable program, assumes a value less than
one or larger than the maximum length specified in the array
declarator.

7.2.1.1.1 Array Element Successor Function and Value of a Sub-
script. For a given dimensionality, subscript declarator, and
subscript, the value of a subscript pointing to an array element
and the maximum value a subscript may attain is indicated in
Table 2. A subscript expression must be greater than zero.

The value of the array element successor function is obtained
by adding one to the entry in the subscript value column. Any
array element whose subscript has this value is the successor to
the original element. The last element of the array is the one
whose subscript value is the maximum subscript value and has no
successor element.

606 Communications of the ACM

7.1.3.3 Printing of Formatted Records. When formatted rec-
ords are prepared for printing, the first character of such a record
is not printed.

7.2 NONEXECUTABLE STATEMENTs. There are four types of
nonexecutable statements:

(1) Specification statements.

(2) FORMAT statement.

(3) Function defining statements.

(4) Subprogram statements.

See 10.1.2 for a discussion of restrictions on appearances of
symbolic names in such statements.
The function defining statements and subprogram statements
are discussed in Section 8.
7.2.1 Specification Statements.
fication statements:
(1) DIMENSION statement.
(2) COMMON statement.
(3) EQUIVALENCE statement.

There are three types of speci-

7.2.1.1 Array Declarator. An array declarator specifies an
array used in a program unit.

The array declarator indicates the symbolic name, the number
of dimensions (one or two), and the size of each of the dimensions.

The array declarator statement is the DIMENSION statement.

An array declarator has the form:
v (2)

where:

(1) v, called the declarator name, is a symbolic name.

(2) (i), called the declarator subscript, is composed of an
integer constant or two integer constants separated by a comma.

The appearance of a declarator subseript in a declarator state-
ment serves to inform the processor that the declarator name is an
array name. The number of subscript expressions specified for
the array indicates its dimensionality. The magnitude of the
values given for the subscript expressions indicates the maximum
value that the subscript may attain in any array element name.

No array element name may contain a subscript that, during
execution of the executable program, assumes a value less than
one or larger than the maximum length specified in the array
declarator.

7.2.1.1.1 Array Element Successor Function and Value of a
Subscript. For a given dimensionality, subscript declarator, and
subscript, the value of a subsecript pointing to an array element
and the maximum value a subseript may attain are indicated in
Table 2. A subscript expression must be greater than zero.

The value of the array element successor function is obtained
by adding one to the entry in the subscript value column. Any
array element whose subscript has this value is the successor to
the original element. The last element of the array is the one whose
subscript value is the maximum subscript value and has no suc-
cessor element.

Volume 7 / Number 10 / October, 1964

TABLE 2. VALUE OF A SUBSCRIPT

TABLE 2. VALUE OF A SUBSCRIPT

Dimen | Subseritt | Supsripe | Subsripe Vobie | Vzimm s Dimen | St Subsript | Subsript vabne | Morimup S
1| @ (@) a A 1 (4) (@) 4
2 (4, B) (a, b) a4+ A-(b—1) A-B 2 (A, B) (a, b) a4+ A-(b—-1) A-B
3 ‘ (4, B,C) | (@, b,¢) | a+ A-(b—1) A-B-C
+ A-B-(c—1) Notes. (1) a and b are subscript expressions.
] (2) A and B are dimensions.

Notes. (1) a, b, and ¢ are subscript expressions.
(2) A, B, and C are dimensions.

7.2.1.1.2 Adjustable Dimension. If any of the entries in a
declarator subscript is an integer variable name, the array is
called an adjustable array, and the variable names are called
adjustable dimensions. Such an array may only appear in a sub-
program. The dummy argument list of the subprogram must con-
tain the array name and the integer variable names that represent
the adjustable dimensions. The values of the actual arguments
that represent array dimensions in the argument list of the ref-
erence must be defined (10.2) prior to calling the subprogram and
may not be redefined or undefined during execution of the sub-
program. The maximum size of the actual array may not be
exceeded. For every array appearing in an executable program
(9.1.6), there must be at least one constant array declarator
associated through subprogram references.

In a subprogram, a symbolic name that appears in a COMMON
statement may not identify an adjustable array.

7.2.1.2 DIMENSION Statement. A DIMENSION statement
is of the form:

DIMENSION v, (41), va(Z2), -+, va(ia)
where each v(7) is an array declarator.

7.2.1.3 COMMON Statement. A COMMON statement is of
the form:

COMMON /zi/ a1/« /@n/ an

where each a is a nonempty list of variable names, array names,
or array declarators (no dummy arguments are permitted) and
each z is a symbolic name or is empty. If z, is empty, the first
two slashes are optional. Each z is a block name, a name that
bears no relationship to any variable or array having the same
name. This holds true for any such variable or array in the same
or any other program unit. See 10.1.1 for a discussion of restric-
tions on uses of block names.

In any given COMMON statement, the entities occurring be-
tween block name z and the next block name (or the end of the
statement if no block name follows) are declared to be in common
block z. All entities from the beginning of the statement until
the appearance of a block name, or all entities in the statement
if no block name appears, are declared to be in blank or unlabeled
common. Alternatively, the appearance of two slashes with no
block name between them declares the entities that follow to be
in blank common.

A given common block name may occur more than once in a
COMDMION statement or in a program unit. The processor will
string together in a given common block all entities so assigned
in the order of their appearance (10.1.2). The first element of an
array will follow the immediately preceding entity, if one exists,
and the last element of an array will immediately precede the
next entity, if one exists.

The size of a common block in a program unit is the sum of
the storage required for the elements introduced through COM-
MON and EQUIVALENCE statements. The sizes of labeled
common blocks with the same label in the program units that
comprise an executable program must be the same. The sizes of
blank common in the various program units that are to be execu-
ted together need not be the same. Size is measured in terms of
storage units (7.2.1.3.1).

Volume 7 / Number 10 / October, 1964

7.2.1.1.2

7.2.1.2 DIMENSION Statement. A DIMENSION statement
is of the form:
DIMENSION v, (71), v2 (72), -
where each v (7) is an array declarator.
7.2.1.3 COMMON Statement. A COMMON statement is of
the form:

) Un (Tn)

COMMON @y, a2, *+, G
where each a is a variable name or an array name.

In any given COMMON statement, the entities occurring in
the list of variable names are declared to be in common.

More than one COMMON statement may appear in a program
unit. The processor will string together in common all entities so
assigned in the order of their appearance. The first element of an
array will follow the immediately preceding entity, if one exists,
and the last element of an array will immediately precede the next
entity if one exists.

The size of common in a program unit is the sum of the storage
required for the elements introduced through COMMON and
EQUIVALENCE statements. The size of common in the various
program units that are to be executed together need not be the
same. Size is measured in terms of storage units (7.2.1.3.1).

Communications of the ACM 607

7.21.3.1 Correspondence of Common Blocks. If all of the pro-
gram units of an executable program that contain any definition
of a common block of a particular name define that block such
that:

(1) There is identity in type for all entities defined in the
corresponding position from the beginning of that block,

(2) If the block is labeled and the same number of entities is
defined for the block, then the values in the corresponding posi-
tions (counted by the number of preceding storage units) are the
same quantity in the executable program.

A double precision or a complex entity is counted as two
logically consecutive storage units; a logical, real, or integer
entity, as one storage unit.

Then for common blocks with the same number of storage units
or blank common:

(1) In all program units which have defined the identical type
to a given position (counted by the number of preceding storage
units) references to that position refer to the same quantity.

(2) A correct reference is made to a particular position assum-
ing a given type if the most recent value assignment to that
position was of the same type.

7214 EQUIVALENCE Statement. An
statement is of the form:

EQUIVALENCE (ky), (k2), -+, (k)
in which each & is a list of the form:
ay , Q2+ , Ap.

Each « is either a variable name or an array element name (not
a dummy argument), the subscript of which contains only con-
stants, and m is greater than or equal to two. The number of sub-
script expressions of an array element name must correspond in
number to the dimensionality of the array declarator or must be
one (the array element successor function defines a relation by
which an array can be made equivalent to a one dimensional array
of the same length).

The EQUIVALENCE statement is used to permit the sharing
of storage by two or more entities. EKach element in a given list is
assigned the same storage (or part of the same storage) by the
processor. The EQUIVALENCE statement should not be used to
equate mathematically two or more entities. If a two storage unit
entity is equivalenced to a one storage unit entity, the latter will
share space with the first storage unit of the former.

The assignment of storage to variables and arrays declared
directly in a COMMON statement is determined solely by con-
sideration of their type and the COMMON and array declarator
statements. Entities so declared are always assigned unique
storage, contiguous in the order declared in the COMMON state-
ment.

The effect of an EQUIVALENCE statement upon common as-
signment may be the lengthening of a common block; the only such
lengthening permitted is that which extends a common block be-
yvond the last assignment for that block made directly by a COM-
MON statement.

When two variables or array clements share storage because of
the effects of KQUIVALENCIE statements, the symbolic names
of the variables or arrays in question may not both appear in
COMMON statements in the same program unit.

Information contained in 7.2.1.1.1, 7.2.1.3.1, and the present
section suffices to describe the possibilities of additional cases of
sharing of storage between array elements and entities of common
blocks. It is incorrect to cause either directly or indirectly a
single storage unit to contain more than one clement of the same
array.

7.2.1.5 EXTERNAL Statement.
is of the form:

EXTERNAL vy, v, ... , va
where each v is an external procedure name.

Appearance of a name in an EXTERNAL statement declares
that name to be an external procedure name. If an external pro-

EQUIVALENCE

An EXTERNAL statement

608 Communications of the ACM

7.2.1.3.1 Correspondence of Common Blocks.

If all of the pro-
gram units of an executable program that contain any definition
of common define common such that there is identity in type for
all entities defined in the corresponding position from the begin-
ning of common; then the values in the corresponding positions
are the same quantity in the executable program.

Each real or integer entity counts as one storage unit.

For common:

(1) In all program units that have defined the identical type
to a given position (counted by the number of preceding storage
units) references to that position refer to the same quantity.

(2) A correct reference is made to a particular position as-
suming a given type if the most recent value assignment to that
position was of the same type.

7.2.1.4 EQUIVALENCE Statement.
statement is of the form:

EQUIVALENCE (k1), (ke), ---
in which each k is a list of the form:
a,az, *-* , an

Each a is either a variable name or an array element name (not
a dummy argument), the subscript of which contains only con-
stants, and m is greater than or equal to two. The number of sub-
script expressions of an array element name must correspond in
number to the dimensionality of the array declarator or must be
one (the array element successor function defines a relation by
which an array can be made equivalent to a one dimensional array
of the same length).

The EQUIVALENCE statement is used to permit the sharing
of storage by two or more entities. Each element in a given list is
assigned the same storage (or part of the same storage) by the
processor. The EQUIVALENCE statement should not be used to
equate mathematically two or more entities.

An EQUIVALENCE

» (kn)

The assignment of storage to variables and arrays declared
directly in a COMMON statement is determined solely by
consideration of their type and the COMMON and array declara-
tor statements. Entities so declared are always assigned unique
storage, contiguous in the order declared in the COMMON state-
ment.

The effect of an EQUIVALENCE statement upon common
assignment may be the lengthening of common; the only such
lengthening permitted is that which extends common beyond the
last assignment for common made directly by a COMMON state-
ment.

When two variables or array elements share storage because of
the effects of EQUIVALENCE statements, the symbolic names
of the variables or arrays in question may not both appear in
COMMON statements in the same program unit.

Information contained in 7.2.1.1.1, 7.2.1.3.1, and the present
section suffices to describe the possibilities of additional cases of
sharing of storage between array elements and entities of common
blocks. It is incorrect to cause either directly or indirectly a single
storage unit to contain more than one element of the same array.

7.2.1.5

Volume 7 / Number 10 / October, 1964

cedure name is used as an argument to another external procedure,
it must appear in an EXTERNAL statement in the program unit
in which it is so used.

7.2.1.6 Type-statements. A type-statement is of the form:

t vy, Vo, v, Un

where ¢ is INTEGER, REAL, DOUBLE PRECISION, COM-
PLEX, or LOGICAL, and each v is a variable name, an array
name, a function name, or an array declarator.

A type-statement is used to override or confirm the implicit
typing, to declare entities to be of type double precision, com-
plex, or logical, and may supply dimension information.

The appearance of a symbolic name in a type-statement serves
to inform the processor that it is of the specified data type for
all appearances in the program unit.

7.2.2 Dala Initialization Statement.
statement is of the form:

A data initialization

DATA ki /di/ ,ka/d2/, -+, kn/ dn/
where:
(1) Each £k is a list containing names of variables and array
elements,

(2) Each d is a list of constants and optionally signed con-
stants, any of which may be preceded by j*,

(3) j is an integer constant.

If a list contains more than one entry, the entries are sep-
arated by commas.

Dummy arguments may not appear in the list £. Any subscript
expression must be an integer constant.

When the form j* appears before a constant it indicates that
the constant is to be specified j times. A Hollerith constant may
appear in the list d.

A data initialization statement is used to define initial values
of variables or array elements. There must be a one-to-one cor-
respondence between the list-specified items and the constants.
By this correspondence, the initial value is established.

An initially defined variable or array element may not be in
blank common. A variable or array element in a labeled common
block may be initially defined only in a block data subprogram.

7.2.3 FORMAT Statement. FORMAT statements are used
in conjunction with the input/output of formatted records to
provide conversion and editing information between the internal
representation and the external character strings.

A FORMAT statement is of the form:

FORMAT ((]1[121f222 e tnzn(IE)
where:

(1) (qitizitezs - -+ li2aqe) is the format specification.

(2) Each ¢ is a scries of slashes or is empty.

(3) Each ¢ is a field descriptor or group of field descriptors.

(4) Each z is a field separator.

(5) n may be zero.

A FORMAT statement must be labeled.

7.2.3.1 Field Descriptors. The format field descriptors are of
the forms:

srFw.d
srEw.d
srGuw.d
srDw.d

riw

rLw

rAw

nHhihs +++ hn
nX

where:

(1) The letters F, E, G, D, I, L, A, H, and X indicate the
manner of conversion and editing between the internal and ex-
ternal representations and are called the conversion codes.

(2) w and = are nonzero integer constants representing the
width of the field in the external character string.

Volume 7 / Number 10 / October, 1964

7.2.3 FORMAT Statement. FORMAT statements are used
in conjunction with the input/output of formatted records to
provide conversion and editing information between the internal
representation and the external character strings.

A FORMAT statement is of the form:

FOI{l\IAT ((11[1211222 CHCAD f,ﬂ,fjj)
where:
(1) (qutiz21t2z2 -+ - tazaq2) is the format specification.
(2) Each ¢ is a series of slashes or is empty.
(3) Each ¢t is a field descriptor or group of field descriptors.
(4) Each z is a field separator.
(5) n may be zero.

A FORMAT statement must be labeled.

7.2.3.1 Field Descriptors. The format field descriptors are of
the forms:

rFw.d

rEw.d

rIw

IIH}MIIQ sion: » h”
nX

where:

(1) The letters F, E, I, H, and X indicate the manner of
conversion and editing between the internal and external repre-
senations and are called the conversion codes.

(2) w and n are nonzero integer constants representing the
width of the field in the external character string.

Communications of the ACM 609

(3) d is an integer constant representing the number of digits
in the fractional part of the external character string (except
for G conversion code).

(4) r, the repeat count, is an optional nonzero integer con-
stant indicating the number of times to repeat the succeeding
basic field descriptor.

(5) s is optional and represents a scale factor designator.

(6) Each h is one of the characters capable of representation
by the processor.

For all descriptors, the field width must be specified. For
descriptors of the form w.d , the d must be specified, even if
it is zero. Further, w must be greater than or equal to d.

The phrase basic field descriptor will be used to signify the
field descriptor unmodified by s or r.

The internal representation of external fields will correspond
to the internal representation of the corresponding type constants
(4.2 and 5.1.1).

7.2.3.2 Field Separators. The format field separators are the
slash and the comma. A series of slashes is also a field separator.
The field descriptors or groups of field descriptors are separated
by a field separator.

The slash is used not only to separate field descriptors, but
to specify demarcation of formatted records. A formatted record
is a string of characters. The lengths of the strings for a given
external medium are dependent upon both the processor and the
external medium.

The processing of the number of characters that can be con-
tained in a record by an external medium does not of itself cause
the introduction or inception of processing of the next record.

7.2.3.3 Repeat Specifications. Repetition of the field de-
scriptors (except nH and nX) is accomplished by using the repeat
count. If the input/output list warrants, the specified conversion
will be interpreted repetitively up to the specified number of
times.

Repetition of a group of field descriptors or field separators
is accomplished by enclosing them within parentheses and op-
tionally preceding the left parenthesis with an integer constant
called the group repeat count indicating the number of times to
interpret the enclosed grouping. If no group repeat count is
specified, a group repeat count of one is assumed. This form of
grouping is called a basic group.

A further grouping may be formed by enclosing field descrip-
tors, field separators, or basic groups within parentheses. Again,
a group repeat count may be specified. The parentheses enclosing
the format specification are not considered as group delineating
parentheses.

7.2.3.4 Format Control Interaction with an Input/Output List.
The inception of execution of a formatted READ or formatted
WRITE statement initiates format control. Each action of format
control depends on information jointly provided respectively by
the next element of the input/output list, if one exists, and the
next field descriptor obtained from the format specification. If
there is an input/output list, at least one field descriptor other
than nH or nX must exist.

When a READ statement is executed under format control,
one record is read when the format control is initiated, and there-
after additional records are read only as the format specification
demands. Such action may not require more characters of a
record than it contains.

When a WRITE statement is executed under format control,
writing of a record occurs each time the format specification
demands that a new record be started. Termination of format
control causes writing of the current record.

Except for the effects of repeat counts, the format specification
is interpreted from left to right.

To each I, F, E, G, D, A, or L basic descriptor interpreted in
a format specification, there corresponds one element specified
by the input/output list, except that a complex element requires
the interpretation of two F, E, or G basic descriptors. To each

610 Communications of the ACM

(3) disan integer constant representing the number of digits
in the fractional part of the external character string.

(4) r, the repeat count, is an optional nonzero integer con-
stant indicating the number of times to repeat the succeeding
basic field descriptor.

(5) Each h is one character.

For all descriptors, the field width must be specified. For de-
scriptors of the form w.d, the d must be specified, even if it is
zero. Further, w must be greater than or equal to d.

The phrase basic field descriptor will be used to signify the
field descriptor unmodified by 7.

The internal representation of external fields will correspond
to the internal representation of the corresponding type con-
stants (4.2 and 5.1.1).

7.2.3.2 Field Separators. The format field separators are the
slash and the comma. A series of slashes is also a field separator.
The field descriptors or groups of field descriptors are separated
by a field separator.

The slash is used not only to separate field descriptors, but to
specify demarcation of formatted records. A formatted record is a
string of characters. The lengths of the strings for a given external
medium are dependent upon both the processor and the external
medium.

The processing of the number of characters that can be con-
tained in a record by an external medium does not of itself cause
the introduction or inception of processing of the next record.

7.2.3.3 Repeat Specifications. Repetition of the field descrip-
tors (except nH and nX) is accomplished by using the repeat
count. If the input/output list warrants, the specified conversion
will be interpreted repetitively up to the specified number of times.

Repetition of a group of field descriptors or field separators is
accomplished by enclosing them within parentheses and optionally
preceding the left parenthesis with an integer constant called the
group repeat count indicating the number of times to interpret
the enclosed grouping. If no group repeat count is specified, a
group repeat count of one is assumed. This form of grouping i8
called a basic group.

7.2.3.4 Format Control Interaction with an Input/Output List.
The inception of execution of a formatted READ or formatted
WRITE statement initiates format control. Each action of format
control depends on information jointly provided respectively by
the next element of the input/output list, if one exists, and the
next field descriptor obtained from the format specification. If
there is an input/output list, at least one field descriptor other
than nH or nX must exist.

When a READ statement is executed under format control,
one record is read when the format control is initiated, and there-
after additional records are read only as the format specification
demands. Such action may not require more characters of a record
than it contains.

When a WRITE statement is executed under format control,
writing of a record occurs each time the format specification
demands that a new record be started. Termination of format
control causes writing of the current record.

Except for the effects of repeat counts, the format specification
is interpreted from left to right.

Toeach I, F, or E basic descriptor interpreted in a format speci-
fication, there corresponds one element specified by the input/
output list. To each H or X basic descriptor there is no corre-
sponding element specified by the input/outputlist, and the format

Volume 7 / Number 10 / October, 1964

H or X basic descriptor there is no corresponding element specified
by the input/output list, and the format control communicates
information directly with the record. Whenever a slash is en-
countered, the format specification demands that a new record
start or the preceding record terminate. During a READ opera-
tion, any unprocessed characters of the current record will be
skipped at the time of termination of format control or when a
slash is encountered.

Whenever the format control encounters an I, F, E, G, D, A,
or L basic descriptor in a format specification, it determines if
there is a corresponding element specified by the input/output
list. If there is such an element, it transmits appropriately con-
verted information between the element and the record and
proceeds. If there is no corresponding element, the format control
terminates.

If, however, the format control proceeds to the last outer
right parenthesis of the format specification, a test is made to
determine if another list element is specified. If not, control
terminates. However, if another list element is specified, the
format control demands a new record start and control reverts
to that group repeat specification terminated by the last pre-
ceding right parenthesis, or if none exists, then to the first left
parenthesis of the format specification. Note, this action of
itself has no effect on the scale factor.

7.2.3.5 Scale Factor. A scale factor designator is defined for
use with the F, E, G, and D conversions and is of the form:

nP
where 7, the scale factor, is an integer constant or minus followed
by an integer constant.

When the format control is initiated, a scale factor of zero is
established. Once a scale factor has been established, it applies
to all subsequently interpreted F, E, G, and D field descriptors,
until another scale factor is encountered, and then that scale
factor is established.

7.2.3.5.1 Scale Factor Effects. The scale factor n affects the
appropriate conversions in the following manner:

(1) For F, E, G, and D input conversions (provided no ex-
ponent exists in the external field) and F output conversions, the
scale factor effect is as follows:

externally represented number equals internally
represented number times the quantity ten raised
to the nth power.

(2) For F, E, G, and D input, the scale factor has no effect
if there is an exponent in the external field.

(3) For E and D output, the basic real constant part of the
output quantity is multiplied by 10" and the exponent is reduced
by n.

(4) For G output, the effect of the scale factor is suspended
unless the magnitude of the datum to be converted is outside
the range that permits the effective use of F conversion. If the
effective use of E conversion is required, the scale factor has the
same effect as with E output.

7.2.3.6 Numeric Conversions. The numeric field descriptors
I, F, E, G, and D are used to specify input/output of integer,
real, double precision, and complex data.

(1) With all numeric input conversions, leading blanks are
not significant and other blanks are zero. Plus signs may be
omitted. A field of all blanks is considered to be zero.

(2) With the F, E, G, and D input conversions, a decimal
point appearing in the input field overrides the decimal point
specification supplied by the field descriptor.

(3) With all output conversions, the output field is right
justified. If the number of characters produced by the conversion
is smaller than the field width, leading blanks will be inserted
in the output field.

(4) With all output conversions, the external representation
of a negative value must be signed; a positive value may be signed.

Volume 7 / Number 10 / October, 1964

control eommunicates information directly with the record. When-
ever a slash is encountered, the format specification demands
that a new record start or the preceding record terminate. During
a READ operation, any unprocessed characters of the current
record will be skipped at the time of termination of format control
or when a slash is encountered.

Whenever the format control encounters an I, F, or E basic
descriptor in a format specification, it determines if there is a
corresponding element specified by the input/output list. If there
is such an element, it transmits appropriately converted informa-
tion between the element and the record and proceeds. If there is
no corresponding element, the format control terminates.

If, however, the format control proceeds to the last outer right
parenthesis of the format specification, a test is made to deter-
mine if another list element is specified. If not, control terminates.
However, if another list element is specified, the format control
demands a new record start and control reverts to that group re-
peat specification terminated by the last preceding right paren-
thesis, or if none exists, then to the first left parenthesis of the
format specification.

7.2.3.5

7.2.3.6 Numeric Conversions. The numeric field descriptors
I, F, and E are used to specify input/output of integer and real
data.

(1) In numeric input fields blanks are permitted only to the
left of the first nonblank character or between the sign of the field
and the next nonblank character. Such blanks are treated as
zero in conversion. Plus signs may be omitted. A field of all blanks
is considered to be zero.

(2) With the F and E input conversions, a decimal point
appearing in the input field overrides the specification supplied
by the field descriptor.

(3) With all output conversions, the output field is right
justified. If the number of characters produced by the conversion
is smaller than the field width, leading blanks will be inserted in
the output field.

(4) With all output conversions, the external representation
of a negative value must be signed; a positive value may be signed.

Communications of the ACM 611

(3) The number of characters produced by an output con-
version must not exceed the field width.

7.2.3.6.1 Integer Conversion. The numeric field descriptor Iw
indicates that the external field occupies w positions as an integer.
The value of the list item appears, or is to appear, internally as
an integer datum.

In the external input field, the character string must be in the
form of an integer constant or signed integer constant (5.1.1.1),
except for the interpretation of blanks (7.2.3.6).

The external output field consists of blanks, if necessary,
followed by a minus if the value of the internal datum is negative,
or an optional plus otherwise, followed by the magnitude of the
internal value converted to an integer constant.

7.2.3.6.2 Real Conversions. There are three conversions
available for use with real data: F, E, and G.

The numeric field descriptor Fw.d indicates that the external
field occupies w positions, the fractional part of which consists
of d digits. The value of the list item appears, or is to appear,
internally as a real datum.

The basic form of the external input field consists of an op-
tional sign, followed by a string of digits optionally containing
a decimal point. The basic form may be followed by an exponent
of one of the following forms:

(1) Signed integer constant.

(2) E followed by an integer constant.

(3) E followed by a signed integer constant.

(4) D followed by an integer constant.

(5) D followed by a signed integer constant.

An exponent containing D is equivalent to an exponent con-
taining E.

The external output field consists of blanks, if necessary,
followed by a minus if the internal value is negative, or an op-
tional plus otherwise, followed by string of digits containing a
decimal point representing the magnitude of the internal value,
as modified by the established scale factor, rounded to d frac-
tional digits.

The numeric field descriptor Ew.d indicates that the ex-
ternal field occuptes w positions, the fractional part of which
consists of d digits. The value of the list item appears, or is to
appear, internally as a real datum.

The form of the external input field is the same as for the F
conversion.

The standard form of the external output field for a scale
factor of zero is!

£0.x; - Y
where:

(1) zy --- x4 are the d most significant rounded digits of the
value of the data to be output.

(2) Y is of one of the forms:

E + nye
or
Y12y
and has the significance of a decimal exponent (an alternative
for the plus in the first of these forms is the character blank).

(3) The digit 0 in the aforementioned standard form may
optionally be replaced by no character position.

(4) Each y is a digit.

The scale factor n» controls the decimal normalization between
the number part and the exponent part such that:

1) If n < 0, there will be exactly —n leading zeros and d+n
significant digits after the decimal point.

(2) If n > 0, there will be exactly n significant digits to the
left of the decimal point and d—n+1 to the right of the decimal
point.

The numeric field descriptor Guw.d indicates that the ex-
ternal field occupies w positions with d significant digits. The

1¢ signifies no character position or minus in that position.

612 Communications of the ACM

(5) The number of characters produced by an output con-
version must not exceed the field width.

7.2.3.6.1 Integer Conversion. The numeric field descriptor
Iw indicates that the external field occupies w positions as an
integer. The value of the list item appears, or is to appear, inter-
nally as an integer datum.

In the external input field, the character string must be in the
form of an integer constant or signed integer constant (5.1.1.1),
except for the interpretation of blanks (7.2.3.6).

The external output field consists of blanks, if necessary, fol-
lowed by a minus if the value of the internal datum is negative, or
an optional plus otherwise, followed by the magnitude of the inter-
nal value converted to an integer constant.

7.2.3.6.2 Real Conversions. There are two conversions avail-
able for use with real data: F and E.

The numeric field descriptor Fw.d indicates that the external
field occupies w positions, the fractional part of which consists
of d digits. The value of the list item appears, or is to appear,
internally as a real datum.

The external input field consists of an optional sign, followed
by a string of digits optionally containing a decimal point.

The external output field consists of blanks, if necessary, fol-
lowed by a minus if the internal value is negative, or an optional
plus otherwise, followed by a string of digits containing a decimal
point representing the magnitude, to d fractional digits, of the
internal value.

The numeric field descriptor Ew.d indicates that the external
field occupies w positions, the fractional part of which consists of
d digits. The value of the list item appears, or is to appear, inter-
nally as a real datum.

The basic form of the external input field is the same as for the
F conversion. The basic form may be followed by an exponent of
one of the following forms:

(1) Signed integer constant.
(2) E followed by an integer constant.
(3) E followed by a signed integer constant.

The standard form of the external output field is!
8.2 -+ 1Y
where:
(1) =z --- x4 are the d most significant digits of the value
of the data to be output.
(2) Y is of the form:
E £+ iy
and has the significance of a decimal exponent (an alternative for
the plus in the first of these forms is the character blank).
(3) Each y is a digit.

1 £ signifies no character position or minus in that position.

Volume 7 / Number 10 / October, 1964

value of the list item appears, or is to appear, internally as a
real datum.

Input processing is the same as for the F conversion.

The method of representation in the external output string
is a function of the magnitude of the real datum being converted.
Let N be the magnitude of the internal datum. The following
tabulation exhibits a correspondence between N and the equiv-
alent method of conversion that will be effected:

Magnitude of Datum Equivalent Conversion Effected

01=N<1 F(w—4).d, 4X
1=<N<10 F(w—4).(d—1), 4X
1042 £ N < 104 Fw—4).1, 4X
1041 = N < 104 F(w—4).0, 4X
Otherwise sEw.d

Note that the effect of the scale factor is suspended unless the
magnitude of the datum to be converted is outside of the range
that permits effective use of F conversion.

7.2.3.6.3 Double Precision Conversion. The numeric field
descriptor Dw.d indicates that the external field occupies w
positions, the fractional part of which consists of d digits. The
value of the list item appears, or is to appear, internally as a
double precision datum.

The basic form of the external input field is the same as for
real conversions.

The external output field is the same as for the E conversion,
except that the character D may replace the character E in the
exponent.

7.2.3.6.4 Complex Conversion. Since a complex datum con-
sists of a pair of separate real data, the conversion is specified
by two successively interpreted real field descriptors. The first
of these supplies the real part. The second supplies the imaginary
part.

7.2.3.7 Logical Conversion. The logical field descriptor Lw
indicates that the external field occupies w positions as a string
of information as defined below. The list item appears, or is to
appear, internally as a logical datum.

The external input field must consist of optional blanks fol-
lowed by a T or F followed by optional characters, for
true and false, respectively.

The external output field consists of w—1 blanks followed by
a T or F as the value of the internal datum is true or false,
respectively.

7.2.3.8 Hollerith Field Descriptor. Hollerith information may
be transmitted by means of two field descriptors, nH and
Aw

(1) The nH descriptor causes Hollerith information to be
read into, or written from, the n characters (including blanks)
following the nH descriptor in the format specification itself.

(2) The Aw descriptor causes w Hollerith characters to be
read into, or written from, a specified list element.

Let g be the number of characters representable in a single
storage unit (7.2.1.3.1). If the field width specified for A input
is greater than or equal to g, the rightmost g characters will be
taken from the external input field. If the field width is less than
g, the w characters will appear left justified with w—g¢ trailing
blanks in the internal representation.

If the field width specified for A output is greater than g, the
external output ficld will consist of w—g blanks, followed by
the g characters fvam the internal representation. If the field
width is less than or o jual tu 4. the external output field will
consist of the leftmost w char:~torz from the internal repre-
sentation.

7.2.3.9 Blank Field Descriptor. The field descriptor for
blanks is #X . On input, n characters of the external input
record are skipped. On output, n blanks are inserted in the ex-
ternal output record.

Volume 7 / Number 10 / October, 1964

7.2.3.6.3

7.2.3.6.4

7.2.3.8 Hollerith Field Descriptor. Hollerith information
may be transmitted by means of the field descriptor nH.

The nH descriptor causes Hollerith information to be read into,
or written from, the n characters (including blanks) following the
nH descriptor in the format specification itself.

7.2.3.9 Blank Field Descriptor. The field descriptor for blanks
is nN. On input, n characters of the external input record are
skipped. On output, n blanks are inserted in the external output
record.

Communications of the ACM 613

7.2.3.10 Format Specification in Arrays. Any of the formatted
input/output statements may contain an array name in place
of the reference to a FORMAT statement label. At the time an
array is referenced in such a manner, the first part of the in-
formation contained in the array, taken in the natural order,
must constitute a valid format specification. There is no require-
ment on the information contained in the array following the
right parenthesis that ends the format specification.

The format specification which is to be inserted in the array
has the same form as that defined for a FORMAT statement;
that is, begins with a left parenthesis and ends with a right paren-
thesis. An nH field descriptor may not be part of a format spec-
ification within an array.

8. PROCEDURES AND SUBPROGRAMS

There are four categories of procedures: statement functions,
intrinsic functions, external functions, and external subroutines.
The first three categories are referred to collectively as functions
or function procedures; the last as subroutines or subroutine
procedures. There are two categories of subprograms: procedure
subprograms and specification subprograms. Function subpro-
grams and subroutine subprograms are classified as procedure
subprograms. Block data subprograms are classified as specifica-
tion subprograms. Type rules for function procedures are given
in 5.3.

8.1 SrtareMeENT FUuncTiONs. A statement function is defined
internally to the program unit in which it is referenced. It is
defined by a single statement similar in form to an arithmetic
or logical assignment statement.

In a given program unit, all statement function definitions
must precede the first executable statement of the program unit
and must follow the specification statements, if any. The name
of a statement function must not appear in an EXTERNAL
statement, nor as a variable name or an array name in the same
program unit.

8.1.1 Defining Statement Functions. A statement function
is defined by a statement of the form:

f(alyazx"'yaﬂ)‘:e

where f is the function name, e is an expression, and the relation-
ship between f and e must conform to the assignment rules in
7.1.1.1 and 7.1.1.2. The a’s are distinct variable names, called
the dummy arguments of the function. Since these are dummy
arguments, their names, which serve only to indicate type, num-
ber, and order of arguments, may be the same as variable names
of the same type appearing elsewhere in the program unit.

Aside from the dummy arguments, the expression ¢ may only
contain:

(1) Non-Hollerith constants.

(2) Variable references.

(3) Intrinsic function references.

(4) References to previously defined statement functions.
(5) External function references.

8.1.2 Referencing Statement Functions. A statement function
is referenced by using its reference (5.2) as a primary in an arith-
metic or logical expression. The actual arguments, which con-
stitute the argument list, must agree in order, number, and type
with the corresponding dummy arguments. An actual argument
in a statement function reference may be any expression of the
same type as the corresponding dummy argument.

Execution of a statement function reference results in an
association (10.2.2) of actual argument values with the corre-
sponding dummy arguments in the expression of the function
definition, and an evaluation of the expression. Following this,
the resultant value is made available to the expression that con-
tained the function reference.

614 Communications of the ACM

7.2.3.10

8. PROCEDURES AND SUBPROGRAMS

There are four categories of procedures: statement functions,
intrinsic functions, external functions, and external subroutines.
The first three categories are referred to collectively as functions
or function procedures; the last as subroutines or subroutine
procedures. Function subprograms and subroutine subprograms
are classified as procedure subprograms. Type rules for function
procedures are given in 5.3.

8.1 StATEMENT FUNcTIONS. A statement function is defined
internally to the program unit in which it is referenced. It is de-
fined by a single statement similar in form to an arithmetic as-
signment statement.

In a given program unit, all statement function definitions must
precede the first executable statement of the program unit and
must follow the specification statements, if any. The namé of a
statement function must not appear as a variable name or an
array name in the same program unit.

8.1.1 Defining Statement Functions. A statement function is
defined by a statement of the form:

f(al»aZ:"')aﬂ)=e

where f is the function name, e is an expression, and the relation-
ship between f and e must conform to the assignment rules
in 7.1.1.1. The a’s are distinct variable names, called the dummy
arguments of the function. Since these are dummy arguments,
their names, which serve only to indicate type, number, and order
of arguments, may be the same as variable names of the same type
appearing elsewhere in the program unit.

Aside from the dummy arguments, the expression e may only
contain:

(1) Constants.

(2) Variable references.

(3) Intrinsic function references.

(4) References to previously defined statement functions.
(5) External function references.

8.1.2 Referencing Statement Functions. A statement function
is referenced by using its reference (5.2) as a primary in an arith-
metic expression. The actual arguments, which constitute the
argument list, must agree in order, number, and type with the
corresponding dummy arguments. An actual argunent in a state-
ment function reference may be any expression of the same type
as the corresponding dummy argument.

Execution of a statement function reference results in an asso-
ciation (10.2.2.) of actual argument values with the corresponding
dummy arguments in the express on of the function definition,
and an evaluation of the expression. Following this, the resultant
value is made available to the expression that contained the func-
tion reference.

Volume 7 / Number 10 / October, 1964

8.2 IntrINsIC FuNcTiONs AND THEIR REFERENCE. The sym-
bolic names of the intrinsic functions (see Table 3) are predefined
to the processor and have a special meaning and type if the name
satisfies the conditions of 10.1.7.

An intrinsic function is referenced by using its reference as a
primary in an arithmetic or logical expression. The actual argu-
ments, which constitute the argument list, must agree in type,
number, and order with the specification in Table 3 and may be
any expression of the specified type. The intrinsic functions
AMOD, MOD, SIGN, ISIGN, and DSIGN are not defined when
the value of the second argument is zero.

Execution of an intrinsic function reference results in the
actions specified in Table 3 based on the values of the actual
arguments. Following this, the resultant value is made available
to the expression that contained the function reference.

8.3 ExteErNAL FunNcrions. An external function is defined
externally to the program unit that references it. An external
function defined by ForTraN statements headed by a FUNC-
TION statement is called a function subprogram.

8.3.1 Defining Function Subprograms. A FUNCTION state-
ment is of the form:

t FUNCTION f (a1,az, -+, Gn)
where:
(1) ¢ is either INTEGER, REAL, DOUBLE PRECISION,
COMPLEX, or LOGICAL, or is empty.
(2) f is the symbolic name of the function to be defined.
(3) The a’s, called the dummy arguments, are each either a
variable name, an array name, or an external procedure name.

Function subprograms are constructed as specified in 9.1.3
with the following restrictions:

(1) The symbolic name of the function must also appear as
a variable name in the defining subprogram. During every execu-

tion of the subprogram, this variable must be defined and, once-

defined, may be referenced or redefined. The value of the variable
at the time of execution of any RETURN statement in this sub-
program is called the value of the function.

(2) The symbolic name of the function must not appear in
any nonexecutable statement in this program unit, except as
the symbolic name of the function in the FUNCTION statement.

(3) The symbolic names of the dummy arguments may not
appear in an EQUIVALENCE, COMMON, or DATA statement
in the function subprogram.

(4) The function subprogram may define or redefine one or
more of its arguments so as to effectively return results in addi-
tion to the value of the function.

(5) The function subprogram may contain any statements
except BLOCK DATA, SUBROUTINE, another FUNCTION
statement, or any statement that directly or indirectly references
the function being defined.

(6) The function subprogram must contain at least one RE-
TURN statement.

8.3.2 Referencing External Functions. An external function
is referenced by using its reference (5.2) as a primary in an arith-
metic or logical expression. The actual arguments, which con-
stitute the argument list, must agree in order, number, and type
with the corresponding dummy arguments in the defining pro-
gram unit. An actual argument in an external function reference
may be one of the following:

(1) A variable name.

(2) An array element name.

(3) An array name.

(4) Any other expression.

(5) The name of an external procedure.

If an actual argument is an external function name or a sub-
routine name, then the corresponding dummy argument must
be used as an external function name or a subroutine name, re-
spectively.

Volume 7 / Number 10 / October, 1964

bolic names of the intrinsic functions (see Table 3) are prede
to the processor and have a special meaning and type if the nalie
satisfies the conditions of 10.1.7.

An intrinsic function is referenced by using its reference as a
primary in an arithmetic expression. The actual arguments, which
constitute the argument list, must agree in type, number, and
order with the specification in Table 3 and may be any expression
of the specified type. The intrinsic functions SIGN and ISIGN
are not defined when the value of the second argument is zero.

Execution of an intrinsic function reference results in the
actions specified in Table 3 based on the values of the actual argu-
ments. Following this, the resultant value is made available to
the expression that contained the function reference.

8.2 InTrINsSIC FuNcrions aAND THEIR REFERENCE. The ?Q

8.3 ExTErRNAL FuNcTiONs. An external function is defined
externally to the program unit that references it. An external
function defined by ForTraN statements headed by a FUNC-
TION statement is called a function subprogram.

8.3.1 Defining Function Subprograms. A FUNCTION state-
ment is of the form:

FUNCTION f (a1, as, *++ , an)
where:
(1) fis the symbolic name of the function to be defined.
(2) The a’s, called the dummy arguments, are each either a
variable name or an array name.

Function subprograms are constructed as specified in 9.1.3
with the following restrictions:

(1) The symbolic name of the function must also appear as a
variable name in the defining subprogram. During every ex
tion of the subprogram, this variable must be defined and, o
defined, may be referenced or redefined. The value of the variable
at the time of execution of any RETURN statement in this sub-
program is called the value of the function.

(2) The symbolic name of the function must not appear in
any nonexecutable statement in this program unit, except as the
symbolic name of the function in the FUNCTION statement.

(3) The symbolic names of the dummy arguments may not
appear in an EQUIVALENCE or COMMON statement in the
function subprogram.

(4) The function subprogram may not define or redefine
any of its arguments nor any entity in common.

(5) The function subprogram may contain any statements
except SUBROUTINE, another FUNCTION statement, or any
statement that directly or indirectly references the function being
defined.

(6) The function subprogram must contain at least one RE-
TURN statement.

8.3.2 IReferencing External Functions. An external function is
referenced by using its reference (5.2) as a primary in an arith-
metic expression. The actual arguments, which constitute the
argument list, must agree in order, number, and type with the
corresponding dummy arguments in the defining program unit.
An actual argument in an external function reference may be one
of the following:

(1) A variable name.

(2) An array element name.

(3) An array name.

(4) Any other expression.

Execution of an external function reference as describeg
the foregoing, results in an association (10.2.2) of actual arguments
with all appearances of dummy arguments in executable state-
ments and function definition statements. If the actual argument

Communications of the ACM 615

TABLE 3. IntrINsic FuncTIiONS
\ J :
Number| Swibali Type of:
Intrinsic Function Definition of Argu- %’Z 036,
ments | 1Y Ome 3
‘ | Argument Function
Absolute Value | a | 1 ABS Real Real
| IABS Integer Integer
DABS Double Double
Truncation Sign of a times 1 AINT Real Real
largest integer INT Real Integer
< lal| IDINT Double Integer
Remaindering* a1 (mod as) 2 AMOD Real Real
(see note below) MOD Integer Integer
Choosing Largest | Max (a1, az, -+) >2 AMAXO0 Integer Real
Value AMAX1 Real Real
MAXO0 Integer Integer
MAX1 Real Integer
DMAX1 Double | Double
Choosing Smallest| Min (a1, a2, *+*) >2 AMINO Integer Real
Value AMINI1 Real Real
MINO Integer Integer
MIN1 Real Integer
DMINI1 Double Double
Float Conversion from 1 FLOAT Integer Real
integer to real
Fix Conversion from 1 IFIX Real Integer
real to integer
Transfer of Sign Sign of a2 times 2 SIGN Real Real
|ar| ISIGN Integer Integer
DSIGN Double Double
Positive Differ- a1 — Min (a1, a2) 2 DIM Real Real
ence IDIM Integer Integer
Obtain Most Sig- 1 SNGL Double Real
nificant Part of
Double Preci-
sion Argument
Obtain Real Part 1 REAL Complex Real
of Complex Ar-
gument
Obtain Imagi- 1 AIMAG Complex | Real
nary Part of
Complex Argu-
ment
Express Single 1 DBLE Real Double
Precision Argu-
ment in Double
Precision Form
Express Two Real| a1+ ax/=1 2 CMPLX | Real Complex
Arguments in
Complex Form
Obtain Conjugate 1 CONJG Complex Complex
of a Complex
Argument

TABLE 3.

InTRINSIC FUNC™T

INS

7 Type of:
- Number :
s | pamion |yl Sl |
Argument Function
Absolute la| 1 ABS Real Real
Value IABS Integer | Integer
Float Conversion 1 FLOAT | Integer | Real
from in-
teger to
real
Fix Conversion 1 IFIX Real Integer
from real
to integer
Transfer of | Sign of a. 2 SIGN Real Real
Sign times a, ISIGN Integer | Integer

* The function MOD or AMOD (a1, a2) is defined as a1 — [a1/az]az, where [z] is the
integer whose magnitude does not exceed the magnitude of z and whose sign is the
same as 7.

If an actual argument corresponds to a dummy argument that
is defined or redefined in the referenced subprogram, the actual
argument must be a variable name, an array element name, or
an array name. Execution of an external function reference as
described in the foregoing, results in an association (10.2.2) of
actual arguments with all appearances of dummy arguments in
executable statements, function definition statements, and as

616

Communications of the ACM

is as specified in item (4) in the foregoing, this association is by
value rather than by name. Following these associations, execu-
tion of the first executable statement of the defining subprogram is
undertaken.

An actual argument that is an array element name containing
variables in the subscript could in every case be replaced by the
same array name with a constant subscript containing the same
values as would be derived by computing the variable subsecript
just before the association of arguments took place.

If a dummy argument of an external function is an array name,

~orresponding actual argument must be an array name.

Volume 7 / Number 10 / October, 1964

adjustable dimensions in the defining subprogram. If the actual
argument is as specified in item (4) in the foregoing, this associa-
tion is by value rather than by name. Following these associa-
tions, execution of the first executable statement of the defining
subprogram is undertaken. An actual argument which is an
array :lement name containing variables in the subscript could
in every case be replaced by the same argument with a constant
subseript containing the same values as would be derived by
computing the variable subseript just before the association of
arguments takes place.

If a dummy argument of an external function is an array name,
the corresponding actual argument must be an array name or
array element name (10.1.3).

If a function reference causes a dummy argument in the refer-
enced function to become associated with another dummy argu-
ment in the same function or with an entity in common, a defini-
tion of either within the function is prohibited.

Unless it is a dummy argument, an external function is also
referenced (in that it must be defined) by the appearance of its
symbolic name in an EXTERNAL statement.

8.3.3 Basic External Functions. FORTRAN processors must
supply the external functions listed in Table 4. Referencing of
these functions is accomplished as described in (8.3.2). Arguments
for which the result of these functions is not mathematically
defined or is of type other than that specified are improper.

8.4 SUBROUTINE. An external subroutine is defined externally
to the program unit that references it. An external subroutine
defined by ForTraN statements headed by a SUBROUTINE
statement is called a subroutine subprogram.

8.3.3 Basic External Functions. FORTRAN processors must
supply the external functions listed in Table 4. Referencing of
these functions is accomplished as described in 8.3.2. Arguments
for which the result of these functions is not mathematically
defined or is of type other than that specified are improper.

8.4 SUBROUTINE. An external subroutineis defined externally
to the program unit that references it. An external subroutine
defined by ForTraN statements headed by a SUBROUTINE
statement is called a subroutine subprogram.

TABLE 4. Basic EXTErNAL FuNcTIONS

- Type of:
. Number .
Basic External e Symbolic
Function Definition o_/;’;‘:’rﬁsu- Name
Argument | Function
Exponential €% 1 EXP Real [Real
1 DEXP Double Double
1 CEXP Complex Complex
Natural Loga- log. (a) 1 ALOG Real Real
rithm 1 DLOG Double Double
1 CLOG Complex | Complex
Common Loga- logio (a) 1 ALOGI10 Real Real
rithm DLOG10 Double Double
Trigonometric sin (a) 1 SIN Real Real
Sine 1 DSIN Double Double
1 CSIN Complex | Complex
Trigonometric cos (a) 1 COS Real } Real
Cosine 1 DCOS Double Double
|1 | ccos Complex | Complex
|
Hyperbolic tanh (a) 1 | TANH Real Real
Tangent
Square Root (a)r/2 | 1 SQRT ’ Real Real
1 DSQRT | Double Double
1 CSQRT l Complex | Complex
Arctangent | arctan (a) 1 l Real Real
1 | Double Double
arctan (a1/az) 2] Real Real
2 ‘ Double Double
Remaindering* a1 (mod az) 2 Double Double
Modulus 1 CABS Complex Real

* The function DMOD (a1, a2) is defined as a1 — [ai/az]az, where [z] is the integer
whose magnitude does not exceed the magnitude of z and whose sign is the same as
the sign of z.

VYolume 7 / Number 10 / October, 1964

TABLE 4. Basic ExternaL Funcrions ‘
]\' b ‘ Type of:
1 cler L. Numoer .
BaSFﬁ'ﬁﬁ:nﬂal Defimition afmé;fsu— S.{?ﬁrﬁu l drgic- | Rines
‘ ment lion
Exponential e 1 EXP Real | Real
i
Natural loga- log. (a) 1 ALOG Real | Real
rithm
Trigonometric sine (a) 1 SIN Real l Real
sine
|
Trignometric cos (a) 1 COS Real \ Real
cosine ; ;
‘ I ;
Hyperbolic tanh (a) 1 TANH ‘ Real | Real
tangent | | |
Square Root (a)v? ‘ 1 SQRT Real | Real
|
Arctangent arctan(a) | 1 ATAN | Real ‘ Real
Communications of the ACM 617

8.4.1 Defining Subroutine Subprograms. A SUBROUTINE

statement is of one of the forms:
SUBROUTINE s (a1, a2, *++ , an)
or

SUBROUTINE s
where:

(1) s is the symbolic name of the subroutine to be defined.

(2) The a’s, called the dummy arguments, are each either
a variable name, an array name, or an external procedure name.

Subroutine subprograms are constructed as specified in 9.1.3
with the following restrictions:

(1) The symbolic name of the subroutine must not appear in
any statement in this subprogram except as the symbolic name
of the subroutine in the SUBROUTINE statement itself.

(2) The symbolic names of the dummy arguments may not
appear in an EQUIVALENCE, COMMON, or DATA statement
in the subprogram.

(3) The subroutine subprogram may define or redefine one
or more of its arguments so as to effectively return results.

(4) The subroutine subprogram may contain any statements
except BLOCK DATA, FUNCTION, another SUBROUTINE
statement, or any statement that directly or indirectly references
the subroutine being defined.

(5) The subroutine subprogram must contain at least one
RETURN statement.

8.4.2 Referencing Subroutines. A subroutine is referenced by
a CALL statement (7.1.2.4). The actual arguments, which con-
stitute the argument list, must agree in order, number, and type
with the corresponding dummy arguments in the defining pro-
gram. The use of a Hollerith constant as an actual argument is
an exception to the rule requiring agreement of type. An actual
argument in a subroutine reference may be one of the following:

(1) A Hollerith constant.

(2) A variable name.

(3) An array element name.

(4) An array name.

(5) Any other expression.

(6) The name of an external procedure.

If an actual argument is an external function name or a sub-
routine name, the corresponding dummy argument must be used
as an external function name or a subroutine name, respectively.

If an actual argument corresponds to a dummy argument that
is defined or redefined in the referenced subprogram, the actual
argument must be a variable name, an array element name, or
an array name.

Execution of a subroutine reference as described in the fore-
going results in an association of actual arguments with all ap-
pearances of dummy arguments in executable statements, func-
tion definition statements, and as adjustable dimensions in the
defining subprogram. If the actual argument is as specified in
item (5) in the foregoing, this association is by value rather than
by name. Following these associations, execution of the first
executable statement of the defining subprogram is undertaken.

An actual argument which is an array element name contain-
ing variables in the subscript could in every case be replaced by
the same argument with a constant subscript containing the
same values as would be derived by computing the variable sub-
script just before the association of arguments takes place.

If a dummy argument of an external function is an array name,
the corresponding actual argument must be an array name or
array element name (10.1.3).

If a subroutine reference causes a dummy argument in the
referenced subroutine to become associated with another dummy
argument in the same subroutine or with an entity in common,
a definition of either entity within the subroutine is prohibited.

Unless it is a dummy argument, a subroutine is also referenced
(in that it must be defined) by the appearance of its symbolic
name in an EXTERNAL statement.

618 Communications of the ACM

A SUBROUTINE

8.4.1 Defining Subroutine Subprograms.
statement is of one of the forms:

SUBROUTINE s(a; , a2, **+ , an)
or

SUBROUTINE s
where:

(1) s is the symbolic name of the subroutine to be defined.

(2) The a’s, called the dummy arguments, are each either a
variable name or an array name.

Subroutine subprograms are constructed as specified in 9.1.3
with the following restrictions:

(1) The symbolic name of the subroutine must not appear in
any statement in this subprogram except as the symbolic name of
the subroutine in the SUBROUTINE statement itself.

(2) The symbolic names of the dummy arguments may not
appear in an EQUIVALENCE or COMMON statement in the
subprogram.

(3) The subroutine subprogram may define or redefine one
or more of its arguments so as to effectively return results.

(4) The subroutine subprogram may contain any statements
except FUNCTION, another SUBROUTINE statement, or any
statement that directly or indirectly references the subroutine
being defined. '

(5) The subroutine subprogram must contain at least one
RETURN statement.

8.4.2 Referencing Subroutines. A subroutine is referenced by a
CALL statement (7.1.2.4). The actual arguments, which constitute
the argument list, must agree in order, number, and type with the
corresponding dummy arguments in the defining program. An
actual argument in a subroutine reference may be one of the
following:

(1) A variable name.

(2) An array element name.

(3) An array name.

(4) Any other expression.

If an actual argument corresponds to a dummy argument that
is defined or redefined in the referenced subprogram, the actual
argument must be a variable name, an array element name, or an
array name.

Execution of a subroutine reference as described in the fore-
going results in an association of actual arguments with all ap-
pearances of dummy arguments in executable statements or func-
tion definition statements. If the actual argument is as specified in
item (4) in the foregoing, this association is by value rather than
by name. Following these associations, execution of the first
executable statement of the defining subprogram is undertaken.

An actual argument that is'an array element name containing
variables in the subscript could, in every case, be replaced by the
same array element name with a constant subscript containing
the same values as would be derived by computing the variable
subscript just before argument association took place.

If a dummy argument of an external function is an array name,
the corresponding actual argument must be an array name.

If a subroutine reference causes a dummy argurent in the refer-
enced subroutine to become associated with another dummy argu-
ment in the same subroutine or with an entity in common, a defini-
tion of either entity within the subroutine is prohibited.

Volume 7 / Number 10 / October, 1964

8.5 Brock Data SuBproGRAM. A BLOCK DATA statement
is of the form:
BLOCK DATA

This statement may only appear as the first statement of
specification subprograms that are called block data subprograms,
and that are used to enter initial values into elements of labeled
common blocks. This special subprogram contains only type-
statements, EQUIVALENCE, DATA, DIMENSION, and COM-
MON statements.

If any entity of a given common block is being given an initial
value in such a subprogram, a complete set of specification state-
ments for the entire block must be included, even though some
of the elements of the block do not appear in DATA statements.
Initial values may be entered into more than one block in a single
subprogram.

9. PROGRAMS

An executable program is a collection of statements, comment
lines, and end lines that completely (except for input data values
and their effects) describe a computing procedure.

9.1 PrograM CoMPONENTs. Programs consist of program
parts, program bodies, and subprogram statements.

9.1.1 Program Part. A program part must contain at least
one executable statement and may contain FORMAT statements,
and data initialization statements. It need not contain any state-
ments from either of the latter two classes of statement. This
collection of statements may optionally be preceded by state-
ment function definitions, data initialization statements, and
FORMAT statements. As before only some or none of these
need be present.

9.1.2 Program Body. A program body is a collection of spec-
ification statements, FORMAT statements or both, or neither,
followed by a program part, followed by an end line.

9.1.3 Subprogram. A subprogram consists of a SUBROU-
TINE or FUNCTION statement followed by a program body, or
is a block data subprogram.

9.1.4 Block Data Subprogram. A block data subprogram
consists of a BLOCK DATA statement, followed by the appro-
priate (8.5) specification statements, followed by data initializa-
tion statements, followed by an end line.

9.1.5 Main Program. A main program consists of a program
body.

9.1.6 Ezxecutable Program. An executable program consists
of a main program plus any number of subprograms, external
procedures, or both.

9.1.7 Program Unii. A program unit is a main program or a
subprogram.

9.2 NorMAL ExeEcuTiON SEQUENCE. When an executable pro-
gram begins operation, execution commences with the execution
of the first executable statement of the main program. A sub-
program, when referenced, starts execution with execution of the
first executable statement of that subprogram. Unless a statement
is a GO TO, arithmetic IF, RETURN, or STOP statement or the
terminal statement of a DO, completion of execution of that state-
ment causes execution of the next following executable statement.
The sequence of execution following execution of any of these
statements is described in Section 7. A program part may not con-
tain an executable statement that can never be executed.

A program part must contain a first executable statement.

10. INTRA- AND INTERPROGRAM RELATIONSHIPS

10.1 SymBovric NAMES. A symbolic name has been defined to
consist of from one to six alphanumeric characters, the first of
which must be alphabetic. Sequences of characters that are format
field descriptors or uniquely identify certain statement types, e.g.,
GO TO, READ, FORMAT, etc. are not symbolic names in such
occurrences nor do they form the first characters of symbolic

Volume 7 / Number 10 / October, 1964

8.5

9. PROGRAMS

An executable program is a collection of statements, comment
lines, and end lines that completely (except for input data values
and their effects) describe a computing procedure.

9.1 Procram ComPONENTs. Programs consist of program
parts, program bodies, and subprogram statements.

9.1.1 Program Part. A program part must contain at least
one executable statement and may but need not contain FORMAT
statements.

9.1.2 Program Body. A program body is a collection of op-
tional specification statements optionally followed by statement
function definitions, followed by a program part, followed by an
end line. The specification statements must be in the following
order: DIMENSION, COMMON, and EQUIVALENCE.

9.1.3 Subprogram. A subprogram consists of a SUBROU-
TINE or FUNCTION statement followed by a program body.

9.1.4

9.1.5 Main Program. A main program consists of a program
body.

9.1.6 FEwxecutable Program. An executable program consists
of a main program plus any number of subprograms, external
procedures, or both.

9.1.7 Program Unit. A program unit is a main program or a
subprogram.

9.2 NormaL ExgecuTioN SzqQuence. When an executable
program begins operation, execution commences with the execu-
tion of the first executable statement of the main program. A sub-
program, when referenced, starts execution with execution of the
first executable statement of that subprogram. Unless a state-
ment is a GO TO, arithmetic IF, RETURN, or STOP statement
or the terminal statement of a DO, completion of execution of
that statement causes execution of the next following executable
statement. The sequence of execution following execution of any
of these statements is described in Section 7. A program part may
not contain an executable statement that can never be executed.

A program part must contain a first executable statement.

10. INTRA- AND INTERPROGRAM RELATIONSHIPS

10.1 SymBoLic Namus. A symbolic name has been defined to
consist of from one to five alphanumeric characters, the first of
which must be alphabetic. Sequences of characters that are for-
mat field descriptors or uniquely identify certain statement types,
e.g., GO TO, READ, ete., are not symbolic names in such occur-
rences nor do they form the first characters of symbolic names in

Comumunications of the ACM 619

names in these cases. In a program unit, a symbolic name (perhaps
qualified by a subscript) must identify an element of one (and
usually only one) of the following classes:

Class I An array and the elements of that array.

Class II A variable.

Class 111 A statement function.

Class IV An intrinsic function.

Class V An external function.

Class VI A subroutine.

Class VII An external procedure which cannot be classified

as either a subroutine or an external function in the program unit
in question.
Class VIII A block name.

10.1.1 Restrictions on Class. A symbolic name in Class VIII
in a program unit may also be in any one of the Classes I, II, or III
in that program unit.

In the program unit in which a symbolic name in Class V ap-
pears immediately following the word FUNCTION in a FUNC-
TION statement, that name must also be in Class II.

Once a symbolic name is used in Class V, VI, VII, or VIII in
any unit of an executable program, no other program unit of that
executable program may use that name to identify an entity of
these classes other than the one originally identified. In the
totality of the program units that make up an executable program,
a Class VII name must be associated with a Class V or VI name.
Class VII can only exist locally in program units.

In a program unit, no symbolic name can be in more than one
class except as noted in the foregoing. There are no restrictions
on uses of symbolic names in different program units of an execu-
table program other than those noted in the foregoing.

10.1.2 Implications of Mentions in Specification and DATA
Statements. A symbolic name is in Class I if and only if it appears
as a declarator name. Only one such appearance for a symbolic
name in a program unit is permitted.

A symbolic name that appears in a COMMON statement (other
than as a block name) is either in Class I, or in Class II but not
Class V. (8.3.1) Only one such appearance for a symbolic name in a
program unit is permitted.

A symbolic name that appears in an EQUIVALENCE state-
ment is either in Class I, or in Class II but not Class V. (8.3.1)

A symbolic name that appears in a type-statement cannot be in
Class VI or Class VII. Only one such appearance for a symbolic
name in a program unit is permitted.

A symbolic name that appears in an EXTERNAL statement is
in either Class V, Class VI, or Class VII. Only one such appearance
for a symbolic name in a program unit is permitted.

A symbolic name that appears in a DATA statement is in either
Class I, or in Class IT but not Class V. (8.3.1) In an executable
program, a storage unit (7.2.1.3.1) may have its value initialized
one time at the most.

10.1.3 Array and Array Element. In a program unit, any
appearance of a symbolic name that identifies an array must be
immediately followed by a subscript, except for the following
cases:

(1) In the list of an input/output statement.

(2) In a list of dummy arguments.

(3) In the list of actual arguments in a reference to an external
procedure.

(4) In a COMMON statement.

(5) In a type-statement.

Only when an actual argument of an external procedure refer-
ence is an array name or an array element name may the cor-
responding dummy argument be an array name. If the actual argu-
ment is an array name, the length of the dummy argument array
must be no greater than the length of the actual argument array.
If the actual argument is an array element name, the length of the
dummy argument array must be less than or equal to the length
of the actual argument array plus one minus the value of the sub-
script of the array element.

620 Communications of the ACM

these cases. In a program unit, a symbolic name (perhaps quali-
fied by a subscript) must identify an element of one (and usually
only one) of the following classes:

Class I An array and the elements of that array.
Class II A variable.

Class III A statement function.

Class IV An intrinsic function.

Class V' An external function.

Class VI A subroutine.

10.1.1 Restrictions on Class. In the program unit in which a
symbolic name in Class V appears immediately following the word
FUNCTION in a FUNCTION statement, that name must also
be in Class II.

Once a symbolic name is used in Class V or VI in any unit of
an executable program, no other program unit of that executable
program may use that name to identify an entity of these classes
other than the one originally identified.

In a program unit, no symbolic name can be in more than one
class except as noted in the foregoing. There are no restrictions
on uses of symbolic names in different program units of an execu-
table program other than those noted in the foregoing.

10.1.2 Implications of Mentions in Specification Statements.
A symbolic name is in Class I if it appears as a declarator name
and is not in Class III. Only one such appearance for a symbolic
name in a program unit is permitted.

A symbolic name that appears in a COMMON statement is
either in Class I, or in Class II but not Class V (8.3.1). Only one
such appearance for a symbolic name in a program unit is per-
mitted.

A symbolic name that appears in an EQUIVALENCE state-
ment is either in Class I, or in Class II but not Class V (8.3.1).

10.1.3 Array and Array Element. In a program unit, any ap-
pearance of a symbolic name that identifies an array must be
immediately followed by a subscript, except for the following
cases:

(1) In the list of an input/output statement.

(2) In a list of dummy arguments.

(3) In the list of actual arguments in a reference to an ex-
ternal procedure.

(4) In a COMMON statement.

Only when an actual argument of an external procedure refer-
ence is an array name may the corresponding dummy argument
be an array name. If the actual argument is an array name, the
length of the dummy argument array must agree with the length
of the actual argument array.

Volume 7 / Number 10 / October, 1964

10.1.4 External Procedures. The only case when a symbolic
name is in Class VII occurs when that name appears only in an
EXTERNAL statement and as an actual argument to an external
procedure in a program unit.

Only when an actual argument of an external procedure refer-
ence is an external procedure name may the corresponding dummy
argument be an external procedure name.

In the execution of an executable program, a procedure subpro-
gram may not be referenced twice without the execution of a
RETURN statement in that procedure having intervened.

10.1.5 Subroutine. A symbolic name is in Class VI if it
appears:

(1) Immediately following the word SUBROUTINE in a
SUBROUTINE statement.

(2) Immediately following the word CALL in a CALL state-
ment.

10.1.6 Statement Function. A symbolic name is in Class IIT
in a program unit if and only if it meets all three of the following
conditions:

(1) It does not appear in an EXTERNAL statement nor is it
in Class I.

(2) Every appearance of the name, except in a type-state-
ment, is immediately followed by a left parenthesis.

(3) A function defining statement (8.1.1) is present for
that symbolic name.

10.1.7 Intrinsic Function. A symbolic name isin Class IV in a
program unit if and only if it meets all four of the following con-
ditions:

(1) It does not appear in an EXTERNAL statement nor is it
in Class I or Class III.

(2) The symbolic name appears in the name column of the
table in Section 8.2.

(3) The symbolic name does not appear in a type-statement
of type different from the intrinsic type specified in the table.

(4) Every appearance of the symbolic name (except in a type-
statement as described in the foregoing) is immediately followed
by an actual argument list enclosed in parentheses.

The use of an intrinsic function in a program unit of an executa-
ble program does not preclude the use of the same symbolic name
to identify some other entity in a different program unit of that
executable program.

10.1.8 External Function. A symbolic name is in Class V if it:

(1) Appears immediately following the word FUNCTION in a
FUNCTION statement :

(2) Is not in Class I, Class III, Class IV, or Class VI and
appears immediately followed by a left parenthesis on every
occurrence except in a type-statement, in an EXTERNAL
statement, or as an actual argument. There must be at least one
such appearance in the program unit in which it is so used.

10.1.9 Variable. In a program unit, a symbolic name is in
Class IT if it meets all three of the following conditions:

(1) It isnotin Class VI or Class VIL.

(2) It is never immediately followed by a left parenthesis un-
less it is immediately preceded by the word FUNCTION in a
FUNCTION statement.

(3) It occurs other than in a Class VIII appearance.

10.1.10 Block Name. A symbolic name is in Class VIII if and
only if it is used as a block name in a COMMON statement.

10.2 DeriniTioN. There are two levels of definition of nu-
meric values, first level definition and second level definition. The
concept of definition on the first level applies to array elements
and variables; that of second level definition to integer variables
only. These concepts are defined in terms of progression of execu-
tion; and thus, an executable program, complete and in execution,
is assumed in what follows.

There are two other varieties of definition that should be noted.
The first, effected by GO TO assignment and referring to an inte-
ger variable being defined with other than an integer value, is

Volume 7 / Number 10 / October, 1964

10.1.4 External Procedures. In the execution of an executable
program, a procedure subprogram may not be referenced twice
without the execution of a RETURN statement in that procedure
having intervened.

10.1.5 Subroutine. A symbolic name is in Class VI if it ap-
pears:
(1) Immediately following the word SUBROUTINE in a
SUBROUTINE statement.
(2) Immediately following the word CALL in a CALL state-
ment.
10.1.6. Statement Funciion. A symbolic name isin Class III in
a program unit if and only if it meets all three of the following
conditions:
(1) Itisnotin Class I or Class IV.

(2) Every appearance of the name is immediately followed
by a left parenthesis.

(3) A function defining statement is present for that sym-
bolic name.

10.1.7 Intrinsic Funclion. A symbolic name is in Class IV
in a program unit if and only if it meets both of the following con-
ditions:

(1) The symbolic name appears in the name column of
Table 3.

(2) Every appearance of the symbolic name is immediately
followed by an actual argument list enclosed in parentheses.

The use of an intrinsic function in a program unit of an execu-
table program does not preclude the use of the same symbolic
name to identify some other entity in a different program unit
of that executable program.

10.1.8 External Function. A symbolic name is in Class V if it:

(1) Appears immediately following the word FUNCTION
in a FUNCTION statement.

(2) Is not in Class I, Class III, Class IV, or Class VI and
appears immediately followed by a left parenthesis on every oc-
currence. There must be at least one such appearance in the pro-
gram unit in which it is so used.

10.1.9 Variable. In a program unit, a symbolic name is in
Class I1 if it meets both of the following conditions:
(1) It is not in Class VI.
(2) It is never immediately followed by a left parenthesis
unless it is immediately preceded by the word FUNCTION in a
FUNCTION statement.

10.2 DeriNiTION. There are two levels of definition of
numeric values, first level definition and second level definition.
The concept of definition on the first level applies to array ele-
ments and variables; that of second level definition to intecer
variables only. These concepts are defined in terms of progression
of execution; and thus, an executable program, complete and in
execution, is assumed in what follows.

There is another variety of definition which refers to when an
external procedure may be referenced, and it will be discussed in
the next section.

Communications of the ACM 621

discussed in 7.1.1.3 and 7.1.2.1.2; the second, which refers to when
an external procedure may be referenced, will be discussed in the
next section.

In what follows, otherwise unqualified use of the terms defini-
tion and undefinition (or their alternate forms) as applied to
variables and array elements will imply modification by the
phrase on the first level.

10.2.1 Definition of Procedures. If an executable program
contains information describing an external procedure, such an
external procedure with the applicable symbolic name is defined
for use in that executable program. An external function reference
or subroutine reference (as the case may be) to that symbolic name
may then appear in the executable program, provided that number
of arguments agrees between definition and reference. In addition,
for an external function, the type of function must agree between
definition and reference. Other restrictions on agreements are
contained in 8.3.1, 8.3.2, 8.4.1, 8.4.2, 10.1.3, and 10.1.4.

The basic external functions listed in (8.3.3) are always defined
and may be referenced subject to the restrictions alluded to in the
foregoing.

A symbolic name in Class III or Class IV is defined for such use.

10.2.2 Associations That Effect Definition. Entities may be-
come associated by:

(1) COMMON association.
(2) EQUIVALENCE association.
(3) Argument substitution.

Multiple association to one or more entities can be the result of
combinations of the foregoing. Any definition or undefinition of
one of a set of associated entities effects the definition or undefini-
tion of each entity of the entire set.

For purposes of definition, in a program unit there is no asso-
ciation between any two entities both of which appear in COM-
MON statements. Further, there is no other association for com-
mon and equivalenced entities other than those stated in 7.2.1.3.1
and 7.2.1.4.

If an actual argument of an external procedure reference is an
array name, an array element name, or a variable name, then the
discussions in 10.1.3 and 10.2.1 allow an association of dummy
arguments with the actual arguments only between the time of
execution of the first executable statement of the procedure and
the inception of execution of the next encountered RETURN
statement of that procedure. Note specifically that this associa-
tion can be carried through more than one level of external pro-
cedure reference.

In what follows, variables or array elements associated by the
information in 7.2.1.3.1 and 7.2.1.4 will be equivalent if and only if
they are of the same type.

If an entity of a given type becomes defined, then all associated
entities of different type become undefined at the same time, while
all associated entities of the same type become defined unless other-
wise noted.

Association by argument substitution is only valid in the case
of identity of type, so the rule in this case is that an entity created
by argument substitution is defined at time of entry if and only if
the actual argument was defined. If an entity created by argument
substitution becomes defined or undefined (while the association
exists) during execution of a subprogram, then the corresponding
actual entities in all calling program units becomes defined or un-
defined accordingly.

10.2.3 Events That Effect Definition. Variables and array ele-
ments become initially defined if and only if their names are asso-
ciated in a data initialization statement with a constant of the
same type as the variable or array in question. Any entity not
initially defined is undefined at the time of the first execution of
the first executable statement of the main program. Redefinition
of a defined entity is always permissible except for certain integer
variables (7.1.2.8, 7.1.3.1.1, and 7.2.1.1.2) or certain entities in
subprograms (6.4, 8.3.2, and 8.4.2).

622 Communications of the ACM

In what follows, otherwise unqualified use of the terms defini-
tion and undefinition (or their alternate forms) as applied to
variables and array elements will imply modification by the phrase
“on the first level.”

10.2.1 Definition of Procedures. If an executable program
contains information describing an external procedure, such an
external procedure with the applicable symbolic name is defined
for use in that executable program. An external function reference
or subroutine reference (as the case may be) to that symbolic
name may then appear in the executable program, provided that
number of arguments agrees between definition and reference.
Other restrictions on agreements are contained in 8.3.1, 8.3.2,8.4.1,
8.4.2, and 10.1.3.

The basic external functions listed in Section 8.3.3 are always
defined and may be referenced subject to the restrictions alluded
to in the foregoing.

A symbolic name in Class III or Class IV is defined for such use.

10.2.2 Associations That Effect Definition. Entities may
become associated by:

(1) COMMON association.
(2) EQUIVALENCE association.
(3) Argument substitution.

Multiple association to one or more entities can be the result
of combinations of the foregoing. Any definition or undefinition of
one of a set of associated entities affects the definition or unde-
finition of each entity of the entire set.

For purposes of definition, in a program unit there is no asso-
ciation between any two entities both of which appear in
COMMON statements. Further, there is no other association for
common and equivalenced entities other than those stated
in 7.2.1.3.1 and 7.2.1.4.

If an actual argument of an external procedure reference is
an array name, an array element name, or a variable name, then
the discussions in 10.1.3 and 10.2.1 allow an association of dummy
arguments with the actual arguments only between the time of
execution of the first executable statement of the procedure and
the inception of execution of the next encountered RETURN
statement of that procedure. Note specifically that this association
can be carried through more than one level of external procedure
reference.

In what follows, variables or array elements associated by the
information in 7.2.1.3.1 and 7.2.1.4 will be equivalent if and only
if they are of the same type.

If an entity of a given type becomes defined, then all associated
entities of different type become undefined at the same time, while
all associated entities of the same type become defined unless
otherwise noted.

Association by argument substitution is only valid in the case
of identity of type so the rule in this case is that an entity created
by argument substitution is defined at time of entry if and only if
the actual argument was defined. If an entity created by argu-
ment substitution becomes defined or undefined (while the asso-
ciation exists) during execution of a subprogram, then the cor-
responding actual entities in all calling program units become
defined or undefined accordingly.

10.2.3 Events That Effect Definition. Any entity is undefined
at the time of the first execution of the first executable statement
of the main program. Redefinition of a defined entity is always
permissible except for certain integer variables (7.1.2.8 and
7.1.3.1.1) or certain entities in subprograms (6.4, 8.3.2, and 8.4.2).

Volume 7 / Number 10 / October, 1964

Variables and array elements become defined or redefined as
follows:

(1) Completion of execution of an arithmetic or logical assign-
ment statement causes definition of the entity that precedes the
equals.

(2) As execution of an input statement proceeds, each entity,
which is assigned a value of its corresponding type from the input
medium, is defined at the time of such association. Only at the
completion of execution of the statement do associated entities of
the same type become defined.

(3) Completion of execution of a DO statement causes defini-
tion of the control variable.

(4) Inception of execution of action specified by a DO-implied
list causes definition of the control variable.

Variables and array elements become undefined as follows:

(1) At the time a DO is satisfied, the control variable becomes
undefined.

(2) Completion of execution of an ASSIGN statement causes
undefinition of the integer variable in the statement.

(3) Certain entities in function subprograms (10.2.9) become
undefined.

(4) Completion of execution of action specified by a DO-
implied list causes undefinition of the control variable.

(5) When an associated entity of different type becomes de-
fined.

(6) When an associated entity of the same type becomes
undefined.

10.2.4 Entilies tn Blank Common. HKutities in blank common
and those entities associated with them may not be initially de-
fined.

Such entities, once defined by any of the rules previously men-
tioned, remain defined until they become undefined.

10.2.5 Entities in Labeled Common. Entities in labeled com-
mon or any associates of those entities may be initially defined.

A program unit contains a labeled common block name if the-

name appears as a block name in the program unit. If a main pro-
gram or referenced subprogram contains a labeled common block
name, any entity in the block (and its associates) once defined re-
main defined until they become undefined.

It should be noted that redefinition of an initially defined entity
will allow later undefinition of that entity. Specifically, if a subpro-
gram contains a labeled common block name that is not contained
in any program unit currently referencing the subprogram directly
or indirectly, the execution of a RETURN statement in the sub-
program causes undefinition of all entities in the block (and their
associates) except for initially defined entities that have main-
tained their initial definitions.

10.2.6 Entities Not in Common. An entity not in common ex-
cept for a dummy argument or the value of a function may be
initially defined.

Such entities once defined by any of the rules previously men-
tioned, remain defined until they become undefined.

If such an entity is in a subprogram, the completion of execu-
tion of a RETURN statement in that subprogram causes all such
entities and their associates at that time (except for initially de-
fined entities that have not been redefined or become undefined) to
become undefined. In this respect, it should be noted that the
association between dummy arguments and actual arguments is
terminated at the inception of execution of the RETURN state-
ment.

Again, it should be emphasized, the redefinition of an initially
defined entity can result in a subsequent undefinition of that
entity.

10.2.7 Basic Block. In a program unit, a basic block is a
group of one or more executable statements defined as follows.

The following statements are block terminal statements:

(1) DO statement.
(2) CALL statement.

Volume 7 / Number 10 / October, 1964

Variables and array elements become defined or redefined as
follows:

(1) Completion of execution of an arithmetic assignment
statement causes definition of the entity which precedes
the equals.

(2) As execution of an input statement proceeds, each entity,
which is assigned a value of its corresponding type from the input
medium, is defined at the time of such association and associated
entities become undefined. Only at the completion of execution of
the statement do associated entities of the same type become de-
fined.

(3) Completion of execution of a DO statement causes defini-
tion of the control variable.

(4) Inception of execution of action specified by a DO-implied
list causes definition of the control variable.

Variables and array elements become undefined as follows:

(1) At the time a DO is satisfied, the control variable be-
comes undefined.

(2) Completion of execution of action specified by a DO-
implied list causes undefinition of the control variable.

(3) When an associated entity of different type becomes
defined.

(4) When an associated entity of the same type becomes
undefined.

10.2.4

10.2.5

10.2.6 Entities Not in Common. An entity not in common is
initially undefined.

Such entities once defined by any of the rules previously men-
tioned, remain defined until they become undefined.

If such an entity is in a subprogram, the completion of execu-
tion of a RETURN statement in that subprogram causes all such
entities and their associates at that time to become undefined.
In this respect, it should be noted that the association between
dummy arguments and actual arguments is terminated at the
inception of execution of the RETURN statement.

10.2.7 Basic Block. In aprogram unit, a basic block is a group
of one or more executable statements defined as follows.
The following stetements are block terminal statements:
(1) DO statement.
(2) CALL statement.

Communications of the ACM 623

(3) GO TO statement of all types.

(4) Arithmetic IF statement.

(5) STOP statement.

(6) RETURN statement.

(7) The first executable statement, if it exists, preceding a
statement whose label is mentioned in a GO TO or arithmetic IF

statement.

(8) An arithmetic statement in which an integer variable
precedes the equals.

(9) A READ statement with an integer variable in the list.

(10) A logical IF containing any of the admissible forms given
in the foregoing.

The following statements are block initial statements:

(1) The first executable statement of a program unit.
(2) The first executable statement, if it exists, following a
block terminal statement.

Every block initial statement defines a basic block. If that
initial statement is also a block terminal statement, the basic
block consists of that one statement. Otherwise, the basic block
consists of the initial statement and all executable statements that
follow until a block terminal statement is encountered. The ter-
minal statement is included in the basic block.

10.2.7.1 Last Ezecutable Statement. In aprogram unit the last
executable statement (which cannot be part of a logical IF) must
be one of the following statements: GO TO statement, arithmetic
IF statement, STOP statement, or RETURN statement.

10.2.8 Second Level Definition. Integer variables must be
defined on the second level when used in subscripts and computed
GO TO statements.

Redefinition of an integer entity causes all associated variables
to be undefined for use on the second level during this execution
of this program unit until the associated integer variable is ex-
plicitly redefined.

Except as just noted, an integer variable is defined on the sec-
ond level upon execution of the initial statement of a basic block
only if both of the following conditions apply:

(1) The variable is used in a subseript or in a computed GO
TO in the basic block in question.

(2) The variable is defined on the first level at the time of
execution of the initial statement in question.

This definition persists until one of the following happens:

(1) Completion of execution of the terminal statement of the
basic block in question.

(2) The variable in question becomes undefined or receives a
new definition on the first level.

At this time, the variable becomes undefined on the second
level.

In addition, the occurrence of an integer variable in the list of
an input statement in which that integer variable appears follow-
ing in a subscript causes that variable to be defined on the second
level. This definition persists until one of the following happens:

(1) Completion of execution of the terminal statement of the
basic block containing the input statement.

(2) The variable becomes undefined or receives a new defini-
tion on the first level.

An integer variable defined as the control variable of a DO-
implied list is defined on the second level over the range of that
DO-implied list and only over that range.

10.2.9 Certain Entities tn Function Subprograms. If a func-
tion subprogram is referenced more than once with an identical
argument list in a single statement, the execution of that subpro-
gram must yield identical results for those cases mentioned, no
matter what the order of evaluation of the statement.

If a statement contains a factor that may not be evaluated (6.4),
and if this factor contains a function reference, then all entities
that might be defined in that reference become undefined at the
completion of evaluation of the expression containing the factor.

10.3 DEerINITION REQUIREMENTS FOR USE OF ENTITIES. Any
variable referenced in a subscript or a computed GO TO must be

624 Communications of the ACM

(3) GO TO statement of all types.

(4) Arithmetic IF statement.

(5) STOP statement.

(6) RETURN statement.

(7) The first executable statement, if it exists, preceding a
statement whose label is mentioned in a GO TO or arithmetic IF
statement.

(8) An arithmetic statement in which an integer variable
precedes the equals.

(9) A READ statement with an integer variable in the list.

The following statements are block initial statements:
(1) The first executable statement of a program unit.
(2) The first executable statement, if it exists, following a
block terminal statement.

Every block initial statement defines a basic block. If that
initial statement is also a block terminal statement, the basic
block consists of that one statement. Otherwise, the basic block
consists of the initial statement and all executable statements
that follow until a block terminal statement is encountered. The
terminal statement is included in the basic block.

10.2.7.1 Last Executable Statement. In a program unit the last
executable statement must be one of the following statements:
GO TO statement, arithmetic IF statement, STOP statement, or
RETURN statement.

10.2.8 Second Level Definition. Integer variables must be
defined on the second level when used in subscripts and com-
puted GO TO statements.

Redefinition of an integer entity causes all associated variables
to be undefined on the second level during the execution of the
program until the associated integer variable is explicitly rede-
fined.

Except as just noted, an integer variable is defined on
the second level upon execution of the initial statement of a basic
block only if both of the following conditions apply:

(1) The variable is used in a subseript or in a computed GO
TO in the basic block in question.

(2) The variable is defined on the first level at the time of
execution of the initial statement in question.

This definition persists until one of the following happens:

(1) Completion of execution of the terminal statement of
the basic block in question.

(2) The variable in question becomes undefined or receives
a new definition on the first level.

At this time, the variable becomes undefined on the second
level.

In addition, the occurrence of an integer variable in the list of
an input statement in which that integer variable appears follow-
ing in a subscript causes that variable to be defined on the second
level. This definition persists until one of the following happens:

(1) Completion of execution of the terminal statement of
the basic block containing the input statement.

(2) The variable becomes undefined or receives a new defini-
tion on the first level.

An integer variable defined as the control variable of a DO-
implied list is defined on the second level over the range of that
DO-implied list and only over that range.

10.2.9 Certain Entities in Function Subprograms. If. a func-
tion subprogram is referenced more than once with an identical
argument list in a single statement, the execution of that subpro-
gram must yield identical results for those cases mentioned, no
matter what the order of evaluation of the statement.

10.3 DgerINITION REQUIREMENTS FOR USE OF ENTITIES. Any
variable referenced in a subscript or a computed GO TO must be

Volume 7 / Number 10 / October, 1964

defined on the second level at the time of this use.

Any variable, array element, or function referenced as a pri-
mary in an expression and any subroutine referenced by a CALL
statement must be defined at the time of this use. In the case
where an actual argument in the argument list of an external pro-
cedure reference is a variable name or an array element name, this
in itself is not a requirement that the entity be defined at the time
of the procedure reference; however, when such an argument is
an external procedure name, it must be defined.

Any variable used as an initial value, terminal value, or incre-
mentation value of a DO statement or a DO-implied list must be
defined at the time of this use.

Any variable used to identify an input/output unit must be
defined at the time of this use.

At the time of execution of a RETURN statement in a function
subprogram, the value (8.3.1) of that function must be defined.

At the time of execution of an output statement, every entity
whose value is to be transferred to the output medium must be de-
fined unless the output is under control of a format specification
and the corresponding conversion code is A. If the output is under
control of a format specification, a correct association of conver-
sion code with type of entity is required unless the conversion code
is A. The following are the correct associations: I with integer;
D with double precision; E, F, and G with real and complex; and
L with logical.

defined on the second level at the time of this use.

Any wvariable, array element, or function referenced as a
primary in an expression and any subroutine referenced by a
CALL statement must be defined at the time of this use. In the
case where an actual argument in the argument list of an external
procedure reference is a variable name or an array element name,
this in itself is not a requirement that the entity be defined at the
time of the procedure reference.

Any variable used as an initial value, terminal value, or in-
crementation value of a DO statement or a DO-implied list must
be defined at the time of this use.

Any variable used to identify an input/output unit must be
defined at the time of this use.

At the time of execution of a RETURN statement in a function
subprogram, the value of that function must be defined.

At the time of execution of an output statement, every entity
whose value is to be transferred to the output medium must be
defined. If the output is under control of a format specification,
a correct association of conversion code with type of entity is
required. The following are the correct associations: I with in-
teger; and E and F with real.

Editor’'s Note

Publication of the following Amendment to the proposed American
Standard on Specification for General-Purpose Paper Cards for
Information Processing, developed by a Subcommittee of ASA Sec-
tional Committee X3, has been authorized by the American Standards
Association for the purpose of obtaining comment, criticism and
general public reaction, with the understanding that such proposed
American Standard has not been finally accepted by ASA as o stand-
ard and, therefore, is subject to change, modification, or withdrawal in
whole or in part.

On page 286 of the May issue of Communications of the ACM, the

proposed American Standard was presented for information and con-
sideration.

Some comment has already been received with regard to the possi-
bility of this being a dual standard, as opposed to preferred and
alternate standards.

Some comments have been received about the possibility of dog-
earing when a deck of cards contains both types of corner cuts.

Your comments in support, or in opposition, are welcomed and
requested. Comments should be addressed to the Secretary X3, Busi-
ness Equipment Manufacturers Association, 235 East 42 Street,
New York, New York 10017.—E.L.

Proposed Amendment to Proposed American Standard on Specification for General-
Purpose Paper Cards for Information Processing

1. Paragraph 2.3 of the proposed American Standard Specification for
General-Purpose Paper Cards for Information Processing be changed to
read as follows:

2.3 Corners
2.3.1 Diagonal Corner Cut
2.3.1.1 Dimension. The corner cut shall remove .250 inch ==

.016 inch from the long edge and .433 == .016 inch from the
short edge of the card (at a reference angle of 60° to the long
edge of the card.)
2.3.1.2 Location
2.3.1.2.1 Preferred Location. The preferred location for the
cut shall be at the upper left corner.
2.3.1.2.2 Alternate Location. An alternate location for the
cut shall be at the upper right corner.
2.3.2 Other Corners
2.3.2.1 Preferred Corners. All corners, except the diagonally cut
corner shall be square. (See 2.1.4 and Figure 1.)
2.3.2.2 Alternate Corners. All corners, except the diagonally
cut corner shall be rounded to a nominal radius of .250 inch. The
edge of the rounded corner shall fall between two concentric
arcs. The center of the arcs is located .242 == .000 inch from the
long edge and .250 =+ .000 inch from the short edge of the card.
The inner arc shall be 92° and shall have a radius of .242 inch;
the outer arc shall have a radius of .272 inch. (See Figure 2.)
2. Add Figure 2.

Expository Remarks

Several card manufacturers have recently introduced a line of cards
having corners rounded to 1” radius. These cards are designed to improve
machine performance by preventing corners from becoming dog-eared

and causing feed troubles. It is expected that rounded-corner cards will

Volume 7 / Number 10 / October, 1964

LONG EDGE

< .o08
(REF. ONLY)

.250 _ SHORT EDGE

SCALE 10:1

Fia. 2. Rounded corner

very quickly come into common usage. Therefore, it is proposed that the
Yroposed American Standard Specification for General-Purpose Paper
Cards for Information Processing be amended to include rounded-corner
cards.

Communications of the ACM 625

L

®

INTEROFFICE
§l MEMORANDUM

DATE November 18, 1966
SUBJECT Increase in Payrolls

TO Ken Olsen v FROM Harry S. Mann

On last week's Works Committee Agenda you had placed an item relating to the
kind of marketing and sales people we were looking for and, in effect, why we were
looking for so many people in this category. This question has triggered me to make a
study of our total payroll situation and | see a very frightening trend which I think should
be given prompt attention.

Taking an eight week period in December and January of this year, our hourly
payroll averaged $55,200 per week. These people are essentially all production people.
The most recent eight week period shows that this payroll has increased to an average of
$68,750 per week, or an increase of 24 1/2%. During the same period, the salaried pay-
roll which includes clerical people, sales people, supervision) increased from $57,850
a week to $82,950 per week . This is an increase of 43 1/2%.

This summary indicates to me that we have been increasing our overhead cost at a
rate almost double that of our production workers during the past year.

As you have often stated, the company's goal is to be the lowest cost producer of
quality computers in the whole industry. There are many factors that affect cost, of course,
including design, efficiency in manufacturing, automation, etc. | submit, however, that we
must immediately look at the effect on our cost of this fantastic change in proportion between
hourly and salaried people if we are going to achieve our total objective.

This may be a good subject for the next Works Committee Meeting - if not before !

HSM/clw

CC: R. Lassen

DIGITAL EQUIPMENT CORPORATION . MAYNARD, MASSACHUSETTS

INTEROFFICE
N MEMORANDUM

DATE November 18, 1966

SUBJECT Visit to DEC by Xerox Purchasing & Production Personnel

TO Ken Olsen<{uu=e o vsa FROM (l
Stan Olsen Fred Gould ;éi__/

Peter Kaufmann
Frank Kalwell
Henry Crouse
Paul McGaunn
Cy Kendrick
Jack Smith

Jim Cudmore
Pat Greene

Xerox will visit with us on November 30, 1966 for the
entire day. Four people are presently scheduled to
make the trip, and I have listed their names, titles,
below.

. They will want to talk on the following subjects:

Review of testing procedure by DEC

. Duplication of DEC test facilities

Buying methods, (DEC suggestions solicited)

Connector type 144 pcc - Second source, present capacity
Xerox requirements for 1967

Secrecy Agreement, DEC new products

DEC production capacity & reaction time

Noyondbh w N

I will generate an agenda after consulting with the
cognizant people as to strategy and convenience to
existing schedules.

Mr. James Brown - ISD Purchasing Agent
Mr. Robert Burnham - ISD Electronics Buyer
Mr. Alex Neberenko Production Control Mgr.
Mr. George Tsilibes - Engineer Liason

q /mp

DIGITAL EQUIPMENT CORPORATION . MAYNARD, MASSACHUSETTS

INTEROFFICE
J | MEMORANDUM
DATE November 18, 1966

SUBJECT USTIA Exhibit \\N“”

TO Ken Olsen FROM Tim McInerney
cc: Ted Johnson
Steve Bowers

Howie Painter

i\

I have arranged for a non-working PDP-8 domputer and a
quantity of PDP-8 Brochures to be shipped to the designated
USIA Warehouse for shipment to the Industrial Design, USA
Exhibit in USSR in 1967.

This Exhibit will travel between February and June of 1967
to Kiev, Moscow and Leningrad in the USSR and in September
will go to West Berlin, Germany as part of the U. S.
Exhibition in the German Industries Fair.

This computer and literature will be shipped from Maynard
on Tuesday, November 22.

1“ TJIM: jdr

DIGITAL EQUIPMENT CORPORATION . MAYNARD, MASSACHUSETTS

INTEROFFICE
¥ MEMORANDUM

DATE November 18, 1966
SUBJECT RAND PDP-6

TO Ken Olsen FROM Jack Shields

I've just read your memo concerning your discussion with Willis
Ware at the FJCC. 1I'll try to briefly update you on this matter.

We are extremely concerned about Rand and the PDP-6 and have no
intention of losing interest on this system. Our intentions are
clear, as we have recently sent another senior man (Mel Neumann -
six years 7090, 3600 experience) to service this account with
back up from Bob Brooks. Mel has been instructed to spend full
time at Rand for the next few months to insure proper system
operation even though our contract doesn't cover this type of
service.

I believe that Willis was confused on the documentation problem.
Our contract called for weekly reports to Rand on system per-
formance, preventive maintenance performance, etc. We were not
submitting these reports. We have, however, always had good
documentation on the mod status of the system. I can rationalize
why the reports were not filled out, but that is just an excuse.
We have taken the following action to rectify this:

1. Mel will spend full time at Rand for the next few months.

2, Copies of all Field Service reports for the system will be
filed at Rand.

3. A weekly maintenance schedule will be posted and filled out:;
copies will be sent to C. Baker.

4, The daily log will be faithfully filled out. Copies will be
sent with the other reports on a weekly basis to C. Baker.

5. We will endeavor to convince Rand to purchase a resident
engineer contract so we can provide the type of coverage
they require.

I'm sure we will have a few more problems at Rand in the future,

but I believe we are well on our way toward the establishment of
a model installation for both Rand and DEC.

JJS:ned

DIGITAL EQUIPMENT CORPORATION « MAYNARD, MASSACHUSETTS

INTEROFFICE
H MEMORANDUM

DATE November 17, 1966
SUBJECT Advertising
TO Win Hindle FROM Harry 5. Mann

Nick Mazzarese
. Stan Clsen

For oll products combined we budgeted $56, 000 for advertising during the first four
months of the year. During this period we spent $112,000 or exactly twice as much as we

expected.

The major differences appear in the following products:

Product Actual Budget Qverage
8/s J8.4 iv.6 18.8
789 33.4 5.2 28.2
Linc~8 8.3 3.9 4.4

Now that the Product Lines have direct control over advertising, this may be an crec
you should examine closely,

H5M,/ clw

CC: Ken QOlsen V'

DIGITAL EQUIPMENT CORPORATION . MAYNARD, MASSACHUSETTS

INTEROFFICE
MEMORANDUM

DATE November 17, 1966
SUBJECT Light Pen Memo by Ken Olsen '

TO Stu Ogden FRO MDerrick Chin

The switch in our pen opens an aperture so light from the CRT can enter the fiber optic bundles.
We have two choices. We can improve the switch as an aperture or we can use the switch
electrically to turn on a power supply to activate the photomultiplier: | feel the light pen
should be re designed for the following reasons:

| 8 The user's finger becomestired from the pressure required to keep the switch
depressed.
2, The fiber bundle is too thick in diameter limiting the minimum radius of bend before i

the fibers tend to break.
3. The power supply package is bought outside and is not too reliable especially under |
high temperatures.

|

‘ 4, The external appearance of the pen is not exactly pleasing to the eye.
‘Comments:

The thickness of the fiber bundle was chosen in the initial design because of the photomultiplier
used. The photomultiplier has nine stages and can be bought from Radio Shack for $11.00. This
was the primary reason why it was chosen: availability of replacement and price.

It might be worthwhile to check into the availability of a 10 or more stage photomultiplier
at approximately the same price. Then the diameter of the light bundle could be reduced. | !
might point out that the bundle should have some sort of reinforcement around it for strength and
to protect it from user abuse.

A "Y" shaped light bundle has been available as an "off the shelf" for several years. By this (
means, a light source could be built into the power supply package to provide illumination
of the area at which the light bundle is aimed.

| think we can build a power supply cheaper and more reliable than the one we are now buying.
Originally the power supply had to be mounted inside the Type 30 Display housing where the
space is limited. Now that this line is being discontinued and there is lots of space inside the
300 series Display Units, consideration should be given to buying 1000 to 2000 volt power packs
from Wabash Magnetics (somewhere in the midwest). This company already supplies us with

‘ the 10,000 volt power pack for the 770 power supply used in all our displays.

DIGITAL EQUIPMENT CORPORATION . MAYNARD, MASSACHUSETTS

Light Pen Memo ’ Page 2 Nov. 17, 1966

q The bulb for our light source can be built into this new power supply. The light source should
have a spectral response limited to the longer wavelength side of the spectrum so that the photo-
multiplier will not react to the reflection. The light from the CRT should be filtered at the
photomultiplier end so that the photomultiplier reacts only to the blue portion of phosphor

output which is of short persistence. These filters are available from Kodak.

Your biggest problems will be to produce a pen which has pleasing appearance and to make a

better aperture switch. Why can't we have a pen with smooth curves like a Tektronix probe
and with a tapered bushing at the junction of the bundle and pen.

DC/bwf

cc: Ken Olsen

-

DIGITAL EQUIPMENT CORPORATION . MAYNARD, MASSACHUSETTS

INTEROFFICE
MEMORANDUM

DATE November 17, 1966

SUBJECT NOTES PER CONVERSATION WITH AMERICAN CAN COMPANY

T0 Al Hanson v FROM Loren Prentice

Pete Kaufmann
Harry Mann
Ken Olsen

The power comes into the building underground. The voltage
coming into the building is 1308 volts. There are presently
two, 1,000 KVA, dry Westinghouse transformers and one 300 KVA,
oil fill, G.E. transformer. The power is transformed from
1308 volts down to 480 volts for their lighting.

The purification and water treatment plant, stainless steel,
is going to be transferred, but the pumps and the large Cuno
filter to the left of the stairway down into the basement, are

going to remain.

The office area on the second floor, approximately 11,000 -
12,000 square feet, is serviced by three air conditioners; one
is ten tons and one fifteen tons (new in 1954) and one small
office is serviced by one five ton. On the first floor is a five
ton air conditioner in the production office area and across the
hall, in the area now as you saw the other day where the present
cafeteria is, is an office area serviced by a:7-1/2 ton combination
air and heat control unit (new in 1956). This area can be
serviced either by steam from their boilers or from Maynard
Industries. Lighting is fluorscent throughout the plant on
277 volts. The air compressors they plan to leave here are:
Two units (new in 1954 which were last serviced in 1960) 500 CFM,
10 x 11, minimum air pressure 125 pounds; One unit, 12 x 13,
400 CFM (new 1958); one 14 x 15, 500 CFM (new in 1660). Distri-
bution of air over the first two floors is ample and uniform
over the area. '

The floor in the basement area in the center aisle is _
black top over brick pavement, similar to what we have in building
#7. The machine shop area and the rebuilding shop have a skim
coat of concrete over brick paving blocks. Approximately 2/3
of the grade floor is concrete. This was laid out for me on a
floor plan which I will attempt to put down. The rest of the
area, approximately 1/3 to 1/4 of the area, is filled with

machine bases which were brought to the same grade level as the

3w

o¥AX

AdOS O
ou3X o¥3X

N

concrete. The rest of the floors in this area are in poor condition.

There are two solvent vaults. The one that we saw was
originally built for the high voltage accellerator room and has
walls approximately 3' thick, but the entrance door to this
area is not fireproof and hence has only a "B" and "C" rating.
The large wvault will house approximately 60, 55 gallon drums.
There is a small vault on the first floor, approximately the
center of the building, rated for "A", "B" and "C" use and holds
approximately 12, 55 gallon drums of solvent.

Fans that will be left in the building are: 12 on the 1lst
floor, 14,000 cubic feet per minute and; 6 at 2,000 cubic feet
per minute on the second floor.

The eight Cyclotherm boilers located in the power house are
rated at 30 horse power at 150 pounds maximum. They are using
them at 125 pounds. O0il is #2. I can't see any possibility of
using these, ‘except perhaps one unit which might be: kept for our
use to destill our own cleaning solvents. A steam type still
for this type of operation, we are now consuming roughly 400
gallons per week, would probably pay for itself.

There is a 1" gas main coming into the building in the base-
ment area on the Walnut Street end of the building. This would

be more then ample for any use that we might have for gas heating.

The adjacent parking lot holds 226 cars.

) INTEROFFICE
d H MEMORANDUM

DATE November 11, 1966

SUBJECT
Large Real Time Sharing and Its Relation to DEC's Market.
TO FROM
K. Olsen G. Bell
CC: W. Hindle
N. Mazzarese
T. Johnson

Enclosed is a memo which I wrote to outline my thoughts on the
form I see the current time sharing systems taking in the

next few years.
Since DEC has enough sense to keep mostly at the periphery

(the form of the central nervous system is not very well
developed yet) these applications areas may be of concern.

Attachment: 1

DIGITAL EQUIPMENT CORPORATION « MAYNARD, MASSACHUSETTS

v for dise ..

- ~ o1 8 A R S . $= -
y NICde8t data races

\ ".“. which consist of many processors, and can be

5 .tance, xeliability, and design creation reason .
*‘f" \\ N\' mentioned are only *what's available now", buf dovelopments, for example,
e\ in high frequeacy transmission (200 mﬂw*b,z.w/acc/ on a cable, perhaps,

N LA ——

smicrowave, SSB, etc,) wi fl ’7"3114._,7’ .,hﬂ interconnection, [)
AP { sud S ot ‘Tg S)U‘;,cum‘uf (
The pm_‘ﬁnt telephone neu.or-c will probubly -influence con T, devalop-

went, wore than any other single bUSIHCo? or technolegical deve! ant,

}a'gf;’\,ﬁ
{0 Ay |

T, ..,‘1’\ o
C ;5\ ‘\\";‘L\ e ."u'\ \

IR £ ' : CCP-181 dmj
) e aet, - 10/12/66
vt T e : : : Gordon Bell
S 4 \, 4 HIGH DATA RATE TERMINALS TO THE 360/67 FOR '
S i..Y - USPRS WITH REAL TLVE REQUIREMENTS, AND DISTRIBUTED COMBUTER NETWORKS
@3 ‘
b B e smfmzx J
“") o= Gomputation carried out throughout an area orx commmity may be céne- %
siderad in terms of a mesh with computing sources, and sinks. When the
units or form of what's being distributed is detexmined, and interconnec- «j
= tion problems are solved, ¥couwputing energy" may be d).f'"r:.buted in a fash- =~
. % lon similar to power. Toward this goal, it seems desirable to have closer Ll
& < coupling amonp our present computers, and other users, who have information wbh
‘?._‘;'v e 3n machine readable forms which requires processing. This form of system S
-4-»"“}“ G; is shown in Fig. 1. :
Q :;_ £~ Aside from the experimental aspects of inter-computer links, and the ,
+_: w! probable inevitability of such a computing system form, a set of terminal
~ & nodes to the present 360/67 computing system at CIT could provide immedi- e
o Y 2 ate bnnefi;s. A central system is favored because of economies of scale, -
f@ memory cost/'a,.t for large memories, processing speed, file facilities, <
. - peripherals, and a wide range of shared common procedm«.., and languages. ~
i I:m‘ .00 A central facility also provides a method of interconnection such that L
- 9‘&6 the more sophisticated users involved in language and problem solving pro- 2y
Q ‘Jcecu.r s design can interact with the naive users who merely want answers.,
5 \;4.‘,,’ attempting to provide users with a complete system, the tendency to form s
.—J ~ o/secondary computation centers will be discouraged. Thus a lower total over=- N
~ «, head is possible since operating system software, languages, peripherals, i
‘J ©-* and files do not have to be duplicated. \
S 9 ‘
< ‘g-— The experimental research process can be significantly changed and madc‘-; 3y
;: :‘U more. productive by the use of a single cowputation system. The total ex-
: W perim2ntal process would consist of experimenter, experiments and single 2
) ~~3 system acting as laboratory assistant, laboratory notebook, and results ana- ™
o e lyzer, By getting direct evaluation of results from the experiment (in scme [~y
t~ ,QJ cases being conducted by the system) the experiment can be carried out more =™
R > . rapidly, without the need to carxy data from experiment to computer (ox ’
;':;_-‘- computer to computer) for analysis. b
L KRN
O © oBJECT OF INTERCONNECTIONS
\;\\‘J/ The interconnection is suggested primarily in ozder thatk direct benefits
A \\ can be obtained./’*As asecondary goal, the author feels systems must "<
\ -"'b‘.‘ §tudied now, as a basis for designing more orderly in the future \ '

-2“

® THE IDEAL SYSTEM

The general computer i1s shown in Fig. 2. In the ideal system, the
transmission delay through elements is short and the links® cost is swall.
The primary memory is large, howmogeneous, and separable into block sizes
or parts iu torms of its access poxris, to match the data rate and data
buffer siza requirements of the processoxs to which it connects. Thue,
remote independent computers {proces s307(s) and memory, etc.) are wapped ; ¥
into the central wmewory, and communication is by memoxy interaction, with }
inter-processor and memory communication. Though a computer (processor- ' &
memory) may msp into central store, some proogs ors may not have access. to

the complete central memory as a mecans of forming isolated, protected com~
puters,

In the idealized case, any part of the

system (processors, prccessor -
and mem. 7, etc.) can be streiched to a different physical location., The:
P

criteriz fox system partitioning is in terms of the least number of intere et
connections moved, their data rates, etc, The degree of system interacticn S e
decreascs with the distance from primary memory beczuse data rate is high- j
est ther.. Therefore, if possible, comnections should sccur as far frcm

primaxy momory &8s possible.

As a computer is removed f£rom the system (by making its memory no- ‘ P e
longer map into the central wmemory) the plob_em of communication between = . T
the two computers becomes severe (In the ideal, any processor can pro- 5 AR
cess any part of centrzl m rya) Now, inter-communication must be of the L R e
form of deliberate data transfers between the two computers, and the com- o i}
puters can no longer share common monitering or facilitates. R I etk

A possible solution is a "slave memory qy tem® in which porticans of
each memory are considered common parts of central memory, and a rerote , S
system would have a “copy" of ceatral memory. Each time a referencs gt
either to central memoxy by a processor or to the rzmote memory by its
. processor which changed the CO“"DA area occurred, a slave action would . 5
take placc which automatically changed the other axeza, R IS &

!

-In nmost of these casges mentioned, the cost for
system is higher than the incremental cost if the ¢
service. Thus, each peripheral system size must be cor 3
in terms of data transmiscion osts, xeowxro? r“LLLDility at
ané¢ the response time, pro
Some trivial periphe 5&] sysa “‘Ws can ""mel'“ operate more
central facility duc to the poor ncoceSSO“s/ﬁcmO'v matchcﬁz

.

0
©
C!
H
(.J
C
T
o
£
o
H
v
0
]
3
[¢}
e
]
(23
9]
(n3
e
’.‘3‘
(W

The types of users and community form is given in Fig, 1.

Exporimental Users: lA-DgC Mﬁﬂ((,%i SRS o

1f a mewory is being used as a pulse height analyzer for a physics 4
experiment an independeunt memory is justified.’ Hers, an event conslsts of.
a binary number which is used to address one of 4000-8000, 12 to 20 bit
memory cells, vhich is to be incremented at event rates up to 1 megacycle, _ S
If a 16 bit tally were sufficient, and data were accumulated im a 6% bit. =~ . - - /"
memory word of the wmemory utilization efficiency would be .25, as f)poscd’
to a probable .66 for general processing. As the event data rate approache

=3~

. . es .75 micro sec, and since a complete 262,144 byte memory module is used,”
the processor could be ccmn letely inhibited and all output including pro-"
a

T
{

cessing, IO d.t. transmission, files activity, etc. would stop. A high-
xperiment mould require a transmission line of about 10~20 mega-

doga rate De

“

bits per secc d bandwidth running for 1 to 1000 seconds/experiment, If

.

nowevex, o
about 100,0

tha accumulated experimental totals are transmitted, -only -~

nd yet have it still be audrhsbhbln as part of the main stowre.

Data Cc (‘;1 centestors l P D i/ ' : 5‘4?&\ ‘E \’Y\ e YL.G% ‘LU \LO OVl

e A Dt i AR DS

@

A gimilar use of a decentralized LnnJutcr or buffer would handle he
€ s

concentrn-ion of data sources with buffering, so that data transmi sion
could occur over a

=

from a lcuse number of users in a single location would be concentrated o

’,

e

collected =nd sent over a single transmission line at a higher rate (2400

bits/sau" A similar use occurs when process control date is transmitted

¢ bits need ba transmitted. Assuming minor data od:LLJf a xac Cor
of 1000 dota reduction (as a minimum) would be expected. It would ve desir-
able to add a gmall, independent increment of wemory for the analyzer data,

r a single line. Heve, typewriter data (100-200 bita /Sc)i
o

to a ceniral facility. Here, the local system would concentrate data, and
] 9

provide local control with capability to administer the process (through
it of the central facility. The

perhaps at a reduced capacity) independer
contral facility would waintain optimizati

on routines, procedures for the:
local system, monitor its performance, ile co-ordination with oLner

¢ systems, etcs The ability of a loca -em might include "dial® for help
.' £ \1 another large processing source, as a means of backup.
: . \\ N : .

\g\”'\ Special consoles with wpculiﬁr riving characteristics would flrbt b°

'“p(V| interfaced at the periphery, befowe irfcvraulon on @ larger scale. These:

A\ wight include

&Ry 4\3‘\3 snoeth I vices, etc,

\:"\" : | \ - ! LN 6’\1/&‘ (» T iu

e
ot Satellite Batch hf cagair

Lt way also be desirable to have satellite terminal computers

2 teucﬂing machine CUqSGILo, special problem oriented consoles,

Y resemble the present day off lire compu with card read line
\ ; s\; er, magnetic tape units, plotters, and .film I0. These pexiy systems
$\ :4‘ act, to lowe: “he data rates for the ceiﬁruj facility. In the case o;
% plotting, contvol allows : of 1000 bandwidth reduction, They
: RSJ «/ | also WTOJ“u; a quan¢on_ Ten 9 of hardling the d. at its source.
7" ‘ = : 04’(,0 .
8 - . =
N %
\}><Q’ \; ’ " Although general d
e M 1n;excongectLon is not a
;ﬁf\.: % Yide? if transmitted to sa
Q. e O display(s) operating from
= T, large module size, and inter
Y . "\; zote displays must have LOCul L
~ . > o changed with the central system ng beyond 5 y of
NN the local & ~pxa]-pﬁ'ccc ssor is requi ctual performance of the

S

q
displays %“Jror displays processor can vary from a local general compute
to a buffex w1th no processing capability. A local system might pcrho"

I~
é

INTEROFFICE
MEMORANDUM

DATE November 9, 1966
SUBJECT Dust Count

TO Ken Olsen FROM Bob Brown
Stan Olsen
Loren Prentice
Harry Mann
Peter Kaufmann
Dick Best

The representative for Air Controls demonstrated a Bausch
€ Lomb dust counter system today. The dust level in
which we are working is shocking. ’

The basis of measurement is the number of particles per
cubic foot of air taken into the instrument. This air
is drawn from the area being monitored.

The results of a few measurements were as follows:

PLACE X 108 Particles/cu. ft.
Photo -Resist Bench 1.21u47
2' Above Bench Near Clean Hood 0.968
Top of Lamp Housing in Clean Hood 0.0000
Work Area of Jig 0.0004
In Clean Hood Under Damage Filter .0200

Almost Anyplace in Diffusion Room 3.0
This information may be interpreted in the following
manner:

1) The filter in the clean hood is damaged
and needs replacing.

2) The dust count on the photo-resist bench
is a large contributor to leak diodes.

3) The dust count in the diffusion room is

as bad as our lobby.

The conclusion is that the cleanup and rearrangement
‘ of the device area to enforce cleanup 1is not just
necessary, it is imperative.

BB/mf

DIGITAL EQUIPMENT CORPORATION . MAYNARD, MASSACHUSETTS

91151104 M:MOHAMDUM

1 INTEROFFICE

DATE November 8, 1966

SUBJECT MINUTES OF MEETING ON MACHINE TESTING

TO Attendants of Meeting FROM Jack shields

A meeting was held Wednesday, 11-2-66, in Ken Olsen's office
to talk generally about testing of computers. Those attending
the meeting were: Ken Olsen, Saul Dinman, Marv Horovitz, Jack
Smith, Bud Dill and Pete Kaufmann.

The meeting started with a bit of testing philosophy that is used
in the company on our basic computer products; e.g., Central
Processor and Memory. The question of use of high speed readers
to speed up the checkout and acceptance test process was dis-
cussed and everyone agreed that this would be a good idea. It
was agreed, however, that before this step would take place in
acceptance testing, a much improved teleprinter test program
would be written by Marv and a detailed test procedure for this
unit would be submitted by Jack Smith for Field Service approval.

Some discussion took place about the length of time for running
tests and it was agreed that the time was based on judgement of
people familiar with the units and was adjusted according to the
results obtained from field performance.

A discussion of vibration testing took place, however, this one
was shelved due to the complexity of description of this test and
whether as a useful tool it did more harm than good.

Once again the question was raised as to why Field Service should
run test programs at acceptance test time which have previously
been run on the computer in the checkout process. The answer was
that when acceptance tests became a rubber stamp, Field Service
will quickly phase out of the loop.

It was mentioned that the 8/S has a written test procedure which
should enable field feed back to close the loop on problems which
get by our testing procedure.

O
0)
~
>
[

m

QUIPMENT CORPORATION « MAYNARD, MASSACHUSETTS

g

MINUTES OF MEETING ON MACHINE TESTING (Continued) Page 2

It was generally agreed that this was one way problems should
be solved rather than trying to re-write the acceptance test to
catch the problem at that time. It was pointed out that these
procedures were not used for the 7A and 8 although they were
written for the 7A at one time. .

The concensus of opinion was that these test procedures should
be written on the 8 and Jack Smith's group will do this as soon
as they can get to it.

The testing of options was brought up during the meeting, but

since this is a very involved discussion, it was deferred until
it could be discussed at a meeting at a later date.

JJS: ned

DIGITAL EQUIPMENT CORPORATION .« MAYNARD, MASSACHUSETTS

AdOD .
‘ ¥ AdOO
\oE3X) : oy3xX|

ey vy e
: s B

{

e N

o

SUBJECT present Status of Foxboro

TO

fé‘;ﬂiaﬁé ' ; Ry
@b@ MEMORANDUM

INTEROFFICF

N e

DATE November 7, 1966

Mike FordV/ FROM .Ron Wilson

Ted Johnson : ‘

Jack Shields e s 6}dﬂ“

Jack Smith OJ/ P
A e

As of today all of the
1ave been solved or sched
solution.

oblems that we are aware of
es have been established for their

G808LE Boards

Twenty have been delivered to Foxboro. - Frank Egan will
install the boards in one of Foxboro's systems and Foxboro
will install the boards in their remaining systems. My point
of view is that this is a design improvement and not a manda-
tory ECO. Outstanding is a reguirement for 184 - G808's.
Mike Ford has promised these to me in four weeks - I promised
to Foxboro within eight weeks.

DMO1 - All modules to implement ECO #86 have been
ceceived. Frank Egan has them at Foxboro (Bl4l's & S107's).

Mike Ford will deliver % of the modules reguired to
correct our error of shipping Foxboro's DMOl's with R line
modules instead of S line on 11/7 or 8 - the remaining % on
11/14 or 15. These are to be swapped one for one basis.

Ed DeCastro has satisfied Foxboro that the DMOLl will
operate - He is in the process of issuing an ECO to improve
the margins which Frank Egan is implementing in the first
one today. ‘

Teletype deliveries we still owe Foxboro Type 35 tele-
types. It is probably the most critical item of concern to
Foxboro. Foxboro is willing to accept these units without a
reader rather than have any more delays.

RWW/jss

NGITAL EQUIPMIENT CORPOGRALT

S

* C’Wﬂ/ ./ﬁ'&cﬁ)ﬁ‘nﬁ ?7{/(\:4/;/("1/7(,(;/1 2, kcjk’ c/ | [(,/l ',L " JCZ& o 76—1—64/

o

/ot e
INTEROFFICE

MEMORANDUM

DATE November 7, 1966
SUBJECT DEC Booth - NEREM 1966

TO K. Olsen FROM C. Kotsaftis - Cambridge

Although the NEREM booth was attractive and done in good taste, it
had several shortcomings.

First of all, the complete lack of a module display was quite a
surprise, since NEREM is primarily a components show with the modules
attracting the majority of interest. There was sufficient room for

a module and logic lab display on the left side of the booth. This
area was wasted, since everyone tended to congregate around the two
computers.

The second drawback was the physical location of the computers. The
intent to emphasize compatibility of the PDP-8 and PDP-8/S by having
both teletypes side by side was understandable; however, it did not
work. As soon as a demonstration began on one machine, a group of
onlookers would crowd around both machines making it difficult to
demonstrate the other. 1If both machines were physically separated,
then two demonstrations could have been given simultaneously and more
people could have been accommodated. The compatibility of the two
machines would have been best demonstrated and explained by the sales
people. As it turned out, most people were confused by their
proximity.

The most successful part of the show was the handing out of the small
Computer Handbook and the Digital Logic Handbook. Having this done

by a young lady released the sales people for direct selling. I would
suggest the addition of a stockroom man or shipping clerk to physically
handle the cartons and keep sufficient quantities of handbooks on hand,
since during busy periods this required the full-time attention of

one salesman.

In order to avoid future wasting of company resources on trade shows,
the following recommendations are suggested:

1. Let the sales office in the trade show area participate in the
planning. The local sales personnel are more aware of their
immediate market, current trends, and current interests. We also
have ultimate responsibility for sales.

2. Have a pre-show meeting of all those on booth duty. Typical
topics for discussion should be: The new products on display,
if any, that we have not been informed about. (This happened at
the Spring Joint Conference). Familiarization with what is being

DIGITAL EQUIPMENT CORPORATION « MAYNARD, MASSACHUSETTS

1

el e

demonstrated; i.e., how the demonstration works. An explanation of
the "theme" if there is one or of the message we are trying to get
across.

3. A post show meeting to discuss the results of the show in terms
of reactions to booths, displays, demonstrations, etc. Or, in
short, did we achieve the results we wanted?

The question boils down to whether or not trade shows are a
significant part of our total sales effort. If not, then possibly
we should stop participating in shows as some of our competition
has. If on the other hand we intend to continue using trade shows,
we should provide the same planning, support, and follow-up which
would be required for any other sales or marketing programs.

My final comment is in regards to the general lack of interest and
support from Maynard. It is appropriate to note that many Maynard
personnel who could not find time to support the NEREM show had no
difficulty scheduling a week for a West Coast show.

DIGITAL EQUIPMENT CORPORATION . MAYNARD, MASSACHUSETTS

‘ t& Maxcy
- . LINE B e 2 ggf" o ryeE oF arrrciss storen e
‘L;
} | Small Comp. Prod. J. Smith i B 5] teletype parts-logic parts-packing foam-
obsolete mechnical parts
2 Small Comp. Prod. Line N. Mazzarese 1% 38 W
3 Module Production C. Kendrick 11 S obsolete production machinery
L Personnel R. Lassen 1l L Company entertainment equipment
5 Direct Mail T. McInerney 8 27 Promotional literature
6 Print Ship D. Lewis 11 6 misc. sales literature
7 Programing H. Shepard 11 16 packing materials
8 Programing H. Shepard 11 16 binders
9 Advertising D. Ward 11 16 standard maintenance manuals
10 Purchasing H. Crouse 1L 11 graphic supplies-paper supplies-wire supplies
.5 | Administration K. Olsen 11 4o old Company history
12 Plant Engineer A. Hansen 11 gg&%?nnggﬁee supplies-pipes and plumbing
13 Plant Engineer A. Hansen 11
14 Accounting R. Dill 8 A b financial records-registers-pay roll records
15 Accounting R. Dill 8 A b w IBM tabulating equipment
16 Large Comp. Prod. S. Mikulski 11 32 fianuals-papers-old records
1T Trade Shows T. McInerney 11 27 Trade Show Material
18 Traffic F. Kalwell 8 8 W old F.G.'s records- supplies
19 Power Supply Prod. R. Maxcy 8 I W rav materials
20 Purchasing H. Crouse 8 A 1 graphic supplies-paper supplies-wire supplies
21 Small Comp. Prod. J. Smith 8 A 5 teletype parts-logic parts-packing foam

INTEROFFICE
H MEMORANDUM

SUBJECT Employee Entrance/Exit

TO K.H. Olsen

cc: Peter Kaufmann
Loren Prentice
Cy Kendrick

DATE November 4, 1966
- Buillding 11

FROM Bob Lassen

We have agreed with Loren Prentice to allow the people in the

silk screening area to enter and exit through the rear door in

Building 11. This will not interfere with the company's security

regulations as the rear door must remaln unlocked because it is used

by other companies in the mill. We have also placed a time clock

near the rear door for our employees' convenience. In addition

we will install two or three outside floodlights at the rear of

Building 11 for the safety of women employees entering or leaving

during periods of darkness.

Students and instructors in the Training Department will con-

finue to use the front door of Building 11 as they do not have

access to other parts of the plant.

/biz

DIGITAL EQUIPMENT CORPORATION . MAYNARD, MASSACHUSETTS

| O INTEROFFICE
- lEE] MEMORANDUM

DATE lovember 4, 1266

SUBJECT Inhouse Integrated Circuits

TO Ken Olsenv . Hindle FROM Bob Brown
Dick Best P. Kaufmann
Stan Olsen N. Mazzarese
WHAT

Integrated circuits can be developed in several ways.
For instance, isolation may be accomplished by any one
or more of the following methods: (a) p-n junction

(b) ceramic and glass dielectric or (c) mesa as well
as beam leads are all isolation modes.

Just as there are a multitude of isolation modes there
are also many circuits in which the isolation may be
made by using clusters of common mode diodes and
transistors set down on hybrid circuit mounting strates.

If we follow logical step by step development program
we snall progress as follows:

First it 1s necessary to develop a production
staff which can, in a routine manner, handle

standard diffusion, cleaning, metalizing and

masking operations.

For this to function well and reliable, it
| must be routine as in production of a couple
of diodes and/or a transistor.

The second step is to be sure to have at hand
the techniques for producing the devices
which are to be incorporated in the IC's.

One should as a third step make circuits which
do not require isolation modes such as enu-
merated above,

Step four is to develop the simplest isolation
mode which should also be as free as possible
of parasitics.

Fifth is the production of circuits which
have large usage.

AN IIMNIT AT AT A MO AT RN AMAVANIARD.L f\"i’\c“:f\\’\‘—{[](:.(:""t‘:

FAN 1T A g

cel that in orcer to make the most versatile circuits
shoulc, where' practical, integrate active elements
S much circuit as JODS:Jle and hybridize them with
ned (trimmed) resistors and capacitors.

By taking a step by step approach to the problem we can
nake each step pay its way.

THE fdOW OF IT

(1) It is essential that the basic technologyv which is
envolved in step one be firmly established. Problems
experienced at this stage which are not solved will be
around to cause trouble in all future stages of devel-
opment. It requires finesse to produce semiconductor
devices, It has never been done successfully with brute
force.

(2) When we have developed a transistor we shall have
accomplished step two.

(3) Recent discussion with Saul Dinman, Russ Doane
and Tom Stockebrand has indicated that there may be
common mode circuits which we can produce at a real
value to the Company, and accomplish step three.

(4) Of the several isolation modes, the simplist tech-
nique for isolating devices in an integrated circuilt
was described by Schroder of Fairchild at the IEEE
Electron Devices meeting. They call it mesa isolation.
Tnis system will require development of far fewer
techniques than any of the other modes and appears
result in far better isolation.

-

cO

(5) Sometime prior to tnis phasef{step five), we should
obtain mask making equipment and develop a masking
capability. The major effort during step five will be
in quick change of masks to deliver to the circuit
people circuits; experimental, and finalized. We
should have developed multiple layer circuit techniques
during this step.

vy

digital equaipment corpe

(it

THE WHY OF IT

While at the conference in Washington (Electron Devices
Conference) I talked to numerous old friends.

Many of them are setting up inhouse device capabilities
around tane nation. In our discussions we always seemed
to get around to the question, "Why produce innouse
devices and Ic's?". The universal answer was that there
was no real basis for competing if everyone used only
those"IC's which were offered on the open market.

The common opinion was that a semiconductor group work-

ing with circuit designers within the company could |
produce circuits with which the semiconductor companies
could not compete. This would also give the company the
opportunity to use those capabilities which made them
successful in the past.

There was much talk of L.S.I. (Large Scale Integration)
at the conference. Most of the problems involved are
of the sort best solved by a company such as DEC.

BB/ mf

~

digital ecquipment corporeiion

INTEROFFICE
H MEMORANDUM

SUBJECT ANNUAL PHYSICAL EXAMINATIONS--KEY PEOPLE

DATE November 4, 1966

TO Ken Olsen FROM Bob Lassen

Arrangements for annual physical examinations are com-
plete. Dr. Elmer Purcell of Concord and Dr. Houck have
agreed to a rather extensive examination designed to fit
the medical history and age of each of each employee.
Dr. Purcell has an excellent reputation and is enthus-
iastic about handling this for us.

The cost of the physicals will be about $50 per person,
and the results will be forwarded to Dr. Houck. Elsa
will handle the appointments and will remind people when
they are to take their examination.

All people concerned have been notified.

RTL/jfr

DIGITAL EQUIPMENT CORPORATION « MAYNARD, MASSACHUSETTS

. s

EQUIPMENT
CORPORATION
MAYNARD, MASSACHUS ‘TT/S
\ /%/c L,
%cx ftm/é’& o T

9(’(;/, f///,,’(/<

Z/j A / NN 7/ Ce
; % ' \/» / A Zfdu// (rz,/;
w v Lot Q =

(/‘ L0 { /“n‘ G /Z;l/é///
G “/Qn /</ x> ///f
/’/‘/J{/,&/ /A /un AN

'[/ [/, (mM t%é/). "z f<
\/ P Cam y{u:/ (~o
/7))
%{M A

INTEROFFICE
H MEMORANDUM

[

DATE Nov. 3, 1966
SUBJECT

TO Win Hindle FROM Jack MacKeen

Win, Pat and I both feel that the only benefit received from
this conference is product exposure and that by exhibiting,

we are supporting it as far as we wish to. We do not recommend
any further support.

DIGITAL EQUIPMENT CORPORATION « MAYNARD, MASSACHUSETTS

/

-1967 International Congress on Magnetism

Boston, Massachusetts 10-16 September 1967
sponsored by International Union of Pure and Applied Physics + American Institute of Physics

in cooperation with Conference on Magnetism and Magnetic Materials

Address reply to:

Sperry Rand Research Center
100 North Road

Sudbury, Massachusetts O01776

October 17, 1966

Mr. Kenneth H, Olsen
Digital Equipment Corp.
146 Main Street
Maynard, Massachusetts

Dear Mr. Olsen:

The 1967 International Congress on Magnetism is a major scientific event which will
take place next September in conjunction with the annual (U.S.) Conference on Mag-
netism and Magnetic Materials, This will be the first time for the international
meeting to be held in the United States, and the New England area has been selected
as the site because of the many educational and industrial organizations here which
have active interests in the field of magnetism. Previous International Congresses
were held in Nottingham (England, 1964), in Kyoto (Japan, 1961), and in Grenoble
(France, 1958).

Everything is being done to make the Congress an outstanding one. Approximately

50 invited papers and 300 contributed papers will be presented to about 1200
scientists and engineers coming from all parts of the United States and abroad. The
outstanding scientific events should be matched with equally attractive social
events, This is a unique opportunity to show our visitors the beauty of the area,
give them an opportunity to engage in informal, relaxed discussions with members of
the local scientific and engineering community, and demonstrate that New England
hospitality is second to none.

In order to do this we need the help of the research laboratories and industrial
organizations located nearby. They will benefit from having this important Cong-
ress in Boston by being able to send their scientists and engineers to the tech-
nical sessions at low cost, but at the same time are collectively in the position
of hosts for the participants coming from distant places. We, therefore, are
asking for financial help to provide the amenities which will mean so much to the
success of the Congress. Contributions will be acknowledged in the printed program
if the donor so desires.

I will call you in a week or two, and will be pleased to try to answer any ques-
tions you may have.

Sincerely yours, e e

S 51 R ™ g & ma
' / 1‘\} ag"" e ‘3 \ § o=
A.c 79 U Bw N B W b

R. W. Damon OCT o 4119686

Local Committeeman
RWD/d

RN

:JJ

M. T. SYSTEMS

|
,<

INTEROFFICE : .
MEMORANDUM

DATE November 3, 1966

SUBJECT PLANT TOURS

TO Bob Lassen +Ken Olsen FROM Al Hanson
Win Hindle Ted Johnson
Mike Ford Ken Gold
Bob Lane

Please notify the Security Department (Al Hanson - Ext. 379
or Judy French - Ext. 421) with the following information before
a plant tour is made: (A plant tour being described as 6 or more
persons touring the plant.)

The company or companies involved or groups involved.
(Boy Scouts, Girl Scouts, etc.) ;

The time the tour is to take place.

Those buildings that are to be covered by the tour.

'The starting and ending places of the tour. |
Those persons conducting the tour should:

Instruct the people with them not to straggle off in all
directions, but to stay with the group.

In general, tours should be conducted with enough guides
to provide one guide for every 5 or 6 persons.

These guides should be familiar with the route that they are
going to take; toilet facilities, areas under which we maintain
security and they should not enter, etc.

As the buildings are almost always under construction and
we are moving heavy equipment in and out, your cooperation is
solicited to provide for the safety of the people you are
conducting through the plant, respect the security-we wish to
maintain and to save embarrassment both to ourselves and our
guests.

2 G FAL EQUIFRNMENT CORPOR HESRE AYINANRITIY, MADSDAA

o "‘“’“’t?f“’-’-'\"’.‘!'ﬁ’?ﬂpl”"‘.’f?":"-'{m’a‘“‘“"?‘"!f‘"f-f"w p—.
() T :

MSE N

i E
53(35

b
e e
(38 €

=1 AM VISITING HIM

NO GLCD

NECESSAR
LARRY SL

I HAVE NOT SEEN

33

S¢ CARLSONs CC NICK MAZZARE Sk,
'FF FINCH

MAURICE WILKES, CAMBRIDGE CS/66/11

TUESDAY 1ST NOV. WITH ESS

NEWS FRCH THE PLANT. PLEASE PUT TOP
PRIUXITY ON GETTING THE

Y SPARES AND IN
IGMAN FUR EARLY

EAE DELIVERED THIS

SIALLATION KIT AS RECOMVENDED BY

FDP-7 AT MATHS LAB.

MeW'S LETTER TO KEN.

ENTIALLY

MUNTH WITH

Lihint ey pane

S

Y SR . S SN v srmrmree- ¥ 4 e a—— —*W*--1—~v4-‘-~nq~-m'm—"k - ‘\”
s:gak e | o bk Lo lae E Q ulagga MENT {3253 is:ge“
. Tl %
Tl e CORPORATION ALES CALL REPORT No. 12698
| s ! _,;._ ,J;__.,,-.h...w-_i MAYNARD, MASSACHUSETTS : : 3
DATE 11/1/66 ik
FIRM Electronic Data Systems {Pepsi) SALESMAN Ron Bassin
BT , 3 od Pt od
STREET 1400 Peach Tree Center CFFICE AREA New York
B 230 Peach Tree St. N.W, » "
‘ Atlanta, Georgia ’ \REA CCDE 404 PHONE NO.577-.3374 ,»
’ PHONE (OURS THEIRS)] | LETTER [| visit[] |
PZRSONS CONTACTED) EXTENSION. EST. ANNUAL POT. CK. CK. PRODUCT CK. | TYPE i
) ; NEW MODULES j'
(D) Jack Archer UNDER $20K ow | X Ajo ’
$20 - 50K HIGH COMPUTORS X b
$50 - 150K MED. SPECIAL SYSTEAAS B
sisok up (Y | ow OTHER | :
REMARKS ‘ i
: !
1. EVALUATION ", We lost the sale of 25 PDP-8/S's to "CCC" DDP 116 for |
Z 'the following reasons guote:]
y 1. . "CCOY is marketing orientated DEC is not,
2. "CCC" will lease with an option to buy!!! ,
. ' |
Please note the difference in cost between the PDP-§/S
and the DDP116., Jack Archer agreed.that the 8/S will !
do the job. EDS wiil do the programming . !
| |
é
(
i
!
i
|
i
i
]
|
i
3
i
i
¥ !
ACTION TC BE TAKEN
. Olsen, S, Olsen, M, Ford, T. Johnson FOLLOW-UP DATE BY

,sr—u AL COPIES TO

