FROM Dave Denniston NY

Ken Cell Bob Hughes stopped in today and among other things gave us a letter of commitment for five (5) PDP-5's. This is pretty much speculation, but with a fair amount of confidence on two of the machines.

Bob mentioned an upcoming Request For Quotation from the State Department on a switching center to replace existing Phillips equipment in Washington, D.C., (Not connected with the Paris system) and wondered if we would be interested in bidding as prime contractor at this time. I think he would appreciate a 'phone call.

DBL: BM
CC: H. Anderson
S. Olsen
N. Mazzerese

R W. HUGHES
PREEIDENT

DATA TRENDS, INC.
 1259 RT. 46, PARSIPPANY, N. J. TEL 201-334-1515

24 December 1963

Mr. David Denniston
Digital Equipment Corporation 1259 Route 46
Parsippany, New Jersey
Dear Dave:
Data Trends, Inc. intends to order five (5) PDP-5 machines during the next 12 months.
As discussed, we request delivery of the first PDP-5 on or before February 24, 1964. Basically, the configuration is the standard machine but with the 4,096 word core storage. Final details on the configurafion will be forwarded separately.

For the remaining four machines the requested delivery schedule is:
April 1, 1964
June 1, 1964
August 1, 1964
October 1, 1964
This order is based on our understanding that we may cancel any or all deliveries up to thirty (30) days before the specified delivery date,

With best regards

RWH:jag

INTEROFFICE MEMORANDUM

DATE December 11, 1963
SUBJECT
ro
Digital's Art Exhibit - 1964
DEC Managers
FROM
Elsa Newman

After several inconclusive attempts, a committee of art-minded employees has been nominated to work on one or more art projects. Henry Crouse's objective to focus attention on the cafeteria was discussed with Elsa Newman and after some further thought, others were brought in on the old art festival idea (prior to the cafeteria focus). The ON LINE article, somewhat elaborated on by Don Watson, has put the Committee on record. This memo requests the assistance and blessing of management.

I should like to know what limitations, if any, you may wish to place on the purpose of the Committee and its scope. Its present tentative goals are:

1. To stimulate employee interest in expression and appreciation of art.
2. To encourage the expression of cooperative, creative processes for either direct or indirect communal good. Places that will be improved: The cafeteria, the lobbies, etc.

Paintings by J. Lozouski, T. Bertz and others could be placed in Bldg. 5 Reception Hall before December 15.

EN:ajc

DATE December 9, 1963.
SUBJECT
то
Ken O1sen
FROM Denny Doyle

1. I thought it would be a nice gesture for you to send a Christmas card to a couple of the people you met up here last summer:
2. Dave Co11 - Defence Research Telecommunications Estab1ishment,
Shirley Bay, Ottawa, Ontario.
(He showed us around and had 1unch with us)
3. Mr. D. Patterson - Same address
(He was doing radar work)
4. Mr. E. Ducharme)
5. Mr. G. Lockwood) - Same address
(The film reading people)
I don't know about the Chalk River people - I presume you met the following people:

> 1. Dr. L. G. Elliott
> Physics Division Head
> Atomic Energy of Canada Ltd.
> Chalk River, Ontario.
2. Mr. Clayton
3. Mr. P. Tunnic1iffe
2. I spoke to the Central Dynamics people when I was in Montreal the other day. Their engineer told me they bid on the Chalk River job in three different ways, with a PDP-4, an SDS 910, and a DDP-24. Boland lobbied quite vigorously to people like the Minister of Industry, Mr. C. M. Drury, and the president of AECL, and as the engineer said, they waved the Canadian flag quite hard.

Their impression is that Foxboro is getting the job although we seem to think it is Honeywe11. In any event, Central Dynamics never was in the running even though the SDS rep. here in Canada actually wrote their quote for them. As you recall, I refused to do this for them as we were bidding against them and in the event we got the job, we would have been in real trouble with them; I now am more convinced that we did the right thing since SDS was in the same bed with us all the time.

DJD:LMM

，

December 6． 1963
Mectings Scheciuled 10% DATE of December 15×20 ， 1963.

SUBJECT

TO

発：OLsen
睢。 Andexmon

S．Diser
D．Best
A．kotok
䋨。 Savel．
B．Lrorg
D．2052．

The following meetings with customers have been scheduted for the week of becember $15-20$ ， 2963 ：

$$
\begin{aligned}
\text { Monday } 2: 00 \text { p.m. }
\end{aligned}-\begin{aligned}
& \text { Reytheon Company } \\
& \text { Discussion on popms }
\end{aligned}
$$

Rttendance：\vec{R} ．Rotob
R．Rame

まopmo and 3 0
Attendances

DEC
2．Te Tase
R．Savell
5．20ng
A．zectoly

892
J．Wax
Mr．Ross
蛙• Minslecy

Weanescave $10: 30 \mathrm{a}_{6} \mathrm{~m} .=\mathrm{m}$ ．
Discussion on PDPmb
Attendence：

Friday. 10:30 a.m. - Tha
 Purpose - Managenent Visit. Attendance:

DEC
R. Iane
E. Anderson

स。 Olsen

TTT
T. Dmochowski
G. Mauksch

If you canot attenc these meetings, please contact me.

DATE December 3, 1963

SUBJECT Europe trip November 10-21, 1963

Ken Olsen
Harlan Anderson
Stan Olsen

FROM Jon Fadiman

On Monday, November 11, I visited the Philips plant in Eindhoven, Netherlands. I spent the time with Mr. Béla Csonth who is at present in charge of memory test equipment at Philips. Our system is working well except that the 5Ω General Radio potentiometers need to be replaced by 5Ω Claristat potentiometers. In addition, the switches on the units and tenths position of the level discriminators are weak. In general however, they have had very little maintenance on this machine. Mr. Csonth has since designed a memory tester of his own, which he calls the Philidec, of which he is installing the first at the Philips plant in Evreux near Paris. He is also suggesting that he would like to install a similar machine at the Philips plant in England which is Mullard. This is an almost direct copy of our machine except that he has designed new circuits, uses silicon control rectifier switches for the X and Y axes and reed relays for the Z axis and sense switches. All of the ideas of the memory tester are taken from our 1516. I saw the prototype machine in operation and it does look very good. Mr. Csonth seems to have done an excellent job. Philips is going to go into the computer business and make small computers in the future, which might be competition for our PDP-5 and PDP-4. However, Mr. Csonth does not seem to think that Philips will do very well since they are such a slow moving conservative outfit, and that by the time they bring out a computer it will be very outdated.

I spent all of Sunday evening with Béla Csonth at his home. He is definitely interested in coming to work for us as the Manager of a European office. I think that he is an excellent man and that we should consider hiring him. Both Win Hindle and I have his resumé on file. His background is in Mechanical Engineering and the Machine Tool Industry in Hungary. Since then he has worked as an Electrical Engineer at Philips, designing first variacs and then responsible for memory test equipment. He has done a considerable amount of circuit design and systems design. He is an extremely adaptable person, learns fast, and speaks French, English and German fluently as well as Dutch, Hungarian and some Italian. Ted Johnson will be seeing him again in the near future.

I do not think that there is much chance of selling very much additional equipment to Philips, in as much as they seem to wish to make everything themselves. Of course it is Béla Csonth who has done all the making, and therefore hiring him might change the situation slightly.

The rest of my visit was spent in Paris. On November 14, Guenter Huewe and I visited M. Llop at the Societié d'Optique et Mechanique, 125 Boulevard Davout, Paris 20, France. These people have the job of making an entire SMP (Scanning Measuring Projector) for CERN and other customers. They are mechanical people and are doing the mechanical job of the actual measuring table and optics. Since they have the entire systems responsibility they must purchase the rest of the system, i.e., the electronics from someone else. CERN has suggested us as the logical supplier for the electronics. This job has already been done by Lawrence Radiation Laboratory at the University of California and I have all of the block schematics of the LRL system here in my office. Guenter and I decided to make a bid on the entire system which we submitted on November 15. The price for the first system is $\$ 23,000$. not including some additional power supplies which we would have to buy and add on. The company asked for a bid of up to twenty systems. Most of the system consists of reversable counters and other logic which we can very easily realize with our system plug-in units. They would want the first of these systems delivered by about the end of May, 1964. I think the chances of our getting at least one of these systems is very good, probably about 80%.

I spent a considerable amount of time at Cofelec installing the Memory Tester 1516. I worked mostly with M. Eusbio who works for M. Dufour. The Memory Tester was installed without any difficulty whatsoever and everything worked perfectly. Cofelec was extremely well impressed with this machine. Indeed, I talked with them about buying a Semi-Automatic Core Tester, Model 2108 and they asked me to write a quotation immediately. I did so and the next day they gave us a purchase order for this machine. No one in this company speaks any English so it is a bit difficult for Guenter to work there. However he did spend some time there doing some very thorough checkout work of the Memory Tester to make sure that everything was operating properly. M. Eusbio seems to understand the operation of the machine very well.

On Tuesday, November 19, John Leng and I visited Saclay which is outside Paris. This is the Atomic Energy Commission of France. We were supposed to have an appointment with Dr. Y. Amram. However, he was sick that day so we spoke with M. Mugel. He explained to us how the Pulse Height Analyzers at Saclay work and we explained to him how the PDP-5 worked as a Pulse Height Analyzer. He was considerably impressed. He spoke no English so I had to translate everything between John Leng and him, which made things a bit difficult. John Leng and I then gave a talk to about 20 physicists on the general structure of the PDP-5 Computer, the PDP-5 used as a Pulse Height Analyzer, and some major details on the PDP-1 and PDP-4 Computers. The talk was very well received. There were a lot of very intelligent questions, which showed that the physicists did understand the use of the PDP-5 as a Pulse Height Analyzer and appreciated it. The talk was given completely in French and no one understood any English. After the talk, many of the physicists came to our booth at the Mesucora show to see the equipment in use. Many other people at Saclay had already heard about it and came to the booth; thus I felt that this was an extremely valuable visit.

The first few days of the Mesucora show were very slow but after that, the booth was crowded most of the time. There was very great interest from Saclay who would probably be our best customer in France, other customers associated with Saclay such as College de France, and Ecole Polytechique. People from the Eléctricité de France and Gaz de France were also very interested in the PDP-5 as a control system. I feel that the French market is expanding rapidly and we should definitely take advantage of it at this time.

At the show I spent a considerable amount of time with M. P. Lantieri from Le Materiel Electrique, S.W. This company was introduced to me by Mr. Arnaud de Vitry and he was with me at some of the conversations. Actually they are a group who are interested in doing process control work with full system responsibility. They have their own computer, the PSP77, which they are developing for a price somewhere between $\$ 20,000$. and $\$ 40,000$. This would compete with either our PDP-5 or PDP-4. So far, although they say they have sold some, there are none in operation, and the computer on display at the show was not operating. This company says they are interested in working with us to represent us but what they really want is for us to license them to build our computer. This would not be very attractive for us. I suggested that we could sell computers to them which they could use in their control system. However, this did not interest M. Lantieri very much. I feel that they are primarily a competitor and not a customer. There address is 36 Quai National, Puteaux (Seine) France. Telephone number LON2235.

I also visited Jean Lebel at the Centre Lebel d'Études Scientifiques (CLES). He has already bought some of our system plug-in units and is about to purchase a considerable amount more of our A-D equipment and possibly sample and hold circuitry. He is using this in systems which he is designing for seismographic work. M. Lebel has indicated that he would try to be of help to us if we wish to establish a Paris office. He feels very strongly that we should establish a Paris office as soon as possible to take advantage of the French market. It is essential to have a European in Paris who speaks French. It is not possible to do business in France in either English or German. Possibly Jean Lebel himself would be interested in working for us but if so, he did not give any hint to me of this. He would of course be an excellent man. At least he will help us to find an office in Paris. His Engineer, M. Gouyet will visit DEC on December 17 to talk with myself, Barbera Stephenson, Dick Best and others concerning the use of DEC equipment in his work.

Ted Johnson has been doing a fine job in Europe and has made many important contacts with customers in France, England, Germany and Sweden. Guenter Huewe is becoming more sales oriented, has learned a little French so that he is at least able to understand without translation, and is in general a bit more adapted to the ways of a sales office than he was in the beginning. He will never of course be a really first rate salesman and I don't think we should expect him to be. However, he is a top technical man and systems designer and extremely thorough. Although he and Ted Johnson sometimes clash, the net result is beginning to show results in Europe.

My feelings on the French market in general are as follows: It is certainly more difficult to do business in France than in either England, Germany or Holland. This is due mostly to the greater amount of paper work involved and the red tape in importing the equipment into France. The French custom officials are notoriously slow (for example it took sixteen days to get the Memory Tester through customs in France while it took one day to do the same job in Germany). French engineers in general speak only French which makes it very difficult for Ted Johnson or Guenter Huewe to do a large amount of business in France. However, the business is certainly there. Saclay has money to spend and is willing to spend it for foreign equipment. Utility companies are interested in automation in a big way and are certainly in the market for control computers. There is much system design work to be done. In order to do this business we must open a French office with a French speaking person in charge somewhere in Paris. I spent some time with M. de Vitry discussing this subject, and he is also of the opinion that we must do this now.
\# \# \# \# \#
bbn

DATE November 26, 1963

SUBJECT New Test Equipment

TO
R L Best
FROM R Doane
'Usage on our present Boonton 95A is so high that the production area is in constant conflict about it."

Bob Hughes

The 95 A measures $10 \mu \mathrm{~V}$ to 1000 V and 1 picoamp to 1 ampere, dc , full-scale (center zero) to $\pm 3 \%$ voltage and $\pm 4 \%$ on current.

RCD/dhw

PURCHASE REQUISITION

PURCHASE ORDER NO. \square

DOIT EQUPMENT CORPORATION CATALOG FILE SENSITIVE DC METER

FEB 271981

Extremely Wide Range Voltage: 1 uv to 1000 V Currents: 0.1 una to 1 amp.

Simplicity of Range Switching and Meter Reading

Constant Input Resistance of 10 Megohms on all Voltage Ranges.

Floating Input

Fast Response

Low Drift

Amplifier Output at Front Panel

Price \$495

䀼B 271961

GENERAL DESCRIPTION

The Model 95A Sensitive DC Meter is a sensitive wide range combination voltmeter, ammeter and amplifier. A unique multiplex range switching system permits rapid selection of any of the 42 voltage or current ranges and displays in large lighted windows the full scale value and unit of measure of the range in operation. This range switching system makes for easy operation and instant recognition of the scale in use thereby reducing the incidence of errors of interpretation. The range of measurements, $1 \mu \mathrm{volt}$ to 1000 volts and $0.1 \mu \mu$ a to 1 ampere, it is believed, is the greatest of any commercıally available instrument.

CIRCUIT

The instrument is a stable, high gain, feedback, ac amplifier operating from the output of a low noise chopper. A synchronous output rectifier consisting of a transistor switching circuit driven in phase with the input chopper produces a dc output current proportional in amplitude and identical in polarity to the input voltage. A zero center meter indicates positive to the right and negative to the left. The input voltage is applied to the chopper through a switching system which either attenuates the input voltage or varies the gain of the amplifier. Current ranges are provided by internally shunting the input with an appropriate resistance and then reading the voltage drop across this resistance in terms of current calibration. A meter ZERO ADJ control is provided; however, after a 30 minute warm-up normally there is no need to reset the zero when changing sensitivity ranges. An exception to this is the most sensitive range where some correction may be needed, particularly when thermals or residual voltages are present in the test circuit.

FLOATING INPUT

The input circuit may be operated either grounded or floating. A jumper across the terminal posts at the bottom left of the front panel connects the input circuit to the panel for grounded operation. When the jumper is removed the input circuit floats a minimum of 500 megohms above ground.

CONSTANT INPUT RESISTANCE

The input resistance of the Model 95A is held to a constant 10 megohms on all voltage ranges. This frees the Model 95A of a range switching error which is inherent in all meters that have their input resistance varying with range. By presenting a constant load to a high resistance source the Model 95A can be switched from range to range without changing the voltage at the source.

AMPLIFIER OUTPUT

The output of the synchronous rectifier is also applied to a cathode follower where separate gain and bias controls give complete flexibility in the control of the output gain and reference level without interacting with the internal meter. This feature allows the high sensitivity of the Model 95A to be used in conjunction with a variety of recording or control devices.

SPECIFICATIONS

VOLtAGE RANGE: CURRENT RANGE: INPUT RESISTANCE:

Voltmeter:

Ammeter:

ULI SCALE SENSitivities
Voltage:
Current:
ACCURACY:
Voltmeter:
Ammeter:
RANGES:
Voltmeter:
Ammeter:
NOISE:
DRIFT:
BANDWIDTH:
RESPONSE TIME:
60 CYCLE REJECTION:
METER:
RESISTANCE FROM
INPUT CIRCUIT TO CASE:
AMPLIFIER:
OUTPUT:

OUTPUT IMPEDANCE:
RACK MOUNTING:
POWER REQUIREMENTS:
SIZE:
WEIGHT:
SUPPLIED WITH:
± 1.0 microvolt to 1,000 volts dc
$\pm 0.1 \mu \mu \mathrm{a}(10-13)$ to 1.0 ampere dc
10 megohms all ranges
$1.0 \mu \mu$ a to $100 \mu \mu$ a Range: 10 megohms

$$
\begin{array}{r}
1 \mu \text { a: } 1 \mathrm{~K} \text { ohms } \\
3 \mu \mathrm{a}: 333 \text { ohms } \\
10 \mu \mathrm{a}: 100 \text { ohms } \\
30 \mu \mathrm{a}: 33.3 \text { ohms } \\
100 \mu \mathrm{a}: 10 \text { ohms }
\end{array}
$$

$$
300 \mu \mathrm{a}: 3.33 \text { ohms }
$$

1 ma to 1a: 1.0 ohm
± 10 microvolts to 1,000 volts dc ± 1.0 micromicroampere to 1 ampere
$\pm 3 \%$ of Full Scale
$\pm 4 \%$ of Full Scale
17 Ranges $1,3,10,30$ etc. sequence 25 Ranges $1,3,10,30$ etc. sequence $1 \mu \vee \mathrm{PP}$ (approx.) referred to input less than $\pm 2 \mu \mathrm{v}$ after 30 minute warm up referred to input. 1 cycle at 3 DB
Approx. 1 Sec. to 90% of Full Scale greater than 60 DB
Zero center with mirror scale
Approx. 500 megohms
Gain 100,000 maximum
) to ± 1.0 volt into 1,000 ohm load polarity same as applied Input. Output is continuously adjustable. adjustable.
Approximately 400 ohms.
Also available, the $95 \mathrm{~A}-\mathrm{R}$ on a $51 / 4 \times 19^{\prime}$ rack panel. Extends $83 / 4$, behind panel. Price $\$ 520$. 105 to $125 \mathrm{~V}, 50-60$ cycles, 40 watts. 210 to $250 \mathrm{~V}, 50-60$ cycles (Special) $71 / 2 \mathrm{~W} \times 91 / 2 \mathrm{D} \times 11 \mathrm{H}$ excluding handle 17 lbs. packed.
Approx. 22 lbs. packed (rack mounted)
4 ft . shielded test leads terminated in insulated cups.

DATE November 14, 1963
SUBJECT Annual Review of Salaried Employees
TO
FROM Win Hindle

Enclosed are evaluation forms on salaried employees under your supervision and in some cases on others whose work you are in a good position to evaluate. If you feel you cannot evaluate any of these people, please feel free to leave the form blank. We are planning to review only people hired up to October 1st.

In addition to the numerical rating, it is particularly helpful to receive any remarks you may want to make in the "Comment" section of the form.

We want to start the review very soon, so I would appreciate your getting the forms back to me in a confidential envelope by Friday, November 22.

Gididel myimo
DATE October 18, 1963

TOMr. K. Olsen

FROM Accounting Department

So that we may be sure the company's records agree with yours, this statement is to show you that your account has a balance of $\$ 200.00$ due the company as of September 27, 1963.

October 3, 1963, charge for three posters \$ 3.00 and Octoben 15, 1963, a Petty Cash Advance for \$ 30.00. Total balance due company as to date $\$ 233.00$.

If the above does not agree with your records, please advise the accounting department promptly.

Date Octobsz 12. 1963

SUBJECT on Friday Octobas 11. 1963.

TO
E. Ancteracos
G. Be 12
H. Hiaszaseag
S. OLsen
K. O1.802

 er sor the malo of a comytior but thay minnid function with the conpuber manefacsumer in tiae cealea of the long renge compatez which Tropect

 powasivi zi 7094 axd that \& I to I replacevery woure comt thom

 EO sudxese a want more than just a quarter of a 1122 lon words on the yemory bus cyom though a mingio processox could adaress oniy 2^{28} words.

 2^{20} addrensab2e worda.
4. Dick requesued teconical pubitcatlons os the pDPo6 Pox prosect
 this waa at this caniy sexge axa that he would 1316 to bali to

 $2 D P-6$.

 propured sor ThC by Dice I polmiod out that we had sentathyoly schodutec this Los Hoverbas 2. 1953.

 Rend and 2 dayk at CDC the wor of Novamber Ath throvgh 8tho
6. What I would Itre to see is our Inviting the Froject Mac group bo DEC Por a bricuing on PDPab and do this beroxa thoy Ieave zor St. Pau. This way, rubconectovely, they wound be compering pDp-6 concepta to the tinivac and CDC equipmert, but on PDP-6 semme.
7. Dick MIILE ompheaimed that IBA gate then an educationel discount end recomended that we considex them tor en educathonal discount since 28 full profesaoxa are partially Gmployed by Eroject MAO ms well as 24 essoczete prolecsors. and that nvmerows 日tvients will be trained for Project MAC actuvitien。

INTEROFFICE MEMORANDUM

DATE October 1, 1963
SUBJECT Connectors
TO Ken Olsen FROM Frank Kalwell
cc: Henry Crouse

Confirming our earlier discussion on the sample Cinch Jones "Twin-ConEdge Connector", the prices are as follows:

Part \#254-15-70-113 Connector

1	$\underline{25}$	$\underline{50}$	$\underline{100}$	$\underline{250}$	$\underline{500}$	$\underline{1000}$	$\underline{2000}$	$\underline{5000 \& u p}$
8.90	7.12	5.94	4.75	4.51	4.27	3.83	3.56	3.48

Part \#462-94-1l-130 Contact for \#20 Wire - \$38.00/M bulk Part \#462-94-1l-13l Contact for \#22-24 Wire - \$38.00/M bulk

Part \#318-02-00-242 Black-Insul. Jumper Pins Part \#318-02-00-244 Red-Insul. Jumper Pins

1	$\underline{25}$	$\underline{50}$	$\underline{100}$	$\underline{250}$	$\underline{500}$	$\underline{1000}$	$\underline{2500 \& \mathrm{up}}$
.51	.41	.34	.27	.26	.25	.22	.20

Part \#599-11-11-102 Comb. Insertion \& Removal Tool - \$15.09/each.

As soon as the Burndy unit and prices are received, I'll forward them to your attention. Burndy's connector has . 100 spacing, but within the next few weeks . 156 spacing will be available in the $15,22,30$ and 43 contacts.

Prices have also been obtained on Cinch Jones bifurcated Contact Edge Connectors as follows:

$1-24$	$\underline{25-49}$	$\underline{50-99}$	$\underline{100-249}$	$\underline{250-499}$	$\underline{500-999}$	$\underline{1000-1999}$	$\underline{2000-24999}$
1.97	1.57	1.31	1.05	.999	.947	.85	.79

DATE September 19, 1963
SUBJECT Australian Observations
TO

Kenneth Olsen cc: S. Olsen
G. Bell
R. Mills

FROM Harlan Anderson

This memo is the result of a trip to Australia during the week of 26 August 1963.

General Impression

The simplest way to think of Austral ia as far as size, economy and market potential is to regard it as similar to Canada. The physical sizes are similar. The populations are comparable and their relationships to the U.K. are similar. They each have similar numbers of universities. The majority of the populations of each country are concentrated in a very small area. In Australia, this is the Southeastern part of the country. The climate of Australia is quite moderate with very few homes having central heat. The cities of Melbourne and Sydney each have over 2 million people and have all the characteristics of large American cities.

The area, however, has been neglected by electronic firms due to its extreme distance from the U.S. The market looks excellent for import of computers since there are none manufactured there. I met with quite a number of potential customers who are very similar to the ones we sell to in the U.S. The universities are quite actively involved in training students in digital computer techniques. DEC should as soon as possible become involved in marketing its products in Australia.

Sales Potential

These are the following principal potential customers who are likely to be a computer or module customer in the next 12 months.

Aeronautical Research Laboratory (Melbourne)
They are likely to be a customer for a PDP-1 or perhaps even a PDP-6 for use in a hybrid analog to digital computation facility in the immediate future. Mr. Merfield of ARL saw our computer at a trade show in New York and is a solid booster of ours. The main competition is an Elliott 503 for which I have a specification. He is an older man (very active) who is fearful that the government won't let him order from us unless we are represented by a subsidiary or agent in Australia. The government business people are frightened by the distance to the point where they will sometimes appoint an agent for a company if they want to buy badly enough. Mr. Merfield therefore
was the instigator in urging J. J. Masur Company to push us for an agency appointment. He is a senior research officer and became acquainted with Masur when they were the representative for Electronic Associates.

In addition to this computer, the same laboratory is interested in improving their war gaming simulation system, which has been very limited, consisting of a large geographical board having hundreds of lights representing position of raiding or defending forces. I believe they might go for a small computer with a CRT display. I suggested this and they seemed very interested.* Mr. Shaeffer is also a Senior Research Officer and is more reserved than Mr. Merfield but I believe on our side.

He is interested still in a third possible computer application consisting of wind tunnel instrumentation and I gave him the name of Tom Miller at J.P.L. who can direct him to the group doing wind tunnel work with the PDP-1. There are a number of module applications associated with each of these computer prospects.

Government Aircraft Factory (Port Melbourne)
Here I spoke with Mr. David Fien who should be addressed as follows:
Manager, Government Aircraft Factory
Attention: Mr. David Fien
Private Bag \#4
Post Office
Port Melbourne, Victoria, Australia.
He has an Analog to Digital application of a special type where maybe our modules could be useful. He wants to find the maximum amplitude of a 10 KC sine wave modulation. It seemed like an up down counter which would stop counting when it reached the peak of the second sine wave would be adequate. He does not need great accuracy.

He also is interested in a film reader for use in studying some sort of simulated flight data recorded on 20 inch film. He would be willing to read it in two pieces, does not need automatic film advancing and would build those things necessary to go on to our CRT. This is a very important project for them and he plans to visit the U.S. near the first of the year to look into these matters further. I feel sure we can get him to visit DEC and perhaps arrange for him to visit United Aircraft in Hartford.
*Spacewar fascinated them.

University of New South Wales (Sydney)

Here I visited Prof. Vowles, who is head of the Elecirical Engineering Department and Prof. Speedy who is interested in computer control techniques. Prof. Vowles has funds just approved to buy a computer. He has been thinking in terms of the IBM 7040. This has been a long standing plan with him and he almost bought the machine 18 months ago but his funding fell through. He has a beautiful new building just being finished and it has a large computer room built with subflooring, air conditioning but no computer. He is very interested in the PDP-6 and would be quite interested in helping us into a joint venture with the University by establishing a computation center. He has over $\$ 400,000$ available and the timing is perfect right now.

Prof. Vowles was acquainted with Gordon Bell when he was in Australia. He is a very senior person and very nice. They are now using the DEUCE computer but expect to retire it in the next two years. A Mr. Hill is in charge of it.

University of Sydney (Sydney)

Here I met with Prof. Nelson (Mechanical Engineering) and Mr. B. R. Goddard (Electrical Engineering). A Mr. Wong who was in the U.S. at the time is building a general purpose computer at the moment. His assistant is Kenny Roslin. They are potential module customers, but on a small scale. The concept of large government funding to university is not prevalent. Instead the money usually goes directly to government organizations who buy this type of equipment.

I did not meet with the people who are associated with the "home-made" SILLIAC (copy of the University of Illinois ILLIAC), but they would probably be a better potential customer.

The above groups comprise those customers whom I visited. In addition there are others who maybe have greater potential. They are as follows:

Weapons Research Laboratories (Canberra)
They now have an IBM 7090 and are quite big.
University of Adelaide (Adelaide)
Woomera Missile Test Range (near Adelaide)
CSIRO (Commonwealth Scientific Industrial Research Organization)
They are everywhere it seems and are involved in very broad areas of research including agriculture as well as electronics. They are quite big and have just ordered a CDC 3600 with satellites at remote sites. (CDC has approximately

8 million dollars worth of business with 2 orders from Australia).
Melbourne Institute of Technology

The above list has been limited to those types of customers that we now sell to in the U.S. No business or process control applications have been inc luded although they, of course, abound.

Government Influence

As in the U. S., the government is behind the financing of most of these customers. In some cases, the British are subsidizing the defense work of Australia. Whenever possible, they make their contribution in the form of equipment made in U.K.

Most things that the government buys end up being duty free. However, the customs has an interesting philosophy. If an equivalent item to what you are trying to import is made in Australia, you must pay a 45% duty. Fortunately, there are no computers now being made in Australia nor does it appear likely there will be in the near future. If an equivalent item to what you are trying to import is made in some part of the U.K. or other Commonwealth countries you must pay a $7 \frac{1}{2} \%$ duty. The customs department would seek an opinion from University experts in determining equivalency. For partial assembly and special cases, I believe specific deals can be made ahead of time. Local manufacturers apply for a "by-law control" against incoming imports which bring to bear the 45% duty which shuts off importing for all practical purposes.

There are no monetary controls or Australian ownership requirements. We have a fine book for considering these types of questions from the Bank of New South Wales. It is called "Establishing a Business in Australia".

When the government buys, they have similar requirements for advertised bid as we do in the U.S. They normally write the specification fairly closely around the unit they want to buy so that as a practical matter, the decision is made long before the formal invitation to tender.

They are quite annoyed by extra charges for ex port packing etc. suddenly appearing on invoices. They don't mind paying them but they prefer to know about them from the beginning. They shutter at the thought of air freight and refuse to pay it.

They do expect to pay up to 10% above American prices to cover freight, insurance, etc. They feel they must have the contract with an Australian company so they have recourse to someone in Australia if anything goes wrong. They would hate to have to deal through consulates to get action.

Incidentally, one must pay import duty on technical literature. It is not obvious to me who should pay this, us or the sales agent.

Role of Sales Agency

Electronic instruments and components are all sold through sales agents who normally are paid 15% or perhaps 10%. Typically, they handle 30 lines of products or more, I visited three agencies.although there are others. They are described below.

Jacoby-Mitchell (Sydney and branches)
Their main office is in Sydney and they are the largest sales agency. They claim to have imported 60% of all instruments into Australia. Mr. Jacoby contacted us by telephone when he was in Boston, after seeing DEC listed in a Greater Boston Chamber of Commerce directory. They represent Raytheon, Consolidated Electro Dynamics, Superior Electric and many others. They also sell electrical supplies like light fixtures, electric heaters, etc. They seem competent and well organized. I don 't think they are right for us however. They are too big and have too many things going on. They have 5 manufacturing subsidiaries (having an employment of about 60 people). They have this in the expectation that competition might start manufacturing and they must be ready. Their total employment is about 120 people. They also have a small plastics business of some kind. I met with Mr. Hibbert and Mr. Jacoby .

Ronald J. T. Payne Co. PTY, Ltd.
Ronald Payne has been more narrow in selecting his line of products. He has a very capable engineer named Peter Wingett who does the work. Payne travels in the right circles and probably has many good contacts. They represent Schlumberger companies and just recently took on EMR and ASI. Because of this I bel ieve there is no point to pursuing them further. Mr. Payne is very pleasant and has been in the business a long time (over 20 years). He has just returned from a four month trip around the world. Mr. Wingett arranged an introduction for me to a Mr. Kegele of the Amalgamated Wireless (Australasia) Ltd. discussed below. I don't believe that this group nor EMR or ASI will be willing to invest in computers in Australia and thus will not be serious competition.

Amalgamated Wireless (Australasia) Ltd.
This company is not basically a sales agency. They are very large having 3,000 to 5,000 employees I would guess. They are licensee for RCA, English Electric and others. Basically, they are manufacturers of consumer electronics. They also held the sales agency for Bendix Computers before they folded. They were not very successful with it in my opinion however. They had two G-15's installed (Melbourne and Sydney). They are now casting about for a new affiliation. They are potential manufacturer, but unless they become more aggressive I doubt if they will be a threat. They are too big for us to get involved with. They claimed to have assembled a staff of programmers, maintenance people, etc. Most of these have dispersed and Mr. Kegele with whom I met is marking time until the man in charge (Sir Lional Hook) in Sydney decides what to do. They claim to make some peripheral equipment and also some analog equipment. We may hear from Mr. Kegele.

J. J. Masur and Co. PTY, Ltd.

Mr. Masur started his business over 20 years ago after arriving in Australia from Germany. He has sold many things including analog computers, process control instrumentation, supplies for machinery, and meter movements. He represented Electronic Associates in selling the analog computer for a period of time. I have no idea how he got involved with EA in the beginning. He had in my opinion only medium success on their behalf. This was probably due to the time lag for developing the market and for support from EAI. (He reported to their London subsidiary). A sizeable order is just over the horizon for EAI $(\$ 200,000)$ and they decided to terminate him recently. Basically, I think it was a poor match. They paid 15\% commission which was too high for what he could do for them.

However in the process of representing them his organization came in contact with a whole new market area for them - the government sponsored research market using electronics. They also became known to these people and apparently respected as business men. For example, they arranged my lecture while I was in Australia and I was amazed at the quantity and quality of people they had. They had approximately 60 people representing almost all the Melbourne area. Outside Prof. Vowles, they arranged all the customer appointments.

Mr. Heinz Kirschner is the sales manager. He is a very pleasant, competent older man whom I would describe as a professional salesman. He is tactful and understands selling very well.

On a long range basis, I doubt if J. J. Masur Co. can play a role for us. They realize this and admitted it. However, I think they can plan an exceedingly important role for a shorter period of time.
(1) They can provide initial sales contacts for DEC. They demonstrated their ability to do this very satisfactorily to me.
(2) They can provide us detail assistance in weaving our way through Austral ian government red tape.
(3) They can provide a base of operations immediately in Melbourne. (Literature distribution, office space, etc.)

We would be a very important principal for them and they will knock themselves out on our behalf. I have discussed a tentative arrangement with them which would last a minimum of one year and provide our domestic commission arrangement for modules and a 3% "finders fee" for computer systems. They are agreeable to this. Their motivations are threefold in being willing to enter into something that is not expected to last forever. They want a commission on the ARL sale where they have taken the initiative. They want to make whatever money they can while they can. They want to have the prestige of being associated with DEC.

Recommended Action

The immediate and long range potential in Australia is sufficiently good that I think we should immediately set up operations as outlined below.

1. Appoint J. J. Masur and Co. PTY, Ltd. our sales agent with the terms mentioned above.
2. Organize a subsidiary to have headquarters in Sydney. Mr. Jeffs of the Bank of New South Wales with whom I met in Sydney could suggest a lawyer, real estate agent,etc. I think maybe this could all be done by mail.
3. Hire an Australian to come to DEC immediately for training. Mr. Robin Frith approached me and I believe is an excellent candidate. He could leave his present employer in about 6 to 8 weeks. He has digital circuit design experience and has a patent on a small digital system for recording wind velocity on punched paper tape. He also has taken programming classes on the IBM 1620 and on an English Electric machine. He is single and is very interested in working for us and then returning to Australia. Pay levels I believe are about half U.S.

If he doesn't work out, we can approach any of the University professors that I met for suggestions. In addition Prof. John Bennett in Sydney is regarded as a leader and could provide recommendations perhaps.
4. Send a present DEC employee to Australia to live for six months or as long as is practical. This should be someone who is familiar with programming and the interface of the computer. He should be in Sydney but visit Melbourne frequently.
5. Send Gordon Bell to Australia for 2 weeks to follow up with Prof. Vowles, to look for senior potential employees, to follow up with other customers.
6. Consider and perhaps arrange a PDP-1 and scope tour of Japan and Australia. This may not be economically justified on one sale, but would give us a tremendous boost in getting started. The people of both Japan and Australia are eager to see this type of equipment. Masur has a fine place to set it up.
7. Consider and perhaps arrange a deal with the University of New South Wales for a PDP-6 joint venture .
8. Gradually increase the staff to have three or four professional people including maintenance in Sydney.

I believe we will have a firm order for a computer within a year if we do this and that we will have a good indication if our first order is coming through within 6 months. After the first year, I think we can sell at least three computers per year!

Harlan Anderson

HEA:ncs

DATE September 19, 1963

SUBJECT Turnover Ratio, Major Components

TO \sqrt{K}. Olsen FROM J. Smith
H. Anderson
S. Olsen
M. Sandler
G. O'Dea

The attached figures denote a rather healthy turnover of major component inventory for the past fiscal year. A turnover rate of five is considered good for our application of this type of equipment.

Memory stacks show an unusually high turnover rate for our type of business. This was mostly due to increasing construction rates throughout the year and the large number of unexpected additional memory orders. A turnover rate as large as this is usually not a very healthy situation. It usually leads to increased manufacturing costs, brought about by the use of overtime to meet slipping schedules caused by delivery delays from component manufacturers. Secondly, increased acquisition costs caused by expanded expediting, air express shipments, etc. Most important of all, increased work-in-process inventories and delivery delays to our customers. We were rather fortunate that Ferroxcube was capable of reacting rapidly to our increased requirements which held delays to a minimum. Arrangements have now been made with Ferroxcube to have a number of stacks on the shelf available for immediate delivery. This will enable fast delivery to our customers while maintaining a desirable turnover rate.

28KSR have the lowest turnover rate due to a decreasing construction schedule for PDP-4. Orders for these printers have been reduced and delivery lengthened out which will result in a more desirable turnover rate.

An overall turnover rate of 15 was maintained over the past fiscal year for all major components with a very minimum of delivery delay. This, I feel, is an extremely healthy situation that I hope can be maintained through our next fiscal year.

Average
Major Components
Inventory

Cost of
Goods Sold
Turnover Rate

28KSR Printer	$\$ 5,434.25$	$\$ 14,518.45$	3
2500 Reader	769.80	$12,372.40$	13
3500 Reader	$5,825.00$	$60,580.00$	10
BPRE 11 Punch	$2,218.40$	$17,755.20$	8
Type 16"	$5,755.75$	$50,938.10$	8
Memory Stacks	$9,562.05$	$\frac{298,938.03}{29}$	$\$ 455,102.68$

Ken
hopefully we'ne in the samples cash passion to stay.
the attached AMA Seminar is night up that alley
If you have no objection of 'd like tar attend the sasin (OAT 21.23)

$$
\operatorname{Sen}_{9 / 16} 0: D e x
$$

 ie วัuериәие asneวaq pue

－Kurduos имо Inoर u！
 －səs \ddagger Ə！

＇чәәм әио su！ñp s8и！

INEWヨפVNVW OllO』I\＆Od W\＆ヨI－I\＆OHS ヨIV\＆OdyOJ

－рә［एँ чэеә＇sıeu！ues ом］

－Kurduos inoर iof uinled

 sioquәึ viv 0

 13381S NIYW 945 you rwhatya yisia － 1 － N ＇98 \％ ajenbs sawil＇кempeosg stst

CORPORATE
 SHORT－TERM PORTFOLO
 MANAGEMENT IN NEW YORK

 2AMA FINANCE SEMINARS AMA HEADQUARTERS

OCTOBER， 1963

Orientation Seminar \#1245-04 October 21-23, 1963 AMA Headquarters, 135 W. 50th St., New York City Primarily instructional in nature, this meeting is designed to give men new to the field a solid background in principles and practices. To more experienced men it offers a thorough review of latest techniques. At the meeting, speakers who are authorities in the field will focus on all aspects of short-term portfolio management - from the first step of determin ing the cash available for investment to the measurement of investment efficiency. Investment policies and management ...the various types of short-term investments ... appraisal of short-term markets ... and op

Chairman: WILLAM G. McGAGH | Manager - Banking \& Investment |
| :--- |
| Chrysler Corp. |
| Detroit, Mich. |

Co-Chairman: HOWARD WILLIAMS
Manager - Banking \& Investment
Detroit, Mich.
Investment Officer \& Assistant to Financial Vice-President New England Mutual Life Insurance Co Boston, Mass.
Speakers Include:

THOMAS F. CREAMER	JOHN J. CAHILL	ROBERT F. LEWIS	ALfred de salvo
Vice-President	Partner	Manager - Municipal	
First National Bank of	C. J. Devine \& Co.	Bond Department	Assistant Treasurer
New York	New York, N. Y.	Chemical Bank of	C.I.T. Financial Corp.
New York, N. Y.		New York	New York, N. Y.
robert G. Wilson	GEORGE D. EWINS	EDWARD D. TOLAND, JR.	CHARLES W. POTTER
Commercial Paper	Investment Representative	Treasurer	Assistant Treasurer
Representative	Socony Mobil Oil Co., Inc.	United Fruit Co.	
Goldman Sachs \& Co.	New York, N. Y.	Boston, Mass.	Telegraph Co.

- SEminar outline

1. DETERMINATION OF CASH AVAILABLE FO INVESTMENT
A. Cash Investments vs. Bank Balance
B. Cash Forecasting and Cash Flow
II. INVESTMENT POLICIES AND MANAGEMENT A. Objectives, Policies and Authorizations
B. Organization and Staff
C. Investment Programing
III. TYPES OF SHORT-TERM INVESTMENTS
A. U.S. Government's - Treasury Bills; U.S. Certificates, Notes and Bonds
B. U.S. Government Agencies

General appraisal of agencies; secondary markets and market liquidity; obtaining size on original bids
C. Tax Exempts

PHA Notes - bidding; state and municipals ratings vs. maturities; tax aspects - yields in excess of coupons; comparison of yields; secondary markets and dealers
D. Finance Paper (Directly Placed)

Use of repurchase privilege; analysis of finance company condition; comparison to repurchase rates
E. Other Investments

Repurchases; bankers' acceptances; bank time deposit; assignable certificates of deposit; commercial paper; railroad equipment issues; Canadian securities with futures; called bonds and preferred stock
IV. APPRAISING SHORT-TERM MARKETS
A. Forecasting Interest Rate Trends and Their Effect on Investment Decisions
B. Relationships to Capital Markets
v. OPERATING PROCEDURES
A. Dealer Relationships
B. Reference Material
C. Reports to Management, Records, etc.
VI. MEASURING INVESTMENT EFFICIENCY A. Current Portfolio Yield
B. Pre-Tax vs. After-Tax Earnings
C. Average Maturity
D. Return on Average Investment
E. Methods of Appraisal
VII. PROJECT SESSION

Small group project session on a short-term investment problem

Workshop Seminar \#1145-05 October 23-25, 1963 AMA Headquarters, 135 W. 50th St., New York City
Registration in this workshop seminar is open only to executives with substantial experience in the subject area. The meeting provides an opportunity to join a small group of operating executives and explore your on-the-job problems through intensive, guided discussion. You'll outline your problems... hear suggested solutions ... learn of successful systems and methods used in other companies. You will be expected to join the others in contributing personal business experience. The discussion is carefully guided by the seminar leaders to assure that each participant's problems and suggestions are fully covered... so that valuable information brought out can be measured, evaluated and applied to your own operations. The workshop is strictly limited to 15 participants, and only one executive from a company may attend the meeting.

Discussion Leaders:

```
GENE A. RADFORD
Assistant to the Treasu
Eastman Kodak
```


5. G. WILSON Burlington Industries, Inc. Greensboro, N. C.

I. DETERMINATION OF CASH AVAILABLE FOR INVESTMENT
A. Cash Investments vs. Bank Balances
B. Cash Forecasting and Cash Flow
II. INVESTMENT POLICIES AND MANAGEMENT
A. Objectives, Policies and Authorizations
B. Organization and Staff
C. Investment Programing
III. TYPES OF SHORT-TERM INVESTMENTS
A. U.S. Government - Treasury Bills; U.S. Certifi-
cates, Notes and Bonds
B. U.S. Government Agencies
C. Tax Exempts
D. Finance Paper (Directly Placed)
E. Other Investments:

Repurchases; bankers' acceptances; bank tim deposit; assignable certificates of deposit commercial paper; railroad equipment issues Canadian securities with futures; called bonds and preferred stock
IV. APPRAISING SHORT-TERM MARKETS
A. Forecasting Interest Rate Trends and Their Effect on Investment Decisions
V. OPERATING PROCEDURES
VI. MEASURING INVESTMENT EFFICIENCY
A. Current Portfolio Yield
B. Pre-Tax vs. After-Tax Earnings
C. Average Maturity
D. Return on Average Investment
E. Methods of Appraisal

WE'RE MOVING

During the week of September 16, AMA will move to its new Headquarters in the American Management Association Building, 135 W. 50th Street, New York City. All AMA New York meetings scheduled to begin on September 23 or thereafter will be held at this new location. Registrants for such meetings should report to the 7th floor at the above address.

INTEROFFICE MEMORANDUM

COMPANY CONFIIENTIAL

DATE September 4, 1963
SUBJECT
Gruntal and Company DEC Stock Report

Summary

1) Let's dispose of Gutman first - I believe his $\$ 50,000,000$ figure would have to be $\$ 25,000,000$ at the present time for DEC. DEC has had no public exposure as a company and to assume such a market value on his CDC basis is not real istic.
2) The study for 1) above led quite naturally to thinking about a public issue for DEC and what might be sold, number of shares, equity of owners, price per share, underwriter, time required, DEC story to public, use of money obtained, new products, mergers, new markets acquisitions, plant facilities, etc. I believe we exceed CDC in capability and except for the lack of telling our story to the public investor we could command a higher P / E ratio on issue of stock today.

The following is an attempt to arrive at the basis of the $\$ 50$ million valuation placed on DEC by Gutman.

First
He adjusts our Fiscal ' 63 net earnings to put us on an "all equal" basis with CDC, which gives us an earnings per share for FYE 6/30/63 of $\$ 10.80$. CDC's high proportion of rentals is Gutman's basis for the revision.

Second
With a stated value of approximately eight (8) times the AR\&D value, DEC would have a market value of $\$ 1,120$ per share or a 104 to $1 \mathrm{P} / \mathrm{E}$ ratio (price to earnings).

Third
Using the 104 to $1 \mathrm{P} /$ E ratio we have CDC with the following for the Fiscal Year End '63 -

Shares of Capital Stock 5,600,000 (shares)
Earnings
Earnings per Share
Market Value per Share Aug. 1, 1963
P / E Ratio
$\$ 3,600,000$ (per Gutman)
\$. 64
$\$ 66.75$
104 to 1

COMPANY CONFIDENTAL

Gruntal and Company DEC Stock Report

Page Two
September 4, 1963

There appears a gross inconsistency in Gutman's figures - for example with a $\$ 300$ million market value for CDC divided by the August lst MV per share of $\$ 66.75$ the capital stock would be $4,500,000$ shares, versus a required 104 to 1 P / E ratio of $5,600,000$ shares to arrive at the DEC share price of $\$ 1,120$. I believe he has erred on his multiplier in converting the AR\&D value per share for DEC to the CDC basis - a figure of four (4) instead of eight (8) would be a more reasonable value, with a P / E ratio of 52 to 1 (on a CDC basis), which would still be high for the average electronics company today. However, I believe DEC with its past exceptional record of products, sales and earnings and future possibilities could sustain a higher than average market value for its stock in relation to earnings.

I believe that the company with a net income of 5% on sales such as CDC, highly touted as one of only two computer companies showing a profit (IBM), merger minded, and with a good press gives the investor the impression that here is another IBM and I want to be in on the ground floor. As a result of heavy demand for shares, price rises out of proportion to real value of company. In due course of time, more shares will be made available and price stability of sorts will arrive. It is interesting to note that CDC has not changed its profit \% on sales noticeably since 1959.

Computer Control on 2/7/63 tried to stock issue at a 38 to $1 \mathrm{P} / \mathrm{E}$ ratio and had to change to a more conservative 25 to 1 , more nearly the market average but near the top. CCC has not had the benefit of the public relations, Newsweek, Time and Business Week that CDC has enjoyed. This effort, expended properly, over a period of time, can still create this atmosphere for DEC thus greatly strengthening the after market for the shares.

DEC Picture

If the public relations for DEC were handled in such a way as to show our record and capabilities in terms of people, products, installations, service, ROI, earnings, market penetration, and with emphasis on some of the more basic company philosophies, I believe we could sell the initial offering at a P / E ratio of 25 to 35 , depending on the state of the market. The importance of the evaluation in establishing a P / E ratio is seen clearly in the following example of a sample $D E C$ issue:

COMPANY CONFIDENTIAL

Gruntal and Company DEC Stock Report

Page Three
September 4, 1963

Current Shares 6/30/'63
50,560
New Offering
From DEC $\quad 10,000$ (Treasury)
From AR\&D (50\%) 17,500
Current Earnings FYE 6/30/63
Per Share $\$ 22.80$

P/E Ratios	
25	$\$ 570.00$
30	$\$ 684.00$
35	$\$ 798.00$

Ownership after Issue
Officers
Employees and Directors
AR\&D
Outsiders

Shares
10,000
5,650
17,500
27,500
$\underline{60,650}$

Assume a desired selling price at issue of $\$ 25.00$ and a 30 to $1 \mathrm{P} / E$ ratio or a stock split of 27 to 1 .

Note that the money available to the company is materially effected by a small change in the P / E ratio.

INTEROFFICE MEMORANDUM

DATE
Anguet 26。 1963
SUBJECT
One comt Dures Dipged Mica Cayacitosa
TO
～k．03sen
ecs H．Crouse
K。Doering
R．Best
M．Sandlez
R。 \＆Hughes
D．White

J．Cudrose
G．Gerelds
R．Melanson

In reply to yous memo dated July 23． 2963 ．and a comelymation from Dick Best to proceed and purchase atinge aig misa capacitorn x have recently cancelled two outstanding blamket puxchase ordeze with slectromotive and Cornell－Dubiliar on the present tripla dip mice capacitors on a no canceliation basis．In tusn．I have placed an osdes for one coat Durez dipped mica capacitors with special Lead treatment The order consists of the more commonly used curnacitors，in which the two suppliezs have agreed to stock ten per cent of the initial purchase oxdex，so delivery on one coat should be no problem．The values

 and $1000 \mu \mu$ ．Electromotive＇s national distributor now stocks one coat Duxez without the lead treatment．so I can not foxesee any delivery problems．

The first shipment of the single dio will be made the seconc week in september．We will continue using tyiple aip until production＂s inventory is depleted．

Engineexing and Qualiky control have requested that these capachtora be sumplied with a special lead treatment；removirg the excess clear epory rundown on the leads．This will be controlled to 3／64＂maxtmum on rundown elimizating any possibility of the capacitor not making a proper connection once inserted into the printed circuit board．Only capacitoss supplied to us by the manufacturex will have the treakment included at an additional cost of $\$ 3.00 / \mathrm{M}$ for this treatment．an excellent manner in thspecting the controlled rundown is co use an ultranviolet or 120 watt mercuxy 4 amp．
ynclosed is a photoseat copy of a memo from kiaus Doesincto which covers the physical size of the ret single cont Durez capacitozs.

Fxank Jo SaIvell

DATE 31 July 1963
SUBJECT Physical Size of Dip Mica Capacitors TO Bick Best, Y. Yevelds, R. Melauson, FROM K. Doering
W. Puryman

The three dip mica capacitors we have been buying are of the size type "15". From Elmenco "DM-15", from Cornell Dubilier "CD-15".

In order to get some idea about how one dip compares with three dip mica capacitors in physical size, we measured 10 pieces of each kind.

THREE DIP			
A			
	Dreq.		
.153	11	.442	Breq.
156	1	.443	1
.159	111	.444	
.162		.445	
.165	1	.446	1
.168		.447	1
.171	1	.448	1
.174	11	.449	
		.450	111
		.451	1
		.452	
		.453	1

Dimension "A" (thickness is approximately .057" smaller than 3 dip and dimension "B" (width) is approximately .067" smaller. We should find out from our circuits whether this reduction in size is significant enough to switch to one dip mica capacitors.

DATE 31 July 1963

SUBJECT Physical Size of Dip Mica Capacitors TO Buek Best, G. Gevelds, R. Melauson, FROM K. Doering
W_{L} Perryman ω_{1} Persyman

The three dip mica capacitors we have been buying are of the size type "15". From Elmenco "DM-15", from Cornell Dubilier "CD-15".

In order to get some idea about how one dip compares with three dip mica capacitors in physical size, we measured 10 pieces of each kind.

ONE DIP			
Dimension			
	Freq		q.
. 099	1	. 378	1
. 100		. 379	
. 101		. 380	111
. 102	1	. 381	11
. 103	1	. 382	
. 104	11	. 383	1
. 105	11	. 384	
. 106		. 385	1
. 107	11	. 386	11
. 108	1		

THREE DIP			
Dimension			
	Freg.		Frec.
. 153	11	. 442	1
. 156	1	. 443	1
. 159	111	. 444	
. 162		. 445	
. 165	1	. 446	1
. 168		. 447	1
. 171	1	. 448	1
. 174	11	. 449	
		. 450	111
		. 451	1
		. 452	
		. 453	1

Dimension "A" (thickness is approximately .057" smaller than 3 dip and dimension "B" (width) is approximately .067" smaller. We should find out from our circuits whether this reduction in size is significant enough to switch to one dip mica capacitors.

Product Line Profitability

- Fiscal 1963

cc: R. Mills

W. Hindle

FROM
George O'Dea

The financial statements for Fiscal 1963 express net profit in terms of total DEC activities as: ($\$ 000$'s Omitted)

Net Sales	$\$ 9,903$
Net Profit	$\$ 1,158$
\% to Net Sales	11.7%

The first cut in obtaining more refined data appears on page 2 of the June 1963 Progress Report wherein Gross margin is spelled out in considerable detail and Co. Sponsored Engineering is itemized in even greater detail; but SG\&A is carried in total only.

For fiscal 1964 work order systems are being instituted whereby the selling and the technical publication activities of the company can be charged to specific products. For Fiscal 1963 however, the best we can hope to accomplish is an estimate of the extent to which these costs are attributable to individual products.

Before undertaking such a process it is significant to note that \$1,949 of the Company's $\$ 8,745$ total costs, expenses, and taxes are being estimated. This represents 22% of the total. The remaining 78% is reasonably definitive.

For a first approximation we take the classical Modules - Systems Computers segregation of activity and ask Stan to estimate a percentage distribution of selling expense over these broad categories; then, ask Atwood to do the same thing for Technical Publications; they say

	Sales Effort per Stan	Technical Publications Effort per Atwood
Modules	60\%	45\%
Systems	-	15\%
Computers	40\%	40\%
Total Effort	100\%	100\%
Cost to be Allocated	\$765	\$300

For G\&A we follow the time honored, blind, but arithmetically accurate method of allocating the total over the total manufacturing cost, sales expense, and technical publications expense of each of the three principal classes of business.

Thus, our first approximation of Product Line Profitability yields:

	Modules	Systems	Computers	Total
Net Sales	\$3,482	\$1,073	\$5,348	\$9,903
Less Mfg. Cost	1,124	676	2,407	4,207
Gross Margin	\$2,358	\$ 397	\$2,941	\$5,696
\% Gross Margin	67.7\%	37.0\%	55.0\%	57.5\%
Deduc \dagger Engineering Expense	254	91	845	1,190
Margin after Measured Costs	\$2,104	\$ 306	\$2,096	\$4,506
Less Unmeasured Costs*				
Selling	459	-	306	765
Technical Publications	135	45	120	300
G\&A	270	111	503	884
Total Unmeasured Costs	\$ 864	\$ 156	\$ 929	\$1,949
Profit Before Taxes	\$1,240	\$ 150	\$1,167	\$2,557
Less Taxes	\$ 678	\$ 82	\$ 639	\$1,399
Net Profit	\$ 562	\$ 68	\$ 528	\$1,158
\% Profit to Net Sales	16.1\%	6.3\%	9.9\%	11.7\%

* The term "unmeasured" refers to the product line applicability.

The accuracy of the allocation of costs is probably great enough to draw the simple conclusion that modules sold direct to customers are much more rewarding than modules incorporated in system and computer sales.

As regards the Systems branch of the business, the analysis issued June 17 still pretty much tells the story. Jon suffers from "first time" costs - not to be thought of as "one of a kind" costs - from the marketing disadvantage of distributing Ramsey Handlers in Japan - and now from allocation of a share of his profits to DEGmbH. The final Fiscal '63 Systems Summary as regards gross margin reads

	Sales	Cost	Gross	\% Gross
First time units	\$ 120	\$106	\$14	12\%
Ramsey Handlers to Japan	24	22	2	7\%
DEGmbH discount	-3	-	3 Loss	-
Sub Total "Special" Situations	\$ 141	\$128	\$13	9\%
Regular Business	932	548	384	41\%
Total Systems Gross Margin	\$1,073	\$676	\$397	37\%

Included in Jon's Engineering expense is a charge of $\$ 9$ for the time of his people working on the PDP-5, a unit which produced no income during Fiscal '63. It seems appropriate to assume the majority of his remaining engineering fall on specials with the minority on regular business. For these purposes we will use a 60-40 split. These results are summarized on the attached Product Line Profitability Worksheet.

Tuming next to Computers we move into probably the stickiest area of all. Here the inter-dependence of one product on another is so great as to limit the conclusions one might draw from any allocated segregation.

Probably the only meaningful analysis is to attempt to tie accessory billings to the two basic central processors and see where that leads us. Page 2 of the Progress Report shows that the billing total breaks down -

PDP-1 (incl ADX)	$\$ 2,035$	(16 2/3 rds machine)
PDP-1 as rentals	108	(1 machine)
Sub total PDP-1's	$\$ 2,143$	
PDP-4's	315	(7 machines)
Total, Central Processors	$\$ 2,458$ Accessories	2,881
Field Service	9	
\quad Total Computers	$\$ 5,348$	

The Cost data on these transactions is only segregated to the extent of rentals (\$48), Field Service (\$128), gross up of Warranties (\$80 cr.) and "all other" of $\$ 2,311$.

The problem is thus one of allocating Accessory, Field Service, and the gross up of Warranties between Central Processor Sales. For this purpose we will use the billing split as the base and cast the overall computer activity as follows:

	Sales	Cost of Sales	Gross	\%
PDP-1 Sales	\$2,035	\$ 899		
Share of Accessory Sales	2,506	1,108		
Share of Field Service Billings	8	111		
Share of Warranty Reserve Gross-up	-	70 cr		
Rentals	108	48		
Total PDP-1	\$4,657	\$2,096	\$2,561	55.0\%
PDP-4 Sales	315	139		
Share of Accessory Sales	375	165		
Share of Field Service Billings	1	17		
Share of Warranty Gross-up	-	10 cr		
Total PDP-4	\$ 691	\$ 317	\$ 380	55.0\%
Total Computers	\$5,348	\$2,407	\$2,941	55.0\%

Segregation on this basis may give a slight preference to the PDP-4 (Beckman discount refund of $\$ 26 \mathrm{~K}$ involved no cost: ITT cancellation of $\$ 83$ only incurred cost of $\$ 14$: one is hard pressed to identify $\$ 375$ of accessory billings with PDP-4 customers), but the difference is not believed to be of sufficient magnitude to distort the conclusions.

Engineering expense as stated on the progress report shows $\$ 166$ on new products, $\$ 223$ on PDP-1's, $\$ 161$ on PDP-4's and $\$ 295$ on accessories. If we split the accessory total on the sales base we can approximate the product line applicability. The attached Worksheet treats it thus .

For Selling and Publications effort, the assumption is some of this money is for new products - say 10\% - the rest is split evenly between PDP-1's and PDP-4's.

So much for the guess work. If all of our assumptions were perfect, we can say the attached Product Line Profitability Worksheet gives the true results by category.

Probably the most disturbing thing is the fact that the PDP-4 after two years of life is still a loser. Very roughly, at a 55% gross margin it needs $\$ 486 \div 55$ or about $\$ 900 \mathrm{~K}$ per year volume to break even.

Your comments on the propriety of the allocation bases are invited.

DIGITAL EQUIPMENT CORPORATION

Product Line Profitability Worksheet - Fiscal 1963
(\$000's Omitted)

	Net Sales	Less Cost of Goods Sold	Gross Margin	Deduct Operating Expenses					Pre-Tax Profit	Less Taxes on Profits	Net Profit	\% Net Profit to Sales
				Engineering	$\begin{gathered} \text { Sell- } \\ \text { ing } \\ \hline \end{gathered}$	Tech Pubs.	G\&A	Total				
Modules	\$3,482	\$1,124	\$2,358	\$ 254	\$459	\$135	\$270	\$1,118	\$1,240	\$ 678	\$ 562	16.1\%
Systems:												
Special Situations	141	128	13	48	-	-	19	67	54 loss	29 cr	25 loss	17.7\% loss
Regular Business	932	548	384	34	-	45	91	170	214	117	97	10.4\% gain
Future Products	-	-	-	9	-	-	1	10	10 loss	6 cr	4 loss	-
	\$1,073	\$ 676	\$ 397	\$ 91	\$-	\$ 45	\$111	\$ 247	\$ 150	\$ 82	\$ 68	6.3\%
Computers:												
PDP-1	4,657	2,096	2,561	480	138	54	377	1,049	1,512	830	682	14.7\% gain
PDP-4	691	311	380	199	137	54	96	486	106 loss	58 cr	48 loss	7.0\% loss
Future Products	-	-	-	166	31	12	30	239	239 loss	133 cr	106 loss	-
	\$5,348	\$2,407	\$2,941	\$ 845	\$306	\$120	\$503	\$1,774	\$1,167	\$ 639	\$ 528	9.9\%
Grand Total	\$9,903	\$4,207	\$5,696	\$1,190	\$765	\$300	\$884	\$3,139	\$2,557	\$1,399	\$1,158	11.7\%

William C. Norris, President of Control Data Corporation, Minneapolis, Minnesota, and Franklin A. Lindsay, President of Itek Corporation, Lexington, Massachusetts, announced today, June 19, 1963, that Contro1 Data has acquired, for an undisclosed amount of cash and other considerations, rights to Itek's Digigraphic System and certain of the assets relating to development and manufacture of these systems. Control Data has assumed responsibility for completing existing orders for Digigraphic components.

The Digigraphic System, developed by Itek over the past two and one half years, is a unique method for direct "real-time" communication between man and computer. Through the medium of a cathode-ray tube display and a photoelectric pen, a human operator is able to communicate directly with a pre-programmed, high-speed digital computer. The System, when fully developed, is expected to have widespread applications in such areas as machine-tool control, management of large technical projects such as weapons systems, and automatic or semi-automatic conversion of existing graphic documents (including mechanical drawings and schematic diagrams) into digital form.

Further development and production of the principal digital electronics elements of the system will now be carried on by Control Data. Itek will retain

Page 2 －Control Data Acquires Rights to Itek Digigraphic System
responsibility for development and production of key non－digital components， including precision cathode－ray tubes．The complete system will be marketed by Control Data．

Norris said that this acquisition is a part of Control Data＇s over－all plan to broaden its market areas and product lines．He pointed out that the Digigraphic products represent an extremely sophisticated extension of computer usage and technology，particularly in scientific and engineering fields．

Norris also noted that his company has been looking for some time for a qualified digital systems development group in the Boston area and that the Digigraphic staff and operation ideally meets this need．He said that the Digigraphic staff is＂unusually experienced and talented in digital computer and display technology and will be encouraged both to elaborate the Digigraphic development，and also to extend its talents into other fields compatible with Control Data＇s overall objectives．＂He said that Control Data definitely plans to build up this facility in the Boston area．Pending the acquisition soon of Control Data facilities near Boston＇s Route 128，the Digigraphic operation will continue at the Itek location．

Itek President Franklin A．Lindsay said that the Control Data arrangement would provide the substantial electronics capabilities and marketing required to put the Digigraphic System to commercial use．He added that Itek is looking forward to a continuing relationship with Control Data Corporation in the full exploitation of the Digigraphic System．As a part of the basic agreement，Control Data has agreed to supply Itek with Digital Display equipment for use in Itek＇s Graphic Data Handing Systems．

```
非非非非非非
```

DATE August 19, 1963

SUBJECT

TO
K H Olsen
FROM R Doane

This memo shows the reasoning that gives the VHF project the direction it has. I also list the principal direct results achieved with the $\$ 40,000$ (approximately) spent on the project so far, and the principal engineering still to be done.

I expect this will give you more confidence in the worth of the effort. In any case, you'll have a more detailed picture of it.

RD/dhw

HIGHER SPEEDS ARE NECESSARY:

It seems clear that the electronic industry is still moving ahead on all fronts, including speed. As other electronic equipment at increased speed becomes available, the appetite for faster digital equipment is bound to come. The questions of how soon and from whom (re-negotiable or not?) are difficult, but I believe that even if the initial demand is weak and mainly military, we would be wrongheaded to omit preparation. As I believe you once remarked, it is easier to retain leadership than to reclaim it.

FASTER SATURATION IS INADVISABLE:

If you agree to some kind of preparation for speeds faster than the 10 Mc line offers, then arises the technical question of how to proceed. The most direct approach would certainly be to extend the speed of saturation circuits, with which we are already very familiar. Faster transistors designed for saturated switching are still being introduced and published reports of saturated switching circuits operating to 240 Mc (1961 Solid State Circuits Conference) seem to offer unlimited potential.

However, our present circuits have a characteristic that is onerous even at 10 Mc , and promises to worsen at higher frequencies: leads must be kept short. At 5Mc, our wiring recommendations state that a level can be transmitted three feet without a series damping resistor. At 10 Mc , the distance is still shorter (I recommend one foot max., but this is not based on any thorough comparison). As the lead length increases, susceptive and inductive reactances increase together, so transmission of risetimes can worsen more than linearly with increased lead length. For a 20 Mc saturated logic system an undamped $6^{\prime \prime}$ lead length would probably be tops. Pulsed emitters would have to be within about $3^{\prime \prime}$ of ground ($12^{\prime \prime}$ is allowable at 5 Mc). While such a system would be workable, its flexibility would be distinctly limited. Level fan-out would be impaired because few inputs can be reached with $6^{\prime \prime}$ of wire, and beyond that distance the required damping resistor severely reduces the drive available.

Page 2

In addition to lead length limitations in systems use, there would be testing problems. We have failed on many occasions to build testers at 10 Mc that have fidelity enough to give repeatable test data. At 20 Mc extending similar techniques would provide only a sketchy indication of performance. Possibly by moving the scope probe instead of switching, acceptable results could be obtained, but hot and cold tests would be very cumbersome, and testing of any sort would be slow. Certainly considerable effort would be expended, with no bright prospects for futher increases.

None of these arguments show that faster saturated circuits are impossible or even impractical. What they do show is fast diminishing returns and the prospect of proliferating module speed lines with only moderate speed distinctions, and with increasingly limited flexibility.

In view of such observations, my objectives in exploring fast circuits increased from the original one of simply making a faster flip flop. What seemed required was a circuit geometry that allowed connection to a transmission line, without requiring separate cable and reactive compensating termination for every input driven (as the saturating circuits of the Lincoln Lab FX-1 do). Such circuitry would allow ultimate extension to much higher speeds, though the initial development is harder.

DESIGN GOALS:

1. To use transmission line for long runs: There are three major aspects of this problem: driven circuitry, driving circuitry, and mechanical geometry. To allow good fan-out driven circuitry should present an impedance higher than $Z o$ during the entire switching process, making it possible for several inputs to be driven at widely separated points on the same transmission line. Driving circuitry must supply enough power to drive the Zo selected. Mechanical design must keep stray shunt capacitive reactance high compared to Zo, and keep stray series inductive reactance low compared to Zo.
2.

To allow compatibility with other DEC modules: Electrical compatibility demands easy two-way communication between module speed lines. Mechanically, the new circuits should use standard packaging and standard production methods.

SOLUTION:

Since the most demanding requirement is high input impedance during switching, available geometries can be screened on this characteristic. Obviously, circuits whose input is an emitter must be eliminated*, and both saturating and grounded-emitter circuits have too low input impedance for practical Zo even though they have base input. Only emitterfollowers and current switches remain, as far as I know.

Emitter-followers by themselves have too many disadvantages: low voltage gain, oscillatory tendencies, and noninversion. The use of NPN emitter-followers in a high-current version of the 1111 as input buffers could offer fair trans-mission-line matching and excellent compatibility with present circuits (PNP emitter-followers in an 1110-type circuit would be slower and would load the driving cable during turnon).

But performance would be limited by the low gain of the saturated stage. This objection hinges on the recognition that signal power efficiency is basically antagonistic to controlled impedance; input-to-output power gain (at the highest frequency of interest) divided by fanout must be of the order of five to allow impedance matching of the order of $\pm 20 \%$. The power gain of this type of circuit at the point of desaturation is not easy to predict, but it is certain1y lower than the worst gain of a current-switching circuit.

Had I been able to state things this clearly at the outset, no doubt I would have explored the possibilities of the follower-driven saturated switch. However, a lot of experience with the present VHF current-switching circuits has already proven their utility and has brought us close to a marketable product.
*I know of one suitable circuit with emitter input, but the input "transistor" is used as though it were two diodes. My recollection is that this geometry was invented for the special requirements of microcircuitry.

PROGRESS:

I want to list for you the successful events, since as critical and impatient engineers it is commoner for both of us to concentrate on the hurdles still uncleared. These accomplishments are each small ones, but taken together I think they show a considerable progress. Not listed are some other steps that had limited useful life, such as an interim resonant-cable burst generator with alternating and non-alternating outputs at several frequencies, and the VHF Test System that exposed the tendency of the 8201 to allow a splinteredinput pulse to propagate.

1. Finding a basic geometry that can be driven from transmission line with high fan-out at high speeds.
2. Finding a way to make it communicate with standard circuits without using special interface circuits, but without sacrificing its basic advantages.
3. Finding a convenient way to get flip flop outputs both with and without logical delay, to maximize logic time for application where the outputs may condition the inputs.
4. Putting two complementary current-switching circuits in series in the modules, so their voltage translations cancel, and so the combined power gain allows high speed with high fanout.
5. Using transmission line delay instead of transformer inductance to define pulse widths, so that pulse transformers could be eliminated, thereby avoiding the difficult production of critically wound transformers on low mu materials.
6. Taking advantage of pulse transformer absence by DC coupling all circuits and making both pulses and levels permitted in all circuits.
7. Printing high quality delay lines on double-sided etched boards without demanding excessively tight registration tolerances.
8. Making a remotely controllable clock multivibrator capable of operation toabove 40 Mc .
9. Finding means to measure thermal resistances in transistors and heat sinks.
10. Finding method and materials for making thermal connections from output transistor cases to connector pins without making manufacture unduly difficult or spoiling appearance.
11. Making printed board layouts for circuits that make full use of all available connector pins, but with leads tolerably short.
12. Making testers that provide signal fidelity comparable with that obtainable in 5Mc testers.
13. Providing for oven-controlled hot and cold tests without distorted signals or loss of full tester control.
14. Building a burst generator like the ones we use at 5 Mc , giving a 63 pulse 30 Mc burst, and operable to 40 Mc .

The schedule sheet shows that the 10 logic modules and 15 flip-flops made in Production have finally been completed. As I write this, we have taken enough data sheets on the 8103s to know what revisions are needed on the data sheet and test procedure, and we are now trying various transistors in an 8201 to find out what F_{t} is required and whether a new silicon PNP will work (it costs about what the germanium 2N994 did). As you can see from the sheet, all steps along the way took about twice as long as the people responsible told me they expected, but I think it's important to realize that these results were obtained without much pressure from me; I have seldom asked anyone to give priority to VHF, since our first obligations are to waiting customers.

PLANS:

These are the major tasks ahead:

1. Revising test data sheets and procedures.
2. Taking the remaining test data on production modules, including hot and cold checks.
3. Testing a scheme for preventing split pulse carry propagation suggested by Don White (in a jig already designed and wired).
4. Testing fan-out characteristics and open wire Z_{o} for various loads (in a mounting panel already wired for it).
5. Testing the prototype 8401 in a tester already built for it (the successful breadboard is now running the burst generator).

This is not the kind of project the company has invested in before, being years instead of months in development, and it is not surprising if you wonder whether anything will ever come out of it. I am well aware that companies have often sponsored boondoggles that have gone on for years without a useful output. I am just as anxious to prevent this project from being made a boondoggle through lack of management confidence as you are to know it hasn't been made a boondoggle through bad engineering judgment. I still hope to present my results to the Works Committee when they are at the stage predicted for June 17 , which should be in about two months (in spite of my vacation). Meanwhile, we could discuss the future of VHF when you return from your vacation, or at any other time.

PROJECT SCHEDULE SHEET

$$
\text { DATE 部y } 23_{8} \text { byth }
$$

TO

AS
CC
Dlaqulbuthoa bas

R Beckman	A Biumenthal
G Bell	D Brown
R Best	E Chevrier
P Bonner	D Chin
J Burley	B Colbum
H Crouse	」 Cudmore
D Dern iston	R Doane
D Doyle	K Doering
J Fadiman	A Falco
F Gould	C Fuller
P Green	G Gerelds
A Hall	J Hamilton
W Hindie	E Johnson
G Huewe	F Kalwell
R Hughes	C Kendrick
T Johrison	W Long
K Larsen	J McKalip
R Maxcy	R Melanson
N Mazzarese	G Porczzo
${ }^{1} \mathrm{O}^{\circ} \mathrm{Connall}$	R Reed
5 Olsen	M Sandler
H Painter	B Scudney
J Ridgeway	J Shields
M Ruderman	J Smith
D Smith	B Stephenson
A Tircomb	T Stockebrand
H Anderson	R Tringale
R Boisvert	K Wakeen
L. Butterworth	D Wordimon
E deCastro	1 White
W Famham	
P Gadoire	
E Harwood	
J Myers	
K Oisen	
R Savell	

Velma Grasseler
Sales Department
7／29／63

CAMAVOG XTEMS will appear in future editions of the module catalog．ox on Supplementary pagers io be included in the present catalog．（See page 13 cor a list of Supplementary Pages now available．

Those that axe Now catalog items are available to customers on a replacement basis or special order only．
Delivery dates on all items included in this list should not be quoted without first checking with Ky Kendrick．Production Department．

$$
42-770 A
$$

Advertising mept。has issued preliminary inEozmacion．

Model Wumber	Model Name	Deser 2 picion	Price	Casalog Item
7724	POWER SUPREX	A 50 cps 772.		yes
7768	POMER SURPLJ	A 50 cps 776.		yes
778	POWER SURPLOE	Dual－ 15 voly For momnting ons a plenum doox．	\＄350	yea
7788	POWER SUERIE	A 50 eps 778.		yea
779	EOWRR SUREL	$\div 10_{6}-15$ and -30 volks．	\＄374	yes
779A	POMER SURELS	A 50 cps 779.		yes
780	POMER SURPKM	Floaking 12 voit， 250 milliamp． zener regulated PS which provides the holding voltage fox gype 4704品／W Hold and Deselect nodule． For kemory geaters．		no
811	POWR2 Cosmmos	Slagle gtep inch power lntex lock．	\＄241	no
813A	P0ums cosmeron	Modified Sos cuplest baze．		no
8118	PONER COMTROL	Modixied for molly princer．		no
812	POUmR COSTEROR	Fase os Slow ofe for celetype pranch．	\＄335	no
813	POWER CCOTISEOT．	2mstego 3 vixe．Used in PDPM gen	\＄675	no
814	POMzR CONTEOL	2watep．Used Eor Aneler Pxinter．	5555	no
8148	POMER COMSROL	Used fox fetxa mamoriez on pDpmi．		no
815	EOURE COMmROL	Speckal aysteras only．Used to turn on AC powex in mackinea and prom cect againat ovex road． $5-1 / 44^{13} \times 19^{\prime \prime}$		no
816	Povien commrom	Sasio 2s 815． $3-2 / 2^{\prime \prime}$ \％ $19^{\prime \prime}$ 。		no
817	POURR CONEROT	Same as 835．So be nownted on lop of computer cebines． $5-7 / 8^{23}$ g $19-1 / 2$		380
818	20wEr CowTras	Same as az7．onis wotnted on botwon of computex cabinet．		no
820	EOMER Cowirnot	Single step remote OMOFE fil－ cers．cixcust breaker．		00
821－5A	MARGIMAD CBECK COMTROL PANEK	Sochamel maxginal chech pamel．		no
822	EOMER COVyrror	For Gape Unit 50．Designed co allow or ocher device．similar ko 812． but with noise Iflters．		no

＊Advertising Deparement has iscued preliminaxy information。

3nDEX OF ITREAS EOE TN THE CATALOG
823－1103A

model Numbex	Model Mane	Descréption	Price	Cacalog Jem
823	SCR COASEROL．	3－amp．Tuxas punch mozox on and oxt		no．
824：	POWmR COATROE	Similax to 815． 816 and 817. Kas an additional suitch and outlet． $3-1 / 2^{\prime \prime}$ з 29° panel。		no
825	EOMEX COMmat．	2－sicepo simiax to 813 grcept it is designed to conthne to operace atth pover off up to 100 millisecs．		no
825A	POMER COSEROE	An 825 mith delayed outpuic comexoluing－ 15 v ．only．		no
826	PONER CONTEOL	Uaed mith Displays．		no
826	POWER COXTROE	Scamard equipment an mil RDP－13 and pop－ebs．kocated balow typa vatiex logic．Provices AC ontiec panel for scopes，soldering irom． ece．Contans a circuit breaker and has 8 outyecs． $50-1 / 4^{\prime \prime}$ 路 19° ．		no
850	REREM PAEIE			389
851	RESAMA RAMRX			no
852	REXRE PAEEI			no
930	WERMIMASOR DOX	Pluga into cutwent detvers．		no
931	TGMMEMATOR SOÜ	Two $930^{\circ} \mathrm{c}$ on 3 plns．		no
950	TMOMCATOR PAXEL	so Iightb．留as 18 banama jacks on One side of the tronk panel for tapats co lighess from lab modulee．	8275	yes
1010	DIODE MATREX	For high swed adier and incre－ 		no
$\begin{aligned} & 1011 \\ & \% \\ & \% \text { numg } \end{aligned}$	Drode mazed 210 y	Magaekve AND cave mikn load and btasing ctincuitay．	562	20
1020	RTEMORY DROEE UKT	12－xin matxis		30
1030	TEEVMTEAIOR			no
1032	RxGET ARGE COANMETER	Righe axgie 18 coas 22 mig connector．		no
1032	SFRA BERT COHMECTOR	Stzaight 18 coax 22 －pha connector：		82
1103 A	TMUERTER	Tneersace ror ncty to DSC。		$n 0$

[^0]| Model
 Name | Model Name | Description | Price | Catalog
 Item |
| :---: | :---: | :---: | :---: | :---: |
| 1141 | NEGATIVE AND-NOR GATE | General description same as 4141. Output loading same as 1105. | \$61 | no |
| 1260 | SUB-ROURINE CARD | Contains 3 flip-flops and 3 pulse amplifiers. | | no |
| 1316 | DELAY LIBE | Contains 6 delay lines: each produces delays in steps of 50 nanosecs to a maximum of 200 nanosecs. | \$117 | yes |
| $\begin{gathered} 1534 \\ + \end{gathered}$ | VARIABLE SLICIKNG RECTIETER | Each channel clips and rectifies signal supplied fxom one read bus lime of a digital mag tape system. Input comes directly from output of a 4550. Output dxives input of a 1535 . | \$169 | yes |
| 1535 | PEAK DETECTOR | Generates a 2.5 -volt。 $0.4 \mu s e c$ Standard DEC pulse eack time input sigmal passes through a positive amplitude peak. Is driven by the 1534. | \$83 | yes |
| 1536 | MAG TAPE SEMSE AMPLIFIER | Replaces the 1549. Output drives imput to a 1542. | \$164 | yes |
| $\begin{gathered} 1537 \\ + \end{gathered}$ | DRUM SENSE AMPLIRIER | Amplifies dxum head playback ${ }_{\theta}$ slices at predetermined threshold, strobes (time samples) and provides standand pulse amplifier output. | \$132 | yes |
| 1539 | PEAK DETECTOR AMD SLICER | Used in tape systens to provide a $\operatorname{logic~pulse~at~the~peak~of~an~}$ analog input signal. Driven from the output of a 1542. | \$112 | no |
| 1542 | GATABLE RECAIEIER AND SLICER | Used in NRZ cape syztems to rectify amplified zead head signals and slice away a variable amount for noise rejection. Is driven by output of a 1536. Dxives the 1539. | \$122 | 120 |
| 1559 | LIGET PEX AMPLIEIER | (Being redesigned) | \$145 | no |
| 15591 | LIGEXT PEN AMPLIFIER | | | no |
| 1567 | DISPLAY
 PRRAMPLIFIER | | \$480 | no |
| 1571 | DUAL SEMSE AMPLIFIER | 70 nanosec strobe, 400 nanosec output. | \$203 | yes |

+ Advertising Dept. has issued an information sheet.

7／29／63
Page 5
INDEX OF IFEMS NOT IN THE CATALOG
1572 － 1706

Mode 1 Rumber	Model Name	Description	Price	Catalog Item
$\begin{gathered} 1572 \\ + \end{gathered}$	DIRSERERCE MMPLIETER	DC comparator like the 1547 ，but lowex drift and higher speed．	\＄180	yes
$\begin{gathered} 1574 \\ + \end{gathered}$	D－A CONVERTER	12－bit D－A Converter employing a pinaxy wetghted resistor ladder network。		yes
1575	SAMPTE AMD HOLD	Jsed in Display．		no
1576	SRAR	For use in type 140 high speed ADC． Contains combination stax－ladder rype DAC．Intended to convert pinary code which has ovexlapping bics inco analog．（Limited pro－ duction－to be made as requestedd		$n 0$
1577	DEFUECFTON CORPECEITON GAIN CONYROL			no
1578	MUTSTPTEXKR SWITCE		\＄425	yes
15781	MULTIPL．EMER SWITCE	Similar to 1578；designed for low level operation．		yes
1609	70 MANOSECOND PULLSE AMPEIFIER	Six pulse amplifjers． $2-1 / 2$ mega－ cycle 70 nanozecond pulse standaxdizers．		yes
1664	MEMORY BUS CONTROI	Quadxuple size module Eor PDE－6．		no
1655	PULSED BUS TRANSCETVER	Quadruple size module for PDP－6．		no
1666	ANALOG EMITETER TOLIONER	Drives display monicors．		no
1692	BUS DRIVER	Sinilar in dxiving capabiliey to the 1682 ．	\＄140	yes
1701	POAFER SUPPLY CONTROE	Contains two identical cixcuits： one controls inhibit supply，and the orher conexols R / W supply．	8105	30
1704	PONER SUPPEX	－10 volt precision．	\＄242	yes
2705	CRT BJAS \＆FOCUS	Supplies voltages for the 䀆1 and 舞2 grids of the 16^{4} CRT used in DEC Type 30 Displays．	\＄185	no
1706	DC POWER AHPLIE EER	Unity gain asuplifiez used for focus coxrection。 Will zoon be replaced by the 1750．	\＄220	no

＊Advertising Dept．has issued an information sheet．

Model． kumbex	Model Mame	Descripution	Price	catalog Isem
1707	MULTTPYIER BIAS SURPLY	Used with the 1706．Level shifter． places 5 voles across resistors in both directions in a 4677 singlem endec bridge．	\＄172	no
1708	CAEHODE CURRENT LIERSTERR	Used in Type 31 Display．		230
1710	DC VOLTAGE MONETOR	Desects reduced +10 or -15 volss before aysten fails．		$n 0$
1711	POFRR SUPPL CONTEROL	Concrol for 781 Power Supply．Sirai－ lax to 1701 Bowex Supply Conerol．		no
1750	OPERATIOMAZ． AMPLTETER	Whil replace the 1706.		no
2772	CURREWT／VOLTAGE CALTBRATOR	See 72 CN caiburator．		no
$\begin{gathered} 1802 \\ * \\ * \end{gathered}$	RELAE	Consists of 10 Form a relay contacte energized from a single coil．	\＄45	30
$\begin{gathered} 1803 \\ + \end{gathered}$	RELAX	Consista of 4 Form A Dunco Reed relays．each with optional protect－ ing ciscuit．	\＄108	yes
$\begin{gathered} 1804 \\ + \\ + \end{gathered}$	REEAX	Consists of 4 Form A Dunco Reed relays with pilse forming network in each contace cixcuit．	\＄108	yes
1924	ROUNTIES PAMES	Like 1901 except there are 4° betweer front panel and logic．	\＄150	yes
1928	PANEE	19 ${ }^{31}$ ． 25 unit taper pin mounting pane2：umpainted，wich marginal check switches．Joine a 2914 with caper pins．	\＄220	yes
1929	LOUVERED MOUWTITMG PAMES COVER		\＄ 15	yes
1930	MOUSTETMG PANEL	Wixe wrap；24＂mide，painted．	\＄250	yes
1931	ROUNTENG PAREEIS	25－unie，quadreple sizo module mounting pane1：unpadinted．Eas marginal check gwtchez。		120
1932	MOUMTEAEG EAMEL	Foz 16 yedaruple size mociules mounted howizonsally．Used in pre－6 Memory． $10-1 / 2^{13}$ Eaigh。		no

＊Sales Dept．has issued an information sheet．
＋Advertising Dept．has issued an innormarion sheê。

Model Number	Mode 2 Name	Description	Price	$\int_{\text {Item }}^{\text {Catalog }}$
2956	10-2TEN PZUG ADAPMER	Provides connections Exom logic to rear plug of 4203 flip-slop.	\$43	no
2957	BKABK SYSTEM MODULE	Double length assembled; plain boazd.	\$13.50	yes
2958	BLAKK SXSTEM MODULE	Double lergtho unasserabled: copper clad board.	\$13.50	yes
1959	$\begin{aligned} & 22-\text { PIN PIUG } \\ & \text { ADARMRR } \end{aligned}$	1-1/2 size module. used in PDP-5.	\$22	no
1964	BLANK SYSTEM MODUTE	1-1/2 lengeng assembled. plain soard.		yes
1965	BLANMK SXSEER MODULE	1-1/2 length。 unassembled. copper clad board.		yes
1972	$\begin{aligned} & \text { RWAD/WRITE } \\ & \text { SWITCE } \end{aligned}$	Contains A identical switch circuits each wich an AwD gate input used to control the application of drive curremt to a memory core minding.	\$153	no
1973	HEMORX DRIVER	Read and Write drivers. Rrovide 0/w drive currents to che windings of the coze array.	18230	no
2976	RESISROR EOARD	Contains eight 50 -ohssa 3-watt zesistors with $3 / 2 \%$ colerance.	\$55	no
1978	RESISTOR BOARD	Concains eight 50 -ohmo 3 -watt resis core wich 2/2\% tolerance。	\$55	no
1981	SELISE SWITCE	A per cazd. destgned to accept input signals ok one voli amplitude. Stands back voltage or 50 volts.	18160	120
1982	TOEXBLT DRIVER	Used to drive the inhibit windings or magnecic core memory planes. Concaine 4 cixcaits.	53A6	no
1987	READ/WRITE SWITCE	Used as a bipolar salection switch for address linea of a magnetic core memory. Each cixcuit has a 4-input diode AND cixcuit to decode the addxess register. Oncput lines for read and write currents are separate and can be paralleled mhere independence is not necessary.	8153	120
1990	RBAD/WRITE SWITCE	Used in drive systera on Memory resters 1516 and 152\%. Switching device is low impedance siticon control rectiviez: 4 switches and 4 switching cixcuits per module.	1200	yes

Macto 1. Anmber	Modal Name	Descripeion	Price	Cakalog Itera
41118	DIONE	Used as a senge suitch in core testexs.	\$59	20
$\begin{gathered} 41.5 \\ 3 \\ +66 / 3 \end{gathered}$	$\begin{aligned} & \text { DTODE } \\ & 63 \end{aligned}$	Thxee 5 -inpur negative 0 grates. Comections same as 4117 .	\$4. 7	yes
$\begin{aligned} & 4123 \\ & * \\ & +26 / 3 \end{aligned}$	$\begin{aligned} & \text { NEG.CAMACLTOR } \\ & \text { DIODE CARE } \\ & / 63 \end{aligned}$	Similax to 4129. Useful as input gates fox a 1 megacycle accumulatox.	\$59	yess
4130	POS.CAPACITOR/ DIODE GATE	Sivilax to 4129 except pogitive $6 / D$ gates with posifive output.	\$44	$n 0$
$\begin{gathered} 4143 \\ 3 \end{gathered}$	DTODE	A 4141 with 2 eransistors.	\$56	yes
$\begin{aligned} & 4161 \\ & 4 \\ & +26 / 25 \end{aligned}$	SCD DECODER $5 / 63$	Same as 1161 except for tranmistors. Used for decoding 8A2l ar excess 3 to decimal.	\$105	yas
42022	FCTE PTOE	Rale \% \& 4202 , Pliputlap 8 only.	\$96	no
42028	DUAL FTIP=ELOP	Same as 4202 but with shift patnes bypascing \&lip-fiop A.	\$96	no
4206	TKXRLE EXIP-EXOP]	FOK pop-5. $1-1 / 2$ site modrle with pluge on boch ends. Contains one bit of che MA. MB, and AC.	\$212	80
4203	FLETE-FIOR	Replaces 4203 in the newte pDea40	\$122	100
4219	$\begin{aligned} & \text { QUTMTUPIR } \\ & \text { ELTP-FMOP } \end{aligned}$		\$110	yes
4220	8-BTW BUREER REGTSTER	See Adv Bulleetn Cos001. 8 Elipflops with cemon cieax and common xead-in detexmined loy conditioning of gates.	\$107	yes
$\begin{gathered} 4221 \\ \% \end{gathered}$		See Adv. brilecin c-4001. 6 flipm Elops. 5 have comuna cleas. 2 has comercions for aicher clear or set.	\$109	Yes
1222			\$119	yes
$\begin{aligned} & 4223 \\ & 4 \\ & 4 \end{aligned}$	10-87世 SREMT REGTSMER	10 Eisp-flops. 9 have common cleax. 1 has eitiver clear or set depending on jumpers on board. All Elip-Elops beve aldist gates.	\$143	yes

[^1]HAdvaxtising Dept. has issued an informarion sheet Q Revised (date)

7/29/63
Page 9
INDEX OE MODULES NOE TM THE CATALOG
4224 - 4529

Model number	Model Name	Description	price	catalog Item
$\begin{gathered} 4224 \\ + \end{gathered}$	$\begin{aligned} & 9 \text { SEY-RESET } \\ & \text { FLIE-FLOR } \end{aligned}$	See Advo Bulletin C-4001.	\$86	yee
4225	8-BIT PRESEX BCD OR BIMARY COUNTER	See Adv. Bulletin C -4001 . There are 8 flip-flops which can either be cleared ox aet. depending on usage of available jumpers on the board.	\$112	yes
4226	$\begin{aligned} & \text { SERLAL TO } \\ & \text { PARALLKL } \\ & \text { ASSEMBLER } \end{aligned}$	Used in Analog to Digital Converters.		yes
4228	$\begin{aligned} & \text { 3-BIT SHIFI } \\ & \text { REGISTER WHEL } \\ & \text { BUEFER REGISYER } \end{aligned}$	1-1/2 lengtis board.		yes
4260	MARK TRRACK DECODER	Used for microtape. $1-1 / 2$ length.		no
4261	BLOCK PORMAT DECODER	Used for micro tape. $1-1 / 2$ length.		$n 0$
4304	DEIAY COKmROL	Conaects to 4303 Integrating Single Shot and is used to program 6 estemal. potentiometers For up to three $4303^{\circ} s$. Concains 6 negative NORs similar to 4112 for logical garing。		yes
4305	DELAX COKTROL	Sasam as 4304 except no gates providad		yes
$\begin{gathered} 4505 \\ + \end{gathered}$	$\begin{aligned} & \text { LAM } 7090(\mathrm{P}) 20 \\ & \text { DSC COMVERTER } \end{aligned}$	handles one get of current levels: has 6 channels.	\$79	yes
4514	MRZ MRITER	Used in tape syntems to supply 70 ma. of current into a center tapped load.	\$65	yes
$\begin{gathered} 4517 \\ + \end{gathered}$	$\begin{aligned} & \text { MAG TARE } \\ & \text { READ/WRIME } \\ & \text { SWITCH } \end{aligned}$	Used vith 4514 and 1536 eo permif reading and wxiting on mag tape with ome head.	577	no
$\begin{aligned} & 4518 \\ & 466 / 3 / 6 \end{aligned}$	DRUM NRE WRITER 63	Used for recording on a magnetic drum \&uxace.	\$72	Yes
$\begin{aligned} & 4519 \\ & +26 / 25 \end{aligned}$	$\begin{aligned} & \text { DRUM FIELD } \\ & \text { SELECT } \\ & / 63 \end{aligned}$	A 3-state device Eunctioning to connect a group of dxum magnetic headsi to eichex read or wite busses. or to btas the group to a non-selected state	\$106	yes

[^2]| Mociel Number | Model Name | Descripteion | Price | $\int_{\text {Ctem }}$ |
| :---: | :---: | :---: | :---: | :---: |
| 4521 | DRUM X SELECS | Used with 4522 circuics to form a two coordinate $x-y$ selection for drum heads operacing in aerial mode. The matrix may be up to $3.6 \times 16=256$ heads. | \$83 | yes |
| 4522 | DRUM X SELECE | Used wieh $452 l$ circuits to form a two coordinate $X-Y$ selection for dxum heads opexating in sexial mode. Matrix may be up te $26 \times 15=256$ heads. | \$69 | yes |
| 4524 | MASTER SLICE comTroz | Used in Core Memories with 4551. | | no |
| 4550 | 2-CHAKNET AMPHE思IER | Mag tape 2-channel ampliflex, Output drives input to 1534. | | yes |
| 4551 | DTHAE DC SMUSE AMPLIETER | For core Memories. | | no |
| 4552 | $\begin{aligned} & \text { 4-INPUI DC } \\ & \text { SKNSE AMPLIEIER } \end{aligned}$ | For 16 K Memories. | | no |
| $\begin{aligned} & 4605 \\ & + \\ & + \\ & \hline \end{aligned}$ | PULSE AMPLEETER | Contains 3 pulse araplifiexs which share a 6 input diode AMD gace. | \$76 | no |
| 4659 | DEC TO XHA $3090(\mathrm{~N})$ TRANS MISSION LINE | Used to drive IBM 7090(N) transmissio dines which are terminated with the LBN Texminating Shoe. | \$42 | Yes |
| 8660 | DEC YO IRA 7090 (8) TRANS- MISSION LIAE | Same as 4659 except chat it dxives Type lines. | \$44 | yes |
| $\begin{gathered} 4670 \\ +\infty 6 / 3 / \end{gathered}$ | DEC YO IAK 7090 (P) COMVRRTER 53 | Shmilax to 4669 excepr ehat it drives Type plines. | \$97 | yes |
| $\begin{gathered} 4671 \\ \frac{1}{6} \end{gathered}$ | BCD TNCAKDESCEMS LIGGYS DREVER | Same ss 1671 excepc it ill decorte 8421 and uxcess 3 codes. | \$96 | yes |
| $\begin{gathered} 4673 \\ +26 / 3 / 6 \end{gathered}$ | BCD HEON DREYER | Used to provice wisual indication of che concents of a decimal countex.
 Decodes 8421 as well as exceas 3 code | \$85 | yes |
| $\begin{gathered} 4678 \\ + \end{gathered}$ | LEVEL AMMP T IFIER | Conteins 5 level amplifiers to drive D co A ladier netmork. | \$78 | yes |

* Salea Dept. has issued an informarion gheet.
* Advertising Dapt. mas issued informatzon。 Ω (sevision date)

Blociel Numbar	Model Name	Description	rice	$\left\lvert\, \begin{gathered} \text { Cutalog } \\ \text { Item } \end{gathered}\right.$
4679	T.EVES AMDY TETER	Contains 4 level amplifiers to drive D to A ladder notwork.	\$77	Yes
4700 $+$	PRLTMTER BUPEER DRIVER	Dosble length board. Used to drive Anelex pxintex hanmer. Contains 6 Elip-flops with individual comple- ment inputs and a common clear input	\$168	10
$\begin{gathered} 4702 \\ \% \\ \% \end{gathered}$	TRLETYRE RECETVER	A serial to parallel converter. (See also Adv. Brociauce C-A001。)	\$200	yes
4703	$\begin{aligned} & \text { WELUTYME } \\ & \text { PRANSMI YERER } \end{aligned}$	A parallel to sexial convertex. (See also Adv. Brochure C-4001.)	\$250	yea
4704	HOLD AND DESELEC\%	Used in Memory Testers in conjunction with the $1990 \mathrm{R} / \mathrm{W}$ switch.		no
4705	DESELECE CURREMY DRIVERS	Used in memory resters in conjunction with the 1990 R/W swtech.		no
4706	TKTLETVEE RECETVER	A serial to pardlel convexter Data consisting of 10 elements is received in sexial form.	\$270	yes
4797	TELETYPE \%RANSMKTMER	A parallel to sexial converter. Data conkizeing of 10 elements is trans= mitred in sexial forma.	\$310	yes
4900	BUMTON PUSEER		$\$ 45$	no
$\begin{gathered} 6102 \\ + \end{gathered}$	9 TMVERTIERS	For general wse. Logic diagram ie sawe ad 4102. Oucpuc Eall and xise times same as 6105.	\$77	yes
61020	9 TMVERTERS	Sane as 6102 except overdrive capacitcor is 27 pf inscerd of 56 pfo	\$77	yes
$\begin{gathered} 6104 \\ \% \end{gathered}$	INYER2EES	Genezal purpose. 30 me : contains 4 invexters and 4 clanped loads.	\$48	Yes
61040	TRYERTEERS	Sane as 5104 except overdxive capacitcor $4 s 27$ pf instead of 56 pe.	\$48	yes
61050	THVERTERRS	Same 2s 6105 except owerdrive capacttor is 27 pf instead of 56 pe.	\$52	Yes
61060	TNYERTERS	Same as 6106 except orerdrive capacitox is 27 pi instead of 56 pE.	\$67	yes
61090	LHVERS\&RKS	Combains lo invercess.		yes

S Sales Depto has imsued an 3nformation sheek.

* Adyextwing Dept. has issued an information skeet。

TNDEX OR MODULES FOT XH THE CATALOG
$5110-8201$

Model Number	Model Name	Description	Price	$\begin{gathered} \text { catalog } \\ \text { xtem } \end{gathered}$
6110	DIODE	Surailar to 4110 (board)		yes
$\begin{gathered} 6111 \\ * \\ + \end{gathered}$	DLODE	Same as 1111 and 41110 but will operate to 10 mc . Do Not use for 10 me pulses.	\$52	Yes
$\begin{aligned} & 6113 \\ & 6 \\ & * \end{aligned}$	DIODE	Game as 1113 and 4113, but will opexate to 10 mi. Do Not usae for 10 ma pulses.	\$80	yos
$\begin{gathered} 6115 \\ + \\ + \end{gathered}$	DIODE	Saxa as 1115 and 4115 . but wil1 oper ate to 10 mc . Do Hot use for 10 nos palses.	\$69	yes
6116	DIODE	Sixilax to 4116.		yes
6117	Drane	Same as 1117 and 4117, but will opexate to 10 m. Do Not use fox 10 me pulses.	\$64	Yes
6118	DIODE GATE	Sianilar to 4116. two B-Luput negrative NORs.		Yata
6119	DIODE	Twe 8-Lnput posituve NORs.		yes
61220	INVERTERS	Contains 18 invextors and is the logical equivalent of the 4112.		yees
61230	TXVEREERS	Concains 12 inverterg and is the logical equivalent of the 6113.		yes
61240	INYERTERS	Contains 14 invercers and is the logical equiwalent of the 4114 .		yeas
6141	DTODE	High speed equivaleat of the 4141.		yes
6143	DIODE	High apeed equivalent of the 4143 .		yee
6155	2\% 2-BI\% DECODERS	Selmeted lines axe ground. Each decoder bas an extra exable input.		yes
6227	8 GIBUPFERED RLIE-FLORS	Tho clear inputs which may be jumpered.	\$150	yea
6584	BUS DRIVER	Similax to 1684 ercept faster and non-inverting.		yes
8103	VHE LOGIC MODULE	See Adv. Brocherre C-8000\%.		no
8110	Whe TWO 6-INPU: NOR			no
8201	Y/RE ELIP-ELOE	See Adv. Brochure C-8000p.		30

[^3]SUPPLEMFAGARY PAGES in Catalog Eorm axe available on the following, These pages are now included in an envelope inside the back cover of all Catalogs being distributed by the Advertising Department.

The fixst ten items below appeax on the latest price 1ist dated April 1 . 1963.

Model Number	Mode 1 Name	Description	Price	Catalog Itero
53	CURRENT DRIVER		\$760	yes
63	CURREXT DRIVER		\$760	yes
72	CURRENT VOLTAGE CALIBRATOR		\$950	yes
1161	BCD-TO-DECIMAL DECODER		\$160	yes
1538	SEWEE AMPLTEIER		\$203	yes
4205	DUAL ELIP-FEOP		\$ 100	yes
4217	FOUR-BIT COURTER		\$96	yes
4506	$7090(M)-T 0-D E C$ CONVERTEER		\$62	yes
4606	PUTSE AMPLTETER		\$122	yes
4669	DEC-TO-7090 (H) CONVERTER		\$114	yes

| 31 | ULTRR PRECISION CRT DISRLAY | Yes |
| :--- | :--- | :--- | :---: |
| $40-523$ | CARD PUNCE CONFROL | Yes |
| 41 | CARD READER AND COBTLROL | Yes |

INTEROFFICE MEMORANDUM

DATE July 18, 1963
SUBJECT PDP-5 Software
TO Computer Guidance Committee
FROM Dit Morse

Enclosed is a rough specification of a PDP-5 Programming System.

The decision should be made very soon (Friday, if possible) whether to do it in house or not. Some of the arguments are as follows:

OUT-HOUSE

Advantages:

1) There are numerous competent consultants availāble and anxious to do the work.
2) The price will probably compare to what it would cost DEC to do it internally.
3) We might encoutage a consultant to "favor" our machine by offering a trade, loan of a computer in house, etc.
4) Documentation will probably be more satisfactory.

Disadvantages:

1) We would lose some level of control over the design of the system.
2) No-one at DEC is closely acquainted with the inner workings of the system.

IN-HOUSE

Advantages:

1) We can design the system exactly as we want.
2) We will have in house knowledge of the system.

Disadvantages:

1) We have no-one at DEC both competent enough and available presently.

Memo (Cont'd)
July 18, 1963
The same person (or group) should do AL工 the software, to insure the system is both integrated and optional.

If we decide to do it in-house, then we should immediately hire someone capable of handling the job.

This will probably take a month. Otherwise we should hire a consultant and get a final specification, delivery date and cost basis. This will probably take two weeks to a month.

In either case, a definite schedule consisting of the following should be established.

1) final system specification
2) Assembler and tape editor completed
3) Arithmetic Package
4) FORTRAN
5) Rough draft documentation
6) final documentation

If done internally,two people should work on the programming, with some technical writing help for documentation.

The time estimates in-house, assuming two people, 1 excellent, 1 capable are,

FOR

specification and design
programming
documentation

EFFQRT
4 mm

1 my
3 mm
$\mathrm{HRM} / \mathrm{nbh}$

This document describes the proposed programming system for PDP-5 Computer.

The minimum configuration will be:
PDP-5 with 4 K memory
1 dual micro-tape transport and control
1 teletype Model 33 ASR

NORMAL OPERATING PROCEDURE;

The PDP-5 Computer is intended to be a self-contained device not requiring support from off-line equipment. Consequently, the system will use micro-tape as primary I / O device, with the keyboard-printer used for control and secondary I / O.

The normal procedure will be to use the computer on-line for program preparation, keeping symbolic programs stored on micro-tape.

The assembler and compiler will perform their processing from micro-tape to micro-tape leaving the resulting binary program to be loaded from micro-tape and executed.

The following programs constitute the minimal generally useful programming system:

1. Tape editor: micro-tape to micro-tape for program preparation and editing.
2. Assembler of the PDP-4 flavor, which should include features to ease the addressing problem.
3. Compiler: A subset of FORTRAN for PDP-4. Output will be in symbolic machine language or an interpretive language, which ever is more feasible (probably the latter).
4. Arithmetic Package:
a) fixed point multiply and divide
b) floating point add, subtract, multiply and divide.
c) functions -sin, cos, $e^{x}, x^{y}, \log _{2,10, e}$,
d) floating point interpreter.
e) floating point I / O.
f) fixed point I/O.
5. Debugging routine: Probably a simple debugger including octal I/O, break points, searching features, the ability to dump core on micro-tape, and make corrections to the program while on micro-tape is sufficient.
6. Utility routines:
a) micro-tape read-write-search package.
b) micro-tape to punch dump.
c) reader to micro-tape loader.
7. Micro-tape should be an integral part of the system.
8. The possibility of FORTRAN programs too large to fit into core with the subroutines necessary to support them should be provided for.
9. The debugging routine should work on a program which overlays it.
10. All system programs should inter-communicate - in the same format. (For example, the symbols defined during assembly should be directly accessible to the debugging routine.)
11. The programs must be modular enough so that changes to the system can be safely made a non-author of the system. In particular, adapting the system for different I/O configuration should be easily accomplished.
12. The system should take advantage of larger equipment configurations.

GENERAL AIMS:

The Assembler should have features which allow subroutines to be assembled with main programs without symbol conflicts. This merely means a feature which allows the subroutine writer to indicate to the assembler which symbolsare to be saved after assembly of the subroutine, and which are to be discarded. (PDP-4 FORTRAN does this automatically). This eliminates the general problem of linking and reloating binary programs. In addition there are many advantages to keeping library programs in symbolic rather than binary form, such as the ability to look at a subroutine and easily modify it. The assembly process should be efficient enough so that there is normally no reason to keep binary versions of programs other than the system programs.

Since every PDP-5 Computer sold will have micro-tape, we should go to some lengths to take advantage of it in our system programs. There should always be available (in core) a set of micro-tape read-write-search routines, which will used by the Assembler, Compiler, editor, debugging routines, and user's programs, if desired.

It is advantageous to dump some of core on tape and overlay that core with the debugging routine when interrogating a program. This means only enough of the debugging program to handle traps and dump core necessarily be in core when the program is running.

Since program are almost relocatable now (on page basis), it appears fairly trivial to make them completely so. This possibility may make it very feasible for the subroutines needed by compiled programs to be quite elaborate yet occupy a small portion of core, with sections of program being brought into core as needed. For example, only one or two pages need be allocated for all function generators. The desired one is brought in when needed, overlaying the previous one.

The preceding paragraph points out one predominate problem in constructing a satisfactory programming system for the PDP-5. That is the problem of limited memory capacity. It is desired that this problem be alleviated by the use of micro-tape as a large backing store. To this end, the programming system should be designed to expect programs which will exceed the memory capacity of the machine, and to properly handle such programs.

This does not mean that the general storage allocation problem (choke:) need be solved on PDP-5. However, the programs which make the system up must be designed to operate in a small amount of core if necessary. In particular, the subroutinesnecessary to support a FORTRAN program are large in number, and may leave only a very small portion of core for user's programs if all subroutines are in core at once. However, only a few subroutines need be in core at any one time. Certain subroutines may be able to perform their functions in two or more passes, with a new section of program being loaded at each stage of minimize the storage used by the subroutine.

Features to permit such storage overlay should be included in the system.

> H. R. Morse III
> July 18,1963
P.S. The main purpose of the preceding discussion is to explain our general aims, rather than precisely specify the system.

DATE July 3, 1963
SUBJECT
Ken Olsen
Harlan Anderson
Stan Olsen
Nick Mazzarese
Ted Johnson
Ken Larsen
Gerry Moore

FROM Mort Ruderman

The MIT order for the 20 LINC's is approximately 95\% complete as of July l, 1963. The order for the remaining 6 LINC computers that Wes Clarke is going to build, exclusive of the 4102 units will be placed sometime within the next couple of weeks. The present status of the LINC computer is that 1) 99% of the unit has been debugged and checked out and 2) the overall design is complete and firm.

The significance of the overall design of the LINC being complete is that now all information concerning the LINC is public information. This allows any individual or concern to obtain all specifications and prints. Thus, logic prints, circuit schematics, wiring diagrams, mechanical prints and overall system drawings are available to anybody for simply the cost of reproducing the drawings. I feel it is extremely important that DEC should be fully aware of this situation for a number of reasons. 1) the present LINC is designed with 90% of the plug-in modules being DEC units and the other 10% being special circuits that were designed by the LINC staff but built and tested by Electro-Pac. Now this places DEC at a distinct advantage when any subsequent users of the LINC computer decide to build (or have built) a unit identical to the present one. This would mean just ordering off-the-shelf units both DEC Modules and all other units that make up a complete LINC. However, reason no. 2) Electro-Pac, a fully owned subsidiary of Computer Control Corporation, is presently in the process of procuring all prints, layouts and literature concerning the LINC system. Their plans, from what I am told by the people at MIT, are to try and market the LINC computer and to have the capability of building a complete LINC computer for any future user.

They are underwriting the cost of redesigning the LINC system using their logic and modules. This means conversion of DEC logic to their logic, new power requirements, new logic levels, new wiring and new system layout. They are, as MIT puts it, getting their foot in the door and really persuing the issue.

DEC's decision to either market the LINC computer as a unit or to supply future builders of LINC's with the plugin modules is one that should be made in the very near future. The position of supplying future users of LINC's with the modules would be an enviable position. The cost of DEC Modules per system (approximately 300 units) is $\$ 23,000$ before discount. MIT has approximately $\$ 650,000$ for 19 LINC units. This, therefore, estimates the cost of materials and assembly to be $\$ 34,000$ per system.

If the decision to market the LINC computer were to be made by DEC, here are some of the pertinent facts to date. MIT received approximately 75 proposals for the LINC's. Of these, approximately 16 are to go to various installations and MIT themselves will keep 10 at their computer complex. There are also four independent groups building LINC's: NIH, CID, AFCRL and Lincoln Lab. Therefore, there are presently 60 initial requests for LINC's unfulfilled plus many requests after the initial proposals: CID is now planning to build two more LINC's after January l, 1964 and RLE is hopeful of maybe building one next year. In general there appears to be a growing market.

[^0]: \％Sales Dept．nas issued am insormacion sheet．
 4 Advertising Depk．has iswued an inforwation gheet．

[^1]: *Sales Dept kan issued an inkormatios sheet.

[^2]: * Advertising Dept. has issued an information shaet Ω revised (date)

[^3]: * Sales Dept. has issued an information mheet
 * Actuctrining Dept. Has issued an information sheet.

