

1.135 Processor 1 Jails , messages are
printed /rom bod! pn:xessot" f} and
pn::w:essor 2 noting this fact. Effect on
system t.ISe1S- none

Pori!y enor duri.~ a disc read, retl'y
was successful. Effect on $!.$tem users
- none.

17:30 Processor 1 repaired and re -incorpo­
rated infO die system. Effect on sys­
fern usen- none.

l~ 10 Compler.!5ySr.em power-lnlelTllpl and
restart Effect on system Uel'- none.

TANDEM NonStop'" Systems.

The age of on-line computers.
It's begun In earnest now, and the rea­
sons are sound. Dedicated, efficient, low­
in-cost. loday's small computers provide
immediate. positive response in all types
of applications.

Credit verification. Bank deposits and
INithdrawals. Funds transfers. Orderproc­
essing and inventory control. Medical sys­
tems. Retail sales. Emergency vehicle dis­
patch. Theater and sports evenis
ticketing. Hotel and motel reservations.
Communications networks. Manufactur­
ing and material control systems.
Wherever there's a high volume of trans­
actions requiring speed and accuracy:
wherever there's a critical need for reli ­
ability and expandabllity; wherever em·
dent, low cost transaction processing is
essential ; Tandem's unique multiple­
processor architecture and system soh­
ware offer a new lind poo..uerful solution.
And II's field -proven.

On-line means on-demand.
And there's ihe rub. For as reliable as the
modern computer is, and it is remark·
ably reliable, II will on occasion fail. Which
can cause lost business, or missed sched­
ules, or unhappy customers, or cosily er­
rors, or worse. In live dala base systems.
a crash during processing can cause un ·
to ld damage 10, or even destruction of,
the data base. That's a nightmare. All of
umich is why Tandem came into business_

The search for alternatives.
Until now, the only way an on-line com·
puter user could protect himself against
the possibtUty of a computer failure was
to Install a "back·up" system, typically a
second processor strapped into the sys.
tern, ready to come on-line when a fail·
ure occurred. It required special inter­
faces and customized system software;
and there was the penalty of system in·
flexibility, loss of processing power, and
uncertainty as to the status of transac·

tions-in-process when a failure occurred.
But aside from manual back·up systems,
which went rapidly out·of-date, and were
slow, inefficient and uncertain, it's all that
there was. Until Tandem.

NonStop Computing.
Tandem has designed and built the first
multiple processor system designed from
scratch to provide non-stop processing
-even during a failure-with no penal·
ties in the speed, capacity, throughput or
memory utilization of the system. With
no strapped-up interfaces and no cus­
tomized software, and perhaps most im­
portant, no loss of system flexibility. The
Tandem NonStop System can expand
from a basic two-processor system all the
way to sixteen processors, without re­
programming, without customizing, and
without penally on the original invest­
ment.

NonStop Protection.
And because of its unique design, the
Tandem NonStop System provides an
unprecedented level of protection for
both transactions and files. No module
failure need result in a transaction being
lost or duplicated. With Tandem, restart
time and restart uncertainties are ellmi­
nated; recovery is Instantaneous. No
other system offen this protection or this
capability.

Tandem NonStop Computers.
The one and only answer from the com­
puter industry to the opportunities and
problems of today's advanced computer
applications. Data Base Systems. Distrib­
uted Systems_ Data Communications
Systems. Multi-Tenninal Systems. All of
these have grown out of the enormous
capabilities of the computer Itself, bul as
of today, only one company has dedi­
cated itself to the design and construction
of efficient, low-cost systems which meet
their needs head·on. Tandem Computers.
Up and running. NonStop.

Tandem foor processor S!JSlem, expandable
to sa- In same cablnet7y, expandable to sR"·
teen processot'S wth additional cabfnel1}.l.

•

I

~

1
I

The benefits of NonStop Computing.

• Hardware and software are designed
to work together continually, produc­
tively and efficiently.

• The system Is designed around mul­
tiple, independent processors to pro­
vide continuous operation regardless of
a failure anywhere in the system.

• A failure In one part of the system will
not contaminate the rest of the system.

• On-line maintenance lmd replacement
of failed modules are completed with­
out shutting the system down. Opera­
tors at terminals lind programs In proc­
ess are unaffected by either the failure
or its repah:

• The standard operating system soh­
ware program is designed and tested
to provide continuous operation.
Single hardware failures are automati­
cally dealt UJith, Instantaneously. This
Is In marked contrast to most operating
systems, which are designed to shullhe
system dov.m in a failure, rather than
actively respond to it.

• The system Is expandable to meet
changing or growing needs with·
out hardware cost pena\ty. and without
having to reprogram. Instead of having
to Invest Initially for an anticipated later
need, the user can start v..ith the exact
amount of computing po.ver he needs,
and add in increments, at mini prices,
all the way to a full 16 processor system.
Fully expanded, a Tandem system can
support 2048 data communication
lines, individual files of four billion
bytes fully supported by the data base
record manage~ providing continuous
real ·time operation, with one of the
finest packages of software available in
any computer system. And it's all Non·
Stop. From Tandem Computers.

Clockwise from upper right

View 0/ bock 0/ rode showing constrocrion
for a 3 processor system.

Dual Independent, sepomte~ controlled
interprocessor busses.

Inpur/output conrrollers power switching
and bod .sharing prruitry.

Independent I/O channels connected 10
separate independent poTtS 0/ the I/O con
trollers.

NonStop Hardware

Multiple lodependent processors.
In order 10 Insure thai the loss of a proc·
essor Vtlill never completely Isolate the
peripheral devices attached to any con·
trol1er. each Tandem controller module
has ru.o Independent ports \lJhich allow it
lobe connected 10 t\.uo Tandem processor
modules. In the event of a failure of that
processor or I/O path, lhe other proc·
essor lakes control automatically to in­
sure that the system Vtlill always have a
communications path to thai controlJet
AU processor modules are intercon­
nected through a unique. high -speed
dual bus structure -Dynabus!'"
Each Oynabus path is fully autonomous,
operating Independently of. but simulta­
neously Vtlith, the other bus to insure that
rwo communkatlons paths exist between
1I1i processor modules in the Tandem 16
NonStop system. All Oynabus Interproc·
essor transfers lite hardware controlled,
Independent of, but concurrent with, all
normllili/O transfers and other CPU ac·
tivities. Since Oynabus handles Interproc·
essor transfers at 26 megabytes/ second,
this produces eXlremeiy low overhead
inteljAcx:essor communications at speeds
fag enooJ!j1.o simuk~ handle peak
transaction and tT"IeSSlIIge loads even u.hen
the Tandem system is fully expanded to
sixleen processors.

The Tandem processors are independ­
ently powerful.
Designed to Increase transaction rhroug,·
pul and minimize system CM!rhead, the
Tandem processors separate I/O proc.
esslng from Interprocessor communica­
tions and O'U ~ Eoch """""'"
can handle up to 128 19.2 K Baud com·
munications lines, a message handling
capabiJiIy miles ahead 01 other proo!SSO<S

in their price category. The CPU segment
of each processor is a plpellned micro­
Jl'09'IDTImed unll designed spec;/IcaIIy to
handle business transaction data appli·

cations. With a I:)ICIe time of 100 naoo·
seconds,each CPU can. for example. add
two IS-digit numbers In under 2.4 micro·
seconds.
Time robbing I/ O overhead Is com­
plete)y removed from the main proc­
essor.
Each proc:essorcontains an independent
microprogrammed I/O processor \lJhich
controls the 4 megabyte/second block
multiplexed I/O channel. With truly large
computer capability. each of these I/O
channels can handle up to 32 device con·
trollers. Each Tandem processor Incorpo­
rates a powerful memory system capabLe
of complete single-error correction and
multiple-error detection. performed us·
ing semiconductor memory at a cycLe
speed of 500 nanoseconds. Because of
the virtual memol1/ management feature.
applications programmets need not
wony about many of the constraints of
physical memOI1/.

NonStop Software
Guardian contro ls the traffic and
watches over the system.
Guardian isTandem's complete, transac­
tion-oriented operating system. It reskies
in each processo~ and has the capabil­
ity to respond positiVely to a failure any­
"""'" in the .,...".. Wrth Guam .. n. thete
is no need for rustomized or special op.
erating system development by the uset
Since programs are geographically inde·
pendent, the task 01 app6cations Jl'09'IDTI­
ming is vast!ysimplified for the uset Fur·
theI; Guardian carries the user·assigned
priorities for applications programs, han·
dles aD communications among programs
and between programs and the outskie
worki. and extends the capability to start
program execution In any available proc·
essor moduLe from any processot
Geographical Independence of progams
and data is a noteworthy fea ture of
Guardian Programs are not orVy unaware
of which processor is running them; they

may I.IJeIl be running simultaneously on
all processors. And programs can access
any device in the system, even those not
physically connected to the processons)
running the program. Because of this ge0-
graphic independence, the Tandem
NonStop system can be expanded all the
way to sixteen processors IJIithout any reo
programming.
Multiprocessor message system.
Guardian automatically handles all com·
munications between Tandem processor
modules. system processes and lIpplica
lions programs - routing messages to lhe
coned """"""', uerif;<ng coned roceipt
and dedding\lJhich program receives the
message in the destination processo[

Guantian pnMdes pro<ection. perloom
Ing comprehensive data validation on aU
transfers. It was designed to detect and
isolate any faulty module, preventing cor·
ruption of any other module by a "mad"
processor. Guardian has the inherent abil·
ity to detect an error or point of non·
response anYJolhere in the system, log the
failure and disallo.v access to the faulty
module without disturbing system oper·
aHem. The Guardian operating system,
along with the system hardware archl­
tecture,is the basis of Tandem's NonStop
operation.
Tandem's Transaction Application
Language.
T ffAL A poo.uerful block struaured Ian·
guage designed for fas!. flexible program·
ming. TffAl is self-documentlng and is
easy to read, modify and maintain. De·
veloped by Tandem, TffAL gives the
programmer """'Y ...rude '0 optimize the
hardware potentials of Its interactive,
multi'processor environment.
Tandem/COBOL
The only COBOL available for multiple
processor systems, Tandem/ COBOL
(ANSI X3.23-19741 uti!;zes aU the capa­
bilities of Guardian and Enscribe. Under
Guardian, Tandem/ COBOL fea tures
NonStop operation; shared, re-enlranl

NonStop Hardware

OYN"BUS '~ (Dual ln6tpendenl InlltrprocltMOr Su'"'l

..-___ , "0

OISC
CONTROLLER

TAPE
CONTROLLER

TERMINAl
CONTROLLER

OISC f;:;:;:;:;:;~~
CONTROLLER F

NonStop Software

>10

onm,
COM­
PUTER

SYSTEM

>10

>10

~InU5A

code; virtual memory; geographic inde­
pendence of I/O devices; and check­
point/checkmonltor facilities. Under En·
scrlbe, Tandem/COBOL provides key­
sequenced, entry-sequenced and relative
file structures; logical file size up to four
billion bytes; up to 255 lIilternate keys per
file,.rd optional mlno<data base rncord~
Enscribe: versatile and efficient data
base record management. providing
high level access to lind manipulation of
records in data bases. Operating in dis·
IlbJted fashion across multiple processors
as a part of Guardian, Enscnbe ensures
the Integrity of the data base in case a
processol: an I/O channel oradiscdrive
falls during trallSllCtlon processing.
Enscribe protects the file structure.
During operations, Ensoibe performs in­
ternal checkpointing to ensure integrity
of the file structure and ensure that no
user data Is lost. Control Information and
data are maintained In two processors
controlling a disc volume; If a failure oc­
curslnone proc€SSOl: Enscribe completes
the operation using the alternate proc­
essor. And EnSCTibe maintains all Indices;
when a new record is added to the file. or
a key value Is changed, Enscribe auto­
matically updates the indices to the af­
fected records. The programmer need
never \,Wrry about assignment or main·
tenance of indices.
Multiple Ale structures.
Key-sequenced, relative or entry-se·
quenced-all under Enscribe and all ac­
cessible by up to 255. key flekis, primary
and/or alternate. Location of records
may be by approximate, generic or exact
key value. Enscribe maintains an index
of all key values, providing rapid access
and update whenever key values are
supplied.
Four billion bytes per file.
With Enscribe, indiVidual files may be
partitioned in separate volumes, provid·
Ing large system capacities and significant
increase In throughput. Each partition

can be under control of a separate proc'
essor,again transparent lathe programmer.
Enscribeindudes a cache buffer manage­
ment scheme, providing "look ahead"
capability to optimize I/O. By increasing
memory in the cache, throughput can be
increased and there Is no need to modify
or recompile existing applications pro­
grams.
Mirrors to be sure.
Tandem is the only manufacturer \A.lhlch
can provide this protection for Virtual
Memory: if a failure occurs in the Sys.
tern Disc, Tandem's Mirror Capability
prevents nol only a shutdown, but pre·
vents loss of any part of Ihe operating
system or application programs.

Ensoibe offers an optional minor vokJme
technique whereby a disc volume's data
can be physically recorded on two sepa­
rate disc packs simultaneously. Reads
may occur from the closest head in either
pack, completely transparent to both the
applications program and the user. If a
failure occurs In one disc, all reads are
automatically made from the other. As
soon as a failed disc is restored ,
Enscribe automatJcally u]Xiates the failed
device to exactly mirror the safe volume;
this takes place concurrent with applica­
tion updates. Again, completely trans­
parent to both program and uset

Locks. compression and utilities.
Enscnbe al10vJs for both record locking
and file locking, providing flexibility
of both access and security. For key·
sequenced files, an optional set of tech·
niques provides for both dala and Index
compression, thereby redUCing the num·
ber of head movements_ A file update
program provides for easy file creation
and loading.
Data definition and manipulation.
Under Ensaibe, the user can use Tandem's
DOL Data Definition Language, describ­
Ing the data base as a "schema:' Since
all programs use the schema to access
the data base, a correct view of the data

is assured. It also defines which fields are
to be used as access paths (keys) to
retrieve records from the data base.
Changes to data base record layout, ad­
ditions of types of records or new fields
within record types are accomplished
..whout modification of existing programs.
Envoy: multifaceted data communica­
tions system.
Operating as an integal part of Guardian,
Envoy provides the interface betvJeen ap­
plications programs and data communi­
cations networks. EIl\IC1Y supports boch
binary synchronous and asynchronous
communications, ~ single Of muii-drop
lines on either a local or remote basis.

Data is transfened from terminals d~
into main memory, which means proc·
essors are not interrupted until a complete
message has been received. Binary syn­
chronous terminal polling and character
translation between ASCII and other
communications codes are hardware ex­
ecuted, minimizing overhead. Asyn­
chronous operations run al rales up to
19.2 K baud per line; binary synchronous
at rates up to 56 K baud per line.
Entry: page mode forms creation, dis­
play and access.
One of the easiest-tO"use programs of its
kind. Users simply design the foons on
the screen 10 appear as it will be used.
Detimiters, field names ard validity checl<.
Ing are automatically recorded in a des·
ignated file on disc. In use, invalid data
is automatically ched<;ed and displayed
as a flashing entry on the screen. Indi·
vidual fields in any form may be accessed
by name. This package is available for
bothTandem'spage mode terminals and
IBM 3270 terminals.
Software tools to work with.
In addition to T/fAL, Tandem also pro·
vides a source file editor and Interactive
debugging fadllties. The source file edi­
tor provides for string manipulation, page
mode editing and context as v.oell as line
editing.

Dual processor system cabinet utilizing standard
19~ rock mountable modules.

Expansion, Service and Maintenance - All NonStop.

Start with what you need.
Tandem's NonStop Computer System is
the only computer system on the market
which allows you to start with only the
computer po..ver you need right now, yet
grow as your needs grow - easily, eco·
nomlca1iy and without mocUflcatlon to
your programs, either systems or appli·
catio ns.
Through incremental expansion all the
way up to sixteen processors, virtually
unlimited system grOlN'th is assured. Each
additional processor module simply In­
creases the system's processing po..ver.
input/output capability, and available
memory. Allocation of processors to pri·
mary and secondary tasks (file editing,
report _""etc.) can be "",.progn>mm<d
to take place at specified times with no
need for user intemetion.

Service during On·Une operations.
With any system a hardware failure must
be repaired. But only with Tandem can
the system keep right on operating,
right through the failure and right
through the repair too_ Tandem's cus­
tomer selVice representative can remove
and replace any failed module in your
system without Intenuptlng service. The
operators at terminals and the programs
in process are unaffeeted by either the
failure or replacement of the failed mod·
ule. Without this feature , no system can
truly be called NonStop.

Maintenance without shut--down.
Routine maintenance, too, can be ac­
complished without anyone using the
system being aware of or Inconvenienced
by the process. All programs, the data
base, and system capability are main­
tained In operational status during the
entire procedure.

The Tandem 16 NonStop System-con­
ceived for today's and tomorroyls needs,
designed for efficiency, built for reliability,
and serviced wilhoutln le rruptlon. A
field ·proven solution.

Clockwise from upper right

All system modules may be rep/oced on-line.

Maintenance pane/shown in use.

Regularly scheduled classes ore held jor both
programmers and customeneroiceengrnee1S.

Incoming inspection at the jaclOly.

Malnfenana panel facilitares on·line diag ­
nosis and repair while the system is up and
running

•

<

TANDEI1 / 16

SYSTEM OVERV I Eil

A. INTRODUCTION - FAILSAFE PROCESSING

B. AREAS OF POTENTIAL FAILURES IN MULTIPROCESSOR
SYSTEMS

C. THE TANDEM SYSTEM
• 1. TANDEM PROCESSOR (CPU)

2. TANDEM INPUT/OUTPUT CONTROLLERS
3. TANDEM OPERATING SYSTEM
lj. NONSTOP APPLI CAT! ON PROGRMIS

•

•

•

•

•
' .

SYSTEM OVERV lEW

A. FAILSAFE PROCESSING

The Tandem/16 sys~em is a multiprocessor computer
system that provides NONSTOP system performance.

The factors to be considered in any multiprocessor
system that is intended to continue operating in the
event of failure may be defined under the headings of
'HARDWARE' and ' SOFTWARE ' .

Under the headings of HARDWARE, the following points

are desired:
_ No non duplicated hardware modules

_ A design such that no hardware module can
affect others if it fails

_ Multiple paths between all modules

_ No critical power supplies in the system

_ Very high inter-module transfer rates (to
avoid excessive overhead involved in keeping
all modules updated witb the current system
status
All repairs should be capable of bejng effected
wi thout shut ti.ng down the system

The SOFTWARE factors to be considered are the following:

_ A true multiprocessor operating system is needed

_ The operating system should change message routes
(on behalf of 'the application programs) to avoid
failed components

_ The operating system should be able to re­
configure itself "on the fly"

_ No critical processors (system masters) should
be included t.hat can corrupt the whole system

_ The failure handling and recovery should not be
left to the application programmer

The application programs should be able to be
written without the pTogra~ner having decided
on a particular configuration

•

•

• 1

. . <

-2-

All the programs should be written in a high
- level language

_ The application programmer should NOTbave to be
aware that he is using a multiprocessor system

B, POTENTIAL FAILURES

A typical system (supplied by many InaDufaclurers) is shown
in Fi gure A. ';, - - "

The potential for failure inherent in tbis typical design
is quite alarming :

_ The interprocessor bus may fail due to the failure
of any of the int.erprocessor communications inter­
faces. This renders the whole system inoperative
in many cases. It is true that on some systems
a second bus can be added, but this will leave
the problems of bus switch ·over and load sharing
to the application programmer

- If processor 2 has a fault (hardware or software),
then the possibiljty exists that it ean keep
control of both bus swi telles, and hence stop the
system

_ If the power supply in a bus switch fails, then
all of the devjces attached to it are lost

_ Bus swjtch A can fail in such a way as to corrupt
Processor 2's I/O bus and thereby leave Processor
3 to handle the complete system load wjth only
half of the peripherals

Any device controller may fail in such a way as
to co):rupt all transfers to other devi ce con­
trollers on the same bus, thereby losing half
of the peripheral devices

_ Intcrprocessor rates are typically slow (around
1-2 Mega bjts/second), thus increasing system
response time and overhead

The racks that the systems fit jnto normally
require that the system (or a major part of it)
is shut down for many failures (faDs, etc .)

\

•

FIGURE -A

• PROc:ESSOR PIO:h.'3S:::>R PROc:ESSOR

-;;] c ... er 1 Power 2 Power 3

.. :pply Supply Supply

-,
J

- l -
I
r - I I

I
.

{] I

~ - J . ·1 Inter J Inter Inter

L_ Procesror L _ Procesror L __
_ ~S~r -Coons - Cctlms

I _ l -

- -

• ~ -BUS S\\'1101

1/0 Bus l 1'-;0 Bus
BUS SWl'JOl -

•

• 1 1

=:;;~~ A

1 1 _ -

I -
I i Dev;ce I

COnll"o11 er J

I
I
I
I
1

1-

~ Device l 1 ContrOl]e~

~- :] - - - Devjce
Control] er

=:;;~j
1 -

I­
I·
1--
j
I-

t-

1/0 Bus
B

-

- j Dev;ce I
~cO~lrOl]~

- - -I Dev;ce l I control] er J

v:-:J - Device
Controller

•

•

•

<

•
<

-3-

_ The operating systems supplied normally consist
of single processor operating systems coupled
to I/O drivers for the inierprocessor conununi­
catjons

To obtain a satisfactory level of reliability
it is usually necessary for the application
progralruner to code certain routines at assembler
level

_ It is normally required that the application
progra~ner be fully aware of the complete
system configuration

_ Message re-routing to avoid failed components
is the responsibill.ty of the application
programmer

_ Only a very few systems can support on-line
exercisers and diagnostics

Accessing peripherals that are not connected
to the same processor as the applicatjon is
running in, is extremely difficult ,

_ A "MAD" processor can often corrupt the entire
system by generating bogus messages

C,THE TANDEM SYSTEM

All of these, and many other factors, were considered
before the TANDEM Syst.em was designed. Solutions to
all of these problems were built-in to t.he TANDEM
hardware and software. Because the TANDEM System was
designed from scratch for reliability. it has a cal­
culated system MTBF which is significantly greater than
other systems_·

The TANDEM system pictured in Figure B depicts the general
architecture of the TjJ6. To "better explain how the T/16
provides NonStop operation a small two processor syst.em
is shown (Figure C). Additionally Figures D through P along
with the associated t.ext give a brief description of Tandem'S
hardware and software and finally how a simple NonStop
program would perform in a TANDEM system .

,

< •
<

• F1GURE B -_.- .

OVN.ABUS

"
x 8US

~ 50=--- -==--~
\, Y flUS . '.

ll] 1Jn ~~Jf
DYNABUS DVNA-Bu5 DYN-ABUS

CDN1ROL __ ~lROL _e:;:.Q~1 ROL

CPU CPU CPU

M[.... ORY MlIJlORY MEMORY

(UP 10 !ll:? KB) (UP 10!ol1 K81 (UP 10 S111(8)

1/0 CH.f.,mfl I/O CH,Ar"I:NH I/OCHANNFL

I/O I/O 1/

•
~ orvlc,

P "- "- ~) "-0 - o 0 ~

~CO.:'l[:~~; [~ R
T

CONTROLLEA

•

•

• F1GURE C

L J "' ,
"

'-.~ 4

" 1
•

PRcx::ESroR PRCCES9:>R

1 lIO!JUJ.E h()DtU:

~ 1 1 ,
I ,
I ,
I

l- J m&:

(x)NTROLI .ill

; •
m&: C

,
I ,
I
I

-G~rlPlIDO~ (X):-!]IDU ER

~ ! II I , '1
TeRMINAL

A SMALL TANDEM CONF1GURAT10N

•

•

•

•

•

-j-

I. PROCESSOR

JI. processor lnodule is compTis£>d 'of the following:

INTEHP=R BUS

CPO -
MDPRY

-
I/O 0lANNEL

-
FJGURE

lNT£RPJ<OCi:SSOR BUS !'

The inlerploces50r bus is u~ed for tran~mjtling data between
proces~or modules . Two con~unjcation paths are p~ovided
bet""een every processor JTloduJ e (Cpu) ploviding redundancy.
The band ... i th of the inlerprocessor bus is 26 megabytes/sf-eond.
A J2 processor system will oper~le without degraootion with
only one bus operative .

CENTRAL PF<OCPSSING UN1T (CPU):

The CPU is a pipe lined micro p(OCe5~or- that is . one instruc­
tion is being executed while another is pre-fetclH-d and
dpcoded. The CPU executes plograms by jetc~ing ~nd Executing
instr\Jctions from me 'lOry. Ar-it}1JI'.etic cc.·i"putations are
performed in the CPU. Additionally, a sh'g]e insLJucUon
is c:xecuted to tTansmit data from rne~flory , via the inler­
pyocessor bus , to memory in another p~oce~sor "~ule ,

Li\ewise, a single instruction is E~ecuted to cause data
to be trCinsferl'ed between an 1/0 devi ce 40d .,'PnlOry . Once
either of lhese'instructions'has bIen i!O~upd the CPO is free
to ptoceed with the other ClctiviUes whUe the actual data
transfers ace laking place,

•

• 2 .

.-

-5-

~ ,;EMORY :

Haio menl~ry can store up to 512 X bytes of infOl"lTlaUon per
pl'occ!;$or . Data recei\led from othE:r proces~or modules is
stor~d away without ~nlerferring wi~h CPU program Execution .
Similadly, oala is tt-ansferred between I/O devic(!s and
memory concurrently with CPU program (">If-culion (all data
lTansmission is accomplished via OM). Semi conductor
memory cycJes at 500 NAND seconds and is a 22 bit word .
Six (6) bits are used for error dpteclion and correction .
\\le guarCinlee delection and COlreclion of all single bit
errors and detection of all multiple bit errors .

INPUT/OUTPUT CHANNEL :

The 1/0 char,nel is used for transmitting data betWp.en a
processor n,odu)e ' s memory and its 1/0 devices. The 1/0
has its own mlci"o processor to f ... cili1ate]/0 operal.ions
independant of each processor modu) e . The bandwidLh of the
]/0 bus j s 4.0 fllE'gabytes wi th c;E:mjconduclor .,elltOry .

INPUT/oUIPUT CONTROLL[RS

The 1/0 Channel block. multiple)(es a1l pedphera]s attac11ed Lo its
cha.nnel. B] ock. mul t.iPl exing j s bet ler \l11dE"r S loed ",j Lh a defi nj t i on
of Tandem ' s peripheral controllers.

[

1/0
BUS

IJ
PROCESSOR]

MODULE

DUAL PORT CONTkOLLER

p

o
R

DATA FLOW FOR
READ OPE RAT] ON

"~ __ v

B

DEV1CE

p

o
R

T

--, 1_
PM)CESSOR J

HODULE

1/0
BUS

Fj eure E

,
,

..

l
!.

•

•

•

•

-13-

The design of all Tandem dual port controllers is conc~plually the
-same (as depicled in Figure E) . Each conlroller has two ports .
This allows two processors to have access (ownership) of the
peripheral at any given time . The operating system controls
processor ownership . When an input/output activity has been initialed
(in this case a read) , the I/O channel initializes the controller
(executes one I/O instruction) . The conlroller then initiates the
device . The device then moves data into the controller buffer on an
uninlerrupted basis for the entire block (up to 4 K byles) . As the
buffer begins to fill , the controller issues a ' re-·connect' command to
the I/O channel . The I/O channel being much faster than the device .
quickly empties all data to memory and 'disconnects ' from the port .
(Keep in mind that the controller buffer is continually being filled
by the I/O device without interruption). Then the I/O channel goes
on to service another controller if a ' re-connect ' cOInrr.and has been
issued. This is basically how the I/O channel block multiplexes peripherals
attached to it . Keep in_mind that peripherals can run at a maximum
speed uninterrupted for the ~ntire length of a transfer (up to 4 K bytes) .

The 10 mega byte disc controller services up to four(4) discs
connected in a ' st.ar · fashion. This controller has a 32 byte
buffer . The 60 mega byte controller also has a 32 byte buffer .

The magnetic tape controller ~upports up to two(2) NRZI tape drives
connected in star fashion . The buffer size for the tape controller
is 3.2 bytes .

The line printer controller
connected in star fashion .
controller .

services up to two(2) line printers
The buffer size is 32 bytes for this

The asynchronous multiplexor/controller services up to 32 lines
per controller. Each line on the mux is connected in star
fashion and has a two byte buffer associated with each line .

3. THE OPERATING SYSTEM

The Tandem/l6 operating system (T/TOS) provides the capability for
multiple programs to run concurrently in the same processor module .

•

•

•

- 7-

®
-

Figure

T/TOS ensures that the pro9f~ns do not interfere with
eioch olher . In f .. ct , A PROGRAM NEED NOT BE Ak'ARE OF

THE OTHER RUNNING PROG~MS - AT ALL .

•

The T/TOS message handler provides inter pl0cessor co.lomunication vi a
the in l r:rplocersor bU5es;

11 -

T/TOS Rakes use of both buses to guarantee thal a
raessage will get. Lo the desirpd processor module.

The effective result is ONE SYSTEM consisting of two or more separate
(and redundant) hardware modules

p~oceS~_MODULE II PROCES~ODULE 1

-' .J
1 -'

~ I
T/'roS HESSA~E HANDl.ER

~

Figure

..
,

.. --:'
.' ,,' .'

•

•

•

The fil e s y stem
with each other

o

- 8-

(pa rt of
,Jlld i t h

T/ TOS) is used
I/O d e vi ces .

,
:6h

F'J LE 5~STEM
--1-

MESSAGE HANDLER

1/0 CONTROi , PROG"".S _

-

I

by programs t o commu ni ca te

l - l -L _~

6)1 ~~
= }T/roS
-

---1 TERi-HWAL

\'---

Figure 1-=

The flle system provloes a Slngl~ interfoce between a progr~ and
the outside world. Other progCc.J.llS "'lId al l 1/0 devices are accessE"d
i n a single , uniform manner _ The physical locating of I/O devices
and the proce~sor p~ule where a plogrorn is executing is transparent
to application programs . Pl0ce~~or to processor corr~unications aTe
completely t1~nsFare~t lo 2pplication progr~s . For plo9~am PI
(-Fi-guTe i' to ',end a message to Program P progr.:.m P l lssues a
",-rite .to file P3 " The file SYSlc,ll\ det.eJ'mine~ the]ocat.lon of P3
and issues the message to the T/TOS ~es~age system . PI is returned

the status of lhe]/0.

,
,I ,
I
I

I ,

1
11

·11
I,
'I

il ,
"

. ,-

-I'
'.
J I

'I
'I
l'
(
Ii

l jl
"

I'
'\

11
]' , ,
,

I
!
" j

I
.;

-I , . ,
" ,

.-

•

•

•

- 9-

As described previously, the use of dual poet controllers
guarantees a corr~"nunjcation path with c:>ac h I/O device Even if a
failure occurs :

1

r~-------~-------~

i~~
_ J

FILE SYSTEM
,

MESSA~ HANDLER

I/O CONT#OL PROGRAHS
~J

DU~L-PORT CONTNOLLER PRIMARY PATH

. . .

•

• , ,

Figure J

_Each device has a primary path ov~r which communication
normally occurs (Figure J) .

If a fai l ue occurs in the prirnory path (Figure K) the
FILE SYS'J'EM AUTOMATICALLY re-t"outes COlTrnunication to the
effpcled I/O device via the alternate path .

•

•

•

-JO-

@l@
FILE SYSTEM

-'­
MESSAGE I HANDLER

DISC

PkQGRAM5

J
C

Figure K

1

FAILURE 11'1 PRIY~RY
PJlTH

All communication to the device occurs via the alternate
path unlil the primary path is TPslo.red. The TE'storcdion
procpss is ~erformed while the systGm is online. Once
the fau] tt'd harch,;are is rep)oced then re-·integration of
the new component is accomplis"hed vja one(l) cOJTll'l.and at

the operalor console .

The eff~ctjve result is:

~ROGkAJ15 RUh'NJNG IN INDi:.'PENDENT AND REDUNDANT HJ.RDi>.'ARE

MODUl.ES THAT COWWNICATE WITH EACH 01BER AND WiTH ANY

1/0 DEVICE. The hord~dre provides two paths bet~een
processor modules 4nd to I/O devices. The operating
system guarantees that if a single path is available ,
c~~unication will occur .

..

I
J

1
I
I

: I
.. 1

. I

•

•
. .

•

•

<
<

- 11-

~

E) ~~­
- \ .

>~(,

TEFc..MINAL

Figure L

0 .

The applications have only one common interface - the T/Tos
file s}'slt~m. All "the application n("eas to do is !ipf-cify
a file m.",ber and the ope)oting system does the rest (l.;\es
care of identifying the co".1Unlcation path or paths and
initia~f"s 1.he I/O).

The operating syst~ provides anollu"r selvjce :

While app)'ication ploglc..ms nre e>:ecuting , T/Tos in each
proces~or n~du)e periodically ~ends its ~tdtus to al l oLher
p:rocessor Iliodu l es in the system . This can be refered to as
., BROAOCASTINC" •

,
·.1 ,

I

•

•

•

CPU 1

•
1 '

•

BROAOCASTING

Figure II M

If T/1~S in a processor p~ul~ fajls to broadcast .its status
JIIC'!.sdge t.hen T/TOS in t.he remaining ",odule(s) (after a
series of low level status checking) will dec]~Te the non
broadcdsling module inopelable. T/'l'OS in the remaining
module(s) sends a "CPU IXYdH" messClge to interresled programs
in .i ls proc('ssor 1100du] e. The message- j s ~.ent 1..0 the program
through the file system (Figure N) . -

MODULE ~

BROADCAST STATUS

NO STATUS MESSAGE -''''''''
RECEIVED FROM

J10DULE 1

Figure
MODULE

•

~ .

•

•

-1)-

This means that a program running jn one processor module
can find out if anolher plQCeSSOr n~dule fails (and ,
therefore, knows of any ' STOPPED ' programs in the faiJed
processor lhodule). Additionally a "CPU DOJiN" /Iless"ge is
issued La the operator con~oJe(s) .

NONSTOP APPLICATIONS

J\ nonstop application consists of a primary prOgri:iJn running in
one processor lIIodule (called "A") i;snd a bdCkup pl'ogro.m running
in anolh~r n,cdule (cal led "J\' ") as in Figure. 0: . ..

The primary progrdm , while operable, per[o~ms all of the application ' s
work. AL critical points in the dpplicalion (such as prior to
altering a disc file), the prilnary program s e nds a messdge containing
"CHt;CXP01NT1NC" infour.aUon to the bdckup progrc.rn. This is accom-
pl isheB wj lh one stat (:lIIent of code CHECXPOiNT.

While the primary progr~ is oper~ble, the responsibility of the
backup program is to accept the checkpoinling ",p!:sdges and be
ready to take over the gpplication if the primary program
bEocC/,lIes i nopeyahl e .

5

Figure 0

I ...

Module I

Terminal

•
, ,
i ,
I

I

•
,

The P10gTCL1TI: A

1. READ (A record from the
'terminal)

2. READ (A record from lhe
dj sc)

-14-

3. WRITE (The old disc record
hom the disc)

CHJ::CX POINT "11;; • ~

4. WRITE (The updated record
to disc)

5. WRITE (The Jesu)t on the
lenninal)

<

e ... A TANDEM FAILSAFE UTILITY

-.

CPD
·0

If processor '0' ~hou)d fail:

BROhOCAST STATUS

(no n?sponse)

NO S'JATU5
BROADCAST

Figure' p

The ProgT am: A'

1. READ (The checkpoint
message from A)

2. HAS SYSTEM ANNOUNCED PRO­
CESSOR FAILURE?

3. IF' ANSHER '1'0 STEP 2] S
YES THEN TAr~OVER OTHER­
WIS£ ('"..0 '1'0 STEP 1 .

~
)

CPU 0

G DOwN

2

TERMINAL

CPD
1

' .. ;-_. '.

<

•

•

--.

- 15-

Program A' Action

1. READ (The CPU 0 DONN /·jessage)

2 . WRITE (To the disc using the last checkpoint message
Lo restore t he record)

Then continuing with t h e same program as "A"

READ (A record [rom the terminal)

READ (A T~cord from the disc)

Except tha t there is no backup for A' at this time ,
so no checkpoint message is sent .

Wh~n CPU 0 is repailed ,
A' then star l s

A " CPU 0 UP" me!'!;Cige is sent b y T/'J'OS
Lo A'.
backup)

Po running i n CPU O. (And bf'CLoWCS the

In addition to providing the failsafe capab11ities previous l y
n,entioned TandC'm also provides FATLSAFE UTILITII;.'S . These utilities
provide considerable ease in developing failsafe opplications . As
an example (refer to sampl e program) the only differences bet~een
a NON - fai]s~fe and a failsafe program are in two arras . The first
would be to add "CALL STA.RT" as the (jrst cx(>cutable statement i n
the program . The s~cond step would be to add the statement
"CALL CHECKPOINT" at various points in the pi ogram ... 'here data is
considered to be sensitive to a failure .

•

•

•

• • -

-1Ji-

The "CALL START" invokes a utili ty that will create a backup
program in an alternat.e pl-ocessor . This will gu'aranlec that if
a failure should occur with the primary program or processor
then the backup il1 automatically lake over processing.

The "CALL CHECKPOINT" updates the slalus of the bad,up progTCIJTI .
All variable data and pl'OgTCJlI pointers iJTe sent to the backup
processor and program each lime a "CALL CHECKPOINT" is invoked .
In the event of a failure to the primary the backup will reSWlIC
from the point of lhe Jast "CALL CHECKPOINT" that the primary

j ssued.

SJil1PLE PHOGAAM

NON-FAILSAFE P~OGRAM

DATA DECL1!.RATJONS

\

INPUT:

REJtD (RECORD rROM 'l'ERMINAL)

READ (RECORD FROM DISC)

WRiTE (UPDA1'E REX'ORD ON DJSC)

Jot/UTE (Rt:CORD TO TCRHiNAL)

GO TO Jr.PJ.)T (R.EAD ANOTHER flo;,'CORD FROM 'l'LRI11NAL)

,'" :. --.;. , .-. - .. -.'--

•

•

•

- 17-

FAILSAFE PROGRAM

DJlTA DECLARATIONS AS ABOVE

CALL START (TANDEM FAILSAFE UTILiTY)

_ INPUT:

READ

READ

CALL CHECKPOINT

WRITE

J1RITE

GO TO INPUT

(RECORD FROM 2'ERMINALj

(RECORD j-"'ROH DISC)

(TANDEH FAILSAFE UTILITY)

(RECORD TO DISC - UPDATE)

(RECORD TO n'RM] NJl L)

(READ ANOTHER R1:.."'CORD FROM TERMINAL)

If a fajlure should occur previous to lhe "CALL CH£CKPOINT"then

execuUons in the backup will occur [rom the fhst " READ" Lo the
lerminal . If a failure should Occur afLer .lhe "CALL CHECkPOINT"
then executjon in the backup \.dll occur wj lh the "WRITE" of t.he
update record to the disc.

"CALL CHf.'CKPOINT". c ... n be inserted any'Where in on app] i cat ion
program. This gives the progralMier all the flexibiHty required
to design applications with the desired Jevel of FAILSAFE .

END USER
PRICE LIST

NonStoprM SYSTEMS

AND SYSTEM MODULES

COPVRIGHT lCJ7S

TANDEM COMPI" rERS , INC.

TANOEM COMPUTERS, INC.

Tandem Computers Inc. was organized in 1974 to create a high
volume transaction-oriented data processing system substantially
more reliable than any previous system. By creating a new
computer architecture and sohware system totally oriented
toward fail safe operation, Tandem's architects, engineers and
programmers achieved the "NonStop" computer.

"NonStop" means that processing operations continue even
though a module fails anywhere within the system. The NonStop
computer can be repaired without halting processing operations ...
any module can be removed and replaced without system inter­
ruption. No module failure can contaminate programs or data
in other modules. In addition, the NonStop system can be ex­
panded in-place without system interruption or modification to
hardware or software.

For such applications as electronic funds transfer, point-of·sale
terminal support and data communications systems, Tandem's
NonStop computer combines fail safe operation with speed, high
computing power, and greatly simplified programming. The
simplest Tandem computer can be easily expanded to accommo­
date highly complex data networks with a level of reliability
never before approached by any commercial computing system.

,

TANDEM 16
NonStop SYSTEM
END USER

PRICE LIST

This document provides pricing information on both TANDEM 16 NonStop SYSTEMS
and on the individual Tandem 16 System Modules. The Tandem 16 user may elect to pur­
chase one of Tandem's standard systems, which he can order by Product Identification
Number, and may augment this system by selecting additional System Modules from the
Price List.

Or he may elect to configure his system in total from the System Module Price List. In
general, if a standard system can be selected it will result in a lower cost to the buyer.

All items, both Systems and System Modules, should be ordered using the Product Identi­
fication Number shown. Information is provided for each item as described below.

PRODUCT IDENTIFICATION NUMBER

This number identifies the System or the System Module. All products used in association
with the Tandem 16 Processor are identified using T16f as the initial characters in the
identification number.

Standard Systems are identified by a 3-digit number following T16f . Each number is signifi·
cant in describing the system.

Individual System Modules are identified by a four digit number. The first two digits are
always meaningful in describing the module. In some cases, the third and fourth digit are
also significant, but usually they will be sequential numbers assigned to products as
introduced.

A key to the significant digits is shown on Page 2.

DESCRIPTION

Contains essential features and specifications of the package or Modu le. More complete
information is provided in other Tandem literature.

PRICE

The purchase price of the System or Module in dollars. All prices are FOB Cupertino,
California and are exclusive of Federal, State or local taxes. All prices and specifications are

subject to change without notice.

PORTION DISCOUNTED
The portion of the purchase price to be used in computing the End User Volume discount.

MAINTENANCE
Monthly rates for standard one-shift maintenance service on the System or Module provides
complete service. including parts and labor, as well as routine preventative maintenance for
an a ·hour day. five days per week.

INSTALLATION

The one·time charge for Installation and testing for a Module being added to an existing
system.

MODULE NUMBERING SYSTEM 116/ ABeD

The first digit will be used to define the class of Module being described.

A MODULE CLASS

0 Specials
1 Processors
2 Memory
3 Peripheral Controllers
4 Random Access Devices
5 Other Peripherals
6 Communications Controllers.

Terminals, and Modems
7 Packaging
8 Miscellaneous
9 Sohware

The second digit will be used to further define the type of module within the class.

A = 1 - PROCESSOR A - 2 - MEMORY

A B A B - - - -
2 0 ROM

1 1 T16 Processor - Core (17 bit) 1 Core 117 bid
2 Unused 2 Unused
3 Unused 3 Unused
4 T16 Processor - Semi (22 bitl 4 Semi (22 bit)
5-9 Unused - Would be assigned as 5-9 Unused

new memories are made available.

A -3' PERIPHERAL CONTROLLERS A - 4 - RANDOM ACCESS DEVICES

A B A B - - - -
3 0 Unused 4 0 Unused

1 Disk Controllers 1 Moving Head Disks
2 Tape Controllers 2 Fixed Head Disks
3 Printer/ Card Reader Controllers 3·9 Unused
4 Universal Controller
5·9 Unused

2

A = 5 = OTHER PERIPHERALS A = 6 = COMMUNICATIONS
CONTROLLERS,
TERMINALS AND
MODEMS

A B A B - - - -
5 0 Unused 6 0 Unused , NRZI Tape Drives , SOLe Controllers

2 PE Tape Drives 2 Synchronous Control lers
3 Card Readers 3 Asynchronous Con trollers
4 Card Punches 4 Glass TTY Terminals
5 line Printers 5 Page Mode Terminals
6 Paper Tape 6 Modems
7-9 Unused 7 Hard Copy Terminals

8-9 Unused

A=7= PACKAG ING A - 8 = SUPPLIES

A B A B - - - -
7 8 0 Unused , Cabinets - C.P. , Disk Items

2 Cabinets - Other 2 Tape Items

3 Power Supplies 3 Printer Items

4 Power Distribution 4-9 Unused
(Bus Bars)

5 Patch Panels
6 Terminators
7 Back Planes - CPU
8 Back Planes - 110
9 Panels - Display

\

3

•

PACKAGED SYSTEMS

SYSTEM T16/212

-I [
PR_, PROCESSOR 2

NXIIYTES MK BYTES

DISC
CONTROLLER

I
~, YTE ~
" :;...

TAPE
CONTROLLER

J
/ "I
" '''I

MU\.nPUXER

!!.!l
16

lXIMIOLE

r----,
I- __ ~ ADDITIONAL I-- - --_

CONTROLLER L ___ .J

r----,
f- - - -j ADDITIONAL r - ---

CONTROLLER L ___ ..J
• • •

4

j
I

=

T1 42

12

DESCRIPTION

0'
'f'(Each p DC lOr

III 'lO.j to 1781(by! 01
• It>, r,fV

Y'I,IA" '" d ,/Ida t
I nk 20M by! ,)

IJ' pCXC(l1 I)" ill1n \

'e '1

(<'I fl Iqtl I 0 lotf for
t ' • n n

C, I n. Cabin I

2 CABINET CONTAINING 45 Pf..

800 BPI NAZI MAGNETIC TAPE

3 10M ByTE TOP LOADING PEDES­
TAL DISC UNIT
11 5M BYTE FIXED PLATTER
AND ONE (1 5M BYTE REMOV
ABLE PLAnER

CONSOLE 30 CPS HARD-COPY
131 COLUMN CAPABLE OF
PRINTING PL V REPaR

10 NTiCAL WITH T1
WITH HE FOLLOWING
EXe PTI NS

22 600

5

6

SYSTEM
T16/214

DESCRIPTION

T\"iCl PIiOCESSORS d or

"i Wl1h p tv

Tt,e Co "leI ~fOV. :itP 'tr "
X" 'ld "J" .'1' .. t 0 14)

proceuo", e (1921<. by of
co memo,"¥ ow 'h p ~ t'f

Dual OYNABU$ TJoII 'edu id "' • t ,
proc:euor I nk. 120M byw.: ~c

Two 121 block mu tlplel(d I 0
ch .. nnels 125M bytes It'C eachl
eXPlncMble (0 four (4) by the add"

LIST
PRICE

DIS

PORTION TlON
MAINTE·
NANCE

IDENTIFI· I-I$T
DIS·

CATION
DESCRIPTION

PRICE MAINTE· nON
NUMBER

PORTION NANCE

17 port mulliplexcr. with duallnde·
Ptl'1dent 1/0 channel connections, for
l1"rdv·IltNl or mod,-.m connected <dyn·
,hronOU1 tt,rmlnals (50-19.2K baud
ocr OOrt)

DISC controlh~r. with dual lP1dep~n·
,jel" 110 channel connecTions which
, an conuol up to fOur (4) 'tar
'-onnectiid disc drives.

MlIgnl.'lIc Tilpe Controller with dual
Independent 1/0 channel
which can control up 10 twa (2) Slar
conn'1:tl d magnetic tape drives.

Twel 112) unal'lqned liD slots fOT

sy "eiTl ,xpanSlorl.

System C.I\,'.'lH.

CABINET CONTAINING 45 'PS,
800RPI NRZI MAGNETIC TAPE.

tOM BYTE TOP LOADING PEDES·
TAL OISC UNIT COMPRISING
(115M BYTE FIXED PLATTER
AND ONE (1) 5M BYTE REMOV
ABLE PLAnER

CONSOLE, 30 CPS HARD·COPY
lJ2 COLUMN, CAPABLE OF
PRINTING 6·PLY REPORTS.

T16/244 IDENTICAL WITH T16/214 SYSTEM $68,300 5858.
THE FOllOWING

XCEPTIONS:

USC af 22 bit (500 Nwcl M!m;'
conductor memory. U!>ing automatic
erro' dete'Ctlon/correction, instead of
cora rnemory. Unmterrupllble
supplies an' provlrJed for the
wmlconductor memOf ICS.

\ 0 ellannel speed lnae~ to 4M
bYIas/Se'C, per channel.

7

=

CORE MEMORY PROCESSORS

PRODUCT "'" MONTHLY
IDENTIFI DESCRIPTION

LIST CQI'NTABLE
INSTAlLA· MAINTE

CATION PRICE PCRTION TlON
NANCE

NUMBER

n61l 102 ,E"IERAL PURP(.i. PROC , SIS, ,,00 $18600 $60 SI01l
Cl' If' G),

T,,, ,21 n "
,

o elorp .n 01(

Cc:nple'e OM.A ,Iv' C V t
L • " .. ,

V ,tlJ I TIlt",)fV '1lrol

Men ry p~ "Iq 01 j t I '

U 10 '56K :>VI I • ".,
" dWale ~py IV

p, f a to cestart

KoolstrajJ l Ci ,

'" .17mer

Co lr)1 P 'le

0 In p .0' c ,," . .-.~

PrO'll sran for up 10 32 lOco lro!.·

122 mtrucl ons, nc ud ng tr n~
maflipulatlQf1 an{1 douh' ""'''' .r.ll'lmetll:

64K bytes of ~n! men c»y.rr I'\QC'd
as 11 bll word~ (one parny " (j 16
Ddta b.u per wort!) Mcmonl vee

" ot800N~.

T16il104 AS 1 t02 BUT WnH 128K BYl ES OF $26,~ $26500 S 65 $136
CORE MEMORY

T16/11Q6 AS 1102BLn WITH lCJ2KeY1E~OF 534.500 $34 500 $ 0 $166
CORE ME 'CRY

TI611108 AS 1102 BUT WITH 256' sv-res OF $42500 $42500 $ 5 196
CORE MEMORY

8

SEMICONDUCTOR MEMORY PROCESSORS

PRO Vf...
IFI or')CRI PTION

" R ~======:=====~

04

Tt 140<

T161410

T161411

T P < , p')CeW'

• ,. • efar; 0

pI ,0 , ,I, V w t ~

40 "
v u I lrv C01tro

V ppn fin ot II '1 '0'

o r 2K Iyt sol m. II' mcmoT'(

H MPY DIV

Po ,fdl~lto UI"

E L iOf'r

T,

C tro

I 'I ~r" ~
,

Pop 0321 ,'co It ~

A

A

1 "2 nSHUC­

an p aua
."

6 bvl

I'

I "
,,1 ., "

Jd,"g lfl lJ

fOt.:'lI word

ar d' 'N
of '>')0 nsa

,p V for
no.",

402 BUT WIT' 'HiK -3,V T Ec:. 01-

" NOI Te ~ .[, RV

0 utW. I. l' IlY:E' or
C(o CTCR , IRv

OC BUT WI , 192 3yrE Of

Mice ouen: R E lRY

1402 BIJ WITH 256K BYTES Of

I '.ruec NI UCT JA-..E lRY

AS 140:' BUT wn H 320K BYTES OF
~t Mice NDUCTOR MEMORY

AS 140~ BUT WITH 384K BYTES Of

LIST
PRICE

19,500

8,500

')7 !)I)O

• 600

DIS·
COUNTABLE

PORTION

$19500

S16.I}OO

$28 SC>J

$37,&00

$46500

$55,500

$64.600

INSTALLA
lION

S 80

< "0

$100

S1"0

SI60.

S18O,

S200,

MONTHLY
MAINTE
NANCE

S191

$227

=
$421

$536

$651.

$766 .

9

LIST
DIS·

I NSTALLA· DESCRIPTION
PRICE TION

MAINTE-
CATION PORTION NANCE
NUMBER

SEMICONDUCTOR MEMORY,

T16/1416 AS 1402 BUT WITH SI2K BYTES OF $82500 $240 $996_
SEMICONDUCTOR MEMORY,

MEMORY MODULES

PROOUCT
DIS· t-ONTHLY IOENTIFI·

DESCRIPTION LIST ~OUNTABLE INSTALLA-
CATION PRICE TlON

MAINTE·

NUMBER PORTION NANCE

TI6/2102 Core Memory module. consists of a 64 K Is 8.000 S 8.000 S6\) ~30
byte memory plane with a rud &CC!!SS

lime 01 500 J\5 and II cyclt- IIrne of
800 ns. The module 15 "",nqed 81 32K
word5 of 11 bits 116 data bits on ... parity
.... tl up to 4 01 tht- module$ may be coo
trolled by a singll.' procm.sO(.

T16f2401 Semiconductor memo!), modulI.', con ~ 6.500 $ 6,500 S 60. S 36.
slsu 01 32K by to memory module with
a cycle time of sao nsea. The module
'5 arranged.as 16K words of 22 bits, 16
data bits and 6 efrOt detection correc-
tion bits. The mOdule etlables detection
and correction 01 ali single bit erron and
~etKtlon of 1111 douhl. bllerrQrs. Up to
8 of thete modules may be controlled
~y a s ngle proamor

TI612402 ~mlconduclor memory module, 9.000 S 9.000 $ 60. $115.
~5U of 64K byte memory module
jw.th • cycle rime of 500 nsees. The
~~Ie 15 ... ranged as 32K WQfds of In bits, 18 data tMts.nd 6 errcw
~tecllon/correction bits. The module
~abI. detection and cortechon of III
~ngIt bit erTOf'1 and detection 0 •• 1
tsoubl. bit .n-on.. Up to 8 of these
~ .. rNV be controlled by •
~ngIo pro

10

TERMINAL SUBSYSTEMS

I'K)UUC T
ID[~TI'"

CAflON

, 6;01

ro2

T

DESCR IPTION

n I COl n {U0I11 f.Kh" capIIb'e
"0 complete pnh between

I p, >c'"<>" tl'Od ,,,,,m.nbl, The con·
mav be po 'cd hom either of

the prOCfi ors 10 which IllS connected,
r'I tho, V~'l1 of powur fai lure, the con·

If II!! W 1\ dutom,l.cally draw In. po_II
born ttl ltcolUl proct"UQf Thll can­
troll, wIUlo"lfot two 12) termln,l

Kh of whlC:~ rmy be either

I II ! mol" bit aU9"M'nted by up to
o 216302'1

YNCHRONOUS EXTENSION
BOA 0

or'luol for up to 15 ayn·
c ronou hl'lH. ft,(' sp=ed of each line

PI09" mfTl.)ble between 50 and
1 '200 bJUd Each I ne miIY be hJlrd

'" " lief (('au res .. T 16/6301 ."

P , ~u '1

HAA [) C ()PV TERMINAL 30eps

" 'Ull n pnnter 10 MAcurnmt

>P lorlKe o/T'll.'!,l,ol, with

EilOUi 0' IrlC JOe 25' (J 'I '-I: CillJlt

A 701 h ,I RSl32C ·~t f,u::c

80 etloltiIC

'" - "
---ublo

'" Cone I wnh .'
"

may I~ I.I3td ~ ther
Ir clude\ IQC.lI

I. h"t' ghl. 'u Il>r g/1t re1f('IW

I)ngl" .", . b nklng. etc

110 GOO ~u.j v""
""" modem Inch.ldt-S 2~' device

,",bI.

k 6501, but USH'9 poliln9 protocol for
I

LIST
PRICE

OIS·

nON

S 3.100 S 60.

$120.

$ 120.

$120.

5170.

$120.

MAINTE·
NANCE

S 18.

S 31.

S 31.

S 15

$ 30.

$ 33.

11

12

DISC SUBSYSTEMS

PROOUCT
IDENTIFI
CATION
NUMBER

T1 411)1

T1613102

DESCRIPTION

h'trOf

'OM 8V"

...
•

" 01

Incorporjj.tl' two 12) 'ndl'pnd (11 I 0
ch nnol (onnl'(t onl. E<l<h,~ capable
of prO\l.d"'q a complete Pild· ooty"wn
proc SOt dnI.I d $C. The contra let ma.v
be pow.rl'd from eIther 01 ttle proc­
en.ors to whIch 111\ COl nected. ,n the
event 01 • pOwer f •• lure. the controller
'II II Butomatu;ally draw.n pOwer Irom
th IK'Ond Pfoceuor. nw. COl'ltro Ie'
an (OnlroC UP to fOUt 141 d scs each
h.s a sepaute conf'IKlIon to the con
troll r (. e.. 01 de sy chained)

LIST
PRICE

$ 000

S E UO

T16.4102 Ma.ngHeadOsc.4QMby(H Conssts $11.000
of a pedestal mou ted d SC lHll'lg S
P anI! removable d iC ~k

Swk T me 30 In$eC\

Latency (AVI 8.3 msea

T18/4103 McwngHeadDisc 80M bytes Consi.u "5,000
of • pedestal mounted diIC tHing I 5
platter removable dtSC pKk

_Time
A

30
83

DIS
OUNTABlE
PORTION

Xl

S 6000

S 8,000

INSTALLA
liON

60

, '"

$160

$160

ONTHlV
MAINTE
NANCE

$119

$119

MAGNETIC TAPE & PUNCHED CARD
SUBSYSTEMS

DESCRIPTION LIlT
I'IIICI

MAGNETIC TAPE CONTROLLER. $ 3.000 $ eo.
) aoralf'S two 12) .ndependent I 0

ch n conT1eCt ON Each IS capable of
p y d II a complete Pith between
p i>CttilOr • \ rn"gnetlc tape dn.... Th,
o t 01 , l'NIy 00 po~ed from 11th"

01 the p,oe:e1 0" to which 11 IS con

1 oil f can control up to two
t L lape drrw • each has

10 thlt ofUroli r It.. nOI
,""n~1

POwel f. autCHesl.rt
ze c b 081 Ind 25'

• rpo',,! tWO (2) Independenll 0

net connect O"S e~ IS QPlbie
01 Il o¥.dlng I complete path betwaen
orocnsor end card reader The cen-
tl I r lTIay be powered trom either 0'
Ih P'~OI" 10 which It is
.n Iho v nl of. power f"lure, the
troll r WIll lutom.t,caIly
110m the second processor

AS T1613303 BUT CAN CONTROL
TWO 121 CARD READERS

T163305 CARD REAOER LINE PRINTEA
CONTROLLER .ncorpor.te5 twO'(2)
ndependent I 0 chlRMl conrlllCtMWW.
EKh it capMII. of P'O'Iki ng •
JMth between proc:euor ,nd Qfd

8de, ne pt,n'" The controller mIY
be powered from .ither of the PfOC"

to which t ,. connected. n the
nent of • power I. un. thf controller
will IOfNtU!v draw Its power from
the second processor The control
til conuol one CIfd""" tnd one

CARD READER card 0.800
per mlnU18 Uses ,lWICWd 80

$ 3,000 1240

$ $I 000 $80

leo.

leo.

$ 2,fiOO

--
20.

$48.

$17

S 1

'17

$40

13

LINEPRINTER SUBSYSTEMS

LIST
DIS·

CAnON DESCRIPTION PRICE nON
PORTION

T16/3301 PRINTER CONTROLLER,
two (2),ndependent I 0

conne(:110ns. Each IS capable
providing a complete path betwel'11

lint pr.nter Tho CO"
I may be powered from elthe' of
proc:auors to wtllen It is connected,

the event of a power failure, the con-
I WIll automat.cally draw its

tfleleCond proceuof.

T16/3302 PRINTER CONTROLLER. AS 2,600 $ 2.000 S 60.
BUT CAN CONTROL

(2) LINE PAINTERS.

T16/5501 PRINTER, 120 c.olumn speed of 5,600 S 2,600 $120.
120-300 Ipm dependent upon number

chalaete". beu\g prlnted_ 64 d'lar
ASCII wt. 1'lCludes 25' dell ce

118/6602 PRINTER,132cotumn 300lpm 11,500 S .,000 SIBO
printer. Includes VFU and paper

. 64 dlar acter ASC II set
VFU. InctudeS 25' deVice

T16/li603 PRINTER, 132 column 600 'pm $14.000 S 6,000 $180.
printer. InciudM VFU and paper

64 character ASCII set.
VfU. Includes 25' deVice

T18/5604 LINE PRINTER, 132 column 900 Ipm $ 8,000 $IBO,
drum printer. Includes VFU and paper
~ •• 64 ctwM:ter ASCII s.n.
12c:hennet VFU. Includes 25' devtCe

TI_ LINE PRINTER, 132 column 1,600 $12,000 $200,
Ipm pnn..... Includes VFU and
powetld PIPIt'.tICbt. 64 cherK1W
ASCII set. 12 cta.nnef VFU. Includes 2&' __

14

, -

GENERAL CONTROLLERS

J.iH"Uu~T
IDENTIFt LIST OIS·

INSTALLA-
MONTHLY

DESCR IPTION COUNTABLE
CATION PRICE nON MAINTE·

~LMBER PORTION NANCE

F ~401 ; NIVERSAL INTERFAce, Ina)!' S '.80($ 1,000 $ 60. S 17.
Ip-.:·.tef two 121 ,ndependent "0
I ~'~.annal CO"ule(;tlons. Uch IS ClPdbie
of p",wl n<J a Lomplete P<lth between

P'DC)t Ind I 0 ,jeVlteS. The con
'to I ; m.lIY be PQloWrtd from I"tth~ of
'he pro, ,ors to whitt, .t IS (on~ted.

olllhe ven1 of. POwtll hlllur., the eon-
'rOil, '1;.11 .~lomatlcal1v draw Its pawe
'10:11 the: lCtOnd IlfOc.~or ThiS eon
~r llel! w II, ontrol eUher aline printer
k ,;d . adH, or any other deVice hivln~
• HI' line 1>11.Uellntl'rtace. TM lIne
(lr. r lid t'CC4V1!nln! TTlley.l.

02 1::;,1401 but us f'I9 dliferenltalline $ ' .BOO S 1.000 S 60. S 17.
,vers rt el'Wf'J.

b 1'00 A 340' bu' tin caP4b11ltv to control S 2.600 S 2.000 S 60. S 17.

I ~;O '7) I 0 tev,~ tboth U5InQ TIL
I II I ne dUll fl lKelven).

3404 I~ 340J. bul IJS no dlfferent.al line S 2.600 S 2.000 S 60. S 17.

wen r 'te't"S.

05 A) 1403 but r.l5lnQ TIL level dnverl $ 2.600 S 2.000 S 60. S 17.

lece v I~ 10' one ,,)1/0 devtce and
PI ntl./thel for Ine other.

'-- _ L...

PACKAGING

PAOuUCT 01$· MONTHLY
IDENTlFI· DESCRIPTION

LIST COUNTABLE
INSTALLA· MAINTE·

CATION PRICE PORTION
nON NANCE

NUMBER
= ~Y":iTE'M CABINET Conta'n) pro· S 2.500 $320. S 30.

T16 ,H11 $ 5500
I ~ . a for up to' {Ill fB} processors I and 12 I 0, ootr<3lI1'" Includes

()VtJABUS "Mi munC:Unllnll'rprot

Ie or p' <) 'tv r clutlon c.rcultry and
d U Pllths Provldrs 110 control1t·r
powet WItch n9 and proc'":$1or I 0
Cr"Lifinel w , "IJ. Up to tWO (2) sylfem
C b"wl m y Of! comb,N'd ,nto each

I'vltem

T16 1301 POWER MODULE. Supplies power $ 1.900 $ 1,900 $320. S 34.

for I 0 cootrollers (only reQUired
on large conftQIJratlons). Includn
connoctlons 10 power dlstrtbutlon

·5

NOTES:

NOTES:

-- -- ---- ---

NOTES:

I

TANDEM COMPUTERS. INC.
20605 VALLE V GREEN DR.

CUPERTINO. CALIFORNIA 960t4
1408) 255-4800

•

SYS~rEM INTRODUC flGN

•

•
'TANDeM
COMPYTERS, INC.

•

•

•

Tand em 16 System Introductio n

The Tandem 16 System, described in this document, represents a major departure from
existing mini/midi computer architecture. For the first time, a complete system has been
designed to meet the growing demand fOf on-line, transaction processing systems with
"fail-safe" capability. Using standard Tandem 16 hardware and software modules, the user
may build a system to match necessary requirements exactly, both in throughput and in
system reliability. No special or custom designed hardware or software is necessary.
Equally important, the Tandem 16 can grow to meet increasing throughput demands with
no change in operating system or applications software and without loss of the system

during expansion.

One Tandem 16 processor module is a powerful computer. Two or more Tandem 16
processor modules connected together by Tandem's high-speed interprocessor bus structure
(DYNABUS) provide an extremely powerful multiprocessor system. This capability coupled
with the Tandem 16's unique NONSTOPTM or "fail-safe" features make it the ideal choice for
systems requiring economy today pIus assured power to meet tomorrow's increased

demands .

1

•

•

•

Tandem 16 System Introd ucti on

The Tandem 16 Computer System fil ls three important and interrelated needs: it is a compu ter system
where applications run NONSTOP regardless of a module fa ilure, it provides a computer system that can
support high transaction rates to large on-line data bases, and it provides a system that is easi ly adaptable to

any application.

The basic design philosophy of the Tandem 16 Compu ter Sys tem is that no single modu le fai lure wi ll stop
or contaminate the system. This assurance of NONSTOP operation is sometimes call ed "fail-safe" when no
loss of throughput occurs as a result of a failure or "fail-soft" when some slowdown occurs but full
processing capabilities are maintained. The Tandem 16 can provide bo th "fail-safe" and "fai l-soft' modes

of operation.

• PROCESSOR MODULES

A single Tandem 16 Computer System may contain from two to sixteen processor modules; each module
contain!lo a micro-programmed central processing unit, its own memory (up to 512k by tes), and its own
micro-programmed input/output channel. Each processor module is fully capable of opera ting
independently of all other processor modu les yet can be configured to back up other processor modules.

• INTERPROCESSOR BUSES (DYNABUS)

Each processor module is connected to all other processor modu les via redundant high speed
interprocessor buses. Programs running in one processor module communicate with programs running in
other processor modules by means of these buses. Each interprocessor bus is fully autonomous, operating
independently of (but simultaneously with) the other bus. The use of two buses assures that two paths
exist between all processor modules in the system.

• INPUT/OUTPUT CHANNEL

Input/output devices (Le, magnetic tape units, disc drives, terminals, etc.) are in terfaced to the computer
system via dual-port i/O controllers. Dual-port means that each i/O controller is connected to the
input/output channels of two processor modules. This provides two paths of communication to each
input/output device. A dual-port controller is "owned" by (i.e., will accept commands from) on ly one
processor module. But in case of a failure, the other processor module can take control programmat­
ically. The dual· port controlle~ are designed so that the number of components common to both paths

are at a minimum.

• TANDEM 16(TRANSACTION OPERATING SYSTEM (T/TOS)

Overseeing system operation is the Tandem 16 Operating System. The operating system provides the
multiprocessing (parallel processing in separate processor modu les), mUltiprogramming (interleaved
processing in one processor moduleL and NONSTOP capabilities of the Tandem 16 Computer System. A
copy of T/TOS resides in each processor module.

3

•

•

•

Tandem 16 System Introduction

The operating system automatically schedules application programs (or execution according to an
application-assigned priority, provides memory management functions {automatic overlaying, swapping
to disc, ctc.}, and gives application programs the capability to start programs executing in any processor
module from any processor module.

o FtLE SYSTEM

As part of the operating system, the Tandem 16 File System handles all data transfers between programs
and the outside world. The file system provides the capability for any program running in the system to
communicate with any other program running in the system as well as any input/output device
connected to the system; programmers need not be aware of the physical location of the device/program.
Up to 4,094 bytes can be transferred in one file system operation.

FAILURE TOLERANT

The ability of the Tandem 16 Computer System to provide an environment where applications can
continue to run regardless of a module failure is due to its unique hardware and software design:

• DYNABUS connected to each processor module provide two paths between all processor modules; if a
bus fails, the operating system automatically routes all interprogram communication through the other
bus.

• Dual-port controllers ensure that there are two communication paths to each input/output device; if a
path to an input/output device fails, the file system automatically switches control of the i/o device to
the alternate processor modu le.

• Application programs can communicate with each other permitting a program running in one processor
module to check on the progress of a program running in another processor module; jf a processor
module fails, its responsibilities can be programmatically switched to another module.

4

•

•

•

Tandem 16 System Introduction

DYNABU'S; REDUNDAHTPATHS

. ,L----- DUAL INTER PROCESSOR BUUS PROVIDE TWO
.... COMMUNICATION 'ATHS BETWEEN ALL PROCESSORS.

111 "'WATCHER- ACTIVATES
BACKUP IF I'RIMARYS

I'ROCUSOR MODULE
fAILS (THIS BECOMES

THE PfUMAAYMOOULEI

PRIMARY PA 1M

OPERATING SYStEM AUTOMATICALLY USES 8DT"
'ATHS

DUAL PORT CONTROLLERS PROVIDE TWO
COMMUNICATIONS PATHS TO ALL 110
DEVJen, fiLE SYSTEM AUTO&"'I,TICAlLY
SWITCHES 'AIHS I' A FAILURE OCCURS

I. THIS BECOMES THE BACKUP
MODULE WHEH OPERABLE

III ' 'WATCH[R- CHECKS ON PRIMARY /
WATCHER

"'''UCAnON
PROGRAM !'AlMARY

"''''lICATIDN
I'AOCRAM

:'1~~~::"~---COORotNATlNG
INFORMATION

INTER I'ROCESS COMMUNICA liON MU,NS
PROGRAMS CAN CHECK ON EACH OTHER

Failure To lcrcnl

5

•

•

•

Tandem 16 Syslem Introducl ion

• Because intcrproccssor communication is provided by means of the redundant intcrprocessor buses, no
shared memory is required. This eliminates a point where a single failure could stop a system and also
prevents one malfunctioning processor from contaminating any memory but its own. Likewise, the use
of dual-port i/o controll ers elimina tes the need for bus switching dev ices (again, where a single fai lure

could stop a sys tem) .

• Power is distributed in the system in such a manner that if a power supply fails, a backup module is
available. The dual -pori controllers receive power from two sources: the same supplies as their associated
processor modules. If a supply fails, causing a processor module to become inoperative, the alternate

proccssor module can take control.

/ / '\
'0"," ""''" ""'''
SUI"f'L V SUPI'l.V SU"LV

"- "-

"- "- "- '\ I'.. '" 0- r-
PROC[sSOR PROCESSOR PROCESSOR

.. 00'''' """"" """'" "
'\ "- "-

I • : : III
I • I II
I • I. I II
I •

I, I II
I • : , I II
I • ! l I II
I I

i ~ " I II
I IL ___ OUAL. \;;--~--- OUAL· F;--~I

11===- "''' --- r-==- PORT -= -y I :. , CONTROLLER I" CONTROLLER I II

I •

I" I It

I •
~ 'it

I •

I"

I •

I"
I I"

i i I"
'11'----------- OUAL· - ---------1''' I _____ ====::z=

'0'" ====== -=-= II
I I CONTROLLER lit

l' l"

Power Distribution

• Each processor module has the capability to save its current operating state in the event a power failure

occurs and resume its operations when power is restored .

• If an uncorrectable error is found in memory, the operating system determines if the associated area is
critical to system operation. If it is not, the area is nagged as bad and not used again until the memory is

6

•

•

•

---~ -

Tandem 16 System Introductio n

repaired. (Typically. the memory would be repaired during system preventive maintenance. However, the
the associated processor module could be taken off line to repair the memory, leaving the remainder of
the system operable.)

• Critical portions of the operating system are main memory resident; this assures their availability in the
event a disc failure occurs.

• The cooling system for the Tandem 16 is designed in such a way that if a failure occurs, ample cooli ng is
still available. In addition, fan modules can be replaced while the system is running (without interfering
with system operation).

• Any operational module in the system (e.g., processor, i/o controller, power supply. fan, etc.) can be
removed from the system and replaced on·line without stopping operation of other system modules.

• Because the Tandem 16
NONSTOPability desired.

is modular in organization, it can be confikUred for any degree of

TRANSACTION ORIENTEO

A number of features provide the high throughput rates attainable by the Tandem 16.

• Program Organization

Tandem 16 programs while executing in memory are physically separated into two parts: a code part
containing machine instructions and program constants and a data part containing program variables. The
code part of a program is actually read·only storage (i.e., there arc no machine instructions for writing
into the code area).

The fact that the code part contains pure 'code and cannot be modified means that it can be shared by a
number of users. In fact, operating system library routines that are executed on behalf of application
programs are shared by all application programs running in a given processor module (i .e., only one copy
need reside in memory) .

•

•

•

Tandem 16 System Introduction

8

"
NON·

MODI FIABlE,
SHAREABLE

CODE
AREA

_ Procedure Oriented

~ MACHINE
INSTRUCTIONS

_~o
EIGHT

REGISTER
STACK

MODIFIA8LE.
PRIVATE

DATA
AREA

/

U" elEMENT

_ s1.o'?-t. " I /
'- ARITHMETIC

Program Organization

~ OPERATIONS

DATA TRANSFERRED
VIA FilE SVSTEM

Programs are functionally separated into blocks of machine instructions called procedures. A
procedure, like a program, has its own private data area {actually in the program's data area}. The real
power of procedures is that they can be called into execution from any point in a program (including
other procedures and themselves); the hardware automatically saves the calling environment when a
procedure starts executing and restores the calling environment when the procedure finishes. A
programmer can write procedures that receive parameter information (arguments), perform
computations using the parameters, then return results to the caller (the machine instructions for
passing parameters and returning results are generated automatically for programmers using Tandem's

Transaction Application Language - T{TAL).

Operating system and file system functions are actually invoked by calling procedures that are part of
the operating system (special machine instructions exist that call operating system procedures as
efficiently as an application program's own procedures). .

_ Memory Stack

Data areas for programs are organized in main memory as Slacks. A stack is a storage allocation
method where the last item added is the first item removed. The CPU has registers that automatically
keep track of the last area allocated in a stack. The use of the stack means that data areas for a
procedure's private variables are allocated dynamically (when the procedure is called into execution),
keeping the amount of memory space required by a program to a dynamic minimum. The stack also
provides the mechanism for passing parameters to procedures and saving and restoring the calling
environment (this applies to calling both an application's own procedures and ope rating system

procedures).

Tandem 16 System Introduction

•
DATA AREA

MEMORV STACK

CODe AREA 'f!ftl[N - ,,-

STAlin
EXECUTING MEMOIIY n ... CK

WHEN "'C"'
nA"n

EXECUTING Ml:MOIIY SUCI!;

WHEN -a-..... STAlin

EXECUlING ",., ""''''1' STACK

~
",d-f:_ U - "50 ,lFUIIII£11JItNING ., \'\\ .. cI'\,. FII(IM - r

o"4?"t..O ---• MEMORyn ... clt • ~,
,. r:F"'" --- AHEII AlTUIlNING • -- ,
, ... " .. ~\,. ... ---

FROM "'1:-
,,0 \ ."~ ... " . ' "," • I .. ,,.- , ". • .. ;' • \.~~t..' • '-

---• \ ---
"' II" -• ,~ • \ ~~ '(to'" \.cP~f.

"- ;;'~v"'" .. \ ",., ,., . ..
,~ .. ~ '- '"10 - " "',,0> <>-"

"""~.,s.'" , ,"
• \~e'" \,.\.'C 1\\".

~ vt4'f.. - ,: .' • @,,~ .. o • ,0

• ,. ~,. ...
0' 1---• \,. .,-tJ

... rF-...... • ",."IP-
• --- I I I • ,\. .. ' •

,,.~(,.,. I I
,,,0 I

,<>-,
\.,t>o1-..({ <>", I ' ,0

I i I ------- j
~ ", 1------ III •-

• ---cI'\,. "?°1~ . ' .' I ,. d-"
• <>' I • • I I J ", .. .' II \",

•
Memory Stack

9

I
Tandem 16 System Introductio n

- Register Stack e Each centra l processor contains an eight clement registcr stack. The register stack provides a highly
efficient means of executing arithmetic operations; operands are loaded into the stack, arithmetic
operations are performed, the operands are deleted, and a result is left on the stack. An add of two
16.bit numbers typically takes 500 nanoseconds; storing the result into the memory stack typically
takes 900 nanoseconds. The use of the register stack is transparent to programmers using Tandem's
Transaction Application Language (T/TAL). T/TAL automatically generates the machine instructions
for efficiently using the registcr stack. T/TAL, however, does provide the capability of using the
register stack explicitly.

•
MEMORY

STACK

• • • • • •
12
• • •
3

• • •
• • •

•
10

lOAD

3

LOAD

3

•

Register Stack

REGISTER STACK

ADO

STORE. ~~~

Tandem 16 System Introduct ion

Process Structure

Programs (both application and system programs) are run by [he Tandem 16 Operating System on the
basis of processes. Two deFinitions: the term "program" is used to identify a static group of instruction
codes and initialized data (like the output of a compiler), the term "process" indica tes the dynamically
changing states of an executing program. The same program can be executing concurrently a number of
times; each execution is a different process.

A process consists of:

_ An area in memory containing the instruction codes to be executed (this area may be shared by other

processes).

_ An area in memory containing a memory stack that is private to the process. (Even if other processes
use the same code area, each has a private data area .)

_ A process identification number (process id) assigned by the opera ting system when the program is
first called for execution (the process id indica tes the processor number where the program is
executing and the number of the process in that processor) .

_ A process control block (PCB)' identified by a process id, that is used by the operating system to
control process execution. The PCB contains pointers to the process's code and data areas, retains the
current state of the process in the event the process is suspended, and defines the system resources

needed by the process.

/
,

'ROCESS PROCESS .. '" PRIVATE INSTRUCTION
MEMORY CODES

STACK

I'fIOCUS
CONTROL .. 'AOCtSS 1'5

BLOCK
fiLES

'ROCESS 2 _______________ -LI ____________ __
/ ,

/

PROCESS PI'IOCESS

ro rs AHDl'S

PRIVATE SHARED

MEMORY INSTRUCTION

STACK CODES

/

PROCESS 1
I

PROCESS
'ROCESS 2'5 'ROCESS l'5

CONTROL •
BLOCK

FILES FILES

Process Structure

,

PROCESS ,..
PRIVATE
MEMOft'l'

STACK

\
I'fIOCESS

COfnROL
BLOCK

11

I

•

•

•

Tandem 16 System Introduction

The process structure provides the mechanism for executing programs in a multiprogramming
(interleaved processing) environmenL An operating system function called the "dispatcher" assigns
processor time to the various processes present in the system. A process, when rcady to execute, is placed
in a rcady list according to its priority number. When one process completes executing or is suspended
(while i/O occurs), the highest priority process ready for execution is given control of the processor (a
"ready" high priority process automatically causes any lower priority process to be suspended).

The use of the process structure permits each program to execute as though it has sole use of a processor
module and peripherals attached to the system .

• Memory Mapping

12

Main memory space is arranged in 2048-byte pages. A memory mapping scheme associates the 16-bit
addresses used in a program with the physical pages in memory. The maximum number of pages allotted
a process is 128 pages: 64 code pages and 64 data pages. The pages as addressed in a program are referred
to as logical pages, the actual pages in memory are called physical pages. The first page in a program's
code space and data space are referred to as logical page O. Because of the mapping scheme, a program's
memory pages need not be located contiguously.

Four separate memory maps are provided: the system code map points to the area where the operating
system's instruction codes are located, the system data map points to the operating system's memory
stack, the user code map points to the currently executing application program's code space, and the user
data map points to the currently executing application program's data space. Because actual memory
locations are associated with entries in a map register, pages assigned to a particular program can reside in
non-contiguous locations. The user code and data maps are shared by all user processes present in a
processor module. The operating system dynamically loads the user maps from a table indicated by the
appropriate process control block just prior to dispatching that process for execution. The system maps
are used only by the operating system and are never modified (except for entries of non-resident pages).

Because all program addresses are relative Lo logical pages rather than actual memory locations, all
Tandem 16 programs (code and data) are inherently relocatable (Le., can be pOSitioned anywhere in
memory) . This means that the operating system does not require a special function for relocating
programs in memory; program addresses need not be readjusted each time the operating system
dispatches a process for execution.

•

Tandem 16 System Introduction

,&8IT ADDRESS

/

(5,) , '" .. , "000316 (LOG ICAll ,

_.
" "

f~==~==~ .---------1 l a.BIT
ABSOLUTE

f~~~lr~~~'~'~~(~" .. ~'~~~~~~~~ , • 3 ABSENT

UfoIASSIGNEO , ,
LOGICAL !'HYSICAL
, ... OIE HO. 'AOE NO.

MAIHMEMORY
[UI'T05121(

BYTES)

/

30

Q 000 DID 11) 0 011 001 101)
... '" "

2Od8YTE
!'HYSICAL PAGES

" "
~

"
" " ..

•

" " 33 "
I

'lIoQ22l15 (I'HY$lCALI

• ,
"

"
,.

" "

'"-\j ,.8IT; WORD)

"001'1 MAPS SEPARAn COOE fROM DATA;
!'ROUCT THE O'ERATlHG SYSTEM fROM
APPLICATION PROGRAMS

"''' DATA .. , rn _.
n

SYSTEM
OAT. .. ,

'\

.n
~
~

{>-,---- --.. ,---- ' ----"

,

"''' "''' COOlE AREA DATA AREA
(MEMOflY

STACK)

UP TO 12:8K8 UPTOI21KB

,
C\JRREHTI. Y EX[CUTING
Al'PUCATION 'flOGR_

SYSTEM SYSTEM
COOE AREA OATA AREA

tMEMOf!V
STACK)

01' TO Izt)(8 Uf' TO 128 1(8

/ ,
TAHO[M oPERATING SYSTEM

Memory Mapping

"
"

"

/

13

Tandem 16 System Int roduction

.' Virtual Memory

The memory management function of the Tandem 16 Operating system automatically brings memory
pages to main memory from the system disc as required by the currently executing program. Because all
Tandem 16 programs are inherently relocatable and because a program's pages need not be in contiguous
locations, a page can be swapped from disc into any available page in memory (the memory manager just
makes the appropriate map register entry). In facl, a process can execute with only two pages in main
memory: the code page containing the current instruction and the data page referenced by that
instruction.

•

•

A number of features arc incorporated into the processor module's hardware that aid the memory
manager in reducing the amount of swapping that occurs.

_ Because code is non-modifiable, code pages are never swapped out to disc.

_ Because code is sharable by multiple programs, only one copy of a program need exist in memory; if a
needed code page is already in memory it need not be swapped in .

_ A "dirty" bit is associated with each data map entry; only if a data page has been modified is it ever
swapped out.

_ History bits are associated with each map entry to record access and overlays occurring with a particular
page. The memory manager also maintains a list of maps (each process has a separate map) active in a
processor module. When memory space is needed for an overlay, the memory manager selects the map
that is at the head of the map list then selects the least accessed page in that map for overlaying. The
memory manager ensures that processes are seJected on an equal basis for potential overlays by putting
the last map selected for overlay at the tail of the map list.

14

•

Tandem 16 System Introduction

J
MA'

0

" ,
" , • ' ABSENT

,
Jtr=UHAS$IGHE~"]

--------__ - SAME '&·8ITAooIIESS

r '" I

: ~O 000 'Ra 101 010

I
I

MA'

~

Al'PllCAr,ON
!'flOOR"" SUSPENDED

FOf! MEMORV MANAGE­
MENT REOUEST

o
MClIIV MANAG(A

READS ASSENT PACE
FROM DISC AND MAKES A
IMPENTAV FDA LOC,CAL

'AGE l

PROGRAM EXECUTION
RESUMES AT LAST

INSTRUCTION

I
I
I
I

o

, " "
..,./""/

lUlir , • '-.- ,
"

ABSOLUTE ;'

'

MEMORY, ..,./

6000 100 000 101 0 10 110) "'CIo'2516I'HYS'~U C~~~~~A~DO~'~'~SS~;j~~~;;~~_ ' ,
, " , ;'

"

./

"

./
./

Virt ual Memory

,,-

,.
" "

I
I
I
I
I
I

J

"

15

Tandem 16 System Introducti on

e . High Performance Processor Modules

The central processing unit's micro-instruction cycle time is 100 nanoseconds; microinstructions are 32
bits in length; 6 general purpose registers are available to the micro-processor. The memory cycle time for
accessing a 16-bit word in semi-conductor memory is 500 nanoseconds, including accessing the map
registers and, if necessary, error correction. The cycle time for core memory is 800 nanoseconds
(including mapping and parity checking). The next instruction to be executed is prefetched while the
current instruction is being executed.

•

•

The instruction set contains 122 instructions; each instruction is 16 bits in length. Twelve memory
reference instructions can directly address any of five data areas in memory: global, local, system global,
parameters, and sublocal. Two instructions are provided for reading constant information from a
program's code area. The data and code memory reference instructions can use the contents of the direct
memory location as an indirect reference to another location; any of these instructions can be indexed
(three index registers are provided).

Instructions are provided for string moves, scans, and compares (both eight-bit and sixteen·bit quantities) .

• High Performance Inter-processor Buses

Data is transferred over each interprocessor bus at a 10 megabyte per second rate. Each bus is capable of
transferring data between all processor modules concurrently on a multiplexed basis. Data transfers can
also be occurring simultaneously on both buses. The operating system is designed to keep both buses
operating at peak efficiency.

One hardware instruction (SEND) is used to transmit blocks of 1 to 32,767 words to a designated
processor module over a designated bus.

Data, as far as the hardware is concerned, comes into a processor module unsolicited (i.e., there is no
corresponding "RECEIVE" instruction).

Data is actually sent across a bus in "packets" of 16 words (15 data words plus one checksum word);
each processor module contains two high-speed 16-word buffers (one for each bus) for receiving the
incoming information. These buffers are designated INQ X (for the X bus) and INQ Y (for the Y bus).
Transfers into the buffers occur Simultaneously with microprogram execution; when a buffer fills, the
microprogram is interrupted and a special microroutine stores the block in memory.

A table {called the Bus Receive Table - BRn is maintained in each processor module's memory to direct
the incoming data to a specified location in memory. The table contains a maximum of 32 entries

(corresponding to the two buses from each of 16 processor modules). Each entry specifies a buffer
address where the incoming data is to be stored and the number of words expected. When the expected
number of words has been received the currently executing program is interrupted .

16

II

Tandem 16 System Introduction

XIUlL-------,------·--Jf-------T----

""'

-...sCOHTROl.

Fo]

.-----;1

"
om

P'ROCUSOfI 1

IUS CONTROL

I'ItOC:USOf'I
HUM8ER ,

I nterprocessor Buses

,
MCR().INTt:IIIIUI'T

r-'----, WH EN IUf'FEII
FULL

i

,

.. , DOB
'~---,---~' - I

~ TO 32 IUFHIIS
12 suns 'III'ROC(SSOASI

17 i

•

•

•

Tandc m1 6 System Introduction

• High Performance Input/Outpu t Channel

Input/output transfers occur directly between memory and i/o devices concurrently with program
execution. A single i/o operation is capable of transferring data in blocks of from one to 4094 bytes.

One hardware instruction (EIO) is used to initiate input/output operations. Once i/o is initiated, a special
microprocessor contained in the i/o channel controls the transfer of data between an i/o device and

memory.

A table (called the i/o control table - IOC) is maintained in each processor module's memory to permit
the channel's microprocessor to control the operation on a device basis. The table contains up to 256
entries corresponding to the 256 possible devices on a channel; each entry contains a buffer address (in
the system data area) and a count of the number of bytes to be transferred. Data transfer occurs
simultaneously with CPU program execution; CPU execution is suspended only when both the channel
and CPU nced to access memory at the same time. Whcn the number of bytes indicated in the IOC have
been transferred, the currently executing program is interrupted.

Data is buffered by each dual-port controller so that data is transferred in bursts over a channel at
memory speed (the number of bytes in a "burst" is dependent on a controller's buffer size). Controllers
are designed so that they Signal the channel prior to actually emptying (during a write operation) or
filling (during a read operation) their buffer. This gives the channel ample time to respond thereby
reducing the possibility of data overrun conditions. Each i/o channel is capable of communicating with a
maximum of 256 input/output devices (32 controllers with up to eight units per controller); all 256
devices can be transferring simultaneously (with "bursts" from one device being interleaved with

"bursts" from others) .

t8

•

•

•

Tandem 16 System Introduction

I--

"""

MICRO- L ..:,,::;on:::'.:.::":::"O~ ____
EIO ----.. 'ROCESSOR r-

MEMORV

..--
lac

IIOCHAHNH.

I--
UP TO ZSI BUFfERS _____ -L, ___ __

/- ,

D···· D D

'--I MICRO- READY TO SEND
- ""OCESSOR

I

1 I 1

I I I
t- ,- II I

~ ~ ~ =JJ I
: ~"V'""i; _ -t H

III I- '-- III
II I ,
II I II i
II L~ r; - --11 I
I t-i- ~ I+y. ~ - :J1j
nT-~ I c.:.- III

/" DEVICE)

I I I : I I I
III l __ ---- --C0<~'0
I I I I I I
I I I II I

Input/Ou tput Channel

19

,

•

•

Ta ndem 16 System Int roduction

• System Integrity

Each processor module contains a number of features that assure system integrity:

- A checksum word is generated by the transmitting processor module and checked by the receiving
processor for every 15 words transferred over an interprocessor bus.

- One parity bit is associated with each 16-bit word transmitted over an i/o channel.

- An interval timer is provided; the operating system and the file system use the timers to notify the
application program in the event a data transfer docs not complete.

- When the semiconductor memory is used, six error correction bits are generated and stored with each
16-bit word in memory; circuitry is provided that corrects all single bit errors and detects ALL double
bit errors. With core memory, a parity bit is generated for each 16-bit word.

- The addressing and count information controlling an i/o transfer is kept in the controlling processor
module. This prevents a controller from contaminating more than one processor module because of a
failure of an address or word count register.

- The file system protects against an input/output device from erroneously writing into memory (in the
loe table, either the device's count field is set to zero or its write only bit is set).

- Each entry in the registers that are used for memory mapping has an associated parity bit.

- Because the memory mapping scheme provides separate system/user maps, operating system areas can
only be accessed by operating system programs; application programs cannot inadvertently destroy the
operating system.

- Two hardware modes of processor operation are provided: privileged and nonprivileged. Certain
critical operations (such as initiating input/output transfers or accessing system tables from application
programs) can be performed only while in privileged mode. Typically, only the operating system
operates in privileged mode; privileged operations are performed on behalf of application programs
through calls to operating system procedures. Application programs running in nonprivileged mode
cannot inadvertently become privileged.

• Efficient File System

The file system is designed so that an application program can execute concurrently with its own
input/output. Additionally, the system can be configured so that while an application program runs in
one processor module, its file system operations can be occurring simultaneously in another module.

• Access to large Data Ba5eS

On-line access to large data bases is possible for two reasons: the large number of peripheral devices that
can be attached to the system (a 16 processor system can directly address 2048 input/output devices)
and an application program can communicate with ANY device connected to the system.

e . Large Number of On-line Terminals

20

Any t wo processor modu les can hand le up to 128 data communication lines; each line is capable of com­
municating with one si ngle..cJrop terminal or many multi-drop terminals.

i

•

•

Tandem 16 System Introduction

Fast Response

Fast response to on-line inquiries is possible because application programs are schedu led for execution by
the operating system according to a priority assigned when a program is first readied for execution.

Programs that require precedence over other programs can be scheduled with a higher priority.
Additionally. a program can dynamica lly change its own execution priority. permitting it to compensate
for any unusual load conditions that may arise.

Frequently used and critical portions of the operating system are main memory resident (Le., are never
swapped ou t). This enables operating system functions to be called into execution without having to wait
for a page to be swapped in from disc. Additional ly, part or all of an application program can be made
main memory residen t for ap plica tions requiring a gua ran teed response time.

The area in memory where instruc tion codes are stored (i.e., referenced by the user and system code
maps) cannot be modified. This means that, if a program is suspended for some reason, the memory area
can be overwritten immediately; it's not necessary to write this area out to disc. A program's data area is
only written out to disc if it has been changed since last loaded into memory. Nonmodifiable code
provides an additional benefit: when one program is suspended for some reason, another program can use
the same code. This saves time because the code area need not be swapped into main memory and saves
space because only one copy of a program need reside in memory .

21

•
Tande m 16 System Introd uction

EASILY ADAPTABLE

The Tandem 16 Computer System's software has been specifically engineered so that applications can be

defined and implemented with a minimum of time and expense .

• Many of the responsibilities normally handled by applications programs with other systems are taken

care of automatically by the Tandem 16'5 operating system (T/TOS).

_ The virtual memory scheme incorporated into the Tandem 16 enables programmers to concentrate
fully on the intended application. Programs or portions of programs are swapped between memory
and disc automatically by the operating system; the swapping is invisible to the application program.

_ The multiprogramming, mu ltiprocessing features of the Tandem 16 operating system permit programs
to be written without regard for other programs running in the system and without regard for the

processor module in which a program is eventually run.

_ Programmers can write programs that communicate with input/output devices and other programs
without actually knowing where the devices are connected to the system or where other programs are

physically executing the system.

_ Using the file system, the hardware aspect of input/output transfers is transparent to application
programmers; completion interrupts and system dependent error conditions are handled

automatically.

e -Transfers over the interprocessor buses are handled entirely by the operating system; the bus operation

is completely invisible to application programmers using the file system.

•

_ For application dependent error recovery routines (such as not ready on a magnetic tape), the file
system provides an error number that specifically describes any errors encountered during an

input/output operation .

• User/System Interface

Application programs and programmers typically make use of the Tandem 16 Computer System through

these means:

_ Command Interpreter Program (COMINT)

22

Programmer/operator control (versus program control) over the system is by means of a
Tandem.supplied program called the Command Interpreter (COMINT). The Command Interpreter
performs its functions by conversing with a user through an on-line terminal device; the command
interpreter prompts the user for a command, the user enters a command, the command interpreter

executes the command, then prompts the user for another command. (Typically, the operating system
is configured so that the Command Interpreter program initially executes on one of the console
devices. From this point, COMINT can be run on other terminals connected to the system.)

Functions that the Command Interpreter performs are: obtaining and altering the current operational
status of the system, obtaining information about disc files, creating and purging disc files, informing
the operating system that a disc volume is to be mounted or dismounted. and running programs
(application programs and Tandem-supplied programs such as EDIT, TAL, TOSYSGEN, or COMINT).

e

e

I(e

Tandem 16 System Introd uction

For example to obtain the operational status of the system, the operato r enters the following command:

:STATUS

L Command Interpreter prompt

The command interpreter displays system status information on the terminal.

Entering a command name not known by the Command Interpreter results in an attempt to run a
program by that name. Parameter information can also be passed to the program at that time. For
example, to run a program called SORT and specify two file names (INFILE and OUTFILE) to the
program, the following could be entered:

:SORT INFILE, OUTFILE

- Editor Program (EDIT)

The EDIT or program is used by applications programmers to enter and/or modify source language
programs through an interactive terminal.

The editor program is typically run through use of the command interpreter program:

: EDIT MYSRCE

(MYSRCE is a text file to be accessed by the editor)

Editor functions are invoked interactively by issuing commands to the editor program via an online
terminal:

& LIST ALL OUT $LP

L editor prompt

(lists the entire contents of the current text file on the system line printer)

The EDIT program also has the capability to communicate directly wi th application programs running
in the system. This permits specialized text formatting programs to be written and permits
applications programs to take advantage of the editor's text manipUlation capabilities.

- Tandem{Transaction Application Language Compiler Program (TAL)

The T/TAL Compiler program is used to prepare readY-la-run programs from source programs written
in Tandem's Transaction Application Language (T{TAL). T{TAL is a high-level language, designed
especially for transaction processing. A typical statement written using T/TAL that compares two
character strings might be:

IF INARRAY m "$RECEIVE " THEN . . ,
Or to call a procedure for execution

CALL COMPUTETAX(AMOUNT,RATE,TAX) ;

23

,

•

•

•

Tandem 16 System Int roduct ion

24

(The name assigned to the procedure is COMPUTETAXj AMOUNT and RATE are paramete~j
TAX is the result)

The TIT AL compiler program is typically run through use of the Command Interpreter program (but
could be run through an application program):

:TAL MYSRCE,MYOBJECT, $LP

(MYSRCE is the file containing T/TAL source statements, MYOBJECT is the disc file where the
ready·to-run object program is stored by the compiler, $LP indicates where the compiler listing is
to be sent)

- File System

The file system provides access to all input/output devices in a uniform manner. File system
oper.1tions are invoked thrQugh calls to library procedures that are part of the operating system. Page
mode, multi-drop, and conversational mode terminals, other devices, discs and portions of discs, and
other programs are accessed as files. This permits programs to be written without regard for the actual
physical location of the device or program to be accessed. File names are assigned to devices when the
system is configured, to disc files when created, and to other programs when they are run. As far as
the application program is concerned, interprogram communication appears identical to input/output
with physical devices.

A typical TfTAL statement to write to a page mode terminal might be:

CALL WRITE (TERMFILE, BUFFER, 600, NUMWRITTEN, TENSECONDS);

(WRITE is a file system procedure; TERMFILE is a file number assigned to a terminal by the file
system; BUFFER is an array in the user's memory Slack containing the data to be written on the
terminal; 72 is the number of bytes to be written; NUMWRITIEN is the actual number written
on the terminal, TENSECONDS is a timeout value assigned to completing the write)

- Tandem 16 System Generator Program (TOSYSGEN)

A Tandem 16 Computer System is fully configured and ready-to-run when installed on the computer
site. A Tandem-supplied system configuration program (TOSYSGEN) is available for tailoring the
operating system to suit a particular application. Input/output devices can be added or reassigned, i/O
device characteristics are configured, space is assigned for system buffers, programs can be designated
that automatically start executing (Le., without using the Command Interpreter) when the operating
system is loaded into the system.

To configure it system, the EDIT program is used to "fill in the blanks" in a disc file that is supplied
with the system. Then the TOSYSGEN program is run. It reads the configuration file and generates a
fully configured operating system (usually on a disc) that is ready to be loaded into the system .

-

Tandem 16 System Introduction

SUMMARY OF TANDEM 16 FEATURES

• Timdem 16 Computer System (fail-safe, transaction oriented, easily adaptable)

• Two to sixteen processor modules

• Ouill. high-speed interprocessor buses

• High-speed, burst-multiplexed input{ootput channel

• Multiprocessing, multiprogramming, transaction oriented, fail-safe operating system (TITOS)

• Virtual file system

Processor Modules

• Microprogrammed (100 nanosecond cycle time)

• Sixteen bit data paths and memory addressing

• Up to S12k bytes memory per processor module.

• Memory mapping (four separate maps: system data, system code, user data, user code)

• Up to 128k bytes addressable through each map

• SOO IUnosecond semiconductor memory access lime (including mapping and error correction)

• 800 nanosecond core memory access time (including mapping and parity checking) e . 122 instructions (including string manipulation and doubleword uithmetic)

•

• Stack an:;hitecture (memory stack and register stack)

• Procedure oriented hardware

• Memory references: direct or indirect with or without indexing to global, local, procedure parameters, top of stack,
or system gfobal data areas and to core area. Word, doubleword, byte addressing

• No machine instruction can write into code area (non-modifiable code)

• All programs are inherently re-entrant and relocatable

• I/O, bus receive, and instruction execution can occur concurrently

• Next instruction prefected while current instruction executes

• Hardware power fail/auto restart

• Hardware multiply/divide

• Maximum of five microseconds to call operating system procedures

Inlerprocessor Buses

• Two paths between each processor module

• 10 megabyte transfer for each bus

• Packet-multiplexed transfers between any number of processor modules

• Block transfers of 1 to 32,767 bytes

• Both buses used simultaneously

25

Tandem 16 System Introduction

Input/OU lpul ChJnn~ls e . Dual-port Controllers

•

• Dau transfers occ.ur at memory speed (4 megabytes per second with semiconductor memory)

• Up to 256 devices per processor module

• Bunt-multiplexed transfers from any number of devices

• Block transfers of 1 to 4,094 bytes

T{fOS Operating System

• Multiprocessing

• Multiprogramming

• Geographical independence

• Process structure

• Memory management function rl'lakes virtu.ll memory invisible to users

• Processes scheduled for execution according to priority (0-255)

• S~rable code areas handled automatically

• Up to 256 processes per processor module

File System

• Two paths to each i/o device; file system automatically 5wilche$ paths

• All devices and programs <Ire accessed as files

• Geogr<lphic independence

• Trmeout associated with each i/o oper.i.tion

For more information regarding the Tandem 16 Computer System, refer to the following manuals:

• Tandem 16 System Manual (de~iled description of system from a hardware and software standpoint and
information on making an ap plication "fail-safe")

• Tandem 16 Programming Manual (describes TrrAL, using the file system, using the process control
procedures, using the Tandem-supplied utility procedures, picking up the parameter message from the
Command Interpreter, and using the DEBUG feature)

• Tandem 16 Text Editor Manual (describes the EDIT commands and how to communicate with the editor
from another process)

,
• Tandem 16 System Generation Manual (describes how to configure a system and how to run the

Tandem-supplied TOSYSGEN program)

_ • Tandem 16 Operation Manual (describes how to run the Command Interpreter program, explains the
Command Interpreter command set, how to remove and mount disc volumes, how to "down" system
modules for maintenance or repair, how to run programs).

26

•

•

•

PrInciples of Operation Table of Contents

System Structure ... •• 2-1

Processor Module • ••••• · • •• • • • •••• . 2 - 2
c~u · .. . • . 2 - 3

. 2 - 3 Memo ry .. '" • • ••• • ·
Interprocessor Bus · 2 - 4
Input/Output Cha nnel • • • 2-4

Uata Format
B1 ts ...

and Addresses · • ••• . 2 - 5
. 2-6
. 2 - 6

• • • • • • • • ••• · . · • •• · • • · • ••
,jords • • • • • •••••• • • • • • • • •

• •• • • • •• · • • • • · • • Bytes ...•..
Doublewords · · 2-7

.. 2 - 9

Number Rep r esentation 0 • · 2- 10
. 2-11
.2-11

Loglcals
Integers •. • •

• •••••
• 0 • 0 0 •

• ••
• •• • • •

o. • ••• • 0

• • •••• 0 •••
• 0 0 • 0 ••

Instructions • 0 0 2-13

Proqram Environment• 0 · • •• • . 2- 16
..2-19 Code Area • ••• · .. ·

Dota Area oo •• o •••• 0.' • · · • • 2 - 20
<31 oba 1 Area .. . · 0 • • · · • . 2- 20
Loca 1 A rea • • • • • •• • • • • • • • 2 - 20
Top-ot- Stack
Addressing .••..•.
Indexlnl)•

Area

• •

• ••

• •
ReC)ister Stack ... ·

• • ·
• •

• ••

· • •• · •...•• 2- 20 · • •••• . .. 2 - 21
. •..• 2-24 • •••• ·

• •• · • 0 •••••••• .. 2- 26
EnVironment RegIster •.•....• · • • • · 2 - 29
Procedures o. • ••••• • • · · 2-34

and Exl t. · · · ... 2-36 Procedure Call
Local IBta.
PF.lrameters

• •• • • •• • • • • · 2-4 1
• • · • • • • • • · .. • •• . •..•• 2 -4 6

LogIcal Memory .. · · • .2-51

Call1nt) Opoerating System Procedures•........•..•.•••• 2 - 52

System Tables2-55

Inte rrupts
In te rrup t
Interrupt

Sequence
Types •••

Interprocessor !Jus .
Bus RecAlve Table .
SEN/) Instruction ..

•

... " ...
.. 0 ...

• •
• ••• • •

•
nus Transfer Se~uence
.(JUTO , INO, (lind Packets
INT and MASK Re91st.rs

• •• •
• • •

• •

· • ••
.. • 0 ...

... · ·
..2-56
• . 2 - 60

• ... 2-65

• •• • •• 2 - 68
• ••• 2-69

• • • • • • · 2-69
• • • • • • • 2-7 I

• • · • • 0 • 2-75
• • ••••• • • · • • . 2-77

)

•

•

•

Princip l es of Ope ra ti on Table ot Con tents

Input/Output Channel ••••••• ·
I/ O Contro l Tabl e .. .
EI () Instruc ti on ..•.. . ••• •
110 and HII O Instructi on s•..•....•. ··•· •.. • .••
Input/ Output Seque nce ···•·

• • • ·

. 2 - 78
• 2- 80
. 2 - 80
• 2- 83
• 2 - 84
. 2 - 86 Dua l-Port Cont r ollers

In terr upts ··· .. ··•••·
Owne rsh i p . and

... • 2- 88 2 - 88 Hi gh- Pr io r ity I/O. • • • • • • • • • • ••• · •

• • • ••• 2- 89 Phys i ca l Memor y a nd ~ppJ n9 .
. •.••.••..... • .•.• 2 - 94 Mapp ing • • • •

A Mapped Pr og r am .
Page Fa ult •. • •••
Re terence B1 ts .

.... · • • • • • 2 - 95
. 2 - 97

Cold

• • • • 2- 99
.. ·

• • •

Load •• 2 - 103

Tf
, .•

. ~; .. ; !_. I :

~- . " . I
" ~ . ..

I\\,,;i 1', ,1_
, .
! , c.

,
I

· . --··x'
., \ 0

{\;JD

Principles of Opera tion

• SY STEM STRUCTURE

•

•

A Tandem 16 Computer !:iystem consists of two to sixteen orocessor
modul es. Each proce s so r module is capable of operating autonomously,
but can communicat e with other processor module by means of either ot
two interprocessor buses .

Da ta Is transferred between input/output devices and a processor
modul e by means o f a s I mple but very fast input/output channel. Each
proc essor modul e has one 1/0 channel. I/O devices are interfaced to
a n 1/0 cha nnel by mea ns of dual-port controllers. Each dual-port
controll e r Is connected to the input/output channel of two processor
modu l es .

'ANbc. 1"'I 16'

..... ·n·.·.·. >/;:
.. 0 0

'" ,
r
•
• ,

0: o:.o<1'Lo(

• • ,

1
... ----J~ NTU'

r - . .--•

t' • ' . i\ "-" -' "L
I UL1Jj ~ll

~ot.:>C<>:..",.

M CI)..l

•
S
~ ,
• • •

r­
- -i

L_

~ f"II:OC:~'"
" ~"l'; .s.

, ,
• • • ,
•

..

l r~
---t

-..,
L _

_ J

- , L. _ _

_J

-., 1
~--

I- _ _ J

~ • , ,
• • • , ,

2-1

•

•

•

Principles of Operation

PROCESSOR MOWLE

f-unctlonally, a processor module can be separated into four parts'

• Interprocessor Bus

* Central ProcessinQ Unit

* Memory

* Input/output Channel

-<.. 1'~",,_

~-----
.. -____ • ___ '.0 ••

1

,.! 1---'-' -_ . .:-=:::::.--.--.--.----_f

-Ie- I r
I

/

/

I
"' ' I -_V .- '---t

,------,

"

"
7../0 c: ... ~~~,~..,L

CO"T{(,~\'"

r~
1

L ,
0

<

" •
" " E

L'I

I

I
I I i

-'-

T.\...,T",-, ~_-_?-,-r _-___ ' ~' ...;--:,;;,D~~ ______________ ---.J

2- 2

Principles of Operation

• c~u

•

•

The CPU executes programs by fetching and execting machine
instructions from memory. Thp. instruction set consists of 123
instructions, including arithmetic operations, logical operations, bit
manipulation, block (multiple element) moves/compars/scans,
interprocessor bus send, and input/outut instructions.

The CPU provides for orderly interruption of executing programs to
pOints in the operatin9 system called interrupt handlers. Interrupts
are caused by events such as power failure, uncorrectable memory
error, interval clock, completion of bus transmission. or completion
of input/output transfer.

Two modes of program exection are provideda privileged mode and
non-privileged mode. Privileged mod~ permits so-called privileged
instructions such as EIO (execute input/output> or SEND (send data
over an interprocessor bus) to be executed. Normally only the Tandem
16 operating system <T/TOS) executes in privileged mode. Any attempt
by a non-privileged program to execute a privileged instruction
re sults in an interrupt to the operating system.

The basic unit of information is the 16-blt word. All Tandem 16
machine instructions are 16-bits in length as are logical memory
a ddresses. This means that a program can consist of 128k words
(65,536 words of code -- machine instructions --, 65,536 words of
data). Uata elements can be addressed on half-word (byte), word, and
double-word boundaries. Three index registers are provided for
element indexingJ on level of indirect addressing is permitted.

Memory

Althoug h the logical address space of a program is limited by the
16-bit address, the physica l size of memory can extend to 256k words.
This permits multiple programs and critical parts of the operating
s ystem to reside in main memory. The conversion of the 16-bit logical
address to the 18-bits required to address 256k words of accomplished
through a mapping scheme. Four maps <'lre provided; each map consists
of 64 entries, one map entry corresponds to 1024 words of memory
(called a page of memory). The four maps provide separate access to
user code and user data (a user is defined as the currently executing
application program) and to system code and system data (the system is
defined as the Tandem 16 Operating System).

nata is transferred between memory and other processor module
functions in 16-bit words. It a semiconductor memory is used, six
error correction bits are appended to each 16-bit word when a word Is
stored. A parity bit Is appended if a core memory Is used. All data
is verified for accuracy when read from memory. The use of the six
error correction bits in the semicondUctor memory permits all Single
bit errors to be corrected and all other errors to be detected. Any

T~~r~u~~p~CU-rring - iC\......~r'if\re memory is considered uncorrectable. Any
Ild! . ' J \ i t:i~0

• J " oJ 0 2-3

•

•

Principles of Operation

•
time an error Is detected (whether correctable or uncorrectable)
causes an inte rrupt to an opera ting system program (where 8 ppropria te
actIon Is taken) .

Inte r processor Bus

The Interprocessor bus Is used to transfer data from one processor
modu l e to another . All data, while beIng transferred , 15 verified tor
accuracy. Data 15 transferred between modules In the form of 16-word
packets . The Interprocessor bus Is capable ot interleaving packets
between all 16 processors . both buses can be In use simultaneously. A
Single machine instructIon Is used to send info r mation to other
processor modules. Data received from other modules is directed to
main memory locations by a software configured table (also in memory) .
Receipt of data by a processor module occurs concurrently with machine
instruction execution. Only when a bus transfer Is completed is the
currently executing program interrupted.

I npu tlOu tpu t Cha nn e I

Each processor module has on simple but very fast I/O cahnnel capable
of transferrIng data between i/o devices and memory at full memory
speed. I/O operations are initated by initialiZing an entry in a table
in memory, then executing an EIO instruction. Once an i/o operation
is initiated, data transfers occurs concurrently with software program
execution. The only time the software program is affected is when both
the i/o channel and the CPU need to accesS memory at the same time. If
thIs occur;;, the software program Is momentarily suspended while a
word 15 transferred between memory and the 1/0 channel (the Bet ion is
invisible to the executing program) . ~hen an i/o operation completes,
the currently executing program is interrupted and an operating system
program executes.

E~ch channel is capable at addressing 256 i/o devices' 32 controllers
wi th a maximum of eight devices each. I/O transfers can be occurring
concurrently wi th any number of devices .

~" ' -I" -, . , . I'
O~ .. _ .

<'""\ ~ - ~ ,
l . . •

"'0 ":J I"' T· .. ···y A".lD r .. u ., .. \ 1-\1

CO,~;~;C],TlAL
2-4

•

•

Principles ot Operatton

DATA FORMATS AND ADDRESSES

As prevIously stated, the ba sic unIt ot information used In the Tande m
16 i s the 16-bit word. The Tandem 16 instruction set permits
individua l access to and operations on single or multiple bits (bit
fi e lds) In a word, access of B-bit quantities (bytes), 16-blt words,
and 32-bit quantitie s double wordsl.

"" • ~ " '. .,. .. ~ ., ._~. ,. ,~ " I" 1~ , ... '-..

iii I

" , .
[r I I 1 Iii .
.... ~....---"-­

... _ ; oi,

I I

<tI N to;: 6 to;:

1 I 1 I 1 I l_)J 1 1 I 1 1 1]::,-'1 -'-1 '--'--"I-rI--'-'\iIh 'I--r1-'-;-',1 I

J\ '.f P.ND
Cor'l i- ,I.DJTlf1 2 -~

Principles of Operation

• Bits

•

The individual bits In a word are numbered trom zero (0) through
fl fteen (15), from left to right.

1
bit. 0 1 2 3 4 5 6 7 8 9 0

1 1 1
234 5

The following notation Is used In this manual (and In Tandem
Application Language -- T/TAL) to describe bit fields.

blt<left blt.rlght bit>

For example, to indicate a field starting with bit tour and extending
through bit I~ the following notation would be used-

blt.<4 '1 5>

Or to Indicate just bit 0 (zerol the following Is used'

b l t. <0 >

I'tords

The 16-blt word defines the Tandem 16'5 machine instruction length and
I ts logical addressing range. The 16-blt word Is the basic
addressable unit stored In memory_ The first word In logical memory
Is addressed as ward(O). the last addressable location Is
word [65,565J.

a ., u.., I
!.1..~ -j
(;.1 - 1
C~l -
C<f1 -[.., V

"'-.<"<",ot b'''':''' ""-:'OQ"'""!':l:!~

=
C1, I 1----
C., J 0,_.-

__ :':. .;.~, "~
,-,,,,,, ~:!.'41

4 •• ____

, C. Eo.£. . 5. :!.S:l I

~'; [1 , "f +' ~'--''''''''''':rrl=+Rf--------------------' "'T:I\ .. ._ .

P·- e - .",' ! f) 'D
i\U, .. ' d 11

2-6

•

•

•

Principles of Operation

Note. In this manual and in T/TAl, a number surrounded by brackets Is
used to denote an indIvIdual element In a block of elements.
For example, to indicated to fourth element In a word block,
the following nctaation 15 used '

wordl41

t~hen operating on block of words (or any elements), the first
element Is the lowest numerical element I the last element 15
the highest numerical element. The following notatIon Is also
used to denote a block of elements.

words(flrst element. last element]

For example, to indicate the second through twentieth words In
a block, the following notation Is used'

wordsl4.201

A number of instructions are provided tor explIcItly reterenclnQ
words. These are l

UlAV '
STOR'
LWP.
NST()I

Load hord
Store Word
Load ,.,ord from Program (code) area
Non-destruc t i ve Store liord

Two instructions are available for ope rating
are

on blocks of words. They

MOVWI Move words (move a block of words from one memory location to
another)

COMrn Compa re words (compa re one block 0 f words with another)

Note that when addressing a block of words (as in the MOVrt
instruction), the leftmost word (I.e . t lowest numerical element) is
addressed.

Bytes

The 16-blt word has the capability of storing either one or two bytes.
IIhen a Single byte is stored in a word, the byte occupies blts.<OI7>
Clett half); bIts.<t::IIJ5> are set to zero. r~hen two or more bytes are
stored as a block (group) of bytes, two bytes are stored per word. The
leftmost byte, bits.<O.7> is address as byte{OJ, the other byte is
addressed as byte[IJ.

The 16-bl t address provides for element addressing of 65,536 bytes.
By te .loca tions are addressed starting at byte{OJ and extend throuQh
byte(65 , 5351. Because two bytes can be packed per word, only the first
32,768 words of logIcal memory are availble for byte addressing. The
CPU converts a b~te address to a word and element address as follows.

-- r- - -"'" rRS ill',: -V " , . . 1 . _,,, , .ilLl
': ,,{ r .. ND 2-7

•

•

•

Principles ot Operation

a , .. '. c~, "0)

C>l C~) ---c"' L51 -cO.) r"
_ c.~J

!----~
C~"]

C.101 L\lJ I
~---

C\~~ t.1~J
, ,

t I
(:("~.Sl;)']f C:C~. r. ~~

... ;.p('_q LI 0\.

"'_.,..-rfoi.. t>ttlo!;)9t::s.":.I I.)G~
t"'~_53'tJ (.(,.0:" 'Eo:.-:.1

,

,..,. 0 ~o 'C.o:!.

WOR'OCI').

WOR 0 C;;),')

WO~'> C'1."\

wOR!;) c~~

,",,0-:0 c,.~. 'G.C1

weRt) c.. ~.'",1:J

A number of 1nstructions are provided for explicitly referencing
bytes. These are'

LOB'
STB'
LBP'
BTST.

Load Byte
Store Byte
Load Byte from Program (code) area
Byte Test

A number of instructions are available tor operating on blocks of
bytes. They are

MOVB' Move Bytes (move a bloclc of bytes trom one memory loca ticn to
another)

COMB.
Sa,i I

SBU'

Compare Bytes (compare one bloclc of byte with another)
SCA N bytes rlhlle Clook tor a partlcal byte In a blocK ot
by tes)
SCAN bytes Until

hhen addresslnQ a block of bytes, the lowest numerical element Is

T ·' ~rotii"t 'j:i; ;;~TERS
P ~, Or>-":~':'i !'~m

CO:·j f; G~ in-L'\L
2-8

•

•

Principles ot Operation

Ooublewords

Two 16-bit words cen be addressed 8S a single 32-bit element. The
16-bit address provides tor addressIng ot doubleword elements in all
65.536 words ot logical memory.

,., b u._~""-lO~:";) c:.o 'S.,~ , S UI'= ... ~.., T¥>,)O <:;.ON!:. ... C "'I .\,JE.
,..."' III>I't."f' l.eC"-,,t:> 1'.)":. .

Two instructions are provided for explicitly referencing doublewords.
They are'

LDD'
STLI '

Load Vouble
Store Double

2-9

•

•

•

Principles of OperAtion

NUMBER REPRESENfATION

The Tandem 16 can treat an operand as either integer (sIgned) or
loqlcal (unsi gned) numb er. Integ ers can be represented In either 16
b its (a word) or 32 bits (doubleword). Representation ot l09lcal
numbers is restricted to 16-blt qua ntItIes.

Byte operandS are treated as the rIght-half <i.e. t blts.<8.15» of a
16-blt operand (the lett-halt Is set to zero). Normal 16-bit Integer
or logIcal ari thmetic Is performed.

.... "

• - . .1
I ' , I 1

I

rw,),:,:. .. ~UI' t- ... I "I ,,,-'e="- p ' (II" 6·",\)
to e..~" • '. - ~ ;. ;-,~,)., ~."1

.5 0 IS

" ... ~,,--~~=:=' !--;J:L' , T'EJ J:L' '~TID~' ':=\ i====.!.::.,_=11
T" H.'\·~ <:'0, ... ,\..(:',,-,,10.>"1 , ,,., ~ -4...· 9 _ ('1:> &1T"'a)

f.t , ~ .'!.. - ~" ""l, "ot. c:.. ·f 8 : ... :. .,~ , . ",~~, ,""'-,

A c;r..",,"n: , ... ,ct,",-" "Il'1':l> ,ut" \...O\r'lEL a' b~ .. ~,., • ..,~ , ~ \ (. - i,,-
"",,',O IL o;, •

•
I I I I ,

I I
• •

. ~ v . • J

F'''C' ') ~" ... i\ "Y I • , I • \ AND 2-1 0

•

•

•

Principles of ope ratton

Additionally , three hardwa re indicators are subject to change as the
result of a n computation or comparison. They a re l

* Condition Code Indicato r (CC) - generally, indicates if t he r esult
of a computation was a neqative value, ze ro, o r a pos itive value .
(The condi tion code can be checked by one of the br anch on
condition code instructions and alter program execution sequence
accordingly .)

* Ca rry - indicates that a ca rry out ot the high or der b i t post tion
occu rred.

* Overflow -- indicates that the result ot a computation could not be
re presented in the available number of bIts in the data format.

Log lcals

logical operands re present pos Itive valuAs . The range of numbers that
can be represented by a 16-bit logIcal operand is 0 through 65 , 535 .

Some of l.he instructions for logical oper ands a rel

LA VlJ ' Loylcal Add
LSUU ' Logical Subtract
LMPY ' Logi ca I Mul tlply
LDIV . Loglca I Divide
LNEG. Logical Nega te
LCMP' Logical Compa re
LADI' Logical Add Immediate

The results obtained from B logica l add and subtract are identical to
that obtained by Integpr add and subtriJct except that logical add and
subtract do not .'5et the Overflow indicator. The 16-bit res1llt, the
condition code settlng , and the Carry indicator setting are the same.
Logical divide (LUIV) , however , sets t he Overflow indicator if the
quotient cannot be reprp.sented In 16 bits .

I ntege rs

Inteqers represent either positive o r negative values . The range of
numbers that can be represented by a 16-blt integer is - 32,768 to
+32 ,767 ; by a 32 - btt integer is - 2 ,14 7,483 , 648 to + 2 ,147,483 , 647 .
Positive numbers are r epresented in true binary notation. Negative
numbers are represented in two' s complement notation ',",ith the siQn bit
(bit .<O» set to one . The two ' s complement of a number is obtained by
inverting each bit position in the number then adding a one i n
bit .<I !» .

If the re~ult of on integer computation can not be represented wIthin
the number ot b its Indicated by the operand type (I . e •• 15 bits tor a
sin,Jle word integer , 31 bits for a double word inteQer), an Overflow Trtl'l,""l!"f " ()re-r, t~ow .~p,,,,ccurs If a divide operation Is attempted with

I,l.,[,. J L~. ,I Ult t\0

p~o "r. ,=; '<V P,ND 2 - 11

CO ,._. -.~ r I '~I ~ L
i .. ;' IJL!J i ,;\

•

•

PrInciples of Operat1on

divisor of 0 (zero) . An Overflow condItion causes an interrupt to an
operating system Overflow trap handler .

Some ot the instructions for 16- blt Integer operands are l

lAOO' In teger Add
lSUB . Integer Subtract
lMPY ' In teger Multiply
lUlV . Integer !livide
I~MP • Integer Compare
AllUl' Add i nYIledia te operand

Some of the instructions for 32-bl t integer operands aTel

DAOO ' Double Add
D~Ud' Double Subtract
OCMP I Daubl e Compare
!lr~ r. lJouble res t

2-12

•

•

•

Principles ot Operation

INSTRUCTIONS

The Tandem 16 instruction set consists of the 123 instructions
described In detail In section 3. These Instuctions are grouped
functionally as tollows,

*

*

*

16-blt arithmetic on top ot

IADO' Integer Add
LADD' Loglca 1 Add
ISUB. Integer Subtract
LSUB. Logical Subtract
IMPY' Integer Multiply
LMPY. Logical Multiply
IDIV. Integer Divide
LDIV. Log ical Divide

32-blt Integer Arithmetic

DADO' Double Add
DSUB' Double Subtract
DNEG' Double Negate
DCMP. Double Compare

16-blt Integer Arithmetic
register)

ADRA' Add a Register to A
SBRA' Subtract a Register

trom A

on

In

* Register Stack Manipulation

EXCH.
DXCH'
DOUP'
STAR'
NSAR'

Exchange A with B
Double Exchange
Double Duplicate
Store A In a Register
Non-destructive Store
A In a Register

* Boolean Operations

LAND'
LOR'
XOR'
NOT.

Logical AND
Loglcel OR
Excl us I ve OR
NoT

* Bit Shitt and Deposit

Deposit Field
Logical Lett Shltt

. " ' " I cr '- ' '' r " "-I' L
U • • ' '" ,j " I Jl.

register stack

I NEG. Integer Nega te
LNEG. Logical Nega te
ICMP' Integer Compare
LCMP, Logical Compare
CMPI' Integer Compare Immediate
ADDI. Integer Add Immediate
LADI' Logc lal Add I mmedla te

top of register stack

DTST. Double Test
MOND' (load) Minus one Double
ZERD' (loa d) Zero L)ouble
ONED' (load1 One Double

register stacl< element (Index

ADAR' Add A to a Register
SBAR' Subtract A trom • Register
ADXI' Add Immediate to Index

LORA'
LDI'
LDXI'
LDLI •

Load A trom a Register
Load Immediate
Load Index Immediate
Load Lett Immediate

ORRI' OR Right Immediate
(JRLI' OR Lett Immediate
ANRI' AND Right Immediate
ANLI' AND Lett Immediate

DLRS'
ALS'
DALS,

Double Logical Right Shltt
Arithmetic Lett Shltt
Double Arithmetic Lett Shltt

2-13

•

•

•

Shift
LRS. Logical Right Shift

* Byte Test. UTST

* Memory <-> Register Stack

LOX'
NSTO ,
LOAD.
STOR'
LOB.
STB.
LDD'
STll.

Load Index
Non-des true t 1 ve
Load Ilord
Store Word
Load Byte
Store Byte
Load Double
Store Uouble

• Branching

Branch 1 t Ca rry

Store

B II;'
BUN.
BOX '
BGTR.
BEula
BGED.

Branch UnconditIonally
l:3ranch on Index

BLSS .

Branch if CC Greater
Branch if CC Equal
Branch it CC Greater or
Equal
Branch If CC Less

* Moves/Compares/Scans

MOVl. I Moye Words
MOVB. Move Bytes
C01")'i I Campa re nords

* Program Register Control

SETLa
SETS.
SETE.
SETP.
ROE '
ROP'

Set L Register
Set S Register
Set E Register
Set P Register
Read E Register
Read P Register

* Routine Calls/Returns

PCAL' Procedure Call
SCAL I System Procedure Ca II
opel I DynamIc Procedure Call
EXIT. Exit trom Procedure

* Interrupt (prIvIleged)

RIn' Reset INT Register i XMSK' ~xchange-M~ Register
,j I(,n..)

[J"O~ .. <{ PND
CC :-li< J ~i·jTIAL

Principles of Operation

ARS. Arithmetic Right Shift
OARS. Double Arithmetic Right Shift

LADR'
ADM'
PUSH'
POP.
LWP'
LBP'

BAZ'
BNED.
BANZ.
BLED.
BNOV'
BNOC'
BF I'

COMB'
SB ••
SBU'

STRP'
ADDS'
CCL'
CCE'
CCG'

Load Address of Variable
Add to Memory
Push Registers to Memory
Pop Memory to Registers
Load Word trom Program (code)
Load Byte trom Program (code)

Branch 1 t A Zero
Branch If CC Not Equal
Branch I f A Not Zero
Branch It CC Less or Equal
Branch it no Overflow
Branch it no Ca rry
Branch Forward Indirect

Compare Bytes
Scan Bytes While
Scan Bytes Until

Set Register Pointer
Add to S Register
Set CC Less
Set CC Equal
Set CC Greater

DXIT ' Debug Exit (privileged)
BSUB' Branch to Subprocedure
RSUB. Return from Subprocedure

IX IT'
DISP.

Exit from
Dispatch

Interrupt Handler

2-14

Principles of Operation

e * Bus. SEND (priv11eged)

* Input/Output (prl v11 eged)

EIO' Execute I/O
110' Interrogate I/O

HIlO' High Priority Interrogate I/o

* Map Register Control (privileged)

e

e.

SMA~ ' Set Map
RMAP. Read Ma p

* IUsee llaneous

RS" .
551'1 '
NOP .

.~..... -, ;'

H ,- i J

Read SWitch Register
Set Switch Register
No Operation

- -;-r.RS
~. • L

AMAP. Age Ma p

HALT' Halt (priv11eged)
RMD. Read Memory Data

2-15

•

•

•

Pr i ncip l es of Operation

PROGRAM ENV IRONMENT

eooe ~«e~
,~

.... .r;. ... ort'"

1~!IoTt!o.)(.O()Io.'

~oes , ..
C4~:Jr"'''''''3

<;(0)

O~T" o\ u:"'"
,~ "a ... o t..,

(1o\£NI",", s1'~ c.<.)

'I. R.E.GlS"TE.R..: c. c ... t "L ~{ ~-\-~ i:.~: ... -\-~r
po R e._\ '5,."'t"eR: P"Oj~"'" eo --k. ... ; A"d~.ss e.t c... .. _+ -r ... ,+" \-,;. ;.-1. ~ ... \ {\',,,-

"'(0' 'f'~o:>'J) ._.

f'~"1,' t='~I+ <.(~~'" t t~ c:...vJ..... ~o....
GLOl: ';=, .. ,t- e.{e-......~ +~ ", ,~ ___ ,

GLOBAL o~.-rA: l>c:...+ " 0:: ~ ClC..c:s·.~<... 4' .. 0- 0. 1 ~ •. :..~ t ~r.~"<t._
LOc.AL bI\TA: ~ ... -\ ~vo: ~<.O;'.$.. ·.Ivt·:~"o_ c. ... "' __ -'r\'J c. c. -+, ... <j l>vo~dv~
Su.Q.-Loc.AL t) ",.1\ : b............. ~_... ~CL ... SS ',L,...(... ., \1 -C"o_ c:.u .. _1:-t

1
c. ... -..+,~")

'S ... '- ~roc..-. ~ ""

L 'R€.G\STc.I2.: Lo~\ O ... -\e.. ~Q;" ":~~'" 1 C. (O) ~I +.:"'~ I\.L..L......... of: F": -\- !::I:.-..+
..... '+\t...... \.... \ \) ... -t p.~. At.~o ,'".L;, -\c..s '"t\...... \:.~ L';'", ,
-tt..-.... k.II:.-..,:.\. o;.{'-C...k. 0\ +\.... " 1:.. (.\ . C'I s·h<:.k. Q.y\l.a ..) bc:.c.1r.. +0
~I,....,... c:. ... \l, ~"l ~ ... c;..o...L..

$ ~l'i. T"€.L..: To~ (J <&~c....k.: G [oJ ~ l .. -\-'~If.. ~i!.~ ot -+k \0.., ... c..c.-\,:,~
elc;. e....+ i -t"", """ .. _ 0'0 1. \.""" 1:..

lte.c;.IS,Ter:.. ~TA. c.c.. : E '~h't-E: l c.--...\ "Rc. ~,' • .{_ S+o..--'" t..... P"V:tt.. <.~\·C Cpc.r ... :+.O:.. ...
. ~ "" ... ~r~<:i.. \" I...r-.. c..t~""""-"'S o;:Jt. (sa ~ ... -...L ~Y' \ ,e. \ 10'0.1

~.\> : ~c.~.~~ S-t 'c.. '"'?,._;. h, .. .l,~t.c, -\-\..c.. \6V' f:H~. __ ; i ;-~ .. ~ ... ~~;.{~ S:h .. ""-

•.. , .1 IN .• . J I tK~

P,N D
CQUFIDENTIAL

2-16

Principles ot Operation

~ A Tandem 16 program in memory consists ot instruction codes in B

~

~

.. CODE area

that manipulate variable data In a

* DATA araa

uslnQ the CPU's elQht-element

* ReQlster Stack

PC"'"" _ _ r---' .

•

RCUi'J __ r---,

COVE AREA' Intonnation In the code area consists of instruction codes
and constants. No instructIon exists for writing into the code area,
therefore the code area cannot be modi fied.

The code area consists of up to 65,536 16-bit words. ~ords in a code
area are numbere consecutively tram P[Ol (program, element 0) through
P[65,535l .

DATA AREA' The data area contains a program's temporary storage
locations (i.e., Variables). 1l3ta in this area consists of single
element items, acX1ress pointers, and multiple element items Carrays).
Input/output transfers <which are performed on behal f of application
programs by the Tandem 16 File Manager) are via arrays in a program's
data area.

Part of the data area is used for dynamIc allocation of storage when
procedures are invokedl this area Is referred to as the "memory
stack" ..

The data area consists of up to 65,536 16-blt words. Words In a data
Brea are numbered consecutively from G[O] (global data, element 0)

T ~ r·If) :';;.1 ,-.,-,, '~ U-I ERS
it} ."J V V I I II

F)"1) , --- , r)Y AN D
I\lh I, • . : Hi\

2-17

•

•

Principles of Operation

through 0[65.5351. The "memory stack" portion of the data BreB Is
limited to the lower 32,768 words (i.e., GI 0 • 32,767 II.

REGISTER STACK' Arithmetic computations and comparisons are performed
in the register stacic. To perform a computation, the operands are
first loaded Into the register stacic using an instruction such 85

LOAD, an instruction Is then executed performIng the desired
arithmetic, the result then stored back Into memory using an
instruction such as SlUR. Grouped together to form a program, the
operetion might look like this'

LOAO G + 002
LOAD G + 003
IADD
STOR G + 004

load data element GI2I into register stack
load data element GDI into register stack
integer add
store the result from the register stack Into 0[4]

~ ... c;. ,~"'4-'::
~'1 " ~<'

~=, I I
& C':l 1::-:-=c-:".-1 ~ . !! . l..eI ... 1;) C'- Ol' ~
.... c;-,:l:--.~.. --
<:.c·· . ."l ~ ,; --"""""1= ~
G.c. .. ') " --..... ,--i--1 L.C"'J.,,1) a. "foo!..

,
•

It --1 ~""b'" , ,
I Ce-~'''T..,I I ~..,..-oc.. c;. ... oo

The register stack consIsts of eight 16-blt registersl the registers
are defined as R[OI (register st~ck, element zero) through R[7I. Three
elements of the register stack double as index register (registers
R(5'7J) to provide element indexing within the data code areas.

• lVIlN30 1:1 NOJ
(1' •
l Ji j

S ' ~
" . ., U __ , . _. __ _

2-18

•

•

Principles ot Operation

Code Area

The code area contains instruction code and program constants. Two
registers are associated with the Code Area'

P Register' The P (tor program) register Is the program counter. It
contains the 16-b!t P[O) relative address ot the current Instruction
plus one. P Is incremented by one tor each instruction executed so
that instructions are f e tched (and executed) from ascendIng memory
locatIons. To alter the sequence of program execution, the P Reg1ster
Is given a new settIng when a branch Is taken, a procedure or
s ubproc edure Is called, or an interrupt occurs.

I Reg ister' The r (tor Instruction) register conte Ins the machine
Ins truction currently be ing executed. This 16-blt register Is always
t illed with the Instruc tion In the code area pointed to by the P
Reg ister •

pco3 p<':LA"'I"'v-.
,.1)0 1.1 al" ' "Hi,,."'I"
.'>J'5.1'"R. t..TtO· J '\"0
(::...:. I!!'II,.';: c.u"1"'c=.Ct

[p Vt.<:\: ~'Tt:f" --<> 1=====1--
1 ... 1"T1"'U. S"'T 1\."1 ",V".A",...,C.
~"STe" 'Pc." A. T'''~
jII 0~I. .. u ,~ ", .. ~T'" ht'."rc<Je'I"INI
10l Pr(u-s.t"h

-, ~
C=.".~~:;:. =='1 - .. C '0:1" l .I===:;:::~

• .I I

""'en fr-'I\r- y I .. , \ j. _ ' ,', (AN 0
CONr-:OENTIAL

I
("'f<tt~ .. j," \"-.,,,..,~ c.."'\\~~
nO. c; t)"_r, t. " t!..J."'c..\.4.,· ... O
(J.'(' 10\ 1.t.1)....., ~G.

\ ~"ho..lf.\.\
~ u>lf.o\.>n"'coO':'''' \.'I"

2-19

•

•

Prine Iples of Operation

Data Area

The data area contains a program's variable data. The data area is
logically separated into three areas (two ot which are defined by
registers) •

GLobal Area' Data within the glotlfll area Is directly accessable by
any instruction In the program. The first word In the global area Is
defined as G[O].

local Areal Data within the local area Is known only (I.e., dlrecltly
accessable) to the currently executIng procedure. The local area Is
defined by the 16-blt L Register. The L (for local) register contains
the GrO} relative address at the current stack marker and the
beginning ot t his area.

Top-ot-stack (or sublocal) areal Data in the top-of-stack area i s
known only to the currently executing procedure. The top-of-stack
l ocation Is defined by the 16-blt 5 Register. The 5 (for stack)
register contains the G(O] rela ti ve of the top-of-st a ck element ..

Co Co" __ r-----, I
~,' ",;"'.. ~~~ :o;;~:~~,,~{~'C'I '';)v

~~"!"f... I'~ "T'"'\~ ('0')<.:. 1 :0,,:. :...

, .. ,'\." ~ .. >f,::
~_ *-.... -,. ,..;-'I,T "0
...... " .. ~~-_-: .,)','_ ." ,." 0:. ,. ~ , .~",T""

.'S " "c-:,:':""""-
C·j.;'· ,,)

\ ""­
hi"\ ...

-F'

I) 'h • N.'''-l....J ... -.) <-'" , 0
.. .. t"- ~ ... l:."''''''"T'-''' t.:.oC.lIL.: ~' r.
,· ... "1:.·13\,1'

. ' - .
:.. I , -"Trns

LJ i U \ - -.
\'HC, ~~:1:r\;1Y AND

CO:mDmTlAL
•

2- 20

• Principles of Operation

Addressing' Instructions that reference memory locations contain a
9-blt field for directly addressing the three logical areas that
comprise the data area. Five addressing mOdes are provided to
directly access these areas. They are'

•

• '

* 'G' Relative Mode· This mode accesses the first 256 locations in
the global area (0[0'255]). Bits 1.<8'15> are a positive offset from 0[01.

* 'L' Plus Relative' This mode accesses the first 12l:j words at a
procedure's local data area (LrO"27). 8its 1.<9"5> are a
POSitive offset trom the current L Register setting

* 'SO' Relative Mode. This mOde Is usable only by programs running
in privilaged mode. It provides direct access to the first 64
locations of the operating system's data area (5G(0'631) .. B1 ts
1.<10.15> are a positive offset from SO[Ol.

* 'L' Minus Relative. This mode accesses the data Just below the
local data area. This Area is used to tor passing parameters t o
the procedure having the current L Register se ttin,,]. 8i ts
I.<11'15> are a negative offset from the current L register settlfl<}
and provide access to the 31 words in the stack below the l oca l area (LC-31'0]).

* '5' Minus Relative. This mode accesses the data in the top-at-stack
areB. This area is USed for a subprocedureJs sUblocal data and tor
temporary storage of the register stack contents by the PUSH and
POP 1nstruct1ons. Bits 1.<'1"5> are a negative offset from the
current 5 register setting end provide access to the 31 words In
the top-of-stack area (5[-31'0]) •

,r"" J _

, - .
I ~ , ?JTERS

r "'r '''' 1-1' I\' ;Y A,~ ' D · '~ J(i \!:J ' l. \ 1'4

CO:mD:rHlAL
2-21

•

•

• i

•

Hc;.Hc1("i Ite "'e:~ I..''-C'':
I f'o,):s,. .. Hl)..<..""t"IC) \-\ \~ ~DD\C,... ,.. tl.o=.C\',

': 1 - ~ ' "'_\~'~' "'~<,. 1Q:o,t..[\ l\
.... c:.'tlo ~~\1o.)G.. ,",ooo.!. 6~O
C"f' ,- .. ~. - f' ~ct'\ 'B ; .. 5E:

Pr i nc iples of Operat1on

Gl..Oa" I...
to"''''

,-CoO 31J p,",,,,,,

- - - - - -

- - -

~""" , Ilor...,.. ...

L.C.1l .. ,1

~o. > ,,<
'S, o:.... r" A oLol.Po.. -''i' ',.'"'''' '~.

Any dIrectly addressable location can be used as an address pointer
(indirect reference) to another memory location . BIt 1.<0> specifIes
whether a memory location Is to be accessed directly or used as an
address . It 1.<0> Is a "Oil then L<7115> specify the actual location
(offset from the appropriate base regIster) of the word to be
accessed.

1,""1 - ~ "
.. , j -:; ; ,- JTERS

p,j\J D
COi~FlD~NTIAL

2 22

•

•

• T

PrIncIples ot OperatIon

""""', - -,----,

If 1.<0> Is a 11," then the dIrectly addressed word Is an address
pointer and Is used as the OeOJ relative address of the actus1 memory
location wanted. This means that. throu9h ind1rect1on, any location
In the data area can be accessed (G(O'65,5351).

•

R"ll " \ I . , I · ; .
[' ~~
, ,

t

•
1=1

I ~

,
" • , , , , ,

\'" ~~,-.c <> (~ ... ,» ur. "'f\\o@.
!'t".<t9,-,\,.",N ,~ " ' .1--~ ""1<­
c""""<-"''\~ 00: T"" O.R ... <."r(,.
,.f)o:lQ,f'J..~ .. r::. "I~~ p,0(. u~.,.o

I'ro!."" c .. co:],c..A.TI'iE. '" 0 .. ",,::<:;,
of'. ~""Q""H;;;'~ " 1':0 1"-1 T"'I.~
O' ... TI'- p,r..E ...

• TERS
, '/ ,A I\lO

COI~ td)EIH:AL

IN 01 ~,,-c:.:.,.

•

2-23

•

•

Principles ot Operation

Indexing' Three registers in the register stack (R[5.7J) can
for indexing_ Each instruction that references the data area
a tWo-bit field tor specifying the Index register to be used.
field corresponds to register stack elements as follows.

be used
conte Ins
The

I. <5'6> VALUE

o
1
2
3

INDEX REGI STER

no indexing
R[51
RI6J
R[71

When indexing Is specified, the address Is calculated In the normal
manner (I.e., direct or indIrect). Then the value contained In the
index regIster is added to the address to provIde the address of the
target cell. An index register can contain values from zero though
65,535 to provide DIRECT addressing to any location In the data areB.

A number ot instructions In the instructIon set deal with indexing and
index registers. They are'

ADRA'
SBRA'
ADAR.
SBAR'

Add Reg ister to A
Subtract Register trom A
Add A to a Register
Subtract A trom a
Register

O\V..a:: c.-r, IN oe.Y..<;,,~

•

ADX/I
LDXI'
LOX'
BOX'

-

Add to Index Immediate
Load Index Immediate
Load Index
Branch on Index

1 .. .---- .. I 1 .···T ."" ... 1 ... I'''O€'''- ..,,,, ..• ,,, _, ~ !TI"_~"-"" Cf!.t.L-.' _()'.e-CT .. ".,.. -~.~~,..... .. ~I ~ '-- ::.J

o ..,~ ~ ., $" , ,~ "

~n I IT I I I I I I I I I
/ '-v"

. - ;

~I .l r

• ~(')Q ... r.:.rlo..:>c.. ",,.., .. 1'0 •

.... ~ . .:::.o-:Tt<·. Or ... f

0" Me. ' .. D[. C.
I ~ «..~
;''''11:'-
~~~, 

, cRS 
" 0 •• 
• • 

CONFIDEfHlAL 2-24 



• 

• c .,. 

F" W Ii l,. . I 

CON FI Dc:rmft.L 

Principles ot Operetion 

-

- --t== 

1------1" u.:l 

2-25 



• 

• 

•• 

PrInciples of Operatton 

Register Stack 

The register stack Is where arithmetic computations are performed, and 
(except for COMW and COMB) where comparisons are made. The register 
stack consists of eight 16-bit registers (designated R[O'7J) and the 
register stack pOinter (RP). The register stack pointer Is a three-bit 
field In the E (environment) register. RP Is the register number of 
the top element In the register stack. 

Usually, elements In the stack are addressed i mplicitly. That is, an 
instruction operates on the top element (or elements) without being 
aware of the actual register(s) involved. The RP settIng is 
incremented when operands are loaded Into the register stack, 
decremented when arIthmetIc Is performed or results are stored. 

The empty state of the 
state Is also RP = 7. 
from 7 to O. 

register stack Is defined as RP = 7. The 
There Is no protection aQslnst rolling RP 

fuJI 
ov er 

The elements in the register stack are 
location with the current top element. 
itA It , the second from the top IIB", and 

, -roS 
'J II L l\ 

, l~i·!D 

ee, ,: . -' ~I.I iAL 

named as to their relative 
The top element 15 deSigna ted 

so on through IIHIt a 

2-26 



Principles of Operation 

• I I [ ! I I : I : Iii I I, I , 1 , I < .. "-C.,,, .. , ..... 

E~m ~~~'£ I ~ I 
- -_ . • R.C.TJ ~."."":.!M::c''-____________ J 

I I 1 Iii 

I I I : I I I I 1 1 I I ! 1,1 0 1' 1 H<C."TE' -----• LOI. "l.~ J 

fl P - -. . 

1I'\DD 

0 11' 1 111111 : 1 I' I, I ' I "- "=,,, ... 
-~ 

• " -, I 

I · - . I r. "1.1 D 
li\UII \IL_IIL\ / r\~ 

cn~1 [:1 [)FNTIAL 2- 27 



• 

• 

n'l ,,/'~j • 
-I: n, ' 

I I I I 

,,--

Principles ot Operation 

~p­

~ 

" •. '1','.1'·...,.........,' .- I I .. ~. _ ' .:- ~ 0 I , II , 

.. . • • 
I I fI ' I, ,·l 

m! -
-e-- - TOP 

,--- - ~C.""1 ~.--"::.:.-- -----------"-J - .-

I r l}-O ..... A~.L 
I ~ -' t-oPE f<t4o-)t) z... 

~. ... ~J 
,;- ,-- J 
. ..JL. , -iiTi-lis 

' '. I" . r\ r :'W-'-' ~\f 
"UI ,\._ .. AND 
CO; j 1-IiJErJTiAL 2 - 28 



• 

• 

Principles ot Operation 

Environment RegIster 
--------------------
The 16-blt E (tor environment) Re91ster mai ntains the CPU state ot the 
currently executln9 prQ9ram. The Individual bits and bit tlelds ot 
the E-Ueglster are continually reterenced and updated by the CPU 
herdware. The E Register contents are used (along with the contents 
ot the P and l registers) by the hardware to save the executing state 
of a program when 8 procedure Is invoked or when an interrupt occurs. 
The E-Reglster Is automatically restored to its previous state when 
the procedure or interrupt finishes. 

f"~\V' Q)" o.}.Oo..).'~I),t...o=.c.<"-t'); \ ~ t>,t\u ' u:.~ -' J I 
c..~ (e ... ~. -..),.c"",,), " ....... '\c~, ,. 'i;'I'''T«'M ~ 
t:>'S. (t:> ",-,Io", - ........ c:.e.)~ ol/ ,. US"f.~. \. S.1~T __ M 

Ii .<~> - 'T '-'Tit .... , Clt..l .... e.(..or). (j. ... c:.l'\. ... ~l& .. , \ ......... ,LM------....J 

e..<:<t> K...c:..c;.... ... G(."f ~\,., 

E.~fI"'::'''' ·o:;c.C$n"'D.,"O.vcO';)~ ,0 ... c.eL (~<;.o:. ,-~""u\ ) 
o \ ... c..c. e. (e6v. " to) -------' 
00 • c.c.G <.c..t:.e. ... T5I,. 'iJ ....... , ' 

E.<.~:'-S:> R. (.It.6.G'"'!.."'1L ~""A.O:.r:. ,.O,~.,.~I1..·)------------------' 

The bIts In the E Register have the followIng meanings. 

E.<5> c Privileged Mode (PRIV)' The PRIV bit when a "1M means that the 
program Is currently executIng In the privileged mode. A number of 
operatIons that have the potentIal for adversly a ffeeting the 
processor module if mlsued are deSignated privileged operatIons and 
can be executed only by programs executing In privileged mode. Some 
examples ot privileged operations are' sending data over an 
Interprocessor bu. (SEND), Initiating Input/output operations, calling 
privileged procedures, accessing system tables. Normally, only the 
operating system executes in privileged model privileged operations 
are pertonned on behalf of application programs by the operating 
system. 

Non-privileged programs can become privileged only by calling 
procedures deSignated as callable. (Callable procedures execute in 
privileged mode, but can be called by non-privileged procedures.) If 
a non-privileged procedure calls a callable procedure, the 
non-privileged state 1s restored when returning to the non-privileged 
procedure. In general, those instructions deSignated privileged can be 
executed only It the PRIV bl t In the E Register Is a "I". (Exectutlng 

• 
a privileged instruction or calling a privileged procedure when PRIV 
Is a 110" results In a trap to sn operating system trap handler). 

Tl":Sr:-.' - -- TERS 
PfWFKIL IHj~y AN D 2- 29 



• 
Principles of Operation 

The PRIV bit is set to a IIIII as a resul t of any the following 
conditions' 

* Cold load or reset 

* An interrupt occurring 

* Calling a procedUre designated "Callable" 

E.<6> = Dat. Space (OS). This b1t specifies the data eres to be 
accessed when a data reference is made. OS when "0" specifies the 
user date areal Upl specifies the system data area. (Programs 
executing in pr i v tleged mode can rna ke exp lic i t system de ta re ferences 
regardless of the state of the OS bit.) 

The OS btt is set to a "1" as a result of either of the following 
events occurring. 

* Cold Load 

* An interrupt occurring 

E.<7> = Code Space (CS)' This bit specifies the code area to be 
accessed when an instruction or code area constant is fetched. CS when 
"011 specifies the user code areal "1" specifies the system code area. 

• The CS bit is set to a "111 as a result of any of the following events 
occurring' 

* Cold Load 

* An interrupt occurring 

* Invoking a System Procedure ( SeAL) 

E.<tl> = Trap Enable CT)' The T bit specifies whether or not a trap 
(see Interrupts) is to occur if an overflow occurs or a divide with a 
divisor of zero is attempted. If T is a "1'1 and V (E.<07» becomes a 
III ", an interrupt to the overflow interrupt handler In the operating 
system occurs (see the Tandem 16 Programming Manual for possible 
recovery procedures). 

Generally, the T bit Is under 
However. application programs 
overflow conditions locally. 

control of the operating system. 
can control T if it is desired to 
The SETE Instruction Is used. 

handle 

E.<9> = Carry (K)I The K bit when 11111 indicates that a carry out of 
the high order bit position occurred when executing an arithmetic 
Instruction on a 16- or 32-blt operand. The state of the K bit 
reflects t he last arithmetic type instruction executed. The state of 
the K bit is also altered as the result of executing a scan 
instruction (.:iB(j or SBU ). 

'- ",,"-r~ 

. . 
H·! D II 

2- 30 



• 
Principles of Operation 

Two instructions are available for branching on the state of the carry 
bit. They are' 

BIC. Branch if carry BNoe. Branch if no carry 

E.<IO> = overtlow (V). The V btt if a "I" indicates that an overflow 
condItion occurred or a dIvide with a divisor of zero was attempted. 
Overtlow is generally associated with arithmetic operations on 16- and 
32-blt operands, overtlow also occurs In a lOry Instruction if the 
quotient can't be represented In 16 bIts. 

An instruction (BNOV' Branch it no oveflow) Is aval1ble for branching 
on t he state ot the overflow bit. 

E.<11'12> s Condition Code ( CC)' This two-bit field forms the 
condItion code. The condItion code generally reflects the outcome o f 
a computation, comparison, bus transfer, or input/output operatton. 
(The c ondition code is also used by the Tandem 16 File Manager to 
reflect the outcome of operations). 

The two bits t hat form the condition code are designatedl 

N = negative or numeric ( E.<II» and 

Z = zero or alphabetic ( E.<12» 

• The condition code has three states. They are' 

CCl = less than 
CCE = equa 1 to 
CCO = greater than 

= 10 
= 01 
s 00 

(N = I. 
(N :II 0, 
(N = 0, 

Z = 0) 
Z = I) 
Z = 0) 

More speCifically, the condition code is set as tollows. 

CClI 
CCE' 
CCG. 

COMPUTATION 
operand < 0 
operand. 0 
operand> 0 

COMPARISON 
opr I < opr2 
oprl &" opr2 
oprl > opr2 

BYTE TEST 
ASCII numeric 
ASCII alpha 
ASCII special 

BUS OR I/O 
Error 
Norma 1 
Abnormal 

For computation, the condition code reflects the value in a data area 
location, the top of the re9ister stack, or in an index register. The 
location reflected by the condition code depends on the last 
instruction executed (see section three tor particulars). For 
example, a simple program to add two numbers then store the result 
affects the condition code as tallows. 

! memory location 0[2) contains the value "5" 
! memory l ocation 0[3) contains the value 11- 5" 
lOAD G + 002 

sets the condition code to CCG (5 on the top of the register 
stack) 

LOAD G + 003 
~ . _ , . rsst~ the.. ,i' o~1tlon code to CCl (-5 on the top of the re"lster 

~j?~~"\J I tn~ 
r r . '. I ~ ~ I 
rl, "" .J 1.:\l O 2-31 

CO;\J~IDmTIAL 



• 

• 

• 

Principles ot Operation 

IAOO 
sets the condition code to CeE (0 on the top of the register 
stack) 

STOR G + 004 
does not change the condition code 

For comparisons, the condItion code Is set accordIng to the value of 
the operands being compared. In the table above, oprl reters to the 
first element loaded onto the register stack (I.e., the second element 
from the top of the stack), opr2 refers to the top element in the 
register stack. When two arrays are compared by a COMrt or COMW 
instruction, oprl refers to the element in the destInation array. opr2 
reters to the source array. 

For byte test, the condItIon code Is set accordIng to blts.<SI15> of 
the operand on the top of the register stack when ei theT a 8TST (byte 
test), lOB (load byte), or a lBP (load byte trom program) Instruction 
is executed. A condition code of eeL indicates that an ASCII numerical 
character (i.e •• ItO. 1 •••.• 9 11 ) is on the top of the regsiter stack. 
CeE indicates an ASCII alphabetical character (i.e .• "a. b, ••• , Zll or 
IIA. S, ••• , ZII) eeo indicates an ASCII special character (i.e •• not 
numerical and not alphabetical). 

For conditIon code setting result trom inteprocessor bus communication 
see the interprocessor bus description elsewhere in this section and 
see the description of the SEND instruction in section three. For 
input/output, see the input/output channel descrition in this section 
and the EJO, 110, and HIIO instructions in section three. 

A number of instructions are available for branching on condi tion code 
values. They arel 

BGTR' Branch It COG 
BEul' Branch it CCE 
BGED. Branch It CCE or CCG 

BNED' Branch It CCl or CCG 
BLED. Branch It CCl or CCE 

Three instructions are available tor explicitly setting the condItIon 
code. They a re I 

CClI Set CCl 
CCE' Set CCE 
CCO. Set CCG 

E.<13.15> = Register Stack Pointer (RP), This three-bit tleld detlnes 
the current top element of the register stack. The value of RP is 
implicitly changed by instructions that operate on values on the top 
of the register stack. RP Is g enera lly incremented as instructions 
are executed to load operands into the register stack, decremente d 
when computations are performed or results stored. 

RP Is set to an initial value of seven (indicatIng an empty register 
stack) I'lhen any of the following events occurl 

'I DI"IJ* ,An Interrupt oCA/Jrrlng n .. Lt.' l , J • . 1 v, 1_1~0 

r ,~ ' 

l 

~ """\· ~· ~ '\I 

I ' I , d f' ~" D .. , ?-32 

1 



Pr1ne Iples of OperatIon 

~ * A procedure Is invoked 

~ 

RP Is set to 0 because ot a cold load. 

An instruction, STRP , is available tor explicitly setting the RP 
value. 

SETE Instruction. The SETE instruction is used to alter the E 
register contents. E.<8'15> can be set to any value desired , E.cOI7> 
are either cleared or left unchanged. This prevents non-privIleged 
pro9rams from becoming privileged and programs from becoming 
privileged and/or accessing system data. A similar mechanIsm 1s used 
to restore the E Register contents when a' procedure finIshes . 

• ... iiTRS 
. i'{ r~N D 

COj~FI UEf'HIA L 
2-33 



• 

• 

PrIncIples of Operation 

Procedures 

hhen a program Is wri tten, the progranvner separates the tuntian to be 
performed into executable blocks of instructions called procedures. A 
procedure can be written to perform an operatton as simple as adding 
two numbers or as complex as locating an entry In a data base. The 
power of procedures Is In the following tour items. 

* A procedure can be called into execution (invoked) from any poInt 
In a program 

* The caller' s envIronment 15 automatically saved by the hardware 
when a procedure Is called, restored by the hardware when the 
procedure finishes . 

* rlhen a procedure is called into execution it Is allocated a storage 
aTea called a local data areB. The local data area is known only 
to the executing procedure and is separate from other procedure"s 
local data areas (much like a program"s data area is known only to 
the executing program). 

... Parameters (or arguements) can be passed to a procedure for 
evaluation . The parameters can be actual operandS or can be 
addresses of operands • 

The code a rea is comprised of a 11 the procedures in the program and 
the procedure entry pOint table. (The procedure entry point table is 
a list of addresses of each procedure 1n the program.) 

•
... ' r, '- ", ' , "I 

• t •• ~ I 

. IT'- oS ' ,. \ 
¥ . 1 

", I {" J'O 
I I , .1 

COimDEIHIAL 2-34 



• 

f'CeI. __ r---- " 

- -I ~. -> 

~t ~m ~! 
Cl ___ - , 

1 

• 
P 'lt£) Co. 'go ~ l __ . !--~) 

~~"::'(.. ~ 

• 

~ 

P'U)t. d 1 
! 

~-

EJ 

Principles of Operat1 on 

Pt!'UC:(;J)v. c..~ €N."T(<'o' ?a ...... T T'\«'c......c 
<.,,~p) 

2- 3'> 



• 

• 

. ­
t-. 

PrincIples of Operation 

Procedure Call and Exit. Procedures are invoked using the peAL 
(procedure call) instruction. The peAL instruction contains a 
nine - btt field which is a positive offset from P[O) into the procedure 
entry point table. The field In the peAL Instruction points to the 
PEP entry that in turn pOints to the procedure to be executed . 

?"il-OCOt:'V\,.\!2..';' t.,'-...... ~ .... )\:) l~'l, l .,.... 

.c- O:l;: 0 ,..11>. 
"'I: :!. "- " ... \ole. l-

FJr Pt';'p 

f--'--- . 
~Pt)-= -

J , 
.,.O;-·()I'-ot"t'\.1ot 
.~ 'TO ... .; ~ .... '" 

(jJ c:1I'>. ... L .. '::O .. .... ~ ""-(1J - -

"~'~:-: r;~~l 
• . ........ - .. .'! -. .n 9 ~ .. "-..:.. I.,.~ ...... V 

---,I 'l.'''' I Ec r .. ~t:n .,~ -... t..'''"'' 
,,0.../\ '1I:c ...... _~ .... 

L c::~ ..... he..· ... ('_I:' ... 
"f'~ ... > 
"o.J~.~o.J"'.i...r: 

. ..... ~---. -- - - - .;e>c.olOL'l -..... ,.-". "-
f'C.:>C \:> 

I I D ..J.!ii ___ -= 

.,hen a procedure Is called. the caller's environment Is saved In a 
three-word stack marker . The stack narker 15 placed In the data area 
at the current top-of-stack location . 

A procedure returns to the caller by executing an EXIT instruction . 
The EXIT instruction uses the information saved in the stack marker to 
restore the caller's environment . 

Specl flcally, 
execution are 

the steps involved when a procedure Is called into 

-~f)S ... 
, _I \ 

.. ;-." 0 
• I -· 1. 

CUI~ FI DcNTlAL 2- 36 



• 

• 

e .. 
I ; . 

Principles ot Operation 

1. The current environment 1s saved in a three-word stack marker. The 
first word of the stack marker Is stored In the top-ot-stack 
location pointed to by the address In the S Register plus one. The 
stack marker contains the following informationl 

* The current P Register setting (the next instruction after the 
peAL> 

* The current E Register setting 

* The current L Reg Ister (the be9inning of the callerJs local 
da ta area) 

The 5 and L Reg1sters are then loaded with the GWl relat1ve 
address of the new top-ot-stack location (the third word of the 
stack marker) • 

-I 

n ,,- Col, ". 

~;.,"'"':- ... .. ~;.... ... - - - -, -- " ",.-~ ,., ., " "-----, • .... _ _ __ ;:0 

. I I;I~U 

C 4e<.e It. 'c 
c.e~..I~ ..,,1.,.'" 

1--:::;<=:1J I .. ,or.,"' ... ..:.:, - ..... 1__ Co 

Olf""'.~/ 
-r~ "h.!~-( .. O " ,l ,-" >l rCo 
" """'" If' -;:.'L .... a " .. " .. c.-.• _~' .::,".,'"......,.. 

J 

COI~FIDErmAL 
2 -37 



• 

• 

• 

Principles of Opera tion 

2. The prO] relative address of the procedure to be executed Is 
obtained from the PEP table entry pOinted to by the nine-bit field 
In the peAL instruction. This address Is put In the P (program 
counter) register so that the next instruction executed will be 
the first instruction of the called procedure. 

3. The instructions comprising the procedure are executed. The last 
instruction executed 15 an EXIT instruction. 

4. The EXIT instruction uses the three-word stack marker to restore 
the caller's environment. Spec! fleally 

'- t - " 

* The P Register Is set with the P Register value saved In the 
stack marker at L{-2J. The next instruction executed 15 the 
one followinQ the peAL instruction. 

* The E Register Is restored from parts (see drawing) ot the E 
Register value saved in the register stack at L(-l I. 

* The L Re9ister is restored 
the stack marker at UOJ. 
ca ller's local data area . 

trom the L Register value 
The L Register now points 

saved In 
to the 

,~ '"\ .. 
f>.\ . 

. --.., , ." " 

TERS 
f.r~ D 

C" - '"":""/-' rL I -, •. -1.), . I • • ..!t.1 .;;\ 
2-3~ 



• E.¥I T 

• 

I ! -'- * 

• " 

\-.. 0. .' , I 
.: . , I' 

I •• ~ .• , , : I • I 

Principles of Operat i on 

o .,. 'OJ ''!o-

I, , 01, I· I' I ~ I 'I "'! Dfi,rl-t'flt-J." '': C'"' .. r ~) t, ...... ~ T'''''-; rIC"·} t=<!)Lft,tr 

,~----

T~RS 
AN D 

- _._--

_<d ... c.~ ... 
'7_J 
, , 

4s- .... n .,r.-11 

~r-: 1i} 
l 

/ 

-r" .. ~·'-u~J ""I<~ 1'I,u.t' t!JL 
:i"~~"""'C; C"(GL" ... t ,-
ewt-, ~.J" M,,, • . 

C ... (. ... ol"'~ , • .!...-....~.,~I( 1 <: .. ~ c.e, " • .or:~<Y~"rlt ot'.. -
.e ...... H~·"-t J c,,'-U!: .. 'S ~ 

COil r:i Dtr;TIP,L 2- 39 



Principles of Operation 

4It 5. The instruction following the peAL instruction executes. 

4It 

To protect the system from misuse, procedures are classIfied according 
to who Is eleglble to call them. The categories are' 

* Non- privIleged - These procedures are callable by any procedure tn 
the program . They execute In the same mode (I.e •• PRIV or 
non- PRIV) as the caller. 

* Callable -- These procedures are also callable by any procedure In 
the program but execute In PRIV mode (I.e., E.<5> = "I"). The 
callers mode Is restored when a callable procedure exits. 

* Privileged -- These procedures are callable only by procedures 
currently executing In PRIV mode. An ettempt by a non-privileged 
procedure to call a privileged procedure results In an intructlon 
fallure trap toan operating system trap handler. 

The mechanisms provide the needed protection, the first Is the 
procedure entry paint table, the other Is the way the E register Is 
restored when exiting a procedure. 

Two mechanisms provide the needed protection, the first Is the 
procedure entry paint table . the other Is the way the E register Is 
restored when exiting a procedure . 

The first two words in the PEP table describe the procedures in the 
code area . P(Ol is the PEP address of the first "callablel! procedure 
entered In the PEP table. P[ 1 l Is the PEP address of the first 
Ilprivileged il procedure entered in the PEP table. Any time a procedure 
is called, the follOWing check takes place. 

* the peAL PEP address (I.e., 1.<7'15» Is compared with PIOll If the 
PEP table address Is less than the value of PIOl then the called 
procedure is non-priVileged. 

* If PEP table address is equal to or greater than prO}. then the 
called procedure executes in PRIV mode and E.<5> is set to 11111. 

* Then, if the callIng procedure is not executing in PRIV mode, the 
PEP address Is compared with PIll. If the PEP address Is equal to 
or greater than P( I] an atempt 15 being made by a non- privileged 
procedure to call a privileged procedure. If thIS Is the case, an 
instruction fa llure trap occurs (and the program is probably 
aborted) • 

• ' " ~, " ~lRS 
,I P.ND 

CON FI OGJTlAL 2-40 



• 

• 

. ' 

i I.J 

Prine iples of Operatton 

.e. .. 

The E Register is restored from its current settIng and the value 
saved In the stack marker as tollows. 

* The PRIV and OS (data spece) bits are restored by ANDing the 
current E RegIster settIngs with the settings In the stack marker. 
This prevents non-prlvl1ed procedures from Inavertantly (or 
intentionally) becoming privileged (or accessing system data) by 
alter1ng the stack marker. 

* The CS (code space), T (traps enable), K (carry), V (overflow) bIts 
are restored from the stack marker. (CS Is restored trom the stack 
marker so that procedures in user code can be executed by the 
operating system by means of a DPel (dynamic procedure call) 
instruction. } 

* The CC (condItIon code) and RP (register poInter) are retained trom 
the current setting. 

local Data. Unlike the global data area which exists at all time (and 
A copy resides in the object tile on disc), the local data area tor a 
procedure exists only while the procedure is actually executing. The 
local variables are generated and initialized by instructions at the 
start of a procedure's code. Thus a procedure can be called any 
number of times (and in fact can call itself) and each call generates 
a fresh copy of the procedue's local data area • 

. • ! 

., TE RS 
MI D 
, , I 'l 

CONFIDENTIAL 2-41 



• 

• 

• " 

Prine !ples of Operation 

'-F A.J t'.U ..,-, t-JG ~oc. .q (.. v fl((l1~ &~ 

coo",- :b~Tl>-
J.., l.-l>.. fl,e....~'- • 

-- . ...... -. lttJ h. ,,·"'G. -. ..-£L! 
, .. -.. ., ......... ; , ..... ,... . 
... ~c. ..... <t ... ~. • J 

------- LC~ At... 1 .. '.,.' .. ~ I'L.t r .' 
T t<l 1! L.c>.- .. ...:. r- r:. ... T )o" .,. ............. 

p"'t:u:,.,<)..t,,,t.,' '~e ...... -c.J _ . - - -

-
Data In the local area 15 addressed relative to the current l Register 
settIng using the ' L' plus addressing mode . As shown In the drawing 
below , when a procedure Is called into executIon , the L Register Is 
given a new (higher) settIng above the preceding procedureJs local 
data aTea . The L Register and 5 RegIster, at the beglMlng of 
procedure execution , points to the current top-of- stack location 
(which Is the caller' s stack. marker) . All local addressing Is done 
relative to this point • 

The first few instructIons i n the pr ocedur e generate and initialize 
any local storage needed. Atter the local storage Is generated, the 5 
Register Is updated (using an ADDS or SETS instruction) so that it 
poin ts to the uppe r lim1 t at the loca 1 storage a rea . (Remember , tha t 
when a pr ocedure is cal l ed , the stack marker i s placed at the curr ent 5 
Register setting plus one. In this manner, a procedu r e-'s local data 
is always retained when it calls another procedure.) 

In summary , the way the a stack marker (wh i ch saves the callerJs 
envi r oment) points to the preceding stack: marKer , the L Registe r gets 
a new se ttlng when a procedure is in voked , and the local data areas 
are allocated and generated relative to the current L Reg i ster 
setting , results in a memory sta ck that keeps retaIns the envorinments 
at procedures in t he order executed. Each time a procedure EXITs , the 
precedIng procedure's environment is restored • 

( 

2-42 



• 

• 

Principles of Operation 

1t~G.,:;,:tG't. ,~~ :. .... r.~" I"I .. , ' .... ,,~-
c 

_ Cd': as J 
;r , , , 

/ ~t..o~,..'--
, -- - - \"CClo-:l 

, 
- , 

, 
- , 

- ~- - ~·C",.:l , 
/-_ . . - , , , 

~ ' -- , , 
, , 

Pr:tOC .. ". ,...~ -T(,;'G':;:'"l~ ---L ,. _ _ _ _ , . .. ----~ 

1 " 
.' . 

, , L~ c: ....... ,. ' \ • . .,. , 
~F--~;;: j- , ' \ -

I \ 
'V~-··-· '::: C':;\;:eX' -- ~ 

?9'.:'K b '" ~--<:: .. : :-~ - t-- ~.(.\( ;,..: - -i - t t.. \( ... -o:;.':;lt' I ~ "''''R''~ -Ll:.al 

l~"·"-·· 
, - , ~ ..... ~ :--s-.~ q.;;;T'l'k'"' .... 

~-~~., 
----_ .... ,-, 

(....o.!Ic...A.. ..... 

o A., '" 

@:Tt • .:;,!.l'..,c:! • - - -

0 , , , 

The 'L' plus addressing mode Is used to access data In the local data 
area . As illustrated, this mode can access local data directly, or can 
use the direct address as an address pointer (indexing Is also 
poss ibl e) . 

-"S : .. ,; 
,ilJ 0 

CONF:iJENTIAL 
., \ 1 

- I . -. 
2-43 



• 

• 

• 1 

ACC.eS.::'l..x:.. " ?«-oceD,,' t.e:;, 
DAT A. u~-':'G- ,<.1(;' • (.... i>u..o..,., 
R,OOIlZ....e.. ... ':.,Io.lc. kOO~ 

to. "00'1 

LOC.A.L 

.6 "I it .. '" " \) '\ , .. ,~ 

Principles of Operatton 

c ! Co c.-u:> 

80=! ff .. L" ,,:,,:1, : .. : "'! 
,. ........... ,. D" "Sa:, 

_____ LC..r:l - ---<1'-1 
Q ,.. DC • .A.~!:.""G 
~ ..... 00 .. 

• < 
~ 

L ·OI O,I 

D3U 1 
+ , 
• • , 
< • • T 

·c "'J,. ... ~ 
"'ot)~...x:. 
1"\00 .. 

1 ~~I-

c-~ 

- .. ;" I~ 

The top-ot-stack area 1s addressable using the 'Sol minus addressIng 
mode. This provides direct access to the 31 locations below the 
current 5 Register settIng (1.e. t S(-31 'OJ>. -'Sol minus addressIng Is 
used to access a sub procedUres sublocal Stoag8 area (8 subprocedure Is 
similar to a procedure but has limited local storage). 

The top-ot-stack area can be addressed implicitly using a PUSH 
instruction. The PUSH instruction is used for temporary storage of 
the register stack contents, usually prior to callIng a procedure. 
Ilhen the PUSH instruction is executed, the 5 Register setting is 
incremented by the number of words pushed. The POP instruction is 
used to restore the register stack, then decrement the S Register 
setting accordingly. A part of B program to save the register stack, 
invoke.a procedure, then restore the register stack might look likel 

PUSH saves the register stack 
peAL ! ca 11s a ,..procedure 
POP ! res~~r~0,",he register stack. 

f \1- 'D I UII'!_ .i ... 1 Id~ 2-44 

( j-' --: F: o EfliTlAL 



• 

• 

T,· · 
PR( :. 

r" 

Prine Iples ot operation 

c;C02l":l-

D 
\ 

6CnOI'1_F·,-, ~i-

I 

''50' MIVV. .... 

So -01'1 - L.c..t:l - t--!.o-' 
C) , 9. '\ 'n 'I I). \'\ ,01 ,,.. 

~~\I~)"~/ ~!·~I'~~·~I~·!~~'~'I~,gI0~I~~j·~ 
• · < • < 
~ 

~·oa'S, l.. 

.~' ,..,o,jU-~ 01= .. ..1&,.-
ADO ... ~'Hr~ t..-z. ... ) 
.., 00"-

[!l)~'- t·, ·, 1,1·+·"1., \" _____ 
t ~ ~ . .r----' '" _ _ -. ~ ___ ,_ 

. .,.' "" ... " ",- "" ... " .. T S .... • ...... - '-'0' I 
t '" 'C> OIt.C.S 
... """OE.. • • • < , ,. 

"'..,..,\\olCo. Ii'-{"_H '-' .... rr~ -, n -. ~~ 
"TO~_o"_ .. _ ........ ~""- c.!. ,'N.e~e:.il.!:.~~) 

q,.~,s ""~..I_ 0;;"l1'.<"'1:-

5ef--
O:)F~""Tt .. G. ~\...6''''''\CH''O:: Fc:.O,", 1"1.1(; 
r e I" ""~ --. -rA'- "' __ (-. O ~' . ""~~.:.~) 

- I 
I I 
I I 

-:. ltE(;.tS;'jCt,1'C, f:Z:!:l::;:::~ I ~\cn.. 1-'SC.fS::r-~ E ~~ c;.L110z...J 
OO;:"'~c...~ To.·OC-S.'A<"<... 
'-0<. ,..,.\O~ 

'''01 

2 -45 



• 

• 

Principles ot Operation 

Parameters. Parameters are PlIssed to a procedure In the area Just 
below the caller's stack marker. Naturally. there must be coordInation 
between the caller and the called when passing parameters. The caller 
must know the order In which a procedure expects parameters, whether a 
parameter Is to be an actual operand eea lIed a "value" parameter) or 
an address pointer (called a Itreference " parameter). 

BetoTe the caller invokes a procedure, the parameters are prepared In 
the register stack. The actual operands (tor value parameters) and 
the addresses of operands (tor reference parameters) are loaded into 
the regIster stack In the order required by the procedure being 
called. The address ot a reference parameter is obtained by executin9 
an LAOR (load address) instruction (the LADR instruction provides the 
0(0] relative address of 8 variable). The parameters prepared in the 
register stack are load on the top of the memory stack by executing a 
PUSH instruction (which increments the S Register accordingly) • 

, 
, , -, - , - 'I P,N D 

" . "- "'j'-IAL LJUih lUti : " 2-46 



• 

• 

•• j 

PU ". 
I I' . . 

t>R:C>c.. b (Pl.,Pl.,f~, pl./, ps) 
INT <ri, .?2.~ -t>'\, "\"u, - rS'"; 11"' .. (~,tl\l:.I' 

C f'U .. b (M , oJ, ......" )t J 'i I ~ ) ; 

.' 

, 

'"f"\I~ c.o..,.:-;. G."'N.e1"t-'TE:~ 
IN < ..... ~ ~.;::. c:... ..... t..- ....... ~..,. 

~,,, C ... _Oc:t1 - W',.·<:..~TE..Jr.. , 
:'''''-A~ t<.. 

L."'tI\~ G.OII,'l , , 
LoI,tllC. L -00')11:_ ~ . ...'.J>\;---= 
LjO,OI\ I.- +<,,0'1 . _I_~O~_ _ - LOS' 
L .... O~ C 'onh, I -~-o!o"\ --

:'101-
L"1'ft ';i-o.,O 

Pur;"" gS 

Pc. "'l.. " , 

':.:i, ll. 

, , 
• I 

J 

I 
I 

I 
1 

\ 
\ 

I 

/ 
I 

I 

{ 

(' ""~'''CP1T I A L 

Principles of Operation 

-,';'\'1"---1 -

Got: 1"101') - ~.;::====~ __ , 

1
""·""·" "To < .... > 
,.,..c.c..oc... 
'I A..,."." 

11'1'- .... ; 
Lt.,:J C.C.2.)$') 

t====l~-' 

2- 47 



• 

• 

PrincIples of Operatton 

After the parameters are loaded onto the memory stack. a peAL 
instruction Is executed. peAL causes the caller~s three-word stack 
marker to be placed at the current 5 regster setting plus one (Just 
a bove the parameters) and the L Register and 5 Register to be given a 
new sett1ng . The parameters are now accessed by the called procedure 
using the 'L' minus addressIng mode. This mode provides access to the 
31 locations Just below the current l reg ister setting (L[-31'OJlI 
Lf-2rO] are used by the caller~s stack marker. rt value parameters 
are passed, they are accessed directly. If reference parameters are 
pa ssed t they are accessed ind1rectly. Indexing In either mode Is 
p e r mi tted. 

Acces:,.I"-t(,. 1\ D~t'I(,..f._\)t l ff-'=­
P A Il."Me'e-_~ t l ~1 ""<_ , iJ. ~ 

' c 7-\'I...\.O~;. "' \)t')~~'5.I-:l(. ""'o,H 

L_ao~ 

• , ~ 0' I~ .. U ,., 

RXl-rry. '11&!~~r\ 
t I ' . 
I) 'L' " "'U-:" 
, "1)0"1":':"\6 
~ ..... Ol;)~ , 
~ 

L. -t:>O·' i ~ 

~ urr""'--'I ,-- --;-,-. -; , . ~ 
1 , 
" , 

< 

• 
v • 
• • • < 
~ 

. " '1 . , ( ' 

.~ ..1.\. 

~---~ 
'0.; ,..,' ..... 1,.11. O"f>~r 
,. OOt'l-.":i\""" 
..... ..;:Nc 

,.,tlo· .. _-.:.,..o-:.c .. 
Mt)O~ 

, . 
\ 

t~,. t,_ 

."'~ 
"'---j 

! 
(SoD) __ 1-_'-

[
...I r' ...... 4. -. I 

I. ... •• , N!D 
CO I'J FIIJEf'mAL 

2- 48 



• 

• 
f',e"T(L<,. ;>6.~c:op.t1, .... c_ ~C>t\6. Q"'C.It"'''IO\-.lo''''~ 

T"'<!:. a.~.:...,..6:1C. :;,,,,,,,._( "'OI\'IT"I~!>.: 

~f' ~-",~, o;:.,z. 
-~ ... "'(.<0:.. .,. 

- -

PrIncIples of OperatIon 

6(:.4!;:l. ,---..,_ 

.",1 -l===ll 

GOo'lo,:l-

c;;.c no!:} 

C:.C1..u~t j 

Go C.~IC>:l 
.. LC.·>!o~ 

L (.-"'I:l 
LC-c.::J 
L.c..~;:!. 

L("U 
-LC-l:l 

, ' : " 

II , , -, 
I 
I , 

I 
I 
i 
I , 
1 , , 
1 

I 1 

. '" , 

. ,.,. -." -!r.R~ 
F ;;!J";.L.,' ';'" :-c, , • ..,-,--/7": . .k

JO
l!.l----------------' 

• ,':" ' I, Ii dl' 
.r f1 EA/TIAL 2 - 49 



• 

• 

Principles of Operation 

Procedures can be written that return a value to the caller via the 
register stack. This Is shown In the following Illustration. 

HOW f\. Vltt'Ct:..I):"I~t::.. ?o.i.-"t.!""_~:, 1\ 'ii\lUI.:. 1"0 ""'lE.. 
C""U . ...E;R. VIA '~L:; 'RE.C.L': Tee :. rAIi::.":" 

IN,. 21- L ~1c>\:' •.• ..1 .\-0:.\0-... ·..\.10.: ..... 

1 ... ,- fOROe:... ..... ~ ... H (co I h); 
\'-1.1 ...... , ~ .. 

n£.C. ... ' '" 
Re...'LI. R~ a..J.~ j 

E'4.D; 

c:.. tu.:l _ ,---, 

L't)'I. oo~ 
\..t':o't..OO"!. 

9'l.:'~ r ('>C""'- .. <,. • ...\+ 
, 1-~ I\,t)OS_ ooC;' 

'S."TO". .:..'- . O(."I'S 

._-

-

•• '''1 T ~: 

tt~c,.. - .... .:'t._ 
c t-c...<-QJ(.. 

. 0 • • 
~ - '- ....... :. 

~ . ,. :'"'1 .r -'/ AND 
COd , ~ . UC. i j TIAL 

2-50 



• 

• 

• I. , 
-, 

Principles of Operation 

LOGICAL MEMORY 

Log ical memory Is separated into two areasl the user area and the 
s ystem area. The user area Is defined as the currently active 
a pplIcat10n progra m. the system area Is defined as the Tandem 16 
operat1ng system (T/T05). (A number of applIcat10n programs can be 
running In a processor module, but only one Is actl~e.) 

Two bIts In the E Register, the OS and CS bIts, define the current 
environment. The OS (data space) btt defines where data references are 
made . Generally, this indicates whether processor 15 executing on 
behalf ot a user (OS = 110 11 ) or the operatIng system (OS = "ItI). The CS 
(code s pace ) btt defines whether instructions are executed trom the 
use r area ( CS = " 0") or the system area (CS I: 111"). Operating system 
pr oc edur e s that are called on behalf of a u~er, execute with OS set to 
"0 11 (indica ting user da ta) and CS set to II 1" (indica t1ng system code). 

~.\t ..... ·~\ r, .... €'<...-•• ....a, I....x:. 
""/1 It'" ,'.., '01.) l'o'C._tf.. t\ ....--_._--

u:;.t.: 1V 

t:o,kro\. 

"'v. )o 
(t:. .. ...... ,'\ 

• 

, 
I 

I 
I 
• 

I 
i 

0. S,"'K 
or.:. ",bE 
~\:'£ .... 
r~ ... ,,-,.,i') 

" 

-, 

t------!.l--- -- 0-

'5.-< '!:a,"'\"t:."'" II 
~ ,..r;... 

"\!t"~ I 
(I,." I:~i'\ , 

, 

,J 

c

l
----; 

I I 
I 

IT t t· FFr~3 rl~! ... J .. \'7--T;T: , , 
(> U!.E.:'t O'':'T'\ II,\' !;:)., (I...\~q ~ __ ,,,c ... ) - ....... 1.. t:I;',,~ "f'..\'"·~Vlit -':"': ,.~...= '~trlt-1, ..... 

-r .. ,-. "1' .... ~ .••. " .... ~ -r .. ,," .... " I!".,- 0" "T,.,; \!. ~""'''4'TC':~ ' -. ~f.b" f!YCe, P1' 
W~f''-J A c)l.~"t''''' =,,"'':T~ t),j.T,t. 'l",P!i!:"'''''C'' ,=- ..... \Ot= 

1.. :, ... ....... ", .. ':."~ l. "'~:!l'- (~~' • • (." ".*I .. <"t •. ,- .... '-4 Dt.TIl, "' ... "." •• ' . , ..... -; /tfl."" "'l.T,""" 
... 1'4 .... "' ... , ......... '·~ ... 1 'T'I~ .". '\\,"'1 ~,,, r, . .., ~ ."t.4" ........ t·r ,~.,. /:>Y ... 'I.I"'N 
,. .. 1!;"'Pur:,.,. -='''0;,.''(''', I)"'" "";'I''''V~\''''''' ,~. ,.A..,,;:. r.I'" .. .,' ..... {) t'I~' ... ,\ ... 
f' ... n° ..... , 1-. ":"., 1 .... ni) • .,.:-, • .l,,·,v. "'-t. t)"''1~ '"((O=fO'.£' .... 'f:t~ -.::.(.-: Ao . -· • .., ~ 
, .. ,,<.o(,(o.tl·'::. ""-rt:'r:.'P""r~"o<.. r..~S Tt., ......... '·. " ' 0"-:. ""I) L't:> .. '~":v'-'f'L· 
.... , ..... ",·Yo; ~('~ • •• ff r.~ -rIle;; -::, ..... T ......... OAT,! A,l~" 

::J- u-... ~O( ~ ..... r>('" .... ,,"'10.. . *'T"\'''i. ... ,,,,,- (':,..oJ".~·" ... ·o T , UI ""'\1'/:· . .. ",,--.., (;')01.."<"\' -':'''''''', 
I\"~l"''''" ,' .. 1" .. ~"" ..... ,,\ Ill ... \. "",o ll.- "-OLe,", V~t. ,,, •• "00'. _ .... c ..... "til' ~ . 
....... (1 ,'- ....... c:.-_ .. o,~ ,r- '1' •• (2 '" V"'C-~'-:-,c'l'" • "G" 

" ~ ... -n ... ,.. '-'_'" ....... , 
'\U "<-':-~' ,. , •• ;.., \. 

" (\ , , 
J 

j., 'J AldD 
. • I j \ 1 \I 

, I 

,. ...... ,-. "v.,j C"~,"'4 " • ..., ..... ,: 
',v., .. -_·. ~~";'S'" '-",' ,..". , - '" " ... 

...... 9.",,,0,,,. ,f', ':,. ~i'E'" 
\ ,.t.-'- ("-. ;:"'1 ~,,, 

2-51 



• 

• 

•• 

PrIncIples of OperatIon 

CALLI NO OPERA TJ NG SYSTEM PROCEDURES F ROM THE USER ENV IRONMENT 

Two features permits the operating system procedures to be called and 
executed as etficienlty as a program's own proceduresJ the SCAl 
(system procedure call) instruction and the "5GJ relative addressing 
mode. 

"'hen an application program calls an operatIng system procedure, an 
SCAl instruction Is executed. Executing an SCAl instruction places a 
three-word stack marker on the top of the user stack and moves land 5 
In the same manner as a peAL instruction (I.e., allocates new local 
storage). However, the the system Procedure Entry Point table (PEP) 
15 used t.o determine the procedure's startIng address and the CS bit 
In the E RegIster Is set to "1" so that instructions will be executed 
from the system code area. Note that the OS bit remains a "Oil so that 
the system procedure useS the user data area for its local storage. 

When the system procedure finishes, the usual EXIT instruction is 
executed. The CS bit is restored from the stack. marker so that the 
next instruction is executed from the user code area • 

-.' 'T r:-nS 
:L. I\ 

~, .- d ••• j ,.,;,)0 
. -" '-In~NT/AL 2-52 



1 

• 

I \'«.oc ., 
, 

C~UL P~~D-i(=-___ ·:l:; _____ ~~~~~~ ~e .... ,,- ... , 

I 
I 
I 
----

• 
".~.:; cV ... , 
' ..... "",,,. ......:..... 

J .... 

I 
~i--I,...--I 

• :-;-iRS 
'>l If"> 

UI : .. _.1 ",1 tllHJ 

r::" -'.-.- r-1\ li 1"L 

PrincIples ot Operation 

I 
I / 

I 
I 

/ 
I , 

I 
I , 
~ ... :..,.o,...,. 
"". 

/ 
/ 

/ 

/ 
/ 

/ 

/ / 
/ / 

/ 

/ 
/ / 

/ 
/ 

/ 
/ 

I I / 

..... Potoc:c.ouol4..s. 
~"'II-":"''''''' '' (. '1.1 ....... w,ut .... ,.." 
t'lot:oiL '" .. " ....... "'T .. ~ ~E.o.:. 
cC .. ".~ ... r"eJJ'T' c ... 101 
IIC.C. .. ::'''' t. ..... fr'" ... .... 1> 
... ~ 1,.o.>00L.(. .... ~ U !wZr::: 
n;>..,.. ... 

l 

/ 

"" ...... Efea. ... 
TO-",~ 

2-53 



• 

• 

t.. 

Principles of Operation 

If the system procedure must access the system data area it Is 
designated "callable" (50 that it can be called the non-privileged 
application program) and executes In privileged mode. Executing In 
prl vlleged mode permi ts the procedure to malee use of the "SGN 
addressIng mode . The 'SO' mode provides access to the system data 
area (and. therefore any system tables) while In the user environment 
(DS ;: "0 11 ). 

l~l tr, -~ .... '. 1 , .! \ \ t1'o .-, <". ~ \ '"' I""i -,'r -=---..c, 
.:> , • . :: 
I ... i)~,... ... ::-.";. ,_, -;" 

: V o tie.. 

< , 

'7T'-.,...-
- . . "'"'-., -

I , 
" o , 
< , 
< , 

_ ~c;.I:.O.J -1 
------........ U~C'l:J. ->-. --,-_--1 

I 
, 

I , 

~xecutln9 In privileged mode while In the user environment also means 
that data can be moved (usIng a M()VrI oT MOVe) instruction between the 
USer data area and the system data area. This is the method used by 
system procedur~cwhen transferring data between the user data stack 

• and the F 110 Syste)n. 
n r ." . " 
~ /'''' .' , .. Ii' f,,~D 

--I" , 
2 - 54 



Principles of operation 

~ SYSTEM TABLES 

~ 

The following locations In the system data area are tables known to 
the hardware. 

SG [~6oo'%6771 is the System Interrupt Vector. This table contains 16 
four-word entries' each entry defines the executing environment tor one 
of the 16 operating system interrupt handlers (see Interrupts). 

SG[%7oo'%777] is the Bus Receive Table. This table conteins 32 
entries correspondIng to two buses trom each at 16 processors. Each 
entry decrlbes the number of words expected and where the system data 
location where the data Is to be stored (see Interprocessor Bus). 

SG[~IOOO ' %1777 1 Is the [/0 Control Table. This table contains up to 
256 entries correspondln9 to the 32 controllers with up to eight un its 
each that can be connected to an 1/0 channel. Each entry describes 
the number of bytes to be transferred and the system data location 
where the data trans fer takes place (see Input/Output Channel). 

~~.€.,..... 

~ .... .,. ..... 
t)Gi 00.C': IO."T'1Ii:Oo l"\E.hOQ..'"\ ~CATI().....:.l 

I 
-:.& t:.~::l 

I 
~,,~.~ 1 

S"c~t:~<e;,.oo"l 

""'''t'lAlQct~s. 
("I w. .. ",o~ - , 'fo.!,.~C.2..l;!T S. 

" 1l>l"'«"IIt.<;') vt!.c. ... Q"l I ,,.,'v) 

sc::.c.-",,'"100::l--, 

1 c:,. .. ......,oct I)~ eQ." 

(=> ¥oJlOV..;)lI. - - R.a;. c.l 'I.< o! , 
.,. ,..l!.U!"_ 

.~ a-nt..l.Ol.":',\ (e..~,.j I 
I 
1 

'!:t;. C. '7_ 1000) 

<;14 .....:.or.t:I'S. -
I~ ..,<:,.IIo!Q C$:) - '1."9",1 
c.~ .,..;)o .. ~" ... 
.::>-~ v."TItiU-) 

eJ'T;>..I., -
CO'-l.-rt."""-

.,. ... &c... ... 

CLo~\ 

JErI/I LC,1If'U fERS -! ':C.t.:. c.1'_ 1111 ') 

,I "nf)'-- - "",;\f , ... : ~ 
,." - ,,- r I j \ I .. U PI . 
CONFIDENTIAL 2- 55 



• 

• 

• 

PrIncIples of OperatIon 

INTERRUPTS 

The interrupt system caUSes a transfer at control to a specific 
location In the operating system (called an interrupt handler) upon 
the occurrence of any at the following events. 

(0) Power On / Reset 
(I) Uncorrectable Memory Error 
(2) Map ParIty Error 
(3) undefIned 
(4) InstructIon Fellure 
(5) Stack Overflow 
(5) Pege Faul t 
(1) Arl thenetlc Overflow or DivIde by Zero 
(8) Power Fall 
(9) Correctable Memory Error 

(10) HIgh-prIority I/O 
(11) X-bus ReceIve Completion 
(12) V-bus Receive Completion 
(13) Interval Clock 
( 14) Standa rd 110 
(15) DIspatcher 

Generally, when an interrupt occurs the interrupted environment Is 
saved in an interrupt stack marker. An operating system interrupt 
handler executes to process the particular interrupt. Then an IXIT 
(interrupt exit) instruction Is executed to restore the interrupted 
environment. 

Two registers aTe associated with Interrupts' the J6-bit INT register 
end the 16-blt MASK regIster. Each bIt the INT end MASK regIsters 
corresponds to one ot the 16 possible interrupt conditions. The INT 
register is used to flag that an interrupt condi tion occurred 
(Interrupt pendIng>! the MASK regIster Is used by the operatIng system 
to control when a particular interrupt type is allowed. MASK.<O.7> 
are always set to · rfl~S>0 that interrupt types zero through SeVen 

h\O') I\ ;~ 1.1,;,( I >lW 
CONFIDENTIAl 

2-56 



• 

• 

• 

Principles of OperatIon 

cannot be prevented. 

I l , 
j' "~I" '7 .. ..... , ... , . \ t \ 

~ - .. 
~ I I I I 

t ; ; 

An interrupt occurs when an interrupt condItion Is detected, settIng 
an INT register bit, and the corresponding bit In the MASK register Is 
s 11111. Interrupts normally occur at the end of an instruction except 
that Interrupt types one through six may prematurely terminate an 
InstructIon. Also, if an interrupt condition occurs and the 
correspondIng MASK btt is a "0", the interrupt Is deferred until the 
MASK btt is set to a 111". AddItionally, if two or more interrupt 
condItions occur simultaneously, and both have the correspond MASK 
register b1ts set, the interrupt type with the lowest number takes 
precedence (the other Is deferred until the interupt handler finishes 
executing). 

Each event has a co rresponding entry in the System Interrupt Vector 
(SIV). The SIV, which Is Initialized by the operating system, detlnes 
the executing envIronment for each of the 16 operatIng system 
Interrupt handlers. The SIV begins at system data location %600 and 
contains 16 4-word entries I 

. - . - ,. --:-RS 
,.;w 

CONJInf::NTlAL 
2-57 



• 

• 

• , • I 

Prine 1ples of Operat1on 

1"'"'Tri ~_ lt .. 
..... "" ....... .,:.,' 

! 

, 

, 

4 

S 

Co 

., 

" 
.. 

•• 

" 
., 

. .,. 
" 
« 

S '-(-ST'li"" 
Dr..., II 

~ c_ C-.4,-o...,:l f--=.::.:...:..c_j 
~_- . _ __ ~ \,OW<o.': r->. I "E~."_f 

--:~---~ t ' .... ,c: ... RIQicc:."r ... -.~,·~ M;;"'MY #o«~ 
-_.._ I 

- ' y (~CoI'I:! - --'.-

_ ~ U"'P"""~~':) 

':.C" ... [t: ~") ..... 1 f..- _ ._.-.....,.... ( 
> 1""""",--,1"1101-.) ~"".\".u.rU' 

( ;,.,. ... c:.c. C'W'.?KF ... ~ ..... 

, 

;> _=-- ~ ~ " .. " .. ,-.,.,.'c O"fOf(l'U:'\N 
~C..C ,::..c. ... '1.1 ~ 

:. .. C·" ,."'-' l - l.'}' \ ..... '-"4." (:"f..I\.­

::.!:..rZ.,."NJ 
CCOSt.:C-C-. "'i!.LF. ',"h o,{'-I E ," "<l 

,-~c",(.~.aF-: J 
':.c:.C='':':H) 

-
'----- , .. .. L":.c ' _', ~ I' 

I l' 

f ~~" it 
.. :"C-_"-""l 

~~ 
Spec 1f1cally. the SIV entry for 1nterrupt type 1 15' 

sa I %600 + 41 • %603 + 41) 

Each entry In the system interrupt vector contains the following 
informationt 

* The address In the system data area tor an interrupt handler's 
local storage (stack). These local storage areas are shared by 
Interrupt handl~~S that can~t be active at the same time • 

~hV I I.' '- ' 'L ., j. , ~D 
rW\!FIO~NTlI\'-

2-58 



• 

• 

• 

Principles of Operation 

* A masK value tor masking ott unwanted interrupts while en interrupt 
handler executes. The operating system usually masks off all 
interrupt types except zero through seven (which can't be masked 
off) and types eight (power falll and ten (high priority 1/0 
comple tlon). 

The MASKI value In the SIV entry Is A~Ded with the current MASK 
register setting to derive an new setting. This permits nesting of 
Interrupts of different types. 

* The system code address ot the interrupt handler program 

• A location where an interrupt related parameter may be returned by 
the he rdwB re. 

When an interrupt occurs, the interrupted environment Is saved In an 
interrupt stack marker. The interrupt stack: marker Is located at Ll 
In the Interrrupt control stack. The Interrupt contains the following 
information. 

* The MASK register setting at the time of the Interrupt. 

* The S Regl ster setting at the time of the Interrupt. 

* The P Register setting at the time of the inte rrupt. 

* The E Register setting at the time of the Interrupt. 

* The L Register setting at the time of the interrupt. 

"7" " '1 [ r " ~r", :,T, ~DS 1, \1.,' i ., 

P " OI) ;~ " I' ,I "'0 II ,niL " ,:i OJ 

CONFIDENTiAL 2-59 



• 

• 

• - , I ,.. 

Principles of Operation 

.. y •• ~.'~' 
",-reo! ~<A" . .. ~. "'1c,· 
(s .... •. ~ ..... , 

~4 
t .... _ 

~ -I 
P.. I 

1---'-' ~'--I" .. ----' ,------------

" • 

"et''''f ~ 
'OIl\. ct ... '" 

I ..... " t><-"''':' 
;, "'<; ~ 

(t .••• ~,..tl 
t ..... _VI" ...... ) 

I 

• I 
I I L '-:- , 

lnte rrupt Sequence 

------------------

s,v ·r A&c.... t.~ [.:" . .,p,,. 
cn,-:=,JoJe"'4 ..,,,~ 1>l7'l!-~,_.I.'l 

""';I<I/)( <':"'" t"l'! '/~""'I'''''_''') 

[ 
I 
I 

I 
I . 

IhT'"<.;:>!.tvrT ::7,"". !'.H':j;:E-1l. 
{s,1o-",,<; TWt::. 1#7.':''',('.,17b·~ 

(' "''''/I(.J ... h~I..;) 

--- - ---
I N""ett~"'" ~') N-',,>K I . ,<; r~,~ lu,l, " ~ 

14I7~- ~,',J, c:) P ( .... ,. j) , 

, .... r6':{<.I,I r(.:~ < 
'N.,... .. r~I" rei';' ~ . - --- -

I 

'h ""r£1"I 
C;Otui 

' .. 4~ei' .. I .... 
~U"',t U' 
0:..00 c:: 

I 
I 

I 

I 
I , 
I , , 

Specifically, an interrupt is defined as (i is the Interrupt typell 

Vi .= inte rrupt parametert for interrupts I , 2, 6, 9, I I , 12 
e 1= E. 
E .= :1:3407. PRIV, DS, CS, RP=7 
SG [l!-41l! J .= (MASK,S, P, e t L) ; interrupt stack. ma rker 
S 1= L 1= l!. 
p - IF Pi. 

i."ii'cX~SKi ; , MkSK .= MASK 

! -- D' •• .. . j 

CONFIDENTitlL 2-60 



• 

• 

• 

Principles of Operation 

An example Is shown In the following illustratIon' 

1. An inte rrupt cond! ticn occurs (In this exe mpl e. the inte Tva 1 
clock) • 

2. The current instruction completes executing (note that some 
other interrupts may terminate an instruction prematurely) 

3. The PRIV (privileged mode), OS (data space), and CS (code 
space) bits in the E Register are set. This defines the 
Interrupt handler executing environment. 

4. The Interrupted environment (included the current MASK and S 
register settIngs) are saved in the location pointed to by Ll In 
the SIV entry for the interval clock (i.e., SG[%664). 

5. The Land S Register are set with the address of the interrupt 
handler's local data area. This is the value L1 in the SIV 
entry tor the Interva 1 clock. 

6. The P register is set with the address of the first instruction 
In the interval clock interrupt handler. The Is the value PI in 
the SIV entry for the interval clock. 

7. The MASKi value in the SIV entry is Aimed wi th the current MASK 
register setting to derive a new MASK register setting_ 

8. The first instruction of the interval clock interrupt handler 
executes. 

". '." "TCRS V ... ·",;- -J ~ L 

. I 
.. J 

CONFIDEfJTIAL 
2-61 



• 

• 

• I , -" 

I~~'-',)~' ''t') 

Cu,<~:r' ::, I ·.,. ... ' ·) 

L-:...'!- '=-- __ ...- ..... 

" ,; - " , 

(:J) '1I.~'flI\O: ... K":l 
C.O""'~ ,-€-... 

PRl rl~fi.:I:\:W AND 
r 

Principles of Operation 

'. (\) ,,,'f'~wl\l.. et..X~ , ..... " ...... , 

Itt,.. 1Z.e.=. '''I iii £.. ~ 
~ • .,.... '1 S I.. ., ~ ... .~ " ,~ ''''~ 

...:-:1 01 • !+l + I" ," "' :~ 1 4 1", 1'1,) 

'NT"~"' · " ~ "t') 
~\~"'e.~ "t. :='<j -. ...... ) 

Lac ... \.. .• 
~ ... ~ .. 

L :~.;-
... ~;:J..,~ 

• -'7~:' _ 

~ . 

~ 

2-62 



• 

• 

9. 

Principles of operation 

The interrupt handler runs to completIon (unless interrupt by an 
unMASKed Interupt typel. Then an IXIr instruction Is executed 
to return to the interrupted program . 

10. The interrupted environment saved In the interrupt stack marker 
(at L[O) 15 restored' The MASK , S, p . E, and L registers are 
returned to their pre-interrupt value. 

11a. If no interrupt is pending when the IXIT instruction finishes, 
program execution resumes at the point ot interruption. 

lib. If an interrupt is pending. the interrupt sequence Is repeated 
from step 1 using the appropriate SIV entry to set up the 
interrupt handlers environment • 

e ,._ ...... r,..,. 
l iLl i ', I 

" . '--"S 1 .'~j\ 

PI' ~ c,'''' . . '. . . 
I ."" ,U . , .... : J , 

2-63 



• 

• 

.-

'1o,.,~I ..... ;)'T..: 'b 
~ ..... \. d.. 

. -....-._.-

c:. ....... c. "'­
t .. 'TCi.Jtf .... n 
~ .... O(.k..:t 

(1) __ _ 

-- ~I C _ 

c: 

j: ITeDS 
-.I I 1_ • 

P'IJi 1\ . ' :-, 'j~I'-

CONFIDENTIAL 

J 

Principles of Operation 

-~" ... "'I)L, n t..:,,> 
C:t> t~~c..b""l [''h 

, ... '\ e- ~ . . ... '''' 
r 

IN , eu.c.,,,.-.ett. • 

r:-~':'f::> ~ ~ - ~l ... :,-";! ;"l~ ~T ~ ! 0 ~ Q 

. I 
MA<;.1t- flt;(;.rliE1" f 

~)\--="_.' __ '_C' ___ '.-,_' __ \"1_1~ .:..~~ 
I 

\ t4.o!<.l2...t ..... 'T(;'\l • 0" ... .. 

(.. .:~net (;1~> 
..q. ~ ,"'7,. 

2-64 



Principles of Operation 

~ Interrupt Types 

~ 

-------------
Following are descript10ns of Bach of the individual interrupts. 

(0) Power On (S[V entry at SG[%600»' This interrupt occurs when 
power is applied following a power failure when memory Is In 8 valid 
state. There Is no parameter for this interrupt. 

(I) Uncorrectable Memory Error (SIV entry at SG[%604]]' this 
interrupt occurs when a memory word Is read and contains an error 
which cannot be corrected. The parameter contaIns the physical address 
of the page at fault and the 6 syndrome bits generated by the error 
correction clrcul try. The format of the parameter Is. 

+------------------+------------------------------+ 
Syndrome PhYSical Page Address : 

+------------------+------------------------------+ 
o 5 6 15 

(2) Map Parity Error (SIV entry at SG[%610»' This interrupt occurs 
when a memory map word Is read and itself contains a parity error. The 
interrupt parameter contains the address of the map entry which was in 
error. The fonnat ot the parameter is as toilowsl 

+------------------------+------+------------------+ 
: \\\\\\ undefined \\\\\\\: Map Page 
+------------------------+------+------------------+ 
o 7 8 9 10 15 

(4) Instruction Failure (SIV entry at SG(620])' This interrupt 
occurs when an unimplemented instruction is executed or a privUeged 
instruction is executed by a program which is not in privileged mode. 
There is no parameter for this interrupt. 

(5) Stack Overflow (SlY entry at SG[%624])' This interrupt occurs 
when S excaads %77777 f ollowing a SETS, PCAL, SCAL, ADDS, BSUB, or 
PUSH instruction. There is no parameter. 

(6] Page Fault ( SIV entry at 50(%630])' ThiS interrupt occurs upon 
access to memory via a map entry whose absent bitis set to I. The 
parameter is the same as provided on a map parityinterrupt. 

(7) Arithmetic Overflow (SIV entry at SG[%634])' ThiS interrupt 
occurs when the V and T bits in the E register are simultaneously set 
to I. There is no parameter. 

(8] Power Fail (SIV entry at SG[%640])' This interrupt occurs at 
least . 5 msec betore the power goes. There is no parameter. 

~ (9) Correctable Memory Error (S[V entry at 50(%644])' This interrupt 
occurs when a memory error occurs but can be corrected. The parameter 

- ~. : :i.1tht ...siHn~ a~~frSt provided on an uncorrectable memory error. 

pC: .. . f,U. ... '.~ 2-65 



• 

• 

• 

Principles of Operation 

(10) HIQh-prlorlty I/O Completion (SlY Entry at 501%644])' This 
interrupt occurs when a device which Is connected to the high-prIority 
interrupt poll lIne requires servicing. There Is no parameter. 

(II) X-Bus Receive Completion (SlY entry at SGI%654])' This Interrupt 
occurs when a transmission Is received on the X-bus. The parameter has 
the followlnQ format. 

+------------------------------------+------------+ 
: 0 0 0 0: Sender 
+------------------------------------+------------+ 
o J I 12 15 

(12) V-Bus Completion (SlY entry at 501%660])' This Interrupt occurs 
when a transmission Is received on the V-bus. The parameter has the 
following format. 

+------------------------------------+------------+ 
: 0 o o 0 1 : Sender 
+------------------------------------+------------+ 
o II 12 15 

(13) Interval Clock (SlY entry at SGI :l:664J)' This Interrupt occurs 
every 10 milliseconds. There Is no parameter. 

(14) Standard I/O Completion (SlY entry at SG[%670])' This Interrupt 
occurs when a device which Is connected to the standard interrupt poll 
line requires servicing. There is no parameter. 

( 15) 
DISP 

Dispatcher (SlY entry at 50[%674])' !"hls Interrupt occurs when a 
instruction is executed. There is no parameter. 

For a description of the action taken by each operating system 
interrupt handler, see the Operating System Overview in section four. 

hhen an interrupt occurs, further interrupts of the same type are 
disabled. To permit future interrupts of the same type, the 
appropriate INT register bit must be cleared. 

The four followlnQ Interrupts typas must be cleared explicitly by 
executing a RIR (reset interrupt register) instruction. 

X-bus Receive Completion 
V-bus Receive Completion 
Interval Clock 
Dispatcher 

The HIQh-prlor1ty I/O and Standard I/O Interrupts are cleared 
Implicitly by clearlnQ the device. Power Fall Is effectively cleared 
by power up. Instruction Failure and Stack Overflow occur only during 
the violating instruction and need not be cleared. Arithmetic 
overflow caMot be cleared by RIR, but perSists If the offendlnQ 

T, ·~ ; .p:~~~.am resumes Wlt..~ the condition still valid. Uncorrectable Memory 

2-66 



• 

• 

Principles of Operation 

Error. Map Parity Error, Page Fault, and Correctable Memory Error 
interrupts aTe automatically cleared when the interrupt takes place. 

• Tnh L-_, _ 

Pnnr () -, \ 

• !': 

\' .' , , ,t\ND 
( 
\.. ..... .. "'··'-' L . - - "" 

2 - 67 



Princ i pl es ot Operation 

• INTERPROCESSOR BUS 

• 

------------------
A Tandem 16 Compu t er Sys tem has two interprocessoT buses, designated 
X-bus and V- bus . Ea ch processor module In the system Is connected to 
bot h buses and Is capabl e of commun I catIng with any other processo r 
module (I ncludl nQ Itse l t) over either bus. 

,,- ...... 'L<1 

" 
L-____ . 

hlth Bny given Interpr ocessor bus transfer , one processor module Is 
the source (and initIator) , the other Is the destination (end 
receiver) . For a processor to receive data over an interprocessor 
bus , the operating system first configures an entry In a table known 
as the Bus ~ecelve Table (SRT) . Each BRT entry contains the address 
where the incoming data is stored and the number of words expected. To 
initiate a transfer, a SENU instruction Is executed In the source 
processor module' the SEND instruction specifies the bus to be used 
tor the transfer. the destination processor module , the number of 
words to be sent , and the location in memory of the data to be sent. 
hhile the source processor module is executing the SEND instruction 
and send1ng data over the bus, the bus control harwdare In the 
destinat10n processor module is storing the data away accord1ng t o the 
appropriate BRT entry (thiS occurs concurrently with program 
execution) . When the destInation processor module receives the 
expected number of words , the currently executinq program 15 
interrupted and the bus transfer 15 completed • 

• " '''~": '7'-RS 
Pi\(jj I; ';~"" , ,.,iO 

CC"! CI ':'':I\'Tf A. L 2-68 



• 

• 

• 
• 

Prine Iples ot Opera tton 
, 

"-' - ","Av-:. r-<::..-t ~; (. ':~' .. ' '': J') c..e:: 

r-- ----- ----------

--,-- I , , , , t'>1o-'1~ '$. :.~ 
. .~ I I I 

, 
~.,,,,-.. 1:) lo.l "'I' , 

=~,II(I!- O;',.STe. ... ~t., .... .."" f't!o C> l A '" I I A1Z. ........ "CtN"'~ I , , .. ~.,..,rut"'TIr......:I I e'ot~U'7..:~ eulJ· 

I (!V'ic ......... t.> ...... • C-D..~t.~IJ'Tt--f ~fN "'1'0 <> .... .,-""_ 

.,..~ "~'30,",' or 0"''' '" J ac.,'!5/ , t. .. ,~ " ...... <.:.Iva I , 
"T~"t ""J.I,,- c;,';')",I0,1"'- I ~5 o .. r" I ,. ... t!. I.c:: • ,-, 

I :t",~ 'l>r.cX.ll).U~ 
, ..... ~. '"I:'!'c.~ ... , , 

I t '\.'1J.;,J~"""~"" I I ...... "TI"AI.,1$1'V( , 
I I I I IN"Tel.'-vP." , --I I I IIA.y,t...u' , .... ,. .Jt-I-

I ~-'\,I.J"'LJi: I 
,,,"'K.£ ,,1(JG.t:~M 

1 I I I " "cc. ~ciS Dn / I I I -- I I 
, I I • so j':)TlNII Iit."::" , t.I A R...ouAlte I 

:; -:0. J;t: C" (? De-sri I II Tln/V 
p/.)C'"" .. ~Or'. p~E"'QOe 
ff,,>V, 'c.r (I C) /) .. 1 t-C! 

Bus Receive Table (BRT> 
-----------------------
The SRT contains 32 two-word entries I corresponding to two buses from 
each of 16 processor modules possible In a system. Specifically, the 
entry tor bus b and processor module p begins at location' 

SG[%700 + %40b + 2pl 

b • 0 (X bus) or I (Y bus) 
p z 0.15 

Each entry In the SRT contains an address in the System Data area 
where the incomin9 data is to be stored and a count of the number of 
words expec ted. 

Addl tiona lly, if a processor wants to rece i ve de ta over a des 19na ted 
bus, the correspondin9 bl t in the Interrupt MASK register must be a 
''I .'' The bits arel 

X-bus Receive Enable = MASK.<II> 
V-bus Receive Enable = MASK.<12> 

SEND Instruction 

The SEND instruction requires four parameter words in the register 
stac k' 

* D.so> specifies the bus (0 = X bUS, I = Y bus) 
0.<12'15> speeify the destination processor module 

value that 15 subtracted from 
m~rosecond units allotted to 

32,768 to derive the 
completing a single 

2- 69 

\.. ........ - -... 



• 

• 

* 

Principles of Operation 

packet (15 word) transfer. The timeout period Is restarted for 
each packet transferred 

8.<0'15> Is the address In the System Data area where the data to 
be trans ferred 15 loea ted. 

* A.<OtI5> Is a count of the number ot words to be transferred. This 
value must match the number expected by the SRT In the destination 
processor module it the transfer is to complete successfully 

* As a result of executing the SEND instructIon, the conditIon code 
is set to either ot two values' 

CCL = Packet Timeout 
CCE = Successful 

"~u. <". 

~c·"'~ .,.. ... ~ .. (. ... 

I
(~ ..... '"'!- H 

,'J"\TA) , 'E~~~~-' ... Go c.-::'-l'CY):l • c:p.~ "-I 
'1 , ... , __ c"::"o>.)]. 

------, - - - -;'1 ______ -l_ 
'1 _ '._ I 
~ -.= . 

.. 1 __ 
i,_ 

" , 
-i'j'----

i .JI ----.-. ~G. c,,_""t:J.'."3 '. -! ~"·t '" tl--- . 5c:;. C7:...,~o..l 
I • ,._1 

I :ll-,,~~ .1 !..- -, 

, ,. 

e·~., C!.fo.ITt<ry 
S"'~l:<'-'i')!' ~ "at... ~~p J 

1;.;,'5- "( 1 ,- 1 
~ 

.- -, 
.. t!~.::-J o 

C 

B .. 

. , 
se"",.o P(l~,.t'e..7~£''S. 

,y ~",~,-~ ... t!~ '!:'. ... Ac.1<. 

,:. , :J 

f1 

I 
I 

,.11 --

wir==-' ( ... -·-J,;,;; .. ,"","'7~J 
• ~ - I -.......... - --

• 

Cr
, . '~U-ERS .'~I: It' J 

W&RD COU'VT 

~-;.. )( ov_ '( CII.,.)t -"""''5.) 
c: .... " 1"- ICc.. CE"~~e:. ~O(' LC, d - \ "i" 
3~'E-e - """,cOLt,.. ,," ....... Eo. .-;. TttE 
NU""_(;~ r.r- .~ U'li~ '-'''' " ~ .. .. ~o 
,0 CO,",I(£'-,,,,>C; ""T"AC:. <;;E:~"t> -

e,<f#.hl ... ", 
llroc,c.U'- ~Ac..ue.-=- ~ ,..\.1-==1-., 

~~'c.Ii!I.- 0 ... ,a ::r . 0:':' 'Sc:.c:.o .... i)~ 

~tE.~,,) cCND ,T(O)",} r'ooe..:s.. 
C~L ..,. -rll'l$O'17 

cc:.e". - ">J Cc.t!COS FcJe..-

P·( " " 'f') 
i\V I'~--------~--~.+'J+----------------------------------------------------J 

CONFIDEI~T:r\L 2-70 



Pr1nc1ples of Operation 

• Bus Transfer Sequence 

• 

As previously stated, there must be coordination between source 
processor module and the destination module in regards to the number 
ot words to be transferred. The operatIng system accompl1shes thIs by 
preceding each transfer with a separate transfer (I.e., SEND) ot a 
predetermined number of words. The initial transfer consists of 14 
words of control information. In general, th1s control information 
tells the operating system In the destInation module to expect a 
specifIed number at words OVer a specIfied bus. In the following 
illustratIon, assume that the In1 tal transfer has taken place and that 
the operatIng system In the destination module has configured the 
approprlata BRT entry for rece1vlng 200 words. 

I • A SEND Instruction Is 
(processor module I). 

executed in the source processor module 
The SEND parameters specify' 

* X-Bus to Processor Module 3 CO) 

* A packet timeout value of 0 (meaning that B timeout occurs if a 
s1ngle packet transfer takes longer than 26 milliseconds) Ce) 

* System Oata address SOC 1234) as the data to be transm1tted 1s 
located CB) 

* A count of 200 words to be transmitted 

The SEND instruction transmits the 200 words to processor module 3 
via the X-bus then completes. The parameters are deleted from the 
register stack and the condition code Is set to eeE C1ndlcatlng a 
SUcce ss fu I opera t ion). 

2 . Processor Module 3, which has been previously readied for this 
transfer, has MASK.<II> set to a "1" to enable receipt of data 
over the X-bus and has the BRT entry for X-bus, processor module 
configured as followsJ 

* The transfer address where the incoming data is to be stored, 
system da ta loca t10n 50(3766) 

* The count at the number of words expected, 200. 

3. The data, as received is stored away as indicated by the SnT 
entry. As the data is stored, the transfer address is incremented 
accordingly and the count is decremented accordingly • 

•. .. -" . . II . 
I " ..... 

.' --s 
'1' '0 ;" ., " 

1\ I ~.!I:" ., 

. .... ' , 

ti ;O 
2-71 



• 

• 

• 

r---
I 
I 

• 

I 
I 

I 
~ 
t 

I' 
I - --

~{ 
-A~ 

= 

~'O: G."Td!Cl. , .,. ,., ......... 

TAIL .. , . 1 l J j 1.!\\J 

r-r~' 

I ,-I ,. • " . 
\.Iv, .. ' .u _ I _I: , 

, 

Prine iples of Operation 

-_. 

.... 0 ....... "'C .. , ..... '.(> .... 

'"' ... ~,.u."'- :!.. 

-··-1----1 

D'''~ 
T" r.. ... 
1>C-~ -r 

(':>Vl .... ~ 

2-72 



Princip l es of Operation 

• .t' ,~ , , .'l- ~eOuGJFr 

.-:1:0 ..... t"l",lC <", ... :: ('>' .c. 
t"fc\"'"l...<:: I ')0 

( ...... \ ~ 
...o;.--.~-... __ .. __ ... _ .... , - ----------

, 
•• •• 1 ::. --- - . --- . -

I 
..... -. - .. -

- - _'< ", .. : r"""/:'rll't:' -....1 . , 

",« ","'~"·'Y1 1 I lillil 
, $"1S7'e"::! 

I 0147'''' 
... ,1,/ £>1"''''' .. ,. 

I I I( ~'''' con,.,d ?'O"', 

I · - \ ":(" 5"1 , - • , 
Ik-I"l'-r-lU"(' 1"t.'l:"'t-~",E1t t " f-• 

10 I \ "1 \ [. , , I . I, I~*J • ,.~~t""'PT" ....~6'1· 
~ .. ------ , co ....... ~." -- -_._-. , 

1- ~. 

, 
• "_'-i .~ C'O ... ·l"'.,"'· , co. 1 

I 1 

• :--0.;;:: f=-) --- i 

s·, ... .,.-- I' f I I -- e.~"T _ .. toto .... _0-

Ce>()(? I - .. ~---. .. ........... ,c"U 1. · I 
I I I 
• I I • • ~ • I t 

I . -. 
ro"~ I , !?u'!O:. 

('" ~ .. ~ ,',.(' "(1'; I , l",r~ II"11 " 00 
""~Nt){(~;1 

..... Of" ... or· 
Cl-''''~ I 0"''''' I "'V ... ~M ct,l , 

t 

bd· I 1 • _..,<.t..~_ 

I I Y I 7 
t 

I I 

-IT 11 
t ' ... Te-ILI ..... ''!" 'ST .... c...C. 

H,J.r..:..Ht.. !:~·II~'C. I , ,"rr~ Ll041T!:.n 

• EI<IV, UAJ"~'T , - , 
· 

00;'" ,1c.c. 
ro> ,- · , 5~:;' • C.D"'t.. .... .,/~ , 

IN rel'4t"rr , 
1 
I -

PLDCt-'i.'{O~ · Me- O"( t:- "- i 

'--
, . - ---

• ICC: 

2-73 



• 

• 

, 

Principles of Operation 

4 . When the count In the BRT entry reaches zero, 200 words have been 
received. At this point an interrupt through the SlY (System 
Interrupt Vector) from X- bus completion occurs. There is a 
parameter assoCiated with this type ot interrupt, it contains the 
processor module number of the souTce processor module. 

Because. INT.< II> In the interrupt register Is now set, further 
data transmissions to this processor module over the X-bus are 
rejected . Additionally. the MASKi word in the SlY entry for the 
X-bus masks off further interrupts In the MASK.<Jl> position. 
(Remember that bus completIon interrupts remain pending, even 
though an inte rrupt has occurred, until reset by a RIR 
instruction. ) 

fl. Prior to executing the IXIT (interrupt exit) instruction to return 
to the interrupted program, the interrupt handler executes a IHR 
(reset interrupt register) tor INT.<11> <X-bus recieve). This 
partially enables data transfers over the X-bus into th1s 
processor module . 

7. 14hen the IXIT instruction executes. the previous MASK register 
setting Is restored. Processor module 3 is now enabled tor 
receiving data over the X-bus. 

The following illustration shows the relationship between the transfer 
address and count in the ORT entry and the incoming data in the 
transfer location. 

.,-,." , . ' r r 
~~ ... . , -:;; . ::-'r~/ ' :=;" So -rCo,.' 

.~ ... " 0 ... ., ,. O"'T Jl 

~ 
-- '3 .. ",; •...• , ,-- -~-..... -- I 

--~~~'---f ...-,-~ • ......... ='!s.'t'o. 
._ <l'I __ ;.. __ . N~ .. I:. .. ~T 

I - - ..:::l r ~ 

~ , 

" 77 ,-, , , , , 

I I 
I 0 ...... ,. 

t , , 

I ~ 
/ , 

, 
~~--

I I b .lt,..,.", I 

I 
, , 

I 
) 

• , 
I f I - L...- r , 

~, ~ 

) 
-~S 

-:"' A ~r ' ..... ~ 
M I (.l aLlf" J: , I-Jl s H 

- " , I " , - I\I~LJ I " '-. , , I PRC 
rl'"\f\· .... ' · .. ,- ... · .... ,II.I 2-74 



• 

• 

Pr inc i pl es of Ope rat t on 

(lUT\) , INO and Packets 

The interprocessor buses are sign I fIcantly taste r tha n memo ry , 
therefore each processor has buffered i nte r face to the bus , consist1ng 
at a 16- word output butter (called the ()UTO) and two 16- wor d input 
butters, one tor each bus (called INO X and INO V) . Data 15 
transmi tted over a bus In the form of 16- word packets . The SEND 
instruction tills the output bufter with 15 words , appends an 
odd-parIty checksum , and sIgnals the system bus controlle r that it has 
a pa cket ready tor transmission. Atter the 16- wo rd packet Is 
transmitted, execution of the SEN D instruct i on resumes at the point 
where It l et t ott . It the last packet at the block 15 less tha n I~ 

words, the remalnlny words are filled In with zeroes . The 1nstruction 
terminates when the last packet Is transmitted . 

• r IVO; /v c. 
:O/.:r ... ,- _~ 

)( ~ ... , ~ -

[-

-1' 
- --------- --.----------~----------------------+-, 

r~~l I -{~II--1 

, 
.' 

. ••• ,! c" 

l-o=·- -, 
--' '-" ._] 

~<ic:.l 
, 

r-_,:-;-~;-;: '~.]­, 
, , - ---I 
I 

-J L ___ , 1--- . ~;':I ---- t ~ ...... -' ~ .• f 
, ---, L I 

~-- , 
Ir-c- -'1 !~ ...... " ~ . (,,,,;, 
- - - - l' '" )1 '>I J ...... ,! ---' 

~"7<' ';.. ..... H- -!"-;.-":-J ----

L' ~_______ _ ___ . ______________ ,. __ " __ ~_"_~:_,i.._";_'G_O_'_,_ 
--.. S 

P,,!l) '-' 1"\ 
h~~rr;-:::-r"""'''''''-I.,.,..,+t--------- -------------...... . .... j. • I .;' 1' V r/,\ ,,· r-·,.., ' 11 " ~1 1 I 2- 75 



• 

• 

, 

Principles of Operation 

~hen either of the INa x or INO Y butters In the destination processor 
module Is filled and the correspondIng MASK register btt Is a lilli, a 
microlnterrupt occurs ~ The action taken by the processor module 
during the mlcrolnterrupt (which Is transparent to the executing 
program) lSI 

* The count In the SRT entry Is checked. It the count Indicates that 
data is expected, 15 words (or less if the count Is less) are read 
into memoryat the location specIfIed. The transfer address and 
count are then updated. 

* The checksum of the packet Is checked. It the checksum Is valid 
andthe count still exceeds zero, the INQ Is marked empty 
(penlli ttlng further transmissions to take place) and the nonnal 
instruction execution sequence continues. 

f(1i: ct., .. · .. .'", c . , , ---------- • I .,r' ~ 

1-- I ,f ' 1 - .. -.-

L. --=_ .... -~-.--.---= r--=-.-------.-------r 

~.o<f;,. ••• ,., ~ .. 
.... ~ • • ~"I'; 

,r<*",..,-;r-.! ~ II I I I 

,~.'" I-

I , '> I '1-1.- .. :-; .. ;-•.. : 
t--- - \ 
I l 
• ,-!o\ I r - - - \ 
I 

,,-..... " 
. - - ~-

Y7" ' .. . .. _ ,,-
.... " I 

I_~_.: 

...----1 ~ ;''; -I 

p-uCc-;J.uL. 
"'IJ')o t .... d .:: 

I 
! 
I 

P I ~ ( .. .,.-:-~ ' ti ~. 11"\ 

COM ~I f) F f\ITIIl,_ 2-76 



Principles of Operatton 

• * It the count Is zero or a checksum error is detected, the INT 
register bit associated with the bus over whIch the transmission 
took place Is set, and an interrupt occurs. In the case of a 
transmission error, the countword Is set to - %400 betore the actual 
interrupt occurs. 11hen a normal receive completes, the count word 
will contain a value between -14 and O.Atter an interrupt, no 
further transfers to the processor over the bus which caused the 
interrupt are permitted until the bus Is clearedwlth an RIR 
instruction. 

• 

• 

INT and MASK ReQisters 

These registers have a direct bearing on the ability ot a processor 
module to accept data over an interprocessor bus. A shown In the 
followinQ illustration, data can only be input to an INa if the 
correspond bit in the INT register is set to lion, data can only be 
transferred from an INC into memory it the corresponding bit in the 
MASK register Is a Ill". 

, ,. I- __ _ 

.. .', 
~- ----r f --- "C;' ""''''~.l.Uf o,,'";" ~ I. ("o t' ,.".~ Tl.') I. ,(":t • • 

Ls-
<e<.,,,:-EJl 

This also affects the indication a source processor module receives 
when a packet timeout occurs' If the INT register bit in the 
destination module is a 111", no information transfer has taken place. 
It the . INT register bit in the destination module is a 1t01f and the 
MASK register bit is also a "OU, one packet (i.e., 15 words) of 
information Is transferred before the timeout occurs • .. -~ns 

l'L ;, 

~ ~ I . \ ..1 P ~O'-' . 
1\ • .. .• _ •• •• \1 

r "1 0 
! .1 ~ 2-77 

, . . 
('

,..." 1\' ._, r-..' ••. . " I 



Principles of operation 

• INPUT/OUTPUT CHANNEL 

• 

Each processor module has a s1ngle block-mutllplexed input/output 
channel through which all input/output takes place. Up to thirty-two 
device controllers may be connected to an 1/0 channell e8ch device 
controller may control up to e19ht units. 

- "" • ,.' J 1..";( 

't. I-'C'::':,I'(;r 
f'1:~~-,·"'.\C>f.t 

M~D(lt.€ 

u.>\'T 

Il" T _ '!-=> 
.... ~ .. .,- ... Ot..l.k'-s , 

I 
I u"IT 0 

I 
I 

<:>uil'o.l....l;>c:oq., 
c;ou.,.....~t,..~~ 

r' 
I 

l. . 

!1 
'------j~,1 

• uw,~ f.\ o;:Z" ~ C0~' ~) TAr l ~ ·,_",..:.1 -L-~··~' ~· -:~-=d' ]Q-__ \J ___ \":) __ v_ v __ ~_\:J __ ~ ____ ----I 

Pnc n , .. - "" ""'f "1)····j····· 
1\ I I.:!... .. ,,, FIN D 2-7~ 



• 

• 

Principles of OperatIon 

The operating system performs input/output operations by configuring 
an entry In a system table ca lled the I/O Control table (IOC). The 
roc contains 256 entries. one entry for each device that can possibly 
communicate over the 1/0 channel. Each entry contains the address 
where the data transfer takes place and a count of the number at bytes 
to be transferred. Once the entry corresponding to the device 15 
configured, an EIO (execute i/o) instruction Is executed to initiate 
the 1/0 transfer. the actual data transfer Is performed concurrently 
with program execution. Ii hen the transfer completes, an Interrupt to 
a n operating system interrupt handler takes place. In the interrupt 
ha ndler, an I10 (interrogate 1/0) instruction is executed to check the 
outcome o f the operation. 

-C",'.',,' ( cu,-, \'.\, "":(- i~·lH. \ .,.o::.~ 

, 
I I • :..., .... ...-~.',' ~ 'II' .. /1..0< i>....,"'" .... ~ I 

• 
I • , , , 

~,~ • I 
"Tff"-"-_<I"..-' .:.. 

, ... ., ' .... ',;.0 \ I I ,,::.,oJ~ 1\>1. C!;r:.) 
.,' ........... , .... -\ I I --1 "-1/ -

I 

I I --I I , 
- ~ 

-~. "l.1t:> -r" 1,"-."<:, I": • I ~.,r..,""t...fO'''~ 

I 
f"?';:"',4'~ \>.-< 

: , -"" .. <~ ..... '-~' I (1').- T" ,.. " ..... 
cc" ..... U" fl,"" O<'r.t"~ ~_O,,("«.· 

I .-,,,,., ' .... d,;,5. 1:' .. · n£.-1 w"" 
I "ior'7/'"1"!r:- ...... 

I 
c::.C~H l:Y"'"C""" 'CI~i 

I j I 
I 

~,,.cT---· 

1-1 I I 
PI!cf!.A!""/1 ,. , 

I NI "'T_' I ':cl/rf'1:> 

I 
,;,L·II /i,AI L/c-, 
c.t)!', J, v ·ft:.~ 

I I I I 
] 

, 
I 

I L-- I ~-_ I 
\ l-n"t_OC,"'?'" ~ ___ I 

( ... r."("H,(''l": " I 

I r i;;,:;:~ .. ;t~ "'c ,,'~r:.~ I , ., ..... co,,(!- OF I 
"r./I"> -r,jA'''''t.'r...- I I 

- - - ·t---· 
I 

. 

• , \ - r 'J 
~ . • i" - ' .. C ;':;;" -:-r.r.~ 

2-79 



• 

• 

• 

Pr inc Iples of Opera tl on 

110 Control Table (IOC) 

The data which Is transferred between memory and a specific unit Is 
determined by an entry in tha I/O Control Table (IOC). This table 
resides at a fixed location of the system data area and contains a 
two-word entry tor every possible unIt which may be defined. 
Specifically, the tWo-word entry for controller c, unit u begins at 
loea ticn I 

SG!%1000 + %20c +2u) 

The first word contains the data transfer address. This Is a word 
address within the system data areB. 

The second word contains the following Informat1on' 

* <P> 'Iord[ 11.<0> Is the protect bIt. Yihen set to 11111, only output 
transfers are permitted to this unit. 

* <ch err> 
end of an 

Word! 1 J .<113> Is set with the channel 
operation. The possible values arel 

o 
1 
2 
3 
4 
5 
6 
7 

no error 
protect Violation 
pad In violation 
da ta pa rl ty vi ola t1 on 
timeout 
map absent bit detected 
map parity error 
uncorrectable memory error 

e TrOT code a t the 

In caSe of a sl~ultaneous occurrence of multIple errors, the 
highest numbered error will be deSignated. 

* <byte count> ~·lord(I].<4115> contain the number of bytes to be 
transferred in the current operatton. 

To prevent erroneous data transfers, the operating system sets the 
second word in IOC entry to zero where transfers are not expected. If 
a device should attempt to transfer data and the <byte count> is zero, 
the 1/0 channel will abort the device, causing an interrupt to occur. 
In such a case, the <ch err> remains zero, but the status returned by 
the device as a result of an II() or HII(} reflects the abort. 

EIO !nstructlon 

To perform an I/O operation, the IOC entry tor the unit must first be 
correctly Initialized. An Eln instruction is then executed, specIfying 
the controller, unit, command, and other parameter information. These 
are placed In B and A of the register stack. 

- , ' 
i iTtRS 

2-80 



• 
, 
• 
" f , 
• , , 
• • 

c 
• , 
1 
t 
0 , , , , 

• 
, 
> , 
1 , 
• -• , , 

~'~I ' . 

p~ 
(' '' -

h ·-, 
Il I 

, 
""0 leLo' LI .. , ... 

CON?"" 
7~ ~c..~~ 

C!.'fS 'T~ J-, 
n,'","':) , 

1.10 •• .., ~t:::: :;<;. C'T .. I ot)QJ. 
i 

,J ~ $0 c.~ I O~:l 

1--._'--- - - - -.{ --- -
" --- - - - -~ 

1 
.. _----... ; ,---- , 

, J --- -- ; 
,: • , 

i-. ... C:z:. rot ., :l ' i , 
'1101 IT .,,~ . "'''' C z. 10 :0.0 ::1 

,J 

.! 1---= 
, 

1 vi 

s! 
, I ---
" 'i . > - :..j 

r'---
., _. 

5c;. C. "Z. /::;I(Y") J U"(T"~--

,H --.- · , ---- , 

'" - - , , 

"] :1-
-.• ' --. - · '-- · 't --- - , --

:1=--·; 

. 

, . 
I~S 

. 
• , T, • , " 

" _I .. . , J11'i U 

Pr1nciples of Operation 

" -" '" , .... ~ . 
" 

, 

10 c_ ThV ....... e:. t: f't T Q:1 
:;r.C-":'lr>OO ~ Z'..:l.O C. + ';' u 'J 

- - -
"'TpAI>l<".I'-('- ~ A. bO ~_Ss. 1 

- - pi c:: .. 
- f' ~o! I ""' ... ·"Te c: -eo ...... .,. ~ 

• , > , ,,. 
• - ~~O'Y"'_<''''' .. T" l' . 0 ...... " .... .... <,:> H '-"<) 
.- ... , 

<."~w ., ,,'- P.c. • ..oe. 
~ . '0 (i tU,'Ofi • , , f .. u ...... c.'\ "'OI... I\ "1 I e:tN 

" • ". " 
V IC'II ... A TlO I,J 

~ . 1:1 100,. fI., \"A~,TY v "'::11. ... " Tt O""-l 

"' "'T1 .... r...e ..... T 
,; . ""' ,.. e. ::'II!.N"f . ,r Q .. "T~ ~Te.O 
~ . K A> "",,,, , T\( .. "-.",.. . 
" u lot c:.o'it. ... .,;.~ToI\ r.Loi!::. rIEI"IOe-. e.1UD"--

"-.1:0 ~ "1Z. A M~U_'S. '" " , '-.e.G. ... ,-"e..~ ~ ...... ,...~ 

I ,. P",R ,. ",e."T!i:C , ... .. C" IiI! t>\ ... "TKlN I 
A 'MO MOO I CI'10 F' _I CONrl'Ct:>LL~ I VHf '" 

• " ~ ~ ~ I:' ' "l ,.-
<MD . t:OM~''''IY~ (. <: s'c;.,:» 

0 , 'S'~o;C!' , • _It,ore 
". "" AD .. C"'NrK."l.. 

t'A_ oC:.J:"""> Cl-oJ H"f;/ . .:: .. ..".,,..,11"'0 MQO.J£;EIl. " ~Vlc... /)':" 'D,N ~C'-'t .. eK'::~"T . 

o· =<0 4QA ,,> 
~ 17" ..,.,IIr .. · 0 .. /",,. , £...,,~ • f.4£.IIL D~ VIC.e: 

OBI/ICe S7,1"'IS Rc.7~~.vcT';) , .. IIt.C:~;5 TO!:Jtt: 0;. Tn 'C.1't.. I"I!PN 
c:..z::~ 

I"ESDI 
. 
, 

- .. " . IT ~""' '- .....s. 
, 
• , 

0 , • , • .-
~ · oW~~.-#,p ( .. o ........ C!'1) ., 'nf~ ' 0£.,) 
< • IkTt-LI.tl r "~."''', .... G CO De",,"*" " .s' ... v,l((.i'~ i'i'rr.tI./.ulr) 

• • ""sv 0",,,, £~ 

-
• or. 0 CO~OIT'OO c.oOIi~ 

«~ · C ..... NN(· ( t*"/.J.t A ,. -J 
ccc..° • 'h!~/C(' <j;-rl,'.J.<''' » ~'" co 0 · D.II.<:...c.' 't?,.,:I~ .:: ... ; :.'> <.4 

~ ... , ..... ~c:. r-!¥"'uit'~(· D ,~ ~~<.,,'!; u££" 
......... c. .::. ,. /Lei" r.re 

~.;=1 '" , Of TC It- o:.v. "..,.. ,. I . .• , -;"F-

A L::J~12J ~:L. ! <:.t."' ...... "',. (;. c.. I , --- --0') , ;. ~. • " '" ,~ 

0 , 
L ," , .. <:) .. -:.c. Ii' .Ii. .. ~. It. 6 .... ..,e. 

• • ~" .. " .... ,' "' ... -.. , .... •. 0" .. !!'\"> 

•• 'l"A,.,.,.... • ,I (0(1 

.l::J" ~. ......... ' I "TI(~""\ c"'o~ 

cr, • ., .. ,,,,, ... ,,, (. ", H' 0"," '-...... c:. ..c-Z:t'-' 
c <" (' ./ .... , ~ .. ~,::. ,. .. .,-:. .< .. ;!., , • c~ c~ _ ,. .. , \ 7"·, f,. " ~ C",'~' <."> 6 

2-8 1 



• 

• 

• 

Principles ot Operation 

The parameters to the EIO instruction have the following meaning' 

* <parameter information> Is a device dependent parameter that Is 
sent to the specified device. 

* COfmland bits A.<OI5> specify the command the device Is to perform. 
The <cmd> bits, A.<4'5>, specIfy the general type ot command-

o senSe 
I wrl te 
2 read 
3 control 

<cmd mod> bits, A.<O'3>. modify the command, aillowing up to 16 
device dependent commands. 

Three configurations of the field A.<OI5> are reserved' 

%02 instructs the controller/unit to perform a cold load 
opera tlon 

~ 77 instructs the controller to set its ownership bit to the 
channel issuing the command. The controller logIc Is 
cleared 

~73 instructs the controller to set is port d1sbale bit and 
cease responding to the channel issuing the command. 

* <controller no.> A.<8'12> -- specifies one of 32 controllers. 

* <unit no.> A.<13'15> -- specifies one of 8 units. 

The EIO instruction replaces the two parameter words by a single word 
containing t he device status, and sets the condition code according to 
the outcome of the instruction. The condition code settings are as 
foilowsl 

CCLI 

CCE' 
CCG. 

Channel error (service in, timeout, or parity). 
A is set to -I. 
Device s tatus bIts <0'3> = o. 
Device sta tus bits <0.3> <> O. 

The Device Status bits returned have the following meaning' 

* 0 <ownership> A.<O> is a 11111 if the device is owned by other port. 
No da ta will be trans fe rred. 

* I <interrupt pendIng> 
signalling interrupt • 

A.<l> it a 11111 indicates the device is 
No data will be transferred. 

* 
. 

B <busy device> 
executing an 1/0 
this EIO. 

A.<2> indicates that the device is already 
transfer. No data will be transferred because of 

T" hl '; UI .. i:. 
! 

2-82 
. 

d; ' iULI~ I 



• 

• 

• 

Principles of Operation 

* P <parIty error> A.<3> it B 11111 indicates that the controller 
detected a par1ty error during execution of the Ero instruction. No 
data will be transferred. 

110 and HII() Instructions 

Following an EIO which initiates an operatton, an interrupt occurs 
when the operation completes. At this poInt, an IIO Instruction (or 
fllIO if the interrupt was a high-priOrity I/o Interrupt) must be 
executed to determIne the cause of the interrupt. When the rrc} or HIIC) 
Is executed, the highest prIority device with an interrupt pending 
returns 1 t address, and status pertaining to the interrupt. 

* 0 <ownership> A.<O>, if a "I" indicates that the controller Is 
owned by the a1 ternate port. 

* I <lnterupt pending> A.<I>, it a 11111 indicates that the device 
has an interrupt pending (this should be 110"). 

* A <aborted> A.<2>, it a 11111 indicates that the data transfer was 
aborted. 

* P <parIty error>, A.<3>, if a 11111 indicates that a parity error was 
detected during the data transfer sequence. 

* <controller>, A.<8112>, is the controller number associated with 
the interrupt. 

* <unit>, A.<13'15>, is the specific unit associated with the 
interrupt. 

.. PON <power on>, 8. <0>, if a IIJII indicates that power was Just 
restored to the controller and the controller logic is in a reset 
or arbitrary state. The channel deasserting its uRESETIl signal 
first 15 the one interrupted. 

* <status>, 8.<1 =1 5>, Is related to the partIcular controller/unit 
that 15 Interrupting. 

foollowlng execution of an IIO or an HIIO instruction, the cond! tion 
code Is set as follows. 

CCl' Channel Error (pari ty error or timeout) 
CCE 1 No error 
CCG. A.<Or3> <> ° (error) 

--" 0.) 

li;W 2-83 



Principles of ()peration 

• Input/Output Sequence 

• 

• 

A typical data transfer sequence over the input/output channel Is 
Illustrated In the following illustration. The sequence Is as 
tollows' 

1. Instructions are executed to configure the roc entry tor the 
controller/unIt combinatIon where the transfer is to taKe place. 
In this case, the IOC entry is at 50[%1034) tor controller I, unit 
6. 

2. The EIO parameters are loaded onto the register staclc. 

3. An EIO instruction Is executed. The parameter information Is sent 
to controller I, unIt 6. 

4. To indicate its outcome, the EIt) instruction returns a status word 
to the top of the register staclc and sets the condItion code. 
These are checked by subsequent instructIons. 

5. MeanwhIle, the data transfer takes place. Data is transferred 
trom uni t 6 to the location in memory indicated by the IOC entry 
for controller 1 t unIt 6. As the data Is transferred into memory, 
the transfer address and count word In the IOC aTe updated 
accordingly. 

6. 

6. 

7. 

,"then the count word In the Ioe reaches zero, indicating that the 
transfer Is completed, the INT.<13> bit In the interrupt register 
15 set to "I" to sIgnal interrupt pending. I t the corresponding 
bit in the MASK register is set, an interrupt through the SIV 
entry tor Standard 1/0 Cat 50[%670)) occurs. The MASKi entry in 
the SIV CBuses any fUrther standard I/O interrupts to be deferred 
while the interrupt handler Is active. 

The interrupt handler executes an IIO instruction. Executing IIn 
Signals the highest priority interrupting controller to stop 
interruptIng and returns two word of status information to the top 
of the register stack. The status word contains the 
controller/unIt number of the Interrupting device as well as 
channel error status and device dependent status information. 

{ihen the interupt handler tor standard i/o completes, an IXIT 
instruction is executed. IXIT restores the previous MASK regIster 
value (which may allow another standard i/o interrupt) and returns 
to the interrupted program. 

- -., l"\ 

I .. : ,0 

2-84 



• 

• 
# .. ~,.".I, •• ~~·, I 
. r/~ 1# 
~",.r: .'~l~; I 
"-""". t c:('Ov'"_ 

I (e) 
~"T j 

-I" ': 
r. . I r- --. f\ , . ...1 rtlv , I, " , , 

CO,!~ iDEi~ (//\L 

I __ 

I 

I , I 

I I , 
, .. -

: ;::==:::::~ 

L. 
" ~ -:..---­
~ , 

--

-

Prlnclples of Opera ti on 

2-85 



PrInc 1pl es of Ope ra t1 on 

• Dual-Port Controllers and Ownership 

• 

• 

Each controller In the Tandem 16 computer system is connected to the 
input/output channels of two processor modules. This provides 
redundant communication paths to 1/0 devices. As shown In the 
following Illustration, this means that a sIngle controller (and 
associated unIts) have entries In the IOC-Is of two processor modules. 
Note also that it 1s actually the port that 1s addressed when 
communicating with a controller, so that both ports need not have the 
same channel address on both channelS. 

~" '- ~OP" .. ~.<.' . (;-

, 
" , 
• • 
" , 
E, 
'I 

I 
L 

... n,"'!. 

'"' ..... ~"" "'t''',,'> ... " .... e ...... · ... "'- + .. 
,.~ ... ,~ ~'.: " 0" C,..., C'lIo =:'., c .. ~ .... .,. 

• 
I 

/ 
..... ' ... u" - I\. "".1".""'1') 
... ~ • .,. ..... ,,. .... ,.., .... , ,- .. ,,, !. 

".0'" Co" • """ , ............ "-.l.. .. (" ." 
U .. ,.,. Ib r. .. ..!t/'"f c.r. .:l. 

""'''\,....' Yt.'IIt."'I'" 
C.O"-l-rlll: &~e. e. . 

I; 
• I, 

" '. 
" I. , 
1< 
I 

.Jc.lt".1'" .. ,ut..J!') I 

";:'.~.i.. c.-::~"'::..."'" I 

> 
c~ ...... J:'P .... ~. ",at..: I 

" -- ---, 

, , 

Although each controller has two ports and Is tully capable of 
communicating through either i/o channel, only one channel is used 
during nonnal operation (the other channel, as far as a particular 
controller is concerned Is not used). The i/o channel through which 
communicati on to a partIcular controller occurs Is said to "own" the 
controller. ALL input/output transfers (I.e., control and data) occur 
through the channel owning the controller. 

2-86 



• 

• 

• y-

0; ... /11'1:.;:' .;,- .... IP 

I 

~w-V".'I:';~ fO I~ TAI(e;'N 
4 ... C;"~I ~ ","'-N 1lJ>l • 
I"J".-. wll'./ NT,,/rC- ~""""'_tr foJ.' , 
,-; ''S''~C-;:J !",;:. ':"N"~oJ(t '"~ '"!> 

, C .... O<\I'oOI'-I 

" ... -~ .. -:-"" 

. 
Principles of Operatton 

A! .. 0"7,1 ,1M/) 
C'a~"'1Q..Jc.. 
/AI~L' it. ,"IIr N" A..' , - - - - ..00-fro' " , 

,..Iv E.1C'> :>'0 TI.-€. 
-~N CO_AI""," .: I 015 
1$ '~Jt:fC 7C'0 t"', TH 
" "?;-{'CC 's 

~I 
...,.,.u,,<:.t:t,..-:o;; "':"U~ '---- .J..-""'k..-trl---y -y,,1 TN .. """"N~j)".-
U~F I 

-r~ ,,1f!:!Ju.... "~/,":L' 
$..,,' I:. "roT 

"'I'I.,t':~.;} ' .... 1..-.::<:.$ 
" ':1"'1. tJiIt(~ 
,."t: ,,1<;' 

oj>,. •• rJ. 

P~)V~ 

• 

"ot.,.,,-'-----j ~ w .vt-' 0 r. 4 ~ 1 NEJ<" 
P .... "'T" ....... , '''" . , 

ve-" 

, . , , 
l-J ' 

~ 

I'" N"Cti:5.S~<t ..... C;l·./ ~ Cr'N 
T'A~<f: ~·.n:rso-ld' ,l ....... 'I' 1'4'1' 
C"1c" ttJ ~~ ,:; .. ,,.,(. Av f.!.'E.'" 
( .... 111 ''''ff~ -,,·NI::'-';.,J,'" TO 
C<llt~,.·o'c..~.x. 17 

Each of the two ports In a controller contaIns a flag bit known as the 
"ownership" bit. The state of these bits determine which channel the 
controller will accept commands from. Initially (i.e., power on), a 
controller comes up in a arbitrary statel the ownership bit is 
pOinting to either channel. An operating system configuration 
para meter speci ties which channel is to be the primary channel tor 
co mmunication to a particular controller. The operating system 
program that controls a particular controller executes an EIO 
instruction to tak e owenership over the configured primary i/o 
channel. 

The operating system transfers data only throuqh the "owned" side' an 
a ttempt to cOlJlTlunicate through the unowned side results the EIO 
instruction being rejected with an uownershipll error. It, during the 
course of a data tra nsfer, the pr1mary path to the controller (i.e., 
the primary processor module, channel, or port) becomes inoperable, 
the operating system program controlling the controller executes an 
EIO instruc tion over the alternate (backup) channel to take ownersh1p. 
The "owne r s hip!! bits In the controller swi tch over to point to the 
other 1/0 channel. All subsequent data transfers now occur through 
this channel. 

~ "" 
, ., 

r, "t,.,,' 
rllV 

. "t' 1S 
, ~J , , 

C ' 'I' , I,,·, I" G"': I iL_i . I inL 
2-87 



• 

• 

Principles of Operation 

Each port also has a "disable" bi t that Is separate trom the ownership 
bit. The disable bit, if a "I", prevents a controller trom 
transmItting information through that port onto an 1/0 channel. The 
disable bit Is set by an EIn with "set disable" Issued to a 
controller. Normally. this Is used by the operating system when a 
controller performs some unexpected action that could affect the 
entire channel. The disable bIt Is associated with a port so, it the 
malfunctIon Is In one port, normal communication with the controller 
may still occur via the other port. 

Inte rrupts 

A controller Signals an Interrupt on the 1/0 channel when the 
associated transfer has completed. A controller also interrupts it it 
is necessary to prematurely terminate 8 transfer. And the channel may 
also interrupt on behalf of a controller if it detects a malfunction 
(such as a timeout). 

hhen Simultaneous interrupts occur on an i/o channel, 8 priority 
scheme determines which interrupt is handled first. There are two 
levels of priorities designated IIrankl" and IIrank2". Each rank has up 
to 16 controller assigned to it. Jumper wires on a controller 
determine the rank assigned to the controller and the relative 
position within a rank (positions 0'15). The interrupting controller 
with the lowest rank (lor 2) and the lowest relative posItion within 
that rank is handled fi rst, 

A controller continues to interrupt untIl cleared. Normally, this 
clearing is done via an 110 or HIIO instruction. 

High-Priority I/O 

Two levels of interrupt are available on an 1/0 channell standard i/o 
and high-priority i/o. Standard i/o is characterized by controller 
that interrupts through the SIV entry for standard i/o. Likewise, 
high-priority i/o is characterized by controllers that interrupt 
through the SIV entry for high-priority i/o. ~hether a controller 
interrupts wi th standard or high-priority is determined by a jumper 
connection on a controller (all controllers under control of the 
Tandem 16 operating system interrupt as standard i/O). 

High priority 1/0 is used by applications requiring an ultra-fast 
response time (as in a real-time environment). The operating system 
never masks off the high-priority interrupt position, thereby ensuring 
that no matter what is executing in a processor module. a 
high-priority interrupt will be recognized instantly. 

• TAI ~Di.';,; r , iTFflS 
PRO; ,'; , . ,L 

I • ! -.. 
I . , J 

CO ' I"-' ""I ' If 
!, ,'We: ,f/ 'i l 

2-88 



• 

• 

Principles of Operatton 

PHYSICAL MEMORY AND MAPPING 

A processor module's physical memory consists of up to 262,144 words 
of 16 data bits each. In addition to the 16 data bits, each word In 
memory has an additional parity bit Clf a core memory) or six 
addItional error correction bits. 

Physical memory Is logically divided Into contiguous blocks of 1024 
words each called pages. Pages In physical memory are numbered 
consecutively trompage 0, starting at physical location zero. The 
address range of physical memory, which Is 0 through 262,143, requires 
18 bits ot address information. 

.... / 
L'u' " . 1~IILiL : 'I, .. L 

(> .. 'C . ... ' t>..1... 
,".1">11 <!' ',-", 

.~ 

'c.~·, 

::.:.0" . , 

'.0'1;10 -

.. ~.,.,~ -

~CII:::"""'" 

• 

P'"--:..J 

" 
- . - , 

...." ...... 
1 

r - - - . '. . , .... 
.,.. .... <!: 

" 
- - -- •• ,~ 

1 
~ " ....... , 

- --- ~; I,. 

~.;>. .... 

I • 
~ - - - . 

--- -f -.,., • 

2-89 



• 

• 

• -A ' I . • · ... 

Principles of Operation 

All references to memory are made to one of the tour logIcal address 
areas' user data, system data, user code, and system code. The range 
of addresslnq in any given logIcal address area Is that of the 16-bl t 
10Qlcal address, 0 throuQh 65,535. 

A processor module converts the 16-blt logIcal address to an IS-bit 
physical address through use of the map registers. There aTe tour map 
registers, each map register corresponds to one of the four logIcal 
addressing areas. 

The four maps are deSignated' 

'* Map 0 - User data map. All data references use this map when the 
OS bit of the E register Is "0" except when an explicit system data 
reference is made (SO addressing mode). 

* Map I - System data map' All data references use thiS map when the 
OS bit of the E register is "1" or when an explicit system data 
reference Is mad. (provided that the PRIV bit Is set). In addition, 
all memory references by eIther the I/O channel. the bus handlIng 
microcode . or the interrupt handling microcode speci fles this map. 

* Map 2 - User code map. This map defines the active user program. 
All code area references use this map If the CS bit In the E 
register is "0'1. 

* Map 3 - System code map. This map defines the operatlnQ system. All 
code area references use this map If the CS bl t In the E reQlster 
is "1". 

Each map has 64 entries corresponding to the 64 pages possible in each 
logIcal addressing area . Each entry contains the following 
information' 

* map{logical page) .<Oa 9> contains the physical page number (0 
throuQh 255). 

* p. map[loQlcal paQeJ.<IO> contains the odd parity bit for the map 
entry. The parity bit Is Qenerated by the hardware when the map 
entry is made. 

* R, R'. R" a mapllogical pagel.< 11'13> are the reference bits. 
Thesebits and the dIrty bi t) are used by the memory manager 
function of the operating system to help select a page for overlay _ 

* D. map[loQlcal paQeJ.<14> Is the dirty bit. The dirty bit Is set 
toa ifi" when a wri te access is made to the corresponding memory 
paQe. 

* A' .map[lO<;llcal paQeJ .<1 5> Is the absent bit. The absent bit Is 
initially set to a "1" by the operatIng system to flag a page as 
being absent from main memory _ An access to a page with this bit 
set to "1" causes an Interrupt to the operating system page fault 
Interrupt.. handler (SIV entry at SG[%630J) . , rns 

J • .. 

2-90 



• 

• 

• -
f" - ••. 
I' t .VI " 

L.,y.""'" ~ ,. .... ':'>~. 

..... "~d'" · -
~.,,;., .~ 

.,~ "' - " 

• , , 
• 
· 

r 

(J":;~.,' 

,. ... J·M 
A~.· " 

1'1t.", t.:.v ..... ,;' 
,,,,,~ 

I: ---, 

I 
-
~p " {J 5': A? 

- 1>,1.,..." 

-

J , , , 
, 
r , , 

[-- , 
, 

I~---e' .' , .I ", --
- - -- - -

Princ1p l es of Operati on 

r--" 
1 f - r 

I 1 

r-----' : 

.-...... -: >," 

I 

r 
I 

,.A P J. i !.-':;.Tt"/4 
(JI'I n~ I 

I - , 

• 

I "., i 

I 
I 

~<"", I 
~ "vJ", 
p,.' •• ~ 

[

I ,,~'~:L., JI (f.>J o'~ ~ "'A( 
I'" , 

--
I 1 

rA v I 
3 

S"~T4-1 ' I 
t:' <>.J;' i 

I ~ 

'f'''"tl'~.'''''(" 

~l± r:-r:---rl TI _'~-"I ,! -,-~ .:ty; ~ d. .1 
:;~;;t!~'I). (a',::, H) 

io!. 1<1., t";) .. "", r .• :rr,,->,,:,<'!. ",'f!... -0,.",('1 p.'r 
.., .. "" ... ." .... ~ .. -::' ....... It ,., "0 ·;~I .. (_T It 'b"ct:: 
J:O'l' -;".ApI"".I' .. 

'" _ 0.'''''' Z.T" _ ;!'" w<J,"NEu~il.. ,.. \~/l ' TE­
"c:<.,.-;~ '", ,..tI,l"", TO -.,,('- PII' e. 
~ ... " ...... tc .... ., .. ··1·· /NI'''rf.U{ T'U' ''' ".It' r~-:· ... 
, :; "nT ,." •. ~ .... ., ''1 P' .... " Ill... :'.;:1- •. 0:.::.., ( ...... , 
~~,..,,~C".~.7 .... <.~~ .... "I.IS .. · ...... ""':-"7 ' (-S""7~ IJ,. 

A ·~".r r"-'~r~ ",rTf'tL"'i "".,,,,r-.,,r.,.{ S O,", ""I'I"-;F!I 
C!." .. , - ",. ~"''lco) 

Three instructions are used in connection with the map registers ' 

* SMAP ( s et map entry) -- This Instruction Is used by the operating 
sys tem when ini tializing a map entry . SMAP requires two parameters 
in the r~~er stack as shown below 

, , f : i jD 
2- 9 1 



• 

• 

• 

" 

P. 

• • .' ,:..'". I 

I " 

l 
---

r:: -
010:)"'00\0 -0"··,,-,,,- 9,..' .. • 

, 
• 

Principles of OperatIon 

w· 

.. - _<:,.~ ~ ... J":,"") -M .. ' 

hc()~' ... '·.~" t ."" "'\ 
(!. ... c. bMfI. ... 
!'(~'-Id -,\\) ' -1) 

~ ... - -- -
~o V • .,t' ... ,.! b I. 

" 

',+1.j<" "- ( .. t.~(;~, :.t.'" , ... , l 

..... .' ~ \" r_'';' ·.0 :I-
~ 

".""'''''!. 
r6~'_ /"/"!JI""'r • ./..I N /7 .!.. _ _----l 

",.0> -'1,).:'" ) 
) .,1''' C"O Ot:,. 

~ . 
, . 

* RMAP (read map entry) - This instruction Is used by the opera tIng 
system when readIng a map entry. RMAP requi res one parameter and 
returns the designated map entry to the top of the register stack. 

, . ~ J 
co· ,. -- ... 

Ii ~ " . . - 1, 1 
1 .. I,t..I_ I III/ \L 

2-92 



• 

• * 

• 

I > 

., 
, 

~. 

'" , 

PrInciples of Ope rat ion 

.~ ''''':', ~ 

" .. r.·~ .... C-J -:q.'" ( .. <; .... .:: ,,\I~''''''\ 

, ,. ;.. ";' • ,. , 

I· .. , .... " .. , (.'. " , 

'r.o< t., ~'11'.' 

• ... 1 ! ~ '-..c ... I. ,. . . 
I·~. 

• ., 
! .. ,. --
L' -. 

. . ..;. ~ -

f' ....... " '.' t'v~ 
~ , 

• , '. , 

. - ., 
-- -:-1 , " 

,,~ ... ,,~.:.: . 
'\"l~ . ~ ~.... ~ ~ 

...... ..- -- ---
~ • ~ '." I -----'._, 
L.~ 

~.l 
I 

I~ T.-·' ___ -

AMAP (age 8 map entry) -- This instruction causes the reference 
bits CR, R', R") to be shifted one position to the right. This Is 
used by the opera tlng system as an a Id In selecting a page for 
ove rlay. AMAP requi res one parameter 1n the register stack. 

"., ., 

----

-- ---.~--

, 

/n.~ '0:-1,1. .1': ....... ! 

~,;"c"L , .... l::;<!' 
I<IJ. .!. 
~ 

'. " ., 
- - ,,,,,, -

i[) 

FI·I~.,~' I~ 
....... V,..,<I ., .. '£ ... .c. 

-,.. -" -
IAlC·".·r~ ~'"I''' 

L 

. :.-, ,. ..... ,., 
• 
, 

a ': .,.., -; ;-;~ -r"""~ - (' ~1 

~.-==-- - 7.-;,,-.;J 

~ .. 

,",..r ..... .? ..t "r' (1",'''' f<lf,c.o't!'.J) 
....... '~J$lr,o~ ) 

2-93 



• 

• 

.-
( . i • " .. 

Principles of Ope ration 

Mapping 

For a given reference to a logical area , a 16- blt logical address 1s 
known . This converts to an IS- bit physical address as shown. 

,,"' .. \" I .. 1<:.-_ 

I t. '~' ''- L"::'·C:/\\... " 1':I; .. l-·.~ 
(0'__'. ~.""' .... , 

• '- " 

_____ J 

L 

, L " 
L..... r· I ~r ",-.. :,-,;- '\L-t:' 

". (""1 "'_".1 

, .-, , ~ .. , , , ~ ....... ~~, ',~, : 
• , .. .... ... , < ',r , • -: ... '\.., ~ " ~ co ... ': 

. -
-... 

- . - _. --
I 

I I T 
~- ~,-

L 
~ 

\ .... _ ... ,~ ... \\~\-;.\r.;.\ "t)ol1~""-:: 

(0', :J. ... ~ • • , .. ~) 

) 

~ 

2- 94 



• 

• 

• i , 

r 

Principles of Operation 

A Mapped Program 

The fo110,",1n9 illustration shows an example of a mapped applIcatIon 
program. Note, especially. that the various logIcal pages comprising 
the apppilcation program need not reside In contiguous physical pages. 

Ey!l l-I t..t • .,po ",' 

",:1,,, / , ·r-(Iolt 

,e",[ 
" 'J L ~~, ~I" I 

I 

,..'-~ • .:) , .:>''1. 

\-.efo' 
C .l;, 10-. 

" 

1-0 ~_ ... ~ I.­
\." ".<,:­
~ 

, • .• .,> ... 

, ------
C'-.(:~ , ...... -.. ~ 

-.!:I v . ~: . L ... :.... ~ •• 

j 
, 

P"., ... CIot 
P.,-,,: ,. 

··"""s·" -I' 
.MI •• <­
~, 

, ) 

, 
':I~"~;' • [ 

P~(f'C~ ~ '} -;. ... ,. or ... -"-, 
"'Ilr.,~ I , _""(,~,_,"'J~-,,..,f, 

:::0 :> : "' ,·r<'.~'" 

--1 

'" ~ I 
i 

P"{YS'Ci'f.. i 
,.,.'.~ 

.=:0" ",7 Y. 

I 
t 
I P", ... ~-r'" 

) 
'~) 

1 

I, "A6-= , < , 
~ - --1 
~ ,---------...-.. ,. .., 

1 

, 
0- -

'\. """"s'c,J: 
---,""" p,,.... .... I I :} t" 

I 
r 

."" 
.. ... ,,, 

2-95 



• 

• 

• • . -
Cd 
I 1\ \.J I 

Principles of Operation 

The following illustration shows an exampl e of mapping _ 

.. 

r--~ .. 

I 
I , 

f 
- - - --I 

1 

, 
• 
I , -, 

- - - -, --! 
j LQ T,:..-':; r~"t, ~~ ,to \ ,I.:. \ r .' - ~ j 

t(D:I!lI-" \. , 

• 
--

I 

P"~:'.C:,"( ~tt'b~ - = 
.... ··.,'L, .... ....... .. ...... ~., .. 

..~ .., 

" ii~ 
~ 

I . '"' 

l
O ..... "' .. lo\. .... J,' , ,,"..': 
\::tu",\O;N ~ ,~\ 

<="'~"T \'\1-::~G' • 

---- - - ---'-:."!..:... ... ,-

'f'''-''''..,\t.''t.... 
~<t:.l' r::~''( 

P.d.~~ .. . 
" .... c .... , 

';:'''' 

---J 

CO 1 .. ~ . • -. I . . i J- I , ." • . , I !h .. : . II _ 
2- 96 



Principles ot Operation 

• Page Fault 

• 

A page fault occurs when a reference Is made to a page that does not 
currently reside In main memory. When a page fault Is detected, an 
interrupt through to the operatIng system page fault handelr occurs. 

The page fault interrupt sequence (as shown In the following 
Illustration) lSI 

I. An address reference Is made to a page that Is absent from 
physical memory (A = 1'1"). 

2. An Interrupt through the SIV entry at SGI:l:630) occurs. The 
hardware places an Interrupt parameter indIcating the map number 
and the logical page number In the VI location In the SIV entry. 
One Is subtracted from the current P Register setting (so that the 
faulted instruction will be repeated) then the current environment 
Is saved In the interrupt stack marker. 

The MASK! word In the SIV entry for page fault 15 a "0" preventIng 
another page faul t interrupt from occurring whi Ie the current page 
fault is being processed. 

3. The page fault interrupt handler executes. An operating system 
program executes to read the absent page from disc. When the 
interrupt handler completest an IXIT instruction is executed. The 
environment that had the page fault is restored. 

4. Oecause the P setting minus one was saved in the interrupt stack 
marker, the instruction previously causing the page fault is 
re-executed. 

2-97 



• 

• 

• 

.. , 

• , 

t;". -_~.<, 

c: c- f) ~_ 

~ , , 
: ,.'_ , ... ,..,J{I) "- :-1-

I 

,- I ...... "1 

, 
1 L J._ , 

- ..... ",.TC-t'" 
.. 00 ""-

'-",,"4-."'t·!" 
-S''''''~--·I 
- --

I , 

r 
--__ I (<0) 

• ~ -, 
• , 

D;'r,. 

("~a.<J. ...... • 
··,-.. vt.\p 
"'" "'-\>;"1.10".-

..... . - r a •• 

JUtl,! l,J\' 

rnnn" "" , r', '/ 

'--

'";0- ,...--­
' • •• .1 \ • 

'J:LI\0 
"';'\ 

I 'ot J LJ 

CONFiDU;T/AL 

Pr!nc!ples of Operation 

1.. ... :'" . .... ~L 
","".c:. 

,I, 

.... _ - - ' 

r , 
, , 

/J·· •• ·I' 
u~., t · 
\ 'h1' 

--

(S)' ~ 
\..... _:.1' ___ 1-' ~..,=a\­, . ,. 

L __ 1... 

\,..~, 

,.. """''-.. 
I "T~ ... t.\ ... 
'" I .~t.,-!-. \.1 
'.~ ,. .... 

-

1 • 
I 
I 
I 

• , 

L ~::,.r.' ."\ E" 

- r.:l O :.... ") 

I 
... ,.. 20'-l~'::: :::(.) 

''''H!~<'''lT -,",f<.' ... 

''''~--I -.)."" ". 
• .. -,-; ••• ~.<~ 
to. ""I' -':" ",~~ ... 

2-98 



• 

• Re ference Bits 

Principles of Operation 

.. ~'-.-., ~ ...... " 
L .... "'M)L .. ;,:~ ___ (-:'1:0,-- _, 
1- ". 

"~'_"C"<' .. "D 
, <J ." .(. "''''' 'I.I'I."\.,~\ 

" '!'>!l !t\ T', 
, 'lltct"t. I ," '.~ /.<:.- ... 
' .,"".' , ". 

'"T"Ilt' "~~."n(·.IO~, ~ .. r· ....... ~"f'I -Lr:,: ""'''<!'o ,.../ ... , '( '., 'l,·. ,.·.~C'·"',=-\" • 

The following Illustration shows how the reference b1ts are used by 
the operating system to select a page for overlay . The criteria used 
Is' select the page that hasen't been accessed tor the greatest amount 
of time. Note that R is set to "111 On any access to the page. 11" and 
R" are the R value shifted r1ght one position by an AMAP instruction. 

any access' III" -> R 

AMAPI "0 " -> R -> R" -> R-'" 

write access. "1" -> D 

, 1 
' .. 

P"' Of .. " . I. I L • _ • I . I 

. , 
.. Ti::P.S 
f ;'10 rc", ~':j\ ",I' ,-, -1 1 

. . II L. . \, • 
2-99 



• 

• 

• 

Principles of Operation 

..... ,::-.... " . ~ /).",/.J"'II. ... ,'/':' I • ~, 
, . r. ..... : . , , 

" ", , • 
"r" ;t • ...:.. , 

" 
, " . , , ., /..J " , • ", "-, AI'. .~~ .. 'J .... 

" I T. , - , . " , . , , 
" r:;'" r., ., 'r I' : " , , /' rr 

I ... t'."": .. 
r ·1. • • " . " , . ".-- ~, 

.,'" .. 
,:-._-~~ J f-- '," ',4.' ·.·t!',·-t!~el Cf': I 

'.:.' ", 
.~ ... ....... 

, 

,,, • ;" .. ;~'. :;.~T.,F~·('~ 

. • -,. ... , 
.i 

r " " 
,'," 

, . " " " 
.;0 ~7 ... 1, " . s·" • 
v " : I'~ II 

" ." , 

, ....... 

• 

,- • , 
,~' ,. , 

t. ~." ") .. • , 

-
" 

-:,,-:,v,- "'~r.~''J, 

;".)."_. ...... ""_"." \ . "E~ I \IT '('0' 

E-~" u"~ '0' ... ,.,,'" .'\,,;. I'!,. ,.c:,.",'" 
LO ....... I .... w. ... , ... ~.'\, 't-"',:;' " ,<,;Ott ~'-.C' 1"''''C''o 
t>.t'"':',"I'_ ""'/-:"II.'.,~ <:,,,.,,,,~I." I'/Vl .... 

-I ,: , . ' ,., 
'" I ~~ " {~ " \ ,-

," , .- , , 
L, ,. , 
~ 

. , ~l~S 

. r~J, 
G t:/t'~'-/J: 

c;.·,y- . --.~.r.J"; 

('".I.'!.'-""" j 

". ...... _ •• I;' 

v oI"'-.,~ <\.'. 

...."" (. " 

~ 

"I\e... I/. 

~A, ...... C'.' 
C :"'1'/'0,) 

, ,1-' ·I'I)·~ 

C ,I, ll~ ,t ,.;1 .. 
/:;",".1," '-" -. . . , ,I : 0' r • " 
~ ., , .J '0 rl",·~.~) 

I 

1 , 
, .. r_" 

.. , , 

-. I ,,' ... ~ ,. I , 
-I ,'_,";'.: '" , 

l.t ~ .. 

. .:.., , 
I 

- - 1 

I , ~~~~~--~tfT----------------------------------------------------J 'I • _ • • .• I. ~ 

CO; J ;:WEr : T/,~ l 2-1 00 



Principles of Operation 

• • . c 

f 'j,-T.-r,- , 

.< II " .. \ I ,_ , ! ... ',,,\ 
" , I , 

I 

" '. L 

, ., 
, • , , 

• ,. ~ 

, ., , , '-:' ? --,;-, 

~ • -" 1-' " , 

" • • 
, 

• .. ., 

• I I'm 2-101 



• 

• 

• 

• ) .r: ..... , 
I·:~-:. .. 

f .. ,.. 
I I ,,/ 
:---: • 

I 

... ,~ .. " • ". , 

• 

• 

I' P' • " 
I' ..... • ~ • 

,J., T, --;- , r 
'J> .~ . I 

,.. ,.' t " 
I,I'."f" 6 -," 

.' ..,. II~ • 
~ Y • .(" .... ,.., • 

'" -, .... C'"'" ~" /, 
,- .. c.- tJIJl~" L.' 

; /''':' 

l 

, 

P""'S',-,,( •. . 
", -'. ,. 

',,,: <:" I) , , -:-V' '. 
t _),.-, ... ~' 

I .,-:' '"' 1':", 
~r;~ ... ( ,.,1. ..,. 
• 'I' ,,, o'l t f' .~ ~,,- ., 
,.. ... ", . ,I'·" ~ 

\u r":"' d 

.J 1_ h 

I ' 
, '. '. ., 

-. t, • , 
," ). , " . ., .. \1-\ 

.. 

'., 

Prine lples of Operation 

I' ,.'/1 tlr.,'" ;4 "'.,~ " 'C t: ,.. .. .,...,. ( .... , 
I ,/ ( ",,',I",{) r·.F/1) 

\":",', rJ(<i 'to-- .:{ ~i, 
cur (I '. )"~ I~':;n I {tl'· 

,. 
, 

",: " (IS''''' -.I'lo P 

2-102 



Principles ot Operation 

• COLLl LOAU 

• 

A processor may be initially loaded in one of two ways l from an I/O 
device or from another processor via one at the interprocessor buses . 
To perform a coldLoad operation , the SilITCH reqister swi tches are set 
to the eight-bit controller/unit number of the device or to a negative 
value if cold LoadIng over a bus , and the LOAD swl tch is pressed . The 
hardware then does the following 1 

'* The system da ta map entry for logical page 0 and the system code 
map entry for logical page 63 to both set to refer to physical page 
o of memory . 

'* The instruction'ilUN *, is placed In system code location P( %677J . 

* The E Register Is set to ~ 3400 (PRIV , DS , CS) . 

'* I f an I/O ColdLoad was selected, the roc entry corresponding to 
the designated controller/unit In the Sr1ITCli register is set with a 
transfer address of 0 and B byte count of %1600, a Cold Load 
command is issued to the controller/unit, and all interrupts are 
disabled. 

'* If a Bus Cold Load was selected, the SRT is set up to receive data 
from any processor over el ther bus, and all interrupts except X-bus 
receive and V- bus receive are masked ott. 

* P Is set to %176677. The BUN * In that location Is executed 
repeatedly while the UbootstapU program Is being read in . 

The data read In by the bootstrap program in the Cold Load sequence 
loads the operating system . The bootstrap program begins executing a!i 
soon as the BUN * instruction in 10c::Ition %677 is overwrl tten . The 
starting conditions of the bootstrap program are l 

P = %176677 
E = %3400( PRIV, LlS, C~) 
System Data Map entry tor logical page 0 and 

the System Code Ma p entry for 10g1 ca I page ~3 
both point to physical page 0 

'.IA~K = A: 177400 1 f 1/') Cold Load 
= %177430 It Bus Cold Load 

{l(" l · '. u r • '. I r ' / L.',I.J( j\} ! !I 
2-1 03 



• 

• 

. ' 

PrIne Iples of opera tion 

r---------------------------------~ 
.." i) l.!:' "''t) 

:,'f',~, .-, 
.~ ... ~ f· 

_ t, '-. ,r '"l ,,),... " , r 
~ .... ,.,. _l_ --

V" -

l=-

--..---

.... -.. 

'',,0' r .. , tf' ,.. 
n. 111. 
t .. ? 

" " 

r"r. , .......... , ... " .: 
t." .. ", .. ~ .. '. ,,. ..... ,.,, 
... .. TII,. ... ~., .... r:,; '-J -

, --, 
, 
, 
I , 
• 

I I 
L • 

• I -r -, T'-' 
___ -,-,_'_, I 

'1.(..'71/;.> r.(f..f'JN.t'...t. 

, , 

r. -
_ 0:. ' 

. +---

, 

~-r-f"":" r -r:-'-
, • .:1, 'c;. , I I \ ." • ---- ---.--

. 

~ 

. , 
!. ~. . . 

< .. 
- - ; - r :, 

_____ ~.:;' '~, __ h' 

c 

- , 

l , " 

( <= ~., , .. , , 
, '.1',0 " , ' , "' , 

'-
J 

, , ,', I I ' I 

""' P~c:.:o"''''-
.... t ,,('" c ....... ", .. ,t'.IG\ 

c."!i .:en .. -, ..... l ( ........ 
.... , .......... +~ .... ,c: ..... ·r.,,~·. 

, , 

, , 
, 

.~.' . , 

l i ~o 

j J , , 
I 

"-', . 
-~ 

r ..... ~.::.o c 
co..;-.. l.,~ .. r. 
"', \':0 

,.-- ' :"; .-' 
I t: .~,,~ --.: 

~-,~~ ~ , 
..~ 

2-1 04 




