
Cantor: a/ Tutorial ancl a. User's Guide
. . .

{prototypi~g, §et tlieory ana, a[[tft.at}

Jean.'....Pierre Keller

vo(umel

Xep[er 8 nu ie.s naies, !f-75020 Paris aec.1994

Cantor: a Tutorial and a User's Guide

{prototyping, set tlieory ana aC{ tliat}

Jean-Pierre Keller

8 rut ties naUs, 1'-75020 Paris

> wfiat is prototyping ?
aeCiver {i.e. give fife ana sfiape to} an abstraction
> wfiy set tlieory? .
because af{ tlie abstractions we may tfiin/(of fiave 1tWaefs in set tlieory
> ana wfiat is af{ tfiat?
tfiat wi£[be aiscussea now

Volume I: a Cantor Tutorial

Cantor: a'Iutoriaf ana a 'User's (juiae - vofume [[

Table o/Contents

What is - and why - prototyping? .. 1
Why sets and set theory? ... 2

Example 1: a line at a bank or at the post office3
Example 2: function tables .. .4
Example 3: a data table ... 4
Example 4: pre-requisites .. 5
Example 5: a simple real-time system: a digital watch 5

Giving life (prototyping) to sets ... 8
Example 1: a line at a bank or at the post office -revisited 8

the join function: ... 10
the serve function: ... 10
the complete service function: 12
the mapping: event -> service: 12
the simulation scheme: .. 13
the whole example as a text file: 13
treating a text file as an include file = compiling and running a
program ... 14

Exercises ... 15
Example 2: function tables - revisited 15

redefining a function at a point 16
tabulating a function ... 16

. function tabulation is not always meaningful 16
Exercise .. 17
Example 3: a data table - revisited-I , ... 17

the data table as a map ... 17
saving the data table on a file and restoring it.. 18
the example as an include file 19
the relational version of the data table 19

Exercises , 20
Example 3: a data table - revisited-2 20
Exercises ... 22
Example 3: data tables - revisited-3 23

formal Cantor definion of the relational operations 23
Exercises ... 26
Example 4: pre-requisites - revisited-I 27

a naive problem definition 27
a naive fixed-point solution 27
an ideal complexity model for a set machine 28
designing a more efficient algorithm with finite differencing29
step-wise refinement guided by finite differencing 30
mechanical refinement by finite differencing 31
the include file for the prerequisite problem 32
the execution trace ... 34
comments on this execution trace 36

Exercises ... 36
Example 4: pre-requisites - revisited-2 37

partial orders, transitive closures 37
topological sort ... 38
Exercises .. 38

Example 5: a simple real-time system: a digital watch-revisited 38
the different types of transitions 40
propagation of activation and de-activation 41
propagation and closures .. 42
the include file of the statechart interpreter 44
the include fIle of the digital watch specification 47

Exercises ... 49

Cantor: afJ'utoria£ and a 'User's guide . vo{ume I II

Volume I: a Cantor Tutorial

Jean-Pierre Keller, :K.epl:er

8 rut ties liaus, !f-75020 Paris

> wftat is prototyping ?
tfe!iver (i.e. give {ife ana sftape to) an a6straction

> wfiy set tfieory?
6ecause a[[tfie a6stractions we may tfiin(of ft.ave motfef.s in set tfieory
> ana wftat is a[{ tftat?

tftat wi{{ 6e discussed now

What is - and why - prototyping?

Prototyping is strictly speaking the art of developping prototypes. Prototypes are by definition
experimental versions of presumably complex systems. They are developped to help in assessing
the intricacies and virtues of projects : it is accepted that beyond very simple or well-known
systems an abstract definition, though essential, is insufficient to understand and evaluate what a
project represents, what are its consequences : an abstract system may not be understood or
evaluated without being 'seen and touched and experimented'. Presented in this way,
prototyping is just a cautious way of proceeding with projects and innovation.

This argument could be turned over: why not systematically look at every new idea with the eyes
of a 'doctor' or an 'expert' ausculting a prototype? For those who, pushing such new ideas,
would'nt be building a prototype, the affirmation of the feasibility and relevance of these ideas?
Viewed in this way, prototypes rhyme with audacity, cleverness and seriousness. Ideally,
prototypes should be low cost and developped swiftly : this is why often prototyping is
assimilated with 'quick and dirty' and 'throw away' developments. Instead we suggest that
prototyping is very much like experimenting, that it requires a scientific frame of reference, so
that, when the experience comes to an end, valid and arguable conclusions can be made.

What are, in the software technologies, possible scientific frames of reference?

Whenever a craft develops into a method with a specific technology, there is a formal reference
frame. Often, companies, laboratories, individuals develop skills which are partly build on
established technologies, partly on their own personal experience.
Beyond 'sculpting' and refining with the possible assistance of powerful machinery (tools and
established methods), prototyping is an attempt at formalizing the skills and their use of
machinery into a method 1. Such methods are domain dependent and attached to a class of
applications. The most elementary examples are the so-called 'application generators'.By
analogy, we call 'generic' these experimental methods or tools.

To illustrate this notion of generic tool, let us imagine the case of a company developping software for a
specific chip on a custom made board. This software is developped on a standard host, say a Macintosh. There is
a need for:
-compiling programs on the Macintosh
-transfering programs compiled on the Macintosh to the board,

1 Very often these methods represent the integration of a relatively large number of standards, established methods
and tools.

:K.epCer a Cantor Tutorial 1

-emulating the board on the macintosh for preliminary debugging
The interface software meeting these essential needs is what is usually called an application generator. This is
the lowest level generic tool. Let us suppose, that this board is a Digital Signal Processing board, for
processing pictures in some standard format A number of specific processing functions -using the hardware
configuration ressources of the board- could be defined, and calls to these functions made possible, in the
application generator. This extension of the interface software would be a more advanced generic tool, tailored to
the DSP needs and the specific board. One could imagine many extensions expanding the capability of this
interface software, but remaining generic, i.e. suited for a wide class of applications.

We picture the prototype production process as the 'pure prototyping' feed-back loop (cf. fig. 1):
-methods are represented by generic tools,
-prototypes are models obtained by application of these tools

Deficiencies in prototypes may be the result either of an inadequate application definition and/or
parametrization of the available methods, or of a deficiency of the methods themselves.
Developping prototypes therefore entails a progressive improvement of the methods' adequacy.

'Pure prototyping' instead of ad'hoc developments, means the adaptation and systematic use of
generic tools. Thus prototyping becomes synonymous with capitalisation of know-how!

This requires therefore the ability of using existing formal methods as well as developping new
ones. Whence prototyping tools are either powerful formal generic tools or tools for creating
'easily' new ones. It is for the sake of modeling complex abstractions and creating new formal
methods, that set theory, the most expressive and general-pmpose form of mathematics has been
selected as the mathematical foundation for a software prototyping environment.

rototype
(models)

adjust methods

methods

parametrize & apply
methods

fig. 1 the 'pure prototyping' feed-back loop

Why sets and set theory?

Imagine an old man, late at night, on a sidewalk under the only street light of the block, watching
carefully the water running in the curb. A neighbour, passing by recognizes the man: "what are
you doing here so late in that dark street? -I am looking for my watch! -what happened to your
watch? - It's lost, may be it slipped into the curb, will be pushed by the water and will show up
here sometimes. -Where did you lose your watch? -Well, two blocks away, near the fruit
store ... - why then look for it here? - you see, the other street is dark, there is no street light!"

This story describes a common situation when dealing with the search for a convenient and

'.Kepfer a Cantor Tutorial 2

appropriate solution for specific problems : you don't need to be an expert to recognize what is
essential and what is secondary in a proposed solution, and that, when you need a watch, a
watch-less street is just as good as a screw driver, a french english dictionnary or a street light,
and is not the solution. In the programming world, you don't always need to be an expert to
recognize whether a given data representation is adequate or not, even though it displays some
relevant parts. We are not discussing at this point optimisation, just basic adequacy.

Often, programming problems deal with collections. Not all collection models will be adequate to
represent the collection(s) you have to deal with. However, sets represent the most flexible
known model for collections (all the imaginable models derive from that one; necessarily one of
its derived model will adapt to your problem).

Set theory is an intricate mathematical theory, which will not be discussed here. Actually Cantor,
has a bias toward a specific branch of it: hereditarily finite set theory. But this is beyond our
point now: we are only concerned with providing a correct and rich basis for a simple, rigorous
and clear formulation for a very wide class of abstract data models and their algorithms. Our
objective now is to introduce the basic set theoretic data representations, and discuss their
applicability.

We are now presenting a set of examples which should be seen as a gradual introduction to
Cantor and its set-oriented constructs. The companion volume "a Cantor User's Guide" is
refered here as the Cantor manual, since it contains a systematic presentation of Cantor essential
features, as well as elemntary examples and illustration exercises : it is inseparable from this
tutorial.

In the first example the most common set-oriented constructs are introduced: set, tuples and
maps, including maps associating ordinary data-structures to user-defined functions. In the
second example we introduce tabulation, a simple technique to speed-up many computations. In
the next example, we discuss data representations in Cantor and compare them with the relational
model -probably nowadays the most widespread representation of large data sets and databases.
In the fourth example, we consider simple graph problems, and present elements of an algorithm
design methodology based on fixed-points, finite differencing and a simple complexity model for
a set machine. Finally, in the last example, we use Cantor constructs to represent unusual set
organisations (hypergraphs) and their use in modeling real-time systems. We have not included
other topics, quite relevant both to Software Engineering and set abstraction, like parsing and
compiling, graphic representation of abstract structures (the converse of what is done here in
example 5), data-flow analysis : these topics are perhaps too advanced for this modest tutorial
introduction to the interplay of (set-oriented) mathematics, prototyping and programming.
Indeed, as was stated in our introduction to prototyping 1, other branches of mathematics and
other established methods would have to be integrated in the exposition of these subjects.

Example 1: a line at a bank or at the post office
This example deals with two collections:
1- the collection of customers, waiting on a line
2- the collection of service counters
The two collections are not organized along the same principles. The waiting line obeys a FIFO
(First-In-First-Out) discipline: one joins the line at the tail, one is served at the head, one could
quit the line 'in the middle' -this shortens the line- but one cannot join the line in the middle. This
is typical of an ordered collection. The counters are organized along very different principles: a
customer at the head of the waiting line is directed to any open and free (not busy) counter. If
there is a 'counter discipline' it has nothing to do with the 'line discipline': it is based on
availbility not on order.
To model this example one needs to formalize the following operations:

-line operations: joining a line, quitting a line 'in the middle' (elsewhere than at the head),
quitting a line at the head,
-set operations on service counters: defining a subset by criterias (here 'available', 'busy','not
operating', etc), selecting an arbitrary element in one of the subsets

a Cantor Tutorial 3

Example 2: function tables
The table is a number table, for a function defined by a recurrence equation. This the case of the
factorial function

n! = n * (n-1) !
or of the Fibonacci numbers defined by:

Fo = 0 F1 = 1 F n+2 = F n+l + F n
Computing 10!, involves computing 9!, which involves computing 8! etc. If after having
computed 10! the user requests 11!, then again, the same values have to be computed again. It
would be simpler to store them all in a function table, and retrieve their values rather then re
computing them, if possible.

Example 3: a data table
The table has four columns: item name, sales price, quantity sold since 1st of the month, quantity
in stock. The 'key' of an entry into this table is the item name.

This example deals with a single collection. Each member of the collection may be regarded as a
4-uple (name, price, #sold, #in stock). This collection does'nt have a well defined ordering. It
could be presented sorted by item name, or by price, or by quantity sold, or by quantity in stock,
or by some other rule, e.g. by cash-flow (price* #sold). What determines its structure is more
the fact that it should be seen as a mapping (a function) associating to each item name a 3-ple
(price, #sold,#in stock). This model is that of a set of pairs where each pair is [item name,
(price, #sold,#in stock)]. Note that the second element of each pair in this model is a 3-ple
(price, #sold,#in stock). To actually formalize this model one needs to formalize the following
operations:

-representing tuples (pairs, 3-ple, 4-uple, etc ..) of various length, with items of many
different types
-nesting of ordered sets (e.g. nesting a 3-ple within a pair)
-nesting of ordered sets within unordered sets
-computing the value associated to a 'key'
-accessing the i-th element of a tuple for reading or writing (i.e. update)

A possible visual presentation could be in a table, one row per item:

...
itemNamei priCei nbr soldi nbr in stocki
...

This example could be made more realistic in the following way:
Associated to the item name are not only the informations (price, #sold,#in stock) but for each
item a list of suppliers, for each supplier its current price. That is, associated to the item name is
a 4-uple (price, #sold,#in stock, supplier_table) where the 4-th item in the 4-uple is itself a table,
associating to a supplier, its current price for this item. Since the same supplier may supply
different items, one could assume that the same supplier name appears associated to different
item names. A possible table presentation including nested supplier information tables could be:

...
itemNamei pricei nbr_soldi nbr_in_stocki supplier_a price_a

supplier_b price_b
....

...

The same information could be obtained by a different data organization, in which all the supplier
prices are grouped in a supplier_price table, one per supplier, and the 4-th item associated to an
item name is just a set of suppliers names. In this model we have two main collections, actually
sets:

1-an item data table whose visual presentation could be :

a Cantor Tutorial 4

...
itemNamei pricei nbr_soldi nbr_in_stocki supplier_a

supplier_b
....

...

2-a supplier table :

....
supplier_x ...

itemNamei supplier_pricei
itemN amei+ 1 supplier_pricei+ 1
....

....

We see here two solutions which are obviously adequate to the problem description, and for
discriminating between them, an expert advice on 'normal forms' may be needed (normal forms
are rules for organising data models in the relational approach). But abstractly these two
solutions are almost equivalent.

Example 4: pre-requisites

Let us consider the following graph describing the dependencies among the chapters in a text
book.

9

fig. 2 chapters dependency graph in a text book

Each arrow describes a direct dependency. For instance, since two arrows are ending at box 5
(the arrows 2->5, 4->5) this means: chapter 5 depends directly upon chapter 2 and chapter 4 : 2
and 4 are the ancestors of 5. Finding all the direct and indirect dependencies, involves
accumulating into a single collection all the ancestry. Thus let us state our problem: determining
all the pre-requisites to chapter 7.

Quickly, looking at the graph, one sees that {2,1,4,6} is the pre-requisite set for 7.

This presentation however misses a point: in what order should one read the pre-requisites to
chapter 7? The ordering is certainly not (2,1,4,6). However, (1,2,4,6) or (1,6,2,4) seem
equivalent.

Example 5: a simple real-time system: a digital watch

This example is inspired by D. Harel's presentation of hypergraphs and statecharts in the

a Cantor Tutorial 5

Communication of ACM in 19882. In this paper Hare! proposes a formal representation for
representing the behaviour of reactive systems, an important class of real-time concurrent
systems. He illustrated his discussion with the case of a digital watch. The working of Harel's
digital watch is described by the following diagram, which we will explain thereafter below:

dead

main

displays

2-min
[not in<stopwatchll

I

I

I
I

I
I

I

I

Power

L __ _
I light

I

I

I

I

I

I
I
I

-------r:: _______ _J __ _
alarm-st I chime-st

d[in(alarmll I c-enab d[in<chimell
I ~c-:--be-ep::---~=-✓:-,"."".:-"\,,,it---.f:"c-~d1~·sa::b'.""""'I

I

fig. 3 A State Chart for the Digital Watch (reproduced from CACM)

Before describing further this formalism, let us emphasize that (industrial) Software Engineering
is using systematically visual formalisms to assist in the specification process. Harel's formalism
is perhaps the most intricate one, it is quite widespread and anyway one of the most expressive.
This is what motivated our choice.

The key feature of a Statechart, as a diagram, is the 'blob', a labelled rectangle: blobs are the
main components of Statecharts; blobs may be nested; 'atomic' blobs contain no other blobs.

There are three main collections in Statecharts:
- the set of blobs, representing the individual states of the system being described, as well as the
groupings of such states
- the set of subsystems, representing the breakdown of a blob into concurrent subsystems (a
subsystem blob is a block in a partitioned blob; the boundary between two adjacent blocks in a

2D. Hare!: On visual Fonnalisms, CACM, 31,5, 1988,pp 514-530.

'.JGepl:er a Cantor Tutorial 6

partitioned blob is a dashed line)
- the transitions (labelled arrows)
Ordering by inclusion is the only natural ordering for the blobs and subsystems: these inclusions
are represented as nestings on the Statechart diagram, inspired by Venn Diagrams.

Each of the rectangles is a 'blob' representing a set of states for the system. Nested blobs -within
a given blob, at the same nesting depth- corresponds to mutually exclusive states: e.g. the whole
system comprises two blobs dead, alive; the blob up-alarm comprises three mutually exclusive
states: hour, min, t-min. These states represent different ways of displaying the time
information. The same states may appear in another grouping: actually, hour, min, t-min. are
also states in the update blob. Thus even though the time-update and the alarm-update states are
distinct and mutually exclusive states, they are not disjoint as sets! The blob alive is subdivided
too. This time, the subparts are separated by dashed lines: the dashed lines create a partition, here
the partition is

alive -> main, power, light, alarm-st, chime-st
into five blocks. Each of these blocks may then be further subdivided into states or subsystems.
In the example, the decompositions are:

main -> displays, beep
power -> ok, weak
light -> on, off
chime-st -> c-disab, c-enab
alarm-st-> disab, enab

Harel calls such partitions a cartesian product, since each element (state) of the partitionned blob
alive is itself a collection of elements (states) containing a representative member of each block of
the partition. Since 'alive' is partitionned into 5 subsystems, each state of alive is represented by
its decomposition into 5 states. E.g. :

main
displays
beep

power
ok
ok

light
off
off

alarm-st
disab
disab

chime-st
disab
disab

are two examples of valid elements (states) of alive with for each one its state decomposition into
alive's member blocks. It is sufficient that they differ in only one of the member blocks
components (i.e. subsystems) -here in the main block- to correspond to different states of alive.
Note that, the same state (blob) may not appear in different blocks: the blocks are really disjoint
sets. The arrows represent event-triggered transitions between states (i.e. between blobs).

The notion of default state is clear: if the device described by the statechart has to activate, for a
given blob, any state among all the blob's members, it will select the default state for activation.
When is it the device's responsability to activate a state: when a blob, subdivided into several
states, is activated, the device has to select which state among its substates should be activated;
the default state represents that active state by default. In the example of the watch, the top-level
blob which describes the most general condition of the watch is supposed to be always active, it
can be either in the dead state or in the alive state. How is the choice between those two states
being made? In the Statechart in fig. 3 by default, the watch is in state dead: An arrow coming
from a dot within the top-level blob, indicates the default state. Similarly, when the blob alive is
activated -as a consequence of the bt-in event- then the watch device is simultaneously in
subsystems main, power, light, chime-st, alarm-st. For each of these a decision has to be made:
which state should be activated? In the Statechart in fig. 3, by default, the subsystem power is in
state ok, the subsystem light is in state off, etc.
Notice that in the partition main, there is no default state: the system could arbitrarily be found in
beep or in displays ! The same event, e.g. b, may occur in various subsystems (sub-partitions)
simultaneously : partitioning a blob into subsystems means actually defining concurrent
subsystems.

Is Cantor, equipped with its set constructs a convenient framework to describe this kind of
formalism? Our problem is to simulate properly the watch described by this diagram: how should
the blobs, their nesting and partitioning be represented, and how would the watch simulation of

a Cantor Tutorial 7

the various concurrent subsystems go?

Giving life (prototyping) to sets

This is what Cantor is all about. In the above examples, several forms of set organization are
used. What Cantor provides are immediate concrete models for all such set organizations. We
will here prototype the above examples.

Example 1: a line at a bank or at the post office -revisited

This example, which we call the simpl_server example, will provide an opportunity to introduce
the main Cantor collection representations: sets, tuples, maps.

Cantor represents both ordered and unordered collections . In Cantor, an ordered collection is
called a tuple, an un-ordered collection is called a set. Curly brackets { } surround unordered
collections, and square bracket [] ordered ones.

The abstractions of each problem modeled in Cantor, as in most programming languages, are
represented by variables. They receive a value through assignement operations:

variable:= expression;
which should not be confused with equality expressions like

variable= expression
which are either true or false. To observe a variable value, if the value is not hidden, (a hidden
variable is a private object 'local' to the computation of a func; this will be discussed later) one
simply requests its evaluation:

> variable;
Here '>' is the Cantor prompt. Type the variable name on the right of the prompt, followed by a
semi-colon, and a carriage return. The value is displayed on the following line.

In this example we have at least the following non-hidden variables: theQ and theServers
representing respectively the waiting line and the service counters.

A snapshot of a configuration with a waiting line of customers and 5 service counters could be:
> theQ;
[] ;

theQ represents here an empty waiting line.
> theServers;
{["b", ["avail", !6!]], ["e", ["avail", !3!]],

["c", ["busy", !5!]], ["d", ["busy", !7!]],
["a", ["busy", !8!]]};

theServers is a set whose elements are pairs [server_name, [status, customer_id]]. In this
model, each individual customer is represented by a unique id number, e.g. !7 ! . Each service
counter is similarly represented by a name and a status indication ('avail' or 'busy'), and the id
of the (last) customer being served.

theQ is a variable representing the waiting line and theServers represents the set of service
counters. At this point in the simulation, the line is empty, and two service counters (the ones
named 'b' and 'e') are idle.

Another snapshot is:
> theQ;
[!26!, !27!];
> theServers;
{["e", ["busy", !19!]], ["b", ["busy", !24!]],

["c", ["busy", !13!]], ["d", ["busy", !25!]],
["a", ["busy", !21!)]};

The variable the Servers is a set representing the collection of all service counters. It is also an
association between a well-defined server name and information items: [server_status, cust_id].

'.JGepfer a Cantor Tutorial 8

Since this is a well-defined association -there is no server name which is associated with two
different collections of information items-, one could consider theServers as a function to
access the information items:

> theServers("a");
["busy", !21! l;

Set of pairs are known as maps. When a map represents a well-defined association it is called a
single-valued map or smap.
Similarly, theQ may be used as a function, associating to an integer representing a rank in the
ordered collection, the element at that rank:

> theQ (1);
! 26!;
> theQ (2);
! 27 ! ;
> theQ (5);
OM;

Note that since there is no one in rank 5 in theQ, the value returned is OM the undefined. The
undefined could be called om too.

The development of a software model for this example is rather simple. And we will describe it.
The basic data model should be defined and initialized:

$ create servers: initialized to 'avail' status,
$ and without customer
theServers := {['a', ['avail']], ['b', ['avail']], ['c', ['avail']],
['d' , ['avail']] , ['e' , ['avail']] } ;
$ create a line, empty
theQ := [];

Note that Cantor allows a more elegant way of defining those servers:
theServers := {[x, ['avail']]: x in 'abcde'};

A software model has to consider the possible events in this simple system:
-join: a customer joins the line
- serve: a service counter starts servicing the customer which is at the head of the line
- complete service : a service counter completed its task for a customer: that customer leaves the
system, the service counter becomes 'avail', unless it has a customer to serve.
For this initial version we omit the possibility of a customer leaving the line before being
serviced.

To each of these events is associated a corresponding function. We will explicitly define these
functions in our model. But we need quickly to introduce function syntax and semantics.

Functions in Cantor are ordinary objects. They may be used as auxiliary in computations, as in
traditional mathematics: e.g. a function to compute the speed of a sweet pea falling from a
satellite as a function of the altitude above the sea level, or the installments for a loan at a given
interest rate. A function, given a list of arguments returns a value. The list may be empty: i.e.the
value returned is independant of any input value. A function may be invoked not only for
computing a value, but also for 'doing things', e.g. sorting a collection, deleting a file, copying a
file to another file, etc. When the value returned by a function is irrelevant, it is convenient to
make this returned value OM, the undefined.

It is possible for the user to define her/his own functions. This is done with the following
syntax:

func(list-of-parameters);
local list-of-local-ids;
value list-of-global-ids;
statements;

end

$ optional
$ optional
$ at least one statement

(Notice the use of comments: everything on a program line on the right of a $-sign is ignored by
the Cantor interpreter.)

a Cantor Tutorial 9

Since functions are ordinary objects, functions themselves can be the value of a variable. Thus
the most common way of defining a function is as an assignment:

f := func(x); return x+l; end;
This assignment makes the function which returns its arguments augmented by 1, the value of
the variable f. Then the assignment:

g := f;
makes that function the value of the variable g too. Thus:

> f(lO);
11;
> g(-45);
44;
> f = g;
true;

In our functions we will not use value declarations. However we will often use local
declarations. Variables declared local to a func, are accessible only within the scope of that func,
i.e. to the program statements defining the func, including possibly other nested func definitions.
However, they are not accessible (i.e. hidden) to other parts of the program, or to the console.
For instance, a declaration:

local x;
within a func, creates a variable x to which assignements could be made. However, any variable
called x in other parts of the program -outside the scope of that func - will not be changed, when
the code associated to that func is executed. Parameters are considered local variables.
The first functions we will introduce have no arguments, i.e. they carry out a computation with
no explicit argument. However they may work on -and modify- the common (global) data
structures of the problem: theQ and theServers. Notice again the generous use of comments
(everything on a program line on the right of a $-sign).

the join function:
func(); local cust;

cust := newat; $ identify a customer with a new atom
theQ := theQ with cust; $ add the customer at the tail

end;
This function uses a single local variable: cust.
An atom is a data type, much like an integer or a real number. Its specificities are:
- each atom is created during a session by the built-in operation newat
- all the created atoms (within a given session) are distinct.
- the only operation on atoms are the comparison for equality or inequality of two atoms.
Atoms are like identification numbers. There is no arithmetics on identification numbers. What
matters, is to be able to use them for identification and garantee that no two system generated id
numbers are identical.

The variable cust is assigned as value an atom.

The with operation is the standard way to add an item to a collection. If the collection is an
ordered collection that item is added at the end (as the last element) of the collection. If the
collection is a set, and if that item is not already a member of the collection, that item is added to
the collection. There is an inverse operation, for unordered collection, the less operation.

The variable theQ is an ordered list which is augmented with the value of cust.

the serve function:
func(); local srvr,cust;

if #theQ = 0 then return end; $ no business: stay idle
$ select a server among the available ones

srvr := arb({x: x in theServers I x(2) (1) = 'avail'});
if is om(srvr) then return end; $ all the servers are busy

$ cust is removed from the begining of theQ

'.JGepfer a Cantor Tutorial 10

end;

take cust fromb theQ;
$ srvr(l) is the server name
printf srvr(l)+' serves '+itoa(cust)+'\n';
$ update the theServer map
theServers(srvr(l)) := ['busy',cust];

This function uses two private (i.e. declared local) variables: srvr, which corresponds to a
service counter, and cust which correponds to a customer, the one at the head of the line.
The# operation is the cardinality operation. Given a collection coll, #coll is the number of
elements in the collection. In our case, the cardinality of theQ represents the waiting line length.
If the line is empty, its cardinality is 0, and there is no service to perform: the serve function
should return without doing anything. This is stated with an if-statement:

if :/1:theQ = 0 then return end; $ no business: stay idle
We have already indicated that each server is a pair: [server_name, [server_status,cust]]. In an
ordered collection s, s(i) represents the i-th element of the collection (i ~ 1). Therefore if x
represents an element of theServers,

x(l) is a string (the server name)
x(2) is the pair [server status,cust]

Since the status may be 'avail' or 'busy', either
x (2) (1) = 'avail'

or
x(2) (1) = 'busy'

Finally, x(2)(2) is either the current or the last customer. When the service counter starts
working, there is no customer, whence

x(2) (2) = om, $ the undefined value
Later on, the server x having serviced a customer with id cust, x(2)(2) becomes cust.
The model of the serve function is: the customer at the head of the waiting line is sent to anyone
of the available service counters. Therefore, to actually start a service, one has to compute the set
of available service counters:

{x: x in theServers I x(2) (1) = 'avail'}
select arbitrarily an element, and assign this element to the variable representing the service
counter:

srvr := arb({x: x in theServers I x(2) (1) = 'avail'});
The arb functions, a choice function, performs the arbitrary selection. As a result of this
assignment, if the collection {x: x in theServers I x (2) (1) = 'avail'} is not empty,
one of its members is assigned to the variable srvr. However if this collection is empty, arb
returns OM, the undefined. If at this point srvr has value om, all the service counters are 'busy'.
The serve function should return without doing anything.

if is om(srvr) then return end; $ all the servers are busy
In -

take cust fromb theQ;
take and fromb are Cantor keywords. This operation assigns the element at the 'begining' (the
b in fromb) of the ordered collection theQ to the variable cust, and then removes that element
from the collection, thus shortening it by one element. Similarly one could have

take var frome aTuple
take var from aSet

frome, acts on the end element of the ordered collection aTuple (assigns it to var and then
removes it from aTuple), from acts by selecting an arbitrary element in the unordered collection
aSet (assigns it to var and then removes it from aSet)
The next statement prints a message to the console:

printf srvr(l)+' serves '+itoa(cust)+'\n';
The message is obtained by concatenating several strings together by means of the + operation.
For instance, itoa() is a built-in function which converts an integer or an atom into a string
corresponding to the decimal representation of the number passed as argument (see in the user
manual, if you have any difficulty with this, section 3.4 on strings). Note the new-line symbol:
'\n', which is the equivalent to the key-board carriage return symbol. The printf command
allows a programmable output (i.e. display on the console, or output to a file) format. The
default print command has a default output format. (cf. section 7.4 of the user manual)

'.K-epCer a Cantor Tutorial 11

j

j

The data structure representing the service counter [server_name, [server_status,cust]] has to be
updated to reflect the status change (from 'avail' to 'busy') and the association with the customer
with id cust. This is done by the assignment statement:

theServers(srvr(l)) := ['busy',cust];
In absence of an explicit return from the serve function as the last statement, the function
returns a value OM (undefined).

the complete service function:
func(); local srvr;

end;

srvr := arb({x: x in theServers I x(2) (1) = 'busy'});
if is om(srvr) then return end; $ all servers are idle
$ srvr(l) is the server name
printf srvr(l)+' completes service of'+

itoa (srvr (2) (2)) +' \n •;
$ update the theServer map
theServers(srvr(l)) (1) := 'avail';

In our discrete event simulation model, a complete service event directs the program to stop
service at an arbitrary service counter: this applies only to 'busy' servers. A busy server is
selected among all the busy servers. If the selected server is OM, the undefined, the set of busy
servers is empty. Otherwise, one should print a message and update the server status. This is
very much like the serve function.

the mappini:: event-> service:
We could now introduce the set of functions, associating an event name to its function:

event map:= { r join I , func () ; local cust;

} ;

cust := newat; $ identify a customer with a new atom
theQ := theQ with cust; $ add the customer at the tail

end],
['serve',func(); local srvr,cust;

end],

if #theQ = 0 then return end; $ no business: stay idle
$ select a server among the available ones
srvr := arb({x: x in theServers I x(2) (1) = 'avail'});
$ are all the servers busy?
if is om(srvr) then return end;
$ cust is removed from the begining of theQ
take cust fromb theQ;
$ srvr(l) is the server name
printf srvr(l)+' serves '+itoa(cust)+'\n';
$ update the theServer map
theServers(srvr(l)) := ['busy',cust];

['complete service', func(); local srvr;

end]

srvr-:= arb({x: x in theServers I x(2) (1) = 'busy'});
if is om(srvr) then return end; $ all servers are idle
$ srvr(l) is the server name
printf srvr(l)+' completes service of '+

itoa (srvr (2) (2)) +' \n •;
$ update the theServer map
theServers(srvr(l)) (1) := 'avail';

The set event_map is a collection of pairs [anEventName, aFunc]. It is therefore a map, just like
the collection theServers which is a set of pairs [server_name, [server_status,cust]] . The set
event map is a well-defined association, since the same anEventName is never associated with
more than one function. It is therefore an smap, and event_ map may be considered a function:
e.g. the expression event_map ('serve') is exactly the serve function. To execute the serve
function, one has to invoke that function with the required argument list which, in our case, is
the empty list; the invocation of the serve function is therefore event_ map (•serve•) () . A map,
being a set of pairs relates always two sets:

'.JGepCer a Cantor Tutorial 12

- the domain of the map, i.e. the set of all 1st elements in the pairs
- the mage or the range of the map , i.e. the set of all 2nd elements in the pairs (both names are
used indifferently)
For instance, in the case of event_map:

> domain(event map);
{'serve', 'complete service', 'join'};

the domain is the set of event names.

the simulation scheme:
A simple simulation consists in generating (pseudo-)randomly events and requesting the program
to execute each time the corresponding function. This may be achieved by this simple loop:

$ make customer arriving, and being served 'random'
events:= domain(event map);
$ events is {'join', 'serve', 'complete service'};
nSteps := 150; -
for i in [1 .. nSteps] do

end;

anEvent := arb(events);
event_ map (anEvent) () ;

In the case of event_map, domain(event_map) is preciseley the set {'join', 'serve',
'complete_service'} of event names. and range(event_map) is the set of corresponding
functions.
To run this simple simulation, one needs to decide the number of simulation steps, i.e. the
number of events to generate. We consider here, a trial with 150 steps. To define a loop we
define a collection [1..150], comprising all integers from 1 to 150. In the for-loop statement we
name a loop index i which will take in turn all the values in that collection. Each time through the
loop, all the statements between the for-loop opening and end statements will be executed. The
first of these calls for the arbitrary selection of an event name, this name is then assigned to the
variable anEvent:

anEvent := arb(events);
The second statement determines the function corresponding to that event name:
event_map(anEvent), and then invokes that function without argument:

event_map(anEvent) ();

the whole example as a text file:
We could regroup all of these pieces together into a single program text:

$ this portrays a queue and a mutliserver
$ connguration

$~,---- ____ global data
theServers := ();
possible_status := {'avail','busy'};
$ 'avail'(-able) means actually: idle

$ create servers: initialized to 'avail' status,
$ and without customer
theServers := {('a',['avail')), ['b',['avail')),

['c',['avail']), ['d',('avail']], ['e',['avail')));
$ create a line, empty
theQ := □;

$-----~~~=model_simpl
$ model_simpl: a kind of s1mplfied discrete event simulation:
$ all the possible events have associated
$ processing functions;
$ they are all described in event map.
$ -
$ A simulation consists in generating 'randomly' events
$ and processing the generated events as they arrive.
$

$ observe that the system memorizes always
$ he last customer of a given server
event_map := {

(1oin', tune(); local cust;
cust := newat;$ identify a customer with a new atom
theQ := theQ with cust; $ add the customer at the tail

end),

['serve',func(); local srvr,cust;
if #theQ = 0 then return end; $ no business: stay idle
$ select a server among the available ones
srvr := arb({x: x in theServers I x(2)(1) = 'avail'});
$ are all the servers busy ?
if is_om(srvr) then return end;
$ cust is removed from the begining of theQ
take cust fromb theQ;
$ srvr(1) is the server name
printf srvr(1)+' serves '+itoa(cust)+ '\n';
$ update the theServer map
theServers(srvr(1)) := ['busy',cust);

end),
['complete_service', tune(); local srvr;

srvr := arb({x: x in theServers I x(2)(1) = 'busy'));
if is om(srvr) then return end; $ all servers are idle
$ srvr(1) is the server name
printf srvr(1)+' completes service of'+

itoa(srvr(2)(2))+ '\n';
$ update the theServer map
theServers(srvr(1))(1) := 'avail';

end)
};

$ make customer arriving, and bein9 served 'random'
events:= domain(event_map);${'join','serve','complete_service'};
nSteps := 20;
for i in [1 .. nSteps) do

anEvent := arb(events);
event map(anEvent)();

end; -

$ display a snapshot:

a Cantor Tutorial 13

lheQ· theServers;

Note the last two statements, which call for the evaluation -and display of the values- of the two
main collections theQ and theServers.

treating a text file as an include file = compiling and running a program
To actually run this program you should:
-type in the text into a file, which we could call 'serverO'
-launch Cantor
-use the cmd-I command in Cantor to include the file 'serverO'.
Including a file is precisely requesting the cantor system to take its input from that file instead of
the console (see section 1 of the Cantor user manual).
You will get something like this (the pseudo-random generation of server names used may yield
a different ordering for the server selections) :

> c serves 1
e serves 2
b serves 3
d serves 4
d completes service of 4
d serves 5
e completes service of 2
b completes service of 3
a serves 6
b serves 7
e serves 8
[] ;
{["a", ["busy", !6!]], ["b", ["busy", !7!]],

["d", ["busy", !5!]], ["e", ["busy", !8!]],
["c", ["busy", !1!]]};

!include server0 completed
Since join events are not reported via a message on the console, the output remains of limited
size. To run more steps, say another 50 steps, type in at the prompt in the Cantor console:

> nSteps := 50;
Then copy from 'server()' the loop statements:

for i in [1 .. nSteps] do

end;

anEvent := arb(events);
event_map(anEvent) ();

and paste them, at the prompt in the Cantor console. Then select the pasted text (the pasted text
changes color) and key-in the ENTER-key or the RETURN-key on your keyboard. You direct in
this way your Cantor system to execute the selected statements. (Warning: when selecting text in
the console for execution, beware of avoiding all prompts: the Cantor parser will consider them
as part of your command text, and will most certainly generate an error!). Here is what you'll get
at the console:

> for i in [1 .. nSteps] do
anEvent := arb(events);
event_map(anEvent) ();

end;

>>
>>
>> d completes service
e completes service of
c completes service of
d serves 9
b completes service of
b serves 10
c serves 11
c completes service of
c serves 12
d completes service of

'.K.epfer

of 5
8
1

7

11

9

a Cantor Tutorial 14

l

• 1

l

• 1

1
- J

- j

J

a completes service of 6
b completes service of 10
a serves 13
C completes service of 12
d serves 14
d completes service of 14
b serves 15
a completes service of 13
e serves 16
b completes service of 15
e completes service of 16
d serves 17
d completes service of 17
d serves 18
d completes service of 18
>

This completes the introduction to the fundamental set constructs: set, tuple, map. Other essential
features of Cantor have been introduced: variables, atoms, and funcs.

Exercises
- modify the simpl_server example by requesting that whenever a customer joins the waiting
line, or a server completes the service of a customer, a serve event be generated and immediately
executed
- modify the simpl_server example by requesting that, when a server completes its service with
agiven customer, it removes any indication of the last customer being served. (N.B. usually, it is
a good idea to keep a record of the last thing that was made, and not to erase or dispose of it.
Only by keeping this information it is possible to undo a previous action!)
- modify the simpl_server example by allowing a customer to leave the line before being served.
This implies that the line is re-organized. Hint-1: Introduce a new event. Hint-2: Use the
following technique on tuples for removing the i-th element of a tuple t

if is integer(i) and i >= 1 then
t:= t(.. i-l)+t(i+l ..); $ remove t's i-th element

end;
- Complexify the simpl_server model by introducing a new server status: 'non-operating', and
new events for switching on or off a server from a 'non-operating' status to an 'avail' status.

Example 2: function tables - revisited

In all languages which support recursion -which is the case of Cantor- it is possible to write
functions corresponding faithfully to recursive definitions:

fact := func(n);
if not is integer(n) or n<l then return om; end;
elseif n ;;- 1 then return l;
else

return n * fact(n-1); $ n! = n * (n-1) !
end;

end; $ end fact
or similarly for the Fibonacci sequence:

Fibonacci := func(n);
if not is integer(n) or n<O then return om; end;
elseif n ;;- 0 then return 0;$ Fo = 0
elseif n = 1 then return 1;$ F1 = 1
else

return Fibonacci(n-l)+Fibonacci(n-2);$ Fn+2 = Fn+l + Fn
end;

end; $ end Fibonacci

But observe, that since computing f(n) requires the values of some or all fG) for j<n, it would be
simpler to keep them actually in a table -i.e. in a map- and consult the table -a collection again.
As we will see Cantor supports function tables in a transparent and efficient way, derived from
maps.

'.K.epCer a Cantor Tutorial 15

redefining a function at a point
Defining function tables is possible in Cantor, with the 'function redefinition at a point feature'
(see section 5.2 of the user manual): given a func f, it is possible to assign a specific value to f
for a specific value of its argument. This is similar to a map assignment:

f (nO) := qO;
assigns the value qO to f when its argument is nO : this is recorded in an auxiliary map owned by
the func f, called the override map or table for f. When a func expression is evaluated, Cantor
always attempts to see if the function argument is in the domain of the override map for that
function: if the argument is found, the func returns the corresponding image value, otherwise the
code for f is executed.

tabulating a function
In our case, we could store in the override map precisely the correct value: upon a subsequent
call, the recursive function, instead of going again through the whole computation will attempt to
retrieve the value from the override map, if this value has already been computed, otherwise it
will compute the missing elements in the override table. The changes to the previous code is
minimal:

fact := func(n);
if not is integer(n) or n<l then return om; end;
elseif n;; 1 then return 1;
else $ one arrives here only if fact(n) has not been

$ recorded yet in the override table

end;

fact(n) := n * fact(n-1); $ update the override table
$ return the value stored in the override table
return fact (n) ;

end; $ end fact
and for Fibonacci:

Fibonacci := func(n);
if not is integer(n) or n<O then return om; end;
elseif n;; 0 then return 0;
elseif n = 1 then return 1;

else $ one arrives here only if Fibonacci(n) has not been
$ recorded yet in the override table
Fibonacci(n) := Fibonacci(n-l)+Fibonacci(n-2);
return Fibonacci(n);$ return the value in the override table

end;
end; $ end Fibonacci

This technique is described in the Cantor manual, and example runs are given there (see sections
5.2 and 8.2 of the user manual).

function tabulation is not always meaningful
Not all recursive function lend themselves to tabulation. It makes sense only if the functions keep
re-using previously computed values again and again. It is easy to exhibit an example where that
is not the case:
consider the merge function. It takes as input two ordered collections (say, of numbers). And
that function merges them into a single ordered collection:

merge := func(tl,t2);
if #tl = 0 then return t2;
elseif #t2 = 0 then return tl;
elseif tl(l) < t2(1) then $ put the smallest

return [tl(l)] + merge(t1(2 ..),t2); $ in front
else $ and merge what's left

return [t2(1)] + merge(tl,t2(2 ..)); $ behind
end;

end; $ end merge

It is quite 'legal' to introduce tabulation in this func:

a Cantor Tutorial 16

merge:= func(tl,t2);
if #tl = 0 then return t2;
elseif #t2 = 0 then return tl;
elseif tl(l) < t2(1) then $ put the smallest in front

merge(tl,t2) := [tl(l)] + merge(t1(2 ..),t2);
return merge(tl,t2);

else $ and merge what's left

end;

merge(tl,t2) := [t2(1)] + merge(tl,t2(2 ..));$ behind
return merge(tl,t2);

end; $ end merge

but it is unlikely to result in any speed-up, since the pairs (tl,t2) exhibit no a priori pattern which
could be re-used, unless this is a specific consequence of a given problem definition.

Exercise
- create a func to compute all the permutations of a given set

Example 3: a data table - revisited-I

We have already seen the visual presentation in a table, one row per item:

...
itemNamei priCei nbr soldi nbr in stocki
...

The generic term for that table could be formally written:
{ ... , [itemNamei, [pricei, nbr_soldi, nbr_in_stocki]l, }

where curly brackets {} surround unordered collections, and square bracket[] ordered ones, as
in:

food store :=
{ -['lettuce', [0.75,24,21]],

['sour cream', [0.63,27,23]],
['milk', [0.82,82,46]],
['skimmed milk', [0.64,76,52]],
['grapefruit', [0.25,45,68]]

} ;

the data table as a map
This map representation lends itself to data retrieval forms in the style of function calls:

> food store('milk'); $ milk data
ro. 820; 82, 461:

food_store is as-map, i.e. a function associating to each element of its domain (here the keys i.e.
the collection of item_names) a well defined value, actually the 3-ple [price, #sold, #in_stock].
The information may be analyzed, as in the following examples:

>$all the food store items have a price less than 1.0?
> forall item in domain(food store) I food store(item) (1) < 1.0;
true; - -
>$there is a food store item whose price is less than 0.5?
>$each food store(item) is a tuple [price, #sold, #in stock]
> exists item-in domain(food store) I food store(item) (1) < 0.5;
true; - -

Note that outside the quantifier expressions item has retained its previous value (or lack of, if it
was undefined in the first place). This variable is a 'bound' variable in the quantifier expressions:
it is known only within the scope of the expression where it is introduced.
Derived computations may be defined. In the following example, we define a collection of
expressions using one of the iterative syntactic forms, on the entire data set:

{price*nbr sold: [price,nbr sold,~] = food store(item)};
consisting of tne values of products:- -

{17.010, 11.250, 67.240, 48.640, 18.000};

a Cantor Tutorial 17

Then we add all of these values. The sum operation, over a collection is denoted %+aColl.
Similarly a product operation could be defined %*aColl . For instance the factorial function n!
could be defined%* [1..n]. The desired operations may be described in a single expression:

>$generated cash-flow is:
> %+{price*nbr sold: [price,nbr sold,~] = food store(item)};
162.140; - - -

Derived computations may be defined on a subcollection:
>$generated cash-flow for the products selling less than 0.80
>$and at more than 40 units is:
> %+{price*nbr sold: [price,nbr sold,~] = food store(item)
>> price < 0 :-So and nbr sold > 40}; -

59.890; -
The iterator [price,nbr_sold,~] = food_store(item) requests that each food_store item be
identified with a triple, and auxiliary variables are assigned the corresponding values: price for
the 1st, nbr_sold for the second.Observe the role played by the tilda sign(~) : it substitutes for
an irrelevant item. In the above example, we don't need the 3rd item (#in_stock): thus avoiding
an assignement to an unused variable, we indicate the presence of an item, and its uselessness by
the tilda. Note that outside the scope of the set expression the variables price, nbr_sold,
item have retained their previous value (or lack of, if they were undefined in the first place).
These variables are the 'bound' variables in the set former.

These formers are extensively described in sections 4.4 and 7.6 of the Cantor user manual.
When a food store customer buys an extra lettuce, the food_store map should be updated by
incrementing by one the nbr_sold field associated to lettuce, and decrementing the corresponding
stock. This is illustrated as follows:

>$update following the sale of a lettuce
> food store('lettuce') (2); $ the current value of nbr sold
24; -
>$increment nbr sold by 1
> food store('lettuce') (2) := food store('lettuce') (2)+1;
> food-store('lettuce') (2); $ the current value of nbr sold
25; - -
>$decrement the nbr in stock by l!
> food_store('lettuce') (3) := food_store('lettuce') (3)-1;

A new delivery of 45 bottles of milk is registered by:
>$update following the delivery of 45 milk bottles
> food store('milk') (3); $ the current value of #in stock
46; - -
> food store('milk') (3) := food store('milk') (3)+45;
> food-store('milk') (3); $ the current value of #in stock
91; -

Now the cash value of the stock is evaluated at:
> %+{price*stock: [price,~,stock] = food store(item)};
154.390; -

There is more than one way of defining this expression. Here is another one:
> %+{price*stock: [~, [price,~,stock]] in food store};
154.390; -

The iterator in the last expression emphasizes the set representation of food_store: each member
in that set should match a pair, the 1st element in the pair is ignored because of the~, and the
second element should match a triple - and we ignore the 2nd element of that triple.

saving the data table on a file and restoring it
This data set may then be saved in a file - let us call it 'food_store_01_nov _90', for later
retrieval:

> save('food store', 'food store 01 nov 90');
! Compiling on 'food store 01 nov 90' -
OM;

a Cantor Tutorial 18

In that case a new session, proceeding with the saved values will start by re-installing that data
set:

> restore('food store 01 nov 90');
food store 01 nov 90 loaded!-
{ ["milk", [0.820,-82, 91]], ["lettuce", [0.750, 25, 20]],

["skimmed milk", [0. 640, 76, 52]],
["sour cream", [0. 630, 27, 23]],

. ["grapefruit", [0.250, 45, 68]]};
This restore() instruction, wipes out any existingfaad _store variable and defines a new one with
the given value. Indeed, the save() instruction records not only the value but the variable name
(which is the 1st argument in the save function call) too.

the example as an include file
You may reproduce this session by typing in a Cantor console the following instruction script, or
by typing in this script into a text file and, using the !echo on switch, include this text file into a
Cantor console (e.g. by means of the crnd-1 menu invocation):

food store :=
{ ('lettuce', (0.75,24,21Il,

%+{price*nbr_sold: [price,nbr_sold,~) = food_store(item)I

'sour cream', (0.63,27,23Il,
'milk', (0.82,82,46)),
'skimmed milk', (0.64,76,52Il,

};
'grapefruit', (0.25,45,68))

food_store('milk'); $ milk data

$ all the food store items have a price less than 1.0 ?
forall item in domain(food_store) I food_store(item)(1) < 1.0;

$ there is a food store item whose price is less than 0.5 ?
$ each food_store(item) is a tuple [price, #sold, #in_stock)
exists item in domain(food_store) I food_store(item)(1) < 0.5;

$ generated cash-flow is:

price< 0.80 and nbr_sold > 40};

$ update following the sale of a lettuce
food_store(1ettuce')(2); $ the current value of nbr_sold
$ increment nbr_sold by 1
food_store('lettuce')(2) := food_store('lettuce')(2)+ 1;
food_store(1ettuce')(2); $ the current value of nbr_sold
$ decrement the nbr in stock by 11
food_store('lettuce')(3) := food_store('lettuce')(3)-1;

$ update following the delivery of 45 milk bottles
food store('milk')(3); $ the current value of #in_stock
fooc[store('milk')(3) := food_store('milk')(3)+45;
food_store('milk')(3); $ the current value of #in_stock

%+{price*stock: [price,~,stock) = food_store(item)};
%+{price*stock: [~,[price,~,stock)] in food_store};

{price*nbr_sold: fprice,nbr_sold,~J = food_store(item)};
%+{price*nbr_sold: [price,nbr_sofd,~] = food_store(item)}; save('food_store','food_store_01_nov_90'); $ adapt with the proper

date
$ generated cash-flow for the products selling less than 0.80
$ and at more than 40 units is:

the relational version of the data table

$ start a new session with:
$ restore('food_store_01_nov_901;

Getting familiar with data processing in Cantor is one thing. What would be more interesting is
to compare this kind of data representation with for example the relational model. In that model,
food_store is a 4-ary relation, i.e. a relation with 4 columns: item_name, price, nbr_sold,
nbr_in_stock.

itemName price nbr sold nbr in stock
'lettuce' 0.75 24 21
'sour cream' 0.63 27 23
'milk' 0.82 82 46
'skimmed milk' 0.64 76 52
'grapefruit' 0.25 45 68

This relation, is a set of quadruple, with generic term:
{ , [itemName,price, nbr_sold,nbr_in_stock], }
instead of being a map from item names into triples [price, nbr_sold,nbr_in_stock]. I.e. the
relational version of this data table example is

{ ['lettuce', 0.75,24,21],
['sour cream', 0.63,27,23),
['milk', 0.82,82,46),
['skimmed milk', 0. 64, 76, 52),
['grapefruit', 0. 25, 45, 68)

};
By definition, the relational representation of a n-ary relation is by a set of n-uples.

a Cantor Tutorial 19

If we assume that each tuple is well identified by its itemName, without ambiguity, then
itemN ame may be considered as the primary key of this relation. When a primary key is
insufficient, it is possible to introduce a 2nd-ary key, a ternary key, ... to arrive at a single
valued map [primary-key, 2nd-ary key, ...] -> tuple in the relation : each tuple should be
uniquely associated with its keys.

Exercises
-write a func fo transform food_store into its corresponding relational version
-write a func to transform the relational version of the food store data table into a map having as
domain the prices
-write the expressions or funcs which in the relational representation would compute the same
values or updates as the ones shown in the above food_store example
-write a func to transform the Cantor map representation of a data table into the relational
representation. Do this for an arbitrary n-ary relation, assuming that each of the columns is a
plain data item (a string, a boolean or a number, but not a set, a tuple, a func)
-we indicated that the generated cash-flow was the value of the expression:

%+{price*nbr sold: [price,nbr sold,~] = food store(item)}
Is this correct? Would'nt - -

%+[price*nbr sold: [price,nbr sold,~] = food store(item)]
be better? What is the correct expression for the cash-value of the stock?

Example 3: a data table - revisited-2

We intend to show in this section that the relational data model is strictly a subset of the possible
data representations available in Cantor.

We discussed earlier an extended model of the food store example; we have two main
collections, actually sets:
1-an item data table whose visual presentation could be:

...
itemNamei pricei nbr_soldi nbr_in_stocki supplier_a

supplier_b
....

...

and whose generic presentation as a map could be:
{ ... , [itemNamei, [pricei, nbr_soldi, nbr_in_stocki, {supplier_a, supplier_b, .. }]], }

Observe that in this representation, the 5th column is not made of basic data items, instead, each
is a collection 'supplier_list' represented by a set of supplier names.
2-a supplier table which could have a visual representation as follows:

....
supplier_id ...

itemNamei supplier_pricei
itemN amei+ 1 supplier_pricei+ 1
....

....

which corresponds, in Cantor, to a map having as generic term:
{ ... , [supplier_id, { ... ,[itemNamei, pricei], }], }

representing a map with a range of maps.

In this extended example the item data table could be:
food store ext :=
{ -['lettuce', [0.75,24,21,{'joe', 'max', 'mike'}]],

['sour cream', [0.63,27,23,{'liu','mike'}ll,
['milk', [0.82,82,46,{'liu', 'mike'}]],

'.K-epCer a Cantor Tutorial 20

};

['skimmed milk',
['grapefruit' ,

[0 . 6 4 , 7 6, 5 2 , { ' 1 i u ' , 'mike ' }]] ,
[0.25, 45, 68, { 'joe', 'max', 'mike'}]]

Assuming that ordinary names are sufficiently well-defined - and uniquely defined - to qualify as
identifications for suppliers, a snapshot of the supplier table could be represented by:

suppliers:= {

};

[' joe' , { ['lettuce' , 0. 30 l ,

l ,
['max',

l ,
['liu', {

l ,
['mike', {

['grapefruit', 0.18]}

['lettuce', 0.32],
['turnip', 0.11],
['apple', 0.05],
['grapefruit', 0.19]}

['milk', 0.30],
['skimmed milk', 0.18],
['butter 1st qual', 0.40],
['salty butter', 0.32],
['whipped butter', 0.45],
['whipped cream', 0.29],
['sour cream', 0.23]}

['milk', 0. 31] ,
['skimmed milk', 0.18],
['lettuce', 0.29],
['banana', 0.12],
['grapefruit', 0.20],
['sour cream', 0.24]}

The domain of suppliers is a set of supplier_names. Its range is a set of s-maps, each associating
to an item name its (supplier-) price. To know the price used by 'mike' on the banana item one
evaluates the expression suppliers ('mike') ('banana') . Indeed:

> suppliers('mike');
{["skimmed milk", 0.180], ["milk", 0.310], ["lettuce", 0.290],

["banana", 0.120], ["sour cream", 0.240], ["grapefruit", 0.200]};
> suppliers('mike') ('banana');
0.120;

To find the best price on milk:
> %min {x('milk'): [~,x] in suppliers};
0.300;

Note that if no one sells milk, x('milk') is always undefined, and the set {x('milk'): [~,x] in
suppliers} is empty, therefore its min is also undefined: the best price for 'milk' is undefined if
'milk' is not available!

This could be turned into a function:
best_yrice := func(item);

return %min {x(item): [~,x] in suppliers};
end; $ end best_yrice

and tested:
> best _yr ice ('milk') ;
0.300;
> best_yrice('cow');
OM;

This func may be improved to compute the suppliers which deliver at the best price:
$the suppliers giving the best price on a given item
best_suppliers_yrice := func(item);

local best;
best := %min {x(item): [~,x] in suppliers};
if is om(best) then return; end;
$ return both the best price and the list of suppliers

a Cantor Tutorial 21

$ selling at that price
return [best, {supl: [supl,x] in suppliers I [item,best] in x}];

end; $ end best_suppliers_price
and tested:

> best_suppliers_price('milk');
[0.300, {"liu"}];
> best_suppliers_price('cow');
OM;

In relational calculus, the suppliers is a 3-ary relation with three columns whose generic term is
{ ... , [supplier_name,item_name,item_price], ... }

and whose visual representation is

supplier name item name item price
'joe' 'lettuce' 0.30
'joe' 'grapefruit' 0.18
'max' 'lettuce' 0.32
'max' 'turnip' 0.11
'max' 'apple' 0.05
'max' 'grapefruit' 0.19
'liu' 'milk' 0.30
'liu' 'skimmed milk' 0.18
'liu' 'butter 1st qual' 0.40
'liu' 'salty butter' 0.32
'liu' 'whipped butter' 0.45
'liu' 'whipped cream' 0.29
'liu' 'sour cream' 0.29
'mike' 'milk' 0.31
'mike' 'skimmed milk' 0.18
'mike' 'lettuce' 0.29
'mike' 'banana' 0.12
'mike' 'grapefruit' 0.20
'mike' 'sour cream' 0.24

in contrast with the nested map representation we have used in our examples.

Exercises
- what is the arity of the relation associated to the item data table in the extended food store
example and represented by food_store_ext ? what is its relational representation?
- are relations s-maps? m-maps?
- what is the generic term representation for an integrated food store model with visual
representation:

...
itemNamei pricei nbr_soldi nbr_in_stocki supplier_a price_a

supplier_b price_b
....

...

provide its explicit map representation, corresponding to the data in food_store_ext and
suppliers in the above examples; what is the arity of this relation? provide its relational
representation.
- write the expressions or funcs which in the relational representation would compute the same
values as the ones shown in the above suppliers example
-how could best_suppliers_price be modified to avoid re-traversing the entire data set each
time it is invoked? (Hint: use function tabulation)
- write a func for updating suppliers, when a supplier changes its price. How should this be

a Cantor Tutorial 22

reflected in best_suppliers_price?
- the above example represents a food store a the current supplier prices. Since suppliers item
prices may vary from supplier to supplier and from day to day, how should one represent the
supplier price history? the stock and the stock value?
- write a func which will transform a homogeneous map into a relation. Beware that a map could
have nested sets and tuples in its range or domain. Apply this to transform the maps food_store,
food_store_ext and suppliers in the above examples into relational representations
- write a func which transforms a relational representation of a data table into a map-oriented
representation, where the domain is the primary key.
- write a func which transforms a relational representation of a data table into a map-oriented
representation, taking into account the primary, the secondary, ... the n-ary keys.
- the Entity Relationship Diagrams (ERD) are used to describe conceptual data models. An ERD
consists of the following objects:

Ian entity setl

Unlabelled edges link the entity attributes to their entity, and a relationship to its entities. An
entity set is in the relational data model an n-ary relation, and its entity attributes are the column
names. A relationship represents a relation between two or more relations . Draw the Entity
Relationship Diagrams for the food store and its suppliers, corresponding to the two examples of
'extended food store'.

Example 3: data tables - revisited-3

We have seen that Cantor allows data representations which are more expressive than those
allowed by the relational model. However, what is gained in expressiveness, is lost in
uniformity. This point will be made clear in the systematic review of the operations in the
relational algebra presented in this section.

In the previous discussion of the data tables we never investigated the questions relating to the
interaction between data tables. A good introduction to this is to expose, and illustrate, the
relational operations.

Therefore in what follows, in this section, we assume that n-ary relations are sets of n-tuples
(tuples of cardinality n). Then the arity of a relation R is #arb(R). Indeed, all the tuples in Rare
assumed to have the same cardinality.

The main relational operations 3 on relations are: union, set difference, cartesian product,
projection, selection, intersection, quotient, join, natural join.

formal Cantor definion of the relational operations
Each of these has a relatively simple definition.
1- union : the union of relations Rand S is R+S, the standard set union. Note that the union
makes sense only if both relations have the same arity
2- set difference: again, if Rand Shave the same arity, this is R-S, the standard set difference
3- cartesian product : the cartesian product of R and S is

{ r+s: r in R, s in S } ;
thus if R has arity kl and S has arity k2, the cartesian product is made of (kl +k2)-tuples, the 1st
kl components of which form a tuple in R and the last k2 components, a tuple in S.
4- projection : a projection is defined by a pair (R, sub_col) where R is a relation and sub_col is
a tuple of distinct integers in the range [1..arity(R)]. The projection defined by (R,sub_col) is

3See for instance Principles of Database Systems, J.D. Ullman, Computer Science Press

'.K.epl:er a Cantor Tutorial 23

{ %+[[x(i)]: i in sub_col]: x in R}
The compound concatenation operation %+[[x(i)]: i in sub_col] concatenates together the
components x(i) for all the i's in sub_col, in the specified order. Sometimes, instead of a list of
component number, a relation is specified by its column names or 'attributes'. In that case there
is a map col_attr -> col_rank Lets us call such a map, col_map. If sub_col is specified by column
names, the projection is defined, by recomputing the column rank from its name :

{ %+[[x(col_map(name))]: name in sub_col]: x in R}
5- selection : let R be a relation and let F be a formula involving

i) operands that are string constants constants or component numbers
ii) the arithmetic comparison operators>,<,=,>=,<=,/=
iii) the logical operators and, or, not

We assume that F is a string and has a valid syntax.
A selection defined by the pair (R,F) is the set of all tuples in R satisfying FR, where FR is
obtained from F by replacing i by t(i): for instance if Fis

'1>3 or "joe" = 2'
then FR is

't (l)>t (3) or "joe" = t (2)'
and the selection is

{ t: tin RI FR}
in our example this would be:

{ t: tin RI t(l)>t(3) or "joe" = t(2)}
Let us examine step by step how this may be obtained in Cantor.
Let F be as follows:

> F := '1>3 or "joe" = 2';
i) scan a decompose F into its token stream:

>tf := scan(F+"",1,1);
>tf;
[1, ">", 3, "or", "\q", "joe", "\q", "=", 2];

Note that adding an empty string to F does not change the value of the 1st argument to the scan
function. However, since scan 'destroys' its arguments. It is the copy F+"" of F which will be
destroyed, but not the original ...
ii) replace each integer i, which represents a column number by x(i) as a string

> tf :=
[if is integer(u) then 'x('+itoa(u)+')' else u end: u in tf];

Since itoa(u) convert an integer into its decimal string representation 'x('+itoa(u)+')' is just the
concatenation of three strings

> tf;
["x(l)", ">", "x(3)", "or", "\q", "joe", "\q", "=","x(2)"];

iii) reconstitute a transformed formula by just concatenating all the pieces, (add a space in
between each part):

> zf := %+ [u+' ': u in tf];
> zf;
"x(l) > x(3) or \q joe \q = x(2) ";

iv) this is a parsable expression, let us parse it
>Fr:= analyze(zf);
> Fr;
x(l) > x(3) or joe = x(2);;

Here Fr is not a string, it is an abstract syntax tree. Its structure may be revealed by an ugly-print
(default output is by pretty-print) (see section 6 of the user manual) :

> ugly (Fr);
(CALL :

(or :
(> :

SELECTOR:
(T Id x)
((:

(T_Integer 1)
SELECTOR:

(T Id x)

'.K-epl:er a Cantor Tutorial 24

((

(T_Integer 3)

T_String: joe
SELECTOR:

(T Id x)
((:

(T_Integer : 2)OM;
>

v) in fact we are not concerned with the top node in this parse tree, which CALL's for
evaluation. This is a technicality!

>Fr:= Fr(l); $ let af be its own 1st (i.e. left) subtree
> Fr;
x(l) > x(3) or joe = x(2);

vi) the selection is just
{x: x in RI eval(Fr) }

We use here the built-in eval function which evaluates (i.e. computes the set value, or the integer
value, etc. of-) the abstract syntax tree form of an expression.

> R;
{ [54, 64, 65, 16], [90, 3, 58, 1], [41, 90, 23, 25],

[5, 16, 86, 0], [42, 24, 42, 39], [36, 54, 49, 43],
[90, 2, 50, 49], [63, 88, 25, 63], [78, 86, 28, 98],
[95, 42, 53, 58]};

> {x: x in RI eval(Fr)};
{ [95, 42, 53, 58], [78, 86, 28, 98], [41, 90, 23, 25],

[90, 3, 58, 1], [90, 2, 50, 49], [63, 88, 25, 63]};

The selection operation involves the formula transformation operations i) - v) captured by the
following func:

fla_transf := func(F);
local tf,Fr;
tf : = scan (F+ 1111

, 1, 1) ;
tf := [if is integer(u) then 'x('+itoa(u)+')' else u end:

u in tf];
F := %+ [u+' ': u in tf];
Fr:= analyze(F) (1);
return Fr;

end; $ end fla_transf

Under those conditions, selection (R,F) is defined by
{x: x in RI eval(fla_transf (F)) }

6- intersection : (if Rand S have the same arity) this is just
R*S

7- quotient: Let Rand S be relations of arity rands, respectively, with r > s. The quotient R:S
is

{t(.. r-s): tin RI forall u in SI t(.. r-s)+u in R}
Given an arbitrary tuple t, the expression t(i..j) represents the tuple of length j-i consisting of all
the elements oft between ranks i and j (included). If the lower bound -here i - is omitted, it is
assumed to be 1. If the upper bound -here j- is omitted, it is assumed to be #t. Therefore the
quotient expression is equivalent to { t(l..r-s): tin R I forall u in S I t(l..r-s)+u in R}.

It may be more efficient to define the quotient in several steps:
R_quot := {t(.. r-s): tin R}; $ this is just a projection
quotient := {u: u in R quot I forall v in S I u+v in R};

Indeed the forall is evaluateaonce for each element in R_quot, which may have a cardinality
much smaller than that of R.

'.Kepfer a Cantor Tutorial 25

8- join: (often called the 0-join) Let 0 be an arithmetic comparison operator(<,>,<=,>=,=,/=).
Let R, S be relations of arity rands respectively. Let i,j be positive integers i ~rand j ~ s Then
the join is defined by (R,S, i 0 j) to be the selection on the cartesian product Rx S defined by the
formula i 0 r+j :

{x+y: x in R, yin S I eval(fla_transf ('i 0 r+j')) }
When q is '=' then this called an equijoin. Column names are sometimes used instead of ranks,
requiring the interposition of the col_maps for both R and S to transform the names into column
numbers. For instance the join (R,S, A e B) is defined as (R,S, col_map_R (A) 0 col_map_S
(B)).

9- natural join : Let R, S be relations with named columns. Let col_map_R, col_map_S be their
respective col_maps. Consider all the columns with the same names in R and S, i.e.

common attr := domain(col map R) n domain(col map S);
The natural join is best defined in two steps: - -
i) compute the intersection of all the equijoins (R,S, A = A) over all the attributes A in
common_attr :

equi joins := %* {{x+y: x in R, yin S I
eval(fla transf ('col map R (A)= r+col map S (A)')) }

A in common attr } ; - - -
ii) project out all the columns of S correponding to the common attributes

S common rnks := {col map S (attr) : attr in common attr };
is tne set of column numbers1n Sror the attributes common to Rand S, and

S cols := [j: j in [1. .s] I j notin S common rnks] ;
is tne ordered set of all other column numbers in"""'S, correponding to the attributes of Snot in R.
Therefore the projection list, is the concatenation of all r columns of R, and of the columns in
S_cols, shifted by r in the cartesian product, and therefore in equijoins as well:

sub col := [1 .. r]+[j+r: j in [1 .. s] I j notin S common rnks];
The natural join is then

{ %+[[x(i)]: i in sub_col]: x in equijoins }
We could put this together in a simple func:

natural join:= func(R, col mapR, S, col map S);
local common attr, equijoins, S commonrnks, sub col;
common attr := domain(col map RT n domain(col maps);
equi joins := %* {{x+y: x-in R, yins I - -

- eval(fla transf ('col map R (A)= r+col map S (A)'))}:
A in cormnon attr } ; - - -

S common rnks := {col maps (attr) : attr in common attr };
sub col:= [1. .r]+[j+r: j-in [1. .s] I -

- j notin S common rnks];
return { %+[[x(i)]: i in sub col]: x in equijoins };

end; $ end natural_join -

Exercises
- let R be {[l,2,3], [4,1,6], [3,2,4]}, and S be {[2,7,1], [4,1,6]}. Compute Rx S, the
projection (R, [1,3]), the selection (R, 2 = 2).
- let R be {[1,2,3,4], [1,2,5,6], [2,3,5,6], [5,4,3,4], [5,4,5,6], [1,2,4,5]}, and let S be {[3,4],
[5,6]}. Compute the quotient R:S.
- let R be {[1,2,3], [4,5,6], [7,8,9]}, let S be {[3,1],[6,2]}. Compute the join (R,S, 2 < 1).
- let R be {[l,2,3], [4,2,3], [2,2,6], [3,1,4]}, and S be {[2,3,4], [2,3,5], [l,4,2]}. Let the
attribute map for R and S be defined by:
col_map_R := {['A',1], ['B',2], ['C',3]};
S by col_map_S := {['B',l],['C',2]};
Compute the natural join of R and S.
- express by means of the relational operations on the food_store, and the suppliers
(assumed to be in relational presentation, instead of map-oriented presentation) the following:

i- the two suppliers who could supply most if not all the products sold by the food store
ii- the margin computed from the difference between the food store sales price and the worse

'.JGepCer a Cantor Tutorial 26

supplier price
iii- the stock value computed from the suppliers best price for each item

Example 4: pre-requisites - revisited-I

To address the pre-requisites problem a convenient representation of the dependency structure
represented in fig. 2 is needed. A common way is to represent this graph as the collection of its
edges, each edge being the representation of an arrow. An arrow is an ordered collection, e.g.,
1->2 may be represented by the pair [1,2], and the whole dependency graph by the set
(unordered collection) of all these arrows:

dependence := { [l, 2], [l, 4], [l, 6],
[2,3], [2,5], [2,7],
[4,5], [4,7],
[6, 7], [6, 8], [6, 9]

} ;
dependence is a set of pairs, therefore it is a map. However, this is clearly not a s-map: for
instance, three possible values are associated to (chapter) 1. This map is a multi-valued map or
m-map having as domain (set of 1st elements in the pairs) { 1,2,4,6} and as range (set of second
elements in the pairs) {2,3,4,5,6,7,8,9}

> domain(dependence);
{4, 6, 1, 2};
> range(dependence);
{7, 9, 8, 5, 6, 2, 3, 4};

The set of all the dependents or successors of a given chapter is
dependence{aChapter};

a naive problem definition
To establish the set of prerequisites, one uses the following idea: a chapter chi is a pre-requisite
to the chapter cho if
cho c dependence{chi} or dependence{chi} n prerequisites :;t: 0
where prerequisites is the set of already computed prerequisites. This computation stops
when no new chapter is added to prerequisites .I.e., prerequisites satisfies the equation:

prerequisites = { ch : ch in domain(dependence) I
cho c dependence{ch} or dependence{ch} n prerequisites :;t: 0}

where cho is in our case 7.

a naive fixed-point solution
There are many ways to formalize the search for a solution to this equation. The above equation
is a fixed-point equation of type:

X = { u: u c S I K(u,X)}
A standard solution consists in computing a sequence

Xo = {}

Xn+l = {u: u in SI K(u,Xn)} u Xn
This sequence forms a increasing chain of subsets of S:

Xn <; Xn+l
This chain has an upper bound: S. Therefore, eventually this sequence will stop growing: either
Xn becomes the whole set S, or Xn+l = Xn.
This could be programmed in Cantor as follows:

X := {};
T := {u: u in S I K(u,X)};
while T /= X do

X := X + T;
T := {u: u in S I K(u,X)};

end;
In our example S is domain(dependence) and K(u,X) is:

7 in dependence{u} or dependence{u} * X /= {}
Actually running this program yields:

> K := func(u,X);

'.JGepCer a Cantor Tutorial 27

>> return 7 in dependence{u} or
» dependence{u} * X /= {};
>> end;
>
>X:={};
>
> S := domain(dependence);
> T := {u: u in S I K(u,X)};
> while T /= X do
>> X := X + T;
>> T := {u: u in S I K(u,X)};
>> end;
> X; $ the fixed point
{6, 4, 1, 2};

This solution is an example of least fixed point solution. Actually, all the iterative problems in
computer science may be stated as fixed point problems.

Here we did not really touched the specifics of the problem: we translated a naive problem
definition into a naive fixed point solution.

an ideal complexity model for a set machine

We are using here the usual notation for complexity -in its simple version. We are concerned
with size complexity: e.g. the number of elements in a collection, and with time complexity, i.e.
the number of time units necessary to perform a given computation. When we say:

the (asymptotic) size complexity of a problem is O(f(n))
we mean for a specific kind of size , e.g. memory or disk space,

there is a constant c > 0 such that, for all sufficiently large n,
the problem size < c*f(n)

When we say:
the (asymptotic) time complexity of an algorithm or function is O(f(n))

we mean for any specific specific measure of time , e.g. seconds, micro-seconds, years, used to
evaluate the duration of the computation of that algorithm, operation or function evaluation

there is a constant c > 0 such that, for all sufficiently large n,
the (asymptotic) time< c*f(n)

For instance a time complexity of 0(1) characterizes a process which has a constant time
upperbound. When a time complexity estimate O(f(n)) is used, generally, n characterizes the
problem size.

In the table below we present the definition of the asymptotic time cost for executing some
elementary operations on an ideal set machine. It is understood that most set machine operations
could be coded cleverly as collections of these elementary operations.

operation
) s
3 x c s I K(x)
Vxc slK(x)
for x c s do .. end
m:= .. .
t := .. .
s with x
s less x
X C S

f(x)
f(x) := ...

description
arbitrary choice
existential quantifier
universal quantifier
for-loop supervision
map or set assignment
tuple assignment
collection addition
set element deletion
membership test
value off (only if f is a smap)
index assignment to a function or a
map of a pre-computed term

a Cantor Tutorial

complexity
0(1)
#s * cost(K(x))
#s * cost(K(x))
O(#s)
0(1)
0(1)
0(1)
0(1)
0(1)
0(1)
0(1)

28

The following simple example will illustrate these complexity notions.

Given the above complexity table, one could infer that the complexity for computing a slice
{ 1..n} or [l..n] is O(n). Indeed, this is the complexity of the following program, which could
be considered as the micro-code for slices:

aSlice := {}; $resp .. :=[];
for x in [1 .. n] do

aSlice := aSlice with x;
end; ,

The initialization cost for aSlice is 0(1), i.e. c0. The loop supervision cost is proportional to the
number of iterations in the loop: it is O(n) cl *n. The loop is repeated n times. Each time the
executed code requires 0(1) i.e. c2 for an element addition to the collection aSlice, and time 0(1)
i.e. c3 for assignment of this new value to aSlice. Summarizing the execution time for this
micro-code is bounded, for sufficiently large n by
c0 + cl *n + (c2+c3)*n
Taking C = c0+c 1 +c2+c3 it is easy to verify that for sufficiently large n the execution time is
bounded by C*n, i.e. is O(n).

We said, that these are complexities of an ideal machine. Indeed, most implementations do not
meet these requirements. For instance, if a set has N elements, in practice, the complexity of a
membership test is O(log N). Very often actual complexities are even worse: if a data structure
can accomodate upto N elements, then each access has complexity O(log N). But if N is much
larger than all other size parameters in the problem, N is actually a problem constant: in that case,
O(log N) is a uniform bound for each individual access and this may be considered as a constant
overhead, i.e. a 0(1) complexity!!!

Conversely, it is possible to prove that every set algorithm of a large class may be implemented
with suitable data structures which will meet the requirements indicated in the above table5. But
this implementation is not a Cantor implementation : it is an implementation in an actual machine
language, e.g. C, Pascal, an assembler language.

Despite the fictitious character of 'the ideal set machine' it is a very useful model for elaborating
algorithms and seeking optimisations.

designing a more efficient algorithm with finite differencing
To achieve a more efficient solution, it seems reasonable to replace the costly expression
evaluations by simpler or 'more economical' ones, according to the just exposed complexity
model. The following observations are major guiding principles:

- just like tabulation could be a remarkable speed-up in recursive function evaluation, one
should separate in a fixed-point loop all the data which need no longer be re-examined, from
the 'new' data to process, to avoid reprocessing always the same data. Since we are
constructing a chain of sets Xo <; ... <; Xn <; Xn+l <; ... , at step n, the new elements are those
in ax 0 = Xn+ 1 - Xn . Since Xn+ 1 = Xn + ax 0 , we are looking for a method to involve only
these new elements in the next computation step.
- while computing the re-assignment Xn+2 := f(Xn+l), we want to exhibit an incremental
computation for f(X0 +aX0), e.g. of incremental cost 0(#dXn).
- complex operations are those involving the processing of at least one entire collection each
time: these operations cannot be carried out at a fixed cost! For instance A n B has a cost of
O(min(#A,#B)) , A u B has a cost of O(#A+#B) and testing A/= B (or A = B) has a cost of
O(min(#A,#B)) . As abstract operations they play an essential role in defining a solution;
however, they should be eliminated, if possible from optimized versions, and replaced by
loops of incremental operations each with a fixed cost

To apply these principles one operate on the symbolic definition of the (set and loop)
expressions, rewriting them and substituting in provably equivalent ones. The search for
incremental operations is in essence inspired by the XVII century technique of formal polynomial
differentiation, used in the making of polynomial tables, and called finite differencing.

Rather than providing here a systematic presentation of this technique, we will just introduce the

'.Kepfer a Cantor Tutorial 29

scheme, and show its effectiveness. This technique has been established and developped by R.
Paige4.

step-wise refinement guided by finite differencing
We could consider the inverse graph of dependence:
dependence_inv := {[x,y]: [y,x] in dependence};
Then the problem is to compute the reacheability set of node 7, in this (inverse) graph, i.e. all the
nodes in the graph which could be reached, following dependence_inv's edges starting from
the source node 7. This set could be defined as a fixed-point : '

X = dependence inv[X]
where the notation g[A] means, as usual, the union of all the image sets g{a}: a in A, that is in
Cantor notation:

%+{g{a}: a in A}= (by definition) g[A]
A fixed-point sequence converging to the set X satisfying X = g[X] is

XO := { s}; $ s is the source, here it is 7
Xi+l :=Xi+ g[Xi]; $ where g[Xi] = %+{g{x}: x in Xi}

This may be implemented in the following loop:
X := {s};
f := func(d); return d%+{g{x}: x ind}; end; $ f(D) is D+g[D)
T := f (X};
while X /= T do

X := T;
T := f(X);

end;·
$ at this point Xis the fixed-point

where s is 7 and g is dependence_ inv . Actually running this program yields:
>$the inverse relation
> dependence inv := {[x,y]: [y,x] in dependence};
> dependence-inv;
{ [8, 6), [9,-6), [7, 2), [7, 6), [7, 4), [6, 1), [5, 2),
[5, 4), [4, 1), [3, 2), [2, 1) };
> g .- dependence inv;
> X := {7}; -
> f := func(d); return d%+{g{x}: x ind}; end; $ f(D) is D+g[D]
> T := f (X);
> while X /= T do
>> X := T;
>> T := f(X);
>> end;
>$at this point Xis the fixed-point
> X;
{6, 7, 2, 1, 4};

This loop may be optimized. Note that within this loop the expressions T and f(X) are kept
equal, this is why one says 'the invariant T= f(X) is maintained throughout that loop'. In fact to
maintain that invariant, it is not necessary to fully recompute f(X) each time.
We introduce intermediate expressions to clarify the steps in the computation, and possibly
uncover incremental steps:

X := {s};
T := g{s} withs; $ T = X%+{g{x}: X in X} i.e. T = X + g[X]
dN := T-X; $ introducing the invariant dN = T-X
while dN /={}do $ this is equiv to X /= T

NO := {y: u in T, yin g{u} I y notin T}; $ this is g[T) - T
x := T; $ X changes to X + dN
T := T+ NO; $ maintain T = X + g[X), after X's change
dN := NO; $ maintain the invariant dN = T-X

end;

4See for instance, Paige R., Krenig S. : Finite Differencing of Computable Expressions, ACM Trans. Prog.
Lang. Syst. 4,3,1982 pp 402-454. Or the chapter on Program Transformation, strongly influenced by that paper,
pp 130-185 in the remarkable book: Software Prototyping mit SETL, by E.E. Doberkat and D. Fox, Teubner
pub. Stuttgart, 1989.

'.JGepler a Cantor Tutorial 30

$ at this point Xis the fixed point

Within the expression NO, Tis identical with X+dN, i.e. NO is just
{y: u in X+dN, yin g{u} I y notin T}

Whenever u in X, then, by construction g{ u} is a subset of T = X+dN. Therefore:
{y: u in X, yin g{u} I y notin T} = {}

Therefore NO may be simplified to
{y: u in dN, yin g{u} I y notin T}

The fixed-point loop then becomes:
X := {s};
T := g{s} withs; $ T = X%+{g{x}: X in X} i.e. T = X + g[X]
dN := T-X; $ introducing the invariant dN = T-X
while #dN /= 0 do$ X /=Tiff T-X /= {} iff g[X] - X /= {}

end;

$ achieve dN = T-X
$ achieve T = X + g[X], upon X := X+dN
NO := {y: u in dN,y in g{u} I y notin T}; $ g[T] - T
X := T; $ X+dN;
T := T + NO;
$ assert T = X + g(X]
dN := NO;
$ assert dN = g[X] - X = T-X

$ at this point X = X + g[X], T = X

mechanical refinement by finite differencing
We have been 'lucky' in identifying a computational increment dN. In general, one proceeds as
follows, for a fixed point computation:

X := {s};
while f(X)-X /={}do

z := arb(f(X)-X);
X := X with z;

end;
$ at this point x = X + g[X]

We introduce an invariant for each subexpression which occur within the loop and would need to
be recomputed as a consequence of the change of one of its terms. We thus have an invariant for
the expression f(X)-X, to avoid recomputing it each time through the loop
E := f(X)-X;
We will store this value upon entry to the loop, and we will update E, within the while loop just
before Xis modified, so that the invariant E = f(X)-X is maintained, at the point where the
expression f(X)-X is needed. This update code is called difference code for E with respect to the
modification X := X with z;

X := {s};
E := %+{g{u}: u in X}; $ introduce E = g[X]
while E-X /={}do $ while g[X] - X /= {} iff #(E-Z) /= 0

z := arb(E-X); •
X := X with z;
E := E + g{z}; $ maintain E = g[X]

end;
$ at this point X = X + g(X]

Mechanical maintenance of an invariant of kind U = V +S, where S is subject to changes,
involves difference code of the following kind, for each increment dS

U := U + {x: x in dS I x notin U}
Therefore the difference code for E should actually be:

E := E + {x: x in g{z} I x notin E};
or the strictly equivalent loop

for x in g{z} I x notin E do
E := E with x;

end;
Clearly another invariant becomes necessary: N = E-X. The result is now

:JGep(e.r a Cantor Tutorial 31

X { s};
E .- %+{g{u}: u in X}; $ introduce E = g[X]
N .- E-X; $ introduce N = E-X
while #N /= 0 do $ while g[X] - X /= {}

z := arb (N);
X := X with z;
E := E + {u: u in g{z} I u notin E}; $ maintain E = g[X]

$ maintain N = E-X
N := (N+ {u: u in g{z} I u notin X}) less z;

end;
$ at this point X = X + g[X]

In the above code it is easy to see that the invariant Eis never used after N's initialization, and
should be removed:

X := {s};
N := g{s} less s; $ %+{g{u}: u in X}-X = g[X] - X
while #N /= 0 do $ while g[X] - X /= {}

z := arb (N);
X := X with z;

$ maintain N = g[X]-X
N .- (N + {u: u in g{z} I u notin X}) less z;

end;
$ at this point X = X + g[X]

This 'mechanical' version of the reachability algorithm is slightly less performant -in Cantor
than the previous 'hand coded' one, also inspired by the finite differencing method.
The finite differencing technique, consisting of replacing costly repeated computations by
simpler ones, may have an initial overhead which masks its real effect on small data sets. This
technique has been extensively studied by R. Paige and is now automated in his APTS system.
The tests sets used at the end of this section show the remarkable improvement derived from this
technique.

the include file for the prerequisite problem
To compare all of these versions, the following include file has been created

$.. .

!memory 2000000
!echo off
!recordOutput fd_reach.tr

[t1 ,t2,t3,t4,t5,t6J := ID,□,□.□.□.lll ;
x_size :=~;
n_s\ze := ;
e_sIze := ;
m_size := □;

$--demo_fd, prepare_data
$ given a graph gr, an experiment index i
$ and optional sources, and maximum arity
$ compute, under various refinements
$ the same set: the set of all nodes
$ reachable from source s in graph gr
demo_fd := func(gr,i opt s,m);
local X,T,E,z;
local N,dN,NO;
local in time.out time;
local g,h,prepare=data;

$ prepare_data : compute gr's inverse graph
$ and the maximum arity m. If source s
$ is not defined, let it be any node having
$ maximum arity
prepare_data := func(gr,i opt s,m);

g := {[x,y): [y,x) in gr};
if is_om(m) then

h := {[x,#g(x}): x in domain(g));
m := %max range(h);

end·
if is~om(s) then

s := arb((x: x in domain(g) I h(x) = ml);
end;
n_size(i) := #(domain(g)+domain(dependence));
e_size(i) := #g;
m_size(i) := m;
printf inn_size(i): '; print n_size(i);

printf 's : '; prints;
printf 'm : '; print m;
printf '9(s} : '; print g(s};
return [s,m);

end;$ end prepare_data

[s,m) := prepare_data(gr,i,s,m);

$ -1 the naive fixed point definition
in_time := clock();

X :=(s};
T := X%+(g(x): x in X); $ T = X + Q[X)
while XI= T cfo $XI= Tiff T-X I= 0 iff g[X] - XI={)

X·=T·
T := Xo/o+(g(x): x in X); $ maintain T = X + g[X)

end·
$ at this pointX = X + g[X], T = X
out_time := clock();
X1 ·=X·
prin·tf 'duration:', (out_time-in_time)/60,in';
printf 'size: ', #X, in'; $ the fixed point size
print X;
t1(i) := (out_time-in_time)/60;
x_size(i) := #X;

$ -2 let us exhibit the main iteration condition in detail
in_time := clock();

X :=(s);
T := g/s) withs; $ T = X%+(g(x}: x in X) i.e. T = X + g[X]
dN := 'r-X; $ introduci~ the invariant dN = T-X
while dN I= (} do $ this Is equiv to XI= T

NO:= (y: u in T, yin ~(u} I y notin T}; $ this is g[T]- T
$ observe that T Is X+N
$ by construction u in X ==> g(u} subset X+N
$ whence (y: u in X,y in g(u} I y notin T} = (}
$ therefore: (y: u in T,y in g(u} I y notin T) is
$ (y: u in N, yin g(u} I y notin T)

X := T; $XchangestoX +dN

:K.epl:er a Cantor Tutorial 32

T ·= T + NO· $ maintain T = X + g(X], after X's change
dN ·= NO· ' $ maintain the invariant dN = T-X

end· • '
$ at this point X is the fixed point

out_time := clock();
X2·=X·
prin·tf 'duration:', (out_time-in_time)/60,'\n';
erintf 'size: ', #X, '\n'; $ the fixed point size
if X2 I= X1 then

print! 'lndiscrepancy between 2 and 1\n';
print X;

end;
t2(i) := (out_time-in_time)/60;

$ -3 the naive fixed point re-definition
$ includes maintenance of N, X, T
in_time := clock();

X :={s};
T :_= g/s} _with s; $ T = X%+{g{x}: x in X} i.e. T = X + g[X]
N .= T-X,
while #NI= 0 do$ XI= Tiff T-X I= I) iff g[X] - XI= I)

NO:= /y: u in N,y in g{u} I y notin T}; $ g(T}- T
$ acliieve T = X + g(X]
X := T; $X+N;
T := T + NO;
$ assert T = X + g[X]
N ·=NO·
$ • ass~rt N = g[X]- X = T-X

end·
$ at this pointX = X +g(X], T =X
out_time := clock();
X3:=X;
print! 'duration:', (out_time-in_time)/60,'\n';
enntf 'size: ', #X, '\n'; $ the fixed point size
if X2 I= X3 then

print! 'lndiscrepancy between 2 and 3\n';
print X;

end·
t3(i) := (out_time-in_time)/60;

$ -4 maintain as invariant %+{g{u): u in X}
$ note that E +g{z} is E + {u: u in g{z} I u notin E}
in_time := clock();

X :={s};
E := %+{g{u}: u in X};
while E-X I= I) do $ while g(X] - XI= I) iff #(E-Z) I= 0

z := arb(E-X);
X :=Xwith z;
E := E + {u: u in g{z} I u notin E}; $ maintain E = g(X]

end·
$ at this point X = X + g[X]

out_time := clock();
X4·=X·
prin.tf 'duration:', (out_time-in_time)/60,'\n';
erintf 'size: ', #X, '\n'; $ the fixed point size
If X4 I= X3 then

print! 'lndiscrepancy between 4 and 3\n';
print X;

end·
t4(i) := (out_time-in_time)/60;

$ note that E +g{z} is E + {u: u in g{z} I u notin E}

$ -5 maintain as invariant %+{g{u}: u in X} - X
in_time := clock();

X :={s};
E := %+/~{u}: u in X};
N .= E-X,
while #NI= 0 do $ while g(X] - XI= I)

z := arb(N);
X ·=Xwith z·
E := E + {u: u in g{z} I u notin E}; $ maintain E = g(X]
N := (N+ {u: u in g{z} I u notin X}) less z; $ maintain N =

E-X
end·
$ at this point X = X + g[X]
out_time := clock();
X5:=X;
print! 'duration:', (out_time-in_time)/60,'\n';
print! 'size: ', #X, '\n'; $ the fixed point size
if XS I= X4 then

print! 'lndiscrepancy between 4 and 5\n';
print X;

end;
tS(i) := (out_time-in_time)/60;

$ -6 eliminate E, which is never used, except for its own
maintance
in_time := clock();

X := {s};
N := g{s} less s; $ %+{g{u}: u in X}-X == g[X] - X
while #N I= 0 do $ while g[X] - X I= I)

z := arb(N);
X :=Xwith z;
N := (N + {u: u in g{z} I u notin X}) less z; $ maintain N =

f]:-X
$ at this point X = X + g(X]
out_time := clock();
X6:=X;
print! 'duration:', (out_time-in_time)/60,'\n';
erintf 'size:', #X,'\n'; $ the fixed point size
if X6 /= XS then

print! 'lndiscrepancy between 5 and 4\n';
print X;

end;
IS(i) := (out_time-in_time)/60;

end;$ end derno_fd

display results := tune();
aUJddata := (n_size,e_size,m_size,x_size, t1 ,t2,t3,t4,t5,16];
print! '\n','_ .. 63, '\n'; •
print! '\n n_size,e_size,m_size,x_size, t1 ,t2,t3,t4,t5,16\n';
print all_fddata;

print! '\n',' .. 60, '\n';
printf '\n',Fn','e','m','x', 't1','t2','t3','t4\'t5','t61:6, \n';

print! '\n',' .. 60,'\n';
print! '\n',1ln_size(i},e_size(i),m_size(i),x_size(i),

t1(i),t2(i),t3(i),t4(i), tS(i), t6(i)]: i in (1..71] : 10*((6.02,' 1
with '\n') ;

print! '\n','_ .. 60,'\n';
end;$ end display_resul1s

!echoon

dependence :=~ [1,2], (1,4), (1,6],

!2,3 , {2·~· (2, 7),
4,5, 4, ,
6, , 6,8 , (6,9]

};

domain(dependence);
range(dependence);
s := 7;
m ·-3·
~o~fd(dependence, 1,s,m);

dd1 := {[random(100),random(100)]: i in (1 .. 100D;
demo_fd(dd1 ,2);

dd2 := /[random(200),random(200)]: i in [1 .. 2001);
demo_fd(dd2,3);

dd3 := /(random(SO),random(SO)]: i in (1 .. 200]};
demo_fd(dd3,4);

dd4 := /[random(150),random(150)]: i in [1 .. 5001);
demo_fd(dd4,5);

dd5 := /[random(450),random(450)]: i in (1 .. 10001);
demo_fd(ddS,6);

dd6 := /[random(1000),random(1000)]: i in (1 .. 10001);
demo_fd(dd6,7);

display _results();

$ save('all_fddata', 'all_fddata');
!recordOutput
!echo off

a Cantor Tutorial 33

the execution trace
The execution is quite instructive. The first observation is that these fixed-point methods
compute exactly the desired set augmented with the source node. The second observation is the
noticeable improvement of the efficiency of the algorithm, from the naive version to the elaborate
finite differencing solution, both in the mechanical and the intuitive approaches. Even though
Cantor's implementation of the collection data structures is far from meeting the criterias of that
of an ideal set machine, the experimental results indicate, an 'average behaviour' compatible with
that of such a machine. The lack of talent of the Cantor designers is not the only thing to blame:
there are some significant theoretical limitations; a fixed data structure for representing sets
cannot satisfy always the requirements of the ideal set machine. Actually, each algorithm may
require a different implementation of that ideal set machine, since each algorithm uses sets in
specific ways. Cantor being an interpreted language, has to interpret each instruction, each
expression evaluation request, without taking in consideration the algorithm as a whole and
possible optimisation information. However Paige technique of Real-Time Simulation of a Set
Machine on a RAM5 may be in the not too distant future available to compile Cantor programs
into an appropriate target development language (e.g. C or C++) using the appropriate set
implementation, meeting each time the requirements of an ideal set machine.
In what follows, durations are in seconds. They have been evaluated on a Macintosh LC475 by
dividing a tick count by their frequency (60 per sec). The reported execution time includes the
time spent by the Cantor system 'garbage collecting', i.e. performing essential asynchronous
dynamic memory management functions, not specific to any particular algorithm. Here are the
execution results:

5See for instance Paige R. : Real Time Simulation of a Set machine on a RAM in ICCI '89, ed. W. Koczodaj,
Computing and Information, 2, 1989.

a Cantor Tutorial 34

> dependence := ~ !1,2), [1,4), [1,6),
>> 12,3' 2,SJ, [2,7J,
>> 4,5, 4,7),
» 6, , 6,8), [6,9)
» };
>
> domain(dependence);
{4, 6, 1, 2};

> range(dependence);
{7, 9, 8, 5, 6, 2, 3, 4};

>S := 7;
>m ·=3·
> demo

0

fd(dependence, 1,s,m);
n_size(i):
9;
s· 7·
m··s-
g{s} :' {4, 2. 6J;
duration: 0.03333
size: 5
{7, 6, 2, 1, 4};
duration:
size:
duration:
size:
duration:
size:
duration:
size:
duration:
size:
OM;

>
>

5

5

5

5

5

0.06667

0.01667

0.01667

0.06667

0.03333

> dd1 := l[random(100),random(100)): i in [1 .. 100)};
>demo_kl(dd1,2);
n_size(i):
57·
s -'57-
m

0

·5-'
g{sJ :

0

{42, 48, 49, 12. 251;
duration: 0.26667
size: 20
{70,59,80,88,57,53,52,49,43,48,46, 12, 14, 15,25,29,
35, 38, 41, 42);
duration: 0.20000
size: 20
ck.Jration: 0.05000
size: 20
dJration: 0.41667
size: 20
ck.Jration: 0.16667
size: 20
ck.Jration: 0.23333
size: 20
OM;

>
> dd2 := {[random(200),random(200)): i in [1 .. 200));
> demo_fd(dd2,3);
n_size(i):
124·
s • 1'52-
m.: 5;'
g{s): {158, 103, 118, 6, 86);
duration: 1.18333
size: 38
{114,118,105,123, 129,96, 103,87,94, 137,142,152,131,
135,186,184,192,187,158,160,179, 163,9, 11, 7,6,26,
38, 44, 47, 75, 81, 86, 84, 69, 65, 64, 54);
cu ration: 1.30000
size: 38
duration: 0.26667
size: 38
dJration: 1.53333
size: 38
dJration: 0.70000
size: 38
duration: 0.46667
size: 38
OM;

>
> dd3 := {[random(50),random(50)): i in [1 .. 200));

> demo fd(dd3,4);
n_size(l):
50·
s :

0

5;
m·7·
g{s1 :'131, 11. 9, 1. 50, 35, 33);
ck.Jration: 0.88333
size: 50
{34,35,33,32,38,36,37,50,49,48,47,46,43,44,45,41,
42,39,40, 11, 10, 12,9,8,6, 7,2,3,5,4, 1,0,31,30,
29, 21, 22, 23, 26, 28, 24, 25, 20, 19, 18, 17, 16, 14, 15, 13};
ck.Jration: 1.08333
size: 50
ck.Jration: 0.51667
size: 50
ck.Jration: 2.96667
size: 50
cu ration: 1.68333
size: 50
ck.Jration: 0.96667
size: 50
OM;

>
> dd4 := l[random(150),random(150)): i in [1 .. 500));
> demo_fd(dd4,5);
n_size(i):
147·
s :55;
m·11·
g{sJ :1s2. 113,126,121.138, 129,49, 11. 75, 18, 11;
duration: 4.15000
size: 143
{147, 148, 149, 150, 145, 143, 144, 142, 141, 140, 139, 127,
128, 129, 131, 132, 133, 134, 138, 137, 135, 136, 117, 116,
115,114,119,118,123,121,120,124,125,126,109,110,
112, 113, 108, 107, 106, 105, 104, 101, 102, 103, 96, 98, 97,
100,99,93,94,95,83,82,80,78, 79, 77, 76,84,85,86,
87,90,89,88,91,92,48,49,50,52,51,54,53,55,45,47,
46,43,44,42,40,41,38,39,56,57,58,59,62,63,61,60,
72,73, 75, 74, 70, 71,69,67,68,66,64,0, 1,2,6, 7,8,
9,5,3,4, 18, 16, 17, 14, 15, 10, 11, 12, 13,26,27,25,24,
23, 21, 22, 20, 19, 31, 30, 28, 29,34, 33, 35, 36);
ck.Jration: 5.18333
size: 143
duration: 1.53333
size: 143
duration: 38.98333
size: 143
dJration: 5.33333
size: 143
ck.Jration: 2.86667
size: 143
OM;

>
> dd5 := l[random(450),random(450)]: i in [1 .. 1000)};
> demo kl(dd5,6);
n_size(i):
398·
s:375;
m:7;
g{s}: {35,174,278,222,375,372,305);
duration: 22.28333
size: 391
{113,112,107,106,111,109,120,121,119,118,115,117,
116,90,91,89,88,92,93,95,94,98,97, 103,104,101,
102,99, 100,124,125,122,123,128,127,126,132,131,130,
133, 134, 135, 139, 138, 137, 136, 164, 163, 162, 161, 160,
159,167,166,165,171,170,169,168,172,174,173,142,
143, 140, 141, 145, 144, 146, 147, 149, 148, 150, 151, 154,
152,153,158,157,155,156, 75, 76,73, 74, 71, 72,70,69,
67,66,61,60,63,64,62, 77, 78,81,80,82,84,86,87,85,
23,25,22,31,28,26,27, 13, 15, 17, 16, 19, 18,20,21, 12,
11, 10,9, 7,6,0, 1,5,3,2,57,59,56,55,52,51,53,45,
46,42,44,43,48,47,50,49,36,37,38,39,40,35,34,33,
32,298,297,300,299,301,302,305,304,303,312,311,314,
310,309,308,306,316,317,320,321,319,322,323,325,
324,283,282,279,280,281,287,285,286,291,289,290,
295,296,294,293,292,274,272,275,278,277,269,271,
268,266,267,252,250,251,249,248,246,245,257,256,
255,262,261,265,264,258,260,259,176,177,178,182,
184, 183, 180, 181, 186, 185, 187, 190, 189, 188, 194, 192,
196,197,195,198,199,201,200,207,206,203,204,202,
210,208,212,213,215,230,231,229,228,227,226,225,
223,224,222,221,219,220,218,216,217,239,238,242,
241,243,244,232,233,235,236,237,372,370,371,367,

'.K.ept:er a Cantor Tutorial 35

369,368,359,358,361,360,352,353,355,364,363,366,
365,350,349,346,342,341,343,345,340,339,338,337,
331,332,333,334,335,336,326,327,329,330,328,373,
375,379,377,389,388,387,386,383,380,384,385,391,
390,392,393,395,394,399,398,396,397,400,401,402,
403,404,405,407,406,409,408,411,412,410,413,414,
415,417,416,429,428,426,427,424,425,419,418,421,
422,420,432, 435, 431, 430, 437, 436, 441, 444, 438, 440,
439, 449, 450, 448, 446, 445,447);
duration: 25.21667
size: 391
duration: 3.76667
size: 391
duration: 187.05000
size: 391
duration: 10.43333
size: 391
duration: 6.73333
size: 391
OM;

>
> dd6 := {[random(1000),ranoom(1000)): i in (1 .. 1000)};
> demo_fd(dd6,7);
n_size(i):
629;
s :614;
m·5·
g{sJ :

0

{106. 112. 522,754.807);
duration: 2.50000
size: 94
{774,782,771,763,765,544,555,561,560,562,565,622,
614,638,636,703,715,754,875,871,886,895,908,909,
911,931,939,932,961,949,988,974,813,832,814,807,
794,858,857,847,849,281,283,280,296,284, 188, 182,
232,210, 197,252,263,270,273,97, 78,34, 106,98,33,30,
4,28, 168,170,172,156,163,125,121,110,112,300,304,
311,369,370,344,350,397,391,382,411,427,459,476,
474,515,522, 496, 514,493,485};
duration: 2.40000
size: 94
duration: 0.40000
size: 94
duration: 4.03333

comments on this execution trace

size: 94
duration: 1.20000
size: 94
duration: 0.80000
size: 94
OM;

>
> display_results();

n_size,e_size,m_size,x_size, t1,12,t3,t4,t5,t6

9, 57, 124, 50,147,398,629),
11, 99,200,191,493,996, 1000), (3, 5, 5, 7, 11, 7, 5],
5, 20, 38, 50, 143, 391, 94),
0.033, 0.267, 1.183, 0.883, 4.150, 22.283, 2.5001,
0.067, 0.200, 1.300, 1.083, 5.183, 25.217, 2.400 ,
0.017, 0.050, 0.267, 0.517, 1.533, 3.767, 0.400),
0.017, 0.417, 1.533, 2.967, 38.983, 187.050, 4.033),
0.067,0.167,0.700, 1.683,5.333, 10.433, 1.200),
0.033, 0.233, 0.467, 0.967, 2.867, 6.733, 0.800fl;

n em xtlt2t3t4t5t6

9 11 3 5 0.03 0.07
57 99 5 20 0,27 0.20

124 200 5 38 1.18 1.30
50 191 7 50 0.88 1.08

147 493 11 143 4.15 5.18
398 996 7 391 22.28 25.22

Q1;

>
>

629 1000 5 94 2.50 2.40

> $ save('all_fddata','all_fddata');
> !recordOutput
! Recording Output is off
> !echo off
>

0.02 0.02 0.07 0.03
0.05 0.42 0.17 0.23
0.27 1.53 0.70 0.47
0.52 2.97 1.68 0.97
1.53 38.98 5.33 2.87
3. 77187.05 10.43 6. 73
0.40 4.03 1.20 0.80

Just for the sake of legibility, we have used for displaying the formatted results derived from
invoking display _results() the standard Cantor console font (monaco) .
The following will help you understand these results:

col. label description
n number of nodes in the graph
e number of edges in the graph
m max. nbr. of children at any node
x cardinality of the fixed point set
tl run-time for naive fixpoint algorithm
t2 run-time for naive finite diff. algorithm
t3 run-time for hand-crafted finite diff. algorithm
t4 run-time for 1st level mechanical finite diff.- algorithm
t5 run-time for 2nd level mechanical finite diff.- algorithm
t6 run-time for mechanical finite diff.- algorithm, with dead code elimination

From the displayed results it is clear that the best version of the algorithm is the one
corresponding to column t3, i.e. the hand-crafted finite differencing version, which made use of
an identity, which an automated program transformation system could not derive from the naive
fixed point definition of the problem. The algorithm derived from a mechanical application of
finite differencing with dead-code elimination displays comparable results (in column t6), within
a constant multiplicative factor.

Exercises
- what happens if one adds an arrow 7->1, represented by the pair [7,1] in the dependence
graph. Hint: Compare the pre-requisites of 7 with those of 1,2, 4 ,6 or any other node.

a Cantor Tutorial 36

- the pre-requisite analysis was carried out for a single source situation: find the pre-requisites for
a single chapter, find the reacheability set for a single source node. Restate this analysis and the
algorithms for multiple sources
- could the algorithms be made more efficient, if instead of computing the whole reachability or
pre-requisites set of a given source, the problem was to test whether a specific node belongs to
that set?
- let #X be the cardinality of the prerequisites set. Show that the optimized versions of the
algorithm have an asymptotic time complexity O(#X), thus may only be improved by constant
factors - complexity wise, a marginal improvement. Verify this by testing with numerous graph
configurations.

Example 4: pre-requisites - revisited-2

Here we will look into the issue of presenting correctly, the prerequisites, in an order compatible
with that of the given dependence graph. This compatible order could be defined as follows:
let S be the given set, let D be the dependence graph, let T be the sorted collection.
If a, b are elements of S and a is a pre-requisite of b according to D, then a should precede b in
T.
In example 4, Sis {2,1,4,6}, and Dis dependence, the graph represented by

{ (1,2), (1,4), [1,6),
[2,3), [2,5), (2,7),
[4,5), [4,7),
[6, 7), [6, 8), [6, 9)

};
Since 2 is not a prerequisite to 4 or 6, nor 6 a prerequisite to 2 or 4 , nor 4 a prerequisite to 2 or 6
then 2, 4, 6 may be put into T in any order relative to one another. However 1 is a prerequisite to
2, 4 and 6. Therefore 1 should be placed ahead of 2,4,6. Therefore [1,2,4,6] or [l] followed by
any permutaion of { 2,4,6} is an acceptable solution.

Any such acceptable ordering of S is called a topological order of S (relative to the order
specified by D).

partial orders. transitive closures
A relation R is a partial order relation if:
-it is antisymmetric: a Rb & b R a imply a= b
-it is transitive: a R b & b R c imply a R c
The dependence graph of example 4 is closely related to a partial order relation but is not a partial
order. Indeed, one has 1->2 and 2->3 in the graph, but not 1->3: transitivity is violated. Adding
all the missing edges, to meet the transitivity requirement is called 'computing the transitive
closure'. This is easily done, e.g. by means of any of the single source graph reachability
algorithms we have seen, for instance the naive one:

X := {s};
f := func(d); return d%+{g{x}: x ind}; end; $ f(D) is D+g[D]
T := f (X);
while X /= T do

X := T;
T := f(T);

end;
X := X less s; $ remove the source from X
$ at this point Xis the fixed-point i.e.
$ the set of all non-trival nodes
$ in g reachable from the single sources

One could augment g by adding all the edges from the source s to the reachable nodes:
g := g + {[s,u]: u in X};
And then doing this for every possible source node in g, i.e. in domain(g):

for sin domain(g) do
X := {s};
f := func(d); return d%+{g{x}: x ind}; end;$ f(D) is D+g[D]
T := f (X);

'.K.epfer a Cantor Tutorial 37

\
. I.

end;

while X /= T do
X := T;
T := f(T);

end;
$ at this point Xis the fixed-point i.e.
$the set of all non-trival nodes
$ in g reachable from the single sources
X := X less s; $ remove the source
$ augment g with edges linkings to each reachable node
g := g + {[s,u]: u in X};

$ at this point g contains its transitive closure

A map g representing a binary relation is a pre-partial order if when it is augmented by its
transitive closure it is a partial order.

topological sort
We need, for computing the topological sort, to be sure that our dependence graph D is a pre
partial order. However, we will see that we don't need to compute the transitive closure.

If Dis really a pre-partial order, all we need is to find the elements of S which have no pre
requisites (in S), according to D, put them into an ordered collection T, and remove them from
S. And we do this until S becomes empty.

$ given graph D, input set S
T := []; $ an empty ordered collection
g := {[y,x]: [x,y] in D}; $ g is the inverse graph of D
$anode has no predecessor in D iff it has no successor in g
no_predecessors := {x: x in S I #(g{x}*S) = 0 };
while #S /= 0 and #no_predecessors /= 0 do

end;

T := T+[x: x in no_predecessors];
S := S - no_predecessors;
no_predecessors := {x: x in S I #(g{x}*S) = 0 };

$ at this point S should be empty
$ and Tis the sorted collection

This is of course a much simpler algorithm, which lends itself to numerous improvements.

Exercises
- we exposed in a previous section 4 algorithms for the pre-requisite problem. Adapt them all to
the computation of the transitive closure. What can be said about their efficiency?
- compare this presentation of a transitive closure algorithm with that of Warshall algorithm in
your prefered text book.
- carry out, on the exposed topological sort algorithm, the finite differencing analysis. Propose
an efficient algorithm, test and compare the results.
- what is the fixed-point computed by the topsort algorithm?
- given a dependence graph D as above, how can we test if it is a pre-partial order or not? Hint 1:
produce an algorithm derived from that of the topological sort Hint 2: prove that Dis in pre
partial order iff D has no cycle, i.e. there is no node in D which is contained in its own pre
requisites set.
- define 'sorting' (i.e. re-arranging a collection of strings or numbers in ascending order) as a
fixed-point problem. Hint: use the merge function exposed in example 2.

Example 5: a simple real-time system: a digital watch-revisited

We have already identified the three main collections in Statecharts:
- the set of blobs, representing the individual states of the system being described, as well as
groupings of such states

'.K.epl:er a Cantor Tutorial 38

- the set of subsystems, representing the breakdown of a blob into concurrent subsystems
- the transitions (labelled arrows)
What is essential is the representation of state groupings, nestings and decompositions. We will
therefore concentrate on the maps describing these relations:
- blobs represents the blobs nesting association
- subsystems represents the blobs decomposition into susbsystems, i.e. partitions
- transitions is the map representing the associations drawn by the arrows
Initially these maps are empty:

blobs := {};
subsystems:={};
transitions:={};

More collections will be needed. For instance there is a collection which plays an important
pragmatic role, but not a conceptual one: the collection of identifications for all the objects in the
Statechart. We assume that each object is assigned a unique atom, and that each atom is
associated to a text string providing a name for that object. As a matter of fact we will separate
state names from event names. E.g. whenever a new blob A is introduced we will need the
following instructions (or equivalent):

A:= newat; $ create an atom
state name(A) := 'A'; $ associate a name

and analogously for each new event, an atom will be associated with an event_name.

The set blobs reproduces the blob's hierarchy and the set subsystems reproduces the
subsystem hierarchy as in the following diagram examples:

A
[ill ~

~

B

f71 s21
·-------------------------------

tJq s4
'• '• '• '• '• '• ..
'• . _____ ___,

blob A contains blobs al,a2,a3
[al,a2,a3] := [newat,newat,newat];
state name(al) := 'al';
state-name(a2) := 'a2';
state-name(a3) := 'a3';
$ reproduce the membership ai in A
blobs{A} := {al,a2,a3};

blob Bis partitionned into subsystems sl,s2,s3,s4
[sl,s2,s3,s4] :=

[newat,newat,newat,newat];
state name(sl) := 'sl';
state-name(s2) := 's2';
state-name(s3) := 's3';
$ reproduce the membership si in B
subsystems{B} := {sl,s2,s3,s4};

The following diagram mixes both kind of hierarchies:

C

d3

d2

C := newat;
state name(C) := 'C';
[dl,d.2,d3] := [newat,newat,newat];
subsystems{C} := {dl,d2,d3};
[fl, f2, el, e2] :=

[newat,newat,newat,newat];
[gl,g2,g3] := [newat,newat,newat];
blobs{dl} := {el,e2};
blobs{d2} := {fl,f2};
blobs{d3} := {gl,g2,g3};
state_name(dl) .- 'dl';

state_name(g3) .- 'g3';

Observe that the set of all individual states is exactly
states := domain(blobs)+range(blobs) + domain(subsystems) +

a Cantor Tutorial 39

range(subsystems);
Another - should be equivalent - definition is:

states:= domain(state_name);

These examples illustrate the straightforward use of maps to represent blobs and subsystems
hierarchy.

the different types of transitions
We will consider the following different kind of transitions:

1-the ordinary case : an arrow labelled by an event name between an origin state and any number
of target states (N.B. in fig. 3 there is one instance of an arrow pointing to more than one target
state: in blob stopwatch from state zero to states reg and on, labelled by event b). A transition
means : if the origin state is active, then it is de-activated, and the target states become active. An
ordinary transition from state a to state b labelled bye is represented by a term [[a,e],b] i.e., if
there is no other transition from state a, labelled bye, [a,e] is uniquely associated to the target
state b:

transitions([a,e]) := b; $ assume no other transition from [a,e]
An ordinary transtition from a to a set of states {bl ,b2, ... } labelled by event e is similarly
represented by:

transitions{[a,e]} := {bl,b2, ... };

2-the conditional transition : the transition label has a part surrounded by [] which specifies a
boolean condition on specific state activation : the condition in(s) holds whenever the states is
active; this is implemented by the predicate in_state(s) where in_state is a boolean valued map.
This means transition may take place only if the condition holds. A conditional transition from
state a to state b labelled bye under condition in_state(s) is represented by a term [[a,e],[b,
'in state(s) 1] i.e. if there is no other transition from [a,e] then:

transition([a,e]) := [b, 'in state(s)'];
The condition may be complex, e.g., Tn_state(s) and not in_state(u), and other atomic predicates
than in state may be considered. The string will be analyze-d(see section 6.3 of the user
manual), the resulting abstract syntax tree will be evaluated, and depending upon the value the
transition will yield an activation change or not.

Another collection has been introduced: the map in_state: states->boolean. Actually this map
maintains the activation status. Thus, the 'current state' -which comprises the activated blob and
all the derived states in nested blobs and subsystems is defined as:

curState := {x: x in states I in state(x)};
When a transition from a to b takes place, ft is because in state(a), i.e. a c curState, then the de
activation of a takes place and is followed by an activation of b:

in state(a) := false; $ de-activation of a
in-state (b) := true; $ activation of b

A transition represents an explicit activation request. It should be followed by the activation of all
the derived states, all the states which are implicitly activated.

3-the transition with broadcasting of an event : the transition label is of the form trigger_ event I
broadcast_ event. This transition behaves like an ordinary transition. As the target state becomes
active, the event broadcast_event is sent to all the blobs and subsystems, and therefore could
trigger other transitions. Broadcasting could generate chain-reactions, since event propagation
follows immediately the target events activation. In fig. 3 there is only one example of a
broadcast, the transition labelled bt _ rmlclh (battery removed/ clear history) between the blobs
alive and dead. There is however no way of knowing the effect of the event clh, since it is not
described in fig. 3.

4-the transition to a H * point inside a blob : this symbol represents the last active state in the blob
before it was last de-activated. If that blobs comprises subsystems, this 'most recently active'
state contains the 'most recently active' state of each of the subsystems partition, and so on, until
all the nested individual states which were 'most recently active' sub-parts of the given blob are

:K.epfer a Cantor Tutorial 40

detailed. The record of this 'most recently active' state and of its 'most recently active' sub-parts
is kept in a history structure. When a transition having as target a H * point is taking place, that
'most recently active' state is re-activated along with its 'most recently active' sub-parts.

E.g. there is a transition triggered by event a from chime to H*-stopwatch. That 'most recently
active' state may be one of the following five: zero, {reg, on}, {reg, off}, {lap, on}, {lap, off}.

We introduce here another map history states -> 2 states to record, before the de-activ,ation of a
state its 'most recently active' state and embedded states. For instance that map always satisfies:

history(stopwatch) in {zero, {reg, on}, {reg, off}, {lap, on},
{lap, off}};

5-the transition to a default state : When a blob is getting activated by a transition -the arrow
points at the border of the blob rectangle- no specific state inside that blob is the target of the
transition, then the state which gets that activation is the default state. The default state is
indicated by a non-labelled arrow originating at a dot, and pointing to the default state. For
instance, the default state of the watch is dead, the default state of the power is ok, the default
state of light is off, etc .. Unlike transitions to a H* point inside a blob, a transition to a default
state has no specific denotation in our map transitions; it is while calculating where and how
an activation propagates that a default state activation is uncovered.

The map default: states-> states records these association between a blob and its default state:
default(watch) := dead;
default(power) := ok;
default(light) := off;

propagation of activation and de-activation

We have already been alluding to activation or de-activation propagation. We will try to be
exhaustive:
- whenever a transition gets a target state b activated, then implicitly, all the blobs containing b
are activated, and this propagates to all the blobs containing a blob including b, and so on. We
call this state membership propagation up the blobs.
- whenever a transition gets a target state b activated, then implicitly, b's default state gets
activated, and this propagates to the default state of b's default state, and so on. We call this
default state activation propagation.
- whenever a transition gets a target state b activated, if b is actually a blob partitioned into
subsystems, then implicitly, each of the subsystems default state gets activated, and so on down
the default states and subsystems. We call this the full default state activation propagation.
- whenever a transition from state a gets a target state b activated, then state a gets de-activated,
and all the states and subsystems of a which are not contained directly or indirectly in b should
be de-activated too. We present here two different situations:

A
al

[ill@] b3

a2

a transition represented by [[al,e],b3] :

all the states contained in al and not
contained in b3 should be de-activated.
We call this deactivation propagation
across states

a Cantor Tutorial 41

A

@]

[ill [g]
bl b2

a2

[j

a transition represented by [[cl,e],a2] :

it is insufficient to de-activate all the
states in c 1 not contained in a2. This
transition leaves completely the
partitionned blob al, whence all the
subsystems of a 1 should be de
activated. Since they are disjoint sets of
states, all the states contained in a1
should be de-activated
We call this deactivation propagation out
of subsystems

An actual transition may require a combination of these two kinds of de-activation processes.
This will be the case of a transition from a deeply nested state, whithin a subsystem, to one of
the top states in the blobs hierarchy. Fig. 3 exhibits all kinds of combinations of these de
activation schemes: e.g. the transition represented by the arrow from displays to beep labelled
t_hits_tm [in(enab)J.

propagation and closures
All the above propagation processes are instances of the 'pre-requisites' problem or of its
inverse, the reacheability problem. In each case the main computational tool is the efficient
function for computing all the nodes reachable in a graph g from a given source s:

$-------------------------------reach
reach := func(g,s); -
local-X,T,dN,NO;

X := {s};
$ T = X%+{g{x}: X in X} i.e. T = X + g[X]
T := g{s} withs;
dN := T-X;
$ X /=Tiff T-X /= {} iff g[X] - X /= {} iff #dN /= 0
while #dN /= 0 do

$NO= g[T] - T
NO := {y: u in dN,y in g{u} I y notin T};
$ achieve T = X + g[X]
X := T; $ X+dN;
T := T + NO;
$ assert T = X + g[X]
dN := NO;
$ assert dN = g[X] - x = T-X

end;
$ at this point X = X + g[X], T = X
$ the set of all non-trival nodes
$ in g reachable from the single sources
return X less s;

end; $ end reach
The main design problem is to define each time what is exactly the graph g, and how it is related
to the already identified collections.
Let us consider all the above listed cases:
-state membership propagation up the blobs.: we need to find, given a target state b, which blobs
x satisfy b in blobs{x} orb in subsystems{x}. We have to find which are the pre-requisites or
predecessors of b in the graph blobs u subsystems. The solution consist in introducing the
inverse of graph blobs u subsystems. Let it be called blobs_of:

blobs of:= {[y,x]: [x,y] in blobs+ subsystems};
the propagation set 'up the blobs' from a given state b is then exactly:

reach (blobs of ,b);
-default state activation propagation. has seemingly a very similar solution: given a state b the set
of all the directly or indirectly default states to activate would be

reach_(default,b);

a Cantor Tutorial 42

However this is true only if there are no partitioned states and subsystems in this set. If c is a
partitioned state in the collection of direct or indirect default states of blob b, c has no
default_state, only its subsystems may have default states. The computation of the propagation
set continues by adding all the default states of the blobs in

subsystems{c}
and the indirect ones derived from them. The difficulty here is that the default map disconnects
simple blobs from partitioned ones. For instance, in the example fig. 3, the state alive has no
default state, thus the reach_ function cannot find default states corresponding to a partitionned
state.
The solution is to redefine the map default by adding associations between all the partionned
state and the default state in each subsystem. In the example of fig. 3 this would imply adding

default{active} := {ok, off, c disab, disab};
and an arbitrary state to select from {displays, beep} - since this was omitted from the chart.
Formally the change is defined by,

for x in domain(subsystems) do
default{x} := {default(y): yin subsystems{x}};

end;
And if we want to take into account the omission of defining sometimes default state:

for x in dornain(subsysterns) do

end;

default{x} := {default(y)?arb(blobs{y}):
yin subsystems{x}};

I.e., for a given subsystem y, if default(y) is undefined, then take an arbitrary element in the
blob y, and let it play the role of the default.

With this modification, the full default state activation propagation. set for a given target state b is
exactly reach_ (default, b).

-deactivation propagation across states : all the states which directly or indirectly are contained in
the origin_state, and are not directly or indirectly contained in the target_state, need to be de
activated. It is easy to see that all the direct or indirect members of a given state x are in

reach (blobs+subsysterns,x);
Thus, for a transition from state a to state b, the states which need to be de-activated are those in:

reach (blobs+subsysterns,a) - reach (blobs+subsystems,b);
An important subcase, is when the origin and the target state are the same. In that case, the
solution is to de-activate all the member states, and let the full default state activation
propagation. mechanism activate the default states.

-deactivation propagation out of subsystems : we have to be able to compare the partitioned
blobs in which the origin and the target states belong. Let us assume we have been able to
identify that the origin state a was in a partitioned blob s, and that the target state b is not a direct
or indirect member of s, i.e. if b notin reach (blobs + subsystems, s) then the
deactivation concerns all the members of: -

reach_(blobs+subsysterns,s) - reach_(blobs+subsysterns,b);

We have now to explain how the partitioned blob containing a given state is determined. This is a
variant of the above determination of blobs of.
For convenience, let us call a 'partitionnedblob' a 'system'. We have to compute syst_of, the
map which associates to a blob the system which cantains it. The set of systems is exactly
domain(subsystems). To determine to which system a given state x belongs, one has to find if
there is a blob y, in domain(subsystems), such that

x in reach (blobs+subsystems,y);
Since subsystems may be nested too, there may be more than one such element. All we need, is
to find, if there is a y in domain(subsystems), having a subsystem u such that: x in reach_(blobs,
u). Since we are searching all the subsystems of y, this is stated formally:

x in %+{reach (blobs, u) : u in subsysterns{y}}
We have to add the possibility that x itself is a subsystem, i.e. one of these u in subsystems { y}.
The full expression is therefore:

x in %+{reach_(blobs, u) with u: u in subsysterns{y}}

a Cantor Tutorial 43

We have defined a map:
syst blob := {};
for yin domain(subsystems) do

syst blob{y} := {}%+{reach (blobs, u) with u:
- - u in subsystems{y}};

end;
which associates to any system all its direct or indirect members, which are not part of another
system. The map syst_of is therefore its inverse:

syst_of := {[y,x]: [x,y] in syst_blob };

Observe that during this investigation, we have been applying the reach_ function over and over
again to well-defined graphs: blobs, blobs+subsystems, blobs_of, default. The only change
was in the source node used. We could instead compute the transitive closures of these graphs,
as was indicated in the pre-requisites example, using the func:

closure := func(g);
local X,s,T,PrevNew,New,changed;

for sin domain(g) do
X := reach (g,s);
$ augment g with edges linkings to each reachable node
g := g + {[s,u]: u in X};

end; $ end for
$ at this point g contains its transitive closure
return g;
end; $ end closure

We will therefore introduce the following closures:
Blobs:= closure (blobs);
Blobs n subs := closure (blobs+subsystems);
Blobs-of:= closure(blobs of); $ blobs of is the inverse of

- - $ blobs+subsystems
Default := closure(default); $ default is extended with

$ subsystems defaults
These closures are computed once and for all, for a given statechart. Then the various
propagation sets have very simple forms:
- -state membership propagation up the blobs.: for target state b:

Blobs of{b}
- -(full) aefault state activation propagation. : for target state b:

Default {b}
- -deactivation propagation across states : for an origin state a and a target state b:

if a/= b then
Blobs n subs {a} - Blobs n subs {b}

else -Blobs_n_subs {a} - -
end;

- -deactivation propagation out of subsystems : we introduce another map syst_of defined as
follows:

syst blob := {};
for yin domain(subsystems) do

syst_blob{y} := {} %+ {Blobs{u} with u:
u in subsystems{y}};

end;
syst of := { [y,x]: [x,y] in syst blob };

The detection test, to check if a transition from state a to state b is actually 'out of a subsystem' is
is defined(syst of(a)) and

- (syst of (a)-/= syst of (b))
and b-notin Blobs n-subs {syst of(a)}

If this expression is true, the propagation set is then
Blobs_n_subs {syst_of(a)} - Blobs_n_subs {b}

the include file of the statechart interpreter

a Cantor Tutorial 44

$
$
$
$
$
$

statechart representation
ex: a digital watch according

to D. Hare!, CACM 31, 5, 1988, pp 514-530

$, ___________________ _

$1,-----global data
$:i.------ssimul init
$:i.-----transitions: detailed prescription
$:i.------reach
$:,,.-----<closure
$1>-----naming
$:,,-----broadcast
$i,-------1perform
$ -----simul

$ global data
$ several maps to descnbe the system decomposition
subsystems := O;
blobs:={};
default := {}; $ default state in a blob
history := {}; $ record the last state the blob was in
transitions := {}; $ the event directed transition map: {[state,
[event, state, ... n, .. }

theVerb := true; $ the simulation mode:
$ verbose (by default) or not verbose

theEventQ := D; $ the broadcast event queue

$ auxiliary map for trace execution
$ give a name to each state suitable for a trace exec.
state_name := state_name?{};
$ give a name to each event suitable for a trace exec.
event_name := event_name?();
names_:={}; $ the union of event_name and state_name

$ other auxiliary maps are created at init time: simul_init:
$ states, blobs of, in state, Blobs n subs
$ Blobs, syst_6iob, syst_of, Default -

$ ____________ __,.; processing:
$ simul_nit

simul_init := func(theSystem, theFirstEvent opt verb);

$ define the whole set of states
states:= domain(blobs)+range(blobs);
blobs_of := {(y,x]: [x,y] in blobs};$ blobs inverse map
in_state := {Ix.false): x in states}; $ all states are

$inactive ,
in_state(default(watch)) := true; $ excepted 'dead'
$ the current state is {x: in_state(x) = true}

$ complete the default map by incorporating links between
$ partitionned states and default states in subsystems
for [x,y) in subsystems do

$ tfnd or define a default state
default(x} :=

default{x} with default(y)?arb(blobs{yl);
end;

$ pre-compute maps corresponding to membership relations
$ or their inverse

$ the closure of the 'contains' relation
$ for states and blobs
Blobs_n subs := closure(blobs+subsystems);
Blobs_of := closure(blobs_on;
Default := closure(default);
$ given a state, find which system it belongs to:
Blobs := closure(blobs);
$ which blobs belong to which syst?
syst blob := {};
for x7n doma1n(subsystems) do

syst_blob{x} :={I%+ {Blobs{y}: yin subsystems{xl};
end;

$ add to syst_blob the sussystems themselves
syst_blob := syst_blob+subsystems;

$ find out in which syst a blob is:
$ given a state st, it belongs to syst syst_of{x}

$ syst_o is syst_blob inverse map
syst_of := {[x,y]: (y,x] in syst_blob};

theEventQ := D; $ the broadcast event queue
names_:= state_name+event_name; $ used by naming

theVerb:=verb?theVerb;
$ start by launching the theSystem sencing it theFirstEvent
perform(theFirstEvent,theVerb); $ verbose!

end; $ end simul_init

$ ________________ blobs &
subsystems

$ as blobs are introduced, arbitrary ids are
$ assigned to them: these ids are atoms
$ created by newat.

$ The layout of the system described by a statechart
$ is captured by two maps:
$ blobs, subsystems
$ for documentation and visibility another map is essential:
$ state_name

$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

For instance if a new blob A is introduced:
A :=newat;
state_name(A) := 'A';

If A is supposed to contain a 1,a2,a3 as sub-blobs
[a1,a2,a3) := [newat,newat,newat);
state_name(a1) := 'a1';
state_name(a2) := 'a2';
state_name(a3) := 'a3';
blobs{A} := {a1,a2,a3};

this captures the membership ai in A

If however, A is decomposed into 'orthogonal'
or concurrent subsystems
capture A as Harel's 'cartesian product' a1 x a2 x a3

subsystems{A} := /a1,a2,a3};
Then a 1,a2,a3 may be further decomposed into
blobs and subsystems

$:.__ _____________ __:transitions

$ the transition map is a set of items
$ fiorig_state, event],target_state]
$ (this is the most common case)
$ fiorig_state, event],[target_state, conditionll
$ fiorig_state, event],[target_state, action_eventD
$ in these item representations,
$ target state may be one of the following:
$ an atom (this is the most common case)
$ 'an exprn strin~ defining target_state(s)'
$ ast_expm_def1nin1Ltarget_state(s)
$ when the target_state is not an atom, the eval function
$ is invoked to compute, at simulation time the value
$ of the string or ast expression. This value should be
$ either a single atom or a set of atoms representing each
$ an individual state
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

a string is used to designate a target state as the
'history'

of a given blob, i.e. the last known state
in which that blob has been seen active

[state_a, event_a), 'history(blob_m)']
represent a transition from state_a, under event_a to the
state in which blob_m was left, the last time it was active

conditions are represented by
'an expm string expressing a boolean'
ast_expm expressing a boolean

when a condition is encountered, it is evaluated
by the eval function, at simulation time. Only if the
boolean is true, the corresponding target state(s) is (are)
added to the actual transition set from the given
orig_state.

$ a priori transition is not a smap

$_-,-- ______________ main processing
functions:
$ compute the dosure of the relation state in blob so&so
$ to compute this closure, there is no diff. betw blobs
$ and subsystems

a Cantor Tutorial 45

$ compute the closure of blobs+subsystems:

$------------------reach_
reach := func(g,s);
local X,T,dN,NO;

X :=/s};
$ T = X%+{g{x}: x in X} i.e. T = X + g[X]
T := g/s} with s;
dN ·= 'r-X·
$Xi= Tiff T-X I={} iff g(X] - XI= 0 iff #dN I= 0
while #dN I= 0 do

$NO= g[T]-T
NO:= {y: u in dN,y in g{u} I y notin T};
$ achieve T = X + g[X]
X := T; $ X+dN;
T := T + NO;
$ assert T = X + g[X]
dN := NO;
$ assert dN = g(X] - X = T-X

end;
$ at this point X = X + g[X], T = X
$ the set of all non-trival nodes
$ in g reachable from the single source s
return X less s;

end;$ end reach_

$-------------------------------closure
$ computes the transitive closure of
$ the graph g
closure := func(g);
local X,s,T,PrevNew,New,changed;

for s in domain(g) do
X := reach_(g,s);

$ augment g with ~es linking s to each reachable node
g := g + {[s,u]: u in X];

end; $ end for
$ at this point g contains its transitive closure
return g;

end; $ end closure

$-------------------------------naming
$ in all the global data, atoms
$ are used to designate states, blobs, systems, events
$ invoking naming(g) allows a display of the same information
$ where atoms are replaced by strings
naming := func(g);

local gn;
if is_atom(g) then return names_(g);
elseif is_stnng(g) or is_number(g)

then return g;
elseif is_tuple(g) then return [naming(x): x in g];
elseif is_set(g) then return {naming(x): x in g};
else

end;

print! 'Vlinvalid type\n';
return g;

end; $ end naming

$ broadcast
$ the interpreter:
$ for each event, computes all the possible transitions
$ from the current state

$ simple broadcasting actions consists in:
$ storing the events in a queue expectin~ that
$ at the end of each perform-ance, the interpreter will
$ empty the queue
broadcast := func(anEvent);

theEventO := theEventO with anEvent;
return·

end; $ end broadcast

$-------------------------------perform
$ the interpreter:
$ for each event, compute all the possible transitions
$ from the current state

$ perform is a very simple interpreter:
$ -it computes the current state
$ -it computes the transitions in all the sub-systems
$ of the current state to another ste
$ perform supports the conditional events: conditions

$ are expressed as strings or ast's, which are evaluated
$ on demand, 'dynamically'

perform := func(anEvent opt verb);
local rurState, allTrans,v_state,cond;
local di, orig;
curState := {x: x in states I in_state(x)};
for x in domain(history) do

$ record history if there is something to record
di:= Blobs_n_subs {x}*curState;
if di I={} then

history(x) := di;
end·

end; '
if verb then

end;

printf 'Vlevent: ',event name(anEvent), 'VI';
print! ' current_state :";
{ ~tate_name(x): x in curState}: 5*[9] with 'VI';
pnntf '\n';

for x in curState I in state(x) do
$ enumerate alfthe transitions from the current state
allTrans := transitions{lx,anEvent)};
$ sort out all the possible cases and
$ compute accurately the set of transitions
for u in allTrans do

cond :=om;
if is_tuple(u) then

(v_state,cond] := u;
else

v_state := u;
end·
if is' string(v state) then

$ compute the state from the expression
v state:= eval(analyze(v_state)(1));

elsetf is ast(u) then
$ compute the state from the expression
v_state := eval(v_state);

end;

if is_string(cond) then
$ compute the condition from the expression

cond := eval(analyze(cond)(1));
elseif is_ast(cond) then
$ compute the condition from the expression

cond := eval(cond);
elseif is atom(cond) then
$ cond is not a condition but an action event!

broadcast(cond);
cond := true;

end;
$ update the definition of the set of
$ all simultaneaous transitions
if is om(cond) or cond then

ifls_set(v_state) then
$ this is the case when history
$ is getting 'rich'!

allTrans := (allTrans less u) +
v_state;

elseif u I= v state then
allTrans :;;;-(allTrans less u) with

v_state;
end;

elseif not cond then
allTrans := allTrans less u;

end·
end;$ end for u in allTrans
$ now the syntactically aspects of allTrans have been
$ completely processed
if #allTrans I= 0 then in_state(x) := false; end;
for v state in allTrans do

rn_state(v state) := true;
$ update all derived states
$ is x->V state is a transition
$ out of a subsystem?
if x = v state then

$ de-:activate all the members of x
$ the default states will be re-activated
for v in Blobs_n_subs {x}*curState do

in_state(v) := false;
end·

else '
orig '.=X;
$ compare syst_of(x) and syst of(v_state):
$ is this an out-going transibon?
$.an in transition satisfies:

:JGepCer a Cantor Tutorial 46

$ v_state in Blobs_n_subs /syst_of(x)}
if is_defined(syst_of(x)) and

(syst_of(x) I= syst_of(v_state))
and v state notin

BTobs_n_subs {syst_of(x)} then
$ de-activate all the sates in
$ Blobs_n_subs {syst_of(x)}
orig:= syst_of(x);
in state(orig) := false;

end;
forv in Blobs_n_subs{orig}*curState -

Blobs_n_subs {v_state}*curState do
in state(v) := false;

end:
end; '
if blobs_of{x} I= blobs_of{v_state} then

$ propagate state membership up the blobs
df := Blobs of{v_state} with v_state;
forv in df do

in_state(v) := true;
end·

end· '
if verb then

printf 'transition from : ',
state_name(x),' to ',
state_name(v_state),\n';

end·
$ is 'there a default state?
$ since default is augmented with the subsystem

$ the reachability closure contains all that is
$needed!
df := Default{v_state};
for xf in df do

in_state(xf) := true;
if verb then

printf '\lcascade to default state: ',
state_name(xf), '\n';

end·
end; '

end;$ for v state in allTrans
end; $ for X in curState
$ process broadcasted events: chain reactions are allowed
while #theEventO I= 0 do

end;

take anEvent fromb theEventO;
perform(anEvent, verb);

end; $ end perform

$-----------------------si m ul
$ simple simulation: create random events
$ and req.iests their interpretation
simul := func(n);

for i in 11 .. n) do
anEvent := arb(events);
perform(anEvent, theVerb);

end·
end; $ end simul

$
$
$
$
$
$

the include file of the digital watch specification

statechart representation
a digital watch according

to D. Harel, CACM 31, 5, 1988, pp 514-530

$:----,-_blobs and subsystems
$ ___ watch
$ alive
$ power light chime_st c_enab alarm_st main
$ cisplays up_alarm update_ stopwatch
$ cisp run
$ disprun -
$'--- ___ events
$ _____ transitions
$ _____ initializations, activation

$. ___________________ _

!include statechart.cntr

$ N.B. as blobs are introduced, arbitrary ids are
$ assigned to them: these ids are atoms
$ created by newat

$ several maps to describe the system decomposition
subsystems:={};
blobs:={};
default := {}; $ default state in a blob
history := {I; $ record the last state the blob was in
transitions := {}; $ the event directed transition map: {[state,
[event, state, ... n, .. }

$ auxiliary map for trace execution
$ give a name to each state suitable for a trace exec.
state_name := state_name?{l;
event name:= event name?{};
$ - -
$
$:---- blobs and subsystems
$ $

$

$ _________________ _

$_-,.--...,....,..~-,-,--,--,--,-,---..---,-,,---wmch
$ the waid-i is a blob made of dead and alive
watch := newat;
dead := newat;
alive := newat;
blobs\watchl :".' {dead,_alive};
defau !(watch) .= dead,

$

$

state_name(watch) := 'watch';
state_name(dead) := 'dead;
state_name(alive) := 'alive';

$ dead is not decomposed

$ alive
$,...a..,.,hv-e~is-parll___,,.,..110-ned---,,.,.1n_s_u"Tb-s-ys....,te-m-s:-------'
$ main, power, light, chime_st, alarm_st

[ma(n,_power, light, chime_st, alarm_st).
.= [newat,newat,newat,newat,newat],

state_name(main) := 'main';
state_name(power) := 'power';
state_name(light) := 1ight';
state_name(chime_st) := 'chime_st';
state_name(alarm_st) := 'alarm_st';

subsystems{alive} := {main, power, light, chime_st, alarm_st};

$ let us first deal with the 'small' subsystems

$-,---,,-----'power
[weak, ok]

:= [newat,newat);
blobsjpowerj := {weak, ok};
defau !(power) := ok;

state_name(weak) := 'weak';
state_name(ok) := 'ok';

$ light
[on,off]

:= [newat,newat);
blobsjlighij := {on, off};
defau !(light) := off;

state_name(on) := 'on';
state_name(off) := 'off';

$__,,,_.,..--.....--chime st
[c_disab, c_enabj -

:= [newat,newat);
blobs\chime_st} := {c_disab, c_enab};
defau t(chime_st) := c_disab;

state_name(c_disab) := 'c_disab';
state_name(c_enab) := 'c_enab';

$ C enab
[c·-_-r-bee-p-, qu~ie"""t] __ •

'.K.epfer a Cantor Tutorial 47

:= [newat,newat);
blobs{c_enab} := {c_beep, quieij;
$ default(c_enab) := om;

state_name(c_beep) := 'c_beep';
state_name(quiet) := 'quiet';

$~~----alarm st
[disab, enab) -

:= [newat,newat);
blobs{alarm_st} := {disab, enab};
default(alann_st) := disab;

state_name(enab) := 'enab';
state_name(disab) := 'disab';

$.,,.--,-----,---.----·main
[cisplays, beep)

:= [newat,newat];
blobs{main} := {displays, beep};
$ default(main) := om;
state_name(displays) := 'displays';
state_name(beep) := 'beep';

$~ _____ displays
[time_, date_, chime_, alarm_, up_alarm, update_, stopwatch]

:= [newat,newat,newat,newat,newat,newat,newat);
blobs{displays} := {time_, date_, chime_,

alarm_, update_, stopwatch};
default(displays) := time ;
$ as a default: h1Story is the same as default state
history(displays) := time_;

state_name(time_J := 'time_';
state_name(date...) := 'date_';
state_name(chime_J := 'chime_';
state_name(alarm_J := 'alarm_';
state_name(up_alarm) := 'up_alann';
state_name(update...) := 'update_';
state_name(stopwatch) := 'stopwatch';

$~~~--.--.-up alarm
[min_, t_min_, hour] -

:= [newat,newat,newat);
blobs{up alarm} := {min_, t_min_, hour_J;
$ defauft(up_alarm) := om;

state_name(min~ := 'min_';
state_name(t_m,n_J := 't_min_';
state_name(hour_J := 'hour_';

$~~---update_
$ the following states are 'shared': date, min_, t_min_, hour_
$ with other blobs
I day_, secJ

:= [newat, newatj; .
blobs{update_J := {min_, sec_, t_m1n_,

hour_, date_, day_J;
$ default(update...) := om;

state_name(sec_J := 'sec_';
state_name(day_J := 'day_';

$~ _____ s.topwatch
[disp_run, zero)

:= [newat,newat);
blobs{stopwatch} := {disp_run, zero};
default(stopwatch) := zero;
$ as a default: history is the same as default state
history(stopwatch) := zero;

state_name(disp_run) := 'disp_run';
state_name(zero) := 'zero';

$'---,,--~------~-----'~-run
$ disp and run are disp_run subsystems
[disp,run]

:= [newat,newat);
subsystems{disp_run} := {disp,run);

state_name(disp) := 'disp';
state_name(run) := 'run';

$_'T""""1.------cf1Sp
[reg, lap]

:= [newat,newat];

blobs{disp} := {reg, lap};
$ default(disp) := om;

state_name(reg) := 'reg';
state_name(lap) := 'lap';

$.-----. --~run
[on_r, off_r]

:= [newat,newat];
blobs{runl := {o~_r, o~_rj;
$ defau t(run) .= om,

state_name(on_r) := 'on_r';
state_name(off_r) := 'off_r';

$;..._~~--------~-----'events
$ consider events as an enumerated set

$ battery events: in-sert, dy-ing, rm (remove), wk (weakening)
[bt_in, bt_dy, bt_rm, bt_wk]

:= (newat,newat,newat,newat];

$ a,b,c,d: button events : the pressing event
$ b up = de-pressing (releasing) button b
[a, b, b_up, c, d)

:= [newat,newat,newat,newat,newat];

$ two_min 2 min elapsed time since a button was pressed
$ I hits hr internal time reaches chime-alarm time
$ 6eep_:-r1 beep return, i.e. return from beep state
$ (occurs at most 2 min after entering beep state)
$ beep_st occurs 2 seconds after entering c_beep state
$ clh clear history
[two_min, t_hits_hr, beep_rt, beep_st]

:= [newat,newat,newat,newat);

$ all the events:
events := { bt in, bt_dy, bt_rm, bt_wk,

a,li, b up, c, d,
two_m"Tn, t_hits_hr, beep_rt, beep_st
};

event_name := { [bt_in,'bt_in1, [bt_dy,'bt_dy1,
bt_rm,'bt rm1, [bt wk,'bt_wk1,
a,'a1,[b,'b'l, [b_up,'6_up'),
c,'c'], (d,'d'J,
two_min,'two_min1, [t_hits_hr,'t_hits hr1,
beep_rt,'beep_rt1, (beep_st,'beep_stf

$. ______________ ~transitions

$ a priori transition is not a smap

transitions([dead,bt_in)) := alive;
transitions(~alive,bt_rm]) := [dead,clh];$ clh: clear history
transitions(weak,bt dy)) := dead;
transitions(ok,bt_wk)) := weak;
transitions(~off,b]) := on;
transitions(on,b_up)) := off;
transitions(c_disab,d]) := [quiet,'in_state(chime_J1;
transitions(lc enab,d)) := [c disab,'ln_state(chime_J1;
transitions(c]leep,beep_si!) := quiet;
transitions(quiet,t_hits_hr]) := c_beep;
transitions(disab,d]) := [enab,'in_state(alarm_J1;
transitions(enab,d)) := [disab,'in_state(alarm...)');
transitions(displays,two_min]) :=

[displays,'not in_state(stopwatch)'];
transitions([displays,t_hits_hr]) := [beep,'in_state(enab)1;
transitions([beep,beep_rt)) := 'history(displays)';
transitions([chime_,a)) := 'history(stopwatch)';
transitions(time_,a]) := alarm_;
transitions(time_,c]) := sec_;
transitions([time_,d)) := date_;

transitions{alarm_J := {[c,minj, [a,chimej};

transitions(falarm_,cj) := min_;
transitions(alarm_,a) := chime_;
transitions({up_alarm,bl) := alarm ;
transitions(date_,c]) := day_,'in_state(update...)1;
transitions(date_,d)) := time_;
transitions(lsec_,c]) := min ;
transitions(min ,cl) := t mTn_;
transitions(t_mm_,c]) :=hour_;

a Cantor Tutorial 48

transitions{[hour-r:!c]} := {[date_,'ln_state(update_)1,
talarm_,'in_state(up_alarm)')};

transitions(on_r,b) := off_r;
transitions([day_,cfj) := time_;

~-
11
,-.va-.ti~on-------------'inilializalions,

$ initialization:
transitions(off_r,b) := on_r;

transitions{[zero,b]} := {on_r, reg};

transitions{[reg,d]} := {(lap,'in_state(on_r)1,
[zero,'in_state(off_r)1};

transitions(Pap,d]) := 1'9Q;
transitions([stopwatch,a]) := time_;
transitions([update_,b]) := time_;

Exercises

$ start by launching the watch:

$ theRrstevent := bt in;
$ theSystem := watcli;
$ verb := true; $ be verbose

simul_init(watch,bt_in,true);

simul(10);

- is the process of actually changing the internal time settings described in the fig. 3 chart? What
about the alann time settings?
- one should be able to 'zoom in' and 'zoom-out' in a statecharts. Zooming out of a specific blob
means neglecting the internal structure of that blob.

For instance, zooming out of 'alive' the
statechart in fig. 3 may be represented
by the chart in the opposite column.
Zooming in 'alive' in this chart will
restitute only one level. Each Zoom
operation modifies the reference data
structure for the blobs, the subsystems,
and the transitions. Define the zoom
operations.

- the Entity Relationship Diagrams (ERD) have been described in an exercise concerning data
models (see the exercises following a data table-revisited-2). These diagrams are used to
define actual data organizations. By processing one of these diagrams one should be able to
suggest (automatically) possible data organizations.

analysing and processing the diagram in
the opposite column could yield a data
organization using the following generic
terms:

A: { ... , [ida, val], ... }
B: { ... , [idb, [val1,val2]], ... }
R: { ... , [ida,idb], ... }

representing by maps the data model

Define a set-oriented representation of ERDs (e.g. by analogy to our blobs, subsystems and
transitions maps) which could be used for ERD diagram analysis.
- could one represent ERDs by statecharts? (Hint: forget about the interpretation of statecharts as
finite state automata representation)
- the Data Flow Diagrams (DFD) are commonly used in the user requirement definition
documents. DFDs are based upon the following iconic representations:

extrn
enti
label

a process

a Cantor Tutorial

id I a data store

49

this represents an agent
outside the scope of the
model, usually an input
source or the target of
an outgoing information
stream

this represents usually a
computing or
engineering process

This represents a file, a
database, or a part of it

Directed arrows link these items. They are labelled with a definition of a data stream. The
following is a typical (though extremely simple) DFD: •

claims for

§ insurance
d claim r--:--:--,~r.::e.::,:co:::,:r~d~in:.:.:g~..,►r::;--r---:----::--:--:--

n ------~ 2 I received claims
claims being

refund processed

claim reject. letter

Define a representation of the DFD, and an interpreter. Usually a DFD presentation of a system
is made of several diagrams providing more and more details on the processes. Unlike
statecharts these diagrams are not nested: the details of a process with id i is given in a diagram
labelled i, and involves new processes with distinc ids. The uniqueness of the identification is
across all diagrams for a given system.
- In a realistic use of diagrams like DFD, labelled arrows and data stores are also represented by
detailed diagrams, using a data representation like ERD. Draw a simple set of DFD and ERD
diagrams for providing a better understanding of the insurance claim recovery process. Identify
the verifications that the computer system processing these diagrams should make to insure their
consistency.
- draw a statechart to describe the behaviour of an automated teller machine
- draw a (set of-) statechart(s) describing the workings of a meteorological captor. This
automated meteo station is recording temperature every minute, atmospheric pressure every 3
minutes, wind speed every 30 seconds in a database, and unloading via a teletransmission
network, every 24 hours, but also upon request all the accumulated data.
- modify the above meteo specification so that the meteo station displays on distinct digital
displays the average temperature, atmospheric pressure and wind speed over the last 10 minutes
as well as the last recorded values.
- transform the data for the digital watch into n-ary relations, for the relational calculus: in this
form are they suitable for interpreting the statechart? provide a ERD representation for the digital
watch data, suitable for recording this data in a standard (relational?) database.
- a text processing system is a simple real-time system, consisting of a keyboard, a pointing
device (e.g. a mouse) a display window. Represent by a statechart the main functions: adding
text from the keyboard, selecting text, copy-pasting, deleting, scrolling.

a Cantor Tutorial so

