
Digital Eauipment Corporation COMPANY CONFIDENTIAL Paqe I

Title: VAX-II Software Engineering Manual -- Rev 3

Specification Status: draft

Architectural Status: under ECO control

File: SEPRR3.RNO

PDM I: not used

Date: 19-Feb-77

Superseded Specs: none

Author(s): F. Bernaby, P. Conklin, S. Gault, T. Hastings, P. Marks,
R. Murray, I. Nassi, M. Spier

Typist: P. Conklin

Reviewer(s): R. Brender, D. Cutler, R. Gourd, T. Hastings, I. Nassi,
S. Poulsen, D. Tolman

Abstract: This manual presents the VAX-II programming conventions and
software engineerinq practices as developed for, and
adopted by the Central Engineerinq Group. These
conventions and practices are standard within Central
Engineering; we hope that they be used by other corporate
groups as well. Designed to be the ·programmer's helper·,
the manual contains the coding conventions as well as
practical data of technical, procedural, administrative and
conceptual nature that would be useful to the .90ftware
engineer.

Revision History:

Rev I
Rev I
Rev 2
Rev 3

Description
Original
Revised from Review
After 6 months experience

Author
M. Spier
P. Marks
P. Conklin

Revised Date
14-Apr-76
21-Jun-76
19-Feb-77

CONTENTS 19-Feb-77 -- Rev 3 Paqe 990
Change History

Rev 2 to Rev 3:

1. Convert to standard RUNOFF manual chapter format.

2. Remove unwritten sections.

3. Move introductory note to preface.

4. Remove request for review from preface.

5. Note relationship to BLISS conventions.

6. Split chapter 6 into 6 and 7. Add chapters 8-11,
especially BLISS. Add the BLISS transportability guidelines.
Add Chapter 15 for diagnostics.

[End of SEPRR3.RNO]

VAX - 11

SOFTWARE BNGINEERIRG MANUAL

19 FEBRUARY 1977

Revision 3

+---+

DO NOT DUPLICATB

For additional copies, contact:
~-

Ike Nassi'
ML 21-4/E20

+---+

Digital Equipment Corporation, Maynard, Massachusetts

Revision 1,
Revision 2,
Revision 3,

April, 1976
June, 1976
Febr uary, 1977

The information in this document is subject to change
without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any
errors that may appear in this document.

This draft standard does not describe any proqram or
product which is currently available from Diqital
Eauipment Corporation. Nor does Digital Equipment
Corporation commit to implement this standard in any
program or product. Diqital Equipment Corporation
makes no commitment that this document accurately
describes any product it might ever make.

Digital Equipment Corporation's software is furnished
under a license and may only be used or copied in
accordance with the terms of such license.

No responsibility is assumed for the use or reliability
of software on equipment that is not supplied by
Digital or its affiliated companies.

Copyriqht (c) 1976, 1977 by Digital Equipment Corporation

The following are trademarks of Digital Equipment
Corporation:

COP
COMPUTER LAB
COMSYST
COMTEX
DDT
DEC
DECCOMM
DECUS
DECsystem-10
DECsystem-20
DEC tape

DIBOL
DIGITAL
ONC
EDGRIN
EDUSYSTEM
FLIP CHIP
FOCAL
GLC-8
IDAC
IDACS
INDAC

KAIO
KIlO
LAB-8
LAB-K
MASS BUS
OMNIBUS
05/8
PDP
PHA
PS/8
QUICK POINT

RAD-8
RSTS
RSX
RT-ll
RTM
SABR
TYPESET-8
TYPESET-lO
TYPESET-II
UNIBUS

PREFACE

Over the years, much ado has been made about codinq standards Qud
conventions. Everyone believed that conventions are good, so long as
they are not the other QUY's conventions! Committees were formed, and
reformed, and left to die for lack of consensus. We repeatedly
refused to follow conventions that we deemed Rimperfect R and
conseauently we followed none at all.

A qreat deal of this has been foolish nit-picking on the part of our
vast multitude of entrepreneurs. The time has come to stop the
foolishness and to recognize the reasons for which code uniformity is
mandated.

Standards, conventions and uniform practices all aid us in producing
reasonably professional, maintainable products of consistent quality.
Anv individual can always have a private opinion as to what is Rqood R,
or "rightR, or "efficient R or "aesthetic R• Any collection of
individuals invariably comes u? with as many divergent o?inions on the
subject as there are individuals. We should all be sufficiently
mature and sufficiently professional to be willing to compromise with
both our eqos and our fellow peers: to compromise just enough to
accept objectively a set of reasonable conventions that will establish
the uniformity a~d consistency of all of our software products.

The Methodology qroup has compiled the conventions and practices
presented in this manual. They apply to all VAX-II programming. They
are based on existing PDP-II coding practices. This manual was
reviewed by the Coding Conventions Committee consisting of Peter
Conklin, Dave Cutler, Roger Gourd, Steve Poulsen and Mike Spier.
These conventions have been broadened to the BLISS environment by
review with Ron Brender, Rich Grove, and Dave Tolman.
Transportability issues have been addressed in concert with Peter
Marks and Ike Nassi.

We want these conventions to be adopted willingly, not forced upon
people through arbitrary managerial edict. This is best accomplished
by having you formulate to yourself exactly WHY you find some
convention to be objectionable: then try and propose --to yourself-
an alternate one, and reflect on whether or not the new one is really
that much superior, and why. All that we ask of you is to convince
yourself that these conventions are no less reasonable than any other
set of conventions. Then, we hope, you will be willing to show
sufficient professional maturity to adopt and follow these
conventions.

19-FEB-77 -- Rev 3 Page 4

This document is the result of integrating and reorqanizing the BLISS
Software Engineering Manual and the VAX A8~~.bler Softwarp. Enqineerinq
Mdnual published during the summer of 1976. Rew chapters have been
incorporated, covering transportability, naming conventions, and
external interface specifications. We 801ieit construetive criticism
and recommendations for enhancement. In particular, the last chapter
contains a list of topics we would like to address in future editions.
Please feel free to contribute toward these topics. This is
completely a home grown document. If you feel this i8 a desirable way
to proceed, you should feel a responsibility to review this carefully
and to contribute material you feel appropriate. The value of the
document depends directly on the quality and applicability of the
submitted material.

CONTENTS

Page

CHAPTER 1 INTRODOCTION

CHAPTER 2 HOW TO USE THIS MANUAL

CHAPTER 3 METHODOLOGICAL POLICY

CHAPTER 4 PROGRAM STRUCTURE

4.1 THE MODULE PREFACE . · · · · • · • • · · 4-1
4.2 THE MODOLE'S DECLARATIVE PART • • · • • · • · · 4-2
4.3 THE NODULE'S ACTUAL CODB · 4-3 · • · • • · · · • · · 4.3.1 The ROUTINE PREPACE • • • · • · · · • · · 4-3
4.3.2 The Routine's Declarative Part • · · • • • • 4-3
4.3.3 The Routine's Code · • · • • · · · · • 4-3
4.4 MODULE TBRRIRATION • · • • · · · · • • · • • • 4-4
4.5 ANNOTATED SAMPLE LAYOUTS • · · · • · • · · 4-4
4.6 SANPLE LAYOUT OP THE MODULE PRIPACE · • · · · · 4-5
4.6.1 Bxa.ple Of The A •••• bler Module Preface · • • 4-5
4.6.2 Example Of The BLISS Module Preface • · · • · 4-6
4.7 SAMPLE LAYOUT OF THE MODOLE DECLARATIONS · · · 4-7
4.7.1 Example Of The A.s •• bler Nodule Declarations 4-7
4.7.2 Exa.ple Of The BLISS Module Declarations • · .-8
4.8 SAMPLE LAYOUT OP THE ROUTINE PREPACE · • • • · 4-9
4.8.1 Example Of The Assembler Routine Preface • · 4-9
4.8.2 Example Of The BLISS Routine Preface · · 4-10

CRAPTER S TEMPLATB

5.1 MAKING A NEW ASSEMBLY LANGUAGE MODULE · • · · · 5-1
5.2 MAKING A NEW BASIC LANGUAGE MODULE · · 5-7
5.3 MAKING A NEW BLISS LANGUAGE MODULE · · · · · · 5-7
5.4 MAKING A NEW COBOL LANGUAGE MODULE • · · · · · 5-13
5.5 MAKING A NEW FORTRAN LANGUAGE MODULE · · · · · 5-13

CONTENTS 19-Feb-77 -- Rev 3 Page 6

CHAPTER 6 COMMENTING CONVENTIONS

6.1 "BSTRACT · · · · 6-2
6.2 AUTHOR · · · · · 6-2
6.3 CALLING SEQUENCE · 6-2
6.4 COMMENT · · · · · · · · · · · 6-3
6.5 COMMENT: BLOCK · · · · · · · · · · · 6-4
6.6 COMMENT: DOCUMENTING · · 6-5
6.7 COMMENT: GROUP · 6-6
6.8 COMMENT: LINE · · · · · · · · · · · · 6-7
6.9 COMMENT: MAINTENANCE · · · · · · · 6-9
6.10 COMPLETION CODES · · · · · · · 6-11
6.11 CONFIGURATION STATEMENT · · · 6-12
6.12 ENVIRONMENT STATEMENT · · · · · · 6-13
6.13 EXCEPTIONS · · · · · · · · · · · · 6-13
6.14 FACILITY STATEMENT · · · · · · 6-13
6.15 FUNCTIONAL DESCRIPTION · 6-14
6.16 FUNCTION VALUE · · · · · · · · · · · 6-16
6.17 HISTORY: MODIFICATION · · · · · 6-17
6.18 IMPLICIT INPUTS AND OUTPUTS · · • 6-18
6.19 LEGAL NOTICES · · · · · · · · · · 6-19
6.20 MODULE · · · · · · · · · · · 6-20
6.21 MODULE: DATA SEGMENT 6-20
6.22 MODULE: FILE NAME · · · · · · 6-21
6.23 MODULE: PREFACE · · · · · · · · · · · · 6-21
6.24 PARAMETERS: FORMAL • · · · · · 6-22
6.25 PARAMETERS: INPUT AND OUTPUT · · · · 6-23
6.26 PROGRAM · · · · · · · · · · 6-24
6.27 ROUTINE: PREFACE · · · · · · · · · · · 6-25
6.28 SIDE EFFECTS · · · · · · · · · 6-26
6.29 SIGNALS · · · · · · · · · · · · · · 6-27
6.30 VERSION NUMBER · · · · · · · · · 6-28

CHAPTER 7 ASSEMBLER FORMATTING AND USAGE

7.1 CALL INSTRUCTIONS · · · · · · · · · · · 7-2
7.2 CASE INSTRUCTIONS · · · · · · · · · · · · · 7-2
7.3 CONDITIONAL ASSEMBLY · · · · · · · ~ · · · 7-3
7.4 CONDITION HANDLER · · · · · · • · 7-4
7.5 DECLARATION: EQUATED SYMBOLS · · · · · · · · · 7-5
7.6 DECLARATION: VARIABLES · · · · · · 7-6
7.7 DESCRIPTOR · · · · · · 7-6
7.8 EXPRESSIONS · · · · · · · · · · · · · · · · 7-7
7.9 $FORMAL MACRO · · · · · · · · · · · · 7-7
7.10 .IDENT STATEMENT · · · · · · · · · · 7-8
7.11 INCLUDE FILES · · · · · · · · · · · · 7-9
7.12 INTERLOCKED INSTRUCTIONS · · · · · · 7-9
7.13 L"BEL . · · · · · 7-10
7.14 LABEL: GLOBAL · · · · · · · · · · · 7-11
7.15 LABEL: LOCAL · · 7-12
7.16 LIBRARIES · · · · · · · · 7-14
7.17 LISTING CONTROL · · · · · · 7-14
7.18 $LOCAL MACRO · · · · · · · · · · · 7-14

7.19 LSB: .ENABL/.DSABL · · · · · · · · · · • · 7-14
7.20 MACROS · · · · · · · · · · · · 7-14
7.21 SOWN MACRO · · · · · · · · · · · · · · 7-14
7.22 PARAMETERS: FORMAL · · · · · · · · · · · · 7-15
7.23 PROCEDURE · · · · · 7-17
7.24 PROCEDURE: ENTRY · · · · 7-19
7.25 .PSECT STATEMENT · · · · · 7-20
7.26 QUEUE INSTRUCTIONS · · · · · · · · 7-20
7.27 RELATIVE ADDRESSING · · · · · · · 7-21
7.28 ROUTINE: BODY · · · · · · · · · · 7-22
7.29 ROUTINE: ENTRY: MULTIPLE · 7-23
7.30 ROUTINE: NON-STANDARD · · · 7-24
7.31 ROUTINE: ORDER · · · · · · · · · · · · · · 7-25
7.32 .SBTTL STATEMENT · · · · · • · 7-25
7.33 STATEMENT · · · · · · · · · · · · · • · · · · · 7-26
7.34 STATEMENT: BLOCK · · · · · 7-28
7.35 STRING INSTRUCTIONS · · · · • · · • · · 7-28
7.36 STRUCTURES · · · • · · · 7-29
7.37 SYMBOL · · · · · · · · · · 7-30
7.38 SYMBOL: EXTERNAL · · · · · 7-31
7.39 SYMBOL: GLOBAL · · · · · · · · · · · · 7-31
7.40 SYNCHRONIZATION: PROCESS · · · · · · · 7-31
7.41 .TITLE STATEMENT · · · · · · 7-31
7.42 UNWIND · · · · · · · · · · · · · · · · · 7-32
7.43 .VALIDATE DECLARATION · · · · 7-32
7.44 VARIABLES: STACK LOCAL · · · · 7-33
7.45 .WEAK DECLARATION · · · · · · · · · · · · · 7-34

CHAPTER 8 BASIC FORMATTING AND USAGE

CHAPTER 9 BLISS FORMATING AND USAGE

9.1 DECLARATION · · · · · · · · · · · 9-2
9.2 DECLARATION: FORMAT · · · · · · · • · · · · · · 9-2
9.3 DECLARATION: FORWARD ROUTINE · · · · · · · 9-3
9.4 DECLARATION: MACRO · · · · · .. · · 9-3
9.5 DECLARATION: ORDER · • · · · · · · · · 9-4
9.6 EXPRESSION · · · · · • • • · · · · · · • • · · 9-5
9.7 EXPRESSION: ASSIGNMENT · · • · · · · · · · · · 9-5
9.8 EXPRESSION: CASE · · • · · · · · · · · · · 9-6
9.9 EXPRESSION: BLOCK · · · · · · · · · · · 9-7
9.10 EXPRESSION: FORMAT · • · ~ • · · · · · 9-8
9.11 EXPRESSION: IF/THEN/ELSE · · · · · 9-9
9.12 EXPRESSION: INCR/DECR · · · · · · · 9-10
9.13 EXPRESSION: SELECT · · · · · · · · · · · · · · 9-11
9.14 EXPRESSION: WHILE/UNTIL/DO • · · · · · · · 9-12
9.15 IDENT MODULE SWITCH · · · · · · · · 9-13
9.16 LABELS · · · · · · · · · · · · · 9-13
9.17 MODULE: SWITCHES · · · · · · · · · · · · · 9-13
9.18 NAME . · · · · · · · · · · · · · · · 9-15
9.19 REQUIRE FILES · · · · · · · · · · · 9-16

CONTENTS 19-Feb-77 -- Rev 3 Page 8

9.20
9.21
9.22
9.23
9.24
9.25

CHAPTER 10

CHAPTER 11

CHAPTER 12

12.1
12.2
12.3

CHAPTER 13

13.1
13.2
13.2.1
13.2.2
13.2.3
13.2.4
13.2.5

CHAPTER 14

14.1
14.1.1
14.1..2
14. ;!
14.2.1
14.2.2
14.2.3
14.]
14.3.1
14.3.2
14.3.2.1
14.3.3
14.3.4
14.3.5
14.3.6
14.3.7
14.4
14.4.1

ROUTINE • • • •
ROUTINE: FORMAT ••
ROUTINE: NAME ••••••••••
ROUTINE: ORDER
STRUCTURE: DECLARATION

.

• 9-17
• ••• 9-17

• 9-17
•••••• 9-17

STRuCTURE: BLOCK ••••••••••
9-18
9-19

COBOL FORMATTING AND USAGE

FORTRAN FORMATTING AND USAGE

NAMING CONVENTIONS

PUBLIC SYMBOL PATTERNS
OBJECT DATA TYPES • • •
FACILITY PREFIX TABLE • •

• • • • • 12-2
• • 12-6 • • • • • 12-7

FUNCTIONAL AND INTERFACE SPECIFICATIONS

ROUTINE INTERFACE TYPES • • • • • • • •
NOTATION FOR DESCRIBING PROCEDURE ARGUMENTS •

• 13-2
• 13-4

Procedure Parameter Qualifiers •••
Optional Arguments And Default Values •
Repeated Arguments
Examples • • • • • • • • • • • • •
Summary Chart Of Notation • • • •

BLISS TRANSPORTABILITY GUIDLINES

• 13-4
• • • 13-8

• 13-8
• 13-9

• • 13-10

INTRODUCTION •••
Purpose And Goals •

. • • • • • . • • • . 14-2
• • 14-2

Organization • • • • • • • • • • 14-3
• • • • • • • • 14~4 GENERAL STRATEGIES

Introduction
Isolation • •
Simplicity • • •

• • • • • . • . • 14-4 . . . • • • • • 14-4
. . • • • • . • . . 14-5

TOOLS • • • • • • • • • • • • • • • • 14-6
Literals • • • • •••• 14-6
Predeclared Literals • • • • • • • • • • 14-6

User Defined Literals - • • • • • 14-7
MACROS •• • • • • • • • • • • • 14-8
Module Swi tches . • • • • • •• 14-9
Reserved Names •••• • • • • • • • • • 14-11
REQUIRE Files • • • • • • • • • • • 14-12
ROUTINES ••••••••••• • • • • 14-13

TECHNIQUES •••••••• 14-14
Data • • • • • • • • • • • • 14-15

14.4.1.1
14.4.1.2
14.4.1.3
14.4.2
14.4.2.1
14.4.2.2
14.4.2.3
14.4.2.4
14.4.3
14.4.3.1
14.4.3.2
14.4.3.3
14.4.4
14.4.4.1
14.4.4.2
14.4.4.3
14.4.4.4
14.4.4.5
14.4.4.6
14.4.5
14.4.5.1
14.4.5.2
14.4.5.3
14.4.5.4
14.4.5.5
14.4.5.6

CHAPTER 15

15.1
15.2
15.2.1
15.2.2
15.2.3
15.2.4
15.2.5
15.2.6
15.2.7
15.2.8
15.2.9
15.2.10
15.2.11
15.2.12
15.2.13
15.2.14
15.2.15
15.3
15.4

APPENDIX A

Introduction
Problem Genesis - ; ; • . . •
Transportable Declarations - ••• •

Data: Addresses And Address Calculations

• 14-15

• 14-16
14-18

Introduction • • • • • • • • • • • • • • • 14-18
~ddresses And Address Calculations - •.
Relational Oprs And Control Expressions -
BLISS-IO Addr~ Versus BLISS-36 Addr. -

· 14-18
14-20
14-21

Data: Character Seauences ..•. · 14-22
Introduction .•.••••••.
Usaqe As Numeric Values - •..
Usaqe As Character Strinqs -

PLITs And Initialization ••..
Introduction • . • • • • • •
PLITs In General - • • • .
Scalar PLIT Items -
String Literal PLIT Items -
An Example Of Initialization - •
Initializing Packed Data -

Structures And Field Selectors
Introduction

· 14-22
· 14-23
• 14-24

· • 14-25
. • • • . 14-25

• 14-25
..• 14·-25

14-26
· . 14-29
· . 14-33

• 14-39
· 14-39

Structures •••••.• 14-39
FLEX VECTOR • • • • . • • • •
Field Selectors -
GEN VECTOR
Summary • • .

DIAGNOSTIC CONVENTIONS

INTRODUCTION • • •
DIAGNOSTIC SECTIONS • •

· 14-40
14-43
14-44

..• 14-47

15-1
• • 15-2

Program Header Section 15-3
Program Equates(declarations) 15-4
Proqram Data . . • • • • • • • 15-5
Program Text • • • . . . 15-6
Program Error Report • • • . . • • . . • 15-7
Hardware Ptable • • •• .••.. 15-8
Software Ptable • • • 15-8
Dispatch Table 15-9
Report Code • . . . • • . . 15-9
Intialize Code • • • • • . . • . . . • 15-10
Cleanup Code • . • • • • . • . . • 15-10
Program Subroutines 15-11
Hardware Test . • • • • • • . • . •. .• 15-13
Hardware Parameter Code ..•. 15-16
Software Parameter Code. 15-16

SYMBOL CONVENTIONS . 15-17
MACRO EXPANSION CONVENTIONS ..•...•..• 15-17

ASSEMBLER SAMPLE

CONTENTS 19-Feb-77 -- Rev 3 Paqe 10

Ar'?ENCIX B 9LISS SAMPLE

COMMON BLISS SAMPLE

;"E.nd of Prefix]

Digital Equipment Corporation COMPANY CONFIDENTIAL Page I

Title: VAX-II Software Engineering Introduction -- Rev 3

Specification Status: draft

Architectural Status: under ECO control

File: SEIR3.RNO

PDM #: not used

Date: 23-Feb-77

Superseded Specs: none

Author: P. Conklin, P. Marks, M. Spier

Typist: P. Conklin

Reviewer(s): R. Brender, D. Cutler, R. Gourd, T. Hastings, I. Nassi,
S. Poulsen, D. Tolman

Abstract: The introduction gives a chapter by chapter overview of the
manual and how it is organized.

Revision History:

Rev #
Rev I
Rev 2
Rev 3

Description
Original
Revised from Review
After 6 months experience

Author
M. Spier
P. Marks
P. Conklin

Revised Date
l4-Apr-76
2l-Jun-76
23-Feb-77

Introduction 23-Feb-77 -- Rev 3 Page 1-990
Change Hisrory

Rev 2 to Rev 3:

1. Change to be the general contents and guide to the chapt~~s.

2. Add Chapter 7.

3. Add Chapter 8.

4. Add purpose of manual.

5. Split chapter 6 into 6 through 11.

6. Add chapters 14 and 15.

7. Collect loose ends as last chapter (. 99).

[End of SElR3.RNO]

CHAPTER I

INTRODUCTION

23-Feb-77 -- Rev 3

This manual is concerned with software engineering practices in the
VAX-II environment. It does not discuss or define the differences
between VAX-II and other environments. Designed to be the
"programmer's helper", the manual contains the coding conventions as
well as practical data of technical, procedural, administrative and
conceptual nature that would be useful to the software engineer.

This manual has two purposes:

o to provide the Software Engineer with information not
normally found in language reference manuals such as usage
notes and symbol construction rules.

o to present recommended standards, conventions, and practices
such as commenting, formatting, and documentation.

Conventions, standards and practices can assure good, professional,
maintainable products of consistent qUality. They need not encroach
on the programmer's "right" to be creative in his or her' expression of
a program.

Chapter I is the introduction and gives a guide to the manual's
organization. It includes a chapter by chapter overview.

Chapter 2 tells how to use this manual. It tells how to find the
exact information needed. It also gives the notations used in the
manual.

Chapter 3 is the methodological policy statements. These are the
policies which lead to the specifics of the format. They also outline
the basic structure of programs into modules. The policy statements
include the goals to be attained by following them. These policies
include the choice of language, the layout of the source text, the

23-Feb-77 -- Rev 3 Page 1-2

separation into modules, and the sharing of code.

Chapter 4 is a program structure
module's textual elements, and
program. This pulls together in
later in chap~er 6.

overview. It lists the source
gives examples of the parts of the

one place the details documented

Chapter 5 gives the standard module template files and the
instructioI.3 for using them. The standard template contains all of
the standard boilerplate as a convenience to save excessive retyping.

Chapter 6 details the commenting conventions. These are consistent
across all source languages. The entries are arranged alphabetically
for ease of reference. There is extensive cross-referencing to aid
retrieval. For each item, it gives the background and the rules, and
then gives templates and examples.

Chapters 7 through 11 give usage and formatting conventions for each
of our programming languages. The languages covered are assembler,
BASIC, BLISS, COBOL, and Fortran. Although there is occasional
redundancy between these chapters, we felt it better to minimize
retrieval difficulty at the expense of some duplication. The chapters
are layed out in the same style as Chapter 6. When a topic deserves
more than a page to describe, an outline is given here and a cross
reference is made to a fuller presentation in some other chapter.

Chapter 12 is the naming conventions. These include the formation of
symbols reserved to Digital and the list of facility prefixes.

Chapter 13 gives details on forming external and interface
documentation~ In particular, it includes details on the notation for
specifying procedure arguments.

Chapter 14 contains guidelines for the transportation of BLISS
programs across architectures.

Chapter 15 contains additional information and guidelines for writing
diagnostics programs.

The last chapter is a collection of loose ends and future sections.

The appendices give full sample programs written to this standard.

[End of Chapter 1]

Digital Equipment Corporation COMPANY CONFIDENTIAL Page I

Title: VAX-II Software Engineering How to Use -- Rev 3

Specification Status: draft

Architectural Status: under ECO control

File: SE2R3.RNO

PDM i: not used

Date: 26-Feb-77

Superseded Specs: none

Author: P. Conklin, P. Marks, M. Spier

Typist: P. Conklin

Reviewer{s): R. Brender, D. Cutler, R. Gourd, T. Hastings, I. Nassi,
S. Poulsen, D. Tolman

Abstract: Chapter 2 gives a guide to the use of the manual and gives
its notations. It suggests ways of looking up information
in it.

Revision History:

Rev •
Rev 1
Rev 2
Rev 3

Description
Original
Revised from Review
After 6 months experience

Author
M. Spier
P. Marks
P. Conklin

Revised Date
l4-Apr-76
2l-Jun-76
26~Feb-77

How to Use this Manual 26-Feb-77 -- Rev 3 Page 2-990
Change History

Rev 2 to Rev 3:

1 . Replace usage cross reference notation.

2. Note split of commenting and usage chapters.

[End of SE2R3.RN01

CHAPTER 2

HOW TO USE THIS MANUAL

26-Feb-77 -- Rev 3

This manual assumes familiarity with the VAX-II languages. Its
purpose is to serve as a guide to the precise use to which certain
language features may be put.

The introduction (chapter 1) indicates the chapters of the manual,
explaining what each chapter contains. The sts table of contents
lists individual sections within the chapters. The index is organized
by keywords (e.g., COMMENT, ROUTINE, STATEMENT, etc.)

Suppose that you were told that your program needs better comments.
You should typically look up the concept under "C" in the chapter on
commenting. Similarly, if you were told that your use age or
formatting of some source statement was poor, you could look it up
under the statement1s name 1n the chapter on formatting and usage for
your language.

This will enable you immediately to retrieve the information required,
and have the exact amount of information that is pertinent to your
immediate needs. You may then get additional information about the
keyworded item in the other chapters. The important point is that
such additional information is not confused with the information
needed for some specific reason. The manual is deliberately not:
organized for front- to back-cover sequential reading.

Keyworded data is cross referenced. The rules pertaining to keyword
"A" may require knowledge or use.qf keywords "B" and "C".

o Knowledge of "B" and "C": a "SEE ALSO" pointer indicate~ the
related item{s) which you should also understand.

o Use of "B" or "C": the first occurrence of "B"
within "A" is prefixed with the word "see"
reference pointer to indicate the possible need
those keywords in turn.

and of "C"
serving as a

to consult

How to Use this Manual 26-Feb-77 -- Rev 3 Page 2-2

There may be variants of a single keyworded concept. For examplE
LABEL and LOCAL LABEL. In this case, the keywords are ordered by the
main concept (e.g., LABEL), and any variant is to be retrieved by
suffixing that keyword with the qualifying key word. We use the colon
~:" as a qualification delimiter within the manual (e.g., LABEL:
LOCAL).

Finally, whenever this manual is reissued, all changes relative to the
immediately preceding version of the manual will be indicated by means
of a left margin change bar, as illustrated to the left of this entire
paragraph.

[End of Chapter 2]

Digital Equipment Corporation COMPANY CONFIDENTIAL

Title: VAX-II Software Engineering Policy -- Rev 3

Specification Status: draft

Architectural Status: under ECO control

File: SE3R3.RNO

PDM t: not used

Date: 26-Feb-77

Superseded Specs: none

Author: P. Conklin, P. Marks, M. Spier

Typist: P. Conklin

Page I

Reviewer(s): R. Brender, D. Cutler, R. Gourd, T. Hastings, I. Nassi,
S. Poulsen, D. Tolman

Abstract: Chapter 3 gives the methodological policy statements.
These include the choice of language, the layout of the
source text, the separation into modules, and the sharing
of code.

Revision History:

Rev t
Rev I
Rev 2
Rev 3

Description
Original
Revised from Review
After 6 months experience

Author
M. Spier
P. Marks
P. Conklin

Revised Date
14-Apr-76

26-Feb-77

Call/return interface
Choice of language .
Code sharing ..
Control

working set

Field support personnel
Functionality•

Implementation language
system

Language
choice of

3-2
3-1
3-3

3-3

3-2
3-3

3-1

3-1

Modifiability 3-3
Modular programs . . • • . . 3-3

Quality 3-3

Read code • • . • 3-2
Readable system code . 3-2

Sharing
code 3-3

Support personnel 3-2
System code

readable • • . 3-2
System implementation language 3-1

Transportability ... 3-3

Working set control 3-3

Methodological Policy
Change History

Rev 2 to Rev 3:

26-Feb-77 -- Rev 3

1. Remove reference to page boundaries.

2. Allow code in application languages.

Page 3-990

3. Document reasons for structure and for transportability.

4. Limit interface data types to call standard.

5. Remove references to self-initializing.

[End of SE3R3.RNO]

I .

CHAPTER 3

METHODOLOGICAL POLICY

26-Feb-77 -- Rev 3

All system programs for the
application language or
implementation languages:

VAX-II family are
one of the two

written
official

in an
system

o The VAX-II Macro Assembler, or

o BLISS-32

Of these, BLISS is the default choice for a language. BLISS
intended to replace as much assembly code as possible.
assembler will be used as a system implementation language
for:

is
The

only

o Hardware dependent routines, such as interrupt handlers or I/O
drivers, where extreme machine dependency coupled with high
performance requirements rule out the use of BLISS.

o Cases where functionality is needed that is not supplied by
BLISS; for example, routines which are to be invoked in a
non-standard way.

o Routines which cannot be written in BLISS because of
compilation difficulty (as distinct from functional
impossibility, or undesirability). This category includes all
routines which would have been coded in BLISS had there been
available a BLISS compiler that supports the required
technicalities (e.g., special relocation or addressing
features). All these routines are, in principle, candidates
for future recoding in BLISS, conditions permitting.

Methodological Policy 26-Feb-77 -- Rev 3

2. All code will be written
conventions, in order to:

uniformly,

Page 3-2

according to these

o Make system code meaningfully readable. If source code is not
properly structured, organized, and indented according to
these conventions, you have obscured the algorithm from the
reader. The code should be structured into blocks with a
limited amount of branching. This allows a graphical
reflEction of the control flow. If the code is unstructured,
you have lost the ability to understand and modify it.

o Enable all programmers to read, understand and be able to
modify one another's code, regardless of source language.
Note that the documenting conventions are identical across all
our languages.

o Enable field support personnel (both software specialists and
hardware engineers) to read and understand VAX-II system code.
To lOwer field support costs by eliminating, as much as
possible, the need for software specialists who are
knowledgeable of certain routines only, and to further the
software specialist's ability to master any system code.

o Make our software well documented: make programs both
readable and comprehensible by being able to extract technical
documentation from the source code itself. Facilitate the
work of technical writers by providing them with uniform, well
documented source code.

o Reduce the bug rate and enhance the quality and stability of
our software products. Maintain the product's initial high
quality throughout its lifetime: through cycles of bug fixes,
modifications and functional evolution.

3. All major bodies of code, or distinct logical sub-systems (with
the exception of speed/size sensitive executive or diagnostic
modules), will be coded as independent routines using the standard
call/return interface, to:

a Encourage and facilitate the use of BLISS in non-critical
sections of system software, and to

o Encourage the future recoding of assembly language routines in
BLISS, conditions permitting.

o Enhance the ability to transport non-assembly language code.

o Limit the interface data types to those specified as part of
the calling standard.

4. All user-level system products (lanquage processors, utilities,
library subroutines, etc.) should be desiqned and implemented so
that they may be transportable between systems and/or family
architectures. Keep in mind that:

o Transportability is a major qoal to which Central Engineerinq
is firmly committed.

o

o

Transportability has to be
product, and carefully
transportability guidelines.

desiqned
realized

carefully into
by followinq

All machine-dependent features are to be avoided as a
If necessary, they should be localized
clearly-identifiable, non-transportable module.

the
the

rule.
to a

5. The sharing of code is encouraged as much as possible. Whenever
possible, use a library service routine instead of codinq your own
version of that same function. If such a library routine does not
yet exist, code one that is of general nature, and submit it to
the library.

6. All proqrams are to be written modularly, in small self-contained
modules that are maintained as individual source files. These
modules will be assembled separately. The object code files will
be linked to form the larger software product. Modularity will
benefit us by:

o Enhancing quality: each module can be tested and debugged
separately: small modules are more easily controllable than
large bulky proqrams.

o Isolating functionality: it becomes easier to custom tailor a
system through selective linking of exactly those modules that
are needed.

o Enhancing modifiability: the modification of a given module
will be less likely to have ~n undesirable side effect on some
other module's functionality.

o Working set control: the ability to rearrange the linkinq
order of modules is a most powerful tool in optimizinq oroqram
behavior within a paged runtime environment.

Methodological Policy 26-Feb-77 -- Rev 3 Page 3-4

7. All modules (with the possible exception of certain core executivl
or diagnostic programs) are to be written as pure, non-self
modifying and well localized code.

o Self initializing: With the exception of system startup or
bootstrap code, all routines should be self initializing. If
they depend on an initial value of some permanent allocation
(OWN) variable, initialize that variable dynamically rather
than relying on compile time or link time value settings.

o Well localized: VAX-II is a virtual memory machine. Any
piece of code may --whether originally intended to, or not-
possibly run in a demand paging environment. You should make
the greatest efforts possible to design and structure your
code in such a way that the locality of reference is kept to a
minimum. Don't promiscuously branch over a large absolute
address span. Don't make reference to widely (and wildly)
fragmented database elements within a single sequence of
instructions, and especially within the scope of a tight loop.

(End of Chapter 3]

Digital Equipment Corporation COMPANY CONFIDENTIAL Page I

Title: VAX-II Software Engineering Program Structure -- Rev 3

~pecification Status: draft

Architectural Status: under ECO control

File: SE4R3.RNO

PDM #: not used

Date: 28-Feb-77

Superseded Specs: none

Author: P. Conklin, P. Marks, M. Spier

Typist: P. Conklin

Reviewer(s): R. Brender, D. Cutler, R. Gourd, T. Hastings, I. Nassi,
S. Poulsen, D. Tolman

Abstract: Chapter 4 overviews and then details the layout of a
module. It includes examples of the module and routine
prefaces.

Revision History:

Rev #
Rev 1
Rev 2
Rev 3

Description
Original
Revised from Review
After 6 months expertence

Author
M. Spier
P. Marks
P. Conklin

Revised Date
l4-Apr-76
2l-Jun-76
28-Feb-77

<new page> notation ...•.
<separator> notation
<skip> notation .•..
<space> notation . . . •
<tab> notation • .

Abs tr act . . .
Algorithms

critical ..
Author

Calling sequence
Conditional assembly ••
Critical algorithms

Edit history ...•.
Environment statement

Facility statement ••.
Functional description

Ident statement

Legal notices

Module preface . .
Modules

Notation
<new page> •
<separator>
<skip> • .
<space>
<tab>

Title statement

4-4
4-4
4-4
4-4
4-4

4-2

4-2
4-2

4-3
4-2
4-2

4-2
4-2

4-2
4-2 to 4-3

4-1

4-1

4-1
4-1

4-4
4-4
4-4
4-4
4-4

4-1

Program Structure
Change History

Rev 2 to Rev 3:

2B-Feb-77 -- Rev 3

1. Remove the VERSION NUMBER statement.

2. Explain why routine owns are discouraged.

3. Update to use template in the example.

Page 4-990

4. Define calling sequence vs. input and output parameters.

5. Add references to $FORMAL, etc., macros.

6. Change CONFIGURATION to ENVIRONMENT.

7. Combine abbreviated and detailed edit history.

B. Add weak and validation section.

9. Add BLISS to show similarity.

10. Add critical algorithms to functional description.

11. Use NONE for inapplicable sections, do not delete them.

12. Title and ident are first two lines.

13. Legal notices are fully capitalized.

14. Edits have initials if several editors per version.

15. Ident examples include edit.

16. BLISS module head includes other module switches.

17. BLISS structure defs are together.

lB. Add blank line after legal notices.

[End of SE4R3.RNO]

CHAPTER 4

PROGRAM STRUCTURE

28-Feb-77 -- Rev 3

Programs are written in modules. The module is the source text that
is assembled or compiled as a unit. Each module can be coded in any
language. The program structure and commenting conventions are
consistent across all languages to allow the reader to learn one
pattern independent of the writer's choice of language. Also, for
reader ease, every section and sUbsection must appear in its standard
position. If a section or comment is not applicable, enter the word
NONE as a separate line. This is done to make the reader's job as
simple and clear as possible. Each module exists as a separate source
text file, and is structured as follows:

4.1 THE MODULE PREFACE

It provides the necessary documentation to explain the module's
functionality, use and history. It consists of the following items in
the exact given order. All items must be included.

o A title statement specifying the module's name. The title is
a symbol of up to 15 characters in length. This statement
has a comment indicating the module's functionality. The
title statement, together with its comment, are reproduced as
~dge headers in the listing. The title statement is always
the first line of the file.

o An IDENT statement indicating the module's current version
number. The ident statement is always the second line of the
file.

o The standard DEC legal notices fully
emphasis.

capitalized for

Program Structure
'?HE MODC~F. PREFACE

28-Feb-77 -- Rev 3 Page 4-2

o A FACILITY statement. A module may be a dedicated part of a
larger linked facility, or part of several facilities, or a
general purpose library function. This statement identifies
the larger whole of which the module is part.

o A short functional description of the module (a documenting
comment) including the design basis for any critical
a~gorithms. If the module requires an extensive functional
description, then this item is an abstract of the
description, and is identified as such by the keyword
ABSTRACT. The extensive functional description will then be
provided on the following page.

o ENVIRONMENT statement. Give any special environmental
assumptions such as access modes, OTS, etc. If the module's
assembly is governed by a system wide configuration file,
then state the file(s) 's name(s). Otherwise if the module
has special conditional assembly parameters, then specify
very explicitly what they are and what values they assume
under all given conditions.

o The author and date on which the module was coded.

o The detailed current edit history. This item specifies the
versions, the modifier, and the last date of each version.
This item also lists the specific changes made between base
levels (during production) or releases, providing a short
functional description of each problem and its solution, as
well as appropriate reference information such as SPR
number(s), etc. The comments include the full name of the
person responsible for each version. If several people
modify the module, the initials of the others appear in each
edit line.

4.2 THE MODULE'S DECLARATIVE PART

It contains:

o For BLISS, specification of the table of contents.

o Specification of INCLUDE files or library definitions.

o Definition of local macros.

o Declaration of local equated symbols

o Declaration of own storage allocations.

o Specification of externals. For assembly language, only WEAK
or VALIDATION externals need be listed.

Program Structure 28-Feb-77 -- Rev 3 Page 4-3
THE MODULE'S ACTUAL CODE

4.3 THE MODULE'S ACTUAL CODE

This is in the form of zero or more ROUTINE(s). The module may have
no routines in it (i.e., no executable code) if it is a DATA SEGMENT
MODULE. Each routine consists of the following sequence of items:

4.3.1 The ROUTINE PREFACE

o A routine statement specifying the routine's name. This
statement has a comment indicating the routine's
functionality. The routine statement, together with. its
comment, are reproduced as page headers in the listing.

o A detailed functional description of the routine.

o A list of the routine's calling sequence, input and output
parameters.

o A list of the implicit inputs and outputs, and functional
side effects, if any, of the routine's code.

4.3.2 The Routine's Declarative Par~

o Specification of local INCLUDE file(s), if appropriate.
Normally, such use is not recommended.

o Declaration of local (stack frame resident) variables.

o Declaration of optional equated symbols, own
allocation variables and macros, all of which are
this routine. In general, use of these local items
recommended unless it adds significant clarity.
these are better declared at the module level.

4.3.3 The Routine's Code

o For assembly language, the routine's entry point(s).

o The routine's body.

o The routine's return instruction.

storage
local to
is not

Usually,

Program Structure
MODULE TERMINATION

28-Feb-77 -- Rev 3

4.4 MODULE TERMINATION

An end module statement terminates the module.

4.5 ANNOTATED SAMPLE LAYOUTS

Page 4-4

The above are explained in detail in the commenting and formatting
chapters of this manual. In the following sections a sample layout of
the module format is presented. Samples are given for both assembler
and BLISS coding to show the similarity.

The following notations are used to designate
formatting:

source listing

o <new page> indicates an inserted form feed "CTRL/L" character
or an assembler .PAGE directive, to force the listing onto a
new page.

o <separator> indicates either several (normally=4) <skip>s or
a <new page>. A <separator> is indicated wherever it would
be desirable to force a new page, if the present page is
sufficiently full. If the last section only marginally fills
the present page, and the following item of text would remain
on the page, then they can both appear on the same page
separated by several blank lines.

o <skip> indicates a blank line.

o <space> indicates a single blank character.

o <tab> indicates a horizontal tab character.

Program Structure 28-Feb-77 -- Rev 3
SAMPLE LAYOUT OF THE MODULE PREFACE

4.6 SAMPLE LAYOUT OF THE MODULE PREFACE

4.6.1 Example Of The Assembler Module Preface

.TITLE EXAMPLE - <terse functional description)

.IDENT /03-05/

COPYRIGHT (C) 1977
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS 01754

Page 4-5

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A SINGLE
COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE INCLUSION OF THE
ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR ANY OTHER COPIES THEREOF,
MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON
EXCEPT FOR USE ON SUCH SYSTEM AND TO ONE WHO AGREES TO THESE LICENSE
TERMS. TITLE TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES
REMAIN IN DEC.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

;++ <this is a DOCUMENTING COMMENT)
FACILITY: General Library

FUNCTIONAL DESCRIPTION: (or ABSTRACT:)

A short 3-6 line functional description of the module.
If an extensive functional description is called for,
then this should be a short abstract.

ENVIRONMENT: User Mode with OTS

AUTHOR: Charlie Brown, CREATION DATE: 4-Jul-76

MODIFIED BY:

Lucy vanPest, l7-Aug-76: VERSION 02
01 Program Crashes if Disk Error
02 SPR #4711: reads incorrect block after error.

Snoopy Beagle Brown, 19-Dec-76: VERSION 03
03 SPR #5391: reads blocks backward if 50 hertz.
04 Power fail recovery not reliable
05 (LVP) SPR #5432: recover if ECC recoverable.

i-- <end of DOCUMENTING COMMENT)
<new page)

Program Structure 28-Feb-77 -- Rev 3
SAMPLE LAYOUT OF THE MODULE PREFACE

4.6.2 Example Of The BLISS Module Preface

MODULE EXAMPLE (1 <terse functional description>
IDENT='03-05 1

<other module switches>
) =

COPYRIGHT (C) 1977
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS 01754

Page 4-6

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A SINGLE
COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE INCLUSION OF THE
ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR ANY OTHER COPIES THEREOF,
MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON
EXCEPT FOR USE ON SUCH SYSTEM AND TO ONE WHO AGREES TO THESE LICENSE
TERMS. TITLE TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES
REMAIN IN DEC.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

1++ <this is a DOCUMENTING COMMENT>
FACILITY: General Library

FUNCTIONAL DESCRIPTION: (or ABSTRACT:)

A short 5-6 line functional description of the module.
If an extensive functional description is called for,
then this should be a short abstract.

ENVIRONMENT: User Mode with OTS

AUTHOR: Charlie Brown, CREATION DATE: 4-Jul-76

MODIFIED BY:

Lucy vanPest, l7-Aug-76: VERSION 02
01 Program Crashes if Disk Error
02 SPR #4711: reads incorrect block after error.

Snoopy Beagle Brown, 19-Dec-76: VERSION 03
03 SPR #5391: reads blocks backward if 50 hertz.
04 Power fail recovery not reliable
05 (LVP) SPR #5432: recover if ECC recoverable.

<end of DOCUMENTING COMMENT>
new page>

Program Structure 28-Feb-77 -- Rev 3 Page 4-7
SAMPLE LAYOUT OF THE MODULE DECLARATIONS

4.7 SAMPLE LAYOUT OF THE MODULE DECLARATIONS

4.7.1 Example Of The Assembler Module Declarations

.SBTTL DECLARATIONS

INCLUDE FILES:

<library INCLUDE files and library macros which define:

MACROS:

MACROs, assembly parameters, systemwide equated
symbols, table definitions>

<local macro definitions>

EQUATED SYMBOLS:

<equated symbol definitions>

OWN STORAGE:

<declaration of permanent storage allocations>
<also local storage structures, etc.>
<if many structures, give each a heading>
<see SOWN and structure macros>

WEAK AND VALIDATION DECLARATIONS:

<only include section if any declared>

<new page>

Program Structure 28-Feb-77 -- Rev 3
SAMPLE LAYOUT OF THE MODULE DECLARATIONS

4.7.2 Example Of The BLISS Module Declarations

TABLE OF CONTENTS:

<forward routine declarations in order with
a summary description of each>

INCLUDE FILES:

Page 4-8

<library REQUIRE files and library macros which define:

MACROS:

MACROs, assembly parameters, systemwide equated
symbols, table definitions>

<local macro definitions other than structure definitions>

EQUATED SYMBOLS:

<LITERAL and BIND declarations>
<when a group of structure, macro, and literal declarations
define a structure they should be grouped together here>

OWN STORAGE:

<declaration of permanent storage allocations>
<also local storage structures, etc.>
<if many structures, give each a heading>

EXTERNAL REFERENCES:

<externals with short description>

<new page>

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Program Structure 28-Feb-77 -- Rev 3 Page 4-9
SAMPLE LAYOUT OF THE ROUTINE PREFACE

4.8 SAMPLE LAYOUT OF THE ROUTINE PREFACE

4.8.1 Example Of The Assembler Routine Preface

.SBTTL EXAMPLE - <short one-line description>
;++ <this is a DOCUMENTING COMMENT>

FUNCTIONAL DESCRIPTION:

<detailed functional description of the routine>

CALLING SEQUENCE:

<instruction for calling this routine>
<include AP-list if applicable>
<see $FORMAL macro>

INPUT PARAMETERS:

<list of explicit input parameters other than AP-list>
<typically registers or stacked arguments>

IMPLICIT INPUTS:

<list of inputs from global or own storage>

OUTPUT PARAMETERS:

<list of explicit output parameters other than AP-list>
<typically registers or stacked results>

IMPLICIT OUTPUTS:

<list of outputs in global or own storage>

COMPLETION CODES:

<list of RO completion codes>
<if standard function, change heading to FUNCTION VALUE>
<if the hardware condition codes are set,

change the heading to CONDITION CODES>

SIDE EFFECTS:

<list of functional side effects including environmental changes>
<exclude implicit outputs of global or own storage>
<list all SIGNALs generated if any>

;-- <end of DOCUMENTING COMMENT>
<separator>

Program Structure 28-Feb-77 -- Rev 3 Page 4-10
SAMPLE LAYOUT OF THE POUTINE PREFACE

4.8.2 Example Of The BLISS Routine Preface

ROUTINE EXAMPLE (arguments) =
++

!<short one-line description>
<this is a DOCUMENTING COMMENT>

FUNCTIONAL DESCRIPTION:

<detailed functional description of the routine>

FORMAL PARAMETERS:

<list formal parameters and give documentation of them>

IMPLICIT INPUTS:

<list of inputs from global or own storage>

IMPLICIT OUTPUTS:

<list of outputs in global or own storage>

COMPLETION CODES:

<list of function value completion codes>
<if standard function, change heading to FUNCTION VALUE>

SIDE EFFECTS:

<list of functional side effects including environmental changes>
<exclude implicit outputs of global or own storage>
<list all SIGNALs generated if any>

!-- <end of DOCUMENTING COMMENT>
<separator>

[End of Chapter 4]

Digital Equipment Corporation COMPANY CONFIDENTIAL

Title: VAX-II Software Engineering Template -- Rev 3

ppecification Status: draft

Architectural Status: under ECO control

File: SESR3.RNO

PDM .: not used

Date: 28-Feb-77

Superseded Specs: MARS template by R. Gourd

Author: P. Conklin, P. Marks, M. Spier

Typist: P. Conklin

Page I

Reviewer(s): R. Brender, D. Cutler, R. Gourd, T. Hastings, I. Nassi,
S. Poulsen, D. Tolman

Abstract: Chapter 5 presents the standard template files. It also
includes step by step instructions for editing them to form
a module in standard format.

Revision History:

Rev •
Rev 1
Rev 2
Rev 3

Description
Original
Revised from Review
After 6 months experience

Author
M. Spier
P. Marks
P. Conklin

Revised Date
14-Apr-76
21-Jun-76
28-Feb-77

BLISS LIB: .

MARS LIB:
MODULE.BLI
MODULE.MAR ...••

.

5-7

5-1
5-7
5-1

Template 28-Feb-77 -- Rev 3 Page 5-990
Change History

Rev 2 to Rev 3:

1. Add instructions from Gourd memo RSG028 Rev 2.

2. Update to latest MODULE.MAR punctuation.

3. Abstract is in one space, not one tab.

4. Add instructions for editting modifications.

5. Add configuration to the environment section.

6. Add instructions to include $FORMAL macro.

7. Add weak/validation section.

8. Add instructions for .ENTRY.

9. Document using intials in maintenance history.

10. Max source line should be 80 columns.

11. Add BLISS template.

12. Add blank after legal notices; add blank after abstract.

[End of SE5R3.RNO]

CHAPTER 5

TEMPLATE

28-Feb-77 -- Rev 3

Included here are in~tructions for commencing a module of coding, a
copy of the template file which is the basis of a new module, and
instructions for filling in the template.

5.1 MAKING A NEW ASSEMBLY LANGUAGE MODULE

When you commence the writing of a program in VAX-II assembler
language, you should work from a copy of the template file MODULE.MAR,
which contains the proper formatting for assembler programs.

\ MODULE.MAR is on the PDP-II MIAS system under (202,1]. To commence
creation of your own module, simply type

PIP filename.MAR=DBO:[202,1]MODULE.MAR

where "filename" is your designated file name (nine characters or
less). \

MODULE.MAR is normally available under the VAX-II system by copying
from the system assembler library directory

$COPY MARS LIB:MODULE.MAR filename.MAR

where "filename" is your designated file name (nine characters or
less) .

Once your copy of the module template exists you must fill in and/or
alter certain information prior to writing code.

Template 28-Feb-77 -- Rev 3 Page 5-2
EDITS TO MODULE.MAR

A copy of MODULE.MAR is shown at the end of this section. The line
numbers in the left margin are for reference in this tutorial; they
are not part of the file. Refer to Chapter 4, the Program Structure
Overview, for an overview of the various sections. Refer to Chapters
6 and 7 for details on each section. Refer to the Appendix for a
sample program.

line 001

line 002

line 025

line 028

line 030

line 032

line 036

line 037

lines 043
047 051

055

line 055

Replace "TEMPLATE" with your module name and put a terse
(half line) description to the right of the hyphen (-).

Enter the version number between the two slashes.

After the colon, enter the
which the module resides
library, etc.).

name of
(e.g. ,

the facility within
system library, math

After this line, enter a terse (3 to 6 lines) summary of
the functionality of the module, starting each successive
lin~ with o';<tab>".

After the colon, describe the environment within which this
module (code) will run, e.g., at what access mode, whether
it has interrupts disabled, interrupt level, etc. Include
any conditional 'assembly instructions here.

Following the first colon and <space>, enter your name;
follow the second colon and <space> with the creation date
of the module.

As versions are released, copy this line after the
replicated line 037. After the <tab> which is before the
comma enter the modifier's name. After the space after the
comma enter the modification date. Update this date
every time the file is editted. At the end of the line
eriter the version number.

As edits are made after first release, copy this line
changing the edit number. At the end of this line describe
the edit. If the individual making the change is different
from the one responsible for this version, then put the
changer's initials in parentheses at the start of the
description of each edit.

Make appropriate entries in each defined section (reference
Chapter 4 if you don't understand the section titles named
on template lines 041, 045, 049, and 053).

Follow this line with a section of weak and validation
declarations if any.

Template 28-Feb-77 -- Rev 3 Page 5-3
EDITS TO MODULE.MAR

line 056

line 059

line 063

lines 067
071 075
079 083
087

line 091

line 093

line 092

line 095

line 096

line 097

Replace "TEMPLATE_EXAMPLE" with your routine's name and
follow the hyphen with a half line description.

Enter a sufficient description of the function(s) of this
routine, starting each successive line with II; (tab,)".

If this module is "called", replace "NONE" with the callinq
sequence (AP-list). Otherwise give the instructIon for
invoking this routine.

When applicable,
required by the

replace
section

"NONE"
titles

with the information
named on template lines

numberred 065, 069, 073, 077, 081, __ .-J ,""\ () r-
dliU UOJ.

If the routine is CALLed, define its formals by lncluding ~

SFORMAL macro here.

Replace "TEMP EXAMPLE II with your. routine's name

Preceed the semi-colon with the entry mask
instruction and adjust the comment appropriately.
lines 093 and 094 into a .ENTRY statement.

or first
Or merge

Commence the
appropriately
maximum.

body of your routine/module, commenting
thoughout. Keep source lines to 80 columns

Replace "TEMP XMPL EXIT" with your routine's exit location
label.

Replace and/or delete the inappropriate return instruction
from this and the succeeding line.

Template 28-Feb-77 -- Rev 3 Page 5-4
LISTING OF MODULE.MAR

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038

.TITLE TEMPLATE

.IDENT / /

COPYRIGHT (C) 1977
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS 01754

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A SINGLE
COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE INCLUSION OF TH'E
ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR ANY OTHER COPIES THEREOF,
MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON
EXCEPT FOR USE ON SUCH SYSTEM AND TO ONE WHO AGREES TO THESE LICENSE
TERMS. TITLE TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMis
REMAIN IN DEC.

;. THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NO~T~E
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIl ,T
CORPORATION.

DEC ASSUMES NO RESPUNSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

;++
FACILITY:

ABSTRACT:

ENVIRONMENT:

AUTHOR:

MODIFIED BY:

, CREATION DATE:

: VERSION
01

;--

Template 28-Feb-77 -- Rev 3
LISTING OF MODULE.MAR

<page>
039 .SBTTL DECLARATIONS

041 INCLUDE FILES:
042
043
044
045 MACROS:
046
047
048
049 EQUATED SYMBOLS:
050
051
052
053 OWN STORAGE:
054
055

Page 5-5

Template 28-Feb-77 -- Rev 3
LISTING OF MODULE.MAR

<page>
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100

.SBTTL TEMPLATE EXAMPLE -
;++

FUNCTIONAL DESCRIPTION:

CALLING SEQUENCE:

NONE

INPUT PARAMETERS:

NONE

IMPLICIT INPUTS:

NONE

OUTPUT PARAMETERS:

NONE

IMPLICIT OUTPUTS:

NONE

COMPLETION CODES:

NONE

SIDE EFFECTS:

NONE

i--

TEMP EXAMPLE:
; ENTRY POINT (OR MASK)

TEMP XMPL EXIT: - -
RET
RSB

.END

Page 5-6

Template 28-Feb-77 -- Rev 3 Page 5-7
MAKING A NEW BASIC LANGUAGE MODULE

5.2 MAKING A NEW BASIC LANGUAGE MODULE

5.3 MAKING A NEW BLISS LANGUAGE MODULE

When you commence the writing of a program in BLISS, you should work
from a copy of the template file MODULE.BLI, which contains the proper
formatting for BLISS programs.

\ MODULE.BLI is on the IPC PDP-lO System-F under BLI:.
creation of your own module, simply type

COpy filename.BLI=BLI:MODULE.BLI

To commence

where "filename is your designated file name (six characters or less).
If the module is not transportable use output file type .B32 to
indicate this. \

MODULE.BLI is normally available under the VAX-II system by copying
from the system BLISS directory

$COPY BLISS_LIB:MODULE.BLI filename.BLI

where "filename" is your designated file name (nine characters or
less) . If the module is not transportable use output file type .B32
to indicate this.

Once your copy of the module template exists you must fill in and
alter certain information prior to writing code.

Template 28-Feb-77 -- Rev 3 Page 5-8
EDITS TO MODULE.BLI

A copy of MODULE.BLI is shown at the end of this section. The line
numbers in the left margin are for reference in this tutuoriali they
are not part of the file. Refer to Chapter 4, the Program Structure
Overview, for an overview of the various sections. Refer to Chapters
6 and 9 for details on each section. Refer to the Appendix for a
sample program.

line 001

line 002

line 027

line 030

line 032

line 034

line 038

line 039

line 046

geplace "TEMPLATE" with your module name and put a terse
(half line) description to the right of the exclamation (1)

Enter the version number between the two apostrophes. Add
any other module switches one per line after line 002.

After the colon, enter the
which the module resides
library, etc.).

name of
(e.g.,

the facility within
system library, math

After this line, enter a terse (3 to 6 lines) summary of
the functionality of the module, starting each successive
line with "1<tab>".

After the colon, describe the environment within which this
module (code) will run, e.g., at what access mode, whether
it has interrupts disabled, interrupt level, etc. Include
any conditional compilation instructions here.

Following the first colon and' <space>, enter your name;
follow the second colon and <space> with the creation date
of the module.

As versions are released, copy this line after the
replicated line 039. After the <tab> which is before the
comma enter the modifier's name. After the space after the
comma enter the modification date. Update this date
every time the file is editted. At the end of the line
enter the version number.

As edits are made after first release, copy this line
changing the edit number. At the end of this line describe
the edit. If the individual making the change is different
from the one responsible for this version, then put the
changer's initials in parentheses at the start of the
description of each edit.

Enter all routine names defined in this module one per
line. Terminate each except the last with a comma. Follow
each with a short summary comment (half line). Keep the
routines in the order of occurence in the module. Include
any routine attributes needed by BLISS.

Template 28-Feb-77 -- Rev 3 Page 5-9
EDITS TO MODULE.BLI

lines 051
055 059

063

line 069

line 070

line 074

line 078

lines 082
086
091
095

line 102

line 103

line 104

Make appropriate entries in each defined section (reference
Chapter 4 if you don't understand the section titles named
on template lines 049, 053, 057, and 061).

Enter all external references made by your routine here one
per line. Terminate each except the last with a comma.
Include any necessary attributes. Follow each with a terse
summary comment of its purpose (half line).

Replace "TEMP EXAMPLE ()" with your routine's name and its
formal parameter list. Put a terse description of the
routine to the right of the exclamation (1). If the above
two edits will not fit on this line, keep the comment on
this line and place the formal parameter list on the next
line. If your routine returns a value, delete the
":NOVALUE" and enter the routine value(s) in the section
entitled "ROUTINE VALUE:" (line 091).

Enter a sufficient description of the function(s) of this
routine, starting each successive line with "!<tab>".

If this module has parameters, replace "NONE" with the list
of all parameters in order one per line. For each give a
complete description including the passing mechanism in
formal notation.

When applicable, replace "NONE" witI'} the information
required by the section titles named on template lines
numberred 080, 084, 088, 089, and 093. Delete whichever
of lines 088 and 089 is not applicable.

List the routine's locals one per line. Follow each with
its attributes and a descriptive comment.

Commence the
appropriately
maximum.

body of your routine/module, commenting
thoughout. Keep source lines to 80 columns

Replace "TEMP EXAMPLE" with your routine's name.

Template 28-Feb-77 -- Rev 3 Page 5-10
LISTING OF MODULE.BLI

001
002
003
004
005
'006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
OJ4
035
036
037
038
039
040

MODULE TEMPLATE (

BEGIN

IDENT =
) =

COPYRIGHT (C) 1977

I I

DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS 01754

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A SINGLE
COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE INCLUSION OF THE

, ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR ANY OTHER COPIES THEREOF,
MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON
EXCEPT FOR USE ON SUCH SYSTEM AND TO ONE WHO AGREES TO THESE LICENSE
TERMS. TITLE TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES
REMAIN IN DEC.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOT~~L
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

++
FACILITY:

ABSTRACT:

ENVIRONMENT:

AUTHOR:

MODIFIED BY:

, CREATION DATE:

, : VERSION
01

Template 28-Feb-77 -- Rev 3
LISTING OF MODULE.BLI

<page>
041
042 TABLE OF CONTENTS:
043
044
045 FORWARD ROU~INE
046
047
048
049 INCLUDE FILES:
050
051
nc::')
VJ~

053 MACROS:
054
055
056
057 EQUATED SYMBOLS:
058
059
060
061 OWN STORAGE:
062
063
064
065 EXTERNAL REFERENCES:
066
067
068 EXTERNAL ROUTINE
069

Page 5-11

Template 28-Feb-77 -- Rev 3 Page 5-12
LISTING OF MODULE.BLI

<page>
070 ROUTINE TEMP EXAMPLE () :NOVALUE =
071
072 ++
073 FUNCTIONAL DESCRIPTION:
074
075
076 FORMAL PARAMETERS:
077
078 NONE
079
080 IMPLICIT INPUTS:
081
082 NONE
083
084 IMPLICIT OUTPUTS:
085
086 NONE
087
088 ROUTINE VALUE:
089 COMPLETION CODES:
090
091 NONE
092
093 SIDE EFFECTS:
094
095 NONE
096
097
098
099 BEGIN
100
101 LOCAL
102
103
104 END; lEnd of TEMP EXAMPLE

<page>
105 END lEnd of module
106 ELUDOM

Template 28-Feb-77 -- Rev 3 Page 5-13
MAKING A NEW COBOL LANGUAGE MODULE

5.4 MAKING A NEW COBOL LANGUAGE MODULE

Details to be supplied.

5.5 ,MAKING A NEW FORTRAN LANGUAGE MODULE

Details to be supplied.

[End of Chapter 5]

Digital Equipment Corporation COMPANY CONFIDENTIAL Page I

Title: VAX-II Assembler Software Eng. Commenting -- Rev 3

Specification Status: draft

Architectural Status: under ECO control

File: SE6R3.RNO

PDM t: not used

Date: 28-Feb-77

Superseded Specs: none

Author: P. Conklin, P. Marks, M. Spier

Typist: P. Conklin

Reviewer(s): R. Brender, D. Cutler, R. Gourd, T. Hastings, I. Nassi,
S. Poulsen, D. Tolman

Abstract: Chapter 6 gives each piece of the commenting conventions in
detail. The items are in alphabetical order. Each item
includes references to related topics, gives the background
and the rules, and then gives templates and examples.

Revision History:

Rev I
Rev 1
Rev 2
Rev 3

Description
Original
Revised from Review
After 6 months experience

Author
M. Spier
P. Marks
P. Conklin

Revised Date
l4-Apr-76
2l-Jun-76
28-Feb-77

<comment delimiter> notation.

Abstract .
Author . .

Block comment
Boolean value

Calling sequence .
Code

completion .
Comment

block
documenting
group
line
maintenance

Completion code
Conditional assembly.
Configuration statement
Copyright notice•
Customer version number

Data segment module
Directory, module
Documenting comment

Edit in version number
Edit number •..•.
Environment statement
Error completion code
Exception

calling sequence .

Facility statement.
Fail return . • . .
FALSE Boolean value
File generation version, module
File name, module
File type, module ..•.••.•
Formal parameter .
Function value . . •
Functional description ..•.•.

Group comment

History, modification

Implicit input ...
Implicit output
Input parameter
Interrupt

calling sequence

JSB calling sequence .

Legal notice .
License notice
Line comment .

Maintenance comment

6-1

6-2
6-2

6-4
6-16

6-2

6-11
6-3
6-4
6-5
6-6
6-7
6-9
6-11
6-12
6-12
6-19
6-29

6-20
6-21
6-5

6-29
6-9, 6-17
6-13
6-11
6-27
6-2

6-13
6-16
6-16
6-21
6-21
6-21
6-22
6-16
6-14

6-6

6-17

6-18
6-18
6-23

6-2

6-2

6-19
6-19
6-7

6-9

Maintenance number .
Modification history.
Modification number
Module •

data segment
file name
preface •••.

Name, module.
Notation

<comment delimiter>
Notice, legal
Number

edit ..•.
maintenance
modification
version

Output parameter . •

Parameter
formal . . • . . . • • • . • • .
input
output •

Patch in version number • • • . •
Preface, module
Preface, routine.
Program • . . .

Routine preface

Severe error completion code •
Side effect . . • . .
Signal . • . . . • • . • • • • . .
Status return value
Success completion code
Success return . . • . . .
Support in version number

TRUE Boolean value

Update in version number .

Value
function

Version number • .

Warning completion code

6-17
6-17
6-9
6-20
6-20
6-21
6-21

6-21

6-1
6-19

6-9, 6-17
6-17
6-9
6-28

6-23

6-22
6-23
6-23
6-29
6-21
6-25
6-24

6-25

6-11
6-26
6-27
6-16
6-11
6-16
6-28

6-16

6-29

6-16
6-28

6-11

,
Commenting Conventions', 28-Feb-77 -- Rev 3 Page 6-990
Change History

Rev 2 to Rev 3:

1. Change column numbers to start with 1 instead of O.

2. Change CF to FP.

3. Use lowercase English for character names
bracketting them.

instead

4. Change example comments to not waste a leading space.

of

s. Add sections for Author, Calling Sequence, CASE instructions,
Comment: group, Completion codes, Condition Handler,
Conditional Assembly, Environment statement, Facility
statement, Function Value, Functional Description, Inplicit
Inputs and Outputs, Interlocked Instructions, Libraries,
Listing Control, $LOCAL Macro, Macros, SOWN Macro,
Parameters: Input and Output, Program, Queue Instructions,
Routine: Order, Side Effects, Signals, String Instructions,
Structures, Synchronization: Process, UNWIND, .VALIDATE
Declaration, .WEAK Declaration. Add many cross references
and sections which are there only to cross reference to
another section.

6. Combine abbreviated and detailed history.

7. Add ;++ format.

8. Change symbol definition mechanism from Spier to STARLET.

9. State when dual names might be justified.

10. Clarify when to renumber local labels.

11. Add Call by descriptor.

12. Clarify when <separator) can be four blank lines.

13. Change terminology:
Routine to Procedure (where appropriate)
Subroutine to Routine: non-standard
Definition to Declaration
Copyright to Legal Notices

14. Move symbol naming rules to Chapter 7.
chapter 8.

Add references to

15. Change examples to use template formats and text.

16. Put configuration Statement in Environment statement.

17. Document that entry mask
non-standard subroutines.

must include registers on

Commenting Conventions
Change History

28-Feb-77 -- Rev 3

18. Change to use .ENTRY.

19. Change [VALUE) to Chapter 8 notation.

20. Move Comment to Comment: Line.

Page 6-991

21. Document maintenance numbers. Don't reset them on release.

22. Omit license paragraph for unlicensed software.

23. Add that labels should be meaningful.

24. Give rules for file name.

25. Never use lower case in symbols. Freely use underline.
Choose names to suggest attributes.

26. Add that functional description should include critical
algorithms.

27. Note that arg list is read only.

28. Include typical .PSECT attributes.

29. Fill in the external symbols section.

30. Split into chapters 6-7.

31. Note that as matter of taste can put a space after the
comment delimiter.

32. Make completely language independent.

33. Move contents of completion
conventions.

codes here from naming

34. Emphasize that legal notices must be on the first page.

35. Emphasize that no keyword is to be omitted;
NONE.

instead use

36. Emphasize that both the blank comment lines and the blank
lines are mandatory.

37. Add support letters to version standard.

38. Add that numbers and letters are not skipped in version,
update, or patch.

39. Add update to version standard.

40. Add examples to version standard.

Commenting Conventions
Change History

28-Feb-77 -- Rev 3

41. Remove attention grabber outdenting.

Page 6-992

42. Allow for edit numbers to be facility wide if appropriate.

43. Completion codes have <2:0> of symbol non-zero. Test with
CMPV.

44. Add customer version numbers.

45. Move procedure to chapter 7.

46. Move maintenance comments to end of line.

[End of SE6R3.RNO]

CHAPTER 6

COMMENTING CONVENTIONS

28-Feb-77 -- Rev 3

This chapter contains detailed information on commenting conventions.
For ease of reference, it is organized alphabetically by topic. Each
topic includes references to related topics. Most entries also
include examples or sample templates illustrating the specific topic.

The notation (comment delimiter> is used to represent the comment
delimiter of the source language. For example, this is a semicolon
(":") in assembly language and an exclamation mark ("1") in BLISS and
Fortran.

Commenting Conventions
ABSTRACT

28-Feb-71 -- Rev 3 Page 6-2

6.1 ABSTRACT

SEE ALSO:
Functional Description

A short three to six line functional description.

6.2 AUTHOR

This is the full name of the initial coder of the module. The
name of each maintainer appears in the modification history.
appear in the module preface.

6.3 CALLING SEQUENCE

SEE ALSO:
Parameters: Formal
Parameters: Input and Output
Procedure

full
Both

If this routine follows the procedure CALL standard then the calling
sequence is:

CALL entry_name (formal parameters)

or

value = entry_name (formal parameters)

The formal parameters should be documented using the notation in the
Functional and Interface Specifications chapter.

If this is a non-standard routine, the method of entry should be given
as JSB, INTERRUPT, or EXCEPTION. Any parameters passed in registers
or on the stack should be given in the input parameters section. Any
parameters left on the stack or in registers should be given in the
output parameters section.

Commenting Conventions
COMMENT

6.4 COMMENT

SEE ALSO:
Comment: Block
Comment: Documenting
Comment: Group
Comment: Maintenance
Statement: Block

28-Feb-77 -- Rev 3 Page 6-3

A comment is any text embedded between a <comment delimiter> on the
left and the end of the source line on the right.

There is a grey area between the use of too many and the use of too
few comments. It is easy to say that there are never enough comments
but often there are so many comments that the program text is
obscured. In general, comment logically difficult sections of code,
structure accesses where it is not clear what is being accessed, and
routine invocations, among others. A good rule of thumb is to include
a block comment for each block statement.

Above all, strive to comment your program so that anyone can pick it
up, read the comments alone and derive a good understanding for what
the program does.

In a sense, there are two programs being written; one consisting of
code and one consisting of comments. The comment program is written
to describe the intent and algorithm of the code. That is, comments
are not simply rewordings of the code but are explanations of the
overall (gross, if you will) logical meaning of the·code.

Commenting Conventions
COMMENT: BLOCK

28-Feb-77 -- Rev 3 Page 6-4

6.5 COMMENT: BLOCK

SEE ALSO:
Comment: Group
Statement: Block

The block comment precedes a block statement, providing reference
documentation for the immediately following sequence of statements. A
block comment serves to introduce and describe the functionality of a
logical grouping of code. It allows the reader to understand the
meaning and effect of the code that follows without having to read the
code itself. The following rules apply to block comments:

o The block comment consists of a number of page wide comment
lines: The <comment delimiter> is entered, left aligned, in
the line's first character position.

o The first line of the block comment is a begin sentinel, o.
the form "1 +" or "1 ++' • The single form should be used for
internal documentation such as might appear in a program
logic manual. The double form should be used for all
functional documentation. If the routine is to be part of a
general library, the functional documentation should be in a
form suitable for publication, see Functional Description.

o The last line of the block comment is a matching end
sentinel, of the form "1 - or "1 --"

o The body of the block comment consists of documentary text,
separated from the <comment delimiter> by a tab.

o The block comment is immediately followed by a blank line;
immediately following the blank line appears the commented
block statement.

Example:
<skip>
1 +

1-
<skip>

This is a block comment.

Commenting Conventions
COMMENT I DOCUMENTING

28-Feb-77 -- Rev 3 Page 6-5

6 • 6 COMI4ENT: DOCUMENT ING

SEE ALSO:
Comment: Block

Preface
Preface

Module:
Routine:

The documenting comment is a special format block comment that appears
in the module preface and in the routine preface. It serves to
describe the functionality of the module and/or routine, as that
functionality is to be known from the external Doint of view: what
function is performed, what the input and output parameters are, what
values are expected, what completion codes returned, and any other
relevant functional information.

o The documenting comment consists of a number of page wide
comment lines: the <comment delimiter> is entered in the
line's first character position.

o The first line of the documenting comment is a begin
sentinel, of the form -!++-.

o The last line of the documentinq comment is an end sentinel,
of the form -!---.

o The documenting comment is structured by means of out-dented
keywords that are separated from the <comment delimiter> by a
single space. These keywords are part of the standard
documenting comment's structure and all of them must be
included, in the proper seauence.

o If a specified keyword is not applicable, follow it with the
word NONE rather than deleting it. This helps the reader by
being explicit about the specification.

o For the body of the documenting comment, see Module Preface,
or Routine Preface, or the Program Structure Overview
chapter.

Example:

!++
! This is an example of a documenting comment.

!--

It may be either a module preface, or a routine
preface: in each case it has a predetermined format,
consisting of a sequence of keywords followed by
documentation information.

Commenting Conventions
COMMENT: GROUP

6.7 COMMENT: GROUP

SEE ALSO:
Comment: Block

28-Feb-77 -- Rev 3 Page 6-6

Whenever the attention of the reader should be called to a particular
sequence of code, a group comment should be used. This might be in
any of the following:

1. When several paths join, note the conditions which cause flow
to reach this point.

All exceptions converge at this point with:

... <register and stack status>

2. At the top of a loop.

Loop looking for a handler to call.

3. When some data base has been built, such as a complex
sequence on the stack.

At this point the stack has the following format:

OO(SP) = saved R2
04(SP) = number of

o The group comment consists of a number of page wide comment
lines: the <comment delimiter> is enterred, left aligned, in
the line's first character position.

o The first and last lines of the group comment are just a
<comment delimiter> and are set off from surrounding code by
a blank line before and after the group. Both the blank
comment lines and the blank lines are mandatory and help
distinguish the comments and code visually.

o The body of the group comment consists of descriptive text,
separated from the <comment delimiter> by a space.

o Tabular information is separated from the <comment delimiter>
by a tab.

Commenting Conventions
COMMENT: LINE

6.8 COMMENT: LINE

28-Feb-77 -- Rev 3 Page 6-7

A line comment is normally used to explain the meaning of the
statement being commented.

A comment is any text following a <comment delimiter>, up to
of the line. Each and every line of assemDly code
commented.

the end
should be

o The comment is placed on the right hand side of a non-comment
line of text.

0 All ~c!c!o",hlu w '-&,~ :t language ,..,,"""""' ,.. \..VUUIICII '-i::) are aligned with the
<comment delimiter> in column 41 of the text (5 tabs from
left margin).

0 The text of the comment is adjacent to the
<comment delimiter>.

o If the statement overflows into the comment field, then its
comment is preceded by a space, whereas normally it would be
preceded by as many tabs as necessary to position the comQent
starting with column 41.

o If the comment is too long to be contained on a single line,
or if the statement was too long to be commented on the same
line, then the comment may be placed (or continued) on the
following line, placing the <comment delimiter> in the same
column as the first line and including a space after it.

o For commenting a multiple-line fragmented statement see
statement.

The comment's text should convey the meaning of the associated program
text (e.g., instruction MOVAL A,B should be commented "Initialize
pointer to first buffer in free area" or such, not "Move the address
of A into B".) As a rule of thumb, symbols should not appear in a
comment, rather say what the object is or means. If a line of code is
totally self evident to the most casual reader then it need not be
given redundant commenting text, however it must have a
<comment delimiter> (see example). If a comment applies to several
successive lines of code, indicate commonality by tagging follow-on
lines with comments of the form "!<space> ... ".

As a matter of taste, some coders place a single space after the
<comment delimiter>. All modifications to a module should follow the
style of the original author. The original source should not be
changed to the modifier's style because then a differences listing
would be useless.

Commenting Conventions
COMMENT: LINE

2S-Feb-77 -- Rev 3 paqe 6-S

Example:

STATEMENT
STATEMENT
STATEMENT
OBVIOUS STATEMENT
STATEMENT

OBVIOUS STATEMENT

:Compute multiple-line function

· , . . .
· ,
:Here we do something new

and extend the comment to the
next two lines.

A SOMEWHAT LONG STATEMENT :And its comment
A SOMEWHAT LONGER STATEMENT :And its long comment

: which continues on
: additional line(s).

A VERY VERY VERY VERY VERY VERY LONG STATEMENT

A FRAGMENTED
STATEMENT

:And its comment on next line
:The statement's comment
· , . . .

Commenting Conventions
COMMENT: MAINTENANCE

6.9 COMMENT: MAINTENANCE

SEE ALSO:
Author
History: Modificati0n
Version Number

28-Feb-77 -- Rev 3 Page 6-9

When an existing module is modified (as distinct from "originally
coded"), each logical unit of modification is assigned a maintenance
number in the detailed current history section of the module preface.
Use a new number for each logical unit of modification that is being
worked on. The maintenance numbers increase by one, are decimal, and
are never reset. It is perrnissable after a release to bump the number
to a round number (such as the next lOOs) to make room for SPR fixes
to follow the release level. Add a maintenance comment --derived from
that number-- to each line of source code that is affected. There are
two reasons for having maintenance comments:

1. The modifications may well be distributed allover the
module. The maintenance comment enables you to find all the
places where a correction of a single functional problem was
made. This is especially useful if the correction has to be
further corrected by someone other than the original modifier
and/or if it has to be understood by the software specialist
in the field.

2. All too often it happens that as we correct bug liB", we
innocently modify an instruction which was the correction for
a previous bug "A". Bug "BII is fixed at the expense of the
reappearance of bug "A" (or one of its relatives). If
modification of a program leads you to the modification of a
line that already has a maintenance comment, then find out
(from the detailed current history) who th~ modifier was,
consult that person, and exercise extreme caution in
effecting your modification.

In many cases the edit numbers may be assigned consistently across all
modules in a facility. In this case, the module defining the
facility's version number should have a full maintenance history and
the others should include only module specific changes.

Commenting Conventions
COMMENT: MAINTENANCE

28-Feb-77 -- Rev 3

The following rules apply to maintenance comments:

Page 6-10

o The maintenance comment consists of a <comment delimiter)
followed by a code letter, followed by a maintenance number.

o The code letter may be

A - this line was ADDED to the text

o - this line was DELETED. In this case, effect the
"deletion" by commenting the line out. Place a
<comment delimiter) in the first character position of
the line, marking it as a candidate for future physical
deletion.

M - This line was MODIFIED.

o The maintenance comment is placed after the line's regular
comment at column 80

!Regular comment !<maintenance comment)

o If the modified line already has an existing maintenance
comment, then add the new one in front of the existing one

!Regular comment !<new_mc)!<previous_mc)

Example:

The maintenance number is assigned in the detailed current history
section of the module preface, as follows:

! 02 SPR '4711: describe the SPR problem

The number is now used in maintenance comments for all .. lines of text
affected by the modification called for by SPR 14711:

MODIFIED STATEMENT
ADDED STATEMENT
DELETED STATEMENT

!Statement's comment
!statement's comment
!Statement's comment

!M02
!A02
!D02

NOTE: If the statement is a multiple-line one, make sure to place
maintenance comments (or effect a "commenting out" deletion) on all
component lines of the statement.

Commenting Conventions
COMPLETION CODES

6.10 COMPLETION CODES

28-Feb-77 -- Rev 3 Page 6-11

The most reliable means for indicating a software detected exception
condition occurring in a called procedure is for the called procedure
to return a condition value as a function value and for the caller to
check the return value for TRUE or FALSE. TRUE is bit 0 set and FALSE
is bit 0 cleared. TRUE means that the requested operation was
performed successfully; FALSE means an error condition occurred; in
both cases, the rest of the value is a condition value. Thus, most
procedures are written as functions, rather than subroutines. If it
is necessary to indicate an exceptional situation without returning a
value, then generate a call to LIB$SIGNAL, see Signals.

The low order three bits, taken together, represent the severity of
the error. Severity code values are:

o Warning
1 Success
2 Error
3 Reserved
4 Severe Error

5-7 Reserved

Bits <31:16> indicate the facility, see the Naming Conventions
chapter. Bits <15:3> distinguish distinct conditions or system
messages within the facility. Bits <2:0> can vary for a given
condition depending upon environment, condition handling, etc. Status
codes are expressed in symbolic names in the format:

£ac$ mnemonic

Return status values can be tested by testing the low-order bit of RO
and branching to an error checking routine if the low bit is not set,
in the assembler as follows:

BLBC RO,errlabel

The error checking routine may check for specific values. It must
always ignore <2:0> when checking for a particular condition because
<2:0> can vary depending upon the severity in the current environment.
For example in assembly language, the following instruction checks for
an illegal event flag number error condition:

CMPV i3,'29,RO,i<SS$ ILLEFC@-3>

Successful codes other than SS$ NORMAL are defined. In some cases, a
successful return includes information about the previous status of a
resource. For example, the return SS$ WASSET from the Set Event Flag
($SETEF) system service indicates that the requested flag was already
set when the service was called.

Commenting Conventions
CONFIGURATION STATEMENT

28-Feb-77 -- Rev 3

6.11 CONFIGURATION STATEMENT

SEE ALSO:
INCLUDE Files
Module: Preface

Page 6-12

The configuration statement is part of the environment statement in
the module preface, and serves to indicate to the programmer how the
module is to be assembled. The module may be part of a large system
with a system-wide conditional assembly arrangement. It may also have
its own peculiar conditional assembly requirements, either alone or in
conjunction with system-wide conventions.

State the name(s) of the include filets) containing conditional
assembly parameters (if any). State the conditional assembly
variables affecting this module. If the variables are peculiar to
this module, state the values that they may assume, and what thesr
values mean.

Examp]e:

ENVIRONMENT:

This module may be assembled with various parameters
changed. This is done by supplying a special copy
of the macro $FAC CHANGE DEF with the changed symbols in
it as a library fIle. The symbols which can be changed
are the default lines per page (DEF LINES PPAGE) which
is normally 55, and the maximum line width (MAX LINE WIDTH)
which is normally 132. - -

Commenting Conventions
ENVIRONMENT STATEMENT

28-Feb-77 -- Rev 3

6.12 ENVIRONMENT STATEMENT

SEE ALSO:
Configuration Statement

Page 6-13

This paragraph gives any special environmental assumptions which a
module may make. These include both compilation assumptions such as
configuration files and execution time such as hardware or software
environments. For compile time environments, see Configuration
Statement.

For execution time environment describe any situations which the
module may assume. For example, it may assume that the hardware is a
single processor, or that this module is always invoked with
interrupts disabled. The module might assume that it runs only in
user mode, that ASTs are disabled, or that storage allocation is
handled by the standard procedure library. In general, document here
anything out of the ordinary which the module assumes about its
environment.

6.13 EXCEPTIONS

SEE Signals

6.14 FACILITY STATEMENT

This section of the module preface gives the full name of the facility
of which this module is a part. See the Naming Conv:.entions chapter
for a list of the facilities.

Comm~nting Conventions
FUNCTIONAL DESCRIPTION

28-Feb-77 -- Rev 3 Page 6-14

6.15 FUNCTIONAL DESCRIPTION

The functional description section of the module and routine prefaces
should describe the purpose of the module or routine and should
document its interfaces precisely and completely

The functional description should also include the basis for any
critical algorithms used. This should include literature references
when available. For example, specify why a particular numerical
algorithm is used in the math library or why a particular way of
sorting was chosen.

The functional description appears in one of three places:

o As a self-contained short description on the first page of
the module and' routine prefaces.

o As the second or more page(s)
prefaces. In this case an
page.

of the module and routin
abstract appears on the first

o As a separate functional specification. In this case an
abstract appears on the first page of the module and routine
prefaces and a reference to the specification is included.

Commenting Conventions
FUNCTIONAL DESCRIPTION

28-Feb-77 -- Rev 3 Page 6-15

Example:

1++
FUNCTIONAL DESCRIPTION:

EXP(X) is computed using the following approximation technique:

If X > 88.028 then overflow
If X <= -89.416 then EXP(X) = O.
If IXI < 2**-28 then EXP(X) = 1.

Otherwise,

EXP(X) = 2**Y * 2**Z * 2**W

where
Y = integer(X*log2(E»
V = frac(X*log2(E» * 16
Z = integer (V)/16
W = frac(V)/16

2**W = (P + W*o) 1 (P - W*o)

P and 0 are first degree polynomials in W**2. The
coefficients of P and 0 are drawn from Hart 11121.

Powers of 2**(1/16) are obtained from a table. All
arithmetic is done in double precision and then rounded
to single precision at the end of calculation. The relative
error is less than or equal to 10**-16.4.

Commenting Conventions
FUNCTION VALUE

6.16 FUNCTION VALUE

SEE ALSO:
Completion codes

28-Feb-77 -- Rev 3

Functional and Interface Specification chapter

Page 6-16

A function value is returned in register RO if representable in 32
bits and registers RO and Rl if representable in 64 bits. If the
function value cannot be represented in 64 bits, one of the following
mechanisms is used to return the function value:

1. If the maximum length of the function value is known, the
calling procedure can allocate the required storage and pass
a pointer to the function value storage as the first
argument.

This method is adequate for CHARACTER functions in Fortran
and VARYING strings in PL/l.

2. The called procedure can allocate storage for the function
value and return in RO a pointer to a descriptor of the
function,value.

This method requires a heap (non-stack) storage management
mechanism.

Procedures, such as operating system CALLs, return a success/fai]
value as a longword function value in RO. Success returns have bit a
of the returned value set (Boolean true); failure returns have bit a
clear (Boolean false). The remaining 31 bits of the value are used to
encode the particular success or failure status.

Commenting Conventions
HISTORY: MODIFICATION

28-Feb-77 -- Rev 3

6.17 HISTORY: MODIFICATION

SEE ALSO:
Author
Comment: Maintenance
Module: Preface
Version Number

Page 6-17

The detailed modification history is a section of the module preface.
An entry is logged for each logical functional modification of the
module. For example, if the module is a terminal driver, and bug
reports state that sometimes interrupt handling is incorrectly masked
and also that deleted characters are handled incorrectly, then these
will be given TWO separate log entries: one entry for the interrupt
problem, one for the delete problem.

Each log entry is assigned a maintenance number. The maintenance
numbers begin with "1" and grow by unit increments. The log entry
specifies the maintainer's name, and a description of the problem
requiring maintenance.

If a problem that was thought fixed is reopened for further fixes i or
if a modification changes hands from one programmer to another, a new
log entry (having a new maintenance number) is made.

The maintenance numbers are used to affix maintenance comments at all
the places that were modified. This way, it becomes possible for
anyone to look at a maintained piece of software (especially anyone in
the field) and reconstruct what has happened.

Periodically, at the discretion of the appropriate supervisor, old
detailed current history log entries may be deleted, together with
their corresponding documenting comments (and line~ marked for

It is advised that the deletion not be made until the
software has proven itself in the field.

Commenting Conventions 2S-Feb-77 -- Rev 3 Page 6-1S
IMPLICIT INPUTS AND OUTPUTS

6.18 IMPLICIT INPUTS AND OUTPUTS

SEE ALSO:
Parameters: Formal
Parameters: Input and Output
Side Effects

These sections of a routine preface should include all locations in
global or own storage which are read or written by the routine. Any
locations which are addressed by parameters should not be documented
in these sections, see Parameters: Formal, and Parameters: Input and
Output.

ADDITIONAL SPECIFICS TO BE SUPPLIED

I
I
I
I

. I

Commenting Conventions
LEGAL NOTICES

6.19 LEGAL NOTICES

28-Feb-77 -- Rev 3 Page 6-19

A standard DEC copyright statement must always appear on the first
page of every source file. It is part of the module preface. The
legal notices must be part of the original program text, so that they
will be plainly stated on any DEC program listing (regardless of
whether the listing was produced by a language processor or was
directly printed from the source).

o The legal notices may undergo reViSion. Make sure that you
use the proper current version.

o The legal notices are always in upper case to bring emphasis
to them.

o When developing a new module, the year stated is the year of
the first release, not of the first coding.

o When modifying an existing program that has legal notices,

(1) Verify the statements' validity, and

(2) Add the year of modification to the year stated by the
existing copyright statement: DO NOT update that
existing year: add the current one (if different),
separating it from the last date with a comma (",").

The legal notices are of the following form:

COPYRIGHT (C) 1977
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS '01754

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A SINGLE
COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE INCLUSION OF THE
ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR ANY OTHER COPIES THEREOF,
MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON
EXCEPT FOR USE ON SUCH SYSTEM AND TO ONE WHO AGREES TO THESE LICENSE
TERMS. TITLE TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES
REMAIN IN DEC.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

The license paragraph should be omitted from software which DEC does
not license (e.g., distributed through DEC US or not owned by DEC).

Commenting Conventions
MODULE

6.20 MODULE

28-Feb-77 -- Rev 3 Page 6-20

The module is a single body of text that is assembled as a unit. The
module is normally part of a larger program or facility that is
created by linking all of the component modules object code.

There must be some self evident identity justifying the module's
existence. That is to say, the module is not just an arbitrary
concoction of code, but a self evident unit of code. Typically, the
module consists of either:

o A single function or database, or

o A collection of related functions (e.g., all conversion
routines) each of which would be too small for an independent
module.

The word "module" is used in its hardware sense: a "black box" unit
that may be attached or detached, plugged in or out. In order to have
this desirable property of a "plug-in module", the module's interface
has to be as clean as possible Use formal argument carrying calls
for all routines in the module, avoid all functional side effects. In
the case of non-standard interfaces, try using a "standard"
non-standard interface (i.e., an interface that is uniform within the
program of which the module is part.)

The module should contain

THE FUNCTIONALITY,
THE WHOLE FUNCTIONALITY

AND NOTHING BUT THE FUNCTIONALITY!

Then, if it is known that a certain functionality is wholly and
exclusively localized to a given module, it becomes possible to
replace the module by a more efficient one, or selectively link it
into the larger program depending on the runtime requirements. The
ability to do this is more useful and important than any local
efficiency "hackery' that would jeopardize the module' s functional
identity. When in doubt, place each routine in a separate module.
Combine a few routines primarily when doing so allows own storage to
be used rather than global storage. Never combine many routines.

6.21 MODULE: DATA SEGMENT

SPECIFICS TO BE SUPPLIED

Commenting Conventions
MODULE: FILE NAME

6.22 MODULE: FILE NAME

28-Feb-77 -- Rev 3 Page 6-21

Each module exists as a distinct source text file. The name of the
file reflects the module's functionality and also the larger facility
of which it may be part.

The module is stored in a filename which is the non-facility part of
the name, see the Naming Conventions chapter. The file type is the
standard one for the source language. There is no special
significance to the file generation version (i.e., it need not match
the edit number or increase from release to release). The file is
stored in a directory which corresponds to the facility.

6.23 MODULE: PREFACE

The module preface provides uniform documentation of the module. It
contains certain control items (TITLE and IDENT) which are needed by
the linker, as well as the standard DEC copyright statement needed for
the protection of DEC's legal ownership rights. Apart from these
items, the module preface contains all of the information that might
be needed in order to know what the module is and does, what the
module's history is, and how the module relates to the larger software
product of which it is a part. This documentation should include the
design basis for any critical algorithms.

The module preface is described and illustrated in the Program
Structure Overview chapter. All module prefaces should rigorously
adhere to the standard format, so that they can be processed
mechanically. For example, it should be possible to extract
information from the module preface in order to compile technical
documentation. This can only be achieved if the module preface is of
uniform syntactical construction.

Commenting Conventions
PARAMETERS: FORMAL

6.24 PARAMETERS: FORMAL

SEE ALSO:

28-Feb-77 -- Rev 3

Implicit Inputs and Outputs
Parameters: Input and Output
Procedure
Routine: Preface

Page 6-22

The VAX-II hardware has a built-in advanced call/return mechanism with
provision for automatic argument passing. The caller specifies a list
of arguments. The called procedure expects parameters which
correspond one-to-one to the caller's arguments.

The procedure's parameters will be bound with the arguments of each
caller, at the moment of call. They are known as "formal parameters·
because they have no identity (i.e., specific memory address) on their
own, but assume the identity of whatever arguments the present caller
chooses to supply.

The argument list pointer AP always points at the base of the
caller-supplied argument list.

Commenting Conventions 28-Feb-77 -- Rev 3
PARAMETERS: INPUT AND OUTPUT

6.25 PARAMETERS: INPUT AND OUTPUT

SEE ALSO:
Calling Sequence
Implicit Inputs and Outputs
Parameters: Formal

Page 6-23

These sections of a routine preface should include any parameters
passed on the stack or in registers. Any parameters whose locations
are addressed directly in own or global storage should be documented
as implicit inputs and outputs. Any parameters which are passed via
the CALL AP-list mechanism should be documented as formal parameters
in the calling sequence.

ADDITIONAL SPECIFICS TO BE SUPPLIED

Commenting Conventions
PROGRAM

6.26 PROGRAM

SEE ALSO:
Module
Procedure

28-Feb-77 -- Rev 3 Page 6-24

An executable program consists of one or more object modules which
have been combined and formatted in such a way to be interpretable by
an operating system and its hardware.

The following general rules govern the division of program information
into modules:

o There is exactly one module within the program, termed the
main module, where execution of the program begins.

o If need be, any storage that is referenced by more than one
module (i.e., global storage) is declared in one or more
modules whose sole purpose is to declare/allocate global
storage.

o Separate program operations are divided into modules that
contain all of the routines related to a single capability.
Examples are symbol table management, binary output
generation, and so on.

o Module size is kept moderate in order to facilitate
incremental modification and to keep the system resources
needed for compilation within reasonable limits.

o When in doubt, place each routine in a separate module.

o Even the main routine is CALLed by an outer environment.
Typically this environment is the command interpretter.

Commenting Conventions
ROUTINE: PREFACE

6.27 ROUTINE: PREFACE

28-Feb-77 -- Rev 3 Page 6-25

The routine preface provides uniform documentation of the routine, for
the following purposes:

o External functional appearance: From the external point of
view, the routine is a "large scale" instruction, performing
a high-level function. Like any other instruction, it has to
be invoked in a precisely predetermined way and be supplied
with arguments of a predetermined form and nature. The
routine preface provides exact specifications of the
anticipated arguments.

o Runtime behavior: The routine's behavior is dependent on
both its input parameter value(s) and possible environmental
conditions. For example, the routine OPEN FILE is dependent
on being given a valid file name parameter~ as well as on the
existence and/or protection of the specified file. It may
fail for either reason. The routine's preface specifies the
behavior of the routine in case of functional failure:
specifies the completion codes that may be returned.

o Side effects: The routine's execution may have functional
side effects that are not evident from its invocation
interface. Such side effects are documented in the routine's
preface. This would include changes in storage a~location,
process status, file operations, and signals.

o Functional specification: The short functional specification
incorporated in the routine preface should be sufficiently
logical and lucid to enable the casual reader to get a fairly
accurate idea of what the routine does. This specification
should NOT describe HOW the algorithm operates; for that one
can read the code (an exception being certain esoteric or
elusive effects which otherwise would remain unnoticed from
reading the code). The functional specification should
explain WHAT the routine's execution accomplishes.

The routine preface is described and illustrated in the Program
Structure Overview chapter. All routine prefaces should rigorously
adhere to the standard format, so that they can be processed to
compile technical documentation.

REMEMBER: It is the CALLed routine which specifies how it is to be
called! It is the CALLER'S RESPONSIBILITY to invoke the routine in
the precise manner in which it expects to be invoked! The routine
preface provides all the necessary information needed in order to
determine how a routine is to be called.

Commenting Conventions
SIDE EFFECTS

6.28 SIDE EFFECTS

SEE ALSO:

28-Feb-77 -- Rev 3

Implicit Inputs and Outputs
Signals

Page 6-26

This section of the routine preface describes any functional side
effects that are not evident from its invocation interface. This
would include changes in storage allocation, process status, file
operations, and signals. In general, document here anything out of
the ordinary which the routine does to its environment. If its effect
is to modify own or global storage locations, document them as
implicit outputs rather than as side effects.

ADDITIONAL SPECIFICS TO BE SUPPLIED

Commenting Conventions
SIGNALS

6.29 SIGNALS

SEE ALSO:
Completion Codes
Condition Handler
Side Effects
UNWIND

28-Feb-77 -- Rev 3 Page 6-27

The most reliable means for indicating a software detected exception
condition occurring in a called procedure is for the called procedure
to return a completion code as a function value and for the caller to
check this return value for TRUE or FALSEe If it is necessary to
indicate an exceptional situation without returning a value, then
generate a CALL to LIB$SIGNAL to signal the exception. See Appendix D
of the System Reference Manual for details on signalling. Current
practice is to use this for indicating the occurrence of hardware
detected exceptions and for issuing system messages.

When a language or user wishes to issue a signal, it calls the
standard procedure LIB$SIGNAL. This routine searches the stack for
condition handlers. By convention, the top of the stack normally
contains a handler which uses the condition value argument to retrieve
a system message from the system message file. It then issues the
message to the standard output device. The default handler then takes
the default action depending on bit <0> of the condition value. If
the bit is set (TRUE) then execution is continued following the call
to LIB$SIGNAL. If the bit is clear (FALSE) then execution is
terminated and the condition value is available to the command
processor to control execution of the command stream.

When a language or user wishes to issue a signal and never continue,
it calls the standard procedure LIB$STOP. This routine is identical
to LIB$SIGNAL except that execution never continues.

Thus, the rules for handling exceptional cases in a procedure are very
simple:

1. Normally return a completion code to the caller as an
indicator of failure.

2. If this is not possible or desirable, issue a message by
calling either LIB$SIGNAL or LIB$STOP. Call the former if
the signalling procedure can meaningfully continue and the
latter if the signalling procedure cannot continue.

3. If the normal situation after issuing the message is to
continue execution, then the condition value should have the
low order bit set. If the normal situation is to terminate
after the message, then the low order bit should be clear.

In addition, the routine LIB$SIGNAL preserves all registers including
RO and Rl. Thus, it is possible to insert debugging or tracing
signals in a routine without alterring its register usage.

Commenting Conventions
VERSION NUMBER

6.30 VERSION NUMBER

SEE ALSO:
Comment: Maintenance
History: Modification
IDENT Statement
Module: Preface

28-Feb-77 -- Rev 3 Page 6-28

The VAX-II standard version number is used to provide unique
identification of all pre-released, released and inhouse software. It
is used both at the module and the facility level. When used for
modules, the ident represents the last change made to the module. For
facilities which are always bound together such as a compiler, the
ident of the module containing the start address is also used as the
ident of the facility. The facility (start module) ident must be
changed whenever the ident of any component module changes even if the
component comes from a library.

The version number is a compound string constructed
concatenation of the following discrete items:

of the

where:

<support> <version> • <update> - <edit> <patch>

o <support> is a single capital letter (or null) identifying
the support level of the program:

B benchmark version
D demonstration version
S special customer version
T field test version
V released or frozen version
X unsupported experimental version

Typically this letter is omitted from the module ident since
it more reflects the program as a whole than any of its
modules.

Commenting Conventions
VERSION NUMBER

28-Feb-77 -- Rev) Page 6-29

o <version> is a decimal leading zero-suppressed number:
starting with "0" and progressing by positive unit
increments. Numbers are never skipped. "0" is used prior to
the first release. "I" designates the first release, etc.
The version identifies the major release, or generation, or
base level of a program. It is incremented at the discretion
of the responsible supervisor whenever the software has
undergone a significant or major change. The module version
is incremented upon the first edit after a release so that it
reflects the next release.

o <update) if present is a period followed by a single decimal
digit indicating a minor release containing internal changes
but no significant external changes. Digits are never
sk ipped. Null designates the major release. "1" designates
the first update, etc. <update> is cleared when <version> is
changed.

o <edit> if present is a minus sign followed by a decimal
leading zero-suppressed maintenance number, starting wi th "I"
and progressing by positive unit increments. Numbers may be
skipped but may never be lower than that that of a previous
edit. The edit identifies any alteration of the source code.
It is incremented on every change even if modification
history comments are not being kept. Whether <edit> is
cleared on release is TO BE SPECIFIED.

o <patch) if present is a single capital letter identifying an
alteration to the program's binary object form. The patch
character begins with liB II and may be incremented up to "Z",
whenever a set of patches is released. This never appears in
the source of a module. <patch> is cleared whenever
<version) or <update) is changed.

Customers making changes to DEC produced software are advised to
:ollow similar procedures. Customer numbers should be designated by
3ppending a customer version and edit number to the DEC number and
putting it inside square brackets.

Examples:

PIP/X)

LINK/~/S. 2-329

LOGIN/VO.3-27

experiment before third release of PIP

released second update to version 5 of LINK:
edit level is 329

frozen version of LOGIN; part of base level 3
prior to initial release (during initial development):
edit level is 27

RUNOFF/VIO.2-527[7-93]
seventh customer version of RUNOFF based on the
second update to the tenth DEC version: DEC
edit level is 527; customer edit level is 93

Commenting Conventions
VERSION NUMBER

[End of Chapter 6]

28-Feb-77 -- Rev 3 Page 6-30

Digital Equipment Corporation COMPANY CONFIDENTIAL Page I

Title: VAX-II Software Eng. Assembler Formatting -- Rev 3

Specification Status: draft

Architectural Status: under ECO control

File: SE7R3.RNO

PDM .: not used

Date: 28-Feb-77

Superseded Specs: none

Author: P. Conklin, P. Marks, M. Spier

Typist: P. Conklin

Reviewer(s): R. Brender, D. Cutler, R. Gourd, T. Hastings, I. Nassi,
S. Poulsen, D. Tolman

Abstract: Chapter 7 gives each piece of the assembler formatting and
usage conventions in detail. The items are in alphabetical
order. Each item includes references to related topics,
gives the background and the rules, and then gives
templates and examples.

Revision History:

Rev I Description Author Revised Date
Rev 1 n .. ;,..;",~, .. Spier 14-Apr-76 'V~4,=,.&."g.&. ".
Rev 2 Revised from Review P. Marks 2l-Jun-76
Rev 3 After 6 months experience P. Conklin 28-Feb-77

$FORMAL macro
in assembly language .

$LOCAL macro
in assembly language .

SOWN macro
in assembly language .

Addressing, relative
in assembly language .

Block statement
Body, routine

CALL instruction
in assembly language .

CASE instruction
in assembly language .

Code PSECT . • . •
Common PSECT . • . .
Condition handler ...•
Conditional assembly.

Declaration
equated symbol

7-15

7-33

7-14

7-21

7-28
7-22

7-17

7-2
7-20
7-20
7-4
7-3

in assembly language • • • •• 7-5
validate

in assembly language • • • •• 7-32
variable

in assembly language. • 7-14, 7-20, 7-29, 7-33
weak

in assembly language • • • •• 7-34
Descriptor, call by 7-16

Entry, procedure
in assembly language • • • . 7-19

Equated symbol declaration
in assembly language • 7-5

Expression
in assembly language • 7-7

External symbol
in assembly language . 7-31

Formal parameter
in assembly language

Global label
in assembly language .

Global PSECT • . . . • •
Global symbol

in assembly language •

Handler, condition .•.

IDENT statement
in assembly language •

Include files
in assembly language •

Interlocked instruction
in assembly language .

Label

7-15

7-11
7-20

7-31

7-4

7-8

7-9

7-31

global
in assembly language . 7-11

in assembly language . 7-10
local

in assembly language 7-12
Library

in assembly language . 7-14
Listing control

in assembly languag~ . 7-14
Literal PSECT 7-20
Local label

in assembly language 7-12
LSB, .ENABL/.DSABL

in assembly language . 7-14

Macro
in assembly language . . . • 7-14

Multiple entry routine •• 7-23

Non-standard routine .

Order of routine .
Own PSECT

Parameter
formal

in assembly language . .
Procedure

entry
in assembly language .

Process synchronization
in assembly language

PSECT statement
in assembly language .

Queue instructions
in assembly language

Reference, call by •.
Relative addressing

in assembly language .
Routine

non-standard .
order

Routine body .
Routine entry, multiple

Stack local variable
in assembly language .

Statement
block

String instruction
in assembly language .

Structure
in assembly language .

Subtitle statement
Symbol

external
in assembly language . .

global
in assembly language .

7-24

7-25
7-20

7-15
7-17

7-19

7-31

7-20

7-20

7-16

7-21

7-24
7-25
7-22
7-23

7-33
7-26
7-28

7-28

7-29
7-25

7-31

7-31

in assembly language . . .
Symbol declaration, equated

in assembly language .
Synchronization, process

in assembly language .

TITLE statement
in assembly language

Unwind
in assembly language

Validate declaration
in assembly language

Value, call by .•••••••..
Variable

stack local
in assembly language . • . . •

Variable declaration
in assembly language • • • • • •

Weak declaration
in assembly language

.ENTRY directive .

.SBTTL statement .

7-30

7-5

7-31

7-31

7-32

7-32
7-16

7-33

7-14, 7-20, 7-29, 7-33

7-34

7-11
7-25

Assembler Formatting and Usage
Change History

Rev 2 to Rev 3:

28-Feb-77 -- Rev 3 Page 7-990

1. Split from chapter 6;
history.

see chapter 6 for earlier change

2. Correct comment column in all examples.

3. Add examples to .IDENT.

4. Add an ident comment to include files.

5. Add common .PSECT statements to description.

6. Limit source line length to 80 columns.

7. Local labels go to 65535.

8. Eliminate single exit point.

9. Change non-CALL to non-standard.

10. Move procedure here from chapter 6.

[End of SE7R3.RNO]

CHAPTER 7

ASSEMBLER FORMATTING AND USAGE

28-Feb-77 -- Rev 3

This chapter contains detailed information on formatting standards,
and instruction usage. For ease of reference, it is organized
alphabetically by topic. Each topic includes references to related
topics. Most entries also include examples or sample templates
illustrating the specific topic.

Assembler Formatting and Usage
CALL INSTRUCTIONS

7.1 CALL INSTRUCTIONS

SEE Procedure

7.2 CASE INSTRUCTIONS

SPECIFICS TO BE SUPPLIED

28-Feb-77 -- Rev 3 Page 7-2

Assembler Formatting and Usage
CONDITIONAL ASSEMBLY

7.3 CONDITIONAL ASSEMBLY

SEE ALSO:
Configuration Statement

28-Feb-77 -- Rev 3 Page 7-3

In the example of the configuration statement, the normal definition
library for this compilation is assumed to contain a dummy macro named
$FAC CHANGE DEF which can be superseded by a user supplied one. The
default values are defined only if the symbols are not defined by the
time the macro has been expanded. This is done in the source file in
the equated symbols section:

INCLUDE FILES:

EQUATED SYMBOLS:

.IIF NDF DEF LINES PPAGE, DEF LINES PPAGE=55

.IIF NDF MAX:LINE_WIDTH, MAX LINE WIDTH=132

Assembler Formatting and Usage
CONDITION HANDLER

7.4 CONDITION HANDLER

SEE ALSO:
Completion Codes
Signal
UNWIND

28-Feb-77 -- Rev 3 Page 7-4

For the primary purpose of handling hardware detected exceptions, the
VAX-II system supplies a mechanism for the programmer to specify a
handler function to be called when an exception occurs. This
mechanism may also be used for software detected exceptions.

Each procedure activation has a condition handler potentially attached
to it via a longword in its stack frame. Initially, the longword
contains 0, indicating no handler. A handler is established by moving
the address of the handler's procedure entry point mask to the
establisher'S stack frame.

In addition, the operating system provides two exception vectors at
each access mode. These vectors are available to declare handlers
which take precedence over any handlers declared at the procedure
level. These are used, for example, to allow a debugger to monitor
all exceptions, whether or not handled. Since these handlers do not
obey the procedure nesting rules, they should not be used by procedure
library code. Instead, the stack based declaration should be used.

When a condition handler gets control, it is given several arguments.
One of these indicates whether the exception occurred in Uthis"
handler's establisher or in a descendant of it. Another argument is
the specific condition which occurred. This is in the same form as a
completion code and bits <31:3> identify the specific condition.

For further details, see Appendix D of the System Reference Manual.
It describes in detail when the handler is called and what its formal
parameters are. In addition, the options of the handler are detailed.

Assembler Formatting and Usage
DECLARATION: EQUATED SYMBOLS

7.5 DECLARATION: EQUATED SYMBOLS

SEE ALSO:
Module: Preface
Parameters: Formal
Routine: Preface
variables: Stack Local

28-Peb-77 -- Rev 3 Page 7-5

Define the equated symbols in the proper place as indicated by the
module preface and the routine preface sections.

o Define the equated symbols in alphabetic order if there is no
other logical order indicated.

o If there is some indicated logical ordering, it may be
because of either of the following reasons:

o Equated symbol A is used in the definition of equated
symbol B, hence must have been defined prior to B.

o Equated symbols are used to define a based structure, and
have to be defined in the order dictated by the structure
definition. In this case precede the structure
definition with a block comment stating that this is a
logical structure definition, and how it is goinq to be
used. See block comment.

o The equated symbols are defined one per line. The symbol is
defined left aligned in the first character position of the
line. The definition line has a comment explaining the
nature and use of the symbol.

o A local eauated symbol is defined by means of the -:
operator. A global equated symbols is defined by means of
the - •• - operator.

Example:

Definition of equated symbols

CARRET=13
FORMFEED=12
LINEFEED=IO

:Carriage return character
:Form feed character
:Line feed character

For an example of a structure definition, see structures.

Assembler Formatting and Usage
DECLARATION: VARIABLES

7.6 DECLARATION: VARIABLES

SEE:
SOWN Macro
.PSECT Statement
Structures
Variables: Stack Local

7.7 DESCRIPTOR

SEE:
Parameters: Formal

28-Feb-77 -- Rev 3

Functional and Interface Specifications chapter

Page 7-6

Assembler Formatting and Usage
EXPRESSIONS

7.8 EXPRESSIONS

28-Feb-77 -- Rev 3 Page 7-7

The assembler allows for assembly-time expressions. Typically you
will use them when accessing data structures that are relative to some
base address. An important reason for using symbols in expressions is
so that all references will appear in a cross reference listing.

o Avoid using absolute numbers in your expressions, especially
numbers that are liable to change in the future. Define
suitable equated symbols: you will both enhance the
readability of your code and facilitate the modification of
such numbers without having to change any of your code.

o When you have recurring expressions, then further equate the
expression itself with a mnemonically meaningful symbol.

o The assembler expression evaluator does not know of operator
precedence. Expressions are evaluated in a strict
left-to-right order. Make use of angle brackets "< >" (the
assembler's notation for algebraic parentheses) to resolve
any ambiguity in evaluation precedence.

7.9 $FORMAL MACRO

SEE Parameters: Formal

Assembler Formatting and Usage
.IDENT STATEMENT

7.10 .IDENT STATEMENT

SEE ALSO:
Version Number

28-Feb-77 -- Rev 3 Page 7-8

The .IDENT statement is the second statement of the module. It has,
as its parameter, the current version number and edit level of the
module separated by a minus ("-"). These numbers correspond to the
last entry in the module's modification history.

Example:

.IDENT /3-47/

.IDENT /6.2-295/
edit 47: used in version 3
edit 295: used in version 6.2

Assembler Formatting and Usage
INCLUDE FILES

7.11 INCLUDE FILES

28-Feb-77 -- Rev 3 Page 7-9

The purpose of INCLUDE tlles is to centralize in one place
declarations and definitions that are common to multiple modules.
Data structure declarations, macro declarations, and constant
declarations are the principal contents of INCLUDE files.

INCLUDE files are usually in the form of a macro library. In this
case, it contains only macro declarations. In order to include
structure declarations and constants, the appropriate definitions are
included in a structure definition macro. When this macro is called,
all the symbols relating to that structure become defined. Refer to
the Symbol Naming Conventions chapter for the form of these symbols
and the macro name.

The source for INCLUDE files consist of the following:

1. A title comment

file-name - short description

2. An ident comment

; .IDENT /6.2-295/

3. A full set of legal notices.

4. The rest of a module preface to describe the file.

5. The text of the INCLUDE file. The text conforms to the
formatting rules for declarations.

6. An end comment

file-name - LAST LINE

7.12 INTERLOCKED INSTRUCTIONS

SEE Synchronization: Process

Assembler Formatting and Usage
LABEL

7.13 LABEL

SEE ALSO:
Label: Local
Procedure: Entry
Relative Addressing
Symbol

28-Feb-77 -- Rev 3 Page 7-10

A label is a symbol which names a statement. The label is delimited
by a colon.

o A label should be meaningful in that it should convey some
information about the purpose of the block it precedes.

o Left align all labels in column one of the source text.

o A label should be placed on a line of its own (i.e., not on
same line as the labelled item), and be commented unless it
is a local label. The comment should explain the logical
meaning of the label, and under what circumstances execution
reaches the label.

o A statement may sometimes have several (synonymous) labels,
in which case they are placed on subsequent lines, and
commented individually. NOTE: This practice is generally
discouraged. Generally, each item in the program should have
at most a SINGLE name. Only in rare cases will a single item
justifiably require several names, such as when two distinct
functions have been combined.

o The labelled statement is placed on the immediately following
line.

Example:

A LABEL:
- STATEMENT

ANOTHER LABEL:
SYNONYMOUS LABEL:

STATEMENT

:Result is Negative
:Statement's Comment
:Used if GEN SWITCH = OFF
:Used if GEN SWITCH = ON
:Statement's Comment

Assembler Formatting and Usaqe
LABEL: GLOBAL

7.14 LABEL: GLOBAL

SEE ALSO:
Declaration: Equated Symbols
Symbol: Global

28-Feb-77 -- Rev 3 Paqe 7-11

A global label is declared by means of the double colon "::" operator
or in an entry operator.

Example:

PRINT: :

or

.WORD AM<register list>
:Global print routine
:Register save mask

• ENTRY PRINT,AM<reqister list> :Global print routine

Assembler Formatting and Usage
LABEL: LOCAL

7.15 LABEL: LOCAL

SEE ALSO:
LSB: .ENABL/.DSABL

28-Feb-77 -- Rev 3 Page 7-12

The local label is a special purpose construct "n$:" where "n" is a
decimal constant. The value of an explicitly stated "n" may be in the
range of integers 1 through 65535 (decimal). Local labels have a
limited scnpe of reference defined by (non-local) label brackets, or
by an explicit local symbol block.

o The local label is left aligned in column one of the source
text, on the same line as its named statement.

o Local labels serve as necessary but otherwise mnemonically
meaningless statement identifiers within a block statement.

o Local labels SHOULD NOT BE USED other then for flow of
control identification within a block statement! DO NOT use
local labels throughout logically unrelated sequences of
statements. If need be, label block statements mnemonically
in order to force a change of scope for the following local
labels.

o Local labels need be unique only within their given scope; a
local label's name may be reused within a new scope.

o Always number your local labels sequentially, from "10$:"
upwards by increments of 10 in the order of appearance.

o When inserting a new local label between two existing ones,
give it a number within the range of the two existing labels:
insert "15$:" between "10$:" and "20$:", "17$:" between
"15$:" and "20$:".

o The numbers should be multiples of ten at first release, and
should be renumbered on any release which makes extensive
changes. They should not be renumbered in the course of
maintenance patches or updates.

Assembler Formatting and Usage
LABEL: LOCAL

Example (correct):

LABELl:

10$:
20$:

STATEMENT
STATEMENT
STATEMENT

LABEL2:
10$: STATEMENT

Example (incorrect):

LABELl:
50$: STATEMENT
60$:

30$:
120$:

STATEMENT
STATEMENT
STATEMENT

28-Feb-77 -- Rev 3 Page 7-13

:Begin local label scope

:Begin local label scope

:Begin local label scope
:First label not "10$:"
:Free standing local label
:
:Decreasing label number
:Increment larger than 10

Assembler Formatting and Usage
LIBRARIES

7.16 LIBRARIES

SPECIFICS TO BE SUPPLIED

7.17 LISTING CONTROL

SPECIFICS TO BE SUPPLIED

7.18 $LOCAL MACRO

SEE Variables: Stack Local

7.19 LSB: .ENABL/.DSABL

SPECIFICS TO BE SUPPLIED

7.20 MACROS

SPECIFICS TO BE SUPPLIED

7.21 SOWN MACRO

SEE ALSO:
Structures

SPECIFICS TO BE SUPPLIED

28-Feb-77 -- Rev 3 Page 7-14

Assembler Formatting and Usage
PARAMETERS: FORMAL

7.22 PARAMETERS: FORMAL

SEE ALSO:
Implicit Inputs and Outputs
Parameters: Input and Output
Procedure
Routine: Preface
Structures
Variables: Stack Local

28-Feb-77 -- Rev 3 Page 7-15

The VAX-II hardware has a built-in call/return mechanism with
provision for automatic argument passing. The caller specifies a list
of arguments. The called procedure expects parameters which
correspond one-to-one to the caller's arguments.

The procedure's parameters will be bound with the arguments of each
caller, at the moment of call. They are known as "formal parameters"
because they have no identity (i.e., specific memory address) on their
own, but assume the identity of whatever arguments the present caller
chooses to supply.

The argument list pointer AP always points at the base of the
caller-supplied argument list. The first argument list element is
accessed as l*4(AP), and the Nth as N*4(AP). Rather than address
those arguments absolutely, define each procedure parameter as a
symbolically equated offset relative to AP.

The definition of symbolic formal parameters is made at the end of the
routine preface:

$FORMAL <- ;
PARl,- ;PARl.at.mf is symbolic name
PAR2;- .D1\O') _4=

, ,I; O.L'\.' • a '- • HI J. is symbolic name

PARn) ;PARn.at.mf is symbolic name

where the .at.mf specifies the access type, the data type, the passing
mechanism, and the passing format. See the Functional and Interface
Specifications chapter for more details.

Assembler Formatting and Usage
PARAMETERS: FORMAL

28-Feb-77 -- Rev 3 Page 7-16

In the body of the procedure, you now refer to the parameters
symbolically:

o Call by reference: refer to the value of the Nth parameter
by the form @PARn(AP). Refer to the ADDRESS of the Nth
parameter by the form PARn(AP).

o Call by value: refer to the value of the Nth parameter by
the form PARn(AP). You cannot make any meaningful reference
to the parameter's address. Warning: the argument list is
read only.

o Call by descriptor: the descriptor is referenced as in call
by reference. The structure typically has a more specific
referencing algorithm.

Giving the formal parameters symbolic names has the
advantages:

following

o The code is readable. The notation @FILNAM(AP) is more
meaningful than the notation @12(AP).

o If it so happens that the procedure's interface has to be
changed, and what used to be the Nth argument now is the
N+Ith argument, only the parameter definitions have to be
revised; the referencing code itself remains unaffected.
Moreover, any such modification is made within the routine
preface's documenting comment and is thus automatically
reflected in the module's documentation.

o The symbols appear in a cross reference listing.

Assembler Formatting and Usage
PROCEDURE

7.23 PROCEDURE

SEE ALSO:
Parameters: Formal
Routine: Entry: Multiple
Routine: non-standard
Routine: Order

28-Feb-77 -- Rev 3 Page 7-17

The procedure is a body of code that is CALLed by some other body of
code, or recursively by itself, to perform a certain function. The
procedure has a certain functional behavior which may be controlled
through caller supplied arguments. To tne procedure, the caller's
arguments are locally known as formal parameters; the procedure does
not have to know what the caller's arguments' exact memory address is.

VAX-II provides one calling mechanism supported by two instructions.
The choice of the instruction is strictly up to the caller. The
cal lee always uses AP to reference arguments:

o The CALLG instruction where the argument list is stored in a
caller supplied area, and

o The CALLS instruction where the argument list has been pushed
onto the stack by the caller, immediately prior to the call.

In either case, the argument list itself is read only. By convention,
it normally consists of an array of pointers to the actual argument
variables. This is NOT mandated by the machine! The argument list
may well contain the values of the arguments.

o According to these conventions, all argument lists by default
contain pointers to the argument variables (known as IIcall by
reference").

o If a procedure is called with argument values ("call by
value"), then this fact must be prominently displayed in the
procedure preface, in form of a specific notation (see
Parameters: Formal).

The procedure may have local variables. Such variables may be either
permanently allocated in memory (as a .BLKB, .BLKW or .BLKL
allocation) or they may be allocated on the stack (see stack local
variables). Stack local variables are allocated upon entry into the
procedure, and de-allocated automatically upon return from the
procedure. The use of stack locals results in more efficient memory
utilization, better working set behavior in the paging environment,
and allows the procedure to be called recursively. Even more
importantly, stack locals are truly local to the procedure activation
and the chance of their values getting clobbered, by some other code
that is external to the procedure, is extremely low.

The use of stack locals is recommended. Note that registers are also
in the category of stack local variables, assuming that they were
specified to be saved in the procedure's entry mask. In general, the

Assembler Formatting and Usage
PROCEDURE

28-Feb-77 -- Rev 3 Page 7-18

only non-stack variables to be used by a procedure are the variables
corresponding to some permanent database that the procedure is
responsible for maintaining. As a rule, any variable whose value MUST
be remembered across procedure call/returns is permanently allocated;
all other variables are temporaries and should be stack resident.

Assembler Formatting and Usage
PROCEDURE: ENTRY

28-Feb-77 -- Rev 3 Page 7-19

7.24 PROCEDURE: ENTRY

SEE ALSO:
Routine: Entry: Multiple

The procedure entry consists of the procedure name label, and of the
procedure entry mask. The first word of a procedure that is called by
either CALLG or CALLS is interpreted by the hardware to be a
register-save mask. The mask, which is a word (=2 bytes), specifies
those registers that are to be saved by the calling mechanism. It
also specifies the integer and decimal overflow enables.

You have to specify those registers
registers used by your procedure,
preserved and restored upon return.

explicitly. You specify the
so that their values will be

Use the ~M operator to specify the list of registers to be saved:

or

ROUTNAME:
.WORD ~M<R2,R3,R4,RIO>

;Name of the procedure
;Save four registers

.ENTRY GLOBAL ROUTNAME,~M<R2,R3,R4,RIO> ;Save four registers

NOTE: Whenever you modify an existing program, and decide to use a
register, carefully verify the fact that the register is specified in
the procedure entry's save-mask.

REMEMBER: Being overzealous in specifying "efficient" register save
masks may cause bugs which are extremely difficult to find; not
necessarily in YOUR procedure, but rather in the procedure that CALLed
yuu. That calling procedure may be from the library, and the bug
symptom may be extremely horrible and impossible to trace to YOUR
procedure which caused the bug by clobbering the caller's register(s).

If your procedure invokes a non-standard routine your entry mask must
specify all registers used by that routine (even if that routine does
a PUSHR). This is necessary to allow for the case of a signal or
exception being generated and a condition handler UNWINDing the stack.
(See Condtion Handler, Signal, and UNWIND.)

Assembler Formatting and Usage
.PSECT STATEMENT

7.25 .PSECT STATEMENT

28-Feb-77 -- Rev 3

Typically, PSECTs have the following attributes.

Code PIC USR CON REL LCL SHR EXE RD NOWRT Align(2)
Literals NOPIC USR CON REL LCL SHR NOEXE RD NOWRT Align(2)
Own NOPIC USR CON REL LCL NOSHR NOEXE RD WRT Align(2)
Global NOPIC USR CON REL LCL NOSHR NOEXE RD WRT Align(2)
Common NOPIC USR OVR REL GBL NOSHR NOEXE RD WRT Align(2)

Page 7-20

Since the assembler defaults attributes, the following declarations
are sufficient and hence preferred:

Code
Literals
Own/Global
Common

.PSECT

. PSECT

.PSECT

.PSECT

name,PIC,SHR,NOWRT,LONG
name,SHR,NOEXE,NOWRT,LONG
name,NOEXE,LONG
name,OVR,GBL,NOEXE,LONG

Subsequent references to the PSECT should give just the name with no
attributes.

7.26 QUEUE INSTRUCTIONS

SEE ALSO:
Synchronization: Process

SPECIFICS TO BE SUPPLIED

Assembler Formatting and usage
RELATIVE ADDRESSING

7.27 RELATIVE ADDRESSING

SEE ALSO:
Expressions

28-Feb-77 -- Rev 3 Page 7-21

The assembler allows the formulation of relative addresses of the form
"SYMB+OFFSET". The assembler also allows reference to be made to its
current location counter value dot (".").

0 Under NO CIRCUMSTANCES is it allowed to make relative address
references within the executable code. Code of the form:

BR .+4 iThis is a NO-NO
or,

JMP LABEL-23 iThis is a NO-NO

is ABSOLUTELY NOT TOLERATED!

o Relative addressing, including dot-relative addressing, is
useful --and sometimes necessary-- in the definition of data
structures or in the declaration of tables. See expressions,
formal parameters and stack local variables for examples.

Assembler Formatting and Usage
ROUTINE: BODY

7.28 ROUTINE: BODY

SEE ALSO:
Comment: Block
Procedure
Statement: Block

28-Feb-77 -- Rev 3 Page 7-22

The routine's body consists of the sequence of instructions
representing the function performed by that routine. The sequence
should be decomposed into major groups of instructions, where each
group performs a well defined logical operation. Each such group is
known as a block statement, and is preceded by its block comment. It
should be possible to get a fairly complete knowledge of the routine's
logic from simply reading the block comments.

Block statements appear in a logical sequence. The routine's logic
must naturally flow in a top-down sequence. All jumps (or branches)
must go down the page! The only exception is in the case of loops,
where an upwards jump is necessary.

NO SPAGHETTI-BALL CODE IS TO BE TOLERATED!

Note that most loops have their "end~ test at the beginning. This is
no exception to the above rule in that the loop label is at the top,
then the end test including the branch to the exit, then the body
followed by the branch back around the loop.

In general, a routine will not have a common exit point because a
single RSB or RET instruction performs the return. However, if there
is common code in several paths just before return, this should be
combined as one exit sequence located at the end of the routine.

Assembler Formatting and Usaqe
ROUTINE: ENTRY: MULTIPLE

7.29 ROUTINE: ENTRY: MULTIPLE

28-Feb-77 -- Rev 3 Page 7-23

A routine may have several entry points, for either of the followino
reasons:

o Two or more outwardly different routines effectively use the
same algorithm and have an otherwise identical interface.
For example, the routines to convert a binary value into
OCTAL, DECIMAL and HEXADECIMAL character representations have
a common interface and differ only by the conversion radix.

o A single function may have two or more variants necessitating
different interfaces. Por example, both PRINT and PRINT NL
are entries to the routine that prints a line. The first
prints the line without a terminating <newline>, the second
prints the line and issues a <newline>.

In either case, each entry point is to be documented with a full
routine header. Define the entry point, do some setup computation
(setting a flag and/or copying the arguments in the case of
non-uniform parameters), then transfer to a common label. In the
following example, the mandatory routine headers were ommitted for
clarity's sake.

Example:

The binary to octal conversion entry

• ENTRY BIN TO OCT,AM<register list> :Binary to octal
MOVL t8,RAOIX :Set radix = 8
BR common

<separator>

The binary to decimal conversion entry

• ENTRY
MOVL
BR

<separator>

BIN TO DEC,AM<register list> :Binary to decimal
110~RADIX ;Set radix = 10
common

The Binary to hexadecimal conversion entry

. ENTRY
MOVL

<separator>
COMMON:

BIN TO HEX,AM<register list> :Binary to hex
t16~RADIX :Set radix = 16

:Common conversion code

Assembler Formatting and Usage
ROUTINE: NON-STANDARD

7.30 ROUTINE: NON-STANDARD

SEE ALSO:
Procedure
Routine: Preface

28-Feb-77 -- Rev 3 Page 7-24

The non-standard routine differs from the procedure in the fact that
it is invoked with the JSB, BSBB, or BSBW instruction and returns by
means of tpe RSB instruction, whereas the procedure is invoked with
either the CALLG or the CALLS instructions and returns by means of the
RET instruction.

The non-standard routine has no formal stack frame allocation, nor any
hardware supported argument passing mechanism. Arguments are passed
in predesignated global localities, most typically in register~ or
pushed onto the stack.

Code and comment the non-standard routine according to the very same
rules laid down for the procedure, as exemplified in the Program
Structure Overview chapter. However:

o The non-standard routine's entry point MUST NOT consist of a
register save mask. If you have to save registers, use an
explicit PUSHR instruction.

o Unlike the RET instruction, the stack does not get cleaned
automatically, nor do saved registers get restored
automatically. Before performing the RSB instruction, adjust
the top-of-stack and perform a POPR instruction (if
necessary) to restore the explicitly saved registers (if
any).

o In the routine preface, clearly indicate that this is a
non-standard routine and not a procedure. Clearly specify
where the call arguments are to be found, and in what order
(especially important if they are pushed onto the stack).
These are documented in the INPUT PARAMETERS section.
Similarly document the output registers and stack in the
OUTPUT PARAMETERS section.

Assembler Formatting and Usage
ROUTINE: ORDER

7.31 ROUTINE: ORDER

28-Feb-77 -- Rev 3 Page 7-25

The following rules apply to the ordering of routine declarations:

o All routines appear together as a group and come after all
the declarations in a module.

o Routines are ordered by their use. That is, if routine "A"
calls routine "B" then routine liB" appears after "A".

o Mutually recursive routines are ordered by principal entry
first.

7.32 .SBTTL STATEMENT

Whenever you switch from one major logical text element to another,
you would normally insert a formfeed to force the new element onto a
page of its own (e.g., the module's history, declarative part, and the
routine(s)). Begin each such logical element with a .SBTTL statement
that will cause that subtitle text then to be reprinted on each
successive page of the module element.

If two consecutive logical elements will fit entirely on one page with
ample excess space, then the form feed can be replaced by four blank
lines. The .SBTTL and comments are always included.

Assembler Formattinq and Usage
STATEMENT

28-Feb-77 -- Rev 3 Page 7-26

7.33 STATEMENT

SEE ALSO:
Comment
Statement: Block

The statement is a sinqle functional step specification
algorithm. This definition includes functional specifications
the "assembler machine" as distinct from VAX-II proper
assembler directives as distinct from VAX-II instructions).
includes higher-level instructions that were defined by means
MACRO facility.

The statement is of the general form:

[LABEL] :
OPCODE [OPERAND LIST]

Where:

,Optional label
,Opcode and operands

o [LABEL] is an optional statement label.

of the
made to

(i.e.,
It also
of the

o OPCODE is a VAX-II Op-Code, or an assembler directive, or a
MACRO. It is placed at character position 9 (one tab stop
from the left margin).

o [OPERAND LIST] is an optional list of one or more operands,
separated by commas (.,.). The operand list begins on
character position 17 (two tab stops from left margin).

Typically, the statement requires a single line of source text, for
example:

MOVL fIO,RS :Initialize loop counter

The assembler listing format allows 80 column input lines. VAX-II
instructions, however, may be very lengthy, because:

o The instruction has a large number of operands, or because

o The operands themselves are ·voluminous·.

In addition, because of the object code display constraints, a
significant portion of the object listing is dedicated to other than
the source text, whose display space is therefore limited. It is
therefore very possible that a single statement may not gracefully fit
on a single line of text (or even not fit at all).

Assembler Formatting and Usage
STATEMENT

28-Feb-77 -- Rev 3 Page 7-27

The statement may be broken into two or more lines of text by means of
a statement continuation mark, which is a hyphen ("-"). The mark must
be the last non-blank character preceding the comment delimiter. For
example:

EDIV BIRTHDAY_CAKE,THREE, - ;Divide THREE by CAKE
QUOTIENT,REMAINDER ;Compute CAKE'th of THREE

In general:

o The multiple line statement IS NOT a block statement.

o Use your judgement in best applying the statement
continuation feature. It may be put to good use by providing
more extensive commenting space on an operand by operand
basis, if necessary. Alternatively, there may be good reason
to write the statement on a single line (assuming that it
fits) and putting the comment on the following line.

o Take pride in producing the most aesthetic looking and
consistent source code possible. Having "Raggedy Anne" text
and undulating comments is not very pretty. Use the multiple
line statement feature to achieve the nicest looking code
possible.

o Remember to comment each and every statement. In case that
the statement is self evident and needs no comment, remember
that a semicolon (";") comment delimiter is still mandatory.

Assembler Formatting and Usage
STATEMENT: BLOCK

7.34 STATEMENT: BLOCK

28-Feb-77 -- Rev 3 Page 7-28

A number of statements forming a larger logical unit within the
program is known as a block statement. A block statement must not be
labelled with a local label (it may include local labels in addition
to its own). The block statement need not have a label: however, if
it does have local labels then it must be tagged with a label
identifying the block.

o The block statement is separated from its predecessor and
successor statements (and/or comments) by a blank line. Its
label(s), if it has any, is an integral part of the block
statement.

o The block statement is to be preceded by a block comment.

Example:

<skip>
;+

This is the statement's block comment
i-
<skip>
OPTIONAL LABEL:

STATEMENT
10$: STATEMENT

STATEMENT
<skip>

7.35 STRING INSTRUCTIONS

SPECIFICS TO BE SUPPLIED

:Label's comment
;
:Optional local labels

Assembler Formatting and Usage
STRUCTURES

7.36 STRUCTURES

SEE ALSO:
SOWN Macro
Parameters: Formal
Variables: Stack Local

28-Feb-77 -- Rev 3 Page 7-29

Structures are allocated under program control. They may appear in
the stack, as formal parameters, or at arbitrary places in memory.
They are given symbolic offsets from their base and are referenced
relative to some base register.

To declare structures, you have to

(1) Define their symbolic offset names, and to

(2) Explicitly allocate space for them.

Example:

Definition of a 3-item based structure

;ITEM1's offset
;ITEM2's offset
;ITEM3's offset

ITEM1=O
ITEM2=4
ITEM3=8
ST LNG=12 ;Length of this structure

o Assuming memory area VAR to be
compute the address of ITEMn
<VAR+ITEMn>.

structured,
by using

you will now
the expression

o Assuming the address of the structure to be in base register
Rl, you will access the first byte of ITEMn by specifying the
operand ITEMn(Rl).

ADDITIONAL SPECIFICS TO BE SUPPLIED about MOL, SOL, and SYSDEF macros.

Assembler Formatting and Usage
SYMBOL

7.37 SYMBOL

28-Feb-77 -- Rev 3 Page 7-30

A symbol is an alphanumeric string of up to 15 characters in length.
It consists of letters "a" through HZ" and "A" through "Z", digits 0
through 9, and special characters underline (""), dot (".") and
currency sign ("S").

o The assembler does not distinguish between upper- and
lower-case alphabetic characters constituting a symbol. Thus
"symbol", "SYMBOL", "SyMbOl", "sYmBoL" etc. are all
interpreted as equivalent. To minimize reader confusion,
never use lower case in symbols. Lower case should be used
only in comments and in text strings.

o The underline character "_" is used to separate the parts of
a compound (or qualified) name. Freely use the underline
when constructing names to improve readability and
comprehension.

o The ability of a programmer to infer various attributes of a
symbol simply by virtue of its name is a very desireable
characteristic.

o The currency sign "S" has been given a special significance
within the global VAX-II software architecture.

Refer to the Naming Conventions chapter for the exact
construction rules.

symbol

Assembler Formatting and Usage
SYMBOL: EXTERNAL

7.38 SYMBOL: EXTERNAL

28-Feb-77 -- Rev 3 Page 7-31

External symbols will be declared automatically by the assembler. A
declaration is needed only if the reference is to be weak (see .WEAK
Declaration).

7.39 SYMBOL: GLOBAL

SEE ALSO:
.VALIDATE Declaration
.WEAK Declaration

A global symbol is defined by means of the double colon "::" for label
symbols, and by means of the double equate "==" for equated symbols.

Example:

SWITCH: :
.BLKW

TRUE==l
1

7.40 SYNCHRONIZATION: PROCESS

SEE ALSO:
QUEUE Instructions

SPECIFICS TO BE SUPPLIED

7.41 .TITLE STATEMENT

SEE ALSO:
Module: Preface

iGlobal variable SWITCH
iGlobal value TRUE

The .TITLE statement is the very first statement of the module. Its
operand is the module name. Any text following the module name is
used in the header of the object code listing. The text following the
module name should be a terse functional description of the module.

Example:

.TITLE FILE MGR - The STARLET file manager subsystem

Assembler Formatting and Usage
UNWIND

7.42 UNWIND

SEE ALSO:
Condition Handler
Signal

28-Feb-77 -- Rev 3 Page 7-32

If a condition handler gets control, it has several options over the
flow of control. It can resignal the condition for another handler to
take control, or it can signal a distinct condition for the same
purpose. Alternatively, it can continue from the signal. The final
option is to terminate the procedures in progress, unwind the stack,
and branch to a specific recovery address. This would be done when
the current operation is to be aborted, but the program is not to be
terminated.

When an unwind is requested, each stack frame is examined in order to
restore all the saved registers and Program Status Word (PSW). Before
each stack frame is removed, it is examined to see if a condition
handler has been established. If so, the handler is called first.
This allows a procedure to gain control if it is aborted or if any
routine below it aborts. This might be used, for example, to release
any resources such as dynamic storage which the routine might have
acquired.

7.43 .VALIDATE DECLARATION

SEE ALSO:
Symbol: External
Symbol: Global
.WEAK Declaration

This is used in addition to a global declaration for any symbol which
is made global only to validate consistency across several modules.
For example, if two modules assume that the length of a particular
structure is 47, then both might declare

.VALIDATE STR LEN
STR LEN==47

This would cause the LINKER to validate that both declarations are the
same. The . VALIDATE declaration should not be made if any routine
references STR LEN as an external. It is used only to mark global
definitions wh~se purpose is totally redundant.

Assembler Formattinq and Usage
VARIABLES: STACK LOCAL

7.44 VARIABLES: STACK LOCAL

SEE ALSO:
Expressions
Parameters: Formal
Structures

28-Feb-77 -- Rev 3 Paqe 7-33

Stack local variables are allocated at the base of the procedure's
stack frame, and qiven symbolic names that are offsets relative to the
procedure's stack frame pointer FP.

Variables may be allocated starting w;th the longword followinq FP
(the word that would be used by a PUSHL instruction).

To declare stack local variables, you have to:

(1) Define their symbolic offset names, and

(2) explicitly allocate space for them on the stack.

Symbolic definition is performed using the $LOCAL macro, as in:

Definition of stack local variables

$LOCAL <-
<1,8>,- :Ouad variable 1
J,- : Lonq variable J
<K,2>,- :Word variable K
<8,1» :Byte variable B

The actual allocation is performed usinq a SUBL2 instruction, as in:

The routine entry point

ROUTNAME:
.WORD
SUBL2

AM<register list)
'$$LOCAL_SIZE,SP

:The routine's name
:Save mask
:Advance SP past allocation

Whenever you want to reference one of the stack local variables, do so
by using its symbolic name VAR based on the contents of FP (e.g.,
"VAR(FP)"). Such as:

MOVB
ADDL3

R7,B(FP)
1 (FP) ,4+1 (FP) ,J (FP)

:Store byte in local B
:Add both halves of 1 into J

Compare the allocation of these local variables to the structure
definition shown in the structures section. Notice the difference
that is due to the stack's backwards growth.

Assembler Formatting and Usage
.WEAK DECLARATION

7.45 .WEAK DECLARATION

SEE ALSO:
.VALIDATE Declaration

28-Feb-77 -- Rev 3 Page 7-34

"The .WEAK declaration can be made on either external or global
definitions. In both cases its meaning is that the symbol should be
matched by the LINKER if defined, but that this reference or
definition should not force the loading of a library module.

When used on a global declaration, then the definition of the symbol
in this module is not sufficient to cause this module to be loaded
from a library. Thus, it should be used for any subordinate symbols
defined in a library module.

When used on an external, then the reference to this symbol will not
cause it to be defined by loading a library module. If some module
which is loaded defines the symbol, then it will be defined for this
reference. If nothing defines the symbol, it is automatically
satisfied as defined as 0 without any error messages. Thus, it can be
used to establish a pointer to an optional module or data base. If
the module is loaded, the pointer is defined. Otherwise the pointer
has value O.

[End of Chapter 7]

Digital Equipment Corporation COMPANY CONFIDENTIAL

Title: VAX-II Software Eng. BASIC Formatting -- Rev 3

Specification Status: draft

Architectural Status: under ECO control

File: SE8R3.RNO

PDM i: not used

Date: 23-Feb-77

Superseded Specs: none

Author:

Typist: P. Conklin

Reviewer(s) :

Page I

Abstract: Chapter 8 gives each piece of the BASIC formatting and
usage conventions in detail. The items are in alphabetical
order. Each item includes references to related topics,
gives the background and the rules, and then gives
templates and examples.

Revision History:

Rev i Description Author Revised Date

CHAPTER 8

BASIC FORMATTING AND USAGE

23-Feb-77 -- Rev 3

This chapter contains detailed information on formatting standards,
and instruction usage. For ease of reference, it is organized
alphabetically by topic. Each topic includes references to related
topics. Most entries also include examples or sample templates
illustrating the specific topic.

THE CONTENTS ARE TBS

[End of Chapter 8]

BASIC Formatting and Usage
Change History

Rev 2 to Rev 3:

1. Create null chapter.

[End of SE8R3.RNO]

23-Feb-77 -- Rev 3 Page 8-990

Digital Equipment Corporation COMPANY CONFIDENTIAL

Title: VAX-II Software Engineering BLISS Formating and usage
Specification Status: draft

Archetectural Status: under eco control

File: SE9R3.RNO

PDM: not used

Date: 2l-Feb-77

Superceded specs: none

Author: P. Marks, M. Spier

Typist: G. Hesley, R. Murray

Reviewer(s): D. Cutler P. Conklin R. Gourd I. Nassi S. Poulsen

Page I

Abstract: This chapter is a collection of procedures and examples of
specific BLISS related formats and language usages. It is
organized by keywords, in alphabetical order.

Revision History:

Rev i
Rev 1
Rev 2
Rev 3

Description Author Revised Date
Original P.Marks, M.Spier 2-Aug-77
Review P.Marks,I.Nassi l-Jan-77
SEM integration R.Murray 3l-Feb-77

Declaration
Declaration:
Declaration:
Declaration:
Declaration:
Declaration:

format
forward .
forward routine . . .
macro
order .

Expression •
Expression: assignment.
Expression: block ..•.
Expression: case ..•
Expression: format ••
Expression: if/then/else .
Expression: incr/decr ..•...
Expression: select
Expression: while/until/do ...•

Labels .

Name .

Require files
Routine
Routine: format
Routine: name .••.•.
Routine: order .•
Routine: preface

Structire: block •
Structure: block •
Structure: declaration •

9-2
9-2 to 9-3
9-2
9-3
9-2 to 9-3
9-2, 9-4, 9-17

9-3, 9-5
9-5
9-5, 9-7
9~5 to 9-6
9-5, 9-8
9-5, 9-9
9-5, 9-10
9-5, 9-11
9-5, 9-12

9-13

9-15

9-16
9-17
9-17
9-17
9-17
9-17

9-18
9-19
9-18 to 9-19

Bliss Formating and Usage
Change History

Rev 2 to Rev 3:

21-Feb-77 Page 9-990

1. split from chapter 6 to exclude those features common to both
Bliss and Assembler.

[end of se9r3.rno)

CHAPTER 9

BLISS FORMATING AND USAGE

2l-Feb-77 -- Rev 3

The following is an explanation of some of the terms used throughout
this section.

Logical tab

Physical tab

Tab

Indentation level

Inden~ed

Line

equivalent to four (physical) spaces.
Used for indenting BLISS source text.
Two successive logical tabs should be
typed as one physical tab.

the ASCII TAB character (octal 11).
All standard DEC software interprets
the tab as equivalent to moving the
carriage or cursor to the next column
number- which is one more than a
multiple of eight.

used throughout this manual to mean
logical tab.

the number of logical tabs a line of
text is offset to the right of the
left page margin.

offset one logical tab to the right of
the text on the preceding line.

The contents of one record.

Bliss Formating and Usage
DECLARATION

2l-Feb-77 Page 9-2

9.1 DECLARATION

See:
Declaration: Format
Declaration: FORWARD ROUTINE
Declaration: MACRO
Declaration: Order

9.2 DECLARATION: FORMAT

Declarations are written according to the following format:

declaration-keyword(s)
declaration-item,
declaration-item,

declaration-item;

Comment
Comment

Comment

The following rules apply to declaration formatting:

o Each declaration-keyword appear(s) alone on a line and starts
at the left margin of the block in which the declaration is
being made.

o The declaration-item(s) being declared appear indented one
logical tab with respect to the declaration-keyword and on a
separate line(s).

o Declaration-items are in an order meaningful to the program
organization, or in alphabetical order.

o Each declaration-item has a line comment on the same line
describing, in most cases, the meaning and/or usage of the
declaration-item being declared.

Bliss Formating and Usage
DECLARATION: FORWARD ROUTINE

9.3 DECLARATION: FORWARD ROUTINE

SEE ALSO:
Declaration: Format

2l-Feb-77

The following rules apply to FORWARD ROUTINE declarations:

o forward ROUTINE declarations for a module are
together and appear at the beginning of the module.

Page 9-3

grouped

o The FORWARD ROUTINE declaration names all the routines to be
declared in the module in order of occurrence.

o Each routine name is on a separate line with a line comment
briefly explaining its function.

o The FORWARD ROUTINE declaration serves as a table of contents
for the module.

9.4 DECLARATION: MACRO

SEE ALSO:
Declaration: Format
Expression

The following rules apply to MACRO declarations:

o MACRO declarations follow the general formatting
outlined under DECLARATION: format.

rules

o If the body of the MACRO is composed of declarations and/or
expresslons, then the body conforms to all the formatting
rules for declarations and/or expressions.

o If the macro has a formal-list, then the commenting rules for
ROUTINES should be applied, in so far as describing each of
the formal parameters and commenting on the function of this
macro.

Bliss Formating and Usage
DECLARATION: ORDER

9.5 DECLARATION: ORDER

SEE ALSO:
Declaration:
Declaration:
Declaration:
Routine

FORMAT
FORWARD
MACRO

21-Feb-77

We group the BLISS declarations as follows:

1. FORWARD declarations

2. REQUIRE declarations

3. All other declarations

4. ROUTINE declarations

Page 9-4

The first, second and fourth groups are discussed in their own
sections. The third group lumps all other declarations (e.g.,
STRUCTURES, LITERALS, MACROS, etc.), which have module-wide or
routine-wide scope, into one major group.

The ordering of the different declarations within this third group is
important and is based on the following rules:

o Group logically related declarations together. For example,
a specific structure may be used in conjunction with certain
macros. These declarations would then appear together as a
group.

o As much as possible, these logical groups will appear in the
order of their use within the module or routine.

o Separate the logical groups from each other by the use of
appropriate separators.

o Within a logical group of declarations group specific
declarations together by type. For example, all MACROS will
be defined via one or more MACRO declarations.

A word of caution: Owing to the nature of the BLISS language, it is
necessary to declare all variables, structures, routines, etc. before
they are used. Care should be taken so as not to use something before
it is declared. In any event, the compiler will complain.

Bliss Formatinq and Usage
EXPRESSION

9.6 EXPRESSION

SEE:
Expression: Assiqnment
Expression: CASE
Expression: Block
Expression: Format
Expression: IF/THEN/ELSE
Expression: INCR/DECR
Expression: SELECT
Expression: WHILE/UNTIL/DO

9.7 EXPRESSION: ASSIGNMENT

21-Feb-77

Assiqnment expressions are usually of the form:

name = expression

The following rules apply to assignment expressions:

Page 9-5

o If the entire assignment expression will not fit on one line
because of its length then place the variable and the equal
sign on one line and continue the expression indented one
logical tab on the next line.

Examples (correct):

name = a-short-expression: 1 comment

(Note the space before and after the
= sign.)

name = a-short-expression:

name =
a-long-long-long-long-expression:

a long long
comment

a comment for
this expression

Bliss Formating and Usage
EXPRESSION: CASE

2l-Feb-77 Page 9-6

9.8 EXPRESSION: CASE

CASE expressions are set up according to the following skeletal
example:

CASE index
FROM low-case TO high-case OF
SET

case-label-action:

case-label-action;

case-label-action;

TES

where case-label-action is:

or

[case-label] :
! Explanatory comments
! for this case.

case-action;

[case-label]: case-action; comment

The following rules apply to CASE expressions:

o The body of the CASE expression is indented one logical tab
with respect to the keyword CASE.

o Each case-Iabel-action is separated from another
case-Iabel-action by at least one blank line.

o The choice of format for the case-Iabel-action is dependent
on the size (number of expressions) of the case-action. A
large case-action will use the first format; a small
case-action the second format.

o Each of the case-actions follows the rules for expression
formatting.

o It is desirable that the case-label be a descriptive and
meaningful name that has been bound to its value. A
case-label then becomes a label or signal to the reader
indicating what value caused this case-action to be used.

Bliss Formating and Usage
EXPRESSION: BLOCK

9.9 EXPRESSION: BLOCK

2l-Feb-77 Page 9-7

A block expression provides a means of grouping declarations and/or
expressions into a sinqle structural entity.

The following rules apply for BLOCK expressions:

o The block expression is separated from its predecessor and
successor expressions (and/or comments) by a blank line.

o The block expression is to be preceded by a block comment.

o Constituent declarations and expressions of a block are
indented to the same level as the BEGIN-END delimiters.

o In a block expression, the last expression in the block is
followed by a ":" unless the value of the block expression is
actually used in an enclosing expression.

Bliss Formating and Usage
EXPRESSION: FORMAT

9.10 EXPRESSION: FORMAT

2l-Feb-77

Specific formatting rules apply for each kind
expression. In general, the following rules apply:

of

o Expressions qenerally appear on separate lines.

Page 9-8

executable

o Expressions are left justified to the current indentation
level.

o Expressions which fit on one line may appear on one line.

o Expression subparts, when indented, are indented one logical
tab to the right of the start of the expression. Specific
indentation rules are given in the appropriate sections.

o Compound-expressions consisting of more than one line are
bounded by BEGIN-END delimiters rather than by parentheses.

o In general, for arithmetic expressions:

o Place one space around the binary W+W and w_w.

o Place one space before the unary W+W and w_w.

o Place no spaces around the w.w and w/w operators.

o In lists, place one space before the wC w and one space
after each w,w and the W)w.

Bliss Formating and Usage
EXPRESSION: IF/THEN/ELSE

2l-Feb-77 Page 9-9

9.11 EXPRESSION: IF/THEN/ELSE

IF expressions are written in either of two formats!

or

IF test THEN consequence ELSE alternative

IF test
THEN

consequence
ELSE

alternative;

o In the first case, the entire IF expression may be placed on
one line only if the IF expression fits on one line.

o Otherwise, the second format is used.
alternative expressions are indented
respect to the keyword IF.

The consequence and
one logical tab with

If the test is a compound test then the IF expression is written in
one of the following manners:

or

IF test AND test AND test
THEN

consequence
ELSE

alternative

IF test AND
test AND
test

THEN
consequence

ELSE
alternative

o The first format is used when the compound test can fit on
one line. Otherwise, the second format is used.

Bliss Formating and Usage
EXPRESSION: INCR/DECR

2l-Feb-77 Page 9-10

9.12 EXPRESSION: INCR/DECR

INCR/DECR expressions are written according to one of the following
formats:

or

INCR loop-index FROM first TO last BY step DO
loop-body;

INCR loop-index
FROM first TO last BY step DO
loop-body;

The following rules apply to INCR/DECR expressions:

o Use the first format when the FROM-TO-BY expression will fit
on one line. Otherwise, use the second format.

o The loop-body is indented one logical tab with respect to the
keyword INCR/DECR.

Bliss Formating and Usage
EXPRESSION: SELECT

2l-Feb-77 Page 9-11

9.13 EXPRESSION: SELECT

SELECT expressions are set up according to the following skeletal
example:

SELECT select-index OF
SET

select-label-action:

select-label-action:

select-label-action:

TES

where select-label-action is:

or

[select-label]:
! Explanatory comments
! for this select-label.

select-action

[select-label]: select-action: comment

The following rules apply to SELECT expressions:

o The body of the SELECT expression is indented one logical tab
with respect to the keyword SELECT.

o Each of the select-Iabel-action expressions is separated by
at least one blank line.

o The choice of format for the select-Iabel-actions is
dependent on the size (number of expressions) of the
select-action. A large select-action will use the first
format; a small select-action the second format.

o It is desirable that the select-label be a descriptive and
meaningful name that has been bound to its value. A
select-label then becomes a label or signal to the reader
indicating what condition or value caused this select-action
to be SELECTed.

Bliss Formating and Usage
EXPRESSION: WHILE/UNTIL/DO

2l-Feb-77 Page 9-12

9.14 EXPRESSION: WHILE/UNTIL/DO

WHILE/UNTIL/DO expressions are written in the following manner:

or

WHILE test DO
loop-body;

DO
loop-body

WHILE test;

The following rules apply to WHILE/UNTIL/DO expressions:

o The keyword WHILE or UNTIL is aligned with the current
indentation level.

o The loop-body is indented one logical tab with respect to the
keyword WHILE or UNTIL and follows the rules for expression
formatting.

Bliss Formating and Usage
IDENT MODULE SWITCH

9.15 IDENT MODULE SWITCH

2l-Feb-77 Page 9-13

The IDENT switch has, as its parameter, the current version number of
the module. This version number corresponds to the last entry in the
module's ABBREVIATED HISTORY.

9.16 LABELS

A label is a name, hence it must conform to the rules for constructing
names. It is delimited by a colon ":".

The following rules apply to labels:

o Labels, when used, appear alone on a line. The block to
which they refer follows on the next line indented one
logical tab with respect to the label.

o A label is meaningful in the sense that it conveys some
information about the block it is labelling.

9.17 MODULE: SWITCHES

Module switches appear in the module declaration and allow the
programmer to provide information about the module and to control some
aspects of the compiler's treatment of the module. Of special
importance is the IDENT switch (see IDENT Module Switch) and the MAIN
switch which specifies which routine is to be used to begin program
execution.

o Each module switch will appear on a line by itself. The
IDENT switch is first, the MAIN switch is second: any other
switches follow.

Bliss Formating and Usage
MODULE: SWITCHES

Example (correct):

MODULE EXAMPLE

2l-Feb-77

IDENT = '03',
MAIN = BEGINHERE,
RESERVE = (RO, Rl)

) =

Page 9-14

Bliss Formating and Usage
NAME

9.18 NAME

21-Feb-77

A Flame consists
_r ___ .L._ ~~~.L. ____ L ____ .L. __ _

Ul. un~ l.U 1.l.1.l.~~11 \";llC1lC1\";l.~l::;

1.

2.

ABC 0 E

abc d e

x y Z

x y z

3. 0 1 2 3 4 5 6 7 8 9

4. underline " "

5. dollar "$"

Page 9-15

~ ___ LL._

l.LUI1l {;n~ sets;

No distinction is made between upper and lowercase letters except in
string literals. Thus, Date Of_Birth is equivalent to date of birth.

The following rules apply to names:

o Freely use the underline "" when constructing
improve readability and comprehension. For
WRITEARECORD becomes WRITE A RECORD.

names to
example:

o The ability of a programmer to infer various attributes of a
symbol simply by virtue of its name is a very desirable
characteristic.

o Predefined and syntactically meaningful names are to be used
only for their intended purpose.

Bliss Formating and Usage
REQUIRE FILES

9.19 REQUIRE FILES

21-Feb-77 Page 9-16

The purpose of REQUIRE files is to centralize in one place
declarations and definitions that are common to multiple modules.
Data STRUCTURE declarations, MACRO declarations, and LITERAL
declarations are the principal contents of REQUIRE files.

REQUIRE files consist of the following:

1. file-name - description

2. A copyright statement and disclaimer.

3. A MODULE PREFACE.

4. The text of the REQUIRE file. The text conforms to the
formatting rules for declarations.

5. file-name - LAST LINE

Bliss Formating and Usage
ROUTINE

2l-Feb-77 Page 9-17

9.20 ROUTINE

SEE:
Declaration: Order
Routine: Format
Routine: Name
Routine: Order
Routine: Preface

9.21 ROUTINE: FORMAT

The following rules apply for ROUTINE formatting:

o The routine declaration is to start at the left margin.

o The routine body is to be indented one logical tab to the
right of the routine declaration.

o All other indentation follows the rules for declaration
and/or expression formats.

9.22 ROUTINE: N~~E

Global routine names should follow the naming conventions stated
earlier. Local routine names may be chosen at as desired.

9.23 ROUTINE: ORDER

The following rules apply to the ordering of routine declarations:

o All routine declarations appear together as a group and
constitute the last set of declarations in a module.

o Routines are ordered by their use. That is, if routine "A"
calls routine "8" then routine "8" is declared after "An.

Bliss Formating and Usage
ROUTINE: ORDER

2l-Feb-77 Page 9-18

o The oId~ring of routines is reflected in the FORWARD
declaration group appearing at the beginning of the module,

o Mutually recursive routines are ordered by principle entry
first.

9.24 STRUCTURE: DECLARATION

SEE:
STRUCTURE: Block

The format for the structure declaration is as follows:

STRUCTURE
structure-name [access formal list;allocation formal list]=

[structure size]
structure body;

The following rules apply to the structure declaration:

o The structure declaration format generally conforms to that
of macros

o The structure-name is indented one logical tab.

o The structure size and structure body are indented another
logical tab.

o The structure body contains one expression. The format rules
regarding expressions are in force starting with the
indicated indentation level.

In the instance where the expression part of the structure body is
simple, it may be contained on one line as seen below:

STRUCTURE
BLOCK[O,P,S,EiN,UNIT = %UPVAL] =

[N*UNIT]
(BLOCK+O*UNIT) <P,S,E>;

or, may be of such complexity as to require the use of most rules for
formatting expressions.

Bliss Formating and Usage
STRUCTURE: DECLARATION

2l-Feb-77

STRUCTURE
VECTOR1CH[IiN,UNIT = %UPVAL] =

[N*UNIT]
BEGIN

ENDi

LOCAL Ti
T=.Ii
IF .T LSS 1 OR .T GTR N
THEN

BEGIN
ERROR (. T) i
T=li
ENDi

VECTORICH + (.T - 1) * UNIT

9.25 STRUCTURE: BLOCK

SEE:
STRUCTURE: Declaration

Page 9-19

The structure called BLOCK is a predeclared structure which may be
used without an explicit declaration. If declared it would look as
follows:

STRUCTURE
BLOCK[O,P,S,E;N,UNIT = %UPVAL] =

[N*UNIT]
(BLOCK + 0 * UNIT)<P,S,E>i

Consider the following example.

OWN
X:BLOCK[2] ;

A = .X[O,O,16,O];
B = .X[O,16,16,O]
C = .X[1,O,32,O]

x is defined as a two word BLOCK whose first word has two fields, each
16 bits long and whose second word is a field 32 bits long. The above
assignment statements use the BLOCK definition to access each field.

Bliss Formating and Usage
STRUCTURE: BLOCK

2l-Feb-77

NOTE

For a further explination of the
structure declaration and built-in
structures, see the chapter on Data
Structures in the BLISS Language Guide.

Page 9-20

The BLISS programmer is strongly urged to hide the 4-tuple used to
access a BLOCK by using a "field macro" as follows:

MACRO
FIELD ONE = 0,0,16,0%,
FIELD-TWO = 0,16,16,0%,
FIELD-THREE = 1,0,32,0%;

Thus the access to the BLOCK X becomes:

A = .X[FIELD ONE];
B = .X[FIELD-TWO];
C = .X[FIELD=THREE];

This achieves a greater degree of readibility and facititates future
changes to the structure of X.

[end of chapter 9]

Digital Equipment Corporation COMPANY CONFIDENTIAL

Title: VAX-II Software Eng. COBOL Formatting -- Rev 3

Specification Status: draft

Architectural Status: under ECO control

File: SEIOR3.RNO

PDM t: not used

Date: 23-Feb-77

Superseded Specs: none

Author:

Typist: P. Conklin

Reviewer(s):

Page 1

Abstract: Chapter 10 gives each piece of the COBOL formatting and
usage conventions in detail. The items are in alphabetical
order. Each item includes references to related topics,
gives the background and the rules, and then gives
templates and examples.

Revision History:

Rev t Description Author Revised Date

COBOL Formatting and Usage
Change History

Rev 2 to Rev 3:

1. Create null chapter.

[End of SElOR3.RNO]

23-Feb-77 -- Rev 3 Page 10-990

CHAPTER 10

COBOL FORMATTING AND USAGE

23-Feb-77 -- Rev 3

This chapter contains detailed information on formatting standards,
and instruction usage. For ease of reference, it is organized
alphabetically by topic. Each topic includes references to related
topics. Most entries also include examples or sample templates
illustrating the specific topic.

THE CONTENTS ARE TBS

[End of Chapter 10]

Digital Equipment Corporation COMPANY CONFIDENTIAL

Title: VAX-II Software Eng. Fortran Formatting -- Rev 3

Specification Status: draft

Architectural Status: under ECO control

File: SEIIR3.RNO

PDM #: not used

Date: 23-Feb-77

Superseded Specs: none

Author:

Typist: P. Conklin

Reviewer(s) :

Page 1

Abstract: Chapter 11 gives each piece of the Fortran formatting and
usage conventions in detail. The items are in alphabetical
order. Each item includes references to related topics,
gives the background and the rules, and then gives
templates and examples.

Revision History:

Rev # Description Author Revised Date

Fortran Formatting and Usage
Change History

Rev 2 to Rev 3:

1. Create null chapter.

[End of SEllR3.RNO]

23-Feb-77 -- Rev 3 Page 11-990

CHAPTER 11

FORTRAN FORMATTING AND USAGE

23-Feb-77 -- Rev 3

This chapter contains detailed information on formatting standards,
and instruction usage. For ease of reference, it is organized
alphabetically by topic. Each topic includes references to related
topics. Most entries also include examples or sample templates
illustrating the specific topic.

THE CONTENTS ARE TBS

[End of Chapter 11]

Digital Equipment Corporation COMPANY CONFIDENTIAL Page 1

Title: VAX-II Software Engineering Naming Conventions -- Rev 3

Specification Status: draft

Architectural Status: under ECO control

File: SEI2R3.RNO

PDM #: not used

Date: 28-Feb-77

VAXS notes; based on STARLET Working
Document

Author: P. Conklin, S. Gault

Typist: P. Conklin

Reviewer(s): R. Brender, D. Cutler, R. Gourd, T. Hastings, I. Nassi,
D. Tolman

Abstract: Chapter 12 gives the system wide naming conventions for all
public symbols. These rules are to be followed by all DEC
software for all symbols which are global or appear in
parameter definition files. This chapter also includes the
list of all facility prefixes.

Revision History:

Rev t
Rev 1
Rev 2
Rev 3

Description
Original
Revised from Review
After 6 months experience

Author
s. Gault
s. Gault
P. Conklin

Revised Date
Oct-76
Jan-77

28-Feb-77

·PSECT name

Bit field size name
Bit name
BLOCK name, REF

Call
non-standard

Code, condition
Completion code
Condition value
Constant value name

Data type
Definition macro name, structure.

Entry point
global . .

Facility prefix table
Field offset name

Global array name . • •••.
Global entry point
Global variable name •.•. · • ·

Interface style

Macro name . .
Mask name
Module name

Name
private
public ..

Name pattern .
Non-standard call

Offset name

Pattern
name •

Prefix table, facility
Private name .
Public name

REF BLOCK name .
Register

save

~1 e r vic e mac ron am e .
Sign out
Stat..us code
Str ing
Structure definition macro name
Style of interface .

Transportable
data types .

12-4

12-3
12-3
12-4

12-3
12-7
12-2
12-2,
12-4

12-6
12-4

12-2

12-7
12-3

12-3
12-2
12-3

12-7

12-2
12-4
12-4

12-2
12-1
12-1
12-3

12-3

12-1
12-7
12-2
12-1

12-4

12-3

12-2
12-7
12-2
12-6
12-4
12-7

12-6

12-7

Naming Conventions
Change History

Rev 2 to Rev 3:

2S-Feb-77 -- Rev 3

1. Add table of prefixes.

2. Add reasons for the rules.

Page 12-990

3. Add BLISS field extract macro names. Add .PSECT names. Add
non-CALL entry names. Change $C to $K for constants.

4. Add transportable data types of A, C, G, H, and U. Note
reservations of I and R for specific purposes, use of X and Y
for context dependent purposes, use of Z for unspecified or
nonstandard forms, use of Nand P for decimal strings, and 0
as a general escape valve.

5. Add all known facility prefixes.

6. Reserve data type J to customers.

7. Note reserved status codes<2:0>. Note that <31:16> indicate
facility. Add facility codes to section 7.3.

S. Change non-call routine name pattern to agree with OTS.

9. Change BLISS field reference mnemonics. Reserve E to DEC.

10. Clarify that numeric string is all byte forms.

11. Add argument style column to facility table.

12. Clarify that system macro names are general and don't have
the facility name.

13. Clarify that BLISS field names have offset, position, size,
and sign.

14. Clarify that assembler V symbols are within containing field.

15. Clarify that masks are not right justified.

16. Add facility to structure def macros.
~

17. Define sizes of transportable codes for reference. Change H
to be good for counters (16 to IS bits).

IS. Add B32, FAB, 10, NAM, NET, PLI, RAB, RM, SWP, TST, XAB
prefix. Remove CHF prefix.

19. Ban local synonyms for public symbols.

20. Move completion code description to chapter 6.

Naming Conventions
Change History

28-Feb-77 -- Rev 3

21. Clarify that H is integer.

22. Clarify that the Nand P count is a digit count.

23. Clarify private symbol usage.

Page 12-991

24. Add facility codes for all procedure library facilities.

[End of SE12R3.RNO]

CHAPTER 12

NAMING CONVENTIONS

28-Feb-77 -- Rev 3

The conventions described in this chapter were derived to aid
implementors in producing meaningful public names. Public names are
all names which are global (known to the linker) or which appear in
parameter or macro definition files and libraries in more than one
facility.

These public names are all constrained to follow these rules for the
following reasons:

o By using names reserved to DEC, we ensure that customer
written software will not be invalidated by subsequent
releases of DEC products which add new symbols.

o By using definite patterns for different uses, we allow the
reader to judge the type of object being referenced. For
example, the form of macro names is different from offsets,
which is different from status codes.

o By using certain codes within a
size of an object with its
likelihood that the reference
instructions.

pattern, we
name. This

will use

associate the
increases the
the correct

o By using a facility code in symbol definitions, we give the
reader an indication of where the symbol is defined. We also
allow separate groups of implementors to choose names which
will not conflict with one another.

Never define local synonyms for public symbols. The full public
symbol should be used in every reference to give maximum clarity to
the reader.

Naming Conventions 28-Feb-77 -- Rev 3 Page 12-2
PUBLIC SYMBOL PATTERNS

12.1 PUBLIC SYMBOL PATTERNS

All DEC public symbols contain a currency sign. Thus, customers and
applications developers are strongly advised to use symbols without
currency signs to avoid future conflicts.

Public symbols should be constructed to convey as much information as
possible about the entity they name. Frequently, private names follow
a similar convention; the private convention then is the same as the
public one with an underline instead of the currency sign. These are
used both within a module and globally between modules of a facility
which is never in a library. All names which might ever be bound into
a user's program must follow the rules for public names; in the case
of undocumented names a double currency sign convention can be used
such as in 3 below.

Public names are of the following forms:

1. Service macro names are of the form:

$macroname

A trailing S or A distinguishes the stack and separate
arglist forms. -These names appear in the system macro
library and represet a call to one of many facilities. The
facility name usually does not appear in the macro name.

2. Facility specific public macro names are of the form:

$facility_macroname

3. System macros which use local symbols or macros always use
ones of the form:

$facility$macroname

This is the form to be used for symbols generated by a macro
and used across calls to it and for internal macros which are
not documented.

4. Status codes and condition values are of the form:

facility$ status

See completion codes in the Commenting Conventions chapter.

5. Global entry point names are of the form:

facility$entryname

Naming Conventions 28-Feb-77 -- Rev 3 Page 12-3
PUBLIC SYMBOL PATTERNS

6. Global entry point names which have non-standard calls are of
the form:

facility$entryname_Rn

where registers RO to Rn are not preserved. Note that the
caller of such an entry point must include at least registers
R2 through Rn in its own entry mask.

7. Global variable names are of the form:

facility$Gt_variablename

The letter G stands for global variable and the t is a letter
representing the type of the variable as defined in the next
section.

8. Addressable global arrays use the letter A (instead of the
letter G) and are of the form:

facility$At_arrayname

The letter A stands for global array and t is one of the
letters representing the type of the array element according
to the list in the next section.

9. In the assembler, public structure offset names are of the
form:

structure$t fieldname

The t is a letter representing the data type of the field as
defined in the next section. The value of the public symbol
is the byte offset to the start of the datum in the
structure.

10. In the assembler, public structure bit field offset and
single bit names are of the form:

structure$V_fieldname

The value of the public symbol is the bit offset from the
start of the containing field (not from the start of the
control block).

11. In the assembler, public structure bit field size names are
of the form:

structure$S fieldname

The value of the public symbol is the number of bits in the
field.

Naming Conventions 28-Feb-77 -- Rev 3 Page 12-4
PUBLIC SYMBOL PATTERNS

12. For BLISS, the functions of the symbols in the previous three
items are combined into a single name used to reference an
arbitrary datum. Names are of the form:

structure$x_fieldname

where x is t for standard sized data and x is V for arbitrary
and bit fields. The macro includes the offset, position,
size, and sign extension suitable for use in a REF BLOCK
s~ructure. Most typically, this name is definable as

MACRO
structure$V fieldname =

structure$t fieldname,
structure$V-fieldname, lassembler meaning
strucutre$S=fieldname,
<sign extension> %;

13. Public structure mask names are of the form:

structure$M_fieldname

The value of the public symbol is a mask with bits set for
each bit in the field. This mask is not right justified;
rather it has structure$V_fieldname zero bits on the right.

14. Public structure constant value names are of the form:

structure$K_constantname

15. .PSECT names are of the form:

facility$mnemonic

16. Module names are of the form:

facility$mnemonic

The module is stored in a file with filename "mnemonic" in a
directory corresponding to the facility.

17. Public structure definition macro names are of the form:

$facility_structureDEF

Invoking this macro defines all the structure$xxx symbols.

Example of usage:

IOC$IODONE

UCB$B_FORK PRI

Entry point of the routine IODONE in the I/O subsystem.

Offset in the UCB structure to a byte datum containing
the fork priority.

Naming Conventions 28-Feb-77 -- Rev 3 Page 12-5
PUBLIC SYMBOL PATTERNS

CRB$M_BUSY

CRB$V_BUSY

Offset in the UCB structure to a 1ongword datum
containing status bits.

Mask pattern for the busy bit in the CRB structure.

Bit offset in the CRB structure of the busy bit.

Naming Conventions
OBJECT DATA TYPES

28-Feb-77 -- Rev 3 Page 12-6

12.2 OBJECT DATA TYPES

The following are the letters used for the various data types or are
reserved for the following purposes:

letter

A
B
C
D
E
F
G
H
I
J
K
L
M
N
a
P
Q
R
S
T
U
V
W
x
Y
Z

data type or usage

address (*)
byte integer
single character (*)
double precision floating
reserved to DEC
single precision floating
general value (*)
integer value for counters (*)
reserved for integer extensions
reserved to customers for escape to other codes
constant
longword integer
field mask
numeric string (all byte forms)
reserved to DEC as an escape to other codes
packed string
quadword integer
reserved for records (structure)
field size
text (character) string
smallest unit of addressable storage (*)
field position (assembler); field reference (BLISS)
word integer
context dependent (generic)
context dependent (generic)
unspecified or non-standard

N, P, and T strings are typically variable length. Frequently in
structures or I/O records they contain a byte-sized digit or character
count preceding the string. If so, the location or offset is to the
count. Counted strings cannot be passed in CALLs. Instead, a string
descriptor is generated.

* - The letters A, C, G, H, and U should be used in preference to L,
B, L, W, and B respectively when transportability is involved.
The following table defines their sizes:

letter 16 32 36

A 16 32 18
C 8 8 7
G 16 32 36
H 16 16 18
U 8 8 36

Naming Conventions 28-Feb-77 -- Rev 3 Page 12-7
FACILITY PREFIX TABLE

12.3 FACILITY PREFIX TABLE

Following is a list of all the facility prefixes. This list will grow
over time as new facility prefixes are chosen. No one should use a
new code without first "signing out" the prefix with the author of
this chapter. Each facility has a typical style of interface, see the
Functional and Interface Specifications chapter, and a condition
value<3l:l6> code.

prefix facility
interface condition

type <31:16>
(see Chap 13)

BAS
B32
BLI
CH
CHF
CME
COB
DEB
FAB
FOR
10
LIB
MTH
NAM
NET
OTS
PLI
PR
PRV
PSL
RAB
RM
RMS
SRM
SS
SYS
TST
XAB

BASIC support library V
BLISS-32 support library V
BLISS transportable support library V
Character handling (BLISS)
Condition Handling Facility arguments
Compatibility mode emulator J
COBOL support library V
Debugger V
RMS File Access Block
Fortran support library V
Input/Output functions
Miscellaneous routines any
Math library F
RMS Name Block
Network ACP J
Common Object Time System V
PL/l support library ?
Processor Registers
Privileges
Program Status Longword fields
RMS Record Access Block
RMS internals and status codes V
Record Management System V
System Reference Manual Misc. offsets
System Service Status Codes
System Services V
Test packages any
RMS Extra information Access Block

26
27
20

??
25
??

24

21
22

??
23
??

1

o

Individual products such as compilers also get unique facility codes
formed from the product name. They must be signed out in the above
list. Facility prefixes should be chosen to avoid conflict with file
types.

Structure name prefixes are typically local to a facility. Refer to
the individual facility documentation for its structure name prefixes.
This does not cause problems since these names are not global, so are
not known to the linker. They become known at assembly or compile
time only by invoking the structure's definition macro explicitly.

[End of Chapter 12]

Digital Equipment Corporation COMPANY CONFIDENTIAL Page 1

Title: VAX-II Software Eng. Interface Specifications -- Rev 3

Specification Status: draft

Architectural Status: under ECO control

File: SE13R3.RNO

PDM #: not used

Date: 28-Feb-77

Superseded Specs: Part of OTS design chapter 2

Author: P. Conklin, T. Hastings

Typist: P. Conklin

Reviewer(s): R. Brender, D. Cutler, R. Gourd, I. Nassi, M. Spier,
D. Tolman

Abstract: Chapter 13 describes the standards and conventions used by
all modules in the VAX-II Procedure Library, including the
Object Time System. The necessary standardg are specified
to permit many different individuals to contribute modules
independently to . the VAX-II library with a consistent
interface documentation. To achieve these modularity
objectives, this chapter also standardizes the way
arguments are passed, and in particular, the way in which
strings are returned. It describes a language independent
notation for procedure parameters, including the type of
access; the data type, the argument passing mechanism, and
the form of the argument.

Revision History:

Rev •
Rev I
Rev 2
Rev 3

Description Author
Original T. Hastings
Revised from Review T. Hastings
Integrated with Soft Eng Manual P. Conklin

Revised Date
17-Jan-77
21-Jan-77
28-Feb-77

(access type> notation • •
(arg form> notation
<arg mechanism> notation .
<data type> notation .
<name> notation

Compiler library .

Default value•.
Oeser iptor, call by • . . .

Form, arg

General library

Interface type • .

Library
compiler • • •
general • .
rna th .. .••••••
object time system .
procedure . • • •

Math library .

Notation
<access type> . • • • • • •
<arg form> • . . • • • • •
<arg mechanism> • • • • •
<data type>
<name> • • . . .
procedure argument • • • • •

Object time system •
Optional argument
Output string

Procedure argument notation
Procedure library ••••••

Reference, call by •
Repeated argument . • • •

Value, call by ..

13-5
13-7
13-7
13-6
13-4

13-1

13-8
13-7

13-7

13-1

13-2 to 13-3

13-1
13-1
13-1
13-1
13-1

13-1

13-5
13-7
13-7
13-6
13-4
13-4

13-1
13-8
13-2

13-4
13-1

13-7
13-8

13-7

Functional and Interface Specs
Change History

Rev 2 to Rev 3:

28-Feb-77 -- Rev 3 Page 13-990

1. Extracted procedure specification notation from OTS chapter 2
(PL2Rl).

2. Added routine
languages.

interface types including applications

3. Remove descriptor code numbers and redundant alphabectical
table.

4. Quad by-value is ok only on function values.

5. Note op sys option on s descriptor.

6. Change <data type> U to Z for compatibility.

7. Note length and string descriptor pair is length first.

8. Clarify that data type is always the ultimate use.

9. Allow references only to data size.

10. Add data types c, u, h, g.

11. Drop label arg form.

12. Add summary table.

13. Add data type cpo

14. Allow value args to be less than longword in reference use.
(Allocation is still longword.)

Rev 1 to Rev 2:

1. Add <data type> codes la, las, and lc.

2. Add <arg form> code d.

3. Add braces notation for repeated arguments.

4. Add = notation for default value

5. Add <arg form> code p.

6. Clarify use of <data type> with call by value <arg mechanism>
for other than 32 bits.

7. Change <data type> C to T for compatibility.

Functional and Interface Specs
Change History

28-Feb-77 -- Rev 3

8. Change <data type> la to a for compatibility.

9. Change <data type> las to arl, arw, arb.

[End of SE13R3.RNO]

Page 13-991

CHAPTER 13

FUNCTIONAL AND INTERFACE SPECIFICATIONS

28-Feb-77 -- Rev 3

This chapter describes the standards and conventions used by all
modules in the VAX-II Procedure Library, including the Object Time
System. The necessary standards are specified to permit many
different individuals to contribute modules independently to the
VAX-II library with a consistent interface documentation. To achieve
these modularity objectives, this chapter also standardizes the way
arguments are passed, and in particular, the way in which strings are
returned. It describes a language independent notation for procedure
parameters, including the type of access, the data type, the argument
passing mechanism, and the form of the argument.

The VAX-II Procedure Library is a collection of routines that provide
various services to the calling program. It is made up of a number of
sub-libraries. The Math library contains all those functions that
perform the traditional Fortran mathematical functions. The common
Object Time System is a collection of resource and environment control
routines that are common to all application language environments.
Each compiler has a library of routines for which it implicitly
generates code. Finally, the general library contains routines that
are of general use and typically would be called explicitly by the
programmer.

Functional and Interface Specs
ROUTINE INTERFACE TYPES

28-Feb-77 -- Rev 3 Page 13-2

13.1 ROUTINE INTERFACE TYPES

In order to achieve the VAX-II goal of being able to mix languages
within a program, all routines are designed with certain attributes in
common. The data types and mechanism passing rules are constrained to
maXlmlze the ability to interface to routines. A common notation is
'used to express the specification of the interface.

The access types, data types, mechanisms, and argument forms
defined in the VAX-II System Reference Manual. Section 2 of
chapter lists them and gives the procedure interface notation
them. In the design of a procedure interface, in addition to the
types that must be designed, four other choices are important.

are
this
for

data

1. Whether the routine is CALLed or has a non-CALL interface.

2. Whether its scalar input arguments are by value or by
reference.

3. How output strings are returned; this is discussed in the
next paragraph.

4. Whether the routine has a function value and whether the
value is a status code or a scalar result.

Within any given facility, it is generally preferable to have only one
style of these interface choices. The facility table in the Naming
Conventions chapter indicates what the conventional interface is for
each facility. These are defined below. Other combinations can be
chosen but the prospect of user confusion must be traded off against
the possible inefficiency of forced consistency.

Output strings can be returned by one of four methods.

o The simplest is for the caller to allocate
string buffer and pass a descriptor of it.
the result to this buffer with blank fill.

a fixed length
The callee writes

o The next most general is for the caller to allocate a fixed
length string buffer that can hold the maximum length result.
The caller passes two arguments, one is the address of where
to write the actual length and the other is a descriptor to
the buffer. By convention, these two arguments are always
adjacent in the argument list with the length first.

o The third mechanism is to pass a varying string descriptor.
In this case, the caller allocates a maximum buffer and
passes a descriptor that contains fields for both the maximum
length and the actual length. The cal lee updates the actual
length field in the descriptor.

o The fourth method is for the caller to pass a dynamic string
descriptor. In this case the callee allocates the string
buffer and places both the address and the length into the

Functional and Interface Specs
ROUTINE INTERFACE TYPES

dynamic descriptor.

28-Feb-77 -- Rev 3 Page 13-3

The choice between these methods is a function of what environmental
assumptions can be made in the design of the procedure. For the fixed
length method, no assumptions are made. The others all assume that
the calling language can support variable length strings or
substrings. The dual argument form can be used without requiring
variable length strings, but gives most of the advantages of them to
languages that support them. The varying and dynamic schemes both
require languages that support varying length strings. Furthermore,
the dynamic method requires the support of a dynamic storage
management system.

The most common combinations of interface specifications are given in
the following table. The column "scalars" shows how scalars are
passed. The column "strings" shows how output strings are returned.
The column "function" shows what kind of function value is returned.

instr- passing output function
type of call uction scalars strings value

J (non-CALL) JSB parameter
V (by Value) CALL AP by value length,descr .lc
F (Function) CALL AP by reference none scalar
Fortran CALL AP by reference fixed any
COBOL CALL AP by reference fixed none
BASIC CALL AP by reference dynamic any

Functional and Interface Specs 28-Feb-77 -- Rev 3 Page 13-4
NOTATION FOR DESCRIBING PROCEDURE ARGUMENTS

13.2 NOTATION FOR DESCRIBING PROCEDURE ARGUMENTS

A concise language-independent notation is used to describe each
argument to a library procedure. It is suggested that this notation
be used for documenting all procedures in the procedure library and in
the procedure header itself under CALLING SEQUENCE or FORMAL
PARAMETERS. The notation is a compatible extension to the one used in
the VAX-II System Reference Manual. However, the goal of the notation
is to describe the formal parameter specified by each list entry in a
language independent way. The System Reference Manual only describes
the immediate operand specifier, rather than the argument being
pointed to. Therefore, additional qualifiers have been added to the
System Reference Manual notation. Note that if a parameter is an
address which is saved for later access by another procedure, the
notation should reflect the ultimate access to be made by the second
procedure.

The notation specifies for each argument:

1. A mnemonic name

2. The type of access the procedure will make (read, write, ••.)

3. The data type of the argument (longword, floating, •••)

4. The argument passing mechanism (value, reference, descriptor)

5. The form of the argument (scalar, array, •..)

13.2.1 Procedure Parameter Qualifiers

Subroutines are described as:

CALL subroutine_name(argl, arg2, .•. , argn)

and functions are described as:

function_value = function_name(argl, arg2, ••. , argn)

where argi and function_value are:

<name>.<access type><data type>.<arg mechanism><arg (orm>

where:

1. <name> is a mnemonic for the procedure formal specifier or
function value specifier.

Functional and Interface Specs 28-Feb-77 -- Rev 3
NOTATION FOR DESCRIBING PROCEDURE ARGUMENTS

Page 13-5

2. <access type> is a single letter denoting the type of access
that the procedure will (or may) make to the argument:

r - argument may be read only

m - argument may be modified, i.e., read and written.

w - argument may be written only.

j - argument is an address to be (optionally) JMPed to
after stack unwind (return). No <data type> field is
given since the argument is a sequence of instructions,
e.g., Fortran ERR=.

c - argument is an address of a procedure to be
(optionally) CALLed after stack unwound (return). No
<data type> field is given since the argument iA a
sequence of instructions.

s - argument is an address of a procedure subroutine to be
(optionally) CALLed without unwinding the stack. No
<data type> field is given since the argument is a
sequence of instructions.

f - argument is an address of a function to be (optionally)
CALLed without unwinding the stack. The <data type>
field indicates the data type of the function value.

a - reserved for use in the System Reference Manual
(address). Not used here since the object pointed to
is specified.

b - reserved for use in the System Reference Manual (branch
destination). Not used here since a branch destination
cannot be a procedure formal.

v - reserved for use in the System Reference
(variable bit field).

Manual

Functional and Interface Specs 28-Feb-77 -- Rev 3
NOTATION FOR DESCRIBING PROCEDURE ARGUMENTS

Page 13-6

3. <data type> is a letter denoting the primary data type with
trailing qualifier letters to further identify the data type.
Note that the routine must reference only the size specified
to avoid improper access violations.

Letters Use

z Unspecified

v Bit (variable bit field)
bu Byte Logical (unsigned)
c Single character
u Smallest unit for addressable storage
wu Word Logical (unsigned)
lu Longword Logical (unsigned)
a Absolute virtual address
cp Character pointer
lc Longword containing a completion code
qu Quadword Logical (unsigned)
b Byte Integer (signed)
arb Byte containing a relative virtual address (*)
w Word Integer (signed)
h Integer value for counters
arw Word containing a relative virtual address (*)
I Longword Integer (signed)
g General value
arl Longword containing a relative virtual address (*)
q Quadword Integer (signed)
f Single-Precision Floating
d Double-Precision Floating
fc Complex (Floating)
dc Double-Precision Complex

t text (character) string
nu Numeric string, unsigned
nl Numeric string, left separate sign
nlo Numeric string, left overpunched sign
nr Numeric string, right separate sign
nro Numeric string, right overpunched sign
nz Numeric string, zoned sign
p Packed decimal string

x Data type indicated in descriptor

* - arl, arw, and arb is a self-relative address using the
same format as the hardware displacements. That is the
self-relative address is a signed offset in bytes with
respect to the first byte following the argument.

Functional and Interface Specs 28-Feb-77 -- Rev 3 Page 13-7
NOTATION FOR DESCRIBING PROCEDURE ARGUMENTS

4. <arg mechanism> is a single letter indicating the argument
mechanism that the called routine expects:

v - value, i.e., call-by-value where the contents of the
argument list entry is itself the argument of the
indicated data type. Note: Call-by-value argument list
entries are always allocated as a longword. The quadword
data types can be used as values only for function
values, never as a formal parameter. Note: the VAX-II
calling standard requires that <access type> must be r
whenever <arg mechanism> is v, except for function values
where <access type> is always wand <arg mechanism> is
usually v.

r - reference, i.e., call-by-reference where the contents of
the argument list entry is the longword address of the
argument of the indicated data type. If the argument is
a scalar of the indicated data type or is a label, <arg
form> must be absent. If the argument is an array, <arg
form> must be present.

d - descriptor, i.e., call-by-descriptor where the contents
of the argument list entry is the longword address of a
descriptor. The descriptor is two or more longwords that
specify further information about the argument, see the
System Reference Manual Appendix C. Note: when <arg
mechanism> is d, <arg form> must be present to indicate
the type of descriptor.

5. <arg form> is a letter denoting the form of the argument:

Null means scalar of indicated data type.

a - arrav reference or array descriptor, i.e.,
call-by-reference or call-by-descriptor as indicated by
<arg mechanism>. For array call-by-reference the
contents of the argument list entry is the address of an
array of items of the indicated data type. The length is
fixed, implied by entries in the array, e.g., a control
block, determined by another argument, or specified by
prior agreement. For array call-by-descriptor, the
contents of the argument list entry is the longword
address of an array descriptor block see the System
Reference Manual Appendix C.

s - string descriptor, i.e., call-by-descriptor where the
contents of the argument list entry is the longword
ad~ress of a two longword string descriptor. The
descriptor contains the length, data type, and address of
the string. When the string is written neither the
length nor the address fields in the descriptor are
modified and the string is filled with trailing spaces or
a separate argument is updated with the written length.

Functional and Interface Specs 28-Feb-77 -- Rev 3 Page 13-8
NOTATION FOR DESCRIBING PROCEDURE ARGUMENTS

v - varying string descriptor, i.e., call-by-descriptor where
the contents of the argument list entry is the longword
address of a three longword string descriptor. The
descriptor contains length, data type, address, and
maximum length. See Appendix C of the System Reference
Manual. When the string is written, the length field of
the descriptor is also modified but the address and
maximum length fields are unaltered.

d - dynamic string descriptor, i.e., call-by-descriptor where
the contents of the argument list entry is the longword
address of a two longword string descriptor of the same
format as s. However, when the string is written, both
the length and address fields may be modified. Space is
allocated dynamically by routines in the procedure
library and is garbage collected periodically

p - Procedure descriptor, i.e., call-by-descriptor where the
contents of the argument list entry is the longword
address of a two longword procedure descriptor. The
descriptor contains the address of the procedure and the
data type that the procedure returns if it is a function.
<access type> must be c, f, j, or s.

13.2.2 Optional Arguments And Default Values

Optional arguments are enclosed in square brackets, e.g. CALL
FOR$READ SU (unit.rb.v [,err.j.rl [,end.j.rl]]). The caller may omit
optional-parameters at the end of a parameter list by passing a
shortened list. The caller may omit optional parameters anywhere by
passing a 0 value as the contents of the argument list entry. A
caller may not omit a parameter that is not indicated as optional.
The called procedure is not obligated to detect such a programming
error. An equal sign (=) after an argument inside square brackets
indicates the default value if the argument is omitted. For example,
success.wlc.v = SYS$DELLOG (lognam.rt.ds [,tblflg.rb.v=O]).

13.2.3 Repeated Arguments

Arguments or pairs of arguments that may be repeated one or more times
are indicated inside braces, e.g. CALL FOR$OPEN
({keywd.rw.v, info.rl.v}). Repeated arguments that may be omitted
entirely are indicated inside braces inside square brackets, e.g.
CALL FOR$CLOSE ([{logical_unit.rl.v}]).

Functional and Interface Specs 28-Feb-77 -- Rev 3 Page 13-9
NOTATION FOR DESCRIBING PROCEDURE ARGUMENTS

13.2.4 Examples

Sine of angle.wf.v = MTH$S!N (angle in radians.rf.r)

CALL FOR$READ_SF (unit.rb.v, format.mbu.ra [,err.j.rl [,end.j.rl]])

Note: That (1) end may be omitted, (2) err and end may both be
omitted. However, unit and format must always be present. The
argument count byte in the argument list specifies how many arguments
are present. Alternatively err, end, or both could have a 0 argument
list entry in the above.

Common combinations are:

Completion code:
longword call-by-value input arg:
address of an array of signed words for input:
address of a control block:
address of a precompiled format statement:
label to jump to:
floating input call-by-reference arg:
floating complex call-by-reference input arg:
read only Fortran character string:
BASIC character string to be written:

Status.wlc.v = ...
no of pages.rlu.v
array.rw.ra
fab.mz.ra
format.rbu.ra
error label.j.r
angle-in rad.rf.r
angle~rfc.r
string rt.ds
string.wt.dd

Functlona1 and Interface Specs 28-Feb-~7 -- Rev 3 flaye .l j-l U
NOT.\'l'J(jt~ f:JP. Dt:SCRI81NC, P~ULLL/lH\l:'; At{GUMENTS

13.2.5 Summary Ch~rt Of Notation

<name>.<access type><data type>.<arg mechanism><arg form>

<access type>

r
m
w
j
c
5

f

~t?ad
~odify
Write
RET and JMP
RET and CALL
:~b CALL
tunction CALL

<arq mechanism>

~ ~ ~13l ue
r Reference
d Descriptor

<data type>

z

v
bu
c
u
wu
1u
a
cp
lc
qu
b
arb
w
h
arw
1
g
arl
q
f
d
fc
dc

Unspecified

Bit (variable bit field)
Byte Logical (unsigned)
Single character
Smallest unit for addressable storage
Word Logical (unsigned)
Longword Logical (unsigned)
Absolute virtual address
Character Pointer
Longword containing a completion code
Quadword Logical (unsigned)
Byte Integer (signed)
Byte-sized relative virtual address
Word Integer (signed)
Integer value for counters
Word-sized relative virtual address
Longword Integer (signed)
General value
Longword-sized relative virtual address
Quadword Integer (signed)
Single-Precision Floating
Double-Precision Floating
Complex (Floating)
Double-Precision Complex

t text (character) string
nu Numeric string, unsigned
nl Numeric string, left separate sign
nlo Numeric string, left overpunched sign
nr Numeric string, right separate sign
nro Numeric string, right overpunched sign
nz Numeric string, zoned sign
p Packed decimal string

x Data type indicated in descriptor

<arg form>

<null> scalar
a array
s fixed string
v varying length string
d dynamic string
p procedure

Functional and Interface Specs 28-Feb-77 -- Rev 3 Page 13-11
NOTATION FOR DESCRIBING PROCEDURE ARGUMENTS

[End of Chapter 13]

Digital Equipment Corporation COMPANY CONFIDENTIAL Page 1

TITLE: BLISS Transportability Guidlines -- Rev 3

Specification Status: draft

Architectural status: Under ECO Control

File: SE14F3.FNO

PDM i: not used

Date: 21-Feb-77

Superseded Specs: none

Author(s): P. Marks, R. Murray, I. Nassi

Typist: G. Hesley, R. Murray

Reviewer(s): R. Brender, D. Cutler, P. Conklin, T. Hastings,
S. Hawkinson, D. Tolman, R. Winslow

Abstract: Chapter 14 addresses the process of writing transportable
BLISS programs. Tools and techniques are discussed in
detail.

Revision History:

Rev • Description Author Revised Date

Rev 1 Original I. Nassi 22-Dec-76
Rev 2 Skipped I. Nassi 2S-Jan-77
Rev 3 SEM Integration R. Murray 21-Feb-77

BLISS Transportability Guidlines
:change history

Rev 2 to Rev 3

2l-FEB-77 -- Rev 3 Page 14-990

1. Software Engineering Manual integration, this document added
as a chapter

Rev 1 to Rev 2

1. revision 2 skipped to align revision histories on all
chapters to Rev 3

[end of SE14R3.RNO]

CHAPTER 14

BLISS TRANSPORTABIBILTIY GUIDLINES

2l-FEB-77 -- Rev 3

This Chapter addresses the task of writing transportable programs. It
is shown that the writing of such code is much easier if considered
from the beginning of the project. The prope~ties which cause a
program to loose transportablilty are explored. Techniques by which
the programmer may avoid these pitfalls are discussed.

BLISS Transportability Guidlines
INTRODUCTION

21-FEB-77 -- Rev 3 Page 14-2

14.1 INTRODUCTION

14.1.1 Purpose And Goals

The purpose of this document is to facilitate the process of writing
transportable BLISS programs, that is, BLISS programs intended to be
executed on architecturally different machines. There are various
kinds of solutions to the problem of transportability, each requiring
different levels of effort. We feel free in recommending various
kinds of solutions. When program text should be rewritten, for
example, we suggest doing so. However, it is our belief that large
portions of programs can be written which will require absolutely no
modification in order to be functionally equivalent over differing
architectures. The levels of solutions we see, in order of decreasing
desirability, are:

o no change is needed to program text
perfectly straightforward.

transportability is

o parameterization solves the transportability problem the
program makes use of some features that have an analog on all
the other architectures.

o parallel definitions are required - either programs make use
of features of an architecture that do not have analogs
across all other architectures, or different, separately
transportable aspects of a program interact in
non-transportable ways.

The goal is to make transportability as painless as possible, which
means that the effort needed in transporting programs should be
minimized.

Central to the ideas presented here is the notion that
transportability is more easily accomplished if considered from the
beginning. Transporting programs after they are running becomes a
much more complex task. We suggest frequently running parallel
compilations, for instance. It is fortunate therefore, that with the
right tools and techniques, transportability is not difficult to
achieve. We would also like to point out that the first program is
the hardest. Before undertaking a large programming project, we
suggest writing and transporting a less ambitious program.

These guidelines are the result of a concentrated study of the
problems associated with transportability. We make no claim that
these guidelines are complete. We do claim that some of what is
contained here will be non-obvious to programmers. We have attempted
to identify those areas which, if the programmer is not forewarned,
will cause problems. We will be suggesting solutions to all
identified problems.

BLISS Transportability Guidlines
INTRODUCTION

2l-FEB-77 -- Rev 3 Page 14-3

Many of the problems that are discussed here have solutions that are
currently being incorporated into the BLISS language, so another way
of viewing this document is as a partial rationale for some of these
language changes, and a rationale for the definition of BLISS-16 and
BLISS-36.

14.1.2 Organization

These guidelines are organized into three sections. The section on
General Strategies discusses some high level approaches to writing
transportable BLISS software. The section on Tools describes various
features of the BLISS language that can be used in solving
transportability problems. The section on Techniques analyzes various
transportability problems and suggests solutions to them.

BLISS Transportability Guidlines
GENERAL STRATEGIES

14.2 GENERAL STRATEGIES

14.2.1 Introduction

2l-FEB-77 -- Rev 3 Page 14-4

This section presents certain gross or global considerations that are
important to the writing of transportable BLISS programs, namely:

o Isolation, and

o Simplicity

14.2.2 Isolation

The following maxim should be kept in mind when you are designing
and/or coding a program that is to be transported:

o If it is NON-transportable, isolate it.

You will probably encounter situations for which it is desirable to
use machine-specific constructs in your BLISS program. In these
cases, simply isolating the constructs will facilitate any future
movement of the program to a different machine.

In most cases, only a small percentage of the program or
be sensitive to the machine on which it is running.
those sections of a program or a system, the effort
transporting the program will be confined mainly to
identifiable, machine-specific sections.

Specifically, follow these rules:

system will
By isolating
involved in
these easily

o If machine-specific data is to be allocated place the
allocation in a separate MODULE or in a REQUIRE file.

o If machine-specific data is to be accessed - place the access
in a ROUTINE or in a MACRO and then place the ROUTINE or
MACRO in a separate MODULE or in a REQUIRE file.

o If a machine-specific function or instruction is to be used,
isolate it by placing it too in a REQUIRE file.

o If it is impossible or impractical to isolate this part of
your program from its module, comment it heavily. Make it
very obvious to the reader that this code is
non-transportable.

The above rules are applicable in the local context of a routine or
module. In a larger or more global context (fo: instance, in the
design of an entire system) isolation is implemented by the technique

BLISS Transportability Guidlines
GENERAL STRATEGIES

of modularization.

2l-FEB-77 -- Rev 3

By separating those parts of the system which are machine
system dependent from the rest of the system, the task of
the entire system is simplified. It becomes a matter of
small section of the total system. The major portion of
written in a transportable manner) should easily make the
new machine with a minimum of re-coding effort.

Page 14-5

or operating
transporting

recoding a
the code (if
move to a

BLISS is a language which facilitates both the design and programming
of programs and systems in a modular fashion. This feature should be
taken advantage of when writing a transportable system.

14.2.3 Simplicity

A basic concept in writing transportable BLISS software is simplicity
- simplicity in the use of the language.

BLISS was originally developed for the implementation of systems
software. As a result of this, BLISS is nearly unique among
high-level programming languages in that it allows ready access to the
machine on which the program will be running. The programmer is
allowed to have complete control over the allocation of data, for
example.

The same language features that allow access to underlying features of
the hardware are very often used to excess. In order to identify
those features of the language causing a program to be
non-transportable, it is often the case that such features be invoked
explicitly, making the program inherently more complex. Reducing the
complexity of data allocation, for example, results in a transportable
subset of the BLISS language. This reduction of complexity is one of
the basic themes that runs through the guidelines.

In effect, the coding of transportable programs is a simpler task
because the number of options available has been reduced. Simplicity
in the coding effort is one of the reasons for the development of
higher-level languages like BLISS. The use of the defaults in BLISS
will result in programs which are much more easily transported.

BLISS Transportability Guidlines
TOOLS

14.3 TOOLS

2l-FEB-77 -- Rev 3 Page 14-6

This section on tools presents various language features that provide
a means for writing transportable programs. These features are either
intrinsic to BLISS or have been specifically designed for
transportability/software engineering uses.

The tools described here will be used throughout the companion section
on techniques.

14.3.1 Literals

Literals provide a means for associating a name with a compile-time
constant expression. In this section, we will consider some built-in
literals which will aid us in writing transportable programs. In
addition, we will discuss restrictions on user-defined literals.

14.3.2 Predeclared Literals

One of the key techniques in writing transportable programs is
parameterization. Literals are a primary parameterization tool. The
BLISS language has a set of predeclared, machine specific literals
that can be most useful.

These literals parameterize certain architectural values of the three
machines. The values of the literals are dependent on the machine
that the program is currently being compiled for. Here are their
names and values:

Literal
Description Name 10/20 VAX-II 11

Bits per addressable unit %BPUNIT 36 8 8
Bits per address value %BPADDR 18 32 16
Bits per BLISS value %BPVAL 36 32 16

Units per BLISS value %UPVAL 1 4 2

The names beginning with 1%1 are the literal names that can be used.
These literal names will be used throughout the guidelines.

Bits per value is the maximum number of bits in a BLISS value. Bits
per unit is the number of bits in the smallest unit of storage that
can have an address. Bits per address refers to the maximum number of
bits an address value can have. Units per value is the quotient
%BPVAL/%BPUNIT. It is the maximum number of addressable units
associated with a value.

BLISS Transportability Guidlines
TOOLS

21-FEB-77 -- Rev 3 Paqe 14-7

We can derive other useful values from these built-in literals. For
example:

LITERAL
HALF VALUE = %BPVAL / 2;

defines the number of bits in half a word (half a lonqword on VAX-II).

14.3.2.1 User Defined Literals -

A literal is not strictly speaking a self-defining term. The value
and restrictions associated with a literal are arrived at bv assiqning
certain semantics to its source program representation. It is
convenient to define the value of a literal as a function of the
characteristics of a particular architecture, which means that there
are certain architectural dependencies inherent in the use of
literals.

Because the size of a BLISS value determines the value and/or the
representation of a literal, there are some transportability
considerations. BLISS value (machine word) sizes. are different on
each of the three machines. On VAX-II, the size is 32 bits: on the
10/20 systems, it is 36; and the 11 value i~ 16.

There are two types
strinq-literals. The
the machine word size.
are:

VAX-II:

10/20:

11:

of BLISS literals: numeric-literals and
values of nu~cric-literals are constrained by
The ranges of values for a signed number, i,

-(2**31) < i < (2**31) - 1

-(2**35) < i < (2**35) - 1

-(2**15) < i < (2**15) - 1

ALL: -(2**(%BPVAL-l» ~ i ~ (2**(%BPVAL-l»-1

Double precision floating ooint numbers (%O'number' in BLISS-32) are
not supported in BLISS-36 or in BLISS-16.

A numeric literal, %C'sinqle-character', has been implemented. Its
value is the ASCII code correspondinq to the character in quotes and
when stored, it is right-justified in a BLISS value (word or
lonqword) • A more thorough discussion of its usaqe can be found in
the section entitled: "Data: Character Sequences".

BLISS Transportability Guidlines
TOOLS

2l-FEB-77 -- Rev 3 Page 14-8

as integer-values and as
used as values, they are

the representational

There are two ways of using string-literals:
character strings. When string-literals are
not transportable. This arises out of
differences and from differing word sizes.
illustrates these potential differences for an
literal:

VAX-II

Maximum number of 4
characters.

Character placement. right to
left

10/20

5

left to
right

The following table
%ASCII type string

11

2

right to
left

This type of string literal usage and also its use as a
string are discussed in the section entitled: "Data:

character
Character

Sequences".

14.3.3 MACROS

BLISS macros can be an essential tool in the development of
transportable programs. Because they evaluate (expand) during
compilation, it is possible to tailor a program to a specific machine.

A good example can be found in the section on structures. There, two
macros are developed which are completely transportable. The macros
can determine the number of addressable units needed for a vector of
elements, where the element size is specified in terms of bits.

There are also pre-defined machine conditionalization macros
available. These macros can be used to compile selectively only
certain declarations and/or expressions depending on which compiler is
being run.

Their definitions for the bliss-32 set are:

MACRO
%BLISS16[] = % ,
%BLISS36[] = % ,
%BLISS32[] = %REMAINING %

There are analogous definitions for the other machines. The net
effect is that in the BLISS-32 compiler, the arguments to %BLISS16 and
%BLISS36 will disappear, while arguments to %BLISS32 will be replaced
by the text given in the argument list.

BLISS Transportability Guidlines
TOOLS

14.3.4 Module Switches

21-FEB-77 -- Rev 3 Page 14-9

A module switch and a corresponding on-off switch are provided to aid
in the writing of transportable programs. This switch, LANGUAGE, is
provided for two reasons:

o To indicate the intended transportability goals of a module
and

o To provide diagnostic checking of the use of certain language
features.

The programmer can therefore indicate the target
(environments) for which a program is intended.

architectures

Diagnostic checking consists of the compiler determining whether
certain language features are available for all of the intended target
environments.

The LANGUAGE switch may be used in the module header or switches
declaration to designate which of the several BLISS processors are
intended to compile the module.

The syntax is:

LANGUAGE (language-type , ••.)

where language-type is any combination of BLISS36, BLISS16 or BLISS32.

If no LANGUAGE switch is specified, the default is all three
languages, and as a consequence, only the most restricted language
facilities are made available.

Each compiler will give a warning diagnostic if its own language is
not in the list of language-types.

Within the scope of a language switch, each compiler will give a
warnl_.~ diagnostic for any language construct which is not in the
intersection of the specified set of languages.

BLISS Transportability Guidlines
TOOLS

2l-FEB-77 -- Rev 3

NOTE

As of this writing the particular
language features that will be subject
to diagnosis have yet to be detailed.
However, using it now will serve to
document the program, and to make the
program immune to compiler enhancements
that restrict certain features under
certain switch settings.

Here is an example of how the LANGUAGE switch would be used:

Page 14-10

MODULE FOO(... ,LANGUAGE(BLISS36, BLISS16, BLISS32) , ...) =
BEGIN

BEGIN

!+
! BLISS16 no longer in effect.
!-

SWITCHES

END;

!+

LANGUAGE (BLISS36, BLISS32);

Any use of language features, within
this block, which are specific to
BLISSl6 will result in a diagnostic
warning.
The compilation of this section
of code by a BLISS-16 compiler will
result in a diagnostic warning.

! All three language settings are restored.
!-

BLISS Transportability Guidlines
TOOLS

2l-FEB-77 -- Rev 3 Page 14-11

14.3.5 Reserved Names

The following page contains a list of BLISS reserved names. The list
represents the union of reserved names in all three BLISS dialects.
Hence, if.one is writing a transportable program, one should avoid
using any of these names as a user-defined name, since such use
results in a compiler diagnostic. Items marekd with an asterisk
should not be used when writing code intended to be transportable.

*ADDRESSING MODE
*ALIGN

ALWAYS
AND
BEGIN
BIND
BIT

*BUILTIN
BY

*BYTE
CASE
CODECOMMENT
COMPILETIME
DECR
DECRA

*DECRU
DO
ELSE
ELUDOM
ENABLE
END
EQL
EQLA

*EQLU
EQV
EXITLOOP
EXTERNAL
FIELD
FORWARD
FROM
GEQ
GEQA

*GEQU
GLOBAL
GTR
GTRA

*GTRU

IF
INCR
INCRA

*INCRU
INITIAL
INRANGE
KEYWORDMACRO
LABEL
LEAVE
LEQ
LEQA

*LEQU
LIBRARY
LINKAGE
LITERAL
LOCAL

*LONG
LSS
LSSA

*LSSU
MACRO
MAP
MOD
MODULE
NEQ
NEQA

*NEQU
NOT
NOVALUE
OF
OR
OTHERWISE
OUTRANGE
OWN
PLIT
PRESET

*PSECT

RECORD
REF

REP
REQUIRE
RETURN
ROUTINE
SELECT
SELECTA
SELECTONE
SELECTONEA

*SELECTONEU
*SELECTA

SET
*SHOW
*SIGNED

STACKLOCAL
STRUCTURE
SWITCHES
TES
THEN
TO
UNDECLARE
UNTIL
UPLIT

*VOLATILE
*WEAK

WHILE
WITH

*WORD
XOR

BLISS Transportability Guidlines
TOOLS

21-FEB-77 -- Rev 3 Page 14-12

14.3.6 REQUIRE Files

REQUIRE files are a way of gathering machine specific declarations
and/or expressions together in one place.

In many cases, it will be either impossible or unnecessary to code a
particular BLISS construct (e.g. routines, data declarations, etc.)
in a transportable manner. Developing parallel REQUIRE files, ohe for
each machine, can often provide a solution to transporting these
constructs.

For example, if a certain set of routines are very machine specific,
then the solution may be to code two or three functionally equivalent
routines, one for each machine type, and segregate them each in their
own REQUIRE file.

Each BLISS compiler has a pre-defined search rule for REQUIRE file
names based on their file types. Each compiler will search first for
a file with a specific file type, then it will search for a file with
the file type '.BLI'.

The search rules for each compiler are:

Compiler 1st 2nd

BLIS36 .B36 .BLI

BLIS16 .B16 .BLI

BLIS32 .B32 .BLI

Hence, the following REQUIRE declaration:

REQUIRE
'IOPACK' ;

will search for IOPACK.B36, IOPACK.B16 or
which compiler is being run. Failing
IOPACK.BLI.

I/O Package

IOPACK.B32, depending on
that it will look for

Inherent in these search rules is a naming convention for REQUIRE
files. If the file is transportable, give it the file type '.BLI'.
If it is specific to a particular dialect, give it the corresponding
file type (e.g. '.B36').

BLISS Transportability Guidlines
TOOLS

14.3.7 ROUTINES

2l-FEB-77 -- Rev 3 Page 14-13

The key to transportability is the ability to identify properties of
an environment, abstract the property by givinq it a name, and then
define the semantics of the property in all applicable environments.
The closed subroutine has long been reqarded as the principal
abstraction mechanism in programminq lanquaqes. With BLISS, we see
other abstraction mechanisms being used, like structures, macros,
literals, require files, etc., but the routine can still be easily
used as a transportability abstraction mechanism.

For instance, when designing a system of transportable modules which
uses the concept of floatinq point numbers and associated operations,
there will be a need to perform floatinq point arithmetic. The
auestion naturally arises as to the environment in which the
arithmetic should be done. If the floating point arithmetic resides
entirely in a well-defined set of routines, and no knowledge of the
various representations of floating point numbers is used except
through these well defined interface routines, then it becomes
possible to perform "cross-arithmetic", which becomes hiqhly desirable
when writing cross-compilers, for instance. Even if the ability to
perform cross-arithmetic is not desired, isolatinq floatinq point
operations in routines is a qood idea since these routines can then be
reused more easily in another project. A little thouqht will indicate
that the floating point routines themselves have to be transportable
if they are going to perform cross-arithmetic, but need not be
transportable if cross arithmetic is a non-qoal.

The principal objection to using routines as an abstraction mechanism
is that the cost of calling a procedure is non-trivial, and that cost
is strictly program overhead. Composing this sort of abstraction in
the limit will produce serious performance degradation. For this
reason, a proqrammer should probably try not to use the routine as an
abstraction mechanism if a small amount of forethought will be
sufficient to enable the writing of a single transportable module.

BLISS Transportability Guidlines
TECHNIQUES

14.4 TECHNIQUES

2l-FEB-77 -- Rev 3

This section on techniques shows you how to write
programs. The section is organized in dictionary
construct or concept. Each sub-section contains:

o A discussion of the construct or concept.

Page 14-14

transportable
form by BLISS

o Transportability problems that its use may engender.

o Specific guidelines and restrictions on the use of the
construct or concept.

o Examples - both transportable and non-transportable.

The examples, in all cases, attempt to use the tools described in the
TOOLS section.

BLISS Transportability Guidlines
TECHNIQUES

14.4.1 Data

14.4.1.1 Introduction-

2l-FEB-77 -- Rev 3 Page 14-15

This section deals with the allocation of data in a BLISS program.
For the purposes of this section we do not deal with character
sequence (string) data or address data. These types of data are
discussed in their own sections (See: "Data: Addresses and Address
Calculation" and "Data: Character Sequences"). Primarily, we discuss
the allocation of scalar data (e.g. counters, integers, pointers,
addresses, etc.) A presentation of more complex forms of data can be
found in the sections entitled: "Structures and Field-Selectors" and
"PLITs and Initialization". First there is a discussion of
transportability problems encountered due to differing machine
architectures. Next a discussion of the BLISS allocation-unit
attribute is presented. Finally, a discussion of other BLISS data
attributes that must be considered when writing transportable programs
is discussed.

14.4.1.2 Problem Genesis -

The allocation of data (via the OWN, LOCAL, GLOBAL, etc.
declarations) tends to be one of the most sensitive areas of a BLISS
program in terms of transportability. This problem of transporting
data arises chiefly from two sources:

o The machine architectures and

o The flexibility of the BLISS language.

When we are considering writing a BLISS program that will be
transported to another machine, we are confronted with the problem of
allocating data on· (at least two) architecturely different machines.

Although we have already discussed differing word sizes, there are
further differences. On the VAX-II machine data may be fetched in
longwords (32 bits), in words (16 bits) and in bytes (8 bits); on the
11, both words and bytes may be fetched. Only 36-bit words on the
10/20 systems may be directly fetched (i.e. without a byte pointer).

If we were writing our program in MACRO-IO or MARS we would not
consider these differences to be important - clearly, our assembly
language program was not intended to be transportable.

What decisions, however, must the BLISS programmer make in the
transportable allocation of data? Need he or she be concerned with
how many bits are going to be allocated?

These questions (and their answers) can be complicated by the other
chief source of data transportability problems, namely the BLISS
language itself.

BLISS Transportability Guidlines
TECHNIQUES

2l-FEB-77 -- Rev 3 Page 14-16

BLISS is different than many other higher-level languages in that it
allows ready access to machine-specific control, particularly in
storage allocation. This is fortunate for the programmer who is
writing highly machine-specific, efficient software. This programmer
needs much more control over exactly how many bits of data will be
used. This feature of BLISS, however, can complicate the decisions
that need to be made by the BLISS programmer who is writing a
transportable program. Does he or she allocate scalars by bytes, or
by words, or by longwords?

14.4.1.3 Transportable Declarations -

Consider the following simple example of a data declaration in
BLISS-32:

O~
PAGE COUNTER: BYTE; ! Page counter

The programmer has allocated one byte (8 bits) for a variable named
PAGE COUNTER. No matter what his or her intentions were in requesting
only-one byte of storage, this declaration is non-transportable. The
concept of BYTE (in this context) does not exist on the 10/20 systems.
In fact, in BLISS-36 the use of the word BYTE results in an error
message.

If this declaration had been originally coded as:

O~
Page counter

then this could have been transported to any of the three machines.
The functionality (in this case, storing the number of pages) has not
been lost. We allowed the BLISS compiler to allocate storage by
default by not specifying any allocation-unit in the OWN declaration.
In all the BLISS dialects the default size for allocation-unit
consists of %BPVAL bits. Thus our first transportable guideline is:

o Do not use the allocation-unit attribute in a scalar data
declaration.

Besides the allocation-unit there
present transportability problems
allocating data:

are other
if used.

attributes that may
In particular, when

BLISS Transportability Guidlines
TECHNIQUES

2l-FEB-77 -- Rev 3 Page 14-17

o Do not use the following attributes:

Extension (SIGNED and UNSIGNED),
Alignment,
Volatile,
Range,
Weak

which is to say: think twice before you write a declaration.
Do you really need to specify any data attributes other than
structure attributes?

The Extension-attribute specifies whether the sign bit is to be
extended in a fetch of a scalar. This attribute is meaningful only on
VAX-II and is not supported by BLISS-36 or BLISS-16. No sign
extension can be performed if the allocation unit is not specified.

The Alignment-attribute tells the compiler at what address boundary a
data segment is to start. It is not supported in BLISS-36 or
BLISS-16; hence, it is non-transportable. Suitalbe default
alignments are available dependent on the size of the scalar.

The Volatile-attribute notifies the compiler that code to fetch the
contents of this data segment must be generated anew for each fetch in
the BLISS program. It is not supported in BLISS-36 or BLISS-16 and
will result in a compiler diagnostic.

The Range-attribute specifies the number of bits needed to represent
the value of a literal that is declared global in a separately
compiled module. The STARLET linker is the only linker that currently
supports external literals.

The Weak-attribute is
supported by BLISS-36
transportable program.

a STARLET-specific
or BLISS-16. It

attribute and is
can not be used

not
in a

These guidelines are relatively simple, yet they should relieve the
BLISS programmer of needing to worry about how the program data will
actually be allocated by the compiler. There is often very little
reason to specify an allocation-unit or any attributes. The default
values are almost always sufficient.

In the case of scalar data, the use of the default allocation-unit
will sometimes result in the allocation of more storage than is
strictly necessary. This gain in program data size (which, in most
instances, is small) should be weighed against a decrease in fetching
time for a particular scalar value, and the knowledge that because of
the default alignment rules, no storage savings may, in fact, be
realized.

In the BLISS language, the default size of %BPVAL bits was chosen
(among other reasons) because this is the largest, most efficiently
accessed unit of data for a particular machine. Which is to say, the

BLISS Transportability Guidlines
TECHNIQUES

21-FEB-77 -- Rev 3 Page 14-18

saving of bits does not necessarily mean a more efficient program.

There will undoubtedly be cases where it is impossible to avoid the
use of one or more of the above attributes. In fact, it may be
desirable to take advantage of a specific machine feature. In these
cases follow this guideline:

o Conditionalize and/or heavily comment the use of declarations
which may be non-transportable.

This guideline is the "escape-hatch", if you will, in this set of
guidelines. It should only be used sparingly and where justified~ To
use it often will only result in more code that will need to be
re-written when the program has to be transported to another machine -
and that's not our goal.

14.4.2 Data: Addresses And Address Calculations

14.4.2.1 Introduction-

This section will discuss address values and calculations using
address values. First, there will be a presentation of the problems
that might occur when using an address or the result of an address
calculation as a value. A transportable solution to some of these
problems is then presented. Next, a discussion of the need for
address forms of the BLISS relational operators and control
expressions and how and when to use them will be presented. Finally,
some important differences in the interpretation of address values
between BLISS-10 and BLISS-36 are discussed.

14.4.2.2 Addresses And Address Calculations -

The value of an undotted variable name in BLISS is an address. In
most cases, this address value is used only for the simple fetching
and storing of data. When address values are used for other purposes,
we must be concerned with the portability of an address or an address
calculation. By address calculation we mean any arithmetic operations
performed on address values.

The primary reason for our concern is the different sizes (in bits) of
addressable units, addresses, and BLISS values (machine words) on the
three machines. For convenience in writing transportable programs,
these size values have been parameterized and are now predeclared
literals. A table of their values can be found in the section
entitled: "Literals".

BLISS Transportability Guidlines
TECHNIQUES

21-FEB-77 -- Rev 3 Page 14-19

To see how these size differences can have an effect on writing
transportable programs, let's consider a common type of address
expression; namely an expression that computes an address value from
a base (a pointer or an address) and an offset. That is, some
expression of the form~

... base + index ...

Now consider the following BLISS assignment expression using this form
of address calculation:

OWN

ELEMENT 2 = . (INPUT_RECORD + 1);

The intent (most likely) was to access the contents of the second
value in the data segment named INPUT RECORD and to place that value
in an area pointed to by ELEMENT 2. The effect, however, is different
on each machine as we shall see.-

By adding 1 to an address (in this case, INPUT_RECORD) we are
computing the address of the next addressable unit on the machine. In
BLISS-32 and BLISS-16 this would be the address of the next byte (8
bits), but in BLISS-36 this would be the address of the next word (36
bits). This is probably not a transportable expression because of the
different sizes of the addressable units and the resultant values.

Based on the above example, we introduce the following guideline:

o When a complex address calculation is not an intrinsic part
of the algorithm being coded, do not write it outside of a
structure declaration.

There is a way, however, of making such an address calculation
transportable. It involves the use of the values of the predeclared
literals. In the last example, if the index had been 4 in BL1SS-32 or
2 in BLlSS-l6 then in each case we would have accessed the next word.

We need to calculate a multiplier that will have a value of 4 in
BLlSS-32, 2 in BLlSS-l6 and 1 in BLlSS-36. Such a multiplier already
exists as another predeclared literal. Its definition is
%BPVAL/%BPUNIT, and it is called %UPVAL.

BLISS Transportability Guidlines
TECHNIQUES

21-FEB-77 -- Rev 3

Using this literal in our example we would have:

ELEMENT 2 =
. (INPUT_RECORD + 1 * %UPVAL}i

The address expression is now tranportable.

Page 14-20

This last example raises an interesting point. If an address
calculation of this form is used then it is very likely that the data
segment should have had a structure such as a VECTOR, BLOCK or
BLOCKVECTOR associated with it. The last example could have then been
coded as:

OWN
INPUT RECORD:

FLEX VECTOR[RECORD SIZE,%BPVAL],
ELEMENT_2: -

ELEMENT 2 = .INPUT_RECORD[l]i

The transportable structure FLEX VECTOR and a more thorough discussion
of structures can be found in-the section entitled: Structures and
Field Selectors.

14.4.2.3 Relational Operators And Control Expressions -

The previous example illustrated the use of address values in the
context of computations. Other common uses of addresses are in
comparisons (testing for equality, etc.) and as indices in loop and
select expressions. The use of address values in these contexts
points to another set of differences found amongst the three machines.

In BLISS-·32 and BLISS-16, addresses occupy a full word (%BPADDR equals
%BPVAL) and unsigned integer comparisons must be performed. However,
in BLIS5-36, addresses are smaller than the machine word (.'3 versus 36
bits) and signed integer operations are performed for efficiency
reasons.

It can be seen that to perform a simple relational test of address
values:

ADDRESS 1 LSS ADDRESS 2

BLISS Transportability Guidlines
TECHNIQUES

2l-FEB-77 -- Rev 3 Page 14-21

requires two different interpretations. This expression would
evaluate correctly on the 10/20 systems. But, on the VAX-II and 11
machines, the following would have had to have been coded for the
comparison to have been made correctly:

ADDRESS 1 LSSU ADDRESS 2

Another type of relational operator, designed specifically for address
values, is needed. Such operators exist and are referred to as
address-relational-operators. BLISS-36, BLISS-16 and BLISS-32 have,
in IaCL, a full set of them (e.g. LSSA, EQLA, etc.) which support
address comparisons.

In BLISS-16 and BLISS-32, the address-relationals are equivalent to
the unsigned-relationals. In BLISS-16, the address-relationals are
equivalent to the signed-relationals. For all practical cases, a user
need not be concerned with this, since this "equivalencing" permits
equivalent address comparisons to be performed across architectures.

In addition, there are address forms of the SELECT (SELECTA),
SELECTONE (SELECTONEA), INCR (INCRA) and DECR (DECRA) control
expressions. The following guidelines establish a usage for these
operators and contol expressions:

o If address values are to be compared, use the address form of
the relational operators.

o If an address is used as an index in
INCR or DECR expression, use the
control expressions.

a SELECT, SELECTONE,
address form of these

A violation of either of these guidelines can have unpredictable
results.

14.4.2.4 BLISS-IO Addresses Versus BLISS-36 Addresses -

There is a fundamental conceptual change from BLISS-IO to BLISS-36 in
the deflned value of a name. BLISS-IO defines the value of a data
segment name to be a byte pointer consisting of the address value in
the low half of a word, and position and size values of 0 and 36 in
the high half of the word. BLISS-36, however, defines the value as
simply the address in the low half and zeros in the high half. This
change was made solely for reasons of transportability, since it
allows BLISS to assign uniform semantics to an address.

The fetch and assignment operators are redefined to use only the
address part of a value. Thus the expressions:

BLISS Transportability Guidlines
TECHNIQUES

Y = • X;

2l-FEB-77 -- Rev 3

Y = F(.Y) + 2;

are the same in both BLISS-lO and BLISS-36, but

Y = X:

assigns a different value to Y in BLISS-36 and in BLISS-lO.

Page 14-22

Field selectors are still available but must be thought of as extended
operands to the fetch and assignment operators, instead of as value
producing operators applied to a name. Thus the meaning of:

Y<0,18> = .X<3,7>;

is unchanged, but

Y = X<3,7>:

is invalid. Moreover, it is highly recommended that field selectors
never appear outside of a structure declaration, since bit position
and size are apt to be highly machine dependent. A more thorough
discussion can be found in the section entitled: Structures and Field
Selectors.

14.4.3 Data: Character Sequences

14.4.3.1 Introduction-

This section will discuss the use of character sequences (strings) in
BLISS programs. Historically, there has been no consistent method for
dealing with strings and the functions operating upon them. Ad hoc
string functions have been the rule, having been implemented by
individuals or projects to suit their particular needs. This section
will begin by looking at quoted strings in two different contexts. We
will discuss transportability problems associated with quoted ~tF in~s,
and guidelines for their use.

Quoted strings are used in two different contexts:

o as values (integers) and

o as character strings

BLISS Transportability Guidlines
TECHNIQUES

14.4.3.2 Usage As Numeric Values -

21-FEB-77 -- Rev 3 Page 14-23

The use of quoted strings as values (in assignments and comparisons)
illustrates the problem of differing representations on differing
architectures. Describing the natural translation of a string literal
for each architecture will illustrate the problem. For example,
consider the following code sequence:

OWN
To hold a literal

CHAR FOO = 'FOO';

A natural interpretation for BLISS-32 to use is that one longword
would be allocated and the three characters would be assigned to
increasing byte addresses within the longword. In memory, the value
of CHAR_Faa would have the following representation:

CHAR Faa: / 00 a a F / (32)

BLISS-16 would not allow this assignment because only two ASCII
characters are allowed per string-literal. This restriction arises
from the fact that BL1SS-16 works with a maximum of 16-bit values and
three 8-bit ASCII characters require 24 bits.

On the 10/20 systems a word would be allocated and the characters
would be positioned starting at the high-order end of the word. Thus
the string-literal would have the following representation in memory:

CHAR Faa: / F a a 00 00 0 / (36)

Even if the 10/20 string-literal had been right-justified in the word,
it still would not equal the VAX-II representation, numerically. So,
in fact, the following would not be transportable:

WRITE_INTEGER { 'ABC');

since 'ABC' is invalid syntax in BLISS-16, has the value -33543847936
in BL1SS-36, and the value 4276803 in BLI55-32.

Based on these problems with representation our first guideline is:

o Do not use string-literals as numeric values.

BLISS Transportability Guidlines
TECHNIQUES

2l-FEB-77 -- Rev 3 Page 14-24

In those cases where it is necessary to perform a numeric operation
(e.g. a comparison) with a character as an argument, you must use the
%C form of integer literal. This literal takes one character as its
argument and returns as a value the integer index in the collating
sequence of the ASCII character set, so that:

%C'B' = %X'42' = 66

The %C notation was introduced to standardize the interpretation of a
quoted string across all possible ASCII-based environments.
%C'guoted-character' can be thought of as "right-adjusting" the
character in a bit string containing %BPVAL bits.

14.4.3.3 Usage As Character Strings -

The necessity of using more than one character in a literal leads us
to the other situation in which quoted strings are used: as character
strings.

To facilitate the allocation, comparison and manipulation of character
sequences, a built-in character sequence function package has been
introduced to the BLISS language. It has been implemented in BLISS-32
and BLISS-36 and plans exist to implement it in BLISS-16.

These built-in functions provide a very complete and powerful set of
operations on characters. Our next guideline is:

o You must use the built-in function package when allocating
and operating upon character sequences. This is the only way
one can guarantee the portability of strings and string
operations.

A more detailed description of these functions can be found in the
Character Handling Functions chapter of the BLISS-VAX Language Guide,
Second Edition.

BLISS Transportability Guidlines
TECHNIQUES

14.4.4 PLITs And Initialization

14.4.4.1 Introduction-

21-FEB-77 -- Rev 3 Page 14-25

This section is primarily concerned with PLITs and their uses. First,
there is general discussion of PLITs and the contexts in which they
often appear. A presentation of how scalar PLIT items should be used
follows. Next, the problems involved in using string literals in
PLITs and suggested guidelines for their use are presented. Finally,
the use of PLITs to initialize data segments will be illustrated by
the development of a transportable table of values.

14.4.4.2 PLITs In General -

Because BLISS values are a maximum of a machine word in length, any
literal that requires more than a word for its value needs a separate
mechanism, and that mechanism is the PLIT (or UPLIT). Hence, PLITs
are a means for defining references to multi-word constants. PLITs
are often used to initialize data segments (e.g. tables) and are used
to define the arguments for routine calls.

PLITs themselves are
elements and their
transportable.

transportable; however, their
machine representation are

constituent
not always

A PLIT consists of one or more values (PLIT items). PLIT items may be
strings, numeric constants, address constants or any combination of
these last three, providing that the value of each is known prior to
execution time.

14.4.4.3 Scalar PLIT Items -

The first transportability problem that might be encountered with the
vse of PLITs is in the specification of scalar PLIT items. As with
any other declaration of scalar items (pointers, integers, addresses,
etc.) it is possible to define them with an allocation-unit attribute.
For example, in BLISS-32, we can specify such machine specific sizes
a~ BYTE and LONG. Thus the following example is non-transportable
ana~ i~ fact, will not compile on BLISS-36 or BLISS-16:

BIND
01 = PLIT BYTE(l, 2, 3, LONG -4);

This last example provides the first PLIT guideline:

o Do not use allocation-units in the specification of a PLIT or
PLIT item.

BLISS Transportability Guidlines
TECHNIQUES

2l-FEB-77 -- Rev 3

Thus, the BIND should have been coded as follows:

BIND
Ql = PLIT{l, 2, 3, -4);

Page 14-26

This last guideline is necessary because of the differences in the
sizes of words on the three machines, a feature of the architectures.
A discussion of the role of machine architectures in the
transportability of data can be found in the section entitled:
"Data". Further guidelines are presented in the section entitled:
"Intializing Packed Data".

14.4.4.4 String Literal PLIT Items -

The next guideline is based on the representation of PLITs in memory.
Specifically the problem is encountered when scalar and string PLIT
items appear in the same PLIT.

The difficulty arises primarily from the representation of characters
on the different machines. A more thorough discussion of character
representation can be found in the section entitled: "Data:
Character Sequences".

Care must be exercised when strings are to be used as items in PLITs.
For example, we may wish to specify a PLIT that consists of two
elements: a 5-character string and an address of a routine. If we
specify it as:

BLISS Transportability Guidlines
TECHNIQUES

BIND

21-FEB-77 -- Rev 3

CONABC = PLIT('ABCDE ' , ABC_ROUT):

then the VAX-II representation is as follows:

CONABC:

on the 11, it would be:

CONABC:

and the 10/20 representation

CONABC:

/

/ 0 C B A / (32)

/ E / (32)

/ address / (32)

/ B A / (16)

/ 0 C / (16)

/ E / (16)

address / (16)

would be:

/ ABC 0 E / (36)

/ address / (36)

Page 14-27

The three PLITs are not equivalent. Three longwords are required for
the BLISS-32 representation, four words are needed for BLISS-16, and
two words are needed for the BLISS-36 representation. If we wished to
access the two elements of this PLIT by the use of an address offset,
we would have problems. For example, the second element (the address)
is accessed by the expression:

... CONABC + 1 ...

in the BLISS-36 version, but not in the BLISS-32 or BLISS-l6 versions.
For the BLISS-32 version, we would need the expression:

... CONABC + 8 ...

BLISS Transportability Guidlines
TECHNIQUES

2l-FEB-77 -- Rev 3

and for BLISS-16, it would have to be:

... CONABC + 6 ...

Page 14-28

Taking a data segment's base address and adding to it an offset (as in
this case) is particularly sensitive to transportability. A
discussion on the use of addresses can be found in the section
enti tIed: "Data: Addresses and Address Calculations'l.

This section on addresses suggests the use of the literal, %UPVAL, to
ensure some degree of transportability. Its value is the number of
addressable units per BLISS value (machine word). As already
discussed, in BLISS-32, the literal equals 4; in BLISS-16, it is 2;
and in BLISS-36, its value is 1.

Multiplying an offset by this value can, in some cases, ensure an
address calculation that will be transportable. So to access the
second element in the above PLIT, one would write:

... CONABC + l*%UPVAL ...

But this won't work for the VAX-II representation. An offset value of
8 is needed because the string occupies two words (BLISS values). The
situation is similar for the 11 version, where the string occupies 3
words and would need a offset value of 6 not 2.

The problem with this particular example (and, in general, with
strings 1n PLITs) is not in the use of a string literal but in its
position within the PLIT. Because the number of characters that will
fit in a BLISS value differs on all three machines (see the section:
Data: Character Sequences), the placement of a string in a PLIT will
very often result in different displacements for the remaining PLIT
items.

There is a relatively simple solution to this problem:

o In a PLIT there can only be a maximum of one string literal,
and that literal must be the last item in a PLIT.

Following this guideline, the example should have been coded:

BIND
CONABC = PLIT(ABC_ROUT, 'ABCDE');

BLISS Transportability Guidlines
TECHNIQUES

21-FEB-77 -- Rev 3 Page 14-29

and this expression:

000 CONASC + l*%UPVAL 000

would have resulted in the address of the second element in the PLIT
(in this case the string).

14.4.4.5 An Example Of Initialization -

As mentioned in the beginning of this section, PLITs are often used to
initialize data segments such as tables. A data segment allocated by
an OWN or GLOBAL declaration can be initialized by using the INITIAL
attribute. The INITIAL attribute specifies the initial values and
consists of a list of PLIT items.

A good example which shows how relatively easy it is to initialize
data in a transportable way is to illustrate the process one might use
to build a table of employee data. Information on each employee will
consist of three elements: an employee number, a cost center number
and the employee's name. The employee's name will be a fixed length,
5-character field.

For example, a line of the table would contain the following
information:

345 201 MARKS

Converting this line into a list of PLIT items which conform to this
section's guidelines would result in the following:

Notice that
string was
small table
BLOCKVECTOR
like:

O~

(345, 201, 'MARKS')

no allocation units were specified and that the character
specified last. We will now use this line to initialize a
of only one line. The table will have the built-in
structure attribute. The table declaration would look

TABLE:
BLOCKVECTOR[1,3]
INITIAL(

345,
201,
I MARKS I

) ;

BLISS Transportability Guidlines
TECHNIQUES

21-FEB-77 -- Rev 3 Page 14-20

A problem, however, has developed. This definition would work well in
BLISS-36. That is, three words would have been allocated for TABLE.
The first word would have been initialized with the employee number;
the second word with the cost center; and the third with the name.
But the declaration would not be correct in BLISS-32 or BLISS-16,
simply because not enough storage would have been allocated for all
the initial values. BLISS-32 would have required 4 longwords and the
BLISS-16, 5 words.

The problem arises as a result of the way in which strings are
represented and allocated on the three machines (see the section:
Data: Character Sequences). The solution is simple. We only need to
determine the number of BLISS values (words) that will be needed for
the character string on each machine. There is a function that will
give this value. It is named CH$ALLOCATION and it is part of the
Character Sequence Function Package. It takes as an argument the
number of characters to be allocated and returns the number of words
needed to represent a string of this length. We can use this value as
an allocation actual in the table definition, as follows:

OWN
TABLE:

BLOCKVECTOR[I,2 + CH$ALLOCATION(5)]
INITIAL(

345,
201,
'MARKS'
) ;

The declaration is now transportable. By using the CH$ALLOCATION
function we can be assured that enough words will be allocated on each
machine. No recoding will be necessary.

We are free to add other lines to the table and not be concerned with
the representation or allocation of the data. Here is a larger
example of the same kind of table. We won't develop it step by step,
but point out and explain some of the highlights.

BLISS Transportability Guidlines
TECHNIQUES

2l-FEB-77 -- Rev 3 Page 14-31

The example:

1+
1 Table Parameters
1-

LITERAL

1 +

1-

MACRO

1+

1-

OWN

NO EMPLOYEES = 2,
EMP NAME SIZE = 25,
EMP-LINE-SIZE = 2 +

-CH$ALLOCATION(EMP_NAME_SIZE) ;

Employee Name Padding Macro

NAME PAD (NAME) =
NAME, REP CH$ALLOCATION(EMP NAME SIZE -

%CHARCOUNT(NAME)) OF (0) %;

Employee Information Table

Size: NO EMPLOYEES * EMP LINE SIZE

EMP TABLE:
- BLOCKVECTOR[NO_EMPLOYEES, EMP_LINE_SIZE]

INITIAL(
345,
201,
NAME PAD('MARKS PETER'),

207,
345,
NAME PAD('NASSI ISAAC')

) ;

BLISS Transportability Guidlines
TECHNIQUE3

2l-FEB-77 -- Rev 3 Page 14-32

The literals serve to parameterize certain values that are subject to
change. The literal EMP LINE SIZE has as its value the number of
words needed for a table entry. The character sequence function,
CH$ALLOCATION, returns the number of words needed for EMP NAME SIZE
characters. - -

The macro will, based on the length of the employee name argument
(NAME), geperate zero-filled words to pad out the name field. Thus,

we are assured of the same number of words being initialized for each
employee name, no matter what its size might be. This is important
because storage is allocated according to the fixed length of a
character field (employee name). The actual string length may, of
course, be less than that value.

This last example was developed with the specification that the
employee name field was fixed in length (EMP NAME SIZE). What if,
however, we wished to have the table hold variable length names? That
is, for certain reasons, we wished to allocate only enough storage to
hold the table data, not the maximum amount.

The table structure developed above won't work because it is
predicated upon the constant size of the name field. If we were to
use variable length character strings, either too much or not enough
storage would be allocated. And there would be no consistent way of
accessing the employee name (where would the next one start?). We
could, if we knew the length of every employee name, determine in
advance the number of words needed. But this is not a very practical
solution.

One transportable solution is to remove the character string from the
table and replace it with a pointer (a word in length) to the string.
The Character Package has a function, CH$PTR, which will construct a
pointer to a character sequence. As an added benefit, this pointer
can be used as an argument to the functions in the Character Package.
The cost of this technique is the addition of an extra word (the
character sequence pointer) for each table entry.

BLISS Transportability Guidlines
TECHNIQUES

21-FEB-77 -- Rev 3 Page 14-33

Here is a typical example, again based on the employee table:

1+

1 -

LITERAL

1+

1-

MACRO

1+

1-

OWN

Table Parameters

NO EMPLOYEES = 2,
EMF_LINE_SIZE = 3;

Macro to construct a CS-pointer to employee name

NAME PTR(NAME) =
CH$PTR(UPLIT(NAME)) %;

Employee Information Table

Size: NO EMPLOYEES by EMP LINE SIZE

EMP TABLE:
BLOCKVECTOR[NO EMPLOYEES, EMP_LINE_SIZE]
INITIAL(-

345,
201,
NAME_PTR('MARKS PETER'),

207,
345,
NAME PTR('NASSI ISAAC')

14.4.4.6 Initializing Packed Data -

In this section we will discuss some transportability considerations
involved in the initialization of packed data. By packed data, we
mean that for data values vI, v2, .•. , vn with bit-positions pI, p2,
... , pn and bit-sizes of sl, s2, .•. , sn, respectively, the value of

BLISS Transportability Guidlines
TECHNIQUES

21-FEB-77 -- Rev 3 Page 14-34

the PLIT-item would be represented by the following expression:

where
max (pI, p2, ... , pn) < %BPVAL

sl + s2 + ••• + sn < %BPVAL

and for all i
-2**si < vi < 2**(si - 1)

The OR operator could be replaced by the addition operator (+), but
the result would be different if, by accident, there were overlapping
values. Notice that the packing of data in a transportable manner is
dependent on the value of %BPVAL.

We will illustrate the initialization of packed data by modifying the
employee table example that was developed above. When accessing a
field within a block, it is a common practice to make each field
reference (i.e., offset, position and size) into a macro. So, for
example, the field reference macros for the original employee table
would look like:

MACRO
EMP 10
EMP COST CEN

-- -
EMP NAME PTR

= O,O,%BPVAL,O %,
= 1,O,%BPVAL,O i,
= 2,O,%BPVAL,O %;

We can make use of these macros in developing an initialization macro.
In essence, we are making use of some already parameterized values.
This is another example of how we can use parameterization as one of
the key techniques in writing transportable code.

If we knew that the number of bits needed to represent the values of
EMP ID and EMP COST CEN would each not exceed 16, we could pack these
two-fields into-one BLISS value in BLISS-32 and BLISS-36. In BLISS-16
the definition of the employee table, as it now stands, would allocate
only 16 bits for each field, since %BPVAL equals 16. In BLISS-36, we
will choose to use an 18-bit size for these two fields, since we know
that both OECsystem-lO and OECsystem-20 hardware have instructions
that operate efficently on half-words.

Thus, for BLISS-36 and BLISS-32 the field reference macros would look
like:

MACRO
EMP 10
EMP-COST CEN

= O,O,%BPVAL/2,O %,
= O,%BPVAL/2,%BPVAL/2,O %,

BLISS Transportability Guidlines
TECHNIQUES

EMP NAME PTR - -

21-FEB-77 -- Rev 3 Page 14-35

= 1,O,iBPVAL,O i;

Based on these macros, we can now write a macro that will take as
arguments the initial values and then do the proper packing:

MACRO
SHIFT(W,P,S,E) = P i,

EMP INITIAL(ID,CC,NAME) [] =
-ID~SHIFT(EMP 10) OR First
CC~SHIFT(EMP=COST_CEN) ,

NAME PTR

! Second

The macro SHIFT simply extracts the position parameter of the field
reference macro. The initialization macro, EMP INITIAL, makes use of
this shift value in packing the words. The goal-here is to require
the user to specify as arguments only the information needed to
initialize the table, and not to specify information that is part of
its representation.

BLISS Transportability Guidlines
TECHNIQUES

2l-FEB-77 -- Rev 3 Page 14-36

An example of using these macros to initialize packed data follows:
! +

Employee Field Reference macros
1-

MACRO
EMP 10 = 0,0,%BPVAL/2,0 %,
EMP-COST CEN = 0,%BPVAL/2,%BPVAL/2,0 %,
EMP=NAME-PTR = 1,0,%BPVAL,0 %;

MACRO

! +

! -

1+

1-

1+

1 -

OWN

Macro to create the shift value from the
position parameter of a field reference macro

SHIFT(W,P,S,E) = P %,

Employee table initializing macro
Three values are required

EMP_INITIAL(IO,CC,NAME) [] =

IO~SHIFT(EMP 10) OR
CC~SHIFT(EMP~COST_CEN), First

NAMEASHIFT(EMP_NAME_PTR) %; 1 Second

Employee table definition and initialization

EMP TABLE:
- BLOCKVECTOR[NO_EMPLOYEES, EMP_LINE_SIZE]

INITIAL(EMP INITIAL(
345,-
201,
'MARKS PETER',

207,
345,
'NASSI ISAAC'

)) ;

What has been illustrated in the previous example is the
parameterization of certain values such as field sizes. In
transporting this program we can benefit from the localization of
certain machine values as in the field reference macros. This code is

BLISS Transportability Guidlines
TECHNIQUES

2l-FEB-77 -- Rev 3 Page 14-37

transportable between BLISS-32 and BLISS-36. To compile this program
with the BLISS-16 compiler, we need to change the field reference
macros. The packing macros would no longer be needed, though they
could be used for consistency 'purposes. In that case, they would also
need to be changed.

As a final example of initialiiing packed data, we will use another
BLOCK structure that is defined in section 12.7.3 of the BLISS-32
Language Guide. Details as to what DCB is and how it accesses data
are discussed in the Language Guide. Here, we will only be concerned
with initializing this type of structure.

The DCB BLOCK consists of five fields. Four of the fields are packed
into one word, their total combined size being 32 bits, and the fifth
field which is 32 bits in length occupies another word.

In this case it is possible to transport the DCB initialization very
easily between BLISS-32 and BLISS-36. The reason is that the total
number of bits required for each word does not exceed the value of
%BPVAL for each machine. Hence, in this case at least, we do not have
to modify the design of the BLOCK in any way. Typically, however, one
would design the structure for each target machine. This is most
easily accomplished by placing its definition in a REQUIRE file. We
will again make use of the field reference macros as we did in the
previous example.

BLISS Transportability Guidlines
TECHNIQUES

2l-FEB-77 -- Rev 3 Page 14-38

Here is the example showing a way in which it
We have extended the structure by making
example:

could be initialized.
it a BLOCKVECTOR. The

!+
DCB size parameters

!-

LITERAL

!+

1-

DCB NO BLOCKS = total number of blocks,
DCB-SIZE = size of a block;

DCB Field Reference macros

MACRO
DCB A = 0,0,8,0 %, -DCB B = 0,8,3,0 % , -DCB C = 0,11,5,0 %, -DCB D = 0,16,16,0 % , -DCB E = 1,0,32,0 %;

MACRO

!+
! Macro to create the shift value from the
1 position parameter of a field reference macro
1-

SHIFT(O,P,S,E) = P %,

1+
1 DCB initializing macro.

1-

1+

! -

OWN

Five values are required.

DC BIN I T I AL I Z E (A , B , C , D , E) [] =
A~SHIFT(DCB A) OR
B~SHIFT(DCB-B) OR
C~SHIFT(DCB-C) OR
D~SHIFT(DCB=D) ,

E~SHIFT(DCB_E) %i

DCB Blockvector definition and initialization

DCB AREA:
-BLOCKVECTOR[DCB NO_BLOCKS, DCB_SIZE]

INITIAL(
DCB INITIALIZE ,
1,2,3,4,
5,

BLISS Transportability Guidlines
TECHNIQUES

2l-FEB-77 -- Rev 3

6,7,8,9,
1 ()
~-,

Page 14-39

Note that this structure could be transported to BLISS-16 by making
~uitable changes to the field reference macros and the packing macro.
The only consideration might be whether the last field, DCB E, did
require a full 32 bits.

14.4.5 Structures And Field Selectors

14.4.5.1 Introduction - Two BLISS constructs will be discussed in
this section: structures and field selectors. While the use of one
does not necessarily imply the use of the other, we will see that for
transportability reasons field selector usage will be confined to
structure declarations. Hence, these two constructs need to be
discussed together.

We will begin with a general discussion of structures, in which it
will be shown that a certain machine specific feature of structures
can be used in a transportable manner. The best way to illustrate the
process of writing transportable structures is to take the reader
through the intellectual considerations that contribute to its design,
so the development of a transportable structure - FLEX VECTOR - will
be presented. At this point field selectors will be discussed.
Finally, a more general structure - GEN_VECTOR - will be developed.

14.4.5.2 Structures-

Structure declarations are sensitive to transportability
may specify parameters corresponding to characteristics
architectures. Also, in BLISS-32, the reserved words
LONG, SIGNED, and UNSIGNED have values of 1, 2,
respectively when used as structure actual parameters.

in that one
of particular

BYTE, WORD,
4, 1 and 0

We can take advantage of the ability to specify architecture-dependent
information in developing transportable structure declarations. Later
in this section we will develop a structure which will use the UNIT
parameter to gain a degree of transportability. The UNIT parameter
specifies the number of addressable allocation-units. This number
will be used in determining the amount of storage that is to be
allocated for each element of the structure.

As mentioned repeatedly in these guidelines, the prime
transportability problem is differing machine architectures. Machine
word-sizes, for example aren't the same. That is, the number of bits
per machine-word differs on all three machines. The machine word is
also the maximum size of a BLISS value. There are two other important
architectural differences: bits per address and bits per addressable
unit.

BLISS Transportability Guidlines
TECHNIQUES

2l-FEB-77 -- Rev 3 Page 14-40

Bits per address is the maximum size, in bits, of a memory address.
Bits per addressable-unit is the size, in bits, of the smallest
directly addressable unit in memory.

The values of machine word-size (BLISS value), bits per
addressable-unit and bits per address for the three machines have been
implemented as predeclared literals, with the names %BPVAL, %BPUNIT
and %BPADDR, respectively. A table of their values can be seen in the
section entitled: "Literals".

14.4.5.3 FLEX VECTOR -

We can make use of these values in developing FLEX VECTOR. First
let's state the use to which this structure will be put: We wish to
define a structure that will by default allocate and access a vector
consisting of only the smallest addressable units. If the default
value given in the structure declaration is not used, we want to be
able to specify the vector element size in terms of the number of
bits. It should be noted that the existing VECTOR mechanism will not
do this.

For example, we would like to have a vector of 9-bit elements. The
first decision that has to be made is whether or not we want each
element to be exactly 9 bits, or at least 9 bits. For this example,
we choose the smallest natural unit whose size is greater than or
equal to 9 bits. Since there are no 9-bit (in length) addressable
units on any of the machines, we have a choice of 8, 16, 32 or 36-bit
units.

We can see that 9 bits will fit in the only addressable unit on the
10/20 systems the word. On the 11 we will need two bytes or a
l6-bit word and on the VAX-II machine we will again need two bytes.

How then do we develop a structure that will do this allocation and
will also be transportable and usable on the three systems? Clearly
the structure will need some knowledge of the machine architecture.
This is where the role of parameterization comes in.

The predeclared literals have all the information we need. In f~ct we
need only one set of values - bits per addressable-unit(%BPUNIT).

This parameter will be one of the allocation formals. Otb~r formals
that we will need are the number of elements (N) and the index
parmeter (I) for accessing the vector.

We begin by showing the access and allocation formal list for
FLEX VECTOR:

STRUCTURE
FLEX_VECTOR [Ii N, UNIT = %BPUNIT, EXT = 1] =

BLISS Transportability Guidlines
TEC~NIOUES

2l-FEB-77 -- Rev 3 Page 14-41

Notice that by settinq UNIT eaual to %BPUNIT the default (if UNIT is
not specified) will he %BPUNIT.

Now we must develop the formula for the structure-size expression.
The expression will make use of the allocation formals UNIT and N:
and, in addition, the value of the parameter %BPUNIT.

If UNIT were only allowed to assume values of
%BPUNIT (i.e. l*%BPUNIT, 2*%BPUNIT, etc.),
structure-size expression of the following form:

N * (UNIT) I %BPUN!T

integer multiples of
we would only need a

Dividing the element size (UNIT) by %BPUNIT would qive the size of
each element in the vector in terms of an inteqer multiple. This
value would then be multiplied by the number of elements to give the
total size of the data to be allocated.

We wish, however, for the structure to be more flexible in that we
will be able to specify any size element (within certain limits). The
structure-size must be slightly more complex:

[N * (UNIT + %BPUNIT - 1) / %BPUNIT]

The structure-size expression now computes enough %BPUNIT's to hold
the entire vector. The reader should try some values of UNIT for
differing %BPUNIT in order to see how this expression evaluates.

This sub-expression:

(UNIT + %BPUNIT - 1) / %BPUNIT

which we will call NO OF UNITS is very important in effecting the
transportability and- fIexibility of this particular structure. The
key to transporting this structure is the knowledge that it has of a
certain machine architectural parameter: bits per addressable-unit.
Th~~ ~articular expression makes use of this knowledge, hence, it can
adapt to any machine. This sub-expression will be used twice more in
the structure-body expression.

The structure-body is an address-expression. This expression will
consist of the name of the structure (the base address) plus an offset
based on the index I. In addition, a field selector will be needed to
access the proper number of bits at the calculated address.

The offset is simply the expression NO OF UNITS multiplied by the
index I. (Remember that indices start-at-O). The size parameter of
the field selector is the expression NO OF UNITS multiplied by the

BLISS Transportability Guid1ines
TECHNIQUES

2l-FE~-77 -- Rev 3 Pace 14-42

size of an addressable-unit - %BPUNIT. The structure-body will look
like:

(FLEX VECTOR +
1-* ((UNIT + %BPUNIT - 1) I %BPUNIT»

<0, ((UNIT + %BPUNIT - 1)/%9PUNIT)*%8PUNIT,EXT>;

The value of the position parameter in the field-selector is a
constant 0 for we are always starting at an addressable boundary.

The following table shows the structure on the three machines for
different values of UNIT:

VAX-II

UNIT = 0

UNIT = 1 to 8

UNIT = 9 to 16

UNIT = 17 to 32

11

UNIT = o to 16

10/20

UNIT = 0

UNIT = 1 to 36

no storaqe
FLEX_VECTOR<O,O,l>

[N * 1] Bytes
(FLEX_VECTOR + 1)<0,8,1>

[N * 2] Bytes
(FLEX_VECTOR + I * 2)<0,16,1>

[N * 4] Bytes
(FLEX_VECTOR + I * 4)<0,32,1>

same as VAX-II

no storage
(FLEX_VECTOR) <0,0,1>

[N] Words
(FLEX_VECTOR + 1)<0,36,1>

From the table above we can see that if the default value for UNIT
were set to %BPVAL, this structure would be eauivalent to a VECTOR of
longwords on VAX-II, and a VECTOR of words on the 10/20 and 11
systems.

Elements in a data seqrnent which has this particular structure
attribute are accessed very efficiently because they are always on
addressable boundaries. Also, they are always some multiple of an
addressable unit in length.

BLISS Transportability Guidlines
TECHNIQUES

2l-FEB-77 -- Rev 3 Page 14-43

If we wish this structure to access elements exactly the size
specified then we need only chanqe the size parameter of the field
selector. This expression then becomes:

••• FLEX_VECTOR<O, U~IT>:

This is a less efficient means of accessinq data (when UNIT is not a
multiple of %BPUNIT) because the compiler needs to qenerate field
selecting instructions in the case of the VAX-II and 10/20 machines
and a series of masks and shifts for the 11.

14.4.5.4 Field Selectors -

In the last structure declaration, it was necessary to make use of a
field selector. At this, we will discuss the use of field selectors
in a more general context.

The use of field selectors can be non-transportable because they make
use of the value of the machine word size. The unrestricted usage of
field selectors may cause problems in a program when it is moved to
another machine. These problems are best illustrated by the following
table of restrictions on position (p) and size (s) for the three
machines:

Machine: 10/20

o < P
p + S < 36
o < s < 36

11

o < P
P + S < 16
o < s < 16
p,-s constant

From the table we can see that:

o The most restrictive is the 11.

VAX-II

o < s < 32

o The moderate restrictions are those of the 10/20.

o The least restrictive is VAX-II.

If we wished to ensure the transDortable use of field selectors, we
would have to abide by the set of restrictions imposed in BLISS-16.
These, however, are restrictions imposed by the values of p and s.
There is also a contextual restriction on the use of field selectors.
The following guideline should be followed: .

o Field selectors may only appear in the definition of
user-defined structures.

BLISS Transportability Guidlines
TECHNIQUES

2l-FEB-77 -- Rev 3 Page 14-44

By restricting the domain of field selectors to structures, we are in
fact isolating their use.

We will now develop another transportable structure which will be
affected by the table of field selector value restrictions.

14.4.5.5 GEN VECTOR -

You have probably noticed that FLEX_VECTOR does not attempt to pack
data. Using the example of 9-bit elements, we can see that there will
be some wasting of bits - from 7 bits on the 11 and VAX-II to 27 on
the 10/20 systems.

We can develop a variation of FLEX VECTOR which will provide a certain
degree of packing. For example, in the case of 9-bit elements it
would be possible to pack at least four of them into a 10/20 word and
three into a VAX-II longword. Unfortunately, this vector is not
maximally transportable, but its design and the identification of its
non-transportable aspects should be very helpful.

This structure, which will be named GEN VECTOR, will pack as many
elements as possible into a BLISS value-(word) so we will make use of
the machine specific literal %BPVAL. But, since allocation is in
terms of %BPUNIT, we will need a literal that has as a value the
number of allocation units in a BLISS value. This literal has been
predeclared for transportability reasons and has the name %UPVAL, and
is defined as %BPVAL/%BPUNIT.

Elements will not cross word boundaries. This constraint is in effect
because of the restrictions placed on the value of the position
parameter of a 10/20 and 11 field selector. For the same reason
elements can not be longer than %BPVAL, as given in the table of field
selector restrictions above.

As in FLEX VECTOR, the allocation expression of GEN VECTOR will need
to calculate the number of allocation units needed by the entire
vector. This will again be based on the number of elements (N) and
the size of each element (S). But because the elements will be
packed, the expression will be slightly more complicated.

The first value we need is the number of elements that will fit in a
BLISS value. The expression:

will compute this value.
values or words needed
into N:

(%BPVAL/S)

Given this, to obtain the number of BLISS
for the entire vector, we divide this value

BLISS Transportability Guidlines
TECHNIQUES

21-FEB-77 -- Rev 3

(N/(%BPVAL/S))

Page 14-45

We now have the total number of words (in units of %BPVAL) needed.
However, data is not allocated by words on both of the machines.
Multiplying this value by %UPVAL will result in the number of
allocation units needed by the vector:

((N/(%BPVAL/S))*%UPVAL)

For clarity's sake and because this expression will be used again we
will make it into a macro with Nand S as parameters:

MACRO
WHOLE_VAL (N,S) =

((N/(%BPVAL/S))*%UPVAL)%:

The name of the macro suggests that we have calculated the number of
whole words needed. If, in fact, N were an integral multiple of the
number of elements in a word then this macro would be sufficient for
allocation purposes.

Since we can't count on this always happening, we need 'another
expression to calculate the number of allocation units needed for any
remaining elements. The number of elements left over is the remainder
of the last division in this expression:

(N/(%BPVAL/S))

The MOD function will calculate this value, as follows:

(N MOD (%BPVAL/S))

If we then multiply this value by the size of each element we will
have the total number of bits that remain to be allocated:

(N MOD (%BPVAL/S)) * S

This value will always be strictly less than %BPVAL. For the same
reasons outlined above we will make this expression into a macro with
Nand S as parameters:

BLISS Transportability Guidlines
TECHNIQUES

MACRO
PART_VAL (N,S) =

21-FEB-77 -- Rev 3

((N MOD (%BPAVAL/S)) * S)%;

Page 14-46

Taking this value, adding a "fudge factor" and then dividing by
%BPUNIT will give us the number of allocation units needed for the
remaining bits:

(PART_VAL (N,S) + %BPUNIT -l)/%BPUNIT

The total number of allocation units has been calculated and the
structure allocation expression will look like:

[WHOLE VAL(N,S) +
(PART=VAL(N,S) + %BPUNIT - l)/%BPUNIT]

As it works out, the structure-body expression for GEN VECTOR will be
simple to write because of the expressions that have already been
written.

The accessing of an element in GEN_VECTOR requires that we compute an
address offset which is then added to the name of the structure. This
offset is some number of addressable units based on the value of the
index I. We already have an expression which will calculate this
number of addressable units. It is the macro WHOLE VAL. Thus, the
first part of the accessing expression will look lik~:

GEN VECTOR + WHOLE_VAL(I,S)

Note that the macro was called with the index parameter I.

This expression will result in the structure being aligned on some
addressable boundary. But since the element may not begin at this
point (that is, the element may be located somewhere within a unit
%BPVAL bits in length), one more value is needed. That value is the
pos~~lon parmeter of a field selector. The macro PART VAL will
calculate this value based on the index I:

<PART_VAL(I,S) ,S,EXT>

The size parameter is the value S. The position parameter will be
calculated at run-time, based on the value of the index I. Since I is
not constant, we can no longer use this structure in BLISS-16. The
position and size parameters of a field selector in BLISS-16 must be

BLISS Transportability Guidlines
TECHNIQUES

2l-FEB-77 -- Rev 3 Page 14-47

compile-time constants. See the table of field selector restrictions
above.

This completes the definition of GEN VECTOR. The entire declaration
will look like:

STRUCTURE
GEN_VECTOR[I;N,S,EXT=l] =

[WHOLE VAL(N,S) +
(PART-VAL (N,S) + %BPUNIT - l)/%BPUNIT]

(GEN VECTOR + WHOLE_VAL(I,S»

<PART_VAL(I,S),S,EXT>;

The reader should compile this structure and see how it works in
BLISS-32 and BLISS-36.

14.4.5.6 Summary-

No claim is made that either of these two structures will solve all
the problems associated with transporting vectors. Many such problems
will have unique and different solutions. BLOCKS or BLOCKVECTORS have
not been discussed, but it is hoped that the reader will get from the
examples a feeling for the techniques involved in transporting
structures.

There is no easy solution to transporting data structures. One should
consider, when developing data structures, the machines that the
program or system is targeted for and make full use of the predeclared
literals such as %BPUNIT.

This exercise in the development of transportable structures has
illustrated two points:

o parameterization and
o field selector usage.

By parameterizing certain machine-specific values and by taking full
advantage of the powerful STRUCTURE mechanism, we have developed two
transportable structures.

The accessing of odd (not addressable) units of data is accomplished
by the use of field selectors. The field selector should only be used
in structure declarations.

BLISS Transportability Guidlines
TECHNIQUES

[end chapter 14]

2l-FEB-77 -- Rev 3 Page 14-48

Digital Eauipment Corporation COMPANY CONFIDF.NTIAL Paqe I

Title: VAX-II Software Enq. Diaqnostic Conventions -- Rev 3

Specification Status: draft

Architectural Status: vnder ECO control

File: SEISR3.RNO

PDM .: not used

Date: 28-Feb-77

Superseded Specs: Diagnostic Codinq Conventions

Author: F. Bernaby

Typist: P. Conklin

Reviewer(s): E. Kenney

Abstract: Chapter 15 contains the diagnostic conventional extensions
to the rest of this document. It represents an effort to
produce diagnostic products in a consistent manner.

Revision History:

Rev t
Rev I
Rev 2
Rev 3

Description
Original
skipped to maintain numbers
Integrated with SE manual

Author
F. Bernaby

P. Conklin

Revised Date
Sep-76

28-Feb-77

Diagnostic conventions • • • • •• 15-1

Diaqnostic Conventions
Chanqe History

Rev 1 to Rev 3:

1. Just merge file.

28-Feb-77 -- Rev 3

2. Update module preface.

[End of SE15R3.RNO]

Page 15-990

CHAPTER 15

DIAGNOSTIC CONVENTIONS

28-Feb-77 -- Rev 3

15.1 INTRODUCTION

VAX-II diagnostics will be written in conformance with the conventions
expressed in this manual.

These conventions will be adc~)ted to:

1. achieve clear and meaningful documentation of individual
tests.

2. reduce the need for diagnostic users to analyze test code.

3. simplify the program maintenance task.

Diagnostic Conventions
DIAGNOSTIC SECTIONS

28-Feb-77 -- Rev 3 Paqe 15-2

15.2 DIAGNOSTIC SECTIONS

Each diaqnostic will be sub-divided into 15 sections. These sections
provide a loqical way of partitioning the proqram.

PROGRAM HEADER
PROGRAM EQUATES
PROGRAM DATA
PROGRAM TEXT
PROGRAM ERROR REPORT
HARDWARE PTABLE
SOFTWARE PTABLE
DISPATCH TABLE
REPORT CODE
INITIALIZE CODE
CLEANUP CODE
PROGRAM SUBROUTINES
HARDWARE TEST
HARDWARE PARAMETERS

SOFTWARE PARAMETERS

provides the module preface for oroqram
area for macro & symbol definitions
area for data used by more than one test
area for all ASCII messaqes
area reserved for print module
table of hardware parameters
table of software parameters
table of test addresses for test sequencinq
print module for statistical reports
routine for initializing unit under test (p"+:)
routine for cleaning up error states in u
area for routines used by more than I test
actual diaqnostic test code
code used by supervisor to get hardware

ptable entries
code used by supervisor to get software

ptable entries

Diagnostic Conventions
DIAGNOSTIC SECTIONS

28-Feb-77 -- Rev 3

15.2.1 Program Header Section

<EXAMPLE>

.TITLE SYSEXR - System exerciser

.IDENT /2-3/

COPYRIGHT (C) 1977
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS 01754

Page 15-3

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A SINGLE
COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE INCLUSION OF THE
ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR ANY OTHER COPIES THEREOF,
MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON
EXCEPT FOR USE ON SUCH SYSTEM AND TO ONE WHO AGREES TO THESE LICENSE
TERMS. TITLE TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES
REMAIN IN DEC.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

:++
FACILITY: diaqnostic exerciser

ABSTRACT:

This program will exercise the VAX-II system. It generically
treats devices as magtape, disk, or terminals.
Up to 32 units may be selected for testing.

: ENVIRONMENT: System

AUTHOR: Frank Bernaby, CREATION DATE: l6-Sep-76

MODIFIED BY:

Joe Hacker, 4-Jul-77: VERSION 2
02 Added I/O tests for 6250 tape drives.
03 Brought module preface to standard form.

i--

Diagnostic Conventions
DIAGNOSTIC SECTIONS

28-Feb-77 -- Rev 3 Page 15-4

15.2.2 Program EQuates(dec1arations)

<EXAMPLE>

i ++
; LISTING CONTROL
· --,

.NLIST MC,MD,CND

.LIST ME

:++
; MACRO LIBRARY CALLS
;--

.MCALL QIOS,QIOC,DPB$,WTEF$C

;++
: INCLUDE FILES: SYSMAC.SML
· --,

i++
; EXTERNAL SYMBOLS: DEBUG
;--

.GLOBAL DEBUG

i++
iEQUATED SYMBOLS
· --,

; ++
; UBA REGISTER DEFINITIONS
· --,

UBA BASE ADDRESS=177000
UBA-CSR OFFSET=O
UBA-FMR=OFFSET=2
UBA-IRP OFFSET=4
(JBA-IRC-OFFSET=6
UDA -SV4-'CfFSET= 10
UBA-SVS-OFF5ET=12
UBA-SV6-0FFSET=14
USA -'SV7-0fo'FSET=16 - -

:NO LIST MACRO'S , CONDITIONALS
:LIST MACRO EXPANSION

iENTRY POINT OF DEBUGGER

:UBA BASE ADDRESS
:CONTROL/STATUS REGISTER
:FA.ILED MAP REGISTER
:MAP REGISTER POINTER
:MAP REGISTER CONTF.NTS
:REQ SEND VECTOR t4
:REQ SEND VECTOR IS
:REQ SEND VECTOR .,
:REQ SEND VECTOR ,7

Diagnostic Conventions
DIAGNOSTIC SECTIONS

28-Feb-77 -- Rev 3

15.2.3 Program Data

<EXAMPLE>

:++
TABLE OF UBA ADDRESS

THIS TABLE IS REFERENCED WHEN ONE OF THE UBA REGISTERS
MUST BE ADDRESSED. THE UBA REFERENCE IS AN INDIRECT
REFERENCE THROUGH THIS TABLE. EXAMPLE:

MOVW @UBACSR,RO JREAD CSR INTO RO

i--

TABLE UBA ADDRESSES:

UBACSR: .LONG
UBAFMR: • LONG
UBAIRP: .LONG
UBAIRC: .• LONG
UBASV4: .LONG
UBASV5: .LONG
UBASV6: .LONG
UBASV7: • LONG

:++

UBA BASE ADDRESS+UBA CSR OFFSET
UBA-BASE-ADDRESS+UBA-FMR-OPFSET
UBA-BASE-ADDRESS+UBA-IRP-OPPSET
UBA-BASE-ADDRESS+UBA-IRC-OFFSET
UBA-BASE-ADDRESS+UBA-SV4-0PFSET
UBA-BASE-ADDRESS+UBA-SVS-OFFSET
UBA-BASE-ADDRESS+UBA-SV6-0FPSET
UBA-BASE-ADDRESS+UBA-SV7-0PFSET

DEVICE STATUS BUFFER

THIS AREA IS RESERVED paR STORING DEVICE STATUS AT
THE CONCLUSION OF AN I/O OPERATION. THIS STATUS
IS PROVIDED VIA THE QIO MECHANISM •

. --,

Paqe 15-5

DEVICE STATUS: .BLKL 64 :RESERVE 64 LONG WORDS

Diagnostic Conventions
DIAGNOSTIC SECTIONS

15.2.4 Program Text

<EXAMPLE>

,++
: QUESTIONS . --,

QST1 UBA BASE:
QST2-UBA-VECTOR:
QST3-UBA-LEVEL:
QST4-RECORD LENGTH:
QSTS:DATA_PATTERN:

:++
: FORMAT STATEMENTS . --,

FMT1 RKCS DECODE:
FMT2-TIMEOUT:

KL'N/
FMT3 MACHINE CHECK:

FMT4 SEEK ERROR:
FMTS-ABORT:
FMT6-PROG SUM~ARY:

28-Feb-77 -- Rev 3 Page 15-6

.ASCIZ

.ASCIZ

.ASCIZ

.ASCIZ

.ASCIZ

.ASCIZ

.ASCIZ

.ASCII

.ASCIZ

.ASCIZ

.ASCIZ

.ASCII

.ASCII

.ASCII

.ASCIZ

'ENTER UBA BASE ADR: ,
'ENTER UBA VECTOR ADR: ,
'ENTER UBA BR LEVEL: ,
'ENTER RECORD LENGTH: ,
'ENTER DATA PATTERN: ,

/'ARKCS: 'XW'A : 'RW'N/
/'ATIMEOUT WHILE REFERENCING RKOS REGISTEI

/'AMACHINE CRECK ABORT: 'XW%N'XW%A ITEMS/
/ ON STACK, PC= %XL'A SP- %XL'N/
/'ASEEK BAD ERROR REGISTER: 'XW'N/
/'N'N'APROGRAM ABORTING OPERATION%N/
/'NPROGRAM SUMMARY/
/'NWORDS TRANSFERRED: 'XLI
/'NHARD ERRORS: tXL/
/'SOFT ERRORS: 'XL'N/

Diagnostic Conventions
DIAGNOSTIC SECTIONS

28-Feb-77 -- Rev 3 Paqe 15-7

15.2.5 Program Error Reoort

<EXAMPLE>

.: ++
: PRINT ENTRY POINTS FOR ERROR MESSAGES
;--

MSG1 TIMEOUT:

MSG2 MACHINE CHK:

MSG3 DEV STATUS:

PRINT
PRINT
RSB

PRINT
RSB

PRINT
RSB

FMT2 TIMEOUT,<Rl)
FMTS:=ABORT,

:PRINT TIMEOUT
;PRINT ABORT
:EXIT

FMT3_MACHINE_CHECK,<R6,R7,(R8) ,R9>

FMT1_RKCS_DECODE,<R3,'BITRKCS>
:EXIT

Diagnostic Conventions
DIAGNOSTIC SECTIONS

15.2.6 Hardware Ptab1e

<EXAMPLE>

; ++

28-Feb-77 -- Rev 3

HARDWARE PARAMETER TABLE FOR PROGRAM

Page 15-8

THIS TABLE PROVIDES THE REQUIRED HARDWARE PARAMETERS
FOR TEST EXECUTION. THE ENTRIES ARE OBTAINED FROM EITHER
THE USER VIA GPHRD COMMANDS OR FROM THE SYSTEM
CONFIGURATION TABLE •

. --,

HARD UBA:

HARD UBA BASE:
HARD-UBA-VECTOR:
HARD-UBA-LEVEL:

15.2.7 Software Ptab1e

<EXAMPLE>

;++

• LONG
• LONG
• LONG

o
o
o

SOFTWARE PARAMETER TABLE FOR PROGRAM

:BASE ADDRESS OP UBA
:UBA VECTOR ADDRESS
:UBA BR LEVEL

THIS TABLE CONTAINS ALL THE REQUIRED SOFTWARE PARAMETERS.
THESE PARAMETERS ARE OBTAINED VIA GPSFT COMMANDS •

. --,

SOFT UBA:

SOFT RECORD LENGTH:
SOFT-DATA PATTERN:
SOFT-DATA-PATH:
SOFT-MAP BASE:
SOFT-MAP-LENGTH:

• LONG
• LONG
• LONG
• LONG
• LONG

o
o
o
o
o

:RECORD LENGTH
:REQUIRED DATA PATTERN
:OBA DATA PATH
:BASE MAP REG TO OSE
:t OF MAP REG TO USE

Y

Diaqnostic Conventions
DIAGNOSTIC SECTIONS

15.2.8 Dispatch Table

<EXAMPLE>

: ++

· ,
PROGRAM DISPATCH TABLE

2S-Feb-77 -- Rev 3 Page 15-9

: THIS TABLE IS BUILT BY A SUPERVISOR MACRO

· --,

TEST DISPATCH:

N
T1S0
T2S0
T3S0

TNSO

15.2.9 Report Code

<EXAMPLE>

:++
: STATISTICAL REPORT MODULE

:- N - TEST IN TABLE
:ADDRESS OF TEST 11
:ADDRESS OF TEST 12
:ADDRESS OF TEST 13

:ADDRESS OF TEST IN

THIS PRINT MODULE PROVIDES REPORTS OF A STATISTICAL NATURE.
THE FIRST ENTRY IS INVOKED BY THE SUPERVISOR COMMAND 'REPORT'.
THE REMAINING ENTRIES ARE PROGRAM INVOKED.

· --,

REP1 PROG SUMMARY: PRINT

REP2 DATA SUMMARY: - -

RSB

PRINT
PRINT
RSB

: PRINT SUMMARY,

:EXIT

FMT7 DATA SUMMARY,(R3,R4,DATA TABLE)
FMTS-DATA-STAT -

:EXIT

Diagno~tic Co~vent~ons
DIAGNOSTIC SECT1U~S

15.2.10 Intia1ize Code

<EXAMPLE)

:++

28-Feb-77 -- Rev 3

FUNCTIONAL DESCRIPTION: INIT
THIS ROUTINE INITIALIZES THE TEST PROGRAM.
IT PERFORMS:
1. ALLOCATION OF UNIT(S) UNDER TEST
2. INITIAL ALLOCATION OF BUFFER SPACE
3. INITIAL MAPPING OF MEMORY SPACE

CALLING SEQUENCE: SUPERVISOR INVOKED

INPUT PARAMETERS: PTABLE

i--

BGNINT

ENDINT

15.~.11 Cleanup Code

<EXAMPLE)

:++
FUNCTIONAL DESCRIPTION: CLNUP

Paqe 15-10

:START OF CODE

:END OF INITIALIZE

THIS ROUTINE PERFORMS THE NECCESSARY CLEANUP BEFORE
THE TEST PROGRAM EXITS BACK TO SUPERVISOR LEVEL.
IT PERFORMS:
1. DEALLOCATION OF BUFFER SPACE
2. RESET OF UNIT UNDER TEST(UUT)
3~ DEALLOCATION OF UNIT UNDER TEST

CAJ.lLING SEQUENCE: JSB CLNUP

INPUT PARAMETERS: PTABLE

i--

BGNCLN

ENDCLN

:START OF CLEANUP

:END OF CLEANUP

Diagnostic Conventions
DIAGNOSTIC SECTIONS

28-Feb-77 -- Rev 3

15.2.12 Program Subroutines

(EXAMPLE>

.SBTTL PROGRAM SUBROUTINES

:++
FUNCTIONAL DESCRIPTION: $RANDOM

Page 15-11

THIS ROUTINE GENERATES A RANDOM NUMBER THAT IS RETURNED
IN RO. THE SEED FOR THE NUMBER IS PASSED ON THE STACK.

CALLING SEQUENCE: PUSHL
CALLS

INPUT PARAMETERS: SEED

SEED
tl,$RAND

SEED = BASE VALUE THAT GENERATOR STARTS WITH •

. --,

$RANDOM:
.WORD
MOV

MOVL
$RANDOM_EXIT:

RET

"'M(Rl,R2>
4(AP),Rl

R1,RQ

:PUT SEED VALUE ON STCK
:CALL ROUTINE

:SAVE REG MASK
:FETCH SEED FRM STCK

:RETURN VALUE IN RO

:RETURN TO CALLER

D iagnost ic Convent ionf,
DIAGNOSTIC SECTIONS

28-Feb-77 -- Rev 3

;++
FUNCTIONAL DESCRIPTION: UBA SETUP

THIS ROUTINE HANDLES THE SETUP OF THE UBA
TO ALLOW UNIBUS DEVICES TO TRANSFER DATA
BETWEEN SBI MEMORY AND UNIBUS MEMORY OR
UNIBUS DEVICES

CALLING SEQUENCE: CALLG

INPUT PARAMETERS: UBA LIST

THIS LIST IS A TABLE LIKE:

UBA LIST:
UBA-BUS ADR:
UBA-LENGTH:
UBA-MAP BASE:
UBA-OAT-PATH:
UBA-SBI-PHYSICAL:

i--

$UBA SETUP:

5
• LONG
• LONG
• LONG
• LONG
• LONG

o
o
o
o
o

Paqe 15-12

~NUMBER OF ARGUMENTS
:BUS ADR AT DEVICE
:RECORD LENGTH
:STARTING MAP REG
:UBA DATA PATH
:STARTING PHYSICAL ADR

.WORD
MOVL

"M(R1,R2,R3,R4>
4(AP),R1

:SAVE R1-R4
:GET ADDR OF ARGUMENT LIST

$UBA SETUP EXIT:

RET :EXIT

Diaqnostic Conventions
DIAGNOSTIC SECTIONS

15.2.13 Hardware Test

28-Feb-77 -- Rev 3 Page 15-13

The actual harware test will go within this section of the proqram.
All diagnostics that run with the diagnostic supervisor will, when
neccessary, make supervisor 'calls' to provide a function rather than
code that function into the program.

If a routine is used by more than one test, that routine will be
placed in the program subroutine section. Linkage to that routine
will be via 'CALLS' or 'CALLG' instructions. If these routines must
pass data back to the test, the test will specify where this data will
go by supplying the needed argument(s).

This section is sub-divided by tests and subtests. The test
subdivision provides for blocking the diaqnostic of into major logic
areas. While, the subtest provides a way of further subdividing each
test into sma111er logic areas.

Therefore the basic organization will look like this.

BGNTST

ENDTST
BGNTST

ENDTST

BGNSUB

(TEST CODE FOR TISI>

ENDSUB
BGNSUB

<TEST CODE FOR TIS2>

ENDSUB

BGNSUB

(CODE FOR T2SI>

ENDSUB

Diaqnostic (onv~nti0ns
D I .a G ~ T I") S TIC ::: f~ C '1.' 1 ,'., 1 :'

28-Feb-77 -- Rev 3 Paae 15-14

Fach test and suhtcst ~ust havr a ~necific 1rvel of ~ocumentation.

Each test must specify a complete test description and any assumptions
that are assumed by this test. Assumptions implies what loqic is
assumed to have been successful tested when this test starts.

Each subtest must have the test description and assumptions. In
addition, the subtest must have a complete description of how the
subtest works, what errors the subtest will detect, and what the debuq
procedure is for the subtest failure. .

<EXAMPLE>

BGNTST

:++

TEST DESCRIPTION:

THIS TEST CHECKS THE MAP REGISTERS IN THE UBA. IT PERFORMS THIS TEST
BY CHECKING THAT ALL REGISTERS HOLD ZEROS AND ONES. THEN THE TEST

: WILL FLOAT A ONE THROUGH ALL REGISTERS. FINALLY, THE TEST WILL FLOAT
A ZERO THROUGH ALL REGISTERS

ASSUMPTIONS:

TESTI-TEST2
THIS TEST ASSUMES THAT THE DATA PATH FROM THE CPU TO THE UBA
HAS BEEN CHECKED AND THAT REGISTER ADDRESSING WORKS CORRECTLY.

; --.. -

TJSO:

Diagnostic Conventions
DIAGNOSTIC SECTIONS

BGNSUB

:++

28-Feb-77 -- Rev 3

TEST DESCRIPTION:

Page 15-15

: THIS SUBTEST CHECKS THAT UBMOOO-UBM496 WILL
HOLD AN ALL ZEROS DATA PATTERN AND AN ALL ONES DATA
PATTERN.

ASSUMPTIONS:

: TESTI-TEST2

TEST STEPS:

1. IN IT MAP REGISTER INDEX TO ZERO(R3)
2. CLEAR SELECTED MAP REGISTER-MP(R3)
3. IF MP(R3) .EOU a THEN CONTINUE ELSl REPORT ERROR
4. COMPLEMENT SELECTED REGISTER-MP(R3)
5. IF MP(R3) .EQU -1 THEN CONTINUE ELSE RF.POPTP'~~OH
~. 8ELECT NEXT REGISTER(UPDATE R3)
7. IF R3 .GTR 496 THEN EXIT ELSE GOTO STEP 2

ERRORS:

1. TIMEOUT- UBA FAILED TO RESPOND
2. ZEROS DATA FAILURE
3. ONES DATA FAILURE

DEBUG:

ERROR 11-
THIS ERROR COULD MEAN POWEF FAILURE. CHECK SUPPLIES

ERROR 12-
: CHECK BIT(S) THAT FAILED FOR STUCK AT ONE STATE

ERROR 13-
: CHECK BIT(S) THAT FAILED FOR STUCK AT ZERO STATE

. --,

T3S1:

<TEST CODE)

T3S1X:
ENDSUB

Diaqnostic Conventions
DIAGNOSTIC SECTIONS

28-Feb-77 -- Rev 3 Page 15-16

15.2.14 Hardware Parameter Code

<EXAMPLE>

:++
THE HARDWARE PARAMETER TABLE IS BUILT FROM THE INSTRUCTIONS
IN THIS SECTION. THESE INSTRUCTIONS GET EXECUTED IF THE USER
STARTS THE PROGRAM WITHOUT SPECIFYING A CONFIGURATION TABLE.
THE SUPERVISOR WILL RECOGNIZE THIS AN DISPATCH TO THIS SECTION.
THE INPUT TO THESE REQUEST CAN COME FROM EITHER THE USER
OR A SCRIPT FILE.

INPUT IS ELICITED BY GPHRD. THIS COMMAND HAS THE FOLLOWING
FORMAT:
GPHRD (TABLE OFFSET,FORMAT STATEMENT,RADIX,BYTE OFFSET,LOWER LIMIT,

UPPER LI~IT)

. --,

HPMI:
HPM2:

BGNHRD

GPRMD
GPRMD

ENDHRD

:BEGINNING OF HARDWARE CODe

(BASADR ,QST1 ,0,1,177000,177170) : GET USA BASE ADR
(VCTADR,QST2,O,1,100,400) :GET USA VECTOR ADR

:RETURN TO SUPERVISOR

15.2.15 Software Parameter Code

<EXAMPLE)

;++
THE SOFTWARE PARAMETER TABLE IS BUILT FROM THIS CODE IF THE
DI~GNOSTIC SUPERVISOR IS DIRECTED TO ACCEPT SOFTWARE
PARAMETERS FROM EITHER A SCRIPT FILE OR THE USER.
GPSFT COMMANDS ARE USED TO BUILD THE TABLE. THE FOMRAT
OF THF. ARGUMENTS IS THE SAME AS FOR GPHRD(SEE 8.2.14).

;--

SP~l:

SPM2:

AGNSFT

GPRMD
GPRMD

ENDSFT

(RCDLEN,QST4,O,1,20,2000)
(DATPTN,QST5,0,1,1,17)

: FETCH S!')~''r.;7ARF. PARAMS

: GET REeO!' I L,EN(iTH
:GET DATA PATTERN

:RETURN TO SUPERVISOR

Diagnostic Conventions
SYMBOL CONVENTIONS

15.3 SYMBOL CONVENTIONS

28-Feb-77 -- Rev 3 Page 15-17

The following symbol conventions should be used for all VAX-II
diaqnostics:

TnSm specifies test n subtest m
FMTn specifies format statement n
ASCn specifies ASCII string n
MSGn specifies error message n
REPn specifies statistical report n
QSTn specifies question n
ISRn specifies interrupt service routine n
SPMn software parameter n
HPHn hardware parameter n

The symbol construction should be as follows:

<prefix>_<descriptive name>_<optional modifier>

15.4 MACRO EXPANSION CONVENTIONS

Macros will be expanded or not expanded based on the following rules.
If a macro generates inline test code it will be expanded but not it's
call. If a macro makes a call to a subroutine the macro call is shown
but not it's expansion. Both the call and expansion can be displayed
it the program is assembled with a debug switch set.

[End of Chapter 15]

Digital Equipment Corporation COMPANY CONFIDENTIAL Page I

Title: VAX-II Assembler Software Engineering Sample -- Rev 3

Specification Status: draft

Architectural Status: under ECO control

File: SEAR3.RNO

PDM #: not used

Date: 28-Feb-77

Superseded Specs: none

Author: P. Conklin

Typist: P. Conklin

Reviewer(s): R. Brender, D. Cutler, R. Gourd, T. Hastings, I. Nassi,
S. Poulsen, D. Tolman

Abstract: Appendix A contains a copy of a sample module written in
assembly language.

Revision History:

Rev #
Rev 1
Rev 2
Rev 3

Description
Original
Revised from Review
After 6 months experience

Author
M. Spier
P. Marks
P. Conklin

Revised Date
l4-Apr-76
2l-Jun-76
28-Feb-77

Assembler Sample
Change History

Rev 2 to Rev 3:

28-Feb-77 -- Rev 3

1. Added example.

[End of SEAR3.RNO]

Page A-990

APPENDIX A

ASSEMBLER SAMPLE

28-Feb-77 -- Rev 3

The listing on the next page shows a routine from the procedure
library. There is no suggestion that this routine actually works,
only that it follows the conventions set forth in this document. In
fact, its "facility" does not even exist. Note that it consists of
two externally callable routines and a number of internal routines.

Assembler Sample 28-Feb-77 -- Rev 3 Page A-2

.TITLE CHF$SIGNAL - Condition Handling Facility SIGNAL and STOI

.IDENT /1-3/

COPYRIGHT (C) 1977
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS 01754

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A SINGLE
COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE INCLUSION OF THE
ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR ANY OTHER COPIES THEREOF,
MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON
EXCEPT FOR USE ON SUCH SYSTEM AND TO ONE WHO AGREES TO TRESE LICENSE
TERMS. TITLE TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES
REMAIN IN DEC.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

;++
FACILITY: Condition Handling

ABSTRACT:

The Condition Handling Facility sup~orts the exception
handling mechanisms needed by each of the common languages.
It provides the proqrammer with some control over fixup,
reporting, and flow of control on errors. It provides
subsystem and application writers with the ability to
override system messages in order to give a more suitable
application oriented interface.

To understand CHF more fully, refer to its functional
specification and to the STARLET exception routine (EXCEPTION).

ENVIRONMENT: Any access mode--normally user mode

AUTHOR: Peter F. Conklin, CREATION DATE: l2-Nov-76

MODIFIED BY:

Peter F. Conklin, 5-Jan-77: VERSION 01
01 Original, based on CHF Rev 4 spec
02 (CVC) Updated to Rev 2 coding standards
03 Correct code in internal handler • . _-,

~ssembler Sample 28-Feb-77 -- Rev 3

.SBTTL DECLARATIONS

INCLUDE FILES:

$PSLDEF
$SSDEF

MACROS:

NONE

EQUATED SYMBOLS:

C~NT MSG CTRL Lz 40
CANT:MSG:BUF_t-40

CHF$_ X2222@l6

CHF$ CANT CONT-·CHF$ +4
CHF$:NO_HANDLER=-CHF$_+8

SRM$L HANDLER-O
SRM$W-SAVE PSW-4
SRM$W-SAVE-MASX-6
SRM$L-SAVE-AP-a
SRM$L-SAVE-FP-12
SRM$L:SAVE:PC-16

OWN STORAGE:

NONE

Paqe A-3

:PSL definitions
:System Status code definitions

:length control string for CHF$STOP
:length insert message for CHF$STOP

:***Temp*** CHP facility code

:Can't continue from CHF$STOP
:No handler found

:Call frame handler
:Call frame PSW
:Call frame save mask
:Call frame save AP
:Call frame backward link
:Call frame save PC

Assembler Sample 28-Feb-77 -- Rev 3

.SBTTL CHF$STOP - Stop execution via signalling
:++

FUNCTIONAL DESCRIPTION:

This procedure is called whenever it is impossible
to continue execution and no recovery is possible.
It signals the exception. If the handler(s) return
with a continue code, a message "Can't continue"
is issued and the image is exitted. This procedure
is guaranteed to never return.

CALLING SEQUENCE:

Page A-4

CALL CHF$STOP (condition value.rlc.v, [{parameters.rz.v}])

INPUT PARAMETERS:

NONE

IMPLICIT INPUTS:

NONE

OUTPUT PARAMETERS:

NONE

IMPLICIT OUTPUTS:

NONE

COMPLETION CODES:

NONE

SIDE EFFECTS:

The process is EXITted if a handler specifies continue.

:--

$FORMAL
CONDITION VALUE-

>

(-

iCONDITION VALUE.rlc.v is the conditiun
iother arguments are parameters

Assembler Sample 28-Feb-77 -- Rev 3 Page A-5

. ENTRY CHF$STOP,~M<R2> :Stop
asss SIGNAL :go do the signaling
MOVAL -CANT_MSG_CTRL __ L(SP),SP :allocate room for control string
PUSHAS (SP) :set pointer to it
PUSHL 'CANT MSG CTRL L :make into string descriptor
MOVL SP,R2- - - :save a copy of descriptor
$GETERR_S CONDITION VALUE(AP),(R2),(R2)

- :get error string
MOVAL
PUSHAB
PUSHL
MOVL

-CANT_MSG_BUF_L(SP) "SP :allocate room for string
(SP) . :get pointer to it
ICAN~MSGBUF L :make into string descriptor
Sp,~O- - ~ - :get pointer to it

PUSHL RO :set as arg for later
$FAOL S (R2), (RO), (RO),CONDITION VALUE(AP)

:format error string
PUSHL
CALLS

BRW

ICHF$ CANT CONT
*2,LI~$OUT=MESSAGE

SIG EXIT

:set "can't continue" code
:issue message, with the
: original SIGNAL's message
: as the insert
:stop with original exception
: as the code

Assembler Sample 28-Feb-77 -- Rev 3

.SBTTL CHF$SIGNAL - Signal Exceptional Condition
;++

FUNCTIONAL DESCRIPTION:

This procedure is called whenever it is necessary
to indicate an exceptional condition and the procedure
can not return a status code. If a handler returns
with a continue code, CHF$SIGNAL returns with
all registers including RO and RI preserved. Thus,
CHF$SIGNAL can also be used to plant performance and
debugging traps in any code. If no handler is found,
or all resignal, a catch-all handler is CALLed.

CALLING SEQUENCE:

Page A-6

CALL CHF$SIGNAL (condition value.rlc.v, [{parameters.rz.v}])

INPUT PARAMETERS:

NONE

IMPLICIT INPUTS:

NONE

OUTPUT PARAMETERS:

NONE

IMPLICIT OUTPUTS:

NONE

COMPLETION CODES:

NONE

SIDE EFFECTS:

If a handler unwinds, then control will not return.
A handler could also modify RO/RI and change the
flow of control. If neither is done, then all
registers and condition codes are preserved.

i--

BSBB
RET

. ENTRY CHF$SIGNAL,O
SIGNAL

;Signal
;go do the signaling
:return to caller

Assembler Sample 28-Feb-77 -- Rev 3 Page A-7

.~~ , . .
.SBTTL SIGNAL - Internal Routine to Signal Exceptions

FUNCTIONAL DESCRIPTION:

This routine is used by CHF$STOP and CHF$SIGNAL to do
the actual exception signaling. It sets up the handler
argument list. It then checks both exception vectors for
a handler. It then searches backward up the stack, frame
by frame looking for a handler. Each handler found is
called. If the handler returns failure (resignal), the
search continues. If no handler is found or if all handlers
resignal a catch-all handler is called. The catch-all
issues the standard message for the condition and then
returns success if condition-value<O> is set. If a
handler returns success (continue) the routine returns
to CHF$STOP or CHF$SIGNAL with RO/RI intact.

During the stack search, if another sigrial is found to
be still active, the frames up to and including the
establisher of the handler are skipped. Refer to the
section Multiply Active Signals in the functional
specification. An active signal is defined as a routine
which is called from the system vector SYS$CALL HANDLR.

If a memory access violation is found during the stack
search, it is assumed that the stack is finished and
the routine calls the catch-all handler.

CALLING SEQUENCE:

JSB

INPUT PARAMETERS:

AP points to the arg list

IMPLICIT INPUTS:

NONE

OUTPUT PARAMETERS:

NONE

IMPLICIT OUTPUTS:

NONE

COMPLETION CODES:

NONE

Assembler Sample 28-Feb-77 -- Rev 3 Page A-8

SIDE EFFECTS:

If a handler unwinds, then control will not return.
A handler could also modify RO/Rl and change the flow
of control. If neither is done, then all registers

: are preserved •

. _-,

SIGNAL:
PUSHR
HOVAB

MNEGL
PUSHL
PUSHL
PUSHAL
PUSHAL
PUSHL

tAM(RO,RI> :save RO/RI in mechanism vector
WASIGNAL_HANDLER,SRM$L_HANDLER(FP) :establish a handler

: to catch access violations
:initial depth is -3 13,-(SP)

FP
14
(SP)
(AP)
12

:vector frame a current
:mechanism has 4 elements
:second arg is mechanism vector
:first arg is signal vector
:two arguments to handler

At this point the stack is all set for a call to any handler:

· ,

· ,
· ,

loop
· ,

10$:

OO(SP) = 2
04(SP) • signal vector address
08(SP) :: mechanism vector address
l2(SP) z mechanism vector length (4)
16 (SP) • mechanism vector frame (FP)
20(SP) z: mechanism vector depth (-3)
24(SP) - mechanism vector RO
28 (SP) z mechanism vector Rl
32(SP) :: RSS return to CHF$STOP or CHF$SIGNAL
36(SP)++ RET frame to invoker

here looking for a handler to call

INCL
BGEQ
MOVPSL
EXTZV

MOVQ
CMPB
BEQL
MOVL
BRB

20(SP) :move to next depth
20$:branch if searching stack
RO :get current PSL
IPSL$V_CURMOD,IPSL$S CURMOD,RO,RO

- :get current mode
@ICTL$AQ EXCVEC[RO],RO :qet both exception vectors
'-1,20(SP) :see which vector this time
40$:branch if secondary
RO,Rl :if primary, move to Rl
40$: and branch

Assembler Sample 28-Feb-77 -- Rev 3 Paqe A-9

here if searching stack

20$: BLBS
MOVL
MOVL
BEOL

22(SP) ,SIGNAL_CATCH :if loop too long, give up
l6(SP),RO :qet last frame examined
SRM$L SAVE FP(RO) ,16(SP) :qet previous frame
SIGNAL CAT~H :branch if no more stack

Here with RO containing a frame whose predecessor miqht be
CHF or EXCEPTION calling to a handler. If so, the return
PC would be SYS$CALL HANDL+4 because both JSB to that

: vector to call handlers. If so, we have the situation of
: multiply active signals and need to bypass frames until this

handler's establisher is skipped. The depth parameter is
not incremented because a handler and its establisher are
considered part of the same entity.

CMPL

BNEOU
BSBB

MOVL
MOVL

BRB

30$: MOVL
40$: TSTL

BEOL
JSB
BLBC
MOVAL
POPR
RSB

SRM$L SAVE PC(RO) "SYS$CALL HANDL+4
- - :see if multiply active

30$
OLD SP

l2(RO) ,RO
4 (RO) ,16 (SP)

20$

@16(SP) ,Rl
Rl
10$
@iSYS$CALL HANDL
RO,lO$ -
-12(FP) ,SP
''''M(RO,Rl>

:branch if not
:adjust RO to what SP
: contained before the call
:qet mechanism vector
:get establisher's frame
: as last frame
:search again

:get handler if any
:see if handler
:if no handler, loop
:CALL handler via =vector=
:if resignal, loop
:clean up stack
:restore RO/Rl
:return to CHF$STOP or CHF$SIGNAL

: Here when no handler is found, or if all handlers resignal.
This is either done when the stack saved FP is 0, meaning end

: of the stack, or when an access violation occurs, indicating
that the stack is bad. The catch-all handler is called and

: then a no-handler message is issued.
:

SIGNAL CATCH:
MOVAB
JSB
PUSHL
CALLS
BRB

B"'SIG CATCH ALL,RI
@'SYSlCALL HANDL
'CHF$ NO HANDLER
Il,LIB$OUT MESSAGE
SIG EXIT -

:set address of handler
:CALL handler via Wvector W
:qet wno handler w code
:output message
Igo exit with condition
1 value as result

Assembler Sample 28-Feb-71 -- Rev 3 Page A-lO

.SBTTL SIG CATCH ALL - Internal Catch-all Handler
i++

FUNCTIONAL DESCRIPTION:

This handler is used in SIGNAL to catch
signals when no handler is found or all resignal.

C~LLING ~EOUENCE:

handled = SIG CATCH ALL (condition.rl.ra, mechanism.rl.ra)

INPUT PARAMETERS:

NONE

IMPLICIT INPUTS:

NONE

OUTPUT PARAMETERS:

NONE

IMPLICIT OUTPUTS:

NONE

COMPLETION CODES:

NONE

SIDE EFFECTS:

If condition value<O> is clear, $EXIT is done •

. _-,

SIG CATCH ALL:
.WORD
MOVAL
CALLG
BLBC

RET

o iNo reqisters
@4(AP) ,AP iget condition arqs
(AP) ,LIB$OUT MESSAGE ~issue standard mp.ssage
CONDITION_VALUE(AP),SIG_EXIT

iif failure, go exit
otherwise, return

Here to qive up and exit to the system. The condition value
argument is given as the exit status.

SIG EXIT:
$EXIT S CONDITION_VALUE(AP) iexit with condition

; value as the result

Assembler Sample 28-Feb-77 -- Rev 3

.SBTTL OLD SP - Internal Routine to Calculate Old SP
;++

:

FUNCTIONAL DESCRIPTION:

This routine is called to calculate what SP was before
a particular CALL that resulted in a specific stack
frame.

CALLING SEQUENCE:

JSB

INPUT PARAMETERS:

RO = address of stack frame in question

IMPLICIT INPUTS:

NONE

OUTPUT PARAMETERS:

RO = value of SP before CALL in question

IMPLICIT OUTPUTS:

NONE

COMPLETION CODES:

NONE

SIDE EFFECTS:

: Rl is clobbered

. --,

OLD SP:

10$:

20$:

EXTZV

EXTZV

ADDL2
ADDL2
BL8C
ADDL2
ASHL
BNEOU

RSB

t14,t2,SRM$W SAVE MASK(RO),-(SP)
- - 1get stack offset

to,t12,SRM$W SAVE MASK(RO),RI

t20,RO
(SP)+,RO
RI,20$
t4,RO
t-l,Rl,Rl
10$

- - 1get register mask
1standard frame
1SP correction
1if register bit set,
1 count the register
1discard bit
1loop until all done

1return

Page A-II

Assembler Sample 28-Feb-77 -- Rev 3 Page A-l2

.SBTTL SIGNAL HANDLER - Internal Routine to Handle Access Violation
;++

FUNCTIONAL DESCRIPTION:

This handler is used in SIGNAL to catch
access violations during the stack search.
If it gets an access violation exception from
this procedure it terminates the search.

CALLING SEQUENCE:

handled = SIGNAL HANDLER (condition, mechanism)

INPUT PARAMETERS:

NONE

IMPLICIT INPUTS:

NONE

OUTPUT PARAMETERS:

NONE

IMPLICIT OUTPUTS:

NONE

COMPLETION CODES:

o if not handled
success if unwound

SIDE EFFECTS:

The stack is unwound and SIGNAL CATCH is branched to.

,--

Assembler Sample 28-Feb-77 -- Rev 3 Page A-13

SIGNAL HANDLER:
.WORD 0 iNo registers
MOVQ 4(AP),RO
TSTL 8(Rl)
BNEQU 10$
CMPL 4(RO),tSS$ ACCVIO
BNEQU 10$

;

iget both arguments
;verify "this" establisher
ibranch if not
isee if memory access violation
ibranch if not

here if access violation in signal procedure

10$:

".I"'"\Y7r
rlUV.u

MOVAL
MOVL
RET
CLRL
RET

CHF$L SIG ARGS(RO) ,Rl ;get number of signal args
SIGNAL CATCH~-4(RO) [Rl] ichange PC of exception
SS_CONTINUE,RO iresume

i execution
RO inot handled function value

ireturn to unwind

.END

[End of Appendix A]

;M03
;M03
iM03
;M03

Digital Equipment Corporation COMPANY CONFIDENTIAL Page 1

Title: VAX-II BLISS Software Engineering Sample -- Rev 3

Specification Status: draft

Architectural Status: under ECO control

File: SEBR3.RNO

PDM i: not used

Date: 27-Feb-77

Superseded Specs: none

Author: P. Conklin

Typist: P. Conklin

Reviewer(s~: R. Brender, D. Cutler, R. Gourd, T. Hastings, I. Nassi,
D. Tolman

Abstract: Appendix B contains a copy of a sample module written in
BLISS.

Revision History:

Rev *
Rev I
Rev 2
Rev 3

Description
Original
Revised from Review
After 6 months experience

Author
M. Spier
P. Marks
P. Conklin

Revised Date
14-Apr-76
21-Jun-76
27-Feb-77

BLISS Sample 27-Feb-77 -- Rev 3
Change History

Page 8-990

Rev 2 to Rev 3:

1. Added example.

[End of SEBR3.RNO]

APPENDIX B

BLISS SAMPLE

27-Feb-77 -- Rev 3

The listing on the next page shows a routine from the procedure
library. There is no suggestion that this routine actually works,
only that it follows the conventions set forth in this document.

BLISS Sample 27-Feb-77 -- Rev 3 Page B-2

MODULE LIB$OUT MESSAGE (!Library routine to output a system messaqe
- IDENT='1-4'

) =
BEGIN

COPYRIGHT (C) 1977
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS 01754

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A SINGLE
COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE INCLUSION OF THE
ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR ANY OTHER COPIES THEREOF,
MAY NOT BE PROVIDED OR OTHERWISE ~ADE AVAILABLE TO ANY OTHER PERSON
EXCEPT FOR USE ON SUCH SYSTEM AND TO ONE WHO AGREES TO THESE LICENSE
TERMS. TITLE TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES
REMAIN IN DEC.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WqICH IS NOT SUPPLIED BY DEC.

!++
1 FACILITY: Procedure Library

ABSTRACT:

This routine takes a system message (status) code, qets
it from the system message file and formats it with FAO.
It then outputs the message to OUTPUT.

ENVIRONMENT: Any access mode--normally user mode

AUTHOR: Peter F. Conklin, CREATION DATE: 16 Dec 76

MODIFIED BY:

Peter F. Conklin, 29-Dec-76: VERSION 01
01 Original, using 010 to TT: only.
02 Update to standard module format
03 Chanqe to use GETERR FRST and GETERR NEXT

and to use PUT SYSOUT -
04 (CVC) Correct sense of multi-line loop.

BLISS Sample 27-Feb-77 -- Rev 3

TABLE OF CONTENTS:

FORWARD ROUTINE
LIB$OUT_MESSAGE:NOVALUE: !output message

INCLUDE FILES:

NONE

MACROS:

NONE

EOUATED SYMBOLS:

LITERAL
MSG CTRL L-l32,
MSG:BU,_t-l32:

OWN STORAGE:

NONE

EXTERNAL REFERENCES:

EXTERNAL ROUTINE

!length of control string
llenqth of message

LIB$GETERR FRST:NOVALUE, Iget start of message
LIB$GETERR-NEXT, Iget more of message
SYS$FAOL:NOVALUE, !format message
LIB$PUT SYSOUT:NOVALUE: !put message to SYSOUT:

Page B-3

!A03

lAO)

BLISS Sample 27-Feb-77 -- Rev 3 Page 8-4

GLOBAL ROUTINE LIB$OUT MESSAGE (!Output system messaqe
MESSAGE CODE, - !standard completion code
LIST) - !substitutable params
:NOVALUE =

,++
FUNCTIONAL DESCRIPTION:

This routine takes a system message (status) code, qets
each line of the message from the system message file
via the library routines GETERR FRST and GETERR NEXT,
formats it with PAO, and outputs it via the library
routine PUT SYSOUT.

FORMAL PARAMETERS:

MESSAGE CODE.rlc.v <31:16>
<15:3>
<2:0>

facility code
message indicator
severity indicator:
o s warning
1 = success
2 = error
4 = severe error

[{LIST.rz.v}] remaining parameters are used in call to FAO

IMPLICIT INPUTS:

NONE

IMPLICIT OUTPUTS:

NONE

COMPLETION CODES:

NONE

SIDE EFFECTS:

One or more records are output on device OUTPUT:

BEGIN

LOCAL
CONTROL, !messaqe line control code
MSG CTRL:VECTOR[CH$ALLOCATION(MSG CTRL L)1, !control string
MSG-BUF:VECTOR[CH$ALLOCATION(MSG BUF LTl, !text string
MSG-CTRL D:VECTOR[21 , !control-strTng descriptor
MSG:SUF_n:VECTOR[21: !text string descriptor

BLISS Sample 27-Feb-77 -- Rev)

Initialize string descriptors

MSG CTRL 0(0) = MSG CTRL L:
MSG-CTRL-O[l] = MSG-CTRL:
MSG:BUF_D[l) = MSG_BUF:

Get the message control string for the first line

1+
! Loop, processing each line and getting the next
! The loop ends when GETERR NEXT returns false
!-

DO
BEGIN

!+
! If the control code is ' , or 'T', then

Page 8-5

! format message for output with FAO and then output it.
1 Note that GETERR returns the control code as uppercase only.
1-

!~O)

!~03

IF .CONTROL<O,S> EQLU ' , OR .CONTROL<O,S> EQLU 'T' !~03
THEN

BEGIN
MSG BUF 0[0] • MSG BUF L;
SYSSFAOL (MSG CTRL-O, MSG BUF D, MSG_BUF_D, ~ESSAG!_CODE);
LIB$PUT_SYSOU' (MS~_BUF_DT: lAO)
END:

Reset control text lenqth in descriptor and oet next line

MSG CTRL 0[0] = MSG_CTRL_L:
END- -

WHILE LIB$GETERR NEXT (MSG_CTRL_D, ~SG_CTRL_D, CONTROL):

END: lEnd of LI8$OUT MESSAGE

!~O)
!AO)
!M04
lAO)

BLISS Sample

END
ELUDOM

27-Feb-77 -- Rev 3

[End of Apoendix B)

Paae ~-6

Digital Equipment Corporation COMPANY CONFIDENTIAL Page 1

Title: COMMON BLISS Software Engineerinq Samole -- Rev 3

Specification Status: draft

Architectural Status: under ECO control

File: SECR3.RNO

PDM I: not used

Date: 27-Feb-77

Superseded Specs: none

Author: R. Murray

Typist: R. Murray

Reviewer(s): R. Brender, D. Cutler, R. Gourd, T. Hastings, I. Nassi,
D. Tolman

Abstract: Appendix C contains a copy of a sample module written in
BLISS.

Revision History:

Rev 1
Rev 1
Rev 2
Rev 3

Description
Original
Revised from Review
After 6 months experience

Author
P. Belmont
P. Marks
R. Murray
I. Nassi

Revised Date
14-Apr-76
21-Jun-76
27-Feb-77

Common BLISS Sample
Change History

Rev 2 to Rev 3:

1. Added example.

[End of SECR3.RNO]

27-Feb-77 -- Rev 3 Page C-990

APPENDIX C

COMMON BLISS SAMPLE

27-Feb-77 -- Rev 3

The following is a runninq BLISS program that illustrates many of the
conventions discussed in this manual. It relies on a small number of
external routinea for console I/O. These are:

'rI'Y GET CHAR
'rI'Y-PU-T-CHAR
TTY-PUT-CRLF
TTY-PUT INTEGER
'rI'Y-PUT-ASCIZ
TTY-PUT-MSG

Common BLISS Sample 27-Feb-77 -- Rev 3 Page C-2

~ODULE LIB$CALC (! INTEGER ARITHMETIC EXPRESSION EVALUATOR
IDENT = '03',
MAIN = MAINLOOP
) =

BEGIN

COPYRIGHT 1976, DIGITAL EQUIPMENT CORP., ~AYNARD, MA 01754

THIS SOFTWARE IS FURNISHED TO THE PURCHASER UNDER A LICENSE
FOR USE ON A SINGLE COMPUTER SYSTEM AND CAN BE COPIED (WITH
INCLUSION OF DIGITAL'S COPYRIGHT NOTICE) ONLY FOR USE IN SUCH
SYSTEM, EXCEPT AS MAY OTHERWISE BE PROVIDED IN WRITING BY
DIGITAL.

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENT CORPORATION. DIGITAL ASSUMES NO RESPONSIBILITY FOR
ANY ERRORS THAT MAY APPEAR IN THIS DOCUMENT.

DIGITAL EQUIPMENT CORPORATION ASSUMES NO RESPONSIBILITY FOR
THE USE OR RELIABLILTY OF ITS SOFTWARE ON EQUIPMENT WHICH IS
NOT SUPPLIED 8Y DIGITAL EOUIPMENT CORPORATION.

++

FACILITY: GENERAL LIBRARY

FUNCTIONAL DESCRIPTION:
THIS PROGRAM PARSES AND EVALUATES ARITHMETIC EXPRESSIONS,
KEEPS 26 VALUES AROUND, AND GENERALLY ACTS LIKE AN "AID"
WITH DECIMAL INTEGERS ONLY.

ENVIRONMENT: USER MODE WITH EXTERNAL ROUTINES

AUTHOR: P. BELMONT CREATION DATE: 01-JAN-76

MODIFIED BY:
PETER C. MARKS, 10-MAY-76

01 CONFORMATION TO S. E. MANUAL STANDARDS

RICHARD M. MURRAY, 21-FEB-77
01 CONFORM TO REVISED STANDARD

ISAAC R. NASSI, 30-APR-77
01 BOG FIXES, TRANSPORTABILITY CHANGES

Common BLISS Sample 27-Feb-77 -- Rev 3 Page C-3

EXTENDED FUCTIONAL DESCRIPTION:

SYNTAX:

LEXICAL LEVEL: ALL CHARACTERS WITH ASCII VALUE LEO '040
ARE IGNORED. THUS, BLANKS AND TABS AND <CR> AND <NL>
ARE IGNORED (AND MANY OTHERS).
UPPER AND LOWER CASE ALPHABETIC CHARACTERS ARE IDENTIFIED.

SINCE WE READ AHEAD ONE CHARACTER, THE USER MUST
TYPE SOMETHING AFTER THE LAST CHARACTER TO GET THE JOB DONE.
AFTER PROCESSING, THE REMAINDER OF THE INPUT IS ERASED.

THE UNARY MINUS (<T1>) MAY NOT IMMEDIATELY FOLLOW
ANY OPERATOR EXCEPT "(". THUS -1+1: (-1+1):
(-1+(-2»: ARE ALL CORRECT BUT -1+-2: IS NOT.

<FULL> ->
<EXPR> ->
<TS> ->
<T4> ->
<T3> ->
<T2> ->
<T1> ->

<TO> ->
<ALPHA> ->
<DECIMAL> ->
<DIGIT> ->

SEMANTICS:

<EXPR> :
<ALPHA>=<EXPR> 1 <TS>
<TS> + <T4> <T4>
<T4> - <T3> ! <T3>
<T3> / <T2> ! <T2>
<T2> * <T1> ! <T1>
- <TO> ! <TO> (SEE COMMENT ABOVE ON USE

UNARY MINUS.)
(<EXPR>) ! <ALPHA> 1 <DECIMAL>
A ! B 1 C ! ••• ! Z
<DECIMAL><DIGIT> ! <DIGIT>
0!1!2! ••• !7!8!9

THERE ARE 26 VARIABLES WITH <ALPHA> NAMES. THEY
ARE INITIALLY ZERO.

ASSIGNMENT (THE "a" OPERATOR) IS ALLOWED ONLY TO
A VARIABLE AND HAS THE EFFECT OF REPLACING THE VALUE
OF THE VARIABLE WITH THE EVALUATED VALUE OF THE <TS>.
THE VALUE OF AN ASSIGNMENT OPERATION IS THE VALUE
ASSIGNED. THUS, A=B=C=l: ASSIGNS 1 TO ALL THREE
VARIABLES. THE EXAMPLES: A=<TS>:
A=B=C=<TS>: B=1+(A=B=S+3): ARE CORRECT
BUT A+1=3: 1+A=3: ARE NOT.

"A:" MAY BE USED TO PRINT THE VALUE OF A.

THREE STACKS ARE MAINTAINED IN THIS PROGRAM.
THE "MAIN STACK" IS MAIN STK AND ITS POINTER IS
MAIN STK POINTER.
ALL VALUES AND OPERATORS END UP ON IT IN RIGHT ORDER.

THE DERAILING STACK FOR OPERATORS IS OPERATOR STACK.
OP STACK PTR IS ITS POINTER.

Common BLISS Sample 27-Feb-77 -- Rev 3 Paqe C-4

THIS STAC~ HOLDS LOWER PRECEDENCE OPERATORS AS HIGHER
PRECEDENCE OPERATORS ACCUMULATE. THIS STACK IS EMPTIED
WHEN THE -:- IS PROCESSED.

THE EVALUATION STACK IS EVAL STK. ITS POINTER IS
EVAL STK PTR.
IT H5LDS-OPERANDS WHILE THE MAIN STACK IS SCANNED FOR
OPERATORS. THE RESULTS OF OPERATIONS PERFORMED
GO ON THE EVALUATION STACK. THIS STACK IS MANAGED
BY EVAL POLISH AND ITS FRIENDS.

Common 9LISS Sample 27-Feb-77 -- Rev 3

TABLE OF CONTENTS:

FORWARD ROUTINE
MAINLOOP,
EXPRESSION,

INPUT CYCLE,
PROCESS OPR,
READ UNTIL DEL,
GET_CHARACTER:NOVALUE,

PUSH OPERATOP:NOVALUE,
POP OPERATOR,
PUSH MAIN STACK:NOVALUE,
POP MAIN STACK,
EVAL_POLISH:NOVALUE,

EVAL OPERATOR,
EVAL-ADDRESS,
EVAL-VALUE
PUSH-EVAL STACK:NOVALUE,
POP EVAL STACK,
PRINT STRING:NOVALUE,
PRINT:STACK,

ERROR:

INCLUDE FILES:

'BLI:COMIOG.REQ':
1
! MACROS:

MACRO
LEXEME[OJ%,
LEXEME[lJ%,

Page C-5

MAIN PROGRAM LOGIC
READ, PARSE, AND EVALUATE
AN EXPRESSION
PARSE AN EXPRESSION
PROCESS AN OPERATOR
LEXEME BUILDIN~
GET A CHARACTER FROM INPUT
STREAM
PUSH ONTO OPERATOR STACK
POP OFF OF OPERATOR STACK
PUSH ONTO MAIN STACK
POP OFF OF MAIN STACK
EVALUATE A POLISH-TYPE
EXPRESSION
EVALUATE AN OPERATOR
EVALUATE AN ADDRESS
EVALUATE A VALUE
PUSH ONTO EVALUATION STACK
POP OFF OF EVALUATION STACK
PRINT AN EXPRESSION
PRINT THE CONTENTS OF THE
MAIN STACK
PRINT AN ERROR MESSAGE

LEXEME TYPE=
LEXEME-VALUE=
MAIN TYPE=
MAIN-VALUE=
TOPOP=

MAIN STK[.MAtN STK PTR-2J%,
MAIN-STK[.MAIN-STK-PTR-l]%,
OPERATOR_STACKT.oP:STACK_PTR-l)%:

Common BLISS Sample 27-Feb-77 -- Rev 3 Page C-6

EQUATED SYMBOLS:
!
LITERAL

BIND

FIRST=
OPEN PAREN=
CLOSE PARENa:
MULTIPLY=
PLUS=
MINUS=
DIVIDE=
SEMI COL=
EQUAL=
NEGATIVE=
CUTOFF=

IS NAME=
IS-DECIMAL=
IS-OPERATOR=
IS-NONE=

OPERATOR CODES

o ,
1 ,
2,
3,
4,
5,
6,
7 ,
8,
9,
2,

"FIRST" OPERATOR
OPEN PARENTHESIS
CLOSE PARENTHESIS
MULTIPLICATION "*"
ADDITION .+"
SUBTRACTION "-"
DIVISION "I"
SEMI-COLON ":"
ASSIGNMENT "="
NEGATION (UNARY MINUS) "-"
OPEN PAREN AND FIRST FOR NEG

MAIN STACK ELEMENT CODES

1 ,
2,
3,
0:

PRECEDENCE TABLES

VARIABLE NAME
INTEGER VALUE
OPERATOR
"NOTHING" (SPECIAL ELEMENT)

PRCDENCE 1 IS THE PRECEDENCE OF THE CURRENT OPERATOR
PRCDENCE-2 IS THE PRECEDENCE OF THE OPERATOR ON TOP OF
OP-STACK:
THE TWO ARE COMPARED IN INPUT CYCLE.
THE TWO LISTS ARE BASICALLY THE SAME, BUT:

NOTE: PRECEDENCE 2 IS THE SAME AS PRECEDENCE 1 FOR ALL
OPERATORS EXCEPT-"(" WHERE IT IS REDUCED TO I AND "=" WHERE
IT IS REDUCED TO 2. CLOSE PAREN WILL FORCE ":" ONTO
STACK AND WILL FORCE ALL OTHER OPERATORS DOWN TO "("
WHICH, WITH ")", IS REMOVED BY THE ACTION OF ")".

PRCDNCE 1= UPLIT(O,9,2,7,4,5,6,1,3,8):VECTOR[lO) ~

() *+-1:=
PRCDNCE 2= UPLIT(O,1,2,7,4,5,6,1,2,8):VECTOR[lOj t

OPNAMES=

ASCII VALUE OF OPERATORS

PLIT(
PLIT (%ASCIZ 'FIRST'),
PLIT (%ASCIZ '('),
PLIT (%ASCIZ ')'),
PLIT (%ASCIZ '*'),

Common BLISS Sample

LITERAL
INPUT SIZE=
OUT MSG MAX=
STACK SIZE
STOR LEN-

NOTHING-
CAR RETURN =
CHARMASK =

OWN STORAGE

OWN
!

MAIN STK:
OPERATOR STACK:
EVAL STK:

r1A IN STK PTR,
OP STACK-PTR,
EVAL_STK:=PTR,

CHAR,

STORAGE:

DECVALUE,
LEXEME:

OPERATOR,

PAREN LEVEL,
INPUT:
INPUT POINTER,
INPUT-LENGTH,
ERRORVJ

27-Feb-77 -- Rev 3

PLIT ('ASCIZ
PL!T ('ASC!!
PLIT ('ASCIZ
PLIT ('ASCIZ
PLIT ('ASCIZ
PLIT ('ASCIZ

SIZE PARAMETERS

133,
132,
400,
26,

MISC.

0,
'0 '15' ,
(1"'5)-1;

STACKS

VECTOR[STACK SIZE],
VECTOR [STACK-SIZE] ,
VECTOR[STACK:SIZE],

STACK POINTER~

PARSING VARIABLES AND

VECTOR[STOR_LEN],

VECTOR[2] ,

VECTOR[INPUT_SIZE],

• + •) , · -. \ -, r · / .) ,
• J •) ,
• == •) ,

Page C-7

'NEG'»:VECTOR[50]J

INPUT AREA SIZE
MAX OUTLINE LENGTH
SIZE OF STACKS
SIZE OF STORAGE

! A CONDITION
lCARRIAGE RETURN
! MASK LOW BITS

MAINSTACK
OPERATOR STACK
EVALUATION STACK

AREAS

SINGLE ASCII
CHARACTER INPUT
IDENTIFIER VALUE
STORAGE AREA
DECIMAL VALUE
LEXICAL ELEMENT
! LEXEME[O] • TYPE
! LEXEME[l] == VALUE
OPERATOR CODE
(SEE ABOVE)
PARENTHESES LEVEL
INPUT LINE
INPUT LINE POINTER
LENGTH OF INPUT LINE

Common BLISS Sample 27-Feb-77 -- Rev 3 Paqe C-8

EXTERNAL REFERANCES:

NONE

Common BLISS Sample 27-Feb-77 -- Rev 3 Paqe C-9

:NOVALUE ;

,++

FUCTIONAL DESCRIPTION:

THIS IS THE MAIN ROUTINE OF THIS MODULE. IT CONTAINS THE
GROSS LOGIC OF THE MODULE.
THE USER IS REPEATEDLY ASKED TO -TYPE EXPRESSION-. UPON
DOING SO THE EXPRESSION IS PARSED AND EVALUATED BY A
CALL TO THE ROUTINE EXPRESSION.
EXECUTION OF THIS ROUTINE (AND THE MODUL~) IS HALTED BY
HITTING CONTROL C.

FORMAL PARAMETERS:

NONE

IMPLICIT INPUTS:

NONE

IMPLICIT OUTPUTS:

STORAGE, INPUT, INPUT_LENGTH, INPUT POINTER

ROUTINE VALUE:

!--

NONE

NONE

BEGIN

RESET STORAGE TO ZERO VALUES

INCR I FROM 0 TO (STOR_LEN - 1) DO
STORAGE[.I]= 0;

READ NEXT LINE

WHILE 1 DO
BEGIN
TTY PUT CRLF();
TTY-PUT-CHAR('C'·');
INCR I FROM 0 TC ;~PUT SIZE-l
DO

BEGIN

PROMPT

Common 9LISS Sample 27-Feb-77 -- Rev 3 Paqe C-10

INPUT[.I1 = TTY GET CHAR();
IF .INPUT(.I) EOL CAR_RETURN !CARRIAGE RETURN

END:

THEN

END;

BEGIN
INPUT[.I] = 'C';'; ! ONE EXTRA SEMICOLON
INPUT LENGTH = .1;
EXITLOOP:
END:

INPUT POINTER = -1:
IF EXPRESSION() THEN RETURN
END;

Common BLISS Sample 27-Feb-77 -- Rev 3 Paqe C-ll

ROUTINE EXPRESSION =

++

FUCTIONAL DESCRIPTION:

LOGICALLY,

THIS ROUTINE REPEATEDLY CALLS THE ROUTINE INPUT CYCLE
IN ORDER TO READ AND PARSE THE EXPRESSION, PRINTS THE
EXPRESSION, PRINTS THE CONTENTS OF THE STACK JUST BUILT, AND
THEN EVALUATES THE EXPRESSION VIA A CALL TO EVAL POLISH.

FORMAL PARAMETERS:

NONE

IMPLICIT INPUTS:

NONE

IMPL1CIT OUTPUTS:

PAREN LEVEL

COMPLETION CODES:

RETURNED AS ROUTINE VALUE:

SIDE EFFECTS:

NONE

BEGIN
LOCAL

o - NO ERRORS REPORTED
1 - ERROR ENCOUNTERED

CONDITION: VALUE RETURNED BY INPUT CYCLE

PAREN_LEVEL • 0:
DO

CONDITION = INPUT CYCLE()
UNTIL .CONDITION NEQ 0:
IF .CONDITION EOL 1 THEN RETURN 1:
PRINT STRING():
PRINT-STACK():
EVAL POLISH():
RETURN 0
END;

!ERROR

Common BLISS Sample 27-Feb-77 -- Rev 3 Paqe C-l2

ROUTINE INPUT CYCLE =

1++

FUCTIONAL DESCRIPTION:

THIS ROUTINE MAKES CALLS TO ROUTINE READ UNTIL DELITER
ACCESSING LEXEMES AND DELIMITERS. BASED-ON THE TYPE
THE ROUTINE PERFORMS VARIOUS FUNCTIONS.
NOTE:

THERE IS AN INTERNAL ROUTINE CALLED PROCESS_OPR, WHICH
HANDLES OPERATOR DELIMITERS.

FORMAL PARAMETERS:

NONE

IMPLICIT INPUTS:

LEXEME_TYPE, LEXEME VALUE

IMPLICIT OUTPUTS:

NONE

COMPLETION CODES:

RETURNED AS ROUTINE VALUE:
o - NO ERRORS ENCOUNTERED
1 - ERROR ENCOUNTERED
2 - END OF EXPRESSION

SIDE EFFECTS:

1
1--

NONE

BEGIN
LOCAL

VALUE: 1 VALUE TO BE RETURNED

IF READ UNTIL DEL() THEN RETURN 1:
IF .LEXEME TYPE NEQ IS NONE
THEN -

BEGIN
PUSH MAIN STACK(.LEXEME TYPE):
PUSH-MAIN-STACK(.LEXEME-VALUE)
END - - -

ELSE lUNARY OPERATOR
IF (.OPERATOR NEQ MINUS AND

.OPERATOR NEQ OPEN_PAREN)

Common BLISS Sample 27-Feb-77 -- Rev 3

THEN
RETURN(ERROR(4))

ELSE
IF .OPERATOR EOL MINUS
THEN

PROCESS OPR
END:

IF .PRCDNCE 2 [.TOPOP] LSS CUTOFF
THEN -

OPERATOR c NEGATIVE
ELSE

RETURN(ERROR(5»:

Paqe C-13

Common BLISS Sample 27-Feb-77 -- Rev 3

ROUTINE PROCESS OPR =

1++

FUCTIONAL DESCRIPTION:

THIS ROUTINE HANDLES OPERATORS (DELIMITERS). IT
KEEPS TRACK OF THE PARENTHESES COUNT AND THE PROPER
SYNTAX OF EXPRESSIONS.

FORMAL PARAMETERS:

NONE

IMPLICIT INPUTS:

OPERATOR, PAREN LEVEL, TOPOP, LEXEME_TYPE,
PRECIDENCE_I, PRECIDENCE 2

IMPLICIT OUTPUTS:

PAREN LEVEL

COMPLETION CODES:

RETURNED AS ROUTINE VALUE:

SIDE EFFECTS:

!--

NONE

BEGIN
LOCAL

o - NO ERRORS ENCOUNTERED
1 - ERROR ENCOUNTERED
2 - END OF EXPRESSION

Page C-14

CONDITION: ! VALUE RETURNED BY PROCESS OPR

IF .OPERATOR EOL OPEN PAREN
THEN -

PAREN_LEVEL = .PAREN_LEVEL+I:

IF .OPERATOR EOL CLOSE PAREN
THSN -

PAREN_LEVEL = .PAREN_LEVEL-I:

WHILE .PRCDNCE I (.OPERATOR] LEO .PRCDNCE 2[.TOPOP)
DO - -

BEGIN
PUSH MAIN STACK(IS OPERATOR):
PUSH:MAIN=STACK(POP_OPERATOR(»:

Common BLISS Sample 27-Feb-77 -- Rev 3

END:

IF .OPERATOR EOL SEMI_COL
THEN

IF .PAREN LEVEL EOL 0
THEN -

RETURN 2
ELSE

RETURN (ERROR(9»:

IF .OPERATOR EOL CLOSE_PAREN
TREN

BEGIN
IF .TOPOP NEO OPEN PAREN THEN RETURN(ERROR(3»:
POP OPERATOR () : -
IF READ UNTIL DEL() THEN RETURN 1:

Page C-1S

IF .LEXEME TYPE NEQ IS NONE THEN RETURN(ERROR(6»:
CONDITION=PROCESS OPR(T:
IF .CONDITION GTR-O
THEN

RETURN .CONDITION:
END

ELSE
PUSH OPERATOR(.OPERATOR):

RETURN 0-

END:

Common BLISS Sample 27-Feb-77 -- Rev 3 Paqe C-16

ROUTINE READ UNTIL DEL =
,++

FUCTIONAL DESCRIPTION:

THIS ROUTINE DOES THE ACTUAL PARSING OF THE INPUT EXPRESSION
LOOKING FOR SYMBOLS, NUMBERS AND OPERATORS (DELIMITERS) •
IT ALWAYS ATTEMPTS TO RECOGNIZE AN OPERATOR AND
RETURN ITS CODE.
PRIOR TO SEARCHING FOR THE OPERATOR IT LOOKS FOR A SYMBOL
(IS NAME) OR INTEGER(IS DECIMAL). IF NONE OF THESE
ARE-FOUND THEN IS NONE IS RETURNED IN THE GLOBAL VARIABLE
LEXEME TYPE.

FORMAL PARAMETERS:

NONE

IMPLICIT INPUTS:

CHAR, OPERATOR

IMPLICIT OUTPUTS:

OP STACK PTR, MAIN STK PTR, ERRORV, LEXEME_TYPE,
LEXEME_VALUE, DECVALUE~ OPERATOR

ROUTINE VALUE:

OPEN PAREN, CLOSE PAREN, MULTIPLY, PLUS, MINUS
DIVIDE, SEMI_COL,-EQUAL, ERROR(l), ERROR(2)

SIDE EFFECTS:

NONE

BEGIN
IF .INPUT POINTER EQL -1
THEN

IF FIRST TIME THROUGH PLACE SPECIAL "FIRST" DELIMITER
ON THE MAIN STK

BEGIN
GET CHARACTER () :
OP STACK PTR = 0:
MAIN STK-PTR = 0:
ERRORV =-0:
PUSH OPERATOR(FIRST): !INITDEL
END:-

Common BLISS Sample 27-Feb-77 -- Rev 3

FIRST SEARCH FOR A SYMSOL OR INTEGER

LEXE~E TYPE = IS NONE: !FOR THERE ~AY NOT BE ONE
IF (.CHAR GEQ 'CTA' AND .CHAR LEO 'C'Z') OR

(.CHAR GEQ 'Cia' AND .CHAR LEO 'C'z')
THEN

Paqe C-17

BEGIN
LEXEME_TYPE = IS_NAME:

!CONVERT CHAR TO AN
!INDEX INTO STORAGE
!7\RRAY

ELSE

LEXEME VALUE = (.CHAR
GET CHARACTER()
END-

AND CHARMASK)-l:

IF (.CHAR GEQ 'C'O' AND .CHAR LEO 'C'9')
THEN

BEGIN
DECVALUE = 0;
WHILE (.CHAR GEO 'C'O' AND .CHAR LEO 'C'9') DO

BEGIN
DECVALUE = 10*.DECVALUE+.CHAR-'C'0':
GET CHARACTER():
END:

LEXEME TYPE = IS DECIMAL:
LEXEME-VALUE • .DECVALUE: !DECIMAL INTEGER VALUE
END: -

NOW GET DELIMITER WHETHER OR NOT WE HAD AN IDENTIFIER OR NUMBER

IF (.CHAR LSS 'C'(' OR .CHAR GTR 'C'=')
THEN

.........
~~~~ 

RETURN(ERROR(l» 

BEGIN 
OPERATOR= 

(CASE (.CHAR) FROM tC'(' TO tc'-' OF 
SET 
[tc' ( , ] : 

OPEN PAREN: 
[tC') ']:-

CLOSE PAREN: 
[tc' * , ]: -

MULTIPLY; 
[tC ' + ' ] : 

PLUS; 
[tC'-'] : 

MINUS: 
[tC ' / ' ] : 

DIVIDE; 
[tc':']: 

SEMI COL: 
['C'=']:

EQUAL: 
[INRANGE) : 



Common BLISS Sample 27-Feb-77 -- Rev 3 

END; 

! ALL OTHER VALUES ARE IN ERROR 
RETURN(ERROR(2» 

TES) ; 
GET CHARACTER(): 
IF :OPERATOR EOL 0 THEN RETURN(ERROR(2» 

END; 

Paqe C-l8 



Common BLISS Sample 27-Feb-77 -- Rev 3 Page C-l9 

ROUTINE GET CHARACTER :NOVALUE· 

1++ 

FUCTIONAL DESCRIPTIION: 

THIS ROUTINE ACCESES THE NEXT CHARACTER FROM THE INPUT STREAM 
AND PLACES IT IN THE GLOBAL VARIABLE CHAR. 
ALL CHARACTERS WITH AN OCTAL VALUE LESS THAN 40 ARE IGNORED. 

FORMAL PARAMETERS: 

NONE 

IMPLICIT INPUTS: 

INPUT POINTER 

IMPLICIT OUTPUTS: 

INPUT_POINTER, CHAR 

ROUTINE VALUE: 
COMPLETION CODES: 

NONE 

SIDE EFFECTS: 

1--

NONE 

BEGIN 
DO 

BEGIN 
INPUT POINTER • .INPUT POINTER + 1: 
CHAR; .INPUT[.INPUT POINTER]: 
END -

UNTIL (.CHAR GTR tc' I): 
END: 



Common BLISS Sample 27-Feb-77 -- Rev 3 

ROUTINE PUSH_OPERATOR (ELEMENT) :NOVALUE • 

1++ 
! 
1 FUCTIONAL DESCRIPTION: 

Paqe C-20 

THIS ROUTINE ·PUSHES· AN ELEMENT ONTO THE OPERATOR STACK. 

FORMAL PARAMETERS: 

ELEMENT - OPERATOR TO BE ADDED TO STACK 

IMPLICIT INPUTS: 

OP STACK PTR - -
IMPLICIT OUTPUTS: 

OP_STACK_PTR, OPERATOR STACK 

ROUTINE VALUE: 
COMPLETION CODES: 

NONE 

SIDE EFFECTS: 

NONE 

BEGIN 
OPERATOR STACK[.OP STACK PTR] • • ELEMENT; 
OP STACK-PTR = .OP-STACK-PTR+l 
END; -



Common BLISS Sample 27-Feb-77 -- Rev 3 Paqe C-2l 

ROUTINE POP OPERATOR • 

!++ 

1 FUCTIONAL DESCRIPTION: 

THIS ROUTINE ·POPS· A DATA ELEMENT OFF OF THE OPERA1J'OR_STACK. 

FORMAL PARAMETERS: 

NONE 

IMPLICIT INPUTS: 

OP_STACK_PTR, OPERATOR STACK 

IMPLICIT OUTPUTS: 

OP STACK PTR 

ROUTINE VALUE: 

VALUE OF ELEMENT POPPED FROM STACK 

SIDE EFFECTS: 

1--

NONE 

BEGIN 
OP STACK PTR a .oP STACK PTR-l: 
.OPERATOR STACK[.OP STACK PTR] 
END: - --



Common BLISS Sample 27-Feb-77 -- Rev 3 Page C-22 

ROUTINE PUSH MAIN STACK(ELEMENT) :NOVALUE -- -
!++ 

FUCTIONAL DESCRIPTION: 

THTS ROUTINE WILL -PUSH- AN ELEMENT ONTO THE MAIN STK. 

FORMAL PARAMETERS: 

ELEMENT - DATA TO BE PUSHED ON MAIN STK 

IMPLICIT INPUTS: 

MAIN STK PTR 

IMPLICIT OUTPUTS: 

MAIN_STK, MAIN_STK PTR 

ROOTINE VALUE: 
COMPLETION CODES: 

NONE 

SIDE EFFECTS: 

!--

NONE 

BEGIN 
MAIN STK[.MAIN STK PTR)- .ELEMENT~ 
MAIN-STK PTR- 7MAIN STK PTR+l 
END: 



Common BLISS Sample 27-Feb-77 -- Rev 3 

ROUTINE POP MAIN STACK = 

++ 

FUCTIONAL DESCRIPTION: 

THIS ROUTINE ·POPS· AN ELEMENT OFF OF THE MAIN STK 

FORMAL PARAMETERS: 

NONE 

IMPLICIT INPUTS: 

MAIN_STK_PTR, MAIN STK 

IMPLICIT OUTPUTS: 

MAIN STK 

ROUTINE VALUE: 

VALUE OF ELEMENT POPPED FROM THE STACK 

SIDE EFFECTS: 

!--

NONE 

BEGIN 
MAIN STK PTRs .MAIN STK PTR-l; 
.MAIN STI[.MAIN STK-PTRT 
END; - --

Page C-23 



Common BLISS Sample 27-Feb-77 -- Rev 3 Paqe C-24 

ROUTINE EVAL POLISH :NOVALUE = 
1++ 

FUCTIONAL DESCRIPTIION: 

THIS ROUTINE DOES THE ACTU~L EV~LUATION OF EXPRESSION 
WHICH HAS NOW BEEN PARSED AND RESIDES ON T~E ~AIN STK. 
OPERANDS (VARIABLES AND INTEGERS) ARE SHUNTED OFF-AND PLACED 
ONTO THE EVAL STK. 
OPERATORS ARE-P,VALUATED BY MAKING A CALL TO EVAL OPERATOR. 

FORMAL PARAMETERS: 

NONE 

IMPLICIT INPUTS: 

MAIN_STK_PTR, MAIN_STK, EVAL STK 

IMPLICIT OUTPUTS: 

EVAL_STK_PTR, LEXEME_TYPE, LEXEME_VALUE, EVAL STK 

ROUTINE VALUE: 
COMPLETION CODES: 

NONE 

SIDE EFFECTS: 

NONE 

BEGIN 
EVAL STK PTR = 0: 
INCR-I FROM 0 TO .MAIN STK PTR-l BY 2 DO 

BEGIN 
LEXEME TYPE = .MAIN STK[.I): 
LEXEME-VALUE = .MAIN STK[.I+l): 
IF .LEXEME TYPE NEO Is OPERATOR 
THEN - -

BEGIN 
PUSH EVAL STACK(.LEXEME TYPE): 
PUSH-EVAL-STACK(.LEXEME-VALUE) 
END - - -

ELSE 
EVAL_OPERATOR(.LEXEME_VALUE): 

END: 
IF .MAIN STK PTR EOL 2 
THEN - -

EVAL_STK[l] = EVAL_VALUE(): THE CASE "A:" 



Common BLISS Sample 27-Feb-77 -- Rev 3 PaQe C-2S 

TTY PUT CRLF(): 
TTY-PUT-OUO('VAL: I); 
TTY-PUT-INTEGER(.EVAL STK[l] ,10,10): 
END: - -



Common BLISS Sample 27-Feb-77 -- Rev 3 Paqe C-26 

ROUTINE EVAL_OPERATOR(STACK_OPERATOR) = 
,++ 

FUCTIONAL DESCRIPTION: 

THIS ROUTINE EVALUATES THE OPERATOR STACK OPERATOR. 
THE PROPER NUMBER OF OPERANDS ARE ACCESSED FORM THE MAIN STK. 
AFTER EVALUATION THE VALUE IS PLACED ON THE EVAL STK. -

FORMAL PARAMETERS: 

STACK OPERATOR - OPERATOR TO BE EVALUATED 

IMPLICIT INPUTS: 

NONE 

. IMPLICIT OUTPUTS: 

STORAGE 

ROUTINE VALUE: 

ERROR (3) 

SIDE EFFECTS: 

NONE 

BEGIN 
LOCAL 

VALUE_I, 

VALUE 2, 
VALUE:3 : 

VALUE 3 = 

INTERMEDIATE 
SAVE AREAS 

(SELECT .STACK OPERATOR OF 
SET 

[ALWAYS]: 

DO THIS FIRST - DETERMINE THE NUMBER OF OPERANDS 
NEEDED BY THIS PARTICULAR OPERATOR 0 

BEGIN 
VALUE 2 = EVAL_VALUE(): 
VALUE-l = 

(IF .STACK OPERATOR EQL EQUAL THEN 
EVAL ADORESS() 



Common BLISS Sample 27-Feb-77 -- Rev 3 Paqe C-27 

ELSE 
If .STACK OPERATOR NEO NEGATIVE THEN 

EV~L_VALUE()) 
END: 

[NEGATIVE] : 

NEGATION - (UNARY MINUS) 
-.VALUE_2: 

[MULTIPLYl : 
.VALUE 1 * .VALUE_2: 

[DIVIDE] : 
.VALUE 1 / .VALUE_2: 

[MINUS] : 
.VALUE 1 - .VALUE_2: 

[PLUS) : 
.VALUE 1 + .VALUE_2: 

[EQUAL] : 
! STORE THE VALUE IN VALUE 2 
STORAGE[.VALUE_lJ = .VALUE_2: 

[OTHERWISE] : 
RETURN(ERROR(8)); 



2/-Feb-77 -- Rev 3 Paqe C-28 

!+..,. 

rUCTIONAL DESCRIPTION: 

THIS ROlJTINE IS CALLED \a'l-lE'N TITf ASSI~~n'~nrr nnpr VT'."1f"l TC, 'TIr: f"lr' 

r V1\ LtJ ~Tr, f). Tn P Vl\ LTlr PSTURnr.n IS THr n.f)OPE S 5 (Jf'..1r)F:X) OF THE 
IDeNTIPIER IN STOP~GS. 

NONE 

IMPLICIT INPUTS: 

NONE 

IMPLICIT OUTPUTS: 

NONE 

ROUTINE VALUE: 

ERROR(7), ADDRESS (INDEX) OF THE IDENTIFIER FRO~ THE 
TOP OF EVAL STK 

:~JnE EFFECTS: 

1_-

NONE 

BEGIN 
LOCAL 

VAL, TEMPORARY VALUE 
TYPE; TEMPORARY TYPE 

VAL = POP EVAL STACK(): 
TYPE = POP EVAL STACK(); 
IF .TYPE NEQ IS-NA~E THEN RETURN(ERROR(7»; 
.VAL 
END; 



Common BLISS Sample 27-Feb-77 -- Rev 3 Paqe C-29 

ROUTINE EVAL VALUE • 

1++ 

FUCTIONAL DESCRIPTION: 

THIS ROUTINE ACESSES THE VALUE OF THE IDENTIPIER. ·THE 
EVAL STK VALUE IS USED TO INDEX THE IDENTIFIER VALUE STORAGE 
AREA - (STORAGE) • 

FORMAL PARAMETERS: 

NONE 

IMPLICIT INPUTS: 

STORAGE 

IMPLICIT OUTPUTS: 

NONE 

ROUTINE VALUE: 

VALUE OF THE IDENTIFIER ON THE TOP OF EVAL STK 

SIDE EFFECTS: 

NONE 

BEGIN 
LOCAL 

TYPE, TEMPORARY TYPE 
VAL: TEMPORARY VALUE 

VAL = POP EVAL STACK(): 
TYPE = POP EVAL STACK(): 
IF .TYPE EQL IS-NAME THEN VAL = .STORAGEr.VAL): 
.VAL -
END: 



Common BLISS Sample 27-Feb-77 -- Rev 3 Page C-30 

ROUTINE PUSH_EVAL_STACR(ELEMENT) :NOVALUE = 

++ 

FUCTIONAL DESCRIPTION 

THIS ROUTINE "PUSHES" A DATA ELEMENT ONTO THE EVAL STK. 

FORMAL PARAMETERS: 

ELEMENT - DATA TO BE PLACED ON EVAL STK 

IMPLICIT INPUTS: 

EVAL_STK, EVAL_STK PTR 

IMPLICIT C.JTPUTS: 

EVAL STK PTR - -
ROUTINE VALUE: 
COMPLETION CODES! 

NONE 

S~DE EFFECTS: 

NONE 

!--

DEcan 
EVAL STK[.EVAL STK PTR] = .ELEMENT: 
EVAL-STK PTR =-.EVAL STK PTR+l 
END; 



Common BLISS Sample 27-Feb-77 -- Rev 3 

ROUTINE POP EVAL STACK = 

1++ 

FUCTIONAL DESCRIPTION: 

THIS ROUTINE ·POPS· AN ELEMENT OFF OF THE EVAL STK. 

FORMAL PARAMETERS: 

NONE 

IMPLICIT INPUTS: 

EVAL_STK_PTR, EVAL STK 

IMPLICIT OUTPUTS: 

EVAL STK PTR 

ROUTINE VALUE: 

VALUE POPPED FROM EVAL STK 

SIDE EFFECTS: 

NONE 

BEGIN 
EVAL STK PTR a .EVAL STK PTR-l: 
.EVAL STK[.EVAL STK PTR]-
END: - --

Paqe C-31 



Common BLISS Sample 27-Feb-77 -- Rev 3 

ROUTINE PRINT STRING :NOVALUE • 

1++ 
1 
1 FUCTIONAL DESCRIPTION 

THIS ROUTINE PRINTS OUT THE EXPRESSION JUST READ IN. 

FORMAL PARAMETERS: 

NONE 

IMPLICIT INPUTS: 

INPUT 

IMPLICIT OUTPUTS: 

NONE 

ROUTINE VALUE: 
COMPLETION CODES: 

NONE 

SIDE EFFECTS: 

NONE 

BEGIN 
TTY PUT CRLF(): 
INCR I FROM 0 TO .INPUT LENGTH-l DO 

BEGIN 
IF .INPUT[.I) EOL CAR RETURN 
THEN -

EXITLOOP: 
TTY PUT CHAR(.INPUT[.I): 
END: -

END: 

Page C-32 



Common BLISS Sample 27-Feb-77 -- Rev 3 Paqe C-33 

ROUTINE PRINT STACK = 
1++ 

FUCTIONAL DESCRIPTION: 

THIS ROUTINE PRINTS OUT THE CONTENTS OF MAIN STK IN SYMBOLIC 
FORMAT. 

FORMAL PARAMETERS: 

NONE 

IMPLICIT INPUTS: 

MAIN_STK_PTR, MAIN STK 

IMPLICIT OUTPUTS: 

NONE 

ROUTINE VALUE: 
COMPLETION CODES: 

NONE 

SIDE EFFECTS: 

NONE 

BEGIN 
INCR I FROM 0 TO .MAIN STK PTR-l BY 2 DO 

END: 

BEGIN - -
TTY PUT CRLF(): 
SELECT 7MAIN STK[.I] OF 

END: 

SET -

[IS NAME]: 
-TTY PUT_CHAR(.MAIN_STK[.I+l] + 'CiA'): 

[IS DECIMAL]: 
-TTY_PUT_INTEGER(.HAIN_STK[.I+l],lO,lO): 

[IS OPERATOR]: 
-TTY_PUT_ASCIZ(.OPNAMES[.MAIN_STK[.I+l]]): 

TES: 



Common BLISS Sample 27-Feb-77 -- Rev 3 Page C-34 

ROUTINE ERROR(ERROR_NUMBER) = 

1++ 

FUCTIONAL DESCRIPTION: 

THIS ROUTINE PRINTS OUT ERROR MESSAGES BASED ON THE 
ERROR NUMBER PASSED TO IT. IT ALSO DUMPS THE CONTENTS OF THE 
MAIN STK AND PRINTS THE EXPRESSION IN ERROR. 

FORMAL PARAMETERS: 

ERROR NUMBER - INDEX INTO ERROR MESSAGE PLIT 

IMPLICIT INPUTS: 

ERROR MESSAGE 

IMPLICIT OUTPUTS: 

NONE 

ROUTINE VALUE: 

1 

SIDE EFFECTS: 

!--

NONE 

BEGIN 
MACRO 

BIND 

MESSAGE (ARGUMENT) = PLIT ('ASCIZ ARGUMENT)': 

ERROR MESSAGE = PLIT( 
MESSAGEC'ERR:O NONE'), 
MESSAGE (' ERR: 1 ILLEGAL CHARACTER ON Ii;P{.JT·), 
MESSAGE('ERR: OPR EXPECTED, NOT FOUND'), 
MESSAGE('ERR:3 EXCESS CLOSE PARFN') ~ 
MESSAGE('ERR:4 ILLEGAL UNARY OP~'hTOR'), 
MESSAGE('ERR:5 ILLEGAL USE OF UNARY MINUS'), 
MESSAGE ( , ERR: 6 OPERATOR MUST FOLf.0T.J .) 'II: ') , 

MESSAGE ( 'ERR: 7 ASSIGNMENT TO NON Vi\~'. '~ABLE') , 
MESSAGE ( 'ERR: 8 BAD OPERATOR ON 5~,=-''(.~~'), 
MESSAGE('ERR:9 EXCESS OPEN PARE~'), 
MESSAGEC'ERR:IO NONE') 

) : VECTOR [ 50] ; 

TTY PUT CRLF(); 
TTV:PUT:MSG(.ERROR_MESSAGE[.ERROR NUMBER] ,OUT_MSG_MAX); 



Common BLISS Sample 

END 
ELUDOM 

PRINT STACK(): 
PRINT-STRING!): 
RETURN I 
END: 

[End of Appendix C) 

27-Feb-77 -- Rev 3 Page C-35 



Paae Index-l 

INDEX 

<: ... nQMAT. m,.~rn T·""" ..... ···-- ... ----
in assembly lanquaqe, 7-15 

S LOCAL macro 
. in assembly lanquage, 7-33 
SOWN macro 

in assembly language, 7-14 

%ascii, 14-8 
%bliss16, 14-8 
%bliss32, 14-8 
%bliss36, 14-8 
%bpaddr, 14-6 
% bpuni t, 14-6 
%bpval, 14-6, 14-17, 14-34 
%c, 14-7 
%upval, 14-6, 14-19, 14-28 

.ENTRY directive, 7-11 
.PSECT name, 12-4 
.SBTTL statement, 7-25 

<access type> notation, 13-5 
<arg form> notation, 13-7 
<arg mechanism> notation, 13-7 
<comment delimiter> notation, 6-1 
<data type> notation, 13-6 
<name> notation, 13-4 
<new page> notation, 4-4 
<separator> notation, 4-4 
<skip> notation, 4-4 
<space> notation, 4-4 
<tab> notation, 4-4 

Abstract, 4-2, 6-2 
Abstraction mechanisms, 14-13 
Address calculations, 14-18 
Address-relational operators, 

14-21 
Addressing, relative 

in assembly languaqe, 7-21 
Algorithms 

critical, 4-2 
Alignment-attribute, 14-17 
Allocation-unit attribute, 14-16, 

14-25 
Author, 4-2, 6-2 

Bit field size name i 12-3 
Bit name, 12-3 
BLISS LIB:, 5-7 
Block-comment, 6-4 
RLOCK name, REF, 12-4 
Block statement, 7-28 
Body, routine, 7-22 
Boolean value, 6-16 
Built-in literals, 14-6 

Call 
non-standard, 12-3 

CALL instruction 
in assembly languaqe, 7-17 

Call/return interface, 3-2 
Calling sequence, 4-3, 6-2 
CASE instruction 

in assembly language, 7-2 
Ch$allocation, 14-30 
Ch$ptr, 14-32 
Character seouences (strinqs), 

14-22 
Choice of language, 3-1 
Code 

completion, 6-11 
Code PSECT, 7-20 
Code sharing, 3-3 
Code, condition, 12-7 
Comment, 6-3 

block, 6-4 
documentinq, 6-5 
group, 6-6 
line, 6-7 
maintenance, 6-9 

Common PSECT, 7-20 
Compiler library, 13-1 
Completion code, 6-11, 12-2 
Complexity, lanquaqe, 14-5 
Condition handler, 7-4 
Condition value, 12-2, 12-7 
Conditional assembly, 4-2, 6-12, 

7-3 
Configuration statement, 6-12 
Constant value name, 12-4 
Control 

workinq set, 3-3 
Control expressions, 14-20 
Copyright notice, 6-19 



Critical algorithms, 4-2 
Customer version number, 6-29 

Data seqment module, 6-20 
Data type, 12-6 
Declaration, 9-2 

equated symbol 
in assembly language, 7-5 

validate 
in assembly lanquage, 7-32 

variable 
in assembly languaqe, 7-14, 

7-20, 7-29, 7-33 
weak 

in assembly language, 7-34 
Declaration: for~nt, 9-2 to 9-3 
Declaration: forward, 9-2 
Declaration: forward routine, 9-3 
Declaration: macro, 9-2 to 9-3 
Declaration: order, 9-2, 9-4, 9-17 
Default value, 13-8 
Definition macro name, structure, 

12-4 
Descriptor, call by, 7-16, 13-7 
Diagnostic conventions, 15-1 
Directory, module, 6-21 
Documenting comment, 6-5 

Edit history, 4-2 
Edit in version number, 6-29 
Edit number, 6-9, 6-17 
Entry point 

global, 12-2 
Entry, procedure 

in assembly language, 7-19 
Environment statement, 4-2, 6-13 
Equated symbol declaration 

in assembly language, 7-5 
Equivalencinq, 14-21 
Error completion code, 6-11 
Except ion, 6- 27 

calling sequence, 6-2 
Expression, 9-3, 9-5 

in assembly language, 7-7 
Expression: assignment, 9-5 
Expressio~: block, 9-5, 9-7 
Expression: case, 9-5 to 9-6 
E~pression: format, 9-5, 9-8 
Expression: if/then/else, 9-5, 9-9 
Expression: incr/decr, 9-5, 9-10 
Expression: select, 9-5, 9-11 

Paqe Index-2 

Expression: while/until/do, 9-5, 
9-12 

Extension attribute, 14-17 
External symbol 

in assembly language, 7-31 

Facility prefix table, 12-7 
Facility statement, 4-2, 6-13 
Fail return, 6-16 
FALSE Boolean value, 6-16 
Field offset name, 12-3 
Field selectors, 14-22, 14-43 
Field support Pf ·sonnel, 3-2 
File generation version, module, 

6-21 
File name, module, 6-21 
File type, module, 6-21 
Form, arg, 13-7 
Formal parameter, 6-22 

in assembly language, 7-15 
Function value, 6-16 
Functional description, 

4-2 to 4-3, 6-14 
Functionality, 3-3 

General library, 13-1 
Global array name, 12-3 
Global entry point, 12-2 
Global label 

in assembly language, 7-11 
Global PSECT, 7-20 
Global symbol 

in assembly language, 7-31 
Global variable name, 12-3 
Group comment, 6-6 

Handler, condition, 7-4 
History, modification, 6-17 

Ident statement, 4-1 
IDENT statement 

in assembly language~ 7-8 
Implementat ion lanqu;~ .-;-, 

system, 3-1 
Implicit input, 6-18 
Implicit output, 6-18 
I.nclude files 

in assembly lanquag.\.- 7-9 
Inital-attribute, 14-29 
Input parameter, 6-23 
Interface style, 12··7 



Interface type, 13-2 to 13-3 
Interlocked instruction 

in assembly language, 7-31 
Tn .. o .... l1n .. 
~ II'-'-L L ut''-

calling sequence, 6-2 
I solation, 14-4 

JSB calling sequence, 6-2 

Label 
global 

in assembly language, 7-11 
in assembly language, 7-10 
local 

in assembly language, 7-12 
Labels, 9-13 
Language 

choice of, 3-1 
Language switch, 14-9 
Legal notice, 6-19 
Legal notices, 4-1 
Library 

compiler, 13-1 
general, 13-1 
in assembly language, 7-14 
math, 13-1 
object time system, 13-1 
procedure, 13-1 

License notice, 6-19 
Line comment, 6-7 
Listing control 

in assembly language, 7-14 
Literal PSECT, 7-20 
Local label 

in assembly languaqe, 7~12 
LSB, .ENABL/.DSABL 

in assembly language, 7-14 

Machine-specific function, 14-4 
Macro 

in assembly language, 7-14 
Macro name, 12-2 
Macro-10, 14··15 
Macros, 14-4, 14-8 
Maintenance comment, 6-9 
Maintenance number, 6-17 
Mars, 14-15 
MARS LIB:, 5-1 
Mask-name, 12-4 
Math library, 13-1 
Modifiability, 3-3 

Page Index-3 

Modification history, 6-17 
Modification number, 6-9 
Modular programs, 3-3 
Module, 6-20, 14-4 

data segment, 6-20 
file name, 6-21 
preface, 6-21 

Module name, 12-4 
Module preface, 4-1 
Module switches, 14-9 
MODULE.BLI, 5-7 
MODULE.MAR, 5-1 
Modules, 4-1 
Multiple entry routine, 7-23 

Name, 9-15 
private, 12-2 
public, 12-1 

Name pattern, 12-1 
Name, defined value, 14-21 
Name, module, 6-21 
Non-standard call, 12-3 
Non-standard routine, 7-24 
Non-transportable attributes, 

14-17 
Notation 

<access type>, 13-5 
<arg form>, 13-7 
<arg mechanism>, 13-7 
<comment delimiter>, 6-1 
<data type>, 13-6 
<name>, 13-4 
<new page>, 4-4 
<separator>, 4-4 
<skip>, 4-4 
<space>, 4-4 
<tab>, 4-4 
procedure argument, 13-4 

Notice, legal, 6-19 
Number 

edit, 6-9, 6-17 
maintenance, 6-17 
modification, 6-9 
version, 6-28 

Numeric literals, 14-7 

Object time system, 13-1 
Offset addressing, 14-28 
Offset name, 12-3 
Optional argument, 13-8 
Order of routine, 7-25 



Output parameter, 6-23 
OutPUt string, 13-2 
Own PSECT, 7-20 

Packed data inita1ization, 14-33 
Parameter 

formal, 6-22 
in assembly lanquage, 7-15 

input, 6-23 
output, 6-23 

Parameterization, 14-2, 14-34 
Patch in version number, 6-29 
Pattern 

name, 12-·1 
Plit, 14-25 

uplit, 14-25 
Preface, module, 6-21 
Preface, routine, 6-25 
Prefix table, facility, 12-7 
Private name, 12-2 
Pro C P. (i u r e, 7 -1 7 

entry 
in assembly lanquage, 7-19 

Procedure argument notation, 13-4 
Procedure library, 13-1 
Process synchronization 

in assembly lanquaqe, 7-31 
Program, 6-24 
PSECT statement 

in assembly language, 7-20 
Public name, 12-1 

Quality, 3-3 
Que~e instructions 

in assembly language, 7-20 
Quoted strings, 14-22 

used as numeric values, 14-23 

Range attribute, 14-17 
Read code, 3-2 
Readable system code, 3-2 
REF BLOCK name, 12-4 
Reference, call by, 7-16, 13-7 
Register 

S -l '1 €, 1 2 - 3 
Relational operators, 14-20 
Relalive addressing 

in assembly language, 7-21 
Repeated arqument, 13-8 
Require files, 9-16, 14-4, 14-12 

search rules, 14-12 

Reserved names, 14-11 
Routine, 9-17 

non-standard, 7-24 
order, 7-25 

Routine body, 7-22 

Paqe Index·4 

Routine entry, multiple, 7-23 
Routine preface, 6-25 
Routine: format, 9-17 
Routine: name, 9-17 
Routine: order, 9-17 
Routine: preface, 9-17 
Routines, 14-13 

Service macro name, 12-2 
Severe error completion code, 6-11 
Sharing 

code, 3-3 
Side effect, 6-26 
Siqn out, 12-7 
Siqnal, 6-27 
Simp 1 i cit y, 14 - 5 
Stack local variable 

in assembly lanquaqe, 7-33 
Statement, 7-26 

block, 7-28 
Status code, 12-2 
Status return value, 6-16 
String, 12-6 
Strinq instruction 

in assembly lanquage, 7-28 
String literal plits, 14-26 
String literals, 14-7 
Strings (character sequences), 

14-22 
Structire: block, 9-18 
Structure 

in assembly lanquage, 7-29 
Structure definition macro name, 

12-4 
Structure: block, 9-19 
Structure: declaration, 

9-18 to 9-19 
Structures, 14-39 
Style of interface, 12-7 
Subtitle statement, 7-25 
Success completion code, 6-11 
Success return, 6-16 
Support in version number, 6-28 
Support personnel, 3-2 
Symbol 

external 



in assembly language, 7-31 
global 

in assembly lanquaqe, 7-31 
in assembly lanquage i 7-30 

Symbol declaration, eauated 
in assembly language, 7-5 

Synchronization, process 
. in assembly lanquaqe, 7-31 
System code 

readable, 3-2 
System implementation lanquage, 

3-1 

Title statement, 4-1 
TITLE statement 

in assembly language, 7-31 
Transportability, 3-3 
Transportability quidlines 

address calculation, 14-19 
allocation attribute, 14-16 
attributes, 14-17 
character sequences, 14-24 
control expressions, 14-21 
declarations, 14-18 
field selectors, 14-43 
isolation, 14-4 
relational operators, 14-21 
string literals, 14-23 
string literals in plits, 14-28 
strings, 14-24 

Transportability, tools, 14-6 
Transportable 

control expressions, 14-21 
data types, 12-6 
declarations, 14-16 
expressions, 14-19 
structures, 14-20, 14-39 

TRUE Boolean value, 6-16 

Unwind 
in assembly language, 7-32 

Update in version number, 6-29 

Validate declaration 
in assembly lanquage, 7-32 

Value 
function, 6-16 

Value, call by, 7-16, 13-7 
Variable 

stack local 
in assembly lanquaqe, 7-33 

Paqe Index-5 

Variable declaration 
in assembly languaqe, 7-14, 

7-20, 7-29, 7-33 
Vax~ll machine, 14-15 
Version number, 6-28 
Volatile-attribute, 14-17 

Warninq completion code, 6-11 
Weak declaration 

in assembly languaqe, 7-34 
Weak-attribute, 14-17 


	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	01-001
	01-002
	01-01
	01-02
	02-001
	02-002
	02-01
	02-02
	03-001
	03-002
	03-003
	03-01
	03-02
	03-03
	03-04
	04-001
	04-002
	04-003
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	05-001
	05-002
	05-003
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	06-001
	06-002
	06-003
	06-004
	06-005
	06-006
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	07-001
	07-002
	07-003
	07-004
	07-005
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	08-001
	08-01
	08-02
	09-001
	09-002
	09-003
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	10-001
	10-002
	10-01
	11-001
	11-002
	11-01
	12-001
	12-002
	12-003
	12-004
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	13-001
	13-002
	13-003
	13-004
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	14-001
	14-002
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	14-27
	14-28
	14-29
	14-30
	14-31
	14-32
	14-33
	14-34
	14-35
	14-36
	14-37
	14-38
	14-39
	14-40
	14-41
	14-42
	14-43
	14-44
	14-45
	14-46
	14-47
	14-48
	15-001
	15-002
	15-003
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	A-001
	A-002
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	B-001
	B-002
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-001
	C-002
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	C-23
	C-24
	C-25
	C-26
	C-27
	C-28
	C-29
	C-30
	C-31
	C-32
	C-33
	C-34
	C-35
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05

