dilgilital

USER GUIDE

VII25

VTl25 USER GUIDE

Produced by Educational Services of

Digital Equipment Corporation

Copyright 01981 by Digital Equipment Corporation
All Rights Reserved

The reproduction of this material, in part or whole, is strictly prohibited. For copy information, contact the Educational Services Department, Digital Equipment Corporation, Maynard, Massachusetts $\emptyset 1754$.

The information in this document is subject to change without notice. Digital Equipment Corporation assumes no responsibility for any errors that may appear in this manual.

> Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation, Maynard, Massachusetts.

DEC
DECUS
DIGITAL
Digital Logo PDP
UNIBUS
VAX

DECnet
DECsystem-10
DECSYSTEM-20
DECwriter
DIBOL
EduSystem
IAS
MASSBUS

OMNIBUS
OS/8
PDT
RSTS
RSX
VMS
VT

INTRODUCTION

CHAPTER 1 OPERATING INFORMATION

General 1-1
Terminal Operation 1-1
Controls and Indicators 1-1
Monitor Controls 1-1
AC Voltage Selection Switch 1-1
Keyboard Controls 1-4
Standard Keys 1-4
Auxiliary Keypad Keys 1-6
Function Keys 1-6
Auxiliary Keypad 1-8
SET-UP Keys 1-8
Keyboard Indicators 1-11
ON LINE Indicator 1-11
LOCAL Indicator 1-11
KBD LOCKED Indicator 1-11
Ll - L4 1-13
Audible Indicators 1-13
Keyclick 1-13
Series of Long Tones 1-13
CHAPTER 2 SET-UP FEATURES
General 2-1
SET-UP Features 2-1
Operator Preference Features 2-2
Communication Compatibility Features 2-2
Installation Features 2-2
Feature Selection 2-2
Entering and Exiting SET-UP 2-5
Feature Memories 2-5
Operating Memory 2-5
User Permanent Memory 2-7
Store 2-7
Recall 2-7
Reset 2-8
SET-UP Default Memory 2-8
SET-UP Feature Definitions 2-8
General SET-UP Features 2-8
ON LINE/LOCAL 2-8
Screen Brightness 2-10 2-10
SET-UP A Features 2-10
Characters Per Line 2-10
Tabs 2-12
SET-UP B Features 2-13
Scroll 2-13 2-13
Screen Background 2-15
Cursor 2-15
Margin Bell 2-15 2-15
Keyclick 2-15 2-15
ANSI/VT5 2 2-15
AUTO XON/XOFF 2-17 2-17
U.S./U.K. Character Set Switch 2-17
Auto Wrap 2-17
Line Feed/New Line 2-17
Interlace 2-17
Parity Sense 2-18
Parity 2-18
Bits Per Character 2-19
Power 2-19
AUX Port Bits Per Character 2-19
AUX Port Speed 2-19
Transmit Speed 2-19
Receive Speed 2-2ø
Answerback Message 2-2 \varnothing
CHAPTER 3 TRANSMITTED CHARACTERS
General 3-1
Standard Keys 3-1
Function Keys 3-1
Break Key 3-1
$\uparrow \downarrow \leqslant$ Cursor Control Keys 3-1
Control Character Keys 3-3
Auxiliary Keypad Keys 3-5
CHAPTER 4 RECEIVED CHARACTER PROCESSING
General 4-1
Errors 4-1
ASCII Table and Received Characters 4-2
Displayable Characters 4-2
Control Characters Received 4-4
Sequences 4-4
ANSI Sequences
4-4
4-4
1 Set-Up Feature and Mode Selection 4-4
Set Mode Command - SM 4-7
Reset Mode Command - RM 4-7
ANSI Specified Modes 4-7
DEC Private Modes 4-7
ANSI/VT52 Mode (DEC Private - DECANM 4-8
Auto Repeat Mode (DEC Private) - DECARM 4-8
Autowrap Mode (DEC Private) - DECAWM 4-10
Column Mode (DEC Private) - DECCOLM 4-1ø
Cursor Keys Mode (DEC Private) - DECCKM 4-11
Linefeed/New Line Mode - LNM 4-11
Keypad Application Mode (DEC Private) - DECKPAM 4-13
Keypad Numeric Mode (DEC Private) - DECKPNM 4-13
Origin Mode (DEC Private) - DECOM 4-13
Screen Mode (DEC Private) - DECSCNM 4-14
Scrolling Mode (DEC Private) - DECSCLM 4-14
2 Character Sets and Selection 4-15
Select Character Sets - SCS 4-15
Select Graphic Rendition - SGR 4-2ø
3 Scrolling 4-21
Scrolling Region 4-21
Set Top and Bottom Margins (DEC Private) - DECSTBM 4-21
4 Cursor Positioning 4-21
5 Tabs 4-21
Horizontal Tabulation Set - HTS 4-25
Tabulation Clear - TBC 4-25
6 Line Attributes 4-25
Double Height Line (DEC Private) - DECDHL 4-25
Double-Width Line (DEC Private) - DECDWL 4-25
Single-width Line (DEC Private) - DECSWL 4-27
7 Erasing 4-28
Erase In Display - ED 4-28
Erase In Line - EL 4-28
8 VTl25 Communication and Graphics Protocol Controls 4-30
Device Control String (Introducer) - DCS 4-3ø
Device Control String Parameters 4-3ø
9 Reports 4-33
Device Attributes - DA 4-34
Identify Terminal (DEC Private) - DECID 4-35
Device Status Report - DSR 4-35
$1 \emptyset$ Reset 4-35
11 Tests and Adjustments 4-36
Invoke Confidence Test - DECTST 4-36
12 Indicators 4-36
Keyboard Indicators 4-36
VT52 Compatible Sequences 4-39
SET-UP Features and Mode Selection 4-39
13 VT52 Modes 4-39
14 VT52 Characters Sets and Selection 4-40
15 VT52 Cursor Positioning 4-41
16 VT52 Erasing 4-43
17 VT52 Reports 4-43
CHAPTER 5 ReGIS GRAPHIC PROGRAMMING
Introduction 5-1
Definitions 5-1
ReGIS SYNTAX 5-2
Introduction 5-2
ReGIS Single Character Commands 5-2
Parentheses, Brackets, Pixel Vectors, and Quotes 5-2
Commas and Spaces 5-3
Control Characters 5-3 5-4
Order of Performance
Order of Performance 5-4
Numeric Values
Numeric Values
Position 5-5
Coordinates 5-5
Position Command 5-5 5-5
Absolute Position 5-5
Relative Position 5-6 5-6
Combining Absolute and Relative Positions 5-6 5-6
Null Position 5-6
Pixel Vectors 5-6
Temporary Pixel Vector Multiplier 5-6
Begin a Bounded Sequence of Coordinates 5-8
Start an Unbounded Sequence of Coordinates 5-8
End a Sequence of Coordinates 5-8
Writing Commands 5-9
General 5-9
Pixels 5-9
Odd-Y Simulation 5-9
Vector Command 5-10
Dot at Current Position 5-10
Vector from Current Position to Specified Position 5-10
Pixel Vectors 5-10
Bounded Sequence of Positions 5-12
Unbounded Sequence of Positions 5-12
Temporary Writing Controls 5-13
Curves 5-13
Circles 5-14
Circle with Center at Current Position 5-14
Circle with Center at Specified Position 5-14
Arcs 5-14
Arc with Center at Current Position 5-14
Arc with Center at Specified Position 5-17
Open and Closed Curves 5-17
Interpolation of Curves 5-17
Unbounded (Open) Curves 5-17
Bounded (Closed) Curves 5-20
Temporary Curve Writing Controls 5-2ø
Text 5-22
General 5-22
Text Commands 5-23
Text 5-23
Text Character Cell Size 5-23
Text Character Height Multiplier 5-26
Text Character Spacing 5-26
Text Pixel Vector Spacing 5-26
Text Character Cell Size 5-27
Text Pixel Multiplier 5-27
Text String and Character Tilt Direction 5-29
Text Italic Tilt 5-31
Select Text Character Set 5-31
Store and Restore Options 5-33
Temporary Writing Controls 5-33
Writing Controls 5-33
Initial Writing Control Defaults 5-33
Writing Modes 5-34
Complement Writing 5-35
Erase Writing 5-36
Replace Writing 5-37
Overlay Writing 5-38
Foreground Planes 5-38
Foreground Intensity and Color 5-41
Pixel Vector Length Multiplier 5-42
Negative Writing 5-42
Shading 5-42
Shading on or off 5-43
Shading Character 5-43
Shading Reference Line 5-43
Patterns 5-44
Select Standard Pattern 5-46
Specify Binary Pattern 5-46
Set Pattern Multiplier 5-47
custom Writing Control Definition 5-47
Screen Controls 5-51
Initial Screen Control Defaults 5-51
Screen Scrolling 5-51
Screen Display Addressing Definition 5-53
Screen Erase 5-56
Screen Hard Copy Output 5-56
Screen Background Definition 5-57
Screen Output Map Definition 5-58
Screen Scale 5-61
Screen Time Delay 5-61
Macrographs 5-63
Clear All Macrographs 5-64
Macrograph Definition 5-64
Macrograph Invocation 5-65
Character Cell Controls 5-65
Select Character Set for Loading 5-65
Associate Name with Current Character Set 5-66
Load Character Cell 5-66
Reports 5-68
Report Character Set Selected for Loading 5-68
Report Contents of a Macrograph 5-69
Report Use of Macrograph Storage 5-69
Report Cursor Position 5-69
CHAPTER 6 VTI 25 EMULATION
Introduction 6-1
Entering the Graph Drawing Mode 6-2
Definitions and Limitations 6-2 6-2
Selecting the Graph Drawing Field 6-5
Selecting Desired Display 6-5
Loading Control Register \emptyset 6-8
Enabling Graphs and Histograms 6-13
Enabling Strip Charts and Shade Lines 6-13
Loading Control Register 1 6-13
Enabling Graph Markers, Vertical Lines, and Horizontal 6-14
Lines
Lines
Forming Graph Drawing Data Characters 6-14
Selecting Upper and Lower Data Characters 6-16 6-18
Load Data Sequences
Load Data Sequences
Frequent Data Entry Errors 6-18
Loading the Shade Line 6-19
Loading Graph Memories 6-19 6-19
Histogram Data 6-22
Loading Graph Marker Memory 6-22
Displaying Vertical Lines 6-22
Displaying Horizontal Lines 6-24 6-24
Load the Starting X-Coordinate 6-25 6-25
Entering Strip Chart Data 6-25
Single Strip Chart Data 6-26 6-26
Dual Strip Chart Data 6-27
CHAPTER 7 VTI 25 COMMUNICATIONS
General 7-1
Connecting to the Computer Port 7-1
Connecting to the Auxiliary Port 7-1
Serial Character Format 7-1
Break Signal 7-4
Full Duplex Communication 7-4
Electronic Industry Association (EIA) Interface 7-4
SET-UP and Communications 7-7
Control Functions 7-7
Communication Cables 7-8
Block Diagrams 7-8
Input Buffer Overflow Prevention 7-13
XON and XOFF Control Characters 7-16
Effects of Reset and Tests 7-17
Transmit Buffers 7-17
CHAPTER 8 INSTALLATION
General
8-1
8-1
Site Considerations
Site Considerations 8-1
Inspection
Inspection 8-3
Installation Procedure 8-3
Power Up and Checkout Procedure 8-7
CHAPTER 9 OPERATOR MAINTENANCE AND TROUBLESHOOTING
General Maintenance 9-1
What $T o$ Do in the Event of a Problem 9-1
VTl25 Self Tests 9-1
Power Up Self Test 9-2
Computer Data Port Loopback Self Test 9-2
Auxiliary Port Loopback Test 9-4
Display Test 9-6
Video Bit Map Memory Test 9-6
VTl25 Self Test Error Codes 9-99-9
CHAPTER 10 OPTIONS
General $1 \varnothing-1$
Description 10-1
$2 \emptyset \mathrm{~mA}$ Option Installation 10-3
Computer Data Port Loopback Self Test $10-3$
Advanced Video Option $1 \varnothing-7$
Description 1ø-7
Installation 10-9
Advanced Video Option Test $10-11$
VT1XX-CB or -CL Installation into VTløø and VTlø5 10-11
Tools Needed 10-13
Installation Procedure 10-13
CHAPTER 11 ACCESSORIES AND SUPPLIES INFORMATION
General 11-1
Accessories and Supplies 11-1
Ordering Information 11-6
APPENDIX A VTl25 SPECIFICATIONS
APPENDIX B SET-UP B SUMMARY
APPENDIX C TRANSMITTED CHARACTER SUMMARY
APPENDIX D PROGRAMMING SUMMARY
APPENDIX E ANSI CODE EXTENSION TECHNIQUES
APPENDIX F CREATING COMPATIBLE ReGIS
APPENDIX G THE HLS COLOR SYSTEM IN THE VTl 25
APPENDIX H ReGIS COMMAND LISTINGS
ANSI GLOSSARY
OTHER TERMINALS
Figure
1-1 VTl25 Graphics Terminal 1-2
1-2 Monitor Controls and Connector Locations 1-2
1-3 Standard Keys 1-5
1-4 Function Keys 1-7
1-5 1-6
SET-UP Keys 1-9
Keyboard Indicators
Keyboard Indicators 1-12 1-12
SET-UP Displays 2-4 2-4
SET-UP Feature Memories 2-6 2-6SET-UP Default Feature Selections2-9
2-4 80 - and 132-Column Displays 2-11
2-5 SET-UP B Summary 2-14
2-6Screen Background2-16
2-7 Answerback Message 2-22
3-1 Standard Key Codes 3-2
3-2 Function Keys 3-2
3-3 Function Key Control Codes 3-4
4-1 VTl25 ANSI Mode Display Control Functions 4-45Pixel Vector5-7
5-2 Pixel Vector 5-11
5-3 Nested (B) and (E) Commands 5-11
5-4 Circle with Center at Current Position 5-15Circle with Center at Specified Position5-15Arc with Center at Current Position5-16
5-7 Arc with Center at Specified Position 5-18
5-8 Unbounded (Open) Curves 5-19
5-9 Bounded (Closed) Curves 5-21
5-10 Copying Pixel 1 to Pixel 9 5-25
5-11 Text Character Spacing 5-25
5-12 Pixel Vectors 5-28
5-13 Text Character Cell Size 5-28
5-14 360 Degree Compass 5-30
5-15 Text String and Character Tilt Direction 5-36
5-16 Text Italic Tilt 5-32
5-17 Complement Writing 5-35
5-18 Erase Writing 5-36
5-19Replace Writing5-37
5-2ø Overlay Writing 5-38
5-21 Foreground Planes and the Output Map 5-40
5-22 Selecting a Shading Reference Line 5-45
5-23 Pattern Memory and Multiplier 5-48
5-24 Custom Writing Control Command 5-48
5-25 Scrolling the Display Window 5-52
5-26
Axis Address Transformation 5-54
5-27VTl25 Addressing Range5-54
5-28 Colors in the VTl25 5-59
5-29 Default Output Map 5-62
5-3ø Sample Output Map Definitions 5-62
5-31 Sample Character Cells 5-676-1
Graph with Graph Markers 6-3
Histogram Display 6-3
Example of a Grid Display
6-4
Strip Chart Display 6-6
Rectangular Graph Drawing Field 6-6
Square Graph Drawing Field 6-7
6-7 EnabledGraph with Shade Line (Baseline) Enabied6-21-7-4
7-57-67-77-87-9
Connecting to the Computer
Connecting to the Computer 7-1 7-1
Serial Character Format 7-26-21
EIA Connectors and Pin Locations 7-5
Cable Summary
7-9
7-9
VTl25 General Block Diagram
7-10
7-10
VTl25 Data Paths
VTl25 Data Paths
$7-10$
$7-10$
VTl25 as Text-Only Terminal
7-12
7-12
VTl25 in a Graphics Protocol 7-14
Screen7-14

7-10
7-11
8-1
8-2
8-3
9-1
$10-1$
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
$10-10$
10-11
10-12
10-13
10-14
10-15
10-16
10-17
11-1
A-1
B-1
B-2
C-1
C-2
E-1
E-2
G-1
Table

VTl25 Printing from Screen 7-15
VTl25 Printing from Computer 7-15
VTl25 Terminal Dimensions 8-2
Monitor Controls and Connector Location 8-4
Interface Cable Ground Connection 8-6
EIA Loopback Connector .. 9-8
$2 \emptyset \mathrm{~mA}$ Connector and Pin Locations 1ø-2
20 mA Current Loop Option Board Installation 1 $10-4$
$2 \emptyset$ mA Current Loop Option Switches 1ø-5
$2 \emptyset \mathrm{~mA}$ Current Loop Option Cable Position 1ø-6
$2 \emptyset$ mA Loopback Connector $1 \emptyset-8$
Advanced Video Option Location and
Installation
$10-10$
Check ROM Numbers . $1 \varnothing$-12
Top Cover Removal ... $1 \emptyset-14$
Expansion Backplane Installation 1ø-15
Installing Ground Clips 10-17
16 Pin Flat Cable on Terminal Controller 10-18
STP Paddleboard Installation 10-19
24 Pin Flat Cable on STP Board $1 \emptyset-2 \emptyset$
Graphic Cable Connections 10-22
Paddleboard Switches - Variations 1ø-23
Connecting EIA Line Filter and Ground Wires 10-24
RF Shield Installed .. 10 -25
Accessories and Supplies Group $11-2$
Composite Video Output .. A-4
SET-UP B Display . B-3
SET-UP B Summary . B-4
Standard Key Codes C-1
Function Key Control Codes C-2
...
8-Bit ASCII Chart .. E-8
HLS Double Cone Color Model G-2
SET-UP Feature Types 2-1
SET-UP Features the Computer Can Change 2-3
Line Feed/New Line Feature Summary 2-18
Cursor Control Key Codes 3-3
Comparison of Control Character Generation 3-3
Auxiliary Keypad Codes 3-5
ASCII Table 4-3
Control Characters Recognized by VTl 25 4-5
SET-UP Features and Terminal Modes 4-6
DEC Private Modes 4-8
Permanently Selected Modes 4-9
Cursor Control Key Codes 4-10
Linefeed/Newline Mode 4-11 4-13
ANSI Mode Auxiliary Keypad Codes
ANSI Mode Auxiliary Keypad Codes
U.K. Character Set 4-16
U.S. Character Set 4-17
Special Character and Line Drawing CharacterSet4-18

4-12
4-13
4-14
4-15
4-16
4-17
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
$5-1 \emptyset$
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
6-1
6-2
6-3
6-4
6-5
6-6
6-7

6-8
6-9
6-1 \emptyset
6-11
6-12
6-13
6-14
6-15
7-1
7-2
7-3
8-1
9-1
9-2
9-3
B-1
C-1Cursor Positioning Commands4-23
4-37VTløø Self-Tests
VT125 Self-Tests 4-38
VT52 Mode Auxiliary Keypad Codes 4-40Mode Comparison4-42
4-44
VT52 Cursor Positioning
5-2
5-2
VTl25 Graphics Protocols
5-9
5-9
Position Command Summary
Position Command Summary 5-13
Curve Command Summary 5-2ø
Text Size Command Equivalents 5-24
Italic Tilt Values 5-31
Text Command Summary 5-34
Complementing the Foreground 5-35
Standard Patterns in the VT125 5-46
2, 4, and 8 Bit Binary Pattern Repeats 5-46
3, 5, 6, and 7 Bit Binary Pattern Repeats 5-47
Writing Controls Summary
Writing Controls Summary 5-50 5-50
Wrap Address Formulas 5-55
Integer or RBG Colors in the VTl 25 5-58
Default Output Map Values 5-60
Screen Controls Summary 5-63
Macrograph Command Summary 5-65
Character Set Definition Format 5-68
Character Cell Control Summary 5-68
Report Commmand Summary 5-78
Comparison of Graph Drawing Formats 6-8
Load Enable Register Ø Command 6-9
Examples of Selecting Graphs or Histogram 6-11
Examples of Selecting Shaded Graphs with ShadeLines (Baselines) and Strip Charts6-11
Graph Drawing Characters 6-12
Load Enable Register 1 Command 6-13
Examples of Selecting Graph Markers, HorizontalLines, and Vertical Lines
6-15
Graph Drawing Data Characters 6-17
Load Data Sequences 6-18
Loading Shade Line Position 6-19
Loading Graph Data 6-20
Load Graph Marker Memory 6-23
Load Vertical Line Coordinate 6-24
Load Horizontal Line Coordinates 6-25
Load Starting X Coordinate 6-26
Computer Port EIA Connector Signals 7-3
Auxiliary Port IEA Connector Signals 7-6
Interface Cables 7-11
Site Considerations
8-3
8-3
Problem Checklist
9-3
9-3
Display Test Indications
9-7
9-7
Displayed Error Codes 9-10
SET-UP Feature Types
B-2
Control Codes Generated C-3

INTRODUCTION

PRODUCT INTRODUCTION

The VTl25 is a graphics display terminal that combines a bit map architecture with the alphanumeric capability of the VTløø video terminal. The VTl25 is a smart terminal that directly executes Digital's general purpose graphics descriptor, ReGIS (Remote Graphics Instruction Set). ReGIS lets you create and store pictures as ASCII text and efficiently send those pictures to remote displays. The VTl25 also has an auxiliary data port for making hard copies of the display with the DECwriter IV Graphics printer. For users who have programs for the older VTlø5, the VTl25 includes a VTlø5 emulator.

BOOK INTRODUCTION

This book describes the following products:
VT125-AA and AB Graphics Terminal

VTIXX-CB and -CL Graphics Processors for VTløø and VT105

This user Guide provides general operating information, interface information, control function and ReGIS command descriptions, and specific installation and checkout procedures. The main audiences for this book are the terminal installer, the application programmer and the operator. The operator, however, should use this book only as a reference when operating the terminal. The document which describes the use of the application software is the primary document for the operator.

The information in this user guide is divided by function. This allows you to refer to a specific chapter according to the function to be performed. The chapters are arranged by frequency of use. Since operating information is frequently used by the operator it is at the beginning. Installation is performed only once so it is placed toward the end of the book.

This VTl25 User Guide is written for three types of readers:

- the operator needing general operating information, (Chapters 1, 2, 3, 9, and 11)
- the applications programmer needing ReGIS, VTl05, control function and communications descriptions, (Chapters 4, 5, $6,7)$
- and the hardware installer needing specific installation and checkout information (Chapters 8, 9, 10 and 11).

Chapter 1 provides a general introduction of how the terminal operates and shows all the controls and indicators of the terminal. This chapter gives the reader a summary of the basic terminal operation. Detailed operating information may depend on the computer software.

Chapter 2 defines SET-UP and describes each SET-UP feature in detail. Many of the SET-UP features of the terminal change the way the terminal communicates with the computer. Detailed information on communication and the related SET-UP features is provided in the Communication chapter.

Chapter 3 describes the characters and codes transmitted by the terminal, and shows the keys required to produce the codes.

Chapter 4 explains to the programmer the use of control functions to control the display, processing, transmission and representation of characters by the terminal. The chapter includes a description of the characters received by the terminal.

Chapter 5 provides the syntax and commands of the ReGIS graphics descriptor.

Chapter 6 provides the syntax and commands of the VTlø5 emulator.
Chapter 7 describes the types of communication interfaces available on the VT125. This chapter also describes the methods of communicating with the graphics option, the computer and the printer, and describes the SET-UP features used with these devices.

Chapter 8 describes the environmental conditions which should be considered before installing the terminal. A detailed installation procedure is provided. The chapter also has a step-by-step procedure for turning on the terminal and checking that it operates correctly.

Chapter 9 describes all operator maintenance procedures used with the VTl25. Also provided is information on self-testing. This information outlines the steps needed to start the built-in tests and understand the results once the tests have run. The chapter also has a general procedure for operator troubleshooting of the terminal.

Chapter 10 describes the VTl 25 options: the Advanced Video option and the current loop interface adapter, the VTIXX-CB and -CC Graphics Processor upgrades for the VTløø and VTlø5, and provides installation and checkout instructions.

Chapter 11 describes the accessories and supplies offered for use with the VTl25. Included in this chapter is a short description of each accessory and supply, part number and ordering information.

Appendix A lists the specifications of the VTl2 25 terminal.
Appendix B is a summary of the SET-UP feature display.
Appendix C lists the character codes generated by the VTl25 terminal.

Appendix D is a summary of the VTl2 25 control functions and ReGIS commands.

Appendix E describes the ANSI code extension techniques used to create escape and control sequences.

Appendix F describes how to write ReGIS commands for both the VT125 and the VK100.

Appendix G explains the HLS color system in the VT125.
Appendix H lists the ReGIS commands used to create art for this book.

Glossary is a list of technical words and their definitions.
Other Terminals is a list and description of terminals offered by DIGITAL.

Warranty Information describes the warranty and services available from DIGITAL.

BOOK METHODS
This book uses a colored shading to indicate certain features and concepts. This usually indicates a table in the text.

Notes, Cautions, and Warnings -- A note contains information that is important enough to set off from the main body of text. A caution contains information essential to the safety of the equipment and software. A warning contains information essential to the safety of personnel.

GENERAL

This chapter has a general overview of how the VTl25 operates and a description of the controls and indicators of the terminal. Also provided is a summary of basic operating procedures. Detailed operating information depends on the computer and software that the terminal is connected to.

TERMINAL OPERATION

The VTl25 Graphic Terminal is a VTløø (Figure l-1) video text terminal and a Graphics Processor in one package. The Graphics Processor processes graphic commands from a computer to generate an image in its own memory. Then it sends a video representation of that image to the VTløø text terminal's internal monitor screen and to an optional external color monitor. It can also send a bit map representation of the image to a graphic printer. If data coming to the VTl25 is not graphic commands or other commands to the Graphics Processor, the Graphics Processor sends the data to the VTløø for processing and display as text or VTløø control functions.

CONTROLS AND INDICATORS
The VTl25 video terminal has many different controls and indicators. The controls and indicators are explained in four groups:

Monitor Controls

 Keyboard Controls Visual Indicators Audible Indicators
Monitor Controls

The VTl25 terminal has two controls that are located on the rear panel. The controls are the AC Voltage Selection switch and the AC Power ON/OFF switch. Their locations are shown in Figure 1-2.

AC Voltage Selection switch -- The AC Voltage Selection switch lets the VTl25 terminal operate with the available AC input voltage. See Installation (Chapter 8) for more information.

CAUTION: Setting the AC Voltage Selection switch to $12 \emptyset$ VAC when using 198 to 256 VAC power source will damage the terminal.

Figure 1-1 VTl25 Graphics Terminal

Figure 1-2 Monitor Controls and Connector Locations

NOTE: The Voltage Selection switch does not select the AC line frequency Power SET-UP feature. Refer to the SET-UP chapter for more information.

AC Power ON/OFF switch -- The AC Power ON/OFF switch turns ON and OFF the AC power to the terminal. Either the ON LINE or LOCAL keyboard indicators light to show the AC power ON condition. Refer to the indicators section of this chapter for more information on the VTl25 indicators.

A Power Up Self Test verifies the proper operation of the VTl25 terminal each time the terminal is powered up. Perform the following procedure to power up and checkout the terminal:

1. Turn the Power switch to the on position (refer to Figure 1-2 for the switch location). The terminal automatically runs the Power Up Self Test. The test gives the following indications:

- Keyboard and screen flash on and off.
- All keyboard indicators turn on and off, and either the ON LINE or LOCAL indicator is turned on.
- The Wait message is displayed on the screen and then is erased.
- A bell tone is generated.
- A band of light appears at the top of the screen and is erased.
- Another bell tone is generated.
- A message appears to announce the result of the VTl25 self-test, and a box is drawn* around the margins of the graphics screen area. (This message stays on the screen until the first character arrives over the communication line.)

NOTE: No message appear on the screen until the terminal warms up.

- The text cursor is displayed in the upper-left corner of the screen.

Any error found by the Power Up Self Test is displayed on the screen as a character, as a message, on keyboard indicators Ll-L4, or by several bell tones. Refer to the Self Test Error Codes section of Chapter 9 for more information about the error indications.
2. If the terminal powers up correctly, select the SET-UP features you want as described in Chapter 2.

Keyboard Controls

The VTl25 keyboard has a typewriter-styled main keyboard and calculator-like auxiliary keypad. The main keyboard is arranged and operates similar to a standard office typewriter. The auxiliary keypad allows rapid entry of numeric data or function characters.

Some keys of the VTl25 keyboard cause the generation of one or more characters immediately when typed. Other keys such as CTRL and SHIFT keys do not cause the generation of characters when typed, but modify the characters generated by other keys. If two character-generating keys are pressed almost at the same time so that they are down at the same time, two characters are generated according to the order in which the keys were typed. The VT125 does not wait for the keys to be lifted, but generates both characters as soon as possible after the keys are typed. If three character-generating keys are pressed at the same time, the characters from the first two keys are generated immediately; the character for the third key is generated when one of the first keys is lifted.

The keyboard keys are divided by function:

> Standard Keys Function Keys SET-UP Keys

Standard Keys -- Figure l-3 identifies those keys of the VT125 keyboard that are labeled as standard typewriter and calculator -like keys. The codes transmitted by each of these keys under various conditions are described in the Terminal Transmissions chapter.

Also, some of the standard typewriter and calculator keys, when used as function keys, may generate control characters. See Chapter 3 for a figure showing the control character generated by each key and see the computer software user guide for the meaning of the keys.

CAPS LOCK Key

When pressed the CAPS LOCK key causes the generation of uppercase alphabetic characters regardless of the position of the SHIFT key. The CAPS LOCK key locks into position during operation. To release the CAPS LOCK key, press the key again.

The numeric and special symbol keys are not affected by the CAPS LOCK key. The CAPS LOCK key does not affect the auxiliary keypad.

SHIFT Keys

When pressed the SHIFT keys cause the generation of uppercase characters for the alphabetic, numeric and special symbol keys of the main keyboard. The SHIFT key does not affect the keys of the

Figure 1-3 Standard Keys
auxiliary keypad or Tab, Return, Linefeed, Backspace, Delete, or Space Bar (unlabeled).

Auxiliary Keypad Keys
The auxiliary keypad lets you enter numbers into the VTl25 as if it is a calculator. The minus, comma, period and numeric keys of the auxiliary keypad usually generate the same characters as the corresponding unshifted keys of the main keyboard. The ENTER key corresponds to the RETURN key of the main keyboard.

Function Keys -- Figure $1-4$ identifies the function keys of the VTl25. The following paragraphs provide general descriptions of these keys.

ESC Key
When pressed the ESC key causes the generation of the escape character.

TAB key When pressed the TAB key causes the generation of the tab character.

CTRL Key
When pressed in combination with another key, the CTRL key causes the VTl25 to generate control characters. Figure $3-3$ in Chapter 3 shows which key to press for each control character.

DELETE Key

When pressed the DELETE key causes the generation of a delete character. The deleted character may or may not be erased from the screen depending on the computer's software.

RETURN Key

When pressed the RETURN key causes the generation of either a carriage return (CR) or a carriage return and line feed (CRLF). The characters generated are selected using the Line Feed/New Line SET-UP feature. Refer to the SET-UP chapter for more details on this SET-UP feature.

LINE

FEED Key
When pressed the LINE FEED key causes the generation of a line feed character.

NO
SCROLL Key
When first pressed during the transmission of characters from the computer through the Graphics Processor to the VTl25, the NO SCROLL key stops the VTløø from processing characters. The contents of the text display is held in place and scrolling stops. Other activities such as graphics processing or printing may continue. When the No SCROLL key is pressed a second time, the VTløø continues processing characters, the screen displays the new characters, and scrolling continues.

Figure 1-4 Function Keys

BREAK Key

The BREAK key causes the generation of a BREAK signal. Refer to the Communication chapter for details on the use of the BREAK signal. The computer response to the BREAK signal depends on the computer and software. See the computer software user guide for details on the use of this key.

When pressed while pressing the SHIFT key, the BREAK key causes a Long Break disconnect. Refer to Communication chapter for details on Long Break disconnects.

When pressed while pressing the CTRL key, the BREAK key causes the VTløø Answerback message to be transmitted. Refer to the SET-UP chapter for more details on the Answerback message.
$\uparrow \downarrow \rightarrow$ K Keys
These keys usually generate cursor control commands. The cursor is an indicator on the video screen that shows the line and column where the next character is positioned. Each of these keys causes the generation of characters which may have a special meaning to the computer. See the computer software user guide for details on the use of these keys.

Auxiliary Keypad

The auxiliary keypad can be used in two ways depending on your computer software:

- For entering numbers (only PF1, PF2, PF3, PF4 are function keys)
- For special purposes such as video editors (all keys are function keys)

See Chapter 3 for an explanation of the different kinds of keypad function keys. Refer to the computer software user guide for more information on the use of these keys.

SET-UP Keys -- Figure l-5 identifies the keys which have meaning to the VTl25 when operating in SET-UP. There are two SET-UP displays: SET-UP A, and SET-UP B. The SET-UP chapter has a detailed explanation of the use of these keys.
SET-UP Key
When pressed the SET-UP key places the VTl25 in SET-UP. While in SET-UP the terminal features can be changed. Entering and exiting SET-UP also cancels any ReGIS Hard Copy command.
@
SET/CLEAR TAB 2 Key
In SET-UP A the SET/CLEAR TAB key sets or clears single horizontal tabs. In SET-UP B this key is inactive.

Figure 1-5 SET-UP Keys

```
        # E
CLEAR ALL TABS 3 Key
In SET-UP A, this key clears all horizontal tabs set. In SET-UP B
this key is inactive.
```


\$

LINE/LOCAL 4 Key
In any SET-UP display the LINE/LOCAL key switches the VT125 between ON LINE and LOCAL. While ON LINE the VTl25 communicates with the computer through the graphics option. While LOCAL the VT125 cannot communicate with the computer. Instead, the VTl00 terminal inside the VTl25 communicates only with itself, ignoring the graphics option. However, the graphics option can continue to process data from the computer. Use a data loopback connector with the terminal ON LINE to communicate with the graphic option from the keyboard. See the Maintenance Chapter for instructions.

SET-UP A/B 5 Key
In SET-UP the SET-UP A/B key switches the VT125 between SET-UP A and SET-UP B.

TOGGLE $1 / \emptyset 6$ Key
In SET-UP B the TOGGLE $1 / \varnothing$ key turns the selected feature on or off. In SET-UP A this key is inactive.

\&

TRANSMIT SPEED 7 Key
In SET-UP B the TRANSMIT SPEED key steps the VTl 25 up through the transmit baud rate settings of the line to the computer. In SET-UP A this key is inactive.

*

RECEIVE SPEED 8 Key
In SET-UP B the RECEIVE SPEED key steps the VTl25 through the receive baud rate settings of the line to the computer. In SET-UP A this key is inactive.
$80 / 132$ COLUMNS 9 Key
In SET-UP A the $8 \emptyset / 132$ COLUMN key switches the display line size between $8 \emptyset$ and 132 characters per line. In SET-UP B this key is inactive.

)

RESET \emptyset Key
In any SET-UP display the RESET key starts the reset sequence. This has the same result as turning the VTl25 power off and then on.

NOTE: The Reset sequence erases the VTl25 memory. This includes the text and graphics display data, any temporarily stored SET-UP feature settings, and any selected graphics protocols.

\uparrow Keys

In any SET-UP display the \uparrow (up arrow) and \downarrow (down arrow) keys raise and lower the brightness of the display.

$\leqslant \rightarrow$ Keys

In any SET-UP display the \leftarrow (left arrow) and \rightarrow (right arrow) keys move the cursor left and right.

A Key
In SET-UP B, while pressing the SHIFT key press the A key to enter the answerback message in the VTl25.

R Key

In any of the SET-UP displays, while pressing the SHIFT key, press the R key to recall the previously stored user permanent memory SET-UP feature selections.

S Key

In any of the SET-UP displays, while pressing the SHIFT key, press the S key to store the current SET-UP feature selections in the user permanent memory. See the SET-UP chapter for more details.

Keyboard Indicators

Figure $1-6$ shows the location of the keyboard indicators. The following paragraphs describe the function of each indicator.

ON LINE Indicator
This indicator lights to show that the text terminal is ON LINE and ready to transmit or receive data. When AC power is ON, either the ON LINE or LOCAL indicator is ON.

LOCAL Indicator
This indicator lights to show that the text terminal is LOCAL and cannot communicate with the computer or the graphics option. When the text terminal is LOCAL, it displays data entered from the keyboard on the screen as if the data came from the computer. When AC power is ON, either the ON LINE or LOCAL indicator is ON. LOCAL should only be used to test the text terminal. Always leave the terminal ON LINE.

KBD LOCKED Indicator
This indicator lights to show that the keyboard has been turned off (locked) either by the computer or by the terminal itself. Any new characters typed are lost. The terminal can seill receive data from the computer.

The computer turns off the keyboard if it cannot process characters as fast as the terminal sends them. The computer turns the keyboard on when it is ready for more characters.

The terminal turns off the keyboard if the transmit baud rate is too slow to send characters as fast as you type them. The terminal turns the keyboard on after it sends the characters you already typed.

Figure 1-6 Keyboard Indicators

NOTE: If you enter and exit SET-UP while the keyboard is locked, characters already typed are lost and the keyboard is unlocked. However, if the computer is not ready to receive characters, characters typed after unlocking may be lost.

L1 - L4
These indicators are turned on and off by the computer. See your computer software instructions for the meaning of each indicator. L1 - L4 also show self-test errors.

Audible Indicators
There are three audible indicators in the VTl25; a keyclick, a long tone (beep), and a series of long tones.

Keyclick -- The terminal generates a keyclick when a key is pressed, with the following exceptions:
-- SHIFT or CTRL keys do not generate any keyclick because these keys do not transmit characters but only modify the characters transmitted by other keys.
-- KBD LOCKED indicator is on; any keys typed are lost.
-- The keyclick feature is off in SET-UP B.
Long Tone (beep) The terminal generates a beep to indicate one of the following conditions:
-- A bell character was received from the computer.
-- The cursor is eight characters away from the right margin and the margin bell feature is enabled.

Series of Long Tones
The terminal generates the long tone many times in a row and the screen displays "2" to indicate that the user permanent memory cannot read or write the SET-UP features. If this happens, check the SET-UP features and then perform the Save or Recall operation again. Service may be needed. See Chapter 9.

GENERAL

The VTl25 terminal has many features in SET-UP that allow the terminal to be configured for specific applications. This chapter describes SET-UP and each of the SET-UP features.

SET-UP FEATURES
SET-UP features change how the VTl25 terminal operates. They allow the terminal to be configured to operator preference, and they provide compatibility to the computer and ac power source. Table 2-1 divides the SET-UP features into three general types: operator preference, communication compatibility, and installation.

Table 2-1 SET-UP Feature Types

SET-UP Feature	Operator Preference	Communication Compatibility	Installation
ON LINE/LOCAL		X	
Screen brightness	X		
Columns per line		X	
Tab stops		X	
Scroll	x		
Auto repeat	X		
Screen background	X		
Cursor	X		
Margin bell	X		
Keyclick	X		
ANSI/VT52		X	
Auto XON/XOFF		X	
US/UK character set			X
Auto wrap			
Line feed/new line		X	
Interface			X
Parity sense		X	
Parity		X	
Bits per character		X	
Power			X

Table 2-1 SET-UP Feature Types

SET-UP Feature	Operator Preference	Communication Compatibility	Installation
AUX port bits per		X	
character			
AUX port speed		X	
Transmit speed		X	
Receive speed	X		
Answerback			

Operator Preference Features
These features configure the terminal to operator preference. They do not affect information transferred between the terminal and the computer.

Communication Compatibility Features
These features configure the terminal so that it is compatible with a computer. There are many combinations of SET-UP features used when communicating with a computer. The features must be selected correctly for the terminal to communicate with the computer. An error in these selections may stop communication or cause incorrect information to be transferred between the terminal and computer.

NOTE: This chapter describes the SET-UP features used to provide compatibility. More information about using these SET-UP features is provided in Chapter 7.

Installation Features

These features configure the terminal for operation in different installations. If the location of the terminal is changed, verify these feature selections.

FEATURE SELECTION

SET-UP features can be selected by the computer or from the terminal keyboard. When the computer changes the feature selections, the SET-UP features are not destroyed. However, the current selection is shown by the SET-UP feature display. SET-UP features that can be changed by the computer are listed in Table 2-2. Refer to Chapter 4 for more information about the selection of features by the computer.

To select SET-UP features from the keyboard you must enter SET-UP. SET-UP has two feature displays: SET-UP A and SET-UP B (Figure 2-1. The SET-UP A feature display shows the location of tab stops and a visual ruler numbers each column of the line. The SET-UP B feature display shows the other SET-UP features. Use the following steps to change a SET-UP feature selection.

Table 2-2 SET-UP Features the Computer Can Change	
SET-UP Feature	Can be Changed
ON LINE/LOCAL	
Screen brightness	
Columns per line	
Tab stops	X
Scroll	X
Auto repeat	X
Screen background	X
Cursor	
Margin bell	
Keyclick	
ANSI/VT52	
Auto XON/XofF	X
US/UK character set	X
Auto wrap	X
Line feed/new line	
Interface	
Parity sense	
Parity	
Bits per character	
Power	
AUX port bits per character	
AUX port speed	
Transmit speed	
Receive speed	
Answerback	

SET-UP A

TO EXIT PRESS "SET-UP"

SET-UP B
TO EXIT PRESS "SET-UP"

T SPEED 9600 R SPEED 9600

Figure 2-1 SET-UP Displays

Procedure

press the SET-UP key
to enter SET-UP.
Press SETUP A/B to select the correct SET-UP display.

Change the SET-UP feature selection.

Store the SET-UP features if desired.

Indication/Comments
SET-UP A is displayed on the screen.

The selected SET-UP display shows on the screen.

The SET-UP display shows the feature selection.

The terminal displays wait and then SET-UP A.

Press SET-UP to exit
SET-UP.
NOTE: Entering and exiting SET-UP with KBD LOCKED on clears the keyboard locked condition and erases any characters that were typed after the keyboard was locked. Entering and exiting SET-UP also cancels any ReGIS Hard Copy command.

ENTERING AND EXITING SET-UP
You can enter SET-UP while either ON LINE or LOCAL.

FEATURE MEMORIES

The SET-UP feature selections are stored in three memories: operating (temporary), user permanent, and default (Figure 2-2).

Operating Memory

This memory stores the SET-UP feature selections used to operate the terminal. The terminal always operates according to these features. The features can be selected at the terminal keyboard or by the computer. In SET-UP, the feature selections in the operating memory are shown on the screen. To change the SET-UP feature selections stored in memory perform the following procedure at the terminal keyboard.

Procedure

Press the SET-UP key to enter SET-UP.

Press SETUP A/B to select the correct SET-UP display.

Change the SET-UP
feature selection.
Press the SET-UP key exit SET-UP.

Indication/Comments

SET-UP A is displayed on the screen.

The selected SET-UP display shows on the screen.

The SET-UP display shows the feature selection.

The terminal operates according to the new SET-UP feature selections in operating memory.

Figure 2-2 SET-UP Feature Memories

If a recall or reset procedure is performed, or power to the terminal is turned off and on, all operating memory SET-UP feature selections are replaced by the SET-UP feature selections in user permanent memory.

User Permanent Memory

This memory stores selected SET-UP features permanently. The computer cannot change SET-UP feature selections in user permanent memory. User permanent memory can only be changed by performing a store from the terminal keyboard while in SET-UP. Turning power off does not affect SET-UP feature selections in this memory. SET-UP features are moved between operating memory and user permanent memory by performing store, recall, or reset procedures.

Store -- This procedure stores the operating memory SET-UP feature selections in user permanent memory. Storing is performed from the terminal keyboard. The computer cannot store SET-UP feature selections in user permanent memory. To store SET-UP feature selections in user permanent memory, perform the following procedure.

Procedure
Press the SET-UP key to enter SET-UP.

Hold down the SHIFT
key, press the s key;
then release both keys.
Press the SET-UP key
to exit SET-UP.
Recall -- This procedure recalls the user permanent memory SET-UP feature selections into operating memory. All feature selections previously in operating memory are erased. Also, the text screen memory is erased. To recall the SET-UP feature selections from user permanent memory into operaing memory, perform the following procedure.

Procedure

Press the SET-UP key to enter SET-UP.

Hold down the SHIFT key, The terminal displays wait and then press the R key; then release both keys.

Press the SET-UP key
to exit SET-UP.
NOTE: Some features selected by the computer may be affected.

Reset -- This procedure resets the terminal, erases all memories and performs a self-test. Also, reset recalls the user permanent memory SET-UP feature selections into operating memory. All feature selections previously in operating memory are erased. To reset the terminal, perform the following procedure.

Procedure
Press the SET-UP key to enter SET-UP.

Press RESET.

Indication/Comments
SET-UP A is displayed on the screen.

The power-on self-test runs. The terminal operates according to the SET-UP feature selections in user permanent memory. The terminal automatically exits SET-UP.

SET-UP DEFAULT MEMORY

The VTl25 has default SET-UP feature selections for all the VTl 25 SET-UP features. These default selections cannot be changed by the user. When a default occurs (usually because of a problem in the user permanent memory), all operating memory SET-UP feature selections change to the default selections. The SET-UP features in user permanent memory are not changed by a default. Figure $2-3$ shows the default SET-UP feature selections.

SET-UP FEATURE DEFINITIONS

The SET-UP feature definitions in this section are arranged by the SET-UP display in which they are changed. A general procedure for changing each SET-UP feature in the SET-UP display is provided at the beginning of each SET-UP display section. For features needing a more detailed procedure, the procedure is given with the SET-UP feature description. The first section includes the general features changed in either SET-UP A or SET-UP B.

NOTE: Entering set-up and changing features usually does not cause the loss of characters in the VTl25 text memory. Any action that does cause loss is explained.

General SET-UP Features

The ON LINE/LOCAL and Screen Brightness SET-UP features may be changed in any SET-UP display. Dedicated keys on the main keyboard select these features. Each feature description includes the specific change procedure.

ON LINE/LOCAL

The ON LINE/LOCAL feature places the terminal either ON LINE or LOCAL. While ON LINE (the keyboard ON LINE indicator is on) the text terminal transfers data to and from the computer through the Graphics Processor.

While LOCAL (the keyboard LOCAL indicator is on) the text terminal does not transfer data to or from the Graphics processor. Characters typed on the keyboard are echoed to the screen

Figure 2-3 SET-UP Default Feature Selections
directly. LOCAL should only be used to test the text terminal. Always leave the terminal ON LINE.

Perform the following procedure to select the ON LINE or LOCAL condition:

Procedure

1. Press the SET-UP key to enter SET-UP.
2. Press the OFF/ON LINE key to select on-line or off-line.
3. Press the SET-UP key to exit SET-UP.

Indication/Comments

SET-UP A is displayed on the screen.

The ON LINE and OFF LINE keyboard indicators show the feature selection.

The characters displayed on the screen when entering SET-UP are again displayed on the screen.

SCREEN BRIGHTNESS

The VTl25 electronically controls screen brightness. The \uparrow (up arrow) key increases the screen brightness; the \downarrow (down arrow) key decreases the screen brightness.

Perform the following procedure to select the wanted screen brightness:

Indication/Comments

1. Press the SET-UP key to enter SET-UP.
2. Press the \uparrow (up
arrow) or \downarrow (down
3. Press the \uparrow (up
arrow) or \downarrow (down arrowø key to select brightness.
4. Press the SET-UP key to exit SET-UP.

Procedure

SET-UP display is the brightness selected.

The characters displayed on the screen when entering SET-UP are again displayed on the screen.

SET-UP A Features

The following paragraphs describe the SET-UP A features in detail:

CHARACTERS PER LINE

The characters
132 characters per line. With 80 selects a display of either 80 or screen is $8 \emptyset$ characters wide characters per line selected, the characters per line selected, the screen ines long. With 132 and 14 lines long (132 characters by 24 in is 132 characters wide video option is installed). The displayed if the advanced characters per line selected are the sayed lines with 132 screen as the $8 \emptyset$ character per line sel same width on the video are narrow and closer together. Figure selection but the characters

These are characters displayed using 80 columns.

These are claraters displayed using $12 \mathbf{2}$ colurs.

MA-7775

Figure 2-4 80- and 132-Column Displays

NOTE: Changing the characters per line erases the current contents of the screen.

Perform the following procedure to select the number of characters per line:

Procedure

1. Press the SET-UP key to enter SET-UP.
2. Press the $80 / 132$ COLUMNS key to select the number of columns per line.
3. Press the SET-UP key to exit SET-UP, or press the SET-UP A/B key to enter SET-UP B.

Indication/Comments

SET-UP A is displayed on the screen.

The bottom line of the display is a "ruler" which numbers each column position on a line. This ruler indicates the feature selection.

The characters displayed on the screen before entering SET-UP are lost. When exiting SET-UP the screen is blank.

TABS
Tab stops are preselected points on a line of the VT125 display. The VTl25 cursor can tab (advance) to the tab stops on the display line. The tab stops may be changed one at a time, or all cleared and then set.

The 2 (SET/CLEAR TAB) key of the main keyboard sets and clears single tab stops. The 3 (CLEAR ALL TABS) key of the main keyboard clears all tab stop settings.

Do the following procedure to set and clear tab stops.

Procedure

1. Press the SET-UP
key to enter SET-UP.
2. Press the CLEAR ALL

TABS key or the SET/CLEAR TABS key
3. Press the SET-UP key to exit SET-UP, or press the SET-UP A/B key to enter SET-UP B.

Indication/Comments

SET-UP A is displayed on the screen.

All tabs are cleared.
The tab is set or cleared at the cursor position.

The cursor is moved using the \leftarrow (left arrow), \rightarrow (right arrow), RETURN, TAB and SPACE BAR keys.

The characters displayed on the screen when entering SET-UP are again displayed on the screen.

SET-UP B Features
Figure $2-5$ is the SET-UP B summary. The bottom line of the display is a row of switches indicating the features selected. Change SET-UP feature switch selections using the following procedure.

procedure

1. Press the SET-UP key to enter SET-UP.
2. Press the SET-UP

A/B key to enter SET-UP B.
3. Position the cursor over the SET-UP feature switch to be changed.
4. Use the TOGGLE $1 / \emptyset$ key to select the feature.
5. Press the SET-UP key to exit SET-UP, or press the SETUP A/B key to enter SET-UP A.

Indication/Comments

SET-UP A is displayed on the screen.

SET-UP B is displayed on the screen.

The cursor is positioned using the \leftarrow (left arrow), \rightarrow (right arrow), RETURN, TAB and SPACE BAR keys.

The screen displays the feature selection.

The characters displayed on the screen when entering SET-UP are again displayed on the screen.

The following paragraphs describe the features in the order of the switches on the screen. The switches are referred to within this chapter by the group and the number of the switch within the group. (Example: switch $3-2$ is the third group of switches -second switch counting from left to right.) The answerback feature is listed at the end of the feature descriptions.

SCROLL

$$
\text { Switch 1-1: } \emptyset=\text { Jump, } 1=\text { Smooth }
$$

Scrolling is the up or down movement of lines of text on the screen. Scrolling is performed to make room for new lines at the bottom or top of the screen. It can be performed in two ways: jump scroll or smooth scroll.

With jump scroll selected, new lines are displayed on the screen as fast as the terminal receives them. At the higher baud rates, the lines displayed are difficult to read because of their rapid movement.

With smooth scroll selected, there is a limit to the speed at which new lines are displayed by the terminal. The movement of lines occurs at a smooth steady rate allowing the lines to be read as they are displayed on the screen.
NOTE: Smooth scroll allows a maximum of six lines per second to be added at the top or bottom of the screen. The Auto XON/XOFF
Figure 2-5 SET-UP B Summary
feature must be supported by the computer to make sure that characters are not lost when smooth scroll is selected.

AUTO REPEAT Switch $1-2: \emptyset=$ off, $1=$ on
The auto repeat feature causes a key to be automatically repeated at the rate of about 30 characters per second when the key is held down for more than one half second. The auto repeat feature affects all keyboard keys except the following:

```
SET-UP
ESC
RETURN
ENTER
NO SCROLL
CTRL and any key
```

When the feature is turned off, only one character is transmitted each time the key is pressed.

SCREEN BACKGROUND Switch 1-3: $\emptyset=$ Dark, $1=$ Light
The screen background feature of the VTl25 determines the background of the screen. With dark background selected, the display has light characters on a dark background. With light background (reverse screen) selected, the display has dark characters on a light background. Figure 2-6.

CURSOR
Switch 1-4: \varnothing = Underline, $1=$ Block
The cursor feature offers a choice of two cursor displays to indicate the "active position" or where the next character will be put on the screen. The cursor is displayed as either a blinking underline (_) or a blinking block (D). If the advanced video option is not installed, this feature, also affects the character attribute. See Select Graphic Rendition in Section 2 Chapter 4.

MARGIN BELL
Switch 2-1: $\emptyset=O F F, 1=O N$
The margin bell feature causes a tone if the cursor is eight characters from the end of the current line while typing. The margin bell can be turned on or off.

The margin bell volume is not adjustable.

KEYCLICK

Switch 2-2: $\emptyset=O F F, 1=O N$
Keyclick is a sound which is generated every time a key is pressed. The keyclick of the VTl25 can be turned on or off. However, research and experience has shown that an operator types fewer errors when there is an audible feedback from the keyboard.

The keyclick volume is not adjustable.
ANSI/VT52
Switch 2-3: $\emptyset=$ VT52, $1=$ ANSI
The VTl25 terminal follows two different programming standards -American National Standards Institute (ANSI) and VT52 compatible. With ANSI selected, the VTl25 generates and responds to control sequences according to ANSI standards X3.41-1974 and X3.64-1979.

These are characters displayed on a light background.
I. These are characters displayed on a dark background.

Figure 2-6 Screen Background

With VT52 compatible selected, the VTl25 terminal is compatible with previous DIGITAL software using the VT52 video terminal. But because the Graphics Processor only uses ANSI, at power-up it sends the VT5 2 mode control function to the text terminal to force this SET-UP feature to ANSI regardless of the user permanent memory setting. After power-up, you must manually set this switch to use VT52 modes.

AUTO XON/XOFF Switch 2-4: $\emptyset=0 F F, 1=0 N$

The VTl25 Graphics Processor requires the XON (DC1) and XOFF (DC2) control characters. Therefore, this feature cannot be turned off. See the Communications chapter for more information about XON and XOFF.
U.S./U.K. CHARACTER SET Switch 3-1: $\emptyset=\#, 1=\ddagger$

The VTl25 includes character sets for the United States and the United Kingdom. The difference between the two character sets is one character, the \# (number) or $£$ (pound) symbol.

AUTO WRAP
Switch 3-2: $\emptyset=O F F, 1=O N$
The auto wrap feature selects where a received character is displayed when the cursor is at the right margin. When the auto wrap feature is off, the character and all following characters are written into the last column of the current line. When this feature is on, the character is automatically displayed on the next line.

LINE FEED/NEW LINE Switch 3-3: $\emptyset=0 \mathrm{FF}, 1=\mathrm{ON}$
The Line Feed/New Line feature determines the control character(s) transmitted when the RETURN key is pressed and what action is taken by the VTl 25 when it receives a line feed control character. See Table 2-3.

When the Line Feed/New Line feature is off (line feed mode) pressing the RETURN key generates only the carriage return (CR) control character; when a line feed (LF) control character is received, the cursor moves down to the next line and maintains the current column position.

When the Line Feed/New Line feature is on (new line mode), pressing the RETURN key generates the carriage return (CR) and line feed (LF) control characters. When a line feed control character is received, the character is responded to as both a carriage return and line feed. Therefore, a received line feed causes the cursor to move to the left margin of the next line.

NOTE: The meaning of line feed varies according to your computer system's software. Be sure you need this feature before you turn it on.

INTERLACE

Switch 3-4: Ø=OFF; l=ON
The Interlace feature selects the number of scan lines used to create characters on the screen. With Interlace on, the terminal uses $48 \emptyset$ scan lines per screen. With Interlace off, the terminal

Table 2-3 Line Feed/New Line Feature Summary

Selection	Key	Character Sent
Off	RETURN	Carriage return (CR)
Off	LINE FEED	Line feed (LF)
On	RETURN	Carriage return -- line feed (CR LF)
On	LINE FEED	Line feed (LF)
Selection	Character Received	Function
Off	CR	Carriage return (cursor moves to left margin)
Off	LF	Line feed (cursor moves to next line but stays in same column)
On	CR	Carriage return (cursor moves to left margin)
On	LF	Carriage return -- line feed (cursor moves to left margin on next line)

uses 240 scan lines per screen. This feature does not add any new information to the screen. However, when on, the Interlace feature may improve the output of hard copy or video devices connected to the video output connector. Usually operators prefer to have this feature off.

PARITY SENSE
Switch 4-1: $\emptyset=$ ODD, $1=$ EVEN
The parity sense feature defines which of the two methods of parity checking, odd or even, is being used by the VTl25. If the parity feature is on, the terminal's parity sense must be the same value as the parity the computer is sending. If the parity sense features do not match, most characters sent by the computer are rejected even though the character was received correctly by the VTl25. If a parity error occurs, the checkerboard character (X) appears on the screen instead of the received character.

PARITY
Parity, when Switch 4-2: $0=0 \mathrm{FF}, 1=\mathrm{ON}$
parity bith checks received data for correctness and adds a the VTl25 to transmitted data. If a received data error occurs, checkerboard character and show its presence by placing a checkerboard character \mathbb{N} on the screen instead of the character
with the error. The parity sense feature determines if the parity is even or odd. When parity is off, no parity bit is received or transmitted.

BITS PER CHARACTER Switch 4-3: $\emptyset=7$ BITS, $1=8$ BITS
This feature allows the terminal to transmit and receive either 7or 8 -bit characters. When set for 8 -bit operation, bit 8 is set to a space (or \emptyset) for characters transmitted and is ignored for all characters received.

POWER
Switch 4-4: $\emptyset=6 \emptyset \mathrm{~Hz}, 1=5 \emptyset \mathrm{~Hz}$
During the initial installation of the VTl25, the power feature must be set to the power line frequency. In the United States this setting is $6 \emptyset \mathrm{~Hz}$. When using $5 \emptyset \mathrm{~Hz}$ line frequency set this feature to 50 hz .

AUX PORT BITS PER CHARACTER Switch 5-2: $\emptyset=7$ BITS, $1=8$ BITS This switch sets the auxiliary port to match the character length of your printer or other serial device. When set to 8 bits, the eighth bit is a space. This is the same as 7 S or 8 N on other terminals.

AUX PORT SPEED
Switches 5-3 and 5-4
These switches set the auxiliary port to one of four baud rates:

XX0日	300
XX01	1200
Xaud	
XX1	2400
XX11 baud	$96 \emptyset \emptyset$

Set the switches to match the speed of your auxiliary device.
TRANSMIT SPEED
Transmit speed must be set to match the computer receive speed. The VT125 can transmit at any one of the following speeds: 50, 75, $110,134.5,150,200,300,600,1200,1800,2000,2400,3600$, 4800, 9600,19200 baud.

Transmit speed is independent of receive speed; the terminal may transmit data at one speed and receive data at a different speed.

To change the transmit speed, perform the following steps:

Procedure

1. Press the SET-UP key to enter SET-UP.
2. Press the SETUP A / B key to enter SET-UP B.
3. Press the TRANSMIT SPEED key to select the transmit speed.
4. Press the SET-UP key to exit SET-UP, or press the SETUP A/B key to enter SET-UP A.

Indication/Comments
SET-UP A is displayed on the screen.

SET-UP B is displayed on the screen.

The terminal displays the current feature selection.

The characters displayed on the screen when entering SET-UP are again displayed on the screen.

RECEIVE SPEED
Receive speed must be set to match the computer transmit speed. The VTl25 can receive at any one of the following speeds: 50, 75, $110,134.5,150,200,300,600,1200,1800,2000,2400,3600$, 48øø, 960ø, 1920ø baud.

Receive speed is independent of transmit speed; the terminal may receive data at one speed and transmit data at a different speed.

To change the receive speed, perform the following steps:

Procedure

1. Press the SET-UP key to enter SET-UP.
2. Press the SETUP A/B key to enter SET-UP B.
3. Press the RECEIVE SPEED key to select the receive speed.
4. Press the SET-UP key to exit SET-UP, or press the SETUP A/B key to enter SET-UP A.

Indication/Comments

SET-UP A is displayed on the screen.

SET-UP B is displayed on the screen.

The terminal displays the current feature selection.

The characters displayed on the screen when entering SET-UP are again displayed on the screen.

ANSWERBACK Message

"he answerback feature provides the VTl 25 with the capability of transmitting an identifying message to the computer. The
answerback message is transmitted to the computer under the following conditions:
-- The answerback message is transmitted under a direct request for identification by the computer. The complete answerback sequence happens automatically without affecting the screen or requiring operator action.
-- The operator manually transmits the answerback message. While pressing the CTRL key, press the BREAK key and release both keys to manually transmit the answerback message.
Enter an answerback message using the following steps (see Figure 2-7):

Procedure

1. Press the SET-UP key to enter SET-UP.
2. Press the SETUP A / B key to enter SET-UP B.
3. Hold down the SHIFT key, press the A key and release both keys.
4. Type the message delimiter character.
5. Type the answerback message.
6. If less than $2 \emptyset$ characters are in the message, type the delimiter chracter.
7. Press the SET-UP key to exit SET-UP, or press the SETUP A / B key to enter SET-UP A.

Indication/Comments

SET-UP A is displayed on the screen.

SET-UP B is displayed on the screen.

The terminal displays $A=$ (refer to Figure 3-11.

This is any character not used in the answerback message. The message delimeter character is not transmitted as part of the answerback message.

The answerback message may be up to $2 \emptyset$ characters. If control characters are used they are displayed as the (\rangle) character.

If a mistake is made while typing the message, type the delimiter character (used in step 4) and go back to step 3. This is the only way to correct errors in the answerback message.
If 20 characters are typed, the message is automatically entered into operating memory. If less than $2 \emptyset$ characters are typed the delimiter character is used to enter the message into operating memory.

The characters displayed on the screen when entering SET-UP are again displayed on the screen.

Figure 2-7 Answerback Message

CHAPTER 3
TRANSMITTED CHARACTERS

GENERAL

This chapter describes the character codes generated by the VTl25 terminal. The keys are divided into three groups: standard keys, function keys, and auxiliary keypad keys.

STANDARD KEYS

The standard keys are shown in Figure 3-1. The terminal generates American Standard Code for Information Interchange (ASCII) character codes. Lowercase ASCII character codes are generated when SHIFT or CAPS LOCK are not pressed. Uppercase ASCII character codes are generated when either SHIFT or CAPS LOCK are pressed. CAPS LOCK does not affect the nonalphabetic keys.

FUNCTION KEYS

The function keys are shown in Figure 3-2. These keys generate character codes whose function is defined by the computer software or communication system. The following paragraphs describe the function keys.

BREAK Key

The BREAK key generates a BREAK signal. The Break signal function is definited by the computer system. Refer to Chapter 5 for more information about the Break signal.

Hold down the SHIFT key, and press the BREAK key to generate a Long Break Disconnect. A Long Break Disconnect usually disconnects the terminal from the communication line. Refer to Chapter 5 for more information about Long Break Disconnect.

Hold down the CTRL key, and press the BREAK key to generate the answerback message. Refer to Chapter 2 for more information about the Answerback SET-UP B feature.
$\uparrow \downarrow \leqslant$ Cursor Control Keys
The cursor key character codes generated by the terminal depend on the ANSI/VTl25 feature selection. When the ANSI/VTl25 feature is set for ANSI compatibility, the cursor keys generate sequences that depend on the cursor key mode selection. Cursor key mode is only selected by the computer. Refer to Chapter 4 for more information about cursor key character selection. Table 3-1 lists the ANSI and VT52 compatible cursor key character codes.

Figure 3-1 Standard Key Codes

Figure 3-2 Function Keys

Table 3-1 Cursor Control Key Codes

Cursor Key	Cursor Key Mode Reset	ANSI Mode Cursor Key Mode Set	VT52 Mode
\uparrow	$\begin{array}{ccc} \text { ESC } & {[} & \text { A } \\ \emptyset 33 & 133 & 1 \emptyset 1 \end{array}$	$\begin{array}{ccc} \text { ESC } & 0 & \text { A } \\ \emptyset 33 & 117 & 101 \end{array}$	$\begin{array}{cc} \text { ESC } & \text { A } \\ \emptyset 33 & 1 \emptyset 1 \end{array}$
\downarrow	ESC $\left[\begin{array}{c}{[} \\ \emptyset 33\end{array}\right.$ 133 102	$\begin{array}{ccc} \text { ESC } & 0 & \text { B } \\ \emptyset 33 & 117 & 102 \end{array}$	$\begin{array}{lc} \text { ESC } & \text { B } \\ \emptyset 33 & 1 \emptyset 2 \end{array}$
\rightarrow	$\begin{array}{ccc} \text { ESC } & {[} & \text { C } \\ \text { Ø33 } & 133 & 103 \end{array}$	$\begin{array}{ccc} \text { ESC } & 0 & C \\ 033 & 117 & 103 \end{array}$	$\begin{array}{cc} \text { ESC } & C \\ 033 & 103 \end{array}$
\leqslant	$\begin{array}{ccc} \text { ESC } & {[} & \text { D } \\ \emptyset 33 & 133 & 1 \emptyset 4 \end{array}$	$\begin{array}{ccc} \text { ESC } & 0 & D \\ \emptyset 33 & 117 & 104 \end{array}$	$\begin{array}{cc} \text { ESC } & \text { D } \\ \emptyset 33 & 1 \emptyset 4 \end{array}$

Table 3-2 Comparison of Control Character Generation

	VT125 Keys	Previous Terminal Keys
NUL	CTRL -- Space bar	CTRL -- @
RS	CTRL --	CTRL --
US	CTRL -- ?	CTRL --

Control Character Keys
Figure $3-3$ shows the keys that generate control characters. Control characters can be generated in two ways:

1. Hold down the CTRL key, and press any of the unshaded keys in Figure 3-3.
2. Press any of the shaded keys in Figure 3-3 without using the CTRL key. the shaded keys are dedicated keys that generate control characters without using CTRL.

NOTE: The RETURN key character code can be changed by the line feed/new line feature. When off, this feature causes RETURN to generate a single control character (CR). When on, this feature causes RETURN to generate two characters (CR, LF). Also, depending on the auxiliary keypad mode selected, RETURN and ENTER may generate the same control codes.
Table $3-2$ lists the control characters that are generated differently from previous DIGITAL terminals. No details are provided about the function of the control character codes because different computer systems may use each control character differently.

Figure 3-3 Function Key Control Codes

AUXILIARY KEYPAD KEYS
The characters generated by the auxiliary keypad keys change depending on the selection of two features: ANSI/VT52 and Alternate Keypad features. The Alternate Keypad feature is usually selected only by the computer. Refer to Chapter 4 for more information about keypad character selection.

When alternate keypad mode is not selected (numeric keypad mode is selected), the auxiliary keypad generates the numeric, comma, period, and minus sign character codes used by the main keyboard.

NOTE: SHIFT and CAPS LOCK do not affect the codes generated by the auxiliary keypad.

When alternate keypad mode is selected, the auxiliary keypad generates control functions. Table 3-3 lists the character codes generated by the auxiliary keypad.

Table 3-3 Auxiliary Keypad Codes

Table 3-3 Auxiliary Keypad Codes (Cont)

	Numeric Keypad Mode	Mode Alternate Keypad Mode		VT52 Mode Alternate Keypad Mode				
9	971	$\begin{aligned} & \text { ESC } \\ & \text { Ø33 } \end{aligned}$	$\begin{array}{cc} 0 & y \\ 117 & 171 \end{array}$	9		$\begin{aligned} & \text { ESC } \\ & 033 \end{aligned}$	$\stackrel{?}{9}$	$\frac{y}{171}$
-	$\begin{aligned} & - \text { (minus) } \\ & \boxed{0} 5 \end{aligned}$	$\begin{aligned} & \text { ESC } \\ & 633 \end{aligned}$	$\begin{array}{cc} 0 & m \\ 117 & 155 \end{array}$	$\begin{aligned} & - \text { (minus) } \\ & \emptyset 55 \end{aligned}$	+	$\begin{aligned} & \text { ESC } \\ & 633 \end{aligned}$	$\stackrel{?}{677}$	$\begin{gathered} \mathrm{m} \\ 155 \end{gathered}$
,	$\begin{aligned} & \text { (comma) } \\ & \emptyset 54 \end{aligned}$	$\begin{aligned} & \text { ESC } \\ & \emptyset 33 \end{aligned}$	$\begin{array}{cc} 0 & 1 \\ 117 & 154 \end{array}$, (comma) Ø54	$+$	$\begin{aligned} & \text { ESC } \\ & 633 \end{aligned}$?	$\begin{gathered} 1 \\ 054 \end{gathered}$
-	$\begin{aligned} & \text { (period) } \\ & \text { 056 } \end{aligned}$	$\begin{aligned} & \text { ESC } \\ & \text { Ø33 } \end{aligned}$	$\begin{array}{cc} 0 & n \\ 117 & 156 \end{array}$	$\begin{aligned} & \text { (period) } \\ & 056 \end{aligned}$			$\stackrel{?}{977}$	
ENTER*	$\begin{array}{lll} \text { CR or } & \text { CR } & \text { LF } \\ \emptyset 15 & \emptyset 15 & \emptyset 12 \end{array}$	$\begin{aligned} & \text { ESC } \\ & 933 \end{aligned}$	$\begin{array}{cc} 0 & M \\ 117 & 115 \end{array}$	$\begin{aligned} & C R \text { or } \\ & 015 \\ & 015 \end{aligned}$	$\begin{aligned} & \mathrm{LF} \\ & \mathrm{~g} 12 \end{aligned}$	$\begin{aligned} & \text { ESC } \\ & 633 \end{aligned}$	$\stackrel{?}{977}$	$\stackrel{M}{M}$
PFl	$\begin{array}{ccc} \text { ESC } & 0 & \mathrm{P} \\ 033 & 117 & 12 \emptyset \end{array}$	ESC 033	$\begin{array}{cc} 0 & \mathrm{P} \\ 117 & 12 \emptyset \end{array}$	ESC P $\varnothing 33$ 120		ESC 833	977	$\begin{gathered} \mathrm{P} \\ 120 \end{gathered}$
PF2	$\begin{array}{lcc} \text { ESC } & 0 & Q \\ 033 & 117 & 121 \end{array}$	$\begin{aligned} & \text { ESC } \\ & \emptyset 33 \end{aligned}$	$\begin{array}{cc} 0 & Q \\ 117 & 121 \end{array}$	$\begin{array}{lc} \text { ESC } & \text { Q } \\ 033 & 121 \end{array}$		ESC $\boxed{6} 3$	$\stackrel{?}{677}$	
PF3	$\begin{array}{ccc} \text { ESC } & 0 & \mathrm{R} \\ 033 & 117 & 122 \end{array}$	$\begin{aligned} & \text { ESC } \\ & \emptyset 33 \end{aligned}$	$\begin{array}{cc} 0 & \mathrm{R} \\ 117 & 122 \end{array}$	$\begin{array}{cc}\text { ESC } & \mathrm{R} \\ 033 & 122\end{array}$		${ }_{03}^{\text {ESC }}$		
PF4	$\begin{array}{ccc} \text { ESC } & 0 & S \\ \emptyset 33 & 117 & 123 \end{array}$	ESC $\square 33$	$\begin{array}{cc}0 & S \\ 117 & 123\end{array}$	$\begin{array}{cc}\text { ESC } & \text { S } \\ 033 & 123\end{array}$		ESC	977	$\underset{123}{\mathrm{~S}}+$
When numeric keypad mode is selected (alternate keypad mode off), the ENTER character code can be changed by the line feed/new line feature. When off, this feature causes ENTER to generate a single control character (CR, octal Ø15). When on, this feature causes ENTER to generate two characters (CR, octal 015 and LF, octal 012).								
+ These sequences were not available in the VT52. Do not use the PF4, "-" (minus), or "," (comma) keys with VT52 software.								

CHAPTER 4
RECEIVED CHARACTER PROCESSING

GENERAL

This chapter describes the terminal's response to received data. Most of the data are displayable characters that appear on the screen with no other effect. But a type of data called control functions has important effects on the operation of the terminal.

A control function is one or more character codes that provide control of the transmission, processing, and display of characters. Control functions command the VTl25 to change its operations, for example, by controlling and commanding graphics protocols; changing its response to other control functions, erasing parts of the screen, ringing the bell, or selecting character sets. The VTl25 can also transmit control functions to the computer, either with special keys or at the request of the computer.

This chapter explains the implementation of control functions using control characters, escape sequences, control sequences, and device control strings. This implementation is explained according to the standards created by the American National Standards Institute (ANSI) and the International Organization for Standardization (ISO). The words used are defined, and all the control functions that the VTl25 understands are listed and explained. For VT125 features that do not have an ANSI standard control function, DEC private control functions have been defined within the extensions permitted by the ANSI standards. A detailed explanation of the format of ANSI control functions is in Appendix E.

Each control function has a unique name, and each name has a unique abbreviation. The name and abbreviation are standardized. The abbreviation is derived from the name to help the programmer remember its meaning, and so it is also called a mnemonic. This book lists the mnemonic with the control function name to help the programmer.

ERRORS
A control function that is not understood by the VTl25 is ignored. Unsupported control functions (any sequences that meet ANSI specifications but are not listed in this book) are generally ignored but may produce unexpected responses.

If a control character appears in the middle of a sequence (including the device control strings of the graphics processor), the VTl25 uses these rules:

- XON and XOFF always function as defined in the communications chapter.
- ESC, CAN, and SUB always stop a control function in process without consideration of which device was receiving the control function. NUL and DEL are fill characters when received by the terminal.
- Any other control characters are understood as part of the sequence that they are in. If the communication data paths in the VTl25 are set to pass the control sequence to another device such as the VTløø or the auxiliary port, any control characters in the control sequence also pass to the other device. Both the text terminal and the graphics processor understand a control character inside a control sequence as if the control character arrived before the control sequence. (The graphics processor ignores these other control characters.)
- Any control characters or control sequences received inside a device control string introducer (DCS) / string terminator (ST) pair is passed to the process or device that was selected by the last DCS, except that no DCS or ST that is understood as a data path control switch is passed to another device or process. The graphics processor ignores a DCS inside a DCS/ST pair.

ASCII TABLE AND RECEIVED CHARACTERS

The VTl25 terminal processes characters according to the codes shown in the ASCII table (Table 4-1). The ASCII table is a part of the ANSI standards. It is the American Standard Code for Information Interchange (ASCII) and is also ISO Standard 646 and CCITT (Consultive Committee for International Telephone and Telegraph) Alphabet 5. Table $4-1$ shows each character with its binary, octal, decimal, and hexadecimal values. The table is 8 columns wide and 16 rows long. This arrangment allows binary relationships between characters. For example, lower case and upper case letters differ only by the value of bit 6 .
The VTl25 processes a received character based on the type of character as defined by ANSI. Control characters (see next section) are all in the first two columns of the table (except Delete). All other characters are displayable characters with the exception of space (SP). SP can be considered either an information separator or a displayable character.

DISPLAYABLE CHARACTERS

Displayable characters
screen when received, are characters that are displayed on the depends on the character The character displayed on the screen selected using control set selection. The character set is selected using control functions. Refer to the Character set

Table 4－1 ASCII Table

				${ }^{0}{ }^{\circ}$		${ }^{0}$ ，		${ }^{\circ}$ ，		＇。。		${ }^{1} 0$		${ }^{1}$＇。		${ }^{1}$ ，			
		1	2		3		4		5		6		7						
00	。			NUL	－	DLE	$\begin{array}{\|l\|} \hline 20 \\ 16 \\ 10 \\ \hline \end{array}$	SP	$\begin{array}{\|l\|} \hline 40 \\ 32 \\ 20 \\ \hline \end{array}$	0	$\begin{array}{\|l\|l\|} \hline 60 \\ 48 \\ 30 \\ \hline \end{array}$	＠	$\begin{array}{\|l\|} \hline 100 \\ 64 \\ 40 \\ \hline \end{array}$	P	$\begin{array}{\|c\|c\|} \hline 120 \\ 800 \\ 50 \\ \hline 0 \end{array}$	，	$\left\|\begin{array}{c} 140 \\ 96 \\ 60 \end{array}\right\|$	p	（160
0001	，	SOH	!	DC1	$\begin{array}{\|l\|} \hline 21 \\ 17 \\ 11 \\ \hline \end{array}$	！	$\begin{array}{\|l\|} \hline 41 \\ 33 \\ 21 \\ \hline \end{array}$	1	$\begin{array}{\|l\|l\|} \hline 61 \\ 49 \\ \hline 19 \\ \hline \end{array}$	A	$\left.\begin{array}{\|c\|} 101 \\ 65 \\ 61 \end{array} \right\rvert\,$	Q	$\begin{array}{\|c} 121 \\ 81 \\ 81 \\ 55 \end{array}$	a	$\left.\begin{array}{\|c\|} \hline 141 \\ 97 \\ 97 \\ 61 \end{array} \right\rvert\,$	q	181 113 71 712		
0	2	STX	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	DC2	$\begin{array}{\|l\|l\|} \hline 22 \\ 18 \\ 12 \\ \hline \end{array}$	＂	$\begin{array}{\|l\|l} \hline 42 \\ 34 \\ 22 \\ \hline \end{array}$	2	$\begin{array}{\|l\|l\|} \hline 62 \\ 50 \\ 52 \\ \hline \end{array}$	B	$\begin{array}{\|l\|} \hline 102 \\ 66 \\ 42 \\ \hline \end{array}$	R	$\begin{aligned} & 122 \\ & 82 \\ & 52 \\ & \hline \end{aligned}$	b	$\begin{aligned} & 142 \\ & 98 \\ & \hline 62 \\ & \hline \end{aligned}$	r	1182 114 72		
0011	3	ETX	$\begin{array}{\|l\|} \hline 3 \\ 3 \\ 3 \end{array}$	DC3	$\begin{array}{\|l\|l} \hline 23 \\ 19 \\ 13 \\ \hline \end{array}$	\＃	$\begin{array}{\|l\|} \hline 43 \\ 35 \\ 23 \\ \hline \end{array}$	3	$\begin{array}{\|l\|} \hline 63 \\ 51 \\ 33 \\ \hline \end{array}$	C	$\begin{array}{\|c\|} \hline 103 \\ 67 \\ \hline 83 \\ \hline \end{array}$	S	$\left[\begin{array}{c} 123 \\ 83 \\ 63 \end{array}\right.$	c	$\begin{array}{\|c\|} \hline 143 \\ 99 \\ 63 \\ \hline 9 \end{array}$	s	163 115 73 73		
0	．	EOT	$\begin{array}{\|l\|l} \hline 4 \\ 4 \\ \hline \end{array}$	DC4	$\begin{array}{\|l\|l} 24 \\ 20 \\ 14 \\ \hline \end{array}$	\＄	$\begin{array}{\|l\|} \hline 44 \\ 36 \\ 24 \\ \hline \end{array}$	4	$\begin{array}{\|l\|l\|} \hline 64 \\ 52 \\ 34 \\ \hline \end{array}$	D	$\begin{array}{\|c} \hline 104 \\ 68 \\ \hline 84 \\ \hline 4 \end{array}$	T	$\begin{gathered} 124 \\ \hline 84 \\ 84 \\ \hline 5 \\ \hline \end{gathered}$	d	$\begin{aligned} & 144 \\ & 190 \\ & 104 \\ & \hline 64 \\ & \hline \end{aligned}$	t	164 116 74 74		
0101	5	ENQ	$\begin{array}{\|l} 5 \\ 5 \\ \hline \end{array}$	NAK	$\begin{array}{\|l\|l} 25 \\ 21 \\ 15 \\ \hline \end{array}$	\％	$\begin{array}{\|l\|} \hline 45 \\ 37 \\ 37 \\ \hline \end{array}$	5	$\begin{array}{\|l} \hline 65 \\ 53 \\ 35 \\ \hline \end{array}$	E	$\begin{array}{\|l\|} \hline 105 \\ 69 \\ \hline 45 \\ \hline \end{array}$	U	$\begin{array}{\|} 125 \\ 85 \\ 85 \\ \hline 18 \end{array}$	e	$\begin{array}{\|l\|} \hline 145 \\ 101 \\ 65 \\ \hline \end{array}$	u	165 117 117 71		
10	6	ACK	$\begin{array}{\|l\|} \hline 6 \\ 6 \\ 6 \\ \hline \end{array}$	SYN	$\begin{array}{\|l\|l} \hline 22 \\ 22 \\ 16 \\ \hline \end{array}$	\＆	$\begin{aligned} & 46 \\ & 38 \\ & 38 \\ & \hline \end{aligned}$	6	$\begin{array}{\|l\|l} \hline 66 \\ 54 \\ 56 \\ \hline \end{array}$	F	$\begin{array}{\|c\|} \hline 100 \\ 70 \\ \hline 46 \\ \hline \end{array}$	V	$\begin{array}{\|} 128 \\ 86 \\ 86 \\ \hline 8 \end{array}$	f	$\begin{array}{\|l\|l\|} \hline 146 \\ 102 \\ 08 \\ \hline \end{array}$	v	$\begin{array}{r}1166 \\ 118 \\ 76 \\ \hline 18\end{array}$		
11	7	BEL	$\begin{aligned} & 3 \\ & 3 \\ & \hline \end{aligned}$	ETB	$\begin{array}{\|r} 27 \\ 23 \\ 23 \\ \hline 17 \\ \hline \end{array}$	，	$\begin{aligned} & 47 \\ & \hline 40 \\ & 30 \\ & \hline \end{aligned}$	7	$\begin{array}{\|l\|} \hline 67 \\ 55 \\ 37 \\ \hline \end{array}$	G	$\begin{array}{\|} 107 \\ 71 \\ 47 \\ \hline \end{array}$	W	$\begin{array}{\|} 127 \\ 87 \\ 87 \\ 57 \end{array}$	g	$\begin{array}{\|c\|} 147 \\ 103 \\ 67 \\ \hline \end{array}$	w	1187 119 77 18		
00	8	BS	$\begin{array}{\|l\|} \hline 10 \\ 8 \\ 8 \\ \hline \end{array}$	CAN	$\begin{array}{\|l\|l\|} \hline 30 \\ 24 \\ & \\ \hline 18 \end{array}$	1	$\begin{array}{\|l\|} \hline 50 \\ 40 \\ 48 \\ 28 \end{array}$	8	$\begin{array}{\|l\|l\|} \hline 70 \\ \hline 86 \\ 38 \\ \hline \end{array}$	H	$\begin{array}{\|c\|} \hline 10 \\ 72 \\ 48 \\ \hline 8 \end{array}$	X	$\begin{array}{\|c} \hline 130 \\ \hline 88 \\ \hline 88 \\ \hline \end{array}$	h	$\begin{array}{\|c\|} \hline 150 \\ 104 \\ \hline 68 \\ \hline \end{array}$	x	170 170 78 78		
01	9	HT	$\begin{array}{\|l\|l\|} \hline 11 \\ 9 \\ \hline \end{array}$	EM	$\begin{array}{\|c\|} \hline 31 \\ 25 \\ \hline 19 \\ \hline \end{array}$	）	$\begin{array}{\|} 51 \\ 51 \\ 41 \\ \hline 29 \\ \hline \end{array}$	9	$\begin{aligned} & 36 \\ & 57 \\ & 59 \\ & \hline \end{aligned}$	I	$\begin{array}{\|l\|} \hline 111 \\ 73 \\ 49 \\ \hline \end{array}$	Y	$\begin{array}{\|l\|} \hline 139 \\ 89 \\ 59 \\ \hline \end{array}$	i	$\begin{array}{\|l\|} \hline 151 \\ 105 \\ \hline 69 \\ \hline \end{array}$	y	171 121 79 79		
010	10	LF	$\begin{array}{\|l\|} \hline 12 \\ 10 \\ A \\ \hline \end{array}$	SUB	$\begin{array}{\|l\|l} \hline 32 \\ 26 \\ 1 A \\ \hline \end{array}$	＊	$\begin{array}{\|l\|} \hline 52 \\ 42 \\ 2 A \\ \hline \end{array}$	：	$\begin{array}{\|l\|} \hline 72 \\ 58 \\ 3 A \\ \hline \end{array}$	J	$\begin{array}{\|l\|} \hline 12 \\ 74 \\ 4 A \\ \hline \end{array}$	z	$\begin{aligned} & 132 \\ & 90 \\ & 5 A \\ & \hline \end{aligned}$	j	$\begin{array}{\|l\|l\|} \hline 152 \\ 1 & 106 \\ 6 A \\ \hline \end{array}$	z	172 172 71 7		
011	11	VT	$\begin{array}{\|l\|} \hline 13 \\ 11 \\ 11 \\ \hline \end{array}$	ESC	$\begin{aligned} & 33 \\ & 27 \\ & 18 \\ & \hline \end{aligned}$	＋	$\begin{array}{\|} \hline 63 \\ 43 \\ 43 \\ \hline 28 \\ \hline \end{array}$	；	$\begin{array}{\|l\|l\|} \hline 73 \\ 59 \\ \hline 8 \\ \hline \end{array}$	K	$\begin{array}{\|l\|} \hline 113 \\ 75 \\ 78 \\ \hline \end{array}$	［	$\begin{array}{r} 133 \\ 99 \\ 98 \\ \hline 58 \\ \hline \end{array}$	k	$\begin{array}{\|c\|} \hline 153 \\ 1 \\ \hline 107 \\ \hline 88 \\ \hline \end{array}$	\｛	173 17 123 78 18		
00	12	FF	$\begin{array}{\|c\|} \hline 14 \\ 12 \\ c \\ \hline \end{array}$	FS	$\begin{array}{\|l\|} \hline 38 \\ 28 \\ 10 \\ \hline \end{array}$	，	$\begin{aligned} & 54 \\ & 44 \\ & 46 \\ & \hline \end{aligned}$	$<$	$\begin{array}{\|l\|} \hline 74 \\ \hline 80 \\ 30 \\ \hline \end{array}$	L	$\begin{array}{\|l\|} \hline 14 \\ 76 \\ 7 c \\ \hline \end{array}$	1	$\begin{aligned} & 139 \\ & 02 \\ & \hline 00 \\ & \hline \end{aligned}$	1	$\begin{array}{\|l\|} \hline 154 \\ 108 \\ \hline 60 \\ \hline \end{array}$	1	174 174 124 70		
01	13	CR	$\begin{array}{\|c\|} \hline 15 \\ 13 \\ \hline 0 \\ \hline \end{array}$	GS	$\begin{array}{\|l\|} \hline 35 \\ 29 \\ 10 \\ \hline \end{array}$	－	$\begin{array}{\|l\|} \hline 55 \\ 45 \\ 20 \\ \hline \end{array}$	＝	$\begin{aligned} & 75 \\ & \hline 75 \\ & \hline 60 \\ & \hline \end{aligned}$	M	$\begin{array}{\|} 117 \\ \hline 7 \\ 40 \\ \hline \end{array}$	］	$\begin{aligned} & 193 \\ & \hline 93 \\ & 90 \\ & \hline \end{aligned}$	m	$\begin{array}{\|l\|} \hline 165 \\ 109 \\ \hline 109 \\ \hline \end{array}$	\}	175 175 70 70		
10	14	SO	$\begin{array}{\|c\|} \hline 16 \\ 14 \\ \hline \end{array}$	RS	$\begin{aligned} & 336 \\ & 30 \\ & 16 \\ & 10 \end{aligned}$	．	$\begin{array}{\|l\|l} \hline 56 \\ 46 \\ 2 E \end{array}$	＞	$\begin{aligned} & 76 \\ & 62 \\ & 68 \\ & \hline \end{aligned}$	N	$\begin{array}{\|l\|} \hline 116 \\ 78 \\ 48 \\ \hline \end{array}$	\wedge	$\begin{aligned} & 193 \\ & 94 \\ & 5 E \\ & \hline \end{aligned}$	n	$\begin{array}{\|l\|l\|} \hline 156 \\ 110 \\ \hline 68 \\ \hline \end{array}$	\sim			
111	15	SI	$\begin{array}{\|l\|} \hline \\ \hline \begin{array}{l} 7 \\ \hline 15 \\ \hline \end{array} \\ \hline \end{array}$	US	$\begin{array}{\|c\|} \hline 3 \\ 31 \\ 31 \\ 15 \end{array}$	／	$\begin{aligned} & 27 \\ & 57 \\ & 47 \\ & 27 \\ & \hline \end{aligned}$	？	$\begin{aligned} & 77 \\ & 63 \\ & 3 F \\ & \hline \end{aligned}$	0	$\begin{array}{\|l\|l\|} \hline 117 \\ 79 \\ 45 \\ \hline \end{array}$	－	$\begin{aligned} & 133 \\ & 95 \\ & 57 \\ & \hline \end{aligned}$	－	$\begin{array}{\|c\|c\|} \hline 155 \\ 111 \\ 6 F \\ \hline \end{array}$	DEL	177 127 77		

KEY

Selection section of this chapter for more information about character sets.

Control Characters Received

A control character is a single character which, when received by the terminal, starts, modifies or stops a control function. The value of a control character is in the octal range of 0 through 37 and 177.

The control characters that the VTl 25 understands are shown in Table 4-2 and described in the following paragraphs. All other control codes are ignored by the VTl25.

SEQUENCES

The VTl25 is an upward and downward software compatible terminal; that is, previous DEC video terminals have DEC private standards for escape sequences. The VTl25 is compatible with both the previous DEC standard and the ANSI standards. Customers may use existing DEC software designed around the VT52 or new VT125 software. The VT125 has a "VT52 compatible" mode in which it responds to escape sequences like a VT52.

Throughout this section of the manual references will be made to "VT52 mode" or "ANSI mode". These two terms are used to indicate the VTl25's software compatibility. All new software should be designed around the VTl25 "ANSI mode". (All graphics software must use ANSI mode.) Future DIGITAL video terminals will not be committed to VT52 compatibility.

All of the following escape and control sequences are transmitted from the computer to the VTl25 unless otherwise noted. All of the escape sequences are a subset of those specified in ANSI X3.64-1979 and ANSI X3.41-1974.

Figure 4-1 (at the end of the chapter) is a one-page summary of the ANSI mode display control functions. These control functions directly or indirectly affect the way the screen looks.

A summary of all control functions is in Appendix C. ANSI SEQUENCES

1
SET-UP features are terminal characteristics that can be controlled from the keyboard and stored in the user permanent SET-UP feature memory. Some SET-UP features can also be changed from the computer, but the computer cannot store them in the user permanent memory. Some SET-UP features are terminal modes. Table 4-3 lists the VTl25 SET-UP features and modes.

A mode is a state of the terminal that affects the operation of the terminal or how the terminal understands or transmits data. Modes are selected by either the computer or the operator. The terminal stays in a mode until the computer or operator changes the mode setting.

Table 4-2 Control Characters Recognized by VTl 25

Control Character Mnemonic	Octal Code	Name	Action Taken
NUL	øø	Null.	Ignored on input (not stored in input buffer; see full duplex protocol).
ENQ	905	Enquire.	Transmit answerback message.
BEL	007	Bell.	Sounds the bell.
BS	$\emptyset 10$	Backspace.	Moves the cursor to the left one character position. If it is at the left margin, it stays there.
HT	011	$\begin{aligned} & \text { Horizontal } \\ & \text { Tab } \end{aligned}$	Moves the cursor to the next tab stop, or to the right margin if there are no more tab stops in the line.
LF	012	Line Feed.	Causes a line feed or a new line operation. (See Linefeed/New Line mode).
VT	913	```Vertical Tab```	Understood as LF.
FF	014	Form Feed.	Understood as LF.
CR	015	Carriage Return	Moves the cursor to the left margin on the current line.
SO	016	Shift Out.	Select Gl character set, as designated by a Select Character Set sequence -
SI	017	Shift In.	Select $G \emptyset$ character set, as designated by a Select Character Set sequence.
DC1	021	$\begin{aligned} & \text { Device } \\ & \text { Control } 1 \end{aligned}$	Understood as XON. Lets terminal continue transmission after XOFF.
DC3	023	Device Control 3	Understood as XOFF. Tells terminal to stop transmitting all characters except XOFF and XON.
CAN	930	Cancel.	If received during an escape or control sequence, cancels the sequence and displays the substitution character. Any

Control

Character Octal Name

Mnemonic

| SUB | characters from the sequence that
 follow the cancel character are
 displayed after the substitution
 character. |
| :--- | :--- | :--- |
| ESC $\quad 032$ | Substitute. Understood as CAN. |

Table 4-3 SET-UP Features and Terminal Modes

	Changeable	Changable in
SET-UP Feature or	Srom Terminal Mode	Computer*

Modes may be changed with the set mode (SM) and reset mode (RM) commands, except for Keypad Numeric and Application modes. (These modes are changed using dedicated sequences.) Multiple parameters may be included in a single command.

NOTE: The PS character indicates a parameter selected from a list of parameters. Each parameter listed represents a mode. When setting several modes using a single SM or RM sequence, the parameters are separated by a semicolon (octal 673). The semicolon is not used when selecting only one mode.

Set Mode Command - SM
Format: ESC [PS;...; PS h
default value: none
Causes one or more modes to be set within the VTl25 as specified by each parameter in the parameter string. Each mode to be set is specified by a separate parameter. A mode is considered set until it is reset by a reset mode (RM) control sequence or in SET-UP.

Reset Mode Command - RM
Format: ESC [PS; ...;PS 1
default value: none
Resets one or more VTl25 modes as specified by each parameter in the parameter string. Each mode to be reset is specified by a separate parameter.

The following is a list of VTl25 modes that may be changed with Set Mode and Reset Mode.

ANSI Specified Modes
ANSI Specified Modes

Mode \quad| Mode |
| :--- |
| Parameter |
| Function |\quad Mnemonic

DEC Private Modes

NOTE: The first character in the DEC private parameter string is ? (77(8)). The parameters are understood according to Table 4-4. Any other parameter values are ignored.
NOTE: Keypad Application Mode (DECKPAM) and Keypad Numeric Mode (DECKNM) are changed using two special two-character sequences; not the usual set and Reset Mode sequences.

Table 4-4 DEC Private Modes

Parameter	Mode Function	Mode Mnemonic
\emptyset	Error (ignored)	
1	Cursor key	DECCKM
2	ANSI/VT52	DECANM
3	Column	DECCOLM
4	Scrolling	DECSCLM
5	Screen	DECSCNM
6	Origin	DECOM
7	Auto wrap	DECAWM
8	Auto repeating	DECARM

The modes in Table 4-5, which are specified in the ANSI X3.64-1979 standard, may be considered to be permanently set, permanently reset, or not applying, as indicated. Refer to that standard for more information about these modes.

The following modes are listed alphabetically by name (see Table 4-3).

ANSI/VT52 Mode (DEC Private) -- DECANM
This mode changes the cursor key and auxiliary keypad codes. See Tables $4-6$ and $4-8$. This mode must be set to ANSI or the graphics processor cannot work.

Set: (From VT52 Mode) ESC <
The set state causes only ANSI escape and control sequences to be understood and executed.

Reset: ESC[?21
The reset state causes only VT52 compatible escape sequences to be understood and executed.

Auto Repeat Mode (DEC Private) - DECARM
Set: ESC[?8h
The set state causes keyboard keys to auto-repeat except SET-UP, ENTER, ESC, RETURN, NO SCROLL, and CTRL with any key.

Reset: ESC[?81
The reset state causes no keyboard keys to auto-repeat.

Table 4-5 Permanently Selected Modes

Mode Name	Mode Mnemonic	State
Control representation	CRM	Reset Control functions are performed without displaying a chracter to represent the control function received.
Editing boundary	EBM	Reset Characters moved outside the margins are lost and erasing and cursor positioning functions are not performed outside the margins.
Erasure	ERM	Set All characters displayed can be erased.
Format effector action	FEAM	Reset Control functions that affect the screen display are performed immediately.
Format effector transfer	FETM	NA
Guarded area transfer	GATM	NA
Horizontal editing	HEM	NA
Insertion-replacement	IRM	Reset Received characters replace the characters at the cursor position.
Keyboard action	KAM	Reset Typed characters are processed except when the keyboard is locked.
Multiple area transfer	MATM	NA
Positioning unit	PUM	Reset Horizontal and vertical parameters in control functions are specified in units of character positions.
Selected area transfer	SATM	NA
Status reporting transfer	SRTM	Reset

Table 4-5 Permanently Selected Modes (Cont)

Mode Name	Mode Mnemonic	State
Tabulation stop	Status reports are transmitted by the VTl25 using the Device Status Report (DSR) sequence.	
Transfer termination	TSM	Reset The tab stop selection apply to the corresponding column of all lines on the screen.
Vertical editing	VEM	NA

Table 4-6 Cursor Control Key Codes

Cursor Key (arrow)	Cursor Key Mode Reset	Cursor Key Mode Set
Up	ESC [A	ESC O A
Down	ESC [B	ESC O B
Right	ESC [C	ESC O C
Left	ESC [D	ESC O D

Autowrap Mode (DEC Private) - DECAWM
Set: ESC[?7h
The set state causes any displayable characters received when the cursor is at the right margin to advance to the start of the next line, doing a scroll up if needed and if the cursor has not been positioned outside of the scrolling region.
Reset: ESC[?71
The reset state causes characters received while the cursor is at the right margin to replace any previous characters there.
Column Mode (DEC Private) - DECCOLM
Set: ESC[?3h
The set state causes a maximum of 132 columns on the screen.

Table 4-7 Linefeed/Newline Mode

Linefeed/ New Line Mode	Key Pressed	Code Sent
RESET	RETURN	CR
RESET	LINEFEED	LF
SET	RETURN	CR LF
SET	LINEFEED	LF
Linefeed/		
New Line Mode	Code Received	Action Taken
RESET	CR	Return
RESET	LF	Linefeed
SET	CR	Return
SET	LF	Return - Linefeed

Reset: ESC[?31
The reset state causes a maximum of $8 \emptyset$ columns on the screen.

Cursor Keys Mode (DEC Private) - DECCKM
This mode only has effect when the terminal is in ANSI mode. Table 4-6 shows the sequences generated by each key.

Set: ESC[?1h
The four cursor keys send application control functions.

Reset: ESC[?11
The four cursor keys send ANSI cursor control commands.

Linefeed/New Line Mode - LNM
This mode does not affect Index or Next Line. See Table 4-7.
Set: ESC[2øh
The set state causes received line feed (LF) to move the active position to the first position of the following line and causes the return key (CR) to send the two codes (CR, LF).

Reset: ESC[201

The reset state causes line feed to move the active position down only, and causes the return key to send the single code CR.

These are characters displayed using 80 columns.

1 These are claraters displyyed using 12 c colurs.
MA-6671

Table 4-8 ANSI Mode Auxiliary Keypad Codes

Key	Keypad Numeric Mode	Keypad Application Mode
0	0	ESC 0 p
1	1	ESC 0 q
2	2	ESC Or
3	3	ESC 0 s
4	4	ESC 0 t
5	5	ESC 0 u
6	6	ESC O v
7	7	ESC O w
8	8	ESC $0 \times$
9	9	ESC 0 y
-(minus)	-(minus)	ESC 0 m
, (comma)	, (comma)	ESC 01
- (period)	- (period)	ESC 0 n
ENTER	Same as RETURN key	ESC O M
PF1	ESC O P	ESC 0 P
PF2	ESC O Q	ESC O Q
PF3	ESC O R	ESC O R
PF4	ESC O S	ESC 0 S

Keypad Application Mode (DEC Private) - DECKPAM
Format: \quad ESC $=$
The auxiliary keypad keys and cursor control keys transmit escape sequences. Table 4-8 lists the sequences.

Keypad Numeric Mode (DEC Private) - DECKPNM
Format: ESC >
The auxiliary keypad keys send ASCII codes corresponding to the characters on the keys (except for the PF keys and enter). The cursor control keys send cursor controls. Table 4-8 lists the sequences.

NOTE: In ANSI mode, if the codes are echoed back to the VTl25, or if the terminal is LOCAL, the last character of the sequence is displayed on the screen; for example, PFl is displayed as a "p". See SS2 and SS3 in Character Sets and Selection. Lines and columns are numbered consor is moved to the new home being line 1 , column 1 . The cursor is moved position when this mode is set or reset.

The set state causes the origin to be at the upper-left character position within the margins of the scrolling region (see Scrolling). This is the Home position when Origin Mode is set. Line numbers are relative to the current margin settings. For example, if the top margin is line 5, the top line is addressed as line 1 for cursor positioning. (Home position is therefore line 5, column 1, absolute.) The cursor is not allowed to be positioned outside the margins.

Reset: ESC[?61
DECSCNM-SCREEN

(4)
REVERSE ESC [?5h
(BLACK-ON-WHITE)

4
NORMAL ESC [?51 (WHITE-ON-BLACK)

The reset state causes the origin to be at the upper-left character position on the screen. This is the Home position when Origin Mode is reset. Line numbers are not affected by the current margin settings. The cursor may be positioned outside the margins with a Cursor Position or Horizontal and Vertical Position control sequence.

Screen Mode (DEC Private) - DECSCNM
Set: ESC[?5h

Reset: ESC[?5]
The set state causes the screen to be white with black characters.

The reset state causes the screen to be black with white characters.
Scrolling Mode (DEC Private) - DECSCLM
Set: ESC[?4h
The set state causes smooth scrolling at a maximum rate of six lines per second.
Reset: ESC[?4]
The reset state causes jump scrolling.

Select Character Sets - SCS
The VTl25 text mode can display 94 characters (one character set) at a time without using control functions. But by using control functions to select the character sets, the VTl25 can display more than 94 different characters on the screen by storing characters in up to five different character sets (some characters appear in more than one character set). The VTl2 25 character sets are:

> United States character set United Kingdom character set
> Special characters and line drawing character set Alternate ROM standard character set Alternate ROM Special characters

NOTE: The Alternate ROM is an optional feature of the VTløø terminal controller board that allows two more character sets to be resident in the terminal, as compared with the graphics processor character sets which must be loaded for use. Refer to the VTløø Series Technical Manual for the specifications of this ROM.

Tables 4-9 through 4-11 show the three standard VTl25 character sets. Notice that the control characters and the space and Delete characters are the same in all character sets.

Any two of the VT125 character sets can be considered active at any one time. They can be invoked (selected) with single-character control functions if they are first designated by multiple character escape sequences. The two active character sets are designated by the computer as Gø and Gl using the Select Character Set (SCS) escape sequence. Once the character sets are designated by the computer, a single control character is used to switch between the character sets. The Shift In (SI, octal Øl7) control character invokes the Gø character set. The Shift Out (SO, ø16) control character invokes the Gl character set.
The designated character sets are active until another select Character Set (SCS) sequence is received. The Gø and Gl character sets can be redesignated by the computer as often as needed using the SCS sequence. The following sequences designate the VT125 Gø character set:

Name Mnemonic
Select
Character
Set
Select SCS ESC (B
Character
Set

Sequence

Designate the United Kingdom character set as $G \emptyset$

Designate the United States character set as $G \emptyset$

Table 4-9 U.K. Character Set

		$\begin{gathered} 0{ }_{0}{ }_{0} \\ \hline \text { column } \\ 0 \end{gathered}$		1		2		3		4				$\begin{gathered} 110 \\ 6 \end{gathered}$		${ }^{1} 1$			
		7																	
0000	-			NUL	$\begin{aligned} & \hline 0 \\ & \vdots \\ & 0 \end{aligned}$		$\begin{aligned} & 20 \\ & 16 \\ & 10 \\ & \hline \end{aligned}$	SP	40 32 20	0	60 48 30	@	$\begin{array}{\|c\|} \hline 100 \\ 64 \\ 40 \end{array}$	P	$\begin{array}{\|l\|l\|} \hline 120 \\ 80 \\ 50 \\ \hline \end{array}$,	$\begin{array}{\|l\|} \hline 140 \\ 96 \\ 90 \\ \hline \end{array}$	p	(100
0001	,		$!$	DC1	$\begin{aligned} & 21 \\ & \hline 17 \\ & 11 \end{aligned}$!	21 43 31 21	1	$\begin{aligned} & 61 \\ & \hline 49 \\ & 41 \\ & 31 \end{aligned}$	A	$\begin{array}{\|l\|} \hline 101 \\ 65 \\ 41 \\ \hline \end{array}$	Q	$\begin{array}{\|l\|} \hline 121 \\ 81 \\ 51 \\ \hline \end{array}$	a	$\begin{array}{\|c\|} \hline 14 \\ 97 \\ 61 \\ \hline \end{array}$	q	1761 111 711		
0010	2		$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$		$\begin{aligned} & 22 \\ & 18 \\ & 18 \\ & 12 \end{aligned}$	"	$\begin{aligned} & 42 \\ & 34 \\ & 22 \\ & \hline \end{aligned}$	2	$\begin{aligned} & 62 \\ & 50 \\ & 52 \\ & \hline \end{aligned}$	B	$\begin{array}{\|l\|l\|} \hline 102 \\ 66 \\ 42 \\ \hline \end{array}$	R	$\begin{array}{\|l\|} \hline 122 \\ 82 \\ 52 \\ \hline \end{array}$	b	$\begin{array}{\|c\|} \hline 182 \\ 88 \\ 88 \\ \hline 62 \\ \hline \end{array}$	r	162 114 12 12		
0011	3		$\begin{aligned} & 2 \\ & \hline \\ & 3 \\ & \hline \end{aligned}$	(XOFF)	$\begin{aligned} & 23 \\ & \hline 19 \\ & 19 \\ & 13 \end{aligned}$	f	$\begin{aligned} & 43 \\ & 35 \\ & 35 \\ & 23 \end{aligned}$	3	$\begin{aligned} & 63 \\ & \hline 61 \\ & 53 \\ & \hline 3 \end{aligned}$	C	103 6 43 4 	S	$\begin{array}{\|l\|} \hline 123 \\ 85 \\ 53 \\ \hline \end{array}$	c	$\begin{array}{\|c\|} \hline 13 \\ 99 \\ 63 \\ \hline \end{array}$	s	163 115 73		
0100	4		4 4 4 4		$\begin{aligned} & 24 \\ & 20 \\ & 20 \\ & 14 \\ & \hline \end{aligned}$	\$	$\begin{aligned} & 44 \\ & 36 \\ & 36 \\ & 24 \end{aligned}$	4	$\begin{aligned} & 604 \\ & \hline 62 \\ & 54 \\ & \hline 34 \end{aligned}$	D	$\begin{array}{\|c\|} \hline 104 \\ \hline 68 \\ 44 \\ \hline \end{array}$	T	$\begin{array}{\|c\|} \hline 124 \\ 84 \\ 84 \\ 54 \\ \hline \end{array}$	d	$\begin{array}{\|c\|} \hline 140 \\ 100 \\ 64 \\ \hline \end{array}$	t	164 116 74 74		
0101	5	ENQ	$\begin{aligned} & 4 \\ & \hline 5 \\ & 5 \\ & 5 \end{aligned}$		$\begin{aligned} & 25 \\ & 21 \\ & 21 \\ & 15 \end{aligned}$	\%	$\begin{aligned} & 45 \\ & \begin{array}{l} 45 \\ 37 \\ 25 \end{array} \end{aligned}$	5	$\begin{aligned} & 65 \\ & \hline 63 \\ & \hline 35 \end{aligned}$	E	$\begin{array}{\|l\|} \hline 105 \\ 69 \\ \hline 95 \\ \hline \end{array}$	U	$\begin{array}{\|l\|} \hline 125 \\ 85 \\ 85 \\ \hline 5 \end{array}$	e	$\begin{array}{\|c\|c\|} \hline 145 \\ 100 \\ 65 \\ \hline \end{array}$	u	(175		
0110	6		$\begin{aligned} & \hline 6 \\ & 6 \\ & 6 \\ & \hline \end{aligned}$		$\begin{aligned} & 26 \\ & 22 \\ & 16 \\ & \hline \end{aligned}$	\&	$\begin{aligned} & 46 \\ & 38 \\ & 28 \\ & \hline \end{aligned}$	6	$\begin{aligned} & \hline 66 \\ & 54 \\ & 56 \end{aligned}$	F	$\begin{array}{\|l\|} \hline 106 \\ 70 \\ \hline 8 \\ \hline \end{array}$	V	$\begin{array}{\|l\|} \hline 126 \\ 86 \\ 80 \\ \hline 80 \\ \hline \end{array}$	f	$\begin{array}{\|c\|} \hline 160 \\ 102 \\ 68 \\ \hline \end{array}$	v	(186		
0111	7	BEL	$\begin{array}{r} 7 \\ 7 \\ 7 \\ \hline \end{array}$		$\begin{aligned} & 27 \\ & 23 \\ & 17 \\ & \hline \end{aligned}$,	$\begin{aligned} & 47 \\ & 39 \\ & 27 \\ & \hline \end{aligned}$	7	$\begin{array}{r} 67 \\ 55 \\ \hline \\ \hline \end{array}$	G	$\begin{array}{\|c} 107 \\ 71 \\ 77 \\ \hline \end{array}$	w	$\begin{array}{\|c\|} \hline 127 \\ 87 \\ 57 \\ \hline \end{array}$	g	$\begin{array}{\|c\|} 194 \\ 102 \\ 102 \\ 87 \end{array}$	w	161 19 717		
1000	8	BS	$\begin{aligned} & 10 \\ & \hline 8 \\ & 8 \end{aligned}$	CAN	$\begin{aligned} & 30 \\ & 24 \\ & 18 \\ & \hline \end{aligned}$	1	$\begin{aligned} & 50 \\ & 40 \\ & 28 \\ & 28 \end{aligned}$	8	$\begin{aligned} & 70 \\ & 56 \\ & 50 \end{aligned}$	H	$\begin{array}{\|c\|} \hline 110 \\ 72 \\ 48 \end{array}$	X	$\begin{array}{\|l\|} \hline 130 \\ \hline \\ \hline 88 \\ 58 \\ \hline 8 \end{array}$	h	$\begin{array}{\|c\|} \hline 150 \\ 104 \\ \hline 080 \end{array}$	x	(170		
1001	9	HT	$\begin{aligned} & 11 \\ & 9 \\ & 9 \\ & \hline \end{aligned}$		$\begin{aligned} & 31 \\ & 25 \\ & 19 \\ & \hline \end{aligned}$)	$\begin{aligned} & 51 \\ & 41 \\ & 49 \\ & \hline \end{aligned}$	9	$\begin{aligned} & 71 \\ & 57 \\ & 39 \\ & \hline \end{aligned}$	1	$\begin{array}{\|c\|} \hline 117 \\ 73 \\ 49 \end{array}$	Y	$\left.\begin{array}{\|c\|} \hline 139 \\ 89 \\ 59 \end{array} \right\rvert\,$	I	$\begin{array}{\|c\|} \hline 151 \\ 105 \\ \hline 69 \\ \hline \end{array}$	y	171 121 78 18		
1010	10	LF	$\begin{aligned} & 12 \\ & 10 \\ & 10 \end{aligned}$	SUB	$\begin{aligned} & 32 \\ & 26 \\ & 2 A \end{aligned}$	*	$\begin{aligned} & 52 \\ & 42 \\ & 2 A \end{aligned}$:	$\begin{aligned} & 72 \\ & \hline 58 \\ & 58 \\ & 38 \end{aligned}$	J	$\begin{array}{\|l\|} \hline 112 \\ 74 \\ 4 A \\ \hline \end{array}$	z	$\begin{array}{\|l\|l\|} \hline 132 \\ 90 \\ 5 A \\ \hline \end{array}$	j	$\begin{array}{\|l\|l\|} \hline 152 \\ 1 \\ 106 \\ \hline 64 \\ \hline \end{array}$	z	(172 $\begin{aligned} & 12 \\ & 12 \\ & 78 \\ & 17\end{aligned}$		
1011	11	VT	$\begin{aligned} & 13 \\ & 11 \\ & 11 \\ & 18 \end{aligned}$	ESC	$\begin{aligned} & 33 \\ & 27 \\ & 18 \end{aligned}$	+	$\begin{aligned} & 53 \\ & 43 \\ & 43 \\ & 28 \end{aligned}$;	$\begin{aligned} & 73 \\ & \hline 9 \\ & \hline 98 \end{aligned}$	K	$\begin{array}{\|l\|} \hline 113 \\ 75 \\ 78 \\ \hline 8 \end{array}$	[133 99 58 58	k	$\begin{array}{\|c\|} \hline 10 \\ 100 \\ 100 \\ 68 \end{array}$	\{	(173		
1100	12	FF	$\begin{aligned} & 14 \\ & 12 \\ & c \\ & \hline \end{aligned}$		$\begin{aligned} & 33 \\ & 28 \\ & 10 \\ & \hline \end{aligned}$,	$\begin{aligned} & 54 \\ & 44 \\ & 2 \mathrm{C} \\ & \hline \end{aligned}$	$<$	$\begin{aligned} & 74 \\ & 60 \\ & 60 \\ & \hline \end{aligned}$	L	$\begin{array}{\|l\|} \hline 114 \\ 76 \\ 40 \\ \hline \end{array}$	\checkmark	$\begin{array}{\|l\|} \hline 134 \\ 92 \\ 90 \\ \hline 50 \\ \hline \end{array}$	1	$\begin{array}{\|l\|} \hline 150 \\ 108 \\ \hline 60 \\ \hline \end{array}$	I	174 174 78		
1101	13	CR	$\begin{aligned} & 15 \\ & 15 \\ & 13 \\ & 0 \end{aligned}$		$\begin{aligned} & 35 \\ & 29 \\ & 10 \end{aligned}$	-	$\begin{aligned} & 25 \\ & 55 \\ & 25 \\ & 20 \end{aligned}$	=	$\begin{aligned} 75 \\ \hline 71 \\ 65 \\ 30 \end{aligned}$	M	$\left\|\begin{array}{c} 115 \\ 77 \\ 40 \\ 40 \end{array}\right\|$]	$\begin{array}{\|l\|} \hline 106 \\ 905 \\ 90 \end{array}$	m	$\begin{array}{\|l\|} \hline 155 \\ \hline 109 \\ \hline 109 \end{array}$	\}	(175		
1110	14	so	$\begin{aligned} & \hline 16 \\ & 14 \\ & \hline \\ & \hline \end{aligned}$		$\begin{aligned} & 36 \\ & 30 \\ & 15 \end{aligned}$.	$\begin{aligned} & 56 \\ & 46 \\ & 46 \end{aligned}$	$>$	$\begin{aligned} & 76 \\ & \hline 62 \\ & \hline 62 \end{aligned}$	N	$\begin{array}{\|l\|} \hline 116 \\ 78 \\ 48 \\ \hline \end{array}$	\wedge	$\begin{array}{\|l\|} \hline 136 \\ \hline 9 \\ 56 \\ \hline \end{array}$	n	$\begin{aligned} & 156 \\ & 110 \\ & 110 \end{aligned}$	\sim	(176		
111	15	SI	$\begin{aligned} & 17 \\ & 15 \\ & F \\ & \hline \end{aligned}$		$\begin{aligned} & 33 \\ & 31 \\ & 15 \\ & \hline \end{aligned}$	/	$\begin{aligned} & 57 \\ & 47 \\ & 27 \end{aligned}$?	7	0	$\begin{aligned} & 17 \\ & 79 \\ & 79 \\ & \hline 4 \end{aligned}$	-	$\left[\begin{array}{l} 13 \\ 93 \\ 95 \\ 5 F \end{array}\right.$	0	$\begin{array}{\|l\|} \hline 151 \\ 115 \\ 111 \\ 65 \end{array}$	DEL	172		

KEY

[^0]Table 4-1 $\begin{gathered}\text { U.S. Character Set }\end{gathered}$

		$\begin{gathered} 0^{0} 0 \\ { }^{0} 0 \\ \hline \text { COLuMM } \\ 0 \end{gathered}$		${ }^{0} 0$				${ }^{0} 1$		${ }^{1} 0$		${ }^{1} 0$		${ }^{1} 1$		${ }^{1}$,			
		1	2		3		4		5		6		7						
0000	0			NUL	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & 20 \\ & 16 \\ & 10 \end{aligned}$	SP	40 32 20 41	0	$\begin{aligned} & \hline 60 \\ & 48 \\ & 30 \\ & \hline \end{aligned}$	@	$\begin{aligned} & 100 \\ & 64 \\ & 40 \\ & \hline \end{aligned}$	P	$\begin{aligned} & 180 \\ & 80 \\ & 50 \\ & \hline \end{aligned}$,	$\begin{array}{r} 140 \\ 96 \\ 60 \\ \hline \end{array}$	p	160 112 70 10
0001	1		$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	DC1 (xON	$\begin{aligned} & 21 \\ & 17 \\ & 11 \\ & \hline \end{aligned}$!	$\begin{aligned} & 41 \\ & 33 \\ & 21 \\ & \hline \end{aligned}$	1	$\begin{aligned} & 61 \\ & 49 \\ & 31 \end{aligned}$	A	$\begin{array}{r} 101 \\ 65 \\ 41 \\ \hline \end{array}$	Q	$\begin{aligned} & 121 \\ & 81 \\ & 81 \\ & 51 \end{aligned}$	a	$\begin{gathered} 60 \\ \hline 141 \\ 97 \\ 61 \end{gathered}$	9	161 113 111 71		
0010	2		$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$		$\begin{aligned} & 22 \\ & 18 \\ & 12 \\ & \hline \end{aligned}$	11	$\begin{aligned} & 42 \\ & 34 \\ & 22 \\ & \hline \end{aligned}$	2	$\begin{aligned} & 62 \\ & 50 \\ & 32 \\ & \hline \end{aligned}$	B	$\begin{gathered} 102 \\ 66 \\ 42 \\ \hline \end{gathered}$	R	$\begin{array}{r} 1122 \\ 82 \\ 52 \\ \hline \end{array}$	b	$\begin{array}{r} 142 \\ 98 \\ 62 \\ \hline \end{array}$	r	$\begin{gathered} 162 \\ 114 \\ 72 \\ \hline \end{gathered}$		
0011	3		$\begin{array}{r} 3 \\ 3 \\ 3 \\ \hline \end{array}$	DC3	$\begin{aligned} & 23 \\ & 19 \\ & 13 \\ & \hline \end{aligned}$	\#	$\begin{aligned} & 43 \\ & 35 \\ & 23 \\ & \hline \end{aligned}$	3	$\begin{aligned} & 63 \\ & 51 \\ & 33 \\ & \hline \end{aligned}$	C	$\begin{array}{r} 103 \\ 67 \\ 43 \\ \hline \end{array}$	S	$\begin{array}{r} 123 \\ 83 \\ 53 \\ \hline \end{array}$	c	$\begin{array}{r} 143 \\ 99 \\ 63 \\ \hline \end{array}$	S	163 115 73 18		
0100	4		$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & \hline \end{aligned}$		$\begin{aligned} & 24 \\ & 20 \\ & 14 \\ & \hline \end{aligned}$	\$	$\begin{aligned} & 44 \\ & 36 \\ & 24 \\ & \hline \end{aligned}$	4	$\begin{aligned} & 64 \\ & 52 \\ & 34 \\ & \hline \end{aligned}$	D	$\begin{aligned} & 104 \\ & 68 \\ & 44 \\ & \hline \end{aligned}$	T	$\begin{array}{r} 124 \\ \hline 84 \\ 54 \\ 54 \end{array}$	d	$\begin{aligned} & 144 \\ & 100 \\ & 64 \\ & \hline \end{aligned}$	t	$\begin{array}{r} 164 \\ 164 \\ 74 \end{array}$		
0101	5	ENQ	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$		$\begin{aligned} & 25 \\ & 21 \\ & 15 \end{aligned}$	\%	$\begin{aligned} & 45 \\ & 37 \\ & 25 \\ & \hline \end{aligned}$	5	$\begin{aligned} & 65 \\ & 53 \\ & 35 \end{aligned}$	E	$\begin{array}{r} \hline 105 \\ 69 \\ 45 \\ \hline \end{array}$	U	$\begin{array}{r} 125 \\ 185 \\ 55 \end{array}$	e	$\begin{aligned} & 145 \\ & 101 \\ & 65 \end{aligned}$	u	176 165 178 75 18		
0110	6		$\begin{aligned} & \hline 6 \\ & 6 \\ & 6 \\ & \hline \end{aligned}$		$\begin{aligned} & 26 \\ & 22 \\ & 16 \\ & \hline \end{aligned}$	\&	$\begin{aligned} & 46 \\ & 38 \\ & 26 \\ & \hline \end{aligned}$	6	$\begin{aligned} & 66 \\ & 54 \\ & 36 \\ & \hline \end{aligned}$	F	$\begin{array}{r} 106 \\ 70 \\ 46 \\ \hline \end{array}$	V	$\begin{gathered} 126 \\ 86 \\ 56 \\ \hline \end{gathered}$	f	$\begin{aligned} & 146 \\ & 102 \\ & 66 \end{aligned}$	v	$\begin{array}{r}166 \\ 118 \\ 76 \\ 7 \\ \hline 18\end{array}$		
0111	7	BEL	$\begin{aligned} & 7 \\ & 7 \\ & 7 \\ & \hline \end{aligned}$		$\begin{aligned} & 27 \\ & 23 \\ & 17 \\ & \hline \end{aligned}$,	$\begin{aligned} & 47 \\ & 39 \\ & 27 \\ & \hline \end{aligned}$	7	$\begin{aligned} & 67 \\ & 55 \\ & 37 \\ & \hline \end{aligned}$	G	$\begin{array}{r} 107 \\ 71 \\ 47 \\ \hline \end{array}$	W	$\begin{array}{r} 127 \\ 87 \\ 87 \\ 57 \end{array}$	g	$\begin{aligned} & 147 \\ & 103 \\ & 67 \\ & \hline \end{aligned}$	w	167 119 77 78		
1000	8	BS	$\begin{aligned} & \hline 10 \\ & 8 \\ & 8 \\ & \hline \end{aligned}$	CAN	$\begin{aligned} & 30 \\ & 24 \\ & 18 \\ & \hline \end{aligned}$	($\begin{aligned} & 50 \\ & 40 \\ & 28 \\ & \hline \end{aligned}$	8	$\begin{aligned} & 70 \\ & 56 \\ & 38 \\ & \hline \end{aligned}$	H	$\begin{aligned} & 110 \\ & 72 \\ & 48 \\ & \hline \end{aligned}$	X	$\begin{array}{r} 130 \\ 88 \\ 58 \\ \hline \end{array}$	h	$\begin{aligned} & 150 \\ & 104 \\ & 68 \\ & \hline \end{aligned}$	X	$\begin{array}{r}170 \\ 120 \\ 78 \\ \hline 18\end{array}$		
1001	9	HT	$\begin{aligned} & 11 \\ & 9 \\ & \hline \end{aligned}$		$\begin{aligned} & 31 \\ & 25 \\ & 19 \\ & \hline \end{aligned}$)	$\begin{aligned} & 51 \\ & 41 \\ & 29 \\ & \hline \end{aligned}$	9	$\begin{aligned} & 71 \\ & 57 \\ & 39 \\ & \hline \end{aligned}$	1	$\begin{aligned} & 111 \\ & 73 \\ & 49 \\ & \hline \end{aligned}$	Y	$\begin{array}{r} 131 \\ 89 \\ 89 \\ 59 \end{array}$	1	$\begin{aligned} & 151 \\ & 105 \\ & 69 \\ & \hline \end{aligned}$	y	171 121 79		
1010	10	LF	$\begin{aligned} & 12 \\ & 10 \\ & 10 \\ & \hline \end{aligned}$	SUB	$\begin{aligned} & 32 \\ & 26 \\ & 1 \mathrm{~A} \end{aligned}$	*	$\begin{aligned} & 52 \\ & 42 \\ & 2 \mathrm{~A} \end{aligned}$:	$\begin{aligned} & 72 \\ & 58 \\ & 3 A \end{aligned}$	J	$\begin{aligned} & 112 \\ & 74 \\ & 4 \mathrm{~A} \end{aligned}$	Z	$\begin{aligned} & 132 \\ & 90 \\ & 5 \mathrm{~A} \end{aligned}$	j	$\begin{aligned} & \hline 152 \\ & 106 \\ & 6 \mathrm{~A} \\ & \hline \end{aligned}$	z	172 122 122 $7 A$ 17		
1011	11	VT	$\begin{aligned} & 13 \\ & 11 \\ & 11 \end{aligned}$	ESC	$\begin{aligned} & 33 \\ & 27 \\ & 18 \end{aligned}$	+	$\begin{aligned} & 53 \\ & 43 \\ & 28 \end{aligned}$;	$\begin{aligned} & 73 \\ & 59 \\ & 38 \end{aligned}$	K	$\begin{aligned} & 113 \\ & 75 \\ & 48 \end{aligned}$	[$\begin{array}{r} 133 \\ 91 \\ 58 \\ \hline \end{array}$	k	$\begin{aligned} & 153 \\ & 107 \\ & 68 \end{aligned}$	\{	173 123 178 17		
1100	12	FF	$\begin{aligned} & 14 \\ & 12 \\ & c \end{aligned}$		$\begin{aligned} & 34 \\ & 28 \\ & 10 \end{aligned}$,	$\begin{aligned} & 54 \\ & 44 \\ & 20 \end{aligned}$	$<$	$\begin{aligned} & 74 \\ & 60 \\ & 30 \end{aligned}$	L	$\begin{aligned} & 114 \\ & 76 \\ & 4 \mathrm{C} \\ & \hline \end{aligned}$	1	$\begin{aligned} & 134 \\ & 92 \\ & 5 \mathrm{C} \\ & \hline \end{aligned}$	1	$\begin{aligned} & 154 \\ & 108 \\ & 6 \mathrm{C} \\ & \hline \end{aligned}$	1	174 124 76 76		
11.01	13	CR	$\begin{aligned} & 15 \\ & 13 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & 35 \\ & 29 \\ & 10 \end{aligned}$	-	$\begin{aligned} & 55 \\ & 45 \\ & 20 \end{aligned}$	=	$\begin{aligned} & 75 \\ & 61 \\ & 30 \\ & \hline \end{aligned}$	M	$\begin{aligned} & 115 \\ & 77 \\ & 4 \mathrm{D} \\ & \hline \end{aligned}$]	$\begin{array}{r} 135 \\ 93 \\ 50 \\ \hline \end{array}$	m	$\begin{aligned} & 155 \\ & 109 \\ & 60 \\ & \hline \end{aligned}$	\}	$\begin{array}{r}175 \\ 125 \\ 70 \\ \hline 18 \\ \hline\end{array}$		
1110	14	SO	$\begin{gathered} 16 \\ 14 \\ \text { E } \\ \hline \end{gathered}$		$\begin{aligned} & 36 \\ & 30 \\ & 1 E \\ & \hline \end{aligned}$.	$\begin{aligned} & 56 \\ & 46 \\ & 2 \mathrm{E} \end{aligned}$	$>$	$\begin{aligned} & \hline 76 \\ & 62 \\ & 3 \mathrm{E} \\ & \hline \end{aligned}$	N	$\begin{aligned} & 116 \\ & 78 \\ & 48 \\ & \hline \end{aligned}$	\wedge	$\begin{array}{r} 138 \\ 94 \\ 5 E \\ \hline \end{array}$	n	$\begin{aligned} & 156 \\ & 110 \\ & 6 \mathrm{E} \\ & \hline \end{aligned}$	\sim	$\begin{array}{r}176 \\ 126 \\ 78 \\ \hline 177 \\ \hline\end{array}$		
1111	15	SI	$\begin{aligned} & 17 \\ & 17 \\ & 15 \\ & F \end{aligned}$		$\begin{aligned} & \text { it } \\ & 37 \\ & 31 \\ & \text { if } \end{aligned}$	1	57 47 27	?	$\begin{aligned} & 77 \\ & 63 \\ & 3 \mathrm{~F} \\ & \hline \end{aligned}$	0	$\begin{aligned} & 117 \\ & 79 \\ & 4 \\ & \hline 4 \end{aligned}$	-	$\begin{aligned} & 137 \\ & 95 \\ & 5 F \\ & \hline \end{aligned}$	0	157 111 $6 F$	DEL	177 127 77		

KEY
wacionercter \qquad octal decimal
HEX

Table 4-11 Special Character and Line Drawing Character Set

KEY

ASCII CHARACTER | ESC | 33 |
| :--- | :--- |
| | 27 |
| | 18 | OCTAL

DECIMAL HEX

Name
Select Character Set

Select
Character
Set
Select Character Set

Mnemonic Sequence
SCS ESC (\emptyset Designate the special character and line drawing character set as Gø

Designate the Alternate ROM standard character set as $G \emptyset$

Designate the Alternate ROM special character and line drawing set as Gø

The following sequences designate the VTl25 Gl character set:

Name

Character
Set

Character
Set
Select
Character
Set
Select Character Set

Character Set

Select SCS ESC) A

Select SCS ESC) B Designate the United States

Select SCS ESC) 2
Mnemonic

SCS ESC) Ø

SCS ESC) 1
character set as Gl

Sequence

Designate the United Kingdom character set as Gl

Designate the special character and line drawing character set as G1

Designate the Alternate ROM standard character set as Gl

Designate the Alternate ROM special character and line drawing set as Gl

The VT125 terminal also has a G2 and G3 character set. However, these character sets are always the United States (ASCII) character set. The G2 and G3 character sets can be selected for only one character at a time. The G2 and G3 character sets are selected using the single shift 2 (SS2) and single shift 3 (SS3) sequences. The terminal returns to the previously used character set after a single character is displayed. Select the G2 and G3 character sets for one character using the following sequences.

Name	Mnemonic	Sequence	Function
Single	SS2	ESC N	Selects the G2 (ASCII) Shift 2
character set for one			
character.			

The United States and United Kingdom sets conform to the "ISO international register of character sets to be used with escape sequences". The other sets are private character sets. Special graphics means that the graphic characters for the codes $137(8)$ to $176(8)$ are replaced with other characters. The specified character set will be invoked by SI or SO until another SCS is received. Table 4-9 lists the U.S. character set, Table 4-1ø lists the U.K. character set, and Table 4-11 lists the special character and line drawing character set. The VTl25's U.S. character set is a subset of the ASCII character set because in the VTl25, only a few of the ASCII control characters have displayable forms.

NOTE: The character set selected by SCS is only used by the text terminal. The graphics processor selects character sets with a ReGIS command.

Select Graphic Rendition - SGR
Format: ESC [Pn m
default value: \emptyset
In the VTl25, this turns on the character attributes, which are special display features that can be used (along with line attributes like double width) to make text on the screen appear special. All characters transmitted to the VTl25 after the SGR sequence are displayed with the selected attributes until the next SGR sequence clears or changes the attributes.

Name
Select SGR
Graphic
Rendition
Select
Graphic
Rendition
Select
Graphic
Rendition
Select
SGR
Graphic
Rendition
Select SGR
Graphic
Rendition

Mnemonic Sequence
SGR ESC [Ø m
Meaning
Attributes off

All other parameter values are ignored.
Without the Advanced Video Option, a character can have only one attribute, and the attribute can only be underline or reverse.

Either 4 or 7 can be used in the control sequence, but the VTl25 interprets the parameter as whichever attribute has been selected for the cursor in SET-UP. (See cursor selection in the SET-UP chapter.)

3

SCROLLING

Scrolling Region
The scrolling region is the area of the screen that can receive new characters by scrolling old characters off the screen either up or down. This area is defined by the top and bottom screen margins. The minimum size of the scrolling region allowed is two lines, so the number of the top margin must be at least 2 less than the number of the bottom margin. The cursor moves to the home position when the margins are set (see Origin Mode in Modes).

Set Top and Bottom Margins (DEC Private) -- DECSTBM
Format: ESC [Pt; Pb r
default values: Full Screen
This sequence sets the top and bottom margins to define the scrolling region. Parameter Pt is the line number of the top line in the scrolling region; parameter Pb is the line number of the bottom line in the scrolling region. Default is the complete screen (no margins).

NOTE: Power up or reset causes the scrolling region to be the complete screen.

4

 CURSOR POSITIONINGThe cursor indicates the location of the active position. This is where the next character appears. The cursor always moves one column to the right when a character appears, and moves down one line when the terminal receives a line feed. The cursor moves to the left margin when the terminal receives a carriage return. If a command tries to move the cursor past any margin, the action that will result is stated. The cursor moves to the home position (see region are set and when Origin mode is set or reset. Table 4-12 lists the sequences that move the cursor according to their parameters:

5
TABS
Tabs are positions selected on the horizontal lines of the screen. The cursor advances (tabs) to the tab stops when the terminal receives an HT (octal øll) control character. Each control character advances the cursor to the next tab stop. If no tabs are set, any HT character moves the cursor to the right margin.

Table 4-12 Cursor Positioning Commands

Table 4-12 Cursor Positioning Commands

Horizontal Tabulation Set - HTS

Sequence
ESC H

Meaning

Set one horizontal stop at the cursor position.

Tabulation Clear - TBC

Sequence

ESC [0 g

ESC [3 g
6 LINE ATTRIBUTES
Line attributes are special display features of the VTl25 that affect a complete line at a time. Only the line containing the cursor is affected. The cursor stays in the same character position unless it would be to the right of the right margin, in which case it moves to the right margin.

Double Height Line (DEC Private) - DECDHL
Sequence
Meaning
Top Half: ESC \#3
Bottom Half: ESC \#4

DECDHL
DECDWL $\boldsymbol{4}$ ESC \#6
DECSWL AB ESC \#5
These sequences cause the line including the active position to become the top or bottom half of a double-height double-width line. The sequences must be used in pairs on adjacent lines and the same character output must be sent to both lines to form full double-height characters. If the line was single-width single-height, all characters to the right of the center of the screen are lost.

Double-Width Line (DEC Private) - DECDWL
Sequence
ESC \#6

Meaning

This causes the line that includes the active position to become double-width single-height. If the line was single-width Single-height, all characters to the right of the center of the screen are lost.


```
Single-width Line (DEC Private) - DECSWL
```

Sequence
ESC \#5

Meaning
This causes the line that includes the active position to become single-width single-height. This is the default condition for all new lines on the screen.

ERASING
Erasing removes characters from the text memory of the VT125. When characters are erased from the text memory, they are lost. Any complete line erased by Erase in Display has its line attribute set to single-height, single-width. Erasing does not change the number of columns per line.

Erase In Display -- ED
ESC [Pn J
default value: ℓ

ESC [J

ESC [Ø J

ESC [1 J

ESC [2 J
This sequence erases some or all of the characters in the display according to the parameter. Any complete line erased by this sequence is given a line attribute for single-height, single-width.

Erase from the cursor to the end of the screen

Erase from the cursor to the end of the screen

Erase from start of the screen to the cursor

Erase all of the display -- all lines are erased, changed to single-width, and the cursor does not move.

Erase In Line - EL
ESC [Pn K
default value: ø
Erases some or all characters in the active line according to the parameter. Erasing does not change line attributes.
Erase from the cursor to the end of the line

Erase from the cursor to the end of the line

Erase from the start of the line to the cursor

Erase all of the line

8

VTI25 COMMUNICATION AND GRAPHICS PROTOCOL CONTROLS
The VTl25 uses an ANSI protocol called the Device Control String to control its graphics and some of its communications. A control string is a group of characters that have a clearly marked beginning and end and are understood by a device as a unit for control purposes. The Device Control String is made of an introducer followed by data followed by a terminator. The introducer is two characters (ESC P) that tell the VTl25 to understand the characters that follow as parameter information about which graphics protocol is coming (ReGIS, DECwriter, or VTl05) and where it should go (to the host, the auxiliary port, or the video screen). The rest of the string is graphics data in the specified protocol, followed by the terminator. The terminator is two characters (ESC) called the String Terminator, and it returns the VTl25 to its text operation. When a device control string begins, the VTl2 25 can not understand another device control string command until the first one is terminated by the String Terminator characters.

Device Control String (Introducer) - DCS
ESC P
Introducer to the commands that control the VTl25's internal protocols. When the VTl25 receives this sequence from one of its data paths, it looks at that same data path for one or two more characters to select the operation, as listed below. (See Chapter 7 for an explanation of the data paths.)

Device Control String Parameters
ESC P p or ESC $P \emptyset p$
Enter ReGIS, accepting data from the same data path as this sequence, at the command level that was in effect at the end of the last RegIS device control string. (ReGIS is at the highest command level if the terminal was reset after the last device control string.)
ESC P 1 p
Enter ReGIS, accepting data from the same data path as this sequence, and force immediate synchronization to the highest command level in the same way that the ";" character acts in

ESC P 2 p

ESC P 3 p
a ReGIS command string. (The semicolon is explained in the ReGIS chapter.)

Enter ReGIS according to $\emptyset p$ (allowing completion of previous commands) and also send the ReGIS text to the data path that was previously selected. (This typically is the host to VTløø data path and allows the simultaneous display of both the graphics and the ReGIS text that creates the graphics.)

Enter ReGIS according to $1 p$ (immediate synchronization) and also send the ReGIS text to the data path that was previously selected. (This typically is the host to VTIøø data path and allows the simultaneous display of both the graphics and the ReGIS text that creates the graphics.)

ESC P Pn q - Delimit image format
Accept the text that follows from the same data path as this sequence as DECwriter graphics hard copy descriptor and display it. Pn is ignored. Refer to the Media Copy control function description for information about generating DECwriter descriptor.

ESC P Pn t - enter VTl05
emulator mode
Accept the text that follows from the same data path as this sequence as VTlø5 commands to be executed by the VT125. The parameter is ignored and may be deleted (but if included, should be \emptyset for compatibility with future sequences). The VTlø5 emulator does not have the simultaneous text display capability of ReGIS.

String Terminator - ST ESC

Media Copy - MC
ESC [Ps i

End the string of data and return the VTl25 to text mode.

Media Copy selects the connections between the different ports of the VT125. There are two classes of parameters (Ps) understood by this sequence: ANSI
standardized and DEC private. Standardized and private parameters can not be in the same sequence. More than one parameter from a class can be in each sequence, using the semicolon syntax for multiple selective parameters
(Ps;...;Ps). See the explanation of ports in the communication chapter for more information about selecting parameters.

Turn off copying of data from the host computer to the auxiliary port.

Turn on copying of data from the host computer to the auxiliary port.

Turn off copying of data from the host computer to the text screen.

Turn on copying of data from the host computer to the text screen.

Select the auxiliary port as the destination for DECwriter descriptor data containing the contents of the graphics memory as controlled by the $S(H)$ option in ReGIS. Usually used to produce a hard copy of the screen on an LA34-VA. This is the default condition when using the ReGIS protocol.

Select the host computer as the destination for DECwriter descriptor data containing the contents of the graphics memory as controlled by the $S(H)$ option in ReGIS. Usually used to store a file of DECwriter descriptor on the host computer, for later transmission to an LA34-VA or VT125.

Reports are transmitted by the VT125 in response to requests from the computer or other device. Reports are used to determine the cursor position, the type of terminal, and the operational status of the terminal. The following sequences are the requests for reports and the reports generated:

Cursor Position Report

ESC [Pl ; PC R

This report is requested by a Device Status Report (DSR) sequence (ESC [6 n). The terminal reports the active position with the CPR sequence. This sequence has two parameter values, the first specifying the line and the second specifying the column. The default condition with no parameters present, or parameters of \emptyset, indicates the cursor at home position. The numbering of lines depends on the setting of Origin Mode.

Device Attributes - DA
ESC [Pn c

Request:
ESC [c or ESC [Ø c

Response:
ESC [? 12 ; <VTløø features> ; <VTl25 features> ; <VTl25 ROM version> c

The VTl 25 responds to the DA request with a DA sequence having numeric parameters only on the same data path that the request came from.

DEC private identifier for the VT125

5 if no advanced video option is installed. 7 if an advanced video option is installed. The VTl25 checks the VTløø with an internal DA swap during power up or reset.
<VTl25 features>
1 if a printer is connected to the auxiliary port. Ø if nothing is connected to the auxiliary port. The VTl25 checks for a printer by reading the EIA DSR pin during power up or reset. Only printers that drive DTR can be detected.

Number indicating the firmware revision level of the VT125 graphics processor code. identify itself by sending the DA control sequence with either no parameter or a parameter of \emptyset.
? 12
<VTløø features>
<VT125 ROM version>

```
Identify Terminal (DEC Private) - DECID
```

Format: ESC Z
This sequence causes the same response as Device Attributes if the terminal is in ANSI mode. (See VT52 Reports.) This sequence will not be supported in future DEC terminals; therefore, any new software should use Device Attributes.

Device Status Report - DSR
Format: ESC [Ps n

ESC [5 n

ESC [6 n
default value: Ø
Requests the general status of the VTl25 with the following sequences:

Command from computer - report status (using a DSR control sequence)

Command from computer - report active position (using a Cursor Position Report control sequence)

Reports the general status of the VTl25 on the same data path that the request came on with the following sequences:

ESC [0 n

ESC [$3 n$

```
Response from VTl25 - Ready, no malfunctions detected (default)
Response from VTl25 Malfunction - soft error reset and retry
DSR with a parameter value of \(\varnothing\) or 3 is always sent as a response to a requesting DSR with a parameter value of 5 .
```


18 RESET

Reset To Initial State - RIS
ESC c

Reset the VTl25 to its initial state. This is the state it has after it powers up, performs the internal self-test, and reads the set-up information in
the user permanent SET-UP feature memory.

NOTE: When the terminal is reset, Cursor Key mode and Origin mode are reset, Keypad Numeric mode is selected, and the top and bottom margins of the scrolling region are set to be the complete screen. Any graphics protocol selection and the graphics memory are cleared and the graphics processor returns to text mode.

11 TESTS AND ADJUSTMENTS
The VTl25 has many tests which are performed to be sure the terminal is running properly. Also, a pattern for screen alignment is provided. All DECTST sequences have an effect on the communication port. See Table 7-1. See the Operator Maintenance chapter for the meanings of displayed error codes.

Screen Alignment Display (DEC Private) - DECALN
ESC \#8

$$
\begin{array}{ll}
\text { E E E E E } & \\
\text { E E E E E } & \\
\text { E E E E E } & \text { DSCALN } \\
\text { E E E E E } &
\end{array}
$$

This command fills the entire screen area with uppercase E^{\prime} s for screen focus and alignment. This command is used by DEC manufacturing and Field Service personnel.

Invoke Confidence Test - DECTST
Sequences with a first parameter of 2 tell the VTl25 to tell the VTløø to do its self-tests according to the numeric parameter. Table 4-13 lists the VTløø tests. Sequences with a first parameter of 4 tell the VTl25 to do its own self-tests according to the selective parameters that follow the 4. Table 4-14 lists the VTl25 tests. See the Operator Maintenance chapter for explanations of the tests' actions.

NOTE: $\frac{\text { Be }}{\text { because }}$ some that these sequences get transmitted correctly 12

INDICATORS
Keyboard Indicators
The keyboard has seven indicator lights that are light emitting diodes (LEDS). The ON LINE and LOCAL indicators light to indicate the communication status of the terminal. If the keyboard is indicator is on. power is on, either the ON LINE or the LOCAL

The KBD LOCKED indicator lights to show the keyboard locked condition. In this condition the keyboard transmit buffer is full and can not accept characters from the keyboard.

Table 4-13 VTløø Self-tests

Sequence	Meaning
ESC [2 ; 1 Y	VTløø resets and performs power up test. Also causes VTl25 power up self-test.
ESC [2 ; 2 y	VTløø Data Loop Back test. Must use test connector. Not usable while graphics processor is installed.
ESC [2 ; 3 y	VTløø power up and data loop back tests. Must use test connector. Not usable while graphics processor is installed.
ESC [$2 ; 4 \mathrm{y}$	VTløø EIA modem control loopback test. Must use test connector. Not usable while graphics processor is installed.
ESC [2 ; 5 Y	VTIØø power up and EIA modem control loopback tests. Must use test connector. Not usable while graphics processor is installed.
ESC [2 ; 6 y	VTIøø data loop back and EIA modem control loopback tests. Must use test connector. Not usable while graphics processor is installed.
ESC [2 ; 7 y	VTløø power up, data loop back and EIA modem control loopback tests. Must use test connector. Not usable while graphics processor is installed.
ESC [2 ; 9 y	Repeat VTløø power up test continuously until failure or power off. Not usable while graphics processor is installed.
ESC [2 ; 10 y	Repeat VTløø data loopback test continuously until failure or power off. Must use test connector. Not usable while graphics processor is installed.
ESC [2 ; 11 y	Repeat VTIØø powerup and data loopback tests continuously until failure or power off. Must use test connector. Not usable while graphics processor is installed.
ESC [2 ; 12 y	Repeat VTløø EIA modem control loopback test continuously until failure or power off. Must use test connector. Not usable while graphics processor is installed.

Table 4-13 VTl00 Self-Tests (Cont)

	Sequence	Meaning
	ESC [2 ; 13 y	Repeat VTl00 power up and EIA modem control loopback tests continuously until failure or power off. Must use test connector. Not usable while graphics processor is installed.
	ESC [2 ; 14 y	Repeat VTløø data loop back and EIA modem control loopback tests continuously until failure or power off. Must use test connector. Not usable while graphics processor is installed.
	ESC [2 ; 15 y	Repeat VTløø power up, data loop back and EIA modem control loopback tests continuously until failure or power off. Must use test connector. Not usable while graphics processor is installed.

Table 4-14 VTl25 Self-Tests
VT125 Self-test Format: ESC [4; 1 ; PS ... ; PS y
Test parameters may appear in the sequence in any order but they always run in increasing numerical order. Always include the power up test parameter for correct display of error indications.

PS $=1$
Ps $=2$
PS $=3$
PS $=4$
Ps $=5$

PS $=9$
Repeat any selected tests continuously until power off or failure

See the Operator Maintenance chapter for the meanings of displayed
error codes.

The Ll through L4 indicators are programmable and can be assigned any meaning for specific applications. The following sequences turn these indicators on or off:

Load LEDS (DEC Private) - DECLL

```
ESC [ Ps;Ps...Ps q
```

default value: ø Load the four programmable indicators on the keyboard according to the parameter(s).

Sequence

Meaning

ESC [¢ q	Clear indicators \#l
ESC [1 q	Light indicator \#1
ESC [2 q	Light indicator \#2
$\operatorname{ESC}[3 \mathrm{q}$	Light indicator \#3
ESC [4 q	Light indicator \#4

Indicator numbers are indicated on the keyboard.
VT52 COMPATIBLE SEQUENCES
The VT125 VT52 compatible sequences meet private DIGITAL standards. Therefore, the VTl25 can use existing software designed for previous terminals such as the VT52, only for text applications. The graphics processor cannot operate with VT52 compatible sequences. VT52 compatibility is selected from the keyboard in SET-UP (refer to chapter 2) or by the computer using a sequence (refer to the ANSI compatible sequences section of this chapter).

SET-UP FEATURE AND MODE SELECTION
While in VT52 mode, most of the SET-UP feature selections of the VT125 can not be selected using sequences. However, the following three modes can be selected using sequences:

ANSI mode
Alternate Keypad mode on
Alternate Keypad mode off

VT52 MODES

Enter ANSI Mode
Format: ESC <

All subsequent escape sequences are understood according to ANSI Standards X3.64-1979 and X3.41-1974. The VT52 escape sequences shown in this section are not recognized.

Table 4-15 VT52 Mode Auxiliary Keypad Codes

	Alternate Keypad Mode off	Alternate Keypad Mode On
Key	\emptyset	ESC ? p
\emptyset	1	ESC ? q
1	2	ESC ? r
2	3	ESC ? s
3	4	ESC ? t
4	5	ESC ? u
5	6	ESC ? v
6	7	ESC ?
7	8	ESC? y
8	9	ESC ? m
9	(minus)	ESC?
- (minus)	(comma)	ESC ? n
(comma)	(period)	ESC? M
(period)	Same as RETURN key	ESC P
PF1	ESC P	ESC Q
PF2	ESC Q	ESC R
PF3	ESC R	ESC S

Alternate Keypad Mode On
Format: \quad ESC $=$
The auxiliary keypad keys will send unique identifiable escape sequences for use by applications programs. Table 4-15 lists these codes and sequences.

Alternate Keypad Mode Off
Format: ESC >
The auxiliary keypad keys send
the ASCII codes for the
functions or characters on the keys.
14 VT52 CHARACTER SETS AND SELECTION
While in VT52 mode the VTl25 can use either the character set selected in SET-UP B or the VTl25 Special Character and Line Drawing character set. The following sequences select the character sets.

Enter Graphics Mode
Format: ESC F
Causes the special graphics character set to be used.

NOTE: The special graphics characters in the VTl25 are different from those in the VT52. See Table $x-x$ in Appendix X.

Exit Graphics Mode
Format: ESC G
This sequence causes the
standard ASCII character set to be used.

15 VT52 CURSOR POSITIONING
The cursor indicates the location of the active position. This is where the next graphic character appears. The cursor always moves one column to the right when a graphic character is displayed, and moves down one line when a line feed is received. The cursor moves to the left margin when a carriage return is received. If a command tries to move the cursor past any margin, the action that will result is stated. The VT52 mode margins are always the top and bottom of the display screen. Table 4-16 lists the sequences that move the cursor according to their parameters:

Table 4-16 Special Character and Line Drawing Set and Graphics Mode Comparison

Octal Code	US/UK Set		Special Character and Line Drawing Set	VT52 In Graphics Mode*
			Blank	Blank
137 140	1	<>	Di amond	Reserved
141	a		Checkerboard	Solid rectangle
			(error indicator)	1
142	b	ht	Horizontal tab	3
143	c	ff	Form feed	5
144	d	Cr	Carriage return	7
145	e	${ }_{0}^{1 f}$	Line feed	
146	f		Degree symbol	Degrees
147	g	+-	Plus/minus	Plus or minus
150	h	nl	New line	Right arrow
151	i	vt	Vertical tab	Elipsis (dots)
152	j	-1	Lower-right corner	Divide by
153	k	~ 1	Upper-right corner	Down arrow
154	1	1	Upper-left corner	Bar at scan !
155	m	L	Lower-left corner	Bar at scan
156	n	+	Crossing lines	Bar at scan?
157	\bigcirc		Horizontal line -- scan 1	Bar at scan 3
160	p		Horizontal line -- scan 3	Bar at scan 4
161	q		Horizontal line -- scan 5	Bar at scan 5
162	r		Horizontal line -- scan 7	Bar at scan 6
163	5		Horizontal line -- scan 9	Bar at scan
164	t	1-	Left "T"	Subscript 0
165	u	-1	Right "T"	Subscript 1
166	v		Bottom "T"	Subscript 2
167	w	\bar{T}	Top "T"	Subscript 3
170	x	1	Vertical bar	Subscript 4
171	Y	<	Less than or equal to	Subscript 5
172	z	=	Greater than or equal to	Subscript 6
173	\{	i-i	Pi	Subscript 7
174	1	/=	Not equal to	Subscript 8
175	\}	L-	UK pound sign	Subscript 9
176	~	.	Centered dot	Paragraph

* Not available in VTl25.

Erasing removes characters from the screen of the VTl25. When characters are erased from the screen, the characters are lost. The following sequences erase characters from the screen:

Erase to End of Screen
Format: ESC J
Erase all characters from the cursor to the end of the screen. The cursor does not move.

Erase to End of Line
Format: ESC K
Erase all characters from the cursor to the end of the current line. The cursor does not move.

17 VT52 REPORTS
The VTl25 generates only one report in VT52 mode:
Identify
Format: ESC z
This sequence causes the terminal to send its identifier escape sequence to the computer.

The response is ESC / Z.
NOTE: This is the VT52 response.

Cursor Up

Format: ESC A

Cursor Down

Format: ESC B

Cursor Right
Format: ESC C

Cursor Left
Format: ESC D

Cursor to Home
Format: ESC H

Reverse Line Feed

Format: ESC I

Direct Cursor Address

Format: ESC Y line column

Move the cursor up one line in same column. Cursor stops at the top of the screen.

Move the cursor down one line in same column. Cursor stops at the bottom of the screen.

Move the cursor one column to the right. Cursor stops at the right margin.

Move the cursor one column to the left. Cursor stops at the left margin.

Move the cursor to the home position at line 1 , column 1 .

Move the cursor up one line in the same column. If the cursor is at the top margin, a scroll down is performed.

Move the cursor to the specified line and column. The line and column numbers are sent as the ASCII characters whose codes are the decimal numbers plus 31 ; for example, $32(10)$ (SPACE) refers to the first line or column, and $111(1 \varnothing)$ refers to the eightieth column.

Figure 4-1 VT125 ANSI Mode Display Control Functions

CHAPTER 5
ReGIS GRAPHIC PROGRAMMING

INTRODUCTION

This chapter explains the Remote Graphic Instruction Set (ReGIS), a graphic descriptor, as it is used in the VTl25 graphics processor. With the information in this chapter, a programmer can prepare images for display on the VTl25 internal monitor or a connected color monitor, or print the images on a DECwriter graphic printer.

Definitions

ReGIS is called a graphic descriptor. A graphic descriptor is a symbol system that describes the parts of an image. An image is a type of information that people understand by seeing it and thinking about it in relation to familiar visual images. An image (graphic) is the best way to communicate some types of information. The problem for a graphic descriptor is to describe the image with as few symbols as possible to save storage space and communication line time. ReGIS works by considering an image to be a group of graphic objects. Each graphic object is a standard geometric form that can be described with a few characters of information. For example, ReGIS understands that the form of a circle applies to any circle that can be drawn. A circle can be described on the screen by the location of its center and a point on its circumference. The same type of understanding for other graphic objects lets ReGIS describe graphic images with short commands.
Each graphic object is made of a group of the smallest units of information on the screen. These units are pixels; their size is determined by both the minimum size of unit that the monitor can display, and by the maximum number of units that the graphics processor can address and store. If a device can display more pixels than another, it is has higher resolution than the other. The VTl25 graphics processor can display 184,320 pixels in a 768 X 240 array and is considered a medium resolution device. The graphics processor's memory can store 196,608 pixels in a 768 X 256×2 array. The display of the VTl25 is a window that looks into this memory. The window can move in any direction with a Screen command to display all parts of the pixel memory, or to move an object in the image to the center of the display.

Table 5-1 VTl25 Graphics Protocols

Protocol

ReGIS

LA34-VA Hard Copy Descriptor VT105 Emulation

Example String

ESC	P	p	\ldots data....	ESC
ESC	P	q	\ldots data....	ESC
ESC	P	t	\ldots data....	ESC

ReGIS SYNTAX
Introduction
The VTl25 graphics processor command syntax is a Device Control String (DCS) introducer sequence (ESC P), followed by protocol selection characters, followed by any number of characters in the selected protocol, followed by the String Terminator (ST) sequence (ESC
). (These sequences are explained in detail in the Received Character Processing chapter of this book under VT125 Communication and Graphic Protocol Controls.) The first characters after ESC P select the graphic protocol that is used during the rest of the string. These characters are formatted as part of a private ANSI control sequence. Table 5-1 lists the possible graphic protocols with typical device control strings. See the Received Character Processing chapter for complete details.

The LA34-VA Hard Copy Descriptor protocol is explained in the Protocol Controls section that was mentioned above. The VT185 Emulation Protocol is explained in the VTlø5 chapter of this book. The ReGIS protocol is explained here.

ReGIS Single Character Commands
Any commands from the complete ReGIS instruction set can follow the initial selection characters. A ReGIS command is a single alphabetic command key character followed by options in many formats including parentheses and brackets. ReGIS does not care whether an alphabetic character is uppercase or lowercase except in any quoted string. The key character is usually the first letter of the name of the command, for example "S" for screen. Any keyletter that is not included in this guide, and any characters in parentheses, quotes, or brackets, or any digit strings, that follow the invalid keyletter or a semicolon are

Parentheses, Brackets, Pixel Vectors, and Quotes
Parentheses "(" and ")" after a single character mean that the (example: $S(E)=$ screen erase) (example: $S(E)=$ screen erase). This book shows a general option keyletter, option is typicallyarg) where command is the command the number, letter-number, bracket option keyletter, and <arg> is option. The angle bracket bracketed, or quoted argument of the highlight the argument; they characters "<" and ">" are shown to Options have the same format are never actually part of a command. Options have the same format as a complete ReGIS command.

Numbers in brackets "[" and "]" are position information (also called coordinate or point specifiers). This book shows a general position with the symbol [<position>], where <position> = "x" or ",y " or " x, y ". The first number is the x-axis or horizontal position, and the second number is the y-axis or vertical position. A comma separates the two numbers. When only one number is in brackets without a comma (or with a comma after it), it is a new x position while the y position stays the same. When only one number is in brackets with a comma in front of it, it is a new y position while the x position stays the same. When the numbers do not have + or - signs with them, the position given is absolute (refered to the origin). When the numbers do have + or signs with them, the position is relative (refered to the current position). At power up, the position coordinates have $[\varnothing, \varnothing]$ at the top left corner of the screen and [767,479] at the bottom right corner of the screen. (See Screen Addressing Definition, $S(A)$, to change the coordinate system.)

Examples:
$[200,100]$ is absolute, $x=200, y=100$.
$[+200,-100]$ is relative, $x=$ current $+200, y=$ current -100 .
[200] is absolute, $x=2 \emptyset \emptyset, y=$ unchanged (same as $[2 \emptyset \emptyset,+\emptyset]$).
$[+200]$ is relative, $x=$ current $+2 \emptyset \emptyset, y=$ unchanged.
$[, 100]$ is absolute, $x=$ unchanged, $y=1 \emptyset \emptyset$ (same as $[+\emptyset, 1 \emptyset \emptyset]$).
$[,-100]$ is relative, $x=$ unchanged, $y=$ current -100 .
If a key letter has one or more numbers after it with no parentheses, brackets, or quotes, the numbers are pixel vectors. These are position information that specifies movement in one of eight possible directions. This book shows general pixel vectors by the symbol <pv> or <pixel vector> after a key letter. See the Position command for more information.

Quotes indicate characters that the Text command can put on the screen as they appear. Both ' and " are quote characters. This book shows a general text string with the symbols 'text' or "text". The Text command explains quotes in detail.

Commas and Spaces

Parenthesized commands can appear next to each other (except for E) or they can be separated with commas, spaces, or other control characters. Separated commands are easier to read and are good ReGIS practice except when the communication line speed limits performance. (See Screen Erase for E's special restriction.)

Control Characters

ReGIS ignores control characters (columns \emptyset and 1 of Table 4-1 plus space and delete). The VTl25 (which supervises the communications between ReGIS and the communication lines), monitors the data for ESC. If ESC appears, the VTl25 checks for the String Terminator sequence. If the sequence is the String Terminator (ESC V), the VTl25 returns to text mode. If the sequence is a control function that applies to the graphics processor (DA, DECID, DECTST, DSR, MC, RIS, see Chapter 4), its action is performed. Any other characters after ESC pass to ReGIS as ReGIS commands, not as ANSI control functions.

$$
5-3
$$

Because ReGIS ignores control characters, ReGIS command strings can be formatted to make them easy to read. In particular, spaces, carriage returns, and line feeds can be in the listing of ReGIS commands as instructions to the terminal or printer for page formatting for display. Most of the commands in this book are shown with spaces between key letters and option values for clarity. The commands can be copied exactly because ReGIS ignores the spaces, but to save storage and communication time, all spaces can be removed except those inside quoted strings.

Order of Performance

As each command arrives, it is acted on. ReGIS always responds to each command and option as soon as it has enough information to work with. The parentheses, brackets, and quotes described above control the way ReGIS responds to the characters of the string. For example, a left bracket "[" tells ReGIS to look for a position specification. A right bracket "]" ends the position specification. If a communication line error or a programming error loses the right bracket, all the following ReGIS commands will probably be understood incorrectly. The semicolon character, if included in the string of commands, clears any control errors caused by unmatched sets of parentheses or brackets. This is called synchronization. Enough semicolons mixed with commands can help get the most usable image on the screen even in the presence of communication problems. (A semicolon cannot clear errors involving quotes because inside quotes, it is a literal character instead of an instruction.)
An option selection applies to all the following related commands unless it is a temporary write option or a curve option. For example, giving the $W(C)$ command causes all writing to be in complement mode until another writing mode command is given. However, a writing control can be a temporary option if it is an option to any V, C, or T command. For example, a pixel vector multiplier in a screen command applies only to that command, for example $S(W(M 1 \emptyset \emptyset))<p v>$. Options can be specified by their option given command is still in effect the command key letter if the drawn with the vector command starting example, a line can be ending with another: $V(W(I 3))$ starting with one intensity and

Numeric Values

The VTl25 does all its calculations with integers
This means dist the smallest meaningful value that it can understand is the distance between two pixels. That distance is 1 . The terminal's The VTl25 accepts decimal fractions the pixels with integers. numbers (3.2lE2) so that images can be bi) and floating point resolution ReGIS devices. However, those numbers tran to higher (cut off) during processing so that only the inders are truncated used in calculations, with no rounding the integer portions are Floating point numbers are truncated to $(1.53=1,3.21 \mathrm{E} 2=321)$. (after scaling, if allowed by the coordinate bit signed integers larger than $(2 * * 15)-1$ are kept as coordinate system) ; values than $-(2 * * 15)$ are kept as $-(2 * * 15)$. $(2 * * 15)-1$, and values smaller

POSITION
The most basic concept in the use of ReGIS is the idea of the current position. This is a location on the screen with many possible functions. It is generally the last position where a drawing or command action occured. It may be the location of the next pixel to be drawn, it may be the center of a circle, it may be the starting point of a vector, or many other things. If ReGIS is active in the VTl25 but not processing data, a blinking graphic cursor appears to mark the current position. The graphic cursor is a diamond shape with a cross in it.

Coordinates

A coordinate is a number that specifies a position. X-coordinates specify horizontal positions and Y-coordinates specify vertical positions. A point is the intersection of an imaginary vertical line that passes through an X-coordinate and an imaginary horizontal line that passes through a Y-coordinate, and so a pair of coordinates specifies a point. (The coordinates are sometimes called point specifiers in ReGIS documentation.) The general symbol for a pair of position coordinates in this book is [<position>].

When the VTl25 is first powered up, it starts counting screen positions at the top left corner of the screen. This position is called the screen origin and has coordinates [$\varnothing, \varnothing]$. The x-coordinates start at \emptyset at the left margin of the screen and end at 767 at the right margin of the screen. The Y-coordinates start at 0 at the top margin of the screen and end at 479 at the bottom margin of the screen. With these coordinates, the VTl25 can address all pixels on the screen with integer numbers. On the 12 inch monitor screen in the VTl25, horizontal pixels are about one hundredth of an inch apart. The scan lines, which define the vertical pixel spacing, are about two hundredths of an inch apart. To let the same number of horizontal and vertical addresses be equal distances on the screen, the addressing counts by one for horizontal pixels and by two for vertical pixels. (See explanation of pixels in Writing Commands.)

POSITION COMMAND
The P (position) command sets or changes the current position and moves the graphics cursor to the new current position.

Absolute Position
Pormat: $P\left[<x\right.$ _coordinate, y_{-}coordinate $\left.\rangle\right]$
This command moves the current position to the given coordinates refered to the origin. If a coordinate is not signed, it is an absolute coordinate. If an x - or y - coordinate is not given, its value is unchanged.

Relative Position
Format: $P\left[\left\langle+-x\right.\right.$ change, $+-y_{\text {_ }}$ change \rangle]
This command moves the current position by adding the given numbers to the last current position. If a coordinate is signed, it is a relative coordinate. If an x - or y - coordinate is not given, its value is unchanged. (For negative values of change, adding is the same as subtracting a positive value.)

Combining absolute and relative positions
Absolute and relative values can be combined in one command. Sign the coordinate that is relative and leave the absolute coordinate unsigned.

Null Position
Format: P[]
This command resets the writing pattern so that the next writing operation begins with the first bit in the pattern memory. See Patterns in Writing Controls. The "[]" argument is a relative position specification indicating no change in x or y.

Pixel Vectors

Format: $\mathrm{P}\langle\mathrm{pixel}$ vector>
This command moves the current position in the direction specified by <pixel vector> (also shown as $\langle p v\rangle)$. A pixel vector is a vector whose length is the distance between two pixels times a multiplier that is set with a Writing Control command. A pixel vector has a limited set of directions that it can specify. These are eight directions at 45 degree intervals starting at \emptyset on a 360 circle. They are specified by the integers 0 through 7 according to Figure 5-1.

Each time a pixel vector number appears after the key letter P, the current position moves one pixel multiplier in that direction. Thus, Pøøø moves the current position three pixels to the right. See Pixel Multiplier below.

Temporary Pixel Vector Multiplier
Format: $P(W(M<m u l t i p l i e r>))\langle p v>$
Sets a temporary pixel vector multiplier for the following series of pixel vectors in this command

Figure 5-1 Pixel Vector
only. The multiplier can be any positive integer. Each pixel vector number that follows the multiplier moves the current position by the multiplier number of pixels. When the VTl 25 powers up, the multiplier is 1 , meaning that each command moves the current position only one pixel, a very small amount. The multiplier increases the power of the pixel vector command.

Begin a Bounded Sequence of Coordinates
Format: $P(B)$
Saves the first position to allow return to the beginning position without respecifying that position. The saved position is restored by the (E) command. The (B) command can be repeated up to 10 times and each value of position is saved. Each (E) command then restores the most recently saved position, until the tenth (E) command restores the first value saved. The positions stored and recalled include those stored in the Vector $V(B)$ command.

Start an Unbounded Sequence of Coordinates
Format: $\mathrm{P}(\mathrm{S})$
This command is similar to the (B) command explained above except that it specifically does not move the cursor at the end of a sequence of positions. (S) saves a dummy or non-acting position in memory so that the next (E) command does not change the current position. Positions saved by (S) are in the same memory as (B) positions and are included in the ten count. The Position (S) command is provided for symmetry with the other commands that have (B) and (S) options.
End a Sequence of Coordinates
Format: $P(E)$
Restores the first position at the end of a $P(B)$
command.
B, S , and E options are used to group sets of coordinates together in blocks (position blocks) so they can be processed as units, for example, for polygon definition or filling or shading operations. The position blocks do not have to be completed in a single P command, and they can have V or C commands inside them. (See B, S, and E in Vectors and Curves)

Table 5-2 Position Command Summary

Table 5-2 is a summary of the Position Commands.

WRITING COMMANDS

General
The Writing Commands section explains the ways of specifying the locations of pixels for lines, shapes, and text. The next section, Writing Controls, explains the attributes of intensity and pattern that pixels and shapes can have. The Screen Controls section explains the controls for the color and background of images, the positioning of the complete image, timing of actions, and the production of hard copy output.

Pixels
A pixel is the smallest unit of color and intensity information on the screen. The intersection of every horizontal address and every even vertical address is a pixel. (See Coordinates in Position.) The writing commands do two processes at each address. They access the address (prepare to write into it) and then act on it. The action can be setting bits (see Foreground Planes in Screen Controls), clearing them, complementing them, or perhaps doing nothing at all. (See Patterns in Writing Controls.)

Odd-Y Simulation

There are 512 defined vertical addresses but only 256 actual memory locations. Only every even-numbered vertical address has any associated memory. The next higher odd vertical address accesses the same pixel memory as the even address. This is called odd-y simulation and allows dimensions to be consistent in both axes (squares have the same number of addresses on each side). Some combinations of pattern and multiplier may give unexpected results because of odd-y simulation. See pattern Multiplier in Writing Controls for more information.

VECTOR COMMAND
The Vector command draws a straight line between the current cursor location and a specified screen location.

Dot at Current Position
Format: V[]
This command draws a dot (one pixel) at the current position. It is useful because most other vector commands do not draw the pixel at the current position.

Vector from Current Position to Specified Position
Format: V[<position>] [<position>] ...
This command draws a straight line from the first pixel after the current position to the position given. Any number of positions can be included in the same Vector command to draw a continuous series of straight lines. The first dot of each line is not drawn so that the next line can connect smoothly to the previous line. Use the dot command V[] to draw the first dot of a series of vectors.

NOTE: With shading on, the vector command draws from the current position.

Round-off errors in the VTl25's computation of vectors can add. The main causes of cumulative errors are relative coordinates or non-default display addressing (see Screen Controls), especially with non-integer specifiers. If you need an absolute position after a series of vectors, you should include a Position command. This starts the next commands at a known location.

See Patterns in Writing Controls for details about how the Vector command uses patterns.

Pixel Vectors

Format: V<pixel vector>

This command draws a line one pixel multiplier long in the direction specified by <pixel vector> (also shown as <nv>). The direction may be any of the integers \varnothing through 7 according to Figure 5-2. The direction numbers represent angles at 45 degree intervals from \varnothing (() to 315 (7).

Each time a pixel vector number appears after the key letter, the line is drawn one more one pixel multiplier in that direction. Any number of the eight pixel vectors numbers can appear in the

Figure 5-2 Pixel Vector

$p[200,100] v(b)[200,2001$ (b) $v[300,400]$ $v[400,300] \quad v(e) c[+5] \quad v[100,50] \quad v(e) c[+10]$

MA-9444

Figure $5-3$ Nested (B) and (E) Commands
command. Thus, Vøøø66 draws a line three pixel multipliers to the right and then two pixel multipliers down. (The pixel multiplier is the actual number of pixels changed in any command that affects pixels. The power-up default is 1 but it can be set to any convenient value. See pixel Multiplier in the Writing Controls section.)

Bounded Sequence of Positions
Format: $V(B)$ [<position>]...[<position>] (E)
The (B) command saves the current position in the graphics processor's memory so that you do not need to specify the end position of a sequence of vectors that you want to end at the starting position. At the end of the sequence, the (E) command recalls the position. The Vector command then draws a line from the last specified position to the saved position. The (B) command can save up to 10 positions in memory. Each (E) command recalls the position saved by the last (B) command and erases the position from memory. The positions stored and recalled include those stored with the Position P(B) command. Figure 5-3 illustrates the action of the "nested" (B) and (E) commands. (E) 2 recalls (B) 2; the next (E) is 1 which recalls (B) 1 .
V (B) 1 [<position1>]
(B) $2[\langle$ position2>] -->
(E) $2[\langle$ position2>] (E) $1[\langle$ position1>]

Unbounded Sequence of Positions
Format: $V(S)$ [<position>]...[<position>] (E)
This command is similar to the (B) command explained above except that it specifically does not move the cursor or draw a vector at the end of a sequence of positions. (S) saves a dummy or non-acting position in memory so that the next (E) command does not change the current position. Positions saved by (S) are in the same memory as (B) positions and are included in the ten count.

The Vector (S) command is provided for symmetry with the Open Curve (S) command. (Note that the Open Curve command requires null position specifiers to draw the same segments as the Vector (S) command. These specifiers in a sequence of positions do not affect the Vector command except for drawing the first dot of a line.)

	Draw dot at current position Draw vector to <position> Draw <multiplier> pixels in <pv> direction Save current position Save dummy position Draw to last saved position $\mathrm{V}(\mathrm{W}(\mathrm{M}<\mathrm{multiplier}>))$

Temporary Writing Controls

The temporary writing control options are the same as the Writing Controls command options but they apply only during the vector command that they are in. Only options specified or implied by those specified are changed. Options return to their previous values at the end of the V command.

Table 5-3 is a summary of the Vector Commands.
CURVES
The Curve command draws these members of the family of graphic objects called curves.

- Circles
- Arcs
- Closed Curves
- Open Curves

A circle is a group of pixels that are all the same distance away from a center position. There are two types of curve commands that generate circles; they use different information to specify the circle.
An arc is a part of a circle. There are two types of curve commands that generate arcs; they use the same information as the two circle commands to specify the circle that the arc is part of. They also use information to determine what part of the circle is drawn.
A closed curve is a general curve that is made by interpolating the locations of pixels around four or more specified locations.

The closed curve is a bounded shape like the circle (which is a special case of the closed curve) or an ellipse.

An open curve is a general curve that is made by interpolating the locations of pixels around several specified locations. The endpoints of the open curve are not meant to meet. You must pay special attention to the endpoints of an open curve to get the graphic object that you want.

Circles
Circle with Center at Current Position
Format: C[<position>]
This command draws a circle around the current position with the circumference at the specified position. See Figure 5-4. The radius of the circle is the distance from the current position at the center to the circumference.

The current position stays at the center after the circle is drawn.

Circle with Center at Specified Position
Format: C(C)[<position>]
This command draws a circle around the specified position with the current position located on the circumference. See Figure $5-5$. The radius of the circle is the distance from the current position to the center.

The current position stays at the starting location on the circumference after the circle is drawn.
Arcs
An arc is a part of a circle. It is specified by the location of the center of the circle, the radius of the circle, the starting position of the arc, and the amount of the circle to be drawn, measured in degrees. A complete circle is 360 degrees.
Arc with Center at Current Position
Format: C(A<degrees>) [<position>]
This command draws an arc that is <degrees> around a circle starting from <position>. The radius of the circle that the arc is a part of is the length between the current position and <position>. The graphics processor draws the arc counterclockwise for the specified number of positive degrees and clockwise for negative degrees. The current position stays at the center after the arc is drawn. See Figure 5-6.

p[384,240] $\mathrm{c}[+100,+50]$
MA-9441

Figure 5-4 Circle with Center at Current Position

$p[284,300] c(c)[+100,-100]$
MA-9439

Figure 5-5 Circle with Center at Specified position

$$
p[384,240] c(a 140)[+100,-100]
$$

MA-9440

Figure 5-6 Arc with Center at Current Position

Arc with Center at Specified Position
Format: C(A<degrees> C) [<position>]
The command draws an arc that is <degrees> around a circle starting at the current position. The center of the circle that the arc is a part of is at <position>. The radius is the distance between the current position and <position>. The graphics processor draws the arc counterclockwise for the specified number of positive degrees and clockwise for negative degrees. The current location is at the end of the arc after the arc is drawn. See Figure 5-7.

OPEN AND CLOSED CURVES

Interpolation of curves

Given a sequence of positions, ReGIS can draw a curve between the positions. The curve represents a generalized nonlinear function that intersects all the specified positions. It is generalized because it is not the result of the actual function that specified the points. It is the result of a graphic technique that produces a reasonable imitation of a function curve. The curve indicates the presence of a nonlinear function, rather than the function itself. You cannot get accurate intermediate values from a graphics processor curve unless you have given enough positions to ensure that the curve generator is closely following your function. The curve generator can produce a curve segment with as few as four positions. The result can be misleading if the positions are too far apart to define the function by themselves.

Unbounded (Open) curves
Pormat: $\mathrm{P}[$ [position>]C(S) [][<position>]...[<position>][](E)
An open curve is a general curve that is made by interpolating the locations of pixels around several specified locations. The endpoints of the open curve are not meant to meet. See Figure 5-8. You must pay special attention to the endpoints of an open curve to get the graphic object that you want. The open curve command can draw a curve segment with as few as four positions including the position preceeding the (S) command. To ensure that segments are drawn between all given positions, include null position specifiers ([]) at the beginning and end of the list of positions. Otherwise, only the segments from the second to the next to last positions are drawn.

The current position stays at the next to last position specifier after the curve is drawn. When null specifiers are used, the last position and the next - to - last position are the same.

$$
\begin{gathered}
{[-100,-100]} \\
0
\end{gathered}
$$

END POSITION (NEW CURRENT POSITION)

$$
c(a-90 c)[-100,-100]
$$

Figure 5-7 Arc with Center at Specified

MA-9448

Figure 5-8 Unbounded (Open) Curves

Bounded (Closed) curves
Format: $P[\langle$ position>]C(B)[<position>]...[<position>](E)
A closed curve is a general curve that is made by interpolating the locations of pixels around four or more specified locations. The closed curve is a bounded shape like the circle (which is a special case of the closed curve) or an ellipse. See Figure 5-9. The (B) command saves the beginning position and the (E) command closes the curve by providing the beginning position as the last position specifier for the curve command.

The current position returns to the second position specifier after the curve is drawn.

Temporary Curve Writing Controls
Format: C(W(temporary writing controls))
The temporary writing control options are the same as the Writing Controls command options but they apply only during the Curve command that they are in. Only options specified or implied by those specified are changed. Options return to their previous values at the end of the C command.

Table 5-4 is a summary of the Curve Commands.

Table 5-4 Curve Command Summary

$p[230,240] c(b)[320,160]$ [480, 120]
[570, 160] [480, 240] [320, 280] (e)
MA-9446

Figure 5-9 Bounded (Closed) Curves

General

The graphics processor displays characters differently from the text terminal. The ReGIS Text command can draw characters with many combinations of size, orientation, and position. This section explains the Text commands.

The Text command is formatted as a keyletter followed by options and a quoted string. All options in the T command, except temporary write options, apply to all following T commands until they are changed in another T command. ReGIS understands that two quotes of the same kind next to each other, inside a string that is delimited by the same kind of quote, means that one quote is supposed to be displayed inside the string. But with both kinds of quotes available, you can include one kind or the other inside the string without having to double it up. Two strings delimited by the same kind of quotes can be concatenated by separating them with a comma. For example, "stop*","here" is the same as "stop*here". Empty strings are allowed (""), because doubling only occurs inside a string. There is no defined upper limit on the length of a string.

ReGIS never uses the characters inside a pair of quotes or double quotes as commands. These include the semicolon synchronization character and the macrograph definition and invocation characters. Printing characters (space through ~, octal 40 through 127, see Character Sets in Chapter 4) are displayed according to the pattern stored in the currently-selected alphabet. (This defaults to ASCII.) All control characters except CR, LF, HT, and BS are ignored.

CR (carriage return) moves the active position to the position it had when the current quoted string began to be drawn. LF (line feed) moves the active position down a distance equal to the current vertical cell size. HT (horizontal tab) acts as a non-printing space. HT moves the active position forward one character position without affecting any image in that character position. BS (backspace) moves the active position back one current text spacing distance to the last written character position. This is the simplest method of performing an overstrike (drawing two characters in the same place, such as zero with a slash).

The initial position in a text command is the current position at the end of any other writing command. This position is the top left corner of the next character to be drawn. The size and spacing values of the text command then control where the next current position occurs.

Initial Text Defaults

Abstract

When the VTl25 graphics processor first powers up, many of the Text commands listed in this section have default values assigned. The defaults allow the graphics processor to respond immediately to many of a novice ReGIS user's commands. General applications should include text command specifications at the beginning of each graphic image to ensure the needed state of the graphics processor at the time of image generation. The defaults are: $T[+9,+\varnothing]$ (S1, H2, $S[9,2 \emptyset], \mathrm{M}[1,2]$, $D \varnothing$, I \varnothing).

Text
Pormat: T 'text'
This is the basic form of the text command. It can be used when the states of the options are known to be correct.

Text Character Cell Size
Pormat: $T(S<$ size number>) '<text>'
This command selects a character cell size from a standard set of sizes that are multiples of a predetermined width of 9 and height of 15. The sizes are numbers in the range of \emptyset to 16 . The resulting character cells are the size number times 9 pixels wide and the size number times 15 pixels high, except for size \emptyset characters that are $5 \times 1 \varnothing$ pixels in size, and size 1 characters that are $9 X$ $2 \emptyset$ pixels in size. The size 1 characters are close in size and vertical spacing to the VTløø characters.
The rest of this section refers to the region defined by a bit in the character cell memory as a unit, because the commands in this section allow text that has more than one pixel controlled by each bit.
A standard character cell is 9 units wide by 15 units high. The character that is displayed in the cell is 8 units wide and 19 units high. (80 pixels are stored for each character in the graphics processor's character memory.) This standard combination of cell and character sizes results in one horizontal unit and five vertical units of spacing between characters.

Because of the default character cell size that is selected with this command, there is room for 9 horizontal units of pattern in the default cell but there are only 8 units of information available. To fill the ninth space, the graphics processor copies the pixel from the first position of the character pattern. (See Figure 5-1ø) Most of the characters of character set \varnothing (the permanent set) are only seven pixels wide and are right justified in their pattern cells. Therefore, the first pixel of each scan of the character is dark. When this first pixel gets copied to the ninth position in the cell, the ninth position is also dark. The result is seven pixel wide characters that are spaced two pixels apart.

Because the first pixel of a cell is copied into the ninth position, continuous patterns like the underline of character set \varnothing can be drawn. If a character has the first pixel visible but you do not want that pixel repeated, use the explicit character specifiers as shown in following command descriptions to obtain an eight pixel wide character cell instead of the default nine pixels of this command.

All of the values that are set by default in this command can also be set or modified by using the following group of explicit character specifiers together. This group of specifiers also illustrates the parameters that are set by the S command. The pairs of commands shown in Table 5-5 are equivalent and provide nine pixel wide character cells:

Table 5-5 Text Size Command Equivalents
Character Character Pixel
Spacing Cell Size Multiplier

$\mathrm{T}(\mathrm{S} 1)=$	$\mathrm{T}[+9,+\emptyset]$	$(\mathrm{S}[9,2 \emptyset]$	$\mathrm{M}[1,2])$
$\mathrm{T}(\mathrm{S} 4)$	$=$	$\mathrm{T}[+36,+\emptyset]$	$(\mathrm{S}[+36,+6 \emptyset]$
$\mathrm{T}(\mathrm{S} 16)=$	$\mathrm{M}[4,6])$		
	$=\mathrm{T}[+144,+\emptyset]$	$(\mathrm{S}[144,24 \varnothing]$	$\mathrm{M}[16,24])$

Figure 5-1ø Copying Pixel 1 to Pixel 9

$A B C D$

$\mathrm{T}+36,+8](\mathrm{S}(32,601, \mathrm{M}(4,6])$ 'ABCD'

$\mathrm{T}[-32,+44]^{\prime} \mathrm{ABCD}^{\prime}$ MA-9442

Figure 5-11 Text Character Spacing

Text Character Height Multiplier
Format: $T(H<m u l t i p l i e r>)$
Use this command to select a non-standard character aspect ratio when using the Text Character Size command. <multiplier> is an integer from 1 to 25 which multiplies the 10 pixel height of the character pattern after the Character Size command sets the standard width. The largest multiplier causes a character which is within 5 pixels of the largest character cell size possible (255). (Larger values cause distorted and incomplete characters.)

Text Character Spacing
Format: T[<position>] (<options>)
The spacing option follows the T command keyletter before any parenthesized options. It is a relative position specifier that indicates the distance and direction that the active position must move from the top left corner of one character to the top left corner of the next character. See Figure 5-11. Use this command with the Text Character Cell Size and Text Pixel Multiplier commands. The default spacing used with the S <integer> command is $[+9,+0]$ which leaves one pixel between characters and keeps all characters on the same horizontal line.

The spacing option values are always relative and the option always sets both x and y every time it is used even if a value is omitted. Therefore, an omitted value causes that dimension of spacing to be set to relative \emptyset, which means draw the next character at the same x or y position. For horizontally arranged text, the y value can be \emptyset or omitted. If the x value is also \emptyset or omitted, the following characters are all drawn in the same location (overstriking). (Note: For occasional overstrikes, use the Backspace control character in the text string.)

Text Pixel Vector Spacing
Format: T <pv>
This nonparenthesized command uses pixel vector numbers to indicate directions of offset for characters. The amount of offset is determined by the size of the characters, and is one half of the given character's size in the direction of movement. The pixel vector multiplier does not apply. The vector direction is relative to the character baseline so this command is affected by
the Tilt Direction command. The pixel vector numbers can appear anywhere in a command except in quotes.

From the pixel vector directions given in Figure 5-12, T6 makes the following characters appear as subscripts, moved down from the current baseline by one half character height. T2 produces superscripts, and T44 moves a character back one complete character width to produce an overstrike. offsets up and down from the character baseline must be followed by reversing offsets to put the rest of the characters back on the baseline.

Text Character Cell Size
Format: $T(S[\langle w i d t h$ in pixels>, <height in pixels>])
This sets the size of the area on the screen that is drawn by a single character T command. The maximum area specifier is [255,255]. (Larger specifiers are counted modulo 256.) Use this command with the Character Spacing and Text Pixel Multiplier commands to select non-standard character sizes and aspect ratios. A cell with room for 8 horizontal units and 15 vertical units is some multiple of $[8,15]$. (Compare to sample S option in Character Cell Size.)
See Figure $5-13$. If the cell is smaller than the character that appears in it, the character is cut off at the right and bottom edges. If the cell is larger than the character that appears in it, the character repeats as many times as possible across the width of the cell, and the alphabetically next characters in the character set appear sequentially and repeatedly along the remaining height and width of the cell.

Text Pixel Multiplier

Pormat: $T(M[\langle$ width mult $\rangle,\langle h e i g h t ~ m u l t\rangle])$
This command specifies how many pixels in the display will be controlled by each pixel in the character pattern. The command multiplies the pixels of each character by the given width is height multipliers. The maximum multipliers to [16, 127]. (Larger specifiers set command with the the maximum values.) Use ther Cell Size commands. Character Spacing and Character Cell size
If a character cell has been selected that is 18 x 30 pixels in size, for example, pixel multipliers of $[2,3]$ must be selected to adjust the character

Figure 5-12 Pixel Vectors
$\angle F / T$
$\mathrm{T}[+36,+0](\mathrm{S}[32,60], \mathrm{M}[7,10]$) 'ABCD'
AAA BBEB COOC DDDD
BEBB COOC DDDD EFE
COCC DDDD EEEE FFFF
$\mathrm{T}[+36,+0](\mathrm{S}[32,60], \mathrm{M}[1,2])^{\prime} A B C D D^{\prime}$

$A B C D$

$\mathrm{T}[+36,+0](S[32,601, \mathrm{M}[4,6])$ ' $A B C D$ '

MA-9443

Figure 5-13 Text Character Cell Size

to fill the cell. This example is a standard size. Many other combinations are possible. See Figure 5-13 (above) for more examples.

Text String and Character Tilt Direction
Format: $T(D<d i r e c t i o n ~ a n g l e>S<s i z e\rangle)$
This command affects different parts of the display depending on how it is formatted. The simplest form of the command is given above; this controls the tilt of the baseline for a text string. A text string can be tilted at any 45 degree interval (either positive or negative), on a 360 degree compass. (See Figure 5-14.) Compass values other than 45 degree intervals are translated as the nearest lower 45 degree increment. The Size command can be a repeat of the last chosen value or a new value but must be included to provide correct baseline direction and character spacing. Characters reading from left to right are not tilted if the baseline is at \emptyset degrees, and they are upside down if the baseline is at $18 \emptyset$ degrees. (See Figure 5-15.) You may need to adjust the size for tilted characters because ReGIS does not control the scaling between horizontal or vertical and diagonal characters.

The next form of the command controls both the text string baseline tilt, and the tilt of individual characters in the string.

Format: $T(D\langle s t r i n g$ tilt> $S\langle s i z e\rangle D<c h a r a c t e r ~ t i l t\rangle)$
By including a size command in the option list, you use the same Direction keyletter twice. The first value sets the tilt for the complete text string, and the second value sets the tilt for each character in the string. See Figure 5-15.

The D command works by setting the tilt of characters. Then the Character Size <number> command uses the angle specified by D to calculate the spacing needed to position the tilted characters on a common baseline. (Character Size $[x, y]$ must have explicit spacing information and cannot calculate it from the D value.) After spacing information is calulated by the $S<>$ command, another D command changes the character tilt again to the final value before drawing starts.
Some display combinations can also be produced with other commands. For example, many values of string direction other than 45 degree intervals can be

Figure 5-14 360 Degree Compass

$p[400,200] t(d-45,54, d \theta)$

Figure 5-15 Text String and Character Tilt Direction

Table 5-6 Italic Tilt Values

Italic Specifier	Approximate Angle
$+1$	\pm
$\overline{+1}$	± 2
¢2	¢ 3
$\ddagger 3$	± 5
¢4	± 6
$\ddagger 5$	± 7
+6	∓ 8
¢7	£10
¢9	± 13
∓ 11	± 15
∓ 13	£20
∓ 19	¢25
¢ 31	± 45

drawn with the explicit spacing command. And if the string tilt is \emptyset, the Italic command gives better results and more values of character tilt without requiring a spacing command.

Text Italic Tilt

Pormat: T(I<Italic degrees>)

The Italics command tilts the vertical lines of individual characters without tilting the horizontal lines. Table 5-6 lists the values of tilt that are available in the VTl25 and the specifiers needed to get them. Positive specifiers tilt the characters to the left according to the compass directions in Figure 5-15 (above). Note that the actual angles of tilt are approximate, and smaller tilt angles may distort small characters. Specifiers between the listed values set the tilt to the next lower value. This command can be used with the D command. See Figure 5-16.

Select Text Character Set
$\mathrm{T}(\mathrm{A}$ <character set number>)
This command selects the character set that is used for all text commands until another set is selected. The number can be $\emptyset, 1,2$, or 3 . Set \emptyset is the default character set which is ASCII and cannot be changed. Sets 1,2 , and 3 are user loadable 95 character memories. (See Pattern Cell Controls section of this chapter.) If a character cell has not been loaded, it is displayed as a filled in block.

$p[20,1001 t(58, i 0)$

$p[350,100] t(s 8, i-45)$

p[500,100] t(s8,i22)

Figure 5-16 Text Italic Tilt

This command only selects a character set for display. See Pattern Cell Controls for the command that selects a character set for loading.

Store and Restore Options
Format: T (<current options>) '<text>'
(B) (<temporary options>) '<text>' (E)

All text options controlled by the T command can be saved as a unit and later restored to their saved settings. The (B) command saves the current text option values in the graphics processor's memory. You can make changes to one or more of the current options with another T command and display text with the changed options, and you can draw other graphic objects. Then, the (E) command restores the saved option values for the following text display. only one set of options values can be saved at a time. This feature allows you to temporarily change the text display options without needing to respecify the original values when you return to them.

Temporary Writing Controls
Format: $\mathrm{T}(\mathrm{W}($ temporary writing controls))
This command allows writing control options that only affect text drawn during this particular command. Usually, writing control options stay active for all following writing commands until they are respecified. The temporary writing controls command allows temporary changes to color specifiers, writing modes, etc, during the text command that they are in. The writing controls that are in effect for all commands except this particular text command stay unchanged. See the Writing Controls section for the formats of writing controls options.

Table $5-7$ is the Text Command summary.
WRITING CONTROLS
This section describes the attributes of intensity and pattern that pixels and shapes can have, and explains the commands that control the attributes.

Initial Writing Control Defaults

When the VTl25 graphics processor first powers up, many of the writing controls listed in this section have default values assigned. The defaults allow the graphics processor to respond immediately to many of a novice ReGIS user's commands. General

Table 5-7 Text Command Summary

```
T { (S <size number>)
    (H <height>)
    [<spacing>]
    (S [<width in pixels>,<height in pixels>])
    (M [<width pixel multiplier>,<height pixel multiplier>])
    (D <direction angle>)
    (D <string tilt> S <size> D <char tilt>)
    { (I <italic degrees>)
    {
    { (A <pattern set number>)
    ((B) <temporary attributes block> (E))
    { (W(temporary writing controls))
```

applications should include writing control specifications at the beginning of each graphic image to ensure the needed state of the graphics processor at the time of image generation. The defaults are: $W(V, I(W), F 3, M 1, N \varnothing, P 1, P(M 2)$, Sø).

Writing Modes
The four writing modes, Complement, Erase, Replace, and Overlay, can be used at any time, but only one at a time. They control the way pixels are placed in a graphic image, and their major effects are visible when a part of the image already exists.

MA-9450

Figure 5-17 Complement Writing

Table 5-8 Complementing the Foreground

Initial Poreground Specifier	Specifier Bit Pattern	Complemented Foreground Specifier	Specifier Bit Pattern
13	1	I 0	$\emptyset \square$
I2	10	I 1	$\emptyset 1$
I1	$\bigcirc 1$	I 2	10
IV	00	I 3	11

Complement Writing

Pormat: $W(C)$
During a write, complement the bit pattern of the foreground specifiers (see Foreground Planes) of the pixels present in the existing image wherever the pattern register (see patterns) is 1 and do not change wherever the pattern register is \emptyset. See Figure 5-17. Complement writing is generally reversible by repeating the same command. Complementing the foreground specifier gives the results shown in Table 5-8.
Use the Foreground Planes command to get other combinations with Complement writing.

Figure 5-18 Erase Writing

Erase writing
Format: (E)
Write each pixel with the background specifier if negative writing ($W(N \varnothing)$) is off, or write each pixel with the foreground specifier if negative writing is on. See Figure 5-18. This command does not use the pattern register.

MA-9451

Figure 5-19 Replace Writing

Replace writing
Format: (R)
Replace the current image with a new image. * Background areas in the new image and * Areas where the pattern memory is \emptyset erase the parts of the current image that were in that area.
Figure 5-19 shows boxes written with replace writing in which part of the shaded area of the upper box has been replaced with the shading pattern of the lower box.

Figure 5-2ø Overlay Writing

Overlay writing
Format: (V)
Write a new image on top of the current image, wherever the pattern memory is 1 , without erasing any part of the current image. Blank areas in the new image and areas where the pattern memory is 0 have no effect on the overwritten area. This is the default option in the VTll 25 graphics processor. Figure $5-2 \emptyset$ shows boxes written with overlay writing in which part of the upper box is written with both its original pattern and also the new pattern of the lower box.
Foreground Planes
Format: $W(F$ <integer $)$

$$
\begin{aligned}
\text { <integer> }= & 0=\text { no planes } \\
1 & =\text { plane } 1 \\
2 & =\text { plane } 2 \\
& 3=\text { planes } 1 \text { and } 2
\end{aligned}
$$

Any pixel can have four choices of appearance because there are two bits of memory for each pixel in the graphics processor. This command gives you control over the individual bits for each pixel in writing commands. (Screen Erase always clears all bits.)

Each of the 196,608 pixels in the graphics processor has two bits in the display memory. Each bit is in one of two identical planes of bits that have addresses that correspond to the display's pixel addresses. See Figure 5-21. The graphics processor uses both bits when it displays each pixel.

The two bits hold an address that selects one of four intensities and colors that the graphics processor can display at one time. These intensities and colors are set with the Screen Map control and are stored in the Output Map. The address stored in a pixel's two bits controls which of the four intensities and colors that the pixel has on the display.

The Foreground plane command lets you write each of the bits individually by limiting the write commands to one plane or the other. This has three main applications:

1. Suppose you want to use complement mode (perhaps because its effects are reversible by repeating the same command) to change an object from I3 (Intensity 3) to I2. During complement writing, both bits are changed. When both bits change (see Figure 5-21), the object changes from I3 to Iø. But turn off Plane 1 writing and only complement the low bit and you get I2. or turn off Plane \emptyset writing, only complement the high bit, and you get Il from I3.
Figure $5-21$ shows the process of writing the graphic memory with pixels controlled by the writing commands. The writing commands select the individual pixels to be written, the pattern controls whether the selected pixel changes or not, and then the Foreground Planes command controls which of the two planes can be written. The four addresses that the two bits form in the planes are shown for pixels (x, y), $(x, y+1),(x, y+2)$, and $(x, y+3)$ in the figure. These addresses point to the four values of intensity and color that are stored in the output map.

Figure 5-21 Foreground Planes and the Output Map

To select the right plane to write, see the figure. Complementing a pixel means that the two bits in memory for that pixel are changed to their opposite values. Complementing both bits means that if the intensity is I3, its complement is $I \emptyset$, and if the intensity is I2, its complement is Il.

Note the binary to decimal conversion and the output map in the figure. To change from I3 (White or Green) to I2 (Light Grey or Red) is a one bit change in Plane \varnothing with no change in Plane 1. But Complement changes the bits in both planes. By using the Foreground Planes command to turn off writing to Plane 1 (W(Fl)), you can use the complement command to change pixels from 13 to 12.

Remember to restore writing to both planes when you finish single plane writing.
2. One plane can hold a fixed image, like a graph grid, and the other plane can hold overlays that you can write in replace mode without redrawing the grid.
3. Another application for the Foreground Planes command is the alternate display (including blinking) of two graphic images. The graphics processor takes a noticable amount of time to draw most images into its memory. This drawing time makes blinking or other closely timed visual effects difficult to do. However, if you can afford to use only two colors or intensities in your images, you can use the two foreground planes as two separate graphic memories that can be drawn in with full pixel resolution.

Poreground Intensity and Color

Pormat: $W(I<$ integer $)$) or $W(I(<l e t t e r))$
 or W (I (H<hue>L<lightness> S<saturation>))

This command selects the appearance of the graphic objects that are drawn after this command from a range of four values that were entered into the output map by the Screen Output Map Definition (S (M)) command. An integer specifier selects one of the four output map values. A letter or HLS specifier makes the graphics processor compare the specifier with the four values stored in the color output map. The integer specifier that was defined to hold the color output map value that is closest to the foreground definition then becomes the
foreground value. This command cannot store a value in the output map but only selects from the available choices. If the letter or HLS specifier in this command is too different from the current output map values, the graphics processor may not find a close enough value and may give unpredictable results.

Any pixel can have any of the four values of monochrome intensity (for the internal monitor) and color hue, lightness, and saturation (HLS for the external color monitor). However, one value in the map is used as the background specifier (see Screen Background (S (I) and Screen Erase (S(E)), so any object drawn with the background color or intensity should be drawn on top of another object or it will not be visible.

Any pixel can have four choices of appearance because there are two bits of memory for each pixel in the graphics processor. See the Foreground Planes command for control over the individual bits for each pixel.

The default value is 13 or $I(G)$ or $I(L 1 \emptyset 0)$.
Pixel Vector Length Multiplier
Format: $W(M$ <multiplier>)
This command sets the number of pixels that pixel-related Position and Vector commands move or draw in one step. The default and minimum value is 1 pixel, and the maximum is 255. (Larger values modulo 256 ; \emptyset is set to 1 .)
Negative writing
Format: $\binom{\mathrm{N}}{1}=$ negative on $(\mathrm{N} \emptyset)=$ negative off
Negative writing inverts the effect of the pattern memory. For writing commands that use the pattern memory, where the memory is 1 , the background is written, and where the memory is \emptyset, the foreground is written.
Shading
The shading commands let you fill the inside of a graphic object with the same command you use to describe the outline of the operate as usual. When shading is on, the vector and curve commands curve path, the graph starting at each pixel on the vector or reference line. The shas processor draws a line to the shading whose Y-coordinate is specif reference line is the horizontal line default shading reference is when shading is turned on. The specify a different shading the current Y-coordinate. You can hading reference line in the shading command.

The default writing pattern used when writing the shading lines is the current writing pattern, which also has a default value of all l's. You can specify a text character from any of the graphic processor's character sets to be used as the shading pattern. Such shading can be used for area fill, but the graphics processor does not automatically ensure that arbitrary areas are completely and correctly filled; you must ensure that the correct reference lines are specified to get the shading effect that you want.

Shading with a pattern can provide density or "half-tone" effects. If you are limited to two intensity values, as for example with the LA34-VA hard copy printer, you can get grey scale effects by shading with different density characters. Use the Character Cell controls to define a set of characters that have different numbers of pixels dark, and use them as shading characters. The same technique can let you mix colors at the pixel level. Define characters that have the same number of pixels dark but that have the pixels offset from character to character. Then overlay write the graphic object with the different shading characters using a different foreground color for each character.

Shading On or Off
Pormat: $W(S 1)=$ shading on
$W(S \emptyset)=$ shading off
This command turns shading on for area fill. The current Y-position is the shading reference line unless you include the reference line command, below. The $S(E)$ command turns off shading and sets the shading reference line to the current position.

Shading character
Format: W(S 'shading character')
Turn shading on (same as Sl) and use the shading character in single or double quotes to provide a particular pattern for area filling. (See Patterns.) Use the Text command to select a character size or character set before specifying the shading character. When characters from the character set are being used as a shading pattern, only the first eight (of ten) lines of character pattern are used.

Shading reference line
Format: W(S [,<y-position>])
Including a Y position in a shading command sets the shading reference line to the needed position for proper fill of the graphic object to be drawn. This command is used with the Shading on or Shading

Character commands. Used by itself, this command turns shading on and clears the shading character (same as Si).

The shading is drawn from pixels on the outline of a graphic object to the reference line. If that line is in the wrong place, the shading can cover parts of the graphic object. For example, a reference line that is above a circle will cause a solid U shape to appear. The reference line needed for a circle is in the middle, where the x dimension is largest.

Other graphic objects can be more difficult to shade, particularly if they are concave on their left or right sides. See Figure 5-22. A general rule is to draw such objects in two or more sections, putting the shading reference line above one section and below the other. Shading patterns are always aligned everywhere in the display, so objects can appear continuously shaded even if they are generated in separate operations.

Shading with patterns (using the $W(P)$ commands) gives horizontal pattern lines. This is because the command to shade to a reference line actually draws a series of vertical vectors to that line, using the pattern.

The $S(E)$ command turns off shading and sets the shading reference line to the current position.

Patterns

Patterns allow you to vary the appearance of lines and shaded areas in a graphic object. The typical drawing process sets all pixels in the graphic object either to one of the three foreground intensity (or color) values or to the background value. A pattern keeps some of the pixels of the graphic object at the background value while the rest change to a foreground value. The pattern does not have to be related to the graphic object's outline.
Patterns are stored in a memory which is then read during a write operation to control the appearance of pixels in graphic objects. For example, a vector command may write a series of pixels in a memory is read bit by As the pixels are written, the pattern pixel should have thy bit to determine whether a corresponding shading pattern is the foreground or background intensity. The is also controlled by the pattern memory.
The memory is 8 bits wide, and its default contents are all l's (pattern Pl). Other patterns can be loaded into the patter memory, including standard patterns selected by number (Select Standard Pattern), or your own pattern loaded by number (Select (Specific Binary Pattern).

SHADING DRAWS FROM GRAPHIC OBJECTS OUTLINE TO SHADING REFERENCE LINE,

Figure 5-22 Selecting a Shading Reference Line

Select Standard Pattern
W(P <pattern number>)
This command selects a pattern for drawing the outlines of graphic objects. The patterns that have been included in the VTl25 graphics processor are listed in Table 5-9.
(Patterns 6 through 9 are reserved for future standardization, but are displayed in the VT125 as separated dots so they are visible.)

Table 5-9 Standard Patterns in the VTl 25

```
P\emptyset = Ø\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset
Pl = 11111111
P2 = 11110000
P3 = 11100100
P4 = 10101010
P5 = 11101010
P6 through P9 = 10001000
```

Specify Binary Pattern
W(P <binary pattern>)
A binary pattern is a two- to eight-bit pattern that you can set with 1^{\prime} s and g's. When the graphics processor draws on the screen, bits that are set to l are drawn, and bits that are set to \emptyset appear as gaps in the line. (If negative writing is on, the effects of l^{\prime} 's and \emptyset 's are switched.)

A maximum of 8 bits can be specified for the pattern memory. During the drawing of graphic objects, groups of 2,4 , or 8 bits are repeated as full subunits. Table $5-10$ illustrates the repeat methods.

Table 5-1ø 2, 4, and 8 Bit Binary Pattern Repeats

Pattern (Bit \#)	Pattern Repeated\quad (spaces for clarity)
12	$1212 \quad 12$12 12 12 12 $12 \ldots$ 1234 1234 1234 1234 $1234 \ldots$
12345678	12345678

Groups of 3 are repeated twice and then followed by the first two bits of the group before starting again. Groups of 5,6 , or 7 are displayed once and then followed by the first 3, 2, or 1 bits of the group before starting again. Table 5-11 illustrates the repeat methods.

Table 5-11 3, 5, 6, and 7 Bit Binary Pattern Repeats

$\begin{aligned} & \text { Pattern } \\ & \text { (Bit \#) } \end{aligned}$	Pattern Repeated (spaces for clarity)
123	$\begin{array}{lllllll}123 & 123 & 12 & 123 & 123 & 12 & 123 . .\end{array}$
12345	$123451231234512312345 \ldots$
123456	$1234561212345612123456 \ldots$
1234567	$1234567123456711234567 \ldots$

For example, Pllø draws lines dashed with equal gap and mark spacing. Pllløølll draws dashed lines with marks three times as long as gaps (because of the pattern repeat). Pløl draws a pattern 1011011010110110 (note that the 3 bit pattern is not cyclic over all groups of 3 bits).

For more variations, use the Pattern Multiplier command.

Set Pattern Multiplier
W(P (M <pattern multiplier>))
The pattern multiplier sets the number of pixels that are affected by each bit in the pattern memory. The minimum value is 1 pixel and the maximum value is 16 . (\varnothing does not change the setting. All other values set the multiplier to 16.) Figure $5-23$ shows the pattern memory and multiplier in operation. The default multiplier is 2 so the interaction of the write modes and some patterns does not prevent graphic objects from appearing the way you want. This makes odd-y simulation work to let a square have the same number of addresses in both axes.

Custom Writing Control Definition

Format: $W(W<i\rangle(P\langle j\rangle, N\langle k\rangle))$
This command defines the values that replace a specific value of current contents at a pixel location. The contents of the pattern memory selects which of the two values is used. The

Figure 5-23 Pattern Memory and Multiplier

Figure 5-24 Custom Writing
Control Command
command must be expanded to define the complete writing control. See below. Numbers are in the range \emptyset to 3 .

〈i> =
current pixel contents (repeat for \varnothing through 3).〈j> =
writing value (\varnothing - 3) if pattern memory bit is 1.
<k> =
writing value ($\varnothing-3$) if pattern memory bit is \varnothing.
The VTl25 has several writing controls that define the effects of a writing operation on the display. Standard writing controls provided include, for example, Complement and Overlay.

Each of the standard writing controls is a predefined shorthand use of the $W(W)$ command. You can create your own writing control to get the effect you want. The $W(W)$ command lets you define writing actions for single pixels based on every possible combination of bit plane and pattern memory contents.

Figure 5-24 shows that the hardware associated with the $W(W)$ command is a one of eight decoder and an eight by two bit memory. The decoder has two inputs. The current pixel in the display bit map supplies the two low bits. The current bit in the pattern memory supplies the high bit. The eight outputs from the decoder select eight possible writing choices for the current pixel.

The $W(W)$ command loads the eight by two bit memory with your choices for new information to write into the current pixel location. All the numbers in the command represent two bit numbers in the range \emptyset to 3. The command introduction is $W(W$. The next number <i> is the current pixel value. All four possible current pixel values are inputs to the 1 of 8 decoder, so the command must be repeated four times to change the complete memory. The rest of the command is ($\mathrm{P}\langle\mathrm{j}\rangle, \mathrm{N}\langle\mathrm{k}\rangle$). P and N are keyletters for the contents of the pattern memory. <j> and <k> are numbers representing the new information to be written. For a given <i>, if the current bit of the pattern memory is 1 (P for positive), then <j> is the value that is written. If the current bit of the pattern memory is \emptyset (N for negative), then <k> is the value that is written.

For example, if the current pixel is \varnothing and you want to change it to 3 if the pattern memory bit is 1 , and leave it \emptyset if the pattern memory bit is \varnothing, the command is $\mathrm{W}(\mathrm{W} \emptyset(\mathrm{P} 3, \mathrm{~N} \emptyset))$.
$W(R), W(C), W(V), W(E), W(N) M, W(F\langle n\rangle)$ and $W(I\langle n\rangle)$ are actually shorthand expressions for forms of the $W(W)$ command. For example, the equivalent of $W(C)$ is:
$W(W \emptyset(\mathrm{P} 3, \mathrm{~N} \emptyset) \quad 1(\mathrm{P} 2, \mathrm{~N} 1) \quad 2(\mathrm{P} 1, \mathrm{~N} 2) \quad 3(\mathrm{P} \emptyset, \mathrm{N} 3))$
$\mathrm{W}(\mathrm{Fl}, \mathrm{R})$ is:
$W(W \emptyset(\mathrm{P} 1, \mathrm{~N} \emptyset) 1(\mathrm{Pl}, \mathrm{N} \emptyset) \quad 2(\mathrm{P} 3, \mathrm{~N} 2) \quad 3(\mathrm{P} 3, \mathrm{~N} 2))$
$W(F 3, V, I 2)$ is:
$\mathrm{W}(\mathrm{W} \emptyset(\mathrm{P} 2, \mathrm{~N} \emptyset) 1(\mathrm{P} 3, \mathrm{~N} 1) \quad 2(\mathrm{P} 2, \mathrm{~N} 2) \quad 3(\mathrm{P} 3, \mathrm{~N} 3))$
Specifying any shorthand form sets the complete map to the appropriate value. When you use $W(W)$, only those choices you specify are filled in. Unspecified values remain as previously set.

Table 5-12 is a summary of the Writing Controls.

Table 5-12 Writing Controls Summary

Table 5-12 Writing Controls Summary (Cont)

SCREEN CONTROLS

Screen controls are the commands that affect the complete screen of the VTl25 at the same time. The Screen Controls section explains the controls for the positioning and addressing of the complete image, the color and background of images, timing of actions, and the production of hard copy output. All screen control commands begin with S.

Initial Screen Control Defaults
When the VTl25 graphics processor first powers up, many of the screen controls listed in this section have default values assigned. The defaults allow the graphics processor to respond immediately to many of a novice ReGIS user's commands. General applications should include screen control specifications at the beginning of each graphic image to ensure the needed state of the graphics processor at the time of image generation. The defaults are: $S[\varnothing, \varnothing](A[\varnothing, \emptyset][767,479], I(D), S 1, T \emptyset)$. (See below for M defaults.)

Screen Scrolling
Format: $S\langle p v\rangle$ or $S[\langle p o s i t i o n\rangle]$
A window (represented by the display screen of the VTl25 terminal) moves around the screen image. The window moves its top left corner by a relative amount if the specifier is a relative position or a pixel vector, or to an absolute position (measured from the origin) if the specifier is an absolute position. Pixel multipliers apply if the pv form is used, and the origin is determined by the screen addressing option if the position form is used. (See the Position section above, and Screen Display Addressing below.) Display addresses stay with the image so the image stays in the same position relative to the origin. See Figure 5-25.

DISPLAY WINDOW'S TOP LEFT CORNER MOVES TO ADDRESS $[100,100]$. SCREEN SCALE=2

Figure 5-25 Scrolling the Display Window

If the Screen Scale command (below) changes the display of an image, this command moves the display window to allow any part of the image to be seen. Also, the image scrolls through an address space of 256 pixels vertically (represented by 512 addresses for odd-Y simulation) and wraps from top to bottom. The visible area is only 240 pixels (or $48 \emptyset$ addresses) so vertical scrolling allows all of the image to be seen. The image wraps horizontally at pixel (and address) 768.

Screen Display Addressing Definition
Format: $S(A[\langle p o s i t i o n\rangle][\langle p o s i t i o n\rangle])$
The addressing option is a compatibility feature that lets the VTl 25 display graphic images that are created for other ReGIS devices that have different resolutions or address orientations. Use a host system's software to do scaling (size) transformations and maintain the performance of the graphics processor. Scaling transformations done by the graphics processor have roundoff errors, resulting distortions, and generally produce smaller images than expected. Axis transformations (for example, moving the origin to the lower left corner) may be done by the graphics processor because they do not have much effect on the performance of the graphics processor and do not cause distortions or size changes.

NOTE: Pixel vector directions do not change with the addressing option.

The first <position> is the address you want the upper left hand corner of the display to have, and the second <position> is the address you want the lower right hand corner of the display to have. If either or both <position> are missing or illegal (negative), the entire option is ignored and the display coordinates stay unchanged. The graphics processor defaults to a specification of A $[\varnothing, \varnothing][767,479]$.

If the right margin value is smaller than the left margin value, the x coordinate increases to the left. If the bottom margin value is smaller than the top margin value, the y coordinate increases going up. See Figure 5-26. There are no absolute negative coordinates in ReGIS, so do not specify an addressing range that has negative coordinates.

The graphics processor uses odd-y simulation. Odd-Y simulation means that although the vertical resolution of the graphics processor is 240 pixels,

Figure 5-26 Axis Address Transformation

Figure 5-27 VTl25 Addressing Range

```
Horizontal wrap =
(X-address option specifier X 4096/767) - 1
Vertical wrap =
( \(Y\)-address option specifier X 4096/511) - 1
```

each pixel can be addressed by both an even number and the next higher odd number. This system allows compatibility with higher resolution displays and lets a given number of addresses in the x direction be the same physical length as the same number of addresses in the y direction.

For compatibilty with future devices that have a larger displayable area than the graphics processor's screen, and to allow proper computation of graphic objects that partially extend into the borders of the screen area, ReGIS does not reject addresses that are outside the area of the displayable screen. The VTl25 has a computing address space with full resolution that extends at least one full screen size in each direction (see Figure 5-27) provided that the address option specification is less than $[16383,16383]$. If no computing address space is needed outside the displayable screen, the address option specification can be as large as [32767,32767].

Beyond a certain address, which varies according to the address option specification, the graphics processor wraps graphic objects into the opposite side of the screen. Wrap addresses greater than 32767 are invalid. The wrap addresses can be calculated with the formulas in Table 5-13.

The Current Position as reported by the Report command is given in the coordinates set by this option. If a command has moved the cursor into the address space above or to the left of the screen, it is in "negative" address space. ReGIS cannot use negative addresses but the graphics processor reports the location of the current position in the form: 65536 + negative location. For example, a position løø pixels to the left of $[\varnothing, \varnothing]$ is computed as $65536+(-100)=65436$. You cannot use this form to address the negative address space. Only relative movements from positive addresses can move the current position in the negative address space. The graphics processor's ability to compute locations in the negative address space prevents distortions or improper offsets at the negative boundaries. It cannot be used to create images for display.

When the addressing option is set to be any value except the default, integer scaling is used so that there is a constant integral relationship between the number of pixels that are displayable on the screen and the number of pixels that can be addressed by the coordinates that are selected. The result is that images prepared on low resolution devices transfer to other low resolution devices with constant interval step sizes that may waste up to half of the receiving device's display area.

Screen Erase
Format: $S(E)$
Sets the complete screen area to the background intensity and color value that was selected by the Screen Background Definition (S(I)) command from the range of values in the output map set by the Screen Output Map Definition (S(M)) command. The current cursor position is not changed. Shading is turned off and the shading reference line is set to the current position. No other writing controls are affected. Any curve interpolation is terminated and all (B), (S), and (E) coordinate blocks are cleared. The contents of the output map (see Screen Output Map) are unchanged.

The E keyletter has a restriction in its formatting with other commands. ReGIS understands a string of numbers followed by E to mean exponential (scientific) notation. Therefore, a comma is necessary in the command $S(I \emptyset, E)$ to cause a screen erase to intensity \emptyset.
Screen Hard Copy Output
Format: $S(H \quad(P[<p o s i t i o n>])$ [<position>][<position>])
Generate a hard copy image of the screen area within the rectangle defined by the two position specifiers. If only one position specifier is given, that position and the current cursor position define the rectangle. If no position specifiers are given, the whole visible screen is output. The output image is scaled as the screen is scaled by the $S(S)$ command, and the range of addresses printed is defined by the two position specifiers.
$\mathrm{S}(\mathrm{H}(\mathrm{P}[\langle$ position>])) is a command that specifies the location of the upper left corner of the hard copy image on the paper. The position is measured from
the left margin at the current vertical print head position. The value set by the P option stays the same until it is changed by another P option. The default position for hardcopy output is $[50, \varnothing]$ to horizontally center the image on 8.5 inch paper. Unless the P[<position>] option is followed by other position arguments, it only sets the image corner location without causing a hard copy printout. If it is followed by arguments or another H keyletter, it causes a printout.

See the Media Copy control sequence in the Received Character Processing chapter under VTl25 Communication and Graphic Control Sequences. With Media Copy, the hard copy image output can be sent either to the auxiliary port for printing, or to the host for storage.

NOTE: Entering and exiting SET-UP cancels a Hard Copy command.

Most printers can only display two intensities, on and off. The VTl25 can display four monochrome intensities. To generate hard copy output, the VTl25 puts a dot wherever there is a non-zero intensity according to the monochrome output map. See Shading in Writing Controls for a method for getting grey scale hard copy.

Screen Background Definition
Format: $S(I<i n t e g e r\rangle)$ or $S(I(\langle l e t t e r\rangle))$
or $S(I(H<h u e>L<l i g h t n e s s>S<s a t u r a t i o n>))$
This command selects the appearance of the background. The background is the intensity or color that the screen has when it is erased (S(E)) or when a graphic object is written that specifies background writing. The background is selected from a range of four values that were entered into the output map by the Screen Output Map Definition (S(M)) command. An integer specifier selects one of the four output map values. A letter or HLS specifier makes the graphics processor compare the specifier with the four values stored in the color output map. The integer specifier that was defined to hold the color output map value that is closest to the background definition then becomes the background value.

This command cannot store a value in the output map but only selects from the available choices. If the letter or HLS specifier in this command is too different from the current output map values, the

Table 5-14 Integer or RBG Colors in the VTl25

Color Name	RGB	HLS	
Dark	D	Lø	
Red	R	H120	L50 S1øø
Green	G	H240	L50 S10 ${ }^{\text {c }}$
Blue	B	Hø	L5 S1ø
Cyan ($\mathrm{B}+\mathrm{G}$)	C	НЗøø	L50 S100
Yellow ($\mathrm{R}+\mathrm{G}$)	Y	H180	L50 S1øø
Magenta ($\mathrm{R}+\mathrm{B}$)	M	H60	L50 Sløø
White ($\mathrm{R}+\mathrm{G}+\mathrm{B}$)	W	L1ø 0	

graphics processor may not find a close enough value and may give unpredictable results.

The default value is $I \emptyset$ or $I(D)$ or $I(L \emptyset)$.
Screen Output Map Definition
Format:
$\mathrm{S}(\mathrm{M}\langle\mathrm{n}>$ (L<mono lightness>) (A H<hue> L<lightness> S<saturation>))
$\langle n\rangle$ is $\varnothing, 1,2$, or 3 to select the output map section that stores the definition.
(L<mono lightness>) is an HLS specifier with only the L or lightness specifier given, or a letter specifier. See Table 5-14. It selects the intensity of a given pixel on the monochrome monitor in the VTl25 terminal. The four possible lightness values (dark, dark grey, light grey, white) are on a percent scale that is divided into four ranges: $\quad \varnothing-24,25-49,5 \emptyset-74,75-1 \emptyset \emptyset$. Any percentage within a range selects the lightness value for that range; for example, 665 selects the third value: "light grey". Values are truncated to their integer part, so 24.99 is in the $0-24$ range while 25.00 is in the $25-50$ range. H and S specifiers are ignored in the monochrome part of the command.
(A H<hue> L<lightness> S<saturation>) is an HLS specifier that selects the intensity of a given pixel of an external (Alternate) color monitor. Many different colors can be displayed using the HLS specifiers because the six bits of information that each output map holds for the color monitor can describe any of 64 combinations. See Figure 5-28 for an illustration of the range of hues available for different levels of lightness and

NOTE: DEGREE SPECS DEFINE THE SEGMENT FOLLOWING COUNTER CLOCKWISE.

- THERE ARE FOUR MONO INTENSITIES, THEY ARE SHOWN IN SMALL CIRCLES.

Figure 5-28 Colors in the VTl25

Table 5-15 Default Output Map Values

S (Mø	(L0)	(A L \varnothing)	
1	(L25)	(A Hø	L50 Sløø)
2	(L50)	(A H120	L50 Sløø)
3	(L75)	(A H240	L50 S1ø0)

saturation. A more limited set of colors can be selected using the letter specifiers shown in Table 5-14. Appendix C explains the HLS specifier system in more detail.

If the graphics processor does not understand a specifier, perhaps because it was incorrectly formatted, the output map involved is set to a default light grey: H L5 $\mathrm{S} \emptyset$. There is a set of default values for the output map that can be used at power-up. The default values can be described by the command shown in Table 5-15.

The VTl25 displays color and brightness by displaying one of four preset values for each pixel on the screeen. The VTl25 can display each pixel on the screen with a different hue, lightness, or saturation. However, it can do this with only four different combinations at one time. That is, any pixel can be different from its neighbors, but there can only be four different pixel colors on the screen at one time.

The VTl25 has a pixel memory and an output map. For each pixel,there are two bits of information. These pairs of bits are in two separate but closely connected planes of addressable locations. (See Figure 5-2l in Writing Controls.) The pairs of bits represent the four numbers $\varnothing, 1,2$, and 3 when their binary values are decoded. (The Foreground planes command has a more detailed discussion of this subject.)

Each of the four numbers is the address of one of four output map locations. Each output map location holds a description of one intensity for the monochrome display in the terminal, and one color for the external color monitor. When the pixel memory is being displayed, each pixel bit pair indicates the output map location that holds the pixel's appearance on the display screen.

Each of the four output map locations holds one of four levels of intensity for the monochrome display: dark, dark grey, light grey, and white, and one of 64 different values of lightness, hue,
and saturation for the color monitor. The information in each of the four output maps can be set using the mapping command with any of the three kinds of specifiers: numbers, letters, or HLS. Table 5-14 (above) lists the specifications for the colors available by integer or RBG letter code in the VTl25. Many more colors can be defined with HLS. Figure 5-29 shows the default values stored in the output maps for the internal monochrome and external color monitors.

Specifying anything with A changes a color, specifying anything without A changes only the monochrome map. Figure $5-3 \varnothing$ shows sample definitions and the resulting maps.

Screen Scale
Format: $S(S<s c a l e\rangle)$ or $S(S(X<s c a l e>Y<$ scale $\rangle))$
This command takes the contents of the graphic memory and changes the portion of the memory that appears on the screen at any one time. If <scale> is a number, for example $\mathrm{S}(\mathrm{S} 2)$, use that number as the scaling value for both the X and Y dimensions. To scale differently in X and Y, put $X<n u m b e r>$ and Y <number> in parentheses at <scale>, for example S(S(X2)). Legal values in the VTl25 are 1 for usual size and 2 for double size. Values less than 1 are understood as 1 and values greater than 2 are understood as 2. Dimensions not specified do not change. When the image is enlarged, the upper left hand corner of the image stays in the same place, so you must offset the display with the Scrolling command to see the other areas of the display. See Hard Copy for the effects of scaling on that command.

Screen Time Delay
Format: $\mathrm{S}(\mathrm{T}<\mathrm{ticks}$)
The time delay option causes ReGIS to delay the processing of the next command for the specified amount of time. Ticks is either $6 \emptyset$ ths or 50 ths of seconds, depending on the Power SET-UP feature setting. The largest possible number is 255 , which is approximately 4 or 5 seconds.

Table 5-16 is a summary of the Screen Controls.

Figure 5-29 Default Output Map
$\mathrm{S}(\mathrm{M1}(\mathrm{AW}))=$

Figure 5-3ø Sample Output Map Definitions

Table 5-16 Screen Controls Summary

MACROGRAPHS

Macrographs are a character string substitution utility provided in ReGIS. Strings are command strings or any other string of characters that are stored in the VTl25 memory and then substituted in another command string. Generally, a macrograph is a part of or a complete ReGIS command string that is used often. ReGIS inserts the contents of the macrograph in the command string at the position in the command string where the macrograph is invoked.

The twenty-six letters of the alphabet are the keyletters for defining and invoking macrographs, so 26 macrographs can be defined. Each macrograph can be as long or as short as needed. There are at least $5 \emptyset \emptyset \emptyset$ characters of storage available in the VT125 memory for all macrographs.

A macrograph can invoke another macrograph but not itself, and you cannot define a macrograph inside a macrograph (the inner terminator terminates the outer definition) or in a quoted string (the definition or invocation characters become part of the text in a quoted string).

Clear All Macrographs

Format: @.
This is the same as defining all 26 macrographs as null or empty. If this command is inside a macrograph, the macrograph is completed and then all macrographs are cleared.

Macrograph Definition

Format: @:keyletter character_string @;
@: (commercial at-sign and colon) Starts the macrograph definition.
keyletter
Defines one of the 26 letters of the alphabet to be the name of the macrograph. ReGIS ignores the case of the letter. If a macrograph with the same keyletter was previously defined, it is cleared before the new definition is saved. A null definition (no characters in the character string) is legal and clears any macrograph with that keyletter.
character_string
Specifies the characters that are saved as the macrograph. All characters in character string are saved including all control characters. The macrograph definition start and end characters are not included with the saved characters. character_string has no fixed maximum length, but the number of characters saved in all macrographs should be less than 5000 .
@; (commercial at-sign and semicolon)
Ends the macrograph definition and returns ReGIS to the command level it had before invoking the macrograph. The semicolon does not synchronize the command level the way it does at any other place in the command string. Do not put a control character between these two characters.


```
Clear all macrographs
Define macrograph
Invoke macrograph
```


Macrograph Invocation

Format: @ keyletter
The @ sign and one of the 26 keyletters invokes the macrograph with that name and inserts the character string in the ReGIS command string in place of the @ and keyletter. A macrograph can not be used to supply a keyletter for an @ sign: @@ is illegal. Invoking an empty macrograph is not an error.

Table $5-17$ is a summary of the Macrograph commands.
CHARACTER CELL CONTROLS
The VTl25 graphics processor can write text with up to four character sets at one time. Each character set has 95 displayable characters. One character set is always ASCII but the other three can be loaded into the graphics processor's character memory over the communications line.

Select Character Set for Loading
Format: $L(A<i n t e g e r>)$
Select one of three loadable character set memories in the graphics processor for loading. Set \varnothing is the ASCII character set in the VT125 graphics processor and can not be changed. Sets 1, 2, and 3 can be loaded according to the instructions in Load Character Cell below. The Select command can include a name as in Associate Name below.

The Load command selects a character set for loading, but the actual loading process does not have to follow immediately. Other commands can be performed without changing the selection. In particular, the Text command selects a character set for writing. This Text selection is not the same as the Load selection and does not change the character set selected for loading.

Associate Name with Current Character Set
Format: L(A"<name>")
This optional command gives a name, which may be up to ten characters long, to the character set currently selected for loading. This name is used for reporting the current character set (see Reports). Both <name> and <integer> (above) may be specified in the same option, but if <name> is specified first, it will be associated with the currently selected set, not necessarily the one specified by <integer>.

Load Character Cell
Format: L"<ascii char>" <hex pair>,...,<hex pair>;
A character set is 95 cells, with each cell identified by one ASCII printing character in <ascii char> enclosed in double ("") or single ('') quotes. However, if more than one character is in <ascii char>, only the first character is used and the rest of the characters are ignored.

Each character cell is ten pixels high and eight pixels wide. It is defined by the locations of bits in a series of ten eight-bit bytes that are transmitted as hexadecimal digit pairs separated by commas. You can load other character cells in the set in the same L command by putting the quoted character immediately after the last <hex pair> of the previous character cell. A semicolon terminates the complete Load command. Figure 5-31 shows a sample cell and its construction.
l's represent light (foreground) pixels in usual (non-reversed) writing. The default width for displayed characters using the S<integer> Text command is 9 pixels. The ninth pixel is copied from the first pixel. If you want a dark space between characters, you must either use only the right seven bits in each row (like the permanent ASCII character set), or use the explicit text size and spacing commands.

Cells are always loaded one row at a time using hexadecimal ascii digits for the character specifiers. A cell is specified from the top down, with the most significant bits in the left digit of the specifier. If more than two digits are given for a single line of the character specifier, the digits on the left are ignored. If only a single digit is specified, it fills the low order portion of the character map line specifier, setting the

FORMAT: L"a"FF,99,A5,C3,C3,A5,99,99,99,FF;

Figure 5-31 Sample Character Cells

Table 5-18 Character Set Definition Format

```
L( A<integer> "<name>") "ascii character"
    <hex digit>,<hex digit>,...,<hex digit> "ascii
    character" <hex digit>,....,<hex digit>;
```


Table 5-19 Character Cell Control Summary

```
L { (A<integer>)
    { (A"<name>")
    {"<ascii char>" <hex pair>,\ldots..,<hex pair>;}
    { "<ascii char>" <hex pair>,...,<hex pair>; } Load cell
```

high order part to zero. If less than ten specifier lines are given, the unspecified portion of the cell is cleared to zero.

Table 5-18 shows the format for a complete character set definition.

Table 5-19 is a summary of the Character Cell controls.
REPORTS
The report command causes the graphics processor to send information through the requesting channel. There are three types of reports.

If multiple reports are requested in a single report command or report command option, each separate report requested is sent as if it was the only report requested. Every report sent is ended with a carriage return.

In a terminal to host environment, take care that data reported are not echoed back to the terminal in a way that could cause errors. For example, a cursor position echoed to the terminal could cause either an unwanted vector or curve element, or an unmatched point specifier. A macrograph report that is very long (more than $4 \emptyset-5 \emptyset$ characters) and is echoed back to the terminal may cause the terminal to hang in a deadlock situation: The terminal refuses (using XOFF) to accept characters echoed until the report is complete. If the host cannot accept the remainder of the report without echoing it, then the deadlock occurs.

Report Character Set Selected for Loading
Format: $R(L)$
The character set name is reported back in the same form as the option specifier that defined it, for example, (A"Greek").

Report Contents of a Macrograph
Format: $R(M(\langle k e y l e t t e r\rangle))$
The macrograph with name <keyletter> is reported back headed by a macrograph report indicator "@=<keyletter>" and followed by a macrograph terminator "@;" followed by a carriage return. Any control characters that were saved as part of the macrograph are also reported back. If there is no macrograph defined for the keyletter, a null macrograph is reported back (no characters), enclosed in the indicator and terminator. Include more keyletters in the inner parenthesis for more reports. The macrograph report indicator format is ignored if echoed back to the terminal.

Report Use of Macrograph Storage
Format: $R(M(=))$
With an equal sign " =" in the command, the report lists the status of macrograph storage in the form:
"<free>,<total>"
where <free> is the number of characters still available for macrograph storage and <total> is the total number of characters of macrograph storage provided in the graphics processor memory. Storage in use may be calculated by subtracting <free> from <total>. The report is ended with a carriage return.

Report Cursor Position
Format: $R(P)$
Report the current cursor position in user coordinates as set by Define Display Addressing.

The cursor position is reported as a pair of unsigned numbers, X-value first, enclosed in square brackets.

Table $5-2 \emptyset$ is a summary of the Report command.

Table 5-2ø Report Command Summary

(L) (M(<keyletter>) ($M(=)$) "<free>, <total>" (P)	Set selected for loading Contents of macrograph Use of storage Reply to Use Cursor position

CHAPTER 6

VT105 EMULATION

6.1 INTRODUCTION

The VTlø5 function set is described in this chapter. It is the same as the VTlø5 as described in the VTlø5 User Guide with the following exceptions.

1. The control sequence to enter VTlø5 mode is not ESC 1 , but ESC P t (DCS format). The sequence to exit VTlø5 mode is not ESC 2, but ESC \ (ST).
2. Only one VTlø5 emulator can exist in a VTl25. Accesses to a second waveform generator board (an optional configuration in the VTl05) through command characters P, Q, R, S, T, X, Y, Z [, and \backslash are ignored.
3. The relative positions of the graphics and text display fields are not exactly the same as in the VTlø5. There are always at least 6 VTløø character positions to the left of the left graphics margin, and the width of the graphics field with respect to the $8 \emptyset$ character VTløø text field may be off by one or two characters.
4. The resolution of the VTlø5 is mapped into the VTl25 display using non-uniform dot spacing. Therefore, there may be some small scale differences visible in some graph presentations.
5. The VTlø5 interactive graphics test does not exist in the VTl25 emulation. The hardware is tested by the VTl25 tests.
6. Some actions performed by dedicated hardware in the VTlø5 (blank, reset, and shade, for example) will take longer to execute in the VTl25, and may cause a slight difference in performance between the machines.

NOTE: The state of the VTl25 cannot be guaranteed if you switch between protocols. For example, while it may be possible to use ReGIS to add to a VTlø5 presentation, you cannot be sure that either protocol will be where you left it when you switch between them. This is different from switching between ReGIS and text mode, where ReGIS stays in the same state until you return.

This chapter describes how to:
Select the graph drawing mode
Establish the graph area
Establish desired display
Load graph data
Generate shade lines, cursors, and grid
Enter strip chart data
6.2

ENTERING THE GRAPH DRAWING MODE
ESC P t ($03312 \emptyset 164$) switches the terminal to VTlø5 graph drawing mode. The terminal will remain in this mode until ESC $\backslash(033$ 134) is received.
6.3

DEFINITIONS AND LIMITATIONS

GRAPH:

GRAPH MARKER:

HISTOGRAM:
(SHADED GRAPH)

SHADE LINE: (BASELINE)

HORIZONTAL LINES/ VERTICAL LINES:

STRIP CAHRT:

A graph is a series of points representing the variation in value of two variables: X and Y. For each horizontal value(x), there can be only one Y value; example, a sine wave.

A graph marker is a short vertical line that may be programmed to mark any point of the graph. Each marker represents a specific value of X and appears at intervals of $Y=240 / 16$. As many as 512 markers can be placed on each graph or histogram for a total of 1024 markers. See Figure 6-1.

A histogram in the VTlø5 is a graphic display that has the area between the graph line and the bottom of the graph drawing field intensified. Two histograms can overlap and still be discernible. A bar graph is an example of a histogram, as shown in Figure 6-2.

A shade line (baseline) is the line referenced for shading a graph. One shade line can be displayed for each of the two graphs. If no shade line is established, the graph can be shaded to the bottom of the graph drawing area. (See Histogram.)

Horizontal lines and/or vertical lines may be displayed in the graph area to represent set values of X or Y. As many as 512 vertical or 240 horizontal lines may be individually displayed on the screen. For example, a grid is displayed using specific values for horizontal and vertical lines, as shown in Figure 6-3.

A strip chart is a graph or histogram that permits new data to be added to its right side

Figure 6-1 Graph with Graph Markers

Figure 6-2 Histogram Display (Shaded Graph)

Figure 6-3 Example of a Grid Display
while shifting previous data to the left, as in Figure 6-4. Vertical and horizontal lines, if present, move from right to left as the strip chart moves, and wrap around the screen as they leave the left edge.

DUAL STRIP CHART:

RECTANGULAR GRAPH DRAWING FIELD:

SQUARE GRAPH DRAWING FIELD:

GRAPH RESOLUTION:
Dual strip chart is a feature that allows both Graph \emptyset and Graph 1 to pass across the screen.

The rectangular graph drawing field is one of two aspect ratios selectable within the VTlø5. It has a $20 \times 10.9 \mathrm{~cm}(8 \times 4-3 / 8 \mathrm{in})$ graph drawing field compatible with previous DIGITAL graph drawing terminals (e.g., VT55). See Figure 6-5.

The square graph drawing field is a selectable aspect ratio with a $16.5 \times 11.5 \mathrm{~cm}(6.5 \times 4.6$ in) graph drawing field. It compresses the X-axis length and provides a greater area outside the field for alphanumeric labels, grid identifiers, or notes. See Figure 6-6.

Up to 512 horizontal and 230 vertical points may be displayed per graph in the rectangular graph drawing field; 512×240 points, in the square graph drawing field.
6. 4 SELECTING THE GRAPH DRAWING FIELD

The VTlø5 has two selectable graph drawing fields or formats. Both formats display up to two 5l2-point graphs having single valued functions of X. Either or both graphs can be displayed as a histogram or a strip chart. Graphs and histograms can overlap and still be discernible, allowing the use of the entire field for both graphs, both histograms, or a graph and a histogram displayed together. Both formats display individually programmable horizontal and vertical lines over the entire graph field allowing a grid to represnt any desired value. Graph markers can be displayed in either format. Table 6-1 compares the formats and how each is selected.

Example:

Character

Sequence
I space! $\quad 111040 \emptyset 41$

Field
Enable square format Enable rectangular format
6.5 SELECTING DESIRED DISPLAY

Enabling graphs, histograms, strip charts, and shade lines (baselines) is accomplished by loading control register \emptyset in the Vtig5; enabling graph markers, vertical lines, and horizontal lines is accomplished by loading control register l. The registers are loaded by sending a two or three character sequence from the

Figure 6-4 Strip Chart Display (Moves From Right to Left)

Figure 6-5 $\begin{aligned} & \text { Rectangular Graph Drawing } \\ & \text { Field }\end{aligned}$

Figure 6-6 Square Graph Drawing Field

Table 6-1 Comparison of Graph Drawing Formats

Feature	Rectangular Format	Square Format
Graph Field (maximum)	$\begin{aligned} & 20 \times 10.9 \mathrm{~cm} * \\ & (8 \times 4.3 \mathrm{in}) \end{aligned}$	$\begin{aligned} & 16.5 \times 11.56 \mathrm{~cm} * \\ & (6.5 \times 4.625 \mathrm{in}) \end{aligned}$
Graph Resolution (maximum)	$\begin{aligned} & 512 \times 230 \\ & \text { points } \end{aligned}$	$\begin{aligned} & 512 \times 240 \\ & \text { points } \end{aligned}$
Features		
Graphs	2	2
Shaded Graphs	2	2
Movable Shade lines	1 per graph	1 per graph
Strip Charts		2
Vertical Lines	512	512
Horizontal Lines	230	240
Graph Markers	512 per graph	512 per graph
Space provided in left margin for:	1 character	
	(column 1)	(columns 1--8)
Character lines below graph field:		none
	(line 24)	
Selected on Initialize	Yes	No
Program selectable by:	I space space	I space!
Display using previous DECgraphic software(i.e., VT55)		
	unchanged	and width are
		changed
NOTE: These dimensions come from the VTl05		ecification and
slightly different in the	Tl25 emulation	e them for compar
of the formats only.		

keyboard or host computer. The number of characters depends on the type of graph or shade line (baseline) desired. The control bits are encoded as 7-bit ASCII characters that are sent to the terminal.
6.5.1 Loading Control Register \emptyset

To determine the required bits to set in register \emptyset, refer to Table 6-2. A seven digit binary code transmits the desired display. The bits are set as desired, for example: Bit 2 is set to enable Graph 1: bit \emptyset is set to enable the display. The binary code created is $\emptyset 100101(0458)$. For examples of loading register \emptyset, see Table 6-3 and Table 6-4.

Table 6-2 Load Enable Register \emptyset Command
Rectangular or
Square Format
lst character: A (1018)
2nd character: variable (See below)
3rd character: variable (See below)
Explanation:
The second character is formed by setting bits where the bits have the following functions:

```
2nd Character (Register Ø)
```


Bit

6 Always ø.
5 Always 1.
4 If l, displays graph 1 as a shaded graph to the bottom of the graph field (Histogram 1).

3 If 1 , displays Graph \emptyset as a shaded graph
to the bottom of the graph field
(Histogram Ø).
2 If 1 , displays Graph 1.
1 If 1 , displays Graph \emptyset.
If 1 , enables all graphic information
to be displayed.
NOTES:

1. Enabling graph \emptyset and histogram \emptyset (or graph 1 and histogram 1) at the same time intensifies the graph envelope.
2. Enabling Shade Line \emptyset (or Shade Line 1) automatically shades Graph Ø (or Graph 1); Histogram Ø (bit 3) and Histogram 1 (bit 4) do not need to be enabled when shade lines are used.

Table 6-2 Load Enable Register 0 Command (Cont)
3rd Character (Register Ø)

Bit
6 Always \emptyset.
5 Always 1.
4 If 1 , allows Graph \emptyset and 1 data to be shifted from right to left (dual strip chart feature).

3 If 1, allows Graph \emptyset or 1 data to be shifted from right to left (single strip chart enabled).

2 If l, displays Graph 1 as a shaded graph, referenced to Shade Line 1.

1 If l, displays Graph Ø referenced to Shade Line \emptyset.
\emptyset If \emptyset, allows Shade Line \emptyset data to be loaded by the second word of the @ instruction: if l, allows Shade Line data to be loaded by the second word of the @ instruction.

NOTE: Bit 3 enables the single strip chart feature; either Graph \emptyset or Graph 1 data, but not both, can be incremented from right to left.

Bit 4 enables the dual strip chart feature. With Graph \varnothing enabled, Graph ø data is entered, but the data does not shift at this time. Graph 1 is enabled and Graph 1 data is entered, then both Graph \varnothing and Graph 1 will shift their data one increment to the left.

Table 6-3 Examples of Selecting Graphs or Histogram

Table 6-4 Examples of Selecting Shaded Graphs with Shade Lines (Baselines) and Strip Charts

Function Enabled	Third Character	Octal Code	Binary Code	Decimal Value
Load Shade Line ø*	"	$\emptyset 42$	ø1ø0ø1ø	34
Load Shade Line 1*	\%	$\emptyset 45$	0100101	37
Enable Shaded Graphs with Shade Line \emptyset and 1	\&	$\emptyset 46$	0100110	38
Enable single strip chart	1	050	0101000	40
Enable strip chart with shaded Graph \emptyset and Shade Line \emptyset)	052	0101010	42
Dual strip chart	\emptyset	Ø6Ø	0110000	48
Dual strip chart with shaded graphs and shade lines	6	$\emptyset 66$	0110110	54

* Loading or moving the shade line (base line) in the VTlø5 does not affect Graph \emptyset or Graph 1 data. See Paragraph 6.7 for loading shade line position.

Table 6-5 Graph Drawing Characters

Character	Octal Code	Binary Code		Decimal Value
SPACE	940	0100	のøø	32
!	041	0100	001	33
	042	0100	010	34
\#	$\emptyset 43$	0100	011	35
\$	044	0100	100	36
$\%$	045	0100	101	37
\&	046	0100	110	38
('apostrophe)	047	0100	111	39
1	050	0101	øø	40
)	951	0101	001	41
+	052	0101	010	42
+	953	0101	011	43
'(comma)	054	0101	100	44
-(minus)	955	0101	101	45
	056	0101	110	46
1	957	0101	111	47
0	¢60	0110	øøø	48
1	061	0110	ø01	49
2	062	0110	$\emptyset 1 \varnothing$	50
3	063	0110	011	51
4	064	0110	100	52
5	065	0110	101	53
6	066	0110	110	54
7	067	0110	111	55
8	070	0111	øø \emptyset	56
9	071	0111	001	57
:	072	0111	010	58
;	973	0111	011	59
く	874	0111	100	60
	075	0111	101	61
,	076	0111	110	
?	977	0111	111	63

Table 6-5 can be used to convert the binary codes created for register \emptyset to the program requirements.
Example:

Function	Octal Code	Character	Code
Enable Graph 1	$\emptyset 45$	$\%$	$\emptyset 100101$

6.5.2 Enabling Graphs and Histograms (Shaded Graphs)

The second character in a sequence for loading register \emptyset selects the graph or histogram to be displayed. The letter a (1018) allows register \emptyset to be loaded.
6.5.3 Enabling strip Charts and Shade Lines (Baselines)

The third character in the load register \emptyset sequence enables shaded graphs and strip charts. Some of the common functions enabled by the third character are listed in Table 6-4.
6.5.4 Loading Control Register 1
the characters required to enable graph markers and grid lines are formed by setting the appropriate bits in the diagrams in Table $6-6$, then finding the character for the code created in Table 6-5.

Table 6-6 Load Enable Register 1 Command

```
lst character: I (1118) 73
2nd character: variable (see below)
3rd character: variable (see below)
2nd Character (Register 1)
```

Bit
6 The most significant bit is always \varnothing.
5 Always 1.
4 If 1 , clears the static RAMs containing any vertical lines, horizontal lines, Graph Ø, Graph 1, and any graph markers. It does not clear the load enable register -- Register \varnothing and Register 1.

3 If 1, allows Graph 1 markers to be displayed.

2 If 1, allows Graph \emptyset markers to be displayed.

1 If l, allows vertical lines to be displayed.
\emptyset If l, allows horizontal lines to be displayed.

3rd Character (Register 1)

6.5.5 Enabling Graph Markers, Vertical Lines, and Horizontal Lines

Turning graph markers and grid lines ON and OFF is accomplished by loading register 1 . The character sequence is the same in either graph drawing format, except a third character establishes the desired format. The exclamation mark, ! (0418), enables the square format; a SPACE ($\varnothing 4 \emptyset_{8}$) enables the rectangular format. The rectangular format is enabled also on initializing the terminal.

Table 6-7 shows examples of enabling graph markers, horizontal lines, and vertical lines.
6. 6 FORMING GRAPH DRAWING DATA CHARACTERS

In order to represent a horizontal or vertical address of a point on a 240 X 512 point graph, at least 9 binary bit positions are required.

$$
\begin{array}{ll}
\text { Examples: } & 23910=\emptyset 111 \emptyset 11111_{2} \\
& 51110=111111111_{2}
\end{array}
$$

Keys typed from the keyboard, or transmitted from the host computer, normally only contain 7 digits (7-bit ASCll characters). Therefore, two keys must be typed, or two codes transmitted, to fully describe an X or a Y value. The first key (character) transmits the lower five bits of the binary data value: the second key transmits the remaining bits, or upper data value.

Table 6-7 Examples of Selecting Graph Markers, Horizontal Lines, and Vertical Lines

NOTE: Remember to bit map all options correctly when sending out a command. Setting a desired feature may reset other features if all options are not considered.

Function Enabled	Character Sequence	$\begin{aligned} & \text { Octal } \\ & \text { lst } \end{aligned}$	$\begin{aligned} & \text { Sequence* } \\ & \text { 2nd } \end{aligned}$	Binary Code of 2nd Char.	$\begin{aligned} & \text { Decimal } \\ & \text { Value } \end{aligned}$
Clear graph drawing memories	Iø	111	$\emptyset 60$	Ø1100øø	48
Enable horizontal and vertical lines	I\#	111	943	ø1ø0011	35
Enable horizontal lines only	I!	111	041	ø100001	33
Enable vertical lines only	I'	111	$\emptyset 42$	ø10ø010	34
Enable Graph ø markers	I \$	111	044	0101100	36
Enable Graph 1 markers	I (111	050	0101000	40
Enable Graph ø and 1 markers	I,	111	054	0101100	44
Enable grid and Graph Ø markers	I'	111	947	0100111	39
Enable grid and Graph 1 markers	$\mathrm{I}+$	111	053	0101011	43
Enable grid and Graph \varnothing and 1 markers	I/	111	057	0101111	47
Disable lines and graph markers	I space	111	940	Ø1øøøøø	32

* A third character is required to establish the square format, to change formats, or to set up the Interactive Graphics Test.

To load coordiantes for the function enabled by register 1 , refer to the following paragraphs.

Function
Load graph markers
Paragraph

Load vertical lines
6.10
6.11

Load horizontal lines

The graph drawing data characters can be standardized to the 32 characters listed in Table $6-8$ if bits 5 and 6 of each character are always 1 and \varnothing, respectively, as in the following format:
bit 6
bit 5
bits $0-4$
The data value is then transmitted in two parts as in the diagram below:

Data to be Transmitted
$\underbrace{\operatorname{XXXXXXXXX}}$

lst data character
2nd data character

Table 6-8 Graph Drawing Data Characters

Decimal Lower data lst data	Data Value Upper data 2nd data	Binary Code	Octal Code	Data Character
	Load shade line (baseline) and graph data; erase other lines.			
\emptyset	\emptyset	Ø1ØøØØØ	940	SPACE
1	32	$\emptyset 1 \emptyset 00 \emptyset 1$	041	
2	64	$0100 \square 10$	042	
3	96	$0100 \emptyset 11$	043	\#
4	128	Ø10010ø	044	\$
5	160	0100101	045	\%
6	192	0100110	046	
7	224	0100111	047	(${ }^{\text {a }}$
8	256	Ø10100ø	050	(
9	288	0101001	051	
10	320	0101010	$\emptyset 52$	
11	352	0101011	053	
12	384	0101100	054	, (com
13	416	0101101	055	
14	448	0101110	056	;
15	480	0101111	057	/
	Load Horiz vertical 1 and marker			
16	\emptyset	Ø11Øøøの	060	\emptyset
17	32	0110001	061	1
18	64	0110010	062	2
19	96	0110011	063	3
20	128	0110100	064	4
21	160	0110101	065	5
22	192	0110110	066	6
23	224	0110111	067	7
24	256	0111000	070	8
25	288	0111001	071	9
26	320	0111010	072	:
27	352	0111011	073	,
28	384	$011110 \emptyset$	074	$<$
29	416	0111101	075	$=$
30	448	0111110	076	>
31	480	0111111	077	?

* Upper data values below this line are used for loading graph markers and horizontal or vertical lines; they require bit $4=1$. To erase these lines, or load shade lines (baselines), graph data or starting X-coordinate, use values above this line.

Table 6-9 Load Data Sequences

Function	Load Character	Character Sequence	Range
Load shade line (baseline)	@	@ 1st data 2nd data	0--239
Load Graph Ø data	B	B 1st data 2nd data	$0-239$
Load Graph 1 data	J	J lst data 2nd data	$0-239$
Load Graph Ø marker	C	C lst data 2nd data	0--511
Load Graph 1 marker	K	K lst data 2nd data	0--511
Load horizontal line	D	D 1st data 2nd data	0--239
Load vertical line	L	L 1st data 2nd data	0--511
Load starting X -coordinate	H	H lst data 2nd data	$0--511$

2. Find the remainder of the value to be transmitted in the lower data value column. This will be the first data character transmitted.

Example:

Remaining	Lower Data Value	First Data Character	Binary Code	Octal Code
8	8	1	$\emptyset 1 \emptyset_{0}$	

6.6.2 Load Data Sequences

The data to be transmitted is initially preceded by a "load character," as described in Table 6-9. In the above example, loading a shade line at line $2 ø \emptyset 1 \varnothing$ is transmitted by @(\& or equivalent program. Storing a horizontal line at line $2 ø \emptyset_{10}$ is transmitted by D (6 or equivalent program.

For multiple data entries, the load character does not need to be repeated. This allows data for a graph to be loaded into memory without repeating the character B or J. Exceptions to this procedure are loading a shade line and loading the starting X -coordinate.
6.6.3 Frequent Data Entry Errors

Largest Data Character Transmitted First -- The low-order bits of the data value (lower data value in Table 6-8) must be transmitted first; if reversed, the point will typically exceed the range limits of the graph drawing field and not be displayed, or, it may appear near the edge of the field.

Example:

Desired	Data	Characters	Characters	New
Shade line	Transmitted	Should be	Reversed	Values
40	$8+32$	@ (!	@!	$1+256$
70	$6+64$	@ \& ${ }^{\prime}$	@"\&	$2+192$

Table 6-10 Loading Shade Line Position

Zero Valued Characters Not Transmitted -- When transmitting data with two characters, if the upper data value is equal to the point or line desired, a $\operatorname{SPACE}\left(\varnothing 4 \theta_{8}\right)$ (equal to zero) must be the first data character. If missed, the line or point will be much less than desired.

Example:

Shade line	Data Required	Characters Should be	Characters In error	Wrong Value
160	$\emptyset+160$	@SPACE $\%$	$@ \%$	5

6.7 LOADING THE SHADE LINE (BASELINE)

A movable shade line can be displayed for both Graph \emptyset and Graph 1. One shade line canb e entered for Graph \varnothing, and one for Graph 1, on any of the 230 (or 240 , square format) horizontal lines available. To transmit positions within this range, a load character and two data characters are used, as shown in Table 6-10. Positions can be created by following Paragraph 6.6 for forming graph drawing data characters.

6.8 LOADING GRAPH MEMORIES

The M7ø71 has two graph memories -- Graph \emptyset and Graph 1. Each graph may plot up to 5l2-horizontal points. Each horizontal point may have only one value using up to 230 vertical points with the rectangular format (or 24θ vertical points with the square format). The graph will begin entering data at $X=\emptyset\left(\emptyset 4 \emptyset_{8}\right)$ unles a starting X-address is specified. (See Paragraph 6.13.)

The data to be entered is initially preceded by the letter B (1028) for Graph \varnothing, or $J(1128)$ for Graph 1. Each pair of data characters describes a Y-data point.

A Y-value is entered for each value of X, using two data characters, as described in Paragraph 6.6. As the X-address is incremented from \emptyset to 511, the values of Y can sequentially be loaded into memory. The X-register will automatically increment after each pair of Y-data characters are stored in memory, except

Table 6-11 Loading Graph Data

Explanation of Third Character:

Bit
6 The most significant bit is always \emptyset. \square
5 Always 1.
4 (unused)
3 (unused)
Ø--2 The remaining bits form the high-order
3 bits of the 8-bit Y-value. \qquad
when dual strip charts are enabled. (See paragraph 6.14.) The letters B or J do not need to be repeated for each pair of Y-data characters. Table $6-8$ may be used to determine the Y-data characters.
 The formation of graph data characters is illustrated in Table 6-11.

$$
6-20
$$

Figure 6-7 Histogram without Shade Line (Baseline) Enabled

MR.3017
MA- 9455

Figure 6-8 Graph with Shade Line (Baseline) Enabled

6.9 HISTOGRAM DATA

Data for a histogram (shaded graph) is entered by loading the appropriate graph memory (Paragraph 6.8). Histogram ø and/or Histogram 1 is enabled by loading register 1 (Paragraph 6.5). Enabling a histogram will shade points between the graph envelope and the bottom of the graph field. Shading occurs from the graph data to graphline \emptyset (Figure 6-7). With a shade line (baseline) enabled, the graph is shaded above and below this line, as in Figure 6-8.

6.10 LOADING GRAPH MARKER MEMORY

A graph marker is a short vertical line which marks the graph line at a desired value of X. A graph marker can be programmed for any point on Graph Ø and on Graph 1. As many as 512 graph markers can be placed on each graph.

Loading graph marker memory is accomplished by sending pairs of data characters following the letter C (1038) for Graph ø, or K (ll38) for Graph 1. Each pair of data characters represents the lower data value and the upper data value of an X-address, as illustrated in Table $6-12$. Note that bit 4 of the third character determines whether the graph marker will be loaded or erased.

Example:

Function	Binary Code	Octal Code	Character Sequence
Load graph Ø marker	1000110	106	
at location løø	0100100	044	C\$3
	0110011	$\emptyset 63$	
Erase graph \emptyset	1000110	106	
marker at location $1 \varnothing \emptyset$	0100100	$\emptyset 44$	C\$\#
	0100011	043	

Table 6-8 may be used to determine the characters required to load or erase a specific graph marker. Once stored in memory, graph markers are enabled and disabled by loading register 1 . (See Paragraph 6.5.4.)

6.11 DISPLAYING VERTICAL LINES

Vertical lines may be programmed for any of the 512 points along the X-axis. Vertical lines are loaded following the letter L (1148). The second and third characters form an X-data value, as illustrated in Table 6-13. Note that bit 4 of the third character must equal a for the line to be loaded; a \varnothing in bit 4 will erase that line. Table $6-8$ may be used to determine the characters required to load or erase a specific line. Vertical lines are enabled and disabled by loading register 1. (See Paragraph 6.5.4.)
Graph \varnothing Graph 1
Marker Marker

lst character:	C (1ø38)	K (ll3 $)$
2nd character:	variable	variable
3rd character:	variable	variable

Explanation of Second Character:

Bit

6 The most significant bit is always \varnothing.
5 Always 1.
0--4 The remaining bits form the low-order \qquad 5 bits of a 9-bit X-address.

Explanation of Third Character:

Bit
6 The most significant bit is always \emptyset.
5 Always 1.
4 If 1, causes graph marker to be loaded; \qquad if \emptyset, causes marker to be erased.
(0)-3 The remaining bits form the high-order 4 bits of the 9 -bit X-address.

Table 6-13 Load Vertical Line Coordinate
lst character: L (1148)
2nd character: variable (see below)
3rd character: variable (see below)
Explanation of Second Character:

Bit
6 The most significant bit is always \varnothing.
5 Always 1.
Ø--4 The remaining bits from the low-order 5 bits of a 9-bit X-position.

Explanation of Third Character:

Bit
6 The most significant bit is always \varnothing.
5 Always 1.
4 If 1 , causes vertical line to be loaded; if \emptyset, causes vertical line to be erased.
ø--3 The remaining bits form the high-order 4 bits of a 9-bit X-position.

6.12 DISPLAYING HORIZONTAL LINES

A horizontal line is loaded into memory by two data characters following the letter $d(1048)$. The second and third characters from a Y-data value, as illustrated in Table 6-14. Up to 230 horizontal lines may be displayed in the rectangular format; 240, in the square format. Note that bit 4 in the third character must equal a 1 to load a horizontal line; bit $4=\varnothing$ will erase the line. Table 6-8 can be used to determine the characters required to load or erase a specific horizontal line. Horizontal lines are enabled and disabled by loading register 1. (See Paragraph 6.5.4.)

```
lst character: D (1048)
2nd character: variable (see below)
3rd character: variable (see below)
Explanation of Second Character:
```

Bit
6 The most significant bit is always \varnothing.
5 Always 1.
$\emptyset--4$ The remaining bits from the low-order \qquad 5 bits of a 8-bit Y-position.

Explanation of Third Character:

Bit
6 The most significant bit is always \emptyset. \qquad
5 Always 1.
4 If 1, causes horizontal line to be loaded;
if \emptyset, causes horizontal line to be erased.
3 Unused
Ø--2 The remaining bits form the 3 high-order \qquad bits of a 8-bit Y-position.
6.13 LOAD THE STARTING X-COORDINATE

A starting X-coordinate may be loaded by two data characters following the letter $H\left(11 \emptyset_{8}\right)$, as illustrated in Table 6.15. Any value of X, from \emptyset to 511 , may be used. The data characters required for the desired X starting address can be determined from Table 6-8.

NOTE: The lower data value of X must be transmitted first, then the upper data value.
6.14 ENTERING STRIP CHART DATA

Table 6-15 Load Starting X Coordinate

```
lst character: H (110
2nd character: variable (see below)
3rd character: variable (see below)
Elplanation of Second Character:
```

Bit
6 The most significant bit is always \varnothing.
5 Always 1.
0--4 The remaining bits from the low-order
5 bits of a 9-bit X-position.

Explanation of Third Character:

Bit
6 The most significant bit is always \emptyset.
5 Always 1.
4 Unused
0--3 The remaining bits form the high-order \qquad 4 bits of a 9-bit X-position.

6.14.1 Single Strip Chart Data

Data for a single strip chart is entered by loading either Graph ø or Graph 1 memory.

1. Enable the desired graph and single strip chart feature by loading register \emptyset. (See Table 6-2.)

Example:
Enable Graph ø, Single Strip Chart, and Shade Line ø. Enter:

Character Sequence

A\#*

Octal
Sequence
$101_{8} \quad 043_{8} \quad 052_{8}$

Decimal Sequence
${ }^{65} 1 \varnothing{ }^{35} 1 \emptyset{ }^{42} 1 \emptyset$
2. If desirable, load the starting X-coordinate at the right margin. Enter:
H??

$$
110_{8} \quad 977_{8} \quad 977_{8}
$$

$$
{ }^{72} 1 \emptyset^{63} 1{ }^{63} 1 \emptyset
$$

3. Now, enter data into Graph \varnothing memory; type B plus any sequence of two data characters. If started at the right margin, this will cause the graph to move from right to left; if not, the graph will fill the screen first, then move data from right to left with each new data word.
B(data) (data)
$1 \emptyset 2{ }_{8}$ (data) (data)
$6_{1 \emptyset}$ (data) (data)
6.14.2 Dual Strip Chart Data

To set up the dual strip chart feature:

1. Enable both graphs and the dual strip chart feature; set bit 4 of the 3 rd character in register \emptyset. (See Table 6-2.)

Example:
Load Graph \emptyset and 1 , dual strip chart, and Shade Line \varnothing and 1. Enter:

Character Sequence

A ' 6
H??

Octal
Sequence
$101_{8} \quad 047_{8} \quad 066_{8}$
$110_{8} \quad 07787_{8}$

Decimal
Sequence
${ }^{65} 1 \varnothing{ }^{39} 10{ }^{54} 10$
${ }^{72} 1 \varnothing{ }^{63}{ }_{10}{ }^{63} 1 \emptyset$
3. Enter Graph \emptyset data; enter a B and two data characters. (The data is entered, but the graph will not move at this time.)
$B($ data $)$ (data) $\quad 1 \emptyset 2_{8}$ (data) (data) $\quad 6_{1 \emptyset}$ (data) (data)
4. Enter Graph 1 data; enter a J plus two data characters. The graph will now display and shift both Graph \emptyset and Graph 1 data points one increment to the left.
J (data) (data) $\quad 1128^{8}$ (data) (data) $\quad{ }^{74}{ }_{1 \emptyset}$ (data) (data)
NOTES:

1. Load starting X-coordinate, desired graph markers, and vertical lines before enabling either single- or dual-strip chart mode. The exact position of these points may vary once a strip chart is enabled.
2. Any graph markers and vertical lines enabled will wrap around as the strip chart moves.
3. When the strip chart mode is disabled, any displayed graphics shifts. The X-coordinate that moved during strip chart mode returns to its normal location.
4. When in dual $-\frac{s}{}$ trip chart mode, the last available graph position $(X=511)$ is not displayed. The switching action between Graph \varnothing and Graph in that position is eliminated from the display.

CHAPTER 7
VT125 COMMUNICATIONS

GENERAL

This chapter describes how the VT125 terminal communicates with with a computer using the standard EIA interface. Also included are descriptions of the communication features, a definition of the Break signal, a description of the communication of the graphics processor with the rest of the terminal and its options, and methods used to prevent input buffer overflows of the terminal.

NOTE: The 20 mA current loop interface option (VTlXX-AA) is described in Chapter 10 Options.

CONNECTING TO THE COMPUTER PORT

The VTl25 terminal is connected to a computer directly or through a common carrier facility (telephone line) as shown in Figure 7-1. In both applications, either the Electronic Industry Association (EIA) interface provided with the terminal or the VTIXX-AA 20 mA Current Loop interface option are used. Table 7-1 lists the Computer Port EIA connector signals.

When connecting the terminal to the computer through a telephone line, a modem or acoustic coupler is needed. The modem or acoustic coupler changes the serial characters transmitted between terminal and computer into signals that can be transmitted over the telephone line. Several types of modems can be used with the VTl2 25 terminal. However, the modem used by the terminal must be compatible with the modem used by the computer.

CONNECTING TO THE AUXILIARY PORT
The auxiliary port is for connecting a graphics or text printer to the VTl25. It is bidirectional so it can also be used for input to the computer. The application program on the computer must use the Media Copy commands (Chapter 4, Communication and Graphic Protocol controls) to use the auxiliary port.

SERIAL CHARACTER FORMAT

The VTl25 terminal communicates using serial characters. Serial characters are transmitted using a start bit, 7 or 8 data bits, an optional parity bit and one or two stop bits. Figure 7-2 shows an example of the serial character format used by the terminal.

Figure 7-1 Connecting to the Computer

Figure 7-2 Serial Character Format

Table 7-1 Computer Port EIA Connector Signals

Pin	Name	Mnemonic	CCITT/EIA Designation	Description
1	Protective Ground	PGND	101/AA	Connected to the VT125 chassis and to external ground through the third wire of the AC power cord.
2	Transmitted Data	TXD	103/BA	FROM VT125 The VTl 25 transmits serial characters and Break signals on this circuit. This conductor is in the mark state when no characters or Break signals are being transmitted.
3	Received Data	RXD	104/BB	TO VTl25 This conductor receives serial characters from the computer.
4	Request to Send	RTS	105/CA	FROM VT125 This signal is on whenever the terminal is on.
7	Signal Ground	SGND	102/AB	This conductor is the common ground reference potential for all connector signals except protective ground. Also, it is connected to the VTl25 chassis.
20	Data Terminal Ready	DTR	$108.2 / C D$	FROM VT125 This signal is on except when the following conditions exist: - VTl25 is not on - VTl25 is LOCAL - During a reset - 3.5 seconds during a Long Break Disconnect.
23	Speed Select	SPDSEL	111/CH	FROM VT125 Also called Secondary Request to Send, this signal is on whenever the VTl25 is on.

The number of data bits per character and parity are selected using the Parity Sense, Parity, and Bits Per Character SET-UP B features. If 8-bit characters are selected, the last data bit is forced to the space (() condition and the eighth data bit is ignored when receiving characters. The data bits are transmitted with the least significant bit first. (Refer to ANSI X3.15-1976 for details on the serial character format.)

The parity bit is used to detect character transmission errors of both transmitted and received characters. The Parity Sense SET-UP B feature selects the type of parity bit used when transmitting and receiving characters.

The Parity SET-UP B feature determines if the parity of received characters is checked or ignored. If the Parity SET-UP B feature is off, the parity bit is removed from the serial character.

The number of stop bits (l or 2) in the serial character is determined by the Transmit and Receive Speed SET-UP B features.
BREAK SIGNAL
A Break signal can be transmitted by the terminal. The Break signal is a transmitted space condition for $\emptyset .275$ seconds $+1 \emptyset$ percent. However, the computer response to the Break signal depends on the computer and software used. A Long Break Disconnect is a transmitted space condition for 3.5 seconds $\pm 1 \varnothing$ percent and then the Data Terminal Ready interface signal is turned off.

NOTE: On some modems, the Long Break Disconnect causes the modem
to perform a communication line disconnect.
FULL DUPLEX COMMUNICATION
The VTl25 terminal operates in full duplex communication. Full duplex communication means that the terminal transmits and receives characters at the same time. The VTl2 25 provides some EIA signals as listed in Table 7-1.

ELECTRONIC INDUSTRY ASSOCIATION (EIA) INTERFACE

The VTl25 communication interfaces are DB-25 (EIA RS-232-C type) male connectors mounted on the back of the terminal as shown in Figure 7-3. These connectors meet Electronic Industry Association (EIA) standards RS-232-C and CCITT V. 24 and V. 28 . When connecting to a device which meets EIA standard RS-232-C, the terminal can operate at speeds up to $192 \emptyset \varnothing$ baud using communication cables up to 15 meters (50 feet) in length. Table $7-1$ describes the EIA connector pin signals used by the computer port. Table 7-2 describes the EIA connector pin signals used by the auxiliary port. All connector pins not described are not used by the terminal. Figure $7-3$ shows the connector pin arrangement.

Figure 7-3 EIA Connectors and Pin Locations

Table 7-2 Auxiliary Port EIA Connector Signals

Pin	Name	Mnemonic	CCITT/EIA Designation	Description
1	Protective Ground	PGND	101/AA	Connected to the VTl25 chassis and to external ground through the third wire of the AC power cord.
2	Transmitted Data	TXD	103/BA	FROM VT125 The VTl25 transmits serial characters and Break signals on this circuit. This conductor is in the mark state when no characters or Break signals are being transmitted.
3	Received Data	RXD	$1 \emptyset 4 / \mathrm{BB}$	TO VTl25 This conductor receives serial characters from the auxiliary port.
6	Data Set Ready	DSR	107/CC	TO VTl2 25 The terminal receives Data Terminal Ready (DTR) from the printer on this conductor. If DSR is present at power-up, the printer controls print operations. If DSR is not present at power-up, then before each character print operation, the terminal checks again. If DSR is still not present, the print occurs. If DSR ever appears, then it controls all following prints. The terminal also uses DSR to detect the printer for the Device Attributes response (Chapter 4).
7	Signal Ground	SGND	$102 / \mathrm{AB}$	This conductor is the common ground reference potential for all connector signals. Also,

Table 7-2 Auxiliary Port EIA Connector Signals (Cont)

Pin	Name	Mnemonic	CCITT/EIA Designation
$20 \quad$Data Terminal Ready	DTR	it is connected to the VTl25 chassis.	

SET-UP AND COMMUNICATIONS

When you exit SET-UP, the terminal:

- updates all aspects of its operation according to any new SET-UP feature selections,
- sends XON to the computer port and auxiliary port if buffer space is available,
- clears any received XOFF to allow transmission on all ports,
- cancels any Regis Hard Copy operation.

NOTE: Some graphic printers have large input buffers. A cancelled Hard Copy operation may not stop for several seconds while the printer empties its buffer.

CONTROL FUNCTIONS

The graphics processor is the control point for all communication in the VTl25. (See Block Diagram, this chapter.) The graphics processor examines any ANSI control function arriving from any of the communication ports. If the graphics processor has the ability to respond to the control function, it acts on the control function and generally does not pass it along. If the graphics processor does not have a response for the control function, it ignores the control function and passes it to the device that is at the receiving end of the data path that the control function arrived on.

From the keyboard, however, a special condition applies. The Escape character (ESC) has many software applications and must be allowed to pass to the application program. The following process decides when to pass ESC:
a. ESC is held in the graphics processor for a maximum of $5 \emptyset$ milliseconds.

Figure 7-5 VTl25 General Block Diagram

Figure 7-6 VTl25 Data Paths

Table 7-3 Interface Cables

Number	Length	Connector Types	Function
BC22A-10	10 ft	$\begin{aligned} & \text { RS- } 232 \text { (female) } \\ & \text { to RS-232 (female) } \end{aligned}$	Null modem; direct connection between VT125 and computer or printer (6-conductor cable).
BC22A-25	25 ft	$\begin{aligned} & \text { RS-232 (female) } \\ & \text { to RS-232 (female) } \end{aligned}$	Null modem; direct connection between VT125 and computer or printer (6-conductor cable).
BC22B-10	10 ft	$\begin{aligned} & \text { RS- } 232 \text { (male) } \\ & \text { to RS-232 (female) } \end{aligned}$	Extension; connects VT125 to a modem (14-conductor cable).
BC22B-25	25 ft	```RS-232 (male) to RS-232 (female)```	Extension; connects VT125 to a modem (14-conductor cable).
$B C \emptyset 3 M-x x$	variable	$\begin{aligned} & \text { RS- } 232 \text { (female) } \\ & \text { to RS-232 (female) } \end{aligned}$	Null modem; direct connection between VT125 and computer or printer.
BC05D-xx	variable	$\begin{aligned} & \text { RS-232 (male) } \\ & \text { to RS-232 (female) } \end{aligned}$	Extension; connects VTl25 to a modem.
BCø5F-xx	variable	$\begin{aligned} & \text { Mate-N-Lok (male) } \\ & \text { Mate-N-Lok (male) } \end{aligned}$	20 mA ; direct to connection between VTl2 25 with a 20 mA option installed and a computer. (Supplied with $2 \emptyset \mathrm{~mA}$ option.)
$\mathrm{BCo5x}-\mathrm{xx}$	variable	Mate-N-Lok (male) to Mate-N-Lok (male)	$2 \emptyset \mathrm{~mA}$ extension cable.
$30-10958-02$	EIA: 18 in $2 \emptyset \mathrm{~mA}$: 8 ft	```RS-232 (male) to RS-232 (female) and 2\emptyset mA (male)```	Connection between DFø1-A acoustic coupler and VTl25 EIA or $2 \emptyset \mathrm{~mA}$.

DECwriter graphics. The following five figures show the internal connections that are set up for different applications.

Figure $7-7$ shows the VTl2 25 operating as a text-only terminal. This is how the terminal operates when it is first powered up. If you send XOFF from the keyboard, either by pressing NO SCROLL (if

Figure 7-7 VTl25 as Text-Only Terminal

AUTO XON/XOFF is on) or by pressing the S key while pressing the CTRL key, the receive buffer in the VTløø fills to the 32 character mark. Then the VTløø sends XOFF to the graphics processor. When the 16 character transmit buffer in the graphics processor fills, it sends XOFF to the dispatcher, and then the 128 character receive buffer fills to its 48 character mark. At that point, $8 \emptyset$ characters later, the graphics processor sends XOFF to the computer.

Figure $7-8$ shows the VT125 operating as a graphics terminal. A Device Control String is being sent to the terminal from the computer. The terminal may be in any protocol: ReGIS, VTl05, or DECwriter graphics. The keyboard can communicate with the computer, but any screen response to keyboard commands is under the control of the computer's programming.
Figure $7-9$ shows the VT125 operating as a graphics terminal. A Device Control String is being sent to the terminal from the computer. The graphics protocol commands are being displayed on the screen at the same time. This is a feature of VT125 ReGIS and is not available with the other protocols. The keyboard can communicate with the computer, but any screen response to keyboard commands is under the control of the computer's program.

Figure $7-10$ shows the VTl25 printing from the screen to the optional graphics printer in DECwriter graphics protocol. This is the result of the Screen Hard Copy command in ReGIS. The keyboard can communicate with the computer, but the computer cannot communicate with the dispatcher until the print operation is complete. However, if a Graphics Off command (String Terminator: ESC
) immediately follows the Hard Copy command, the computer can communicate with the dispatcher during the print operation.

Figure $7-11$ shows the VTl2 printing from the computer to the optional printer. This is the result of the ANSI Media Copy command from the computer. The Media Copy command can turn the VTID and auxiliary (printer) ports on and off. Therefore, the screen could display the data that is going to the printer if wanted. To print a stored DECwriter graphics protocol file, display it on the screen and then use the ReGIS Hard Copy command to print it.

INPUT BUFFER OVERFLOW PREVENTION

When the terminal receives a character (other than the NUL and DEL characters), the character is placed in a 128 character input buffer. The input buffer holds the received character until the dispatcher processes the character. When processed, the character is removed from the input buffer.

If received characters are placed in the input buffer faster than the characters are processed, the input buffer begins to fill with characters. If the input buffer becomes full, all new characters received are lost and the substitute character (OD) is displayed.

Figure $7-8$ VTl25 in a Graphics Protocol

Figure 7-9 VTl25 in ReGIS Graphics with Commands on Screen

Figure $7-10$ VTl2 25 Printing from Screen

Figure 7-11 VTl25 Printing from Computer

Using XON and XOFF characters between the terminal and the devices it communicates with prevents input buffer overflow. The graphics processor always has an automatic XON/XOFF protocol in operation. The many different operations that the processor can perform, from graphics protocols to local printing, take widely different amounts of time to perform. The techniques of Fill Characters and Low speed Operation that are suggested as alternate methods of buffer overflow prevention for the VTløø text terminal cannot be used with the VTl25 graphics terminal.

XON and XOFF Control Characters

The XON and XOFF control characters indicate the number of characters in an input buffer. When the 128 character input buffer of the graphics processor holds 48characters, the graphics processor transmits XOFF (DC3, octal ø23). The computer or other device should stop transmitting characters.

As the dispatcher removes characters from the input buffer, the number of characters in the buffer decreases. When the input buffer holds 16 characters, the graphics processor transmits XON (DC1, octal Ø21) requesting the computer to continue transmission.

If the computer fails to respond to the XOFF character transmitted by the graphics processor, the input buffer continues to fill. The graphics processor transmits a second XOFF when the input buffer holds 112 characters. This second XOFF is a last request to the computer to stop transmitting characters before overflow. Then, an overflow at 128 characters transmits a final XOFF.

To determine how fast the computer must respond to the first XOFF character to avoid input buffer overflow, use the following formulas:

No. of characters to overflow $=80-[3 \mathrm{X}$ (receiver speed/
transmit speed)]
Time to respond to $\mathrm{XOFF}=\mathrm{No}$. of characters to overflow X
(bits per character + parity bit + number of stop bits +
1)/receiver speed.

Example 1:
The graphics processor transmits and receives 8-bit characters with no parity at 1200 baud. When the graphics processor transmits the first XOFF, the computer must stop transmitting within $\varnothing .6 \emptyset 8$ seconds or the input buffer overflows.

No. of characters to overflow $=8 \emptyset-[3 \mathrm{x} \mathrm{12} \mathrm{\emptyset} \mathrm{\emptyset /1200)]}=73$ characters

Time to respond to $\mathrm{XOFF}=73 \times(8+\emptyset+1+1) / 12 \emptyset \emptyset=\emptyset .6 \emptyset 8$ second

Example 2:
The graphics processor is transmitting and receiving 7-bit characters with parity at $3 \emptyset \emptyset$ baud. When the graphics processor transmits the first XOFF, the computer must stop transmitting within 2.4 seconds or the input buffer overflows.

No. of characters to overflow $=80-[3 \times 30 \emptyset / 30 \emptyset]=73$ characters
Time to respond to $\mathrm{XOFF}=73 \times(7+1+1+1) / 30 \emptyset=2.4$ seconds
NOTE: If the input buffer overflows, received characters are ignored and the substitute character (OD) is displayed.

EFFECTS OF RESET AND TESTS
Two control sequences, Reset and Invoke Confidence Test, initialize the terminal and erase all buffers. This means that characters received while these two functions are processed are lost. Therefore, immediately after sending the Reset or Invoke Confidence Test sequences, the computer should assume that it received an XOFF from the terminal. The computer should then send no more characters until it receives XON. The terminal transmits XON only after it completes the test.

NOTE: The Reset and Invoke Confidence Test sequences may cause the terminal to disconnect from the communication line.

TRANSMIT BUFFERS

The transmit buffers hold characters generated by the terminal before they are transmitted to the computer. The computer can use the XON (DC1, octal Ø21) and XOFF (DC3, octal 023) characters to control the transmission of characters from the terminal.

Receipt of XOFF stops the graphics processor from transmitting any characters except XOFF and XON. When the 16 character transmit buffer fills, the dispatcher stops accepting characters from the receive buffer of the port that is transmitting (for example, the VTIDø). When the receive buffer fills with 48 characters, it sends XOFF to its sender (in this example, the VTløø). It transmits a second XOFF if the buffer fills to 112 characters. From seven to nine characters are stored in the VTløø keyboard buffer. (Some keys transmit three characters at once. The buffer locks at 7 characters to prevent loss of the added characters of a three character keystroke.) If the keyboard buffer fills, the KBD LOCKED indicator turns on and keyclicks stop (if the Keyclick SET-UP B feature is on).

Receipt of XON starts the transmission of characters again. The 16 character transmit buffer empties and the dispatcher moves characters from the receive buffer to the transmit buffer. When the receive buffer empties to the 16 character level, it sends XON to the transmit buffer in the VTløø. (Also, entering and exiting SET-UP turns off the KBD LOCKED indicator and allows the VTløø to transmit characters. However, characters transmitted after entering and exiting SET-UP may be lost if the receive buffer is
not ready to receive characters.) When the keyboard buffer empties, the KBD LOCKED indicator turns off and keyclicks occur when keys are pressed (if the keyclick feature is ON).

CHAPTER 8

 INSTALLATION
GENERAL

This chapter contains the information needed to unpack, pack, and install the VTl25 terminal. The Installation Procedure describes how to select the proper input voltage selection and fuse for either 120 or $220--240$ VAC operation. The Power Up and Checkout Procedure provides a step-by-step procedure for powering up the VT125 terminal.

SITE CONSIDERATIONS

The VTl25 terminal is made up of a video monitor and a detachable keyboard. Their dimensions are shown in Figure 8-1. Table 8-1 lists the environmental and power specifications of the terminal. If the terminal will be used with a color video monitor, you must get four video cables that are long enough for your location.

NOTE: When installing the terminal, make sure that all power and signal cables are free from any stress, sharp_bends, or obstructions. Also, be sure to provide access to the power switch on the back of the terminal.

Be sure not to block air flow around the terminal. There are several ventilation openings to prevent the terminal from overheating. Do not block these openings by placing objects on top or under the terminal. Also, do not allow liquids, coins, paper clips, and other objects to enter these ventilation openings. These objects may cause damage to the terminal. For this reason, do not put drinks or metal objects on the top of terminal.

The terminal may be placed on a desk or table top. However, people ususlly prefer the keyboard at standard typewriter table height rather than desk height. Terminal tables and stands are available from DIGITAL Accessories and Supplies Group. (Refer to Chapter 11 for more information on Accessories.)

Position the terminal to avoid reflected light. Usually, the terminal is positioned facing away from light sources that reflect off the screen. However, if reflected light is a problem, non-reflective and anti-glare screens are available from DIGITAL Accessories and Supplies Group. Also, anti-static mats are available from DIGITAL Accessories and Supplies Group for installations with static electricity problems.

-MEASUREMENT TAKEN WITH THE KEYBOARD PLACED FLUSH TO FRONT OF TERMINAL UNDER UNDERCUT
Matises

Figure 8-1 VTl25 Terminal Dimensions

Table 8-1 Site Considerations

Site Consideration	Specification
Temperature	$1 \emptyset 0$ to $4 \emptyset 0 \mathrm{C}(5 \emptyset 0$ to 1040 F$)$
Relative Humidity	$1 \emptyset$ to $9 \emptyset$ percent with a maximum wet bulb temperature of $280 \mathrm{C}(820 \mathrm{~F})$ and a maximum dew point of $20 \mathrm{C}(360 \mathrm{~F})$ noncondensing
Input Voltage	$9 \emptyset$ to $128 \mathrm{VAC} 18 \emptyset$ to $256 \mathrm{VAC} \mathrm{(switch}$ selectable)
Power Consumption	$25 \emptyset$ VA apparent, 150 W maximum
Power Receptacle	Nonswitched, grounded

INSPECTION

The VTl2 25 terminal is packed in a reinforced carton containing the following items:

```
- Monitor
- Keyboard
- AC Power Cord
- SET-UP Label
    - User Guide
    - Programming Reference Card
```

Inspect the terminal for damage and check that all the listed items are present.
NOTE: If damaged, notify the carrier and your local DIGITAL Sales Office.

INSTALLATION PROCEDURE
The VTl25 terminal can be installed using a 3 mm ($1 / 8 \mathrm{in}$) blade screwdriver. However, more tools may be needed when installing any accessories and options. To install the VTl25 terminal, use the following general procedure (refer to Figure 8-2 for the switch and cable locations):

1. Unpack and inspect the terminal.
2. Check the terminal for the proper voltage range selection. The terminal can operate with either $12 \emptyset$ VAC or $22 \emptyset$-- $24 \emptyset$ VAC input power.

CAUTION: Failure to select the proper voltage range will damage the terminal.
A label over the power receptacle indicates the factory selected input voltage range. Check this label and the Voltage Selection switch to be sure that the voltage

Figure 8-2 Monitor Controls and Connector Location
range of the terminal is the same as your local ac power source. Select the proper input voltage range if needed.
c. Install the correct power cable for your power source. (A list of available cables is in Chapter 11.
3. Attach the SET-UP label to the bottom of the keyboard. Remove the backing paper on the self-sticking SET-UP label, then attach the label.
4. Place the keyboard in front of the terminal and plug the keyboard into the keyboard connector located at the back of the terminal.
5. Connect the ac power cable to a nonswitched, grounded ac power receptacle.

NOTE: Check to be sure the Power switch is in the off position before connecting the power cord.
6. Perform the Power Up and Checkout procedure in this chapter. When the Power Up and Checkout Procedure is completed continue this installation procedure.
7. Turn off the power and disconnect the power cord.
8. If needed, install the Advanced Video option (VTlXX-AB) and the $2 \emptyset \mathrm{~mA}$ current Loop Option (VTIXX-AA) at this point in the installation procedure. Perform the option installation and option checkout procedures in Chapter 10.
9. Connect the communication cable to the appropriate connector at the back of the terminal. If using the EIA interface, fasten the connector to the terminal with the captive screws using a $3 \mathrm{~mm}(1 / 8 \mathrm{in})$ blade screwdriver. Be sure to attach the cable ground wire to one of the captive screws (Figure 8-3). (Refer to Chapter 5 for information about connector use and signal/pin definitions.)
10. Connect an optional external video monitor. If the monitor is color, use three video cables to connect the Red, Green, and Blue outputs from the VTl25 to the inputs on the monitor. See Figure 8-2. Connect the composite video output from the VTl25 to the sync input on the monitor, and set the monitor to select external synchronization.

If the monitor has the ability to pass the video signals to another device ("loopthrough"), be sure that either the monitor (if alone) or the last device in the string is set to terminate the video and sync signals in 75 ohms.

$\begin{array}{ll}\text { Figure 8-3 } & \begin{array}{l}\text { Interface Cable } \\ \text { Ground Connection }\end{array}\end{array}$

If the external monitor is monochrome (black and white), connect only the composite video output from the VTl25 to the monitor input. Be sure the video signal is terminated in 75 ohms. The video output signals and the other connector, the video input, are described in detail in Appendix A.
11. Connect an optional printer to the auxiliary port. See Chapter 7 Communication, Chapter 2 SET-UP, and the printer's user guide for information about setting the communication features of both the printer and the auxiliary port to the same values.
Performing these procedures completes the installation of the terminal.
POWER UP AND CHECKOUT PROCEDURE
A Power Up Self Test verifies the proper operation of the VTl25 terminal each time the terminal is powered up. Perform the following procedure to power up and checkout the terminal:

1. Turn the Power switch to the on position (refer to Figure 8-2 for the switch location). The terminal automatically runs the Power Up Self Test. The test gives the following indications:

- Keyboard and screen flash on and off.
- All keyboard indicators turn on and off, and either the ON LINE or LOCAL indicator is turned on.
- The Wait message is displayed on the screen and then is erased.
- A bell tone is generated.
- A band of light appears at the top of the screen and is erased.
- Another bell tone is generated.
- A message appears to announce the result of the VT125 self-test, and a box is drawn* around the margins of the graphics screen area. (This message stays on the screen until the first character arrives over the communication line.)

NOTE: No messages appear on the screen until the terminal warms up.

[^1]- The text cursor is displayed in the upper-left corner of the screen.

Any error found by the Power Up Self Test is displayed on the screen as a character, as a message, on keyboard indicators Ll-L4, or by several bell tones. Refer to the Self Test Error Codes section of Chapter 9 for more information about the error indications.
2. If the terminal powers up correctly, continue with the installation procedure if you are going to install any options. Then select the SET-UP features you want as described in Chapter 2.
3. When the SET-UP features are selected, record the feature selections on the SET-UP label attached to the bottom of the keyboard.

GENERAL
This chapter describes maintenance procedures, troubleshooting (what to do in the event of a problem) and self tests used with the VT125 terminal. Try to troubleshoot the terminal yourself before requesting service.

MAINTENANCE
The VT125 terminal needs no preventive maintenance. However, its cabinet may be cleaned with any mild detergent that does not use solvents. When cleaning the terminal:
CAUTION: Do not use too much detergent when cleaning the terminal. If liquids get inside the terminal, the terminal may be damaged.

- To clean the surfaces of the terminal, apply the detergent to a cloth or tissue and then clean the terminal.

To clean the screen, apply the detergent to a cloth or tissue and then clean the screen.

- To clean the keys, rub with a dry or moist cloth.

CAUTION: Do not remove the keycaps when cleaning; the keyswitch contacts can be damaged if the keycaps are replaced incorrectly.

WHAT TO DO IN THE EVENT OF A PROBLEM
If the terminal appears to be faulty, perform the following procedure. If the problem is not solved by this procedure, refer to Table $8-1$ for a list of typical problems.

1. Turn the Power Switch to the off position and check the following:
a. Power cord -- be sure the cord is connected securely at both the terminal and at the wall outlet. Check the wall outlet with another device such as a lamp to be sure that it is providing ac power.
b. Voltage Selection Switch and Fuse -- be sure the switch is in the correct position and the fuse is
good. (Remove the fuse holder cap by pressing it in and turning it counter-clockwise. Replace the fuse holder cap by pressing it in and turning it clockwise.)
c. Keyboard Coiled Cord -- check that the cord is securely plugged into the keyboard connector at the back of the terminal.
2. Turn the Power Switch to the on position, the terminal performs the Power Up Self Test. (Refer to the Power Up Self Test Description for more information about the power up test.) If the terminal does not power up correctly, call your local DIGITAL service office.
3. If needed, perform the Computer Port Data Loopback Self Test with an optional EIA loopback connector (see Chapter 11 for ordering information). (Refer to the Loopback Test descriptions in this chapter for more information.)

VT125 SELF TESTS
The VTl25 terminal has several self tests available for checking the operation of the terminal. Some of these are the self tests of the VTløø terminal that the VTl25 graphics processor resides in. The other tests are for the graphics processor itself.

The Power Up Self Test is performed each time the terminal is powered up. The other tests may be performed after the Power Up Self Test is completed. To perform the other tests the terminal must be disconnected from the communication line and an external loopback connector installed.

POWER UP SELF TEST

A Power Up Self Test is built into the VTl25 terminal to test the operation of the terminal. The test checks the general operation of the VTløø terminal, including the Advanced Video Option if installed, the user permanent SET-UP feature memory and the keyboard, and the general operation of the graphics processor, including the bit map memory.

To perform the Power Up Self Test, turn the terminal on, or if power is on, enter SET-UP and press the $\emptyset($ RESET) key. Prepare the terminal with the following procedure if the test must be run continuously:

1. With the Power switch off, disconnect the communication cable and install the loopback connector on the EIA connector, refer to Figure 8-1. The EIA loopback connector part number is $12-15336$. If the 20 mA Current Loop Adapter Option is installed, use the loopback connector (pn 7ø-15503-øø) that was included with the option. Do not use the EIA loopback connector at the same time as the current loop connector.
2. Turn the Power switch on.

Table 9-1 Problem Checklist

Symptom	Possible Cause	Corrective Action
ON LINE or LOCAL indicator on with no cursor on screen.	Screen Brightness too low.	Enter SET-UP and increase the screen brightness.
ON LINE or LOCAL indicators not on with no keyboard response. Cursor on screen.	Keyboard cable not connected to terminal.	Turn off terminal and connect keyboard cable.
KBD LOCKED indicator on.	Keyboard buffer full, keyboard cannot accept more characters. Terminal was XofFed by computer.	Entering and Exiting SET-UP clears this condition. Caution: characters may be lost using this procedure.
Terminal does not respond to typed characters. Keyclicks generated and keyboard indicators function.	Screen can not be updated by the Computer. Terminal XOFFed Computer.	Press the NO SCROLL key. or Enter and exit SET-UP.
Wrong or Substitute (※) characters or no characters appearing on the on the screen.	Incorrect SET-UP feature selection	Correct the SET-UP features. Suggested SET-UP features that may be in error: ANSI/VT52 Mode Auto XON/XOFF Bits per character Parity Parity sense Receive Speed Transmit Speed
	Computer error	Check computer system.
Several bell tones during power up, Reset or Recall.	Read or write problem with user permanent memory.	Check the SET-UP feature settings and try the save operation.

3. Be sure the terminal is ON LINE with the ANSI/VT52 SET-UP B feature selected to ANSI (SET-UP B switch $2-3=1$). Type one of the following sequences to perform the test.

ESC [4 ; 1 y Performs the Power Up Self Test once.

Performs the Power Up Self Test continuously.

NOTES: This test can also be performed with the VTløø power-up test sequence (<ESC〉[2;ly). The continuously running test ends only if an error is found or if power is turned off.

The test gives the following indications:

- Keyboard and screen flash on and off.
- All keyboard indicators turn on and off, and either the ON LINE or LOCAL indicator is turned on.
- The Wait message is displayed on the screen and then is erased.
- A bell tone is generated.
- A band of light appears at the top of the screen and is erased.
- Another bell tone is generated.
- A message appears to announce the result of the VTl25 self-test, and a box is drawn* around the margins of the graphics screen area.

NOTE: No messages appear on the screen until the terminal warms up.

- The text cursor is displayed in the upper-left corner of the screen.

Any error found by the Power Up Self Test is displayed on the screen as a character, as a message, on keyboard indicators L1-L4, or by several bell tones. Refer to the Self Test Error Codes section of this chapter for more information about the error indications.

COMPUTER DATA PORT LOOPBACK SELF TEST
The Computer Port Data Loopback test checks that the VTl25 terminal can transmit and receive characters over the computer

[^2]data port. The transmit and receive lines must be connected to each other with an external loopback connector.

To perform the Data Loopback Self Test, use the following procedure:

1. With the Power switch off, disconnect the communication cable and install the loopback connector on the computer data port connector. See Figure 8-1. The EIA loopback connector part number is $12-15336$. If the 20 Ma current Loop Adapter Option is installed, use the loopback connector (pn 70-15503-øø) that was included with the option. Do not use the EIA loopback connector at the same time as the current loop connector.
2. Turn the Power switch on. The terminal performs the power up self test.
3. Be sure the terminal is ON LINE with the ANSI/VT52 SET-UP B feature selected to ANSI (SET-UP B switch $2-3=1$). The transmit and receive speeds must be the same and $3 \emptyset \emptyset$ baud or faster. Type one of the following sequences to perform the test.

ESC [4 ; 1 ; $2 y$ Performs the Power Up and Computer Data Port loopback self tests.

ESC [$4 ; 1 ; 2 ; 9$ y Performs the Power Up and Computer Data Port loopback self tests continuously until failure.

NOTE: The continuously running test ends only if an error is found or if power is turned off.

The test gives the following indications:

- Either the ON LINE or LOCAL indicator is turned on.
- The Wait message is displayed on the screen and then is erased.
- The cursor is displayed in the upper-left corner of the screen.
- If the Computer Data Port loopback test fails, the message "VTl25 EC Error" is displayed on the internal monitor.

4. Turn the Power Switch off, remove the loopback connector and connect the communication cable.

AUXILIARY PORT LOOPBACK TEST

The Auxiliary Port Data Loopback test checks that the VTl25 terminal can transmit and receive characters over the auxiliary data port. The transmit and receive lines must be connected to each other with an external loopback connector.
To perform the Auxiliary Port Data Loopback Test, use the following procedure:

1. With the Power switch off, disconnect any cable from the auxiliary port and install the EIA loopback connector. See Figure 8-1. The EIA loopback connector part number is 12-15336.
2. Turn the Power switch on. The terminal performs the power up self test.
3. Be sure the terminal is ON LINE with the ANSI/VT52 SET-UP B feature selected to ANSI (SET-UP B switch $2-3=1$). Type one of the following sequences to perform the test.

ESC [4;1;3y, | Performs the Power Up and |
| :--- |
| Auxiliary Data Port loopback |
| self tests. |

NOTE: The continuously running test ends only if an error is found or if power is turned off.

The test gives the following indications:

- Either the ON LINE or LOCAL indicator is turned on.
- The Wait message is displayed on the screen and then is erased.
- The cursor is displayed in the upper-left corner of the screen.
- If the test fails, the message "VTl25 SC Error" is displayed.

4. Turn the Power Switch off, remove the loopback connector and connect the communication cable.

DISPLAY TEST

This test requires that you check the screen of the internal monitor and the color monitor (if present) for correct operation. The screen cycles through the four intensity levels of each of the three primaries and white to test the output memory. The computer data port must have the loopback connector installed.

Table 9-2 Display Test Indications

Monochrome					Color			
Step 1	Black	White	Light Grey	Dim Grey	Black	Light Red	Black	Black
Step 2	Dim Grey	Black	White	Light Grey	Dim BLue	Dim Red	Dim Green	Dim Grey
Step 3	Light Grey	Dim Grey	Black	White	Light Blue	Light Red	Light Green	Light Grey
Step 4	White	Light Grey	Dim Grey	Black	Light Green	Light Red	Light Blue	Black
Step 5	White	Light Grey	Dim Grey	Black	Black	Black	Black	Black

To perform the Display Test, use the following procedure:

1. With the Power switch off, disconnect the communication cable and install the loopback connector on the computer data port connector. See Figure 9-1. The EIA loopback connector part number is $12-15336$. If the 20 Ma Current Loop Adapter Option is installed, use the loopback connector (pn 70-15503-ø0) that was included with the option.

Do not use the EIA loopback connector at the same time as the current loop connector.
2. Turn the Power switch on. The terminal performs the power up self test.
3. Be sure the terminal is ON LINE with the ANSI/VT52 SET-UP B feature selected to ANSI (SET-UP B switch $2-3=1$). Type one of the following sequences to perform the test.

ESC [$4 ; 1$; 4 y Performs the Power Up and Display self tests.

ESC [$4 ; 1 ; 4 ; 9 y$ Performs the Power Up and Display self tests continuously until failure.

NOTE: The continuously running test ends only if an error is found or if power is turned off.

The test gives the indications listed in Table 9-2.

Figure 9-1 EIA Loopback Connector

VIDEO BIT MAP MEMORY TEST

This test checks that every bit in both video bit map planes can be written to both one and zero. The computer data port must have the loopback connector installed.

To perform the Video Bit Map Memory Test, use the following procedure:

1. With the Power switch off, disconnect the communication cable and install the loopback connector on the computer data port connector. See Figure 8-1. The EIA loopback connector part number is $12-15336$. If the $2 \emptyset \mathrm{Ma}$ Current Loop Adapter Option is installed, use the loopback connector (PN 7ø-155ø3-øø) that was included with the option. Do not use the EIA loopback connector at the same time as the current loop connector.
2. Turn the Power switch on. The terminal performs the power up self test.
3. Be sure the terminal is ON LINE with the ANSI/VT52 SET-UP B feature selected to ANSI (SET-UP B switch $2-3=1$). Type one of the following sequences to perform the test.

ESC [4 ; 1 ; 5 y
Performs the Power Up and Video Bit Map Memory tests.

ESC $[4 ; 1 ; 5 ; 9 y \quad$ Performs the Power Up and Video Bit Map Memory tests continuously until failure.

NOTE: The continuously running test ends only if an error is found or if power is turned off.

The test gives the following indications:

- The screen fills with levels of intensity (or color) moving from top to bottom.
- If this test fails, the message "VTl25 BM Error" is displayed.

VTl25 SELF TEST ERROR CODES

If any of keyboard indicators $L 1$ through $L 4$ are lit at the end of power-up self-test, or if the complete screen flashes, request service for the terminal.

If a character appears under the blinking cursor at the top left corner of the screen, or a message appears in the center of the screen, check Table 9-3 for the meaning of the error code character or message. Note that the character displayed could mean that more than one error has been detected. To clear the error indication after the error is corrected, Reset or Power up the terminal.

Table 9-3 Displayed Error Codes

Character Displayed	Faults Detected ----- AVO \quad Memory \quad Keyboard
1	x
2	X*
3	X X
4	X**
5	x x
6	x x
7	X X X
MessageDisplayed	
VT125 OK	None - normal power up test results
VTl25 Offline	VTløø text terminal is LOCAL. LOCAL was saved in SET-UP, or User Permanent Memory problem.
VTl25 BM Error	Video Bit Map Memory. One or more bad pixels.
VTl25 VG Error	Vector Generator
VT125 IC Error	Internal Communications
VT125 SC Error	Auxiliary Port
VTl25 EC Error	Computer Port

* Also, bell tones generated - perform a Save and Recall in SET-UP
** Be sure keyboard is properly connected

There are three types of errors indicated by the self test code characters. They are:

- Advanced Video Option (AVO) if installed

User Permanent SET-UP Feature Memory failure (Memory)

Keyboard missing or malfunction (Keyboard)

If the advanced video option fails, the terminal operates with the basic VTløø text capabilities.

If the user permanent SET-UP feature memory fails, the terminal operates using default SET-UP feature selections for each of the features. (Refer to Chapter 2 for more information on the SET-UP feature memories.)

If only the keyboard fails, the terminal ends the test ON LINE, so that it may operate as a
receive-only terminal. The SET-UP feature selections cannot be changed.

There are six types of errors indicated by the self Test error messages. They are:

VT125 offline

VT125 BM Error

VT125 EC Error

VT125 IC Error

VT125 SC Error

VT125 VG Error

VTIøø text terminal is LOCAL. LOCAL was saved in SET-UP, or User Permanent Memory problem. Terminal can only process received graphics commands.

Video Bit Map Memory has one or more bad pixels.

Computer port failed data loopback test. Terminal can only operate as text terminal in LOCAL.

Internal Communications failure. VTl25 cannot communicate with VTløø. Terminal can only process received graphics.

Auxiliary Port failed data loopback test. Terminal cannot send data to printer.

Vector Generator could not draw sample shape. Graphics probably does not work, but terminal may communicate normally.

A box is drawn around the margin of the graphics screen area.* If any part of the box is missing or distorted, the graphics board needs service.

Table 9-3 shows the possible error characters that are displayed on the screen and the failure indicated by each character. Notice that the character displayed could indicate that more than one error has been found.

[^3]
GENERAL

The VTl25 Graphics Terminal is a VTløø text terminal with a factory installed graphics processor. There are two more options that can be installed into the VTl25 at its operating location. They are the 20 mA Current Loop Option and the Advanced Video option. Other options that can be used with the VTl25 are a color monitor and a graphics hard copy printer. Installation of the monitor and printer is explained in the installation chapter. This chapter explains the installation of options into the VTl25 itself.

This chapter also explains the installation of the VTlXX-CB and -CC Graphics processors into the VTløø and VTlø5.

20 MA Current Loop Interface Option (VTIXX-AA)

Description

The 20 mA Current Loop Option is an optional interface used to connect the VTl25 terminal to a computer. The 20 mA option ia a board installed into the VTl25 terminal and an interface connector. Figure $10-1$ shows the $2 \emptyset \mathrm{~mA}$ current loop interface connector and pin assignments. The 20 mA current loop interface option can operate at a distance up to 304 meters (løøø feet).

NOTE: The VTl25 terminal is designed to use either 20 mA or EIA communications. If EIA is used on a terminal that has the $2 \emptyset \mathrm{~mA}$ option installed, the cable connecting the $2 \emptyset \mathrm{~mA}$ option board to the terminal controlller board must be disconnected.

Both the transmitter and receiver of the $2 \emptyset \mathrm{~mA}$ interface board can be selected for active and normal (passive) operation. Usially, the terminal is connected for normal (passive) operation. Passive operation means that the terminal does not supply the 20 mA current needed during communication. The transmitter goes to the mark condition when power is turned off.

Active operation means that the terminal supplies the 20 mA current needed during communication. In an active configuration, there is no isolation and the transmitter goes to the space condition when power to the terminal is turned off.

Figure 1 $\varnothing-120 \mathrm{~mA}$ Connector and Pin Locations

20 MA Option Installation
The VTIXX-AA current loop option is installed using a 5 mm ($3 / 16$ in) blade screwdriver and a 2 Phillips screwdriver. Use the following procedure to install the 20 mA current loop option:

1. Turn Power switch to the off position and disconnect the power cord. See Figure $10-1$.
2. Unplug the keyboard.
3. If installed, disconnect any video cables.
4. If installed, disconnect any communication cables.
5. Remove the $2 \emptyset \mathrm{~mA}$ option board from the VTløø access cover it came in.
6. With a 2 Phillips screwdriver, remove the four screws holding the VTl25 access cover in place. See Figure 1 $\emptyset-1$. Remove the access cover.
7. Install the $2 \emptyset \mathrm{~mA}$ current loop option board onto the access cover with the three Phillips head screws provided with the option. See Figure $1 \varnothing-2$.
8. Install the $2 \emptyset \mathrm{~mA}$ connecter to the bottom of the access cover with the two hex head screws provided with the option using a 5 mm (3/16 in) screwdriver.
9. Select TRANSmit and RECeive switches for the proper configuration. See Figure 10-3.

NOTE: These switches must be selected for NORMAL (passive) operation to perform the loopback test. The loopback test verifies proper operation of the option after installation.
10. Connect the adapter cable provided with the option to the $2 \emptyset \mathrm{~mA}$ board. See Figure 1 \varnothing-4. Place the access cover next to the opening in the back of the terminal and connect the other end of the cable to the connector on the terminal controller board.
11. Place the access cover into the opening of the terminal and tighten the four screws to fasten it.
12. Perform the Computer Data Port Loopback Test.

Computer Data Port Loopback Self Test

The Computer Port Data Loopback test checks that the VTl25 terminal can transmit and receive characters over the computer data port. The transmit and receive lines must be connected to each other with an external loopback connector.

NOTE: ACCESS COVER MAY HAVE DIFFERENT OPENINGS.

Figure 1ø-2 20 mA Current Loop Option Board Installation

NOTE: ACCESS COVER
MAY HAVE DIFFERENT
OPENINGS.
Ma-1806a
$\begin{array}{ll}\text { Figure 1ø-3 } & 2 \emptyset \mathrm{~mA} \text { Current Loop } \\ & \text { Option Switches }\end{array}$
 SHOWN LONGER FOR CLARITY

Figure 10-4 20 mA Current Loop Option Cable Position

To perform the Data Loopback Self Test, use the following procedure:

1. With the Power switch off, disconnect the communication cable and install the loopback connector (pn 7ø-155ø3-øø) that was included with the option on the computer data port connector. See Figure $1 \varnothing-5$.
2. Turn the Power switch on. The terminal performs the power up self test.
3. Be sure the terminal is ON LINE with the ANSI/VT52 SET-UP B feature selected to ANSI (SET-UP B switch $2-3=1$). The terminal transmit and receive speeds must be the same and 300 baud or faster. Type one of the following sequences to perform the test.
```
ESC [ 4 ; 1 ; 2 y
```

Performs the Power Up and
Computer Data Port loopback
self tests.

ESC $[4 ; 1 ; 2 ; 9 y$ Performs the Power Up and Computer Data Port loopback self tests continuously until failure.

NOTE: The continuously running test ends only if an error is found or if power is turned off.

The test gives the following indications:

- Either the ON LINE or LOCAL indicator is turned on.
- The Wait message is displayed on the screen and then is erased.
- The cursor is displayed in the upper-left corner of the screen.
- If the Computer Data Port loopback test fails, the message "VTl25 EC Error" is displayed on the internal monitor.

4. Turn the Power Switch off, remove the loopback connector and connect the communication cable.

Advanced Video Option

Description
The Advanced Video Option adds the following features to the text terminal capabilities of the VT125:

- 10 additional lines of 132 column display. The screen can now display a total of 24 lines in either 80 - or 132- column format.

$\begin{array}{ll}\text { Figure } 10-5 & \begin{array}{l}2 \emptyset m A \text { Loopback } \\ \text { Connector }\end{array}\end{array}$
- Additional character attributes - any text terminal characters can now be highlighted in any of the following ways: Bold, Blink, Underline, Reverse, any combination of the four.

Capability to use an additional character generator ROM, for another resident character set.

Installation
Use the following procedure to install the Advanced Video option.
The VTIXX-AB Advanced Video option is installed using a $5 \mathrm{~mm}(3 / 16$ in) blade screwdriver. Use the following procedure to install the option.

1. Turn Power switch to the off position and disconnect the power cord. See Figure $1 \varnothing-1$.
2. Unplug the keyboard.
3. If installed, disconnect any video cables.
4. If installed, disconnect any communication cables.
5. With a 2 Phillips screwdriver, remove the four screws holding the access cover in place. See Figure 1 \varnothing-2. Remove the access cover.
6. If a 2øMA current loop option is installed, disconnect the short cable from the terminal controller board. (See Figure 10-4.)
7. Remove the ground wires from the terminal controller and graphics processor boards.
8. Loosen the two large boards from their sockets, one at a time, and then pull them out together about 5 cm (2 in).
9. Remove both flat cables from the graphics processor board. See the VTløø upgrade procedure illustrations in this chapter.
10. Remove the terminal controller board from the chassis.
11. Locate the four mounting holes drilled in the terminal controller board for the AVO and mount a plastic standoff in each hole. (See Figure 10-6.)
12. Holding the Advanced video Option board by the edges, align the AVO connector with the pins on the terminal controller board. Press the board into place.

MA. Thess

Figure 10-6 Advanced Video Option Location and Installation
13. Slide the terminal controller partially into the chassis and reconnect the two flat cables to the graphics processor board.
14. Reconnect the ground wires to the terminal controller and graphics processor boards.
15. Slide both boards into the chassis together, taking care not to stretch the cables. Seat both boards in their sockets, one at a time.
16. Place the access cover into the opening of the terminal, replacing the $2 \emptyset$ ma adapter cable if present, and tighten the four screws.
17. Replace the power cord.
18. Perform the Advanced Video Option Test.

Advanced Video Option Test

Use the following procedure to check out the operation of the Advanced Video Option.

1. Turn the terminal power on and check that no error was detected during the power up self test.
2. Press the SET-UP key. The words "SET-UP A" should blink in boldface, the words "TO EXIT PRESS SET-UP" should be underlined, and the tab ruler at the bottom of the screen should have alternating normal and reverse video sections even if the cursor is selected to be underline.
3. Place the terminal in 132 - column mode and then in LOCAL.
4. Exit SET-UP and type the following sequence:

ESC < ESC \# 8
The screen should now display 24 lines X 132 columns.
VT1XX-CB OR -CL INSTALLATION INTO VT1øø AND VTlø5
The VTIXX-CB or -CL is a kit of all the parts needed to install a VTl25 Graphics processor into a VTløø or VTlø5.

NOTE TO CUSTOMER: Please do not try to install this complex option. Call your DIGITAL Field Service branch for assistance.

NOTE: Before installing the Graphics Processor, check the ROMs and the etch revision level on the terminal controller board (at step 7 of this procedure). Compare the numbers of the ROMS on the board with the numbers in Figure $10-7$. They should be equal or larger.

23-061 E2 NUMBER SHOULD BE 061 OR LARGER
NOTE: ROMS MAY BE
INSTALLED IN ANY
ORDER ON TERMINAL
CONTROLLER BOARD.

Figure 10-7 Check ROM Numbers

Check the etch number on the solder side of the board. Look for the number 5013008 followed by a letter. If the letter is D, E, etc. the board can be used. If the letter is A, B, or C, you cannot use the board.

If either of these prerequisites cannot be met, consult your Field Service branch office for information.

1. σ TOOLS NEEDED
$1 / 4$ inch nutdriver, 2 Phillips screwdriver, needlenosed pliers, 3/16 inch blade screwdriver.
2.0

INSTALLATION PROCEDURE

1. Turn off the power and disconnect the power cord.
2. Unplug the keyboard.
3. Remove the access cover (4 phillips screws or four slotted plastic screws (See Figure l \quad-l.) If a $2 \emptyset \mathrm{~mA}$ current loop option is installed, disconnect the short cable from the terminal controller board. (See Figure 10-4.)
4. Remove the shipping bolts if installed $(1 / 4$ inch hex head). You can discard them.
5. Release the pop fasteners at the front and back of the terminal with a blade screwdriver and remove the top cover. (See Figure 10-8.)
6. Release the pop fasteners at the front and back of the chassis with your fingers and remove the chassis from the bottom cover.
7. Remove the terminal controller board from the chassis.
8. Remove the terminal controller edge connector by either 1. releasing the two retaining rings from the edge connector with needlenosed pliers, or 2. lifting the clips at the top and bottom of the edge connector and discarding the clips.
9. On VTløø: Remove the terminal controller edge connector by either a. releasing the two retaining rings from the edge connector with needlenosed pliers, or b. lifting the clips at the top and bottom of the edge connector and discarding the clips.

On VTl05: Disconnect the power cable from the VTl05 expansion backplane and remove the backplane. (See Figure 10-9.)
10. Install the new expansion backplane with four 12.7 mm ($1 / 2$ in) $X 4-4 \emptyset$ screws and keps nuts and four 6.4 mm ($1 / 4$ in) spacers. Install the screws at the connector

Figure 10-8 Top Cover Removal

Figure 10-9 Expansion Backplane Installation
positions marked $J 1$ and $J 5$ on the board. (See Figure 10-9.) Be sure that the small red connector clears the inner edge of the card cage. The DC power cable must be flat against the chassis or the backplane will not fit.
11. Bend the DC power cable around so that the opening faces the CRT. Remove the alignment key in the connector opening with pliers if it is present. Install the connector onto the board edge connector, passing the cable around the wire frame if it is present. (See Figure 10-9.)

NOTE: The alignment key stays in the connector in factory-assembled VTl25 terminals that comply with the FCC EMI specification.
12. Install card guides into the top and bottom of the card cage at the VTl25 connector position.
13. At the fourth hole from the left on the top of the chassis (over the BNC bracket) press the ground clip with a wire onto the chassis (Figure $1 \varnothing-1 \varnothing$).
14. Install the FCC RF shield (Figure 10-11): a. Loosen but do not remove two Phillips screws at the top of the shield. b. Set the chassis on end with the cage up.

NOTE: The terminal rests on several parts that stick out on the bottom. Set the terminal on a protected surface to prevent damage.

There are bumpers attached to both sides of the chassis. They protect the terminal during shipping and can be removed now if needed.
c. Loosen but do not remove two Phillips screws at the bottom of the shield. d. Slide the shield onto the cage. e. Tighten the four Phillips screws.
15. Put the chassis into the bottom cover and press the pop fasteners to close them. Put the top cover over the terminal and press its pop fasteners to close them.
16. Slide the terminal controller board partially into the chassis.
17. Install either end of the 16 pin flat cable connector to the lower 16 pins of the terminal controller board's graphic connector (marked $J 2$ on the terminal controller board) with the cable entering from the left. Fold the cable over the connector to the right. (See Figure 10-12.)

NOTE
INSTALL CLIPS BEFORE
INSTALLING SHIELD.

MA. 0460

Figure $1 \varnothing-1 \emptyset$ Installing Ground Clips

Figure 10-11 16 Pin Flat Cable on Terminal Controiler

Figure $10-12$ STP Paddleboard Installation

Figure $10-13$ 24 Pin Flat Cable
on STP Board
18. Install the STP paddle board in the STP connector. Lift the 16 pin cable slightly if needed to clear the spacer when inserting the STP board. Attach it to the terminal controller board with the supplied screw and washer. (See Figure 10-13.)
19. Find the end of the 24 pin cable that has pin 1 on the cable side. The red strip should be on the left. Fold the cable under itself to the right approximately 3 centimeters (one inch) from the connector and install that end into the socket on the paddle board with the cable down. (See Figure 10-14.)
20. Install the VT125 board into the chassis so that it sticks out approximately 5 centimeters (2 inches) more than the terminal controller board.
21. Arrange the 16 pin graphic connector with the cable entering from below and install it into the connector at the top edge of the VTl25 board. (See Figure 10-15.)
22. Arrange the 24 pin connector with the cable entering from the right and install it into the 24 pin socket at the right edge of the VTl25 board. (See Figure 10-15.)
23. Check the switches on the STP paddle board and set switches 1,3 , and 4 off, with all the other switches on. (See Figure 10-16.)
24. Connect the ground wire from the top of the chassis to the quick-connect terminal on the BNC connector bracket. See Figure 10-17.
25. Slide both boards into the chassis together, taking care not to stretch the cables. Seat both boards in their sockets, one at a time.
26. If the $2 \emptyset \mathrm{~mA}$ adapter was installed on the VTlø0, remove the adapter board from the VTløø access cover and install it into the new access cover. (See procedure in this chapter.)
27. Install the 20 mA connector cable (if present) to the red connector on the terminal controller board.
28. Adjust the cables in the access opening and install the access cover, tightening the four screws carefully.
29. Perform the power up and checkout procedure that is described in Chapter 8.

Figure 10-14 Graphic Cable Connections

Figure 10-15 Paddleboard Switches -- Variations

Figure 10-16 Connecting BNC Bracket Ground Wire

Figure 10-17 RF Shield Installed

GENERAL
This chapter describes the accessories and supplies offered for by DIGITAL for the VTl25 terminal. Included in this chapter is a description of the accessories and supplies, their part numbers and ordering information.

ACCESSORIES AND SUPPLIES

	Part No.	Description
1	VTIXX-AE	VT125 formed screen filter, gray, anti-glare coating
1	VTIXX-AR	VTl25 non-reflective filter screen
2	VTIXX-ST	VT125 terminal stand with casters
3	H9850-HK	Heavy gauge vinyl dust cover, charcoal brown.
4	H9850-DA	Anti-static floor mat, DECmat, $122 \mathrm{~cm} /$ 183 cm (4 ft. / 6 ft.$)$. Driftwood color (brownish gray)
4	H9850-DB	Anti-static floor mat, DECmat, $122 \mathrm{~cm} /$ 183 cm ($4 \mathrm{ft} . / 6 \mathrm{ft}$.$) . Summer Earth$ color (brown/gold)
4	H9850-DC	Anti-static floor mat, DECmat, $91 \mathrm{~cm} /$ 305 cm ($3 \mathrm{ft} . / 1 \emptyset \mathrm{ft}$.$) . Silver Birch$ color (silvergray/brown)
4	H9850-DD	Anti-static floor mat, DECmat, $91 \mathrm{~cm} /$ $305 \mathrm{~cm}(3 \mathrm{ft} . / 10 \mathrm{ft}$.$) . Autumn Bronze$ color (orange/brown)
4	H9850-DE	Anti-static floor mat, DECmat, $91 \mathrm{~cm} /$ $305 \mathrm{~cm}(3 \mathrm{ft} . / 10 \mathrm{ft}$.$) . Driftwood color$ (brownish gray)

Figure 11-1 Accessories and Supplies Group

Item No. Part No. 4

H9850-DF

H9850-DH

H970-EB

H970-HB

LA12X-UA
LA $12 \mathrm{X}-\mathrm{UB}$
LA12X-UC
LA12X-UD
LA $12 \mathrm{X}-\mathrm{UE}$
LA12X-UF
LA12X-UH
LA12X-UJ
LA12X-UL
LA12X-UM
LA12X-UN
LA1 2 X -UP
LA1 2 X -UR
LA12X-US
LA12X1-A
3Ø-10958-ø2

VTIXX-AA

VTIXX-AB

Description
Anti-static floor mat, DECmat, $122 \mathrm{~cm} /$ 183 cm (4 ft. / 6 ft.$)$. Silver Birch color (silvergray/brown)

Anti-static floor mat, DECmat, $122 \mathrm{~cm} /$ 183 cm ($4 \mathrm{ft} . / 6 \mathrm{ft}$.). Autumn Bronze color (orange/brown)

Terminal table, 68.6 cm high / 91.4 cm wide / 76.2 cm deep ($27 \mathrm{in} . / 36 \mathrm{in} . / 30$ in.) with levelers

Terminal table, 68.6 cm high / 61.0 cm wide / 76.2 cm deep (27 in. / $24 \mathrm{in} . / 3 \emptyset$ in.) with levelers

Blank keycap kit of 50 , Row 4^{*}
Blank keycap kit of 50 , Row 1 *
Blank keycap kit of 50 , Row 2*
Blank keycap kit of 50 , FJ type
Blank keycap kit of 50 , SET-UP
Blank keycap kit of 50 , TAB
Blank keycap kit of $5 \emptyset$, CAP LOCK
Blank keycap kit of 50 , SHIFT
Main array blank key cap set
Blank keycap kit of $50, \mathrm{CR}$
Blank keycap kit of 50 , ENTER
Blank keycap kit of $5 \emptyset$, Num Pad \emptyset
Blank keycap kit of 50 , Row 3*
Blank keycap kit of 50 , Row 5*
Acoustic telephone coupler, $3 \emptyset \emptyset$ baud
Cable interface DFø1-A couplers to VTl25 terminals

20 mA current loop option with BCØ5F-15 cable.

Advanced video option.

10	BC22A-10	EIA RS232 female-female null modem cable shielded $3 . \emptyset \mathrm{m}$ (lø ft.)
10	BC22A-25	EIA RS232 female-female null modem cable shielded 7.6 m (25 ft.)
10	BC22B-1 \emptyset	EIA RS232 male-female extension cable shielded $3 . \emptyset \mathrm{m}$ (lø ft.)
10	BC22B-25	EIA RS232 male-female extension cable shielded 7.6 m (25 ft.)
10	BC23A-1ø	Kit of 5 BC22A-1ø
10	BC23A-25	Kit of 5 BC22A-25
10	BC23B-1ø	Kit of 5 BC22B-1ø
10	BC23B-25	Kit of 5 BC22B-25
NOTE: EIA RS-232-C specifies a maximum cable length of 15 m (50ft). EIA RS-423 specifies a maximum cable length of $61 \mathrm{~m}(2 \emptyset \emptyset$		
ft).	RS-423 sp	ifies a maximum cable length of 61 m (2øø
10	BCø $3 \mathrm{M}-\mathrm{AO}$	```Female-female null modem cable 30.5m (1\emptyset\emptyset ft.)```
10	BC03M-B5	Female-female null modem cable 76.2 m (200 ft.)
$1 \varnothing$	BC03M-EO	Female-female null modem cable 152.4 m (500 ft.)
10	BCø3M-LO	Female-female null modem cable 304.8 m (1000 ft.)
10	BC05X-15	20 mA current loop extension cable 4.6 m (15 ft.)
10	BC05X-25	2ø mA current loop extension cable 7.6 m (25 ft.)
10	BC05 -50	$2 \emptyset \mathrm{~mA}$ current loop extension cable 15.2 m (50 ft.)
11	H9532-AA	Work-station desk with blue front panel and gray side panels, levelers, 122 cm wide / 76.2 cm high / 76.2 cm deep ($48 \mathrm{in} . / 30$ in. / 30 in.)

Item No. Part No.shielded $3 . \emptyset \mathrm{m}$ ($1 \varnothing \mathrm{ft}$.)

EIA RS232 female-female null modem cable shielded 7.6 m (25 ft.)

EIA RS232 male-female extension cable shielded $3 . \emptyset \mathrm{m}$ (lø ft.)

EIA RS232 male-female extension cable shielded 7.6 m (25 ft.)

Kit of 5 BC22A-1 \varnothing
Kit of 5 BC22A-25

Kit of 5 BC22B-25

Description

POWER CORDS:
17-ø0083-ø9 United States (120 V)
17-ø0日83-10 United STates (240 V)
17-øø2ø9-øø United Kingdom
17-øø199-øø Continental Europe (SCHUKO)
17-Ø0211-0め Switzerland
17-øø198-øØ Australia

ALIGNMENT TEMPLATES:

94-ø3220-3 Screen Alignment Template
94-03246-3A Character Width Template
94-03246-3B Character Height Template
DATA LOOPBACK TEST CONNECTORS:
12-15336-ø E EIA Loopback Connector
7Ø-15503-øø Current Loop Connector

RELATED DIGITAL DOCUMENTATION:

13
EK-VT125-UG
VTl25 User Guide -- Describes the installation, operation and programming of the VTl25 terminal. This document is shipped with the terminal.

SPARES KIT:

ORDERING INFORMATION

Continental USA
Call $800-258-1720$ or mail order to:
Digital Equipment Corporation
P.O. Box CS2øø8

Nashua, NH Ø3ø61

New Hampshire
Call 602-884-6660 or mail order to:
Digital Equipment Corporation
P.0. Box CS2øø8

Nashua, NH $\emptyset 3061$
Alaska or Hawaii
Call 408-734-4915 or mail order to:
Digital Equipment Corporation
632 Caribbean Drive
Sunnyvale, CA 94086
Canada
Call 8ø日-267-6146 or mail order to:
Digital Equipment Corporation
P.O. Box $1300 \emptyset$

Kanata, Ontario
Canada K2K 2A6
Att: ASG Business Manager
Telex: 61ø-562-8732

GENERAL

This apppendix lists the specifications of the VTl 25 terminal and provides X-ray emission statements, loopback connector wiring, and a list of related documentation not provided by DIGITAL.

VT125 SPECIFICATIONS

Dimensions
Monitor

Keyboard

Height: 36.83 cm (14.5 inch)
Width: 45.72 cm (18 inch)
Depth: 36.20 cm (14.25 inch)
Height: $8.89 \mathrm{~cm}(3.5$ inch)
Width: 45.72 cm (18 inch)
Depth: 20.32 cm (8 inch)
Minimum table depth: 51.4 cm (2ø.25
inch)
Weight
Monitor
Keyboard
Shipping Weight
Environment
Operating

Non-Operating

Power
Line Voltage
$14.6 \mathrm{~kg}(32.2 \mathrm{lbs})$
2.0 kg (4.5 lbs)
19.6 kg (43.2 lbs)

Temperature; $1 \theta^{\circ}$ to $4 \emptyset^{\circ}$ C ($5 \emptyset^{6}$ to $104^{\circ} \mathrm{F}$)
Relative Humidity: 10% to $9 \emptyset \%$
Max wet bulb: $28^{\circ} \mathrm{C}\left(82^{\circ} \mathrm{F}\right)$
Min dew point: $2^{\circ} \mathrm{C}\left(36^{\circ} \mathrm{F}\right)$
Altitude: $2.4 \mathrm{Km}(8, \emptyset \emptyset \emptyset \mathrm{ft})$
Temperature: ${ }^{-4 \theta^{\circ}}$ to $66^{\circ} \mathrm{C}$
$(-4 \emptyset$ to 151
Relative Humidity: \varnothing to 95%
Altitude: $9.1 \mathrm{~km}(30, \emptyset \emptyset \emptyset \mathrm{ft})$

99--128 V RMS single phase, 2 wire 198--256 V RMS single phase, 2 wire (selected by switch)

Line Frequency Current

Input Power
Current limiting
Power cord
Power cord receptacle

Display CRT

Format

Character
Character size

Active Display Size
Character Set

Cursor type

Keyboard
General

Key Layout

Auxiliary Keyboard

Visual Indicators

Audible Indicators
$47 \mathrm{~Hz}--63 \mathrm{~Hz}$
2.20 A RMS maximum at $12 \emptyset \mathrm{~V}$ RMS
1.10 A RMS maximum at 240 V RMS

150 W RMS or 250 VA apparent
3.0 A fast blow fuse

Detachable, 3-conductor grounded
EIA specified CEE22-6A

12 inch diagonal measure, P4 phosphor
24 lines $X 8 \emptyset$ characters or 14 lines X 132 characters (selected from keyboard or computer) (24 X 132 with Adavnced Video Option)
$7 \times 1 \emptyset$ dot matrix with descenders
$8 \emptyset$-column mode
3.35 mm X 2.0 mm (0.132 inch X $\emptyset .078$ inch) 132-column mode 3.35 mm X 1.3 mm ($\emptyset .132$ inch X $\emptyset .051$ inch)
$2 ø 2 \mathrm{~mm} \mathrm{X} 115 \mathrm{~mm}$ (8 inch X 4.5 inch)
ASCII and UK displays 96 characters (with upper- and lowercase, numeric and punctuation), 32-character special graphics set

Blinking block character or blinking underline (selected from keyboard)

83-key detachable unit with a 1.9 m (6 ft) coiled cord attached

65-keys arranged similar to standard typewriter with 18-key auxiliary keypad.

18 keys with period, comma, minus, enter, and four general purpose function keys

Seven: ON LINE, LOCAL, KBD LOCKED, and four programmable.

Audible keyclick for each keystroke (selectable from keyboard)

Communication Type

Speeds

Code
Character format
Character size
Parity

Buffer overflow prevention

Composite Video
Output (J9)

Bell: sounds when BEL character received, and 2) sounds eight characters from right margin (selected from keyboard)

Multiple bell sounds on error in SET-UP save or recall operation

Full Duplex EIA

$50,75,110$ (two stop bits), 134.5, 150, 200, 300, 600, 1200, 1800, 2ø00, $2400,3600,4800,9600,19,200$ baud (selected from keyboard)

ASCII (ISO 646 and CCITT Alphabet 5)
Asynchronous
7 or 8 bits (selected from keyboard)
Even, odd or none (selected from keyboard)

Automatic generation of XON and XOFF control codes. The VTl25 Graphics Terminal requires XON/XOFF support in its host computer

The composite video output provides RS17ø output with the following nominal characteristics (Figure A-1).

Output impedance $=75$ ohms, dc coupled SYNC level $=\emptyset V$

Black level = approximately 0.3 V when loaded with 75 ohms

White level = approximately $1 . \emptyset \mathrm{V}$ with a 75 ohm load

Composite sync waveform meets EIA RSI7 standards.

Vertical interval is six equalizing pulses, six vertical sync pulses, and six more equalizing pulses. Timing is as follows:

Equalizing pulse width 2.33 us $\pm 50 \mathrm{~ns}$

Vertical pulse width 27.28 us $\pm 200 \mathrm{~ns}$

Figure A-1 Composite Video Output

Horizontal pulse width

$$
4.71 \text { us }+50 \mathrm{~ns}
$$

Horizontal blank width
11.84 us $\pm 50 \mathrm{~ns} / 8 \emptyset$ column mode
12.34 us $\mp 50 \mathrm{~ns} / 132$ column mode

Front Porch
1.54 us $\pm 50 \mathrm{~ns}$

Color Video Outputs
Each of the color outputs is a DC coupled analog signal with an output impedance of 75 ohms and a level ranging from σ to 1 volt when loaded with 75 ohms. No sync is available on the color outputs.

Video Input

An analog signal applied to the video input will be "ORed" with the internal video signal so the beam intensity at any point on the screen will correspond to the intensity of that signal which would tend to make the beam brighter at that point. A video signal on this input affects only the internal screen and does not appear on the composite video output. This input has the following nominal characteristics:

1. Input impedance $=75$ ohms, dc-coupled
2. Black level $=\emptyset \mathrm{V}$
3. White level $=1 . \emptyset \mathrm{v}$
4. Maximum continuous input $=+-2 . \varnothing \mathrm{V}$

The external video source must be synchronized to the VTl25; it may do this by referencing the composite sync on the composite video output. This means that the VTl25 video input will not synchronize with any composite video source.

X-RAY Emission Data

Rated anode voltage:
Dose rate:
Compliance with:

12 kV (fixed)

- Less than $1.43 \mathrm{pA} / \mathrm{kg}(2 \emptyset \mathrm{uR} / \mathrm{h})$ *

Paragraph 5, clause 2 of German
X-Ray ordinance (1973)

- CSA 22.2 no. 154-1975

Paragraph 4.1.4

- VDE Ø8ø4/5.72, Paragraph 23
- VDE $973 \emptyset$ part $2 \mathrm{P} / 6.76$, Paragraph 33
- VDE $\emptyset 86 \emptyset$ part $1 / 11.76$, Paragraph 6
- IEC 65 public 1/1972, Paragraph 6
- CSA no. 65
- UL 478
- emca 57

[^4]```
Workstation exposure Does not expose the operator to dangerous
X-ray radiation
```


## LOOPBACK CONNECTOR WIRING

```
From To
EIA
Pin 2 Pins 3 and 15
Pin 4 Pins 5 and 8
Pin \(2 \emptyset \quad\) Pins 6 and 22
Pin 19 Pins 12 and 17
20 mA
Pin 1 Pin 3
Pin 2 Pin 7
Pin 5 Pin 8
```


## RELATED DOCUMENTATION

```
ANSI specifications can be ordered at the following addresss.
Sales Department American National Standards Institute 1430 Broadway New York, N.Y. 10018
EIA specifications can be ordered at the following address.
Electronic Industries Association Engineering Department \(2 ø ø 1\) Eye St. NW Washington, DC \(2 ø 006\)
International standards can be ordered at the following address.
CCITT
UN Book Store
United Nations Building
N.Y., N.Y. 10017
```

GENERAL
This appendix provides a summary of the VTl25 terminal SET-UP features. Table $B-1$ lists the SET-UP features. Figure $B-1$ shows the screen displays. Figure $B-2$ is a summary of the SET-UP $B$ features.

| SET-UP Feature | Operator Preference | Communication Compatibility | Installation |
| :---: | :---: | :---: | :---: |
| ON LINE/LOCAL |  | X |  |
| Screen brightness | x |  |  |
| Columns per line |  | x |  |
| Tab stops |  | X |  |
| Scroll | x |  |  |
| Auto repeat | x |  |  |
| Screen background | X |  |  |
| Cursor | X |  |  |
| Margin bell | X |  |  |
| Keyclick | x |  |  |
| ANSI/VT52 |  |  |  |
| Auto XON/XOFF |  | x |  |
| US/UK character set |  |  | X |
| Auto wrap |  | x |  |
| Line feed/new line |  | x |  |
| Interface |  |  | x |
| Parity sense |  | x |  |
| Parity |  | x |  |
| Bits per character Power |  | X | X |
| AUX port bits per character |  | X |  |
| AUX port speed |  | X |  |
| Transmit speed |  | x |  |
| Receive speed |  | x |  |
| Answerback |  | X |  |

```
SET-UP A
TO EXIT PRESS "SET-UP"
```




Figure B-1 SET-UP B Display

## SET-UP B <br> TO EXIT PRESS "SET-UP"



Figure B-2 SET-UP B Summary

## APPENDIX C

TRANSMITTED CHARACTER SUMMARY

## GENERAL

This appendix lists the character codes generated by the VTl25 terminal.

## STANDARD KEYS

Figure $C-1$ shows the codes generated by the standard keys.


Figure C-1 Standard Key Codes

## FUNCTION KEYS

Figure $C-2$ shows the control codes generated by the function keys. For the shaded keys, CTRL does not need to be pressed in order to generate the control character. Table $C-1$ lists the control codes generated.


Figure C-2 Function Key Control Codes

Table C-1 Control Codes Generated

| Control Character | Character <br> Mnemonic | Code (Octal) Sent | Key Pressed with CTRL | Dedicated <br> Key |
| :---: | :---: | :---: | :---: | :---: |
| Null | NUL | ø0. | Space Bar |  |
| Start of heading | SOH | 001 | A |  |
| Start of text | STX | 002 | B |  |
| End of text | ETX | 003 | C |  |
| End of transmission | EOT | 004 | D |  |
| Enquire | ENQ | $\emptyset 05$ | E |  |
| Acknowledge | ACK | 006 | F |  |
| Bell | BEL | 007 | G |  |
| Backspace | BS | 010 | H | BACK SPACE |
| Horizontal | HT | 011 | I | TAB |
| Tabulation |  |  |  |  |
| Line feed | LF | 012 | J | LINE FEED |
| Vertical tab | VT | 013 | K |  |
| Form feed | FF | 014 | L |  |
| Carriage return | CR | 015 | M | RETURN (ENTER) |
| Carriage return | CR LF | 015012 |  | RETURN (ENTER) |
| Line feed |  |  |  |  |
| Shift out | So | 016 | N |  |
| Shift in | SI | 017 | 0 |  |
| Data Link Escape | DLE | 020 | P |  |
| Device control 1 | DCl (XON) | 021 | Q |  |
| Device control 2 | DC2 | 022 | R |  |
| Device control 3 | DC3 (XOFF) | $\emptyset 23$ | S |  |
| Device control 4 | DC4 | $\emptyset 24$ | T |  |
| Negative acknowledge | NAK | Ø25 | U |  |
| Synchronous idle | SYN | $\emptyset 26$ | V |  |
| End of transmission Block | ETB | $\emptyset 27$ | W |  |
| Cancel previous word or character | CAN | $\emptyset 30$ | X |  |
| End of medium | EM | 031 | Y |  |
| Substitute | SUB | 032 | Z |  |
| Escape | ESC | $\emptyset 33$ | , |  |
| File separator | FS | $\emptyset 34$ | 1 |  |
| Group separator | GS | $\emptyset 35$ | ] |  |
| Record separator | RS | ø36 | $\sim$ |  |
| Unit separator | US | 637 | ? |  |
| Delete | DEL | 177 |  | DELETE |

* The RETURN character code can be changed by the line feed/new line feature. When off, this feature causes RETURN to generate a single control character (CR). When on, this feature causes RETURN to generate two characters (CR, LF). Also, depending on the keypad mode selected, RETURN and ENTER may generate the same control codes.


## GENERAL

This appendix provides a summary of the VTl25 escape and control sequences.

CONTROL CHARACTERS

| Name | Character <br> Mnemonic | Octal <br> Null | NUL |
| :--- | :--- | :--- | :--- | | Function |
| :--- |
| Enquire |
| Bell |


| Name | Character <br> Mnemonic | Octal <br> Shift In | SI |
| :--- | :--- | :--- | :--- | | Function |
| :--- |
| Device <br> Control 1 |
| Device <br> Control 3 |
| DCl |

ANSI COMPATIBLE SEQUENCES
Set Mode

| Name | Mnemonic | Mode | Sequence |
| :--- | :--- | :--- | :--- |
| Line feed/new line | LMN | New line | ESC [2øh |
| Cursor key | DECCKM | Application | ESC [?1h |
| ANSI/VT52 | DECANM | ANSI | N/A |
| Column | DECCOLM | 132 column | ESC [?3h |
| Scrolling | DECSCLM | Smooth | ESC [?4h |
| Screen | DECSCNM | Reverse | ESC [?5 |
| Origin | DECOM | Relative | ESC [?6h |
| Auto wrap | DECAWM | On | ESC [?7h |
| Auto repeat | DECARM | On | ESC [?8h |
| Interlace | DECINLM | On | ESC [?9h |



Auxiliary Keypad Codes Generated



## Cursor Movement commands

| Name | Mnemonic | Sequence |
| :---: | :---: | :---: |
| Cursor up | CUU | ESC [ Pn A |
| Cursor down | CUD | ESC [ Pn B |
| Cursor forward (right) | CUF | ESC [ Pn C |
| Cursor backward (left) | CUB | ESC [ Pn D |
| Cursor position | CUP | ESC [ Pn; Pc H |
| Cursor position (home) | CUP | ESC [ H |
| Horizontal and vertical position | HVP | ESC [ Pl; PC f |
| Horizontal and vertical position (home) | HVP | ESC [ f |
| Index | IND | ESC D |
| Reverse index | RI | ESC M |
| Next line | NEL | ESC E |
| Save cursor <br> (and attributes) | DECSC | ESC 7 |
| Restore cursor (and attributes) | DECRC | ESC 8 |
| Tab Stops |  |  |
| Name | Mnemonic | Sequence |
| Horizontal tab set (at current column) | HTS | ESC H |
| Tabulation clear <br> (at current column) | TBC | ESC [ g |
| Tabulation clear (at current column) | TBC | ESC [ 0 g |
| Tabulation clear (all tabs) | TBC | ESC [ 3 g |
| Line Attributes |  |  |
| Name | Mnemonic | Sequence |
| Double-height top half | DECDHL | ESC \# 3 |
| Double-height bottom half | DECDHL | ESC \# 4 |
| Single-width single-height | DECSWL | ESC \# 5 |
| Double-width single-height | DECDWL | ESC \# 6 |

Erasing

Name
Erase in line
(cursor to end of line)
Erase in line
(cursor to end of line)
Erase in line
(beginning of line to cursor)
Erase in line
(entire line containing cursor)
Erase in display
(cursor to end of screen)
Erase in display
(cursor to end of screen)
Erase in display
(beginning of screen to cursor)
Erase in display
(entire screen)
Reports
Name
Device status report (request status of VT125)
Response:
Terminal OK
Terminal not OK
Device status report (request cursor position)
Report cursor position
Device attributes
(what are you)
Device attributes (what are you)
Identify terminal (what are you)
Device attributes
Response: VT125

Mnemonic
EL
EL
EL
EL
EK
ED
ED
ED

Mnemonic
DSR
DSR
DSR
DSR
CPR

DA
DA
DECID

DA

Sequence
ESC [ K
ESC [ 0 K
ESC [ 1 K
ESC [ 2 K
ESC [ J
ESC [ $\emptyset$ J
ESC [ 1 J
ESC [ 2 J

Sequence
ESC [5n

ESC [ 10 n
ESC [3n
ESC [6n
ESC [P1; PC R
ESC [ c
ESC [øc
ESC z

ESC [?12; <VTløø features>;
<VTl25 features>; <VT125 ROM version>C
〈VTløø> $5=$ No AVO
7 = AVO
<VTl25> $1=$ Printer $\emptyset=$ No Printer


## VT52 COMPATIBLE MODE

Set and Reset Modes
Enter ANSI mode
Sequence
ESC <

Keypad Character Selection

Name

Enter alternate keypad mode Exit alternate keypad mode

Sequence
$\mathrm{ESC}=$
ESC >

Character Sets
Name
Special graphics character set*
$\begin{array}{ll}\text { ESC } & F \\ \text { ESC } & G\end{array}$
$\begin{array}{ll}\text { ESC } & F \\ \text { ESC } & \text { G }\end{array}$
Select US/UK character set
Sequence
(as determined by US/UK
character SET-UP feature)
Cursor Position
Name
Cursor upt
Sequence

Cursor downt
Cursor right +
Cursor left +
Cursor to home
Direct cursor address $\ddagger$
Reverse line feed
Erasing
Name

Erase to end of line
Erase to end of screen

Reports
Name
Identify (what are you)
Response: VTløø

Sequence
ESC K
ESC J
ESC A
ESC B
ESC C
ESC D
ESC H
ESC Y Pl PC ESC I

Sequence
ESC Z
ESC / Z

* Same as special character and line drawing set in ANSI mode.
+ Same when sent from the terminal.
\# Line and column numbers for direct cursor address are single character codes whose values are the desired number plus $31(10)^{\text {. }}$ Line and column numbers start at one.


## ReGIS Command Summary



```
C { [<position>]
(C)<position>]
(A<degrees>) [position>]
(A<degrees>C)[position>]
(B)[position] . . . [position](E)
(S)[][position] . . . [position][](E)
(W(temporary writing controls))
} Circle with Center at Current
<position>
Circle with Center at
<position>, Circumference
at Current Position
Arc with Center at Current
Position, starting at
<position> for <degrees>
Arc with Center at
<position>, starting at
current position for
<degrees>
Bounded (closed) curve
Unbounded (open) curve
```

\} Position, Circumference at

```
Curve Command Summary
T
```

```
(S <size number>)
```

(S <size number>)
(H <height>)
(H <height>)
[<spacing>]
[<spacing>]
(S [<width in pixels>,<height in pixels>])
(S [<width in pixels>,<height in pixels>])
(M [<width pixel multiplier>,<height pixel multiplier>])
(M [<width pixel multiplier>,<height pixel multiplier>])
(D <direction angle>)
(D <direction angle>)
(D <string tilt> S <size> D <char tilt>)
(D <string tilt> S <size> D <char tilt>)
(T <italic degrees>)
(T <italic degrees>)
(A <pattern set number>)
(A <pattern set number>)
((B) <temporary attributes block> (E))
((B) <temporary attributes block> (E))
(W(temporary writing controls))

```
(W(temporary writing controls))
```

Text Command Summary

S

Scroll
Display
addressing
Erase screen
Hard copy (corner positions optional)
Set hard copy offset
Background
Intensity:
Dark or Dark Red Green Blue Cyan Yellow Magenta White

Screen Controls Summary


## APPENDIX E <br> ANSI CODE EXTENSION TECHNIQUES

GENERAL
This section describes the ANSI code extension techniques as defined in ANSI standards X3.41-1974 and X3.64-1979 (ISO 2022 and 6429). (See the Accessories chapter for ANSI standards ordering information.) The description is based on the functions used in the VTløø and LAl2ø families of terminals. There are many special cases and details in the specifications that are not described here.

## CLASSES OF CHARACTERS

The ANSI system is based on the use of classes of characters for specific purposes. The classes are determined by the characters' positions in the ASCII table (Figure E-1). This table and the ANSI system can work for either a 7 -bit or an $8-b i t$ character environment. Current terminals support only 7 -bit characters.

## CONTROL FUNCTIONS

All control characters and groups of characters (strings) that control the operation of the terminal and are not displayed on the screen are part of the system called control functions. Not all control functions perform an action in every device that understands ANSI, but each device can understand all control functions and discard any that do not apply to it. Therefore, each device is said to perform a subset of the ANSI functions.

COMPLIANCE WITH ANSI
Because different devices use different subsets, compliance with ANSI does not mean compatibility between devices. Compliance only means that a given action, if defined in the ANSI standard, is caused by the same control function in all devices. If an ANSI device does not perform an action that has a control function defined in the ANSI standard, it cannot use that control function for any other purpose.

For example, ESC $c$ is Reset for devices meeting ANSI and having a remote reset function. Even if a device does not have this function, it still may not use ESC $c$ for any other purpose. ESC 7 (Save Cursor Position), however, is a private sequence and may be used for other purposes by devices from other manufacturers. But within DEC, each private sequence is registered in an internal standard so that all DEC products use each sequence for only one purpose.

|  |  | $\begin{gathered} \hline{ }_{0}{ }_{0} \\ \hline \text { COLUMMN } \\ 0 \end{gathered}$ |  | ${ }^{0}{ }_{1}$ |  |  |  |  |  |  |  |  |  | ${ }^{1} 10$ |  | ${ }^{1} 1$ |  | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  | 1 | 2 |  | 3 |  | 4 |  | 5 |  | 6 |  | 7 |  |
| 00000 | 0 |  |  | NUL | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | DLE | $\begin{aligned} & 20 \\ & 16 \\ & 10 \\ & \hline \end{aligned}$ | SP | $\begin{aligned} & 40 \\ & 32 \\ & 20 \\ & \hline \end{aligned}$ | 0 | $\begin{aligned} & 60 \\ & 48 \\ & 30 \end{aligned}$ | @ | $\begin{array}{\|c} \hline 100 \\ 64 \\ 40 \end{array}$ | P | $\begin{array}{\|c} 120 \\ 80 \\ 50 \\ \hline \end{array}$ | , | $\begin{gathered} 140 \\ 96 \\ 60 \end{gathered}$ | p | 160 <br> 112 <br> 70 <br> 10 |
| 00001 | 1 | SOH | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | DC1 | $\begin{aligned} & 21 \\ & 17 \\ & 11 \end{aligned}$ | ! | $\begin{aligned} & 41 \\ & 33 \\ & 21 \end{aligned}$ | 1 | $\begin{aligned} & 61 \\ & 49 \\ & 31 \\ & \hline \end{aligned}$ | A | $\begin{array}{\|c} \hline 101 \\ 65 \\ 41 \\ \hline \end{array}$ | Q | $\begin{array}{r} 121 \\ 81 \\ 81 \\ 51 \\ \hline \end{array}$ | a | $\begin{array}{\|c\|} \hline 141 \\ 97 \\ 61 \\ \hline \end{array}$ | q | 161 <br> 113 <br> 71 <br> 18 |
| 00010 | 2 | STX | $\begin{aligned} & \hline 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$ | DC2 | $\begin{aligned} & 22 \\ & 18 \\ & 12 \\ & \hline \end{aligned}$ | 11 | $\begin{aligned} & 42 \\ & 34 \\ & 22 \\ & \hline \end{aligned}$ | 2 | $\begin{aligned} & 62 \\ & 50 \\ & 32 \\ & \hline \end{aligned}$ | B | $\begin{array}{\|l\|} \hline 102 \\ 66 \\ 42 \\ \hline \end{array}$ | R | $\begin{array}{r} 122 \\ 82 \\ 52 \\ \hline \end{array}$ | b | $\begin{array}{\|c\|} \hline 142 \\ 98 \\ 62 \\ \hline \end{array}$ | r | $\begin{array}{\|c\|} \hline 162 \\ 114 \\ 72 \\ \hline \end{array}$ |
| 00011 | 3 | ETX | $\begin{array}{r} 3 \\ 3 \\ 3 \\ \hline \end{array}$ | DC3 | $\begin{aligned} & 23 \\ & 19 \\ & 13 \\ & \hline \end{aligned}$ | \# | $\begin{aligned} & 43 \\ & 35 \\ & 23 \\ & \hline \end{aligned}$ | 3 | $\begin{aligned} & 63 \\ & 51 \\ & 33 \\ & \hline \end{aligned}$ | C | $\begin{array}{\|r\|} \hline 103 \\ 67 \\ 43 \\ \hline \end{array}$ | S | $\begin{array}{r} 123 \\ 83 \\ 53 \\ \hline \end{array}$ | c | $\begin{array}{\|c\|} \hline 143 \\ 99 \\ 63 \\ \hline \end{array}$ | S | $\begin{gathered} 163 \\ 115 \\ 73 \\ \hline \end{gathered}$ |
| 0100 | 4 | EOT | $\begin{aligned} & \hline 4 \\ & 4 \\ & 4 \\ & \hline \end{aligned}$ | DC4 | $\begin{aligned} & 24 \\ & 20 \\ & 14 \\ & \hline \end{aligned}$ | \$ | $\begin{aligned} & 44 \\ & 36 \\ & 24 \\ & \hline \end{aligned}$ | 4 | $\begin{aligned} & 64 \\ & 52 \\ & 34 \\ & \hline \end{aligned}$ | D | $\begin{array}{\|c\|} \hline 104 \\ 68 \\ 44 \\ \hline \end{array}$ | T | $\begin{array}{r} 124 \\ 84 \\ 54 \\ \hline \end{array}$ | d | $\begin{array}{\|c\|} \hline 144 \\ 100 \\ 64 \\ \hline \end{array}$ | t | $\begin{array}{\|l\|} \hline 164 \\ 116 \\ 74 \\ \hline \end{array}$ |
| 0101 | 5 | ENQ | $\begin{aligned} & \hline 5 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$ | NAK | $\begin{aligned} & 25 \\ & 21 \\ & 15 \\ & \hline \end{aligned}$ | \% | $\begin{aligned} & 45 \\ & 37 \\ & 37 \\ & 25 \\ & \hline \end{aligned}$ | 5 | $\begin{aligned} & 65 \\ & 53 \\ & 35 \\ & \hline \end{aligned}$ | E | $\begin{array}{\|l\|} \hline 105 \\ 69 \\ 45 \\ \hline \end{array}$ | U | $\begin{array}{\|l\|} \hline 125 \\ 85 \\ 55 \\ \hline \end{array}$ | e | $\begin{array}{\|c\|} \hline 145 \\ 101 \\ 65 \\ \hline \end{array}$ | u | $\begin{aligned} & 165 \\ & 117 \\ & 75 \\ & \hline \end{aligned}$ |
| 0110 | 6 | ACK | $\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & \hline \end{aligned}$ | SYN | $\begin{aligned} & 26 \\ & 22 \\ & 16 \\ & \hline \end{aligned}$ | \& | $\begin{aligned} & 46 \\ & 38 \\ & 26 \\ & \hline \end{aligned}$ | 6 | $\begin{aligned} & 66 \\ & 54 \\ & 36 \\ & \hline \end{aligned}$ | F | $\begin{array}{\|c\|} \hline 106 \\ 70 \\ 46 \\ \hline \end{array}$ | V | $\begin{array}{\|c} \hline 126 \\ 85 \\ 56 \\ \hline \end{array}$ | f | $\begin{array}{\|l\|} \hline 146 \\ 102 \\ 66 \\ \hline \end{array}$ | v | $\begin{array}{\|c\|} \hline 166 \\ 118 \\ 76 \\ \hline \end{array}$ |
| 0111 | 7 | BEL | $\begin{aligned} & 7 \\ & 7 \\ & 7 \\ & \hline \end{aligned}$ | ETB | $\begin{aligned} & 27 \\ & 23 \\ & 17 \\ & \hline \end{aligned}$ | ' | $\begin{aligned} & 47 \\ & 39 \\ & 27 \\ & \hline \end{aligned}$ | 7 | $\begin{aligned} & 67 \\ & 55 \\ & 37 \\ & \hline \end{aligned}$ | G | $\begin{array}{\|r\|} \hline 107 \\ 71 \\ 47 \\ \hline \end{array}$ | W | $\begin{gathered} 127 \\ 87 \\ 57 \\ \hline \end{gathered}$ | g | $\begin{aligned} & 147 \\ & 103 \\ & 67 \\ & \hline \end{aligned}$ | w | $\begin{aligned} & 167 \\ & 119 \\ & 77 \\ & \hline \end{aligned}$ |
| 1000 | 8 | BS | $\begin{gathered} 10 \\ 8 \\ 8 \\ \hline \end{gathered}$ | CAN | $\begin{aligned} & 30 \\ & 24 \\ & 18 \\ & \hline \end{aligned}$ | ( | $\begin{aligned} & 50 \\ & 40 \\ & 28 \end{aligned}$ | 8 | $\begin{aligned} & 70 \\ & 56 \\ & 38 \\ & 38 \end{aligned}$ | H | $\begin{gathered} 10 \\ 72 \\ 48 \\ \hline \end{gathered}$ | X | $\begin{array}{\|c} \hline 130 \\ 88 \\ 58 \\ \hline \end{array}$ | h | $\begin{array}{\|c\|} \hline 150 \\ 104 \\ 68 \\ \hline \end{array}$ | X | $\begin{array}{r}170 \\ 120 \\ 78 \\ \hline 18\end{array}$ |
| 10001 | 9 | HT | $\begin{gathered} \hline 11 \\ 9 \\ 9 \\ \hline \end{gathered}$ | EM | $\begin{aligned} & 31 \\ & 25 \\ & 19 \end{aligned}$ | ) | $\begin{aligned} & \hline 51 \\ & 41 \\ & 29 \\ & \hline 1 \end{aligned}$ | 9 | $\begin{aligned} & 71 \\ & 57 \\ & 39 \end{aligned}$ | 1 | $\begin{gathered} 111 \\ 73 \\ 49 \end{gathered}$ | Y | $\begin{gathered} 131 \\ 89 \\ 59 \\ \hline 9 \end{gathered}$ | i | $\begin{gathered} 151 \\ 105 \\ 69 \\ \hline \end{gathered}$ | y | $\begin{array}{r}171 \\ 121 \\ 79 \\ \hline 17\end{array}$ |
| 1010 | 10 | LF | $\begin{aligned} & 12 \\ & 10 \\ & \mathrm{~A} \\ & \hline \end{aligned}$ | SUB | $\begin{aligned} & 32 \\ & 28 \\ & 1 A \\ & \hline \end{aligned}$ | * | $\begin{aligned} & 52 \\ & 42 \\ & 2 \mathrm{~A} \\ & \hline \end{aligned}$ | : | $\begin{aligned} & \hline 72 \\ & 58 \\ & 3 \mathrm{~A} \\ & \hline \end{aligned}$ | J | $\begin{gathered} 112 \\ 74 \\ 4 \mathrm{~A} \\ \hline \end{gathered}$ | Z | $\begin{array}{\|c\|} \hline 132 \\ 90 \\ 5 A \\ \hline \end{array}$ | j | $\begin{array}{\|l\|} \hline 152 \\ 106 \\ 6 \mathrm{~A} \\ \hline \end{array}$ | z | 172 122 74 717 |
| 101 | 11 | VT | $\begin{array}{\|c} \hline 13 \\ 11 \\ B \\ \hline \end{array}$ | ESC | $\begin{aligned} & 33 \\ & 27 \\ & 18 \\ & \hline \end{aligned}$ | + | $\begin{aligned} & 53 \\ & 43 \\ & 28 \\ & \hline \end{aligned}$ | ; | $\begin{array}{\|l} \hline 73 \\ 59 \\ 38 \\ \hline \end{array}$ | K | $\begin{aligned} & 113 \\ & 75 \\ & 48 \\ & \hline \end{aligned}$ | [ | $\begin{array}{\|c\|} \hline 133 \\ 91 \\ 58 \\ \hline \end{array}$ | k | $\begin{aligned} & 153 \\ & 107 \\ & 68 \\ & \hline \end{aligned}$ | \{ | $\begin{array}{r}173 \\ 173 \\ 78 \\ 78 \\ \hline 17\end{array}$ |
| 1100 | 12 | FF | $\begin{aligned} & 14 \\ & 12 \\ & c \\ & \hline \end{aligned}$ | FS | $\begin{aligned} & 34 \\ & 28 \\ & 10 \\ & \hline \end{aligned}$ | , | $\begin{aligned} & 54 \\ & 44 \\ & 26 \\ & \hline \end{aligned}$ | $<$ | $\begin{aligned} & 74 \\ & 60 \\ & 30 \\ & \hline \end{aligned}$ | L | $\begin{aligned} & 114 \\ & 76 \\ & 46 \\ & \hline \end{aligned}$ | 1 | $\begin{aligned} & 134 \\ & 92 \\ & 50 \end{aligned}$ | 1 | $\begin{aligned} & 154 \\ & 108 \\ & 6 \mathrm{C} \end{aligned}$ | 1 | 174 124 76 78 |
| 1101 | 13 | CR | $\begin{gathered} \hline 15 \\ 13 \\ 0 \\ \hline \end{gathered}$ | GS | $\begin{aligned} & 35 \\ & 29 \\ & 10 \\ & \hline \end{aligned}$ | - | $\begin{aligned} & 55 \\ & 45 \\ & 20 \\ & \hline \end{aligned}$ | = | $\begin{aligned} & 75 \\ & 71 \\ & 31 \\ & 30 \end{aligned}$ | M | $\begin{aligned} & 115 \\ & 77 \\ & 40 \\ & \hline \end{aligned}$ | ] | $\begin{aligned} & 135 \\ & 93 \\ & 50 \\ & \hline \end{aligned}$ | m | $\begin{array}{\|c\|} \hline 155 \\ 109 \\ 6 \mathrm{D} \\ \hline \end{array}$ | $\}$ | $\begin{array}{r}175 \\ 125 \\ 70 \\ \hline 18 \\ \hline\end{array}$ |
| 1110 | 14 | SO | $\begin{aligned} & 16 \\ & 14 \\ & E \\ & \hline \end{aligned}$ | RS | $\begin{aligned} & 36 \\ & 30 \\ & 1 E \\ & \hline \end{aligned}$ | - | $\begin{aligned} & 56 \\ & 46 \\ & 2 E \\ & \hline \end{aligned}$ | $>$ | $\begin{aligned} & 76 \\ & 62 \\ & 3 \mathrm{E} \\ & \hline \end{aligned}$ | N | $\begin{aligned} & 116 \\ & 78 \\ & 4 \mathrm{E} \\ & \hline \end{aligned}$ | $\wedge$ | $\begin{gathered} 136 \\ 94 \\ 55 \\ \hline \end{gathered}$ | n | $\begin{aligned} & 156 \\ & 110 \\ & 6 \mathrm{E} \\ & \hline \end{aligned}$ | $\sim$ | $\begin{array}{r}176 \\ 126 \\ 7 E \\ \hline 17 \\ \hline\end{array}$ |
| 1111 | 15 | SI | $\begin{gathered} 17 \\ 15 \\ F \\ \hline \end{gathered}$ | US | $\begin{aligned} & 37 \\ & 31 \\ & 15 \\ & \hline \end{aligned}$ | / | $\begin{aligned} & 57 \\ & 47 \\ & 27 \\ & \hline \end{aligned}$ | ? | $\begin{aligned} & 77 \\ & 63 \\ & 3 F \\ & \hline \end{aligned}$ | 0 | $\begin{aligned} & 117 \\ & 79 \\ & 45 \\ & \hline \end{aligned}$ | - | $\begin{aligned} & 133 \\ & 95 \\ & 5 F \end{aligned}$ | 0 | $\begin{aligned} & 157 \\ & 11 \\ & 6 F \\ & \hline \end{aligned}$ | DEL | 177 127 77 |

KEY

| ASCII CHARACTER | ESC | 33 |
| :--- | :--- | :--- |
|  | 27 |  |
|  | 18 |  | \(\begin{aligned} \& OCTAL <br>

\& DECIMAL <br>
\& HEX\end{aligned}\)
Figure E-1 ASCII Table

CONTROL CHARACTERS
A control character is a single character which, when received by the terminal, starts, modifies, or stops a control function. The value of a control character is in the octal range of $\emptyset$ through 37 and 177.

Chapter 4 of this manual explains the control characters that are understood by the terminal. All other control character codes are ignored by the terminal.

This terminal can perform some actions that are usually caused by control character codes from the 8-bit ASCII environment, which this terminal does not understand. It does this by understanding certain combinations of 7 -bit codes, which other sections of this appendix will explain.

## ESCAPE SEQUENCES

One control character causes the function of waiting for more characters that are not in the control character numerical range. This is the Escape or ESC character ( $\varnothing 33(8))$. This character is defined by ANSI standard X3.4-1977 as "Introducer". If the terminal receives this character, it waits for more characters to follow within certain numerical ranges to form an Escape Sequence as defined in ANSI X3.41-1974 and ANSI X3.64-1979.

The format of an Escape Sequence is:

| ESC | I...I | F |
| :--- | :--- | :--- |
| $\emptyset 33$ | $\emptyset 4 \emptyset-\emptyset 57$ | $\emptyset 6 \emptyset-176$ |
| Escape | Intermediate | Final |
| Sequence | Characters | Character |
| Introducer | (Any number | (One code) |
|  | of codes - $\emptyset$ or more) |  |

If following characters are in the range $\emptyset 4 \emptyset--\emptyset 57(8)$ (column 2), they are called "Intermediate Characters". The device accepts and stores them.

If a following character is in the range $\emptyset 6 \varnothing--176(8)$ (columns 3 to 7), it is a "Final Character". The final character signals the end of an Escape Sequence which the device then analyzes. Final characters from column 3 are for private control functions for use in a specific device. Final characters from columns 4-- 7 are for ANSI standardized control functions.

Some two character escape sequences perform the same actions as some 8 -bit single character control functions. The VTløø family supports six of these. ESC [ is CSI (see next section); ESC D is IND, ESC E is NEL, and ESC M is RI (see Cursor Positioning); ESC N is SS2 and ESC 0 is SS3 (see Character Sets and Selection). The VTl25 also supports ESC P which is DCS and ESC \ which is ST (see Communication and Graphic Protocol Controls.)

The intermediate and final characters are taken together to define the function of the sequence. Then the device performs the action
and accepts more data. If the action defined by the escape sequence does not apply to the device, the device ignores the complete sequence and accepts more data.

Escape sequence examples (all examples have added spaces between characters to make them easier to read):

```
ESC H = Set Tab at active position
ESC (B = Designate G\emptyset Character Set as ASCII
ESC # 6 = Double Width Line. (VTl|\emptyset) (6 = DEC Private)
ESC (\emptyset = Designate G\emptyset character set as DEC private
Special Graphics character set (}\varnothing=\mathrm{ private)
```

Example Sequence: Designate Gø Character Set as ASCII Select Character Set (SCS) = ESC ( B

Sequence


Intermediate Character

Octal Representation of Sequence
 Character

CONTROL SEQUENCES
The string ESC [ is a two character escape sequence and represents the 8-bit control character CSI. This is "Control Sequence Introducer" and it precedes all control sequences in the same way that the ESC "Introducer" precedes all escape sequences. ESC [ allows the extended functions of the 8 -bit control sequence environment to work in the 7 -bit environment of current terminals. The control sequence is defined in ANSI X3.64-1979.

The format of a Control Sequence is:
CSI P...P I...I F

033133
Control
Sequence
Introducer
P... P

ロ60-077
Column 3
Parameter
( $\varnothing$ or more codes)
I....I

040-057
Column 2
Intermediate
( 0 or more codes)

F

$$
100-176
$$

Column 4-7

Final
(One code)

A device parses this sequence without considering its meaning. That is, characters are stored in classes only according to their range of values. Then, the device interprets these characters by value according to their classes. The intermediate and final characters are taken together to define the function of the sequence. In the range of final characters, 100 -- 157 (columns 4 -- 6) are reserved for standardization by ANSI, while 160 -- 176 (column 7) are reserved for private use.

## Parameters

The parameters modify the action or interpretation of the function. The parameters are from column 3 and may be any combination of the characters $\varnothing-9(\emptyset 6 \emptyset-\emptyset 71)$ with each parameter separated from the others by ; (073). (The other characters in column 3 are : ( 072 ) which is reserved, and $\Leftrightarrow$ ? ( 074 -- 077) which are assigned for private use and mean that the following parameters have a private interpretation.) Any leading zero in a parameter is ignored; this also applies to the parameter value $\emptyset$. Therefore a sequence with no parameter is the same as a sequence with a parameter of $\emptyset$ and both are understood as having the default value for that parameter in the sequence.

A single parameter that modifies the action of a control function is called a numeric parameter and has the abbreviation "Pn". (Example: Cursor Up, ESC [ Pn A, where Pn is number of lines.) A parameter that defines the action of a control function by selecting from a list of possible actions is called a selective parameter and has the abbreviation "Ps". (Example: Set Mode, ESC [ Ps $h$, where Ps selects the mode to be set.) Control functions that have selective parameters can accept multiple parameters to allow several actions to be commanded with a single control function.

A sequence with multiple parameters has several "PS" separated by ";" characters (Ps;Ps;Ps). This is called a parameter string. If the parameters apply to the screen image, their abbreviations indicate this: Pt ; Pb for top and bottom, and Pl;PC for line and column.

Character 077 (?) at the beginning of a parameter string means that the parameters are private parameters. That means the Control Sequence is standardized but the function that it controls is private. (Ex: Set and Reset Mode control functions.) Some control functions are defined to have a default value for a parameter. The default value is assumed when no parameter character is included in a sequence.

Examples with octal equivalents:

```
ESC [3 g = Clear all tabs
 Ø33 133 Ø63 147
ESC [g = Clear tab at active position (default value = \emptyset)
 Ø3 133 147
ESC [16; ; 32 u= Set tabs at columns 16,32 (LAl2\emptyset) (u=
private)
 033 133 ø61 ø66 Ø73 ø63 Ø62 165
ESC [? 2; 3 h = Set modes 2 and 3 (? = private)
 Ø33 133 077 Ø62 073 Ø63 150
ESC [\(20 \mathrm{~h}=\) Set Linefeed/New Line mode (parameter \(=20\)) Ø33 133 ø62 ø60 15
```

```
ESC [2 ; l y = Run Power-up selftest (VTl\emptyset\emptyset)(y = private)
 Ø33 133 ø62 073 ø61 171
```

NOTE: There are no examples of control sequences with intermediate characters because current terminals do not have any control functions in that format. However, new software written to understand the ANSI syntax should be able to parse sequences with intermediate characters. Future Digital terminal products may use intermediate characters.

Example Sequence: Control sequence to set modes for 132 column mode, smooth scrolling, and reverse screen. ESC[?3;4;5h


Alternate sequences that will do the same thing:
ESC[?3hESC[?4hESC[?5h (Parameters can be split into separate control sequences.)

ESC[?ø3; $\varnothing \varnothing 4 ; 5 \mathrm{~h}$ (Leading zeroes are ignored.)
ERROR RECOVERY
On the problem of incorrect control functions, the ANSI standards only say that error recovery techniques are not defined. These errors include out of range parameters, invalid control functions, and control characters embedded in control functions. The VTløø family recovers from errors with as much correct function as possible rather than discard any error. For example, if the VTløø receives a sequence asking it to move the cursor beyond the right margin, it moves the cursor to the right margin. In the LAl2ø, $a$ command to move beyond the right margin is ignored and the active position stays unchanged.

If a control character appears within a sequence, the VTløø performs the function of the control character (for example, a carriage return) as if it had been received before the beginning of the sequence. However, CAN and SUB appearing in a sequence stop the processing of the sequence at that point. The terminal returns to regular character processing and displays any characters remaining in the sequence.

A control function that is unrecognizable is ignored. Unsupported control functions (any apparently valid sequences that are not listed in this book) are generally ignored but may produce unpredictable responses.

NOTE: In the past, some programmers have used error condition actions in a given terminal to get the actions they wanted. This is not a safe practice in the ANSI environment because there is no guarantee that different ANSI-complying terminals will handle an error the same way. This would limit the transportability of code.

CHARACTER SETS AND SELECTION
G0, G1, C0, Cl Character Sets
The ANSI and ISO standards provide extensions to the range of graphic and control character sets in a terminal, in addition to the extension of control functions described in the preceding section.

A typical terminal transmits and receives the 7-bit ASCII character set. This character set has an eight column chart, and in it, columns $\emptyset$ and 1 are control characters, while the rest of the set is graphics (except SP and DEL). SP (space) and DEL (delete) are always the same control characters with the same codes regardless of character set and so they are independent of character set selection.

The ANSI standards provide a system to allow the use of larger character sets in any terminal, without increasing the number of bits that the terminal must use to describe each unique character. Consider Figure $\mathrm{E}-2$, the 8 -bit ASCII chart.

The left side of the figure represents the familiar 7-bit ASCII character set. G $\emptyset$ and Gl are labels that are attached to character sets to indicate how the sets can be substituted for each other. The ANSI word for this is Designate. There are escape sequences that designate character sets as either Gø or Gl. The control characters Shift Out (SO (ø16)) and Shift In (SI (ø17)), when included with 7 -bit ASCII data, switch the display of a terminal from one character set to the other. The ANSI word for this is Invoke.

In the VTlø0, any character set whose display patterns are stored in the terminal can become either Gø or Gl. SO always invokes the Gl set and SI invokes the Gø set. Sets can be invoked or designated at any time and in any order. Some character sets have been internationally registered, while others are private for use in a given terminal.


Figure E-2 8-Bit ASCII Chart


Figure E-3 Illustration of Shift-Out and Shift-In

In the VTløø, the C C control character set is normally available. There are escape sequences that cause the actions of single control functions of the Cl set on a one time basis. The ESC character followed by a final character from columns 4 or 5 causes the action of a control function that is also caused by a single 8 -bit character in the Cl set. Figure E-2 shows how ESC [ causes the CSI function and ESC D causes the IND function from the Cl set. The other Cl characters that are supported in the VTløø family of terminals are also shown.

Figure E-3 shows a schematic representation of the Shift-Out and Shift-In concept. This figure shows how $G \emptyset$ and $G 1$ character sets are designated by escape sequences and invoked by the SO and SI characters.

## APPENDIX F CREATING COMPATIBLE ReGIS

This appendix lists the differences in implementation of ReGIS between the VTl25 and the VKløø (GIGI). Use this information to create ReGIS images if you must use the same source on both terminals.
1.0

COMPATIBLE REGIS SUMMARY
Use ...
Four colors only; use
S(M...) if not $D, B, R, G$.
HLS or RGB in $S(I \ldots)$ and $W(I \ldots)$.
$S(I, \ldots, E)$.
W (V/R/E), W(N...).
$\mathrm{W}(\mathrm{I}, \mathrm{C})$.
S(H[ø,yl][767,y2]).
$S[\langle\emptyset$ to 767>, <ø to 511>].
$2 \emptyset \emptyset \emptyset$ or less characters of macrographs.
1.1 COMMAND DIFFERENCE SUMMARY

VT125

- S(M...) selects color.

S(I...) and W(I...) select one of the colors specified by S(M...), based on a closest-match algorithm.

- HLS color specifiers to S(M...), S(I...), and W(I...) specify one of 64 colors.


## VK1øø

- S(I...) and W(I...) explicitly select colors.
- HLS specifiers select one of 8 colors.
- S(In) and $W(I n)$ accept values of $\emptyset$ to 3 for $n$.
- No S(W...).
- S(S...) controls screen scaling (zoom).
- S(H[xl,yl][x2,y2]) will hardcopy a specified rectangle from $\mathrm{xl}, \mathrm{y} 1$ to $\mathrm{x} 2, \mathrm{y} 2$.
- $\mathrm{S}(\mathrm{H}(\mathrm{P}[\mathrm{x}, \mathrm{y}]))$ positions the hardcopy device at $x, y$ before performing the hardcopy. Default value is $[5 \varnothing, \varnothing]$.
- S(H...) performs scaling (zoom) on hardcopy if selected.
- No W(I) (no argument to I).
- W(F...) selects planes to be written.
- W(C) writing complements each plane individually, thus it may change the color.
- No W(A...).
- No locator mode; could be emulated in software.
- At least 5øøø characters of macrograph storage.
- Concurrent text and graphics can be displayed by using "DCS 2 p" to enter graphics mode.

VK100

- S(In) and W(In) accept values of $\emptyset$ to 7 for $n$.
- S(W...) controls erase write operations.
- No S(S...).
- S(H...) only uses Y values of range.
- No S(H(P...)), defaults to $[50, \varnothing]$.
- No scaling.
- W(I) allows writing of only the foreground/ background plane, leaving the color unchanged.
- No W(F...).
- W(C) writing complements only the foreground/ background plane, writing an explicit new color or leaving the color unchanged.
- W(An) selects "blink" attribute for writing.
- R(P(I...)) allows
interactive positioning of a "locator" cursor. Also accessable by a keyboard command.
- At least 2000 characters of macrograph storage.
- SET-UP mode "GD" allows the last line of graphics commands to be displayed concurrently with graphics.


## VT125

- REGIS command parsing is not affected by "DCS p" and "ST". Using "DCS 1 p" will reset REGIS to top comand level.
- Graphics cursor cannot be disabled; it is present whenever the VTl25 is processing REGIS graphics commands.
- Hardcopy output can be directed to the host port using the "Media Copy" control sequence.
- Hardcopy output is enclosed in a single "DCS q"/"ST" sequence, using the DECwriter control commands.
- Hardcopy image data sent to the VTl25 will be displayed as if the VTl25 was a hardcopy device.
- "DCS p" resets REGIS to top command level.
- SET-UP mode "VC" selects whether the graphics cursor is displayed.
- Hardcopy output can be directed to the host port by swapping the cables.
- Hardcopy output is enclosed in "DCS q" on a line-by-line basis.
- Hardcopy data sent to the VKløø is ignored.

The display port for the external color monitor is driven by a six bit output map, providing 2 bits ( 4 levels) of intensity for each primary color: red, green, and blue. This section describes the general allocation of RGB specifiers based on HLS descriptors.

The HLS double cone model (Figure G-1) is divided into seven layers linearly spaced along the lightness axis. If lightness is not specified in a color descriptor, it defaults to $5 \emptyset \%$, the layer with the greatest variety of colors. The extreme layers, below $14 \%$ and above $86 \%$, map to black and white respectively, regardless of $H$ and $S$.

Each non-extreme lightness level is divided into one to three concentric rings based on the saturation parameter. If saturation is $0 \%$, then the color specifier must map to one of four gray levels based on the lightness parameter. If saturation is not specified, it defaults to $100 \%$.

Each non-gray lightness/saturation ring is divided into from three to twelve segments based on hue. Hue has no default. If not specified, then the lightness parameter again defines a gray level. By these defaults, the null specifier maps to the medium gray level in the VTl25.

Percentage values for $L$ and $S$ of less than $\emptyset$ or more than $1 \emptyset \emptyset$ map to $\emptyset \%$ and $1 \emptyset \emptyset \%$ respectively. Hue is computed modulo $36 \emptyset$.

The following table summarizes the color allocations derived from the above rules.

## lightness saturation color range

$\emptyset$ to 14 any black;
15 to 28 any $>0$
29 to $42 \quad 1$ to 49
$5 \emptyset$ to 100
three primaries and simple secondaries;
three light primaries;
nine shades, including middle
lightness pure primaries;


Figure G-1 HLS Double Cone Color Model

| lightness | saturation | color range |
| :---: | :---: | :---: |
| 43 to 57 | $\begin{aligned} & 1 \text { to } 33 \\ & 34 \text { to } 66 \\ & 67 \text { to } 1 \emptyset 0 \end{aligned}$ | three unsaturated secondaries; nine shades, including less saturated primaries; twelve shades, including the brightest pure primaries, almost brightest pure secondaries, and the six shades in between; |
| 58 to 71 | $\begin{aligned} & 1 \text { to } 49 \\ & 5 \emptyset \text { to } 1 \emptyset \emptyset \end{aligned}$ | three unsaturated primaries; nine shades, including the brightest pure secondaries; |
| 72 to 85 | $\begin{aligned} & 1 \text { to } 49 \\ & 5 \emptyset \text { to } 1 \varnothing 0 \end{aligned}$ | three very unsaturated primaries; three less than fully saturated secondaries; |
| 86 to 100 | any | white; |
| The prima yellow, cy | es are red and magent | reen, and blue. The secondaries are |
| When satur 24, 25 to brighter |  | ue is unspecified, lightness values $\emptyset$ to and 75 to $1 \emptyset \emptyset$ map to black, dim gray, espectively. |

This appendix lists the ReGIS commands used to create art for this book.

## FIGURE 5-3

```
p[200,100] (b) [+15,-15] t'[200,100]' p(e) v(b) [200,200](b)
p(b) [+10,-15] t'[200,200]' p(e)
v[300,400] p(b)[+5] t'[300,400]' p(e) v[400,300]
p(b) [+5,-5] t'[400,300]' p(e) v(e)c[+5]
v[100,50] p(b) [-85,-10] t'[100,50]' p(e) v(e)c[+10]
p[100,430]t(sl)"p[200,100] v(b) [200,200](b) v[300,400]
v[400,300] v(e)c[+5] v[100,50] v(e)c[+10]"
```


## FIGURE 5-4

```
p[384,240] c[+100,+50] c[+3]
p(b) [310,193] t'CURRENT POSITION'
p[285,213] t'(START END POSITION)'
p(e,b) [-40,+5] t'[384,240]'
p(e,b) [+100,+50] c[+3] p[+10] t'[+100,+50]'
p[300,390] t"p[384,240] c[+100,+50]"
```

FIGURE 5-5

```
\(p[284,300](b) c[+3] \quad c(c)[+100,-100]\)
\(p(e, b)[-90] t^{\prime}[284,300]^{\prime}\)
\(p(e, b)[-150,+20]\) t'CURRENT POSITION'
\(p(e, b)[-180,+40]\) t'(START END POSITION)'
\(p(e)[+100,-100] c[+3] p[-50,-25] \quad t^{\prime}[+100,-100]^{\prime}\)
\(\mathrm{p}[240,400] \mathrm{t} " \mathrm{p}[284,300] \mathrm{c}(\mathrm{c})[+100,-100] "\)
```

FIGURE 5-6

```
;'Set defaults for text, writing commands'
t(do,sl) w(v,pl)
;'Set current position, mark and label it, add text above and below it'
p[384,240] c[+3] p(b) [-40,-50] t'CURRENT' p(e,b) [-40, -30] t'POSITION'
p(e,b) [+5,-12] t'[384,240]
p(e,b)[-50,+10] t'(START END' p(e,b) [-40,+30] t'POSITION)' p(e)
;'Draw arc, mark and label endpoints'
;'Endpoint positions determined by temporarily embedding'
;'other commands including r(p)'
c(a140)[+100,-100] p[+100,-100] c[+3] p[+5,-5](b) t'[+100,-100]'
p(e)[,+20] t'([489,135])'
p[242,253] c[+3] p[-85,+5] t'[242,253]'
;'Draw arc with pattern to show drawing direction,'
;'Leave gap for text'
p[384,240] [+90,-90] w(p4) c(a70c) [384,240] w(p0) c(a20c)[384,240]
p(b) p[+5,-15] w(v) t'l40 degrees' p(e)
w(p4) c(a50c)[384,240] p[384,240] p[+90,-90][+7,-2]
;'Vs drawn at endpoints'
w(pl) t(d225,s0)'V' p[256,251][-5,-10] t(d0,sl)'V'
;'Print basic command'
p[240,350] t'p[384,240] c(al40)[+100,-100]'
```

FIGURE 5-7
;'Mark and label radius of arc, move to start of arc'
$p[384,140] c[+3] p(b)[-40,-30] t(s l) '[-100,-100]^{\prime} p(e)[+100,+100]$
;'Mark and label current position'
$c[+3] p(b, b)[+5,-20]$ t'START POSITION '
$p(e, b)[+5]$ t'(CURRENT POSITION)' $p(e)$
;'Draw arc'
c $(a-90 c)[-100,-100]$
;'Mark and label end position'
c $[+3] p(b)[-125,-20]$ t'END POSITION' $p(e, b)[-125] t^{\prime}(N E W$ CURRENT'
$p(e)[-125,+20]$ t'POSITION)'
;'Return to start and draw inner arc with gap for text'
$p(e)[-10,-10](b)[-2,-7] \quad t(d-45, s 0)^{\prime} V$ ' $w(p 4)$
$p(e) c(a-28 c)[384,140] w(e, p 0) c(a-34 c)[384,140]$
$w(v, p l) p(b)[+10,-20] t(d 0, s l)^{\prime}-90^{\prime} p(e, b)[,-5] t^{\prime} d e g r e e s^{\prime} p(e)$
$w(p 4) c(a-28 c)[384,140] p[+5,-4] t(d-135, s 0)^{\prime} V '(d 0, s 1)$
;'Add command'
$w(p 1) p[300,350]$ t'c(a-90c) $[-100,-100]^{\prime}$
FIGURE 5-8
$\mathrm{p}[100,200](\mathrm{b}) \mathrm{c}[+3] \mathrm{c}(\mathrm{s})[][370,50][420,360] \quad[120,390] \quad[](\mathrm{e})$
$r(e)[-90,-10] t^{\prime}[100,200]^{\prime} p[-50,+20] t^{\prime}$ START POSITION'
$p[370,50] \quad c[+3] \quad p[+7,-20] \quad t^{\prime}[370,50]$ '
$p[420,360] \quad c[+3] p[+5,+5] \quad t^{\prime}[420,360]$ '
$p[120,390](b) c[+3] p[-90,-10] \quad t^{\prime}[120,390]^{\prime} p(e)[-50,-30]$
t'END POSITION' $p[100,430]$
t'p[100,200] c(s) [] [370,50] [420,360] [120,390] [](e)'

FIGURE 5-9

```
p[230,240] c[+5] c(b) [320,160] c[480,120]
c[570,160] c [480,240] c[[320,280] c(e) c[+10]
p[230,240] (b) [-90,-10] t'[230,240]'
p(e,b) [-90,+10] t'START'
p(e) [-90,+30] t'POSITION'
p[320,160] c[+3] p[-80,-20] t'[320,160]'
p[480,120] (b) c[+3] p[,-30] t'[480,120]'
p(e)[,-50] t'END POSITION'
p[570,160] c[+3] p[+5,-10] t'[570,160]'
p[320,280] c[+3] p[,+5] t'[320,280]'
p[220,350]t(sl)'p[230,240] c(b) [320,160] [480,120]
[570,160] [480,240] [320,280] (e)'
```

FIGURE 5-11
$\mathrm{P}[100,0] \mathrm{T}[+36,+0](\mathrm{S}[32,60], \mathrm{M}[4,6])^{\prime} \mathrm{ABCD}{ }^{\prime}$
P [ 100,85 ] $T[+32,+28]^{\prime} A B C D$ '
$\mathrm{P}[200,255] \mathrm{T}[-32,+44]$ 'ABCD'
$\mathrm{P}[100,60] \mathrm{T}(\mathrm{S} 1) \mathrm{T} \mathrm{T}[+36,+0](\mathrm{S}[32,60], \mathrm{M}[4,6])^{\prime} \mathrm{ABCD}$ ' "
$\mathrm{P}[100,235] \mathrm{T}(\mathrm{S} 1)$ " $\mathrm{T}[+32,+28]^{\prime} \mathrm{ABCD} \mathrm{D}^{\prime \prime}$
P[100,450] T(S1) "T[ $32,+44]$ 'ABCD'"
FIGURE 5-13

```
P[100,0] T[+36,+0](S[32,60],M[7,10])'ABCD'
P[100,120] T[+36,+0](S [32,60],M[1,2]) 'ABCD'
P[100,240] T[+36,+0](S [32,60],M[4,6])'ABCD'
P[100,70] T(S1) "T[+36,+0](S[32,60],M[7,10])'ABCD'"
P[100,190] T(S1) "T[+36,+0](S[32,60],M[1,2]) 'ABCD'"
P[100,310] T(S1) "T[+36,+0](S[32,60],M[4,6])'ABCD'"
```

FIGURE 5-15
$p[100,150] t(d 45, s 4)^{\prime} A B C D '$
$p[100,200] t(d 0, s 1) ' p[100,100] t(d 45, s 4)^{\prime} A B C D ' \quad$
$p[100,370] t(d 45, s 4, d 0)^{\prime} A B C D '$
$p[100,420] t(d 0, s l) \quad \mathrm{p}[100,400] \mathrm{t}(\mathrm{d} 45, \mathrm{~s} 4, \mathrm{~d} 0)^{\prime} A B C D D^{\prime}$.
$p[400,200] t(d-45, s 4, d 0)^{\prime} A B C D '$
$p[400,400] t(d 0, s 1) \quad ' p[400,200] t(d-45, s 4, d 0) ' A B C D ' \quad '$
FIGURE 5-16

```
\(p[20,100] t(s 8, i 0)^{\prime} H '\)
\(p[20,250] t(s l, i 0) \quad \mathrm{p}[20,100] \mathrm{t}(\mathrm{s} 8, \mathrm{i} 0)^{\prime} \mathrm{H}\) ' '
\(p[350,100] t(s 8, i-45)^{\prime} \mathrm{H}\) '
\(p[250,250] t(s l, i 0) \quad\) 'p \([350,100] t(s 8, i-45)^{\prime} H ' \quad\)
\(p[500,100] t(s 8, i 22)^{\prime} H\) '
\(p[500,250] t(s l, i 0) \quad p[500,100] t(s 8, i 22) ' H '\) '
```

FIGURES 5-17 to 5-20
; "FRAME. PIC"
$p[50,50] \quad c(a-90)[0,50]$
$\mathrm{w}(\mathrm{v}) \mathrm{p}[50,0] \mathrm{v}[717] \mathrm{c}(\mathrm{a}-90 \mathrm{c})[717,50]$
$\mathrm{v}[, 430] \mathrm{c}(\mathrm{a}-90 \mathrm{c})[717,430]$
$\mathrm{p}[720,479] \mathrm{v}[50] \mathrm{p}[50] \mathrm{c}(\mathrm{a}-90 \mathrm{c})[50,429]$
$\mathrm{v}[, 50] \mathrm{p}[717,50] \mathrm{w}(\mathrm{e}) \mathrm{v}[] \mathrm{p}[25,25]$
$\mathrm{w}(\mathrm{v}) \mathrm{v}[742][, 454][25][, 25]$
; "WRMODE.PIC"
; set up box drawing macrograph
@: av[+200][,+200][-200][,-200]@;
;'set up erase macrograph'
@:ep[717,50]v(w(e,sl[,430]))[50]p[200,100]@;
@e
$\mathrm{t}(\mathrm{i} 0, \mathrm{~s} 3) \mathrm{w}(\mathrm{v}, \mathrm{sl}[, 200] " / ")$ @a
$p[200,100]$
$\mathrm{p}[+50,+50] \mathrm{w}\left(\mathrm{sl} \mathrm{l}^{\prime \prime}\right.$ ") @a
p[180,400]t(s2)'OVERLAY WRITING'
;'the next command waits 2 seconds, then prints display'
$\mathrm{s}(\mathrm{t} 120, \mathrm{~h}(\mathrm{p}[100,300]), \mathrm{h}) @ \mathrm{e}$
t(i0,s3)w(r,sl[,200]"/")@a
$\mathrm{p}[200,100]$
p[+50, +50]w(sl"\") @a
$\mathrm{p}[180,400] \mathrm{t}(\mathrm{s} 2)^{\prime}$ REPLACE WRITING'
$\mathrm{s}(\mathrm{tl} 20, \mathrm{~h}(\mathrm{p}[100,300]), \mathrm{h})$ @e
$t(i 0, s 3) w(v, s l[, 200]) @ a$
$\mathrm{p}[200,100]$
$p[+50,+50] t(a 0) w\left(c, s l^{\prime \prime} \backslash \prime\right) @ a$
$\mathrm{p}[160,400] \mathrm{t}(\mathrm{s} 2)$ 'COMPLEMENT WRITING'
$\mathrm{s}(\mathrm{t} 120, \mathrm{~h}(\mathrm{p}[100,300]), \mathrm{h})$ @e
t(i0,s3)w(v,sl[,200]"/")@a
$\mathrm{p}[200,100]$
p[+50, +50]w(e,sl"\") @aw(v)
$\mathrm{p}[200,400] \mathrm{t}(\mathrm{s} 2)^{\prime}$ ERASE WRITING'
$\mathrm{s}(\mathrm{t} 120, \mathrm{~h}(\mathrm{p}[100,300]), \mathrm{h})(\mathrm{e})$

## FIGURE 5-25

```
p[0,200] t(s10)'12345678'
p[0,0] v[767][,479][0][,0]
p[100,100] v[484][,340][100][,100]
p[0,0](b) [+5,+5] t(sl)'[0,0]'
p(e) [+25,+25]
v[95,95] p[-7,+2] t(d45s0)'V'
p[100,100][+5,+5] t(d0s1)'S[100,100]'
p[767,479][-95,-25] t'[767,511]'
```


## ANSI GLOSSARY

Active position

ANSI mode

Character position

The character position on the visual display that will display the next graphic character.

A VTløø mode that recognizes and responds only to escape sequences whose syntax and semantics comply with ANSI specifications. The graphics processor always is in ANSI mode.

Part of the visual display that can display a graphic symbol.

A control character, escape sequence, or control sequence that performs a control function.

A character that can initiate, modify, or stop a control function.

An action that affects the recording, processing, transmission, or interpretation of data.

A sequence of characters used to perform a control function that begins with the control sequence introducer (CSI) control and may contain a parameter string.

An escape sequence that provides supplementary controls and is itself a prefix affecting the interpretation of a limited number of contiguous characters.

A string of characters that performs a control function and is delimited by an opening and closing delimiter control.

A blinking reverse-video or underline that represents the active position.

A function that moves the active position.
A function-dependent value assumed when no value, or a value of $\emptyset$, is specified.
$\left.\begin{array}{ll}\text { Display } & \begin{array}{l}\text { The active area of the screen inside the } \\ \text { scrolling region, or the entire screen, } \\ \text { depending on the origin mode. }\end{array} \\ \text { Escape character } \\ \text { (ESC) }\end{array} \quad \begin{array}{l}\text { A control character that provides } \\ \text { supplementary characters (code extension) and } \\ \text { is itself a prefix affecting the } \\ \text { interpretation of limited number of } \\ \text { contiguous characters. }\end{array}\right\}$

ReGIS
The conventions or rules for the format and timing of messages sent and received. Devices must be using the same protocol to understand each other.

Remote Graphics Instruction Set. A set of graphics object description commands.

Selective parameter A string of bit combinations that selects a subfunction from a specified list of subfunctions, designated by PS. In general, a control sequence with more than one selective parameter causes the same effect as several control sequences, each with one selective parameter. For example, CSI Psa; Psb; PSC F is identical to CSI PSa F CSI PSb F CSI PSC F.

VT52 mode
A VT10 mode which recognizes and responds only to escape sequences which DEC VT5 2 type terminals use. The graphics processor does not have VT5 2 mode.

## OTHER TERMINALS

## GENERAL

The terminal is a vital link between the user and the power of the computer. Often the right terminal, or the right enhancement to your terminal, can make your work easier, more efficient, or more cost effective. For that reason, DIGITAL offers a full range of video and printer terminals and options that can help you tackle any application.

## PRINTER TERMINALS

DIGITAL's printer terminals are noted for their strength and reliability, selectable baud rates, and multiple user-selectable features, that provide all the flexibility you need to efficiently configure your work stations.

## DECwriter III

DIGITAL's LA12ø DECWriter III is the performance terminal for high-speed communications. At $18 \emptyset$ characters per second the DECWriter III boosts throughput by combining bidirectional smart printing and a løø-character buffer with fast horizontal and vertical skipping over white space. The LAl2ø also offers the convenience and flexibility of more than 45 key-board-selectable features. These features include variable font sizes, tabs, form lengths, and many other time saving features previously available only as options. Mnemonic commands, prompting LED display, a special decal, and a convenient pocket-sized operator card all make the LAl2ø easy to set up and use.

A selectable baud rate (up to 9600 ) along with automatic self-test diagnostics give you the performance and reliability characteristics you look for in a high-speed communications terminal.

## DECwriter IV

DIGITAL continues to develop new technology and better terminals with functional specifications our customers demand. The new DECWriter IV is the latest in small convenient printers. It comes in two models, both ligth and compact enough to be easily transported to the most convenient work station for maximum efficiency. The LA34 is the desk-top model with designer appearance and typewriter-like keyboard. It is smaller, lighter, and quieter than many typewriters. The easy-to-change ribbon
cartridge, roll-free paper, and convenient keyboard-selectable features -- like four character-width adjustments -- make this terminal simple enough for anyone to use.

The LA38 comes with tractor feed for multipart forms and includes roll feed for standard paper. A numeric keypad is standard for fast input of accounting data.

The DECwriter IV terminals include standard features such as microprocessor control, true $3 \emptyset$ characters per second throughput, up to $96 \emptyset \emptyset$ baud rate, and DECwriter reliability. These features give you all the performance you need in a convenient size package.

DECwriter IV Graphic Printer
DECwriter IV Graphic Printers are receive-only (RO) micropricessor-controller, low-cost, desk-top printers. They use an impact dot matrix printing technique for character representation. DECwriter IV Graphic Printers operate in one of two printing modes, text or graphic. In text mode, characters are printed as they are received. In graphic mode, received characters define columns of printed dots.

The printer can be used as an output device for a computer or word processor so that characters received from the computer are printed. The graphic printer can also be used as the output device for a graphic terminal such as the VTl25 or the VKløø.

## VIDEO TERMINALS

DIGITAL's video display terminals offer unmatched convenience and capabilities with features designed to give you performance you would expect from much more expensive and complex equipment.

## VIDEO TERMINAL

For the ultimate in video terminals, look to DIGITAL's VTløø. It combines exceptional versatility with simplicity of operation. And it's designed to allow a wide range of fast and easy field upgrades to meet your changing needs. There is a detached typewriter-style keyboard with a flexible, 3-wire coiled cord. An 18 key numeric/function keypad on the keyboard permits single keystroke control of application-specific functions. The VTløø fits easily on a standard typewriter table. There is an advanced video option that provides 132 -column lines of the screen for easy viewing of wide-line printer reports. Double height/double width characters are selectable line by line for easier reading and text formatting. Smooth scrolling a scan at a time lets your operators read new lines at a reasonable speed. Divided-screen displays; blinking, underlining, double intensity and normal or reverse video character attributes; keyboard and/or computer-settable tab stops; built-in, self-test diagnostics; pictorial capability; and many, many more.
digital



[^0]:    | ASCII CHARACTER | ESC | 33 |
    | :--- | :--- | :--- |
    | 27 |  |  |
    |  | $\begin{array}{l}\text { OCTAL } \\ \text { DECIMAL } \\ \\ \\ \end{array} \mathbf{H E X}$ |  |

[^1]:    * Not on all units.

[^2]:    * Not on all units.

[^3]:    * Not on all units.

[^4]:    * Measured at a distance of $5 \mathrm{~cm}(1 / 96$ inch $)$ at any accessible point from the outer surface.

