MICROLOGIC FAMILIARIZATION FUR SALES PERSONNEL

I. Preface
A. Purpose
The basic purpose of this micrologic familiarization program
is to help you sell micrologic We hope through this program to
glve you a very general understanding of digital computers, and
the terminolozy which goes with them. We do not plan to make ex-

perts of you in the next couple of hours. We do hope to make you

familiar with micrologic - what it is, how it fits in to the scheme
of things in computer constructio ind why micrologic is a useful
approach to computer construction You, as salesmen, will be our
primary contact with those who might use our micrologic elements

In the sale of transistors and diodes. a rudimentary knowledge of
the devices as well as their use in circuits is necessary. Simi-
larly, in the case of micrologic elements. a rudimentary knowledge

of these devices and their use in computer systems, is necessary.
We plan to have a fairly extensive applications backup for you in
the sale of micrologic elements. The nature of this backup and the

information that is available now will be described later.

B. The Customer

Before getting into a discussion of micrologic, it might be
worthwhile spending some time in a description of what you can
expect to encouter in the customer. Many of you, I am sure, have
already run into some or all of the points that I will discuss be-
low. To start with, he's a very busy man That is, if you've got
the right guy. He may be a logical designer, a systems designer - an
advanced planning man, he may even be a circuit designer; but he is
busy. Secondly, he has been and continues to be besieged with
propaganda on behalf of the various microminiaturization approaches.
He is even beginning to receive some under-the-table propaganda
against other approaches. He often has some of his own company's
Or some government money to look into microminiaturization through
feasibility studies. With all the slick paper staring him in the

face, he has probably lost sight of which way is up, and wishes that he

——

had never heard of microminiaturization. He will, however, look
at almost anything that seems promising if the price is right

He will look, that is, one time; if it doesn't work that one time,
he will be a long time coming back for a second look. He is
becoming confused as to what to look for. He has been told by

the advocates of every approach that no other approach will

ever be cheap, that no other approach will be reliable, that no
other approach will be anywhere near as useful. He has even been
told that he doesn't need the reliability because what the approach
specified is so small he can build in redundancy. All he really
wants to do is find a simple method of building a reliable
microminiature system. This is where you come in to the picture.

If you can get your foot in the door, then we can come in to the

picture

Topics to be Discussed

1. Introduction to Computers
2 Micrologic

3. Applications Support

4

Comparison of Micrologic to other Approaches

Introduction to Computers

What are Computers

Simply stated, computers are machines for performing calcula-
tions. A digital computer is a machine which calculates with
numbers, The word digital comes from digits which carries two
implications; first digits meaning meaning fingers, that is, the
fingers that you count on when you make calculations, and
secondly the step by step operation of a digital computer.

There are basically four varieties of digital machines. Some
machines can perform a wide variety of calculations. Furthermore,
operators of these machines have the widest possible control over

these calculations. These are called general-purpose computers,

The second set, which is really a sub-set of the first, include

machines which are optimized for special applications such as account-
ting or scientific or what have you. The third set includes zll machines
which are designed to perform one set, or one particular group of sets,
of calculations. These are known as special purpose computers. The
types of calculations which they can perform are often as varied as

those of the general purpose computer; but the operator has little or

no control over the operations which are performed. The fourth set of
digital machines is not properly called computers It includes all
machines which perform some special data processing operation, for
example, digital smoothers, digital radar detectors, and even includes

such things as voltmeters, counters and desk calculators.

How a Computer QOperates

The operation of a digital computer will be explained by following
the step-by-step method of solution to & simple problem.

Let us suppose that you have the equation
Y = X3 -3X + 2

The problem would be, in the case taken here, to solve for the roots
of this equation or those values of X for which Y = 0. There are many
methods of solving this equation which you would use, and also, which a
computer would use However, the explanation is simplified if we take
the Brute Force Method, that is, we will substitute various values of X
in this equation until Y = 0, which is a method that you might use
Let us start by substituting X = 0 in calculating Y, and then increment-
ing X by 0.2 calculating Y, incrementing again by 0.2, etc. Now you

might approach the problem this way, with the scratching shown below:

X=0 x=.2
%:2 > .008 0 Y
-./20
2.0
e d

>

+.2
+.4

Most likely, to better organize your work your calculations would

appear as shown below:

¥ % ¥ S5% w8
B Cc D E) 4 G
x° x> 23X x> -3% X2 =3% 4 2 Y
(D+C) (E+B)
0 0 0 0 2 2
.04 008 -.12 -.112 1.888 1.888
15 064 -.48 516 1.584 1.584

The use of a table such as this is by far the preferred way
of organizing the solution to a problem. Each step in the table
gshown above is simple arithmetic. To solve the problem above, you
would keep incrementing X until Y goes to zero or goes negative
If it went negative, you would know that the root was somewhere
between the last value X and the one for which it went negative, and
you could interpolate between or calculate with smaller increments

between. Of course in this problem, actually, Y goes to zero.

If you had a desk calculator at your elbow, you could save
some work by having it do the arithmetic for you. A calculator,
of course, would just replace your fingers and scratch pad in

performing each calculation; but the operations remain the same.

If you had on hand a digital computer, you could perform the
calculation much faster. Again, the computer would just be
replacing your fingers and scratch pad, performing the same operations.
With the computer, though, you have reached the point of diminish-

ing returns. It calculates so fast that you're wasting time.

e

The computer could cost as much as a dollar a minute to operate.
It takes you minutes to tell the computer what to do next, and

it takes a computer millionths of a second to perform the
operation. -So, instead of telling a computer one step at a

time, what operations are to be performed, you tell it at one

time all the operations that are to be performed; and then let

the computer recall the operations that you've told it and

perform them sequentially, to come to a solution. You must be
careful, of course, to list all the operations you actually
perform. This is something like balancing a checkbook, as one
goes along calculating their checkbook balance making additions
and subtractions, we usually find that we can perform some of

the additons and subtractions (mostly subtractions) in our head;
but if we did that, the desk calculator could'nt keep track of the
balance correctly, so all of them must go in on the desk calculator
Suppose we list the operations that we actually perform in solving

this equation:

1. Start
Set X = 0 in Columm A
2. Compute

(a) Take contents of Column A

(b) Multiply by contents of Column A

(c) Put product in Column B

(d) Multiply product by contents of Column A
(e) Put product in Column C

(£) Take contents of Column A

(g) Multiply by -3

(h) Put product in Column D

(i) Add the contents of Column C to the product
(j) Add two to the resulting sum

(k) Put this sum in Column G

This, of course, gives us Y. Now we are ready to make a decision.

3. Decision

(a) Look at Y, and if positive, go to (b);

if negative, go to (f).
(b) Take contents of Column A
(c) Add 0.2
(d) Put the sum in Column A
(e) Go back to compute (2)

(f) At this point, we can stop or we can go back
using smaller increments in X to get a better
resolution on X In either case, we print out
the resulting X, or take it to use in other

calculations.

Remember that all this above is just a literal description of
the operations we actually perform in finding the roots of the

equation given. This is a program

Since the computer can't read our table, which acts as a
storage for us, it contains within it an electrical table or
memory which is used the same way. We might, in fact, think of
the letters which we use as columm designations in our table as
what are known as memory addresses in the storage of the computer
In addition, since we've already said that we must tell the computer
all the operations it will perform instead of proceeding one
operation at a time, we must also store this list of operations
or program; and they will be stored in other addresses in the

memory.

S et

The program we store might look something like this:

Program
Address

L=l

B = B b B 8 m ® o 0

" o0 W 0 B

rr

Instruction

Operation Code
Take contents of t (+0) (ct)
Transfer to A (ta)
Take contents of A (cA)
Multiply by contents of A (mA)
Put in B (tB)
Multiply by contents of A (mA)
Put in C (tec)
Take contents of A (cA)
Multiply by contents of u (-3) (mu)
Add the contents of C (aC)
Add the contents of v (+2) (av)
Store result in G (tG)
Transfer to address r if Y is (yr)
negative, otherwise go on to n
Take contents of A (cA)
Add the contents of w (+0.2) (aw)
Put in A (tA)
Go back te order at address c (xc)
Print the contents of A (pA)
Stop (z)
+0
-3
+2
+0.2

We have here then our same old list of cperations with perhaps

minor changes, Assigned to each operation we have as an ad-
dress the lower case letters in the left hand column. When
this program is inserted into the computer each peration is
stored at the address shown. When we wish the computer to
perform this operation, we merely say to the computer, "Go

‘a' and do whatever it says." The computer takes

to address
over from there. Instead of writing out these operations
in the computer's memory, we use symbols, The instruction
codes which appear in the parentheses in the right hand
column would represent what is actually stored in the computer
memory. Here we have the first letter, always lower case,
which tells what the nature of the operation 18, multiply or
add or what have you. We then have the second lett r which
tells where in the memory you go to get the number that you
will operate on or with. This instruction
the computer exactly what you say in the list of operations
In normal computers we do not use the literal addresses such
as those shown here, (as you can see we have almost run out
of the alphabet in the Program addresses) instead we use
numerical addresses.
I[f we stored the program above for the case
2)
aX + bX + cX +D =Y
Increment X = K

we would then have a general program capable of solving any

third order equation. We would take this general program and

Iinsert for our case a= 1. b = 0, c= <3, K= +.2 and have
the same result that we had before. This general-type program
is what is called a subroutine.

If we did not have to insert this program into the memory

but rather have it permanently wired in, we would have what is

called wired Program or special purpose computer,

We have seen how a digital computer operates to
problems using simply arithmetic and decision processes.
All that a computer can do is summarized in the steps out-
lined above., They seem like small steps but nevertheless
can represent a great deal of work because of the speed at
which a computer can perform these steps and the accuracy
with which they are performed. To give you some idea of
what can be expected normally from a computer, it would take
a small fraction of a second to solve the problem above to an
accuracy of six decimal digits. We will now take a look at
how a computer performs these operations.
Organization of a Computer

A digital computer contains three basic types of

functional units. The first is a memory of one or more
forms which is our electrical table discussed earlier. We
then must also have an add-subtract unit which is, as the

name implies, capable of adding or subtracting two numbers.

We further require gates to route numbers around in the

computer so that they arrive at the proper place at the

proper time to perform operations. These basic parts of

the computer will be discussed in somewhat more detail below.

1. Memory

There are two basic units of size of memory. One is

a cell which is the fundamental unit as capable of storing
one digit. The next higher order unit of size is the
register. This is a group of cells and consequently can
store a group of digits. The register length which is a
way of describing the number of digits it will store,
usually corresponds to what is known as the word length
of the computer. The word length,of course, determines
the basic accuracy which can be achieved with the computer,
thus a six decimal digit word length would be capable of a
one part in a million resolution in the numbers that it

works with and in a sense in the solutions that can be

achieved.

= N0

There are three basic types of memory used in a
digital computer. Two are more or less to be considered
to be in the permanent category. The first of these is
a cyclic memory. The second is known as random
access memory. An example of the first permanent-type
would be the magnetic drum. Here numbers are stored
sequentially on the drum and one must wait until the
number comes around before being able to extract it
from storage. This is usually the length of time it
takes the drum to revolve. This is often satisfactory
in most calculations.

At times the time required to get a number from
storage is too long and results in slowing the computer
to a point which seriously affects its performance., In
cases of this type the random access memory, a good
example of which is the core memory, is used. Here the
number which is stored is available immediately regardless
of where in the memory it is stored. The choice between
the core and drum memory in a computer is based on the
cost vs, performance of each in the solution of the
problem. The drum memory is much cheaper than the core
memory for every number stored.

The third general type of memory is the temporary
memory. A one cell temporary memory would be a flip-
flop, for example. A temporary register usually takes
theform of a shift register. Shift registers are really
just hroups of flip-flops having the ability to transfer
a number from one flip-flop to the next. They will be
covered further below.

Add-Subtract Unit

In general, all of theooperations on numbers are
performed in the add-subtract unit. This is a functional
unit which is capable of adding two numbers together or
subtracting numbers and having at its output either the
sum or difference of the numbers. The other operations
such as multiplication and division are merely multiple

additions or subtractions,

3. Gates

All numbers pass through gates in the couse of an
operation. The gates are in a sense like the switches in
a railroad yard. They route numbers or rather detemine
the route numbers can take in proceeding from one point
to another. Two types of gates are generally encountered
in computers, AND gates and OR gates. OR gates are used
to allow numbers from several points to go through one
peint, such as a register or add-subtract unit. They
are designed so any number that appears at any input to
an OR gate will appear at the output., They operate in a
sense like summing amplifiers. AND gates, on the other
hand, have basically just two inputs, a number and a
control. The control input determines whether the number
appearing at the other input can go through the AND gate
or not.

The operation of these various functional units in
a calculation will be illustrated by returning to our
original problem and examining in detail what happens
inside the computer in its performance of part of the
problem. The four figures below, figures 1, 2, 3 and &
are used to illustrate the step-by-step procedure of
starting the computer on the problem and performing the
first operation. To start the computer, we must manually
insert a start code and alsc an address which tells the
computer where it is supposed to start. Looking at figure 1,
we see thatthe start code has gone into the order code
register, and the address at which we want to start the
operation, which is a, has gone into the next instruction

address register. The start code is decoded in the matrix

GET
OPERAND |FF | MEMORY ‘

GET NEXT
INSTRUCTION
DE-cop
. FF
MATRIX
y END OF
OPERATION
= W Eeaty BT TR T s fedis
ORDER CODE OPERAND ADDR NEXT INSTRUCTION OPZRAND ADD ~SUBT
REGISTER REGISTER REGISTER (AccumuLaTOR) UNIT

Figure 1. Next Instruction Address to Memory

and sets the flip-flop which

next instruction.'" When this flip-flop is set, the ne
instruction address is sent into the memory he memory

sends out whatever set of numbers apppears at the memory
address that goes in. Since we know that this set of
numbers is really the next instruction, we route this
number through a gate, (see figure 2) into the order

code and operand address registers. The first

| 2z

t I=SMOR Y

L e i R =
= o (B
i = 2

[t

=
n
i
J
or
LE]

e yE— R TS e 1
€ *"*{é)ﬁl R g TS |

0 E

o A0

e Ty Loy e . ADD - SURT

instruction code, referring back to the program, was (ct),
where ¢ was an order code which meant "get from

and t was the position in the memory or the operand
address of the number we were supposed to get from the

memory. The c order sets a flip-flop which in effect says

""get operand.'" See figure 3,

3ET |
SPERAND l:fl““_"“"' M MOSS
I i
— y e “\ i\ e
= ™) ") :
| iy | e b
nd = e | Toaetia ") R
1551 I f ?\t// |
T sAD o arl ‘ |
T AT = e Bl RN = SN, ‘ |
L 5 | e [oy A
OR NER P RAVY IZXT INSTR P RAN ADD ~-SUBT
oLk PE6 SOEPrss PEC Lo & == I':ffr WwILATDP AT
Jpevi.ia A .8 Lo Memory

This flip-flop then opens an AND gate which allows the

operand address to go to the memory. This flip-flop also

opens the gates which connects the memory with the operand

UNIT

GET
OPERAND

- 13

register or accumulator, thus this time the number which
appears at the address that went into the memory goes

directly to the operand register. See figure 4,
| MENMORY

[y

@—JFF

A’ = et
A 45 or ‘
OPERATION
l (o l | t | ! & I __4+______J
CRDER COPE SPEREND NEXT INSTRVCTI0AS PPERAND ABD - SVET
REG. ADPRESS REC- /iDDRESS REG (Recumuearor) UMIT

Figure 4. ‘perand From Memoly

While this operation is taking place, the next instruction
address,which is in the next instruction address register,
has been incremented one so that it is now b. Once the
operand is in the accumulator, we get an end of operation
signal in through an QR gate into the ''get next instruction"
flip-flop. We are now ready to repeat the basic cycle and
keep repeating it until we conclude the calculatiocn.

The above then demonstrates the use of various types
of functional units in a computer., The add-subtract unit
as such was not demonstrated. When the order code calls
on the computer to add, one of the numbers to be added is
in the accumulator, the other is brought out from the memory.
The two numbers are passed together through the add-subtract
unit and the sum or difference is returned to the accumulator,
Since I don't want you taking my job, I won't go any further
on computer design.
Binary Notation

Up to now we have been dealing solely with decimal
numbers. Some computers in fact do calculate decimally.
There is no other number form. Most computers use what is
called a binary number system. Most computers are constructed
with devices which have two stable states like a toggle
switch. They may be on or off. The binary number system

recognizes and can work with this two state system.

If we look at a decimal number

1R R
we find that what this number actually represents, in fact
sometimes we say it this way, is expressed by the following

equation:

s 503 B 105 36 & 30F 5.7 %107

Thus, as we know the number that we wrote was really
a hand writing expressing the above equation which represents
a quantity, we say that the decimal system has a modulus
of ten, that is that the numbers that we write are the
coefficient of powers of ten. (We don't write, for example,

) 7

2 4
11 x 10° since this is really 1 x 10" plus 1 x 10°.)

-

In
the binary number system the numbers we write are

coefficients of powers of 2, thus & number

01011

is really the hand writing of the expression

/ "
053541 %2 0x2 s lx 2l 1 x2°

(]

Of course, we can calculate readily what this number is
in decimal form.

0+8+0+24+1=11
Once again, as in the case of the decimal system, we can't
say 2 X 22 because 2 x 22 is really 1 x 23. thus the binary
coefficients can only have two values, 0 and 1 as in the
case before. This is eminently suited to devices such
as on-off switches on diode gates and so forth which are
most easily designed to have two states. Arithmetic
operations with binary numbers are identical to those
with decimal numbers. We will use some examples of
addition, subtraction and multiplication to demonstrate
the identity of the method. The first example will be
in addition

10010
+01011

«18 -

It will help you to understand binary notation, if you work
this problem out yourself. Use the same rules that you do

with decimal arithmetic, If you have done this arithmetic

properly, the solution you get will be

11101

The next problem will be one in substraction:

11011
-10110
If you have done this subtraction properly, keeping
in mind that the methods are identical to those of decimal

subtraction, then the answer you will get will be:

00101

Multiplication with binary numbers is much simpler
than it is with decimal numbers. Again, the rules are
identical; but here, we are only working with the numbers
0 and 1, and multiplication by either number is very
simple. To demonstrate:

10010
x01100

0
10B0
10010
00000
011011000
The method of multiplication should be fairly obvious
from the numerical illustration given above.
Computer Logic and How Micrologic Fits In
The only portion of a computer which usually does not
contain logic circuitry is the permanent memory. Some
logic circuitry is used in getting in and out of the memory;

but the memory itself, in general, uses no logic circuitry.

Except for the memory as shown above, pretty near all

computer circuitry is logic circuitry of some form, The

functional units, which were mentioned eariier, which do
contain logic circuitry, will now be described in somewhat
more detail. 1In addition, the manner in which micrologic
is used to perform the same function will be illustrated.
1. Shift Registers
A shift register, which {s a temporary storage
unit, as mentioned earlier, is really a set of flip-
flops with a means of transferring information from
one flip~flop to the next. The process of shifting

can best be described using figure 5 below:

INITIAL !_B_I_f_u:[-c‘ L EE’_QI v

_ g o .

AFTER |57 SHIFT L‘JIC’I *lllof!lo | f—>
e e (

AFTER 2" zpir \g!_o '__Q! !] ! Ol_‘__lg——!‘—*
F { | N | '8

RFTER 3% guiAr | 0N, eiojl]r]|of _,r_.t_’l" =t

Firure 3. Shift Register Operation

The boxes shown in the shift register are the
individual flip-flops in the register. You will
observe that initially the binary number is stored
in this register in the forms of the one and zero
states of the individual flip-flops. After the first
shift, the state of each flip-flop has been trans-
ferred to the flip~flop on its right. The state of
the flip~-flop at the right end has gone out on the
output line. After the second shift pulse, this
process has been repeated, etc. You can see that
in this way we can transfer, one binary digit at a
time, a number out of a shift register into some
other portion of a computer. Similarly, we can
transfer a number into a shift register starting

at the left end. One common shift register

o 3

configuration is shown in figure 6:

— et —

—Frs V0 Ay Frzls 0| s(A)— FF3 |~

EShiFt Pufse Line

Figure 6. Typical Gated Shift Register Configuration

As shown here, the state of flip-~flop 1 is passed
through a delay line to one input of an AND gate.
When the shift pulse comes along a shift pulse line,
the AND gate is turned on and that state is trans-
ferred into flip-flop 2. Similarly, the state of
flip~flop 2 is transferred into flip-flop 3. The
purpose of the delay line is to maintain at the
input to the AND gate the previous state of the
flip-flop, even though it may have changed when a
new state was transferred into it. A second
typical shift register configuration, the master-

slave arrangement, is shown in figure 7:

IDe/a.yec/ ShiFF Pulse
4 A

T T e
FF18 | fr2a |(A)s| 28] () —

1

7 ShifF Palse

Figure 7. Typical Master-Slave Shift Register Configuration

Here flip~flops are used in place of delay lines at
every state, The state of each A flip~flop, which
corresponds to the flip-flops in figure 6, is

Figure 8.
TRL Shift

Register Stage

From Frececing I' & \ |

transferred to the B flip-flops in between shift
pulses using the delayed shift pulse. These B
flip-flops then serve as a memory during the main
shift pulse shifting operation. A typical gated
shift register stage implemented using transistor

resistor logic is shown in figure 8:

-
l 7-" ‘J"'""'P‘/l ;jﬁ‘r <
4:’ 'r
e, o —B-(f’ B]
— A, = — ,a_*___"_'\" 4 717:;;_--,; ?‘V-j
; j | =
. S g
'd? ‘-_’; — O / £ .-, 15 ?{.
) 2! <, |
b < | !
2l p=
3. Vanae plor.
=gl |_v\l" ! H . ; , b A | " - F ;’(
. b < - 5 - ;
| | r ! F.A. 44 /‘I-'-nr/.‘ﬁg" Circai #
] 4 — el = ' - s
7 T Frem Brec Stane < \ Mel & Cinnec f';;.;;
L4 r

The RC networks shown in this diagram are the delay
lines of figure 6. These RC networks are usually
sufficient as a delay in logic circuitry. The
additional circuitry required to form the master-slave
type shift register in TRL would be extensive
compared to the circuitry shown here., A typical

shift register stage using micrologic is shown in

figure 9:
.{;‘n'/y(u‘/ Sk /7’(=

S
b AN

; 7s Succerding
[] o j

sege — kAW A —’} JHiye
. \‘\-..__,.--" s
I t? ?Z
Shitt Fulee 2 S Efemeats

16 Fripted Cire wr ¥ Heles

a Cennec?ions

Figure 9. Micrologic Shift Register Stage

Here it is evident that the master slave technique is used.
Delay lines compatible with use in this logic circuitry would
not only be much larger, but at least as expensive as a
micrologic element. Consequently, the master-slave technique
is preferred.. A variation of this technique using the built-
in propagation delay in the micrologic element is shown in
Figure 10.

/QFOAU ;7 L
ﬁ'&af B .Surc.e.r
¥ ,uﬁfgg;b Tl JS .j;Q;e £

Figure 10. Variation of Micrologic Shift Register Stage

y

2. Gates

As mentioned earlier, gates are logic circuits used to
set up and define the routes that numbers may take going from
one portion of a computer to another. The action of OR gates

can be explained using Figure 11:

732 732 (0242 ;.

347

3 (&)

Figure 11. OR Gates

When a set of numbers, in this case 732, appear at one input to

the OR gate, the same numbers 732 appear at the output on the

right hand side as shown in Figure 11.

In Figure 11b, when the set of numbers 347 appear at the

other input to the OR gate, this set of numbers 347 appear

at the output on the right hand side. Thus, any number that
appears at any input to an OR gate will appear at the oulputl
OR gates are very useful, for example, when entering & shift

|

register 1f it is desirable to route numbers from several

points in a computer into one register an OR gate is used

AND gates, on the other hand, are used to control the

flow of information Thus, in Figure 12a

43 73’-2}(_ @? 000 782 4 q\ 292
£ :

‘NO Yes
(a) (b)

Figure 12 AND Gates

the NO signal appearing at the control input to the AND gate
prevents the set of numbers 732 appearing at the other input
from appearing at the output In Figure 12b, where this

control signal has been changed to a YES, the set of numbers

appearing at the input can appear at the output

One of the most common gate circuits in use today is

the TRL gate shown in Figure 13

+~5u,p /
7 D < 0 A a./oas.«'fx'v'e vo/f’aje

W

and O /= jr‘ounc’
e e The -fo//owfnj “Truth Table "

holds Al B8lC

3 o Vo (v
/ Q | @,

g4 o

Figure 13. TRL Gate Circuit g [l S i) 22

—4

This is also commonly known as a NOR gate. Looking at the
circuit diagram, we can see that if a positive voltage

appears at either input to the circuit, the output terminal at
the collector will go to ground, the transistor conducting

to saturation. If we call this positive voltage a "1", and the
ground voltage a "0", we can write what is known as a truth
table which describes the operation of this circuit. We can
see in this truth table that if a positive voltage or a "I"
appears at either or both inputs, the output terminal C goes to
ground or "0". We can also see that if we have a ground
potential or "0" at both of the input terminals, the output
voltage goes positive to a "1'". We say that the "0" condition
is the inverse or the NOT of the "1" conditicon; and hence, we
describe this gate by saying that the output is the NOT of the
OR of the inputs - hence the name NOR. To get the true

of the OR of the inputs, we would have to invert the output of
this logic circuit which would be accomplished by going through
another transistor. If we put NOT A at one input and NOT B

at the other input, that is, if A and B are "1", both inputs

to the gate are "0" we can see that the output terminal will be

a "1", Thus, we can also say that the output is the AND of
the NOTS of the inputs. It is a "1" when A is "0"™ and B is
"0", From the above, it can be seen that either the AND

function or the OR function can be accomplished using this

same gate structure. In fact, examining all types of logic
circuitry it can be shown that all logic can be constucted

using this basic logic circuit interconnection in various

ways. This is the basis of the modules put out by some
companies. These modules are just this basic NOR block. I
know that the above is a lot to swallow, but if you are willing
to take some time, I think it would be well worth going over

again until you understand it.

0f course a micrologic gate circult is simply a G sment

as shown in Figure 14:

fﬁ "“‘\
T R

Ve

Figure 14, Micrologic Gate Circuit

Adder

I will make no attempt, &t
logical discussion of an Adder Basically ' cms
with gates the same operations that you perfcrme ng
two binary numbers earlier. A block diagram
most common adder configurations is shown in Figu: -

j_i — -—-—:[L M ety
i _‘ Frevious =
Cerry |

Lar?y
2 £F 99)
A
|

Figure 15. Block Diagram-Adder

The two inputs to the adder are shown as X and Y. The two

boxes labelled H are really each a set of three of the TRL

G XN X

N kel L T

L

gate circuits shown in Bigure 13. These three circuits are
combined in a commonly appearing form called & Half-Adder. A
Half-Adder provides two outputs; one the sum and the other the
carry. The sum output of a half-adder is a "1" when either
input, but not both, is a "1". The carry output is a "1"
when both inputs are a "1". 1If you go back to the addition
process, you will see the reason for the carry. Now a carry
generated in getting the sum of two binary digits must be
added to the next higher order binary digits. This is
accomplished through the one-bit delay using the flip-flop

and delay line as shown in Figure 15. The fabrication of this
adder using TRL would require eleven transistors, thirty-four
resistors, and two capacitors; and these components would
require one-htindred and five printed circuit board holes and

interconnections. A micrologic adder is shown in Figure 16:

Figure 16. Micrologic Adder

This adder requires = 6. micrologic elements and '44

interconnections.
Special Cases

Matrices and counters are two logic circuit configurations
which are consistent enough in their appearance in all types
of computers to be uniquely identified. Their incidence of
use in any one computer is very small. Some few computers do

not use counters, but nearly all use matrices and counters.

- 24 =

A matrix is a set of gates used for converting from one

number system to another. It most often appears in the
conversion of binary numbers to decimal numbers. Thus, in

the order matrix shown in Figures 1, 2, 3 and 4, a binary order
code is inserted into the order register. The matrix takes

the ones in zeroes which appear at its inputs in parallel,

and provides a "1" on only one of its output lines. The
maximum number of output lines for a matrix is 2" where n is
the number of binary digits which appear at its input In a
sense, a matrix performs the same operation that we did in

determining the decimal equivalent of a binary number earlier

The use of counters is probably familiar to all of you
They are used in the same fashion in computers Pulses are
applied at the input stage of a counter chain and the counter
counts the number of input pulses. It increments by one digit
for each input pulse that appears. A block diagram of a counter

stage is shown in Figure 17:

Figure 17.

Block Diagram-Counter

Here we have a flip-flop. The delayed outputs of this flip-flop,
feed AND gates. You will see that if the flip-flop is initially
in the "1" state or "1" condition, then the AND gate on the

right is open and on the left is closed. Thus, when the next
trigger pulse comes in, the trigger passes through the AND gate
on the right to reset the flip-flop to the "0" state. This
causes the action to reverse, etc. The delay lines are required
in some form to maintain the previous state of the flip-flop at

the inputs to the gates during the trigger' pulse. A TRL counter

- 25 =

is shown in Figure 18:

: :

ﬁlj \A»;g_
6T
Figure 18. TRL Counter

A micrologic counter stage is shown in Figure 19:

"$" Element

Figure 19. Micrologic Counter

We have examined in some detail the nature of typical
logic configurations encountered in a computer or similar
data processor. It would now be appropriate to go into the
nature of the basic logic circuitry and the reasons for a choice

among different types of logic circuitry

F. Logic Circuitry

Years ago, it was common practice to design what was felt
to be a reliable flip-flop, and then design gate structures, and
then try to design some sort of circuit to permit the flip-flop
to drive the gates It became apparent, after some time, that it

would be easier to design things if the gates were made to look like

- 26 =

one-half of a flip-flop, and the half flip-flop was made to drive
so many structures similar to itself, thus, the other half flip-flop
becomes just one of those structures and the gates others, and con-
sequently we could begin to talk about a load-driving capability of the
flip-flop. This approach was exemplified in what is now the almost
universally used technique called distributed logic. Distributed
logic is a term applied to a logic circuit concept, which allows that
only a few levels of gating will be permitted between, in & sense,
buffer amplifiers In some types of distributed logic, the gating
and amplification functions combine. The two common types of this
form are TRL and DCTL. Low level logic employs two gating levels
between each amplifier section There are also in use today soms
variations of the above logic forms, such as R-C Coupled Transistor
Logic, and in addition, many forms of what is generally called diode
logic. These diode logic forms take the traditiomal configuration of
one or two levels of diode gates followed by an amplifier These
commonly used logic forms will be discussed individually below, along
with some notes on advantages and disadvantages of each:
1. TRL
Perhaps the most popular logic circuitry today is TRL. The
ma jority of transistorized digital computers in operation today
use TRL. TRL is a very attractive type of logic circuitry It
uses fewer semiconductor components than any other type of logic
circuitry, with one exception, it uses fewer components than any
other type of logic circuitry. The power consumption is reason-
ably low. It can tolerate a wide variation in tranmsistor,
resistor and power supply parameters without error Its speed is
reasonably high. However, the speed of TRL is only one-third
that of either low level logic or DCTL. The minimum power re-
quired in TRL is about five times that required in either of the
logic forms mentioned above. Nevertheless, the speed which can
be achieved with commercially available transistors, and the low
power which can be achieved with this circuitry is sufficient for

most applications.

DCTL

DCTL uses fewer components than any other logic form.
It requires less power than any other logic form. It will
operate as fast as any saturating logic circuitry, and will
tolerate as wide or wider variations in parameters than any
other logic circuitry. The catch in DCTL is that a suitable
transistor for DCTL must be used in this circuitry. A DCTL
transistor must have a high input resistance in saturation.
It, of course, as with most other saturating logic must have a
low saturation voltage. Historically, only a few transistor Cypes
have been suitable for DCTL.
LLL

Low-level logic, which is an extension of an earlier logic
form, has many of the advantages of both the above described
logic circuits. It will operate as fast as DCTL It requires
little more power than DCTL. It retains the advantage of being
able to operate over a wide range of parameter variations It
does use more components and more semiconductor components than
both of the above logic forms. Some of the comments which apply
to the DCTL transistor also apply to transistors which are to be
used with low-level logic However, the nature of low-level
logic is such that these requirements are nowhere near a
stringent as they are for DCTL
Classical Distributed Logic

Most of the comments which apply to a various clasical dis-
tributed logic forms, which is a more general term than diode
logic, are on the debit side. This logic form requires orders of
magnitude more power than that required for the logic circuits
discussed above. Component tolerances are very tight. The use of
one percent resistors, for example, in this logic circuitry is
common practice. Requirements on the transistors in terms of
parameter variation are very stringent in this logic form. Fur-
thermore, the higher voltages required, the higher transistor
dissipations which are encountered, etc. put much more stress on

the transistor than is encountered in the previous circuits.

= O e

Transistors are almost always operated in the non-saturating
mode in this logic circuitry, in an attempt to regain some
of the speed lost through high voltage swings, high
resistances, etc. With few exceptions, the speed of this
circuitry is not as high as that which can be achieved with
DCTL or LLL. The number components required in Classical
Distributed Logic far exceeds the numbers required for any of
the logic forms mentioned above. This type of circuitry was
only justifiable when transistors with lifetime control and

consequent short storage times were not available

Current Steering Logic

The type of logic circuitry which has been used in
attempt to achieve high operating speeds is Current Steering
Logic. Basically, Current Steering Logic gets around most of
the speed problems in any logic circuitry. The voltage swings
are kept low to reduce capacitive affects. The transistors are
not allowed to saturate to eliminate storage effects, etc. A
basic current steering logic module requires several current
sources, and consequently, dissipates a great deal of power
An unfortunate characteristic of current steering logic is that
complementary transistor types should be used to achieve reliable
operation. When only one transistor type is available, so called
voltage translating blocks must be used, which in themselves are
satisfactory in operation; but as a result of their use, the volt-
age appearing at the input to the next stage can vary widely in
average level depending on variations in the various current
sources required in the preceeding stage Once again, with the
controlled life-time transistors, which are now availsble, and
their good saturated switching characteristics, the gain in speed
of current steering logic as opposed to DCTL or LLL is marginal
On the credit side, it can be said the current steering logic 1s

probably as insensitive to transistor parameter variation as any

of the other forms mentioned., It is also a logic form well-
suited to use with high saturation voltage transistors. Some of
the high-frequency transistors which have been available in the

past, have had this unfortunate characteristic.

The above summarizes some of the thoughts on the various logic
circuit configurations. The circuitry chosen for micrologic was
DCTL. The only basic reason for preferring this circuitry to low-
level logic was the significantly reduced number of components.
DCTL, when used from the standpoint of simplicity of censtruction
was an ideal choice for micrologic. It was felt, at the time that
the decision was made to go to DCTL, that a suitable DCTL transistor
could be developed. This has been the case In view of the unsuc-
cessful efforts by some of the biggest silicon transistor manufac-
turers in the country to develop a DCTL transistor. this alone can

be considered quite an accomplishment .

G. Why Micrologic

The comparisons made above of micrologic configurations with
TRL configurations for some typical logic circuits, point out some
of the chief features of micrologic in computer construction. The
number of components which must be handled is significantly reduced.
This effects two savings to the computer manufacturer In the first
place, the number of components which must be tested, handled and
assembled is significantly reduced. Secondly, the loss in relia-
bility due to the testing, handling and interconnection of these
many components is significantly reduced. The simplicity of design
as shown in the illustrations above result in reduced engineering
time to the design of a computer, and much reduced design time to
Class A drawings. All these little things save the equipment manu-
facturer money. We will go into some of the other characteristics

and features of micrologic in the next section.

III. Micrologic

You have all read, I am sure, some of the various status reports
and perhaps even paper reprints on microlegic. I hope that this familiar-

ization program has helped you to understand better the significance of

what was said. We have said it so many times and i : 3 hat

it tends to sound trite to us, but sounding trite should not detract

from its true significance to the equipment manufacturer What is
micrologic? Micrologic is a name applied to our approach to computer
miniaturization. We use the term micrologic because we wanted to do
something different. We said that the only people whe would be inter-

ested in how many of anything you could put in a cubic foot or how many
of those things you could put in a thimble or how many of them would

fit in gnat's eye are the public relations people.

The computer manufacturer is basically interested in how much com
puter he can pack in a cubic foot,or saying it another way how many
cubic feet or cubic inches he can reduce the size of a given computer
down to. This carries some implications. It says that a2 miniaturized
part to be used in constructing a computer should be capable not only
in itself of being small but it should be capable of easy assembly intq

a subminiature machine.

~

We have mocked up for the Eastern Joint Computer Conference the
logic section of a 22-bit digital computer. This includes the control
and arithmetic units using the TO-5 size micrologic elements on printed
circuit boards. This logic section would be approximately 6 x 12 x 1
inches. Using the TO-18 size micrologic elements with welded wire
techniques, this logic section would be 6 x 1-1/2 x 3/4 inches Keep
in mind that this is the full logic section. The only other parts to
the computer are the storage,either a core or a drum memory, and the
power supply. This is the kind of information that a computer manufac-

turer is interested in knowing.

Micrologic elements were designed for interconnection. They were
designed this way so that in the first place they could be interconnec-
ted using contemporary techniques and secondly so that they could be

interconnected without wasting a lot of volume running leads back and

forth. They were further designed to dissipate low enough power so that

it would not be necessary to waste a lot of volume with heat radiators.
In short, they were designed not just to make the pieces small but to

make the whole assembly small.

This attitude has prevailed throughout our approach to various

T . (RTINS

considerations in micrologic program. The selections of the various
functional blocks to be used in micrologic were based on end use con-
siderations. The decisions as to what type of fan-in and fan-out to
design the micrologic for were based on end use considerations.
Micrologic is designed to be applied. It would be an extremely expen-
sive novelty to put this much money in for something we can point to
and say, '"look fellows, it's small". 1It's designed for real computers

which we expect to see flying in two years.

We say then that we have an approach that is designed to be used.
What do we have to offer to the computer manufacturer that should en-
courage him to use it? We have a compatible set of digital functional
blocks each fabricated on a single chip of silicon and now in a hermeti-
cally sealed package. A complete logic section can be fabricated using
generally speaking only micrologic elements. This logic section will be
capable of operating over the full military environmental range including
a temperature of -55°C to +125°C. This logic section will be capable of

operating at speeds as high as 1 mc.

-

The cost of this logic section when fabricated will be less than
1/4 that of a logic section fabricated using transistors and resistors.
This logic section will probably use less power than one fabricated
using transistors and resistors It can be one to two orders of magni-
tude smaller in size than one fabricated using transistors and resistors,
depending on the type of packaging used. It will be at least as reliable
and probably much more reliable than one fabricated using present tech-
niques. It will be easier to design and easier to manufacture. This
then is what we have to offer. This is micrologic. The cost savings and
design and manufacture are so great that even at the selling price of the
sample quantities of micrologic elements. The cost of a logic section
using these elements will be no greater than that of one using transistors

and resistors.

Some people will be interested in micrologic because it represents to
them an easy way to break into the digital computer field. Those who are
already in the field should be interested because micrologic elements

represent a reliable useful, economical way to build a digital computer.

A lot of what I have said, and much more of course, appears in various

IV.

reprints and status reports, etc If you don't already have copies of

all this information, please make sure that I get it to you. The logical
question that comes up next is how does micrologic compare with the other
miniaturization approaches which are currently flooding the field This

will be discussed in the next section
Comparison of Micrologic to other Approaches
A. What is the best Miniaturization Approach to use

It would seem that the heading of this section is one of the most
often asked questions in the electronics industry today. There is no
answer The best miniaturization approach to uss depends heavily on
what is to be miniaturized Those cases where integrated circuits, wh
are available in large quantities, can be used should use these blocks
When this is not the case, due to the special nature of the circuitry,
or due to the use of circuitry which does not readily lend itself to t
batch processing features of integrated circuit construction, should u

a more flexible miniaturization approach. Another important considera

pat

ich

he

se

tion

in the choice of miniaturization approach is the time factor Approaches

which are well suited to two or three year delivery time of prototype
equipment may be completely out of the question for a one or one and
one-half year delivery time This section will generally discuss all
microminiaturization approaches Some examples and the features and d
advantages of each approach are also given Before proceeding, it mig

be worthwhile to discuss some of our own opinions on this subject
B. Opinions

The comments contained in this section of the familiarization
program represent our own ''objective" appraisal of the various approac
Certainly to some extent this appraisal would be subjective. But to
clarify our position, it would be worthwhile to sum up our own opinion
as to which approach is the most suitable. The one microminiaturizati
approach which will yield the fastest time to delivery of a prototype
of anything is known as the '"Cordwood Approach!. This is represented
the various welded stick and welded module approaches to miniaturizati
Some of these are the Sippican Francis Associates, EECO, The Raytheon
Weld-Pack, Delco, Sprague Welded Modules, and others. This approach i

capable of about a five-to-one reduction in equipment size. This is a

18-

ht

hes

s

on

by

on

-1

2984

significant volume reduction. It has the advantage that it permits thes
user to assemble his own reliable circuitry using components in whose
reliability he has already established confidence. This is the only
miniaturization approach for which this is true. The welded wire intercon-
necting technique seems to be a reliable one when properly implemented.
As soon as we depart from the above approach, we run the average
time to delivery on the prototype out to about two yesars. Any other
approach requires an evaluation of the resulting functional blocks or
circuits or what have you in miniaturized form to determine their re-
liability. This involves a great deal of time. Coupling this time
figure with the time required to design in the new approach, and the
time perhaps to availability of suitable quantities or suitable
characteristics in the new approach, set the two-year date. In the
area of run-of-the-mill circuitry, particularly logic circuitry,
integrated circuits represented by Fairchild Micrologic, TI Solid
Circuits, and later on the Sperry Seminets are the best choice.
These approaches will yield the smallest size of prototype equipment
coupled with lowest potential cost, and I feel, highest reliability

of all available approaches.

Circuitry which cannot be considered run-of-the-mill can become
very expensive, even prohibitively expensive, to assemble using the
integrated circuit approach. Thus, even at the two-year level, the
Cordwood approach represents, I feel, the best choice. A logical
extension of this Cordwood technique is the approach taken by our own
Special Products Division. Rather than package transistors in individual
cans and then assembling circuits multiple transistors and even circuits
are packaged using transistor production techniques in one can. The
cost of this approach is not very high. Other savings may be realized
in the Cordwood approach by using the time available to evaluate the
reliability of subminiature components which are well suited to this
technique. Another type of microminiature approach better suited to
the non-standard circuitry is the Micromodule approach which deals with
individual circuit components on wafers, and thus allows design
engineers considerable flexibility in the design of circuitry. The
Micromodule approach represents the first, albeit long, step below the

Cordwood approach in circuit flexibility.

This concludes the opinions section. Now to go on to opinions.

C. Microminiaturization Approaches

Some examples and characteristics of the more popular approaches
to microminiaturization will be discussed below. The techniques

which will be discussed are listed as follows:

1. Subminiature packaging of standard components.
a. Subminiature packaging of non-standard components.

2. Subminiature packaging techniques using deposited passive com-
ponents and standard or near standard active components.

3. Integrated circuits

4. TFunctional Blocks

It is worth noting at this point that only the first type of
microminiaturization approach does not involve an extensive re-
liability evaluation of new components and/or circuits e is
further worth noting that all of the techniques described above
probably will be used. Poor sales of an individual manufacturers’
microminiaturized parts will generally not be due to a lack of a
market for his approach, but more likely due to the failure of

performance of his parts.
1. BSubminiature packaging of standard components.

Examples of this technique of microminiaturization are the
80 called Cordwood approach and variations, thereof, and the
Burroughs Macromodule approach. This approach as mentioned earlier
yields at least a five-to-one reduction in size. Examples of the
Cordwood approach are the Raytheon Weld-Pack, some recent additions
to the EECO product line, the Marion Associates Sippican computer,
and others. There seems to have been a considerable acceleration
in the acceptance of this technique as a useful stop gap. Modules
using the welded wire interconnection technique are being made by il
such companies as Delco, Sprague, and of course, EECO as mentioned
above. This approach basically involves more efficient packaging
techniques for standard components. The significant feature of this
approach, as stated before, is that a manufacturer's own reliable
circuitry can be packaged efficiently using this technique. The
components which are used, since they are standard parts, are easily
available. These components can be easily tested before assembly

into modules. Because of the standard nature of these components,

b o o ek i e e it S ol

their reliability is already known to the equipment manufacturer.
The basic disadvantages to this approach involve the welded wire
interconnection technique. The cost in the amount of skilled labor
required to get reliable interconnections in large assemblies is
significant. Maintainability of this type of module is practically
impossible. Modules fabricated using this technique would have to

be considered as throw-away parts.

a. Subminiature packaging of non-standard components.

Some examples of this approach to microminiaturization
are the Micromodule of RCA, the Hughes Dot System, and the
Mallory approach. This approach involves the fabrication of
individual components in small compatible packages. These
packages are then assembled to construct circuits. The chief
advantage of this approach is that some of the implementations
will yield a quite small size for circuitry which would be
otherwise difficutl to microministurise., 8Size reduction of the
order of 5 to 10 to 1 can be achieved. Once again, with this
technique, it is possible to test individual components. Some
of the disadvantages of this approach involve the low-volume
efficiency of circuits microminiaturized this way. In addition,
the availability of the components in question is in doubt at
the present time. No doubt many of the components used in this

approach will be available perhaps within the next year.

Subminiature package containing deposited passive components and

"standard" active devices.

Some of those quite active in this field of microminiaturization
are Sylvania, IBM, Arma, Diamond Ordnance Fuse Lab., and others.
Some of the components which are used on these substrates can be
tested before assembly. One of the basic disadvantages of this
approach is that it must still be considered to be in the developmental
stage. Consequently, some time must pass before useful microminiaturized
components of this type are available. Furthermore, assembly costs
on the basic microminiaturized module can be quite high as well as
assembly costs of these modules into systems. Some component
limitations exist with this approach, and the incentive to expand

this technique is doubtful,

-"36 =

3. Integrated Circuits

Fairchild Semiconductor, Texas Instruments and Sperry
Semiconductor, among others, are actively involved in the
development integrated circuits. The use of integrated circuits
can result in equipment volume reductions of one to two orders
of magnitude. One of the chief potential advantages of this
approach is its very low cost compared with any other. The
techniques used in fabricating these integrated circuits are
for the most part the same as those techniques used in the
fabrication of transistors. Work by wvarious people in the area
of reliability evaluation of integrated circuits indicates that
they will be highly reliable, O0Of course, it must be kept in
mind that the computer manufacturer will have to establish his
own confidence in the reliability of integrated circuits as well
as any other technique. These advantages, however, do come out
of the batch processing techniques characteristic of some
transistor manufacturing methods. This technique does have a
couple of disadvantages One of these involves the restricted
number of functions which can be available in the integrated circuit
form. Another disadvantage which could be significant involves

the inability to test the components within the integrated circuit.
4. Functional Blocks

This category is basically included for the sake of complete-
ness. Some great things can be done in the future in the area of
functional blocks. Keep in mind the functional blocks are not in-
tegrated circuits They are chunks of material that perform a
function such that individual areas or regions cannot be identified
as an analogue of a specific component in the circuit which is re-
placed. Functional block work is still pretty much in the research

stage.
Advantages of Micrologic Compared to other Integrated Circuit Approaches

The first comment I have to make with respect to the title of this
section is caution in a profit making system. Any advantages one approach
has to another of the same approach type, will be as temporary as your

competition can possible make it. If feel that some of the basic relative

features of micrologic to other approaches are its high petformaace,
its low cost both initially and ultimately, and its usefulness to the
equipment manufacturer. Usefulness, of course, as we have discussed
before involves not only the performance characteristics of the
integrated circuit, but also, the manner in which it lends itself to

accepted packaging techniques,
Applications Support

Now that we are finally drawing to the end of this familiarization
program, a few minutes will be spent discussing the type of applications
support you can expect for your sales effort in the field In general,
this support will be similar to the support you receive in your transistor

sales effort.

To start things off, we have, at the present time, & list of names of
people who have been interested enough in micrologic to write to us and
ask to be put on the mailing list. This involves hundreds of people You
may have been bothered in the past by our insistence on keeping this list,
but this was its purpose. As part of this list, we have a much smaller list
of those people who specifically requested design information on micrologic.
One might say that their interest is perhaps more intense In any event,

this list will be available to you to serve as contacts,

Various papers and many '"status reports" have been written on the
subject of micrologic. Other papers are in preparation. The micrologic
applications handbook has been prepared for those who are specifically
interested in design information. Reprints of all papers and other
publications will henceforth be available to you for distribution at your
discretion to interested parties. It will be in your own interest to
supply us with the names of those who receive this information so that we
may build up a second micrologic mailing list which will assure that your

customers will receive all subsequent published information.

We will be available for direct contact at your invitation with your
customers. I imagine that this will be desirable, certainly in the early
selling stages of micrologic. We do, however, prefer to postpone this

direct applications support effort until saleable units are made available.

If you would rather ha

know

Of course, we wil
possibly can We have
in putting them togeth
engineering problems,

information ig availab

84y now is lots of luck

Ve us visit someone

1l give you all the
done a great deal

er in typical logi

design problems, j
le to you at your

Thank vyou.

¢ configur

dckaging

request

