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AM252 Class Notes 

CHAPTER ONE 

HARDWARE FOR PRODUCING PICTURES 
. " 

There are really only two kinds of pictures that can be produced 

by computer. By far the largest number of computer-produced pictures 

are line drawings: drawings which are mostly blank. A few pictures 

produc~d. by computer, however, are half-tone images; that is,_ pictures 

like those produced on your tv set for which an intensity is defined 

at each of a quarter million or more points throughout the picture. 

We are going to talk here mostly about devices for producing. line 

drawings. In some cases, ~~ese devices can be used also for producing 

half-tone drawings but generally at very low speed. 

The two fundamental devices for producing line drawings by computer 

are the cathode ray tube display and the mechanical plotter. One should 

not overlook tbe fact, however, that ordinary line printers can be used 

to produce pictures. IBM, for instance, produces quite satisfactory 

circuit diagrams using standard symbols on a line printer. 

ordinary line printer symbols for producing block diagra~s. 

. 1 
Knuth used 

If you have 

a line printer and no other display available .• do not overlook its use 

for producing pictures. 

~hode Ray Tubes 

Although cathode ray tubes were known prior to the Second tolorld War 

they got their first major research and development efforts in connection 

with the wartime work on radar. The famous series of books published by the 

Radiation Laboratory at MIT reports some of the important understandings of 

1 
~uth. Donald E., "Computer-Drawn Flm,tt:.harts", Communications of thp. 

ACM, Volume 6, Number 9, pp. 555-563, September, 1963 
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Chapter One 2 

cathode ray tube technology that were developed there. During the war, 

the size of the tubes was greatly increased . the performance of phosphors 

was enhanced, and the construction of the electron guns was brought to a 

fine art. The P7 composite phosphor. for example, was developed specifi-

cally to make display of radar pictures possible. 

The widespread use of television. of course, has put a cathode ray tube 

in nearly every home in the Country. Such mass production has great l y 

reduced the price of the kinds of cathode ray tuhes used in television sets. 

Unfortunately, as we shall see, the low cost of television sets does not 

reflect itself in a corresponding low cost in computer display equipment 

because the requirements for a television pictu.re tube and a computer 

display tube are quite different. 

A cathode ray tube consists of five essential parts: (see Figure l.) 

1. a cathode structure which emits electrons. Because of the 

cont rol gr~d •. the electrons depart from essentially a 

point source. 

2. an accelerating structure which causes these electrons to 

move rapidly down the tube, 

3. a focusing structure which brings the beam of the electron 

into a more or less sharp focus on 

4. the screen of phosphorescent material which makes the beam 

of electrons visible to the observer, and 

5. an evacuated space for the electrons to mGve in. 

It is not generally well understood that the beam of electrons in a 
\ 

cathode ray tube is not a na rrow beam. In fact, the beam of e lectrons 
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CHAPTER ONE 3 

diverges from the cathode to reach its widest point in the focusing 

structure. It is the purpose of the focusing structure to bring the 

divergent beam back into focus at the screen. The primary factor in 

controlling the size of the spot where the beam strokes the phosphor

escent screen is the ratio of the distance between the cathode and the 

focusing structure and the distance between the focusing stru~ture and 

the screen. Just as an optical lens magnifies or demagnifies according 

to the object and image distances, so the . focusing structure in a cathode 

ray tube magnfiies or demagnifies the size of the point source at the 

cathode if the cathode is =loser to the focusing structc=e than the screen, 

as for example, in a short-necked large-screen TV tube, then the size of 

the spot on the screen will be relatively large. If, on the other hand, 

one wants to produce a tube with a very small spot, one should design it 

with a very long neck so that the cathode can be put far away from the 

focusing structure. In this way, the already small point source at the 

cathode will be demagnified to make an even smaller spot on the screen. 

It is possible to make cathode ray tubes with spots smaller than one

thousandth of an inch in diameter. 

One of the measures of the quality of a cathode ray tube is the size · 

of its spot. In general, cathode ray tubes with small spots are more 

expensive than those with large sloppy spots. It is not sufficient, 

however, to produce a tube which has a very small spot which can only be 

displayed in the center of the screen. The appropriate factor to consider 

for a CRT is t!le ratio of the spot size to the usable screen diameter. 

Thus, for example, a CRT with a 0.01 inch s~ot size and a 10 inch screen is 

equivalqn t in resolution to a CRT with a one-inch screen and a 0.001 

inch spot size. The resolution of . a CRT should be measured as the number 

" 
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CHAPTER ONE 4 

of lines that can be e~fectively displayed on the screen and NOT as a 

specific figure on the diameter on the spot. Cathode ray tubes which 

can display 500 lines are quite common 1n sizes from one in~h diameter 

to two feet diameter. Cathode ray tubes which can display 5000 lines 

are barely obtainable. and then us ually with a three inch or smaller 

screen. 

Manufacturers of cathode ray tubes seem to have invented many ways to 

conceal the fact that the spots of their cathode ray tubes are larger 

than they would like them to be. Foremest among these is the use of the 

"shrinking raster method" for measuring spot size. The shrinking raster 

method of spot size determination is a relevant measure of the ~pot size 

in a tube for a television application. It is not, however, as a measure 

of spot size in a tube for a line drawing application. To measure spot 

size by the shrinking raster method, you display a raster of, let us say, 

100 lines on the face of the cathode ray tube. You then decrease the gain 

of the deflection sys tem so that the raster becomes smaller and smaller. 

At some point, the resulting display will no longer look like 100 lines, 

but rather 1ik~ a uniformly lit rectangle . When the lines blend, you 

measure the size of the raster and divide it by the number of lines known 

to be in it. You announce this ratio as the spot size. 

Now the spot of light produced by a cathode ray tube is not a clean, 

well-defined spot. The electrons leave the cathode with random velocities 

in random directions. Thus even were the focusing structure perfect, they 

would arrive at the screen in a randomly distributed block. Imperfections 
'\ 

in focusing structure also shows up as rando~ distributions in the intensity 
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CHAPTER ONE 5 

of the arriving beam. Thus. if you plot the intensity of the light output 

85 a function of position for the spot in a cathode ray tube, you will 

find some sort of bell-shaped distribution. (See Figure 2) . The shrinking 

raster methode measures the size of the spot based on two points very high 

up on this bell shape distribution. 

In a line drawing display, however, the subjective width of the line 

will be based on cutoff points chosen subjectively much lower on the 

curve. In fact, according to data provided me by Sanders Associates for 

measurements on a particular tube, the shrinking raster m'-"_8sures line width 

at approximately the 75% intensity points whereas a subject view of the line 

width is taken at ahout the thirty percent point, a width which turns out to 

be nearly twice as great. (See Figure 3). So, whenever you hear or ·see a 

specification on a line width in a cathode ray tube, ask yourself~ "How was 

this measured?", 

How fast do the electrons in a cathode ray tube go? The velocity of 

an electron can be related to its energy by a simple equation, 

E • ¥W2 

but the kinetic energy of an electron obtained, is directly related to the 

voltage through which it has "fallen", One electron moving between t ..... o 

electrodes one volt different in potential r eceives one electron volt of energy. 

Thus, E - Qe where Q is the electronic charge and e 

Or: v - /2~~- '"' K ve is the potential 

where K is approximately equal to 600~OOO meters per second. (See Table I) 
\ 
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CHAPTER ONE 6 

TABLE I 

ELECTRON BEA}! VELOCITY 

Acceleratiu2 Potential Seeed mlsec 
Volts 

1 .6 x 106 

100 6. x 106 

2,600 30. 6 x 10 - clIO 

10,000 60. x 106 

as,ooo l5. x 106 .. c/4 

500,000 258. x 10
6 

- .863c 

Notice that although the higher energy electrons in the above table 

are fast. they are not yet relativistic. 

Focusing and D~flection 

The path of a moving el~ctron may be modified by immersing it in an 

electric or a magnetic field. In order to focus the electron beam and 

in order to deflect it to different places on the CRT, w~ want to deflect 

the path of different electrons. Both electric and magnetic fields can 

be used for both focusing and deflection. 

In order to focus the electron beam, we want to turn electrons far 

from the axis of the tube back toward the axis of the tube. In order to 

do this, we need a field which varies as a function of i~3 distance from 

the axis of the tube, but not as a function of its angular position. To 

produce\such a field electrosta tically, focus electrodes of the form shown 

in Figure 4. may be used. To produce such a field magnetically , a coil is 

" 



CHAPTER ONE 7 

wound around the neck of the tube such that its axis is parallel to the 

axis of the tube. Most commercial home TV sets use magnetic focusing. 

Many but not all cathode ray tube displays for computer use use electro-

static focusing. 

If the face of the tube is flat, then the distance from the focusing 

structure to the screen wlll be different for spots in the center of the 

screen and spots at the edge of the screen. Thus a given setting of the 

focusing structure, while adequate to focus the beam in the center of the 

screen, may not be adequate to focus it at the edges. In addition to 

this, the deflection system itself may introd~ce errors in the focus of 

the beam. If such errors are objectionable, dynamic focus correction may 

be needed. In a display with dynamic focus correction, the voltage on the 

focus plates (if electrostatic focusing is used) or the current in the 

focusing coil (if magnetic focusing is used) may be changed as a function 

of the beam position. Bec~use this correction is necessarily nonlinear 

(it is, in fact, approximately quadratic in beam position) dynamic focus 

correction is a nuisance. Moreover. in a cathode ray tube for computer 

display. dynamic focus correction must be done at very high speed. I 

know of no system for computer display which uses dynamic focus correction 

in a magnetic focusing system. 

There are, of course, two ways to provide for deflection of the 

beam magnetic and electrostatic. In a cathode ray tube with electro-

static deflection, four deflection plates are placed in two pairs just 

after the focusing structure. If a voltage is applied between the 

horizontal deflection plates, electrons passing between them will be 
) 

• 



CHAPTER ONE 8 

attracted towards the positive plate and repelled by the negative plate, 

and thus the beam will swing in the direc tion of the positive plate. 

The angle of the deflection increases as more voltage is applied to the 

deflection plate, but if the electrons are moving faster, the effect of 

the deflection plates on them is less and so the angle of deflection is 

less. In mathematical equations, 

Tan a = 
Led 

2De • 

ea * accelerating voltage ed - deflection voltage 

L - length of deflection plates D : separation between 
deflection plates 

In a magnetic deflection system, deflection coils are used instead 

of deflection plates. The deflection coils are generally placed outside 

of the tube itself. Since the~be is made of glass and glass is . oon-

magnetic, there is no need to go to the bother and expense of putting 

the coils inside of the evacuated envelope. The coils are generally found 

in pairs placed so that their ·axes are perpendicular to each other and 

the axis of the tube. The deflection of an electron by a magnetic field 

follows different equations from that in an electric field. In particular, 

the force deflecting the electron is a function not only of the magnitude 

of the field, Qut also of the velocity of the electron. Thus in a magnetic 

deflection system, if the electrons are moving faster, they will be pushed 

harder by the magnetic field. In mathematical terms, 
\ 
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B c deflection field e - accelerating voltage 
a 

L - effective length of 
defle~tion field 

m - mass of electron 

Q - , charge of electron 

Contrast of Electrostatic and Magnetic Deflection 

It is clear from the above equations that magnetic deflection is 

relatively more effective than electrostatic deflection for fast electron 

beams. Because of this. and because only moderate currents are required 

in the deflection coils whereas rather large voltages are required in 

the deflection plates, most home TV sets use magnetic deflection. On 

the other hand, the magnetic deflection coils store a great deal of energy 

when they carry enough current to deflect the beam very far. In order to 

swing the beam from one side of the screen to the other, this energy must 

be dissipated. Because of the large quantity of energy stored in the 

magnetic deflection system, it is inherently rather slow. Moreover, if 

magnetic materials are included in the deflection system to improve its 

performance as they usually .are, then it is likely that removing the 

current from the coil will not remove all of the magnetism from the 

deflection system. Thus if the beam has been deflected to the right and 

we turn the current in the deflection coils off; the beam will stay 

slightly to the right of center. Whereas had it been deflected to the 

left and we turned the cur~ent off. it would stay slightly to the left of 

, 



CHAPTER ONE 

center. This annoying non-return to desired position is called 

"hysteresis tl
• Most magnetic-deflection computer displays suffer to a 

greater or lesser extent from hystereSi5~The construction of an 

electrostatic deflection system as parallel plates implies that a beam 

already deflected by horizontal plates will travel at an angle through 
. 

the vertical deflection plates and thus· be more influenced by them than 

10 

a beam on axis. Thus in an electrostatic system, a beam deflected to the 

left tends to be deflected more up and down than a beam in the center of 

the screen. This distortion causes a square to be displayed with pointed 

corners and is known as pin-cushion distortion. Most electrostatic 

deflection systems suffer to a greater or lesser extent from pin-chushion. 

Another disadvantage of electrostatic systems is that the horizontal and 

vertical deflection points are not the same. A special kind of deflection 

structure called the deflectron (See Figure 5.) is used in some tubes to 

provide identical horizontal and vertical deflection centers. Finally, 

because a beam swinging toward or away from an electrostatic deflection 

plate feels fringe fields near the edges of the plate, electrostatic 
L.'{ 

systems common~require dynamic focus correction. These desirable and 

undesirable properties of electrostatic and magnetic deflection systems 

are summarized in Table II. 

" 
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CHAPTER ONE 

TABLE II 

MAGNETIC 

Good 

more efficient 
deflection for 
fast beams 

deflection points 
same in x-y planes 

can be transistor
driven easily 

Phosphors 

Bad 

high energy in 
field dictates 
slower speed, 
causes hysteresis 

11 

ELECTROSTATIC 

Good 

no hysteresis 

"low power 
requirements 

: high speed 
response 

Bad 

pin-cushion 
distortion 

defocussing in 
fringe field -
needs dynamic 
focussing 

deflection poi~ts 
not the same in 
x-y planes 

require high
voltage devices 
for deflection 
plates 

The electron beam or "cathode ray" in a CRT 1s invisible. The 

only r eason for seeing a spot on the face of the screen is that a 

phosphorescent coating has been placed inside the tube. When electrons 

strike the phoaphorescent coating, it glows. Different kinds of 

phosphors glow in different colors. In general, phosphors do not stop 

glowing immediately after the electron beam is turned off. Rather, they 

continue to glow for a longer or shorter time afterwards. Appropriate 

choice of phosphor material, then, can provide us with different colors 

and different lengths of afterglow in the spot. Because the phosphor 

material consists of individual grains of phosphor, usually one to a few 

thousandths of an inch in size each, cathode ray tubes with very small 

\ 
spot size must use carefully chosen phosphor if t he inherent small size 
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of the electron beam is to be maintained in the vlsable spot. 

The power in the electron beam arriving at the phosphor surface 

1s the product of the voltage through which the beam has fallen and 

the beam current. Although the beam current is very small, (10 

mlcroamps is typical) the beam voltage may be very high. (10 kilovolts 

is common). Thus t he beam of electrons arriving at the phosphor screen 

may carry a power of about 1/10 of a watt. Now 1/10 of a watt is not 

very much, but the spot is very small, and so the power density (beam 

power divided by spot size) may be quite high. For a 20 ~ill spot, 

The power density of 250 watts per square inch is considerably higher 

than the power density given off by an ordinary electric stove which, as 

you well recognize, runs red hot. Were the beams to stand still for any 

length of time, the phosphor coating on the tube migh t well be damaged. 

Computer displays commonly have burnt spots at the origin of their 

coordinate system. 

The phosphor for a cathode r ay tube gets into the tube as a liquid 

suspension. In fact, the tube envelope with the neck end not yet 

sealed looks, for all the world, like an Erlenmeyer flask. A half-inch 

or so of liquid containing the phosphor in suspension is slopped into 

this bottle. The tube stands for a day or so, and the phosphor settles 

out onto the inside of the screen. The relevant parameters of the phosphor 

are the grain side (which is usually only important in small- spot tubes), 

\ 

" 



-

CHAPTER ONE 13 

the color of the glow, and the persistence. The light output of a phosphor 

decreases exponentially after the beam is turned off. The time constraint of 

this exponential decay may vary from a few microseconds to several seconds. 

What we would like, of course, is a phosphor which would continue to glow 

with uniform brightness for a fixed period of time and then suddently 

extinguish. No known phosphor has this property. 

The efficiency of a phosphor may vary over a wide range. Two kinds of 

efficiency need to be considered. First, the number of photons the phosphor 

will emit per incoming electron, and secondly, the visibility of the resulting light. 

A phosphor which emits infrared energy is not much use in visual display. 

The phosphors wear out with continued use. This wear shows up as decreased 

efficiency as the phosphor ages . High performance phosphors, that is, 

phosphors with very high efficiency and consequently high light ou~put are 

particularly prone to aging. 

Phosphors can be effectively mixed to get useful effects. For 

example, the p7 phosphor developed during the war is, in fact, a double

layer phosphor. The layer nearest the observer glows yellow when 

bombarded with ultraviolet light. The inner layer glows ultraviolet when 

bombarded with electrons. The combination of two layers proved to have 

greater efficiency than any single phosphor we could have found. 

Standard phosphor types are given number designations, such as P7, 

PIl, P40, etc. In order to be assigned a number. a phosphor must be 

adequately described by its manufacturer. Descriptions of the persistance, 

efficiency. and color of various standard phosphors are available. 

(See reference 4.) 
, 

• 
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CHAPTER TWO 

ARITHMETIC AND GRAPHICS 

Fixed Point Computations. 

Many of the computers with which computer graphic equipment is 

used can do only fixed point arithmetic. Even on machines with float-

ing point arithmetic units. many of the computations for computer 

graphics' problems are done in fixed point arithmetic. · For this rea-

80n. we will first review fixed point arithmetic operations. In the 

following parts of this book we will often assume that arithmetic is 

being done in fixed-point. In this chapter we will first see how 

numerical quantities are represented for fixed-point fractional 

arithmetic. We will then see how addition can replace nultipli-

cation in many simple operations such as drawing lines and curves. 

In a fixed-point binary computer, one is free to choose any 

position for the binary point provided that the chosen posi~ion is 

used consistantly. One commonly chosen position for the binary 

point is at the right hand end of the word so that all numbers are 

thought of as integers in the range _2N ~ X .5 2N. The left 

equality applies only in two's complement machines. Another commonly 

chosen position for the binary point is immediately to the right of 

the sign bit which is the lefthand end of the word. Numbers all are 

thought of as fractions in· the range-l < x < 1. In two's complement 

" 



CHAPTER TWO 2 

machines it may be possible to represent -1 exactly. 

If the integer form of representation is used, then the binary 

positions assume their familiar values: 

- - -. 
If, on the other hand, the fractional representation is used, then 

the positions of the binary fraction assume the values 

• • • 1 
Thus, for example. the binary fraction 0.101 represents 1/2 + 1/8 

or 5/8. 

Whether numbers are thought of as integers or fractions can 

often make a difference in the case of understanding and using arith-

metic instructions. For addition and subtraction, it makes not the 

slightest difference which representation is used so long as the 

chosen representation is used consistently. If the sum of two num

N 
bers exceeds the largest representable number, 2 or 1. as the case 

may be. overflow will result. On the other hand, many fixed-point 

machines such as the PDP-I. SDS-940, snd TX-2 have multiply and divide 

instructions for fractional arithmetic. The product of two 18 bit 

numbers, (that is, 17 bits and a sign bit) is a 35 bit number (that 

is, 34 bits and a sign bit). In the PDP-l multiply instruction the 

product occupies the sign and seventeen positions of the accumulator 

and seventeen positions of the 10 register. The least significant 

position of rhe 10 register is not used for product information . 

. , 
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MUltiplication leaves the most significant part of the product in 

the accumulator and the least significant part left justified, in 

the 10 register. If you think of numbers as binary fractions, no 

shifting need be done to make use of the most significant part of 

a product. If, on the other hand, you think of numbers as integers, 

then the product appears to be shifted one bit to the left in the 

10 register. In order to use the product as an integer, you must 

shift it to the right. It is plain, then, that the multiplication 

and division instructions of such a machine are most easily used if 

numbers are tbpught of as fractions. 

3"" BIT PI<6D l.-'<::' 

--------------~-------------~, ( I 

lll~_A_C. __ ___'1 L _ _ "I- _0 _--'~ 

Because fixed-point multiplication is usually fractional in 

nature, I suggest that you think of numbers as fractions whereever 

possible. To put numbers in fractional form, use "normalizing fac-

tors" in setting up the problem. If, for example, you wish to rep-

resent a distance which may have a maximum value of 3 feet, represent 

all distances in yards. If you wish to represent a distance with a 

maximum value of 300 feet, divide all distances by 300 to obtain a 

normalized distance which varies betlV'een 0 and 1. You may think of 

the normalization procedu~e as picking appropriate units in which to 

represent qua~tities. Thus, in our 300 feet example, we can assume 

" 
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some peculiar distance measure. (say the "George" "" 300 feet) and 

represent distances in "Georges!!. You can also think of numbers 

in the computer as representing the fraction of the maxLmum devi-

ation possible. On a computer display, for instance, it is coo-

venient to represent the left-hand edge of the scope as -1 and the 

right hand edge as +1. Thus the number "1/2" when plotted on the 

scope means ilhalf the distance from the center to the right-hand 

edge". i.e •• one-half the maximum deviation to the right. 

If numbers can b~ represented only in the range -1 ~X ~ + I, 

then the sum of two numbers may possibly be out of the range. Fixed 

point computers will detect this condition with overflow. A useful 

trick to use to avoid overflow problems is that the average of two 

numbers will always be within the range. Thus if you follow an 

addition by dividing by two, you can avoid the overflow problem en-

tirely. 

In most fixed-point machines, the format for the M.vision in-

struction (which requires a double length numerator) is identical with 

the format that is the result of the multiplication instruction. Thus 

it is convenient to preceed each division with a multiplication. One 

can, for instance, divide by a normalizing factor after each multi-

plication. Suppose, for example, that we have some number x which 

we wish to square. 

six leading zeros, 

If x is a relatively small number, say it has 

2 
then x will have twelve leading zeros and can only 

· be represented in an eighteen bit machine to six bit precision. On 

the other hand, if we multiply by x and then divide by a normalizing 

2 factor so that we represent not x 
I 

' 2 
but.2:.... • 

n 
where n is a typical 

value of x, the resulting quotient will have only about the same 
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CHAPTER TWO 5 

number of leading zeros as has x itself. Between the mUltiply and 

the divide, the temporary product will be represented with 34 bit precision. 

Digital Differential Analyzers 
. 

Suppose we want t o draw 100 points Pion a line from a point uR" 

(x,y) to a point "5" (x,y). The pOints to use are S-R (S-R) 
R, Rl lOO ' R+2 100 

• ••• 5. In other words, we can move from R to S in small increments, each 

of which is some fraction of the vector S-R. Repeated addition of a 

single small vector will generat e successive points on the l ine. 

PI - R 

Pi - Pi-i '+ 6P 

where 6P -
1 -(S-R) 
N 

The representation of the small vector, however, will have to be very 

precise. If any bits are lost in forming .A P = ~-R~ they will show up 

as an error 1n the position 1n which the line arrives at S. Equipment to 

implement equation (1) might be: 

6XP~ -L _ ___ --L 
~ 

L .. ' r 

Figure lA ~!C."""F'C."'foJ~~ 

\ 

., 

(1) 
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In order to 

+k. 
truncating small 

'" 

avoid cumulative errors which might be caused by 

1 vector A= N(S-R}, we might extend all our registers to 

the right as shown in figure lb. 

, -R -
'" The addition may then be performed with full accuracy. Unfortunately, 

however, we are now using many more bits in our registern than we actually 

need because we know that A is going to have many l eading zeros, and we 

need not actually represent them in hardware . Thus, the representation 

shown in Figure Ic would be adequate . Successive additions will still be 

done with the full precision required. 

S - '" 

N 

i.e. 

The upper register in Figure lc may be though t of as being 

separated into two parts, a most significant part, suitable f or 

. representing the position on the display, and a least significant part 

suitable for ~olding increments as shown below. 

? 
~ 

c.""-I'I,,'j 

'1'1> 
" S-R --

/J 
~ 
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A carry path is implemented between the two parts of the register. as 

it was in Figure lc. so that overflow from the least significant part 

of the addition will increment the more significant part of the upper 

regis ter. Nothing has been changed betwe·en figure lc and Figure ld 

except that in Figure ld the connection between two flip-flops at the 

center of the long register has been shown explicitly. We can. of 

course, separate the two halfs of the long upper rigister physically 

or conceptually provided that we continue to provide the carry path 

between them. 

If we think of the two halfs of the long register as entirely 

separate, we get a new view of what the incremental line~drawing 

operation is doing. It is customary to call the least significant 

half of the long register the "remainder" register "R" as shown in 

Figure lE~ Initially, the remainder register contains zero. During 

each operation of the device, the content of the 6 register and the remainder 

register are added together and left in the remainder register. If an 

overflow is generated , from this addition, "1" is added to the P register. 

This operation is, in fact, identical to the additions implied in 

Figures 1a and lb but provides the basis for a conceptual separation 

between the adder portion (registers R and A) and the counting portion 

(the register P). 

To see how such a device works with actual numbers , suppose that the 

A register contains a number which is one-half of the maximum representable 

F 

p :I.e 
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value. "Then the first addition of !J. to R will leave the number 1/2 in 

R. The second addition of l!. to R will ea'use an overflow and leave the 

number zero in R. The third addition will leave the number 1/2 in R. 

the fourth addition, zero, and so forth. Alternate additions will cause 

P to count. In other war"ds, with 1/2 in the !J. register, the .register P 

will count at 1/2 the maximum rate. On the other hand, if the largest 

possible representable number is put in "6, then overflows in addition 

will occur on every cycle, and P will count at its maximum possible 

rate. In other words. P 1s counted at a rate exactly proportional to 

the fraction represented in the register 6. Moreover, because the R 

register can be thought of as the least significant portion, or a 

right-hand extension of p. the successive values in the P register will 

be uniformly distributed. 

From a grosser point of view~ then, a digital differential analyzer 

is a device which accepts a stream of add commands and converts them 

into a stream of carry pulses at a lower rate. The rate uf output pulses 

is determined by the magnitude of the numbers stored in the device. In 

other words, the digital differential analyzer multiplies a stream of pulses 

by a -fracti~n less than one to produce another stream of pulses, fewer in 

number but uniformly spaced in time. 

The Binary Rate Hultiplier 

The intent of a binary rate mUltiplier (BRH) is identical with that of the 

differential digital analyzer (DDA) descri~ed above, namely to provide a series 

" 



CHAPTER THO 9 

of output pulses fewer in number than the input pulses. Unfortunately. 

the binary rate multiplier, though simpler in design, produces a sequence 

of output pulses which are non-uniformly spaced. Nevertheless, for some 

applications, it is a useful device. 

A binary rate multiplier consists of two registers, a counter 

register (C) and a mask register (M). The bits of the counter register 

and the bits of the mask register are identified with the least significant 

bit of the mask register. and the most significant bit of the mask register 

is identified with the least significant bit of the counter register. 

Whenever a particular bit of the counter register changes from 0 to 1 and 

the corresponding bit of the mask register is a "1". an output pulse is 

generated. Logic to impla~ent such a device is very simple. 

Operation of the binary rate multiplier depends on an important 

property of binary counting: namely that only one bit of a binary 

counter ever changes from zero to one. Examination of the binary 

sequence shown on page 9A wi~. l quickly verify this property. 

" 
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COUNT 

o 0 0 0 
X 

o 0 0 1 
X 

o 0 1 0 
X 

o 0 1 1 
, X 
o 1 0 0 

X 
o 1 0 1 

X 
o 1 1 0 

X 
o 1 1 1 
X 
100 0 

X 
1 0 0 1 

X 
1.0 1 0 

X 
1 0 1 1 

X 
1 100 

X 
1 1 0 1 

X 
1 1 1 0 

X 
1 1 1 1 

16 Counts 

OlITPlIT PULSES 
FOR 3/4 

(M) - 0011 

X 

X 

x 

x 

X 

x 

x 

X 

X 

X 

X 

X 

12 Counts 

9A 

OlITPlIT PULSES 
FOR 5/8 

(M) • 0101 

X 

x 

X 

X 

X 

x 

X 

X 

X 

x 

10 Counts 
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Moreover~ the least significant bit of a binary counter changes frem 

zero to one every other count as ma r ked by an "X" in the figure. The 

next most significant bit changes from zero to one every fourth count. 

the next most significant every eighth count. and so on. Thus, if t he 

most significant bit of t~e mask register contains a one representing 
. 

the binary fraction 1/2. output pulses will be generated for exactly half 

of the steps. If both the two most slgni~icant bits of the mask regis ter 

are one, representing the blnaro/ fraction 3/4, output pulses wil l be 

generated during three coun.ts out of four. One can easily verify that 

the number of output counts generated during one complete cycle of 

counting will be exactly the number represented in the mask register. 

The binary rate mUltiplier produces pulses which are not in 

uniform time sequence. One migh~ well ask, then, what the maximum 

cumulative error of the output pulse count is. Suppose, for example, 

that we accumulate the output pulses in a counter. "~at is the maximum 

descrepancy between the content of that counter and the co~rect content 

of the counter driven by, for example, a DD~. The output stream of 

pulses from a binary rate ~ultiplier is incorrect by at most one pulse. 

Such accuracy might lead us to believe that a binary rate multiplier used 

for generation of lines in a display would provide adequate accuracy. 

Unfortunately . the maximum descrepancy between two binary rate multipliers 

with different contents is larger, and because the descrepancies occur in 

irregular ways, lines drawn by binary rate luultiplier line-drawing devices 

appear to be unpleasantly irregular. The D~C Type 340 and ))8 displays use 

binary Irate multipliers for line generation. The worst case lines are drawn 

" 
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for Ax and by values approximately complementary, e.g. 2548 and 4228" 

If binary rate multipliers are connected together in sequences 

such that the output of one drives another, the resulting output pulses 

may be very non-uniform. Binary rate multipliers are therefore useful 

only for very simple operations. 

Drawing Circles Incrementally 

Suppose that we wish to generate a series of points on a circle. 

Suppose, with no loss of generality. that the circle is to be centered 

at the origin of our coordinate system. The initial point on the circle 

P(x,y) is positioned as shown in the diagram. 

Obviously if P is considered as a vector, it represents a radius Vector 

of the circle. 

If we wish a point adjacent to P on the circle, we should move a 

small distance from P approximately at right angles to the radius vector. 

AnalytiC Geometry tells us that to move at right angles to a given vector 

we interchange its x and y components and change the sign of one of them. 

Therefore, the vector s '" E y, -E x will be a small vector at right angles 

to P. This r~soning suggests that simple difference equation 

" 

Xi +l "" Xi + EY i 

Yi +l - Yi -- EX! 
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will generate successive points on the circle. 

Unfortuna tely , successive points generated by equation (1) each lie 

slightly further from the circle than their predecessors, as analysis of 

the geometry will show. The radius vector for each new point 1s the 

hypoteneus of a little right triangle one side of which was the radius 

vector for the preceeding point. Circles drawn using the difference 

equation (1) grow approximatelyw times t he size of the unit step in 

radius per revolution. 

If equation one is represented in matrix terms, it appears almost 

to be a rotation of coordin~tes. 

1 E 

-
-E 1 

The determincnt of the rotation matrix , however, is s ligh tly greater than 

one, which means that successive applications of equation one increase the 

scale of vectors so transformed. 

A small change to equation one will produce a different equation capabl~ 

of drawing perfect circles. Instead of applying the x and y portions of the 

difference equation simultaneously. they are applied success ively. 

Applying the separate equations successively is, of course, just what one 

wants to do on a digital computer, b ecause less memory is required. The 

improved form of t he equations is: 

" 

(2) 
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which can be converted to· the matrix form as was done ahove .. In the 

matrix formulation: 

1 

• 
-E 

- -
E 

2 l-e; . 

The determinent of the matrix in equation (4) can be seen to be unity 

which implies that no scale change is involved. In fact, computer 

13 

implementations of equation (3) are known to produce circles which close. 

Notice that the equations for generating the circle given above 

require only shifting and addition. In fact, the PDP-l computer program 

start. 

" 

dzm count 
lac x 
110 y 
dpy 
sar step 
ema 
add y 
dac y 
sar step 
add x 
idx count 
sas arclength 
jmp start + 1 

(3) 

(4) 
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will generate successive points on the circle. 

Equation number three can also be implemented in digital differential 

analyzer terms. The equipment shown below will generate successive 

points on a circle. 

AOP t II O1-J S 

1-- -
L _ _ _ _ _ _ _ _ , 

x y 

covvT 

"' .. 

Anyone familiar with analog computers will at once recognize this 

configuration as similar to the two-integrater set-up one would use to 

generate sines and oosines on an analog computer. In fact, the DDA add 

element is similar in many respects to the integrater commonly used in 

analog computers. Large systems for function computations and 

complicated navigation equipment are frequently built ot DDA elements. 
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CHAPTER THREE 

"WINDOWING" 

It is often convenient to treat a drawing 1n a computer as much 

larger than the face of the scope. The scope face, being only about 

10 inches square, is too small to represent a complex drawing. Most 

engineering drawings are made on paper 17" by 22" (size C) or even 

22" by 34" (size D). Moreover, the resolution available in a 

computer word, even a word as short as 18 bits, is far finer than the 

resolution available on the scope face. It is therefore possible 

to represent far more information digitally in the computer than can 

be displayed at a single time on the face of the scope. 

In this section we will consider the computations required to 

present a portion of a stored drawing on the face of the scope. More 

important, we will consider the computations required to eliminate 

from view the pa'rts of the drawing not visible. Because the difficult 

part of the job 1s to cut out the portions of the picture not be~ng 

seen, the task is sometimes called "Scissoring". Because information 

can be selected for display not only on the basis of the geometry ~ 

we will discuss here, but also on the basis of meaning, I prefer to call 

this task "Windowing". I believe that windowing is fundamental to 

good use of a cathode ray tube display. I believe that in virtually 

all display programs, the scope should be able to display information 

selected from t3e total information available in memory. The scope 

should be thoughTof as a window through which one can examine the material 
\ 

in the computer. 
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Positional information stored In the computer must be related to 

some coordinate system. Let us call that coordinate system the "page" 

coordinate system. Let us think of page coordinates as running from 

~l to +1 in each axis; in other words. we will think of coordinates in 

the page coordinate sys tem as signed fractions of the maximum 

representable coordinate, whatever tha t may be. Let us refrain from 

assigning a particular size to the page coordinate system because 

the dimensions represented might be astronomical units if we are looking 

at pictures of star maps, or microscopic units If we are looking at 

mechanical drawings of int~grated circuits or dollars vetsus time for a 

cost accounting chart. For convenience sake, I think of the page 

coordinate system as being quite large, say the size of a wall, but let 

me emphasize again that it may actually have any kind of dimensions at 

all, depending on the problem at hand. 

The scope has a coordinate sys tem of its own which can also be 

thought of as running from -1 to +1 in each axis. Numbers in the scope 

coordinate system are thought of as fractions of the maximum useful 

--number, i.e. as fractions of the number that represents the edges of 

the screen . Scope hardware is usually capable of accepting numbers of 

only ten or eleven bits for each axis. The ten or eleven bits are 

generally positioned at one end or the other of the computer number 

format. If the bits selected are at the left of the computer format, 

the scope numbers are easily thought of as signed fractions; dropping the 

unused righ t-hand bits merely dereases the resolut ion but positions 

outside the scope area cannot conveniently be represented. If the bits 

selec~ed are a~ the right of the computer format, the sco~e numbers are 

" 
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n 
easily thought of as integers between 0 and 2 -1, say 1023; dropping 

the unused left-hand bits remaps spaces outside the scope area onto the 

scope face. Neither scope coordinate system is better than the other. 

Conceptually, however, it is useful to think of scope coordinates as 

signed fractions of the maximum representable coordinate regardless of 

what actual format is used. The windowing job, then, is to take a 

portion of the page coordinate system and display it on the s~ope as 

shown in Figure 1. If the portion chosen includes the entire page 

coordinate sy.stem, then we will look at the entire drawing. If the 

portion to be displayed 1s but a small fraction of the page coordinate 

system, then that small sec~ion of the picture will be spread out to 

cover the entire scope. and we will look at a magnified view of the 

drawing. By controling the position and size of the port~on of the 

page to be observed. we can control what part and how much of the picture 

we observe on the screen. The window can be thought of as a fictitious 

box appearing in the page coordinate system. Everything inside the 

window is to be shown on the screen; things outside the window are not 

to appear. The position of the window is described by we and t,e , 
x y 

t.wo numbers which are represented in the PAGE ,COORDINATE SYSTEH. In 

the illustration. we is about 5/8. and we is about 1/8 (of the maximum x y 

represent.ab1e page coordinate number). Because the window need not be 

square, its size is described by two numbers, WS and WS , also numbers x y 

represented in PAGE COORDINATES. In the illustration, WS and WS are x y 

both equal to ahout 1/4 (of the maximum representable page coordinate 

number) • 

The transformation implied in Figure 1 is very simple. To find 

the scope coordinates X and Y of a point P (X ,Y ) on the page. we 
ssp P 

have merely to find where that point rests with respect to the window. , 

" 
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In other words, is that point to the right or left of the center of 

the window and what fraction of the maximum window size is its 

separation from the center of the window. In other words, 

x 
s 

=\-wcx 
WS. x-

y 
s -

y -we 
p y. 

ws 
y 

4 

Notice that the units of all symbols on the right of equation (1) are 

the same. The numerator is the difference of two numbers represented in 

page coordinates, and thus ~5 in page coordinates, as is the denominator. 

The result of the division is therefore unitless. It represents the 

signed fraction of full-scale deflection within the window. 

It is often useful to display picture material on a smaller portion 

of the scope than the full screen. I will call such a portion of the 

scope a "viewport". There might be several viewports on the scope each 

one displaying a different set of information from the picture or from 

separate pictures. For instance, one viewport might contain an overall 

' ~iew, and another viewport an enlarged section as shown in Figure 2. 

The position and size of th~ ~viewport can be described in the same way 

as the position and size of a window, but in scope coordinates because 

the viewport is to be positioned on the scope. 

The transformation now required to put material from the page 

through a window into a viewport on the scope is: 

x 
s -

x -we 
p xVS +VC 

WS x x x 
y 

s -
Y -tolC 

P YVS 
WS Y 

Y 

+ VC 
Y 

The dimensionless number fro~ equation one (which represents the signed 

fraction. ·.of deflection within the window) has been multiplied by the 

" 
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size of the viewport (to gi're the signed deflection within the viewport) 

and then offset by the c~nter position of the viewport. ' Notice that 

equations (2) contain a multiplication and a division. As was pointed 

out 1n the chapter on fixed-point computations, most fixed-point computers 

are so arranged that divisions can conveniently follow multiplications. 

An appropriate way to implement equations (2) then, is to do the 

multiplication before the "division. 

Because the format of information for transfer to a display -scope 

is often different from the internal representation of numbers in the 

computer, it Is often convenient to think of the windowing transformation 

in terms of a viewport even if the viewport used is the entire scope. 

A full-scope viewport can be thought of as that portion of a large 

(-1 to +1) fictitious scope which is actually occupied by the real scope. 

Thus equations (2) are useful for transformation of information even if 

no visable viewport is intended. 

The windowing operation is essentially non-linear. }laterial which 

is outside the window must be eliminated from view and not merely 

transformed as indicated iu equations (2). In terms of equations (1), 

material must be eliminated if the division results in a number larger 

than one. In most computers, a fractional division which result's in a 

larger humber than one generates an overflow indication. Such an 

overflow is a useful means of discovering which information must be 

rejected. If the picture consists on ly of points, it is sufficient 

to reject any point for which the division of equation (1) results in 

overflow. If ~uch points are not rejected, but merely truncated so as 

to fit into the word format for the display. the points will appear to 

be wrapped around toroidally on the scope. 

" 
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Incidentally, a program which merely masks off bits to the left of 

those actually used by the scope or which ignores overflow treats the 

scope as a toroidal space. If such a program plots a succession of 

points with increasing y coordinates, the point after the point at the 

top of the screen will be at the bottom of the screen. For such a 

program, points at the top and bottom of the screen are adjacent, as are 

points at the left and right edges. Because the top and bottom edges of 

the screen are adjacent (that mades a cylinder) and the right and left 

edges of the screen are adjacent (twisting the cylinder into a doughnut) 

the space is described as toroidal. 

Although windowing for points is accomplished simply by detecting 

overflow in a division, windowing for lines is not quite so easy. A 

straight-line segment can, of course, be represented by the coordinates 

of its two endpoints. If both ends of the line are contained within the 

window, (Figure 3A) then the entire line will appear on the screen. If 

one end of the line is in the window, then only a part of the line must 

be displayed. In such a case, one must merely compute where the line 

leaves the window. 

If, on the other hand, both ends of the line are outside the 

window, it may be possible to reject the line entirely, as shown in 

Figure 3B. If both ends of the line are to the right, or to the 

left, or above, or below the window, then the line can be rejected 

entirely. If however, the ends of the line lie off the screen in 

different directions as shown in Figure 3C, then the lines mayor 

may not pass through the screen. 

Some geometry is required to determine whether or not such lines 

\ show at all. 

" 
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WINDOl/S AND INSTANCES 

It is often convenient in a computer drawing to represent similar 

figures as instances of some common master figure. For example, the 

transistors of a circuit drawing might all be drawn from one master 

representation of a transistor. A program which can do this is like a 

rubber stamp. It enables its user to reproduce similar figures freely. 

The transformations represented in displaying an instance are very 

similar to the transformations involved in windowing. For example~ 

suppose that a transistor symbol is to be drawn at a particular position 

on a drawing. Then, as shown in Figure 4A, there will be tw~ sets of 

transformations • . In the first transformation, ~ portion of a master 

page is reduced (or perhaps magnified) in scale and placed on the page 

to become a part of the drawing. A portion of the drawing will be 

displayed in a viewport on the scope by the : wir!.dowi~g tranS::forma tion. 

It follows, then, that a portion of the master picture may appear on 

the scope. When actually placing the lines and points of the master 

picture on the scope to represent a transistor~ for example~ it is 

convenient to use the same windowing program which is used otherwise. 

The parameters for the windowing job will, of course, be the concatenation 

of the two transformations involved. Instead of transforming the master 

picture into page coordinates and thence to scope coordinates, it is 

possible to transform directly from master coordinates to scope coordinates. 

(See Figure 4B) 

If the instance to be drawn lies entirely outside of the window, of , 
course, then there Is no point in displaying any of the material in the 

., 
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master drawing. If only a part of the instance area overlaps the 

window area. then only a part of the master picture material can 

possibly appear on the scope. and tha t only in a smaller "subviewpor t". 

These situations are shown in Figures 5. 6., and 7. 

The use of instances ,ln a picture implies the need to reduce two 

transformations to one. I have chosen to call this reduction process 

"Edging". The Edging task is to co.npute t ,he single window WI' and 

viewport VI which will provide the same result as would be provided by 

two transformations, one from the master picture to the page coordinate 

system and the other from the page coordinate system to the scope. The 

edging process is non-linea~ because the instance area may be larger than 

or smaller than or overlap with the window area. Dependi.ng on the 

relative size and location of the window and instance areas, the complete 

transformation may use a Wi identical to tha~ of the original master 

picture or some subset of the original maste= picture. Similarly the 

viewport Vi may be the entire viewport or some subset of it . 

~. The e4ging process is, of course. recur"ive . If the master picture 

is itself made up of instances, t hen the multiple transformation 

implied may still be reduced to a single transformation . In most 

practical cases. such multiple transformations result in smaller and 

smaller viewports and often, in fact, result in complete rejec tion of 

entire instances which lie entirely outside the window area . 

" 



" 

( ( ( 

+1. -~- 1"1 +1. 

-1 

- - - - .... - .-- - 1"." (", \. Yp) 

+ 

,---.-
¢> 

• 
f's" (>«, 

--

SCOPE COORDINATES 

x -s 

x -we 
p x 

ws 
x 

-

y,) 

", 

---- , - -k- - -1 
-1-, 

-

y -s 

y -we 
p y 

ws 
y 

--
-

- -- -- - - -_~ I 
- - I 

1HE WIIJbDW: -

rHOW CIJI.."(~' • jWS"y 
w~~~ \~ I~SI~---__ +-__ ~~ __ 4-~~ 

-- - .-' --- --- -
-- -- ,.c x 

.J- -----
- 1. 

-1 t> t 1 

PAGE COORDINATES 

FIGURE 1: Transformation From Page to _S.c.op.e Coordinates 

WC r 



" 

/ 
I 

Vlfw 

"" , v,c 

V I~ \;oil" 

AN 

::» I)r-r I : 
I '-" It. ~ E t> 

t'Op-r 2. : 
V,/!.RAL./... 

? .--T1 .. 
V Ie."",, 

+ 
-_._.-

- I 

SCOPE COORDINATES 

x -we 

p - (xs , . 

-
• 

+ 
VS, 

--- --
~ 

[""" 
• 

~--.. 

+1 

x • 
s 

p xvs +VC 
\is X X 

X 

( I 

, ) 
, --- - 'I - 1>, " (, r / - --- --- ,'" :::---

--,.. - - ----. - -_--I --
- -- ---- - ..-:- ---- - -(7 - ---

Yr> 

1"--,,,,, • 
. WINDOW ~ VVl> 

- -
------~ - --- - - - - --k-

1-+ vJC~ 

~ 
1-1' ---~ - -

p/=(K.' yl) , " . -)' WS~~ 

.. V'C" 

\N"lfVDow' :z.. 
~ 1$ . Ii. ,JTI2..fr 

?AG-t;: COORPI pJ'" f !yr "'~M - .1- - -- '- I 

- 1 -1-1 

PAGE COORDINATES 

y -we 
y -~S +VC 

s 'iii' y Y 
Y 

FIGURE 2: TRANSFORMATION FROM PAGE TO SCOPE COORDINATES , 

WITH VIEWPORT 



/ 

1-_________ --' 

A. Line inside Window 

PAGE COORDINATES 

"---------. 

\ ~ 

~ 

'--- -----

FIGURE 3. 

B. One end inside Window 
Or Trivial Rejections 

LINES INSIDE AND OUTSIDE OF WINDOWS 

~~ 
l'. 

~ 

1--. 

~ 

C. Doubtful Cases 

~ 

, 

) 
• 



. f\~ r. 
< r - -, 

PI d 
.. \ , i 

'" ~ \ 1. . _ _ ._.J \ 
~ 

" ~ 
, 

I' \ \ ~ ~ 0 • I 
" 

~ \ 
0 

/ . '" '" 
-1 

· 1 \ \ a 
~ 

" 

? \ I "1 

I ., 
" 

II \ 

" 

I \ I 
1\ 

\ 
, I 'I " 

I 
" I \ 

\ \ 

" 
I 

" 
I 

\ 

"--<> 
, I 

,I \ \ 
\ \ I 

( 
I 

I' \ I 
I I \ .. 

" 
\ ,. I 

I' I \ I \ 
" 

\ 

-.-~ I, I I I I 

I! 
\ \ - I 

" 
~ 

• \ 
I I ; 

I' ~ " 
,I \ \ ~ 

\ -. , 

" 

I ~I 
> 

" 
\ \ 

{T1 , 
I-

;-I I' 
, 

'f\ 

:1 " , Ii 

'" \ I " \ I 
/' 

~ , I' \ 0 
\ 

no " \ \ 
~ I I ,\ , 

" I, 
I' II 

, 
'1 ~-1 I \ I 

, 
t 

, 

" 
.. 
'r 

I I I, , 
7Jl. 

" 

I I I i 
0 ,I I / r , 
~ 
~ 

Ii '" I I \ I , I \ I / \ 
I ~ ., I 

I 1 I l 
> > - / .., '" 

\ " -I 
iI I m 

II 
iJ 

" 

J> 



... ~ .--.-. 

IL 
• 0 

~ I 
I t£ r!. 

I-

• " ~rt. .. r----, / • I- , 
I-

'" 
, I ., 1 ____ .:.1 '" I < 

!. X 

I I I \ 
\ I I 

'" w I-
~ ~ 
~< 

II I ;. r. 
I < I ~ 

·11 
II ;g. 

II 1\ --
\ \ 

I 

I I 
\ I I I 

" oJ 

II II " 2 

II II 
0( 

~ 

II \1 '" 2 

\ 
I 

\ rfI \ 

~. 
I U/ 

co 
( 

,. , I ~ 

" \ 
I-

" , '" Q >. 
~ 

h \ \ -
" -~ , 

\ \ \I 

\! \ \ 

II II w 
0 

\1 II -
'" , 

II -
\1 

1 

II II 
0 
0 

1 

\1 II ~ 

Ii I! 

II II OJ) 

. 

II \ \ II II " \. 

~ 

\ --~ ..-, 

I' 
\ \ 
\ 

\1 \ \ 
~ 

I- '" .. 
\ \ 

~ 

0 • 0 , 0 

• c 

'" \ \ \ J '" 

II II \:. 
II I 
I II 
I 

I 
~ 
d. 
• 
~ 

'$ 
w co 

' I ~ -
> 

-
> 

" 



<-. 
o 

, 
-+-

. ~ 
-. 
S 
'l.. 
o 
~ 

• 

" 

<;: 

'" 
~ 

." 
0 

" -1 

1 
>-

'" 

I ' 
1 

'" 7J ! 

VI 

Z , 
() 

0 ... 
'" 

u 
1 -'" i2 -v 7: > 

"l r 0 ~ 

~ .., ~ 

/II '" >' I' c ., 
11 r 

'" 

< -
~ 

~ 
~ 
0 

? 
1 

\ 

I \ 

I 
\ ' \ \ 

\ I I' \ 

II I I_I 
I \ I I ~ 

\ - .---\--\ L-~_I . \ \ \ 

\ \ I I 

, 
\ \ \ \ 

I 
I -

~ \ 
" 

I ~ 

) 

\ ~ 

" 
Jl. . 

I I ' \ 
f 

f r~ 
" 

I I 

f I 

, 

I f 

I 

f 

\ 

\ \ 

\ 

\ 

. \ 

, -\ 

I 

\ 
\ 
, 

~ -; 
t 
0 
0 

~ 

\ 
\ 

\ 
\ \ 

, \ 
~ 

\ 

\ 

\ 

o 

.. 
" 

1 
> 

'" .., 

'" 
jI 



CHAPTER FOUR 

TRANSFORMATIONS FOR COMPUTER GRAPHICS 

Matrix notation and the concept of homogeneous coordinates 

provide convenient tools for converting represen tations of objects in 

an internal coordinate sys tem to the coordina~e system used by the 

dis~lay. In particular, they readily provide the perspective" trans-

formation needed to display three-dimensional objects on the two-

dimensional screen of the display. 

This chapter contains examples of matrix operations be~ng used 

for these purposes and introduces the use of homogeneous coordinates. 

It is, in fact, a summary of the paper, "Transformations and Natrices" 

by Professor Steven A. Coons, Appendix It which should be consulted for 

the gory details. Future chapters will cover homogeneous coordinates 

more extensively in their use for parame tric curve and surface drawing 

as related to the three-dimensional display processor. 

Two Dimensions 

Given a point (x,y) in two dimensions, we can trans form it into 

another point (X',y") by the matrix multiplication 

[x' y'] - . [x fj - [ax+cy bx+dy] 

where we identify x" - ax+cYJ y' : bx+dy. In particular, if we choose 

the proper forms for the matrix T - ~ ~,we can completely 

characterize the types of trans formation possible : 

., 
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. fl
c 

dl1 1. "shear" -- T Lc ...:r a square is transformed to a 

parallelogram. 

T -- roo ObI.· 2. "scale" ~ ~ a square is transformed to a 

rectangle. 

An important special case .fa bj 2 2 
iS~[b ~anda+b .., 1. Such 

a transformation causes a pure rotation by the angle e in the XY plane 

where a ~ cosS, b ~ sina. 

There are two convenient ways of trying to understand the 

transformations described by matrices. One way is to see what happens 

to unit points such as the origin [100], [010], etc. The other method 

for dealing with transformations is to specify the transformed .values of 

points of interest. The latter is a completely , general way of 

determining the necessary transformationj the former is a quick way of 

observing its action . 

By writing one vector (or point) below another, we can symbolically 

obtain the transform of several points at one time: 

x ;-J x ' , Tt 
0 Yo ; 0 ~o ! 

y
1

,1 Xl Y1 r ~~ 1 
• • 
• 'c t.:: 

L· • , 
Y , LXn Y~l Ln n 
~ 

In particular, if we choose the unit points on the x and y axes, we 

have: 

\~ - YoJ' Y , 
1 d c 

" 



CHAPTER FOUR 3 

In this case, t he values in the matr ix it self are the coordinates of the 

trans fo rmed unit points ! 

On the other hand. let us try to find a matrix T which will 

transform the points 

-, 

lO' 
y • x Yo 0 0 

T -
x • • Y1 Y.:J ,--1 

Y1 

fxo rxo 

-, -1 , 
if the YJ has an inverse . which we will write 

Yo I 
matrix i I 

I 

xl Y1 lX1 
I 

L Y1J 
we can pre-multiply by it to ge t : 

~ -1 ~: 
'-

Yo I lx, - . 

G 
Yo Y

J 
Ixo Yo ' j ! 0 yJ Y1 T - ; !x I xl Ll Y1 : 1 

L 

roO Y • -1 x • Y • 
0 0 0 

T -. 
b' Y • x • Y • 

1 1 1 

Translation 

The 2x2 transformation matrix used above cannot provide for simple 

translation. If we add a third row t o the matrix, we can get translation 

to. 

1 0 0-, 
I , 

[x Y 1J 0 1 01 - (x+a y+b 1J - [x' y ' 1J 

a b 1J 

The addition of the third compone nt allows us to hink of ~wo-dimensional 

transformations including translation in a single matrix formalism. 
\ 

., 
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Three Di;~nsions 

4 

If we choose to represent point s in 3-space by 3 component vec t ors , 

we can use a 3x3 matrix to represent a trans formation in three dimensions: 

a b C 

[x y ,J d e f - [x' y' " J 
g h "i 

It can be shown t hat any such transformat i on applied t o the unit cube 

yields a parallelpiped. If we specify three points to be transformed 

and t heir resulting i mages, we have completely specified the 

transformation , jus t as two points serve in the two- dimensional case. 

x Yo 
, x ' Yo 

, , , 
0 0 0 0 

xl Y1 zl T - xl 
, 

Y1 
, 

zl • 

x2 Y2 '2 x2 
, 

Y2 
, 

z2 
, 

-1 , , -:l 
x Yo z x Yo z I ; 

0 0 0 

z 

0

, I T ,_ m xl Y1 zl x ' y' 1 ' 1 1 I 
x2 Y2 z2 x ' Y2 

, 
z2J 2 

~ 

Homogeneous Coordinates 

We 'c an think of the transformat i on 

r b 
-; ci 

[x Y 1J 

~ 
e f : = [x' Y' z' J 

I 
h i ~ 

as transforming a point (x ,y) in the z=l plane into t he point (x ', y ', z ') 

in 3 space. If we now .divide this vec t or by its third component to 

" 
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obtain a point x' pI _(_ 
·z I' 

L. 
2" 

1) we will have projected the point 

x~, y',z' onto the point p' back on the z:1 plane by means of a ray 

through the origin. 

Y I 
I 

'Z = I ,. I co. "'e 

~~----·------_____ X' 

Such operations lead us to define points in terms of 

homogeneous coordinates: The two-space point (x,y) is represented 

by a three component vector (wx, xy, w) where w 1s any non-zero 

quantity. Similarly, the triple (a,b,c) corresponds to the two-

dimensional point tvtth such a representation, the two-

dimensional point (x,y) can be regarded as the projection of any ·of 

the three-dimensional points (wx,wy,w). 

[w)( tlVV w) 

~:""""----------..,. )< 

Line Equation 

The ordinary equation 
I 

Ax+BytC "" 0; or, [x y 1J 

" 

of a line in two dimens ions is 

[~l = 0 
CJ 

5 
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The column vector[~Jthus can be used to represent the line. In 

homogeneous coordinates, we see that the equation is of the same form: 

twx wy ,,1 m = 0 

If we transform a point (wx, WY. w) by the transformation T, then we can 

still write 

as the equation of the same line. Hence, a line, 

rA~] l: transforms by the -

Three-Dimensional Homogeneous Coordinates 

In strict analogy with the above. we can write 

[wx wy wz wI [A] "" [w's' w'y' w'z' Wi] 

where A 1s a 4x4 matrix. This yields a perspec tive transformation of 

three dimensions into three dimensions. If we ignore the third coordinate, 

v'z' 
(---;---) and display the first 

w 
two as a two-dimensional 

we obtain a perspective view of the object. 

In particular, the trans formation 

1 0 0 0 

0 1 0 0 

0 0 1 1 
5 

0 0 0 1 

gives the perspective view of an obj ect displayed on a screen 

i-O as seen by an observer at z- -s: 

placed at 
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Ot.jrc..+ 

)( 

l< = - 5 I 

In general, a 4x4 homogeneous transformation matrix can be 

written as 

where R 1s a rotation and scaling transformation, T is a translation, 

and P produces a perspective projection. Usually, we form such a 

matrix from several simple matrices -- R, T, or P -- by multiplying 

them together. 

abc 0 o 0 

d e f 0 1 0 
M-

g h i 0 o 1 

o 0 0 1 k L 

o 

o o 

o 

o 0 

1 0 

o 1 

o 0 

o 

o 
1 

• 
1 

Such transformations can be viewed from the framework of photography 

or 'engineering drawing; their classification and properties are characterized 

in the appendix. Note that in interpreting the thin lens 1 1 .! equation Zf-2 , .. f 

as a transformation, a point (x,y,z) transforms into a p01nt (x l ,y',ZI) 

where z' can cover quite a range; i.e., the lens needs to be focused. Also, , 
objects at infinity - H::O - may be imaged locally near the observer . 

. , 
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REPRESENTATION OF DRAIHNG STRUCTURE 

Most of the pictures produced by computer involve some highly 

structured subject matter. lolere it not so, computer graphic 

representation would be far less useful; the representa tion of a beautiful 

art work by computer, for example , is not now considered useful even by 

artists. On the other hand, the represen tation of chemical molecules,-

engineering drawings, electrical drawings, and graph plots of orderly 

data are very useful. In this chapter, we will consider how some basic 

structures, such as points , lines and symbols, might be r epresented inside 

the computer for the production of pictures. 

For simple pictoral notions, almos t any representation will 

do, but for more complicated notions of relationships between 

parts of a picture, the particular form of storage that we choose 

will have a strong effect on the behavior of the resulting pictures . 

In an arahitectural ' context, for example, we might wish to Lndicate 

that all the windows on the front of a building should be the same 

size. How ought we to represent such a notion of similarity? In 

all useful cases that I have seen , it is t he exceptions to such 

rules of similarity which are most important in the design. The 

columns in front of a building will have equal spacing EXCEPT where 

the center doorway comes out. All the flip flops of a register will 

be the saoe EXCEPT the first one and the l ast one. The choice of 

storage format that we make in any particular case will affect the 

things we can and cannot do with the resulting system. 
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Unfortunately, no one is sufficien tly sophisticated in r epr esenting 

such abstract notions that we can provide the student with guidelines 

for how wisely t o represent similarity, symmetry , connectivity or 

other such abstractions. In beginning any computer graphics problem, 

therefore, you should devote a good deal of effort to choosing an 

appropriate r epr esentation for the desired information. 

Line~ and Points 

There are many possible representations for lines and points. 

For purely geometrical uses, a line might be considered ~s an 

infinitely long straight thing, and a point might be considered as a 

position in space. The numeric representations of lines and 

points can be made to be very similar if homogeneous coordinates 

are used: point coordinates can be represented by a row vector 

and line coordinates by a column vector. From this paint of view, 

one might represent points and lines as very similar entities. 

In two dimensions, each would have t hree homogeneous coor dinates . 

w 
I-S" __ .-

0-

o 

Lines and points might be related to each other for mathematical 

applications by a r epr esentation in machine memo r y of the notion 

"lies on" or passes through" (which really is only one notion viewed 

from a different point ·of. view). The Hlies on" or "passes through" 
\ 

notion associates pOints and lines. 
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Unlike the representations of points and lines, the representation 

for the point-on-line relationship need not carry any specific 

data. On the other hand, it represents a condition upon the data 

contained in the point and the line. If the values in the point 

and line are to live up to the geometry intended by the point-on-

line relationship, particularly when some of these values have 

been changed arbitrarily by the user, then a "demon" will have 

to be programmed which can adjust the coordinates of points and 

lines to satisfy all of the point-on-line conditions . The design 

and programming of such a demon may not be an easy matter. Such 

a representation of points, lines, and associations between them 

would be useful for doing proj ective geometry. Internally, lines 

would be of infinite length . For human consumption as much of 

the line would be displayed as would fit on the scope. Of 

course, the area shown on the scope would be variable so that 

a user might look at an entire figure or concentrate on a 

small section of it. 

Suppose that instead of doing geometry we wish to deal with 

directed graphs, such as the one shown below. 

" 

! , 
/ 

3 
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Such graphs might represent the behavior of a finite state machine . 

The important thing to r epresent here is thewpology of the graph: 

Its geometry is of secondary importance. The t ,apology of a picture 

1s very simply represented 1f its points are named and the 

r epresentations of its lines each contain the name of the point 

at which the line begins and the point at which it ends. Because 

the directedness of the line segments in such a graph would be 

important, appropriate tools would have to be provided with which 

a user could manipulate t he topology and the orientation of the 

lines. For human consumption, of course, the lines of such a 

graph might not necessarily be drawn straight . For example , if 

two lines both run from point A to point B, ic may be useful to 

represent each as a curved arc so that each may be seen. Additional 

information might be stored in the line segment representation to 

indicate how it is to be presented· to Che observer . Appropriate 

tools would also be needed to manipulate curvature of lines; 

Perhaps a specIal program to assist in presenting complex graphs 

might be wricten. Such a program might layout a graph 1n such a 

way as to minimIz.e the number of line crossings and maximize che 

symmetry of the presentation. Needless to say, the design and coding 

of such a program might noC be a simple matter . 
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In ordinary engineering drawings, the lines with which one is 

concerned are undirected line segments. Such straight-line segments 

can be represented adequately by defining the locations of their 

end points. In a program for ordinary engineering drawings. then, 

one might represent coordinate data with points, but no coordinate 

data with lines. A line might be represented merely as an entity 

which connects two points. 

Several lines can of course terminate at the same endpoint, as shown 

in the figure. If a corner of such a box is moved, which can be done 

by merely changing the coordinates stored in that point, then both 

line segments attached to it will subsequently be seen in new 

locations. The structure of the representation says nothing 

about the length of a line or about the similarity of coordinates 

of the ends of a line which would make the line horizontal or 

vertical. 

If one is especially interested in representing horizontal and 

vertical lines, the x or y coordinate information stored in the 

end points of a line would often be redundant. One might separate 

the coordinate information from the actual point blocks themselves 

rectangular box as shown below. 

_. 



CHAPTER FIVE 6 

Changing one of the x coordinates will make the box wider or narrower 

and changing one of the y coordinates will make it taller or shorter. 

The structural representation, however, insists that the box be 

rectangular and alligned with the axis. A similar representation in 

polar coordinates might be used to represent circular wedges. ~ 
We have now seen three quite different examples of how points and 

lines might be represented. I hope to have convinced you by these 

examples that the choice of what to represent, to say nothing of 

how to represent it, dependb strongly upon the application you 

have in mind. The proper early cara in chOOSing what to represent 

will save a world of grief la"ter on . 

Representing Curves 

Entities more complicated than straight-line segments will need 

richer representation. A circular arc for instance, might be 

represented as depending on the positions of three points; 

a center point, a point at which the arc starts, and a point at 

which the arc terminates. In addition, of course, one would need 

a single bit to represent the sense of the arc. Unfortunately, 

such a representation implies that the two points at the ends 

of the arc be equidistant from · the center. Suppose the yar e not. 

What should then be drawn for human consumption? Here you have 

many choicea. The display program for circles should make some 

picture which is suitable for the job at hand. Itt "Sketchpad", 

" 
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I chose to draw the arc using the radius defined by the startpoint and 

only the angle defined by its endpoint as shown below. 

r\ __ -L--\ 

------, 

Alternatively, one could draw the arc with the mean radius indicated 

or the maximum r .31dius indicated or the minimum, or any other arbitrary 

choice which is suitable to the problem at hand. 

Each thing represen~din memory should have some presentation form 

for human consumption. This may be as simp le as a dot for a point, 

or as complex as the curved lines in the direct graph example. Such 

display forms can be related in many complex ways to the "data 

presented. For example, a display program might l et one choose 

between the mechanical layout view or electrica l circuit view of an 

integrated circuit represented in memory. 

Collections of Things 

Collections of lines in a drawing are often of significance. In 

an electrical drawing, for example, a collection of lines may 

constitute a wire, whereas another collection of lines · may consti tute 

a component . In representing a wire one can either choose to store 

it in memory as a single thing, or one could choose to s uperimpose 

the collection idea on top of the e l ementary form in which lines 

are represented. For examp le, one might represent a wire as shown 

below: \ 

" 
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1. 

2 . ~., .R. .. .2.., 

J, 
P, ?,. p, p" 

0, 

" 
Given such a representation in memory , one can readily program such 

features as the ability to erase an entire wire or to brighten it 

on the display by pointing' to any part of it. Given such a 

representation, however, it is not so easy to insure that the 

parts of a wire follow the horizontal and vertical lines commonly 

used in electrical diagrams. One might instead choose to r epresent 

a Wire, not as a collection of lines, but as an entity in i ts own 

right, an entity with N segments, each of which has a horizontal 

or vertical position and duration in the other coordinate. 

Regardle ss of what representation is used for a wire, there may be 

electrical or mechanical properties OF THE WIRE which should be 

represented with it. For example, the wire may have an electrical 

potential or may be open wire, twisted pair, or coax . Such 

properties are best represented as properties of the wire rather 

than of its individual segment s . 

Instances 

The most common collections of lines on a drawing are those used 

to make symbols. Symbols used in e lectrical , mechanical and 

mathematical draWings are usually geometrically similar. That is, 

althoughF the size, position, and orientation of a particular 

kind of symbol may vary from place to place, it is usually of 

exactly ~he same s hape. Because of this similarit y , it is possible 

to represent a particular instance of a symbol by reference to a 

picture which defines its shape. 

8 

P, 
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Thus. for example, the drawing of a flip flop might contain two 

references to the transistor symbol definition. Each such reference 

might indicate a size and position in which the symbol is to be 

drawn. The actual content of the symbol need not be stored again 

and again with each refere~ce to it. I have chosen to call such 

a "rubber stamp " reference to a picture an "instance ". I will 

speak of an "instance of a transistor" whic.h means, of course, 

a specific reference to the transistor symbol definition. One 

can "move an instance ", which means to change the parameters in 

the instance block so that the transistor symbol appears in a 

different position on the picture. One can "de l ete an instance" 

which means to eradicate from memory the particular reference 

involved. To "delete an instance" does not mean to delete 

the definition to which the instance makes re~e rence. I will 

call the definition to which an instance makeo reference its 

'Master Picture". Several instances may make reference to 

the same master picture. One wants to considp.r very carefully 

what parameters one includes in the definition of an instance. 

In the "Sketchpad" program, for example, an instance contained 

four parameters x, y, A sina, A cos a. where A is the size of 

the instance and a is its angle of rotation. This choice of 

parameters did not permit mirror-image instances, which caused a 

great deal of d ifficulty in making transistor drawings, because 

transistor symbols come both right and left h~nded . 

" 

9 



CHAPTER FIVE 10 

On the other hand, a system designed spec~fically with electrical 

drawings in mind, could be useful even with only a single size of 

instance available, because all similar symbols on an electrical 

drawing wil~ be the same size. In such a system, an instance need 

only contain as parameters x and y position and three additional 

bits, two to indicate orientation, and one to indicate mirror image 

symmetry. In some other circumstance, an instance might, perhaps, 

need to contain separate scale factors for horizontal and vertical 

dimensions. With an appropriate choice of parameters, all rectangles 

could be represented ao instances of a square. Robe~ts' block-

1 
drawing program, for example , treated all parallelepipeds as instances 

of a cube and all triangular wedges as instances of an equiangular 

triangular wedge, all tetrahedra as instances of an equilateral 

tetrahedron, etc. 

In order to display an instance for human consumption, a 

computer graphics program must tlisplay all of the "lines and points 

and curves and other displayable material which appear in its m~ster 

picture but in the reduced size and chang~d orientation indicated by 

the parameters of the ~ostance. As are as the display is concerned, 

an instance is a sort of subroutine which says "go display all of 

the stuff which appears in that master picture, but with these 

parameters". The parameters given may affect different parts of the 

master picture in different ways. For example, text in the master 

picture might be displayed in horizontal orientation regardless of 

the orientation of the rest of the material io the picture. 

1 Roberts, La\-lrence C., "}lachine Perception of Three-
Dimensional Solids", Doctoral Thesis, MIT, June 1963 

" 
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If a character generator is used, the text might be displayed 

in one of the available sizes convenient to the character. generator 

even though this size might not be exactly correct. In "Sketchpad", 

digits which represented distances were m04ified in content so that 

when displayed in an instance they assumed an pppropriate value. 

For example, length lables on the sides of a 3, 4, 5 triangle would 

in instances of it always be in 3, 4, 5 proportion but with specific 

values appropriate to the size of the instance. 

The expansion of instnaces is, of course, a recursive procedure. 

Thus, for example, if the master picture of an instance contains 

instances of some other master, then those subinstances must be 

expanded as a part of . the expansion of the master. A flip flop 

symbol which contains transistor symbols may require expansion two 

layers deep. The route by which the instance expanding program has 

entered a complex instance structure is conveniently kept in a push 

down stack. 

As soon as one allows recursive expansion of instances, · of 

course, one has the possibility of tangling a drawing . Suppose, 

for example, one puts into a drawing an instance of itself. Such 

a drawing used to appear on Horton Salt labels. They showed a 

girl who carries another Morton Salt package smaller than the 

first, but upside down so tha t salt is drain~ng out of it. On 

the smaller package appears a girl who is carrying a still smaller 

package upside down so that salt is draining out of it, and so on. 

Or f 'or ano':her exa..-nple, consider Clauue Shannon 1 5 bus: Shannon 

remodeled the bus for camping, but before embarking on the full-size 

bus, he built a model bus to help plan the layout. ~.jhen the large 
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. 
When the large bus was comple te, he put the model bus in it -

which required, of course, that In the model there appeared a model 

bus, etc. 

There are several ways of handling this paradox. One can 

either forbid circularity of instances or use some rule to truncate 

their expansion. One possible rule is to continue the expansion 

until no additional significant information is put tnto the 

drawing, i.e. until the suhinstances become so small that their 

detail is lost, or so large that none of their lines pass through 

the scope. Another po=sible rule is to terminate th~ expansion as 

soon as the c ircularity is detec ted as I did in "Sketchpad". In my 

~stem, one could see only the first instance of self, but no successive 

sub instances . 

As pointed out in the chapter on windowing, instance expansion 

really involves reproducing some section of the master picture in some 

subsection of the page coordinates of the picture in which it is . to 

appear. This in turn implies that material from som~ portion of the 

master picture may appear in some subviewport on the scope. Of course, 

if the instance lies e., tirely outsiq.e the ".window", the part of the 

page that can be seen on t he scope, then the instance need not be 

expanded. The ability to reject an entire instance as lying outside 

the p~esent window without having to expand it to tes t its parts 

individually can result in major time savings in displaying a complex 

drawing. 

During the expansion of an instance, one would like to provide a 

single layer Hlndowing function which would go directly from master 

" 
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coordinates to the scope. This is possible only if the windowing 

transformation available is matched to or richer than the transfor

mation carried in an instance. If, for example, an instance can 

call for mirror immaging, and the windowing algorithm cannot. 

mirrored instances will have to be expanded by special means. 

The page-to-scope tr~nsformat1on should be rich enough so that when 

concatonated with the master-co-page transformation implied in 

an instance, the resulting transformation is no more complicated than 

the page-to-~cope transformation can handle. 
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In three dimensions, then. we are faced with the need to represent 

surfaces and solids. Surfaces can he represented as associating 

several lines. or preferably as occupying the region interior to a 

set of points. The simplest plane surface, analogous to the line 

segment in two dimensions, is the plane triangle interior to three 

points. Such a triangle is fully defined by the point s and like 

the 2-1ine segment needs no further data in its representation. 

Evans and his group at the University of Utah are using such 

triangles as the basic element s in making perspective views of 

solid objects with hidden parts removed. 

In a later chapter we will see how curved surfaces may be rep

resen t ed as blending four curves which define their poundary. 

Topologically, of course, the surface so represented ties together the 

four curves. We are now involved in some experiments, moreover, 

where the data representing the nature of the surface patch should 

be stored. Perhaps the data relevant t o a curve should be stored 

with it, and onl y the additional data about the sur Lace (how it 

bulges, etc.) should be stored with the surface. I suspect, with 

no proof, that a r epr esentation of a triang~lar surface patch might 

be handier. Unfortunately, however, our simple mathematical 

formulation for the surface uses two orthogonal parameters and so 

rectangular patches naturally result. A clean formulation of 

triangular surface patches is needed. Such a formulation would let 

us coat a spher e, d task now considered difficult • 
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CHAPTER SIX 

CON I C - 0 RAW I N G DISPLAYS 

Larry Roberts 1 then of the MIT Lincoln Laboratory, devised a scheme 

for drawing conic sections on a computer displayl Roberts I scheme 

utilizes multiplying digital to analog converters to generate deflection 

voltages appropriate for tracing the conic sections. The scheme has 

subsequently been built by Howard Blatt also of the HIT Lincoln 

. 2 
Laboratory and is currently in operation on the Tx-2 computer. Because 

Roberts' scheme involves nine multiplying D to A converters and the 

generation of voltages which are quadratic in time, it appears at first 

glance to be very complicat~d. It is the purpose of this chapter to show 

how to use the conic-generating hardward to draw the curve of your choice. 

Roberts' hardware implements the function 

[t2 
t 11 

r: 
16 

His hardware is arranged to plot 

wx 
x -w 

a d • 

b e 

c f 

the values 

and y • 

twx 

of 

wx 
w 

wy wI 

as t ranges from 0 to 1. Notice that the x and y plots are the ratios of 

quadratic expressions of the parameter t. 

1 

x - -. 
Ctt 2 +8t + cS 

dt 2 +et+f 

y =- '!!!::L _ 
w 

at2 + bt + c 

dt 2 + et + £ 

Roberts. Lawrence G .• "Conic Display Generator Using Nultiplying 
Digital-Analog Converters". IEEE Transactions on Electronic Computers. 
Volume EC-16. Number 3, June 1967 

2 I 
Blatt. Howard. "Conic Display Generator Using Hultiplying Digital! 

Analog Decoders". Presented at the Fall Joint Computer Conference. Anaheim, 
California. Fa-I. 1967 

" 

(1) 

(2) 
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It can be shown that all curves represented in this manner are conic 

sections, and that all conic sections can be represented by this form. 

The way that Rqberts' hardware works is as follows: The matrix 

t ermsa through f are stored in digital registers. The bits of these 

registers are used to select weighting re§istors in. an amplifier 

circuit such that each of the entries in the matrix can multiply an 
. 

analog voltage by the digital fraction which it stores. The output 

of the three multiplying digital to analog COIlverters in each column 

are added together. The analog inputs to the multiplying digital to 

analog converters for the three rows are provided with signals of the 

2 form kt t kt and k respectively. A feedback circuit controls k from 

the third column of the I:l.atrlx in such a way that the output of the 

third row is always one, i . e. that the expression 

dkt
2 + ekt + fk '" w == 1 

This insures that the output of the other two columns are the 

real values of X and Y rather than wx and wy . 

Conceptually then, Roberts' curve drawer is very simple. In 

practice, to make the feedback circuit stable proved to be a very difficult 

"task. The feedhack circuit is required to do the division implied in 

equations (2). Indeed the feedback loop is stable only for values of the 

parameters in the foalowing ranges : 

O.25S~~3 

-1 

-1 

1 
2 

< d<1 

Care must be taken to see that the parameters provided to specify 

the curve produce values within this range. 
" 



. . 
. '. 

\ 

I 
-!--~ J ~ 

L_. __ --' 
, -t 
i . 

.----

k:t 
L - - :---'--=-----+! T-:=---~"'

I--_.l~r-; -0>--11--~ i LJ . b 

L __ .~_ .. _ ! ~ __ _ 

. 

II -t 
k: 

I i 
'----r-. -- J 11 ' ! 

t.----'- L 0 1 i 4 
__ I L-_----l 

! I 

10.1 » 1.. 

./ 

: I 
! ! 

! I .. 

W){ 

K / /: w-:1. 

'----'-'---< ~~-=---

k~ 6("'-1) 

" 

+ 

. . 

l I 
LI' _t ---' 1----0 I 1 

r 
\; 

o 



· .. 
' .. : 

CHAPTER SIX 

How The Curve Is Drawn 

Let us consider the geometry of the curve 

[x y 
in the 

2 
1] - [t t 1] 

3 

(3) 

/range O~t~l. Obviously all points of this curve lie on the w~l plane. 

Also obviously, the curve ?egins at the origin and ends at the point (Ill). 

The derivative of the curve with respect to t 1s 

[:~ ~ :~J. [2t t 0] (4) 

From this we can see that the slope of the tangent to the curve (which is 

the~derivative divided by the x derivative) is given 
dv 1 

by=-
dx 2t' 

it follows that the equation of the tangent line to " the curve is 

x t 
Y - 2t + 2" 

From this 

(5) 

At the beginning of the curve (teO) the curve is at the origin and 

has a vertical tangent. At the end of the curve (t~l) the curve is at the 

point [1111 and its tangent has slope of 1/2 and y intercept 6£ 1/2. The 

"·curve and its initial and final tangent are shown in the figure below. 

y ~ !i-5. + -'i 

< .... 
[o(~ 0< IJ 

i.:.o 
., , 

I [a 0 I] 
! 
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When t=a, the curve passes through the point [a2 o 1J . 

Now suppose that we wish to map this canonic conic curve into some 

other curve. 'I<le can define the shape of the other curve by specifying its 

endpoint and the point at which its endpoint tangents intersect. We can 

further specify the curve we wish to draw by specifying the lo~ation of some 

point on it, including the value that the parameter t should have when the 

curve passes through that point. We might, for example, specify the positiOft 

of the midpoint (t-;> of the curve . How do we derive the nine values for a 

matrix T which will transform the "[t
2 

t 1] curve into the desired conic 

section? 

If we call the start point, tangent intersection, and end point which 

define the conic V , Vt , and v1respectively, then it follows that 
0 

II r 1 
1 1 T - ! V , I 1 1 1 1 1 a 2 l:tl , , 
a a 1 ! 

~ 0 ' :; 

because the canonic end, intersection, and start points must be s~ mapped. 

Now the inverse of 
1 1 1 1 

a 1 
1 is a 

2 

a a 1 a 

..... hich I will call N. Thus, 

T "" H 

v 

..... hich defines one possible transformation T. 

" 

-2 

o 
~ 

2 

a 

1 

-2 

1 

(6) 

(7) 
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Actually, che vee tors V 
0' 

V
t 

and VI can be scaled by any arbitrary 

scale factors which I will call " 0' " and wI' V -[x Yo IJ is the t o 0 

same point as W V "[\01 x woYe " J. Therefore we can say 
o a 0 0 0 

and we can get many possible transformations depending on our choice of the 

w.' s. 

a 

We can choose W J wand wI so that the resulting curve hits some 
o t 

point Vc at some specified time t£Q. For this to be true, 

IJ [HJ 

"1 
0 0 

0 "t 0 

0 0 " 

a IJ [TJ -

V11 -
Vt 

L V I 0 oJ 

V 
c 

V 
c 

(8) 

[02 , 20(1-0), (1-0)2J 

° °l - [x IJ VI 
-1 

"1 c yc 

0 "t :J 
Vt (9) 

0 0 V 
0 

Equation (9) is just a vector equation in the three unknowns, wI ' w
t 

and woo 

Given a choice 0.£ a, it will tell us the values of wI' w
t 

and Wo to use. 

" 
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For example, suppose we want to produce three quarters of a unit 

circle about the origin. 

(;t;i 
" = 'h. >..c.....L ) 

Vc v< 
• I 
I 

-rv~ v, 
I 

• For this case, equation (9) becomes 

Gw1 
1 %w~ [1 0 1J 0 -1 1 

-1 
2"t -

-1 -1 1 

-1 0 1 

(:1 2w
t wd - [4 0 4J 1 -1 0 - [8 -8 4] 

0 -1 1 

1 -1 1 

WI - 8 

"t = -4 

w = 4 
0 

T - 1 -2 -;] 0 -8 8 -12 -16 20 

-J 
-

0 2 4 4 ··4 16 8 -16 

0 0 -4 0 4 - 4 0 4 

" 
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Since we can drop t he scale factor for all of T, we will divide 

out a fact o r of · '" and use 

T : -3 -4 5 

4 2 -4 

-1 0 1 

Now let us check where some typical values come out 

t t
2 

t 1 lOt 
2 

lOt w 

-, 

~ 
"1 

0 0 0 1 0 0 1 x -3 -4 - ~1 0 l ' 

I 1 1 1 
4 16 4 1 1 4 16 4 2 -4 . -3 4 5 1 

1 1 1 1 1 2 4 -1 0 1 · 1 0 1 2 4 2 :J 

3 ~ 1 1 9 12 16 5 -12 13 4 16 4 

1 1 1 1 1 1 1 0 - 2 2 

All of which are at once recognizable as being on the desired circle! 

[-J .., sJ ___ -t-~ 

[-I 01 J 

[0-2.2J [s - I:' 13J 

" 
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Sectioning 

Suppose that we, have a transformation T which transforms the 

t 1] curve into the curve that we wish to see. Suppose however 

that the transformation T is unacceptable to the hardware because, for 

w example. it produces values of k unacceptab.ly large or small. 

Such is the case in the example for which : = (5t
2 

-4t +1). 

range as shown below. w 
k varies in the 

t 

i 
t 

l""" .... ',.,VM) 
~ .... "'\ " . ~ 

--- --1;-------- -----+--- -------
,-..... 0 I; .--1 

\---

T~ :L 

It would be nice to draw the desired curve in two segments using two 

separate settings of the conic generator. one f or each segment. Can we 

derive transformations appropriate to each of the two segments from the 

transformation for the full curve? 

Suppose that the curve is to be divided at the point where the 

parameter t has the value a 1 (typically a .. "2)' We can generate a new 

matrix T~which draws the first part of the curve by transforming the 

t 11 curve into the part of the targe t curve for which t runs from 

.-
zero to g:; We can generate another matrix T'r which transforms the 

r 

t 1] curve into the r est of the target CMrve with parameter values 

from a to one. These transformations are shown symbolically in the Figure 

on the following page. 

" 
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We can derive the transformations T
f 

and T by first transforming the full 
. r 

{t2 
t 11 curve into a part of itself, and then transforming that part into 

the corresponding part of the target curve by the transformation T. In other 

words J 

andT soAT, 
r r 

where the matrices Af and-Ar may be derived as the appropriate transformatiofi 

of points in the original space. Thus, for example, the transformation 

Af should map the [(2 t 1] curve into the portion of itself running from 

2 
the origin to the point [a • 1J . The transformation A should map 

r 

the [t 2 t 1J curve Into the portion of 

[.2 • 1J to [1 1 1J • By referring 

to the [t
2 

t 1J curve at the point where 

y a 2.. + .f!. 
2. 2 

We can find the locations of some critical 
• ?.,.. ~ [" c!:t.. IJ 

P.,. = [o.li 1 J ( ~ 
. >. 

1 ,.. 

Obviously 
Po: [0 0 'J 

Af maps[Pl Pt po]into~c 
into[P

1 

., 

p 
tr 

p). Thus we can write! 
c 

itself running from 

to equation 

t=Q 

points. 

~, • [I , 

(5) 

IJ 

A 
r 

for 

the point 

the tangent 
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A - 1 -2 1 2 a 1 - 0 2 0 0 f 

0 2 -2 a 
1 0 0 (10) 

2 a 
~ 

0 0 1 0 1 0 0 1 

A - 1 -2 1 1 1 ~= (I-a) 2 0 0 
r 

0 2 -2 1+0 
20(1-0) 1-0 0 (11) 1 , 

- 2 · I 
0 0 1 0 2 a· 1: 02 a 1 

-' 

To check these results , let us see how Af and A affect the [t 2 
t 1] 

r 

curve. 

[t2 
t 1] 0 2 0 0 c [a.2t2 at 1] 

0 a 0 

0 0 1 

which is obviously the first portion of itself. 

t 1] (1-0) 2 : 0 o - [(1-a)2t2 + 2o.(1-o.)t + 0.2 (l-a)t + a IJ 

20(1-0) 1-0 o 

a 1 

- [{ (1-0)< +oJ2 {(l-a)t + oj ' . 1J 

again obviously a portion of the curve. 

Let us now section the three quarter circle of our example. We will ~ection 

it at the place where t 

Tf - AfT 
1 

0 ,0 -3 -4 5 
1 -3 -4 5 -- = 4" 4 

0 1 0 4 :2 -4 8 4 -8 
2 

0 0 1 -1 0 1 -4 0 4 

which maps the [t2 
t 1] curve into the upper semicircle, and 

\ 

" 
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.l,. 0 0 -3 "4 - 5 -3 - 4 5 4 
T _ • A .T ... 

1 1 0 4 2 -4 2 -4 2 r , r 1 
2 2 --4 

1 1 1 -1 0 1 -3 0 1 4 2 I - -
which maps it into the quarter circle in the fourth quadrent. For 

t hese two transformations. the ~ ratios are 
k 

which look like : 

I 

w _ (St 2 -8t+4) and 
k 

w - = k 

w 
Thus the range of k ratios is now even wo r se! 

The Squishing Transformation. 

0.7/ _ ; "\..- - ~ - ' , , -. I 

Let us now find a transform which will map the ft 2 
t 1] curve into itself 

but move the point wher e t=a to the point where t=l-a. To do t his) we need to 

find an appropriate set of w's. 

" 
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[02 
~·. a I] 1 -2 1 "1 0 0 2 I] 

~ - [(1-0) • I-a, 1 -2 I ' 

0 2 -2 0 w
t 

0 0 2 - 2 

0 0 1 0 0 w 0 0 1 
0 

~2Wl' (1-a)2"oJ-
.2~ (I-d) .L' 

2a(1-a)w
t

, [(I-a) ~ -#.1:-; >. a] 
(1-a) 

2 
w - - Y 1 a 

"t - 1 

(-.!L) 2 1 w - -~ 
0 1-a y 

1 -2 ~ 
1 I 

y y y y-l y+ - --2 ' .- y , 

A 0 2 -2 0 1 
2(1 ~) I - 1 - ( 1 I • 2 

1 1 0 0 1 0 0 y ~ 0 , 
Y I ... 

f 
-, 2 

y~l 1-21+1 ~ y-l !I-I) 
Y I y y 

- 1 2 (ti) ! 0 1 2(y~1 ) 

~ 
-~ I y 

0 1 I 0 0 1 
y I y J -' 

Now l e t us check that A really maps [t
2 

t I] into itself s 

" 
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2 which is easily recognized as being of the form [u 

tt 
U - ::-t h( ~~1 )'"'+-;-1 

13 

u 1] where 

We can factor out a y fro~ the As ' matrix to make it slightl~ clearer 

and use 

A - 0 
5 

o o 

y 2(y-1) 

1 

The objective of using the A'S transform is to make a T matrix which 

has minimum variation in ~. Such matricies have the property tha~ their 

upper right corner entry and the one just below it are equal and opposite 

in sign. Given a matrix T of the form 

a 

T = b 

1 

The product 

= .?- + b~(,-1) + (~_1)2 

bo + 2(0-1) 

• • 1 

" 
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From which, by an "obvious" reduction it follows that 

1 
a + b + 1 

If we attempt to apply the A's transform to the 3/4 circle, we find 

1 1 'O""'~ - __ 5-4+1 _ 

... Application to the half circle yields 

_ 1 ... 4 
~-!!+l 
4 4 

and application to the quarter circle yields 

which we can use to find a minimum-w-variation equivalent transform. 

For the half circle, for exareple, 

AT - 4 2 1 -3 -4 5 = 00 -8 , 8 
s 

0 2 2 8 4 -8 8 8 -8 

0 0 1 -4 0 4 -4 0 4 

This matrix provides for equal starting and 
w 

ending k values as shown 

below. 

'1 -

, 

I 
K ~ Y'l. = l.. 

" 
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CHAPTER SEVEN 

"STYLUS INPUT DEVICES FOR COHPUTER GRAPHICS 

As Told In Part By 

Thomas G. Stockha~, Jr. 

While cathode ray tube display devices provide an adequate 

output medium for computer graphics, they do not t .hemselves PFovide 

for input of graphic material. A variety of stylus devices are 

available, however, which enable their user to draw information 

directly into the co~puter. It is the purpose of this chapter to 

describe the properties of stylus input devices and how they are used. 

There are two basic types of stylus input devices: pointing 

devices and positioning devices. The pointing and positioning functions 

are quite different. An ideal stylus input device would contain both 

pointing and positioning capability. Unfortunately, no stylus device 

inherently provides both capabilities, although most stylus input devices 

can be made to behave as if they had both properties. Both pointing and 

positioning devices are usually used in conjunction with cathode ray tube 

displays. Poi~ting devic~s enable their user t o point out a particular 

item already on the display picture: an item such as a '.1ne or a 

character for example. Positioning devices, on the ot her hand , enable 

.their user onl.y to indicat.e the coordinates of a single point which the 

computer can most easily use in positioning objects in the picture. 

Pointing devices in effect say "this thing" whereas positioning devices 

in effect say "here". 

Fairly scphisticated sof t ware is required to obtain pointing 

informa~ion from a positioning device. Si~ce the computer knows only 

the 'coordinates delivered by the device~ a program must compare those 
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CHAPTER SEVEN 2 

coordinates with every displayed objcc~ to discover the closest match . 

Although the comparison task is not difficult for points and straight 

lines. it is rather more difficult for curves, and quite time-consuming 

in any case. It is generally mo r e practical to provide pointing hardware 

(See Page 12) than to expect the program t o search the picture for a 

position match. 

- Similarly, a sophisticated program is required to obtain position 

information froD a pointing device. In an appendix to this chapter, we 

consider such "tracki ng" programs in detail. Some pointing devices are 

provided with special hardware to provide the position function through 

automatic tracking . Other pointing devices are equipped with special 

hardware which makes it virtually impossible to obtain t he position 

information; even with a very sophisticated program. 

" 
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POSITIONING DEVICES 

There are many schemes by whicil the computer can be informed of the 

posi t ion of a stylus held in a hUl!lan operator ' s hand. Of these. t he 

most prevalent and versatile are the so-called " Rand Tablet" and the 

"Voltage Gradient Stylus". Both the Rand Tablet and the Voltage Gradient 

Styl us use electrical fie l ds t o detect the stylus position . .It is also 

possibl e to use magnetic fields, s~und. light, and mechanica l techniques 

t o sense the posi t ion of t he stylus. In all cases , the func t ion of the 

equipment is me r ely to indicate the coordinates of the tip of the stylus 

t o the computer at regular intervals of time . How this -::oordinate 

information is used is up to t he computer p r ogram. 

The Rand Tablet 

The Rand Table t
l

, a l s..:! known as the " Teager table r
• is a simple 

digi t al device fo r detecting the position of a stylus. In t he surface 

o f t he t able t a r e located 1,024· vertical lines and 1,024 horizontal lines. 

Each line is made of copper about 3 thousandths of an inch wide and one 

thousandth of an inch thick. The lines are spaced about one one- hundredth 

of an inch apart so that the active area of tile tablet 1s typically 

ten inches by ten inches . The horizontal lines are sep:..cated from t ile 

ve r tical ones by a thin sheet of milar . 

The individual ver tical and horizontal wires are bro ught out at 

t he edge of the board to coding devices. In the device developed by Ellis 

and Sibley at Rand , the coding is obtained through capnci:ive coupling 

between the extended wires and a special pattern o f copper plates etched 

on the reverse side of the thin milar sheet. The pattern of capacitor 

plates ' is so arranged that ten pairs of pulses placed sequentially in 

1 
Ellis , T. O. and Davis, M. R., "The Rand Tablet: A Nan- Machine 

Graphical Communication Device" , Proceedings of the Fall Joint Computer 

Confer ence, VJI. 26, pp. 325-31, 1964. 
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time are coupled differently into each of the individua l wires. In 

one particular wire, for instance, all of the pulse will be positive fol

lowed by negative. In other wires) certain of the pulse pairs will be 

positive-negative whereas others will be negative-positive. The coding 

used is a "Qray-code" scheme so that the sequence of pulses in each 

wire is un ique and the sequence of pulses in two adjacent wires differs 

only in one pulse position. Teager's implementation of the device is 

similar in principle but uses a different technique for coupling the 

pulses into the wires. 

The stylus for the Rand Tahlet has a small tip which is capacitively 

coupled to the wires to which it is closest. l.,l~thin t he stylus, a 

sensitive amplifier detects and amplifies these pulses and delivers them 

via coaxial cable to the logic box. The sequence of pulses coming from 

the stylus is a unique representation of the position of the stylus on the 

tablet. The sequence of pulses is put into a "Sh ift" register and then 

converted from the Gray-code to binary for delivery to the computer. In 

addition to detecting the position of the stylus, the pen has a small 

switch which detects whether or not its user is pres s ing dO\.Jn on the pen. 

The position of this switch is reported to the computer where it is 

commonly used to control the flow of logical "ink", Le. to control 

whether or not the coordinates are stored in memory. 

The Rand Tablet is generally placed on the desk in front of a 

vertically-moun ted cathode ray tube display. It is custonary for the 

'. 
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program to present a spot on the display in a position which corresponds 

t o the position of the stylus on the Rand Tablet . The user of the 

tablet looks at the spot on the cathode ray tube but controls the 

motion of the spot by moving the stylus on the Rand Tablet. The hand-eye 

coordination required to write on one surface and look at another comes 

very naturally. Because the writing surface is separated from the 

point of observation, the hand used for writing does not cover the 

written material. Both the Rand Tablet and the version of the voltage 

gradient stylus built by Sylvania are transparent, and so they can be 

placed directly in front of the display if desired. 

The Voltage-Gradient Stylus 

Another position-detecting t echnique utilizes voltage gradients 

within a resistive plate. In its simplest configuration, a sheet of 

par tly conductive material is used as the tablet surface . In successive 

time intervals, a potential is applied horizontally across this sheet and 

then vertically ac r oss the sheet. Diodes may be used in the connections 

to the edges of t he sheet to prevent t h,e vertical connections from 

dis t orting the horizontal field and vice-versa , as shown in the figure 

on the next page. The stylus, in actual contact toTitn the conductive 

sheet, senses a potential ~.,hich corresponGs to its position on the sheet. 

By observing the potential during horizontal and vertical time periods, 

the associated electronics can detenr.ine the x and y coordinates of the pen. 

By observin8' whether or not there is a potential present at all, the 

electronics can deternine whether the pen is in contact with the tablet 

surface . 

. , 
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CHAPTER SEVEN 6 

The major difficulty in building a voltage-gradient stylus is obtaining 

a "material suitable for the tablet surface. The material must be 

sufficiently tough to stand the wear of constant contact with the 

moving stylus. It must also have sufficiently uniform resistivity so 

that the potential measured is a linear function of the position. The 

prebelm 1s made more difficult by the need to have sufficiently high 

r esistivity so that reasonable potentials can be developed across the 

tablet. Thus the conducting surface cannot be made of a copper plate 

which would be ideal in all other respects . 

Sylvania has recently announced a tablet device similar to the 

voltage-gradient stylus. In the Sylvania device, the resistive sheet 

is a layer of stannous-oxide fused .into glass plate and covered with 

another glass plate . Sylvania's engineers have shown that only seven 

cont acts need by made to each edge of the plate in order to achieve 

one-percent precision . Horeover. they have worked out a technique for 

compensating for non-linearities in the plate by means of a few 

compensating resistors connected to these contacts . Sylvania is thus 

able to compensate individually for the difficulties in relatively 

poor conducting sheets to achieve the desired precision. 

In Sylvania's device, the pen stylus does not ac t ually contact the 

conductive sheet. The signals put in the plate are high-frequency 

alternating currents applied in such a way that the phase c.1etected by the 

stylus varies for different positions on the sheet. Two different 

frequencies are used, one for horizontal sensing and one for vertical 

sensing. The phases of the two received signals , as filtered, are 

., 
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measured and correspond to the position of the stylus on the plate. 

Because high-frequency signals are used, there can be considerable sepa

ration between the stylus and the conducting surface. In fact, Sylvania's 

tablet works quite acceptably through a book. The magnitude of the received 

signal is measured and used to indicate height information to the computer. 

Three height signals are provided; one indicating that the pen is within 

about 1/32 inch of the surface, and one indicating that the stylus is 

actually being pressed down onto the surface. The final indication is 

given by a mechanical switch. 

The Sylvania tablet 1s completely transparent. It is made of glass 

and the stannous-oxide coating is also transparent. It is in principle 

possible, therefore, to put the Sylvania tablet · directly in front of the 

cathode ray tube. Rand tablets are translucent. Because the copper wires 

are relatively narrow and have relatively wide spacing, the Rand tablet will 

transmit about 50% of the light shining on it. An ideal display tablet 

combination would, I feel, be provided by projecting the cathode ray tube 

information from underneath a Sylvania or Rand tablet. The registration 

between display and tablet ~.;ould need to be carefully controlled so that 

coordinates delivered from the tablet correspond, in detail, to the 

coordinates selected by the tablet. 

Other Devices 

Jack Raffel at the HIT Lincoln Laboratory has built a magnetic 

tablet which senses the relative strength of magnetic. field coming from two 

"' 
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individual wires. The configuration oflthe magnetic tablet is as 

shown in the figure below. 

I. 

" 
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The magnetic field in t he region between the t wo l oops varies roughly 

I 
as 

r. The total magnetic field is therefore g iven by 

M _ :11 - ~ 
a+x a-x 

In this case, the s t ylus pickup device is a small fie l d-sensing loop. 

The current in one wire is gradually increased and the current in the 

9 

oth'cr is gr adually decreased un til the field sensed by the loop changes 

sign. 

I max 
Ii· -2- + Kt 

I max 
2 

- Kt -T<t<T 

The time at wh i ch th"is happens is an indication of the pos i tion of t he " 

stylus on t he tablet. 

Imax + Kt 
2 

M ... 0 .. -_.--"-.-:+-x-' -.-

The 3-D \-land 

I max 
-2--

a-x 

Kt 
x = 

4aK 
t 

I ma."C 

L. G. Roberts, then of the HIT Lincoln Laboratory, d2vised an 

ultrasonic device now knOt-lTl as the lILincoln Wand". The Linco l n Hand 

senses positions in three d":'mcnsions, rather t han in two dimensions as 

in the other devices ment i oned . The Linco ln t~and is nothing but a hand-

hel d microphone sensitive to high-frequency sound pulses . Four transducers 

mounted around the cathode ray tube display t~ansmit pulses in t urn at 

a mll,lisecond intervals. The transit t ime of a pulse f rom t he transmitte r 

to the ha nd- held receiver is measured for each of the four paths , and 

from this information, t!te computer can deduce the posi tion of the s t ylus. 
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The Lincoln t{and measures four distances rather than three in order 

to provide a check on the accu~acy of the measurements. If the four 

distances measur ed "are indica ted by subscripts which indicate which 

quad rent of the display the corresponding transmitter 1s in, then 

- 0 

as can easily be sh,?wn by geometric arguments. Noreover, 

2ax _ _ 02+D2 0 2 0 2 
I 2+3-4 and 

- -Dl
2 

- D22 + D3
2 + D4

2 
and 

_ 2(0 2 + 0 2 + 0 2 2) 4 2 
, 1 2 3 + 04 - x -

2 2 2 
4y - a - b 

where a and b are the x and y separation of the transduce rs. 

As you can see, the computations of the coordinates of the stylus from 

the distance measurement information i s not very difficult. 

" Comparator 

A comparator is a device which examines the CUrrent position 

of the cathode r ay tube beam and announces whenever that position is 

located within a certain region of interest, generally a smal l sGuare. 

The comparator. then. computes the difference between the current 

position of the beam and the center of the small square in both x and 

y and produces a pulse whenever the magni tude of that difference is 

smaller than some tolerance in both x and y. Compara tor devices should 

be designed as a part of display sys tems . except that historically they 

have nothins to" do with stylus input at all. 

\ 
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The comparator may take two forms. In the "center-size" form, the 

comparator has an "x" and a "y" register to store the .coordinates for 

comparison and possibly also a register to store the tolerance, or at 

least an "adjustment on the tolerance. In the "four edges" form, the 

coordinates of the top, bottom, left, and right edges of the sensitive 

area are stored in four registers. The registers of the comp-arator 

.should be capable of being loaded under program control . In its most 

common use, the comparator registers will be loaded from the information 

derived from the stylus, b'lt that should be a choice of the programmer and 

not a wired-in function. The programmer should be able to sensitize the 

comparator to whatever other values he chooses, such as for example, a 

position related to the position of the stylus but not exactly. the 

position of the stylus. A comparator "hit" is treated logically in a 

fashion identical to that described for light pen hits. 

, 
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POINTING DEVICES 

The original stylus input devices were of the pointing type. They 

were called "light guns", so named because they looked like pistols and 

were aimed like a pistol at the cathode ray tube display. The light 

gun was developed so that· operators could select particular targets of 

interest on the radar displays of early air defense systems. A version 

of the light gun, reduced to the size of a fountain pen, is now in common 

use. It is called the "light pen". 

Both the light gun an~ the light pen contain a photo cell and a lens 

system. The lens system is so arranged that it focuses light from a 

small region of the CRT screen onto the photo cell. If the light pen or 

gun is aimed at the cathode ray tube and displayed information falls 

within the small field view of the light pen. light from the CRT will 

fallon the photo cell. Because the different parts of a picture on 

a cathode ray tube are displayed in time sequence, the time at t<Jhich the 

photocell sees light corre~ponds to the particular object whose light 

has been sensed. The photo cell indicates· tnat it has sensed the light 

by sending an electrical signal to the computer through a cable provided 

for that pufpose. lfuen it receives such a signal, commonly known as a 

"light pen hit". the cOf'lputer can take appropriate action for the particular 

item in the picture then being displayed. 

Logical Design Of Light Pens 

There are two quite different kinds of hardware through which a 

light pen hit can be indicated to the computer. In pen systems with 
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only the simplest hard~ .. are. a light pen hit' sets a simple flag which the 

computer can test if programmed to do so. In a more co~plex system, a 

light pen hit causes special hardware to start an interrupt procedure 

whether or not the main program was explicitly testing for light pen 

hits. 

Each kind 6f light pen hardware can be progran~ed to provide the 

other function. If only the interrupt mechanism is provided in the 

hardware. an interrupt program which merely sets a bit in memory will 

provide the function of the light pen hit flag which the main program 

may test. The time cost of such a program is small because interrupts 

occur infrequently. It is far less convenient to provide the interrupt 

capability in software if only the flag is provided in the hardware, 

because the flag must be tested immediately after it posts each picture 

item on t~e CRT. Whenever a hit is detected, the main program should 

be forced to branch to an interrupt location. Although an interrupt 

generating program of this kind is easy to ' .. rite and need occupy only 

little memory space, it will seriously decrease the speed of the display. 

Because provision of interrupt through software is 60 costly, I 

consider a hard~ .. are essential if" the light pen is intended to select 

objects in a picture. It is often useful, in addition, to have a light 

pen hit flag, and because the cost of a flag is small, there is no 

reason not to have both hard~ .. are capabilities. It should be possible 

under progra~ control to mask off the .interrupt mechanisn if it is not 

needed. One can, of course, choose not to t;st a light pen hit flag. 

" 
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It is interesting to note the relation betHeen light pen hits in a 

display and unusual conditions which arise in other parts of a computer 

such as arithmetic overflow, mem.ory violation, or I/O ready signals. 

For each such condition, two kinds of hardware may be provided: 1) a 

flag which can be tested by the program or 2) a device which s t arts an 

interrupt procedure. It is clear by now to all competent computer 

designers that interrupt procedures are desirable for input/output 

ready signals such as typewriter charac t er ready, etc . It is also abun-

dantly clear that interrupt procedures for handling arithmetic overflow 

are essential to efficient compiled code (though not all computers even 

today provide for interrupt on arithmetic overflm.;). h'hat is not very 

clear. it seems . is that all t hese unusual condition testers could (and 

I maintain should) be handled in a perfectly uniform \.;ay. A singl e 

priority interrupt mechanism could scan all such conditions and initiate 

separate procedures appropriate to each . 

I favor initiation of such procedures by the execution of the 

single instruction located at some particular place in memory. Please 

note that I did not say by transfer or branch(as is done in the SDS940) 

to a selected location, but rather by executing the instruction th'ere. 

If the instruction t here happens to be a "no op", the interrupt will 

effectively be ignored. If the instruction there is a subroutine branch 

instruct;i.on, the named inte·rrupt procedure will have been begun. 

Automatic saving of the active machine registers (as is done in the PDP-I) 

is not strictly necessary; in a machine with many active registers it is 

less desirable than in a machine with only a fet.t. I n a machine with 

push down stack subroutining . interrupts may be perr.titted to interrupt 

others in a first-come , first-served basis if desired. Because it is 
" 

usually importa'l.t. ho ..... ever. to guarantee that an interrupt program ,.:111 



CHAPTER SEVEN 15 

finish its action within a certain limited time, the interrupt mechanism 

should include some ,mechanism for preventing low priority interrupts 

from disturbing a high priority process for synchronous t/O unit. 

Because most displays fetch information from memory through data 

channels which are almost computers in their own righ t (See Chapter ), 

a pen hit interrupt should probably affect only the display channel and 

not the main computer. Similarly, the light pen hit flag should be 

available to the display processor. Appropriate display channel programs 

can store information for later use by the main computer. 

The most common use of light pen hits is to record t he identity of 

the pictur~ item that was indicated. In such an application , the light 

pen hit initiates an interrupt procedure \ .. hich ~xamines the in terrupted 

display procedure to find out which item was being displayed. Typically, 

the interrupt procedure will record the memory address of the item which 

caused the hit. The interrupt procedure \"il l deduce \oI'hich item was seen 

from the content of the address registers which keep track of which item 

the main display procedure is to post next . If the information recorded 

is to accurately reflect the iten seen, the ligh t pen hardtla re must 

interrupt in su~h a way that consistent inforoation is available . If a 

light pen hit from the first part of a line causes an interrupt before 

the address registers have been advanced, but a hit from the end of a 

line comes after the address registers have advanced, it will be -difficult 

if",not impossible to decide \vhich line caused the hit. 

The actual record made by the light pen interrupt procedure varies 

from application to ap?lication. In most cases t he inter~upt procedure 
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builds a small table of the items seen during a single frame. The 

con~ent of the tabl~ will show if two or more items are being indicated 

·as would happen if the light pen ~.,ere aimed at the intersection of two 

lines. In some display systems, the interrupt procedure initiated by a 

light pen hit is a wired-in function. One display system (whose manufacturer 

.shall remain unnamed) provides a wired-in interrupt procedure to record 

items seen by the light pen. Unfortunately~ the wired-in procedure 

records only the first light pen hit of each frame thus making it virtually 

impossible to point to the intersection of lines or to do light pen tracking . 

The record keeping job of the light pen interrupt program is made 

more complicated by the use of displays with subroutining capability. 

The address of the item being posted by such a display is not sufficient 

to identify it. If several symbol pictures, say of transistors, are 

posted on the picture by a single subroutine, an address ,·Jithin the 

subroutine ~Y"ill not identify which transistor t ... as being displayed. {.fuat 

one really wants to record is both the subroutine involved and the route 

by which it ,,,as reached. For example, tha t the transistor is, in fact, 

the third one in the fourth flip flop. If the subroutine returns of the 

display system are kept neatly together in a stack, the light pen 

interrupt return can record a copy of the stack. 

The information recorded by the light pen interrupt program must be 

double-buffered for use in any procedure which is not synchronous with 

the display. At the beginning of each frame, the interrupt program's 

hit table must be cleared. As the frame progresses, the ~it table ~ ... ill 

grot". If an asynchronous procedure (in the main computer. for example) 

" 
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asked whether a certain item had been seen, the answer might be "no" 

merely because the item had not yet been seen in the current frame even 

though it was seen in all previous frames. To avoid such a problem, the 

completed hit table must be copied into another buffer at the end of each 

display frame for use by the asynchronous process. 

Physical Design Of Light Pens 

The mechanical and optical design of a l;ight pen is a more complex 

task than generally appreciated . A good light pen has 8 cylindrical 

field of view. That is, the area of the screen that it observes is circular 

and r elatively constant in size, independent of how far from the screen 

the light pen is held. Achieving such a field of view is not an easy 

task. Many light pens are designed with a simple aperture and no lens 

system whatsoever . A more proper light pen lens system consists of two 

lenses. the first of which focuses the screen onto an aperture whose 

size and shape controls the size and shape of the field of view. The 

second lens focuses an image of the first lens onto the active area of the 

photo cell. Thus any light which passes through the first lens and through 

the aperture will be positioned on the photo cell according to the place 

it passed through the first lens. 
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The entire active area of the photo cell will be uniformly illuminated 

with an illumination dependent only on the proximity of the ligh t source 

to the edge of the ligh t pen field of view. 

Some light pens are equipped t ... ith aiming lights which indicate the 

active area of the light pen by projection onto the screen. lf the photo 

cell is mounted in the light pen housing, a coaxial cable is generally 

provided from the light pen to the housing of the cathode ray tube 

display to carry the electrical signal which indicates the presence of 

light . Some light pens replace the coaxial cable t ... ith a fibre-optic 

light pipe, and are thus able to use a larger and presumably mo re 

sensititive pho.to cell in the light pen electronic housing. 

The most important electrical property of a light pen is its speed 

of response. The lines on the cathode ray tube are drawn relatively 

quickly, that is, in a few microseconds each, and so the light pen must 

respond in a fraction of a microsecond if it is to distinguish between 

successive parts of the picture displayed on the screen. Obtaining the 

required speed of response is the major difficulty in building a light 

pen • . A significant obstacle is that t he actual light output response to 

the phosphor is somet ... hat delayed from the control of the electron beam, 

and so even if the ligh t pen were perfect, it might still not be good 

enough. As the speed of displays has increased, the usefulness of the 

light pen has correspondingly decreased to the point ·tvhere it is nm,)' being 

replaced in research organizations by other types of stylus input devices • 

. , 
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The Light Canno~ 

Another interestiuJ ,;r.:3.?:lic input device is known a s the "light 

cannon" . In this device. a photomultiplier tube 1s placed in front of 

the cathode ray tube in such a way that it can sense light from anywhere 

on the display face. If an opaque object 1s placed between the cathode 

ray tube and the light cannon, it will shield certain regions of the 

cathode ray tube from observation. Each point displayed on the cathode 

ray tube face will be -_ seoaed by the photo-multiplier only if it is not 

shielded. An opaque object can be used to point out particular items on 

the 'cathode" ray tube by shielding them from observation of the light 

cannon . The light cannon can also be used to sense the ~hape of 

irregular objects placed in front of the cathode ray tube's screen, or 

with special adaptation, to scan photographic material • 
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TRANSFORMATIONS AND MATRICES 

We represent the coordinates of a point in two dimensions by 
tbe matrix ~ y] . The elements of this matrix are independent , and the 
pair of numbers const itute a matric quantity. 

Now consider the matric product of such a coordinate matrix 
and a 2 x 2 matrix : 

[xyl [: : ] = [(ax+cy) (bx+dy)l = [x'y' 1 . 

The result of the matric multiplication consists again of two numbers, 
(ax+cy) and (bx+dy), e'1d we can investigate the imp).ications of assuming 
that these two numbers are new coordinates x' and y' . 

In passing, we should remark that 
consist s of multiplying a row matrix 6< Jj 

the matric multiplication 
by the column matrix [ ~l 

to yield (ax+cy) and by the column matrix to yield [bx+dy 1 

We can thus think of the square matrix 
[~l 

[~ ~l 
as consisting of two 

separate column matrices . Incidentally, row matrices like &c y:] 
Z w] ~ are commonly called vectors, as are column matrices like 

and the rule for formation of their product is 

[x y ZWl[;] = ax + by + cz + dw • 

or [x y 

[~]' 

The product of two more general matrices follows from this ; we could 
have the pro1uct 

[ Xl Yl ZlJ 
al "2 [ (alXl + blYl + cl zl )("2xl + b2Yl + C2Z1 ] 

= 

x2 Y2 z2 bl b2 (alx2 + blY2 + cl Z2)( a2x2 + b2Y2 + C2"2) 

cl c2 
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and we can think of the product as C90sisting of the various products 
of the two row vectors in the first matrix and the two column vectors 
in the second matrix . 

To return to the matrie product of the vector matrix [x .y] 
and the 2: x 2 matrix, we can investigate some simple special cases, and 
see what the geometric interpretation is . 

Take 

~ y][~ ~J = [ax y] = [x' y'] 

The new coordinates of a point 
but with a scale change in x . 
by the matrix bas the effect of 
it may be, in the x direction . 

bey] are similar to the old coordinates, 
This means that the act of multiplying 

stretching the original figure , what eyer 

Now take 

"y{:J = [ax dy] = [x' y'] , 

This represents a scale change in both x and 
original figure bas experienced a stretching in 
a simultaneous · stretching in the y direction. 
or d is fractional, less than 1 , the result 
original figure. 

Now consider 

y. The geometry of the 
the x direction and 

O£ course, if either a 
is a compression of the 

~y{ :J = [x-(bx + y)] = [x' y' ] , 

Here the old x and the new 
ordinate y' is given by the 

y 

-, 

x' coordinates 
linear equation 

y' = bx + Y • 

I
P' 

bx 

P 

bx 

are the same, but the co-

x 

" 
" .' 

• 
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The quantity bx is the amount by which the old y coordinate is 

increased to give the new y' coordinate. The x coordinate is un
changed. 

In particular, suppose we take a unit square in the original 
coordinate system and apply this transformation to it . The four corners 
of the square are given by the four vectors arranged in a matrix . 

We can identify these points ·as follows : 

The origin of coordinates, 0 The unit point on the x axis, P The unit point on the y axis, Q The fourth corner of the square, R 

Then we form the matrix product: 

[~ ~J[; ~] = [~ ~ ] r 
1 1 1 b+l R ' 

We plot the old and new points : 

R' 

Q +""-----i R 

p' 

o p 

Note that the points 0 and Q are unchanged, but points P and R 
are transformed into new points po and RO o The square has been 
transformed into a parallelogram, and it is 
transformation as a "shear"; the figure has 

t!r~1ti~e~~sa: ~~~ttr~ns;~~:;~:n~~tt~; 
square will transform into a parallelogran : 

customary to refer to this 
been "sheared" in the y 

x Simila rly the matrix 
x direction, and a unit 
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Q' R R' +-;::----;'-1. 

----~------4_----- x 
o p 

where in this case 0 and P remain fixed, ,but Q and R transfonn 
into new points: 

r ,et us now combine these two transformations . We shall elect to perform 
the y shearing transformation, first, and then we shall perform the x 
shearing transformation on the result. For a general point, this is 
accomplished by the matrie multiplication 

(x y* ~] = (x' y' J 

followed by the matrie multiplication 

(x' yt ~] = [x" yfl] 

Then we can write the combined operation 

(x YJ [~ m~ ~] = (x" y"J . 

But we can evaluate the matrie product of the two separate shear 
transformations, 

Now, subject to this transformation, the unit square transforms as 
follows: 

" 

. , ' 

.. 

o 

:) 
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[

0 0J[l+be b] [ 0 0 1 
. ~ ~ c l = ~ +bc ~ . 

1 1 ' l+bc+c b+l 

Consider only the point Rl and the two transformations applied to it: 

y 
f'_ex.'...1" 

bx 

x 

The first transformation moves R vertically by the amount b . The 
second transformation moves R' horizontally by an amount that is pro
portional to its y' position. This horizontal motion is cy' , but 
y' = l+b , so the horizontal motion of R' is c+bc. Its final position 
is 

Rlf = [l+bc+c l+b] 

We observe that the relative positions of the four points after the 
transformation are given by the difference of their vectors , as follows: 

y [OQ"] = ['l"] - [0] 

R" [pnRIf] [R"] - [P"] = 

[OP"] = [p"] - [0] 

['l''R''] = [R"] - [Q."] 

0 x 

where the symbols in brackets stand for the matrices of the corresponding 
coordinates. 

fOQ."] = [ell - [0 0] = [e 1] 

[P" R"] = [(l+be+e)(b+l)] - [(l+be) b] = [e 1] • 
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Hence [OQ"] = [p" R"] 

Similarly, 

[Op"] = [(l+bc) b] - [00] = [(l+bc)b] 

[Q" R"] • [(l+bc+c) (b+l)] - [c 1J = [(l+bc) b] 

Hence [OP"] = [Q." R"J 

These two expressions indicate that the result of the transformation is 
a parallelogram, but in a general position in the coordinate system. 

given by 

given by 

Now consider the points 
and tbe points p" 

p and 
and 

Q before the transformation, 
Q," after the transformation, 

This last matrix is not only the matrix describing 

the final position of the two unit points P and Q., but it is also the 
matrix of the transformation that carries these points into this final 
position . We can see that this is invariably so, for: any transformation, 

Here the new P' = [a b] and the new Q' == [c d] 

If we combine the two shearing transformations with two scale 
changes, we obtain 

= [ a+abc bd] 
ac d 

We can proceed to show that this represents the most general possible 
2 x 2 transformation matrix, as follows: Select any four numbers, 
ABC D , arrange them in a matrix, and form the matric equation : 

[
a+abc 
ac 

Then, equating corresponding elements, 

d = D 

bdl 
d J -

bd = B whence b = B 

c • ac, and 

-, 

A = a+abc = a + b(ac) = a + Be 
D 

D 

- -

.) 



'. 
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Then a = A - BC 
D Finally, c = L -,C"-;,,, 

a A _ Be 
n 

Thus the 

four numbers abc d may be suitably chosen so as to make the resulting 
combined transformation equal to any transformation whatever. 

Ordinarily we do not build up transformations out of their 
constituent elementary transformations . Instead, we determine the 
initial and final positions of certain important pOints, and deduce from 
this what the appropriate transformation must be to yield this result. 

In order to be able to do this, we first turn our attention 
to the transformation 

[
a
c 

bd] that carries the points 

into new positions, desc~ibed by the transformation ma~rix itself, and 
another transformation that undoes the transformation and restores the 
points to their original positions. Let this second transformation be 

and we want to choose its elements so that 

We evaluate the indicated matrie product, and obtain 

r
aA + bC 
cA + dC 

There are in effect two equations involving A and C, and two other 
equations involving B and D. When we solve these two systems for 
the four unknowns, we obtain 

A = ~d7:
ad- bc 

B = -b 
ad-be 

C = - e 
ad-be 

D = a 
ad-be 

The quantity ~l is ~ommon to all of these, and we may write the a - c 
definitive matr c equation 

Bn] = -:,1,,:
ad-be [ d -b) 

- c a 
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The quantity ad-be is precisely the determinant of the matrix. Of 
course if ad-be ~ 0 J we obtain no meaningful result. 

We can check the validity of this new matrix by sets of 
multiplication : 

[
a b] = [ d -bJ = rad-be 
c d -c a l 0 

and the resulting matrix is (ad-be) [~ ~] 0 The matrix [ ~ ~ ] 
as 

just evaluated is called the inverse of the matrix [~ ~] 0 

In general, 

a matrix will have an inverse provided its determinant does not vanish. 

Now 

It turns out that higher order matrices can be inverte~ by an 
entirely analogous procedure . We .form, for each element of the 
original matrix, its cofactor , which is the determinant of the 
matrix obtained by crossing out the row and column in which tbe 
element appears . Thus the cofactor of the element b in the 

matrix [ : ~ ~J 
is the determinant of the matrix 

We [: n 
write this number in place of b J and we multiply it by 
(_ l )C+R where C+R is the sum of the number of the column 
and the number of the row in which the element appears. In the 
case of b, C = 2 , R = 1 , (-1 )C+R = ( - 1)3 = -1. Hence 
the cofactor of b is the determinant of the sub-matrix with 
a minus sign. ·We thus obtain a cofactor matrix. Then the in- · 
verse desired is the transpose of this cofactor matrix (in 
which we simply interchange rows and columns) divided by the 
determinant of the original matrix . In the simple case of the 

2 x 2 matrix, the cofactor matrix of [~~ ] is L! -:J ' 
and its transpose is [ d 

- e 
-!J ' the desired inverse. 

suppose 
into 

we wish to find a transformation T that carries points 
The transformation involves the matric product 

[
a' b '] 
c ' d ' 

T = . la ' b'] , 
c ' d' 

where we are using the symbol T . to replace an 

unknown 2 x 2 transformation 
bot h sides ~ of this equation by 

matrix . Suppose we were to pre-multiply 
the inverse of the matrix [ :~] 0 

'0 

· , 
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We use a superscript - 1 to indicate the inverse of a matrix, and write . 

[a b]-l [a b] = [a b]-l [a' . b'] 
cdc d Ted c' d' 

But [a b]-l [a b] = ![ d -b1[a b] = ! [6 0] = [1 0] 
cdc d l:::. -c aJ C d 6 0 l::::. 0 1 

(we have used the symbol l:::. to stand for the determinant of the matrix ) , 

T is a matrix, so that 

[1 O]T = T = [a bJ-1 [a' b'J 
01 cd c'd' 

l[d T--
- l:::. - c 

-d][a: b'] 
a c d' 

The result, if multiplied out, is a 2 x 2 transformation 
matrix, as desired. 

ROTATION 

A transformation of considerable importance is represented 
by the matrix 

We can gain an insight into its geometric interpretation if we plot the 
two points represented : 

a P 

b 

x 

In the graph, the two vectors OF 
perpendicular to one another, and the points 
from \0 . If, furthermore, this distance is 

" 

p = [a b], Q, = [ - b al . 

OQ and 
+ b2 

are obviously 
Q are equidistant 
= 1 J then the 
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transformation represents a pure rotation of the unit points on the two 
axes. In this case, a is the cosine of the angle of rotation, and b 
is the sine of that an~le. The transformation matrix becomes 

[ 
cosG 

- sinG 
SinG] 
cosQ 

and we have the familiar rotation formulas: 

x ' = x cosQ - y sin9 

y' = x sinG + y cosQ , 

which we can obtain by multiplication of the vector [x y] by the matrix . 

The inverse of the matrix is, by substituting in our previous 
result , 

[
a b]-l = ! [a -b] 

-b a 6 b a 

2 2 where 6 = a + b • But observe that the matrix on the right of the 
equation is simply the transpose of the matrix on the left, since it is 
this matrix with rows and columns interchanged. If 6 = 1 , we have 
the equation 

where the T superscript means ~'transpose ':"" This indicates that it is 
a simple matter to form the inverse of a rotation transformation; all 
we need do is write its trans~~se. 

r~""1J Swt1'lo'" 
''i'lh'<llO*S~IEtl!-

We have thus far investigated transformations which change 
points in the plane , but leave one point unchanged. This point is the 
origin of coordinates. We shall now investigate the pure translation 
of points in the plane . Consider the fol l owing matrie produ~t: 

[x y 1J[1 0 0] = 
010 
a b 1 

[(x+a)(y+b)lJ = [x ' y' 1J . 

" 

• 
" 
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By the algebraic artifice of introducing the number 1 into the point 
coordinate vector, and by expanding the transformation matrix from a 
2 x 2 into a 3 x 3 matrix, we are able to slide the original figure 
into a new posit:lon in which the origin of coordinates is also moved: 

(0 0 1][ 1 0 0] . (a b 1] . 
010 
a b 1 

What would be the effect of performing first a general transformation 
that left the origin unchanged, and then subsequently translating the 
entire resulting figure; We can try this experiment out as follows. 

Then, 

[x y 1] [a b 0] = [(ax+cy)' (bx+dy) 1 ]=[x' y ' 1] . 
c dO . 

o 0 1 

[x ' y ' 1J [ 1 0 OJ = [(x'+e)' (y'+f)' 1 J= [x" y" 1J . 
01 0 
e f 1 

The combined transformation is given by the matric product 
of t he separate transformations : I 

[
a b 0]~1 0 0] [ a b 0] cdO 010:: cdO . 

001 efl efl 

Inci dentally, if we perform the translation first, followed by the 
general origin-preserving 'transformation, we get a different result : 

[ 1 0 olra b ~] [ (ea~fC) 
b n o 1 0 J~c d 0 = d 

eflOOl (eb+fd) 

The resulting matrix shows that the origin [0 0 1J transforms into 
the point [(ea+fc )(eb+fd) 1. ] 
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THREE DIMENSIONAL TRANSFORMATIONS 

The matrix 
abO 

c d 0 

e f I 

which represents a general two dimensional 

transformation together with a translation is obviously a special case of the 

three dimens ionaI transformation 

abc 

d e f =T. 

g h i 

in general, [x y zlT = [x' y' .' 1. 

As with the two dimensional case, we select unit pOints on the three 

axes: 

P I 0 0 

Q = 0 I 0 

ROO I 

and when this matrix of coordinates i~ multiplied by 

T. we obtain the transformed coordinates of the three unit points; more

over, the transformation matrix itself consists of the three vectors of co 

ordinates of the transformed points. Pl. Qt ~nd R' . 

Again. as in the case of the origin of coordinates in two dimensional. 

the origin remains fixed. for 

[0 0 OlT = [0 0 01. 

We can now attach a more illuminating meaning to the two dimensional 

translation transforl!1ation. The vector [x y 1] represents points on the 

plane z = 1. The translation transformation keeps z fixed, but allows x 

and y to change in this plane. The origin of x and y coordim. tes is given by 

the vector [0 a 1]. which after the transformation becomes [e f 1]. But 

the origin t)f the entire three dimensional system is [0 0 0] and this origin 

remains fixed . 

. , 

.. 

) 
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We can show that the unit cube transfor ms into a parallelepiped in 
three dimensional space. The transformation is as follows: 

0 0 0 a b c 0 0 0 

0 0 1 d e f = g h i 

0 1 0 g h i d e g 

0 1 1 (d +g) (e + h) (f + i) 

1 0 0 a b e 

1 0 1 (a + g) (b + h) (e + i) 

1 1 0 ( a +d) (b + e) (e + f) 

1 1 1 (a+d+g) (b+e+h) (e+f+i) 

The points on the corners of the cube in the matrix on the left have been 

chosen in a particular order; it will be observed that they have been ar

ranged in numerical sequence, when we count these corners base two . 

z 
3 

1 y 

o 

x 

This sequence of points is shown in the figure. where the numbers at the 

corners are base 10. equivalent of the base two numbers. 

By detaqed examination.' we can assure ourselves that after the trans

formation the edge vectors are equal in such a way as to satisfy the vector 

equations of the following scheme. In these equations. the numbers in 
"' 



. , 

-14-

brackets stand for the vectors of ihe numbered pOints. With this notation 

in mind we write: 

For example, 

[1 - 0] = [3 - 2] = [7 - 6] = [5 - 4] 

[2 - 0] = [3 - 1] = [7 5] = [6 - 4] 

[4 - 0] = [5 - 1] = [7 - 3] = [6 - 2] 

[5 - 1] = [(a + g)(b + h)(c + i] - [g h i] 

= [a b c] = [4 - 0] , 

This set of vector equations insures that the faces of the figure after the 

transformation are all parallelograms, and hence that the original cube 

transforms into a parallelepipp.d. 

The transformation ma~rix is entirely defined by three points, who 

coordinates are known both before and after the transformation. We can 

write 

abc a ' b' c' 

d e f ·T = d' e' fT 

g h i gl hI i' 

where the primes indicate the transformed coordinates. 

Hence -, 
a b c a' c' 

d' e' f1 

g h i g' "hI iT 

This last equation requires the calculation of the inverse of a 3 X 3 matrix. 

If we elect to do this by cofactors. we obtain first the new cofactor matrix 

" 

.. ' 

D 
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The inverse is then the t ranspose of this matrix, divided by the determinant 

of the complete original matrix: 

abc 

d 

g 

e 

h 

f 

i 

_1 

= 

For 3 x 3 matrices. the method of cofactor s is marginally efficient. but 

inversion of higher orper matrices becomes increasingly involved, since 

it requires calculation of a great many determinants of high order . For 

this reason, many numerical schemes are in existence designed for both 

hand calculation and computer evaluation. Usually such schemes depend 

upon relaxation methods, in which a number of simple iterations cause an 

original appr oximate solution to converge toward a more exact solution. 

PROJECTIVE TRANSFORMATIONS 

Consider the matrix transformation 

abc 

[x Y I] d e f 

g h i 

= [Xl y' Zl] . 

The third cooi-dina te of the transformed ppint. Zl . is given by 

Zl = ex + fy + i. 

z' . 

Now consider the fig1.lre obtained by dividing the ~/eetor [x' y' 
\ 

The result is l ' , . ] "- z: 1 = P. 
Z, Zl 

z' ] by 
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[Xl y' Zl] y' 

The Zl = 1 plane. __ ,ol-r--

x' 

The point [Xl y' Zl] has. by this division, been "projectedll into point P in 

the plane Zl by a projection ray through the origin of coordinates. 

x'v' The coordinates of P in this Zl :0: 1 plane are given. by >!- 1, and 
Zl Zl 

the resulting figure, of which this is a typical point, is two dimensional. 

We often refer to the coor dinates [Xl y' Zl ] as the homogeneous coordinates 

of a point in two dimensions. They are also the ordinary coordinates of a 

point in three dimensions. 

Consider the equation 

Ax+By+C : 0. 

This is the inhomogeneous equation of a line in two dimensions. In vector 

form it is 

[x y 1) A : O. 

B 

C 

If C is not zero, this can be rewritten: 

" 

D 

J 
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A 
C 

= O. 

B 
C 

1 

and this is as meaningful as the first form. But we now wonder whether by 

the artifice of making the equation homogeneous. we might not be able to 

obtain some useful generality. So we write 

[x y w] A = 0, 

B 

C 

We have now made the point-coordinate vector homogeneous by introducing 

the third coordinate w. The ordinary coordinates of a point are always 

obtainable. because 

x=:£ andy =l, 
w w 

But we have an added advantage. because if w is zero. the point [x y ' 0 ] is 

a point at infinity. 

The two factors of the matrix product have special significance. The 

vector [x y w] is a paint - coordinate vector; for ABC fixed, all number 

. triplets that satisfy [x y w] A ;: 0 are coordinates of pOints on a f ixed 

B 

C 

line. Conversely, if [x y w] are three fixed numbers, then all number 

triplets ABC that satisfy the equation represent lines through the fixed 

point. For this r eason. we refer to the transpose of the vector [A B C] 

as a line vector. consisting of the line coordinates A. B. and C. When 

C ;: 0, the line passes through the origin and we have 
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[x y w] A = Ax + By = 0 as we might expect. 

B 

o 

We also have, for w = 0 

[x y . 0] A 

B 

C 

= Ax + By = O. 

Since the ordinary coordinates of a point are given by X = 

Y = ~ • we shall modify the notation slightly in what follows. 
w 

write, for point vectors 

[wx wy w] instead of [x y w] 

x 
- and 
w 
We shall 

In this way, we shall be able to keep track of the ordinary coordinates of a 

point; we shall consider wx and wy as biliteral symbols throughout all cal

-- cillations, and shall perform the operations x = ~ . and y = ~ only at w w 
the very end. If, as will sometimes happen, w = D, then we shall not 

attempt to perform thi:; division, but will accept the numbers wx and wy as 

our result, and we shall know in this case that the pOint in question is at 

infinity. 

Now consider the transformation 

[wx wy w] abc = [WI x' wry' WI] 

d e f 

g h i 

This may be thought of either as a three-dimensional origin-fixed trans ... 

formation, in which the ordinary coordinates of a point are wx. wy, and w; 

or on the other hand it can be thought of as a two -dimensional transforma

tion in homogeneous coordinates. In this latter case, the transformation 
\ 

carries one plane figure into another. 

" 

) 
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In homogeneous coo~dinates. the matrix of point vectors 

10 0 

010 

o 0 1 

represents the point at in~inity on the x axis. the point at infinity on the y 

. axis. and the origin of. coordinates in the plane w = 1. After the transfor

mation, these three points become 

" 

abc 

d e f 

g h i 

and. if c, f. i are not zero, the points have ordinary coordinates 

in the plane w' = 1. 

a b 
c c 

d e 
f f 

!i h 
i i 

I 

1 

1 

Let us now consider the transformation of three points into three other 

points: 

, , 
XI YI I Wl Xl WI YI WI 
, , 

I T Xz Yz = wzxz wzYz Wz , , x, Y, I W3 X j w3Y3 W, 

x\ Y\ I 
-I 

WI Xl WIYl WI 

T = , , 
I Xz Yz wzxz wzYz Wz 

, , 
x, Y, 1 w)x) W3Y3 W, 

We can invert the first matrix. The second matrix consists of or

dinary coordinates 
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I 

Xz Y2 1 

x) Y3 1 

and three homogeneous coordinates Wl' W z and w]. These are unknown. 

as yet. even though the desired positions of these three points is specified. 

We can choose any numbers we please for WI. WZ , W3' including zero, if 

we wish, and then the transformation T will be defined. For some such 

choice of the WI 5, a fourth point [x~ y~ 1] will transform 

[w"x" w"Y. w.l. in a unique way. This suggests that we deliberately 

choose such a fourth point, and cause it to transform into some desired 

position. This will give us infOt'matian about the quantities Wi' wz. and W3' 

A numerical ex~mple will be illuminating here. Let us transform the 

three points 

o 0 I 

o I I 

I 0 I 

into themselves. These are, respectively. the origin of x'y' coordinates, 

the unit point on the yl axis. and the unit point on the Xl axis .. We have: 

o o I 

T = 0 I I 

101 

-I o o -I o I 

o w, w, = -I I 0 

100 

The transformation T is only partly defined. 

o o 
o Wz wz 

w, 0 w, 

For the fourth point, take [x~ 
, 

y. I] = [I I I] and let it transform 

into the point with ordinary coordinates [x" y.. 1] = [2 2 1] . 

. The homogeneous coordinates of the fourth point are 

We shall drop the subscrIpt frorn w". It will turn out that we could have 

'- set w. = 1 at this stage, but we shall retain it for the time being. 

" 

~ 
V 
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We now have the matrix equation of the transformation 

.. - w[2 2 I] = [I I I]T = [I I 1] -I 0 I 0 0 w, 

-I I 0 0 Wz Wz 

I 0 0 w, 0 W, 

= [-I I I] w, 0 0 0 0 I 

0 Wz 0 0 I I 

0 0 w, I 0 I 

w[2 2 I] 0 0 I 
-I 

= [-I I I] w, 0 0 

0 I I 0 Wz 0 

I 0 I 0 0 w, 

On the left, we have 

w[2 I] 
-I 

= w[2 2 0 0 I 2 I] -I 0 1 = w[-3 2 2] . 

0 I 1 -I 1 0 

1 0 1 1 0 o · .-

On the right, we have 

[ -I 1 I] w, 0 0 = [-WI Wz w,] . 
0 Wz 0 

0 0 VI, 

This leads to the vector equation 

w[-3 2 2] = [-WI Wz w,] 

from which 

W, = 3w 

Wz = 2w 

w, = 2w . 

The Transformation T is now given by 

-I 0 1 0 0 3 2 0 -I 

T = w -I 1 0 0 2 2 =w 0 2 -I 

100202 o 0 3 
" 
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There is an arbitrary constant w involved. which we shall continue to 

carry along. We check the transformation, to see whether it does indeed 

transform the four pOints into their desired positions: 

o 0 1 w 2 0 -1 = wOO 3 

o 1 1 

1 0 1 

1 1 1 

o 2 -1 

o 0 3 

022 

202 

221 

The ordinary coordinates of the four points are seen to be 

o 0 1 

o 1 

1 0 1 

221 

a result we obtain by dividing through each row of the matrix by the cor

responding homogeneous coordinate in the last column. The common multi

plier w has had no effect on the result, and we now see that we could have 

set it equal to 1 at the outset. 

Now let us see w~t this transformation does to lines in the plane. 

The equation of a line before the transformation is 

[WIXI wlyl WI] A' = D. 

B' 

C' 

After the transformation, points are transformed according to 

[.v'xl wry' wl]T = [wx' VfY w] ~ 

w~ can preserve the linear equality if we write 

-1 
[w'x' w'y' w']T T A' = 0 

B' , . 

" 

o 

) 
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because 
I 0 0 

-I 
TT = 0 I 0 

0 0 I 

the identity matrix. Introducing this matrix between the two vectors does 

not destroy the validity of the equation. But then 

-I 
T A' = A 

B' B 

C' C 

the transformed line vectrr. After the transformatio"! we have a new 

valid linear equation 

[wx wy wl A = 0 . 

" 

B 

C 
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Now 

o -If [3 
Tel = [~ 0 

~] ~ -~ = ~ ~ 3 
0 

Let us apply the transformation to the line at infinity of the original 
system, and find the equation of the transformation of this line in the 
new system. 

The equation of the line at infinity is 

[w'x' w' y' w' {~ J = 0 . 

This yields w'e'::o 0 , and since C' f 0 (not all the homogeneous 
~oordinates may be zero, otbe~wise the point or line so def~aed is indeter
minate) we have \or' = 0 ; this is to say that all x' and y' ordinary 
coordinates that satisfy the equation are infinite. 

Now [w'x' w.iy' w'] T = [wx wy wJ , and 

The equation of the transformation of the line at infinity in the 
original system is 

or [x y lJ [~] = O . This is evidently a local line, with equation 

x + y + 2 = 0 or y = -x - 2 The figure showing the transformation will 
bring out several interesting points. The original four points are 
OPQR' which have been transformed into OPQR . Note that before the 
transformation, lines OQ and PR' intersect at a point at infinity, 
since they are parallel . After the transformation, they are tbe lines 
OQ and PR , and intersect at the local point T . Similarly, OP 
and QR' interser:t at infinity, but their images OP and ~ intersect 
at the local point S Indeed, Sand T are the images of the in
finite1ydis'bant points on the x and y axes, respectively . We have; 
for ~hese points, 

., 

., 

D 
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Thei r ordinary coordinates are 

/ 

The image of' the line at 
infinity of' the original 
OPQR ' system . 

and this is precisely what 

the linear equation requir p.s , and what the figure shows . 

FOUR DIMENSIONAL TRANSFORMATION AND THREE DI MENSIONAL 
PROJECTIVE TRANSFORMATIONS 

We have seen, in the foregoing, that a 3 x 3 matrix can 
represent, on the one hand, a transformation of coordinates in three 
dimensions in which the origin remains fixed; but we have seen that if' 

• 

we r egard one of' the coordinate components of the point vector [wx wy w] 
as a homogeneous coordinate, (say w) • Then the 3 x 3 matr i x repre
sents a transformation of coordinates in two dimensions , and maps planes 
i nto planes . 

Tre process of' dividing the components of the vector by the 
chosen w coordinate is essentially equivalent to projection of the . 
space\ figure by rays or lines through the origin, follt)wed by sectioning 

" 
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the resulting bundle of rays by the plane w = 1. Thus the final 
result is a section of a three dimensional structure consisting of rays 
through the origin to all points of the three dimensional object. 

We now extend this notion by an extra dimension. Consider 
the vector 

[wx wy wz w] 

This vector can be thought of as descriptive of a point in four dimen-
sio nal space, or it can be thought of as consisting of homogeneous 
coordinates descriptive of a point in three dimensional space, whose 
ordinary coordinates are obtained by projection and section . The ordinary 
coordinates are 

[~ w. 

wz 
w 

;] " [x y z lJ 

Now w = 1 is no longer a plane, but is a section of a four dimensional 
space in which one of the degrees of freedom has been removed; it is 
therefore a three dimensional section of a four dimensional space. 

Transformations are accomplished, as before, by multiplying 
point vectors by 4 x 4 matrices. 

[x ' y' z' 

In this transform&tion, the upper left partition of the matrix contains 
nine numbers that describe shear and scale change transformations; the 
bottom row repres~nts a translation of coordinates; the fourth column 
of the matrix has temporarily been specially chosen . 

The matrix can be constructed by performing first the shear 
and scale change transformation, and then following this by the trans
l ation: this is shown by the matric product 

" 

i 

) 
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We can now proceed to investig~te the fourth column of the matrix, to 
see what effect entries in this column will have. 

We take the matrix product 

1 {~ 
0 0 

~l = 
[x' y' z ' 1 0 ·[wx wy wz 

0 1 
0 0 

When we perform the multiplication on the left, we obtain 

[x' y' z'(oz' + 1)] == [wx wy wz w] , 

and division by w ; (nz' + 1) yields 

[x y z 

This relates the new three 
original coordinates x' 

1] = [ x' 
oz'+1 

dimensional 
y' z' . 

l' z' 1] oz'+1 n2o'+1 

coordinates x y 

w] 

z to the 

The transformation represents a mapping of one three-dimensional 
space into another . The mapping is accomplished by a transformation 
in four dimensions, followed by a projection and section to yield a 
three-dimensional space corresponding to w = 1 • 

Observe that the result is a three-dimensional space, and not 
a two- dimensional space. 

We can make some qualitative re~arks about the details of the 
transformation. The matrix 

100 
010 
o 0 1 
o 0 0 ~ l 

can as before be thought of as composed of four point vectors, describing, 
in homogeneous coordinates, the poi'nt at infinity on the x 
the point at infinity on the y axis) the point at infinity 
z axis, and the origin of coordinates . Then, since 

., 

axis, 
on the 
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we see that three of these points are mapped into themselves; 
point at infinity on the z axis maps into the point [0 0 
i.e., it becomes a l ocal point . 

but the 
1 1J ; 
ii 

point P' 
plane z' 
y' = 0 , 

y 

Consider , from 
in an x ' y ' z ' 

= 0 We take 
z' = - a > 

z - --

P 

a different viewpoint , the projection o~ a 
coordinate system, i nto a point P in the 

the center of projection to be at x' = 0 , 

P' 

projection. 

x In the figure , the y 
axis appears as a point . 

By simi l ar t r iangles, we can obtain an expression for the ratio of the 
vectors from the center of projection to P and p' as follo~s 

which leads directly to 

Now P' = [x' y' z'+a] 

P P' - = 
a z' +a 

P = _ a_ P ' 
z'+a 

= 1 
z' 
- + 1 a 

P' • 

and p = ~ 
x' 

~' + 1 

y' 
z' - + 1 a 

(Note that these vectors are from the center of projection to pI and 
P J not from the origin of coordinates.) 

" 

, '> 

) 
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We see that if we set .1 = n , the matrix 
a 

r epresents the transformation for the coordinates x and y . This is 
one possible interpretation of the matrix. We now see that it is descr~
tive of a perspective picture of the object point (or points) when imaged 
in the z ~ 0 plane; we might properly refer to this plane as the 
picture plane of the perspective construction . 

Such a projection is sometimes called a "one-point" perspective , 
since all lines parallel to the z axis will appear to converge, in 
the picture , on the point [x y] = [0 0], the origl.n. This point is 
the so- called vanishing point of the picture . But lines· not parallel 
to any of the axes will also have local vanishing pOints in the picture; 
for this reason, the term "one-point" perspective is somewhat misleading . 

We can make tr.e picture- projection process more general if we 
begin by performing a rotation on the object, followed by a translation, 
and finally perform the projective transformation just described. 

A perspective pictorial that is in common use is the so called 
"two point " perspective , in which parallel horizontal lines converge in 
paints on the "horizon line" of the picture. We shall examine such a 
perspective. 

Suppose we wish to construct a picture of a unit cube , situat~d 

in space beyond the picture plane . We imagine the observer to be at point 
S , a unit in front of the z = 0 picture plane. This puts him at 
z = - a on the z axis . The pure perspective t ransformation matrix is 
completely fixed by this number , as we have seen . 

I n or der to perform the transformation, we need to establish 
the coordinates of the corners o"f the cube , and in order to do this, we 
need to define the cube in some way. We begin by attaching a coordinate 
system to the cube itself, prefer~blY in such a way ad to make it easy 
to describe the positions of the corners; then we establj sh the transfo.nna
tion that relates the cube coordinate system (call it ~he [x ' y' z ' 1] 
system) to :'he observer I s coordinate system [x y z l] • 

We might , for instance , attach a coordinate system to 'the cube 
so that three adjacent edges meeting in corner lie along the x ' y' z ' 
axes . Then the coordinates of the corners of the cube may be written 
down immediately, as we already know . 
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Suppose the observer is situated above the cube , looking down 
on it; and suppose the cube bas been turned until its ~ront face makes 
an angle of 30° to the picture plane, but the cube rests on a horizontal 
surface. This is the customary orientation for what is known as a 
"30°_60° two-point perspective._ n 

A sketch will make clear the relative positions of observer 
and cube : 

z 
z 

z' 
- - - -r-----j 

x ' 

----t------j 

x 

s s 

The cube coordinate system bas been rotated 30° about the vertical y' 
axis, with respect to the observer's coordinate system. Then after the 
rotation it bas been translated so that the original position of its 
origin , [0 0 0] , bas become [0 - 2 1] in x y z coordinates . 

of unit 
y and 

" 

The rotation matrix can be deduced from the new ana old positions 
points on the x z and x ' z ' axes, as follows · (we neglect 
y' axes , since rotation takes place about them . ): 

.. 

:'1\\ u · 

) 
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z 

z' 

x ' 

x 

in the x ' y' system. 

I n the x y system, the matrix o~ coordinates becomes 

For the 
part of 

where c and s 
of op and .0'< 

are the lengths of the 
on the axes as shown . 

30° rotation, c::: cos 30° 
our matrix is now J for three 

and s = sin 30° . 
dimensions : 

projections 

The rotation 

Note that rotation about the y axis causes 

the middle roW' and middle column of the matrix to have special values . 
Multiplication of' [x' y' z'] by this matrix obviously yields a new 
x and a new z , but Y = y ' and is unchanged. 

If the origin of cube coordinates were translated to the point 
[1 m nJ in the observer's coordinate system, the translation part of 
the matrix would be this vector , and would become part of the bottom 
row of the transformation matrix . 

I n our case , 

[1 m nJ = [0 -2 1] . 

For\the perspective trans~ormation, let the distance ~rom the observer 
to the picture plane be a = 1. Then the combined matrix for the 
trans~ormation is 



, . 
. , 

'-, 

" 

We can also fied the "vanishing 
at infinity on the x' and z I 

[~ o 0 
o 1 ~J and l~ o 

o 
o 
1 

-33-

pOints . n These correspond to the points 
axes; their matrix is 

o 
o 

from which the ordinary coordinates turn out to be 

h! 0] - - 0 c 
in the picture. 

NOw s = .5 , c = .86 for a 30° rotation. To two significant figures , 
the eight points of the cube and the two vanishing points have the 
following coordinates in the picture : 

0 -1 0 
-.18 - ·70 1 

0 - .50 2 
- .18 - .35 3 cube corners 

. 34 - .80 4 

.11 - .60 5 
· 34 - .40 6 
.11 -. 30 7 

y 

G1.73 
- ·57 ~J vanishing points 

, 



-

'~ 

-34-

The picture will, from an average viewing .distance of ten inches, seem 
to be too tall for a cube . This is because the true viewing position 
for this picture is one unit directly in front of the origin of coordinates 
on this page. When viewed from this position, the vertical edges of the 
cube will appear properly foreshortened. Of course it is difficult to 

' focus (or accommodate) the eye to such a short viewing distance, without 
the assistance of a magnifying glass . However, if the reader can find 
a glass with a focal length of about two or three inches, he can verify 
that the picture, viewed from the proper point, does indeed look like 
a cube. 

THE THIN LENS EQUATION AND ITS ASSOCIATED PROJECTIVE TRANSFORMATION 

For thin lenses, the equation 

describes the relationship of an object point at z', to its image 
at z, in terms of the focal length of the lens, f. Measurements 
are made from the lens, for both z and z' . If we solve this equa
tion for z as a function of z' , we obtain 

1 = 1 
z f 

z = fz' 
z '-f = 

z' 
z' - 1 
f 

This expression is very similar to the expression 
purely geometric interpretation of picture-making. 
we have also the relationships 

z 
zr 

The matric form of the photographic transformation 

[x' y' z' 

ll~ 
0 0 

+~}] 
= [wx 

1 0 

\ 0 1 
0 0 -1 

" 

found for our previous 
In the optical case, 

is therefore 

"'Y wz wl 

" 

) 
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From this, 

[wx w J = [x' z' 1) J wy wz y' z ' (,..- -

or [w y z 1J = [ x ' ~' z ' 

1] z' z' - 1 z' - 1 - - 1 
f f f 

It is interesting to see tbe limits of the object space compared to the 
limits of the image space 

Ima..ge Space Ob,je,ct S.p.a,c,e 
z z ' 
0 0 
~ f 

f ~ 

This table presents the well- known conjugate focal plane behavior of 
lenses. Now return to the transformation represented by bur previous 
derived matrix: 

From this , 

structed: 

z' z = ,;T"-.,.. 
~ + 1 

Here , object- image space comparison table may similarly be coo-

Image Space 
z 
o 
a 
l': 

a 

Object Space 
z ' 
o. 

a 

~ 

In this case , all of the positive half-sp~ce in the object "domain is 
imaged in the finite band between 0 and a 

Both of these transformations are sometimes called "relief 
perspectives. 11 We usually think of the photographic process as producing 
a plane image of a three- dimensional space, but a moment ' s reflection 
remi nds us that we must focus cameras; this implies that we must put the 
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photographic film plane in the proper position in the image space to 
correspond to a particular plene in object space. This is a physical 
confirmation of the remark made earlier, that the general projective 
transformation images 3-space into another 3-space. 

There is however a 
into the 2-space of a plane. 

special transformation that carries 3-space 
It is represented by the matrix.: produ·ct 

[x' y' z' 

ll~ 
0 0 
1 0 
0 1 
0 0 

Then, performing the multi-plication, 

[x' y' z' z 'J = 

We see that w = z r , and 

x' x =
z' 

y = L 
z' 

n = [= 
wy 

(= wy wz wJ 

z' z=-=1. 
z' 

wz wJ . 

. 

The matrix has a row of' zeros. Therefore its determinant vanishes, and 
it bas no inverse. This is to say that once the transformation has 
occurred, there is no way to obtain 3-dimensional information back again 
from the plane figure. But this is obvious. 

AXONOMETRY 

A special case of the projective transformatio .. matrix puts 
the projection point-at infinity. Then the picture transformation 
becom.es simply the identity matrix, since 1. 0;; O. We need pay atten
tion on1J to the rotation-translation part ~f the transformation. 
Furthermore, the translation part of this matrix .merely serves to move 
the origin, and in this case it becomes a trivial part of the trans
formation. We neglect it, and ~ay attention only to the rotation part 
of the matrix. We can omit the fourth homogeneous coordinate, and con
sider only such expressions as 

(x' y' Z'l: e 
y zJ . b 

h 

1 

" 

o 

) 
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projections 
[x zJ or 

can be obtained 
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from this relationship by plotting 

The trans~ormation and the associated plane projections include 
all possible cases of what is known as "parallel projection, tr and in 
descriptive geometry this is called tlaxonometry; II the pictures of an 
object made in this way are called l1axonometric projectiops. n 

The general class ofaxonometric projections break down into 
a number of special categories: 

TRI-METRIC projections, in which the transformation matrix is 
a pure rotation, and orthogonality of the transformed 
aY~S is preserved . 

DI- METRIC projection is a special case of tri- mettic 
projections, in which two of the axes are 
equally foreshortened. 

ISOMETRIC projection is a special case of di-metric 
projection, in which- all three axes are 
equally foreshortened. This of course leads 
to a unique matrix. The other two more 
general cases have certain arbitrary char 
acteristics. 

OBLIQUE PROJECTIONS, in which the transformation ·matrix no longer 
preserved orthogonality of the coordinate 
axes . 

CAVALIER projection is a special case, in which two axes 
appear perpendicular in the picture , and are not 
foreshortened; the third axis is inclined with 
respect to the horizontal axis and is not fore
shortened . 

CABINET projection is a special case of the cavalier pro
jection; foreshortening by a factor of 1/2 occurs 
to lines parallel to the third axis. 

In order to preserve orthogonality of the axes in space, the matrix must 
repr~sent a pure rotation . Ordinarily, in engineering use , drawings of 
objects preserve verticals of objects as verticals on the drawing. We 
see pictures of rectangular objects as 
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r ather than 

unless we really mean to have the object tipped . 

We can obtain the full rotation matrix, subject to this 
restriction, by two simple rotat i ons compounded, as follows . 

z 

z ' 

a 

I 
I b 
I 

x ' 

x 

We rotate first about the verti~al y axis ; the matrix is, by inspection, 

[~ ~ ~l as we have seen in our previous discussion of projective 

-b 0 ~j 

transformations . The unit points P 
in the observer ' s coordinate sys~em 

and 
[x y 

Q now have new coordinates 
zl ' 

We next 
(Not the x r 

propose 
axis.) 

to r otate the resulting figure about the x 
axis 

rotation : 

" 

We take a side view of the state of' affairs after the first 
\ 

· , 
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\ ~--~ 1 \ / 

R 
\ 

-e . 
\ 

\ / , ./ 
d / 

\ da Q / 
/ 

\ . // ~, \ 
\ db P / 

/ , . 
\ / 

\ // t I, i 
/b a 

"2 ---

cb ca 

Before the second rotation, the 'three unit points have coordinates 

After the rotation, these points have coordinates which remain unchanged 
in x (since rotation takes place about this axis) but change in y 
and z . 

The new coord:nates of R are, by inspection, 

[0 d -e) 

Similarly, the new coordinates of Pare 

[ a be bd) 

and the new coordinates of Q are 

[-b oe ad) . 

This is the result of a second simple rotation, represented by the matrix 

~ 
0 

-TI d 
e 

Inde~dJ 

~~ 
0 

~~ 
0 -j= I~ 

be 

~~ 
as we might have written 

1 d d 
0 e d - b ae ad 
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immediately . Note the zero in the first column of the matrix. This 
represents the transformed x coordinate of the unit point R on the 
vertical y axis; it remains on the vertical y axis during the trans
formation, and the condition on vertical lines is thus satisfied. 

The individual rotations preserve orthogonality, and if both 
a2 + b2 ;:: 1 , and also c2 + d2 = 1 , then the'y preserve the size of the 
object as well. Consequently the combined matrix should have the property 
that lengths are preserved after the transformation . 

Consider the length of the vector from the origin to the unit 
point, P. and the length of this same vector after rotation. 

We have, for this ler,5th, the vector "scalar" prod-..:.ct 

[a be 

which shows that this length is unchanged. 

DI-METRIC PROJECTIONS 

As we have noted, the rotation trans~ormation yields the 
class ofaxonometric projections known as TRI-ME~IC projections; all 
auxiliary views obtained in engineering descriptive geometry are tri
metric projections . It is wel~ known that any view of an object can be 
obtained in descriptive geometry by two auxiliary views. This amounts 
to performing two rotations on the object . 

make two 
for the 

. If we impose the condition for a di -metric projection, (to 
of the axes equally foreshortened) we must have equal lengths 
x y projections of the unit point vectors on the chosen axes . 

The matrix of coordinates of the unit points is 

U be ~~] x axis unit point 
d y axis unit point 

ac ad z axis unit point 
\ 

If we select x and y axes to be equally foreshortened , we can write 
the equation of lengths of these axes in the projection: 

" 

' . , ' . 
. , 

• 

D 

J 
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But a2 = 1 - b2 and d2 = 1 - c2 • Substituting and carrying out a 
littl e algebra, we get an expression for b in terms of c : 

c2 

l _c2 

We can always choose ·c arbitrarily, and then 
found , thus completely defining the matrix for 

b,a,and 
the di-metric 

d can be 
projection . 

In one such very commonly used projection, an additional 
requirement is that the third, z axis, shall be foreshortened by a 
factor of 1/2 . This implies that , for this axis , 

2 2 2 ' 1 
b + a c = '4 

Thi s is suff icient , when combined with the previous equation, to yield, 
after a little algebra, 

2 1 
c = '8 . 

Using this , the entire matrix i s completely and uniquely defined. 

ISOMETRIC PROJECTIONS 

Another very much used special case of axon orne try is the one 
in which all three axes are equally foreshortened . (TRI- METRIC projec
tions are often innocently referred to as "ISOMETRIC" projections , even 
by some engineers who ought to know better . It makes understanding of 
exactly what is being discussed a little difficult . ) 

If we impose this condition on the pr ojected lengths of the 
unit vectors on the axes, we have; for the dimetric, 

as already determined, and the new condition for the z axis: 

Afttr a little algebra, we can combine t"lese two equat ions to learn that 

J3 c =-
3 

or 



-42-

Again the transformation matrix is completely and uniquely defined. 
The projected x axis makes an angle with the "horizontal" axis of 
the picture coordinate system defined by 

TAN 0: = be 
a 

It is easy to find that 2 1 =a='2 ' so that 

Hence a 
METRIC , 

= 30° J a very 
All three axes 

well 
have 

known 
equal 

result. 
scales . 

The projection is 180-

OBLIqUE PROJECTIONS (Cabinet and Cavalier) 

The requirements here for these two special cases of oblique 
projections is that one pair of the axes (say x and y) remain mutually 
perpendicular, and not foreshortened. The third z axis is to make an 
angle of 45° with the "horizontal" and is to be foreshortened by a factor 
m, (=1 or ~) , 

The matrix of the transformation is, of course, simply 

The third column of the matrix is 1mmaterial, since we are not going to 
use it . 

This last matrix is of course trivial- - it is scarcely necessary 
to use it to compute points in the transformation; nevertheless it has 
been exhibited to show that all these special cases fal l under the general 
theory . 

If the picture is being plotted in x y coordinates, and 
the transformed z is simply ignored, this is equivalent to multiplying 
the transformation matrix by a projection matrix: 

[x y z]A=[x' y' z'] 

a"ld then 
\ 

" 

" , 
, " 

, , . , ' " 
• 

D 
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[x' y' z'] p= [x' y' 0] 

or 

[x y y r] • 

Strictly speaking} this is the correct interpretation of the axonometric 
projections. Note that t~e matrix which is the product of AP has a 
vanishing determinant; hence, as we might suppose f r om geometric considera
tions, it has no inverse; we cannot regain space information about an 
object from a single view. 

Algebraic geometry has a theorem about axonometric projections : 

Every affine transformation with vanishing determinant 
is an axonometric projection. 

The word lIa:ffine" refers to those transformations which can be described 
by any 3 x 3 matrix . 

TRANSFORMATIONS BY COMPUTER 

The foregoing dl.scussion has been carried out in detail, and 
much of the detail is.superfluous when we perform transformations by , 
computer. For instance, the oblique projections (cavalier, cabinet, and 
others) were devised fo~ convenience in the drafting roam; they make it 
easy to construct, from working drawings of objects , pictures that are 
more easily understood by the uninitiated than the working drawings 
themselves . But they are not very good pictures . I sometrics are better, 
and again are very easily constructed by graphical procedures. Dimetrics 
are better still, and of the entire class, trimetrics , the hardest to 
construct , are the best representations short of perspective pictures. 
But the computer can construct a tri-metric picture of an object as 
easily as any of the less desirable forms, and it is possible to implement 
the m~trix loading and multiplication so t hat the object can be rotated 
in the picture in "real-time. II 

" 

, , 
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Perspective pictorials take a little longer, since the 
homogeneous coordinate must be divided out , and division is ordinaril y 
a l ong process , relative to addition and multiplication . 

This concludes the discussion of transformations . 

" 
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' Lawrence C. Roberts 
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lexington, Nassachusetts 

The representation and processing of graphical information has been 

found to be greatly simplified if a system of homogeneous coordir~tes is used 

in conjunction with the 8:pproprlate rna trix techniques . The f'oll.mting notes 

are an attempt to set down the matrix forms and methods which have been found 

useful in the representation and display of graphical data . This work is an 

extension of material already presented as a t~esis . l 

The specific i telT'.5 of interes t are points , lines, COllic sections, 

planes, and quadric surfaces in two and three dimensions. However , th,: 

techniques are not limited by either the dimension or order of the space, and 

can be extended in a straightforward manner. The use of homogeneous coordinates 

throughout is extremely important in order to maintain the simplici ty of the 

results although its original purpose was to allow perspective transfcrrratioTIs. 

It is assumed that in any graphical system there exists a data structure (such 

as the CQRlI,.L list' struct'ur~ Used at Linco'11i laboratory) in addition to the 

matrices which contain the ir~ormation about the associatiop~ between elements. 

This structure is a separate subject and will not be discussed herein . 

Homogeneous Coordinates 

The homogeneous coordinate technique is simply the representation of 

n-space objects i:t (n+l) - space in such a .... ,ay that a particular perspective 

projection recrea~~s the n-sp~ce. It can also be thought of as the addition 

, 
Operated with support from the U.S. Air Force * 
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of o.n extro. coordin:l.te to each vector, a scale factor, so that the vector has 

--' the same meaninG after multiplication by a constant. For example 7 in 2-D a 

point [a, bJ • .rould be entered as [a, b , ~J and then manipulateq.. as a 3-D 

vector. For display of a point, the 3- D vector [x, y, '<rJ would be transformed 

back to 2 - D by: 

a = x/w , b = y/w 

Thus, the w component is a scale factor and can often be thought of as a 

dependent variable. 

The 3-space created by a homogeneous treatment of 2 -D points and lines 

consist~ of lines and planes all passing through ~he origin . Thus, a single 

3 x 3 transforw~tion matrix may be used to rotate and translate the pOints in 

2 - space as well as allowing perspective transformations. 

Notation 

A consistent notation will be utilized throughout to minimize the 

number of comments required. The follOWing conventions 'Hill be followed: 

" 

Matrices: 

Vectors: 

Singl e Variables: 

Always capital letters but sometimes with 
subscripts . 

row vectors: p, r, v 

cohnnn vectors: y, A 

f'ree parametric variables: s, t 

specific coordinates: x, y, z, w 

other variables: a, b, c, d, 

The transpose of A is T ... :.~i tten A' . 

2 

e, f, g , h 



2- D Point ~ ~ Representation 

A. A point in tl).e space is a 3- element row vector : 

v = [x , y, w] 

w ~ l 

Any constant multiple of v represents the same point . 

B. In line in the space is represented by a coltnnn vector: 

a 

Y=b 

c 

);l..-tlN~ 

{;i'L , 6-/\J~ 

c. The scalar product o f a point and a line produces? number which is 

zero, i f the point is on the line, minus if it is on the side and p l us , if it 

is on the other side . ... ' . ..--. ( ;~ '(I ..... -. :J . , 

Line Equation: Vy = 0 (ax + by + ow = 0) 

D. The distance from a point to a line is indicated loy the product Vy 

-b ut must be normalized if absolute distance is required: 

" 
'- --'-. 

.~ L2 2 
Dis tance from v to Y: d = ( vy)/ w .. r + b ___ _ 

- J- -" 
."J':.(-.J C' / l .'"l<, ·:'( ;:.' ~ " -,, 

This distance i s still a signed quantity indicating which side of the line 

the point is on. 

E. A transformation H of the space is a 3 x 3 matrix. 

The transf'ormed point (v l) is obt ained : v1 = vH 
The transformed line ( Yl) is obtained : Y1 = H-1 Y 

Thus the line equation 1s unchanged: v l VI = vy = 0 

" .~ ,'" ~ I..! 

3 ., 

, 
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2-D Points and Lines 

A. Find line y given two pOints Vo and vl : 

B. 

, 

, (XOWl - X1WO) , (XlYo 
,,' " X V (C-/1..v!,J 
, :: Vo " ' 

Find intersection v given two lines Yo and YI: 

, 
y = 
o 

, 
/ .1,_ /,' <' t 1..... ....... , -. - .. 

c. Find transformation T which translates space so point v becomes the 

origin: 

v = [x, y, wJ 
T(v) 

D. Find line y which it:i normal to line A and passes through point v: 

1. prepare T(v) 
K~:;;-'I 

-, 
" 

f 
2. y = T(v) K , C-

"'), (-

E. Find line y "'hieh is parallel to line A and passes 

y=T(V)i', 

4 
" 

I 
.0 
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.0 
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Implicit Conic Representation vCv' = 0 C:(3x3) 

Parametric Conic Segment Representation v = rA 

free parameter t 

L Since the terms of r are dependent on t there is 

quadratic relation which states the constraint 

I - 2.i A. ...... 
I ' 

on r . 

A:(3x3) 

r = [t2 , t, 1] 

rKr' = 0 , . where : K = 

., 

2. Due to relation (1) it is possible to determine C from the 

parametric form . 

C = A-1 K A-1 ' 
-, 1·1 
C.·AK;t . 

3. other parametric forms. It 1s often useful to use some 

transformation J of the parametric vector r in the following way : 

v = pB where: 

then: 

thus : 

p = rJ , 
pI<!p' = 0 where M = J-l KJ-1 f 

C = B- 1 ME-II 

4. Tangent Point 'I'ransf'orm: A useful parB.l'C!:!tric form is one in which 

the rows of B are the start point, end point, and the intersection 

point of' the tangents from these points " 

v = pB 

v _ -.! ,.: : -... 

~ - ".... . " . ~ I ! 

, ' . 
~L 

5 
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x 

Projection of Parabola Into a Circle in a Homogeneous Coordinate System. 

The parabola on 
of the circle . 

" 

the 
The 

slanted surface is used as a parametric representation· 
projection is from the origin onto the w = 1 plane . 

7 



thus: 

Now! 

2 . 
k (v Cv') = - k (v1cv') t t -.: 0 

v 
o 

(sign determines segment) 

d. I t' we want the basic parametric form: 

e. NOTES: 1. The relative scale of Yo and vI is free but 

affects the speed of movement along the arc. 

For minimum velocity change along the arc they 

should be e:aled so that v10 == wI before starting 

the process. (v == [x, y, wJ) 

2 . Parallel tangents work without prob~ems. (w
t 

== 0) 

2-D Conic, POint, Line Relationships 

A. The tangent line Y to a conic C at a point v on -f:he conic is given by: 

Y == Cv ' 

B. The polar line Y of a pole v with respect to a conic C is related 

just as above: 

y = Cv' 

" 8 
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However, when v is not on the conic the polar line found has the folloHing 

properties : 

1. Y has the same slope as the conic at the conic's nearest point '\ 

to Y. That is it is perpendicular to the nonnal from v to C. 

2. Yalso intersects C at such pOints where tangent ~ines can be 

drawn to C through v. 
x 

Example: 
-"7T"'-- =v 

~ 
0 

-j C = 1 y 

0 
C 

v = [ 1 2 1 J 

, 
Y = Cv' = [ 1 2 -1 J 

3. The polar lines of all points on Y go through v. 

!'D::'. ., .. ~" ') 
. , c.... .. ..)~~ , , 

C. When the matrix C has an inverse C-l (i .e., ~t represents a curve, not a 

. line) then the pole may be found given a polar line Y. 

\ 

" 

Pole: 
, -1 

v = Y C 

1. The pole of the line at infinity is the 

center of the conic : 
v = [0 0 1 J C- l 

2. Given a line tangent to the conic then the pole is the point of 

contact . 

9 
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D. Intersection of a line Yand a conic C: Find the intersection 

poi nts Vj (0, 1, or 2): 

1. Prepare a parametric rratrix for the line Y 

such that v = [t, 1J P 

Now: Y = [ a be ] 

or 

lies on the line for all t. 

If b of 0 or If a=b=o 

P = b: : :J P = [: : j 
2. Now compute the terms of the quadratic equation: 

a b 
(at

2 
+ 2bt + C = 0) PCP' = 

b C 

a. if a = o then v = [ - c, 2b ] P 

b . otheI'W'ise: l~= - b ± Jb2_ ac 

and: v
J = [k

J
, a ] P 

E. Intersection of two conics: 

Represent one conic as parametric : 

Represent other conic as implicit : 

10 
" 

v=rA 

vCv' = 0 

(b
2 

< ac ::J no intersections) 

(two solutions) 



Compute: 

. . 
~ 

[: b 

:] ACAf ~ d 

e 

, 

Solve: at4 + 2bt3 + (2c+d) t 3 + et + f ~ 0 for t j 

2 
t

j
, 1] Now: Vj ~ r j A where r. ~ [t j' J 

3-D Representations 

A. A point vector is as before but has one more coordinate: 

v = [x, y, z, W] 

B. A line or space curve can be represented; 
'- . 

1. Parametricly as before: 

v =rA 
2 

where r = [t , t, 1] but A is 4 x 3 

If higher than second order space curves are wanted, r can be 

extended to include more terms and A e"xtended likewise. 

2. AB the intersection of two planes or a plane and a quadric 

surf'ace . However, it is diff'icult to use this representation 

directly . 

C. A plane is now the i tern represented by a column vector : 

a 

.Y ~ b and a plane. equation is: v Y= 0 
c 

d 

11 



D. Any quadic surface (including planes) can be represented by a quadratic 

form as was used before for 2-D conics. Here the matrix F will be a 4 x 4. 

VFv' = 0 

There are four cano~ic forws of quadric surfaces under perspective trans

formation. These are the groups in which some transform H will transform 

Fl into F2 as belOH (congruence): 

Groups: 

1. Sphere, ellipsoid, elliptic paraboloid, hyperboloid of ~wO 

sheets. 

"2. Hyperbolid of one sheet, hyperbolic paraboloid. 

3. C.one, cylinder, hyperbolic sheets, parabolic sheet 

4. Intersecting, parallel, and sir.g~e planes " 

(Rank 3) 

(Rank 2) 

MOst calculations in 3-D are the same as they were in 2-D except that the 

dimension of' the vectors and matrices has increased. Also, it mus t be 

remembered that where lines and curves were conSidered before the corresponding 

manipulations are now for planes and quadric surfaces. 

3-D Coordinate Transformations 

Given a 4 x 4 transformation H· 

A. Points: VI = vH 

12 
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B . Planes : 

C. Quadrics: 

3-D Planes and Points 

A. The intersection of 3 planes Y
I

, Y2 , and Y
3 

is a point v. 

d1 b1 
c

1 
a 1 d

1 
c

1 
a

1 
b

1 
d

1 
a
1 

b1 c1 
v= 

~ b2 ~ b2 d2 b2 
c2 a2 c2 a~ a2 c2 L 

d3 . b
3 

c
3 , a

3 
b

3 
c

3 , a
3 

b
3 

d
3 , a

3 
b

3 
c

3 

B. The plane through 3 points is just as above except for the interchange 

of' (x, y, z , w) f'or (a, b, c, d) and YI f'or v. 

C. The distance !'rom a point v to a plane Y is: 

d = (vY) / w j 2 b2 2 a + + c 

D. A l'lane Y parallel to plane A. through point v: 

Y = T(v) J). T(v) = 

., 

v 0 0 0 

o '" 0 0 

o 0 W. 0 

-x -y -z W 

1 0 0 0 

.1= 0 1 0 0 

o 0 1 0 

o 0 0 0 



3-D Quadric Surfaces 

A. The plane Y tangent to a quadric F at a point v on the surface is: 

B. As before the above relation also defines the polar plane to a poin!0 

1 . A polar plane cuts the quadric surface in a conic section which 

is the outline of the quadric as seen from the pole v. This is very 

important because we want to be able to display this outline. 

2. The polar plane is also perpendicular to the normal from v to 

the quadric surface. 

C. Intersection of a quadric F and a plane Y: 

Since we normally wish to display the intersections we find 

it is convenient to find the projection of the intersection as 

seen :from x = co which we assume has been transformed to be the 

viewing point . Thus , we will find a 2-D conic matrix C as a result 

of the intersection. 

. l. Prepare: [b a 0 ol where Y' = [a b cd] 
P = -c 0 a :J -d 0 0 

. 2 . Now : ell:: PFP ' 

(Good unless a = o in which case projection 1s line A = [b Cd]) 

14 
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D. Outline of Quadric from x = CD: 

Since the pole x = 00 has a polar plane: 

'We can easily cut F with this plane which is its own first col~'1 to obtain 

the conic C describing its outline. This can proceed just as in part C 

above. 

, - There happens to be a particular simplification when the intersecti~ 

plane is a column from F. 

Assume first column of F is: y, = [a b c Ii] 

0 0 0 0 

Then: Q = MF where M = a -b a 0 0 

-c 0 a 0 

-Ii 0 0 a 

This computation will leave the first column and top row of Q all 

i zeros with the lower right 3 x 3 being C. Really Q is the quadric surface 

normal to the x = 0 plane which is just tangent to the quadric F. 

If a = 0: and b = c = d = 0 then Q = F, othen.;ise: no outline 

visible. 

Volume Representation 

In order to represent solid objects a group of planes or quadric 

surfaces can be used to bOill1d the desired volume. Since the homogeneous . 

coordinate system allovrs each plane vector or quadric matrix to be multiplied 

by an arbitrary constant, the sign of each surface can be a.djusted so as to 

produce a positive product for paints inside the volume and negative for outside. 

15 
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Point v inside plane Y: v y > 0 

Point v inside quadric F : vFv I > 0 

This technique has been used previouslyl ",here all the plane 

vectors of a convex solid were grouped into a "volume" matrix. Thus, 

when a point was multiplied by this matrix the resultant vector. was all 

positive if the point was inside the volume. To extend this concept to 

quadric surfaces requires a volwne tensor J that is a set of matrices. 

Further, to represent complex volumes there needs to be several "volume" 

tests and a Boolean comb1nat50n of the results. The partic:1l.ar form such 

a combination should take may well depend on the problem to be solved. 

Hidden line elimination for displaying groups of objects is one of 

the prime reasons for the representation of volumes and was preViously worked 

out for plane surfaced objects. For curved surfaced objects the manipulation 

techniques presented in this paper are sufficient as long as quadric surfaces 

are only allowed to intersect planar surfaces . However, the r.ath takes a 

quantum jump in complexity when fourth -order space curves are introduced by 

quadric- quadric i~tersections . Until there is a demonstrated need "for such 

solutions in practice, the large investment of time and ef10rt required is 

probably "unwarranted . 

1. "Machine Perception of Three-Dimensional Solids ", Lincoln Iaboratory 
Technical Report, #315, (22 May 1963). L. G. Roberts. 
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APPENDIX I I I 

PEN TRACKING 

/ 

In order to get position information from a light pen it is 

necessary to provide a program or hardware which follows changes in the 

position of the pen. Such a system, called "pen tracking" is a 

relatively old technique. In spite of its age and susceptability to 

analysis, pen tracking remains a considerable mystery to many people. 

It is my hope in this appendix, drawn entirely from discussion with 

Tom Stockham, to dispell some of the mystery associated with pen. ·tracking. 

In some sense, however, the points made here are moot because it appears 

that the light pen is rapidly being replaced by stylus input devices and 

comparitors. 

The original tracking systems followed motion rif the light pen by 

means of a pattern of four dots. 

r--~-l 

i i 
i I 

\. ..-., ..... -,.... I 
____ .. /~-----. ~~-- - \ { •. '.', i 

, . ,i . I 
\ ' \ • I . 
'---~'-'-.~:---"""'-- --------.- .. .;--" I 

. :... I 
-.... 1 

- ..... ·'''"-.1 

By sensing which of these dots was visible to the pen, the tracking progr~l 

could discover which direction to move the pattern in order to remain within 

the field of view. Such a pattern, called a "tracking square", or "tracking 

diamond" was well known by 1957. 
\ 
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APPENDIX 3 2 

The algorithm for manipulating a tracking square is r elatively 

simple. If none of the points fall in the field of view of t he light 

pen, the array will be left a l one. If one or more of the points are 

seen by the light pen, then the entire array wil l be moved in such a 

direction as to bring all of the points within the field of view; that 

is, if the right- hand point only is seen , then the array will be moved 

to the right. If all points except the bottom one are seen. then the 

array will be moved up, and so an. A flow chart to do that might be as 

shown in the figure on the following page. (Flgure 2.) · 

Such a tracking program res ponds to a light pen hit on one of t he 

four points of the tracking square by branching to a location in which the 

position of the square is moved. The desire to branch conditionally on 

a hit after each point of t he tracking figure is posted is in direct 

conflict with the "normal ll pointing function of the light pen in which the 

address in memory of the item which '.,.as seen 1s recorded for use at the end 

of the frame. Pen tracking programs commonly prefer-- the "hit flag" light 

pen logic rather than the interrupt type. 

Suppose, on the other hand, that we wish to use the interrupt type of 

light-pen hardware . In such a case, we can treat the tracking cross as 

me~ely a part of the display lis t. The light pen interrupt routine will 

indicate which of the dots in the tracking square were or were not seen. 

At the end of the frrune, a new location for the tracking square can be 

computed from that information. Such an arrangement would be as shown in 

the Figure on the following page . (Figure 3) 

" 
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APPENDIX 3 3 

If light from the cathode ray tube is the only clue as to where 

the light pen is, how is it possible to move the tracking pattern across 

background information without interference? Obviously the background 

information and the tracking pattern itself will be located in separate 

places in the dis play file table. The codes which are stored to indicate 

which parts of the display drawing are seen will distinguish bet",cen the 

parts of the tracking pattern and the parts of the background view. Thus 

the processor which examines the information seen during a complete frame 

of the display can distinguish between parts of t he tracking cross and 

parts of the background view. 

Types of Tracking Crosses 

Various types of tracking crosses have been used to detect the 

position of the ligh t pen. The simple four-do t tracking square described 

above has the difficulty that if the tracking square Is s i gnificantly 

smaller than ' the field of view of the light pen , then the tracking square 

would not respond to smal l motions of the pen. In effect, the tracking 

cross is a sort of pea underneath a cup formed by the field of view of t he 

light pen such that the pea moves only when the wall of the cup actually 

touches it. On the other hand, if the four dot tracking square is made 

l arger so that it fills the entire field of view of the ligh t pen, there 

is a r isk that the field of view of the light pen may become smaller 

than the tracking square. If the pen field of view i s smaller than the 

tracking square, it may slip inside t~e tracking square and tracking will 
\ 

be lost . 

" 
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APPENDIX 3 4 

The solu.tion to this dUe[;\ma is to make the size of the tracking 

square adjustable to match the size of the field of view of the light 

pen. In effect, the tracking square should feel out the edges of the 

light-pen field of view in four directions, and compute the center of 

" 
the light pen field of view from the information thus derived. 

On a point-plotting scope, the usual technique for making a pen-

tracking cross is to display four points immediately adjacent to the 

estimated pen location, and if they ar.e seen, four points adjacent to 

them but further out in both directions along both axes. {/hen a point 

in so~e arm is no longer in the field of view of the pen, we know the 

coordinates of that edge of the light-pen field of view. Averaging the 

vertical positions of the two points on the vertical axis gives the vertical 

coordinate of the pen center, and similarly the horizontal coordinate is 
, 

the average of ~he two points on the horizontal axis. The precess of 

scanning out from the center gives the display the appearance of a cross J 

henee the name, "tracking cross") for t h i s type of tracking. So far as I 

know, .such a precision tracking cross was first used by T. G. Stockham 

in April 1959 on the TX-O computer at MIT. 

If the display contains a line-generator, it is more sensible to start 

drawing lines inward from four points outside the predicted field of view, 

measuring the edge of the field when the light-pen interrupt logic . 

announces a hit - Le. t-Ihen the line has just entered the sensitive 

region. The appearance of these displays is shown is Figure 4. 

\ 
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APPENDIX 3 5 

Many other forms of tracking squares can be devised to do this job. 

The only important characteristic that they must have (and the rest of 

this appendix is to show that thatts so) is' that they must determin~ the 

edge of the field of view of the tracking cross with minimum noise. Any 

noise present should preferably be as smooth as possible. Consis tent 

errors in the measurement of position are tolerable, but i nconsistent 

errors with high frequency components (noise) are not. The reason tha t 

a low noise neasurement of the pen position is important i s that the pen 

position predictor serves to amplify the measurement noise. If a lower 

noise measurement can be made, a higher order predictor can be used, and 

. tracking can be done less often. 

Low noise pen position measur ement is achieved by several techniques . 

First, it is important to measure pen position to the fines t resolution 

available on t he scope . The quantization error of position \vill shotv up 

directly as a noise in the measurement, where 

I noise I • -::-:-~=-1:-;-_ 
resolution 

Second, a linear search procedure should be used. The successive points 

displayed should r each the edge of the pen in linear sequence either from 

inside or outside . If a logarithmic search is used~ motions of the pen 

during sampling time will introduce errors larger than the resolution used. 

Third, the measurements for the four edges ' of the field of vietv should be 

made as neariy simultaneously as possible. If the measurer.tents are made 

at diff~rent til:les and the pen i s moving, the pen's field of view will 

effectively be distorted in shape • 

. , 



APPENDIX 3 6 

A Common Misconception 

It is a common misconception that the pen-tr3ckiog program is a 

servomechanism in the sense that it is a feeftback device. This is just 

not so. In fact, the pen-tracking program is a measurement system wherein 

the position of the center of the field of vietv of the light pen is 

measured by the tracking cross. Any tracking cross capable of 

measuring the center of the field of view of the light pen will obtain the 

same measurement, provided only that the field of view is circular. The 

several crosses shown below, for example, all agree on the position of 

the pen field of view. 

In order to actually make the measurement of the pen location, the 

tracking program needs an estimated pen position about which to draw the 

tracking figure. The particular value of the estimate makes no difference 

whatsoever, provided only that it lies within the pen field of view. i.e. 

so long as 

lactual position - estimated position I < radius 

otherwise tracking will be lost. The rest of this app~ndix concer~s itself 

with methods of arriving at a suitable estimate. Let me remind you again 

\ 
that tracking is not a feedback system because the measured pen location is 

not a function of the estimated pen location. 
>, 
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APPENDIX III 7 

Pen-Posi tion Prediction 

A complete pen-tracking system will use sooe kind of prediction 
/ 

scheme for arriving at the pen-position estimate to be used for each 

track}ng cross. If we call the actual pen position "PA". the 

measured pen pos ition "PN"~ and t he estimated pen position "PEn. and 

use subscripts "t" t "t-1", etc. to indicate the sampling t ime at which 

these numbers are valid, then a block diagram of the pen-tracking 

process looks like this: 

- o I ItoV& ... ,pvT 

. 
. 

~ . 

-I R. AC,",,- ? p..£ t:"e,toR,. - PEt 

CI=I.OS s PHt 
RE 1-1.1<.1'--1 -e li; r-~J' "05.7, 

-p H -t. -I ~ P1-1-l_.l. ... etc. <>" e ... 
I> V,s. eoL...: 

-- 0·, 

The estimated position at time II t ll is. used only to establish 

a tra ch.'""in g cross uithin t he light pen fielr.! of vi el·1 _ The particular 

value of the estimated pen position does not effect t he position 

" 



APPENDIX THREE 8 

measured at that time. Hhat you observe on the scope, however, is the 

tracking cross whose center is the estimated pen position. Perfectly 

stabl~ . tracking is possible even if the es .tirnated pen position changes 

radica;Uy tllroughout the pen field of view. In other words, the rne~e 

observation that the pen-tracking cross is "jumping around" within the 

pen field of view does not mean bad tracking. because the measured pen 

position may nevertheless be qu~te stable. 

In order to see more clearly what the effect of noise on the 

predictor is, let us redraw the block diagram of the system as fo11m .. s: 

" . 
+ 

. ' 

fA .. L rp-'E.'t> I ,-,OR;. 

Y" ... + TMt:. 

-k 
+ 

I 
~n·t:,.. - H II:; T 

eE LESS TI-IAtJ R. 

·It is now evident that if fA is constant, the measurement noise signal 

is passed into the predictor box, and may be a~plified by the pre~ictor 

box to produce a very noisy pen position estimate. Design of the pen 

position estimating box must insure that the magnitude of the noise as 

amplified by the pen-position estimator does not exceed the radius of 

the li&.?t pen. 

" 



APPE.NDIX THREE 9 

O.bviously the pen-position estinator can work only on past data. 

That is, the estimate of the pen position PEt::: F(PN
t
_

l
, PN

t
_

2 
.... ). 

If we choose to use linear prediction where N is called the order of 

the prediction 

The error signal, however, will be 

n , 
E -Nt - 1~O 8 1 PMt _ i 

where the coefficient a.
O 

::: -1. 

Suppose that we \·18nt to predict in such a way that pen motions 
._. 

with N constant derivatives are predicted with zero error. For such -

th 
motions, the N differences in pen position will be cons tant. If we 

define a delay operator, D, such that, 

then the difference operator is [I-D] , and 

[l-D)(Pt ) = Pt-D(Pt ) = Pt-P t - 1 • 

th N 
The N difference ope rator is (I-D] . Thus t he appropriate coefficients 

Ai to use are given by 

" 
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The appropriate values for the coefficients are: 

N 
"0 "I 82 "3 "4 

, 
1 -1 1 Constant Position Assumption 

2 -1 2 -1 Constant Velocity Assumption 

3 -1 3 -3 1 Constant Acceleration ASS'1;2mption 

4 -1 4 -6 4 -1 etc . 

S -1 S -10 10 -s 

Where N is one, the estimate is just the previous position which 

is correct only if the pen is not moving . If N is 2, the estimate is 

, 

PE c Pt - 1 + (P t - 1 - Pt - 2) 

which is correct assuming that the velocity 1s constant. 

In actual practice, it 1s practical to use pen-position predictors up 

to order 3 (constant acceleration). but as we shall see, predictors 

of higher order amplify noise too much to be of practical value . 

" 
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Suppose that the successive noise signals during the measurements 

happen t o come out in such a way as to make the worst possible pre-

diction. How would that be? It is c l ear from the signs of the coefficients 

in the. table. that if the noise errors alternated in si~ns~ the error 

would be of maximum magnitude. In other words ~lhen the noise.. frequency 

is just one half of the sampling frequency. Under such conditions, the 

noise signal will cause an error which i s larger than itself. In fact , 

the noise signal as amplified would be: 

Noise Error
t 

E 

N 
E 

i-O 

which means t ha t predictors amplify noise by the factors shown below . 

Noise 
N a "I "2 "3 "4 Gain 

0 

1 -1 1 2 Constant Position Assumption 

2 -1 2 -1 4 Constant Velocity Assumption 

3 -1 3 -3 1 8 Constant Acceleration Assumption 

4 -1 4 -6 4 -1 16 etc. 

- etc. -

Since the maximum amplitude of the noise signal is roughly ± 

one scope unit, a constant acceleration predictor will cause the tracking 

cross to bounce around about ± 8 scope units. Since light pens typically 

have a field of view of about 1/2 inch diameter, Hhich is about 50 scope 

units in diameter or 25 scope units in radius, you would expect to be able 

to use prediction of order 4. It is easy to see, however , that marginal 

operat\ion might well result . 

" 
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Rotating Light Pen Tracking 

It would be desirable to be able to input information to the machine 

about the orientation of the picture presented. One way to input 

rotational information is to specify with a pointer the two ~ndpoints 

of some line in the picture. This would yield both translational and 

rotational information. H'e can consider. hotvc.ver. the possibility of 

discovering two pairs of coordinates simultaneously, as with a device like 

that of Figure 5. The two pen styli have indpendent "read" hardtvare, or 

perhaps share a common processor, but yield separate coordinates to the 

computer. The average position 

y • 

and the angle of inclination of the line determined ' by the two pens 

tan a 

(to within an ambiguity of 180°) can be computed to give orientation and 

position information. 

At first, it might appear that this is about the only t.,ay of simul-

taneously reading a position and a direction from a standard input device. 

If, hm.,ever, a lightpen is fitted with a non-circular aperture, there is a 

method 'for duplicating the perfomance of the pen device described above. 

The position of the pen can be tracked, and measurements of its orientation 

can also be made. 

" 
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Consider the "tracking cross" of Figure b • . ~uperimposed on it is 

a hypothetical light pen window. The window shape itself is a function not 

only of the aperture size and shape but also of the distance of the pen froi.: 

the tube and the azimuthal angle at which the pen is held • . In practice, one 

makes a guess on the lightpen position, say P , and t he angle of inclination 
o 

of the window, say a. The components of the cross are then dra~~. First, 
. 0 

the lines thought to be aligned with windoH orientation are drawn from the ' 

points 

[P + dcosa ,P + dsina 1 
ox 0 oy a 

[p - dcosa. ,P - dsina. ] 
ox 0 oy a 

toward the point Po' In the process, the points m
l 

and m2 are measured 

as the lightpen "sees" the first point displayed within the windm" . We 

now know something about the size of the window - (the "image" of the 

lightpen aperture on the screen) . If the lines CD and EF are now 

displayed such that they intersect the line AB someHhere within the area 

bounded by m
i 

and m2 , we a r e virtually assured of a hit. In practice, it 

works to choose the point PI as 

and P2 as 

The lines CD, EF are then displayed and hits recorded. We now have six 

. measurements~ mI' . -•. m
6

• We suspect that the position of the component of 

the new pen position q along the line AB should be detennined by the points 

m
i 

and m
2

, since the windot.; intersects AB at nearly right angles where these 
., 
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measurewents are made. Similarly~. we would like · to determine the new 

position by using the measurements ffi
3 
...• m

6
. 

Consider the av~raze points P 3 and P 4 where 

Since the lines CD and EF were chosen perpendicular to An and such that 

Pii12 =. P Imt • then the average of P 3 and P 4 is .£..uaranteed to be on line 5H. 

(611 is the locus of points equidistant from fil .arid m
2

.) (See Figure G) 

We can compute 

qx = 

qy ~ 

and 

tan J.. 

nl3x + fi4x 

m3y" 

P4 
Y 

+ m4 y 

- P 3y 

+ ffiSx 
4 

+ mSy 
4 

= 

+ m6x 

+ m6 y 

~Sy + m6y - ffi 3y - rn4y 
mSx + m6x - m3x m4x 

Various error-correction schemes can be divised. If the lightpen 

sees line An but not CD, then x is incremented by 90 0 and the process starts 

over. Note that in practice. only 

are stored, which obviates looking up t a ngents. a is a normalization 

. constanf. chosen so that (6x)2 + (6y)2 = some constant (say 250010)' 

., 
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At first glance·~ t here would appea r t o be s t ability pr oblems. 

Consider the window and cross in Figure 7. Clearl y ml · and m
2 

are 

rather "fuzzy" figures . Therefore, the posit i on may be in. e rror. 

Using fairly l ong lines ("'2"). t he error scheme described above seems 

to avoid g ross unstability. 

r 
7 
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