AM252 Class Notes

CHAPTER ONE

HARDWARE FOR PRODUCING PICTURES

There gre realiy only two kinds of pictures that can be produced
by computer. By far the largest number of computer-produced pictures
are line drawings: drawings which are mostly blgnk. A few pictures
produced by computer, however, are half-tone images; that is, pictures
like tﬁose produced on your TV set for ﬁhich an intensity is defined
at each of a quarter million or more points throughout the picture.

We are going to talk here mostly about devices for producing line
drawings. In some cases, these devices can be used also for producing
half-tone drawings but generally at very low speed.

The two fundamental devices for producing line drawings by computer
are the cathode ray tube display and the mechanical plotter. One should
not overlook the fact, however, that ordinary line printers can be used
to produce pictures. IBM, for instance, produces quite satisfactory
circuit diagrams using standard symbols on a line printer. Knufhl used
ordinary line printer symbols for producing block diagrams. If you have
a line printer and no other display available, do not overlook its use

for producing pictures.

Cathode Ray Tubes

Although cathode ray tubes were known prior to the Second World War
they got their first major research and development efforts in comnection
with the wartime work on radar. The famous series of books published by the

Radiation Laboratory at MIT reports some of the important understandings of

1Knuth, Donald E., "Computer-Drawn Flowrharts', Communications of the

ACM, Volume 6, Number 9, pp. 555-563, September, 1963
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cathode ray tube technology that were developed there. During the war,

the size of the tubes was greatly increased, the performance of phosphors

was enhanced, and the construction of the electron guns was brought to a

fine art. The P7 composite phosphor, for example, was developed specifi-

cally to make display of radar pictures possible.

The widespread use of television, of course, has put a cathode ray tube

in nearly every home in the Country. Such mass production has greatly

reduced the price of the kinds of cathode ray tubes used in television sets.,

Unfortunately, as we shall see, the low cost of television sets does not

reflect itself in a corresponding low cost in computer display equipment

because the requirements for a television picture tube and a computer

display tube are quite different.

A cathode ray tube consists of five essential parts: (see Figure 1.)

ll

3.

a cathode structure which emits electrons. Because of the
control grid, the electrons depart from essentially a
point source.

an accelerating structure whicﬁ causes these electrons to
move rapidly down the tube,

a focusing structure which brings the beam of the electron
into a more or less sharp focus on

the screen of phosphorescent material which makes the beam
of electrons visible to the observer, and

an evacuated space for the electrons to mcve in.

It is not generally well understood that the beam of electrons in a
3

cathode ray tube is not a narrow beam. In fact, the beam of electrons
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diverges from the cathode to reach its widest point in the focusing
structure. It is the purpose of the focusing structure to bring the
divergent beam back into focus at the screen. The primary factor in
controlling the size of the spot where the beam strokes the phosphor-—
escent screen is the ratio of the distance between the cathode and the
focusing structure and the distance between the focusing strugture and
the screen. Just as an oﬁtical lens magn;fies or demagnifies according
to the object and image distances, so the .focusing structure in a cathode
ray tube magnfiies or demagnifies the size of the point source at the
cathode if the cathode is zloser to the focusing structure than the screen,
as for example, in a short-necked large-screen TV tube, then the size of
the spot on the screen will be relatively large. If, on the other hand,
one wants to produce a tube with a very small spot, one should design it
with a very long neck so that the cathode can be put far away from the
focusing structure. In this way, the already small point source at the
cathode will be demagnified to make an even smaller spot on the screen.
It is possible to make cathode ray tubes with spots smaller than one-
thousandth of an inch in diameter. .

One of the measures of the quality of a cathode ray tube is the size:
of its spot. In general, cathode ray tubes with small spots are more
expensive than those with large sloppy spots. It is not sufficient,
however, to produce a tube which has a very small spot which can only be
displayed in the center of the screen. The appropriate factor to consider
for a CRT is the ratio of the spot size to the usable screen diameter.
Thus, for example, a CRT with a 0.0l inch spot size and a 10 inch screen is
equivalent in resolution to a CRT with a one-inch screen and a 0.001

inch spot size. 'The resolution of a CRT should be measured as the number
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of lines that can be effectively displayed on the screen and NOT as a
specific figure on the diameter on the spot. Cathode ray tubes which

can display 500 lines are quite common in sizes from one inch diameter

to two feet diameter. Cathode ray tubes which can display 5000 lines

are barely obtainable, and then usually with a three inch or smaller =
screen,

Manufacturers of cathode ray tubes seem to have invented many ways to
conceal the fact that the spots of their cathode ray tubes are larger
than they would like them to be. Foremest among these is the use of the
"shrinking raster method" for measuring spot size. The shrinking raster
method of spot size determination is a relevant measure of the spot size
in a tube for a television application. It is not, however, as a measure
of spot size in a tube for a line drawing application. To measure spot
size by the shrinking raster method, you display a raster of, let us say,
100 lines on the face of the cathode ray tube. You then decrease the gain
of the deflection system so that the raster becomes smaller and smaller.
At some point, the resulting display will no longer look like 100 lines,
but rather like a uniformly lit rectangle. When the lines blend, you
measure the size of the raster and divide it by the number of lines known
to be in it. You announce this ratio as the spot size.

Now the spot of light produced by a cathode ray tube is not a clean,
well-defined spot. The electrons leave the cathode with random velocities
in random directions. Thus even were the focusing structure perfect, they
would arrive at the screen in a randomly distributed block. Imperfections

ll -
in focusing structure also shows up as random distributions in the intensity
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of the arriving beam. Thus, if you plot the intensity of the light output
as a function of position for the spot in a cathode ray tube, you will
find some sort of bell-shaped distribution. (See Figure 2) The shrinking
raster methode measures the size of the spot based on two points very high
up on this bell shape distribution. .

In a line drawing display, however, the subjective width of the line
will be based on cutoff points chosen subjectively much lower on the
curve, In fact, according to data provided me by Sanders Associates for
measurements on a particular tube, the shrinking raster measures line width
at approximately the 757 intensity points whereas a subject view of the line
width is taken at about the thirty percent point, a width which turns out to
be nearly twice as great. (See Figure 3). So, whenever you hear or see a
specification on a line width in a cathode ray tube, ask yourself, "Hoﬁ was
this measured?".

How fast do the electrons in a cathode ray tube go? The velocity of

an electron can be related to its energy by a simple equation.

E = SMV

but the kinetic energy of an electron obtained, is directly related to the
voltage through which it has "fallen". One electron moving between two

electrodes one volt different in potential receives one electron volt of energy.

Thus, E = Qe where Q is the electronic charge and e

' : is the potential
Or: V= f Z%E =K e

where K %s approximately equal to 600,000 meters per second. (See Table I)
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TABLE I

ELECTRON BEAM VELOCITY

Accelerating Potential Speed m/sec
Volts §
1 . .6 x 106
) 6
100 6. x 10
2,600 . = 106 = ¢/10
10,000 60. x 10°
18,000 3 5. x 106 = c/4
500,000 258, x 10° = ,863c

Notice that although the higher energy electrons in the above table

are fast, they are not yet relatjvistic.

Focusing and Deflection

The path of a moving electron may be modified by immersing it in an

electric or a magnetic field. In order to focus the electron beam and

- in order to deflect it to different places on the CRT, we want to deflect
the path of different electrons. Both electric and magnetic fields can
be used for both focusing and &eflection.

In order to focus the electron beam, we want to turn electrons far
from the axis of the tube back toward the axis of the tube. 1In order to
do this, we need a field which varies as a function of its distance from
the axis of the tube, but not as a function of its angular position. To
produce} such a field.electrostatically, focus electrodes of the form shown

in Figure 4. way be used. To produce such a field magnetically, a coil is
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wound arqund the neck of the tube such fhat its axis is parallel to the
gxis of the tube. Most commercial home TV sets use magnetic focusing.
Many but not all cathode ray tube displays for computer use use electro-
static focusing. ‘

If the face of the tpbe is flat, then the distance from the focusing
structure to the screen will be different for spots in the center of the
screen and spots at the edge of the screeﬁ. Thus a given setting of the
focusing structure, while adequate to focus the beam-in the center of the
screen, may not be adequate to focus it at the edges. In additiomn to
this, the deflection system itself may introduce errors in the focus of
the beam. If such errors are objectionable, dynamic focus correction may
be needed. In a display with dynamic focus correction, the voltage on the
focus plates (if electrostatic focusing is used) or the current in the
Ifocusing coil (if magnetic focusing is used) may be changed as a function
of the beam position. Because this correction is necessarily nonlinear
(it is, in fact, approximately quadratic in beam position) dynamic focus
correction is a nuisance. Moreover, in a cathode ray tube for computer
display, dynamic focus correction must be done at very high speed. I
know of no system for computer display which uses dynamic focus correction
in a magnetic focusing system.

There are, of course, two wayé to provide for deflection of the
beam - magnetic and electrostatic. In a cathode ray tube with electro-
static deflection, four deflection plates are placed in two pairs just
after the focusing structure. If a voltage is applied between the

horizonﬁal deflection plates, electrons passing between them will be
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attracted towards the positive plate and repelled by the negative plate,
and thus the beam will swing in the direction of the positive plate.

The angle of the deflection increases as more voltage is applied to the
deflection plate, but if the electrons are moving faster, the effect of
the deflection plates on them is less and so the angle of deflection is -~

less. In mathematical equations,

Tan a = Led

2De
- accelerating voltage ey = deflection voltage
L = length of deflection plates D = separation between

deflection plates

In a magnetic deflection system, deflection coils are used instead
of deflection plates. The deflection coils are generally placed outside
df the tube itself. Since the tube is made of glass and glass is non-
magnetic, there is no need to go to the bother and expense of putiing
the coils inside of the evacuated envelope., The coils are gene?ally found
in pairs placed so that their -axes are perpendicular to each other and
the axis of the tube. The deflection of an electron by a magnetic field
follows different equations from that in an electric field. In particular,
the force deflecting the electron is a function not only of the magnitude
of the field, but also of the velocity of the electron. fhus in a magnetic
deflection system, if the electrons are moving faster, they will be pushed

harder by the magnetic field. In mathematical terms,
y
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Tan a = LB

2n e,
Q
B = deflection field e - accelerating voltage
L = effective length of m = mass of electron

deflection field
Q = :chargée of electron

Contrast of Electrostatic and Magnetié Deflection

It is clear from the above equations that magnetic deflection is
relatively more effective than electrostatic deflection for fast electron
beams. Because of this, and because only moderate currents are required
in the deflection coils whereas rather large voltages are required in
the deflection plates, most home TV sets use magnetic deflection. On
the other hand, the magnetic deflection coils store a great deal of energy
when they carry enough current to deflect the beam very far. In order to
swing the beam from one side of the screen to the other, this energy must
be dissipated. Because of the large quantity of energy stored in the
magnetic deflection system, it is inherenﬁly rather slow. Moreover, if
magnetic materials are included in the deflection system to improve its
performance as they usually are, then it is likely that removing the
current from the coil will not remove all of the magnetism from the
deflection system. Thus if the beam has been deflected to the right and
we turn the current in the deflection coils off;, the beam will stay
slightly to the right of center. Whereas had it been deflected to the

left and we turned the current off, it would stay slightly to the left of
¥
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center. This annoying non-return to desired position is called
"hysteresis". Most magnetic-deflection computer displays suffer to a
greater or lesser extent from hysteresi£§ﬁiThe construction of an
electrostatic deflection system as parallel plates implies that a beam
already deflected by horizontal plates will travel at an angle through

the vertical deflection plates and thus be more influenced by-them than

a beam on axis. Thus in an electrostatic system, a beam deflected to the
left tends to be deflected more up and down than a beam in the center of
the screen. This distortion causes a square to be displayed with pointed
corners and is known as pin-cushion distortion. Most electrostatic
deflection systems suffer to a greater or lesser extent from pin-chushion.
Another disad&antage of electrostatic systems is that the horizontal and
vertical deflection points are not the same. A special kind of deflection
structure called the deflectron (See Figure 5.) is used in some tubes to
provide identical horizontal and vertical deflection centefs. Finally,
because a beam swinging toward or away from an electrostatic deflection

plate feels fringe fields near the edges of the plate, electrostatic

L\
systems common::equire dynamic focus correction. These desirable and

undesirable properties of electrostatic and magnetic deflection systems

are summarized in Table II.
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Schlesinger, Kurt, "Progress in the Development of

Post-Acceleration and Electrostatic Deflection",

Proceedings of the IRE, Volume 44, May 1956.
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TABLE IT
MAGNETIC ELECTROSTATTIC
Good Bad Good ' . Bad
more efficient high energy in no hysteresis pin-cushion
deflection for field dictates ST distortion
fast beams slower speed, low power ' =
causes hysteresis requirements defocussing in

deflection points . fringe field -
same in x-y planes "high speed needs dynamic

response focussing
can be transistor- ,
driven easily ' deflection points
not the same in
x-y planes
require high-~
voltage devices

for deflection
plates

Phosphors

The electron beam or "cathode ray" in a CRT is invisible. The
only reason for seeing a spot on the face of the screen is that a
phosphorescent coating has been placed inside the tube. When electrons
strike the phosphorescent coating, it glows. Different kinds of
phosphors glow in different colors. In general, phosphors do not stop
glowing immediately after the electron beam is turned off. Rather, they
continue to glow for a longer or shorter time afterwards. Appropriate
choice of phosphor material, then, can provide us with different colors
and different lengths of afterglow in the spot. Because the phosphor
material consists of individual grains of phosphor, usually one to a few

thousandths of an inch in size each, cathode ray tubes with very small

spot si;e must use carefully chosen phosphor if the inherent small size
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of the electron beam is to be maintained in the visable spot.

The power in the electron beam arriving at the phosphor surface
is the product of the voltage through which the beam has fallen and
thelbeam current. Although the beam current is very small, (10
microamps is typical) the beam voltage may be very high. (10 kilovolts
is common). Thus the beam of electrons arriving at the phosphor screen
may carry a power of about 1/10 of a watt. Now 1/10 of a watt is not
very much, but the spot is very small, and so the power density (beam

power divided by spot size) may be quite high. For a 20 mill spot,

g - 250
(20x10 “in) in

The power density of 250 watts per square inch is considerably higher
than the power density given off by an ordinary electric stove which, as
you well recognize, runs red hot. Were the beams to stand still for any
length of time, the phosphor coating on the tube might well be damaged.
Computer displays commonly have burnt spots at the origin of their
coordinate system.

The phosphor for a cathode ray tube gets into the tube as a liquid
suspension. In fact, the tube envelope with the neck end not yet
sealed looks, for all the world, like an Erlenmeyer flask. A half-inch
or so of liquid containing the phosphor in suspension is slopped into

this bottle. The tube stands for a day or so, and the phosphor settles

out onto the inside of the screen. The relevant parameters of the phosphor

are the grain side (which is usually only important in small-spot tubes),
; ;
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the color of the glow, and the persistence. The light output of a phosphor
decreases exponentially after the beam is turned off. The time constraint of
this exponenfial decay may vary from a few microseconds to several seconds.
What we would like, of course, is a phosphor which would continue to glow
with uniform brightness for a fixed period of time and then suddently
extinguish. No known phosphor has this property. ’ -

The efficiency of a phosphor may vary over a wide range. Two kinds of
efficiency need to be considered. First, the number of photons the phosphor
will emit per incoming electron, and secondly, the visibility of the resulting light.
A phosphor which emits infrared energy is not much use in visual display.
The phosphors wear out with continued use. This wear shows up as decreased
efficiency as the phosphor ages. High performance phosphors, that is,
phosphors with very high efficiency and conmsequently high light output are
particularly prone to aging.

Phosphors can be effectively mixed to get useful effects. For
example, the P7 phosphor developed during the war is, in fact, a double-
layer phosphor. The layer nearest the observer glows yellow when
bombarded with ultraviolet light. The inner layer glows ultraviolet when
bombarded with electrons. The combination of two layers proved to have
greater efficiency than any single phosphor we could have found.

Standard phosphor types are given number designations, such as P7,
P11, P40, etc. 1In order to be assigned a number, a phosphor must be
adequately described by its manufacturer. Descriptions of the persistance,
efficiency, and color of various standard phosphors are available.

(See reference 4.)
A
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CHAPTER TWO

ARTITHMETIC AND GRAPHICS

Fixed Point Computations.

Many of the computers with which éomputer graphic equipment is
uged can do only fixed point arithmetic. Even on machines with float-
ing point afithmetic units, many of the computations for computer
graphics' problems are done in fixed point arithmetic. For this rea-
son, we will first review fixed point arithmetic operations. 1In thé
following parts of this book we will often assume that arithmetic is
being done In fixed-point. In this chapter we will firét see how
numerical quantities are represented for fixed-péint fractioﬁal
arithmetic. We will then see how addition can replacé nultipli-
cation in many simple operations such as drawing lines and curves.

In a fixed-point binary computer, one is free to choose any
position for the binary point provided that the chosen position isl
used consistantly, One commonly chosen position for the binary
point is at the right hand end of the word so that all numbers are
thought of as integers in the range -ZN'S_ ¥ £ 2“. The left

-

equality applies only in two's complement machines, Another commonly
chosen position for the binary point is immediately to the right of
the sign bit which is the lefthand end of the word. Numbers all are

thought of as fractions in the range-1 < x <1. In two's complement

3
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machines it may be possible to represent -1 exactly.
If the integer form of representation is used, then the binary

positions assume their familiar values:

sieN| o o o |=g|=4[2'=2[2°=1

If, on the other hand, the fractional representation is useg, then

the positions of the binary fraction assume the values

swLQ:’ﬁ/u%z, e 1 it B

Thus, for example, the binary fraction 0.101 represénts 1/2 + 1/8
or 5/8. |

Whether numbers are thought of as integers or fractions can
often make a difference in the case of understanding and using arith-
metic instructions. For addition and subtraction, it makes not the
slightest difference which representation is used so long as the
chosen representation is used consistently.. If the sum cf two num-
bers exceeds the largest representable number, ZN or 1, as the case
may be, overflow will result. On the other hand, many fixed-point
machines such as the PDP-1, SDS-940, and TX-2 have multiply and divide
instructions for fractional arithmetic. The product of two 18 bit
numbers, (that is, 17 bits and a sign bit) is a 35 bit number (that
is, 34 bits and a sign bit). In the PDP-1 multiply instruction the
product occupies the sign and seventeen positions of the accumulator
and seventeen positions of the I0 register. The least significant

position of the 10 register is not used for product informationm.
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Multiplication leaves the most significant part of the product in
the accumulator and the least significant part left justified, in
the I0 register. If you think of numbers as Binary fractions, no
shifting need be done to make use of the most significant part of

a product. If, on the other hand, you think of numbers as integers,
then the product appears to be shifted ome bit to the left in the
I0 register. 1In order to use the product as an integer, yo; must
shift it to the right. It is plain, then, that the multiplication

and division instructions of such a machine are most easily used if

numbers are thought of as fractions.

24 BIT PRODUVC T

P

Ll AC [ e Z

Because fixed-point multiplication is usually fractional in

.nature, I suggest that you think of numbers as fractions whereever
possible. To put numbers in fractional form, use "normalizing fac-
tors" in setting up the problem. If, for example, you wish to rep-
resent a distance which may have a maximum value of 3 feet, represent
all distances in yards. If you wish to represent a distance with a
maximum value of 300 feet, divide all distances by 300 to obtain a
normalized distance which varies between O and 1. You may think of
the normalization procedure as picking appropriate units in which to

represent quantities. Thus, in our 300 feet example, we can assume
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some peculiar distance measure, (say the "George'" = 300 feet) and
represent distances in-"Georges". You can also think of numbers
in the computer as representing the fraction of the maximum devi-
ation possible. On a computer display, for instance, it is con-
venient to represent the left-hand edge of the scope as -1 and the
right hand edge as +1. Thus the number "1/2" when plotted on the
scope means "half the distance from the center to the right-hand
edge", i.e., one-half the maximum deviation to the right.

If numbers can be represented only in the range -1<£X £+1,
then the sum of two numbers may possibly be out of the range, Fixed
point computers will detect this condition with overflow. A useful
trick to use to avoid overflow problems is that the average of two
numbers will always be within the range. Thus if you f&llow an
addition by dividing by two, you can avoid the overflow problem en-
tirely.

In most fixed-point machines, the format for the division in-
struction (which requires a double length numerator) is identical with
the format that is the result of the multiplication instruction. fhus
it is convenient to preceed each division wiﬁh a mnltiplication; One
can, for instance, divide by a normalizing factor after each multi-
plication. Suppose, for example, that we have some number x which
we wish to square. If x is a relatively small number, say it has
s8ix leading zeros, then xz will have twelve leading zeros and can only
‘be represented in an eighteen bit machine to six bit precision. On
the other hand, if we multiply by x and then divide by a normalizing
factor}so that we rePresent not x2 but _%E , where n is a typical

value of x, the resulting quotient will have only about the same
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number of leading zeros as has x itself. Between the multiply and

the divide, the temporary product will be represented with 34 bit precision.

Digital Differential Analyzers

Supposehwe want to draw 100 points P, ona line from a point "R" ==

nat ,S-R ~(S=R)
(x,y) to a point "S" (x,y). The points to use are R, RTloo, R+2 100 °

es+.S. In other words, we can move from R to S in small increments, each
of which is some fraction of the vector S-R. Repeated addition of a
single small vector will generate successive points on the line.

Pl = R

Py = By gt 0P

where AP = %{S-R)

The representation of the small vector, however, will have to be very
precise. If any bits are lost in forming AP = %—R}, they will show up
as an error in the position in which the line arrives at S. Equipment to

implement equation (1) might be:

I ~n, XP ANVT !:rv-\,YP e

dif N
é o +

I_.W_J
Los v
SI1GNMNIFlcAavul E

Figure 1A

1
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In order to avoid cumulative errors which might be caused by
+h '
truncating sgﬁll vector b='§(S—R), we might extend all our registers to
N F

the right as shown in figure 1b.

P T Ve, Pt T e B P )
/]
F’Jj_ 15
S—-R
Y] R T T P W B T

The addition may then be performed with full accuracy. Unfortunately,
however, we are now using many more bits in our registers than we actually
need because we know that A is going to have many leading zeros, and we
need not actually represent them in hardware. Thus, the representation
shown in Figure lc would be adequate. Successive additions will still be

done with the full precision required.

AN | :
Ld_@ Fig. 1c
§i=T
e P T T S
' N

The upper register in Figure lc may be thought of as being
separated into two parts, a most significant paft, suitable for
representing the position on the display, and a least significant part

suitable for holding increments as shown below.

P

i " i i O i, W
} CARRY
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A carry path is implemented between the two parﬁs of the register, as

it was in Figure lc, so that overflow from the least significant part

of the addition will increment the more significant part of the upper
register. Nothing has been changed between figure lc and Figure 1d

except that in Figure 1d the connection between two flip—floﬁs at the -
center of the long register has been shown explicitly. We can, of

course, separate the two halfs of the long upper rigister physically

or conceptually provided that we continue to provide the carry path

between them.

If we think of the two halfs of the long register as entirely
separate, we get a new view of what the incremental line-drawing
operation is doing. It is customary to call the least significant
half of the long register the "remainder" register "R" as shown in
Figure 1E. 1Initially, the remainder register contains zero. During
each operation of the device, the content of the A register and tﬁe remainder
register are added together and left in the remainder register. If an
overflow is generated, from this addition, "1" is added to the P register.
This operation is, in fact, identical to the additions implied in
Figures la and 1lb but provides the basis for a conceptual separation
between the adder portion (registers R and A) and the counting portion
(the register P).

To see how such a device works with actual numbers, suppose that the

A register contains a number which is one-half of the maximum representable

} 2 = R
CARRY  PATH, A
INCRE 1 E VTS P st‘ le
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value. Then the first addition of A to R will leave the number 1/2 in
R. The second addition of A to R will cause an overflow and leave the
number zero in R. The third addition will leave the number 1/2 in R,
the fourth addition, zero, and so forth. Alternate additions will cause
P to count. In other woyﬂs, with 1/2 in the A register, the .register P
will count at 1/2 the maximum rate. On the other hand, if the largest
possible representable number is put in A, then overflows in addition
will occur on every cycle, and P will count at its maximum possible
rate. In other words, P is counted at a rate exactly proportional to
the fraction represented in the register A. Moreover, because the R
register can bé thought of as the least significant portion, or a
right-hand extension of P, the sucéessive values in the P register will
be uniformly distributed.

Ffom a grossef point of view, then, a digital differential analyzer
is a devicé which accepts a stream of add commands and converts them
into a stream of carry pulses at a lower rate. The rate of output pulses
is determined by the magnitude of the numbers stored in the device. In
other words, the digital differential analyzer multiplies a stream of pulses
by a fraction less than one to produce another stream of pulses, fewer in

number but uniformly spaced in time.

The Binary Rate Multiplier

The intent of a binary rate multiplier (BRM) is identical with that of the

differential digital analyzer (DDA) descrived above, namely to provide a series
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of output pulses fewer in number than the input pulses. Unfortunately,
the binary rate multiplier, though simpler in design, produces a sequence

of output pulses which are non-uniformly spaced. Nevertheless, for some

applications, it is a useful device.

A binary rate multiplier consists of two registers, a counter
register (C) and a mask register (M). The bits of the counter register
and the bits of the mask register are identified with the least significant
bit of the mask register, and the most significant bit of the mask register
is identified with the least significant bit of the counter regisfér.
Whenever a particular bit of the counter register changes from 0 to 1 and
the corresponding bit of the mask register is a "1", an output pulse is
generated. Logic to implement such a device is very simple.

Operation of the binary rate multiplier depends on an important
property of binary counting: namely that only one bit of a binary
counter ever changes from zero to one. Examination of the binary

sequence shown on page 9A will quickly verify this property.



CHAPTER TWO 9A

COUNT OUTPUT PULSES OUTPUT PULSES
FOR 3/4 FOR 5/8
(M) = 0011 (M) = 0101

0000

X % X
0001

X X
0010 .

X X X
0031
il < X
0100

X X X
0101

X X
0110

X X X
0311
X
1000

X X X
1001

X X
1010

X X X
10 1 %
X X
1100

X X X
13101

X X
+ 380

X ) 4 X
1111

16 Counts 12 Counts 10 Counts
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Moreover, the least significant bit of a binary counter changes frcm
zero to one every other count as marked by an "X" in the figure. The
next most significant bit changes from zero to one every fourth count,
the next most significant every eighth count, and so on. Thus, if the
most significant bit of the mask register contains a one representing
the binary fraction 1/2, butput pulses will be generated for exactly half
of the steps. If both the two most significant bits of the mask register
are one, representing the binary fraction 3/4, output pulses will be
generated during three counts out of four. One can easily verify that
the number of output counts generated during ome complete cycle of
counting will be exactly the number represented in the mask register.

The binary rate multiplier produces pulses which are not in
uniform time sequence. One might well ask, then, what the maximum
cumulative error of the output pulse count is. Suppose, for example,
that we accumulate the output pulses in a ccunter. What is the maximum
descrepancy between the content of that counter and the correct content
of the counter driven by, for example, a DDA, The output stream of
pulses from a binary rate multiplier is incorrect by at most one pulse.
Such accuracy might lead us to believe that a bimary rate multiplier used
for generation of lines in a display would provide adequate accuracy.
Unfortunately, the maximum descrepancy between two binary rate multipliers
with different contents is larger, and because the descrepancies occur in
irregular ways, lines drawn by binary rate multiplier line-drawing devices
appear to be unpleasantly irregular. The DZIC Type 340 and 338 displays use

binary rate multipliers for line generation. The worst case lines are drawn
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for Ax and Ay values approximately complementary, e.g. 2548 and 4228.
If binary rate multipliers are connected together in sequences
such that the output of one drives another, the resulting output pulses
may be very non-uniform. Binary rate multipliers are therefore useful

only for very simple operations.

Drawing Circles Incrementally

Suppose that we wish to generate a series of points on a circle.
Suppose, with no loss of generality, that the circle is to be centered
at the origin of our coordinate system. The initial point on the circle

P(x,y) is positioned as shown in the diagram.

X, Y

Obviously if P is considered as a vector, it represents a radiué Vector
of the circle.

If we wish a point adjacent to P on the circle, we should move a
small distance from P approximately at right angles to the radius vector.
Analytic Geometry tells us that to move at right angles to a given vector
we interchange its x and y components and change the sign of one of themn.
Therefore, the vector s = ey, -£x will be a small vector at right angles

to P. This reasoning suggests that simple difference equation

: X,,. =X, +¢Y

i+l i i

(1)

g Yi+1 = Yi - Exi



CHAPTER TWO 12

will generate successive points on the circle.

Unfortunately, sucaessivé points generated by equation (1) each lie
Islightly further from the circle than their predecessors, as analysis of
the geometry will show. The radius vector for each new point is the
hypoteneus of a little right triangle one side of which was the radius s
vector for the preceeding point. Circles drawn using the difference
equation (1) grow approximatel&n times the size of the unit step in
radius per revolution.

If equation one is represented in matrix terms, it appears almost

to be a rotation of coordinates.

- (2)

The determinent of the rotation matrix, however, is slightly greater than
one, which means that successive applications of equation one increase the
scale of vectors so transformed.

A small change to equation one will produce a different equation capable
of drawing perfect circles. Instead of applying the x and y portions of the
difference equation simultaneously, they are applied successively.

Applying the separate equations successively is, of course, just what one
wants to do on a digital computer, because less memory is required. The

improved form of the equations is:
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=X, + €Y

i+l 4

which can be converted to the matrix form as was done above. "~ In the

matrix formulation:

The determinent of the matrix in equation (4) can be seen to be unity

which implies that no scale change is involved.

implementations of equation (3) are known to produce circles which close.
Notice that the equations for generating the circle given above

require only shifting and addition. In fact, the PDP-1 computer program

start, dzm
lac
lio
dpy
sar
cma
add
dac
sar
add
idx
sas
Jmp

= Ty TR

count

y

g
step

x
count

arclength
start + 1

i+l

1-_'52'._1 Yi

In fact, computer

13

(3)

(4)
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will generate successive points on the circle.
Equation number three can also be implemented in digital differential
analyzer terms. The equipment shown below will generate successive

points on a circle.

AR : cARRY
il [ :“'“1 =
r F I
' ALTERNMATE .
' }
' e ARl T I1oM S
I '
' : A
] ——
\ wadF ' A couvnT
W ' U

Anyone familiar with analog computers will at once recognize this
configuration as similar to the two-integrater set-up one would use to
generate sines and cosines on an analog computer. In fact, the DDA add
element is similar in many respects to the integrater commonly u;ed in
analog computers. Large systems for function computations and

complicated navigation equipment are frequently built of DDA elements.
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CHAPTER THREE
"WINDOWING"

_It is often convenient to treat a drawing in a computer as much
larger than the face of the scope. The scope face, being only about
10 inches square, is too small to represent a complex drawing: Most
engineering drawings are made on paper 17" by 22" (size C) or even
22" by 34" (size D). 'Moreover, the resolution available in a
computer word, even a word as short as 18 bits, is far finer than the
resolution available on the scope face. It is therefore possible
to represent far more information digitally in the computer than can
be displayed at a single time on the face of the scope.

In this section we will consider the computations required to
present a portion of a stored drawing on the face of the scope. More
important, we will consider the computations required to eliminate
from view the parts of the drawing not visible. Because the difficult
part of the job is to cut out the portions of the picture not being
seen, the task is sometimes called "Scissoring'". Because information
can be selected for display not only on the basis of the geometry.
we will discuss here, but also on the basis of meaning, I prefer to call
this task "Windowing'". I believe that windowing is fundamental to
good use of a cathode ray tube disﬁlay. I believe that in virtually
all display programs, the scope should be able to display information
selected from the total information available in memory. The scope
should be thoughtof as a window through which one can examine the material

%
in the computer.
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Positional information stored in the computer must be related to
some coordinate system. Let us call that coordinate system the 'page"
coordinate system. Let us think of page coordinates as running from
-1 to +1 in each axis; in other words, we will think of coordinates in
the page coordinate system as signed fractions of the maximum |
representable coordinate, whatever that may be. Let us refrain from
assigning a particular size to tﬁe page coordinate system because
the dimensions represented might be astronomical units if we are looking
at pictures of star maps, or microscopic units if we are looking at
mechanical drawings of integrated circuits or dollars versus time for a
cost accounting chart. For convenience sake, I think of the page
coordinate system as being quite large, say the size of a wall,‘but let
me emphasize again that it may actually have any kind of dimensions at
all, depending on the problem at hand.

The scope has a coordinate ;ystem of its own which can also be
thought ;f as running from -1 to +l1 in each axis. Numbers in the scope
coordinate system are thought of as fractions of the maximum useful

~—number, i.e. as fractions of the number that represents the edgeé of
the screen. Scope hardware is usually capable of accepting numbers of
only gen or eleven bits for each axis. The ten or eleven bits are
generally positioned at one end or the other of the computer number
format. If the bits selected are at the left of the computer format,
the scope numbers are easily thought of as signed fractions; dropping the
unused right-hand bits merely dereases the resolution but positions
outside the scope area cannot conveniently be represented. If the bits

selectéd are arv the right of the computer format, the scope numbers are
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easily thought of as integers between 0 and 2“-1, say 1023; dropping
the unused left-hand bits remaps spaces outside the scope area onto the
scope face; Neither scope coordinate system is better than the other.
Conceptually, howevér, it is useful to think of scope coordinates as
signed fractions of the maximum representable coordinate regardless of
what actual format is used. The windowing job, khen, is to take a
portion of the page coordinate system and display if on the seope as
shown in Figure 1. If the portion chosen includes the entire page
coordinate system, then we will look at the entire drawing. If the
portion to be displayed is but a small fraction of the page coordinate
system, then that small sec.ion of the picture will be spread out to
cover the entire scope, aﬁd we will look at a magnified view of the
drawing. By controling the position anq size of the portion of the
page to be observed, we can control what part and how much of the picture
we observe on the screen. The window can be thought of as a fictitious
box appearing in the page coordinate system. Everything inside the
window is to be shown on the screen; things outside the window are not
to appear. The pbsition of the window is described by NCx and ch,
two numbers which are represented in the PAGE COORDINATE SYSTEM. 1In
the illustration, HCx is about 5/8, and-WCy is about 1/8 (of the maximum
repreéentable page coordinate number). Because the window need not be
square, its size is described by two numbers, st and WSy, also numbers
represented in PAGE COORDINATES. In the illustration, wsx and WSy are
both equal to about 1/4 (of the maximum representable page coordinate
number) .

The transformation implied in Figure 1 is very simple. To find
the scope coordinates XS and Ys of a point P (XP,YP) on the page, we

have merely to find where that point rests with respect to the window.
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In other words, is that point to the right or left of the center of
the window and what fraction of the maximum window size is its

separation from the center of the window. In other words,

_ch Y ~WC
X =T L o 1)

Notice that the units of'all symbols on the right of equation (1) are

the same. The numerator is the &ifference of two numbers represented in
page coordinates, and thus ls in page coordinates, as is the denominator.
The result of the division is therefore unitless. It represents the
signed fraction of full-scale deflection within the window.

It is often useful to display picture material on a smaller portion
of the scope than the full screen. I will call such a portion of the
scope a ''viewport". There might be several viewports on the scope each
one displaying a different set of information from the picture or from

separate pictures. For instance, one viewport might contain an overall

-yiew, and another viewport an enlarged section. as shown in Figure 2.

The position and size of the_viewport can be described in the same way
as the'position and size of a window, but in scope coordinates because
the viewport is to be positioned on the scope.

The transformation now required to put material from the page

through a window into a viewport on the scope is:

X -WCX Y -WC
= = 2 > SN H £
XS “Eﬁg;fvsx + VCx YS WSY VSY + ch {2)

The dimensionless number from equation one (which represents the signed

fraction. .of deflection within the window) has been multiplied by the
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size of the viewport (to give the signed deflection within the viewport)
and then offset by the center position of the viewport. ' Notice that
equations (2) contain a multiplication and a division. As was pointed
out in the chapter on fixed-point computations, most fixed-point computers
are so arranged that divisions can conveniently follow multiplications.
An appropriate way to implement equations (2) then, is to do the
multiplication before the ‘division.

Because the format of information for transfer to a display scope
is often different from the internal representation of numbers in the
computer, it is often convenient to think of the windowing transformation
in terms of a viewport even if the viewport used is the entire scope.

A full-scope viewport can be thought of as that portion of a large

(-1 to +1) fictitious scope which is actually occupied by the real scope.
Thus equations (2) are useful for transformation of information even if
no visable viewport is intended.

The windowing operation is essentially non-linear. Material which
is outside the window must be eliminated from view and not merely
transformed as indicated in equations (2). In terms of equations (1),
material must be eliminated if the division results in a number larger
than one. In most computers, a fractional division which results in a
1argef fiumber than one generates an overflow indication. Such an
overflow is a useful means of discovering which information must be
rejected. If the picture consists only of points, it is sufficient
to reject any point for which the division of equation (1) results in
overflow. If such points are not rejected, but merely truncated so as
to fit into the word format for the display, the points will appear to

be wrapped around toroidally on the scope.
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.Incidentally, a program which merely masks off bits to the left of
those actually used by the scope or which ignores overflow treats the
scope as a toroidal space. If such a program plots a succession of
points with increasing y coordinates, the point after the point at the
top of the screen will be at the bottom of the screen. For such a
program, points at fhe top and bottom of the screen are adjacent, as are
points at the left and right edges. Because the top and bottom edges of
the screen are adjacent (that mades a cylinder) and the right and left
edges of the screen are adjacent (twisting the cylinder into a doughnut)
the space is described as toroidal.

Although windowing for points is accomplished simply by detecting
overflow in a division, windowing for lines is not quite so easy. A
sttaight—line segment can, of course, be represented by the coordinates
of its two emdpoints. If both ends of the line are contained within the
window, (Figure 3A) then the entire line will appear on the screen. If
one end of the line is in the window, then only a part of the line must
be displayed. In such a case, one must merely compute where the line
leaves the window.

If, on the other hand, both ends of the line are outside the
window, it may be possible to reject the line entirely, as shown in
Figure 3B. If both ends of the line are to the right, or to the
left, or above, or below the window, then the line can be rejected
entirely. If however, the ends of the line lie off the screen in
different directions as shown in Figure 3C, then the lines may or
may not pass through the screen.

Some geometry is required to determine whether or not such lines

show at‘all.
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WINDOWS AND INSTANCES

It is often convenient in a computer drawing to represent similar
figures as instances of some common master figure. For example, the
transistors of a circuit drawing might all be drawn from one master
representation of a transistor. A program which can do this i; like a
rubber stamp. It enables its user to reproduce similar figuresfreely.
The traﬁsformations represented in displaying an instance are very
similar to the transformations involved in windowing. For example,
suppose that a transistor s?mbol is to be drawn at a particular position
on a drawing. Then, as shown in Figure 4A, there will be two sets of
transformations.. In the first.transformation, a portion of a master
page is reduced (or perhaps magnified) in scale and placed on the page
to become a part of the drawing. A portion of the drawing will be
displayed in a viewport on the scope by the windowifig transformation.
It follows, then, that a portion of the master picture may appear on
the scope. When actually placing the lines and points of the master
picture on the scope to represent a transistor-, for example, it is
convenient to use the same windowing program which is used otherwise.
The parameters for the windowing job will, of course, be the concatenation
of the two transformations involved. Instead of transforming the master
plcture into page coordinates and thence to scope coordinates, it is
possible to transform directly from master coordinates to scope coordinates.
(See Figure 4B)

If the instance to be drawn lies entirely outside of the window, of

i

course, then there is no point in displaying any of the material in the
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master drawing. If only a part of the instance area overlaps the
window areé, then only a part of the master picture material can
possibly appear on the scope, and that only in a smaller "subviewport'.
These situations are shown in Figures 5, 6, and 7.

The use of instances in a picture implies the need to reduce two
transformations to one. I have chosen to call this reduction process
"Edging". The Edging task is to compute the single window W" and
viewport V' which will provide the same result as would be provided by
two transformations, one from the master picture to the page coordinate
system and the other from the page coordinate system t§ the scope. The
edging process is non-linear because the instance area may be larger than
or smaller than or overlap with the window area. Depending on the
relative size and location of the window and instance areas, the complete
transformation may use a W' identical to that of the original master
picture or some subset of the original master picture. Similarly the
viewport V' may be the entire vieﬁport or some subset of it.

_ The edging process is, of course, recursive. If the master picture
is itself made up of instances, then the multiple transformation
implied may still be reduced to a single transformation. In most
practical cases, such multiple transformations result in smaller and
smaller viewports and often, in fact, result in complete rejection of

entire instances which lie entirely outside the window area.
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CHAPTER FOUR

i TRANSFORMATIONS FOR COMPUTER GRAPHICS

Matrix notation and the concept of homogeneous coordinates
ﬁrovide convenient tools for converting répresentations of objects in
an internal coordinate system to the coordinate system used by the
display. In particular, they readily provide the perspective’ trans-
formation needed to display three-dimensional objects on the two-
dimensional screen of the display.

This chapter contains examples of matrix operations being used
for these purposes and introduces the use of homogeneous coordinates.
It is, in fact, a summary of the paper, "Transformations and Matrices"
by Professor Steven A. Coons, Appendix I, which should be consulted for
the gory details. Future chapters will cover homogeneous coordinates
more extensively in their use for parametric curve and surface drawing

as related to the three-dimensional display processor.

Two Dimensions

Given a point (x,y) in two dimensions, we can transform it into

another point (x',y') by the matrix multiplication

x' y'1="Ix y_][i E_]= [ax+cy  bx+dy]

where we identify x' = axtcy, y' = bxt+dy. In particular, if we choose
the proper forms for the matrix T = [& E] s, we can completely
oy —

" characterize the types of transformation possible:
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1. ‘"shear" -- T =[§‘ _i} a square is transformed to a
parallelogram. |

2. "scale" -~ T =l§ .?} a square is transformed to a
rectangle.

An important special case is T {;: g} and a2+b2 = 1. Such

a transformation causes a pure rotation by the angle 6 in the-XY plane
where a = cosf, b = siné.

There are two convenient ways of trying to understand the
transformations described by matrices. One w;y is to see what happens
to unit points such as the origin [100], [010], etc. The other method
for dealing with transformations is to specify the transformed values of
points of interest. The latter is a completely general way of
determining the necessary transformation; the former is a quick way of
observing its action.

By writing one vector (or point) below another, we can symbolically

obtain the transform of several points at one time:

3 y i ! T
* Yo = TR
= T "
xl yl ‘a b xl y1
i r
(= 9 .
] ]
T xu Yn
- — — -

In particular, if we choose the unit points on the x and y axes, we

have:
1 Ei la bl }-a- b % 7 y;
| - — o o
! ' '
0 3j ic d c d X3 Y1
) - -
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In this case, the values in the matrix itself are the coordinates of the

transformed unit points!

On the other hand, let us try to find a matrix T which will

transform the points (x _,y . ' ' '
o o),(xl,yl) into the points (x0 > ),(x1 ,yll).

t‘l 1

I |
[x. v Ftyi

i

i

i

if the matrix; 2 jJ has an inverse, which we will write "

we can pre-multiply by it to get:

|
[
|
wl
«
X
-|

-«
=
-
o
Yo
=
“
[
)
0
%
=
| Q—l‘<
I
=
«
|

Translation
The 2x2 transformation matrix used above canmnot provide for simple

translation. If we add a third row to the matrix, we can get translation

100

[x y 1] 0 1 0} = [x+a y+b 1] = fx* 3 X]

to.

a b I
The addition of the third component allows us to hink of iwo-dimensional

transformations including translation in a single matrix formalism.
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Three Di;énsions.

If we choose to represent points in 3-space by 3 component vectors,

we can use a 3x3 matrix to represent a transformation in three dimensions:

[x y z]l|d e £| = [x'" ¥ z']

It can be shown that any such transformation applied to the unit cube
yields a parallelpiped. If we specify three points to be transformed
and their resulting images, we have completely specified the

transformation, just as two points serve in the two-dimensional case.

[ x y z | (x ! ¥ &?
o (o] (o] (o] yO o]
= ' r L
% ¥ &I 2 - S T |
| L] ]
2 T2 Ty e 2 "%
% z | -1 -; b o z 0
o Yo o o o 0o |
o ' 1 '
I TS B | % ¥ %
L] L] r
X2 Y3 Eyj 5 ¥ o
. - - —

Homogeneous Coordinates

We can think of the transformation

b
Ix y 1) d e
g

Ix* ¥ ="]

H D

o — o —

as transforming a point (x,y) in the z=1 plane into the point (x',y',z")
in 3 space. If we now.divide this vector by its third component to

'
-/
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obtain a point p' -(§7; 273 1) we will have projected the point
x', y',z' onto the point p' back on the z=1 plane by means of a ray

ﬁhrough the origin.
[Y’Y' EIJ

/

¢

Such operations lead us to define points in terms of

homogeneous coordinates: The two-space point (x,y) is represented

by a three component vector (wx, Xy, w) where w is any non-zero
quantity. Similarly, the triple (a,b,c) corresponds to the two-
dimensional point (%;E). With such a representation, the two-
dimensional point (xX,y) can be regarded as the projection of any of

the three-dimensional points (wx,wy,w).

[wx wYy u;j

Line Equation

Th? ordinary equation of a line in two dimensions is

o
Ax+By+C = 0; or, [x y 1] B! = 0
Cl
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A
The column vector B]thus can be used to represent the line. In
C

homogeneous coordinates, we see that the equation is of the same form:

A
[wx wy w] Bl = 0
c

If we transform a point (wx, wy, w) by the transformation T, then we can

still write

1

w >
1
(=]

[wx wy w]TT

(o]

as the equation of the same line. Hence, a line,

A -1 A A'
+ |B| transforms by the relation T "|B| = |[B'
Cc C_ e

Three-Dimensional Homogeneous Coordinates

In strict analogy with the above, we can write

' 1! 1,17

[wx wy wz w] [A] = [w's' w'y

where A is a 4x4 matrix. This yields a perspective transformation of

three dimensions into three dimensions. If we ignore the third coordinate,

L} wl '
)

" L
(wwf ) and display the first two as a two-dimensional picture,(wwf

we obtain a perspective view of the object.

In particular, the transformation

[1 0 0 O]

0100

60 1 =

S

) o0 0 0 1]

gives the perspective view of an object displayed on a screen placed at

z=0 as seen by an observer at z=-s:
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o bdf:'{‘

/

Projecti -—//
rojection --4_//
S

7

X
: s z
Z= -5 / !
/\3:?:“’ Screen - ~

In general, a 4x4 homogeneous transformation matrix can be

A

written as

R P

]

|

L}

|
— — — + —_

% i

where R is a rotation and scaling transformation, T is a translation,
and P produces a perspective projection. Usually, we form such a
matrix from several simple matrices —— R, T, or P —— by multiplying

them together.

[a b c 0] [1 00 0] 11 0 0 o
d e £ 0 010 0{ |01 00
M = 5
g h i 0 0 01 0 6 0 1 %
0 0 0 1 - B 1] jo 06 L

Such transformations can be viewed from the framework of photography

or engineering drawing; their classification and properties are characterized

. in the appendix. Note that in interpreting the thin lens equation %&%ﬁ %

as a transformation, a point (x,y,z) transforms into a point (x',y',z')

where z" can cover quite a range; i.e., the lens needs to be focused. Also,

objects at infinity - W=0 - may be imaged locally near the observer.
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CHAPTER FIVE

REPRESENTATION OF DRAWING STRUCTURE

Most of the pictures produced by computer involve some highly
structured subject matter. Were it not so, computer graphic
representation would be far less useful; the representation of a beautiful
art work by computer, for example, is not now considered useful even by
artists. On the other hand, the representation of chemical molecules, —
engineering drawings, electrical drawings, and graph plots of orderly
data are very useful. In this chapter, we will consider how some basic
structures, such as points, lines and symbols, might be represented inside

the computer for the production of pictures.

For simple pictoral notions, almost any representation will
do, but for more complicated notions of relationships between
parts of a picture, the particular form of storage that we chqose
will have a strong effect on the behavior of the resulting pictures.
In an arahitectural context, for example, we might wish to indicate
that all the windows on the front of a building should be the same
size. How ought we to represent such a notion of similarity? In
all useful cases that I have seen, it is the excéptions to such
- rules of similarity which are most important in the design. The
columns in front of a building will have equal spacing EXCEPT where
the center doorway comes out. All the flip flops of a register will
be the same EXCEPT the first one and the last one. The choice of
storage fnrmat that wehmake in any particular case will affect the

things we can and cannot do with the resulting system.
i
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Unfortunately, no one is sufficiently sophisticated in representing

such abstract notions that we can provide the student with guidelines

- for how wisely to represent similarity, symmetry, connectivity or

other such abstractions. In beginning any computer gfaphics problem,

therefore, you should devote a good deal of effort to choosing an

appropriate representation for the desired information.

Linés and Points

There are many possible representations for lines and points.

For purely geometrical uses, a line might be considered as an

infinitely long straight thing, and a point might be considered as a

position in space.

The numeric representations of lines and

points can be made to be very similar if homogeneous coordinates

are used:

and line coordinates by a column vector.

point coordinates can be represented by a row vector

From this point of view,

one might represent points and lines as very similar entities.

In two dimensions, each would have three homogeneous coordinates.

PoinT
G reRrGE

L& &£
Pers

p..$

¥

w

Live EqQquaTion:

o(x+(zv+a'w

—
—

o

Lines and points might be related to each other for mathematical

applications by a representation in machine memory of the notion

"lies on'" or passes through"” (which really is only one notion viewed

from a different point ‘of view).

1

notion associates points and lines.

The "lies on'" or '"passes through"
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Unlike the representations of points and lines, the representation
for the point-on-liné relationship need not carry any specific
data. On the other hand, it represents a condition upon the data
contained in the point and the line. If the values in the point
and line are to live up to the geometry intended by tﬂe point-on-
line relationship, particularly when some of these values have
been changed arbitrarily by the user, then a '"demon" will have

to be programmed which can adjust the coordinates of points and
lines to satisfy all of the point-on-line conditions. The design
and programming of such a demon may not be an easy matter, Such
a representation of points, lines, and associations between them
would be useful for doing projective geometry. internally, lines
would be of infinite length. For human consumption as much of
the line would be displayed aé would fit on the scope. Of
course, the area shown on the scope would be variable so that

a user might look at an entire figure or concentrate on a

small section of it.

Suppose that instead of doing geometry we wish to deal with

directed graphs, such as the one shown below.
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Such graphs might represent the behavior of a finite state machine.
The important thing to represent here is the topology of the grapA:
Its geometry is of secondary importance. The topology of a picture
is very simply represented if its.points are named and the -
representations of its lines each contain the name of the point

at which the line begins and the point at which it ends.. Because
the directedness of the line segments in such a graph would be
important, appropriate tools would have to be provided with which

a user could manipulate the topology and the orientation of the
lines. For human consumption, of course, the lines of suéh a
graph might not necessarily be drawn straight. For example, if

two lines both run from point A to point B, it may be useful to
represent each as a curved arc so that each may be seen. Additional
information might be stored in the line segment representation to
indicate how it is to be presented to the observer. Appropriate
tools would also be needed to manipulate curvature of lines.
Perhaps a special program to assist in presenting complex graphs
might be written. Such a program might lay out a graph in such a
way as to minimize the number of line crossings and maximize the

symmetry of the presentation. Needless to say, the design and coding

of such a program might not be a simple matter.
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In ordinary engineering drawings, the liﬁes with which one is
concerned are undirected line segments. Such straight-line segments
can be represented adequately by defining the locations of their
end points. In a program for ordinary engineering drawings, then,
one might represent coordinate data with points, but no coordinate
data with lines. A line might be represented merely as an entity

which connects two points.

i Qd.. = i /QgL .rgg\ 4 R 3
Pe Py
g,
| 7 P
?.1 i n .P.?- T?:L fac ;____3 |

Several lines can of course terminate at the same endpoint, as shown
in the figure. If a corner of such a box is moved, which can be dome
by merely changing the coordinates stored in that point, then both
line segments attached to it will subsequently be seen in new
locations. The structure of the representation says nothing

about the length of a line or about the similarity of coordinates -
of the ends of a line which would make the line horizontal or

vertical.

If one is especially interested in representing horizontal and
vertical lines, the x or y coordinate information stored in the
end points of a line would often be redundant. One might separate
the coordinate information from the actual point blocks themselves

so as to represent a rectangular box as shown below.

P)

1 [
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Changing one of the x coordinates will make the box wider or narrower
and changing one of the y coordinates will make it taller or shorter.
The structural representation, however, insists that the box be

rectangular and alligned with the axis. A similar representation in

polar coordinates might be used to represent circular wedges.

We have now seen three quite different examples of how points and
lines might be represented. I hope to have convinced you by these
examples that the choice of what to represent, to say nothing of
how to represent it, depends strongly upon the application you
have in mind. The proper early care in choosing what to represent

will save a world of grief later on.

Representing Curves

Entities more complicated than straight-line segments will need
richer representation. A circular arc for instance, might be
represented as depending on the positions of three points:

a center point, a point at which the arc starts, and a point at
which the arc terminates. In addition, of course, one would need
a single bit to répresent the sense of the arc. Unfortunately,
such a representation implies that the two points at the ends

of thé arc be equidistant from the center. Suppose theYare not.
What should then be drawn for human consumption? Here you have
many choices.. The display program for circles should make some

picture which is suitable for the job at hand. In "Sketchpad",
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I chose to draw the arc using the radius defined by the startpoint and

only the angle defined by its endpoint as shown below.

Alternatively, one could draw the arc with the mean radius indicated
or the maximum radius indicated or the minimum, or any other arbitrary

choice which is suitable to the problem at hand.

Each thing represented in memory should have some presentation form
for human consumption. This may be as simple.as a dot for a point,
or as complex as the curved lines in the direct graph examéle. Such
display forms can be related in many complex ways to the data
presented. For example, a display program might let one choose
between the mechanical layout view or electrical circuit view of an

integrated circuit represented in memory.

Collections of Things

Collections of lines in a drawing are often of significance. In

an electrical drawing, for example, a collection of lines may
constitute a wire, whereas another collection of lines may constitute
a component. In representing a wire one can either choose to store
it in memory as a single thing, or one could choose to superimpose
‘the collection idea on top of the elementary form in which lines

are represented. For example, one might represent a wire as shown

below: !
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Given such a representation in memory, one can readily program such
features as the ability to erase an entire wire or to brighten it
on the display by pointing to any par£ of it. Given such a
representation, however, it is not so easy_to insure that the

parts of a wire follow the horizontal and vertical lines commonly
used in electrical diagrams. One might instead choose to represent
a wire, not as a collection of lines, but as an entity in its own
right, an entity with N segwents, each of which has a horizontal

or vertical position and duration in the other coordinate.

Regardless of what representation is used for a wire, there may be
electrical or mechanical properties OF THE WIRE which should be
represented ﬁith it. For example, the wire may have an electrical
potential or may be open wire, twisted pair, or coax., Such
pfoperties are best represented as propertiés of the wire rather
than of its individual segments.

Instances

The most common collections of lines on a drawing are those used
to make symbols. Symbols used in electrical, mechanical and
mathematical drawings are usually geometrically similar. That is,
althought the size, position, and orientation of a particular

kind of symbol may vary from place to place, it is usually of
exactly the same shape. Because of this similarity, it is possible
to represent a particular instance of a symbol by reference to a

picture which defines its shape.
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Thus, for example, the drawing of a flip flop might contain two
references to the transistor symbol definition. Each such reference
might indicate a size and position in which the symbol is to be
drawn. The actual content of the symbol need not be stored again
and again with each reference to it. I have chosen to call such
a "rubber stamp" reference to a picture an "instance". I ﬁill
speak of an "instance of a transistor" which means, of course,

a specific reference to the transistor symbol definition. One
can 'move an instance", which means to change the parameters in
the instance block so that the transistor symbol appears in a
different position on the picture. One can 'delete an instance"
which means to eradicate from memory the particular reference
involved. To '"delete an instance' does not mean to delete

the definition to which the instance makes reference, I will
call the definition to which an instance makes reference its
"Master Picture'. Several instances may make reference to

the same master picture. One wants to consider very carefully
ﬁhat parameters one includes in the definition of an instance.
In the "Sketchpad' program, for example, an instance contained
four parameters x, y, A sing, A cosq where A is the size of
the instance and ¢ is its angle of rotation. This choice of
parameters did not permit mirror-image instances, which caused a
great deal of difficulty in making transistor drawings, because

transistor symbols come both right and left hinded.



CHAPTER FIVE 10

On the other hand, a system designed specifically with electrical
drawings in @ind, could be useful even with only a single size of
instance available, because all similar symbols on an electrical
drawing will be the same size. In such a system, an instance need
only contain as parameters x and y position and three additional
bits, two to indicate orientation, and one to indicate mirror image
symmetry. In some other circumstance, an instance might, perhaps,
need to contain separate scale factors for horizontal and vertical
dimensions. With an appropriate choice of parameters, all rectangles
could be represented ac instances of a square. Roberts' block-
drawing program, for examplel, treated all parallelepipeds as instances
of a cube and all triangular wedges as instances of an equiangular
triangular wedge, all tetrahedra as instances of an equilateral

_tetrahedron, etc.

In order to display an instance for human consumption, a
computer graphics program must display all of the lines and points
and curves and other displayable material which appear in its master
picture but in the reduced size and changed orientation indicated by
the parameters of the Znstance. As are as the display is concerned,
an instance is a sort of subroutine which says ''go display all of
the stuff which appears in that master picture, but with these
parameters'. The parametefs given may affect different parts of the
master picture in different ways. For example, text in the master
picture might be displayed in horizontal orientation regardless of

the orientation of the rest of the material in the picture.

®

Roberts, Lawrence G., "Machine Perception of Three-

. Dimensional Solids', Doctoral Thesis, MIT, June 1963



CHAPTER FIVE - | 11

If a character generator is used, tne text might be displayed
in one of the available sizes convenient to the character generator
even though this size might-not be exactly ?orrect. In "Sketchpad",
digits which represented distances were modified in content so that
when displayed in an instance they assumed an pppropriate value.

For example, length lables on the sides of a 3, 4, 5 triangle would
in instances of it always be in 3, 4, 5 proportion but with specifiﬁ
values appropriate to the size of the instance.

‘The expansion of instnaces ié, of course, a recursive procedure.
Thus, for example, if the master picture of an instance contains
instances of some other master, then those subinstances must be
expanded as a part of, the expansion of the master. A flip flop
symbol which contains transistor symbols may require expansion two
layers deep. The route by which the instance expanding program has
entered a!complex instance structure is conveniently kept in a pﬁsh
down stack.

As soon as éne allows recursive expansion of instances,-of
course, one has the poséibility of tangling a drawing. Suppose,
for.example, one puts into a drawing an instance of itself. Such
a drawing used to appear on Morton Salt labels. They showed a -
girl who carries another Morton Salt package smaller than the
first, but upside down so that salt is draining out of it. Onm
the smaller package appears a girl who is carrying a still smaller
package upside down so that salt is draining out of it, and so on.
Or for another example, consider Claude Shannon's bus: Shannon
remodeled the bus for camping, but before embarking on the fuil—size

3

bus, he built a model bus to help plan the layout. When the large
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When the large bus was complete, he put the model bus in it -
which required, of course, that in the model there appeared a model
bus, etc.

There are several ways of handling this paradox. One can
either forbid circularity of instances or use some rule to truncate
t?eir expansion. One possible rule is to continue the expansion
until no additional significant information is put into the
drawing, i.e. until the subinstances become so small that their
detail is lost, or so large that none of their lines pass through
the scope. Another pocsible rule is to terminate thz expansion as
soon as the circularity is detected as I did in "Sketchpad". In my
system, one could see only the first instance of selg, but no successive
subinstances.

As pointed out in the chapter on windowing, instance expansion
really involves reproducing some section of the master picture in some
subsection of the page coordinates of the picture in which it is.to
appear. This in turn implies that material from some portion of the
master picture may appear in some subviewport on the scope. Of course,
if the instance lies eutirely outside the "window', the part of the
page that can be seen on the scope, then the instance need not be
expanded. The ability to reject an entire instance as lying outside
the present window without having to expand it to test its parts
individually can result in major time savings in displaying a complex
drawing. |

During the expansion of an instance, one would like to pr&vide a

single layer windowing function which would go directly from master
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coordinates to the scope. This is possible only if the windowing
transformation available is matched to or richer than the transfor-
mation carried in an instance. If, for example, an instance can
call for mirror immaging, and the windowing algorithm cannot,
mirrored instances will have to be expanded by special means.

The page-to-scope transformation should be rich enough so that when
concatonated with the master-to-page transformation implied in

an instance, the resulting transformation is no more complicated than

the page—to;scope transformation can handle.
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In three dimensions, then, we are faced with the need to represent
surfaces and solids. Surfaces can be represented as associating
several lines, or preferably as occupying the region interior to a
set of points. The simplest plane surface, analogous to the line
segment in two dimensions, is the plane.triangle interior to three
points. Such a triangle is fully defined by the points and like
the 2-line segment needs no further data in its reﬁresentation.
Evans and his group at the University of Utah are using such
triangles as the basic elements in making perspective views of
solid objects with hidden parts removed.

In a later chapter we will see how curved surfaces may be rep-
resented as blending four curves which define their boundary.
Topologically, of course, the surface so répresented ties together the
four curves. We are now involved in some éxperiménts, moreover,
where the data representing the nature of the surface patch should
be stored. Perhaps the data relevant to a curve should be stored
with it, and only the additional data about the suriace (how it
bulges, etc.) should be stored with the surface. I suspect, with
no proof, that a representation of a triangular surface patch might
be handier. Unfortunately, however, our simple mathematical
formulation for the surface uses two orthogonal parameters and so
fectangular patches naturally result. A clean formulation of
triangular surface patches is neéded. Such a formulation would let

us coat a sphere, a task now considered difficult.
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CHAPTER SIX

CONIC-DRAWING DISPLAYS

Larry Roberts, then of the MIT Lincoln Laboratory, devised a scheme
for drawing conic séctions on a computer displayl. .Roberts' scheme
utilizes multiplying digital to analog convertefs to generate deflection
voltages appropriate for tracing the conic sections. The scheme has
subsequently been built by Howard Blatt also of the MIT Lincoln
-Laboratoryz and is currently in operation on the TX-2 computer. Because
Roberts' scheme involves nine multiplying D to A converters and the
generation of voltages which are quadratic in time, it appears at first
glance to be éery complicated. It is the purpose of this chapter to show
how to use the conic-generating hardward to draw the curve of your choice.

Roberts' hardware implements the function

[t2 t 1l la a é1 = [wx wy w]
B b e (1)
i§. e £

His hardware is arranged to plot the values of

as t ranges from 0 to 1. Notice that the x and y plots are the ratios of

quadratic expressions of the parameter t.

wX _ at? +8t + & _ Wy _ at? + bt + ¢
W w

xﬂ

(2)

dt? $et + £ dt?2 + et + f

lRoberts, Lawrence G., ""Conic Display Generator Using Multiplying
Digital-Analog Converters', IEEE Transactions on Electronic Computers,
Volume EC-16, Number 3, June 1967

!
2BlaCt, Howard, "Conic Display Generator Using Multiplying Digital/

Analog Decoders', Presented at the Fall Joint Computer Conference, Anaheim,
California, Fa=-1, 1967
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It can be shown that all curves represented in this.manner are conic
sections, and that all conic sections can be represented by this form.

The way that Roberts' hardware works is as follows: The matrix
termsa through f are stored in digital registers. The bits of these
registers are used to select weighting registors in. an amplifier
circuit such that each of the entries in the matrix can multiply an
analog voltage by the digital fraction which it stores. The 6utput
of the three multiplying digital to analog converters in each column
are added togefher. The analog inputs to the multiplying digital_tu
analog converters for the three rows are provided with signals of the
form ktz, kt and k respectively. A feedback circuit controls k from
the third column of the matrix in such a way that the output of the
third row is always one, i.e. that the expression

dkt2 + ekt + fk -0 %

This insures that the output of the other two colupns are the
real values of X and Y rather than wx and wy.

Conceptually then, Roberts' curve drawer is very simple. In
practice, to make the feedback circuit stable proved to be a very difficult
‘task. The feedback circuit is required to do the division implied in
equations (2). Indeed the feedback loop is stable only for values of the

parameters in the following ranges:

0.255 <3
=1 ¢« d <l
-1 < e<-l

%-'5 g, ) &

%

Care must be taken to see that the parameters provided to specify

the curve produce values within this range.
]
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How The Curve Is Drawn

Let us consider the geometry of the curve

2 ;
[x y 1] = [t7 t 1] (3)
in the
/range 0<t<l. Obviously all points of this curve lie on the w=1l plane.
Aiso obviously, the curve begins at the origin and ends at the point [111].

The derivative of the curve with respect to t is
ax dy  av) ' |
[dt dt ét] l2e & 0 )

From this we can see that the slope of the tangent to the curve (which is

thezdérivative divided by the x derivative) is given by-%% --E%. From this

it follows that the equation of the tangent line to the curve is

N|rt

X
y=oe ¥ (3

At the beginning of the curve (t=0) the curve is at the origin and
has a vertical tangent. At the end of the curve (t=1) the curve is at the

point [111] and its tangent has slope of 1/2 and y intercept o6f 1/2. The

-curve and its initial and final tangent are shown in the figure below.

INITIA L
TANGENT]
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When t=a, the curve passes through the point [a® « 1].

Now suppose that we wish to map this canonic conic curve into some
other curve. We can define the shape of the other curve by specifying its
endpoint and the point at which its endéoint tangents intersect. We can
further specify the curve we wish to draw by specifying the location of some
point on it, including the value that the parameter t should have when the
curve passes through that point. We might, for example, specify the positiom
of the midpoint (t=%) of the curve. How do we derive the nine values for a
matrix T which will transform the'[t2 t 1] curve into the desired conic
section?

If we éall the start point, téngent intersection, and end point which

define the conic Vo’ Vt’ and V,respectively, then it follows that

1
—1 1 ij 1'P-V-‘}'
!T‘il
i ! ]
0 % 1 Ly (6)
2 ; ' ti
f
0 0 1! v
e = o]
because the canonic end, intersection, and start points must be so mapped.
Now the inverse of ~ = = =]
1 I 1 i -2 1
o ¥ 1lis |0 2 -2
2
0O 0 1 0 0 1
| el L ¥
which T will call M. Thus,
T=M Vl
v, o D
v
o
R

which defines one possible transformation T.
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Actually, the vectors Vo, Vt and Vl can be scaled by any arbitrary

scale factors which I will call w , W_ and w VvV =[x yh 1] is the
o t o o o

l -
same point as w V =[w x w.y w_]. Therefore we can say
oo oo oo o
T=M wlvl
weVe -
w 'V
L_o o

and we can get many possible transformations depending on our choice of the

w's.

We can choose w , w_ and w
o t 1

point Vé at some specified time t=a. For this to be true,

so that the resulting curve hits some

[6a2 o 1][T] = v, (8)
[ué a 1]1[M] [—w 0 0— v ; =V
1 : ik c
0 v, 0 Vt
0 0 w v
o o)
(o2, 2a(1-a), (1-0)2] |w. © g | (x 1] —v—’l
o B ’ p § c Ve 1
Q v, 0 Vt (9)
0 0 W A
(o] (o]

Equation (9) is just a vector equation in the three unknowns, Wis Wy and v

Given a choice of a, it will tell us the values of Wiy W and vy to use.
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For example, suppose we want to produce three quarters of a unit

circle about the origin.

Vo

For this case, equation (9) becomes

i
471

s

[1

1]

4]

.1

1]

|

[8 -8 4]
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Since we can drop the scale factor for all of T, we will divide

out a factor of 4 and use

t tz t 1 wt2 wt W

- i TR .
o 0 0 1 0 0 1ilxl-3 -4 5]e}-2 0 1!
1 3 4
T Y T 14 1 4 16 4 2 -4 -3 4 5
y X 2
> T & 4 1 2 4 |1 0 L 1 0o 1
3 9 3
= =2 = & 12 16 5 -12 13
1 1 1 1 I | 0 =2 2

= - =

All of which are at once recognizable as being on the desired circle!

[F2 4 58]
Lo o o
[-t ]
Fa =3 43 [s =i 13]
!
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Sectioning
Suppose that we have a transformation T which transforms the
[t2 t 1] curve into the curve that we wish to see. Suppose however

that the transformation T is unacceptable to the hardware because, for
example, it produces values of-% unacceptably large or small.
Such is the case in the example for which-% = (SI:2 -4t .+1). ==

'% varies in the range .2<%<2 as shown below.

% d

w}¢< :

w
“<

Crraxt rpom J

= A

(rarnpmum

=,

T=0 T= "* T= 41

It would be nice to draw the desired curve in two segments using two
separate settings of the conic generator, one for each segment. Can we
derive transformations appropriate to each of the two segments from the
transformation for the full curve?

Suppose that the curve is to be divided at the point where the
parameter t has the value a (typically a= %D. We can generate a new
matrix Tgwhich draws the first part of the curve by transforming the
[tz t 1] curve into the part of the target curve for which t runs from
zero to a. We caﬁ generate another matrix Tg which transforms the
[t2 t 1] curve into the rest of the target curve with parameter values

from a to one. These transformations are shown symbolically in the Figure

on the following page.
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We can derive the transformations T
2

£ and 'I‘r by first transforming the full

[t© t 1] curve into a part of itself, and then transforming that part into
the corresponding part of the target curve by the transformation T. In other
words,

?f = AfT and 'I'r = ArT,

where the matrices Af and-Ar may be derived as the appropriate transformation

of points in the original space. Thus, for example, the transformation

Af should map the [tz t 1] curve into the portion of itself running from

the origin to the point [az o 1]. The transformation Ar should map
the [t2 t 1] curve into the portion of itself running from the point
[uz a 1] to [1 1 1]. By referring to equation (5) for the tangent

2 :
to the [t t 1] curve at the point where t=a

|

a
y = +5

[

43

We can find the locations of ﬁggf critical points,
?T-r‘ - [‘G‘ R lj Fl - EI 1 ‘f]

s

PT{-"[‘:’% ']m

Pe = [001]
maps[Pl Pt Polinto[%c ptf’ P

;]and A maps[Pl P, Pi‘

Obviously Af

into[Pl P ?c]. Thus we can write?

=2
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A, = : . gl & i]s Paz 0 o0
0 2 =2 % 1 0 o O (10)
| 0 0 1 0 {- (0 0 Ei
A= 1 2 IfF 1 1]-fa-a? o 0
0 2 -2 L2 1 f200-0) 1-a 0 (11)
0 o 1?2 - 1 a? a 1 : .
To check these results, let us see how Af and Ar affect the [t2 t 1]
curve.
[t2 t 1] [e?2 o0 aq = [a2t? at 1]
0 a O
0 0 1]
which is obviously the first portion of itself. i
(2 ¢ 1) I-El-a)z 0 o= [(1-a)2t? + 2a(l-a)t + o2 (1-a)t +a 1]

2a(l-a) l-¢a O

a? o 1

= [{(1-)t +}?  {Q-a)t + a}' .1]

again obviously a portion of the curve.

Let us now section the three quarter circle of our example. We will section

it at the place where t =‘%.
_ - - - -
T, =AT=7 0 0|3 -4 5| =23 <4 s
0 -;-'- oll & 2 -4 8 4 -8
o o 1/f-1 o 1 & 0 &

which maps the [t2 t 1] curve into the upper semicircle, and

3
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rl B 7 s -

£ 0 o3 w -5 -3 -4 5
RNl 1 olle 2 <4} 1 |2 -4 2

2 "2 ~3

11

© 3 Y1 oo 1 3 0 1

L — f— - o ek

which maps it into the quarter circle in the fourth quadrent. For

these two transformations, the % ratios are

§-= (St2 -8t+4) and
w. 2
e (5t +2t+1)
which look like:
P
4
& F&*q 3L+l ‘ O ™ Pt i g !

w
Thus the range of‘i ratios is now even worse!

The Squishing Transformation.

Let us now find a transform which will map the [t2 t 1] curve into itself
but move the point where t=a to the point where t=l-a. To do this, we need to

find an appropriate set of w's.
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2 ca 11 |1 -2 1 fy 0 of= [A-w% 1-e 11 I -2 I
0 2 -2 0 wt 0 0 2 -2
0 0 i | 0 0 W 0 0 1
— - - _0_ ’ e

2 23 (l""a) di‘
a’wy, 2u(1—-a)wt, (1-a) L [(l—a), ST o
2
l-a
Ll i R
v, = 1 ” T
a |2 1
Yo (l-a_) =y
— -| [' = al 1 #i
1 =2 Uiy v v Y Y1 y+3-2
1 - Ay |
As 0 2 -2 0 2 l|= 0 1 2(1 Y)- [
1 1
0 0 1 (4] 0 = 0 0 - r
Y
s b L - ks L
" ~2v+1 ! -1
¥ i1 uy__ I '(Iy—l
- 0 1 2('1‘?'-;)- = {0 a2 2(1;—1)
0 o0 3 0 0 1
¥ Y
L- - Fe— —
Now let us check that As really maps [t2 t 1] into itself
ft2 ¢ A]A = |ye® | e ty-1) + ¢ (Y"Dz $ofed) 1
s Y L ] Y Y ] T & Y 'Y
14 22 2
= ;:l_; t7, vt (t (y-1), (t (y-1) + 1):1
2 2
1 2 Y© ot , vt 1
= ~t (v-1) + 1) : ;
Y . i z t "'1 + 1
=D + ° GO ED
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which is easily recognized as being of the form [u2 u 1] where

t
=

S ot(T-1)+1

We can factor out a y from the Ag: matrix to make it slightly clearer

and use ~

Yo y(y-1) (\f—l)2
A =10 y 2(y-1)

0 0 1

The objective of using the A’y transform is to make a T matrix which
has minimum variation in-%. Such matricies have the property that their
upper right corner entry and the one just below it are equal and opposite

in sign. Given a matrix T of the form

- - a

s 1
The product
ar = | el # Bl + (r=1)2
' . . BT+ 2(7-1)
. . 1
| © )
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From which, by an "obvious" reduction it follows that

and application to the quarter circle yields

, R I
Y 5+2+1

oo

which we can use to find a minimum-w-variation equivalent transform.

For the half circle, for example,

AT = (4 2 1 |-3 -4 s|= -8 8
o 2 2118 4 -8 8§ -8
0 0o 1 {4 o 4 0 4

This matrix provides for equal starting and ending % values as shown

below.




CHAPTER SEVEN
"STYLUS INPUT DEVICES FOR COMPUTER GRAPHICS
As Told In Part By

‘Thomas G. Stockham, Jr.

While cathode ray tube display devices provide an adequate
output medium for computer graphics, they do not themselves provide
for input of graphic material. A variety of stylus devices are
available, however, which enable their user to draw information
directly into the computer. It is the purpose of this chapter to
describe the properties of stylus input devices and how they are used.

There are two basic types of stylus input devices: pointing
devices and positioning devices. The pointing and positioning functions
are quite different. An ideal stylus input device would contain both
pointing and positioning capability. Unfortunately, no stylus device
inherently provides both capabilities, although most stylus input devices
can be made to behave as if they had both properties. Both pointing and
positioning devices are usually used in conjunction with cathode'ray tube
displays. Pointing devices.enable their user to point out a particular
item already on the display picture: an item such as a line or a
character for example. Positioning devices, on the other hand, enable
their user only to indicate the coordinates of a single point which the
computer can most easily use in positioning objects in the piétﬁre.
Pointing devices in effect say "this thing'" whereas positioning devices
in effect say "here".

Fairly scphisticated software is required to obtain pointing
information from a positioning device. Since the computer knows only

the coordinates delivered by the device, a program must compare those
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coordinates with every diSpléyed object to disc;ver the closest match.
Although the comparison task is not difficult for points and straight
lines, it is rather more difficult for curves, and quite time-consuming
in ény case. It is generally more practical to provide pointing hardware
(See Page 12) than to expect the program to search the pictufé for a
position.match.

- 8imilarly, a sophisticated program is required to obtain position
information from a pointing device. In an appendix to this chapter, we
consider such "tracking" programs in detail. Some pointing devices are
provided with special hardware to provide the position function through
;utomatic tracking. Other pointiﬁg devices are equipped with special

hardware which makes it virtually impossible to obtain the position

information, even with a very sophisticated program.
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POSITIONING DEVICES

' There are many schemes by which tﬁe computer can be informed of the
position of a stylus héld in a human operator's hand. Of these, the
most prevalent and versatile are the so-called "Rand Tablet" and the
"Voltage CGradient Stylus'. Both the Rand Tablet and the Voltage Gradient
Stylus use electrical fields to detect the stylus position. It is also
possible to use magnétic fields, sound, light, and mechanical techniques
to sense the position of the stylus. In all cases, the function of thé
equipment is merely to indicate the coordinates of the tip of the stylus
to the computer at regular intervals of time. How this ~oordinate
information is used is up to the computer program.

The Rand Tablet

The Rand Tabletl, also known as the "Teager table" is a simple
digital device for detecting the position of a stylus. In the sufface
of the tablet are located 1,024 vertical lines and 1,024 horizontal lines.
Each line is made of copper about 3 thousandths of an inch wide and one
thousandth of an inch thick. The lines are spaced about one one;hundredth
of an inch apart so that the active area of the tablet is typicdlly
ten inches by ten inches. Tge horizontal lines are sepurated from the
vertical ones by a thin sheet of milar.

The individual vertical and horizontal wires are brought out at
the edge of the board to coding devices. In the device developed by Ellis
and Sibley at Rand, the coding is obtained through capacitive coupling
between the extended wires and a special pattern of copper plates etched
on the reverse side of the thin milar sheet. The pattern of capacitor

plates !is so urranged that ten pairs of pulses placed sequentially in

. 1 Ellis, T. O. and Davis, M. R., "The Rand Tablet: A Man-Machine
Graphical Communication Device', Proceedings of the Fall Joint Computer

Conference, Vol. 26, pp. 325-31, 1964.
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time are coupled differently into each of the individual wires. In

one particular wire, for insténce, all of the pulse will be positive fol-
lowed by negative. 1In other wires, certain of the pulse pairs will be
positive-negative whereas others will be negativé;positive. The coding
used is a "@ray-code" scheme so that the sequence of pulses in each

wire is unique and the sequence of pulses in two adjacent wir;s differs
only in ane pulse position. Teager's implementation of the device is

similar in principle but uses a different technique for coupling the

pulses into the wires.

The stylus for the Rand Tablet has a small tip which is capacitively
coupled to the wires to which it is closest. Within tﬁe stylus, a
sensitive amplifier detects and amplifies these pulses and delivers them
via coaxial cable to the logic box. The sequence of pulses coming from
the stylus is a unique repfesenéatinn of the position of the stylus on the
tablet. The sequence of pulses is put into a "Shift" register and then
converted from the Gray-code to binary for delivery to the computer.. In
addition to detecting the éosition of the stylﬁs, the pen has a smail
switch which detects whether or not its user is pressing down on the pen.
The position of this switch is reported to the computer where it is
commonly used to control the flow of logical "ink", i.e. to control
whetﬁer or not the coordinates are stored ig memory.

The Rand Tablet is generally placed on the desk in front of a

vertically-mounted cathode ray tube display. It is customary for the
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program to present a spot on the display in a position which corresponds
to the position of the stylus on the Rand Tablet. The user of the

tablet looks at the spot on the cathode ray tube but controls the

motion of the spot by moving the stylus on the Rand Tablet. The hand-eye
coordination required to write on one surface and look at another comes
very naturally. Because the writing surface is separated from the

point of observation, the hand used for writing does not cover the
written material. Both the Rand Tablet and the version of the voltage
gradient stylus built by Sylvania are transparent, and so they can bé

placed directly in front of the display if desired.

The Voltage-Gradient Stylus

Another position-detecting technique ttilizes voltage gradients
within a resistive plate. 1In its simplest configuration,.a sheet of "
partly conductive material is used as the tablet surface. In successive
time intervals, a potential is ;ppiied horizontally across this sheet and
then vertically across the sheet. Diodes may be used in the connections
to the edges of the sheet to prevent the vertical conmections from
distorting the horiZUntal_ﬁield and vice-versa, as shown in the figure
on the next page. The stylus, in actual contﬁct with the conductive
sheet, senses a potential which corresponds to its position on the sheet.
By observing the potential during horizontal and vertical time periods,
the associated electronics can determine the x and y coordinates of the pen.
By observing whether or not there is a potential present at all, the
electronics can determine whether the pen is in contact with the tablet

surface.
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The major difficulty in building a voltage-gradient stylus is obtaining
a ‘material suitable_for the tablet surface. The material must be
sufficiently tough to stand the wear of constant contact with the
moving stylus. It must also have sufficiently uniform resistivity so
that the potential measured is a linear function of the position. The
probelm is made more.difficult by the need to have sufficiently high
resistiv?ty so that reasonable potentials can be developed across the
tablet., Thus the conducting surface cannot be made of a copper plate
which would be ideal in all other resbects.

Sylvania has recently announced a tablet device similar to the
voltage-gradient stylus. In the Sylvania device, the resistive sheet
is a layer of stannous-oxide fused into glass plate and covered with
another glass plate. Sylvania's engineers have.shown that only seven
contacts need by made to each edge of the plate in order to achieve
one-percent precision. Moreovef, they have worked out a technique for
compensating for non-linearities in the plate by means of a few
compensating resistors connected to these contacts. Sylvania is thus
able to compensate individually for the difficulties in relatively
poor conducting sheets to achieve the desired precision.

In Sylvania's device, the pen stylus does not actually contact the
conductive sheet. The signals put in the plate are high-frequency
alternating currents applied in such a way that the phase detecged by the
stylus varies for different positions on the sheet. Two different
frequencies are used, one for horizontal sensing and one for vertical

sensing. The phases of the two received signals, as filtered, are

§
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measured and correspond to the position of the stylus on ﬁhe plate.

Because high-frequency signals are used, there can be considerable sepa-
ration between the stylus and the conducting surface. In fact, Sylvania's

~ tablet works quite acceptably through a book. The magnitude of the received

signal is measured and used to indicate height information to the computer.

—
-

Three height signals are provided; one indicating that the pen is within
about 1/32 inch of the surface, and one indicating that the stylus is
actually being pressed down onto the surface. The final indication is
given by a mechanical switch.

The Sylvania tablet is completely transparent. It is made of glass
and the stannous—oxide coating is also transparent. It is in principle
possible, therefore, to put the Sylvania tablet-directly in front of the
cathode ray tube. Rand tablets are translucent. Because the copper wires
are relatively narrow and have relatively wide spacing, the Rand tablet will
transmit about 50% of the light shining on it. An ideal display tablet
combination would, I feel, be provided by projecting the cathode ray.tube
information from underneath a Sylvania or Rand tablet. The registration
between display and tablet would need to be carefullﬁ controlled so that
coordinates delivered from the tablet correspond, in detail, to the
coordinates selected by the tablet.

Other Devices

Jack Raffel at the MIT Lincoln Laboratory has built a magnetic

tablet which senses the relative strength of-magnetiq field coming from two
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individual wires. The configuration of:the magnetic tablet is as

shown in the figure below.
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The magnetic field in the region between the two loops varies roughly

I
2% T. The total magnetic field is therefore given by

In this case, the stylus pickup device is a small field-sensing loop.

The current in one wire is gradually increased and the current in the
other is gradually decreased until the field sensed by the loop changes

sign.

- Imax + Kt . Imax

1 2 2

1

- Kt -T<t<T

The time at which this happens is an indication of the position of the

stylus on the tablet.

Imax + Kt Imax _ Kt
w0 2 _ 2 . . LaK .
o emegpng - - a-x Imax

The 3-D Wand

L. G. Roberts, then of the MIT Lincoln Labeoratory, dzvised an
ultrasonic device now known as the "Lincoln Wand". The Lincoln Wand
senses positions in three dlﬁensions, rather than in two dimensions as
in the other devices mentioned. The Lincoln Wand is nothing but a hand-
held microphone sensitive to high-frequency sound pulses. Four transducers
mounted around the cathode ray tube display transmit pulses in turn at

8 millisecond intervals. The transit time of a pulse from the transmitter

" to the hand-held receiver is measured for each of the four paths, and

from this information, the computer can deduce the position of the stylus.

3
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The Lincoln Wand measures four distances rather than three in order
to provide a check on the accuracy of the measurements. If the four
distances measured are indicated by subscripts which indicate which

quadrent of the display the corresponding transmitter is in, then

2. 2. 3.2
D} "=D, 0,70, = 0

as can easily be shown by geometric arguments. Moreover,

- 2 2 2
2ax Dl + D2 + D3 - D4 and

2by = -Dlz -2+ n32 + 042 and
2

- 2 2 2 2 2 2 2 2
2(.1)1 + D, +D3 +D4)—4x -4y =-a" - b

where a and b are the x and y separation of the transducers.

4Z

As you can see, the computations of the coordinates of the stylus from

the distance measurement information is not very difficult.

. Comparator

A comparator is a device which examines the current position
of the cathode ray tube beam and announces whenever that position is
located within a certain region of interest,.generally a small square.
The comparator, then, computes the difference between the current
position of the beam and the center of the small square in both x and
y and produces a pulse whenever the magnitude of that difference is
smaller than some tolerance in both x and v. Comparator devices should
be designed as a part of display systems, except that historically they

have nothing to do with stylus input at all.
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The comparator may take two forms. In the "center-size" form, the
comparator has an "x" and a "y'" register to store the coordinates for
comparison and possibly also a register to store the tolerance, or at
least aﬁ'adjustment on the tolerance. In the "four edges" form, the
coordinates of the top, bottom, left, and right edges of the sensitive
area aré stored in four r?gisters. The registers of the comparator
should be capable of being loaded under program control. In its most
common use, the comparator registers will be loaded from the information
derived from the stylus, but that should be a choice of the programmer and
not a wired-in function. The programmer should be able to sensitize the
comparator to whatever other values he chooses, such as for example, a
position related to the poéitien of the stylus but not exactly the

position of the stylus. A comparator "hit" is treated logically in a

fashion identical to that described for light pen hits.
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POINTING DEVICES

The original stylus input devices were of the pointing type. They

were called "light guns'", so named because they looked like pistols and

were aimed like a pistol at the cathode ray tube display. The iight

gun was developed so that-operators could select pérticular targets of
interest on the radar disﬁlays of early air defense systems. A version
of the light gun, reauced to the size of a fountain pen, is now in common
use. It is called the "light pen'".

Both the light gﬁn and the light pen contain a photo cell and a lens
system. The lens system is so arranged that it focuses light from a
small region of the CRT screen onto the photo cell. TIf the light pen or
gun is aimed at the cathode ray tube and displayed information falls
within the small field view of the light pen, light from the CRT will
fall on the photo cell. Because the different parts of a picture on
a cathode ray tube are displayed in time sequence, the time at which the
photocell sees light correcponds to the particular object whose light
has been sensed. The photo cell indicates tnat it has sensed the light
by sending an electrical signal to the computer through a cable providéd

for that pufpose. When it receives such a signal, commonly known as a

"light pen hit", the computer can take appropriate action for the particular

item in the picture then being displayed.

Logical Design Gf Light Pens
" There are two quite different kinds of hardware through which a

light pen hit can be indicated to the computer. In pen systems with
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only the simplest hardware, a light pen hit sets a simple flag which the
computer can test if programmed to do so. In a-more complex system, a
light pen hit causes special hardware to start an interrupt procedure
whether or not the main program was explicitly testing for light pen
hits.

Each kind of 1light pén hardware can be programmed to pro;ide the
other function. If only.the interrupt mechanism is provided in the
hardware, an interrupt program which_mereiy sets a bit in memory will
provide the function of the light pen hit flag which the main program
may test. The time cost of such a program is small because interrupts
occur infrequently. It is far less convenient to provide the interrupt
capability in software if only the flag is provided in the hardware,
because the flﬁg must be tested immediately after it posts each picfure
item on the CRT. Whenever a hit is detected, the main program should
be fbrced to branch to an interrupt leocation. Although an interrupt
generating program of this kind is easy to write and need occupy only
little memory space, it will seriously decrease the speed of the display.

Because provision of interrupt through software is so costly, I
consider a hardware essential if the light pen is intended to select
-objects in a picture. It is often useful, in addition, to have a light
pen hit flag,:and because the cost of a flag is small, there is no
reason not to have both hardware capabilities. It should be possible
under program control to mask off the .interrupt mechanism if it is not

needed. One can, of course, choose not to tz2st a light pen hit flag.



CHAPTER SEVEN 14

It is interesting to note the relation between light pen hits in a
display and unusual conditions which arise in other parts of a computer
such as arithmetic overflow, memory violation, or I/0 ready signals.

For each such condition, two kinds of hardware may be provided: 1) a
flag which can be tested by the program or 2) a device which starts an
interrupt procedure. It is clear by now to all competent com;uter
designers that interrupt procedures are desirable for input/output

ready signals such as typewriter character ready, etc. It is also abun-
dantly clear that interrupt procedures for handling arithmetic overflow
are essential to efficient compiled code (though not all computers even
today provide for interrupt on arithmetic overflow). What is not very
clear, it seems, is that all these unusual condition testers could (and
I maintain should) be handled in a perfectly uniform way. A single
priority interrupt mechanism could scan all such conditions and initiate
separate procedures appropriate to each.

I favor initiation of such procedures by the execution of the
single instruction located at some particular place in memory. Please

note that I did not say by transfer or branch(as is done in the SDS940)

to a selected location, but rather by executing the instruction there.

If the instruction there happens to be a "no op", the interrupt will
effectively be ignored. If the instruction there is a subroutine branch
instruction, the named interrupt procedure will have been begun.

Automatic saving of the active machine registers (as is done in the PDP-1)
is not strictly necessary; in a machine with many active registers it is
less desirable than in a machine with only a few. In a machine with

ﬁush dow& stack subroutining, interrupts may be permitted to interrupt

others in a first-come, first-served basis if desired. Because it is

usually importaat, however, to guarantee that an interrupt program will
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finish its acfion within a certain limited time, the interrupt mechanism
should include some mechanism for preventing low priority interrupts
from disturbing a high priority process for synchronous I/0 unit.

Because most displays fetch information from memory through data
channels which are almost computers in their own right (See Chapter ),

a pen hit interrupt should probably affect only the display cﬁannel and
not the main computer. Similarly, the light pen hit flag should be
available to the display processor. Appropriate display channel programs
can store information for later use by the main computer.

The most common use of light pen hitQ is to record the identity of
the picture item that was indicated. In such an application, the light
pen hit initiates an interrupt procedure which examines the interrupted
display procedure to find out which item was being displayed. Typically,
the interrupt procedure will record the memory address of the item which
caused the hit. The interrupt procedure will deduce which item was seen
from the content of the address registers which keep track of which item
the main display procedure is to post next. If the information recorded
is to accurately reflect the item seen, the 1ight pen hardware must
interrupt in such a way that consistent information is available. If a
light pen hit from the first part of a line causes an interrupt before
the address registers have been advanced, but a hit from the end of a
line comes after the address registers have advanced, it will be difficult
if.not impossible to decide which line caused the hit.

The actual record made by the light pen interrupt procedure varies

from application to application. In most cases the interrupt procedure
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builds a small table of the items seen during a single frame. The

content of the table will show if two or more i£ems are being indicated

as would happen if ﬁhe light pen were aimed aﬁ the intersection 6f two

lines. In some display systems, the interrupt procedure initiated by a

light pen hit is a wired-in function. One display system (whose manufacturer

.shall remain unnamed) provides a wired-in interrupt procedure to recérd -
items seen by the light pen. Unfortunately, the wired-in procedure
records only the first light pen hit of each frame thus making it virtually
impossible to point to the intersection of lines or to do light pen tracking.
The record keeping job of the light pen interrupt program is made
more complicated by the use of displays with subroutining capability.
The address of the item being posted by such a display is not sufficient
to identify it. If several symbol pictures, say of transistors, are
posted on the picture by a single subroutine, an address within the
subroutine will not idéntify which transistor was being displayed. What
one really wants to record is both the subroutine involved and the route
by which it was reached. For example, that the transistor is, in faﬁt,
the third one in the fourth flip flop.- If thé subroutine returns of the
display system are kept neatly together in a stack, tﬁe light pen
interrupt-return can record a copy of the stack.
The information recorded by the light pen interrupt program must be
double-buffered for use in any procedure wihich is not synchronous with
the display. At the beginning of each ffame, the interrupt program's
hit table must be cleared. As the frame progresses, the hit table will

grow. If an asynchronous procedure (in the main computer, for example)
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asked whether a certain item had been seen, the answer might be "no"
merely because the item had not yet been seen in the current frame even
though it was seen in all previous frames. To avoid such a problem, the
completed hit table must be copied into another buffer at the end of each
display frame for use by the asynchronous process.

Physical Design Of Light Pens "

The mechaﬁical and optical design of a light pén is a more complex
task than generally appreciated. A good light pen has a cylindrical
field of view. That is, the area of the screen that it observes is circular
and relatively constant in size, independent of how far from the screen
the light pen is held. Achieving such a field of view is not an easy
task. Many light pens are designed with a simple aperture and no lens
system whatsoever. A more proper light pen lené system consists of two
lenses, the first of which focuses the screen onto an aperture whose
size and shape controls the size and shape of the field of view. The
second lens focuses an image of the first lens onto the active area of the
photo cell. Thus any light which passes through the first lens and through
the aperture will be positioned on the photo cell according to the place

it passed through the first lens.
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The entire active area of the photo cell will be uniformly illuminated
with an illumination dependent only on the proximity of the light source
to the edge of the light pen field of view.

Some light pens are equipped with aiming lights which indicate the
active area of the light ﬁen by projection onto the screen. If the photo —
cell is mounted in the light pen housing, a coaxial cable is generally
provided from the light pen to the housing of the cathode ray tube
display to carry the electrical signal which indicates the presence of
light. Some light pens replace the coaxial cable with a fibre-optic
light pipe, and are thus able to use a larger and presumably more
sensititive photo cell in the light pen electronic housing.

The most important electrical property of a light pen is its speed
of response. The lines on the cathode ray tube are drawn relatively
quickly, that is, in a few microseconds each, and so the light pen must
respond in é fraction of a microsecond if it is to distinguish between
successive parts of the picture displayed on the screen. Obtaining the
required speed of response is the major difficulty in building a light
pen. A significant obstacle is that the actual light output response to
the phosphor is somevhat delayed from the control of the electron beam,
and so even if the light pen were perfect, it might still not be goéd
enough. As the speed of displays has increased, the usefulness of the
light pen has correspondingly decreased to the point where it is now being

replaced in research organizations by other types of stylus input devices.
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The Light Cannon

Another interesting graphic input device is known as the "light
cannon'. In this device, a photomultiplier tube is placed in front of
the cathode ray tube in such a way that it can sense light from anywhere
on the display face. If an opaque object is placed between the cathode
ray tube and the light cannon, it will shield certain regions of the
cathode ray tube from observétion. Each point displayed on the cathode
ray tube face will be.sensed by the photo-multiplier only if it is not
shielded. An opaque object can be used to point out particular items on
the cathode ray tube by shielding them from observation of the light
cannon. The light cannon can also be used to sense the shape of
irregular objects placed in front of the cathode ray tube's screen, or

with special adaptation, to scan photographic material.
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TRANSFORMATIONS AND MATRICES

We represent the coordinates of a point in two dimensions by
the matrix [k y] . The elements of this matrix are independent, and the
pair of numbers constitute a matric quantity.

Now consider the matric product of such a coordinate matrix
and a 2 x 2 matrix: ' g

ab

[x ¥] = [(ax+ey) (bx+dy)] = [x"y'].
cd

The result of the matric multiplication consists again of two numbers,
(axtcy) and (bx+dy)y 2nd we can investigate the implications of assuming
that these two numbers are new coordinates x' and y' .

In passing, we should remark that the matric multiplication
consists of multiplying a row matrix [x y] by the column matrix [a]
- c
to yield (ax+cy) and by the column matrix [b] to yield [bx+dy] .
d
We can thus think of the square matrix [a 3] as consisting of two
c

separate column matrices. Incidentally, row matrices like [ y] or [x ¥
z w] . are commonly called vectors, as are column matrices like al ,

b
c
d

and the rule for formation of their producﬁ is

o @

[(xyzw]] |=ax +by +cz + dw .

/a0

The product of two more general matrices follows from this; we could
have the product i

X ¥ 1|2 22 (ayx%) + byyy + cy29)(apx) + boyy + cpzy)
v | X2 Y2 22 bl bo (ale + bly2 + ClZQ)(aexg + boyp + 0222)
¢ ¢
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and we can think of the product as consisting of the wvarious products
of the two row vectors in the first matrix and the two column vectors
in the second matrix. '

To return to the matric product of the vector matrix [x.y]
and the 2 x 2 matrix, we can investigate some simple special cases, and
see what the geometric interpretation is. "

Take

a0 __I
B y][o l] = [ax y] = [x' y']

The new coordinates of a point [ky] are similar to the old coordinates,
but with a scale change in x . This means that the act of multiplying
by the matrix has the effect of stretching the original figure, whatever
it may be, in the x direction.

Now take
' a0 .
Ecy}[ ]=[ax dy] = [x" y'] .

o d

This represents a scale change in both x and ¥y . The geometry of the
original figure has experienced a stretching in the x direction and

a simultaneous stretching in the y direction. Of course, if either a
or d 1is fractional, less than 1 , the result is a compression of the
original figure. :

Now consider
"1 b
[xy][ ] = pefox +¥}] = [x" '] o
1

Here the old x and the new x' coordinates are the same, but the co-
ordinate y' 1is given by the linear equation

y'=bx +y .
y Pr

bx
P

bx
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The quantity bx is the amount by which the old. y coordinate is
increased to give the new y' coordinate. The x coordinate is un-
changed.

In particular, suppose we take a unit square in the original
coordinate system and apply this transformation to it. The four corners
of the square are given by the four vectors arranged in a matrix.

We can identify these points as follows:

The origin of coordinates, O

The unit point on the x axis, P
The unit point on the y axis, @
The fourth corner of the square, R .

= O HO
R ) ©

Then we form the matrix product:

o olfr » o o] o
1 oflo 1|=|1 b | P
0 1 -lo 1 | q
1.3 1 b+l] R

We plot the old and new points:

RI

Q R

0 P

Note that the points 0O and @ are unchanged, but points P and R

are transformed into new points P' and R' . The square has been

transformed into a parallelogram, and it is customary to refer to this

transformation as a "shear"; the figure has been '"sheared" in the ¥y
direction by an amount b for each unit of x . Similarly the matrix
1 0| yields a shear transformation in the x direction, and a unit
¢l

square will transform intc a parallelogram:



1

I
Cl;///s [;/'5 :
X -
.0 P
where in this case 0 and P remain fixed, but Q and R transform

into new points:
Q|0 1|1 © c 1] Q'
R|1 1lle 1] T |1l+c 1| R’

I.et us now combine these two transformations. We shall elect to perform
the y shearing transformation first, and then we shall perform the x
shearing transformation on the result. For a general point, this is
accomplished by the matric multiplication

[x y][é :] = [x' y']
followed by the matric multiplication

[x' y'][t ﬂ = [x" y"] .
Then we can write the combined operation

[x y][ﬁ ‘;] [ﬁ ;’] - [x" y"] -

But we can evaluate the matric product of the two separate shear

transformations,
1 bj{lL O 1+be Db
0 1lle 1]  |e 1

Now, subject to this transformation, the unit square transforms as
follows:
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0 Of|1ltbe b 0 0
1 0flec 1 = |1+bec D
o1l c 1.
1, 1% - l+bet+e b+l

Consider only the point Rl and the two transformations applied to it:

ey’ ?_'_C&I_ﬁ"

= |
1 bx
lR LT
bx
e
The first transformation moves R vertically by the amount b . The

second transformation moves R' horizontally by an amount that is pro-
portional to its y' position. This horizontal motion is c¢y' , but

y' = 1+b , so the horizontal motion of R' is ec+be . TIts fipal position
is .

R" = [l+bete 1+b] .

We observe that the relative positions of the four points after the
transformation are given by the difference of their vectors, as follows:

4 i [o"] = [Q"] - [0]
- (P'R"] = [R"] - [P"]
Y [0P"] = [2"] - [0]
P’ [Q'R"] = [R"] - [Q"]

0 X

where the symbols in brackets stand for the matrices of the corresponding
coordinates.

[0Q"] = [e1] - [00] = [e 1]

[P" R"] = [(1+be+e)(b+1l)] - [{(1+bec) b] = [c 1] .



Hence [0Q"] = [P" R"]
Similarly,
[0P"] = [(1+be) b] - [0 0] = [(1+bec) b]
[Q" R"] = [(L+be+e) (b+1)] - [c 1j = [(1+be) bl .
Hence [OP"] = [Q" R"] .

These two expressions indicate that the result of the transformation is
a parallelogram, but in a general position in the coordinate system.

Now consider the points P and §Q before the transformation,
given by [l O] and the points P" and Q" after the transformation,

01
given by [l+bc b] . This last matrix is not only the matrix describing
c 1

the final position of the two unit points P and Q , but it is also the
matrix of the transformation that carries these points into this final
position. We can see that this is invariably so, for.any transformation,

ol -[za)

Here the new P' = [a b] and the new Q' = [c d]

If we combine the two shearing transformations with two scale

changes, we obtain
1 bl{1 o||la 0f|1 0] [atabc ba
0 2jle 1Jlo 1jlo a] ~ |ac a

We can proceed to show that this represents the most general possible
2 x 2 transformation matrix, as follows: Select any four numbers,
ABCD, arrange them in a matrix, and form the matric equation:

A B _ atabc bd
C D ac d "

Then, equating corresponding elements,

d =D
: bd = B whence b =2 .
D
C=ac, and A= atabc = a + b(ac) = a + BC

” y

O
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Then a.=A-%g. Finally, pafef . . Thus the
a” , _BC
four numbers a b ¢ d may be suitably chosen so as to make the resulting

combined transformation equal to any transformation whatever.

Ordinarily we do not build up transformations out of their
constituent elementary transformations. Instead, we determine the
initial and final positions of certain important points, and deduce from
this what the appropriate transformation must be to yield this result.

In order to be able to do this, we first turn our attention
to the transformation

ab 10
& 8 that carries the points 01

into new positions, desciibed by the transformation mairix itself, and
another transformation that undoes the transformation and restores the
points to their original positions. Let this second transformation be

¢ ]

and we want to choose its elements so that

abl|]|/A B|] |10
cdjfc p| |(o1}.
We evaluate the indicated matric product, and obtain
aA + bC aB + bD » 10
cA + dC cB+d4D] J01].
There are in effect two equations involving A and C , and two other

equations involving B and D . When we solve these two systems for
the four unknowns, we obtain

d e | -c a

— = —— e

ad-be B ad-be o ad-bec P ad-be

The quantity } is common to all of these, and we may write the
definitive matric equation

A=

faB]__1 [a -»
[C D ad-bec |-c a
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The quantity ad-bc 1is precisely the determinant of the matrix. Of
course if ad-bc = 0 , we obtain no meaningful result.

We can check the validity of this new matrix by sets of

multiplication:
abl d -b ad-be 0]
ecd| |-e a|T}| O ad-be

and the resulting matrix is (ad-bc) é g . The matrix [A B] as
cC D
Just evaluated is called the inverse of the matrix [a by . In general,
c d]

a matrix will have an inverse provided its determinant does not vanish.

It turns out that higher order matrices can be inverte” by an
entirely analogous procedure. We form, for each element of the
original matrix, its cofactor, which is the determinant of the
matrix obtained by crossing out the row and column in which the
element appears. Thus the cofactor of the element b in the
matrix |a b ¢
d e T
g h i is the determinant of the matrix |d £
g il . We
write this number in place of b , and we multiply it by
(-1)°R  where C+R is the sum of the number of the column
" and the number of the row in which the element appears. In the
case of b, C=2,R=1, (-1)°® - (-1)3==-1. Hence
the cofactor of b 1is the determinant of the sub-matrix with
a minus sign. We thus obtain a cofactor matrix. Then the in--
verse desired is the transpose of this cofactor matrix (in
which we simply interchange rows and columns ) divided by the
determinant of the original matrix. In the simple case of the
2 x 2 mabrix, the cofactor matrix of ra by is d -ec] ,
[c d] [—b a]
and its transpose is [ d —b] , the desired inverse.
Lz 5
Now suppose we wish to find a transformation T that carries points
[a b] into [a' b'] . The transformation involves the matric product

cd c' 4
[a b] T = [a‘ b‘] s where we are using the symbol T. to replace an
cd ol

unknown 2 x 2 transformation matrix. Suppose we were to pre-multiply
both sides.of this equation by the inverse of the matrix [a b] 3
cd
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We use a superscript -1 to indicate the inverse of a matrix, and write.
ab]t [an ab|t[ar b
cd cdlf= lca e 4
But ab|™ [ab] 1[a -v|fad] [ao]_ [ro0
cd cd|~ aAl-e ajlcdjTAlOA 01

(we have used the symbol A to stand for the determinant of the matrix ),

—

T is a matrix, so that
10l,_p_[an] "t [er v
01" " |ea et dv| .
= g’ ‘bl
alfe’ 4’

The result, if multiplied out, is a 2 x 2 transformation
matrix, as desired.

H
|
D> 1=
= 1
o o

ROTATION

A transformation of considerable importance is represented
by the matrix
a b
-b al .

We can gain an insight into its geometric interpretation if we plot the
two points represented:

P=[ab], Q= [-ba] .

In the graph, the two vectors OP and 0Q are obviously
perpendicular to one another, and the points P and Q are equidistant
from 30 . If, furthermore, this distance is a® + b2 = 1 , then the



P

transformation represents a pure rotation of the unit points on the two
axes. In this case, a is the cosine of the angle of rotation, and b,
is the sine of that angle. The transformation matrix becomes

coso sin®
-sin® cose

- and we have the familiar rotation formulas:

xl

X c0os@ - y sin®

I

y! X sin® + y cos® ,
which we can obtain by multiplication of the vector [x y] Dby the matrix.

The inverse of the matrix is, by substituting in our previous

a bl™t 1la -
-b a “Alp a
2 2

where A= a + b . But observe that the matrix on the right of the
equation is simply the transpose of the matrix on the left, since it is
this matrix with rows and columns interchanged. If A =1 , we have

the equation
T
a b7t a b
-b a = - a

where the T superscript means “transpose.~" This indicates that it is
a simple matter to form the inverse of a rotation transformation; all
we need do is write its transrose.

result,

TEALNSLATI0R
B ey ey Y catm it T

We have thus far investigated transformations which change
points in the plane, but leave one point unchanged. This point is the
origin of coordinates. We shall now investigate the pure translation
of points in the plane. Consider the following matric product:

[x y 1]]1 0 0f = [(x+a)(y+b)1] = [x' y' 1]
010
a bl
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By the algebraic artifice of introducing the number 1 into the point
coordinate vector, and by expanding the transformation matrix from a
2 x2 into a 3 x 3 matrix, we are able to slide the original figure
into a new position in which the origin of coordinates is also moved:

[001)[L00]=[aDb1].
[0 30 T 0 )
a bl

What would be the effect of performing first a general transformation
that left the origin unchanged, and then subsequently translating the
entire resulting figure? We can try this experiment out as follows.

[x ¥y 11[a b 0] = [(axtcy) bx+dy) 1 J=[x' y' 1] .
cdoO
001
Then, [x'" y' L][L 00 ] = [(x'+e) (r'+f) 1]= [x" y" 1] .
cl1l0
efl

The combined transformation is givén by the matric product
of the separate transformations:’

aboOljlL0oO0 abo
cdON0LOl=]cdO].
001lfllef1l e 1

Incidentally, if we perform the translation first, followed by the
general origin-preserving transformation, we get a different result:

100llab o a b 0
010|lcdaol-= ¢ d 0
efllflool (eatfe) (eb+fd) 1

The resulting matrix shows that the origin [0 0 1] transforms into
the point [(eat+fc)(eb+fd) 1 ] .
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THREE DIMENSIONAL TRANSFORMA TIONS

The matrix which representsa general two dimensional
a _

0
c 0
1

I = PR <

e

transformation together with a translation is obviously a special case of the

three dimensional transformation

a b ¢
d e f| =T.
g h i

in general, [xy z]T = [x' y' 2'].

As with the two dimensional case, we select unit points on the three

axes:

P 1 0 O
Q=10 1 0 and when this matrix of coordinates is multiplied by
R 0 0 1

T, we obtain the transformed coordinates of the three unit points; more-
over, the transformation matrix itself consists of the three vectors of co-

ordinates of the transformed points, P', Q' and R'.

Again, as in the case of the origin of coordinates in two dimensional,
the origin remains fixed, for
[0 0 o]JT =[0 0 0O].

We can now attach a more illuminating meaning to the two dimensional
translation transformation. The vector [x y 1] represents points on the

plane z = 1, The translation transformation keeps z fixed, but allows x
and y to change in this plane. The origin of x and y coordima tes is given by
the vector [0 0 1], which after the transformation becomes [e f 1]. But
the origin of the entire three dimensional system is [0 0 0] and this origin

remains fixed.
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We can show that the unit cube transforms into a parallelepiped in

three dimensional space.

e

o o o o

[y

1

L

1

o ~ O = O

1

1= S © PR U

o

= o

=0

The transformation is as follows:

0 0 0
g h i
d e g
(d+g) (e +h) (f +1)
a b c
(a+g) (b +h) (c+1)
(a+d) (b +e) (c+1)
(a+d+g) (b+e+h) (c+f +i)

The points on the corners of the cube in the matrix on the left have been

chosen in a particular order;

it will be observed that they have been ar-

ranged in numerical sequence, when we count these corners base two.

z

X

This sequence of points is shown in the figure, where the numbers at the

corners are base 10, equivalent of the base two numbers.

By detailed examinatioﬁ_, we can assure ourselves that after the trans-

formation the edge vectors are equal in such a way as to satisfy the vector

equations of the following scheme.

In these equations, the numbers in
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brackets stand for the vectors of the numbered points. With this notation

in mind we write:

[1-0] =13 - 2] = [T~ €]=[5 —4]

[2.=8] =8 =1] = [# = B] =k -4]

[4-0]=[5¥‘1]=[7—-3]=[6—.2].
For example, |

[5 - 1] = [(a + g)(b + h)(c +i] - [g hi]

=fabe]l=[4-0].

This set of vector equations insures that the faces of the figure after the
transformation are all parallelograms, and hence that the original cube

transforms into a parallelepiped.

The transformation matrix is entirely defined by three points, who
coordinates are known both before and after the tr-ansformation. We can
write

a b c a' b ¢!
d e f|T=|d e f{f
g h 1 g h 1

where the primes indicate the transformed coordinates.

Hence
a b ¢ - a' b
T=]d e £ d et D
g h i g h' 1

This last equation requires the calculation c_)f' the inverse of a 3 X 3 matrix.

If we elect to do this by cofactors, we obtain first the new cofactor matrix
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ref |af de
hi gi gh
C=_bc ac la b
h i gi g h
bec| _|ac ab
e f d 1 de

The inverse is then the transpose of this matrix, divided f)y the determinant
of the complete original matrix:

-1
e
f

g

m o P
> o o
D~

For 3 X 3 matrices, the method of cofactors is marginally efficient, but
inversion of higher order matrices becomes increasingly involved, since
it requires calculation of a great many determinants of high order. For
this reason, many numerical schemes are in existence designed for both
hand calculation and computer evaluation. Usually such schemes depend
upon relaxation methods, in which a number of simple iterations cause an

original approximate solution to converge toward a more exact solution.

PROJECTIVE TRANSFORMATIONS

Consider the matrix transformation

a b c ,
x y 1]|d e £] = [x y =z].
_ o B i ,

The third coordinate of the transformed point, z', is given by

z =ex + fy +1i.

Now consider the figure obtained by dividing the vector [x' y' z'] by
]

z'. The result is i i
= L' | =p.
2 =
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/ The z' = 1 plane.

x!

The point [x' y' 2z'] has, by this division, been "projected" into point P in
the plane z' by a projection ray through the origin of coordinates.
x' y'
P
the resulting figure, of which this is a typical point, is two dimensional.

The coordinates of P in this z' = 1 plane are given by 1, and

We often refer to the coordinates [x' y' z'] as the homogeneous coordinates

of a point in two dimensions. They are also the ordinary coordinates of a

point in three dimensions.

Consider the equation

Ax + By +C =0,

This is the inhomogeneous equation of a line in two dimensions. In vector
form it is |
[x y 11 |A | =0.
B
C

If C is not zero, this can be rewritten:



S3T=

[x y ler )

~ Old QO

— ad

and this is as meaningful as the first form. But we now wonder whether by
the artifice of making the equation homogeneous, we might not be able to

——

obtain some useful generality. So we write

[x vy wl]| A|=0.
B
C

We have now made the point-coordinate vector homogeneous by introducing
the third coordinate w. The ordinary coordinates of a point are always

obtainable, because

X=J—c- andY=¥-.
w w

But we have an added advantage, because if w is zero, the point [x y 0] is

a point at infinity.

The two factors of the matrix product have special significance. The
vector [x y w] is a point-coordinate vector; for A B C fixed, all number
triplets that satisfy [x y w]|A| =0 | are coordinates of points on a fixed
B
C

line. Conversely, if [x y w] are thrée fixed numbers, then all number
triplets A B C that satisfy the equation represent lines through the fixed
point. For this reason, we refer to the transpose of the vector [A B C]
as a line vector, consisting of the line coordinates A, B, and C. When

C = 0, the line passes through the origin and we have
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[x y wl]] A| = Ax + By = 0 as we might expect.
= :
0

We also have, for w = 0

[x yo0]| A| = Ax+By =0.
B
C
Since the ordinary coordinates of a point are given by X = 3 and

X = %v » we shall modify the notation slightly in what follows. We shall

write, for point vectors
[wx wy w] instead of [x y w]

In this way, we shall be able to keep track of the ordinary coordinates of a
point; we shall consider wx and wy as biliteral symbols throughout all cal-
culations, and shall perform the operations x = % andy = %Z_ only at
the very end. If, as will sometimes happen, w =0, then we shall not
attempt to perform this division, but will accept the numbers wx and wy as
our result, and we shall know in this case that the point in question is at
infinity.

Now consider the transformation

[wx wy wl|a b c| = [wx wy w']

d e £

g h i

This may be thought of either as a three-dimensional origin-fixed trans-
formation, in which the. ordinary coordinates of a point are wx, wy, and w;
or on the other hand it can be thought of as a two-dimensional transforma-
tion in homogeneous coordinates. In this latter case, the transformation

‘ .
carries one plane figure into another.
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In homogeneous coordinates, the matrix of point vectors
I 0 O

0 1 0

10 0 1

represents the point at infinity on the x axis, the point at infinity on the y

-axis, and the origin of coordinates in the plane w = 1. After the transfor-

mation, these three points become B

b ¢
d e f

and if ¢, f, i are not zero, the points have ordinary coordinates

1
J

a b,
c ¢
d e
i
g b,
5 PO |

in the plé.ne w' =1,

Let us now consider the transformation of three points into three other

points:

' ' - B -1

x3 1 1 wiX; Wiyy W

X vz 1 T = WX, Wa¥z W
x3 y3 1 | Wa=s Walds Ws_‘
X3 vy 1 - '-Wlxl Wi1¥1 Wl-l

T |[=|x; y2 1 WXz, Wa¥, W,

x3 y3 1 W3X3 W3¥ysz W3

We can invert the first matrix. The second matrix consists of or-

dinar'y coordinates
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S D
X ¥y, 1

“lxs ys 1

and three homogeneous coordinates w;, w, and wy. These are unknown,
as yet, even though the desired positions of these three points is specified.
We can choose any numbers we please for w,, w,, ws, including zero, if
we wish, and then the transformation T will be defined. For some such
choice of the w's, a fourth point [y y% 1] will transform

[wexy wyyse wq], in a unique way. This suggests that we deliberately
choose such a fourth point, and cause it to transform into some desired

position. This will give us information about the Quantities Wy, Wp, and wjy.

A numerical example will be illuminating here. Let us transform the

three points

0 0 1
0 1 1
1 0 1

into themselves. These are, respectively, the origin of x'y' coordinates,

the unit point on the y' axis, and the unit point on the x' axis. We have:

0 0 1 0 0 w -1 0 1|0 o w
T = [o 1 1 0 wr,w|{=1|-1 1 0]]|0 w, w,
1 0 1 W3 0 _W3 1 0 0 W3 0 Wi

The transformation T is only partly defined.

For the fourth point, take [x; yy 1] = [1 1 1] and let it transform

into the point with ordinary coordinates [x, y. 1] = [2 2 1].
- The homogeneous coordinates of the fourth point are
[Waxy ways wi] =wyf2 2 1],

We shall drop the subscript from w,. It will turn out that we could have

set wy, = 1 at this stage, but we shall retain it for the time being.
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We now have the matrix equation of the transformation
w2 2 1]=[1 1 1]T=[1 1 1]|]-1 0 1| |0 O wj

l 0 O WS 0 W3

=[-11 1]|w, 0 0 |0 0 1
0 w, 0[]0 1 1
0 0 ws||ll 0 1]
wiz21] o o 1|7 =[-111][w, 0 ©
o0 T 1 0 w, O
i 0 i 0 0 ws
On the left, we have
wiz 2110 0o 1|7 =wlz 2 1]|-1 0 1|=w[-3 2 2]
0 1 1 -1 1 0
1 0 1 1 0 0
On the right, we have
[-1 1 1]fw, 0 o =[-w w, ws]
0 w, O
0 0 ws

~This leads to the vector equation
w{-3 2 2] = [-w; w, ws]

from which

w; = 3w
w, = 2w
Wy = 2w,

The Transformation T is now given by
. -1 0 1/]o o 3 2.0 =i
T=wi|-1 1 0[]0 2 2| =w|0 2 -1
I 0 912 6 2 0 0 3
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There is an arbitrary constant w involved, which we shall continue to
carry along. We check the transformation, to see whether it does indeed

transform the four points into their desired positions:

0 0o 1]Jw(2z 0o -1l= w[o o 3]
01 1 0 2 -1 0 2 2
1 0o 1] Jfo o 3 2 0 2
11 1] 2 2 3

The ordinary coordinates of the four points are seen to be

0 0 1

0 1 1

1 0 1 F
|_2 2 1]

a result we obtain by dividing through each row of the matrix by the cor-
responding homogeneous coordinate in the last column. The common multi-
plier w has had no effect on the result, and we now see that we could have

set it equal to 1 at the outset.

Now let us see what this transformation does to lines in the plane.

The equation of a line before the transformation is

[wf x! wf yf wf ] Al — 0 2
B
Cl'

After the transformation, points are transformed according to

[w'x! w'y' w]T = [wx wy w].

We can preserve the linear equality if we write
[wx' wy! w]T T |Ar|= o0
B!
C
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because

the identity matrix. Introducing this matrix between the two vectors does

not destroy the validity of the equai:ion. But then

—_—

T Al =|A
B! B ’
C! c
the transformed line vectrr, After the transformation we have a new

valid linear equation

[wx wy w]|A |= 0.
B
C
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Now
: 2 o0-11"7 _ 3 01
rl-o|o 2-1] =1]o0 3 1
0 0 3 6lo o 2| .

Let us apply the transformation to the line at infinity of the original
system, and find the equation of the transformation of this line in the
new system.

The equation of the line at infinity is -

0
[w'x' w'y' w']|0O] =0.
cl

This yields w'C' = O, and since C' # 0 (not all the homogeneous
coordinates may be zero, otherwise the point or line so defined is indeter-
minate) we have w' = 0 ; this is to say that all x' and ¥y' ordinary
coordinates that satisfy the equation are infinite.

Now [w'x' w'y' w'] T= [wx wy w], and

0 3 o 110 1
1o = % o 3 1il|lof = % 1z
i o o 2|1 ol .

The equation of the transformation of the line at infinity in the
original system is

1
[wx wy wl[l|{=0
2
1
or [x y 1]|1f =0 . This is evidently a local line, with equation
2

x+y+2=0 or y=-x-2 . The figure showing the transformation will
bring out several interesting points. The original four points are

OPQR"' which have been transformed into OPQR . Note that before the
transformation, lines 0Q and FR' intersect at a point at infinity,
since they are parallel. After the transformation, they are the lines

0@ and PR , and intersect at the local point T . Similarly, OP

and QR' intersent at infinity, but their images OP and QR intersect
at the local point S . Indeed, S and T are the images of the in-
finitelydistant points on the x and y axes, respectively. We have,

for these points,
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The image of the line at
infinity of the original
OPQR' system.

; 2 0 -1
s[l 0 o] el 08 [2 0 -1]
0 i 2 -
T 1 0 0 0 3 | 0 1
Their ordinary coordinates are [-2 O 171 and this is precisely what

L 0 -2 1
the linear equation requires, and what the figure shows.

FOUR DIMENSIONAL TRANSFORMATION AND THREE DIMENSIONAL
PROJECTIVE TRANSFORMATIONS

We have seen, in the foregoing, that a 3 x 3 matrix can
represent, on the one hand, a transformation of coordinates in three
dimensions in which the origin remains fixed; but we have seen that if
we regard one of the coordinate components of the point vector [wx wy w]
as a homogeneous coordinate, (say w ). Then the 3 x 3 matrix repre-
sents a transformation of coordinates in two dimensions, and maps planes
into planes.

Tre process of dividing the components of the vector by the
chosen w coordinate is essentially equivalent to projection of the
spacey figure by rays or lines through the origin, followed by sectioning
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the resulting bundle of rays by the plane w =1 . Thus the final
result is a section of a three dimensional structure consisting of rays
through the origin to all points of the three dimensional object.

We now extend this notion by an extra dimension. Consgider
the vector )

[wx wy wz w]

This vector can be thought of as descriptive of a point in four dimen-

sio nal space, or it can be thought of as consisting of homogeneous
coordinates descriptive of a point in three dimensional space, whose
ordinary coordinates are obtained by projection and section. The ordinary
coordinates are

[W_X.E.‘LEE]:[XYZJ_]
W, W W W
Now w =1 1is no longer a plane, but is a section of a four dimensional
space in which one of the degrees of freedom has been removed; it is
therefore a three dimensional &ection of a four dimensional space.

Transformations are accomplished, as before, by multiplying
point vectors by L4 x 4 matrices.

lo
0]

[z % &¢ 1] .} ol= [x ¥ 2z 1] .
T

In this transformation, the upper left partition of the matrix contains
nine numbers that describe shear and scale change transformations; the
bottom row represents a translation of coordinates; the fourth column

-of the matrix has temporarily been specially chosen.

The matrix can be constructed by performing first the shear
and scale change transformation, and then following this by the trans-
lation: this is shown by the matric product

ol A&
oS o o
o H H 0
HOoOOoOo
o o H
H oHO
B oo
H O oo
= Mmoo op
H B e o
B o
H o oo -
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We can now proceed to investigate the fourth column of the matrix, to
see what effect entries in this column will have.

We take the matrix product

='[wx wy wz w]

o o+ O
o - O O
H B3 OO

When we perform the multiplication on the left, we obtain
[x' y' z'(nz' +1)] = [wx wy wz w],

and division by w = (nz' + 1) yields

[x ¥ 2z 1] = [ x_ ¥ 2 l] 3

nz'+ nz'+l ngt4l

This relates the new three dimensional coordinates x ¥y 2z to the
original coordinates x' y' =z'

The transformation represents a mapping of one three-dimensional
space into another. The mapping is accomplished by a transformation
in four dimensions, followed by a projection and section to yiéld a
three-dimensional space corresponding to w =1 .

Observe that the result is a three-dimensional space, and not
a two-dimensional space.

We can make some gualitative remarks about the details of the
transformation. The matrix

o O O -
oo H+HO
oOH OO
H o O O

can as before be thought of as composed of four point vectors, describing,
in homogeneous coordinates, the point at infinity on the x axis,

the point at infinity on the y axis, the pcint at infinity on the

z axis, and the origin of coordinates. Then, since
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oo o H
orH OO
HoOoOo
oo o
oo+ o
o+ OO
HB OO
1]
ococoHr
oo+ o
or OO
=B 0O

we see that three of these points are mapped into themselves; but the
point at infinity on the 2z axis maps into the point [0 O % 1] ;
i.e., it becomes a local point.

Consider, from a different viewpoint, the projection of a
point P' in an x'y'z' coordinate system, into a point P in the
plane z' = 0 . We take the center of projection to be at x' =0,
y'= 0 ; 2" = -8,

Z
-——_____,.’.._ P|

x In the figure, the ¥y
axis appears as a point.

Center of projection.

By similar triangles, we can obtain an expression for the ratio of the
vectors from the center of projection to P and P' as follows

. E
a z'ta
which leads directly to P = _—2_ P'
z'+a
I T
% i
g T
Now P' = [x'" y' 2z'+a] and P = z’x' z,y' al .
w e

(Note that these vectors are from the center of projection to P' and
P , not from the origin of coordinates.)
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We see that if we set

wi=

= n , the matrix-

o oo+
O O+ o
L T o o T o B
HBs OO0

represents the transformation for the coordinates x and y . This is
one possible interpretation of the matrix. We now see that it is descrip-
tive of a perspective picture of the object point (or points) when imaged
in the 2z = 0 plane; we might properly refer to this plane as the
picture plane of the perspective construction.

Such a projection is sometimes called a 'one-point" perspective,
since all lines parallel to the 2z axis will appear to converge, in
the picture, on the point [x y] = [0 O] , the origin. This point is
the so-called vanishing point of the picture. But lines not parallel
to any of the axes will alsc have local vanishing points in the picture;
for this reason, the term "one-point" perspective is somewhat misleading.

We can make the picture-projection process more general if we
begin by performing a rotation on the object, followed by a translation,
and finally perform the projective transformation just described.

A perspective pictorial that is in common use is the so called
"two point" perspective, in which parallel horizontal lines converge in
points on the "horizon line" of the picture. We shall examine such a
' perspective.

Suppose we wish to construct a picture of a unit cube, situated
in space beyond the picture plane. We imagine the observer to be at point
8 , 2 unit in front of the 2z = O picture plane. This puts him at
z = -a on the 2z axis. The pure perspective transformation matrix is
completely fixed by this number, as we have seen.

In order to perform the transformation, we need to establish
the coordinates of the corners of the cube, and in order to do this, we
need to define the cube in some way. We begin by attaching a coordinate
system to the cube itself, prefer%bly in such a way as to make it easy
to describe the positions of the corners; then we establish the transforma-
tion that relates the cube coordinate system (call it the [x' y' z' 1]
system) to “he observer's coordinate system [x y =z 1] .

3 We might, for instance, attach a coordinate system to ‘the cube
so that three adjacent edges meeting in corner lie along the x' y' =z
axes. Then the coordinates of the corners of the cube may be written
Idown immediately, as we already know.

1 1
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Suppose the observer is situated above the cube, looking down
on it; and suppose the cube has been turned until its front face makes
an angle of 30° to the picture plane, but the cube rests on a horizontal
surface. This is the customary orientation for what is known as a
"30°-60° two-point perspective.”

A sketch will make clear the relative positions of observer .
and cube:

]

ol

i b o Y
3/ X 24
P = e — ————— —— o —
S S

The cube coordinate system has been rotated 30° about the vertical ¥’
axis, with respect to the observer's coordinate system. Then after the
rotation it has been translated so that the original position of its
origin, [0 O O] , has become [0 -2 1] in x ¥y 2z coordinates.

The rotation matrix can be deduced from the new and old positions
of unit points on the x 2z and x' z' axes, as follows' (we neglect
¥y and y' axes, since rotation takes place about them.)$
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[P 1
: [Q:I = [0 :ﬂ in the x' y' system."

In the x y system, the matrix of coordinates becomes

¢ s| where ¢ and s are the lengths of the projections
-s c¢| of OP and 0Q on the axes as shown.

For the 30° rotation, ¢ = cos 30° and s = sin 30° . The rotation
part of our matrix is now, for three dimensions:

. Note that rotation about the ¥y axis causes

0
1
0

m O 0
A O m

the middle row and middle column of the matrix to have special values.
Multiplication of [x' y' 2'] by this matrix obviously yields a new
x and anew z , but y = y' and is unchanged. 3

If the origin of cube coordinates were translated to the point
[L m n] in the observer's coordinate system, the translation part of
the matrix would be this vector, and would become part of the bottom
row of the transformation matrix.

In our case,
[Lmn]=[0-21].
Forithe perspective transformation, let the distance from the observer

to the picture plane be a =1 . Then the combined matrix for the
transformation is
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We can also fird the "vanishing points.'

_55_

at infinity on the x' and z' axes;

1 00 O 1 0 0 oflle
[0010Ja‘”d|;0010:lo
-5
0

0
1
o

-2

These correspond to the points
their matrix is

[ I
1]

L 1

m O

' oo
4;]

25

from which the ordinary coordinates turn out to be

oln wlo

0

o|  in the picture.

Now s = .5, c= .86 for a 30° rotation. To two significant figures,
the eight points of the cube and the two vanishing points have the
following coordinates in the picture:

11

[-1.73
= DT

gl

«],
-2 70
-.50
-.35
-.80
-.60
-.ko
~+30

y

cube corners

=V Fw o,

vanishing points

unit

/
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The picture will, from an average viewing distance of ten inches, seem

to be too tall for a cube. This is because the true viewing position

for this picture is one unit directly in front of the origin of coordinates
on this page. When viewed from this position, the vertical edges of the
cube will appear properly foreshortened. Of course it is difficult to
‘focus (or accommodate) the eye to such a short viewing distance, without

the assistance of a magnifying glass. However, if the reader caan find

a glass with a focal length of about two or three inches, he can verify
that the picture, viewed from the proper point, does indeed look like

a cube.

THE THIN LENS EQUATION AND ITS ASSOCIATED PROJECTIVE TRANSFORMATION

For thin lenses, the equation

L, 1
z Z

H |

" describes the relationship of an object point at 2z' , to its image
at z , in terms of the focal length of the lens, f . Measurements

are made from the lens, for both z and 2z' . If we solve this equa-
tion for 2z as a function of z' , we obtain

z'-f
b il A

1
3

L
Zl

Z

1l

This expression is very similar to the expression found for our previous
purely geometric interpretation of picture-making. In the optical case,
we have also the relationships

[x* y' =2z' 1]|]L 0 O O = [wx wy wz w)]
01 0 0
%L
\ 0 01 +3
O 0 0 -1
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From this,
[wx wy wz WJ: [x' ¥y =z’ (E'I-.'——l)]
or [w v 2 1] = x' y' z!
T 1 ] l -
B, Boe] BEo w3
£ 2 i f .

It is'interesting to see the limits of the object space compared to the

-1limits of the image space

Image Space "Object_Spaqe

H 8 On
8 B O|N

This table presents the well-known conjugate focal plane behavior of
lenses. Now return to the transformation represented by our previous
derived matrix:

1 0 0 O
0 1 0 O

1
0 0 1 =

a
0 0 0 1

3 z'
From this, Z = E"r+—l
=

Here, object-image space comparison table may similarly be con-
structed:

Image Space Object Space
Zl
0

a

p NNp O|N

oo

In this case, all of the positive half-space in the object domain is
imaged in the finite band between O and a . '

¥ Both of these transformations are sometimes called "relief
perspectives.”" We usually think of the photographic process as producing
a plane image of a three-dimensional space, but a moment's reflection

, reminds us that we must focus cameras; this implies that we must put the
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Q:;

photographic film plane in the proper position in the image space to
correspond to a particular plane in object space. This is a physical
confirmation of the remark made earlier, that the general projective
transformation images 3-space into another 3-space.

There is however a special transformation that carries 3-space
into the 2-gspace of a plane. It is represented by the matrix product

=_[wx WY Wz W] .

O O o
[eleoll e}
o H OO
o+ OO

Then, performing the multiplication,
[x* y' 2! z']= [wx vy wz W] .

T L}
X:x—' Y=;f_r Zzz_'
2z Z z

= l .

The matrix has a row of zeros. Therefore its determinant vanishes, and
it has no inverse. This is to say that once the transformation has
occurred, there is no way to obtain 3-dimensional information back again
from the plane figure. But this is obvious. '

AXONOMETRY

A special case of the projective transformatio.. matrix puts
the projection point -at infinity. Then the picture transformation
becomes simply the identity matrix, since % = 0 . We need pay atten-
tion only to the rotation-translation part of the transformation.
Furthermore, the translation part of this matrix merely serves to move
‘the origin, and in this case it becomes a trivial part of the trans-
formation. We neglect it, and pay attention only to the rotation part
of the matrix. We can omit the fourth homogeneous coordinate, and con-
sider only such expressions as '

[x' y¥y' 2z'lf[a b el=[x ¥y z] .
d e T
g h i
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Plane projections can be obtained from this relationship by plotting
[xy] [xz] or [yz].

The transformation and the associated plane projections include
all possible cases of what is known as "parallel projection,"” and in
descriptive geometry this is called "axonometry;" the pictures of an
object made in this way are called "axonometric projections."

The general class of axonometric projections break down into
a number of special categories:

TRI-METRIC pfojections, in which the transformation matrix is
a pure rotation, and orthogonality of the transformed
axes is preserved.

DI-METRIC projection is a special case of tri-metric
projections, in which two of the axes are
equally foreshortened.

ISOMETRIC projection is a special case of di-metric
projection, in which all three axes are
equally foreshortened. This of course leads
to a unique matrix. The other two more
general cases have certain arbitrary char-
acteristics.

OBLIQUE PROJECTIONS, in which the transformation matrix no longer

preserved orthogonality of the coordinate
axes.

CAVALIER projection is a special case, in which two axes
appear perpendicular in the picture, and are not
foreshortened; the third axis is inclined with

respect to the horizontal axis and is not fore-
shortened.

CABINET projection is a special case of the cavalier pro-
jection; foreshortening by a factor of 1/2 ocecurs
to lines parallel to the third axis.

In order to preserve orthogonality of the axes in space, the matrix must
reprgsent a pure rotation. Ordinarily, in engineering use, drawings of
objects preserve verticals of objects as verticals on the drawing. We
see pictures of rectangular objects as
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rather than

unless we really mean to have the object tipped.

We can obtain the full rotation matrix, subject to this
restriction, by two simple rotations compounded, as follows.

== X

We rotate first about the vertiral y axis; the matrix is, by inspection,

as we have seen in our previous discussion of projective

transformations. The unit points P and @ now have new coordinates
in the observer's coordinate system [x y z] .

We next propose to rotate the resulting figure about the x
axis (Not the x' axis.)

We‘take a side view of the state of affairs after the first
rotation:
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\\ /”—Tl
. By, -
\\ =
X ' =0
N da q -~
\ -
\ #2 1IX
\ db P - ‘ .
\ =,
\ // 1. |
J//'b // a
cb ca

Before the second rotation, the three unit points have coordinates

o w

0
1
0

p O O

P

= IR

-b Q
After the rotation, these points have coordinates which remain unchanged

in x (since rotation takes place about this axis) but change in ¥
and z .

The new coordinates of R are, by inspection,
[0 d -c]
Similarly; the new coordinates of P are

[2 Dbe bd]
and the new coordinates of Q are
[ -'b ac ad ] .

This is the result of a second simple rotation, represented by the matrix

Indekd,

o O o

o~ O

® O

(m oo 1

0 o

0
d
c

o o i

.—a be

= 0 d

-b ac

0
-c
d

bd
-C
ad

as we might have written
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immediately. DNote the zero in the first column of the matrix. This
represents the transformed x coordinate of the unit point R on the
vertical y axis; it remains on the vertical y axis during the trans-
formation, and the condition on vertical lines is thus satisfied.

The individual rotations preserve orthogonality, and if both
a2 + b2 =1, and also 02 i d2 = 1 , then they preserve the size of the
object as well. Consequently the combined matrix should have the property
that lengths are preserved after the transformation.

Consider the length of the vector from the origin to the unit
point, P , and the length of this same vector after rotation.

We have, for this lerzth, the vector "scalar" product

[a be bdlfa ] = a° + b2c2 + b= = 12 .
be
bd

a® + be(c2+d2) =80 +P° =1

which shows that this length is unchanged.

DI-METRIC PROJECTIONS

As we have noted, the rotation transformation yields the
class of axonometric projections known as TRI-METRIC projections; all
auxiliary views obtained in engineering descriptive geometry are tri-
metric projections. It is well known that any view of an object can be
obtained in descriptive geometry by two auxiliary views. This amounts
to performing two rotations on the object.

If we impose the condition for a di-metric projection, (to
make two of the axes equally foreshortened) we must have equal lengths
for the x y projections of the unit point vectors on the chosen axes.
The matrix of coordinates of the unit points is

a be bd| x axis unit point

0 d -c| y axis unit pocint

-b ac ad z axis unit point
If we select x and y axes to be equally foreshortened, we can write
the equation of lengths of these axes in the projection:

)
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But a° =1 - b° and d2 =1 - c2 . Substituting and carrying out a

little algebra, we get an expression for b in terms of ¢ :

2

2

pe = _C

. l-c

We can always choose -c¢ arbitrarily, and then b , a , and d can be
found, thus completely defining the matrix for the di-metric projection.

2

In one such very commonly used projection, an additional
requirement is that the third, = axis,shall be foreshortened by a
factor of 1/2 . This implies that, for this axis,

This is sufficient, when combined with the previous equation, to yield,
after a little algebra,

02=l'..
8

Using this, the entire matrix is completely and uniquely defined.

ISOMETRIC PROJECTIONS

Another very much used special case of axonometry is the one
in which all three axes are equally foreshortened. (TRI-METRIC projec-
tions are often innocently referred to as "ISOMETRIC" projections, even
by some engineers who ought to know better. It makes understanding of
exactly what is being discussed a little difficult.)

If we impose this condition on the projected lengths of the
unit vectors on the axes, we have; for the dimetric,

b2(1-c?) = ¢®

as already determined, and the new condition for the 2z axis:

5. @p

B+ aeT= d2

After a little algebra, we can combine these two equations to learn that

¢® = , Or ¢c=-= .

P

Wl
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Again the transformation matrix is'completely and uniquely defined.
The projected x axis makes an angle with the "horizontal" axis of
the picture coordinate system defined by

TAN O = bS
a

3

Hence O = 30° , a very well known result. The projection is ISO-
METRIC. All three axes have equal scales.

It is easy to find that b2 = &° = % , so that TAN C =vJe ='ii g =

OBLIQUE PROJECTIONS (Cabinet and Cavalier)

The requirements here for these two special cases of oblique
projections is that one pair of the axes (say x and y ) remain mutually
perpendicular, and not foreshortened. The third 2z axis is to make an
angle of 45° with the "horizontal" and is to be foreshortened by a factor
m. (=1 or %) .

The matrix of the transformation is, of course, simply

g5 o+
H o
o O O

The third column of the matrix is immaterial, since we are not going to
use it.

This last matrix is of course trivial--it is scarcely necessary
to use it to compute points in the transformation; nevertheless it has
been exhibited to shoew that all these special cases fall under the general
theory.

If the picture is being plotted in x y coordinates, and
the transformed =z is simply ignored, this is equivalent to multiplying
the transformation matrix by a projection matrix:

[x ¥ zla=[x* » =z']

and then



a b ¢ o 0 a b O
AP =]d e f|JO 1 O|l=|d e O
g h i|]|O O O g h O
or i
[x ¥y zlla b]=[x" ¥'].
d e
g h

Strictly speaking, this is the correct interpretation of the axonometric
projections. Note that the matrix which is the product of AP has a
vanishing determinant; hence, as we might suppose from geometric considera-
tions, it has no inverse; we cannot regain space information about an
object from a single view.

Algebraic geometry has a theorem about axonometric projections:

Every affine transformation with vanishing determinant
is an axonometric projection.

The word "affine" refers to those transformations which can be described
by any 3 x 3 matrix.

TRANSFORMATIONS BY COMPUTER

The foregoing discussion has been carried out in detail, and
much of the detail is.superfluous when we perform transformations by
computer. For instance, the oblique projections (cavalier, cabinet, and
others) were devised for convenience in the drafting room; they make it
easy to construct, from working drawings of objects, pictures that are
more easily understood by the uninitiated than the working drawings
themselves. But they are not very good pictures. Isometrics are better,
and again are very easily constructed by graphical procedures. Dimetrics
are better still, and of the entire class, trimetrics, the hardest to
construct, are the best representations short of perspective pictures.
But the computer can construct a tri-metric picture of an object as
easily as any of the less desirable forms, and it is possible to implement
the mgtrix loading and multiplication so that the object can be rotated
in the picture in "real-time."
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Perspective pictorials take a little longer, since the
homogeneous coordinate must be divided out, and division is ordinarily
a long process, relative to addition and multiplication.

This concludes the discussion of transformations.
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HOMOGENEQUS MATRIX REPRESCENTATION AID MANIPULATION
OF N-DIMENSIOIIAL CONSTRUCTS

‘Iawrence G. Roberts
Lincoln ILaboratory¥ Massachusetts Institute of Technology
Iexington, Massachusettis

The representation and processing of graphical information has been
found to be greatly simplified if a system of homogeneous coordinates is used
in conjunction with the appropriate matrix techniqﬁes. The following notes
are an attempt to set down the matrix forms and methods which have been found
useful in the representation and display of graphical data. This work is an
extension of material already presented as a tﬁesis.l

The specific items of interest are points, lines, conic sections,
planes, and quadric surfaces in two and three dimensions. However, the
techniques are not limited by either the dimension or order of the space, and
can be extended in a straightforward manner. The use of ﬁomogeneous coordinates
throughout is extremely important in order to maintain the simplicity of the
results although its original purpose was to a2llow perspective transformations.
It is assumed that in any graphical system there exists a data structure (such
as the CORAL list siricture used at Iincoln Iaboratory) in addition s e

matrices which'contain the information about the associations betwsen elizments.

This structure is a separate subject and will not be discussed herein.

Homogeneous Coordinates

The homogeneous'coordinate technique is simply the representation of
n-space objects in (n+l) - space in such a way that a particular perspective

projection recreaves the n-space. It can also be thought of as the addition

-
Operated with support from the U.S. Air Force



of an extra coordinate to each vector, a scale factlor, so that the vector has
the same meaning after multipiication by a constant. For example, in 2-D a
point ta, b] would be entered as [z, b, 1] and theﬁ manipulated as a 3-D
vector. For display of a point, the 3-D vector Ex, ¥y, w] would be transformed

back to 2-D by:

a=x/w , b=y/w o : a

Thus, the w component is a scale factor and can often be thought of as a
dependent variabie.

Thé 3-space created by‘ﬁ homogeneous treatment of 2-D points and lines
consists of lines and planes all passing through the origin. Thus, a single
3 x 3 transformation matrix may e used to rotate and translate the points in

2-gpace as well as allowing perspective transformations.
Notation

A consistent notation will be utilized throughout to minimize the
number of comments required. The following conventions will be followed:

Matrices: Always capital letters but sometimes with
subscripts. '

Vectors: row vectors: P ¥

column vectors: .+, A

Single Variables: free parametric variables: s, t
specific coordinates: X, ¥, T, W
other variables: &y By €; & €5 £y 8y H

The transpose of A is written Af'.



'2-D Point and Line Representation

A. A point in the space is a 3-element row vector:
-y V_u
e Pt X% 25
v=[%,¥y, W] ) ProjéegioN OF Zhygn e

u:l {7\_.&”:

Any constant multiple of v represents the same point.

B. In line in the space is represented by a colum vector:
Vet 1 NOrem - 7
= )" Line Tt v IR U A S A
Y ={b G &g
c
c. The scalar product of a point and a line produces a number which is 1
zero. if the point is on the line, minus if it is on the side and Plus if it .
is on the other side. DaT FregwaT = 2eno PN Ly e ‘ ‘
&
Line Equation: vy =0 (ax + by + cw = 0)
D. The distance from a point to a line is indicated Ly the product vy *':’s
9"“'\: e i ¥
but must be normalized if absolute distance is required: SR g
' /£ - e C"l ,-ﬁ____ff-»-
, Sy ' I vtk
Distance from Vv to y: ds(vY)/V/a FY e oo e
3 _] = NOA W As2e Foy y—" ? ‘{’/L"--_" o o+ A~

This distance is still a signed quantity indicating which side of the line

the point is on.

E. A transformation H of the space is a 3 x 3 matrix.
The transformed point (vl) is obtained: v, = VH

The transformed line (-yl) is obtained: Y

Thus the line equation is unchanged: v, 'Yl =vY=o0

]
=]
<



2-D Points and Lines

A, Find line y glven two points Vs and vyl
vO = [xo.! y'o: WO:I ] vl = [Xl; yl, wl]
Y' = [(ylw -~ ¥ wl) 3 (x W - X W ) ’ (xly - X yl)] . o

\6’ = Uo X U;_ ‘-\ i‘/ﬂ-o-,; Prav .4.4!4.)

B. Find intersection v given two lines Yo and vyt

\_;"" & X 2): "L;.'ri‘—f‘f‘ff. P ane "'/)

T " '
o= (850 U5 8] Y1~ [al’ B B 7

v = [(byey =By 5 (Bey = a1,) 5 (agb, = agby)]
G ” Find transformation T which translates space so point v becomes the
origin:
N
\(-é wwwa"zl'}\""‘.j'”‘-’{:'
v=[x,y, W] W
™(v) = W
. pad fe [BeTTéel
IR Sl B
D. Find line Y which is normal to line ) and passes through point v
)
o
i - p
1. prepare T(v) % L @ g R
- K={-1 o of ., ./ o
2. Y:T(V)K?t o o o \q."?
- = b -\,,. 4&»‘3
_E. Find line y which is parallel to line ) and passes through po:.nt v -
~ v B {
Y:T(V)KQ}_ (:: [ o =l D}
' | . @ B
y b 21 ! “’7
; LI v
o i 2y 9
o B b 5
"\:ctj-'/- 4 g N -~

o}

[ I
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I 2-D Conic Representations % (03 $e)X W ¥ (-’wj) T
, 1 % 3 : o ] ’ > 5 .
> ‘-’GJ'-“O"J?""{)*:34"13”'Y'(‘3"3')3v*(“?7 Gt e + oWt =
Implicit Conic Representation vCv' = o c: (3 x 3)

Parametric Conic Segment Representation v =xrA  A: (3 x 3)
free parameter t y r = [t2, t, 1]

SR €

1. Since the terms of r are dependent on t there is a unique | #

- - ' ',. \
quadratic relation which states the constraint on r. - /""._
i ) =
- )
P-K = l/ e ‘ ;{ 1 (
Kr' = o e nd @ where: K = -2 9.,
7 1 o
) ‘I\.--f-"! Tie T2

2. Due to relation (1) it is possible to determine C from the

parametric form.

-1 2 5

C=A""KA
= | -
¢ =A x A

3. Other parametric forms. It is often useful to use some

transformation J of the parametric vector T in the following way:

v = pB where: Pp=1rd , B=J A

7

then: pMp' = o where M= 3+ kJ™1'

thus: € =31 mp~1'

L. Tangent Point Transform: A useful parametric form is one in which
the rows of B are the start point, end point, and the intersection

point of the tangents from these points.

1 -2 1 o o
v =7pB J‘l = 2 -2 Ml = | O -é—
o o) i 1. o
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Projection of Parabola Intc a Circle in a Hcomogeneous Coordinate System.

The parabola on the slanted surface is used as a parametric representation’
of the circle. The projection is from the origin onto the w = 1 plane.



2 - ! ¥
- 1] e L ]
K (vtht) =« % (vleo)

thus: k=4 4[— (les) /2 (vthé
— - (sign determines segment)
% :
1
Now: _ B = kvt .
v
e

d. If we want the basic parametric form:

A = JlB

e. NOTES: 1. The relative scale of v, and v, is free but
affects the speed of movement along the arc.
For minimum velocity change along the arc they
should be scaled so that W, =Wy before starting
b the process. (v = [x, y, w])

2. Parallel tangents work without problems. (wt = 0)

2-D Conic, Point, Line Relationships

A. The tangent line Y to a conic C at a point v on *he conic is given by:
Y = Cv?
: B. The polar line Y of a pole v with respect to a conic C is related

just as above:

Y= Cv!



~ However, when v is not on the conic the polar line found has the following

properties:

1. Y has the same slope as the conic at the conic's nearest point YO%
t

to v. That is it is perpendicular to the normal from v to C.
tve.

o. Y also intersécts C at such points where tangent lines can be

drawn to C through v. :r\_:‘;‘-«.‘a"‘wf}
X i 3
'S A L“-.J‘“w
Example: \
v
l e © /
C= o1 o > ¥
o o -1 C\\\\~h.
v
V= [ 1 2 i J

Y=CV'=[1 2 -1 ]'

3. The polar lines of all points on Y go through v.
C. When the matrix C has an inverse C—l (i.e., it represents a curve, not a

"line) then the pole may be found given a polar line Y.

-1
Pole: v=YC

1. The pole of the line at infinity is the 1

v=1[0o o 1] c”
center of the conic: -

- 2. Given a line tangent to the conic then the pole is the point of

‘contact.



”

D. Intersection of a line Y and a conic C:; Find the intersection

points vy (o, 1, or 2):

1. Prepare a parametric matrix for the line Y
such that v = [t, 1]P lies on the line for all t.

Now: Y=[a b ¢ ]

Ir a fo or Ifb #o0 or If a=b=o0

-b a o -b a o 1l o o
P = P = P =

-C 0 & o-c b c 1 o

2. Now compute the terms of the guadratic equation:
a b

PCP' = (a‘t2+2bt+c=o)
b c

a. ifa=o0 then v

[-c,2 ] P

b. otherwise: kj= -b £ fb2 . B ('f;:2 < ac o no intersections)
and: vJ = [kj’ al] P  (two solllxtions)
E. Intersection of two conics:

Represent one conic as parametric: v=rA
p

Represent other conic as implicit: vCv' = o

10



Compute:

3. (2c+d) t3+et+f=o0

a
ACA* = | D
c
' L
Solve: at + 2bt
Now : v.=7T, A
: dJd J

2
where rj = [tj, t., 1]

J

3-D Representations

A point vector is as before but has one more coordinate:

ve=[%X, ¥, 2, W]

A line or space curve can be represented;

1. Parametricly as before:

for t
J

v=rA vwherer= [tz, t, 1] but Adis b x 3

If higher than second order space curves are wanted, r can be

extended to include more terms and A extended likewise.

" 2. As the intersection of two planes or a plane and a gquadric

surface. However, it is difficult to use +this representation

directly.

A plane is now the item represented by a colum vector:

Y =

)
a

b

L

11

and a plane equation is:

'\;"Ys o



'D. Ahy quadic surface (including planes) can be represented by a quadrafic

form as was used before for 2-D conics. Here the matrix F will be a 4 x L.
vEv' = o

There are four canonic forms of quadric surfaces under perspective trans-

formation. These are the groups in which some transform H will transform

F, into F, as below (congruence):
F2 =H Fl H!
Groups:

1. Sphere, ellipsoid, elliptic paraboloid, hyperboloid of two

sheets.

‘2. Hyperbolid of one sheet, hyperbolic paraboloid.

3. Cone, cylinder, hyperbolic sheets, parabolic sheet (Rank 3)

L. Intersecting, parallel, and single planes . - (Rank 2)
Most calculations in 3-D are the same as thgy were in 2-D except that the
dimension of the vectors and matrices has increased. Also, it must be
remembered that where lines and curves were considered before the coriesponding

manipulations are now for planes and quadric surfaces.

3-D Coordinate Transformations

Given a 4 x Lk transformation H:

A. Points: vy = vH

3



B. Planes:

;
=

C. Quadrics: ¥®

3-D Planes and Points

-

A The intersection of 3 planes Yl’ Y2, and 'Y3 is a point v.
dl bl c 8y dl ¢y ay bl ay b
v =
% By % 2 s 2 b 8 B
. Bs B a, b a, b
.73 551, M ™% P . IP3 ®
B. The plane through 3 points is just as above except for the interchange
of (x, y, z, w) for (2, b, c, d) and Y' for v.
c. The distance from a point v to a plane Y is:
A= () /¥ S 424 2
D. A plane Y parallel to plane j throuéh point v
w o0 o _l © o
Y=1(v) J) Nv) =| o W o J=]lo 1 o
o o o [T S =
=X -y -z W 0O 0 o

=

0O O O




3-D Quadric Surfaces

The plane Y tangent to a quadric F at a point v on the surface is:

<

Y = Fyv!

As before the above relation also defines the polar plane to a poin@r
1. A polar plane cuts the quadric surface in a conic section which
is the outline of the quadric as seen from the pole v. This is very

important because we want to be able to display this outline.

2. The polar plane is also perpendicular to the normal from v to

the quadric surface.

Interéection of a quadric F and a plane Y:

Since we normally wish to display the intersections we fiﬁd
it is convenient to find the projection of the intersection as
seen from X = o which we assume has been transformed to be the
viewing point. Thus, we will find a 2-D conic matrix C aé a result

of the intersection.

. 1. Prepare: % % 9 6] where Y' = [a b ¢ 4]
P = -c 0 a o
-d o o a '
2. Now: C = PFP!

(Good unless a = o in which case projection is linej = [b ¢ d])

14



D.  Outline of Quadric from X = !
Since the pole X = » has a polar plane: Y = F [l’ 0, o, q]f,
we can easily cut F with this plaﬁe which is its own first column to obtain
the conic C describing its outline. This can proceed Just as in paft C
above.
There happens to be a particular simplification when the intersecting

plane is a column from F.

Assume first column of F is: Y'=[a b c d]
0 o] (o) [e]
Then: Q = MF where M=a b a ¢ o
-c O a o
-d o o a

This computation will leave the first columm and top row of Q all
zeros with the lower right 3 x 3 being C. Really Q is the quadric surface
normal ﬁo the x = o plane which is Jjust tangent to the quadric F.

If a=0: and b=c =4 =0 then Q = F, othervise: no outline

visible.

Volume Representation

In order to represent solid objects a group of planeslof quadric
surfaces can be used to bound the desired volume. Since the homogenecous
coordinate system aliows each plane vector or quadric matrix to be multiplied
by an arbitrary constant, the sign of each surface can be adjﬁsted so as to

produce a positive product for points inside the volume and negative for outside.

12



i

Point v inside plane Y: +vY s o0

Point v inside quadric F: vFv' > o0

This technique has been used previouslyl'where all the plane
vectors of a convex solid were grouped into a."volume“ matrix. Thus,
when a point was multipliedjby this ﬁatrix the resultant vector.was all
positive if the point was inside the volume. To extend this concept to
quadric surfaces requires a volume tensor, that is a set of matrices.
Further, to represent complex volumes there needs to be several "volume"
tests and a Boolean combination of the results. The particular form such
a conbination should take may well depend on the problem to be solved.

Hidden line elimination for displaying groups of dbjects is one of
the prime reasons for the representation of volumes and was previously worked
out for plane surfaced objects. For curved surfaced objects the manipulation
technigues presented in this paper are sufficient as long as quadric surfaces
are only allowed to intersect planar surfaces. However, the math takes a
quantum jump in complexity when fourth-order space curves are introﬁuced by
quadric-quadric intersections. Until there is a demonstrated need for such
solutions in practice, the large investment of time and efiort required is

probably unwarranted.

1. "Machine Perception of Three-Dimensional Solids", Iincoln Iaboratory
Technical Report, #315, (22 May 1963). L. G. Roberts.

+
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APPENDIX ITITI

PEN TRACKING
I /

In order to get position information from a light pen it is
necessary to proviae a program or hardware whichfollows changes in the
position of the pen. Such a system, called "pen tracking" is a
relatively old technique. In spite of its age and susceptability to
analysis, pen tracking remains a considerable mystery to many people.

It is my hope in this appendix, drawn entirely from discussion with

Tom Stockham, to dispell some of the mystery associated with pen tracking.
In some sense, however, the points made here are moot because it appears
that the light pen is rapidly being replaced by stylus input devices and
comparitors.

The original tracking systems followed motion of the light pen by

means of a pattern of four dots.

i TTE

\

S T )““"““27.#‘:\

By sensing which of these dots was visible to the pen, the tracking program
could discover which direction. to move the pattern in order to remain within
the field of view. Such a pattern, called a "tracking square", or "tracking

diamond' was well known by 1957.
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The algorithm for manipulating.a tracking square is relatively‘
simple. If none of the points fall in the field of wview of the light
pen, the array will be left alone. If one or more of the points are
seen by the ligﬁt pen, then the éntire array will be moved in such a
direction as to bring all of the points within the field of view; pﬁat
is, if the right-hand point only is seen, then the array will be moved
to the right, If all points except the bottom one are seen, then the
array will be moved up, and so on. A flow chart to do that might be as
shown in the figure on the following page. (Figure 2.)

Such a tracking program responds to a light pen hit on one of the
four points of the tracking square by branching to a location in which the
position of the square is moved. The desire to branch conditionally on
a hit after each point of the tracking figure is posted is in direct

conflict with the "normal"” pointing function of the light pen in which the

- address in memory of the item which was seen 1s recorded for use at the end

of the frame. Pen tracking programs commonly prefer: the "hit flag" light
pen logic rather than the interrupt type.
Suppose, on the other hand, that we wish to use the interrupt type of

light-pen hardware. In such a case, we can treat the tracking cross as

merely a part of the display list. The light pen interrupt routine will

indicate which of the dots in the tracking square were or were not seen.
At the end of the frame, a new location for the tracking square can be
computed from that information. Such an arrangement would be as shown in

the Figure on the following page. (Figure 3)
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APPENDIX 3 3

If light from the cathode ray tube is the only clue as to where

the light pen is, how is it possible to move the tra;king pattern across
background information without interference? Obviously the background
information and the tracking pattern itself will be located in separate
places in the display file table. The codes which are stored to indicate
' w@ich parts of the display drawing are seen will distinguish between.the
parts of the tracking pattern and the parts of the backgfound view. Thus
the processor which examines the information seen during a complete frame
of the display can distinguish between parts of the tracking cross and

parts of the background view.

Types of Tracking Crosses

Various types of tracking crosses have been used to detect the
position of the light pen. The simple four-dot tracking square described
above has the difficulty that if the tracking square is significantly
smaller than the field of view of the light pen, then the tracking square
would not respond to small motions of the pen. In effect, the tracking
cross is a sort of.pea underneath a cup formeéd by the field of view of the
light pen such that the pea moves only when the wall of the cup actually
touches it.. On the other hand, if the four dot tracking square is made
larger so that it fills the entire field of view of the ligﬁt pen, there
is a risk that the field of view of the light pen may becoﬁe smaller

_than tﬁe tracking square. If the pen field of view is smaller than the
tracking squaré, it may slip inside the tracking square and tracking will

3

be lost.
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The solution to this dilemma is to make the size of the tracking
square adjustable to match the size of the field of view of the light
pen. In effect, the tracking square should feel out the edges of the
light-pen field of view in four directions, and compute the center of
the light pen field of view from the information thus derived.

On a point-plotting scope, the usual technique for making a pen-
tracking cross is to display four points immediately adjacent to the
estimated pen location, and if they are seen, four points adjacent to
them but further out in both directions along both axes. When a point
in some arm is no longer in the field of view of the pen, we gnow the
coordinates of that edge of the light-pen field of view. Averaging the
vertical positions of the two psints on the vertical axis gives the vertical

-

coordinate of the pen center, and similarly the horizontal coordinate is
the average of ;ﬁe two points on the horizontal axis. The prccess of
scanning out from the center gives the display the appcarance of a cross,
henee the name, "tracking cross", for this type of tracking. So far as I
know, such a precision tracking cross was first used by T. G. Stockham
in April 1959 on the TX-0 coméuter at MIT.

If the display contaihs a line;generator, it is more sensible to start
drawing lines inward from four points outside the predicted field of view,
measuring the edge of the field when the light-pen interrupt logic

announces a hit - i.e. when the line has just entered the sensitive

region. The appearance of these displays is shown is Figure 4.
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Many other fofms of tracking squares can be devised to do this job.
The only important characteristic that they must have (and the rest of
this appendix is to show that that's so) is that they must determine the
edge of the field of view of the tracking cross with minimum noise. Any
noise present should preferably be aslsmooth as possible. C;nsistent
errors in the measurement.of position are tolerable, but inconsistent
errors with high frequency components (noise) are not. The reason that
a low noise measurément of the pen position is important is that the pen
position predictor serves to amplify the measurement noise. If a lower
noise measurement can be made,la ﬁigher order predictor can be used, and
_tracking can be done less often.

Low noise pen position measurement is achieved by several techniques.
First, it is important to measure pen position to the finest resolution
available on the scope. The quantization error of position will show up

directly as a noise in the measurement, where

1

Inoise|.= resolution

Second, a linear search procedure should be used. The successive points
displayed should reach the edge of the pen in linear sequencé either from
inside or outside. If a logarithmic search is used, motions of the pen
during sampling time will introduce errors larger than Ehe resolution used.
Third, the measurements for the four edges of the field of view should be
made as nearly simuitaneously as possible. If tﬁe measurements are made
at different times and the pen is moving, the pen's field of view will

effectively be distorted in shape.

L
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A Common Misconception

It is a common misconception that the pen-tracking program is a
servomechanism in the sense that it is a feedback device. This is just
not so. In fact, the pen-tracking progranm is a measurement system wherein
the position of the center of the field of view of the light pen is
measured by the tracking cross. Any tracking cross capable of
measuring the center of the field of view of the light pen will obtain the
same measureﬁent, provided only that the field of view is circular. The
several crosses shown below, for example, all agree on the position of

the pen field of view.

In order to actually make the measurement of the pen location, the
tracking program needs an estimated pen position about which to draw the

tracking figure. The particular value of the estimate makes no difference

whatsoever, provided only that it lies within the pen field of view. 1i.e.

so long as
actual position - estimated position| < radius

otherwise tracking will be lost. The rest of this appendix concerns itself
with methods of arriving at a suitable estimate. Let me remind you again

\ _
that tracking is not a feedback system because the measured pen location is

not a function of the estimated pen location.

a
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Pen-Position Prediction

A complete pen-tracking system will use some kind of prediction
/
scheme for arriving at the pen-position estimate to be used for each
tracking cross. If we call the actual pen position "PA", the
measured pen position "PM'", and the estimated pen position "E;E", and M
use subscripts "t'", "t-1", etc. to indicate the sampling time at which

these numbers are valid, then a block diagram of the pen-tracking

process looks like this:

e Trve OuwypuT

I~
T RACK ‘ YREDICTOR — PE{_ ~
4
| cross PM £ REmHer zems Pos 17 10m
PH4. ,PH,,, ctc. er Cress
s VlS!(’;L!
OvreoT

The estimated position at time "t" is used only to establish
a tracking cross within the light pen field of wview. The particular

value of the estimated pen position does not effect the position

"
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measured at that time. What you observe on the scope, however, is the

tracking cross whose center is the estimated pen position. Perfectly

stable .tracking is possible even if the estimated pen position changes

P

radically throughout the pen field of view. In other words, the mere

observation that the pen-tracking cross is "jumping around” within the

pen field of view does not mean bad tracking, because the measured pen

position may nevertheless be quite stable.

In order to see more clearly what the effect of noise on the

predictor is, let us redraw the block diagram of the system as follows:

FA ?P—‘E‘D|C-T’0K
* + z P&

PE&

—
-

=
Fyfs yt
@En-cr. :’ MusT

B Les ThrAN R

‘It is now evident that if PA is constant, the measurement noise signal

is passed into the predictor box, and may be amplified by the predictor

box to produce a very noisy pen position estimate.

Design of the pen

position estimating box must insure that the magnitude of the noise as

amplified by the pen-position estimator does not exceed the radius of

the light pen.
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Obviously the pen-position estimator can work only on past data.
That is, the estimate of the pen position PE_ = F(PMt-l’ PMt_z....).
If we choose to use linear prediction where N is called the order of

the prediction a

PEt = iEI ai PMt-l .

The error signal, however, will be

Et = PAt—PEt =-Nt+PMt+PEt.

s = =K -

t " i FM

s e M Y ¢

neag

where the coefficient an = =1,

Suppose that we want to predict in such a way that pen motions
with N constant derivatives are predicted with zero error. For such-
motions, the Nth differences in pen position will be constant. If we
define a delay ope;ator, D, such that,

DR = Reg

then the difference cperator is [1-D], and
[1-DI(P) = P.-D(P,) = P~ -
th : N 3 o2
The N~ difference operator is [1-D]. Thus the appropriate coefficients

31 to use are given by

E = [1—D]NP(;) ‘
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The appropriate wvalues for the coefficients are:

Nt 3G &8 a8 a5 a

: § -1 1 Constant Position Assumption

2 -1 2 -1 Constant Velocity Assumption

3 -1 3 ~$ 1 Constant Acceleration Assumption
4 -1 4 -6 4 -1 etc.

5] -1 5 -10 10 -5

Where N is one, the estimate is just the previous position which

is cdrrect only if the pen is not moving. If N is 2, the estimate is

BEw B ¥ ( P

Pesd ™ t—2)

which is correct assuming that the velocit§ is constant.

In actual practice, it is practical to use pen-position predictors up
to order 3 (constant acceleraticn), but as we shall see, predictors

of higher order amplify noise too much to be of practical value.
;
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Suppose that the successive noise signals during the measurements
happen to come out in such a way as to make the worst possible pre-
dicti;n. How would that be? It is clear from the signs of the coefficients
in the table, that if the noise errors alternated in signs, the error
would be of maximum magnitude. In other words when the noise frequency
is just one half of the sampling frequency. Under such conditions, the

noise signal will cause an error which is larger than itself. 1In fact,

‘C__LA_“PI.ITUQE oF ‘JQGS\-S
N

i

the noise signal as amplified would be:

which means that predictors amplify noise by the factors shown below.

Noise
N a, a; a, a, a, Gain
1 -1 1 2 Constant Position Assumption
2 -1 2 -1 4 Constant Velocity Assumption
3 -1 3 -3 i 5 8 Constant Acceleration Assumption
4 | -1 4 -6 4 -1 16 ' etc.

Since the maximum amplitude of the noise signal is roughly *
one scope unit, a constant acceleration predictor will cause the tracking
cross to bounce around about * 8 scope units. Since light pens typically
have a field of view of about 1/2 inch diameter, which is about 50 scope
units in diameter or 25 scope units in radius, you would expect to be able
to use prediction of order 4. It is easy to see, however, that marginal

operatiion might well result.
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Rotating Light Pen Tracking

It would be desirable to be able to input information to the machine
about the orientation of the picture presented. One way to input
rotational information is to specify with a pointer the two endpoints
of some line in the picture. This would yield both translational and
rotational information. We can consider, however, the possibilitj of
discovering two pairs of coordinates simultaneously, as with a device like
that of Figure o . T@e two pen styli have indpendent "read" hardware, or
perhaps share a common processor, but yield separate coordinates to the

computer. The average position

o B = _N1*y
2 TN

"l

and the angle of inclination of the line determined by the two pens

Y9791

tan a = % g
271
(to within an ambiguity of 180°) can be computed to give orientation and
position information.
At first, it might appear that this is about the only way of simul-
éaneously reading a position and a direction from a standard input device.

If, however, a lightpen is fitted with a non-circular aperture, there is a

method for duplicating the performance of the pen device described above.
The position of the pen can be tracked, and measurements of its orientation

can also be made. =
b1



e
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Consider the '"tracking cross" of Figuré 6. -Superﬁmﬁosed on it is
a hypothetical lightpen window. The window sﬂape itself is a function not
only of the aperture'size and shape but also of the distance of the pen from
the tube and the azimuthal angle at which the pen is held.. In practice, one
m;kes a guess on the lightpen position, say Po’ and the angle of inclinatiqg
of the window, say o The-components of the cross are then drawn. First,
the lines thought to be aligned with windoﬁ orientation are drawn from the’
points
[Pox + dcosao, Poy + dsinaol

[Pox - dcosao, Poy - dSlﬂao]

toward the pbint Po' In the process, the points‘ml and m, are measured

as the lightpen '"sees' the first point displayed within the window. We

now know something about the size of the window (the "image" of the

lightpen aperture on the screen). If the lines CD and EF are now
displayed such that they intersect the line AB somewhere within the area
bounded by my and m,, We are virtually assured of a hit. In practice, it

works to choose the point P1 as

3ml + m,

and P, as

The lines Eﬂ, EF are then displayed and hits recorded. We now have six

- measurements, m seeeTloe We suspect that the position of the component of

1

¥

the new pen position q along the line AB should be determined by the points

m, and m, since the window intersects AB at nearly right angles where these

s
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measurements are made. Similarly, we would like to determine the new

3‘ - . .m6l
Consider the average points P3 and P4

m., + ma

position by using the measurements m

where

Since the lines CD and EF were chosen perpendicular to AD and such that

P;.Zinz = P then the average of P3 and P4 is guaranteed to be on line .

1"
(611 is the locus of points equidistant from my .and m2.) (See Figure &)
We can compute

+
Mg M + Mo = méx

9% = 4
_ m3y.+-m4Y = mSy + m6Y
qy 73
and _
B Pz, = P3 ) mSy + mGY = va - ml;v
' Pax = Pax Mex ¥ Mgy ~ M3x T Max

Various error-correction schemes can be divised. If the lightpen
sees line AD but not CD, then x is incremented by 90° and the process starts

over. Note that in practice, only
‘&x - B(me * Mex ~ M3x m&x)

Ay = B(m._ +m

S5y by 3y B mlny)

are stored, which obviates looking up tangents. f is a normalization

= m

- constant, chosen so that (Ax)z + (z‘jy)2 = some co.nstant (say 250010).
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At first glance, there would appear to be stability problems.

Consider the window and cross in Figure 7 . Clearly m, -and m, are

1
rather "fuzzy" figures. Therefore, the position may be in error.

Using fairly long lines (~2"), the error scheme described above seems

to avoid gross unstability.

Fleovere 7

bt s & et



