
(

(

RSX-11M
Executive Reference Manual

Order No. AA·2544D·TC

RSX-11M
Executive Reference Manual

Order No. AA·2544D·TC

RSX· l1M Version 3.1

To order additional copies of this document. contact the Software Distribution
Center, Digital Equipment Corporation. Maynard, Massachusetts 01754

digital equipment corporation· maynard, massachusetts

First Printing, November 1974
Revised : September 1975

November 1976
December 1977

The information in this document is subject to change without notice
and should not be cons t rued as a commitment by Digital Equipment
Corporat i on. Digital Equipment corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license .

No responsibil ity is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies .

Copyright@1974 , 1975, 1976, 1977 by Digital Equipment Corporation

The postage- prepaid READER ' S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre­
paring future documentation.

The following are trademarks of Digital Equipment Corporation :

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST- ll

DECsystem- 10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM- 20
RTS-8

MASSBUS
OMNIBUS
05/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-ll
TMS-ll
ITPS-lO

PREFACE

0 . 1
0 . 2
0 . 3

CHAPTER 1

1.1
1. 2
1. 3
1.,
1. 4 . 1
1.4 . 1.1
1.4.1.2
1.4 . 1.3
1. 4 . 2
1. 4.3
1. 4.4
1.4 . 5
1.5
1. 5 . 1
1.5 . 1.1
1.5 . 1.2
1.5.1.3
1.5 . 1. 4
1. 5 . 2
1.5 . 3
1.6
1. 6.1
1.6 . 2

CHAP TER 2

2 . 1
2 . 2
2 . 3
2 . 3 . 1
2 . 3 . 2
2.3 . 3
2 . 3 . 4

CHAPTER 3

3 . 1
3 .1. 1
3.1.2
3 . 2
3 . 3
3.3 . 1
3 . 3 . 2
3.3 . 3
3 . '
3 . 4 . 1
3 . 4 . 2
3 . 4 . 3
3 . 4 . 4

CONTENTS

MANUAL OBJECTIVES AND READER ASSUMPT I ONS
STRUCTURE OF THE DOCUNENT
ASSOCIATED DOCUMENTS

USING SYSTEM DIRECTIVES

INTRODUCTION
DIRECTIVE PROCESSING
ERROR RETURNS
USING THE DIRECTIVE MACROS

Nacro Name Conventions
$ Form
$C Form
$S Form
The DIR$ Macro
Optional Error Routine Address
Symbolic Offsets
Examples of Macro Calls

FORTRAN SUBROUTINES
Subroutine Usage
Optional Arguments
Task Names
Integer Arguments
GETADR Subroutine
The Subroutine Calls
Error Conditions

TASK STATES
Task State Transitions
Removing an I nstalled Task

SIGNIFICANT EVENTS AND SYSTEM TRAPS

SIGNIFICAt;T EVENTS
EVENT FLAGS
SYSTEM TRAPS

Synchronous System Traps (SSTs)
SST Service Routines
Asynchronous Sys t em Traps CASTs)
AST Service Routines

1>1E140RY MANAGE11ENT DIRECTIVES

ADDRESSING CAPABILITIES OF AN RSX- llM TASK
Address Mapping
Virtual and Logical Address Space

VI RTUAL ADDRESS WINDOWS
REGIONS

Shared Regions
Attaching to Regions
Reg i on Protect i on

DI RECTIVE SUMMARY
CREATE REGION Directive (CRRG$)
ATTACH REGION Directive (ATRG$)
DETACH REGION Directive (DTRG$)
CREATE ADDRESS WINDOW Directive (CRAW$)

i ii

Page

vii

vii
v i i
vii

1 - 1

1-1
1- 2
1- 3
1- 3
1- 5
1-6
1 - 6
1-6
1-7
1 - 7
I - a
I - a
1- 9
1- 10
1-10
1 - 10
1- 11
1- 11
1-11
1-14
1- 15
1-15
1- 16

2- 1

2-1
2- 1
2-3
2- '
2-'
2- 6
2- 7

3-1

3- 1
3- 1
3- 2
3- 2
3-' 3-a
3-a
3-a
3-9
3- 9
3- 9
3- 9
3-9

3.4 . 5
3.4 . 6
3.4.7
3 . 4 . 8
3 . 4.9
3 . 4. 10
3 . 4 . 1 1
3.5
3.5. 1
3 . 5 . 1. 1
3.5 . 1.2
3 . 5 . 2
3 . 5 . 2 .1
3 . 5 . 2 . 2
3.5 . 3
3.6

CHAPTER 4

4 . 1
4.1.1
4 . 1.2
4 . 1. 3
4.1. 4
4 . 1. 5
4.1. 6

4. 1. 7
4 . 2
4.3
4 . 3 . 1
4 . 3 . 2
4 . 3.3
4 . 3 . 4
4 . 3 . 5
4 . 3.6
4 . 3 . 7
4 . 3.8

4. 3 . 9
4 . 3 . 10
4 . 3 . 11
4 . 3 .1 2

4.3.13

4 . 3 . 14
4.3.15
4.3 . 16
4.3 . 17
4 . 3 .18
<1 . 3 . 19
4 . 3 . 20
4.3 . 21
4 . 3 . 22
4 . 3 . 23
4.3.24
4 . 3.25

CONTENTS (Cont .)

ELIMINATE ADDRESS WINDOW Directive (ELAW$)
MAP ADDRESS WINDOW Directive (MAP$)
UNI-tAP ADDRESS WINDOW Directive (UMAP$)
SEND BY REFERENCE Directive (SREF$)
RECEIVE BY REFERENCE Directive (RREF$)
GET MAPPING CONTEXT Directive (GMCX$)
GET REGION PARAMETERS Directive (GREG$)

USER DATA STRUCTURES
Region Def i nition Block (ROB)
Using Macros to Generate an ROB
Using FORTRAN to Generate an ROB
Window Def i nition Block (WDB)
Using Macros to Generate a WDB
Using FORTRAN to Generate a WOB
Assign values or Setti ngs

PRIVILEGE D TASKS

DIRECTIVE DESCRIPTIONS

DIRECTIVE CATEGORIES
Task Execution Control Directives
Task Status Control Directives
Informational Directives
Event- Assoc i ated Directives
Trap- Associated Directives
I/O and Intertask Communications-Related
Directives
Memor y Management Directives

DIRECTIVE CONVENTIONS
SYSTEM DIRECTIVE DESCRI PTIONS

ABORT TASK
ALTER PRIORITY
ASSIGN LUN
AST SERVICE EXIT ($S form recommended)
ATTACH REGION
CONNECT TO INTERRUPT VECTOR
CLEAR EVENT FLAG
CANCEL MARK TI ME REQUESTS ($S form
recommended)
CREATE ADDRESS WINDOW
CREATE REGION
CANCEL TUtE BASED INITIATION REQUESTS
DECLARE SIGNIFICANT EVENT ($5 form
recommended)
DISABLE (or INHIBIT) AST RECOGNITION
($5 form recommended)
DI SABLE CHECKPOINTING ($S form recommended)
DETACH REGION
ELIMI NATE ADDRESS WINDOW
ENABLE AST RECOGNITION ($5 form recommended)
ENABLE CH£CKPOINTING ($5 f orm recommended)
EXITIF
TASK EXIT ($5 form recommended)
EXTEND TASK
GET LUN I NFOR]o1ATION
GET MeR COMMAND LINE
GET MAPPING CONTEXT
GET PARTITION PARAMETERS

iv

Page

3-9
3- 9
3-10
3-1 0
3-10
3- 10
3- 10
3- 10
3-1 1
3- 12
3 - 14
3-14
3-16
3-17
3-1 8
3 - 18

4- 1

4- 1
4- 1
4- 2
4-2
4- 2
4- 3

4- 3
4- 3
4- 4
4- 4
'-6
4- 8
4- 9
4-11
4 - 13
4- 1 5
4- 21

4- 2 2
4- 23
4- 26
4- 29

4- 30

4- 31
4- 33
4-34
4 - 36
4- 37
4- 38
4- 39
4 - 41
4- 43
4- 45
4- 47
4-49
4-51

r

4 . 3 . 26
4 . 3.27
4 . 3.28
4 . 3 . 29
4 . 3 . 30
4.3 . 31
4 . 3 . 32
4 . 3 . 33
4 . 3 . 34
4 . 3.35
4.3.36
4 . 3 . 37
4.3.38
4 . 3 . 39
4 . 3.40
4 . 3.41
4 . 3 . 42
4 . 3 . 43

4.3 . 44
4.3 . 45
4 . 3 . 46
4 . 3 . 47
4 . 3.48
4 . 3 . 49
4 . 3 . 50
4. 3 . 51
4.3.52

4 . 3 . 53
4 . 3 . 54

APPENDIX A

APPENDIX B

FIGURE

TABLE

1- 1

1- 2
3-1
3- 2
3- 3
3-4
3- 5

1-1

CONTENTS (Cont.)

GET REGION PARAMETERS
GET SENSE SWITCHES ($5 form recommended)
GET TIME PARAMETERS
GET TASK PARAMETERS
MAP ADDRESS WINDOW
MARK TIME
QUEUE I/O REQUEST
QUEUE I/O REQUEST AND WAIT
RECEIVE DATA
RECE IVE DATA OR EXIT
READ ALL EVENT FLAGS
REQUEST
RECE I VE BY REFERENCE
RESUME
RUN
SEND DATA
SET EVENT FLAG
SPECIFY FLOATING POINT PROCESSOR EXCEPTION
AST
SUSPEND ($5 form recommended)
SPECIFY POWER RECOVERY AST
SPECIFY RECEIVE DATA AST
SEND BY REFERENCE
SPECIFY RECElVE-BY-REFERENCE AST
SPECIFY SST VECTOR TABLE FOR DEBUGGING AID
SPECIFY SST VECTOR TABLE FOR TASK
UNMAP ADDRESS WINDOW
WAIT FOR SIGNIFICANT EVENT ($S form
recommended)
WAIT FOR LOGICAL " OR" OF EVENT FLAGS
WAIT FOR SINGLE EVENT FLAG

DIRECTIVE SUB.MARY - ALPHABETICAL ORDER BY
MACRO CALL

STANDARD ERROR CODES

FIGURES

Directive Parameter Block (DPB) Pointer on
the Stack
Directive Parameter Block (OPS) on the Stack
Virtual Address Windows
Region Definition Block
Mapping Windows to Regions
Region Definition Block
Window Definition Block

TABLES

FORTRAN Subroutines and Corresponding Macro
Calls

v

Page

4- 53
4-55
4-56
4- 57
4-59
4-62
4-65
4-68
4-69
4-70
4-72
4-73
4-76
4-78
4-79
4-83
4-84

4- 85
4-87
4-88
4-90
4-92
4-95
4- 97
4-98
4-99

4-100
4-102
4-104

A-1

B- 1

1-4
1-5
3-3
3-5
3-7
3-12
3-15

1-12

PREFACE

0 . 1 MANUAL OBJECTIVES AND READER ASSUMPTIONS

The RSx- IIM Executive Reference Manual describes the system directives
that allow experienced MACRO-II and FORTRAN programmers to use Rsx- IIM
Executive services to control the execution and interaction of tasks .

0 . 2 STRUCTURE OF THE DOCUMENT

Chapter 1 defines system directives and describes their use in both
MACRO-II and FORTRAN programs.

Chapter 2 defines significant events, event flags, and system traps,
and describes their relationship to system directives.

Chapter 3 introduces the concept of extended logical address space and
describes the associated memory management directives.

Chapter 4 contains a short summary of all directives, listed according
to category. The summary is followed by the detailed directive
specifications . The specifications are arranged alphabetically
according to macro call.

Appendix A contains abbreviated specifications
(directive name, FORTRAN call, and macro
alphabetically according to macro call.

of all
call

the directives
only), arranged

Appendix B lists the standard error codes returned by the RSX-IIM
Executive .

0.3 ASSOCIATED DOCUMENTS

The following manuals are prerequisite sources of information for
readers of this manual:

RSX 11M Task Builder Reference Manual

IAS/RSX- Il MACRO-II Reference Manual

PDP-II FORTRAN Language Reference Manual

Other documents related to the contents of this manual are described
briefly in the RSX-llM/RSX-llS Documentation Directory, Order No.
AA-2593D-TC . The directory defines the intended readership of each
manual in the RSX- llM/RSX- lIS set and provides a brief synopsis of
each manual ' s contents.

vii

CHAPTER 1

USING SYSTEM DIRECTIVES

This chapter describes the use of system directives and the ways in
which they are processed. Some of the Executive services described in
this manual are optional RSX- IIM features that can be selected during
system generation. The discussion of these features always assumes
that the features have been generated for the system . See the RSX-IIM
System Generation Reference Manual for a list of optional features.

1.1 INTRODUCTION

A system directive is a request from a task to the Executive to
perform an indicated operation. The programmer uses the directives to
control the execution and interaction of tasks. The MACRO- II
programmer usually issues directives in the form of macros defined in
the system macro library. The FORTRAN programmer issues system
directives in the form of calls to subroutines contained in the system
object module library.

System directives enable tasks to perform functions such as the
following :

• Obtain task and system information

• Measure time intervals

• Perform I/O functions

• Communicate with other tasks

• Manipulate a task ' s logical and virtual address space

• Suspend and resume execution

• Exit

Directives are implemented via the EMT 377 instruction . EMT 0 through
EMT 376 (or 375 for unmapped tasks and mapped privileged tasks) are
considered to be non-RSX EMT synchronous system traps. The Executive
aborts the task unless the task has specified that it wants to receive
control when such traps occur . Note that RSX-llM reserveS EMT 370 and
above for possible use as special system traps in the future.

A MACRO-II programmer should use the system directives supplied in the
system macro library for directive calls, rather than hand - coding
calls to directives . The programmer then needs only to reassemble the
program to incorporate any changes in the directive specifications.

,-,

US I NG SYSTEM DIRECTIVES

Sections 1.2 , 1.3, and 1 . 6 are directed to all users. Section 1 . 4
specifically describes the use of macros, while Section 1.5 describes
the use of FORTRAN subroutine calls. Programmers using other
supported languages should refer to the appropriate language reference
manual supplied by DIGITAL for that language.

1.2 DIRECTIVE PROCESSING

There are four steps in the processing of a system directive:

1. The user task issues a directive with arguments that are
mainly for the creation of the Directive Parameter Block
(DPS). The DPB can be either on the user task ' s stack or in
a user task's data section.

2. The Executive
directive (or a

receives an
OIR$ macro).

EMT 377

3. The Executive processes the directive.

generated from the

4. The Executive returns directive status information to the
task's Directive Status Word (DSW).

Note that the Executive preserves all task registers when a task
issues a directive.

The user task issues an EMT 377 (generated from the directive)
together with the address of a DPS, or a OPS itself, on the top of the
issuing task ' s stack. When the stack contains a OPS address, the
Executive removes the address after processing the directive, and the
OPS itself remains unchanged. When the stack contains the actual DPB,
rather than a OPS address, the Executive removes the OPS from the
stack after processing the directive.

The first word of each OPS contains a Directive Identification Code
(OIC) byte, and a OPB size byte. The OIC indicates which directive is
to be performedi the size byte indicates the OPS length in words .
The OIC is in the low-order byte of the word, and the size is in the
high- order byte.

The DIC is always odd, thus the Executive can determine whether the
word on the top of the stack (before EMT 377 was issued) was the
address of the OPS (even-numbered value) or the first word of the OPS
(odd-numbered value).

The Executive normally returns control to the instruction following
the EMT. Exceptions to this are directives that result in an exit
from the task that issued them. The Executive also clears or sets the
Carry bit in the Processor Status word (PS) to indicate acceptance or
rejection, respectively, of the directive . The Directive Status Word
(DSW), addressed symbolically as $OSW, is set to indicate a more
specific cause for acceptance or rejection of the directive.* The DSW
usually has a value of +1 for acceptance and a range of negative
values for rejection (exceptions are success return codes for the
directives CLEFS, SETF$, and GPRT$, among others). RSx-IlM associates
DSW values with symbols, using mnemonics that report either successful

* The Task Builder resolves the address of SDSW . Users addressing
the DSW with a physical address are not guaranteed upward
compatibility with Rsx-llo and may experience incompatibilities with
future RSX - llM releases .

1-2

US ING SYSTEM DIRECTIVES

completion or the cause of an eccor (see Section 1.3). (The ISA
FORTRAN calls CALL START and CALL WAIT are exceptions; ISA requires
positive numeric error codes. See Sections 4 . 3.39 and 4 . 3.30 for
details.) The detailed return values are listed with each directive.

In the case of successful EXIT directives, the Executive does not, of
course, return control to the task . If an EXIT directive fails,
however , control is returned to the task with an error status in the
DSW.

On EXIT, the Executive frees task resources as follows:

1 . Detaches all attached devices

2 . Flushes the Asynchronous System Trap (AST) queue
described in Chapter 2 of this manual)

(ASTs are

3. Flushes the clock queues for outstanding Mark Time requests
for the task (see Section 4.3 . 30)

4. Flushes the receive - data and receive-by··reference queues

5. Closes all open files
locked)

(files open for write access are

6. Cancels all outstanding I/O

7 . Detaches all attached
task in a system
directives, where no
3.3.2)

regions, except in the case of a fixed
that supports the memory management
detaching takes place (see Section

8 . Frees the task's memory if the task is not fixed

If the Executive rejects a directive, it usually does not clear or set
any specified event flag . Thus, the task may wait indefinitely if it
indiscriminately executes a WAITFOR directive corresponding to a
previously issued MARK TIME directive that the Executive has rejected.
Care should always be taken to ensure that a directive has been
completed successfully.

1.3 ERROR RETURNS

As stated above, RSX- I1M associates the error codes with mnemonics
that report the cause of the error. In the text of the manual, the
mnemonics are used exclusively. The macro ORERR$, which is expanded
in Appendix S, provides a correspondence between each mnemonic and its
numer i c value.

Appendix S also gives the meaning of each error code . In
each directive description in Chapter 4 contains
directive-related interpretations of the error codes.

1 . 4 USING THE DIRECTIVE MACROS

addition,
specific,

To issue a directive , a task supplies the system with a directive code
and parameters (the OPS), and issues an EMT 377 instruction .

1-3

USING SYSTEM DIRECTIVES

The DPB can be created in two ways:

1. To adapt to the requirements of reentrant code --

The reentrant method allows for the creation of the DPB on
the stack at run time (see Section 1.4.1.3, which describes
the SS form of directive).

2 . To adapt to code that does not have reentrant requirements --

The non-reentrant method allows for the creation of the DPB
in a data section at assembly time (see Sections 1 . 4 . 1 . 1 and
1.4.1.2 which describe the S form and $C form respectively) .

Figures 1- 1 and 1- 2 illustrate the alternatives for issuing directives
and also show the relationship between the stack pointer and the OPB.

MOV
EMT

sP--_ ••

/lAOOR,.!SPI
377

ADDRESS OF OPB

'---------'

STACK
GROWTH

J

•

OPB
ITEMS

SIZE I ole

ope

I NCREASING
MEMORY
ADDRESSES

Figure 1-1 Directive Parameter Block (DPB) Pointer on the Stack

1-4

US I NG SYSTEM DIRECT I VES

MOV XX,,(SP)
PUSH REaUIREo
oPB ITEMS ON THE
STACK IN
REVERSE ORDE R

MOV (PC)+ ,,(SP)
,BYTE DIC,S IZ'
EMT 377

SP

OP8
ITEMS

• SIZE I ole

STACK
GROWTH

I

I NCREASING
MEMORY
ADDRESSES

Figure 1-2 Directive Parameter Block (DPS) on the Stack

1 . 4 . 1 Mac r o Name Conventions

To use system directives, a MACRO-II programmer includes directive
macro calls in programs. The macros for the RSX-I IM directives are
contained in the System Macro Library (LB : (I ,I] RSXMAC . SML) . To make
the macros available to a program , t he programmer issues the . MCALL
assembl er di r ective . The . MCALL arguments are the names of al l the
mac r os used in the program. For example:

CALLING DI RECTIVES FROM THE SYSTEM MACRO LIBRARY
AND ISSUING THEM .

. MCA LL MRKT$S,WTSE$S

Additional .MCALLs or code

MRKT$S
WTSE$S

U , U"2, , ERR
U

iMARK TIME FOR I SECOND
i WAIT FOR MARK TIME TO COMPLETE

Macro names consist of up
($) and, opt i onally , a C
specifies which of three
..... ants to use.

to four let t ers , followed by a dollar sign
or an S . The optional letter or its absence
possible macro expansions the p r ogrammer

1- 5

USING SYSTEM DIRECTIVES

1.4.1.1 $ Form - The $ form (omission of the optional letter) is
useful for a directive operation that is to be issued several times
from different locations in a non-reentrant program segment. This
form produces only the directive ' s DPB, and must be issued from a data
section of the program. The code for actually executing a directive
that is in the $ form is produced by a special macro, DIR$ (discussed
in Section 1.4.2).

Because execution of the directive is separate from the creation of
the directive's DPB:

1. A $ form of a given directive needs to be issued only once
(to produce its OPB) .

2. A DIR$ macro associated with a given directive can be issued
several times without incurring the cost of generating a DPB
each time it is issued.

When a program issues the $ form of macro call, the parameters
required for OPB construction must be valid expressions for MACRO-II
data storage instructions (such as .BYTE, .WORD, and .RADSO). The
programmer can alter individual parameters in the DPB. This might be
done, for example, if the directive is to be used many times with
varying parameters.

1.4.1.2 $C Form - Programmers should use the $C form when a directive
is to be issued only once, and the program segment does not need to be
reentrant. The $C form eliminates the need to push the DPB (created
at assembly time) onto the stack at run time . Other parts of the
program, however, cannot access the OPB because the DPB address is
unknown. (Note, in the $C form macro expansion of Section 1.4.5, that
the DPB address $$$ is redefined by the new value of the assembler's
location counter each time an additional $C directive is issued .)

The $C form generates a DPB in a separate P5ECT called $OPB$$. The
DPB is followed by a return to the user-specified P5ECT, an
instruction to push the DPB address onto the stack , and an EMT 377.
To ensure that the program reenters the correct PSECT, the user must
specify the PSECT name in the argument list immediately following the
OPB parameters. If the argument is not specified, the program
reenters the blank (unnamed) PSECT.

This form also accepts an optional final argument that specifies the
address of a routine to be called (by a JSR instruction) if an error
occurs during the execution of the directive (see Section 1.4.2).

When a program issues the $C form of macro call, the parameters
required for OPB construction must be valid expressions to be used in
MACRO-II data storage instructions (such as .BYTE, .WORD, and .RAOSO).
(This is not true for the P5ECT argument or the error routine
argument, which are not part of the OPS.)

1.4.1.3 $S Fo r m - Program segments that need to be
use the SS form. Only the $5 form produces the OPB
other two forms produce the DPB at assembly time.

reentrant should
at run time. The

In this form, the macro produces both code to push a DPB onto the
stack, and an EMT 377. I n this case, the parameters must be valid
source operands for MOV-type instructions. For a 2-word Radix - 50 name
parame t er, the argument must be the address of a 2-word block of

1-6

USING SYSTEM DIRECTIVES

memory containing the name. Note that the Stack Pointer should not be
used to address the parameters . · (AS above, the error routine argument
is an address for a JSR instruction .)

1.4.2 The DIR$ Macro

The DIR$ macro allows the programmer to execute a directive with a DPB
predefined by the $ form of a directive macro. This macro pushes the
OPB address onto the stack and issues an EMT 377.

The DIR$ macro generates an RSX-llM Executive trap using a predefined
ops:

Macro Call : OIR$ adr,err

adr and err are optional

ad, is the address of the OPS . (The add r ess, if specified,
must be a valid source address for a MOV instruction.) If
this address is not specified, the OPB or its address
must be on the stack.

err is the address of the error return (see Section 1.4.3).
If this error return is not specified, an error simply
sets the C-bit in the Processor Status word.

DIR$ is not
not behave
variations
macro.

a "$
as

in

NOTE

form macro" ,
one . There

the spelling

and does
are no
of this

1 . 4.3 Optional Error Routine Address

The $C and $S forms of macro calls , and the OIR$ macro can accept an
optional final argument. The argument must be a valid assembler
destination operand that specifies the address of a user error
routine. For example, the DIR$ macro

OIR$,OPB,ERROR

generates the following code:

MaV tOPB, - (SP)
EMT 377
Bee . +6
JSR PC,ERROR

The $ form of directive macro does
argument.

• Subroutine or macro calls can use
thereby destroying the positional
parameters.

1- 7

not accept

the stack for
relationship

an error address

temporary storage,
between SP and the

USING SYSTEM DIRECTIVES

1.4.4 Symbolic Offsets

Most system directive macro calls generate local symbOlic
The symbols are unique to each directive and each is assigned
value corresponding to the number of bytes into the DPB that
DPB element is located .

offsets .
an index
a given

Because the offsets are defined symbolically, the programmer who must
refer to or modify DPB elements can do so without knowing the offset
values. Symbolic offsets also eliminate the need to rewrite programs
if a future release of RSX-IIM changes a OPS specification .

All $ and $C forms of macros that generate DPSs longer than one word
generate local offsets. All informational directives (see Chapter 4,
Table 4- 2) including the $S form, generate local symbolic offsets for
the parameter block returned as well.

If the program uses either the $ or $C form and has defined the symbol
$$$GLB (for example $$$GLS=O), the macro generates the symbolic
offsets as global symbols and does not generate the DPS itself. The
purpose of this facility is to enable the use of a DPB defined in a
different module. The symbol $$$GLB has no effect on the expansion of
$8 macros.

1.4 . 5 Exampl es of Macro Calls

The examples below show the expansions of the different macro call
forms.

1. The $ form generates a OPB only, in the current P8ECT .

MRKT$ I,5,2,MTRAP

generates the following code :

.BYTE

. WORD

. WORD

. WORD

. WORD

23. ,5
1
5
2
MTRAP

"MARK-TIME" DIC & DPB SIZE
EVENT FLAG NUMBER
TIME INTERVAL MAGNITUDE
TIME INTERVAL UNIT (SECONDS)
AST ENTRY POINT

2. The $C form generates in PSECT $DPB$$ both a DPB and the code to
issue the directive.

MRKT$C I,5,2,MTRAP,PROGl,ERR

generates the following code :

.PSECT
$$$-.
. BYTE
.WORD
.wORD
. WORD
. wORD
.PSECT
MOV
EMT
Bee
JSR

$DPB$$

23. ,5
1
5
2
MTRAP
PROGl
'$$$, - (SP)
377 .+.
PC,ERR

DEFINE TEMPORARY SYMBOL
"MARK-TIME" DIC & DPB SIZE
EVENT FLAG NUMBER
TIME INTERVAL MAGNITUDE
TIME INTERVAL UNIT (SECONDS)
AST ENTRY POINT ADDRESS
RETURN TO THE ORIGINAL PSECT
PUSH OPB ADDRESS ON STACK
TRAP TO THE EXECUTIVE
BRANCH ON DIRECTIVE ACCEPTANCE
ELSE, CALL ERROR SERVICE ROUTINE

1-8

USING SYSTEM DIRECTIVES

3 . The $S form generates code to push the DPB onto the stack and to
issue the directive.

MRKTSS U,IS , 12,R2,ERR

generates the following code :

MOV
MOV
MOV
MOV
MOV
.BYTE
EMT
Bee
JSR

R2, - (SP)
12, - (SP)
,S,-(SP)
U, - (SP)
(PC)+, - (SP)
23 . ,5
377
. +6
PC,ERR

PUSH AST ENTRY POINT
TIME INTERVAL UNIT (SECONDS)
TIME INTERVAL MAGNITUDE
EVENT FLAG NUMBER
AND "MARI<-TIME~ DIC & DPB SIZE
ON THE STACK
TRAP TO THE EXECUTIVE
BRANCH ON DIRECTIVE ACCEPTANCE
ELSE, CALL ERROR SERVICE ROUTINE

4 . The DIRS macro issues a directive that has a predefined DPB.

DIRS Rl, (R3) DPB ALREADY DEFINED. DPB ADDRESS IN Rl .

generates the following code :

Rl ,- (SP)
377

PUSH DPB ADDRESS ON STACK
TRAP TO THE EXECUTIVE

MOV
EMT
Bee
JSR

.+4
PC, (R3)

BRANCH ON DIRECTIVE ACCEPTANCE
ELSE, CALL ERROR SERVICE ROUTINE

1.5 FORTRAN SUBROUTINES

RSX-IIM provides an extensive set of subroutines for use in FORTRAN
programs , to perform RSX-IIM system directive operations.

The directive descriptions
subroutine calls, as well as

in Chapter 4
the macro calls.

describe

The FORTRAN subroutines fall into three basic groups:

the FORTRAN

1. Subroutines based on the Instrument Standard of America (ISA)
Standard ISA 62.1 - - These subroutines are incl ud ed i n the
subroutine descriptions associated with the macro calls. See
Chapter 4 .

2 . Subroutines designed to use and control specific process
control interface devices supplied by DIGITAL and s upported
by the RSX- lIM operating system

3 . Subroutines for performing RSx-llM system directive
operations -- In general, one subrou tine is available for
each directive. (Exceptions are the MARK TIME and RUN
directives. The description of MARK TIME includes both CALL
MARK and CALL WAIT. The description of RUN includes both
CALL RUN and CALL START .)

All of the subroutines described in
FORTRAN programs compiled by either
compiler.

this manual can
the FORTRAN IV or

be called by
FORTRAN IV-PLUS

These subroutines can also bf, called from programs written in the
MACRO-II assembly language by using PDP-II FORTRAN calling sequence
conventions . These conventions are described in the IAS!RSX-ll
FORTRAN IV User's Guide and in the FORTRAN IV-PLUS User's Guide.

1-9

USING SYSTEM DIRECTIVES

1.5.1 Subroutine Usage

All of the subroutines described in this manual are added to the
RSX-llM system object module library when either FORTRAN compiler is
generated for RSX-IIM. To use one of these routines, the programmer
includes the appropriate CALL statement in the FORTRAN program. When
the program is linked to form a task, the Task Builder first checks to
see whether each specified routine is user-defined. If a routine is
not user - defined, the Task Builder automatically searches for it in
the system object module library. If the routine is found, it is
included in the linked task.

1.5.1 . 1 Optional Arguments - Many of the subroutines described in
this manual have optional arguments. In the subroutine descriptions
associated with the directives, optional arguments are designated as
such by being enclosed in square brackets (ll). An argument of this
kind can be omitted if the comma that immediately follows it is
retained. If the argument (or string of optional arguments) is last,
it can simply be omitted, and no comma need end the argument list.
For example, the format of a call to SUB could be the following:

CALL SUB (AA, IBBl, ICCl ,001, IEEll ,FFJ J)

In that event, programmers may omit the arguments BB, CC, EE, and FF
in one of the following ways:

• CALL SUB (AA,,,oo,,)

• CALL SUB (AA",oo)

In some cases, a subroutine will use a
unspecified optional argument . Such default
subroutine description in Chapter 4.

default value
values are noted

for an
in each

1.5.1.2 Task Names - In FORTRAN subroutines, task names may be up to
six characters long. Characters permitted in a task name are the
letters A through Z, the numerals 0 through 9 and the special
characters dollar sign ($) and period (.). Task names are stored as
Radix-50 code, which permits up to three characters from the set above
to be encoded in one PoP-ll word . (Radix-50 is described in detail in
the IAS/RSX 11 FORTRAN IV User's Guide and the FORTRAN IV-PLUS User ' s
Guide .)

FORTRAN subroutine calls require that a task name
variable of type REAL that represents the task name
This variable may be defined at program compilation
statement, which gives the real variable an initial
constant) .

be defined as a
as Radix-50 code.
time by a DATA
value (a Radix - 50

For example, if a task named CCMFI is to be used in a system directive
call, the task name could be defined and used as follows:

DATA CCMFI/sRCCMFl/

CALL REOUES (CCMFl)

Task names
subroutine
FORTRAN IV

may also be defined during execution by using the IRADsO
or the RAD50 function as described in the IAS/RSX-ll

User's Guide or the FORTRAN IV-PLUS User's Guide.

1-10

USING SYSTEM DI RECTIVES

1 . 5.1.3 Integer Arguments - Al l of the subroutines described in this
manual assume that integer arguments are INTEGER*2 type arguments .
Both the FORTRAN IV and FORTRAN IV-PLUS systems normally treat an
integer variable as one PDP- II storage word, provided that its value
is within the range -32768 to +32767. However, if the programmer
specifies the /14 option switch when compiling a program, particular
care must be taken to ensure that all integer arguments used in these
subroutines are explicitly specified as type INTEGER*2.

1.5.1.4 GETADR Subroutine - Some subroutine calls include
described as an integer array. The integer array contains
that are the addresses of other variables or arrays.
FORTRAN language does not provide a means of assigning such
as a value, programmers should use the GETADR subroutine
below .

Calling Sequence:

CALL GETADR(ipm, (argl), larg2], ••• [argn))

ipm is an array of dimension n.

an argument
some values

Since the
an address
described

argl, ... argn are arguments whose addresses are to be inserted
in ipm. Arguments are inserted in the order
specified . If a null argument is specified,
then the corresponding entry in ipm is left
unchanged.

Example:

DIMENSION IBUF(SO) ,IOSB(2) , IPARAM (6)

CALL GETADR (IPARAM(l) ,18UF(1»
IPARAM(2)=80
CALL 010 (IREAD,LUN,IEFLAG,IOSB,IPARAM,IDSW)

In this example, CALL GETADR enables the programmer to specify a
buffer address in the CALL QI0 directive (see Section 4 . 3 . 31).

1.5.2 The Subrout ine Call s

Table 1-1 is a list of the
macro calls) associated
detailed descriptions) .

FORTRAN subroutine calls
with system directives

(and corresponding
(see Chapter 4 for

For some directives, notably MARK TIME (CALL MARK), both the standard
FORTRAN- IV subroutine call and the I SA standard call are provided.
Other directives, however, are not available to FORTRAN tasks (for
example, Specify Floating Point Exception AST [SFPA$l and Specify SST
Vector Table For Task [SVTK$]) .

1 - 11

US I NG SYSTEM DI RECTIVES

Table 1-1
FORTRAN Sub~outines and Co~[esponding Mac[o Calls

Directive

ABORT TASK

ALTER PRIORITY

ASSIGN LUN

AST SERVICE EXIT

ATTACH REGION

CONNECT TO INTERRUPT
VECTOR

CLEAR EVENT FLAG

CANCEL MARK
TIME REQUESTS

CANCEL TIME BASED
INITIATION REQUESTS

CREATE ADDRESS WINDOW

CREATE REGION

DECLARE SIGNIFICANT
EVENT

DISABLE AST
RECOGNITION

DISABLE CHECKPOINTING

DETACH REGION

ELIMINATE ADDRESS
WINDOW

ENABLE AST
RECOGNITION

ENABLE CHECKPOINTING

EXITIF

TASK EXIT

EXTEND TASK

GET LUN INFORMATION

GET MAPPING CONTEXT

GET MCR COMMAND LINE

Mac[o Call

ABRT$

ALTP$

ALUN$

ASTX$S

ATRG$

CINT$

CLEF$

CMKT$S

CSRQ$

CRAWS

CRRG$

DECL$S

DSAR$S

DSCP$S

DTRG$

ELAW$

ENAR$S

ENCP$S

EX I F$

EXIT$S

EXTK$

GLUN$

GMCX$

GMCR$

1-12

FORTRAN Sub~outine

CALL ABORT

CALL ALTPRI

CALL ASNLUN

Not available

CALL ATRG

Not available

CALL CLREF

CALL CANMT

CALL CAN ALL

CALL CRAW

CALL CRRG

CALL DECLAR

CALL DSASTR

CALL DISCKP

CALL DTRG

CALL ELAW

CALL ENASTR

CALL ENACKP

CALL EXITIF

CALL EXIT

CALL EXTTSK

CALL GETLUN

CALL GMCX

CALL GETMCR

(cont i nued on next page)

USING SYSTEM DIRECTI VES

Table 1-1 (Cont.)
FORTRAN Subroutines and Corresponding Macro Calls

Directive

GET PARTITION
PARAMETERS

GET REGION PARAMETERS

GET SENSE SWITCHES

GET TIME PARAMETERS

GET TASK PARAMETERS

INHIBIT AST RECOGNITION

MAP ADDRESS WINDOW

MARK TIME

QUEUE I/O REQUEST

QUEUE I/O REQUEST
AND WAIT

READ ALL EVENT
FLAGS

RECEIVE DATA

RECEIVE DATA
OR EXI'I'

RECE I VE BY REFERENCE

REQUEST

RESUME

RUN

SEND BY REFERENCE

SEND DATA

SET EVENT FLAG

SPECIFY FLOATING
POINT EXCEPTION AST

Macro Call FORTRAN Subroutine

GPRT$ CALL GETPAR

GREC$

GSSW$S

GTIM$

GTSK$

IHAR$S

MAP$

MRKT$

QIO$

QIOW$

RDAF$

RCVD$

RCVX$

RREF$

ROST$

RSUM$

RUN$

SREF$

SDAT$

SETF$

SFPA$

1-13

CALL CETREG

CALL READSW
CALL SSWTCH

Several subroutines
available (see the
appropriate FORTRAN
User's Guide)

CALL GETTSK

CALL INASTR

CALL MAP

CALL MARK
CALL WAIT (ISA Standard call)

CALL QIO

CALL WTQIO

Only a Single event flag can
be read by a FORTRAN task:
CALL READEF

CALL RECEIV

CALL RECOEX

CALL RREF

CALL REOUES

CALL RESUME

CALL RUN
CALL START (ISA Standard call)

CALL SREF

CALL SEND

CALL SETEF

Not available

(contlnued on next page)

USING SYSTEM DIRECTIVES

Table 1-1 (Cant .)
FORTRAN Subroutines and Corresponding Macro Calls

Directive Macro Call FORTRAN Subroutine

SPECIFY POWER SPRA$ EXTERNAL SUBNAM
RECOVERY AST CALL PWRUP (SUBNAM)

(to establish an AST)
CALL PWRUP

(to remove an AST)

SPECIFY RECEIVE SRDA$ Not available
DATA AST

SPECIFY RECEIVE BY SRRA$ Not available
REFERENCE AST

SPECIFY SST VECTOR SVDB$ Not available
TAB LE FOR DEBUGGING AID

SUSPEND SPND$S CALL SUSPND

SPECIFY SST VECTOR SVTK$ Not available
TABLE FOR TASK

UNMAP ADDRESS WINDOW UMAP$ CALL UNMAP

WAIT FOR LOGICAL WTLO$ CALL WFLOR
OR OF EVENT FLAGS

WAI T FOR WSIG$S CALL WFSNE
SIGNIFICANT EVENT

WAIT FOR SINGLE WTSE$ CAL L WAITFR
EVENT FLAG

1.5.3 Error Conditions

Each subroutine call includes an optional argument (ids) . When a
programmer specifies this argument, the subroutine returns a value
that indicates whether the directive operation succeeded or failed.
If the directive failed, the value indicates the reason for the
failure. The possible values are the same as those returned to the
Directive Status Word (DSW) in MACRO-II programs (see Appendix B),
except for the two ISA calls, CALL WAIT and CALL START. The ISA calls
have positive numeric error codes (see Sections 4.3 . 30 and 4 . 3 . 39).

In addition, two types of error are reported by means of the FORTRAN
Object Time System diagnostic messages. Both of these errors result
in the termination of the task. The error conditions are:

1. SYSTEM DIRECTIVE: MISSING ARGUMENT(S)
This message indicates that at least one necessary argument
was missing from a call to a system directive subroutine (OTS
error number 100).

2. SYSTEM DIRECTIVE: INVALID EVENT FLAG ~UMBER
This message indicates that an event flag number in a call to
WFLOR (WAIT FOR LOGICAL " OR" OF EVENT FLAGS) was not in the
range 1 to 64 (OTS error number 101).

1- 14

USING SYSTEM DIRECTIVES
1 . 6 TASK STATES

Many system directives
another. There are
active. The active
blocked.

cause a task to change from one state
two basic task states in RSX-IIM -- dormant
state has two substates -- ready-to-run

to
and
and

The Executive recognizes the existence of a task only after it has
been successfully installed and has an entry in the System Task
Directory (STD) . (Task installation is the process whereby a task is
made known to the system; see the RSX-IIM Operator ' s Procedures
Manual.) Once a task has been installed, it is either dormant or
active . These states are defined as follows:

1. Dormant Immediately following the Monitor Console
Routine's processing of an INStall command, a task is known
to the system , but is dormant. A dormant task has an entry
in the STD, but no request has been made to activate it (that
is, neither a RQST$ nor RUNS macro, nor an MeR RUN command,
has been issued for it).

2. Active -- A task is active from the time it is requested
until the time it exits. The request is either an issuance
of the RQST$ or RUN$ macro, or an MCR RUN command issued by
an operator from a terminal . An active task is eligible for
scheduling, whereas a dormant task is not.

An active task can be in one of two substates, ready-to-run
or blocked .

a. Ready-to- run -- A ready-to-run task competes with other
tasks for CPU time on the basis o f priority. The highest
priority ready-to-run task obtains CPU time and thus
becomes the current task.

b. Blocked -- A blocked task is unable to
time for synchronization reasons or
resource is not available.

1.6 .1 Task State Transitions

compete
because

for CPU
a needed

Dormant to Active - The following commands or directives cause the
Executive to activate a dormant task:

• A RUN$ directive

• A RQST$ directive

• An MCR RUN command

Ready-to-Run
ready-to-run

to Blocked - The following
task to become blocked:

• A SPND$ directive

• An unsatisfied WAITFOR condition

events cause

• The Executive checkpoints a task out of memory

an

• A checkpointable task issues a terminal input request*

active,

* On l y in systems that support the checkpointing of tasks during
terminal input.

1-15

USING SYSTEM DIRECTIVES

Blocked to Ready-to - Run - The following events return a bl o cked task
to ready- to-run state :

• A RSUM$ directive issued by another task

• An MCR RESUME command

• A WA IT FOR condition is satisfied

• The Executive reads a checkpointed task into memory

• Te r minal input for a checkpointable task completes*

Active to Dormant - The following events cause an active task to
become dormant :

• An EX IT$S, EXIF$, 0' RCVX$ directive, 0' a RREF$ directive
that spec i fies the exit option

• An ABRT$ directive

• An MCR ABORT command

• A Synchronous System Trap (SST) foe which a task has not
specified a service routine

1. 6.2 Removing an Installed Task

To remove an installed task from the
command REMOVE from a privileged
Operator ' s Procedures Manual.

system, the
terminal.

user issues the MeR
Refer to the Rsx-IIM

* On ly in systems that support the checkpointing of tasks during
terminal input.

1-16

CHAPTER 2

SIGNIFICANT EVENTS AND SYSTEM TRAPS

This chapter introduces the concept of significant events
describes the ways in which a programmer can make use of event
and synchronous and asynchronous system traps.

2.1 SIGNIFICANT EVENTS

and
flags

A significant event is a change in system status that causes the
Executive to reevaluate the eligibility of all active tasks to run. A
significant event is usually caused (either directly or indirectly) by
a system directive issued from within a task. Significant events
include the following:

• An I/O completion

• A task exit

• The execution of a SEND DATA directive (see Section 4.3.40)

• The execution of a SEND BY REFERENCE or a RECEIVE BY REFERENCE
directive (see Section 4.3.37)

• The execution of an ALTER PRIORITY directive
4.3.2)

(see Section

• The removal of an entry from the clock queue (e.g., resulting
from the execution of a MARK TIME directive or the issuance of
a rescheduling request)

• The execution of a DECLARE SIGNIFICANT EVENT directive
Section 4 . 3.11)

(see

• The execution of the round-robin scheduling algorithm at the
end of a round-robin scheduling interval

2.2 EVENT FLAGS

Event flags are a means by which tasks recognize specific events.
(Tasks also use Asynchronous System Traps (ASTS) to recognize specific
events. See Section 2.3.3.) When a task requests a system operation
(such as an I/O transfer), the task may associate an event flag with
the completion of the operation. When the event occurs , the Executive
sets the specified flag . Section 2.2.1 describes in several examples
how tasks can use event flags to coordinate task execution.

2-1

SIGNIFICANT EVENTS AND SYSTEM TRAPS

Sixty-four event flags are available to enable tasks to distinguish
one event from another. Each event flag has a corresponding unique
Event Flag Number (EFN). The first 32 (1-32) flags are unique to each
task and are set or cleared as a result of that task's operation. The
second 32 flags (33-64) are common to all tasks and are therefore
called common flags. Common flags may be set or cleared as a result
of any task's operation. The last eight flags in each group, local
flags (25-32) and common flags (57-64), are reserved for use by the
system.

Tasks can use the common flags for inter task communication or their
own local event flags internally. The setting, clearing, and testing
of l ocal flags can be performed by using SET EVENT FLAG (SETF$), CLEAR
EVENT FLAG (CLEF$), and READ ALL EVENT FLAGS (RDAF$) directives.

Programmers must take great care when setting or clearing event flags,
especially common flags. Erroneous or multiple setting and clearing
of event flags can result in obscure software faults. A t:(pical
application program can be written without explicitly accesslng or
modifying event flags, since many of the directives can implicitly
perform these functions. The Send Data (SDAT$), Mark Time (MRKT$),
and the I/O operations directives can all implicitly alter an event
flag. The implicit handling of event flags substantially reduces
errors caused by multiple setting and clearing of event flags.

Examples 1 and 2 below illustrate the
(33-64) to synchronize task execution.
the use of local flags (1-32).

use of common
Examples 3 and

event flags
4 illustrate

Example 1

Task B clears common event flag 35 and then blocks itself by
issuing a WAITFOR directive that specifies common event flag 35.

Subsequently another task, Task A, specifies
SET EVENT FLAG directive to inform Task B
Task A then issues a DECLARE SIGNIFICANT
ensure that the Executive will schedule Task

Example 2

event flag 35 in a
that it may proceed.
EVENT directive to
B.

In order to synchronize the transmission of data between Tasks A
and B, Task A specifies Task B and common event f l ag 42 in a SEND
DATA directive.

Task B has specified flag 42 in a WAITFOR directive. When Task
A' s SEND DATA directive has caused the Executive to set flag 42
and to cause a significant event, Task B issues a RECEIVE DATA
directive because its WAITFOR condition has been satisfied.

2-2

SI GN I FI CANT EVENTS AND SYSTEM TRAPS

Example 3

A task contains a QUEUE I/O REQUEST and an associated WAITFOR
directive, which both specify the same local event flag. When
the task queues its I/O request, the Executive clears the local
flag. If the requested I/O is incomplete when the task issues a
WAITFOR directive that specifies the same local event flag, the
Executive blocks the task.

When the requested I/O has been completed, the Executive sets the
local flag and causes a significant event. The task then resumes
its execution at the instruction that follows the WAITFOR
directive. The local event flag used in this manner ensures that
the task does not attempt to manipulate incoming data until the
transfer is complete.

Example 4

A task specifies the same local event flag in a MARK TIME and an
associated WAITFOR directive. When the MARK TIME directive is
issued, the Executive first clears the local flag and
subsequently sets it when the indicated time interval has
elapsed.

If the task issues the WAITFOR directive before the local flag
has been set (that is, before the time interval has elapsed) the
Executive blocks the task. The task then resumes when the
Executive sets the flag.

Specifying an event flag does not imply that a WAITFOR directive must
The be issued . Event flag testing can be performed at any time .

purpose of a WAITFOR directive is to stop task execution until
indicated significant event occurs. Hence, it is not necessary
issue a WAITFOR directive immediately following a QUEUE I/O REQUEST
a MARK TIME directive .

an
to
or

If a task issues a WAITFOR directive that specifies an event flag that
is already set, the blocking condition is immediately satisfied and
the Executive immediately returns control to the task.

The simplest way
CLEFS or SETFS.
codes:

to test a single event flag is to issue the directive
Both these directives can cause the following return

IS.CLR Flag was previously clear

IS.SET - Flag was previously set

For example , if a set common event flag indicates the completion of an
operation, a task can issue the CLEFS directive both to read the event
flag and simultaneously to reset it for the next operation. If the
event flag was previously clear (the current operation was
incomplete) , the flag remains clear.

2.3 SYSTEM TRAPS

System traps are transfers of control (also called software
interrupts) that provide tasks with a means of monitoring and reacting
to events . The Executive initiates system traps when certain events
occur. The trap transfers control to the task associated with the
event and gives the task the opportunity to service the event by
entering a user - written routine.

2-3

SIGNIFICANT EVENTS AND SYSTEM TRAPS

There are two distinct kinds of system traps:

• Synchronous System Traps (SSTS) -- SSTs detect events directly
associated with the execution of program instructions. They
are synchronous because they a lways recur at the same point in
the program when previous instructions are repeated . For
example, an illegal instruction causes an SST.

• Asynchronous System Traps (ASTs) -- ASTs detect significant
events that occur asynchronously to the task's execution.
That is, the task has no direct control over the precise time
that the event occurs. The completion of an I/O transfer may
cause an AST to occur, for example.

A task that uses the system trap facility issues system directives
that establish entry points for user-written service routines. Entry
points for SSTs a r e specified in a single table . AST entry points are
set by individual directives for each kind of AST. When a trap
occu r s , the task automatically enters the appropriate routine (if its
entry point has been spec i fied).

2.3 .1 Synchronous System Traps (SSTS)

SSTs can detect the execution of:

1. Illegal instructions

2 . Instructions with invalid addresses

3 . Trap instructions

4. FIS floating - point exceptions (PDP-Il/40 only)

The user can set up an SST Vector Table, containing one entry per SST
type. Each entry is the address of an SST routine that services a
particular type of SST (a routine that services illegal instructions,
for example) . when an SST occurs, the Executive transfers control to
the routine for that type of SST. If a corresponding routine is not
spec ified in the tabl e , the task is aborted. The SST routine enables
the use r to process the failure and then return to the interrupted
code. Note that i f a debugging aid and the user ' s task both have a n
SST vecto r enabled for a given condition, only the debugging aid will
receive t he SST .

SST routines must always be reentrant because an SST can occur within
t he SST routine itself. Although the Executive initiates SSTs , the
execution of the related se r vice routines is indistinguishable from
the task's no rmal execution . An AST or another SST can therefore
interrupt an SST routine .

2.3 .2 SST Service Routines

The Executive initiates SST service r outi nes by pushing the task's
Processor Status (PS) and Program Counter (PC) onto the task ' s stack .
The SST returns control to the task by issuing an RTI or RTT
instruction. Note that the task ' s general purpose registers RO-R6 are
not saved. If the SST routine makes use of them , it must save and
restore them itself.

2-'

SIGNIFICANT EVENTS AND SYSTEM TRAPS

To the Executive, SST routine execution is indistinguishable from
normal task execution. For example, all directive services are
available to an SST routine. An SST routine can remove the
interrupted PS and PC from the stack and transfer control anywhere in
the task; the routine does not have to return control to the point of
interruption. However, programmers should remember that any
operations performed by the routine (such as the modification of the
DSW , or the setting or clearing of event flags) rema in in effect when
the routine eventually returns control to the task.

A trap vector table within the task contains all the service routine
entry points. The user specifies the SST vector table by means of the
SPECIFY SST VECTOR TABLE FOR TASK directive or the SPECIFY SST VECTOR
FOR DEBUGGING AID directive . The trap vector table has the following
format:

WD. 00

WD. 01
WD. 02
WD. 03
WD. D.
WD. 05
WD. OG
WD . 07

-- Odd or nonexistent memory address error -- (Also, on
some PDP-II processors (e.g., PDP-I I/45), an illegal
instruction traps here rather than through word 04 .)
Memory protect violation
T- bit trap or execution of a BPT instruction
Execution of an lOT instruction
Execution of a reserved instruction
Execution of a non-RSX EMT instruction
Execution of a TRAP instruction
Synchronous floating point exception

A zero appearing in the table means that no entry point is specified.
An odd address in the table causes an SST to occur when another SST
t ri es to use that particular address as an entry pOint . If an SST
occurs and an associated entry point is not specified i n the table,
the Executive aborts the task.

Depending on the reason for the SST, the task's stack may also contain
additional information, as follows:

Memory protect violation (complete stack)

PS
PC

SP+I O
SP+06
SP+04
SP+02
SP+OO

Memory protect status register (SRO)*
Virtual PC of the faulting instruction (SR2)*
Instruction backup register (SRI)*

TRAP instruction or EMT other than 377 (and
unmapped tasks and mapped privileged tasks)

PS
PC

376 in the case
(complete stack)

of

SP+04
SP+02
SP+OO Instruct i on operand (low-order byte) multiplied by 2,

non - sign- extended

All items except the PS and
the SST service routine
instruction) .

PC must be removed from the
exits (usually by means of

stack befo r e
an RTI or RTT

* For details of SRO, SRI, and SR2, see the memory management unit
section of the appropriate PDP-II Processor Handbook.

2-5

SIGNIFICANT EVENTS AND SYSTEM TRAPS

2.3.3 Asynchronous System Traps (ASTs)

The primary purpose of an AST is to inform the task that a certain
event has occurred . For example, a task can associate an AST with the
completion of an I/O operation. When the AST informs the task that
the event has occurred , the task can service the event and then return
to the interrupted code.

Some directives can specify both an event flag and an AST; with these
directives, ASTs can be used as an alternative to event flags or the
two can be used together. This capabi li ty enables the user to specify
the same AST routine for several directives, each with a different
event flag. Thus, when the Executive passes control to the AST
routine, the event flag can determine the action required .

AST service routines
registers are not
subsequent execution

must save and restore all registers used.
restored after an AST has occurred , the
may be unpredictable.

If the
task ' s

In contrast to the execution of a n SST routine,
i ndistinguishable from task execution, the Executive is
task is executing an AST routine. An AST routine can be
by an SST routine, bu t not by another AST routine.

which is
aware that a

interrupted

The fo l lowing notes descr i be general characteristics and uses of ASTs :

• If an AST occurs while the related task is executing, the task
is inter r upted in order to execute the AST service routine .

• If an AST occurs while another AST is being processed, the
Executive gueues the latest AST (First-I n- First-Out or FIFO)
and then processes the next AST in the queue when the current
AST service is complete (unless AST recognition was disabled
by the AST service routine).

• If a task is suspended when an associated AST occurs, the task
remains suspended after the AST routine has been executed,
except that the suspended task can be explicit ly resumed
either by the AST service routine itself, or by another task
(the MCR RESUME command, for example).

• If an AST occurs while the re l ated task is waiting for an
event flag setting (a WAITFOR directive), the task continues
to wait after execution of the AST service routine until the
AST service routine i tself or another task sets the
appropriate event flag.

• If an AST occurs for a checkpointed task, the Executive gueues
the AST (FIFO), and then activates it when the task returns to
direct competition for p r ocesso r resources. Power fail
recovery ASTs are an exception, however . The Executive does
not activate power fail recovery ASTs that occurred for a task
while the task was checkpointed.

When a task is checkpointed back into memory, the Execut i ve
issues an AST for the task if its receive gueue contains one
or more entries. This practice prevents checkpointed tasks
from losing receive ASTs.

2-6

SIGNIFICANT EVENTS AND SYSTEM TRAPS

• An optional RSx-lIM feature allows the checkpointing of tasks
during terminal input . When this feature is included, the
Executive stops the execution of a checkpointable task when
the terminal driver receives an input request for the task.
The task resumes execution when the terminal input has
finished . A stopped task can execute an AST service routine
if an AST occurs; but the task remains stopped after the
routine finishes unless the terminal input has finished in the
meantime. Note, however, that an AST routine itself can
reactivate the stopped task by issuing an 1/0 Kill function
for the task ' s terminal input request.

• The Executive allocates the necessary dynamic memory when an
AST is specified . Thus , no AST condition lacks dynamic memory
for data storage when it actually occurs .

• Two directives , DISABLE AST RECOGNITION and ENABLE AST
RECOGNITION, allow ASTs to be queued for subsequent execution
during critical sections of code . (A critical section might
be one that accesses data bases also accessed by AST service
routines, for example.) If ASTs occur while AST recognition is
disabled, they are queued (FIFO) and then processed when AST
recognition is enabled .

2 . 3.4 AST Service Routines

When an AST occurs, the Executive pushes the task's WAITFOR mask word,
the DSW, the PS and the PC onto the task's stack. This information
saves the state of the task so that the AST service routine has access
to all the available Executive services. The preserved WAITFOR mask
word allows the AST routines to establish the conditions necessary to
unblock the waiting task. Depending on the reason for the AST, the
stack may also contain additional parameters. Note that the task's
general purpose registers RO-R6 are not saved. I f the routine makes
use of them, it must save and restore them itself .

The WAITFOR mask word comes from the offset H.EFLM in the task's
header. Its valUe and the event flag range to which it corresponds
depend on the last WAITFOR SINGLE EVENT FLAG or WAITFOR LOGICAL "OR"
OF EVENT FLAGS directive issued by the task. For example, if the last
such directive issued was WAIT FOR SINGLE EVENT FLAG 42, the mask word
has a value of 1000(8) and the event flag range is from 33 to 48. Bit
o of the mask word represents flag 33, bit 1 represents flag 34, and
so on.

The WAITFOR mask word is meaningless if the task has not issued either
type of WAITFOR directive.

After processing an AST , the task must remove the trap- dependent
parameters f r om its stack: that is, everything from the top of the
stack down to, but not including, the task ' s Directive Status word.
It must then issue an AST SERVICE EXIT directive with the stack set as
indicated in the description of that directive (see Section 4.2 . 4) .
When the AST service routine exits , it returns control to one of two
places -- another AST or the original task.

2- 7

SIGNIFICANT EVENTS AND SYSTEM TRAPS

Ther€ are five variations on the format of the task's stack, as
follows:

1. If a task needs to be notified when a Floating Point
Processor exception trap occurs, it issues a SPECIFY FLOATING
POINT PROCESSOR EXCEPTION AST directive. If the task
specifies this directive, an AST will occur when a Floating
Point Processor exception trap occurs. The stack will
contain the following values :

SP+l2
SP+IO
SP+06
SP+04
SP+02
SP+OO

Event flag mask word
PS of task prior to AST
PC of task prior to AST
Task ' s Directive Status Word
Floating exception code
Floating exception address

2. If the task needs to be notified of power failure recoveries,
it issues a SPECIFY POWER RECOVERY AST directive. An AST
wi l l then occur when t he power is resto r ed if the task is not
checkpointed. The stack will contain the following values:

SP+06
SP+04
SP+02
SP+OO

Event flag mask word
PS of task prior to AST
PC of task prior to AST
Task ' s Directive Status Word

3 . If a task needs to be notified when it receives either a
message or a reference to a common area, it issues either a
SPECIFY RECEIVE DATA AST or a SPECIFY RECEIVE BY REFERENCE
AST directive. If the task specifies one of these
direct i ves, an AST will occur when a message or reference is
sent to the task. An AST also occurs when a task has at
l east one item in the receive queue when the task is
checkpointed into or initially loaded into memory . The stack
will contain the following values :

4.

5.

SP+06
SP+04
SP+02
SP+OO

Event flag mask word
PS of task prior to AST
PC of task prior to AST
Task ' s Directive Status Word

When a task queues an I/O
appropri ate AST serv i ce entry
comple tion of the I/O request.
the following values:

request and specifies an
point, an AST will occur upon
The task's stack will contain

SP+IO
SP+06
SP+04
SP+02
SP+OO

Event flag mask word
PS of task prior to AST
PC o f task pr i or to AST
Task's Directive Status Word
Address of I/O status block for I/O
request (or zero if none was specified).

When a task issues a MARK TIME directive
appropri ate AST service entry point, an
the indicated time i nterval has elapsed .
will contain the following values:

and specifies an
AST will occur when

The task ' s stack

SP+IO
SP+06
SP+04
SP+02
SP+OO

Event f l ag mask word
PS of task prior to AST
PC of task prior to AST
Task's Directive Status Word
Event flag number (or zero if none was
specified)

2-8

CHAPTER 3

MEMORY MANAGEMENT DIRECTIVES

This chapter discusses the concepts of
regions, and virtual address windows.
related memory management directives.

extended logical
The chapter also

3 . 1 ADDRESSING CAPABILITIES OF AN RSX-IIM TASK

address space,
introduces the

An RSX-IIM task cannot explicitly refer to a location with an address
greater than 177777 (32K words). The 16-bit word size of the PDP-II
imposes this restriction on a task's addressing capability. To avoid
limiting the size of a task to its addressing capability, RSX-IIM
allows it to be overlaid. An overlaid task is divided into
segments -- a single root segment, which is always in memory, and any
number of segments, which can be loaded into memory as required.
Unless an R5X-IIM task uses the memory management directives described
in this chapter, the combined size of the task segments concurrently
in memory cannot exceed 32K words .

When task segments are not in memory, they reside on disk. When
resident task segments cannot exceed 32K words, a task requiring large
amounts of data must access disk-based data that cannot fit into
memory with what is already there. In addition, transmission of large
amounts of data between tasks is only practical via disk. An overlaid
task, or a task that needs to access or transfer large amounts of data
incurs a considerable amount of transfer activity over and above that
caused by the task's function.

Task execution could obviously be faster if all or a greater portion
of the task were always resident in memory at run time. RSX-IIM
includes a group of memory management directives that provide the task
with this capability. The directives overcome the 32K word addressing
restriction by allowing the task to dynamically change the physical
locations that are referred to by a given range of addresses. With
these directives, a task can increase its execution speed by reducing
its disk I/O requirements, at the expense of increased memory
requirements.

3.1.1 Address Mapping

In a mapped system, the user does not need to know where a task
resides in physical memory. Mapping, the process of associating task
addresses with available physical memory, is transparent to the user,
and is accomplished by the KTll memory management hardware. (See the
appropriate PDP- II Processor Handbook for a description of the KTII.)
When a task references a location (virtual address), the KTII
determines the physical address in memory. The memory management
directives use the KTII to perform address mapping at a level that is
visible to and controlled by the user.

3-1

MEMORY MANAGEMENT DIRECTIVES

3.1.2 Virtual and Logical Add re ss Space

The two concep t s
address space,
performed by the

defined below, virtual address space and logical
provide a basis for understanding the functions
memory management directives:

• Virtual Address Space -- A task's virtual address space
corresponds to the 32K-word address range imposed by the
PDP-II ' s 16-bit word length. The task can divide its virtual
address space into segments called virtual address windows
(see Section 3.2 below) .

• Logical Address Space -- A task's logical address space is the
total amount of physical memory to which the task has access
rights. The task can divide its logical address space into
various areas called regions (see Section 3.3 below). Each
region occupies a continuous block of memory.

I f the capabilities supplied by the RSX - I IM memory management
directives were not available, a task's virtual address space and
logical address space would directly correspond; a single virtual
add r ess would always point to the same logical location. Both types
of address space would have a maximum size of 32K. However, the
ability of the memory management directives to assign or map a range
of v ir tual addresses (a window) to different logical areas (regions)
enables the user to extend a task's logical address space beyond 32K
words.

3.2 VIRTUAL ADDRESS WINDOWS

In order to manipulate the mapping of virtual addresses to various
logical areas, the user must first divide a task's 32K of virtual
address space into segments. These segments are called virtual
address windows. Each window encompasses a continuous range of
virtual addresses, which must begin on a 4K word boundary (that is,
the f i rst address must be a multiple of 4K) . The number of windows
defined by a task can vary from 1 to 7 (as discussed below, window 0
is not available to the user). The size of each window can range from
a mi nimum of 32 words to a maximum of 32K minus 32 words .

A task that includes directives to manipulate address windows
dynamically must have window blocks set up in its task header . The
Execut i ve uses window blocks to identify and describe each current l y
existing window . When linking the task, the programmer specifies the
required number of window blocks to be set up by the Task Bu il der (see
the RSX 11M Task Builder Reference Manual). The number of blocks
should equal the maximum number of windows that will exist
concurrently while the task is running .

A window's identification i s a number from 0 to 7 , which is an index
to the window ' s corresponding window block . The address window
i dentified by 0 is the window that always maps the task's header and
root segment . The Task Builder automatically creates window 0, which
is mapped by the Executive and cannot be specified in any directive .

Figure 3- 1 shows the virtual address space of a task divided into four
address windows (windows 0, 1, 2, and 3). The shaded areas indicate
portions of the address space that are not included in any window (9K
to 12K and 23K to 24K). Addresses that fall within the ranges
corresponding to the shaded areas cannot be used.

3-2

MEMORY MANAGEMENT DIRECTIVES

WINDOW3

WINDOW 2

WINDOW 1

WINDOW 0

VIRTUAL
ADDRESS

SPACE

3 (8K)

1 (5K)
8K

I----\- .K
o 14K)

L-__ LOK

o • virtuel address
window

• I,Inuwd vi"I,I,1
address $pace

Figure 3- 1 Virtual Address Windows

When a task uses memory management directives, the Executive views the
relationship between the task ' s virtual and logical address space in
terms of windows and regions. Unless a virtual address is part of an
existing address window, the address does not point anywhere .
Similarly . a window can be mapped only to an area that is all or part
of an existing region within the task's logical address space.

Once a task has defined the necessary windows and regions. the task
can issue memory management directives to perform operations such as
the following:

• Map a window to all or part of a region .

• Unmap a window from one region in order to map it to another
region .

• Unmap a window from one part of a reg ion in order to map it to
another part of the same region .

3-3

MEMORY MANAGEMENT DIRECTIVES

NOTE

It is currently possible for a task with
outstanding I/O to unmap from a region
(although it cannot detach from
any - - see Section 3 . 3.2). Because this
feature may be impossible to support in
future releases of the system, it is
recommended that users consider
carefully before designing an
application that is based on this
c~pability .

3.3 REG I ONS

The current window- to- region mapping context determines the part of a
task ' s logical address space that the task can access at one time. A
task ' s l ogical address space can consist of various types of region :

• Task Region - - The task region is a continuous block of memory
i n which the task runs .

•

•

Static Common Region -- A static common
defined by an operator at run time or
t i me , such as a global common area.

region is an area
at system generation

Dynamic Region
dynam i cally at
d i rect i ves .

-- A
,un

dynamic
time by

region is a
issu i ng the

region created
memory management

Tasks refer to a r egion by means of a region ID returned to the task
by t he Execu t ive . Region ID 0 always refers to a task ' s task region .
All o t her region I Ds are actually addresses of the a t tachment
de s cri ptor ma i ntained by the Executive in the system dynamic s t orage
area .

F i gure 3- 2 shows a sample collection of regions that could make up a
t ask ' s l ogical address space at some given time . (A task's logical
addr e ss space can enlarge or contract dynamically .) The heade r and
roo t segme n t are a l ways part of the task region. Since a region
occupies a continuous area of memory , each region is shown as a
separ ate block.

Figur e 3- 3 i ll ustrates a possible mapping
windows and reg i ons shown in the first two

3-4

relationship
figures .

between the

MEMORY MANAGEMENT DIRECTIVES

•

LOGICAL
ADDRESS

SPACE

DYNAMIC REGION

COMMON

TASK'S HEADER

,

Figure 3-2 Region Definition Block

3-5

WINOOW3

WINDOW 2

WI NDOW1

WINDOWJ!

MEMORY MANAGEMENT DIRECTIVES

~-_ 5K

.-111----_ 'K

VIRTUAL
ADDRESS

SPACE

318"1

~::"'---1'-- 11K

--------1r·K
~14"1

mmrm .. unused virtu.al
UlllllllI address space

- • pointer to area
mapped by a window

LOGICAL
ADDRESS

SPACE

~ • mapped are. of
WZi logical addrtss space

,..,.., .. unmapped portions of
L.....J logical address SPIICCI

Figure 3- 3 Mapping Windows to Regions

3-6

MEMORY MANAGEMENT DIRECTIVES

3 . 3.1 Shared Regions

Address mapping not only extends a task's logical address space beyond
32K words , it also allows the space to extend to regions that have not
been linked to the task at task - build time. One result i s an
increased potential for task interaction by means of shared regions.
For example, a task can create a dynamic region to accommodate large
amounts of data. Any number of tasks can then access that data by
mapping to the region . Another result is the ability of tasks to use
a greater number of common routines . Tasks can map to required
routines at run time, rather than link to them at task-build time .

3 . 3.2 Attaching to Reg i ons

Attaching is the means by which a region becomes part of a task's
logical address space . A task can map only to a region that i s part
of the task's logical address space. There are three ways to attach a
task to a region :

1. All regions that are linked to a task at task - build time are
automatically attached.

2. A task can issue a directive to
static common r egion or a named

attach
dynamic

itself
region.

to a named

3 . A task can request the Executive to attach any region within
its own logical address space (other than its task region) to
another specified task.

Attaching identifies a task as a user of a region,
system from deleting a region until all use r tasks
from it. (It should be noted that fixed tasks do
become detached from regions upon exiting .)

and
have
not

prevents the
been detached
automatically

3.3.3 Region Protection

A task cannnot indiscriminately
criteria determine how tasks
logical address space:

attach to any
can attach

region . The following
to regions outside their

• Each region has a protection ma sk to prevent unauthorized
access . The mask indicates the types of access (read, write,
extend, delete) allowed for each category of user (system,
owner , group , world) . The Execut i ve checks that the
requesting task's User I dentification Code (UIC) allows it to
rna ke the at tempted access . The at tempt fa il s if the
protection mask den i es that task the access i t wants.

• When a task creates a dynamic region, it mayor may not give
that region a name. If the dynamic region is named , any task
can map to it as long as it knows the name and t here is no
protection v i olat i on . If a dynamic region i s unnamed, a task
can map to the region only if the task that created the
dynamic region issues a SEND BY REFERENCE directive addressed
to the requesting task.

• Any task can issue a SEND BY REFERENCE directive to attach
region (except the task region) to another specific task .
reference sent includes the access rights with which
receiving task attaches to the region. The sending task
on l y grant access rights that it has itself .

3-7

any
The
the
can

MEMORY MANAGEMENT DIRECTIVES

• Any task can map to a named static common region as long as
there is no protection violation.

3.4 DIRECTIVE SUMMARY

This section briefly describes the function of each memory management
directive.

3.4.1 CREATE REGION Directive (CRRG$)

The CREATE REGION directive creates a
system-controlled partition and optionally
to it. (See Section 4.3.10.)

dynamic
attaches

region in a
the issuing task

3.4.2 ATTACH REGION Directive (ATRG$)

The ATTACH REGION directive attaches the issuing
common region or to a named dynamic region . (See

3.4.3 DETACH REGION Directive (DTRG$)

task to a static
Section 4.3.5.)

The DETACH REGION directive detaches the issuing task from a specified
region. Any of the task's address windows that are mapped to the
region are automatically unmapped. (See Section 4.3.15.)

3.4.4 CREATE ADDRESS WINDOW Directive (CRAW$)

The CREATE ADDRESS WINDOW directive creates an address window,
establishes its virtual address base and size, and optionally maps the
window. Any other windows that overlap with the range of addresses of
the new window are first unmapped, if necessary, and then eliminated.
(See Section 4.3.8.)

3.4.5 ELIMINATE ADDRESS WINDOW Directive (ELAW$)

The ELIMINATE ADDRESS WINDOW directive eliminates an existing address
window, unmapping it first if necessary. (See Section 4 . 3.16 .)

3.4.6 MAP ADDRESS WINDOW Directive (MAP$)

The MAP ADDRESS WINDOW directive maps an existing window to an
attached region beginning at a specified offset from the start of the
region, and going to a specified length. If the window is already
mapped elsewhere, the Executive unmaps it before carrying out the map
assignment described in the directive. (See Section 4.3.30.)

3-8

MEMORY MANAGEMENT DIRECTIVES

3.4.7 UNMAP ADDRESS WINDOW Directive (UMAP$)

The UNMAP ADDRESS WINDOW directive
the window has been unmapped,
referenced until the task issues
Section 4.3.51.)

unmaps a specified window. After
its virtual address range cannot be
another mapping directive . (See

3 . 4.8 SEND BY REFERENCE Directive (SREF$)

The SEND BY REFERENCE directive inserts a
reference to a region into the receive queue of
receiver task is automatically attached to the
(See Section 4.3.47.)

packet containing a
a specified task . The

region referred to.

3 . 4.9 RECEIVE BY REFERENCE Directive (RREF$)

The RECEIVE BY REFERENCE directive requests the Executive to select
the next packet from the receive-by-reference queue of the issuing
task, and make the information in the packet available to the task.
Optionally the directive can map a window to the referenced region, or
cause the task to exit if the queue does not contain a
receive-by-reference packet . (See Section 4.3.38.)

3 . 4.10 GET MAPPING CONTEXT Directive (GMCX$)

The GET MAPPING CONTEXT directive causes the Executive to return to
the issuing task a description of the current window-to - region mapping
assignments. The description is in a form that enables the user to
restore the mapping context by a series of CREATE ADDRESS WINDOW
directives . (See Section 4.3.24.)

3 . 4.11 GET REGION PARAMETERS Directive (GREG$)

The GET REGION PARAMETERS directive causes the Executive
issuing task with information about either its task
region ID is given) or an explic itly specified region.
4.3 . 26 .)

3 . 5 USER DATA STRUCTURES

to supply the
region (if no
(See Section

Most memory management directives are individually capable of
performing a number of separate actions . For example, a single CREATE
ADDRESS WINDOW directive can unmap and eliminate up to seven
conflict i ng address windows, create a new window, and map the new
window to a specified region . The complexity of the directives
requires a special means of communication between the user task and
the Executive. The communication is achieved through data structures
that:

• allow the task to specify which direct i ve options it wants the
Executive to perform, and

• permit the Executive to prov i de the task with details about
the outcome of the requested actions .

3-9

MEMORY MANAGEMENT DIRECTIVES

There are two types of user data structures that
key elements (regions and address windows)
directives. The structures are called:

• the Region Definition Block (ROB), and

• the Window Definition Block (WDB).

correspond to
manipulated

the
by

two
the

Every memory management directive except GET REGION PARAMETERS uses
one of these structures as its communications area between the task
and the Executive. Each directive issued includes in the Directive
Parameter Block (DPB) a pointer to the appropriate definition block.
Values assigned by the task to offsets within an ROB or a WDB define
or mod i fy the directive operation. After the Executive has carried
out the specified operation, i t assigns values to various locations
within the block to describe the actions taken and to provide the task
with information useful for subseguent operations .

3 . 5.1 Region Definition Block (ROB)

Figure 3- 4 illustrates the format of
symbolic offsets defined in the
R.GSTS, contains defined bits that
Executive or the task. (RSX-llM
expansion.) The defined bits are:

an ROB. In add i tion to the
diagram, the region status word,

may be set or c l eared by the
reserves undefined bits for future

Bit Def i nition

RS.CRR=IOOOOO Region was successfully created .

RS . UNM=40000 At least one window was unmapped on a detach .

RS.MDL=200

RS . NDL=lOO

RS . ATT=40

RS.NEX=20

RS.DEL=lU

RS.EXT=4

RS . WRT:2

RS.RED=l

Mark region for deletion on last detach.

Created
deletion

region
on last

is not
detach.

Attach to created region.

to be

Created region i s not extendible .

Delete access desired on attach .

Extend access desired on attach .

Write access desired on attach.

Read access desired on attach.

marked for

The three memory management directives that reguire a pointer to an
ROB are :

CREATE REGION (CRRG$)
ATTA(.! REGION (ATRG$)
DETACH REGION (DTRG$)

When a task issues one of these directives, the Executive clears the
four high-order bits in the region status word of the appropriate ROB.
After completing the directive operation, the Executive sets the
RS.CRR or RS.UNM bit to indicate to t he task what actions were taken.
The other b i ts are never modified by the Executive .

3-10

MEMORY MANAGEMENT DI RECT I VES

Arrav

Element

irdb 0)

irdb (2)

irdb (3)

irdb (4)

irdb (5)

Symbolic

Offset

R.GID

R.GSIZ

R.GNAM

Block Format

REGION ID

SIZE OF REGION (32W BLOCKS)

NAME OF REGION (RADSO) -

8yte

Off5et

o

2

4

6

10

R.GPAR REG ION'S MAIN PARTITION NAME (RAD50) - 12

irdb (6)

14

irdb (7) R.GSTS REGION STATUS WORD

16

irdb (8) R.GPRO REGION PROTECTION WORD

Figure 3- 4 Region Definition Block

3 . 5 . 1. 1 Us ing Mac r os t o Gener ate a n RDB­
macros, ROBOF$ and RDBBK$, to gene r ate and
defines the offsets and status word bits for
block; RDBBK$ then creates the actual region
format of ROBOF$ is :

ROBOF$

Since RDBBK$ automatically invokes ROBDFS, the
specify RDBBK$ in a modu l e that creates an
call to RDBBK$ is :

RDBBK$

where

s i z ::

siz,nam , par , sts , pro

in 32- word blocks
(RAD50)

RSX-llM provides two
define an ROB. RDBDF$

a region definition
def i nition b l ock. The

programmer need only
ROB . The format of the

nam
pa r

the region size
:: the region name
:: the name of the partition in which to create the region

(RAD50)
sts
pro

:: the reg i on status word bit definitions
:: the region ' s default p r o t ection word

3- 11

MEMORY MANAGEMENT DIRECTIVES

The sts argument sets specified bits in the status word R.GSTS. The
argument normally has the following format:

<bitl !! ... !bitnJ>

where bit is a defined bit to be set .

The argument pro is an
specifies the region's

octal number. The 16- bit binary
default protection as follows:

Bits 15 12 11 8 7 4 3 o
r--W-O-R-L-D---,r--G-R-O-U-p--Ir--O-W-N-E-R---'Ir-S-Y-S-T-E-M--;

equivalent

Each of the four categories above has four bits, with each bit
representing a type of access:

Bit 3 2 1 o
I DELETE EXTEND WRITE ~EAD

(0) indicates
a bit value of

to be denied .

A bit value of zero
to be allowed;
type of access is

The macro call :

that the specified type of
one (1) indicates that the

access is
specified

RDBBK$ 102.,ALPHA,GEN,<RS.NDL!RS.ATT!RS.WRT ! RS.RED>,167000

expands to :

o
102 .
/ALPHA/
/GEN/

.WORD

. WORD

.RAD50

. RADSO

. WORD

. WORD

. WORD

o
RS.NDL!RS . ATT ! RS . WRT I RS.RED
167000

If a CREATE REGION directive pointed to the ROB defined by the macro
call expanded above, the Executive would create a region 102 (decimal)
32-word blocks in length, named ALP HA, in a partition named GEN. The
defined bits specified in the sts argument tell the Executive:

• Not to mark the region for dele t ion on the last detach

• To attach region ALPHA to the task issuing the directive macro
call

• To grant read and wr ite access to the attached task

The protection word specified as 167000 (octal) assigns a default
protection mask to the region . The octal number , which has a binary
equivalent of 1110111000000000, grants all types of access to system
and owner tasks (0000), and read access only, to group and world tasks
(1110) .

If the CREATE REGION directive
return to the issuing task a
R. GID, and will set the defined

is successful, the Executive will
region 10 value in the symbolic o ff set
bit RS.CRR in the status word R. GSTS.

3-12

MEMORY MANAGEMENT DIRECTIVES

3 . 5.1 . 2 Using FORTRAN to Generate a n
create an a-word, single-precision
supplied in the subroutine calls:

ROB - FORTRAN programmers
integer array as the ROB

must
to be

CALL ATRG
CALL CRRG
CALL OTRG

(ATTACH REGION directive)
(CREATE REGION directive)
(DETACH REGION directive)

(See the PDP- II FORTRAN Language Refe[ence Manual for information on
the creation of a[[ays.) An ROB array has the following format :

Word

i[db (1)

irdb (2)

irdb(3)
irdb(4)

irdb(5)
irdb (6)

irdb(7)

irdb(8)

Contents

Region 10

Size of the region in 32- word blocks

Region name (2 words in Radix-50
f ormat)

Name of the partition that contains the region
(2 words in Radix-50 format)

Region status word (see paragraph immediately
below)

Region protection code

The FORTRAN programmer modifies the region status word, irdb(7), by
setting or clearing the appropriate bits . See the list above in
Section 3.5.1 that describes the defined bits. The bit values are
listed alongside the symbolic offsets .

Note that Hollerith text strings can be converted to Radix-50 values
by calls to lRAD50 (see the appropriate FORTRAN User's Guide) .

3 . 5 . 2 Window Definition Block (WDB)

Figure 3-5 illustrates the format of a WDB . The block consists of a
number of symbolic offsets . One of the offsets is the window status
word , W.NSTS, which contains defined bits that can be set o r c l eared
by the Executive or the task . (RSX-llM reserves all undef ined bits
for future expansion .) The defined bits are :

wS . CRw .. IOOOOO

WS . UNM=40000

WS.ELW=20000

WS.RRF-lOOOO

WS . 64B"'400

Definition

Address window was successfully created .

At least one window was unmapped by a CREATE
ADDRESS WINDOW , MAP ADDRESS WINDOW , or UNMAP
ADDRESS WINDOW directive .

At least one window was
CREATE ADDRESS WINDOW or
WINDOW directive .

eliminated in a
ELIMINATE ADDRESS

Reference was successfully received.

Defines the
boundaries
alignment , 1

3-13

task's permitted
o for 256-word

for 32-word (64-byte)

al i gnment
(5 1 2-byte)
alignment.

MEMORY MANAGEMENT DIRECTIVES

Bit Definition (Cont.)

WS .MAP=200 window is to be mapped in a CREATE ADDRESS
WINDOW or RECEIVE BY REFERENCE directive .

WS . RCX=lOO Exit if no references to receive.

WS.DEL=lO Send with delete access.

WS.EXT=4 Send with extend access.

WS.WRT:::2 Send with write access or map with write
access.

WS.RED:::l Send with read access.

Array Symbolic
Element Offset Block Format

W.Nlo
iwdb (1) W.NAPR BASE APR WINDOW 10

iwdb (2! W.NBAS VIRTUAL BASE ADDRESS (BYTES)

iwdb (3) W.NSIZ WINDOW SIZE (32W BLOCKS!

iwdb (4! W.NRIO REGION 10

iwdb (5) W.NOFF OFFSET IN REGION (32W BLOCKS!

iwdb (6! W.NLEN LENGTH TO MAP (32W BLOCKS!

iwdb (7) W.NSTS WINDOW STATUS WORD

iwdb (8! W.NSRB SEND/RECEIVE BUFFER ADDRESS /BYTES!

Figure 3-5 Window Definition Block

The following directives require a pointer to a WDB:

CREATE ADDRESS WINDOW (CRAWS)
ELIM INATE ADDRESS WINDOW (ELAWS)
MAP ADDRESS WINDOW (MAPS)
UNMAP ADDRESS WINDOW (UMAPS)
SEND BY REFERENCE (SREFS)
RECEIVE BY REFERENCE (RkEFS)

3-14

Byte
Offset

o

2

4

6

10

12

14

16

MEMORY MANAGEMENT DIRECTIVES

When a task issues one of these directives , the Executive clears
four high-order bits in the window status word of the appropriate
The Executive can then set any of these bits after completing
directive operation, to tell the task what actions were taken.
other bits are never modified by the Executive.

the
WDB.

the
The

3.5 . 2 . 1 Using Macros t o Generate a WDB - RSx-IIM provides two macros,
WOBDF$ and WDBBK$, to generate and define a WDB. WDBDF$ defines the
offsets and status word bits for a window definition block; WOBBK$
then creates the actual window definition block . The format of WDBDF$
is:

WDBDF$

Since WOBBK$ automatically invokes WOBDF$, the programmer need only
specify WDBBK$ in a module that generates a WDB . The forma t of the
call to WDBBK$ is:

where

WDBBK$ apr,siz,rid,off,len,sts,srb

apr = a number from 0 to 7 that specifies the window's base
Active Page Register (APR). The APR determines the 4K
boundary on which the window is to begin. APR 0
corresponds to virtual addres s 0, APR 1 to 4K, APR 2 to SK,
and so on .

siz = the size of the window in 32-word blocks.
rid - a region ID
off z the offset within the region to be mapped in 32-word blocks
len = the length within region to be mapped, in 32-word blocks .
sts = the window status word bit definitions
srb = a send/receive buffer virtual address

The argument sts sets specified bits in the status word W.NSTS. The
argument normally has the following format :

<bitll! .•. !bitn]>

where bit is a defined bit to be set.

The macro call :

WDBBK$

expands to :

.BYTE

. WORD

. WORD

. WORD

. WORD

.WORO

. WORD

. WORD

5,76. , O,50., , <WS . MAP!WS.WRT >

0,5
o
76 •
o
50 .
o
WS.MAP ! WS.WRT
o

(Window 10 returned in low-order byte)
(Base virtual address returned here)

3-15

MEMORY MANAGEMENT DIRECTIVES

If a CREATE ADDRESS WINDOW directive pointed to the WDB defined by the
macro call expanded above, the Executive would:

• Create a window 76 (decimal) blocks long beginning at APR 5
(virtual address 20K or 120000 octal) .

• Map the window with write
issuing task's task region
for the region IOJ.

access «WS.MAP!WS.WRT» to the
(because the macro call specified 0

• Start the map 50 (decimal) blocks
and map an area either equal to
(decimal] blocks) or the length
whichever is smaller (because the
argument) .

from the base of the region
the length of the window (76

remaining in the region,
macro call defaulted the len

• Return values to the symbolic offsets W.NID (the window's 10)
and W.NBAS (the window's virtual base address).

3.5.2.2 Using FORTRAN to Generate a
create an 8-word, single-precision
supplied in the subroutine calls:

woe - FORTRAN programmers must
integer array as the WOE to be

CALL CRAW
CALL ELAW
CALL MAP
CALL UNMAP
CALL SREF
CALL RREF

(CREATE ADDRESS WINDOW directive)
(ELIMINATE ADDRESS WINDOW directive)
(MAP ADDRESS WINDOW directive)
(UNMAP ADDRESS WINDOW directive)
(SEND BY REFERENCE directive)
(RECEIVE BY REFERENCE directive)

(See the pOP-II FORTRAN Language Reference Manual for information on
the creation of arrays.) A WDB array has the following format:

Word

iwdb(lJ

iwdb(2)

iwdb (3)

iwdb (4)

iwdb(5)

iwdb (6)

iwdb(7)

iwdb(8)

Contents

Bits 0 to 7 contain the window 10; bits 8 to 15
contain the window's base APR

Base virtual address of the window

Size of the window in 32-word blocks

Region 10

Offset length within the region at which map
begins, in 32-word blocks.

Length mapped within the region in 32-word blocks .

Window status word (see paragraph immediately
below)

Address of send/receive buffer

The FORTRAN programmer modifies the window status word, iwdb(7) , by
setting or clearing the appropriate bits . See the list above in
Section 3.5.2 that describes the defined bits. The bit values are
l isted alongside the symbolic offsets .

3-16

MEMORY MANAGEMENT DIRECTIVES

Notes :

• The contents of bits 8 to
without destroying the
other than CREATE ADDRESS

15 of iwdb(l)
value in bits
WINDOW .

must
o to 7

normally be set
for any directive

• A call to GETADR (see Section 1 . 5.1.4) can be used to set up the
address of the send/receive buffer. For example:

CALL GETADR(IWDB""""IRCVB)

This
The
RREF

call places the address
remaining elements are
also set up this value.

3.5.3 Assigned Values or Settings

of buffer IRCVB
unchanged. The

in array element
subroutines SREF

8 .
and

The exact values or settings assigned to individual fields within the
RDB or the WDB vary according to each directive . Fields that are not
required as input can have any value when the directive is issued .
Chapter 4 describes which offsets and settings are relevant for each
memory management directive . The values assigned by the task are
called input parameters; those assigned by the Executive are called
output parameters.

3 . 6 PRIVILEGED TASKS

When a privileged task maps to the Executive and the I/O page, the
system normally dedicates 5 or 6 APRs to this mapping. A privileged
task can issue memory management directives to remap any number of
these APRs to regions . Programmers should take great care when using
the directives in this way. Such remapping can cause obscure bugs to
occur. When a directive unmaps a window that formerly mapped the
Executive or the I/O page, the Executive restores the former mapping.

3-17

CHAPTER 4

DI RECTIVE DESCRI PTI ONS

Each d i rective description consists of an explanation of the
direct i ve ' s funct i on and use, the names of the corresponding macro and
FORTRAN calls, the associated parameters, and possible return values
of the Directive Status Word (DSW) . The descriptions generally show
the $ form of the macro call (e.g . , QIO$), although the $C and SS
forms are also ava i lable. Where the $S form of a macro requires less
space and performs as fast as a DIR$ (because of a small DPB), i t is
recommended. For t hese macros, the expansion for the $S fo r m is
shown , rather than that for the $ form .

I n addition to the directive macros themselves, the DIR$ macro can be
used by the programmer to execute a directive if the directive has a
predefined DPB. See Sections 1 . 4.1.1 and 1 . 4 . 2 for further details .

4. 1 DI RECTI VE CATEGOR I ES

Fo r ease of refe r ence , the directive descriptions are presented
alphabetica l ly in Section 4.3 according to the directive macro calls .
This sec tion , however, groups the d i rectives by function and gives the
number of the section that describes each directive in detail . The
directives are grouped into the fo l lowing seven categories:

1. Task Execution Control Di r ectives

2. Task Status Cont r ol Directives

3 . I n formational Directives

4. Event - associated Directives

5. Trap- associated Directives

6 . I/O and Intertask Commun i cations Related Di rectives

7 . Memory Management Directives

4 . 1. 1 Task Execut ion Con trol Dir e ctives

The task exec ution control directives deal principal ly with starting
and stopping tasks. Each of these requests (except EXTEND TASK)
resul t s in a change of the task's state (un l ess the task is already in
the state being requested). The requests are :

4-1

Macro

ABRT$
CSRQ$
EXIT$S
EXTK$
RQST$
RSUM$
RUN$
SPND$S

Section

4.3.1
4.3.11
4.3.20
4.3.21
4.3.37
4.3.39
4 . 3.40
4.3.44

DIRECTIVE DESCRIPTIONS

Directive Name

ABORT TASK
CANCEL TIME BASED INITIAT I ON REQUESTS
TASK EXIT ($S form recommended)
EXTEND TASK
REQUEST TASK
RESUME TASK
RUN TASK
SUSPEND ($S form recommended)

4.1.2 Task Status Control Directives

Two task status control directives alter the checkpointable attribute
of a task. A third directive changes the running priority of an
active task. These directives are:

Macro

ALTP$
DSCP$S
ENCP$S

Section

4.3.2
4.3.14
4.3.18

Directive Name

ALTER PRIORITY
DISABLE CHECKPOINTING ($S form recommended)
ENABLE CHECKPOINTING ($5 form recommended)

4.1.3 Informational Directives

Several informational directives provide the issuing task with data
retained by the system . These directives provide the time of day, the
task paramete r s, the console switch settings, and partition or region
parameters. The directives a r e :

Macro

GPRT$
GREG$
GSSW$S
GTIM$
GTSK$

Section

4.3.25
4.3.26
4.3.27
4.3.28
4 . 3.29

Directive Name

GET PARTITION PARAMETERS
GET REGION PARAMETERS
GET SENSE SWITCHES ($S form recommended)
GET TIME PARAMETERS
GET TASK PARAMETERS

4.1.4 Event-Associated Directives

The event and event flag directives are the means provided in the
system for inter- and intra - task synchronization and signalling.
These directives must be used carefully since software faults
resulting from e r roneous signalling and synchron i zation are often
obscure and difficult to isolate. These directives are:

Macro Section Directive Name ---
CLEF$ 4 . 3 . 7 CLEAR EVENT FLAG
CMKT$S 4.3.8 CANCEL MARK- TIME REQUESTS ($$ form recommended)
DECL$S 4.3.12 DECLARE SIGNIFICANT EVENT ($$ form recommended)
EXIF$ 4.3.19 EXITIF
MRKT$ 4 . 3 . 31 MARK TIME
RDAF$ 4.3.36 READ ALL EVENT FLAGS
SETF$ 4 . 3.42 SET EVENT FLAG
WSIG$S 4 . 3.52 WAIT FOR SIGNIFICANT EVENT ($$ form recommended)
WTLO$ 4 . 3 . 53 WAIT FOR LOGICAL "OR" OF EVENT FLAGS
WTSE$ 4.3 . 54 WAIT FOR SINGLE EVENT FLAG

4- 2

DIRECTIVE DESCRIPTIONS

4.1.5 Trap- Associated Directives

The trap-associated directives provide the user with the same
facilities inherent in the PDP-II hardware trap system . They allow
transfers of control (software interrupts) to the executing tasks.
These directives are:

Macro

ASTX$S
DSAR$S
ENAR$S
IHAR$S
SFPA$

SPRA$
SRDA$
SRRA$
SVDB$
SVTK$

Section

4.3 . 4
4.3.13
4.3 . 17
4.3 . 13
4 . 3 . 43

4 . 3.45
4 . 3.46
4.3.48
4.3.49
4.3 . 50

Directive Name

AST SERVICE EXIT ($S form recommended)
DISABLE AST RECOGNITION ($5 form recommended)
ENABLE AST RECOGNITION ($S form recommended)
INHIBIT AST RECOGNITION ($S form recommended)
SPECIFY FLOATING POINT PROCESSOR EXCEPTION
AST
SPECIFY
SPECIFY
SPECIFY
SPECIFY
SPECIFY

POWER RECOVERY AST
RECEIVE DATA AST
RECEIVE BY REFERENCE
SST VECTOR TABLE FOR
SST VECTOR TABLE FOR

AST
DEBUGGING
TASK

AID

4 . 1 . 6 I/O and Intertask Communications- Related Directives

The I/O and communications-related directives allow tasks to access
I/O devices at the driver interface level or interrupt level. to
communicate with other tasks in the system. and to retrieve the MCR
command line used to start the task. These directives are:

Macro Section Directive Name

ALUN$ 4.3 . 3 ASSIGN LON
CINT$ 4 . 3 . 6 CONNECT TO INTERRUPT VECTOR
GLUN$ 4.3.22 GET LUN INFORMATION
GMCR$ 4.3 . 23 GET MCR COMMAND LINE
QIO$ 4.3.32 QUEUE I/O REQUEST
QIOW$ 4.3.33 QUEUE I/O REQUEST AND WAIT
RCVD$ 4.3.34 RECEIVE DATA
RCVX$ 4 . 3.35 RECEIVE DATA OR EXIT
SDAT$ 4.3 . 41 SEND DATA

4 .1. 7 Memory Management Directives

The memory management directives allow a task to manipulate its
virtual and logical address space , and to set up and control
dynamically the window-to - region mapping assignments . The directives
also provide the means by which tasks can share and pass references to
data and routines. These directives are :

Macro Section Directive Name ---
ATRG$ 4.3.5 ATTACH REGION
CRAWS 4.3 . 9 CREATE ADDRESS WINDOW
CRRG$ 4.3.10 CREATE REGION
DTRG$ 4.3.15 DETACH REGION
ELAW$ 4.3.16 ELIMINATE ADDRESS WINDOW
GMCX$ 4.3.24 GET MAPPING CONTEXT
MAP$ 4 . 3.30 MAP ADDRESS WINDOW
RREF$ 4 . 3.38 RECEIVE BY REFERENCE
SREF$ 4 . 3.47 SEND BY REFERENCE
UMAP$ 4.3.51 UNMAP ADDRESS WINDOW

4-3

DIRECTIVE DESCRIPTIONS

4.2 DIRECTIVE CONVENTIONS

Programmers using system directives should adhere to the following
conventions:

1. In MACRO-II programs,
decimal point (.), the

unless a number
system assumes the

is followed
number to be

by a
octal.

In FORTRAN programs, use intege[*2 type unless the directive
description states otherwise .

2. In MACRO-II programs, task and partition names can be f[orn 1
to 6 characters long and should be represented as two words
in Radix-SO form.

In FORTRAN programs, specify task and partition names by a
variable of type REAL (single precision) that contains the
task or partition name in Radix-50 form. To establish
Radix-SO representation, either use the DATA statement at
compile time, or use the IRAD50 subprogram or RAD50 function
at run time.

3 . Device names are 2 characters long and are represented by one
word in ASCII code.

4. Some directive descriptions state that a certain parameter
must be provided even though the system ignores it. Such
parameters are included to maintain RSX-IIM compatibility
with RSX-IID.

5 . In the directive descriptions , square brackets ([) enclose
optional parameters or arguments. To omit optional items,
either use an empty (null) field in the parameter list, o[
omit a trailing opt i onal parameter .

6 . Logical Unit Numbers (LUNs) can range from 1 to 255(10).

7 . Event flag numbers range from
32(10) denote local flags .
common flags.

1 to 64(10). Numbers
Numbers from 33 to

from I to
64 denote

Note that the Executive preserves all task registers when a task
issues a directive .

4.3 SYSTEM DIRECTIVE DESCRIPTIONS

Each directive description includes most or all of the following
elements:

Name :

The function of the directive is described.

FORTRAN Call :

The FORTRAN subroutine call is shown, and each parameter is
defined .

4-4

DIREC TI VE DESCRIPTIONS

Macro Call:

The macro call is shown, each parameter is defined, and the
defau l ts for optional parameters are given in parentheses
following the definition of the parameter. Since zero is
supplied for most defaulted parameters, only nonzero default
values are shown . Parameters ignored by RSX-llM are required for
compatibility with RSX- I I D.

Macro Expans i on:

The $ form of
descr ipt i ons.
the expansion
t hree forms
1. 4 . 5.

the macro is expanded in most of the directive
Where the $S form is recommended for a directive,

for that form is shown instead. Expansions for all
and for the DIR$ macro are illustrated in Section

Definition Block Parameters :

These parameters are given
di r ective descriptions . This
i nput and output parameters in
block. (See Section 3 . 5.)

Loca l Symbol Definitions :

o nly in the memory
section describes al l
t he region or window

management
the re l evant

definition

Macro expans i ons usual l y generate local symbol definitions with
an aSSigned va l ue equal to the byte offset from the start of the
DPB to the corresponding DPB element . These symbols are listed .
The length in bytes of the element pointed to by the symbol
appears in paren t heses following the symbol ' s descr i ption. Thus:

A. BTTN Task name (4)

defi nes A.BTTN as pointing to a task name in the Abort Task DPB:
the task name has a length of 4 bytes.

DSW Ret u rn Code:

All valid return codes are listed .

Notes :

The notes presented with some directive descriptions expand on
the funct i on , use, and/or consequences of using the directives .
Users should always read t he notes careful l y to ensure proper use
of t hese direct i ves.

4-5

DIRECTIVE DESCRIPTIONS

ABRT$

4 . 3 . 1 ABORT TASK

The ABORT TASK directive instructs the system to terminate the
execution of the indicated task. ABRT$ is intended for use as an
emergency or fault exit. A termination notification is displayed,
based on the described condition, at one of the following terminals:

1 . The terminal from which the aborted task was requested

2. The originating terminal of the task that requested the
aborted task

3. The operator's console (CO:) if the task was started
internally from another task via a RUN$ directive or via an
MeR RUN command that specifies one or more time parameters

A task may abort any task, including itself. When a task is aborted,
its state changes from active to dormant. The[efo[e, to reactivate an
aborted task , a task o[an operator must request it .

In systems that support
privileged to issue the
itself) .

multiuser protection, a task must be
ABORT TASK directive (unless it is aborting

FORTRAN Call:

CALL ABORT (tsk(,ids))

tsk ~ Task name
ids = Di[ective status

Mac[o Call :

ABRT$

tsk

tsk

Task name

Mac[o Expansion:

ABRT$
.BYTE
.HADSO

ALPHA
83 . ,3
/ALPHA/

;ABRT$ MACRO DIC, DPB SIZE:3 WORDS
;TASK "ALPHA"

Local Symbol Definitions:

A.BTTN

DSW Retu[n Codes:

IS . SUC
IE. INS
IE.ACT
IE.PRI

IE.ADP

IE.SOP

Task name (4)

Successful completion
Task is not installed
Task is not active
Issuing task is not privileged (multiuse[
protection systems only)
Part of the DPB is out of the issuing task's
address space
OIC o[DPB size is invalid

4-6

Note:

DIRECTIVE DESCRIPTIONS

• When a task is aborted, the Executive frees all the task's
resources . In particular , the Executive:

1 . Detaches all attached devices

2 . Flu shes the AST queue

3 . Flushes the receive and receive-by-reference queue

4. Flushes the clock queue for outs t a nding Mark Time
requests for the tas k

5 . Closes all open files (files open for write access are
locked)

6 . Detaches all attached regions except in the case of a
fixed task, where no detaching occurs

7 . Runs down the task ' s 1/0

8 . Frees the task ' s memory if the aborted task was not
fixed

4-7

DIRECTIVE DESCRIPTIONS

ALTP$

4 . 3.2 ALTER PRIORITY

The ALTER PRIORITY
running priority of

directive instructs the
a specif i ed active task to

system
either :

to

• a new priority indicated in the directive call, or

change the

• the task's default (installed) priority if the call does not
specify a new priority.

The specified task must be installed and active. The Executive resets
the task ' s priority to its insta l led prio r ity when the task exits.

If the directive ca l l om it s a task name , the Executive defau l ts to the
issuing task.

The Executive reorders any outstanding I/O requests for
the I/O queue, and reallocates the task's partition .
reallocation may cause the task to be checkpointed.

the task in
The par ti tion

In systems that support multiuser protection , a task must be
privileged to issue the ALTER PRIORITY directive.

FORTRAN Call:

CALL ALTPRI «(tsk] , [ipri](,ids))

tsk : Active task name
ipri : I - word integer value equal to the new priority, a number

from I to 250 (decimal) .
ids : Directive Status

Macro Call :

ALTP$ [tskJ (,pri)

tsk : Active task name
pri z New prio ri ty , a number f r om 1 to 250 (decimal) .

Macro Expansion :

ALTP$
.BYTE
.RADSO
. WORD

ALPHA , 75 .
9.,4
/ ALPHA/
75.

;ALTP$ MACRO DIC, DPB SIZE~4 WORDS
; TASK ALPHA
; NEW PRIORITY

Local Symbol Definitions :

A.LTTN
A. LTPR

DSW Retur n Codes:

IS . SUC
IE. INS
I E.ACT
IE . PRI

IE . IPR
IE . ADP
IE . SDP

Task name (4)
Priority (2)

Successful completion
Task not installed
Task not active
Issuing task is not privileged (multiuser protection
systems only)
Invalid priority
Part of DPB out of the issuing task's address spa ce
DIC or DPS size is invalid

4-8

DIRECTIVE DESCRIPTIONS

ALUN$

4 . 3 . 3 ASSIGN LUN

The ASSIGN LUN directive instructs the system to assign a physical
device unit to a logical unit number (LUN). It does not indicate that
the task has attached itself to the device.

The actual physical device assigned to the logical unit is dependent
on the logical assignment table (see the MCR ASN command in the
RSX- llM Operator's Procedures Manual) . The Executive first searches
the logical assignment table for a device name match. If a match is
found in the logical assignment table , the physical device unit
associated with the matching entry is assigned to the logical unit.
Otherwise, the Executive then searches the physical device tables and
assigns the actual physical device unit named, to the logical unit.
In systems that support multiuser protection, the Executive does not
search the logical assignment table if the task has been installed
with the slave option (/SLV=YES) .

When a task reassigns a LUN from one device to another, the Executive
cancels all I/O requests for the issuing task in the previous device
queue .

FORTRAN Call :

CALL ASNLUN (lun ,dev,unt(,ids])

lun Logical unit number
dev = Device name (format: lA2)
unt • Device unit number
ids & Directive status

Macro Call :

ALUN$ lun,dev,unt

lun = Logical unit number
dev ~ Device name (two characters)
unt ~ Device unit number

Macro Expansion:

ALUN$
.BYTE
. WORD
. ASCII
. WORD

7 , TT,O
7,4
7
ITTI
o

iASSIGN LOGICAL UNIT NUMBER
iALUN$ MACRO DIC, DPB SIZE=4 WORDS
;LOGICAL UNIT NUMBER 7
;DEVICE NAME IS TT (TERMINAL)
iDEVICE UNIT NUMBER=O

Local Symbol Definitions:

A. LULU
A.LUNA
A.LUNU

Logical unit number (2)
Phys i cal device name (2)
Physical device unit number (2)

4-9

DI RECTI VE DESCRI PTI ONS

DSW Return Codes:

Note:

I S . SUC
IE . LN L
IE . IOU
IE.ILU
IE . ADP

IE . SDP

Successful completion
LUN usage is interlocked (see Note below)
Invalid device and/or unit
I nvalid logical unit number
Part of the DPB is out of the issuing task ' s
address space
ole or DPB size is invalid

• A return code of IE . LNL indicates that the specified LUN
cannot be assigned as directed . Either the LUN is already
assigned to a dev i ce with a file open for that LUN, or the LUN
is currently assigned to a device attached to the task, and
the di r ective attempted to change the LUN assignment.

4- 10

DI RECTI VE DESCRIPTI ONS

ASTX$S

4.3 . 4 AST SERVI CE EX I T ($S fo r m r ecomme nded)

The AST SERVICE EXIT d i rective instructs the system to terminate
execution of an AST service routine .

If another AST is queued and ASTs are not disabled , then the Execu t ive
immed i ately effects the next AST . Otherw i se, the Executive restores
the task ' s pr e - AST state .

See Notes below.

FORTRAN Call :

Neither the FORTRAN language nor the ISA standard permits direct
link i ng to system trapping mechanisms; therefore, this directive
is not available to FORTRAN tasks .

Macro Call:

ASTX$S [err 1

err = Error routine address

Macro Expansion :

ASTX$S
MOV
. BYTE
EMT
JSR

ERR
(PC)+, - (SP)
115. , I
377
PC, ERR

iPUSH DPB ONTO THE STACK
iASTX$S MACRO OIC, DPB SIZE=1 WORD
iTRAP TO THE EXECUTIVE
i CALL ROUTINE "ERR" IF DIRECTIVE
iUNSUCCESSFUL

Local Symbol Def i nitions :

No ne

DSW Return Codes:

IS.SUC
IE.AST

IE . ADP

IE. SOP

Notes:

Successful completion
Directive not issued from an AST service
routine
Part of the DPB or stack is out of the issuing
task's address space
DlC or DPB s i ze is invalid

• A return to the AST service r outine occurs if, and only if,
the directive is r ejected . Therefore, no Branch on Car r y
Clear instruction is generated if an error rout i ne address i s
given. (The re t urn occur s on l y when the Carry bi t is set.)

• When an AST occurs, the Executive pushes, at minimum , the
following information onto the task's stack :

SP+06
SP+04
SP+02
SP+OO

Eve n t flag mask word
PS of task pr i or to AST
PC of task pr i or to AST
DSW of task prio r to AST

4- 11

Example :

DIRECTIVE DESCRIPTIONS

The task stack must be in this state when the AST SERVICE EXIT
directive is executed.

In addition to the data parameters, the Executive pushes
supplemental information onto the task stack for certain ASTs.
For I /O completion, the stack contains the address of the I/O
status block; for MARK TIME, the stack contains the Event
Flag Numberi for a floating point processor exception, the
stack contains the exception code and address.

These AST parameters must be removed from the task's stack
prior to issuing an AST exit directive . The fol l owing example
shows how to remove AST parameters when a task uses an AST
routine on I /O completion:

EXAMPLE PROGRAM

LOCAL DATA

IOSB: .BLKW
BUFFER: .BLKW

2
30.

START OF MAIN PROGRAM

START :

iI/O STATUS DOUBLEWORD
; I/O BUFFER

iPROCESS DATA

QIO$C IO.WVB,2",IOSB,ASTSER,(BUFFER , 60.,40>

EX I T$S

AST SERVICE ROUTINE

ASTSER:

TST (SP) +
ASTX$S

iPROCESS & WAIT

;EXIT TO EXECUT I VE

iPROCESS AST

;REMOVE ADDRESS OF I/O STATUS BLOCK
;AST EXIT

• The task can alter its return state by manipulating the
information on its stack prior to executing an AST exit
directive . For example , to return to task state at an add r ess
other than the pre- AST address indicated on the stack, the
task can simpl y replace t he PC word on the stack . This
procedure may be useful in those cases in which error
conditions a r e discovered i n the AST r outinei but this
alteration shoul d be exercised with extreme caution since AST
service rou ti ne bugs are difficult to isolate.

• Because this directive requires only a I-word OPB, the $S form
of the macro is recommended. It r equi r es l ess space and
executes with the same speed as the DIR$ macro.

4- 12

DIRECTI VE DESCRIPTI ONS

ATRG$

4 . 3.5 ATTACH REGION

The ATTACH REGION directive attaches the issuing task to a static
common region or to a named dynamic region. (No other type of region
can be attached to the task by means of this directive.) The Executive
checks the desired access specified in the region status word against
the owner UIC and the protection word of the region . If there is no
protection violation, the desired access is granted. If the region is
successfully attached to the task , the Executive returns a 16-bit
region ID (in R.GID), which the task uses in subsequent mapping
directives.

The directive can also be used to determine the ID of a region already
attached to the task . In this case, the task specifies the name of
the attached region in R.GNAM and clears all four bits described below
in the region status word R.GSTS . When the Executive processes the
direct i ve, it checks that the named region is attached. If the region
is attached to the issuing task, the Executive returns the region 10,
as well as the region siZe, for the task ' s first attachment to the
region . A programmer may want to use the ATTACH REGION directive in
this way to determine the region ID of a common block attached to the
task at task-build time.

FORTRAN Call:

CALL ATRG (irdb[,idsJ)

irdb An a-word integer array containing a region definition
block (see Section 3.5.1.2)

ids Directive status

Macro Call:

ATRG$ rdb

rdb ; Region definition block address

Macro Expansion:

ATRG$
.BYTE
.WORD

RDBADR
57. ,2
RDBADR

;ATRG$ MACRO DIC, DPB SIZE=2 WORDS
;RDB ADDRESS

Region Definition Block Parameters :

Input parameters :

Array
Element

irdb(3) (4)
irdb (7)

Offset

R.GNAM
R.GSTS

Name of the region to be attached
Bit settings· in the region status word
(specifying desired access to the region) :

• FORTRAN programmers should refer to Section 3 . 5.1 to determine the
bit values represented by the symbolic names described.

4-13

DIRECTIVE DESCRIPTIONS

RS.REO
RS.WRT
RS.EXT
RS.OEL

1 if read access is desired
1 if write access is desired
1 if extend access is desired
1 if delete access is desired

Clear all four bits to request the
10 of the named reg ion if it is
attached to the issuing task.

region
already

Output parameters :

Array
Element

irdb(l)
irdb(2)

Offset

R.GID
R. GSIZ

ID assigned to the region
Size in 32-word blocks of the attached
region

Local Symbol Definition:

A. TRBA -- Region definition block address (2)

DSW Return Codes:

IS.sue
IE.UPN
IE.PRI
IE.NVR
IE. PNS
IE.ADP

IE.SDP

Successful completion
An attachment descriptor cannot be allocated
Privilege violation
Invalid region 10
The specified region name does not exist
Part of the OPB or ROB is out of the issuing task's
address space
DIC or DPS size is invalid

4-14

DIRECTIVE DESCRIPTIONS

CINT$

4 . 3 . 6 CONNECT TO INTERRUPT VECTOR

The CONNECT TO INTERRUPT VECTOR directive provides for a task the
capability of processing hardware interrupts through a specified
vector. The Interrupt Service Routine (ISR) is included in the task's
own space. In a mapped system, the issuing task must be privileged.

The overhead is the execution of about 10 instructions before entry
into the ISR, and 10 instructions after exit from the ISR . A
mechanism is provided for transfer of control from the ISR to
task-level code either via an asynchronous system trap (AST) or a
local event flag.

After a task
capabil i ty of

has connected to an interrupt vector , it has
processing interrupts on three different levels:

the

• interrupt level

• fork level

• task level

The task level may be subdivided into :

• AST level

• non-AST level

1. Interrupt Level

When an interrupt occurs, control is transferred, via the
Interrupt Transfer Block (ITB) that has been allocated by the
CINT$ directive, to the Executive subroutine $INTSC. From
there control goes to the Interrupt Service Routine (ISR)
specified in the directive.

The ISR processes the interrupt
interrupt directly or enters
Executive routine $FORK2 .

2. Fork Level

The fork level routine executes
has more time to do further
fork routine sets a local event
queues an AST to an AST routine

3. Task Level

and
fork

either dismisses
level via a call to

the
the

at priority 0 and therefore
processing . If required , the

flag for the task and/or
specified in the directive.

At task level, entered as the result of a local event flag or
an AST, the task does final interrupt processing, and has
access to Executive directives .

Typically, the ISR does the minimal processing required for
an interrupt and stores information for the fork routine or
task level routine in a ring buffer. The fork routine is
entered after a number of interrupts have occurred as deemed
necessary by the ISR, and condenses the information further .
Finally, the fork routine wakes up the task level code for
ultimate processing that requires access to Executive

4-15

DIRECTIVE DESCRI PTIONS

directives.
stage from
processing.

The
ISR

fork level may, however, be
to task level code without

a transient
doing any

In a mapped system, to be able to use the ClNT$ directive, a task must
be built privileged. However , it is legal to use the /PR : O switch to
the Task Builder to have " unprivileged mapping," Le., up to 32K words
of vi r tual address space available. This precludes use of the
Executive subroutines from task - level code; however, the ISR and
fork-level routines are always mapped to the Executive when they are
executed. In any case, the Executive symbol table file (R5XIlM.STB)
should be included as input to the Task Builder.

As will be
apply to
routine as

described later,
the mapping of
well as all task

in a
the

data

mapped system , special considerations
ISR, fork routine , and enable/disable
buffers accessed by these routines .

FORTRAN Call:

Not supported

Macro Call:

CINT$ vec,base,isr,edir , pri,ast

Argument descriptions:

vee : interrupt vector address - ­
highest vector specified
must be a multiple of 4 .

Must be
during

in the range 60(8)
SYSGEN, inclusive,

to
and

base : virtual base address for kernel APR S mapping of the ISR,
and enable/disable interrupt routines -- This address is
automatically truncated to a 32(10)-word boundary. The
"base" argument is ignored in an unmapped system.

isr virtual address of the ISR, or 0 to disconnect from the
interrupt vector

edir

pri

virtual address of the enable/disable interrupt routine

initial priority at which the ISR is to execute -- This is
normally equal to the hard- wired interrupt priority, and
is expressed in the form n*40, where n is a number in the
range 0-7 . This form puts the value in bits S- 7 of pri .
It is recommended that the programmer make use of the
symbols PR4, PRS, PR6, and PR7 for this purpose . These
are implemented via the macro HWDDF$ found in
(l,l]EXEMC . MLB.

ast z virtual address of an A5T routine to be entered after the
fork level routine queues an AST

To disconnect from interrupts on a vector, the argument isr is set to
o and the arguments base , edir, psw, and ast are ignored .

Macro Expansion :

CINT$
. BYTE
. WORD
. WORD
. WORD
.WORD
.BYTE
. WORD

420,BADR,IADR,EDADR,PRS,ASTAOR
129 . , 7 .
420
BAOR
lACR
EDADR
PRS,Q
ASTADR

4-16

DIRECTIVE DESCRIPTIONS

Local Symbol Definitions:

C. INVE
C. INSA
C.INIS
C. INDI
C. INPS
C. I NAS

vector address (2)
base address (2)
ISR address (2)
enable/disable interrupt routine address (2)
priority (1)
AST address (2)

DSW Return Codes:

IE. UPN An ITS could not be allocated (no pool space) .

IE. ITS The function requested is "disconnect" and the task is
not the Owner of the vector.

IE.PRI -- Issuing task is not privileged
unmapped system).

(not applicable in

IE.RSU The specified vector is already in use.

IE . !LV The specified vector is illegal (lower than 60 or
higher than highest vector specified during SYSGEN , or
not a multiple of 4).

IE . MAP -- ISR or enable/disable interrupt routine is not within
4K words from the value (base address & 177700).

IE.ADP - - Part of the OPS is out of the issuing task's address
space.

IE.SOP DIC or OPB size is inva l id.

Notes:

• Checkpointable tasks

The following points should be noted for checkpointable tasks
only:

When a task connects to an interrupt vector, checkpointing of the
task is automatically disabled .

when a task disconnects from, a vector and is not connected to any
other vector, checkpointing of the task is automatically enabled,
regardless of its state before the first connect, or any change
in state while the task was connected.

• Mapping Considerations

In an unmapped system, the argument
arguments "isr," "edir," and
expl ana tion.

" base" is ignored,
"ast" require no

and the
further

In a mapped system, however, it must be understood how the
Executive maps the ISR and enable/disable interrupt routine when
they are called . The argument "base, " after being truncated to a
32(IOJ-word boundary, is the start of a 4K-word area mapped in
kernel APR 5. All code and data in the task that is used by the
routines must fall within that area, or a fatal error will occur,
probably resulting in a system crash.

4-17

DI RECTIVE DESCRIPTIONS

Furthermore , the code and data must be either
position - independent or coded in such a way that the code can
execute in APR 5 mapping. When the routines execute, the
processor is in kernel mode, and the virtual address space
includes all of the Executive, the pool, and the I/O page .

References within the task image must be PC-relative
special offset defined below. References outside the
must be absolute.

The following solutions are possible:

or use a
task image

1 . Write the ISR, enable/disable interrupt routines, and
data in position-independent code.

2.

3.

Include the code and
task-build it wi th

data in a
absolute
and link APR 5 (PAR;ISR : 120000:20000)

common partition.

common partition,
addresses in

the task to the

Build the task privileged with APR 5 mapping
constant 120000 as argument "base" in
directive .

and use the
the CINT$

4. Use an offset of

• ISR

<120000 - <base & 177700»

when accessing locations within the task image in
immediate or absolute addressing mode .

When the I5R is entered, RS points to the fork block in the
Interrupt Transfer Block (ITS), and R4 is saved and free to be
used. Registers RO through R3 must be saved and restored if
used . If one 15R services multiple vectors, the interrupting
vector can be identified by the vector address, which is stored
at offset X. VEC in the ITS. The following example loads the
vector address into R4:

MOV X.VEC-X.FORK(Rs) ,R4

The ISR either dismisses the interrupt directly via an RTS PC
instruction, or calls $FORK2 if the fork routine is to be
entered . When calling $FORK2, Rs must point to the fork block in
the ITS, and the stack must be in the same state as it was upon
entry to the 15R . Note that the call must use absolute
addressing: CALL @'$FORK2.

• Fork Level Routine

The fork level routine starts immediately after the call to
$FORK2 . On entry, R4 and RS are the same as when $FORK2 was
called . All registers are free to be used. The first
instruction of the fork routine must be CLR @R3, which declares
the fork block free.

The fork-level routine should be entered if servicing the
interrupt takes more than 500 microseconds. It must be entered
if an A5T is to be queued or an event flag is to be set. (Fork
level is discussed in greater detail in the R5X-IIM Guide to
Writing an I/O Driver .)

4-18

DIRECTIVE DESCRI PTIONS

An AST is queued by cal l ing the subroutine $QASTC.

Input: RS -- pOinter to fork block in the ITB

Output: if AST successfully queued

Carry bit = 0

if AST was not specified by CINT$ - ­

Carry bit = 1

Registers altered : RO, Rl, R2, and R3

An event flag is set by cal l ing the subroutine $SETF.

Input: RO event flag number

R5 Task Control Block (TCB) address of task for
which flag is to be set -- This is usually ,
but not necessarily , the task that has
connected to the vector. This task's TCB
address is found at offset X. TCB in the ITB.

Output : specified event f lag set

Registers altered : Rl and R2

Note t hat absolute addressing must be used when calling these
routines (and any other Executive subroutines) from fork l evel :

CALL @'$QASTC

CALL @'$SETF

• Enable/Disable Interrupt Routine

The purpose of the enable/disable
add r ess is included in the directive
to ha ve a routine automatically called
cases:

interrupt routine, whose
ca l l, is to allow the user

in the follow i ng three

1. When the di r ective is successfully executed to connect to
an interrupt vector (argument isr nonzero) - - The routine
is called immediate l y before return to the task .

2. When the direc t ive is successfully executed to disconnect
from an interrupt vector (argument isr=O)

3. When t he task is aborted or exits with inter rupt vectors
sti l l connected

I n case '1 , the routine is called with the Carry bit cleared; in
cases 12 and .3, with the Carry bit set . In all three cases , Rl is a
po i nter to the Interrupt Transfer Block (ITB). Registe r s RO , R2, and
R3 are f r ee to be used ; other reg i sters must be returned unmodi fi ed .
Return is accompl ished by means of an RTS PC instruct i on .

Typ i ca l ly , the routine dispatches to one of two rout i nes, depending on
whet he r the Carry bit is clea r ed or se t . One routine sets interrupt
enable and performs any other necessary in i tialization , t he other
clea r s interrupt enable and cleans up.

4-19

DIRECTIVE DESCRIPTIONS

Note that the ITB contains the vector address, in case common code is
used for multiple vectors.

• AST Routine

The fork routine may queue an AST for the task via a call to the
Executive routine $QASTC as described above . When the AST
routine is entered (at task level), the top word of the stack
contains the vector address, and must be popped off the stack
before AST exit (ASTX$S).

• ITB Structure

The following offsets are defined relative to the start of the
ITB:

X.LNK

X.JSR

X.PSW

X.ISR

X.FORK

link word

subro utine call to $INTSC

PSW for ISR (low-order byte)

ISR address (relocated)

start of fork block

X.REL APR 5 relocation (only in mapped systems)

X.OSI address of enable/disable interrupt routine (relocated)

X.TCB TCB address of owning task

X.AST start of AST block

X.VEC vector address

X. VPC saved PC from vector

X.LEN length in bytes of ITB

The symbols X.LNK through X. TCB are defined
ITBDF$ which is included in [l,I]EXEMC . MLB.
globally by [l,l)EXELIB.OLB.

4-20

locally by the macro
All symbols are defined

DIRECTIVE DESCRIPTIONS

CLEF$

4.3 . 7 CLEAR EVENT FLAG

The CLEAR EVENT FLAG
indicated event flag

directive
and report

instructs
the flag ' s

the system to clear an
polarity before clearing .

FORTRAN Call :

CALL CLREF (efn(,ids])

efn = Event flag number
i ds Directive status

Macro Call:

CLEF$ efn

efn = Event flag number

Macro Expansion :

CLEFS
.BYTE
. WORD

52.
31.,2
52 .

iCLEF$ MACRO DIC , OPS SIZE=2 WORDS
iEVENT FLAG NUMBER 52.

Local Symbol Definitions :

C.LEEF

DSW Return Codes :

IS.CLR
IS . SET
I E.I EF
IE.ADP

IE . SOP

Event flag number (2)

Successful completion; flag was already clear
Successful completion; flag was set
Invalid event f l ag number (EFN)64 or EFN<l)
Part of the OPS is out of the issuing task's
address space
DIC or DPS size is invalid

4-21

DI RECTI VE DESCRI PTI ONS

CMKT$5

4 . 3.8 CANCE L MARK TIME REQUESTS ($S form r ecommended)

The CANCEL MARK TIME REQUESTS directive instructs the system to cancel
all MARK TI ME requests that have been made by the issuing task.

FORTRAN Call:

CALL CANMT (I.ids])

ids Directive status

Mac r o Call :

CMKTSS [" err]

err = Er r or routine address

Macro Expansion:

CMKT$S
MOV
. BYTE
EMT
Bee
JSR

, , ERR
{PC)+ , -(SP}
27 . ,1
377
.+6
PC , ERR

; NOTE: THERE ARE TWO I GNORED ARGUMENTS
; PUSH DPB ONTO THE STACK
;CMKT$S MACRO DI C, DPB SIZE=l WORD
;TRAP TO THE EXECUT I VE
;BRANCH IF DIRECTIVE SUCCESSFUL
;OTHERWISE , CALL ROUTINE " ERR"

Loca l Symbol Defini t ions:

None

DSW Retu r n Codes :

Note :

IS . SUC
I E.ADP

IE.SDP

Successful completion
Part of the DPB i s out of the issuing task ' s
address space
DIC or DPB size is invalid

• Because this d i rective requires only a I - wo r d DPB , the $S f orm
of the macro is recommended . It requires less space and
executes wi th the same speed as the DIRS macro .

4- 22

DI RECTIVE DESCR I PTI ONS

CRAW$

4.3.9 CREATE ADDRESS WINDOW

The CREATE ADDRESS WINDOW directive creates a new virtual address
window by allocat i ng a window block from the header of the issuing
task and establishing its virtual address base and size . (Space for
the window block has to be reserved at task- build time by means of the
WNDWS keyword. See the RSX-lIM Task Bui l der Reference Manual.) Any
existing windows that overlap the specified range of virtual addresses
are unmapped , if necessary, and then eliminated . If the window is
successfully created , the Executive returns an a - bit window ID to the
t ask.

The 8- bit window ID returned to the task is a number from 1 to 7,
which i s an index to the window block in the task ' s header . The
wi ndow block describes the c r eated address window .

I f WS.MAP in the
map the wi ndow
parameters .

window status word is set , the Executive
according to the window definition

proceeds to
block input

A task can specify any length for the mapping assignment that is less
than or equal to both:

• the window size specified when the window was created, and

• the length remaining between the specified offset with i n the
region and the end of the region .

I f w. NLEN is set to 0, the length defaults to either t he window size
or the length remaining in the region. whicheve r is smaller . (Because
the Executive returns the actual length mapped as an output parameter,
the task must clear that offset before issuing the directive each time
it wants to default the length of the map.)

The values that can be aSSigned to W.NOFF depend on the setting of bit
WS.64B in the window status word (W . NSTS) :

• If WS.64B ~ 0, t he offset specified in W.NOFF must represent
a multiple of 256 words (512 bytes). Because the value of
W. NOFF i s exp r essed in units of 32- word blocks , the va l ue
must be a multiple of 8 .

• If WS . 64B
programmer
region .

1 , the task can
can therefore

NOTE

align on
specify

32- word boundaries ;
any offset with i n

Applications dependent on 32-word or
64-byte alignment (WS . 64B = 1) may not
be compatible with future software
products . To avoid future
incompatibili ty, progr ammers should
write applications adaptable to either
alignment requirement . The bit setting
of WS . 64B could be a parameter chosen at
assembly time (by means of a prefix
file), at task - build time (as input to
the GBLDEF option) , or at run time (by
means of command i nput) .

4- 23

the
the

DIRECTIVE DESCRIPTIONS

FORTRAN Call:

CALL CRAW (iwdbl,ids])

iwdb = An a-word integer array containing a window definition
block (see Section 3.5.2.2)

ids ; Directive status

Macro Call:

CRAWS wdb

wdb = Window definition block address

Macro Expansion:

CRAWS
.BYTE
. WORD

WDBADR
117.,2
WDBADR

iCRAW$ MACRO DIC, DPB SIZE=2 WORDS
;WOB ADDRESS

Window Definition Block Parameters :

Input parameters:

Array Offset
Element

iwdb(l) , W.NAPR
bits 8- 15

iwdb(3) W.NSIZ

iwdb(4) W. NRID

iwdb(5) W.NOFF

iwdb (6) W.NLEN

iwdb(7) W.NSTS

Base APR of the address window to be
created
Desired size, in 32-word blocks, of the
address window
In of the region to which the new window
is to be mapped, or 0 for task region
(to be specified only if WS.MAP=l)
Offset in 32-word blocks from the start of
the region at which the window is to start
mapping (to be specified only if
WS.MAP=l) . Note that if WS.64B in the
window status word equals 0, the value
specified must be a multiple of 8.
Length in 32-word blocks to be mapped, or
o if the length is to default to either
the size of the window or the space
remalnlng in the region, whichever is
smaller (to be specified only if WS.MAP=l)
Bit settings. in the window status word :

WS . MAP

WS.WRT

WS . 64B

1 if the new window is to be
mapped
1 if the mapping assignment is
to occur with write access
o for 256-word (512-byte)
alignment, or 1 for 32-word
(64-byte) alignment

• FORTRAN programmers should refer to Section 3.5.2 to determine the
bit values represented by the symbolic names described.

4- 24

DIRECTIVE DESCRIPTIONS

Output parameters:

Array Offset
Element

iwdb (1) , W.NIO
bits 0- 7

iwdb(2) W. NBAS
iwdb(6) W. NLEN

iwdb(7) W.NSTS

10 assigned to the window

Virtual address base of the new window
Length, in 32-word blocks, actually mapped
by the window
Bit settings· in the window status word:

WS.CRW 1 if the address window was
successfully created

WS.ELW 1 if any address windows were
eliminated

WS. UNM 1 if any address windows were
unmapped

Local Symbol Definitions:

C. RABA -- Window definition block address (2)

DSW Return Codes:

IS.SUC
IE. PRI
IE . NVR
IE.ALG

IE.wav
IE.AOP

IE.SOP

Successful completion
Requested access denied at mapping stage
Invalid region 10
Task specified either an invalid base APR and window
size combination , or an invalid region offset and
length combination in the mapping assignment; or
WS . 64B : 0 and the value of W. NOFF is not a multiple of
8.
No window blocks available in
Part of the OPB or WDB is out
address space
OIC or OPB size is invalid

task's header
of the issuing task ' s

• FORTRAN programmers should refer to Section 3.5.2 to determine the
bit va l ues represented by t he symbolic names described.

4-25

DIRECTIVE DESCRIPTIONS

CRRG$

4.3 . 10 CREATE REGION

The CREATE REGION
system-control l ed
task .

directive creates a
partition and optionally

dynamic
attaches

region
it to the

in a
i ssu ing

If RS.ATT is set in the region status word, the
attach the task to the newly created region .
been specified, the user must set RS . ATT. (See
ATTACH REGION directive .)

Executive attempts to
If no region name has

the description of the

By default, the Executive automatically marks a dynamically created
region for deletion when the last task detache s f r om it . To ove rrid e
this default condition , the use r can set RS . NDL in the region status
wo r d as a n inpu t pa r ameter . Note that programmers should be careful
in considering overriding the delete-on-last - detach option . An error
within a program can cause the system to lock by leaving no free space
in a system- control l ed partition .

If the region is not given a name, the Executive ignores the state of
RS.NDL. All unnamed regions are deleted when the last task de taches
from them.

The Executive returns an
accommodate the region in

See Notes below .

FORTRAN Call:

error if there is not
the specified partition .

enough space to

CALL CRRG (irdb[, ids]J

irdb ~ An a-wo r d integer array containing a region de finiti on
block (see Section 3.5.1 . 2)

ids : Oirective status

Mac r o Call:

CRRG$ r db

rdb z Region definition block address

Macro Expansion:

CRRG$
. BYTE
. WORD

RDBADR
55.,2
RDBADR

;CRRG$ MACRO DIC, DPB SIZE - 2 WORDS
; ROB ADDRESS

Region Definition Block Parameters:

I nput parameters:

Array
Elempnt

Offset

irdb(2) R. GSIZ

irdb(3) (4) R. GNAM

Size , in 32-word blocks, of the region to
be created
Name of the region to be created, or 0 for
no name

4-26

irdb(S) (6) R.GPAR Name of the system-controlled partition in
which the region is to be allocated, or
o for the partition in which the task is
running

irdb(7) R.GSTS Bit settings* in the region status word:

irdb (8) R.GPRO

Output parameters:

Array Offset
Element

irdb(l) R.GIO

irdb (2) R.GSIZ

irdb(7) R.GSTS

RS . NDL

RS . ATT

RS . RED

RS.WRT

RS . EXT

RS . OEL

1 if the region should not be
deleted on last detach
1 if created region should be
attached
1 if read access is desired on
attach
1 if write access is desired on
attach
1 if extend access is desired on
attach
1 if delete access is desired on
attach

Protect i on word for the region
(DEWR,DEWR,DEWR,DEWR)

10 assigned to the created region
(returned if RS.ATT=l)
Size in 32- word blocks of the attached
region (returned if RS.ATT=l)
Bit settings* in region status word :

RS . CRR -- 1 if region was successfully
created

Local Symbol Definitions:

C.RRBA -- Region def i nition block address (2)

OSW Return Codes:

IS.SUC
IE.UPN

IE.PRI
IE. PNS

IE.ADP

IE .SOP

Notes:

Successful completion
A Partition Control Block (PCB) or an attachment
descriptor could not be allocated, or the partition was
not large enough to accommodate the region, or there is
currently not enough continuous space in the partition
to accommodate the region.
Attach failed because desired
Specified partition in which
allocated does not exist;
specified and RS . ATT = O.

access was not allowed.
the region was to be
or no region name was

Part of the OPB or ROB is out of issuing task's address
space
DIC or ROB size is invalid

• The Executive does not return an error if the named region has
a lr eady been created. In this case, the Executive clears the
RS.CRR bit in the status word R.GSTS . If RS.ATT has been set,
the Executive attempts to attach the already existing named
region to the issuing task.

* FORTRAN programmers should refer to Section 3.5.1 to determine the
bit values represented by the symbolic names described.

4 - 27

DI RECTIVE DESCRI PTIONS

• The protection word (see R.GPRO above) has the same format as
that of the file system protection word. There are four
categories, and the access for each category is coded into
four bits. From low order to high order, the categories
follow this order: system, owner, group, world . The access
code bits within each category are arranged (from low order to
high order) as follows: read , write, extend, delete. A bit
that is set indicates that the corresponding access is denied.

The issuing task ' s UIC is the created region's owner UIC.

In order to prevent the creation of common blocks that are not
easily deleted , the system and owner categories are always
forced to have delete access, regardless of the value actually
specified in the protection word.

4- 28

DIRECTIVE DESCRIPTIONS

CSRQ$

4 . 3.11 CANCEL TIME BASED INITIATION REQUESTS

The CANCEL TIME BASED INITIATION REQUESTS directive instructs the
system to cancel all time-synchronized initiation requests for a
specified task, regardless of the source of each request. These
requests result from a RUN directive, or from any of the
time-synchronized variations of the MCR RUN command.

In a multiuser protection system, a task must be privileged to cancel
time-based initiation requests for a task other than itself.

FORTRAN Call:

CALL CANALL (tsk[,ids])

tsk = Task name
ids = Directive status

Macro Call:

CSRQ$ tsk

tsk = Scheduled (target) task name

Macro Expansion:

CSRQ$
.BYTE
. RAD50

ALPHA
25.,3
/ALPHA/

iCSRQ$ MACRO DIC, DPB SIZE=3 WORDS
;TASK "ALPHA"

Local Symbol Definitions:

C.SRTN Target task name (4)

DSW Return Codes:

Note:

IS.SUC
IE. INS
IE.PRI

IE.ADP

IE . SDP

Successful completion
Task is not installed
The issuing task is not privileged and is attempting
to cancel requests made by another task.
Part of the DPS is out of the issuing task's address
space.
DIC or DPS size is invalid

• If the programmer specifies an error
using the $C or $5 macro form, then a
included for RSx-llD compatibility. For

routine address when
null argument must be
example:

CSRQ$S TNAME, ,ERR iCANCEL REQUESTS FOR "ALPHA"

TNAME: .RAD50 /ALPHA/

4-29

DIRECTIVE DESCRIPTIONS

DECL$S

4 . 3. 1 2 DECLARE SIGN I FICANT EVENT ($S form recommended)

The DECLARE SIGNIFICANT EVENT directive instructs the system to
declare a significant event.

Declaration of a significant event causes the Executive to scan the
System Task Directory from the beginning, searching for the highest
priority task that is ready to run . This directive should be used
with discretion to avoid excessive scanning overhead.

FORTRAN Call:

CALL DECLAR ([,ids])

ids = Directive status

Macro Call :

DECL$S [,err]

err = Error routine address

Macro Expansion:

OECL$S
MOV
. BYTE
EMT
BCe
JSR

,ERR
(PC) +,- (SP)
35. ,1
377
.+6
PC,ERR

jNOTE: THERE IS ONE IGNORED ARGUMENT
jPUSH DPB ONTO THE STACK
jDECL$S MACRO OIC, DPS SIZE=l WORD
jTRAP TO THE EXECUTIVE
iSRANCH IF DIRECTIVE SUCCESSFUL
jOTHERWISE , CALL ROUTINE "ERR"

Local Symbol Definitions:

None

DSW Return Codes:

Note:

IS.SUC
IE.AOP

IE.SDP

Successful completion
Part of the DPB is out of the issuing task's
address space
DIC or OPB size is invalid

• Because this directive requires only a I-word OPB, the $S form
of the macro is recommended. It requires less space and
executes with the same speed as the DIR$ macro.

4-30

DIRECTIVE DESCRIPTIONS

DSAR$S or IHAR$S

4 . 3 . 13 DISABLE (or INHI BIT) AST RECOGNIT ION ($S form recommended)

The DISABLE (or INHIBIT) AST RECOGNITION directive instructs the
system to disable recogn ition of ASTs for the issuing task . The ASTs
are queued as they occur and wi l l be effected when the task enabl es
AST recognition. There is an implied AST disable recognition
directive whenever an AST service routine is executing. When a task's
execution is started, AST recognition is not d i sabled .

See Notes below .

FORTRAN Call:

CALL DSASTR ! (ids) 1
or

CALL INASTR [(ids) 1

ids : Directive status

Macro Ca l l:

DSAR$S [err]
or

IHAR$S [err]

err : Error routine address

Macro Expansion ;

DSAR$S
MOV
.BYTE
EMT
Bee
JSR

ERR
(PC)+,-(SP)
99.,1
377
.+6
PC , ERR

;PUSH DPS ONTO THE STACK
iOSAR$S MACRO OIC, DPS SIZE:l WORD
;TRAP TO THE EXECUTIVE
;SRANCH IF DIRECTIVE SUCCESSFUL
;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions ;

None

osw Return Codes:

IS.SUC
IE. ITS
IE.ADP

I E . SOP

Notes :

Successful complet i on
AST recognition is already disabled
Part of the DPS is out of the issuing task's
address space
DIC or OPS size is invalid

• Only the recognition of ASTs i s disabled; the Executive st ill
queues the ASTs. They are queued FIFO and will occur in that
orde r when the task reenables AST recognition .

• Because this directive requires on l y a I-word OPB, the $S form
of the macro is recommended. It requires l ess space and
executes with the same speed as the DIRS macro .

4- 31

DIRECTIVE DESCRIPTIONS

• The FORTRAN calls, DSASTR (or INASTR) and ENASTR (see Section
4.3.17) exist solely to control the possible jump to the PWRUP
routine (power-up). FORTRAN is not designed to link to a
system's trapping mechanism. The PWRUP r outine is strictly
controlled by the system. It is the system that both accepts
the trap and subsequently dismisses it. The FORTRAN program
is notified by a jump to PWRUP but must use DSASTR (or INASTR)
and ENASTR to ensure the integrity of FORTRAN data structures,
most importantly the stack, during power-up processing.

4- 32

DIRECTIVE DESCRIPTIONS

DSCP$S

4 . 3.14 DISABLE CHECKPOINTING ($S form recommended)

The DISABLE CHECKPOINTING directive instructs the system to disable
the checkpointability of a task that has been installed as a
checkpointable task. This directive can be issued only by the task
that is to be affected. A task cannot disable the ability of another
task to be checkpointed.

FORTRAN Call:

CALL DISCKP [(i ds)]

ids = Directive status

Macro Call:

DSCP$S [en]

err Error routine address

Macro Expansion:

;PUSH DPB ONTO THE STACK
DSCP$S
MOV
.BYTE
EMT
BCC
JSR

ERR
(PC)+ , -(SP)
95. ,l
377

;DSCP$S MACRO DIC, DPB SIZE=l WORD
;TRAP TO THE EXECUTIVE

.+6
PC,ERR

;BRANCH IF DIRECTIVE SUCCESSFUL
;OTHERWISE , CALL ROUTINE "ERR"

Local Symbol Definitions:

None

OSW Return Codes:

Successful completion
Task checkpointing is already disabled
Issuing task is not checkpo i ntable

IS . SUC
IE. ITS
IE . CKP
IE.ADP Part of the OPB is out of the issuing task's

address space
IE . SDP DIC or DPB size is invalid

Notes:

• When a checkpointable task ' s
checkpo i nting is not disabled
checkpointed) .

execution
(i.e., the

is started,
task can be

• Because this directive requires only a I-word DPB, the $S form
of the macro is recommended. It requires less space and
executes with the same speed as the DIR$ macro.

4- 33

DIRECTIVE DESCRIPTIONS

DTRG$

4 . 3.15 DETACH REGION

The DETACH REGION directive detaches
specified, previously attached region .
are currently mapped to the region are

the issuing task from a
Any of the task's windows that

automatically unmapped .

If RS . MDL is
issued, the
task must be
deletion .

FORTRAN Call :

set in the
task marks
attached

region status word when the directive is
the region for deletion on the last detach. A
with delete access to mark a region for

CALL DTRG (iedb[,ids))

irdb

ids

M.acro Call :

DTRG$

,db

•

•

An a-word integer array containing a region definition
block (see Section 3.5.1.2)
Directive status

,db

Region definition block address

Macro Expansion:

DTRG$
.BYTE
.WORD

RDBADR
59 . , 2
RDBADR

;DTRG$ MACRO DIC , DPS SIZE=2 WORDS
iRDB ADDRESS

Region Definition Block Parameters :

Input parameters:

Array
Element

irdb{l)
irdb(7)

Offset

R.GID
R.GSTS

Output parameters :

Array
Element

irdb(7)

Offset

R. GSTS

10 of the region to be detached
Sit settings* in the region status word:

RS . MOL -- 1 if the region should be marked
for deletion when the last task detaches
from it

Bit settings* in the region status word:

RS.UNM - - 1 if any windows were unmapped

* FORTRAN programmers should refer to Section 3 . 5 .1 to determine the
bit values represented by the symbolic names described.

4-34

DIRECTIVE DESCRIPTIONS

Local Symbol Definitions:

D.TR8A -- Region definition block address (2)

OSW Return Codes:

Successful completion IS.SUC
IE.PRI The task, which is not attached with delete access, has

attempted to mark the region for deletion on the last

IE.NVR

IE.AOP

IE. SOP

detach.
The task specified an invalid
detach region 0 (its own task
Part of the OPO or RD8 is out
address space
DIC or DPB size is invalid

4-35

region 10
region)
of the

or attempted to

issuing task's

DIRECTIVE DESCRIPTIONS

ELAW$

4.3.16 ELIMINATE ADDRESS WINDOW

The ELIMINATE ADDRESS WINDOW directive deletes
window, unmapping it first if necessary .
elimi nated window's ID is invalid.

an existing address
Subsequent use of the

FORTRAN Call:

Macro

CALL ELAW (iwdb[,ids])

iwdb

ids

Call :

ELAW$

wdb

:

:

A window definition block composed of an 8 -word integer
array (see Section 3.5.2.2)
Directive status

wdb

Window definition block address

Macro Expansion:

ELAW$
.BYTE
. WORD

WDBADR
119.,2
WDBADR

iELAW$ MACRO DIC, DPB SIZE=2 WORDS
iWDB ADDRESS

Window Defin i tion Block Parameters:

Inpu t parameters :

Array
Element

Offset

iwdb(l)
bits 0- 7

W. NI D -- ID of the address window to be eliminated

Output parameters:

iwdb(7) W.NSTS

Loca l Symbol Definitions:

Bit settings· in the wi ndow status word :

WS.ELW

WS.UNM

I if the address window was
successfully el i minated
I if the address window was
unmapped

E.LABA -- Window definition block address (2)

DSW Return Codes:

I S.SUC Successful compl etion
IE.NVW Invalid address window ID
I E.ADP Part of the DPB oc WDB is out of the issuing task ' s

address space.
IE.snp DIC o c DPB size is invalid

• FORTRAN programmers should refer to Section 3.5.2 to determine the
bit val ues represented by the symbolic names described.

4- 36

DIRECTIVE DESCRIPTIONS

ENAR$S

4 . 3 . 17 ENABLE AST RECOGNITION ($S form recommended)

The ENASLE AST RECOGNITION directive instructs the system to recognize
ASTs for the issuing task; that is, the directive nullifies a DISABLE
AST RECOGNITION directive. ASTs that have been queued while
recognition was disabled are effected at issuance . When a task's
execution is started, AST recognition is enabled.

FORTRAN Call:

CALL ENASTR [(ids)]

ids = Directive status

Macro Call:

ENAR$S [err]

err ~ Error routine address

Macro Expansion :

ENAR$S
MOV
. BYTE
EMT
BCC
JSR

ERR
(PC)+,-(SP)
101. ,1
377
. +6
PC, ERR

;PUSH OPS ONTO THE STACK
;ENAR$S MACRO oIC, oPB SIZE=l WORD
;TRAP TO THE EXECUTIVE
;BRANCH IF DIRECTIVE SUCCESSFUL
;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions :

None

OSW Return Codes:

IS.SUC
IE . ITS
IE.AOP

IE. SOP

Notes:

Successful completion
AST recognition is not disabled
Part of the oPB is out of the issuing task's
address space
oIC or OPB size is invalid

• Because this directive requires only a I-word OPB, the $S form
of the macro is recommended. It requires less space and
executes with the same speed as the DIR$ macro .

• The FORTRAN calls DSASTR (or INASTR) (see Section 4.3.13) and
ENASTR exist solely to control the jump to the PWRUP routine
(power-up) . FORTRAN is not designed to link to a system's
trapping mechanism. The PWRUP routine is strictly controlled
by the system. It is the system which both accepts the trap
and subsequently dismisses it. The FORTRAN program is
notified by a jump to PWRUP but must use DSASTR (or INASTR)
and ENASTR to ensure the integrity of FORTRAN data structures ,
most importantly the stack, during power-up processing .

4-37

DI RECTIVE DESCRI PTIONS

ENCP$S

4 . 3 . 18 ENABLE CBECKPOI NTI NG ($5 f or m r e commended)

The ENABLE CHECKPOINT I NG directive inst r ucts the system to make the
issuing task checkpoi n table after its checkpointability has been
disab l ed ; tha t is , the direct i ve nullif i es a DSCP$S d i rective .

FORTRAN Call :

CALL ENACKP [(ids)]

ids = Di r ect i ve status

Macro Call :

ENCP$S ferr]

err Er ror routine addre.ss

Macr o Expansion :

ENCP$S
MOV
. BYTE
EMT
BCC
J SR

ERR
(PC) +,- (SP)
97 .,1
377
. +6
PC , ERR

i PUSH OPB ONTO THE STACK
; ENCP$S MACRO DIC , OPB SI ZE=l WORD
;TRAP TO THE EXECUTIVE
; BRANCH IF DIRECTIVE SUCCESSFUL
;OTHERWISE , CALL ROUTINE "ERR "

Loc al Symbol Defin i tions:

None

DSW Re tU r n Codes :

Note :

IS . SUC
I E . I TS
I E.ADP

IE.SOP

Successful completion
Checkpointing is not disabled
Part of the OPB is out of the issuing task ' s
address space
OIC or OPB s i ze is inval i d

• Because this directive requires only a I - word OPB , the $S form
of the macro i s recommended. It requires less space and
executes with the same speed as the DIR$ macro .

4- 38

DIRECTIVE DESCRIPTIONS

EXIF$

4 . 3.19 EXITlF

The EXITIF directive instructs the system to terminate the execution
of the issuing task if, and only if, an indicated event flag is NOT
set. The Executive returns control to the issuing task if the
specified event flag is set.

See Notes below .

FORTRAN Call:

CALL EXITIF (efn[,idsJ)

ofn = Event flag number
ids = Directive status

Macro Call :

EXIF$ ofn

ofn Event flag number

Macro Expansion:

EXH'$
. BYTE
.WORD

52 .
53. ,2
52.

iEXIF$ MACRO DIC, DPB SIZE=2 WORDS
iEVENT FLAG NUMBER 52.

Local Symbol Definitions:

E.XFEF

DSW Return Codes:

IS.SET
IE .IEF
IE.ADP

IE. SOP

Notes:

Event flag number (2)

Indicated EFN set, task did not exit
Invalid event flag number (EFN>64 or EFN<l)
Part of the DPB is out of the issuing task's
address space
DIC or DPB size is invalid

• The EXITIF directive is useful in aVOiding a possible race
condition that can occur between two tasks communicating via
the SEND and RECEIVE directives. The race condition occurs
when one task executes a RECEIVE directive and finds its
receive queue emptYi but before the task can exit, the other
task sends it a message. The message is lost because the
Executive flushed the receiver task ' s receive queue when it
decided to exit . This condition can be avoided if the sending
task specifies a common event flag in the SEND directive and
the receiving task executes an EXITlF specifying the same
common event flag. If the event flag is set, the EXlTIF
directive will return control to the issuing task, signalling
that something has been sent.

• A FORTRAN program that issues the EXITlF call must first close
all files by issuing CLOSE calls. See the lAS!RSX 11 FORTRAN
IV or FORTRAN IV-PLUS User ' s Guide for instructions on how to
ensure that such files are closed properly if the task exits.

4- 39

DI RECTI VE DESCRI PTIONS

To avoid the time overhead involved in the c l osing and
reopening of files , the task should first issue the
appropriate test 0' clear event flag directive . If the
dhective status word indicates that the flag was not set,
then the task can c l ose all files and issue the call to
EXITI F •

• On EXIT, the Executive frees task r esources.
the Execu t i ve :

In particular,

1. Detaches all attached devices

2. Fl ushes the AST queue

3. Flushes the receive and receive- by- reference queues

4 . Fl ushes the clock queue foe any outstanding Mark Time
requests for the task

5. Cl oses all open files (files open for write access are
locked)

6. De t aches all
task in a
d i rectives

attached tasks, except
system that supports

7. Runs down the task's I/O

in the case of a fixed
the memory management

8. Fr ees the task ' s memory if the exiting task was not f i xed

• If the t ask exits , the Executive declares a signif i cant event.

4- 40

DIRECTIVE DESCRIPTIONS

EXIT$S

4 . 3.20 TASK EXIT ($5 form recommended)

The TASK
execution

EXIT
of the

FORTRAN Call :

STOP
0'

CALL EXIT

Macro Call :

directive instructs
issuing task.

EXIT$S [err)

err = Error routine address

Macro Expansion:

the system to

;PUSH DPB ONTO THE STACK

terminate

EXIT$S
MOV
. BYTE
EMT
JSR

ERR
(PC)+, - (SP)
51 . , 1
377

;EXIT$S MACRO DIC, DPB SIZE=l WORD
;TRAP TO THE EXECUTIVE

PC,ERR ;CALL ROUTINE "ERR"

Local Symbo l Definitions :

None

DSW Return Codes:

IE.ADP

I E. SOP

Notes:

Part of the DPB is out of the i ssuing task ' s
address space
DIC or DPB size is inva lid

the

• A return to the task occu r s if, and only i f , the directive i s
rejected. Therefore , no Branch on Carry Clear instruct i on is
generated if an error routine address is given , since the
return will only occur with carry set.

• EXI~ causes a significant even t .

• On EXIT , the Executive frees task resources .
the Executive:

1. Detaches all attached devices

2. Flushes the AST queue

In part i cular,

3. Flushes the receive and receive-by- reference queues

4 . Flushes the clock queue for any outs t anding Mark Time
requests for t he task

5. Cl oses all open files (files open fo r write access ace
locked)

6. Detaches all attached regions, except in the case of a
fixed task, where no detaching occurs

4-41

DI RECTIVE DESCRIPTI ONS

7. Runs down the task's I/O

8. Frees the task's memory if the exiting task was not fixed

• Because th i s di r ective requires only a I - word DPB, t he $S form
of the macro i s recommended . It requi~es l ess space and
executes with the same speed as the DIR$ mac ~o.

4- 4 2

DIRECTIVE DESCRIPTIONS

EXTK$

4.3.21 EXTEND TASK

The EXTEND TASK directive instructs the system to modify the size of
the issuing task by a positive or negative increment of 32- word
blocks. If the directive does not specify an increment value, the
Executive makes the issuing task ' s size equal to its installed size.
The issuing task must be running in a system- control led partition and
it cannot have any outstanding I/O when it issues the directive . The
task must also be checkpointable to i ncrease its size; if necessary ,
the Executive checkpoints the task, then returns the task to memory
with its size modified as directed.

In a system that supports the memory management directives , the
Executive does not change any cur rent mapping assignments if the task
has memory-resident overlays . However, if the task does not have
memory-resident ove rlays, the Executive at tempts to modify by the
specified number of 32-word blocks, the mapping of the task to its
task region .

If the issuing task is checkpointable, but has no preallocated
checkpoint space available, a positive increment may require dynamic
memory and extra space in a checkpoi nt file suffic ient to contain the
task .

There are several constr aints on the size to which a task can extend
itself using the EXTEND TASK directive :

• No task can extend itself beyond the maximum size set by the
MCR command SET /MAXEXT or the size of the partition in which
it is running. (See the RSX- IIM Ope rator's Procedures
Manual .)

• A task that does not have memory- resident over lays cannot
extend itself beyond 32K minus 32 words.

• A task that has preallocated checkpoint space in
image file cannot extend itself beyond its installed

its task
s ize.

• A task that has memory-resident overlays cannot reduce its
size .

FORTRAN Call:

Macro

CALL EXTTSK <Iinc) (,id s])

inc

ids •

Call :

EXTK$

inc

A positive or negative number equal to the
32-word blocks by which the task size is to
or reduced .
Directive status

line]

A positive or negative number equa l to the
32- word blocks by which the task size is to
or reduced.

4-43

number of
be extended

number of
be extended

DIRECTIVE DESCRIPTIONS

Macro Expansion :

EXTJ<:$
.BYTE
. WORD

.WORD

40
89. ,3
40

o

;EXTJ<:$ MACRO DIC , DPB SIZEz 3 WORDS
iEXTEND INCREMENT, 40(8) BLOCKS (IK
iWORDS)
;RESERVED WORD

Local Symbol Definitions :

E.XTIN

DSW Return Codes :

IS.SUC
IE. UPN

IE. ITS

IE . ALG

IE.ADP

IE.SDP

Extend increment (2)

Successful completion.
Insufficient dynamic memory , or insufficient space in
a checkpoint file.
The issuing task is not
system- controlled partition; or

ru nning in a

the issuing task is not checkpointabl e and specified
a positive increment; or
the issuing task has preallocated checkpoint space in
its task image and has attempted to extend its size
beyond its installed size; or
the issuing task had outstanding I/O when it issued
the directive; or
task has memory-resident overlays and is attempting
to reduce its size .
The issuing task attempted to reduce its size to less
than the size of its task header; or
the task tried to increase its size beyond 32K words
or beyond the maximum set by the MCR SET /MAXEXT
command; or
the task tried to increase its
that one virtual address
another.

size
window

to the
would

extent
overlap

Part of the DPB is out of the issuing task's address
space.
DIC or DPB size is invalid.

4-44

DIRECTIVE DESCRIPTIONS

GLUN$
4.3 . 22 GET LUN INFORMATION

The GET LUN INFORMATION directive instructs the system to fill a
6- word buffer with information about a physical device unit to which a
LUN is assigned. If requests to the physical device unit have been
redirected to another unit , the information returned will describe the
effective assignment.

FORTRAN Call:

Macro

CALL GETLUN (lun,dat[,ids])

lun
dat
ids

Call :

GLUN$

•
•

Logical unit number
6-word integer array to receive LUN information
Directive status

lun,buf

lun Logical unit number
buf : Address of 6- word buffer that will receive the LUN

information

Buffer Format:

WO.

WO.

WO .

WO.

WO.

WO .

00

01

02

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bi t 7
Bit 8
Bi t 9

Name of assigned device

Unit number of assigned device and flags byte.
(Flags byte equals 200 if the device
resident 0' a if the driver is not loaded .)

First device characteristics word:

Record-oriented device (l=yes) [PD.REC]"
Carriage-control device (l:yes) [FD . CCL]
Terminal device (l:Yes) [FD.TTY1

driver is

Directory (file-structured) device (l=yes) (FD . DIR]
Single directory device (l=yes) (FD.SDI 1
Sequential device (l;yes) [FD.SOD]
Mass-bus device (l;yes)
User-mode diagnostics supported
Reserved

Bits 10- 11
Bit 12

Unit software write locked (l;yes)
Reserved
Pseudo device (l=yes)

Bit 13

Bit 14
Bit 15

03

A.

as --

Device mountable as a communications channel
(l=yes)
Device mountab l e as a Files-II device (l ; Yes)
Device mountable (l=yes)

Second device characteristics word

Third device characteristics word (Words 3 and 4 are
device driver specific)

Standard device buffer size

,. Bits with associated symbols have the symbols shown in square
brackets. These symbols can be defined for use by a task v i a the
FCSBT$ macro. See the IAS/RSX- ll I/O Operations Refere nce Manual.

4-45

DIRECTIVE DESCRIPTIONS

Macro Expansion:

GLUN$
.BYTE
.WORD
. WORD

7,LUNBUF
5,3 ;GLUN$ MACRO oIC , oPB SIZE-3 WORDS

;LOGICAL UNIT NUMBER 7 7
LUNBUF ;AoDRESS OF 6-WORD BUFFER

Local Symbol Definitions:

G.LULU
G.LUBA

Logical unit number (2)
Buffer address (2)

The following offsets are assigned relative to the start of the LUN
information buffer:

G.LUNA
G.LUNU
G. LUFB
G.LUCW

OSW Return Codes:

IS.SUC
IE.ULN
IE. ILU
IE.AoP

IE. SOP

Device name (2)
Device unit number (1)
Flags byte (1)
Four device characteristics words (8)

Successful completion
Unassigned LUN
Invalid logical unit number
Part of the DPB or buffer is out of the issuing
task 's address space
DIC or DPB size is invalid

4-46

DIRECTIVE DESCRIPTIONS

GMCR$

4 . 3 . 23 GET MCR COMMAND LINE

The GET MCR COMMAND LINE directive instructs the system to transfer an
80-byte command line to the issuing task.

When a task is installed with a task name of
where " tsk" consists of three alphanume[ic
octal terminal number, the MCR dispatcher
execution when a user issues the command:

" . . . tsk" o["tskTn",
characters and n is an
requests the task's

)tsk command-l ine

from terminal number n . A task invoked in this manner must execute a
call to GET MCR COMMAND LINE, which results in the "command line"
being placed into an 80-byte command line buffer . (The MCR dispatcher
is described in the RSX - IIM Operator ' s Procedures Manual.)

FORTRAN Call:

CALL GETMCR (buf[,ids])

buf - 80- byte array to receive command line
ids Directive status

Macro Call:

GMCR$

Macro Expansion:

GMCR$
. BYTE
. SLKW

127 . ,41-
40 .

iGMCR$ MACRO DIC , DPS SIZE=41. WORDS
i 80. CHARACTER MCR COMMAND LINE SUFFER

Local Symbol Defi ni tions :

G.MCRS

DSW Return Codes:

+n

IE.AST

IE.ADP

I E.SOP

Notes:

MCR line buffer (80)

Successful completion ; n is the number of data bytes
transferred (excluding the termination character).
The termination character is, however , in the buffer.
No MCR command line exists for the issuing task;
that is , the task was not requested by a command li ne
as follows :

>tsk command-string

o[the task has a lr eady issued the GET MCR COMMANO
LINE directive.
Part of the OPS is out of the issuing task's address
space .
OIC o [OPS size is invalid.

• The GMCR$S form of the macro is not supplied, since the OPS
receives the actual command line.

4-47

•

DIRECTIVE DESCRIPTIONS

Th. system processes all lines to:

l. Convert tabs to a single space

2 . Convert multiple spaces to a single space

3. Convert lower case to upper case

4. Remove all trailing blanks

The terminator «CR> or <ESC» is the last character in the
line.

4-48

DIRECTIVE DESCRIPTIONS

GMCX$

4.3.24 GET MAPPING CONTEXT

The GET MAPPING CONTEXT directive causes the Executive to return a
description of the current window-to-region mapping assignments . The
returned description is in a form that enables the user to restore the
mapping context described by a series of CREATE ADDRESS WINDOW
directives (see Section 4.3 . 9) . The macro argument specifies the
address of a vector that contains one window definition block (Woe)
for each window block allocated in the task's header, plus a
terminator word .

For each window block in the task ' s header, the Executive sets up a
woe in the vector as follows:

1. If the window bl ock is unused (that is, if it does not
correspond to an existing address window), the Executive does
not record any information about that block in a WDB.
Instead, the Executive uses the woe to record information
about the first block encountered that corresponds to an
existing window . In this way, unused window blocks are
ignored in the mapping context description returned by the
Executive.

2. If a window block describes an existing unmapped address
window, the Executive fills in the offsets W.NID, W. NAPR ,
W. NeAS , and W. NSIZ with information sufficient to recreate
the window . The window status word W.NSTS is cleared .

3 . If a window block describes an existing mapped window, the
Executive fills in the offsets W. NAPR, W. NeAS, W. NSIZ,
W. NRID, W. NOFF, W.NLEN , and W.NSTS with information
sufficient to create and map the address window . WS.MAP is
set in the status word (W . NSTS), and if the window is mapped
with write access, the bit WS.WRT is set as well.

Note that , in no case , does the Executive modify W. NSRe.

The terminator word , which fol l ows the last WDe filled in, is a word
equal to the negative of the tota l number of window blocks in the
task's header . It 1S thereby possibl e to issue a TST or TSTe
instruction to detec t the last WDe used in the vector. The
terminating word can also be used to determine the number of window
blocks built into the task ' s header.

When CREATE ADDRESS WINDOW directives are used to restore the mapping
context, there is no guarantee that the same address window IDs will
be used . The user must therefore be careful to use the latest window
IDs returned from the CREATE ADDRESS WINDOW directives .

FORTRAN Call:

CALL GCHX (imcx[,idsj)

imcx '" An integer array to receive the mapping context. The
size of the array is 8*n+l where n is the number of
window blocks in the task's header . The maximum size is
8*8+1;65 words .

ids '" Directive status

4-49

Macro Call:

GMCX$

wvec

DI RECTIVE DESCRIPTI ONS

wvec

The address of a vector of n window
followed by a terminator word;
window blocks in the task's header .

definition blocks ,
n is the number of

Macro Expansion:

GMCX$
. BYTE
. WORD

VECADR
113. , 2
VECADR

;GMCX$ MACRO DIC, DPB SIZE32 WORDS
iWDB VECTOR ADDRESS

window Definition Block Parameters :

Input parameters :

None

Output parameters in each window definition b l ock:

Array Offset
Element

iwdb(l) W. NID
bits 0- 7

i wdb(l) W. NAPR
bits 8-15

iwdb (2) W. NBAS
iwdb(3) W. NSIZ
iwdb(4) W.NRID

iwdb(5) W.NOFF

iwdb(6) W.NLEN

iwdb(7) W.NSTS

10 of address window

Base APR of the wi ndow

Base virtual address of the window
Size, in 32- word blocks, of the window
10 of the mapped region, or no change if
the window is unmapped
Offset , in 32- word blocks, from the start
of the region at which mapping begins , or
no change if the window is unmapped
Length, in 32- word blocks , of the area
currently mapped within the region, or no
change if the wi ndow is unmapped
Bit settings. in the wi ndow status word
(all 0 if the window is not mapped) :

WS . MAP
WS . WRT

1 if the window is mapped
1 if the window is mapped with
wr i te access

Note that the length mapped (W.NLEN) can be less than the size of
the window (W . NSIZ) if the area from W.NOFF to the end of the
partition is smaller than the window size.

Local Symbol Definitions :

G. MCVA - - Address of the vector (wvec) containing the window
definition blocks and terminator word (2)

DSW Return Codes :

IS.SUC
IE.ADP
IE . SOP

Successful completion
Address check of the DPB or the vector (wvec) failed
DIC or OPB size is invalid

* FORTRAN programmers should refer to Section 3 . 5 . 2 to determine the
bit values represented by the symbolic names described .

4- 50

DIRECTIVE DESCRIPTIONS

GPRT$

4.3.25 GET PARTITION PARAMETERS

The GET PARTITION PARAMETERS directive instructs the system t o fill an
ind i cated 3-word buffer with par-tition par-ameter-s. If a par-titian is
not specified, the par-titian of the issuing task is assumed .

FORTRAN Call :

CALL GETPAR ([pr-t] ,buf(,ids])

pr-t ==

buf
ids ==

Macr-o Call:

GPRT$

Par-tition name
3-wor-d integer- ar-r-ay to r-eceive par-tit i an par-ameter-s
Dir-ective status

(pr-t] ,buf

pr-t Par-titian name
buf == Addr-ess of a 3-wor-d buffer-

The buffer- has the following for-mat:

WD. 0

WD. 1

WD. 2

Par-titian physical base address expressed as a
multiple of 32 words (partit i ons are always a ligned on
32- wor-d boundaries). Ther-efor-e, a par-t i tian s t arting
at 40000(8) will have 400(8) retur-ned in this word.

Par-titian size expr-essed as a multiple of 32 wor-ds.

Partition flags word.
zero to indicate a
equal to 1 to ind i cate

This word is retur-ned equal to
system-controlled partition or
a user-controlled par-titian.

Macro Expansion:

GPRT$
. BYTE
. RAOSO
.WORD

ALPHA,DATBUF
65 . , 4
/ALPHA/
DATSUF

;GPRT$ DIC, OPB SIZE==4 WORDS
;PARTITION "ALPHA"
;ADDRESS OF 3- WORD BUFFER

Local Symbol Definit i ons:

G. PRPN
G. PRBA

Par-tition name (4)
Buffer address (2)

The fo ll owing offsets ar-e assigned relative to the start of t he
par-t i tion par-ameter-s buffer:

G.PRPB

G.PRPS

G.PRFW

Par-titian physical base addr-ess expressed as an
absolute 32-wor-d block number (2)
Partition size expr-essed as a mu l tipl e of 32-word
blocks (2)
Partit i on flags wor-d (2)

4- 51

DIRECTIVE DESCRIPTIONS

DSW Re.turn Codes:

SUccessful completion is indicated by a cleared Carry bit, and the
starting address of the partition is returned in the DSW. In unmapped
systems, the returned address is physical. In mapped systems the
returned address is virtual and always O. Unsuccessful completion is
indicated by a set Carry bit and one of the following codes in the
DSW:

Notes:

•

•

IE . INS
IE.ADP

Specified partition not in system .
Part of the DPB or buffer is out of the issuing
task's address space.

IE.SDP DIC or DPB size is invalid.

A variation of this directive exists for
support the memory management directives.
GET REGION PARAMETERS (see Section 4.3.26).
word of the 2- word partition name is
interprets the second word of the partition
10. If the 2-word name is 0,0, it refers
of the issuing task.

Executives that
The variation is
When the first

0, the Executive
name as a region
to the task region

Omission of the partition- name argument returns
the issuing task's unnamed subpartition,
system- controlled partition.

parameters
not for

for
the

4-52

DI RECTI VE DESCRI PTI ONS

GREG$

4.3 . 26 GET REGION PARAMETE RS

The GET REGION PARAMETERS directive instructs the Executive to fill an
indicated 3- word buffer with region paeametees. If a eegion is not
specified, the task region of the issuing task is assumed .

This dieective is a
directive (see Section
management dieectives.

variation of the GET PARTITION
4.3.25) foe Executives t hat s upport

PARAMETERS
the memoey

FORTRAN Call:

CALL GET REG «(rid) , bufl , ids])

e id '" Reg ion id
buf '" 3- word i ntege r areay to receive region parameters
ids Directive status

Maceo Call:

GREG$ [rid} ,buf

rid'" Region 10
buf '" Address of a 3-word buffer

Buffer Format :

WD . O

WD.l

WD.2

Region base add cess expeessed as a multiple of 32 words
(regions are always aligned on 32-word boundaries).
Thus, a region sta eting at 1000(8) will have 10(8)
retuened in this word .

Region size expressed as a multiple of 32-words.

Region flags word. This word- is returned equal to zero
if the eegion resides in a sys.tem- controlled partition ,
or equal to 1 if the region resides in a
user - control led partition .

Macro Expansion :

GREG$
. BYTE
• WORD

. WORD

. WORD

RID,DATBUF
65. , 4
o
RID
DATBUF

iGREG$ MACRO DIC,DPB SIZE-4 WORDS
iWORD THAT DISTINGUISHES GREG$
;FROM GPRT$
iREGION 10
i ADDRESS OF 3- WORD BUFFER

Local Symbol Definitions:

G.RGI D -- Region 10 (2)
G.RGBA -- Buffer address

The fo l lowing offsets are assigned relative to the start o f the
reg i on paramete r s buffer :

G. RGRB

G. RGRS
G.RGFW

Region base add r ess expressed as an absolu t e 32-word
block number (2)
Region size expressed as a multiple of 32- word blocks (2)
Region flags word (2)

4-53

DIRECTI VE DESCRIPTIONS

DSW Return Codes:

Successful completion is indicated by carry clear , and the starting
address of the region is returned in the DSW. In unmapped systems,
the returned address is phys ical . In mapped systems, the returned
address is virtual and always O. Unsuccessful completion is indicated
by car r y set and one of the following codes in the OSW:

IE . NVR
IE . ADP

IE . SOP

Invalid region 10
Part of the DPS or buffer is out of the issuing task's
address space
DI C or DPS size is invalid

4- 54

DIRECTIVE DESCRIPTIONS

4 . 3.27 GET SENSE SWITCHES ($S form r ecommended)

The GET SENSE SWITCHES directive instructs the system to
contents of the console switch register and store it in
task ' s Directive Status Word .

FORTRAN Call :

CALL READSW (isw)

GSSW$S

obtain the
the issuing

isw = Integer to receive the consol e switch settings

The fo ll owing FORTRAN cal l al l ows a program to read the state of a
s i ngle switch:

CAL L SSWTCH (ibt ,i st)

ibt • The switch to be tested (0 to 15)
is t = Test results where

1 swi tch on
2 z switch off

Macro Call :

GSSW$S [err]

err Error routine address

Macro Expansion :

GSSW$S
MOV
.BYTE
EMT
Bee
JSR

ERR
(PC)+, - (SP)
125. ,1
377
.+6
PC , ERR

iPUSH DPB ONTO THE STACK
i GSSW$S MACRO DIC, OPB SIZE=1 WORD
iTRAP TO THE EXECUTIVE
iBRANCH IF DIRECTIVE SUCCESSFUL
iOTHERWISE, CALL ROUTINE " ERR"

Loca l Symbol Definitions:

None

DSW Return Codes :

Successful compl etion is indicated by carry clear , and the contents of
the console switch register are returned in the DSW. Unsuccessful
completion is indicated by carry set and one of the following codes in
the DSW:

Note :

IE.ADP

IE.SDP

Part of the OPB is out of the issuing task's
address space
DIC or DPB s i ze is invalid

• Because this directive requires only a I-word DPB , the $S form
of the macro is recommended. It requires less space and
executes with the same speed as the DIRS macro.

4- 55

DIRECTIVE DESCRIPTIONS

GTlM$

4.3.28 GET TIME PARAMETERS

The GET TIME PARAMETERS directive instructs the system to fill an
indicated a-word buffer with the current time parameters. All time
parameters are delivered as binary numbers. The value ranges (in
decimal) are shown in the table below.

FORTRAN Call:

FORTRAN provides several subroutines for obtaining the time in a
number of formats. See the IAS!RSX-llM FORTRAN IV or the FORTRAN
IV- PLUS User's Guide.

Macro Call :

GTIM$ buf

buf Address of a- word buffer

The buffer has the fo l lowing format:

WO . 0
WO . 1
WO. 2
WO. 3
WO. 4
WO. 5
WD . 6

WO. 7

Year (s i nce 1900)
Month (1-12)
Day (1 - 31)
Hour (0 - 23)
Minute (0 - 59)
Second (0 - 59)
Ti ck of second (depends on the frequency of the
clock)
Ticks per second (depends on the frequency of the
clock)

Macro Expansion:

GTIM$
.BYTE
• WORD

DATBUF
61. , 2
DATBUF

iGTIM$ DIC, DPB SIZE=2 WORDS
jADDRESS OF S .-WORD BUFFER

Local Symbol Definitions:

G. TIBA Buffer address (2)

The fo l lowi ng offsets are assigned relat i ve to the start of the t i me
parameters b uf f er :

G.TIYR
G. TIMO
G. TIDA
G.TIHR
G. TIMI
G. TISC
G.TI CT
G. TI CP

Year (2)
Month (2)
Day (2)
Hour (2)
Minute (2)
Second (2)
Clock Tick of Second (2)
Clock Ticks per Second (2)

DSW Ret urn Codes:

IS.SUC
I E. ADP

IE.SDP

Successful complet i on
Part of the DPB or buf fer is o ut of the issu i ng
task's address space
DIC or DPB size is invalid

4- 56

DIRECTIVE DESCRIPTIONS

GTSK$

4.3.29 GET TASK PARAMETERS

The GET TASK PARAMETERS directive instructs the system
indicated 16- word buffer with parameters relating to the

to fill an
issuing task.

FORTRAN Call:

CALL GETTSK (buf{,ids])

buf :=

ids :=

Macro Call :

GTSK$ buf

16- word integer array to receive the task parameters
Directive status

buf := Address of a 16-word buffer

The buffer has the following format:

WD. 00
WD. 01
WD. 02
WD. 03
WD. O.

WD. 05

WD. 06
WD. 07

WD. 10
WD. 11

WD. 12

WD. 13
WD . 14
WD. 15

WD. 16

WD. 17

Issuing task's name in Radix-SO (first half)
Issuing task's name in Radix-SO (second half)
Partition name in Radix-SO (first half)
Partition name in Radix-SO (second half)
Undefined in RSX-IIM -- This word exists
for RSX-IID compatibility .
Undefined in RSX-llM - - This word exists
for RSX- IID compatibility.
Run pr ior i ty
User identification code (UIC) of issuing task
(in a multiuser protection system, the task's default
UIC) **
Number of logical I/O units (LUNs)
Undefined in RSx-llM -- This word exists for
RSX-IID compatibility.
Undefined in RSX-IIM - - This word exists for
RSx-lID compatibility.
(Address of task SST vector tables)*
(Size of task SST vector table in words)·
Size (in bytes) either of task ' s address window
o in mapped systems, or of task's partition in
unmapped systems (equivalent to partition size)
System on which task is running:

o for RSX-llD
1 for RSx-llM
2 for RSX-llS
3 for lAS

Protection UIC (in a multiuser system, the log - in
Ule)··

• Words 13 and 14 will contain valid data if word 14 is not zero. If
word 14 is zero, the contents of word 13 are meaningless .

•• See note in RQST$ description (Section 4.3 . 37) on contents of
words 07 and 17.

4-57

DIRECTIVE DESCRIPTIONS

Macro Expansion:

GTSK$
.BYTE
. WORD

DATBUF
63. ,2
DATBUF

iGTSK$ DIC, DPB=2-WORDS
iADDRESS OF 16- WORD BUFFER

Local Symbol Definitions:

G.TSBA Buffer address (2)

The following
buffer:

offsets are assigned relative to the task parameter

G.TSTN
G.TSPN
G.TSPR
G.TSGC
G.TSPC
G.TSNL
G.TSVA
G.TSVL
G.TSTS
G. TSSY
G.TSDU

DSW Return Codes:

IS.SUC
IE.ADP

IE.SOP

Task name (4)
Partition name (4)
Priority (2)
UIC group code (ll
UIC member code (1)
Number of logical units (2)
Task's SST vector address (2)
Task ' s SST vector length in words (2)
Task size (2)
System on which task is running (2)
Protection UIC (2)

Successful completion
Part of the DPB or buffer is out of the issuing
task's address space
DIC or DPB is invalid

4- 58

DI RECTIVE DESCRIPTIONS

MAP$

4 . 3.30 MAP ADDRESS WINDOW

The MAP ADDRESS WINDOW directive maps an existing window to an
attached region . The mapping begins at a specified offset from the
start of the region . If the window is already mapped elsewhere, the
Executive unmaps it before carrying out the mapping assignment
described in the directive.

For the mapping assignment, a task can specify any length that is less
than or equal to both:

• the window size specified when the window was created, and

• the length remaining between the specified offset within the
region and the end of the region .

A task must be attached with write access to a region in order to map
to it with write access . To map to a region with read-only access,
the task must be attached with either read or write access .

If W.NLEN is set to 0, the length defaults to either the window size
or the length remaining in the region, whichever is smaller . (Since
the Executive returns the actual length mapped as an output parameter,
the task must clear that parameter in the WDB before issuing the
directive each time it wants to default the length of the map.)

The va l ues that can be assigned to W. NOFF depend on the setting of bit
WS . 64B in the window status word (W . NSTS):

• If WS.64B 2 0, the offset specified in W.NOFF must represent
a multiple of 256 words (Sl2 bytes). Because the value of
W.NOFF is expressed in units of 32- word blOCKS, the value
must be a multiple of 8.

• If WS . 64B m 1 , the task can
programmer can therefore
region.

NOTE

al ign on
specify

32-word boundaries;
any offset within

Applications dependent on 32-word or
64 - byte alignment (WS.64B: 1) may not
be compatible with future software
products. To avoid future
incompatibility, programmers should
write applications adaptable to either
alignment requirement. The bit setting
of WS.64B could be a parameter chosen at
assembly time (by means of a prefix
file), at task- build time (as input to
the GBLDEF option), or at run time (by
means of command input).

the
the

FORTRAN Call:

CALL MAP (iwdb[,ids]l

iwdb E An a-word integer array containing a window definition
block (see Section 3.5.2.2)

ids Directive status

4-59

DIRECTIVE DESCRIPTIONS

Macro Call :

MAP$ wdb

wdb ; window definition block address

Macro Expansion :

MAP$
.BYTE
.WORD

WDBADR
12l.,2
WDSADR

iMAP$ MACRO DIC , DPS SIZE;2 WORDS
jWDB ADDRESS

Window Definition Block Parameters:

Input parameters :

Array Offset
Element

iwdb(l) W.NID
bits 0-7

iwdb(4) W. NRID

iwdb(5) W.NOFF

iwdb(6) W.NLEN

iwdb(7) W.NSTS

Output parameters :

Array
Element

iwdb (6)

iwdb(7)

Offset

W. NLEN

W.NSTS

Local Symbol Definitions:

10 of the window to be mapped

10 of the region to which the window is to
be mapped, or
o if the task region is to be mapped
Offset, in 32-word blocks, within the
region at which mapping is to begin. Note

word
be a

that if WS.64B in t he window status
equals 0, the value specified must
mul tiple of 8.
Length , in 32- word blocks, within the
region to be mapped , or 0 if the length is
to default to e ither the size of the
window or the space remaining in the
region from the specified offset,
whichever is smaller
Bit settings· in the window status word:

WS.WRT
wS.64B

1 if write access is desired
o for 256-word (512- byte)
alignment , or 1 for 32- word (64 -
byte) alignment .

Length of the area within the region
actually mapped by the window
Bit setti ngs· in the window status word:

WS.UNM -- 1 if the window was u nmapped
first

M.APBA -- Window definition block address (2)

• FORTRAN programmers should refer to Section 3.5.2 to determ ine the
bit values represented by the symbolic names described.

4-60

DIRECTIVE DESCRIPTIONS

DSW Return Codes:

IS . SUC
IE.PRI
IE.NVR
IE.NVW
IE.ALG

IE.ADP

IE. SOP

Successful completion
Privilege violation
Invalid region 10
Invalid address window 10
Task specified an invalid region offset
combination in the window definition block
or

and length
parameters;

WS.64B = 0 and the value of W.NOFF is not a multiple of
8.
Part of the OPB or WOB is out of the issuing task ' s
address space .
OIC or OPB size is invalid

4- 61

DIRECTIVE DESCRIPTIONS

MRKT$

4 . 3 . 31 MARK TI ME

The MARK TIME directive instructs the system to declare a significant
event after an indicated time interval. The interval begins when the
task issues the directive; however, task execution continues during
the interval. If an event flag is specified , the flag is cleared when
the directive is issued, and set when the significant event occurs .
If an AST entry point address is specified, an AST (see Section 2.3.3)
occurs at the time of the significant even t . When the AST occurs, the
task ' s PS, PC, directive status , WAITFOR mask words, and the event
flag number specified in the directive are pushed onto the issuing
task's stack . If neither an event flag number nor an AST service
entry point is specified, the significant event still occurs after the
indicated time interval .

See Notes below .

FORTRAN Calls:

CALL MARK (efn,tmg,tnt(,ids])

efn Event flag number
tmg - Time interval magnitude (see last Note below)
tnt = Time interval unit (see last Note below)
ids - Directive status

The ISA standard ca l l for delaying a task for a specified time
interval is also provided:

Macro

Macro

CALL WAIT (tmg ,tnt[, ids])

tmg = Time interval magnitude (see last Note below)
tnt • Time interval uni t (see last Note below)
id s • Directive status

Call :

MRKT$ refn] ,tmg , tnt[, astJ

efn • Event flag number
tmg = Time interval magnitude (see last Note below)
tnt • Time interval unit (see last Note below)
ast = AST entry point address

Expansion:

MRKT$
. BYTE
. WORD
. WORD
. WORD
.WORD

52 . , 30 .,2,MRKAST
23.,5 ;MRKT$ MACRO DIC , DPS SIZE=5 WORDS
52. ;EVENT FLAG NUMBER 52 .
30. ;TIME MAGN I TUOE=30 •
2 ;TIME UNIT=SECONDS
MRKAST ;AODRESS OF MARK TIME AST ROUTINE

Local Symbol Definitions:

M.KTEF
M.KTMG
M. KTUN
M.KTAE

Event flag (2)
Time magnitude (2)
Time unit (2)
AST entry point address (2)

4-62

DIRECTIVE DESCRIPTIONS

DSW Return Codes:

For CALL MARK and MRKT$:

IS.SUC
IE. UPN
IE.ITI
IE.IEF
IE.AOP

IE. SOP

Successful completion
Insufficient dynamic memory
Invalid time parameter
Invalid event flag number (>64 or <0)
Part of the OPB is out of the issuing task's
address space
OIC or OPB size is invalid

For CALL WAIT:

RSX- IIM provides the following positive error codes to be
returned for ISA calls:

Notes:

2
3
94
98
99
100

Insufficient dynamic storage
Specified task not installed
Invalid time parameters
Invalid event flag number
Part of OPB out of task ' s range
DIC or DPB size invalid

• MARK TIME requires dynamic memory for the clock queue entry.

• If an AST
routine
state:

entry point
is entered

address is
wi th the

specified, the
task's stack in

AST service
the following

SP+IO
SP+06
SP+04
SP+02
SP+OO

- Event flag mask word*
PS of task prior to AST

- PC of task prior to AST
- OSW of task prior to AST
- Event flag number or zero (if none was

specified in the MARK TI ME directive)

The event f l ag number must be removed from the task's stack
before an AST SERVICE EXIT directive (see Section 4.3.4) is
executed.

• If the directive is rejected, the specified event flag is not
guaranteed to be cleared or set. Consequently, if the task
indiscriminately executes a WAITFOR directive and the MARK
TIME directive is rejected, the task may wait indefinitely .
Care should always be taken to ensure that the directive was
successfully completed.

• If a task issues a MARK
event flag and then
elapsed, the event f l ag

TIME directive
exits before
is not set.

that
the

specifies
indicated

* The event flag mask word preserves the WAITFOR conditions
prior to AST entry. A task can, after an AST, return to
state . Because these flags and the other stack data are in
task , they can be modified. Such modification is
discouraged, since, if done inappropriately, the task may
obscure conditions .

4-63

a common
time has

of a task
a WAITFOR
the user
strongly

fault on

DIRECTIVE DESCRIPTIONS

• The Executive returns the code IE.ITI (or 94) in the Directive
Status Word if the directive specifies an invalid time
parameter. The time parameter consists of two
components : the time interval magnitude and the time interval
unit, represented by the arguments tmg and tnt respectively.

A legal magn i tude value (tmg) is re l ated to the value assigned
to the time interval unit (tnt). The unit values a r e encoded
as fol l ows:

For an ISA FORTRAN call (CALL WAIT) :

o = Ticks. A tick occurs for each clock interrupt
dependent on the type of clock installed in the

and is
system.

For a line frequency
or 60 per second,
frequency.

c l ock , the tick
corresponding

rate is
to the

either 50
power-line

For a programmable clock , a maximum of 1000 ticks per
second is available (the exact rate is determined at
system generation time) .

I = Milliseconds.
magni tude to
ticks.

The
the

subroutine converts
equ ivalent number

For a ll other FORTRAN and macro calls:

1 = Ticks . See definition of ticks above.

the specified
of system clock

For both types of FORTRAN calls and all macro call s:

2 = Seconds

3 = Minutes

4 = Hours

The magnitude (tmg) is the number of units to be clocked. The
following list descr i bes the magnitude va l ues that a r e valid
for each type of unit. I n no case can the value of tmg exceed
24 hours. The list applies to both FORTRAN and macro calls.

If tnt = 0, 1, or 2, tmg can be any positive value with a
maximum of 15 bits.

If tnt = 3, tmg can have a maximum va l ue of 1440(10).

If tn t 4, tmg can have a maximum value of 24(10) .

4-6 4

DIRECTIVE DESCRIPTIONS

010$

4.3.32 QUEUE I/O REQUEST

The QUEUE I/O REQUEST directive instructs the system
request for an indicated physical device unit
priority- ordered requests for that device unit. The
unit is specified as a logical unit number (LUN) .

to place an I/O
into a queue of
physical device

The device drivers declare a significant event when the I/O
completes. If the directive call specifies an event
Executive clears the flag when the request is queued, and
flag when the significant event occurs .

transfer
flag, the
sets the

The I/O status block is also cleared when the request is queued, and
set to the final I/O status when the I/O request is complete. If an
AST service routine entry point address is specified , the AST occurs
upon I/O compl etion, and the task's WAITFOR mask word, PS, PC, DSW
(directive status), and the address of the I/O status block are pushed
onto the task ' s stack.

The description below deals solely with the Executive directive; the
device- dependent information can be found in the RSX- IIM I/O Drivers
Reference Manual.

See Notes below.

FORTRAN Call :

CALL QIO (fnc,lun,[efn],[pri],[isb],[prl]l , ids])

fne
lun
efn
pci
isb
prl

=
=
•

•

I/O function code
Logical unit number
Event flag number
Priority; ignored, but must be present
2-word integer array to receive final I/O status
6-word integer array containing device- dependent
parameters to be placed in parameter words I through 6
of the DFB .

ids Directive status

Macro Call :

QIO$

fne
lun
efn
pci
isb
ast
prl

=
•
=
=
•
•

fnc ,lun, lefn] , (pri] , [isb] , last] {,prl]

I/O function code*
Logical unit number
Event flag number
Priority; ignored, but must be present
Address of I/O status block
Address of AST service routine entry point
Parameter list of the form (PI, .. . P6>

* I/O funct i on code definitions are included in the RSX-IlM I/O
Drivers Reference Manual.

4-65

!

DIRECTIVE DESCRIPTIONS

Macr o Expansion:

QI0$
. BYTE
. WORD
.WORD
.BYTE
. WORD
. WORD
• WORD
. WORD
. WORD
. WORD
. WORD
. WORD

I O.RVB, 7,52 ." IOSTAT,IOAST, <IOBUFR,512 . >
1,12. ;QIO$ MACRO DIC, DPB SIZE:12 .
IO.RVB ;FUNCTION~ READ VIRTUAL BLOCK
7 ;LOGICAL UN IT NUMBER 7
52 . ,0 ;EFN 52 . , PRIORITY IGNORED
IOSTAT ;ADDRESS OF 2- WORD I/O STATUS BLOCK
I OAST ;ADDRESS OF I /O AST ROUTINE
IOBUFR ;ADDRESS OF DATA BUFFER
512. ;BYTE COUNT:512 •
o ;ADDITIONAL PARAMETERS ...
o ; . .. NOT USED IN .•.
o ; . .. THIS PARTICULAR ...
o ; •. . INVOCATION OF QUEUE I /O

Local Symbol Definitions :

Q. l OFN
Q.IOLU
Q. IOEF
Q. IOPR
O· I OSB
Q.IOAE
Q.IOPL

OSW Return Codes :

IS.SUC
IE.UPN
IE.UtN
IE . HWR
IE.ltU
IE . IEF
IE.ADP

IE. SOP

Notes:

I/O fUnction code (2)
Logica l unit number (2)
Event flag number (I)
priority (1)
Address of I/O status block (2)
Address of I/O done AST entry point (2)
Parameter list (6 words) (12)

Successful completion
Insufficient dynamic memory
Unassigned LUN
Device driver not loaded
Invalid LUN
Invalid event flag number (>64 or <0)
Part of the OPS or I/O status block is out of the
iss uing task's address space
DIC or OPS size is invalid

• If the directive call specifies an AST entry pOint address,
the t ask enters the AST service routine with its stack in the
fo l lowing state:

•

SP+IO - Event flag mask word
SP+06 - PS of task prior to AST
SP+04 - PC of task prior to AST
SP+02 - OSW of task prior to AST
SP+OO - Address of I/O status block, or zero , if none

was specif ied in the 010 directive.

The address of the I/O status block, which is a trap- dependent
parameter , must be removed from the task's s t ack before an AST
SERVICE EX IT directive (see Section 4.3.4) is executed .

If the directive is rejected, the specified event flag is
guaranteed to be cleared or set . Consequent l y, if the
indiscriminately executes a WAITFOR directive and the
directive is rejected, the task may wait indefinitely .
should always be taken to ensure that the d i rective
successfully completed .

4-66

not
task
QI0

Care
was

DIRECTIVE DESCRIPTIONS

• Tasks cannot be checkpointed with 010 outstanding for two
reasons:

1. If the 010 directive results in a data
the data transfers directly to or
user-specified buffer.

transfer,
from the

2. If an I/O status block
directive status is
status block .

address is specified ,
returned directly to the

the
I/O

The Executive waits until a task has no outstanding I/O before
initiating checkpointing in all cases except the one described
below.

In systems that support the checkpointing of tasks during
terminal input, the terminal driver checks for the following
conditions when the driver dequeues an input request for a
task :

• That the task is checkpointable

• That checkpointing i s enabled

• That the task is not execut ing an AST routine

• That ASTs are enabled

If the four conditions exist, the Executive immediately stops
the task ' s execution . Any competing task waiting to be loaded
into the partition can checkpoint the stopped task, regardless
of priori ty. If the stopped task is checkpointed, the
Executive does not bring it back into memory until its
terminal input has completed . While the task is stopped , the
terminal driver buffers the task's terminal input .

4-67

DIRECTIVE DESCRI PTIONS

QIOW$

4.3.33 QUEUE I/O REQUEST AND WAIT

The QUEUE I/O REQUEST AND WAIT directive is identical to QUEUE I/O
REQUEST in all but one aspect . If the WAIT variation of the directive
specifies an event flag, the Executive automatically effects a WAIT
FOR SINGLE EVENT FLAG directive. If an event flag is not specified,
however, the Executive treats the directive as if it were a simple
QUEUE I/O REQUEST.

The following description lists the FORTRAN and macro calls with the
associated parameters, as well as the macro expansion. Consult the
description of QUEUE I/O REQUEST for a definition of the parameters ,
the local symbol definitions, the DSW return codes, and explanatory
notes.

FORTRAN Call :

CALL WTQIO (fnc,lun,[efn),[priJ,lisb),lprl)l,ids)

fnc ~ I/O function code*
lun = Logical unit number
efn ~ Event flag number
pri z Priority; ignored, but must be present
isb = 2-word integer array to receive final I/O status
prl - 6- word integer array containing device-dependent

parameters to be placed in parameter words 1 through 6 of
the directive parameter block (DPB)

ids - Directive status

Macro Call :

QIOWS fnc ,lun ,efn, [pri J , I isb) , last) (,prl)

fnc = I/O function code*
lun : Logical unit number
efn - Event flag number
pri • Priority; ignored, but must be present
isb = Address of I/O status block
ast ~ Address of AST service routine entry pOint
prl - Parameter list of the form <Pl, . .. P6>

Macro Expansion:

QIOWS
. BYTE
• WORD
. WORD
. BYTE
.WORD
. WORD
. WORD
. WORD
. WORD
. WORD
. WORD
. WORD

IO.RVB,7,52."IOSTAT,IOAST,(IOBUFR,512.>
3,12. ;QIO$ MACRO DIC, DPB SIZE a 12 •
IO.RVB ;FUNCTION=READ VIRTUAL BLOCK
7 ;LOGICAL UNIT NUMBER 7
52. , 0 i EFN 52. , PRIORITY IGNORED
IOSTAT ;ADDRESS OF 2- WORD I/O STATUS BLOCK
IOAST ;ADDRESS OF I/O AST ROUTINE
IOBUFR ;ADDRESS OF DATA BUFFER
512. ;BYTE COUNT=512 .
a iADDITIONAL PARAMETERS . . .
a ; .. . NOTUSEDIN . ..
o i . . . THIS PARTICULAR ...
a i . .. INVOCATION OF QUEUE I/O

* I/O function codes are defined in the RSx-IIM I/O Drivers Reference
Manual.

4- 68

DIRECTIVE DESCRIPTIONS

4.3.34 RECEIVE DATA

The RECEIVE DATA directive instructs the system to dequeue
data block for the issuing task; the data block has
(FIFO) for the task via a SEND DATA Directive.

RCVD$

a 13-word
been queued

A 2-word sender task name (in Radix-50 form) and the I3-word data
block are returned in an indicated IS-word buffer, with the task name
in the first two words.

In a system that supports multiuser protection , a task can be
installed as a slave by the keyword /SLV=YES. (See the RSx-IIM
Operator's Procedures Manual.) When a slave task issues the RECEIVE
DATA directive, it assumes the UIC and TI terminal of the task that
sent the data.

FORTRAN Call:

CALL RECEIV (tsk,buf("idsJ)

tsk ""
buf ..
ids ""

Macro Call :

RCVDS

Sender task name
IS-word integer array for received data
Directive status

tsk,buf

tsk .. Sender task name
buf .. Address of IS-word buffer

Macro Expansion:

RCVDS
.BYTE
. RACSO
• WORD

ALPHA,CATBUF
7 S. ,4
/ALPHA/
CATSUF

iTASK NAME AND BUFFER ADDRESS
;RCVDS MACRO DIC, DPB SIZE=4 WORDS
;SENDER TASK NAME
iADDRESS OF IS.-WORD BUFFER

Local Symbol Definitions:

R.VDTN
R. VDBA

DSW Return Codes :

IS.SUC
IE. ITS
IE.AOP

IE. SOP

Sender task name (4)
Buffer address (2)

Successful completion
No data currently queued
Part of the DPB or buffer is out of the issuing
task ' s address space
DIC or DPS size is invalid

4 - 69

DIRECTIVE DESCRIPTIONS

RCVX$

4.3.35 RECEIVE DATA OR EXIT

The RECEIVE DATA OR EXIT direct i ve instructs the system to dequeue a
13-word data block for the issuing taski the data block has been
queued (FIFO) for the task via a SEND DATA Directive.

A 2-word sender task name (in Radix-50 form) and the
block are returned in an indicated IS- word buffer, with
in the first two words .

13- word data
the task name

If no data has been sent , a task exit occurs . To prevent the possible
l oss of Send packets, the user should not rely on I/O rundown to take
care of any outstanding I/O or open files; the task should assume
th i s r esponsibility.

In a system
installed as

that supports
a slave by

multiuser protection, a task can be
the keyword /SLV=YES. (See the RSx-IIM

~r.;~~~~;'.~) When a slave task issues the RECEIVE
~ urnes the UIC and TI terminal of the task

that sent the data .

See Notes bela

For tr an Call :

CALL RECOEX (tsk,bufl"ids])

tsk •
buf ,.
ids •

Sender task name
IS-word integer array for received data
Directive status

Macro Call:

RCVX$ tsk,buf

tsk - Sender task name
buf = Address of IS - ord buffer

Macro Expansion:

RCVX$
.BYTE
.RADSO
. WORD

ALPHA , DATBUF
77. ,4
/ALPHA/
DATBUF

i TASK NAME AND BUFFER ADDRESS
;RCVX$ MACRO DIC, DPB SIZE-4 WORDS
;SENDER TASK NAME
;ADDRESS OF IS. - WORD BUFFER

Local Symbol Definitions :

R.VXTN
R.VXBA

DSW Return Codes:

IS.SUC
IE . ADP

IE.SDP

Sender task name (4)
Buffer address (2)

Successful completion
Part of the DPB or buffer is out of the issuing
task ' s address space
DIC or DPB size is invalid

4-70

DIRECTIVE DESCRIPTIONS

Notes:

• A FORTRAN program that issues the RECOEX call must first close
all files by issuing CLOSE calls. See the IAS/RSX- II FORTRAN
IVor the FORTRAN IV PLUS User ' s Guide for instructions
concerning how to ensure that such files a r e closed properly
if the task exits.

To avoid the time overhead involved in the closing and
reopening of files, the task should first issue the RECEIV
call. If the directive status indicates that no data was
received, then the task can close all files and issue the call
to RECOEX.

• If no data has been sent, that is, if no SEND DATA directive
has been issued, the task exits. Send packets may be lost if
a task exits with outstanding I/O or open files (see third
paragraph of this directive description).

• The RECEIVE DATA OR EXIT di rective is useful in avoiding a
possible race condition that can occur between two tasks
communicating via the SEND and RECEIVE directives . The race
condition occurs when one task executes a RECEIVE directive
and finds its receive queue empty; but before the task can
exit, the other task sends it a message . The message is lost
because the Executive f l ushed the receiver task's receive
queue when it decided to exit. This condition can be avoided
by the receiving task's executing a RECEIVE DATA OR EXIT
directive . If the receive queue is found to be empty, a t ask
exit occurs before the other task can send any data; thus, no
l oss of data can occur.

• On EXIT , the Executive frees task resources.
the Executive:

In particular,

1.

2.

3.

I.

5 .

6 .

7.

8 .

0 If

Detaches all attached devices

Flushes the AST queue

Flushes the receive and receive-by-reference queues

Flushes the c l ock queue for outstanding Mark Time requests
for the task

Closes all open files (files open for write access are
l ocked)

Detaches all attached regions except in the case of a
fixed task, where no detaching occurs

Runs down the task ' s I/O

Frees the task ' s memory if the exiting task was not fixed

the task exits, the Executive dec l ares a significant event.

4-71

DIRECTIVE DESCRIPTIONS

RDAF$

4.3.36 READ ALL EVENT FLAGS

The READ ALL EVENT FLAGS directive instructs the system to read all 64
event flags for the issuing task and record their polarity in a 64 - bit
(4-word) buffer.

FORTRAN Call:

Only one event flag can be read by a FORTRAN task. The call is:

CALL READEF (efn , ids)

efn Event flag numbe r
ids Directive status

The Executive returns the status codes IS.SET (+02) and IS.CLR
(00) for FORTRAN calls to report event flag polari;y.

Macro Call:

ROAF$ buf

The buffer has the following format:

WO. 00
WD. 01
WO . 02
WO. 03

Task Local Flags 1-16
Task Local Flags 17-32
Task Common Flags 33-48
Task Common Flags 49- 64

Macro Expansion:

ROAF$
.BYTE
• WORD

FLGBUF
39. ,2
FLGBUr

;ROAr$ MACRO Ole, OPS SIZE:2 WORDS
;ADDRESS OF 4-WORD BUFFER

Local Symbol Definitions:

R.DABA

DSW Return Codes:

I s.sue
IE . ADP

IE.SDP

Buffer address (2)

Successful completion
Part of the DPB or buffer is out of the issuing
task ' s address space
DI C or DPB size is invalid

4- 72

DIRECTIVE DESCRIPTIONS

4.3.37 REQUEST

The REQUEST directive instructs the system to activate a
task is activated and subsequently runs contingent upon
memory availability. REQUEST is the basic mechanism used
tasks for initiating other installed (dormant) tasks.
frequently used subset of the RUN directive.

See Notes below.

FORTRAN Call:

CALL REQUES (tsk, [optJ [,idsJ)

tsk Task name
opt : 4-word integer array

RQST$

task. The
priority and

by running
REQUEST is a

opt(l) partition name first halfi ignored, but
must be present

ids :

Macro Call :

RQST$

tsk
p,t :

pri :

uge :

ume

opt(2) = partition name second halfi ignored,
but must be present

opt(3) priority; ignored, but must be present
opt(4) z User Identification Code

Directive status

tsk, [prtJ , [priJ [, ugc, umcJ

Task name
Partition namei ignored, but must be present
priority; ignored, but must be present
UIC group code
UIC member code

Macro Expansion:

RQST$
.BYTE
.RADSO
. WORD
.WORD
.BYTE

ALPHA" ,20,10
11.,7
/ALPHA/
0,0

° 10,20

iRQST$ MACRO DIC, OPB SIZE=7 WORDS
; TASK "ALPHA"
iPARTITION IGNORED
iPRIORITY IGNORED
iUIC UNDER WHICH TO RUN TASK

Local Symbol Definitions:

R.OSTN
R.QSPN
R.OSPR
R.OSGC
R.OSPC

DSW Return Codes:

IS.SUC
IE.UPN
IE. INS
IE.ACT
IE.ADP

IE.SOP

Task name (4)
Partition name (4)
Priori ty (2)
UIC group (1)
UIC member (1)

Successful completion
Insufficient dynamic memory
Task is not installed
Task is already active
Part of the DPB is out of the
address space
DIe 0' DPB size is invalid

4-73

issuing task's

DI RECTIVE DESCRIPTIONS

Notes :

• The requested task must be installed in the system.

• If the partition in which a requested task is to run is
already occupied, the Executive places the task in a queue of
tasks waiting for that partition. The requested task then
runs , depending on priority , and resource availability, when
the partition is free. Another possibility is that
checkpointing may occur. If the current occupant(s) of the
partition is checkpointable , has checkpointing enabled, and is
of lower priority than the requested task, it is written to
disk when its current outstanding IjO completes; the
requested task is then read into the partition .

• Successful compl et i on means that the task has been declared
active , not that the task is actually running.

• The r equested task acquires the same TI terminal assignment as
t ha t of the request i ng task.

• The requested task always runs at the priority specified in
its task header .

• A task that executes in a system-controlled partition
dynamic memo r y for the partition control block
describe i ts memory requirements.

requires
used to

• In a system that does not support multiuser protection, a task
can be requested under any UIC regardless of the UIC of the
requesting task . If no UIC is specified in the request, the
system uses the UIC from the task's header, which was
specified at task - build time.

• In a sys t em that supports multiuser protection ,
task has two UI Cs - - a protection UIC and a
These are both returned when a task issues
PARAMETERS di r ective (GTSK$).

each active
default UIC .
a GET TASK

1 . The protection UI C determines the task ' s access rights f or
opening files and attaching to regions. When a task
attempt s to open a file, the system compa r es the task ' s
p r otection UI C against the p r otec t ion mask of the
specified UFO ; the compar i son determines whether the task
i s to be considered for system , owner , group, or wo rld
access.

2. The default UIC is used by the File Control Subrout i nes
(FCS) to determine the default UFO when a file - open
operation does not specify a UIC. (The default UIC has no
significance when a task attaches to a region.)

In a multiuser protection system , each terminal also has a
protect i on UIC and a default UIC . If a terminal is
nonprivileged, the protection UIC is the log-on UIC , and the
default UIC is the UIC specified in the last SET JUIC command
to be issued . If no SET JUIC command has been issued, the
default UIC is equal to the log-on UIC . If the terminal is
privi l eged, both the protection and the default UICs are equal
either to the UI C specified in the last SET JUIC command or to
the log - on UIC if a SET JUIC command has not been issued.

4- 74

DIRECTIVE DESCRIPTIONS

The system establishes a task ' s UICs when the task is
activated. In general, when the MCR Dispatcher or the MCR RUN
command activates a task, the task assumes the protec tion and
default UICs of the issuing terminal . However, if the user
specifies the IUIC keyword to the MCR INSTALL or RUN command,
the specified UIC becomes the default UIC for the activated
task; and if the issuing terminal is privileged, the
specified UIC becomes the activated task ' s protection UIe as
well.

The system establishes UICs in the same manner when one task
issues a REQUEST directive to activate anothe r task . The
protection and default UICs of the issuing task general l y
become the corresponding UICs of the requested task . However ,
if a nonprivileged task specifies a UIC in a REQUEST
directive, the specified UIC becomes on l y the defaul t VIC for
the requested task . If a privileged task specifies a UIe in a
REQUEST directive, the specified UI C becomes both the
p r otect i on and default VIC for the requested task .

4-75

DIRECTIVE DESCRIPTIONS

RREF$

4.3 . 38 RECEIVE BY REFERENCE

The RECEIVE BY REFERENCE directive causes the Executive to dequeue the
next packet in the receive-by-reference queue of the issuing
(receiver) task . Optionally, the task will exit if there are no
packets in the queue. The directive may also specify that the
Executive proceed to map the region referred to .

If successful , the directive causes a significant event.

Each reference in the task ' s receive-by-reference queue represents a
separate attachment to a region. If a task has multiple references to
a given region, it is attached to that region the corresponding number
of times. Because region attachment requires system dynamic memory,
the receiver task should detach from any region that it was already
attached to, in order to prevent depletion of the memory pool. That
is, the task needs to be attached to a given region only once.

If the Executive does not find a packet in the queue, and the task has
set WS . RCX in the window status word (W.NSTS) , the task exits. If
WS.RCX is not set, the Executive returns the DSW code IE. ITS.

If the Executive finds a packet, it writes the information provided
(see Sec t ion 4 . 3.47), to the corresponding words in the window
definition block. This information provides sufficient information to
map the reference, according to the sender task's specifications, with
a previously created address window.

If the address of a lO-word receive buffer has been specified (W.NSRB
in the window definition block), then the sender task name and the
eight additional words passed by the sender task (if any) are placed
in the specified buffer. If the sender task did not pass on a ny
additional information , the Executive writes in the sender task name
and eight words of zero.

If the WS . MAP bit in the window status word has been set to 1 , the
Executive transfers control to the MAP ADDRESS WINDOW directive (see
Section 4 . 3.30) to attempt to map the reference .

When a task that has un received packets in its receive- by- reference
queue exits or is removed , the Executive removes the packets from the
queue and deal locates them. Any related flags are not set .

FORTRAN Call:

CALL RREF (iwdb,[isrbJ [,idsJ)

iwdb An a - word integer array containing a window definition
block (see Section 3.5.2.2)

isrb = A lO- word integer array to be used as the receive
buffer. If the call omits this parameter , the contents
of iwdb(8) are unchanged.

ids • Directive status

Macro Call :

RREF$ wdb

wdb Window definition block address

4- 76

DIRECTIVE DESCRIPTIONS

Macro Expansion:

RREF$
.BYTE
. WORD

WDBADR
81. ,2
WDBADR

;RREF$ MACRO DIC, DPB SIZE:2 WORDS
;WDB ADDRESS

Window Definition Block Parameters:

Input Parameters:

Array
Element

iwdb(l)
bits 0- 7

iwdb(7)

iwdb (8l

Offset

W.NID

W.NSTS

W.NSRB

ID of an existing window if region is to
be mapped
Bit settings* in the window status word:

WS.MAP 1 if received reference is to be
mapped

WS. RCX 1 if task exit desired when no
pack.et is found in the queue

Optional address of a IO-word
contain the sender task
additional information

buffer , to
name and

Output parameters:

Array
Element

iwdb(4)

iwdb(5)
iwdb(6)
iwdb(7)

Offset

W.NRID

W. NOFF
W.NLEN
W.NSTS

Region ID (pointer to attachment
descr iption)
Offset word specified by sender task.
Length word specified by sender task
Bit settings* in the window status word:

WS.RED 1 if attached with read access
WS.WRT 1 if attached with write access
WS.EXT 1 if attached with extend access
WS.DEL 1 if attached with delete access
WS.RRF 1 if receive was successful

The Executive clears the remaining bits.

Local Symbol Definitions:

R.REBA -- Window definition block address (2)

DSW Return Codes:

IS.SUC
IE. ITS
IE.ADP

IE.SDP

Successful completion
No packet found in the receive-by-reference queue
Address check. of the OPB, WDB, or the rece1ve buffer
(W.NSRB) failed.
DIC or DPB size is invalid

* FORTRAN programmers should refer to Section 3.5.2 to determine the
bit values represented by the symbolic names described.

4-77

DIRECTIVE DESCRIPTIONS

RSUM$

4.3.39 RESUME

The RESUME directive instructs the system to resume the execution of a
task that has issued a SUSPEND directive.

FORTRAN Call :

CALL RESUME (tskl,ids])

tsk '"
ids ""

Macro Call:

Task name
Directive status

RSUM$ tsk

tsk a Task name

Macro Expansion:

RSUM$
.BYTE
.RADSO

ALPHA
47. ,3
/ALP HA/

;RSUM$ MACRO DIC, DPB SIZE=3 WOReS
;TASK "ALPHA"

Local Symbol Definitions:

R.5UTN

DSW Return Codes:

IS.SUC
IE. INS
IE.ACT
IE.PRI

IE. ITS
IE.ADP

IE.SOP

Task name (4)

Successful completion
Task is not installed
Task is not active
Task not privileged (multiuser protection
systems only)
Task is not suspended
Part of the OPS is out of the issuing task's
address space
DIC or ops size is invalid

4-78

DIRECTIVE DESCRIPTIONS

RUNS

4.3 . 40 RUN

The RUN directive causes a task to be requested at a specified future
time, and optionally to be requested periodically. The schedule time
is specified in terms of delta time from issuance. If the smg, rmg,
and rnt parameters are omitted, RUN is the same as REQUEST except
that :

1 . RUN causes the task to become active one clock tick after the
directive is issued, and

2. the system always sets the TI: (Terminal Input) device for
the requested task, to CO:.

See Notes below.

FORTRAN Call:

CALL RUN (tsk, [opt) , [smg) , snt, [rmg] , I rnt] I , ids])

tsk : Task name
opt : 4-word integer array

smg •
snt
rmg •
rnt •
ids

opt(l) Partition name first half ; ignored, but
must be present

opt(2) : Partition name second half; ignored ,
but must be present

opt(3) Priority; ignored, but must be present
opt(4) = User Identification Code
Schedule delta magnitude
Schedule delta unit (either 1, 2, 3, or 4)
Reschedule interval magnitude
Reschedule interval unit
Directive status

The ISA standard call for initiating a task is also provided :

Macro

CALL START(tsk,smg,snt{ , ids)

tsk •
smg •
snt •
ids •

Call :

RUN$

tsk
prt •
pri •
ugc •
umc •
smg •
snt
rmg •
rnt •

Task name
Schedule delta magnitude
Schedule delta unit (e i ther 0, 1, 2, 3, or 4)
Directive status

tsk, {prt], [pri], (ugc], lume], {smg] ,snt[,rmg,rnt]

Task name
Partition name; ignor ed, but must be present
priority; ignored, but must be present
UIC group code
UIC member code
Schedule delta magnitude
Schedule delta unit (either 1, 2, 3, or 4)
Reschedule interval magnitude
Reschedule inte r val unit

4- 79

DIRECTIVE DESCRIPTIONS

Macro Expansion:

RUNS
.BYTE
· RADSO
. WORD
.WORD
.BYTE
. WORD
. WORD
• WORD
. WORD

ALPHA",20,10.20.,3,10.,3
17.,11. iRUNS MACRO DIC, DPB SIZE:ll. WORDS
/ALPHA/ ;TASK "ALPHA"
0,0 ;PARTITION IGNORED
o iPRIORITY IGNORED
10,20 iUIC TO RUN TASK UNDER
20. iSCHEDULE MAGNITUDE=20 .
3 iSCH. DELTA TIME UNITzMINUTE (-3)
10 . ;RESCH. INTERVAL MAGNITUDE=IO .
3 :RESCH. INTERVAL UNIT~MINUTE (~3)

Local Symbol Definitions:

R.UNTN
R. UNPN
R. UNPR
R. UNGC
R.UNPC
R.UNSM
R.UNSU
R.UNRM
R.UNRU

DSW Return Codes:

Task name (4)
Partition name (4)
Priority (2)
UIC group code (1)
UIC member code (1)
Schedule magnitude (2)
Schedule unit (2)
Reschedule magnitude (2)
Reschedule unit (2)

For CALL RUN and RUNS:

IS.SUC
IE.UPN
IE. INS
IE.ITI
IE.ADP

IE.SDP

Successful completion
Insufficient dynamic memory
Task is not installed
Invalid time parameter
Part of the DPB is out of the issuing task's
address space
DIC or DPB size is invalid

For CALL START:

Rsx-IIM provides the following positive error codes to be
returned for ISA calls:

2 I nsufficient dynamic storage
3 Specified task not installed
94 Invalid time parameter
98 Invalid event flag number
99 Part of DPB out of task's address space
100 DIC or DPB size invalid

Notes:

• In a multiuser protection system. a nonprivileged task cannot
specify a UIC that is not equal to its own protection UIC.
(See the last note in the description of the REQUEST directive
for a definition of the protection UIC .) A privileged task can
specify any UIC.

• In a system that does not support multiuser protection, a task
may be run under any UIC. regardless of the UIC of the
requesting task . If no UIC is specified in the request, the
Executive uses the default UIC from the reques t ed task's
header. The priority is always that specified in the
requested task's Task Control Block.

4-80

DIRECTIVE DESCRIPTIONS

• The target task must be installed in the system.

• If there is not enough room in the partition in which a
requested task is to [un, the Executive places the task in a
queue of tasks waiting for that partition. The requested task
will then [un, depending on priority and resource
availability, when the partition is free . Another possibility
is that checkpointing will occur. If the current occupant(s)
of the partition is checkpointable, has checkpointing enabled,
is of lower priority than the requested task , O[is stopped
for terminal input, it will be written to disk when its
current outstanding I/O completes . The requested task will
then be read into the partition .

• Successful completion means the task has been made active; it
does not mean that the task is actually running.

• Time Inte[vals

The Executive returns the code IE . ITI in the DSW
directive specifies an invalid time parameter.
parameter consists of two components: the time
magnitude and the time interval unit.

if the
A time

interval

A legal magnitude value (smg o[rmg) is [elated to the value
assigned to the time interval unit snt o[[nt. The unit
values are encoded as follows:

Fo[an ISA FORTRAN call (CALL START):

o ~ Ticks -- A tick occurs for each clock interrupt and is
dependent on the type of clock installed in the system.

For a line frequency
o[60 per second ,
frequency.

clock, the tick
corresponding

rate is
to the

either 50
power-line

Fo[a programmable clock, a maximum of 1000 ticks per
second is available (the exact [ate is determined
during system generation).

I = Milliseconds -- The
magnitude to the
ticks.

subroutine converts
equivalent number

For all other FORTRAN and macro calls:

1 : Ticks -- See definition of ticks above.

the spec i fied
of system clock

Fo[both types of FORTRAN calls and all macro calls:

2 ; Seconds

3 = Minutes

4 s Hou[s

The magnitude is
following list
for each type of
hours. The list

the number of units to be clocked. The
describes the magnitude values that are valid
unit. In no case can the magnitude exceed 24
applies to both FORTRAN and macro calls.

If unit = 0, 1, o[2, the magnitude can be any positive
value with a maximum of 15 bits.

4-81

DIRECTIVE DESCRIPTIONS

If unit - 3, the magnitude can have a maximum value of
1440(10) .

If unit m 4, the magnitude can have a maximum value of
24 (10) •

• The schedule delta time is the difference in time from the
issuance of the RUNS directive to the time the task is to be
run. This time may be specified in the range from one clock
tick to 24 hours .

• The reschedule interval is the difference in time from task
initiation to the time the task is to be reinitiated. If this
time interval elapses and the task is still active, no
reinitiation request will be issued . However, a new
reschedule interval will be started. The Executive will
continually try to start a task, wait for the specified time
interval, and then restart the task . This process continues
until a CSRQS (Cancel Time Based Initiation Requests)
directive or an MCR Cancel command is issued .

• RUN requires dynamic memory for the clock queue entry used to
start the task after the specified delta time . If the task is
to run in a system-controlled partition, further dynamic
memory is required for the task's dynamically allocated
partition control block (PCB) .

• If optional rescheduling is not desired, then the macro call
should omit the arguments rmg and rnt .

4- 82

DIRECTI VE DESCRI PTIONS

SDAT$

4.3.41 SEND DATA

The SEND DATA directive instructs
event and to queue (FIFO) a
receive . When a local event flag
flag is set for the sending
declared.

the system to declare a significant
13 - word block of data for a task to
is specified, the indicated event
taski a significant event is always

FORTRAN Call :

CALL SEND (tsk , buf,lefnll,ids)

tsk
buf =
efn =
ids =

Macro Call:

SDAT$

Task name
13-word integer array of data to be sent
Event flag number
Directive status

tsk, buf [,efn)

tsk Task name
but Address of 13- word data buffer
efn = Event flag number

Macro Expansion:

SDAT$
. BYTE
· RAD50
• WORD
• WORD

ALPHA,DATBUF,52.
71 . ,5 iSDAT$ MACRO OIC, OPS 5IZE=5 WORDS
/ALPHA/ i RECEIVER TASK NAME
DATBUF i ADDRESS OF 13.-WORO BUFFER
52. iEVENT FLAG NUMBER 52 .

Local Symbol Definitions :

S.DATN
S.OABA
S.OAEF

OSW Return Codes:

IS . SUC
IE .INS
IE.UPN
IE.IEF
IE.AOP

IE. SOP

Notes:

Task name (4)
Buffer address (2)
Event flag number (2)

Successful completion
Receiver task is not installed
Insufficient dynamic memory
Invalid event flag number (EFN.GT . 64 or EFN.LT.O)
Part of the OPS or data block is out of the issuing
task ' s address space
OIC or DPS size is invalid

• SEND DATA requires dynamic memory .

• If the directive specifies a local event flag, the flag is
local to the sender (issuing) task. RSX-IIM does not allow
one task to set or clear a flag that is local to another task.

4-83

DIRECTIVE DESCRIPTIONS

SETF$

4.3.42 SET EVENT FLAG

The SET EVENT FLAG directive instructs the system to set an indicated
event flag and report the flag's polarity before setting .

FORTRAN Call :

CALL SETEF (efn[, ids])

efn =
ids =

Macro Call:

Event flag number
Directive status

SETF$ efn

efn = Event flag number

Macro Expansion:

SETF$
.BYTE
• WORD

52.
33. ,2
52.

;SETF$ MACRO DIC, DPB SIZE=2 WORDS
;EVENT FLAG NUMBER 52 .

Local Symbol Definitions:

S . ETEF Event flag number (2)

DSW Return Codes:

Note:

IS.CLR
IS . SET
IE .IEF
IE.ADP

IE. SOP

Flag as clear
Flag was already set
Invalid event flag number (EFN.GT.64 or EFN.LT.l)
Part of the OPB is out of the issuing task's
address space
OIC or DPB size is invalid

• SET EVENT FLAG does not
merely sets the specified

declare
flag.

a significant event;

4-84

DIRECTIVE DESCRIPTIONS

SFPA$

4.3.43 SPECIFY FLOATING POINT PROCESSOR EXCEPTION AST

The SPECIFY FLOATING POINT PROCESSOR EXCEPTION AST directive instructs
the system to record either:

• that floating point processor exception ASTs for the issuing
task are desired, and that the Executive is to transfer
control to a specified address when such an AST occurs for the
task, or

• that floating point processor exception ASTs for the issuing
task are no longer desired.

When an AST service routine entry point address is specified, future
floating point processor exception ASTs will occur for the i ssu ing
task, and control will be transferred to the indicated location at the
time of the AST's occurrence. When an AST service entry paint address
is not specified, future float ing point processor exception ASTs will
not occur until the task issues a directive that specifies an AST
entry point.

See Notes below.

FORTRAN Call:

Neither the FORTRAN language nor the ISA standard permits direct
linking to system trapping mechanisms; therefore, this directive
is not available to FORTRAN tasks.

Macro Call:

SFPA$ [ast]

ast = AST service routine entry point address

Macro Expansion:

SFPA$
. BYTE
. WORD

FLTAST
111. ,2
FLTAST

;SFPAS MACRO DIC, DPB SIZE=2 WORDS
;ADDRESS OF FLOATING POINT AST

Local Symbol Definitions:

S. FPAE

DSW Return Codes:

IS.SUC
IE.UPN
IE. ITS
IE.AST

IE.ADP

IE. SOP

Notes:

AST entry address (2)

Successful completion
Insufficient dynamic memory
AST entry point address is already unspecified
Directive was issued from an AST service routine
or ASTs are disabled
Part of the DPB is out of the issuing task's
address space
DIC or OPB size is invalid

• SPECIFY FLOATING POINT PROCESSOR EXCEPTION AST
dynamic memory.

requires

4- 85

DI RECTIVE DESCRI PTI ONS

• The Executive queues floating point processor exception ASTs
when a floating point processor exception trap occurs for the
t ask. No future floating point processor exception ASTs will
be queued for the task until the first one queued has actually
been effected .

• The floating point processor exception AST service routine is
entered with the task stack in the following state :

SP+12 - Event flag mask word
SP+lO - PS of task prior to AST
SP+06 - PC of t ask prior to AST
SP+04 - DSW of task prior to AST
SP+02 - Floating exception code
SP+OO - Floating exception address

The tas k must remo ve the floating exception code
from t he task ' s stack before an AST SERVICE EXIT
4. 3 .4) directive is executed.

and
(see

address
Section

• Th i s di r ect i ve cannot be issued from an AST service routine or
when ASTs are disabled.

• Th i s di r ect i ve appl i es only to the Float i ng Point Processor .

4- 86

DIRECTIVE DESCRI PTIONS

SPND$S

4.3.44 SUSPEND ($S form r ecommended)

The SUSPEND directive instructs the system to suspend the execution of
the issuing task . A task can suspend only itself, not anothee task .
The task can be eestaeted eithee by a RESUME dieective , oe by an MeR
RESume command.

FORTRAN Call :

CALL SUSPND [(idsl]

ids = Dieective status

Maceo Cal l:

SPND$S [err]

e e e Ee eo e eoutine address

Macro Expansion:

SPND$S
MOV
. BYTE
EMT
BCC
JSR

ERR
(PC)+, - (SP)
45. , I
377
.+6
PC,ERR

;PUSH DPB ONTO THE STACK
;SPND$S MACRO DIC , DPB SIZE;1 WORD
ITRAP TO THE EXECUTIVE
;BRANCH IF DIRECTIVE SUCCESSFUL
;OTHERWISE, CALL ROUTINE " ERR"

Local Symbol Definitions:

None

DSW Retuen Codes :

I S.SPD
IE.ADP

Successful completion (task was suspended)
Part of the DPB i s out of the issuing task ' s
add r ess space

IE. SOP DI C or DPB s i ze is invalid

Notes :

• A suspended task retains control of the system resources
al l ocated to it . The Executive makes no attempt to free these
eesources. When a task exits , the Executive frees the task's
eesources .

• A suspended task is eligible for checkpointing unless it is
fixed o r declared to be non - checkpointable .

• Because this d i rective requires only a l - woed DPB, the $S foem
of the maceo is recommended . It requires less space and
executes with the same speed as the DIR$ macro .

4-87

DIRECTIVE DESCRIPTIONS

SPRA$

4 . 3.45 SPECIFY POWER RECOVERY AST

The SPECIFY POWER RECOVERY AST directive instructs the system to
record either :

1. that power recovery ASTs for the issuing task are desired ,
and that control is to be transferred when a power fail
recovery AST occurs, or

2 . that power recovery ASTs for the issuing task are no longer
desired .

When an AST service routine entry point address is specified , future
power recovery ASTs will occur for the issuing task , and control will
be transferr ed to the indicated location at the time of the AST ' s
occurrence . When an AST service entry point add r ess is not specified,
future power recovery ASTs will not occur unti l an AST entry point is
again specified .

See Notes below .

FORTRAN Call :

To establish an AST :

EXTERNAL sub
CALL PWRUP (sub)

sub • Name of
recovery .

a subroutine to be
The PWRUP subroutine

CALL sub (no arguments) .

The sub routine
recovery AST
crit ical points
calls.

To r emove an AST :

CALL PWRUP

Macro Call:

SPRA$ fast]

is called as
and therefore
by using DSASTR

executed upon
will effect a

power

a result of a power
may be controlled at
and ENASTR subroutine

ast ; AST service routine entry point address

Mac r o Expansion:

SPRA$
. BYTE
.WORD

PWRAST
109. ,2
PWRAST

Local Symbol Definitions:

; SPRA$ MACRO DIC, DPB SIZE=2 WORDS
;ADDRESS OF POWER RECOVERY AST

S .PRAE AST entry address (2)

4-88

DIRECTIVE DESCRIPTIONS

DSW Return Codes:

IS.SUC
IE.UPN
IE. ITS
IE.AST

IE.ADP

IE.SDP

Notes :

Successful completion
Insufficient dynamic memory
AST entry point address is already unspecified
Directive was issued from an AST service routine
or ASTs are disabled.
Part of the DPB is out of the issuing task ' s
address space
DIe or DPB size is invalid

• SPECIFY POWER RECOVERY AST requires dynamic memory.

• The Executive queues power recovery ASTs when the power - up
interrupt occurs following a power failure . No future
power fail ASTs will be queued for the task until the first one
queued has actually been effected.

• The task enters the power fail AST service routine with the
task stack in the following state:

SP+06 - Event flag mask word
SP+04 - PS of task prior to AST
SP+02 - PC of task prior to AST
SP+OO - DSW of task prior to AST

No trap-dependent parameters accompany a power recovery AST;
therefore, the AST SERVICE EXIT directive (see Section 4.3.4)
can be executed with the stack in the same state as when the
AST was entered .

• If a power recovery AST entry point is specified by a
checkpointable task and the power fails while the task is
checkpointed, the Executive does not effect or queue the AST.
Therefore, when it is essential that a task be notified of a
power failure, the task should disable checkpointing.

• This directive cannot be issued from an AST service routine or
when ASTs are disabled.

4-89

DIRECTIVE DESCRIPTIONS

SRDA$

4.3.46 SPECIFY RECEIVE DATA AST

The SPECIFY RECEIVE DATA AST directive instructs the system to record
either:

• that
that
when

receive da t a ASTs for the issuing task are desired, and
the Execut i ve transfers control to a specified address

data has been placed in the task's receive queue, or

• that receive data ASTs for the issuing task are no longer
desired .

When the
receive
has been
transfer

directive specifies an AST service routine entry point,
data ASTs for the task will subsequently occur wheneve r data
placed in the task's receive queue; the Executive will
control to the specified address .

When the
disables
will not
directive

directive omits an entry point address, the
receive data ASTs for the issuing task. Receive

occur until the task issues another SPECIFY RECEIVE
that specifies an entry point address .

See Notes below .

FORTRAN Call:

Executive
data ASTs
DATA AST

Neither the FORTRAN language nor the ISA standard permits direct
lin king to system trapping mechanisms; therefore, this directive
is not available to FORTRAN tasks.

Macro Call:

SRDA$ last)

ast - AST service routine entry point address

Macro Expansion :

SROA$
. BYTE
. WORD

RECAST
107.,2
RECAST

;SRDA$ MACRO DIC, DPB SIZE-2 WORDS
jADDRESS OF RECEIVE AST

Local Symbol Definitions :

S . RDAE

osw Return Codes:

IS.SUC
IE.UPN
IE. ITS
IE.AST

IE.ADP

IE . SOP

AST entry address (2)

Successful completion
Insufficient dynamic memory
AST entry point address is already unspecified
Directive was issued from an AST service routi ne
or ASTs are disabled
Part of the DPB is out of the issuing task's
address space
DIe or OPB size is invalid

4- 90

DIRECTIVE DESCRIPTIONS

Notes:

• SPECIFY RECEIVE DATA AST requires dynamic memory.

• The Executive queues receive data
to the task . No future receive
the task until the first one
effected.

ASTs when a message is sent
data ASTs will be queued for

queued has actually been

• The task enters the receive data AST service routine with the
task stack in the following state :

SP+06 - Event flag mask word
SP+04 - PS of task prior to AST
SP+02 - PC of task prior to AST
SP+OO - DSW of task prior to AST

NO trap-dependent parameters accompany a receive data AST;
therefore , the AST SERVICE EXIT directive (see Section 4.3 . 4)
must be executed with the stack in the same state as when the
AST was effected.

• This directive cannot be issued from an AST service routine or
when ASTs are disabled.

• When a
issues
entry.
receive

task is checkpointed back into memory, the Executive
an AST for the task if its receive queue contains an
This practice prevents checkpointed tasks from losing
ASTs.

4-91

DIRECTI VE DESCRIPTIONS

SREF$

4 . 3.47 SEND BY REFERENCE

The SEND BY REFERENCE directive inserts a packet containing a
reference to a region into the receive-by- reference queue of a
specified (receiver) task . The receiver task is automatically
attached by the Executive, to the region referred to (the region
identified in W.NRID of the wi ndow definition block). The attachment
occurs even if the receiver task is already attached to the region .
Because region attachment requires system dynamic memory, the receiver
task should detach from any region that it was already attached to , in
orde r to prevent depletion of the memory pool. That is, the task
needs to be attached to a given region only once. The successful
execution of this directive causes a significant event to occur.

The send packet contains :

• A pointer to the created attachment descriptor, which becomes
the region ID to be used by the receiver task

• The offset and length words specified in W.NOFF and W. NLEN of
the window definition block (which the Executive passes
without checking)

• The receiver task ' s permitted access to the region, contained
in the window status word W.NSTS

• The sender task name

• Optionally , the address of an 8-word buffer that
additional information If the packet does not
b uffer address, the Executive sends 8 words of O.

contains
include a

The receiver task automatically has access to the entire region as
specified in W. NSTS. The sender task must be attached to the region
with at least the same types of access . By se t ting all the bits in
W.NSTS to 0, the permitted access can be defaulted to that of the
sender task.

If the directive specif i es an event flag, the Executive sets the f l ag
in the sender t a sk when the receive r task acknowledges the reference
by issuing the RECEIVE BY REFERENCE directive (see Section 4.3.38).
When the sender task exits, the system searches for any un received
r efe r ences that s pecify event flags , and prevents any invalid attempts
to set the flags. The references themselves remain in the receiver
task ' s receive- by- reference queues.

FORTRAN Call :

CALL SREF (tsk,(efnj , iwdb , (isrb) [, ids])

tsk

ofn
iwdb

isrb

ids

: A single p recision, floating point variable con t aining
the name of the receiving task in Radix - 50 format
Event flag number

: An a-word integer array containing a window definition
block (see Sect i on 3 . 5 . 2 . 2)

: An a - wo r d integer array
information. If specified,
placed in iwdb(8) . If isrb is
iwdb(8) remai n uncha nged.

= Directive status

4- 92

containing
the address
omitted, the

add i tional
of isrb is

contents of

Macro Call :

SREF$

task
wdb
efn

•
•
•

DIRECTIVE DESCRIPTIONS

task,wdb[, efn}

The name of the receiver task
Window definition block address
Event flag number

Macro Expansion :

SREF$
.BYTE
.RAOsO
. WORD
.WORD

ALPHA,WOBAOR,48 .
69. , 5 iSREF$ MACRO OIC, OPS SIZE=s WORDS
/ALPHA/ i RECEIVER TASK NAME
48. ;EVENT FLAG NUMBER
WOBADR i WDB ADDRESS

window De fini tion Block Parameters:

Input parameters:

Array
Element

iwdb(4)
iwdb (5)
iwdb(6)
iwdb (7)

iwdb(8)

Offset

W. NRID
W. NOFF
W.NLEN
W.NSTS

W.NSRB

10 of the region to be sent by reference
Offset word passed without checking
Length word passed without checking
Bit sett ing s* in window status word (the
receiver task ' s permitted access) :

WS . RED
WS. WRT
WS.EXT
WS.OEL

1 if read access is permitted
1 if write access is permitted
1 if extend access is permitted
1 if delete access is permitted

Optional address of
containing additional

an 8-word
information

buffer

Output parameters:

None

Local Symbol Definitions:

S.RETN Receiver task name (4)
S .REBA -- Window definition block base address (2)
S.REEF -- Event flag number (2)

DSW Return Codes:

IS.SUC
IE. UPN

IE . INS

IE.PRI
IE . NVR
IE.IEF
IE . AOP

IE .SOP

Successful completion
A send packet or an attachment descriptor could not be
allocated
The sender task attempted to send a reference to an ACP
(Ancillary Control Processor) task, or task not
installed
Specified access not allowed to sender task itself
Invalid region 10
Invalid event flag number
The address check of the OPB, the WOB, or the send
buffer fail ed
OIC or OPS size is invalid

* FORTRAN programmers should refer to Section 3.5.2 to determine the
bit values represented by the symbolic names described.

4-93

Note :

DIRECTIVE DESCRIPTIONS

• For the user's convenience , the ordering of the SREF$ macro
arguments does not directly correspond to the format of the
OPB. The arguments have been arranged so that the optional
argument (efn) is at the end of the macro call. This
ar r angement is also compatible with the SDAT$ macro.

4-94

DIRECTIVE DESCRIPTIONS

SRRA$

4.3.48 SPECIFY RECEIVE-BY-REFERENCE AST

The SPECIFY RECEIVE-BY-REFERENCE AST directive instructs the system to
record either:

• that receive-by- reference ASTs for the issuing task are
desired, and that the Executive transfers control to a
specified address when such an AST occurs, or

• that receive-by-reference ASTs for the issuing task are no
longer desired .

When the directive specifies an
receive-by-reference ASTs for the
transfer control to the specified

AST service routine
task will occur ; the
address.

entry point,
Executive will

When the directive omits an entry point address, the Executive stops
the occurrence of receive- by-reference ASTs for the issuing task.
Receive-by-reference ASTs will not occur until the task issues another
SPECIFY RECEIVE-BY-REFERENCE AST directive that specifies an entry
point address.

See Notes below.

FORTRAN Call:

Neither the FORTRAN language nor the ISA standard permits direct
linking to system trapping mechanismsi therefore, this directive
is not available to FORTRAN tasks.

Macro Call:

SRRA$ last]

ast = AST service routine entry point address (0)

Macro Expansion:

SRRA$
. BYTE
.WORD

RECAST
21. , 2
RECAST

iSRRA$ MACRO DIC, OPB SIZE=2 WORDS
iADORESS OF RECEIVE AST

Local Symbol Definitions:

S.RRAE - - AST entry address (2)

DSW Return Codes:

IS . SUC
IE . UPN
IE. ITS
IE.AST

IE .ADP

IE. SOP

Successful completion
Insufficient dynamic memory
AST entry point address is already unspecified
Directive was issued from an AST service routine or
ASTs are disabled
Part of the DPB is out of the issuing task's address
space
DIC or DPB size is invalid

4-95

DIRECTIVE DESCRIPTIONS

Notes:

• SPECIFY RECE I VE - BY-REFERENCE AST requires dynamic memory .

• The Executive
is sent to
not be queued
actually been

queues receive- by-reference ASTs when a message
the task. Future receive- by- reference ASTs will
for the task until the first one queued has
effected .

• The task enters the receive - by- reference AST service routine
with the task stack in the following state:

SP+06 - Event flag mask word
SP+04 - PS of task prior to AST
SP+02 PC of task prior to AST
SP+OO - DSW of task prior to AST

No trap-dependent parameters accompany a receive -by-reference
AST; therefore, the AST SERVICE EXIT directive (see Section
4.3.4) must be executed with the s t ack in the same state as
when the AST was effected .

• This directive cannot be issued from an AST service routine or
when ASTs are disabled.

• When a task is checkpointed back into memory , the Executive
issues an AST for the task if its receive - by- reference queue
contains one or more entries. This practice prevents
checkpointed tasks from losing receive-by-reference ASTs .

4-96

DIRECTIVE DESCRIPTIONS

SVDB$

4.3.49 SPECIFY SST VECTOR TABLE FOR DEBUGGING AID

The SPECIFY SST VECTOR TABLE FOR DEBUGGING AID di r ect i ve i nst ruct s the
system to record the address of a tab l e of SST service routine entry
points for use by an intra-task debugging aid (ODT, for example).

To deassign the vector table, omit the parameters adr and len from the
macro call.

Whenever an SST
used by the
occurs for the

service routine entry is specified in both the table
t a sk and the table used by a debugging aid, the trap
debugging aid , not for the task .

FORTRAN Call:

Neither the FORTRAN language nor the ISA standard perm i ts direct
linking to system trapping mechanisms; therefore, this directive
is not available to FORTRAN tasks.

Macro Call:

SVDB~ ladr] I,len]

adr = Address of SST vector table
len = Length of (that is, number of entries in) the table in

words

The vector table has the following format :

WO. 00 Odd address 0' nonexistent memory error
WO . 01 Memory protect violation
WO. 02 T-bit trap or execution of a BPT instruction
WO. 03 Execution of an lOT instruction
WO. D. Execution of a reserved instruction
WO. 05 Execution of a non-RSX EMT instruction
WO o 06 Execution of a TRAP instruction
WOo 07 PDP-ll/40 float i ng point exception

A 0 entry in the table indicates that the task does not want to
process the corresponding SST .

Macro Expansion :

SVDB~

.BYTE

.WORD

. WORD

SSTTBL , 4
103 . ,3
SSTTBL

•
;SVDB~ MACRO DIC, DPB SIZE~3 WORDS
;ADDRESS OF SST TABLE
;SST TABLE LENGTH=4 WORDS

Local Symbol Definitions :

S.VDTA
S.VDTL

DSW Return Codes:

Is.sue
IE.ADP

IE.SDP

Table address (2)
Table length (2)

Successful completion
Part of the DPB or table is out of the issuing
task's address space
DIC or DPB size is invalid

4- 97

DIRECTIVE DESCRIPTIONS

SVTK$

4 . 3.50 SPECIFY SST VECTOR TABLE FOR TASK

The
to
for

SPECIFY SST VECTOR TABLE FOR TASK directive instructs the
record the address of a table of SST service routine entry
use by the issuing task.

system
points

To deassign the vector table, omit the parameters adr and len from the
macro call.

Whenever an SST
used by the
occurs for the

service routine entry is specified in both the table
task and the table used by a debugging aid, the trap
debugging aid, not for the task.

FORTRAN Call:

Neither the FORTRAN language nor the ISA standard permits direct
linking to system trapp i ng mechanisms; therefore, this directive
is not available to FORTRAN tasks.

Macro Call:

SVTK$ [adrJ [, len]

adr = Address of SST vector table
len = Length of (that is, number of entries in) the table in

words

The vector table has the following format:

WO . OO
WO.OI
WO.02
WO.03
WO.04
WO.OS
WO . 06
WO.07

Odd address or nonexistent memory error
Memory protect violation
T-bit trap or execution of a BPT instruction
Execution of an lOT instruction
Execution of a reserved instructiQD
Execution of a non - RSX EMT instruction
Execution of a TRAP instruction
PDP-ll/40 floating point exception

A 0 entry in the table indicates that the task does not want to
process the corresponding SST.

Macro Expansion:

SVTK$
.BYTE
. WORD
.WORO

SSTTBL,4
105.,3
SSTTBL
4

iSVTK$ MACRO DIC , OPB SIZE:3 WORDS
iADDRESS OF SST TABLE
iSET TABLE LENGTH-4 WORDS

Local Symbol Definitions :

S.VTTA
S . VTTL

DSW Return Codes :

IS.SUC
IE.AOP

IE . SDP

Table address (2)
Table length (2)

Successful completion
Part of the OPB or table is out of the issuing
task ' s address space
OIC or DPB size is invalid

4-98

DIRECTIVE DESCRIPTIONS

UMAP$
4.3 . 51 uNMAP ADDRESS WINDOW

The uNMAP ADDRESS WINDOW directive unmaps a specified window. After
the window has been unmapped, references to the corresponding virtual
addresses are invalid and cause a processor trap to occur.

FORTRAN Call:

CALL uNMAP (iwdb[,idsJ)

iwdb An 8-word integer array containing a window definition
block (see section 3.5.2.2)

ids = Directive status

Macro Call:

UMAP$ wdb

wdb Window definition block address

Macro Expansion:

uMAP$
.BYTE
.WORD

WOBADR
123. ,2
WOBAOR

;UMAP$ MACRO DIC, DPB SIZE:2 WORDS
;WDB ADDRESS

Window Definition Block Parameters:

Input parameters:

Array
Element

iwdb(l)
bits 0-7

Offset

W.NID -- 10 of the window to be unmapped

Output parameters:

Array
Element

iwdb(7)

Offset

W. NSTS Bit settings* in the window status word:

WS.UNM -- I if the window was successfully
unmapped

Local Symbol Definitions:

u.MABA - - Window definition block address (2)

DSW Return Codes:

IS . SuC
IE. ITS
IE.NVW
IE.ADP
IE . SOP

Successful completion
The specified address window is not mapped
Invalid address window ID
ope or WOB out of range
DIC or OPB size is invalid

* FORTRAN programmers should refer to Section 3.5.2 to determine the
bit values represented by the symbolic names described.

4-99

DI RECT I VE DESCR I PTIONS

WSIG$S

4.3 . 52 WAI T FOR SIGNIFICANT EVENT ($S form recommended)

The WAIT FOR SIGNIFICANT EVENT directive is used to suspend the
execution of the issuing task until the next significant event occurs.
I t is an especially effective way to block a task that cannot continue
because of a lack of dynamic memory, since significant events
occur ring throughout the system often result in the release of dynamic
memo r y. The execution of a WAIT FOR SI GNIFICANT EVENT directive does
not itself constitute a sign i ficant event .

FORTRAN Call :

CALL WFSNE

Macro Call :

WSIG$S {err]

err = Error routine address

Macro Expansion :

WSIG$S
MOV
.BYTE
EMT
BCC
JSR

ERR
(PC)+, - (SP)
49. ,1
377
.+6
PC,ERR

; PUSH DPB ONTO THE STACK
;WSIG$S MACRO DIC, DPS SI ZE=1 WORD
;TRAP TO THE EXECUTIVE
; BRANCH IF DIRECTIVE SUCCESSFUL
;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions :

None

DSW Return Codes:

IS.SUC
IE.ADP

IE . SOP

Notes :

Successful completion
Part of the DPB is out of the issuing task's
address space
OI C or DPS size is inval i d

• If a directive is rejected for lack of dynamic memory, this
di r ective is the only technique available for b l ocking task
execution unti l dynamic memory may again be available .

• The wait state induced by this directive is satisf i ed
fi r st sig n ificant event to occur after the directive
issued. The s i gnif i can t event that occurs mayor may
related to the i ssuing task .

by
has

not

the
been

be

• Because th i s directive requires on l y a I - word OPB, the $S fo r m
of the macro is recommended. It requires less space and
executes with the same speed as the DIR$ macro.

4- 100

DIRECTIVE DESCRIPTIONS

• Significant events include the following:

1. I/O completion

2. Task exit

3 . The execution of a SEND DATA directive

4 . The execution of a SEND BY REFERENCE or a RECEIVE BY
REFERENCE directive

5 . The execution of an ALTER PRIORITY directive

6. The removal of an entry from the clock queue (e.g ••
resulting from the execution of a MARK TIME directive
or the issuance of a rescheduling request)

7. The execution of a DECLARE SIGNIFICANT EVENT directive

8. The execution of the r ound- robin scheduling algorithm
at the end of a round - robin scheduling interval

4- 101

DIRECTIVE DESCRIPTIONS

WTLOS

4.3.53 WAIT FOR LOGICAL "OR- OF EVENT FLAGS

The WAIT FOR LOGICAL "OR" OF
sys t em to block the execution
sets the indicated event flags

EVENT FLAGS directive instructs the
of the issuing task until the Executive
from one of the following groups:

GR 0
GR 1
GR 2
GR 3

Flags 1-16
nags 17-32
Flags 33-48
Flags 49-64

The task does not block itself if any of the indicated flags are
already set when the task issues the directive.

See Notes below .

FORTRAN Call:

CALL WFLOR {efnl,efn2, .. . efnnJ

efn = List of event flag numbers taken as the set of flags to
be specified in the directive.

Macro Call:

WTLO$

grp
msk

=

grp,msk

Desired group of event flags
A 16-bit f l ag mask word

Macro Expansion:

WTLO$
.BYTE
• WORD
• WORD

2,160003
43. ,3
2
160003

;WTLO$ MACRO DIC, OPS SIZE=3 WORDS
;FLAGS SET NUMBER 2 (FLAGS 33:48.)
;EVENT FLAGS 33,34,46,47 AND 48 .

Local Symbol Definitions:

None

DSW Return Codes:

IS.SUC
IE. rEF

IE.AOP

IE.SOP

Notes:

Successful compl etion
No event flag specified in the mask word or flag
set indicator other than 0, 1, 2, or 3
Part of the OPS is out of the issuing task's
address space
DIC or OPS size is invalid

• There is a one-to-one correspondence between bits in the mask
word and the event flags in the specified group. That is, if
group 1 were specified, then bit 0 in the mask word would
correspond to event flag 17, bit 1 to event flag 18, and so
forth .

4-102

DIRECTIVE DESCRIPTIONS

• The Executive does not arbi trar ily clear event flags when
WAITFOR conditions a<e met. Some direc tive s (QUEUE I / O
REQUEST , for example) implici tly clear a flag; otherwise,
they must b. explicitly cleared by a CLEAR EVENT FLAG
directive.

• The grp operand must always be of the form n regardless of the
macro form used. In all other macro calls, numeric or add r ess
values for $5 form macros have the form:

In

For WTLO$5 this form of the grp argument would be:

n

• The argument list specified in the FORTRAN c all must contain
only event flag numbers that lie within one event flag group.
If event flag numbers are specified that lie in more than one
group, or if an invalid event flag number is specif i ed, a
fatal FORTRAN error is generated.

4-103

DIRECTIVE DESCRIPTIONS

WTSE$

4.3 . 54 WAIT FOR SINGLE EVENT FLAG

The WAIT FOR SINGLE EVENT FLAG directive instructs the system to block
the execution of the issuing task until the indicated event flag is
set. If the flag is set at issuance, task execution is not blocked.

FORTRAN Call:

CALL WAITFR (efn(,ids])

efn Event flag number
ids = Directive status

Macro Call:

WTSE$ efn

efn : Event flag number

Macro Expansion:

WTSE$
.BYTE
. WORD

52.
41. ,2
52 .

;WTSE$ MACRO DIC, DPB SIZE-2 WORDS
iEVENT FLAG NUMBER 52.

Local Symbo l Definitions:

W. TSEF

DSW Return Codes :

IS.SUC
IE.IEF
IE.ADP

IE. SOP

Event flag number (2)

Successful completion
Invalid event flag number (EFN)64 or EFN<l)
Part of the DPB is out of the issuing task's
address space
Ole or DPB size is invalid

4-104

APPENDIX A

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

ABORT TASK ABRT$

FORTRAN Call :

CALL ABORT (tsk(,ids)

tsk : Task name
ids £ Directive status

Macro Call:

ABRT$ ts.

ts. Task name

ALTER PRIORITY ALTP$

FORTRAN Call:

CALL ALTPRI ((tsk),(ipri)(,ids)

tsk = Active task name
ipri I-word integer value equal to the new priority, from I

to 250 (decimal)
ids = Directive status

Macro Call:

ALTP$ (tsk) (,prij

tsk = Active task name
pri - New priority, from I to 250 (decimal)

ASSIGN LUN ALUN$

FORTRAN Call:

CALL ASNLUN (lun , dev,unt(,ids])

lun • Logical unit number
dey Device name (format IA2)
unt • Device unit number
ids = Directive status

A-l

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Macro Call:

ALUN$ lun,dev,unt

lun = Logical unit number
dev = Device name (two characters)
unt = Device unit number

AST SERVICE EXIT ($S form recommended)

FORTRAN Call :

ASTX$S

Neither the FORTRAN language nor the ISA standard permits direct
linking to system trapping mechanisms; therefore, this directive
is not available to FORTRAN tasks.

Macro Call:

ASTX$S (err]

err = Error routine address

ATTACB REGION ATRG$

FORTRAN Call :

CALL ATRG (irdb(,ids])

irdb = An a -word integer array containing a region definition
block (see Section 3 . 5.1.2)

ids "" Directive status

Macro Call :

ATRG$ rdb

rdb z Region definition block address

CONNECT TO INTERRUPT VECTOR CINT$

FORTRAN Call :

Not supported

Macro Call :

CINT$ vec,base,isr , edir,rsw,ast

vec = interrupt vector address--Must be in the range 60(8) to
highest vector specified during SYSGEN, inclusive, and
must be a multiple of 4

base "" virtual base address for kernel APR 5 mapping of the
I5R, and enable/disable interrupt routines

isr = virtual address of the ISR, or 0 to disconnect from the
interrupt vector

A-2

DIRECTIVE SUMMARY - ALPBABETICAL ORDER BY MACRO CALL

edir: virtual address of the enable/disable interrupt routine

psw low-order byte of the Processor
loaded before entering the ISR

Status word to be

ast : virtual address of an AST routine to be entered after
the fork level routine queues an AST

CLEAR EVENT FLAG

FORTRAN Call:

CALL CLREF (efn[,ids])

efn : Event flag number
ids Directive status

Macro Call:

CLEF$ efn

efn Event flag number

CANCEL MARK TIME REQUESTS ($5 form recommended)

FORTRAN Call:

CALL CANMT ([, ids])

ids Directive status

Macro Call:

CMKT$S [, ,err]

err : Error routine address

CREATE ADDRESS WINDOW

FORTRAN Call:

CALL CRAW (iwdb (, ids)

CLEF$

CMKT$S

CRAWS

iwdb An a - word integer array containing a window definition
block (see Section 3.5.2 . 2)

ids = Directive status

Macro Call:

CRAW$ wdb

wdb window definition block address

A-3

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

CREATE REGION CRRG$

FORTRAN Cal1:

CALL CRRG (irdb[,ids)

irdb = An 8-word integer array containing a region definition
block (see Section 3.5.1.2)

ids = Directive status

Macro Call :

CRRG$ rdb

rdb : Region definition block address

CANCEL TIME BASED INITIATION REQUESTS

FORTRAN Cal1:

CALL CANALL (tsk[,idsJ)

tsk = Task name
ids : Directive status

Macro Call:

CSRQ$ tsk

tsk Task name

DECLARE SIGNIFICANT EVENT ($S form recommended)

FORTRAN Call:

CALL DECLAR ([,ids)

ids = Directive status

Macro Call:

DECL$S [,err]

err = Error routine address

DISABLE AST RECOGNITION ($S form recommended)

FORTRAN Cal1:

CALL DSASTR (ids»)

ids = Directive status

Macro Call :

DSAR$S [err]

err e Error routine address

>-4

CSRQ$

DECL$S

DSAR$S

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

DISABLE CHECKPOINTI NG ($S form r ecommended)

FORTRAN Call:

CALL DISCKP

Macro Call :

DSCP$S lerr]

er r = Error r outine address

DETAce REGION

FORTRAN Call :

CALL DTRG (i r dbl , ids])

DSCP$S

DTRG$

irdb = An a-word integer array containing a region definition
block (see Section 3 .5.1.2)

ids Directive status

Macro Call:

DTRG$

,db Region definition block address

ELIMINATE ADDRESS WINDOW

FORTRAN Call :

CALL ELAW (iwdbl,ids])

iwdb = An a-word integer ar ray containing
block (see Section 3 . 5.2.2)

ids • Directive status

Macro Call:

ELAW$ wdb

wdb = Window definition block address

ENABLE AST RECOGNITION ($S form recommended)

FORTRAN Call:

CALL ENASTR

Macro Call :

ENAR$S lerr]

e rr • Error routine address

A-5

ELAW$

a window definition

ENAR$S

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

ENABLE CHECKPOINTING ($S form recommended) ENCP$S

FORTRAN Call:

CALL ENACKP

Macro Call:

ENCP$S [err]

err Error routine address

EXITIF EXIF$

FORTRAN Call:

CALL EXITIF (efn(,ids])

efn = Event flag number
ids Directive status

Macro Call:

EXIF$ efn

efn = Event flag number

TASK EXIT ($S form recommended)

FORTRAN Call:

STOP
or

CALL EXIT

Macro Call:

EXIT$S [err]

err = Error routine address

EXTEND TASK

FORTRAN Call:

CALL EXTTSK ([inc] [, ids])

inc =

ids

A positive or negative number equal to
32-word blocks by which the task size is
or reduced. If omitted, task size
installed task size.
Directive status

'-6

EXIT$S

EXTK$

the number of
to be extended
defaul ts to

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Macro Call:

EXTK$ [inc]

inc A positive or negat i ve number equal to the number of
32-word blocks by which the task is to be extended or
reduced. If omitted, task size defau l ts to installed
task size.

GET LUN INFORMATION GLUN$

FORTRAN Call:

CALL GETLUN (lun,dat[,ids])

Iun Logical unit number
dat
ids

•
=

6 - word integer array to receive LUN i nformation
Directive status

Macro Call:

GLUN$ lun,buf

lun : Logical uni t number
buf : Address of 6 - word buffer that will receive the LUN

information

GET MCR COMMAND LINE

FORTRAN Call:

CALL GE TMCR (buf[,ids])

buf
ids :

Macro Call :

GMCR$

80- byte array to receive command line
Directive status

GET MAPPING CONTEXT

FORTRAN Call:

CALL GMCX (imcx[,ids])

imcx :

ids =

Macro Cal l:

GMCX$

An integer array to receive the mapping
size of the array is 8*n+l, where n is
window blocks in the task ' s header . The
is 8*8+1=65.
Directive status

wvec

GMCR$

GMCX$

context. The
the number of
max imum s i ze

wvec = The address of a vector of n window definition blocks;
n is the number of window blocks in the task's header .

A- 7

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

GET PARTITION PARAMETERS GPRT$

FORTRAN Call:

CALL GETPAR ([prt],but[,idsJ)

Partition name prt ""
but ""
ids ""

A 3-word integer array to receive partition parameters
Directive status

Macro Call:

GPRT$ (prt] ,buf

prt Partition name
buf "" Address of a 3-word buffer

GET REGION PARAMETERS GREG$

FORTRAN Call:

CALL GETREG ((rid] ,buf(,ids])

rid Region id
buf 3 - word integer array to receive region parameters
ids Directive status

Macro Call:

GREG$ (rid] [,buf]

rid "" Region id
but Address of a 3-word buffer

GET SENSE SWITCHES ($S form recommended) GSSW$S

FORTRAN Call:

CALL READSW (isw)

isw "" Integer to receive the console switch settings

Macro Call:

GSSW$S (err)

err Error routine address

GET TIME PARAMETERS GTIM$

FORTRAN Call:

FORTRAN provides several subroutines for obtaining the time in a
number of formats. See the IAS/RSX-ll FORTRAN-IV User's Guide or
the FORTRAN IV-PLUS Usee's Guide.

A-a

DIRECTIVE SUMMARY - ALPHABETICAL OROER BY MACRO CALL

Macro Call:

GTIM$ buf

buf = Address of a-word buffer

GET TASK PARAMETERS GTSk$

FORTRAN Call:

CALL GETTSK (buf(,ids])

buf 16-word integer array to receive the task parameters
ids = Directive status

Macro Call:

GTSK$ buf

buf Address of a 16-word buffer

INHIBIT AST RECOGNITION ($S form recommended) IBAR$S

FORTRAN Call:

CALL INASTR (ids)]

ids = Directive status

Macro Call :

IHAR$S (eee]

err = Error routine address

MAP ADDRESS WINDOW MAP$

FORTRAN Call:

CALL MAP (iwdb(,ids])

iwdb: An a - wo[d integer array containing a window definition
block (see Section 3.5.2.2)

ids Directive status

Macro Call:

MAP$ wdb

wdb : Window definition block address

A-9

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

MARK TIME

FORTRAN Call :

CALL MARK (efn,tmg,tnt[,ids])

efn - Event flag number
tmg : Time interval magnitude
tnt R Time interval unit
ids == Directive status

MRKT$

The ISA standard call for delaying a task for a specified time
interval is also included:

CALL WAIT (tmg,tnt,ids)

tmg ==
tnt ,.
ids '"'

Macro Call:

MRKT$

Time interval magnitude
Time interval unit
Directive status

lefn] , tmg, tnt I ,ast]

efn c Event flag number
tmg Time interval magnitude
tnt ,. Time interval unit
ast == AST entry point address

QUEUE I /O REQUEST

FORTRAN Call:

CALL 010 (fnc,lun,[efn),(prij,(isb],(prl] [, ids))

fun • I/O function code
Iun • Logical unit number
efn • Flag number
pri • Priority; ignored, but must be present
isb • 2-word integer array to receive final

010$

I/O status
p<l • 6-word integer array containing device-dependent

parameters to be placed in parameter words 1 through 6
of the directive parameter block (DPS) .

ids • Directive status

Macro Call :

010$ fnc ,Iun, lefn] , Ipr iJ , r isb] , last] I ,prl]

fnc • I/O function code
Iun • Logical unit number
efn • Event flag number
pri • Priority; ignored, but must be present
isb - Address of I/O status block
ast • Address of AST service routine entry point
p<l • Parameter list of the fo rm (PI, ..• P6)

A-IO

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

QUEUE I/O REQUEST AND WAIT

FORTRAN Call:

CALL WTQIO (fnc,lun,efn,[pri),[isb),[prll[,ids])

fne •
lun -efn •
pri
isb •

I/O function code
Logical unit number
Event flag number
Priority; ignored, but must be present
2-word integer array to receive final I/O status

QIOW$

prl = 6-word integer array containing device dependent
parameters to be placed in parameter words 1 through 6
of the DPB

ids - Directive status

Macro Call :

QIOW$ fnc,lun,efn, [pri] , [isb], fast] [, prl]

fne I/O fUnction code
lun • Logical unit number
efn • Event flag number
pri • Priority; ignored, but must be present
isb Address of I/O status block
aBt • Address of AST service routine entry point
prl = Parameter list of the form <PI, ... P6 >

RECEIVE DATA

FORTRAN Call:

CALL RECEIV (tsk,buf[,ids)

Sender task name tsk '"
buf ""
ids '"

IS-word integer array for received data
Directive status

Macro Call:

RCVD$ tsk,buf

tsk = Sender task name
buf z Address of I S-word buffer

RECEIVE DATA OR EXIT

FORTRAN Call:

CALL RECOEX (tsk , buf[,ids])

Sender task name tsk ;.
buf ""
ids •

IS-word integer array for received data
Directive status

Macro Call:

RCVX$ tsk,buf

tsk ~ Sender task name
buf Address of IS-word buffer

A-ll

RCVD$

RCVX$

DIRECTIVE SUMMARY - ALP8ABETICAL ORDER BY MACRO CALL

READ ALL EVENT FLAGS

FORTRAN Call:

Only a single event flag can be read by a FORTRAN task. The
call is:

CALL READEF (efn[,ids])

efn Event flag number
ids = Directive status

Macro Call:

RDAF$ buf

buf = Address of 4-word buffer

REOUEST

FORTRAN Call:

CALL REQUES (tsk , (opt] [, ids])

tsk = Task name
opt = 4- word integer array

ROAF$

ROST$

opt (I) = Partition name first half; i gnored , but
must be present

opt(2) Partition name second half; i gnored , but
must be present

opt(3) = priority ; ignored, but must be present
opt(4) User identification code

ids Directive status

Macro Call:

ROST$ tsk,[prt],[pri] [, ugc,umc]

tsk •
prt
pci =
ugc =
umc •

Task name
Partition name; ignored, but must be present
Priority; ignored, but must be present
OIC group code
UIC member code

RECEIVE BY REFERENCE

FORTRAN Call:

CALL RREF (iwdb,[isrb] [,ids])

RREP$

iwdb z An a-word integer array containing a window definit i on
block (see Section 3.5 . 2.2)

isrb: A IO-word integer ar r ay to be used as the r ece i ve
buffer

ids = Directive status

Macro Call:

RREF$ wab

wab Window definition block

A-1 2

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

RESUME RSOM$

FORTRAN Call:

CALL RESUME (tsk[,id s)

tsk '" Task name
ids z Directive status

Macro Call :

RSUM$ tsk

tsk '" Task name

RUN

FORTRA.N Call :

CALL RUN (tsk , [opt), [smg) ,snt, [rmg), [rnt) [,ids])

tsk '"
opt ;:

smg
snt •
emg •
mt •
ids

Task name
4-word integer array
opt(l) '" Partition name first half; ignored,

must be present
opt (2) Par ti tion name second hal f; ignored,

must be present
opt(3) Priority; ignored, but must be present
opt(4) '" User identification code
Schedule delta magnitude
Schedule delta unit
Reschedule interval magnitude
Reschedule interval unit
Directive status

The ISA standard call for initiating a task is also included:

CALL START (tsk,smg , snt,ids)

tsk z Task name
smg '" Schedule delta magnitude
snt : Schedule delta unit
ids Directive status

Macro Call:

RUN$ tsk, [prt), [priJ, [ugc], [umc], [smg] ,sntf ,rmg,rnt]

tsk '" Task name
prt ;: Partition name; ignored, but must be present
pri '" Priority; ignored, but must be present
ugc UIC group code
umc UIC member code
smg '" Schedule delta magnitude
snt Schedule delta unit
rmg Reschedule interval magnitude
rnt '" Reschedule interval unit

A-13

RUN$

but

but

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

SEND DATA

FORTRAN Call:

CALL SEND (tsk,buf, [efn] (,ids])

Task name tsk ;:
buf ,.
efn ""
ids ..

13-word integer array of data to be sent
Event flag number

Macro Call:

Directive status

tsk,buf[,efn]
.. Task name

SDAT$
tok
buf
ofn

"" Address of 13-word data buffer
,. Event flag number

SET EVENT FLAG

FORTRAN Call:

CALL SETEF (efn(,ids])

efn = Event flag number
ids - Directive status

Macro Call:

SETF$ efn

efn ~ Event flag number

SPECIFY FLOATING POINT EXCEPTION AST

FORTRAN Call:

Not supported.

Macro Call:

SFPA$ fast]

ast ,. AST service routine entry point address

SUSPEND ($5 form recommended)

FORTRAN Call:

CALL SUSPND

Macro Call:

SPND$S (err]

err - Error routine address

A-14

SDAT$

SETF$

SFPA$

SPND$S

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

SPECIFY POWER RECOVERY AST

FORTRAN Call:

CAL L PWRUP (sub)

sub Name of a
recovery.
following :

subroutine
The PWRUP

CALL s ub (no argume nts) .

to be executed
subroutine will

SPRA$

upon power
effect the

The subroutine is called as a result of a power
recovery AST, and therefore the subroutine can be
control led at critical points by using the DSASTR (or
INASTR) and ENASTR subroutine calls .

Macro Call :

SPRA$ fast)

ast = AST service routine entry point address

SPECIPY RECEIVE DATA AST

FORTRAN Call:

Not supported.

Macro Call :

SRDA$ fast]

ast = AST serv ice routine entry point address

SEND BY REPERENCE

FORTRAN Call:

CALL SREF (tsk,[efn),iwdb ,{ isrb) [,ids))

ls.
efn

•
•

Receive r task name
Event f l ag number

SRDA$

SREP$

iwdb • An a -word integer array containing a window definition
block (see Section 3.5 . 2 . 2)

isrb

ids

Macro Call :

SREF$

task
wdb
efn

•

•
•
•

An a -word integer array containing additional
information
Directive status

task,wdb[,efn)

Receiver task name
Window definition block
Event flag number

A-IS

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

SPECIFY RECEIVE- BY-REFERENCE AST

FORTRAN Call:

Not supported .

Macro Call :

SRRA$ last]

ast ~ AST s ervice routine entry point address

SPECIFY SST VECTOR TABLE FOR DEBUGGING AID

FORTRAN Call :

Not supported.

Macro Call:

SVDB$ ladr] I,len]

adr Address of SST vector table
len - Length of (that is, number of entries in) table in

words

SPECIFY SST VECTOR TABLE FOR TASK

FORTRAN Call:

Not supported.

Macro Call :

SVTK$ [adr]I,len]

adr '"
len '"

Address of SST vector table
Length of (that is, numbe r of entries in) table in
words

UNMAP ADDRESS WINDOW

FORTRAN Call :

CALL UNMAP (iwdb l,ids])

SRRA$

SVDB$

SVTK$

UMAP$

iwdb: An a- word integer array contain i ng a window definition
bl ock (see Section 3 . 5.2.2)

ids Directive s t atus

Macro Call :

UMAP$ wdb

wdb - window definition block address

A-16

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

WAIT FOR SIGNIFICANT EVENT ($S form recommended)

FORTRAN Call :

CALL WFSNE

Macro Call:

WSIG$S [err]

err - Error routine address

WAIT FOR LOGICAL 'OR' OF EVENT FLAGS

FORTRAN Call:

CALL WFLOR (efnl , efn2, . .. efnn)

WSIG$S

WTLO$

efn - List of event flag numbers is taken as the set of flags
to be specified in the directive .

Macro Call :

WTLO$ grp,msk

g<p
msk

• Desired group of event flags
A 16-bit octal mask word

WAIT FOR SINGLE EVENT FLAG

FORTRAN Call:

CALL WAITFR (efn[,idsl)

efn = Event flag number
ids : Directive status

Macro Call:

WTSE$ efn

efn ~ Event flag number

A-17

WTSE$

APPENDIX B

STANDARD ERROR CODES

The symbols listed below are associated with the
codes returned by the RSx- llM Executive. To
MACRO-l i program, the programmer uses the following

directive status
include these in a
two lines of code:

.MCALL DRERR$
DRERR$

STANDARD ERROR CODES RETURNED BY DIRECTIVES IN THE DIRECTIVE STATUS
WORD

IS.CLR +00
IS.SUC +01
IS.SET +02

IE.UPN
IE.INS
IE.ULN
IE . HWR
IE.ACT
IE . ITS
IE.CKP
IE . PRI
IE.RSU
IE.ILV

IE . AST
IE.MAP

IE.ALG
IE.WOV
IE.NVR
IE.NVW
IE . LNL
IE . IOU
IE.ITI
IE.PNS
IE .I PR
IE.ILU
IE.IEF
IE . ADP
IE . SDP

-01-
-02.
-05.
-06.
-07.
- 08.
-10.
-16.
-17 .
-19.

-80.
- 81.

-84.
-85.
-86.
-87.
-90.
-92.
-93.
-94.
-95.
-96.
- 97.
-98 .
-99.

EVENT FLAG WAS CLEAR
OPERATION COMPLETE , SUCCESS
EVENT FLAG WAS SET

INSUFFICIENT DYNAMIC STORAGE
SPECIFIED TASK NOT INSTALLED
UNASSIGNED LON
DEVICE DRIVER NOT RESIDENT
TASK NOT ACTIVE
DIRECTIVE INCONSISTENT WITH TASK STATE
ISSUING TASK NOT CHECKPOINTABLE
PRIVILEGE VIOLATION
SPECIFIED VECTOR ALREADY IN USE
SPECIFIED VECTOR ILLEGAL

DIRECTIVE ISSUED/ NOT ISSUED FROM AST
ISR OR ENABLE/DISABLE INTERRUPT ROUTINE
NOT WITHIN 4K WORDS FROM VALUE OF
BASE ADDRESS & 177700
ALIGNMENT ERROR
ADDRESS WINDOW ALLOCATION OVERFLOW
INVALID REGION 10
INVALID ADDRESS WINDOW ID
LUN LOCKED IN USE
INVALID DEVICE OR UNIT
INVALID TIME PARAMETERS
PARTITION/REGION NOT IN SYSTEM
INVALID PRIORITY (>250.)
INVALID LUN
INVALID EVENT FLAG NUMBER
PART OF DPB OUT OF USER'S SPACE
DIC OR cPB SIZE INVALID

B-1

I

$$$GLB , 1-8

ABORT ,
CALL, 4- 6

Aborting a task, 4- 6
ABRT$, 4- 6
Activating a task, 4-73, 4-79
Active task, 1- 15
Address,

OPB, 1-2
error routine , 1-7

Address mapping, 3-1, 3- 5 , 3- 6
Address space ,

logical, 3- 2 , 3-4
virtual , 3- 2

Address window ,
creating, 4- 23
eliminating, 4-36
mapping, 4-59
unmapping, 4-99
virtual , 3- 2 , 3- 3 , 4- 23

Alignment boundaries,
offset, 4- 23, 4-59

ALTER PRI ORITY, 4-8
Altering task priority , 4-8
ALTP$, 4 - 8
ALTPRI,

CALL , 4-8
ALUN$, 4-9
Arguments,

integer, 1-11
INTEGER*2, 1-11
optional , 4- 4
optional subroutine , 1- 10

Array,
integer, 1-11
ROB integer , 3-13
WoB integer, 3- 16

ASNLUN,
CALL, 4- 9

ASSIGN LUN , 4-9
Assigning LUNs, 4-9
AST , 2- 1, 2- 4 , 2-6

floating- point processor,
4- 85

power recovery , 4-88
receive data, 4- 90
receive- by-reference,

4-95
AST recognition,

disabling, 4-31
enabling, 4- 37

AST SERVICE EXIT, 4 -11

INDEX

AST service routine, 2-7,
4-11 , 4-20, 4-85, 4-88,
4- 90, 4-95

ASTX$S, 4-11
Asynchronous System Trap

(AST), 2-1, 2-4, 2-6
ATRG ,

CALL , 4 - 13
ATRG$, 4-13
ATTACH REGION , 4-13
Attaching to region , 3- 7,

4-13, 4- 26

Bit definitions, 3-10, 3-13
Block,

Directive Parameter (DPB),
1-2, 1- 4 , 1- 6

Region Definition (ROB),
3-10

Window Definition (WDB),
3- 10, 3- 13, 3 - 14

Blocked task , 1-15
Blocking a task , 4-102, 4-104
Blocks,

window, 3-2
Boundaries,

offset alignment , 4-23,
4-59

Byte,
OPB size, 1- 2

$C form , 1- 6
CALL ABORT, 4 - 6
CALL ALTPRI, 4-8
CALL ASNLUN, 4 - 9
CALL ATRG, 4-13
CALL CANALL, 4-29
CALL CANMT, 4-22
CALL CLREF , 4-21
CALL CRAW , 4-24
CALL CRRG , 4- 26
CALL OECLAR , 4-30
CALL oISCKP, 4- 33
CALL DSASTR, 4-31
CALL OTRG , 4- 34
CALL ELAW, 4- 36
CALL ENACKP, 4- 38
Call examples ,

macro , 1- 8
CALL EXIT , 4-41
CALL EXITIF, 4-39

Index- 1

CALL EXTTSK, 4-43
CALL GETMCR, 4 - 47
CALL GETPAR, 4-51
CALL GETREG, 4-53
CALL GMCX, 4-49
CALL INASTR, 4-31
CALL MARK, 4-62
CALL PWRUP, 4-88
CALL QIO, 4-65
CALL REAOEF, 4-72
CALL REAOSW, 4-55
CALL RECEIV, 4-69
CALL RECOEX , 4-70
CALL REQUES, 4-73
CALL RESUME, 4-78
CALL RREF, 4-76
CALL RUN, 4 - 79
CALL SEND, 4-83
CALL SETEF, 4-84
CALL SREF, 4-92
CALL SSWITCH, 4-55
CALL START, 4-79
CALL SUSPND, 4-87
CALL UNMAP, 4-99
CALL WAIT, 4-62
CALL WAITFOR, 4-104
CALL WFLOR, 4-102
CALL WFSNE, 4-100
CALL WTQIO, 4-68
Calls,

macro, 1- 5
subroutine , 1-11

CANALL,
CALL , 4- 29

CANCEL MARK TIME REQUESTS,
4-22

CANCEL TIME BASED INITIATION
REQUESTS, 4- 29

Cancelling MARK TIME
requests, 4-22

Cancelling time-based
requests , 4- 29

Checkpointing, 4- 1 7
disabling, 4-33
enabling, 4- 38

CINT$, 4-15
CLEAR EVENT FLAG , 4-21
Clearing event flag, 4-21
CLEF$, 4-21
CLREF,

CALL , 4-21
CMKT$S, 4- 22
Code,

Directive Identification
(OIC) , 1-2

User Identification (UIC),
4 - 57, 4 - 74

Codes ,
error, 1-3
standard error, 8-1

INDEX (Cant.)

Common event flags , 2- 2
Common regions,

static, 3-4
Conditional task

termination , 4-39
Conditions,

FORTRAN error, 1-14
CONNECT TO INTERRUPT

VECTOR, 4-15
Console switch registers,

4- 55
Conventions,

directive, 4-4
macro name , 1-5

CRAW,
CALL, 4-24

CRAWS, 4 - 23
CREATE ADDRESS WINDOW, 4-23
CREATE REGION, 4-26
CRRG,

CALL, 4-26
CRRG$, 4-26
CSRQS, 4-29

Data,
receiving, 4- 69, 4- 70
sending , 4-8 3

Data AST ,
receive , 4 - 90

Data structures ,
user , 3-9

Debugging aid SSTs, 4-97
DECL$S , 4- 30
DECLAR,

CALL, 4-30
DECLARE SIGNIFICANT EVENT,

4-30
Declaring Significant event ,

4- 30, 4-62, 4-83
Default UIC, 4-7 4
Definition Block,

Region (ROB), 3-10
Window (WDB), 3-10, 3-13,

3- 14
Definitions ,

bit, 3-10, 3- 13
Delta time,

schedule, 4-82
DETACH REGION , 4-34
Detaching from region, 4-3~
OIC , 1-2
DIRS macro, 1-6, 1-7
Directive categories, 4-1
Directive conventions, 4-4
Directive definition,

system , 1-1
Directive functions,

system, 1-1

Index-2

I

INDEX (Cont.)

Directive Identification
Code (DIC), 1-2

Directive macros,
using, 1-3, 1-4

Directive Parameter Block
(DPB), 1-2, 1-4, 1-6

Directive processing,
system , 1- 2

Directive Status Word (DSW),
1 - 2

Directive summary,
system, 4-2, 4-3, 4-4, A-I

Directives,
implementing system, 1-1
memory management, 3-1

DISABLE AST RECOGNITION, 4-31
DISABLE CHECKPOINTING, 4-33
Disabling AST recognition,

4-31
Disabling checkpointing, 4- 33
DISCKP,

CALL, 4-33
Dormant task, 1-15
DPB, 1-2, 1-4, 1- 6
DPB,

creating a, 1-4
predefined, 1- 7

DPB address, 1- 2, 1-4
DPB pointer, 1-2, 1-4
DPB size byte, 1-2
(DPB) ,

Directive Parameter Block,
1-2, 1-4, 1-6

DRERR$ macro, 1-3
DSAR$S, 4-31
DSASTR,

CALL, 4-31
DSCP$S, 4-33
DSW , 1-2
DSW values, 1- 3
DTRG,

CALL, 4-34
DTRG$, 4-34
Dynamic regions, 3-4

EFN, 2-2
ELAW,

CALL, 4-36
ELAW$, 4- 36
ELIMINATE ADDRESS WINDOW,

4-36
EMT 377, 1-1, 1-2, 1-4
Emulator trap (EMT), 1-1
ENABLE AST RECOGNITION,

4-37
ENABLE CHECKPOINTING, 4-38
Enabling AST recognition,

4-37

Enabling checkpointing,
4-38

ENACKP,
CALL , 4-38

ENAR$S, 4-37
ENCP$S, 4-38
Entry points,

routine, 2-4
Error codes, 1- 3

standard , B-1
Error conditions,

FORTRAN, 1- 14
Error routine address, 1-7
Error status, 1-3
Event,

declaring significant,
4-30 , 4-62 , 4-83

significant, 2-1, 4-101
waiting for, 4- 100

Event flag,
clearing, 4-21
setting, 4-84
waiting for, 4-102, 4- 104

Event flag numbers (EFNS),
2-2, 4-4

Event flags, 2- 1
common, 2-2
local, 2-2
logical OR of, 4-102
reading, 4- 7 2
testing, 2-3
using, 2-2

Examples,
macro call, 1-8

EXIF$, 4-39
EXIT,

CALL, 4- 41
EXIT$S, 4-41
EXITIF,

CALL, 4-39
Exits,

task, 1-3
Expansions,

macro, 1-8
EXTEND TASK, 4-43
Extending task size, 4-43
EXTERNAL , 4- 88
EXTK$, 4-43
EXTTSK,

CALL, 4- 43

Flag,
clearing event, 4-21
setting event, 4-84
waiting for event , 4-102 ,

4-104
Flag numbers (EFNs),

event, 2-2, 4-4

Index-3

Flag polarity,
reporting, 4-21, 4- 84

Flags,
common event, 2-2
event, 2-1
local event, 2- 2
logical OR of event, 4-102
reading event, 4-72
testing event, 2-3
using event, 2-2

Floating- point processor
AST, 4- 85

Fork level, 4-15, 4-18
Form,

$, 1-6
$C, 1- 6
$5, 1- 6

Format ,
stack, 2- 5, 2- 7, 2- 8

FORTRAN error conditions,
1- 14

FORTRAN subroutines , 1-9 to
1-14

summary , 1-12
using , 1-10

Functions,
system direc tive, 1-1

GET GETTSK, 4- 57
GET LUN INFORMATION, 4-45
GET MAPPING CONTEXT, 4- 49
GET MCR COMMAND LINE, 4- 47
GET PARTITION PARAMETERS,

4- 51
GET REGION PARAMETERS, 4-53
GET SENSE SWITCHES , 4-55
GET TASK PARAMETERS, 4- 57
GET TIME PARAMETERS, 4- 56
GETADR subroutines, 1-11
GETMCR,

CALL , 4- 47
GETPAR ,

CALL, 4-51
GE TREG,

CALL, 4-5 3
Getting current time , 4- 56
Getting issuing task

parameters , 4-57
Getting LUN information,

4-45
Getting mapping context,

4-49
Getting MCR command, 4-47
Getting partition

parameters, 4-51
Getting region parameters,

4-53

INDEX (Cont.)

Getting switch register
contents , 4-55

GETT5K,
GET, 4- 57

GLUN$, 4-45
GMCR$, 4-47
GMCX,

CALL , 4- 49
GMCX$, 4-49
GPRT$, 4-51
GREG$, 4-53
GSSW$S , 4-55
GTIM$, 4-56
GTSK$, 4-57

I/O request ,
queuing, 4- 65, 4-68

Identification ,
region, 3-4
User Code (UIC), 4- 74
window, 3-2

Identification Code,
Directive (DIC), 1-2
User (UIC), 4- 74

IHARSS, 4-31
INASTR,

CALL, 4 - 31
Installed task,

removing, 1-16
Integer arguments, 1-11
Integer array, 1-11

RDB, 3-13
WDB , 3-16

INTEGER-2 arguments, 1-11
Interrupt Service Routine,

4-15, 4- 18
Interrupt Transfer Block,

4-15, 4-18, 4 - 20
Interrupts,

software, 2- 3
Interval,

reschedule, 4-82
time, 4-64

Intervals,
time, 4-81

ISA standard call, 4-62,
4- 79

ISA subroutines, 1-9
ISR, 4-15, 4 - 18
ITB, 4 - 15, 4-18, 4-20

KT11 memory management
unit, 3- 1

Index- 4

INDEX (Cont.)

Library,
object module, 1-1 0
system macro, 1- 5

Local event flags , 2-2
Logical address space, 3- 2 ,

3-'
Logical OR of event flags,

4-102
Logical Unit Numbers (LUNs) ,

4 - 4, 4-9
LUN information,

getting, 4-45
LUNs, 4-4

assigning , 4-9

Macro call examples, 1- 8
Macro calls, 1-5
Macro expansions, 1- 8
Macro library,

system, 1-5
Macro name conventions, 1- 5
Macros ,

using directive, 1-4, 1- 5
Magnitude values, 4- 64, 4 - 81
Management directives,

memory , 3- 1
MAP ADDRESS WINDOW , 4-59
MAP$, 4-59
Mapping ,

address, 3- 1, 3-5, 3- 6
privileged task, . 3-l7

Mapping address wirldow, 4 - 59
Mapping context ,

getting, 4-49
MARK ,

CALL, 4- 62
MARK TIME , 4-62
MARK TIME requests,

cancelling, 4-22
Mask word,

WAITFOR , 2-7
.MCALL directive, 1-5
MCR command ,

getting , 4- 47
M~mory management

directives, 3-1
Memory- management unit ,

KTll, 3- 1
Modul e library,

object, 1- 10
MRKT$, 4-62

Name conventions,
macro , 1-5

Names,
task, 1-10

Numbers ,
Event Flag (EFNs), 2-2, ,-,
Logical Unit (LUNs), 4-4,

'-9

Object module library, 1- 10
Offset alignment boundaries ,

4-23, 4-59
Offsets,

symbolic, 1-8
Optional arguments, 4-4
Optional subroutine

arguments, 1-10

Packet,
send-by-reference, 4-92

Parameter Block,
Directive (OPB), 1-2, 1- 4,

1-.
Parameters ,

getting issuing task, 4-57
getting partition, 4-51
getting region, 4-53
ROB, 3- 17
time, 4-64, 4-81
WOB, 3-17

Partition parameters,
getting , 4-51

Pointer,
OPB, 1- 2, 1-4

Power recovery AST, 4-88
Power recovery subroutine,

4 - 88
Predefined DPS, 1- 7
Priority,

altering task , 4-8
Privileged task mapping,

3- 17
Processing ,

system directive , 1-2
Processor AST,

floating-point, 4-85
Program Status word (PS), 1-2
Protection,

region , 3- 7
Protection UIC, 4-74
PS, 1-2
PWRUP,

CALL, 4-88

QIO ,
CALL, 4-65

QIO$, 4-65

Index- S

QIOW$, 4- 68
Queue ,

receive, 4-83
receive- by-reference,

4 - 76
QUEUE I/O REQUEST, 4-65
QUEUE I /O REQUEST AND WAIT,

4- 68
Queuing I/O request, 4-65,

4- 68

R. GID, 3-11
R. GNAM , 3- 11
R. GPAR, 3-11
R.GPRO, 3-11
R. GSIZ, 3-11
R. GSTS, 3 - 11
RCVD$, 4-69
RCVX$, 4-70
RDAF$, 4-72
ROB, 3-10

generating an, 3-11, 3-13
RDB integer array, 3-13
RDB parameters, 3- 17
RDBBK$ macro, 3-11
RDBDF$ macro, 3- 11
READ ALL EVENT FLAGS, 4-72
READEF,

CALL, 4- 72
Reading event flags, 4-72
READSW,

CALL, 4-55
Ready- to- run task, 1- 1 5
RECEIV ,

CALL , 4-69
RECEIVE BY REFERENCE, 4-7 6
RECEIVE DATA, 4- 69
Receive data AST , 4-90
RECEIVE DATA OR EXIT, 4- 70
Receive queue , 4-83
Receive- by- reference AST,

4-95
Receive-by-reference queue,

4- 76
Receiving data, 4-69, 4- 70
RECOEX,

CALL, 4-70
Recovery AST ,

power, 4 - 88
Recovery subroutine,

power , 4-88
Reference,

region, 4-76
Reference to region,

sending , 4-92
REGION,

ATTACH , 4-13

INDEX (Cont.)

Region,
attaching to, 3-7 , 4-13,

4- 26
creating, 4-26
detaching from , 4- 34
sending reference to , 4- 92

Region Definition Block (ROB),
3-10

Region identification , 3-4
Region parameters,

getting, 4- 53
Region protection , 3- 7
Region reference, 4 - 76
Region status word (R . GSTS) ,

3-10
Regions, 3- 2, 3-4

dynamic , 3-4
shared, 3- 7
static common, 3-4
task, 3- 4

Registers,
console switch, 4-55
task, 1- 2, 2- 6

Removing installed task, 1-16
REQUES ,

CALL, 4-73
REQUEST , 4-73
Request,

queuing I/O, 4-65 , 4-68
Requesting a task, 4-73 , 4- 79
Requests,

cancelling MARK TIME, 4- 22
cancelling time-based,

4- 29
Reschedule interval, 4- 82
RESUME,

CALL, 4 - 78
Resuming suspended task ,

4-78
Routine,

AST service, 2-7, 4-11,
4- 85, 4 - 88, 4-90, 4-95

SST service, 2-4, 4-96
terminating AST service,

4- 11
Routine address,

error, 1-7
Routine entry points, 2- 4
RQSTS , 4- 73
RREF ,

CALL , 4-76
RREFS, 4-76
RS . ATT, 3 - 10
RS.CRR, 3- 10
RS . DEL, 3-1 0
RS . EXT, 3-10
RS . MDL, 3-10
RS.NDL , 3 - 10
RS.NEX, 3-10

Index- 6

INDEX (Cont .)

RS . RED, 3- 10
RS . UNM, 3- 10
RS . WRT, 3- 10
RSUM$, 4- 78
RUN ,

CALL , 4-79
RUN$, 4-79
Running a task , 4-79

$S form, 1-6
Schedule delta time , 4-82
Scheduling a task , 4-79
SDAT$, 4-83
SEND,

CALL , 4- 83
SEND BY REFERENCE, 4-92
SEND DATA, 4- 83
Send-by-reference packet ,

4-92
Sending data, 4-83
Sending reference to region,

4-92
Service routine,

AST, 2-7, 4-11 , 4-85,
4-88, 4 - 90, 4- 95

SST, 2-4, 4- 97, 4-98
terminating AST, 4-11

SET EVENT FLAG , 4- 84
SETEF ,

CALL, 4-84
SETF$, 4-84
Setting event flag , 4- 84
SFPA$, 4-85
Shared regions, 3-7
Significant event , 2-1 , 4- 101

declaring, 4-30, 4- 62, 4-83
Size,

extending task, 4- 43
S i ze byte ,

DPB , 1-2
Software interrupts, 2-3
SPECI FY FLOATING POINT

PROCESSOR , 4-85
SPECIFY POWER RECOVERY AST,

4 - 88
SPECIFY RECEIVE DATA AST ,

4- 90
SPECIFY

RECEIVE- BY-REFERENCE
AST , 4- 95

SPECIFY SST VECTOR TABLE
FOR DEBUGGING AID, 4-97

SPECIFY SST VECTOR TABLE FOR
TASK, 4- 98

SPND$S, 4-87
SPRA$, 4- 88
SRDA$, 4- 90

SREF,
CALL, 4 - 92

SREF$, 4-92
SRRA$, 4- 95
SST, 2-4
SST service routines, 2-4,

4- 9 7, 4-98
SST vector table , 4- 97 ,

4-98
SSTs , 2-4

debugging aid , 4- 97
task, 4-98

SSWITCH ,
CALL, 4- 55

Stack format, 2-5, 2-8
Standard error codes , B-1
START,

CALL, 4-79
State,

task, 1- 15
Static common regions , 3- 4
Status,

error, 1- 3
Stat us Word ,

Directive (DSW), 1-2
Status word,

Program (PS) , 1-2
region (R . GSTS), 3-10
window (W . NSTS), 3- 13

STOP, 4- 41
Structures ,

user data, 3-9
Subroutine arguments,

optional , 1- 10
Subroutine ca l ls, 1- 1 1
subroutines,

FORTRAN, 1-9 to 1-14
ISA, 1-9
summary FORTRAN , 1- 12
using FORTRAN, 1- 10

Summary,
system directive, 4-2,

4-3 , 4- 4, A-I
Summary FORTRAN subroutines ,

1-12
SUSPEND, 4- 87
Suspended task ,

resuming, 4- 78
Suspendi ng a task, 4- 87 ,

4-100
SUSPND,

CALL, 4 - 87
SVDB$, 4 - 97
SVTK$, 4-98
Switch registers ,

console , 4-55
Switch register contents,

getting, 4-55
Symbolic offsets, 1- 8

Index- 7

Synchronous System Trap
(SST), 2-4

System directive definition,
1-1

System directive functions,
1-1

System directive processing,
1-2

System directive summary ,
4-2, 4-3, 4-4, A-I

System directives,
implementing, 1- 1

System macro library, 1-5
System Trap, 2-3

Asynchronous (AST), 2-1,
2-4, 2-6

Synchronous (SST), 2-4

Table,
SST vector, 4-97, 4-98
trap vector , 2-4

Task,
aborting a, 4-6
activating a, 4-73, 4-79
active, 1-15
blocked, 1-15
blocking a, 4-102, 4-104
dormant, 1-15
ready-to- run, 1-15
removing installed , 1-16
requesting a, 4-73, 4-79
resuming suspended , 4-78
running a, 4-79
scheduling a, 4-79
suspending a, 4-87 , 4- 100

Task execution,
terminating, 4-41

TASK EXIT, 4- 41
Task exits, 1- 3
Task mapping,

privileged, 3-17
Task names , 1- 10
Task parameters,

getting issuing, 4-57
Task priority,

altering, 4-8
Task regions, 3-4
Task registers, 1- 2, 2-6
Task size,

extending, 4-43
Task SSTs , 4- 98
Task state, 1-15
Task termination,

conditional, 4-39
Terminal UIC, 4-74
Terminating task execution,

4-41

I NDEX (Cont.)

Termination,
conditional task, 4-39

Terminator word, 4-49
Testing event flags, 2-3
Time,

getting current, 4-56
schedule delta, 4-82

Time interval, 4-64
Time intervals, 4-81
Time parameters, 4-64, 4-81
Time-based requests ,

cancelling, 4- 29
Trap,

Asynchronous System (AST),
2-1, 2-4, 2- 6

Emulator (EMT), 1-1
Synchronous (SST), 2-4
system , 2-3

Trap vector table, 2-5

UIC,
default, 4-57, 4-74
protection, 4-57, 4-74
terminal, 4-57, 4-74

UMAP$, 4-99
UNMAP ,

CALL, 4-99
UNMAP ADDRESS WINDOW, 4-99
Unmapping address window,

4-99
User data structures, 3-9
User Identification Code

(UIC), 4-51, 4-74

Values,
DSW, 1-3
magnitude, 4-81

Vector table,
SST, 4-97, 4-98
trap, 2-4

Virtual address space, 3-2
Virtual address window, 3-2,

3-3, 4-23

W.NAPR, 3-14
W.NBAS, 3-14
W.NID, 3- 14
W.NLEN, 3-14
W. NOFF, 3- 14
W. NRID, 3-14
W.NSIZ, 3-14
W.NSRB , 3-14, 4-76, 4-93
W.NSTS, 3-13, 3 -14

Index-8

WAIT,
CALL, 4-62

WAIT FOR LOGICAL "OR" OF
EVENT FLAGS, 4- 102

WAIT FOR SIGNIFICANT EVENT,
4-100

WAIT FOR SINGLE EVENT, 4-104
WAITFOR ,

CALL , 4- 104
WAITFOR mask word , 2-7
Waiting for event, 4-100
Waiting for event flag,

4-102, 4-104
WDB, 3- 8, 3-14

generating a, 3-15 , 3-16
WDB integer array, 3-16
WDB parameters, 3- 17
WDSBX$ macro , 3-15
WDBDF$ macro, 3-15
WFLOR,

CALL, 4-102
WFSNE,

CALL , 4-100
Window,

creating address, 4-23
eliminating address , 4-36
mapping address, 4- 59
unmapping address, 4-99

INDEX (Cont.)

Window blocks, 3-2
Window Definition Block

(WDS) , 3-10 , 3-13, 3-14
Window identification, 3-2
Window status word (W.NSTS),

3-13, 4-70
Word,

Directive Status (DSW) , 1-2
Program Status (PS), 1-2
region status (R.GSTS), 3-10
WAITFOR mask, 2-7
window status (W . NSTS), 3-13,

4-76
WS.64B, 3-13, 4-23 , 4-59
WS . CRW, 3 - 13
WS . DEL, 3 - 14
WS.ELW, 3-13
WS . EXT, 3-14
WS . MAP, 3- 14, 4-76
WS.RCX, 3-14, 4-76
WS.RED, 3-14
WS. RRF, 3-13
WS.UNM, 3- 13
WS.WRT, 3 - 14
WSIG$S, 4- 100
WTLO$, 4-102
WTQIO,

virtual address , 3-2, 3-3, 4-23
CALL , 4- 68

WTSE$, 4-104

Index-9

I

RSX-llM
Executive Reference Manual
Order No. AA-2544D-TC

READER ' S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company ' s
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form.

Did you find errors in this manual? If so, specify by page .

Did you find this manual understandable, usable, and well - organi zed?
10 please make suggestions for improvement.

c
I:
I.!!
r£
Ig'
1.£

o

I' u
I.

'ii I~ Is there sufficient documentation on associated system programs
1 required for use of the software described in this manual? If not,
1 what material is missing and where should it be placed?
I

Please indicate the type of user/reader that you most nearly represent.

o Assembly language progranuner

[] Higher-level language progranuner

[] Occasional programmer (experienced)

[] User with little programming experience

o Student programmer

[] Non-programmer interested in computer concepts and capabilities

Name Date ________________________ _

Organization __ ___

Street __ __

City __________________________________ State ________________ Z ip Code _______________ _
or

Country

.-- Fold Here ------------------------------------ ---------------------

. ___ Do Not Tear - Fold lIere and Staple ---- ---------------------------------------.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Documentation
146 Main Street MLS-S/E39
Maynard, Massachusetts 01754

F IRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

)

r)

digital ~ corporation

l J

Printed In U.S.A.

, ,

I

I

biomation

OPERATING
AND SERVICE

MANUAL

MODEL KlOO-O LOGIC ANALYZER

AOOEI'OUM

-} GOULD
An Electrical/Electronics Company

Part Number 0112-0383 June]98]

MODEL KlOO-D LOGIC ANALYZER

ADDENJUM

ADDENDUM

TABLE OF CONTENTS

•
5.3.2 RASTER SCAN DISPLAY ADJUSTMENT 152

5.5.1 THRESHOLD CA LIBRATION 152

5.7. I CLOCK CALIBRATION 156

5.8.1 THRESHOLD ALIGNMENT FIXTURE INPUT A 158

5. 8.2 THRESHOLD ALIGNMENT FIXTURE INPUT 8 161

5. 6. 1 RECORD MEMORY CALI8RATION 165

6.2.2 MEMORY FAILURE CHART 167

5.3.2 RASTER SCAN DISPLAY ADJUSTMENT

Normally, the display should not require adjustment except
as described in 5.3.1 of the KIOO-D Manual. sh6uld further ad­
justment become necessary, the following additional adjustments
are available on the Display Control Board.

1. Horizontal Oscillator Frequency, R2

Short the end of R25 or R26 nearest U3 to ground. Adjust R2
for the slowest possible horizontal roll. Remove the ground.
Check that the display remains in sync when the unit is powered
up, both when cold and after warm up.

2. Horizontal Phase, RIO

Controls the start of the horizontal sweep relative to the
video. If misadjusted, the characters on the left or right edge
of the display may appear to be squeezed together or on top of
each other.

3. Horizontal Linearity, Ll

With the unit in timing mode and the trigger marker at 500,
adjust for equal width on both sides of the trigger marker. L1
will interact with L2, horizontal width.

4. Vertical Linearity, R40

Adjust for equal character height at the top and bottom of
the display.

5. Vertical Oscillator Freguency, R36

Short the end of R27 or R28 nearest U2
R36 for the slowest possible vertical roll.
and insure that the display stops rolling.

6. Contrast, R24

to ground. Adjust
Remove the ground

Adjust together with the brightness control for the desired
display. Normal adjustment is at or near maximum (full CW).

5.5.1 THRESHOLD CALIBRATION

The Threshold Ca libration procedure in Section 5.5 assumes
non-availability of the threshold summing test fixture. The pro­
cedures below are for those service centers having access to this
fixture. Complete assembly instructions for the fixture can be
found in Sections 5.8.1 and 5.8.2 of this addendum. Also included
is the procedure for the latest revision to the threshold circuit
for which the summing fixture must not be used.

-152-

Four different reV1S 10ns of the KI00-0 Threshold/GPIB board
have been man ufactured. The calibration procedures differ some­
what from board to board. The different boards can be identified
by the fabrication number etched on the solder side of the board
as shown below:

I
II

III
IV

0112-0042
0112-0042
0112-1042
0112-1042

ETCH A
ETCH B
ETCH A
ETCH C and 0

Th e summ in g test fixture consis ts of two 50 pin connectors
of the type used for all probe and adapter inputs to the KI00-0 .
The threshold voltage pins have been brought out to easi l y access ­
ible test points . 1n addition, al l 20 thresholds are tied to a
common summing mode test point through lOkn, 1% resistors .

1. Ca li bration Us in g Summing Test Fixture

(For Type I and II Boards)

Install the s umming test fixture in the probe sockets on the
front panel of the KI00-D. Turn the unit ON and allow 2 to 3 min­
utes for the power supplies to stabilize.

Proceed with the calibration procedure as in Sect i on 5.5 of
the manua l using the test point labeled "N" on the fixture for al l
voltage adjustments instead of IC IE pin 1. Use the labeled test
paints on the fixture instead of the IC pins to check the individual
c hann el tal erances .

If the individual cha nnels are not within the specified limits
on Type I or I I Boards. proceed with the channel gain cal ib ration.

2. Channel Gain Calib rat i on (Type I and II Boards Only)

Select threshold "VAR A" for all channels. SPECIFY "VAR A"
-6.40V and depress Auto Arm.

Monitor the Chan nel A (Type I Boards) or Channe l 0 (Type II
"Boards) test point on the summing test fixture. Adjus t "AD" for
+6.40V at the test point.

Monitor each of the remaining c hannel test points, and adjust
the c han ne l gain pot for each channel for +6.40V. (See Figures
5.11 and 5.12 for adjustment locations).

-153-

Return the DVM to the Channel A (Type I) or Channel 0 (Type I I)
test pa in t. SPECIFY 'VAR A' +6.35V and depress AUTO ARM. Adjust
'lAG" (see Figure 5.11) for a reading of -6.35V. Monitor each of
the remaining channel test points, and adjust the appropriate channe l
gain pot for a reading halfway between the initial reading and -6.35V.

EXAMPLE: Before adjustment, the DVM reads -6.30V.
Adjust the channe l gain pot for a reading
of - 6.325V.

D Cb 48 Q,9 70z 5
o 00 00 DO DO 0

8E 00< 2Cf) 3F /
A 00 00 00 00 0

00 00 00
AOeO TTLECL

AGBG

Figure 5.11 Type I Thre shold Board Adjustment locatio ns

C8A4D2TQlh E 8 7aXI CO~..3 9~TOZ
I I I ! I I I 1 I I I I I I I I I I I I
59 60 61 62 bJ 6J 6;; G6 07 68 69 ;:0 71 723 74 75 76 77

Figure 5.12 Typ e II Threshold Board Adjustment Locations

After comp l et in g the channel gain adjustments, repeat Section 1.

-1 54-

3. Threshold Calibration (Type III and IV Boards On l y)

Place the ThreshaldjGPIB Board on the extender. Turn the unit
stabilize. ON and allow 2 to 3 minutes for the power supplies to

Insure that either the standard probe set or the KIOO - O/IO
Probe Pods are connected to both 50 pin connectors on the front
pane l . Thi s;s necessary because the output stages of Type IV
Boards are load sensitive. The probes present a load of approxi­
mately 20kn to the threshold circuit.

Using a DVM, monitor the Channel 0 threshold at pin l of J7/P7
(see Figure 5.13). Connect the DVM "- " lead to a ground on the
board to minimize the effects of ground currents on the voltage
readings. Test pOints have been provided for this purpose.

-f:2v -$.2v A I

2

3

•
5
6
7

8
9

10 ,

-$.211 -5·2$1 •
c

Front of Instrument
Threshold/GPIB

0112 -1 040
THe

0

c<
9
E

3

5
TI-I91

TH C
C9 o .. ~
A

"
4 , ,,,

THO

F

H

J

•
L

, -2.ov . ZOP '" N IZ

"
14

,1-11

TH6

TH2

7H7 p

q

Fi gure 5.13-Threshold Board Edge Connector labels

Select al l thresholds to
"E" for +1.30V at the Channel
on all channe l s.

ECl and depress AUTO ARM. Adjust
o test point. Verify +1.30V ±25mV

Select al l thresholds to
I'T" for -1. 40V at the Channel
at the channel 0 test point.

"TTL" and depress AUTO ARM. Adjust
o test point. Verify -1 . 40V ±25mV
Verify -1.40V ±25mV on all channels.

Select all thresholds to "VAR A".

SPECIFY "VAR A" -6.40V and depress AU TO ARM.
+6.40V at the Channel 0 test point. Verify +6.40V
channels.

Adjust "AG" for
±25mV on all

SPECIFY " VAR A" 0.00 and depress AUTO ARM. Adjust "AD" for
0.00 at the channel 0 test point. Verify 0 . 00 ±25mV on al l
c hanne l s.

-155-

•

SPECIFY "V AR " +6.35V and depress AUTO ARM. Check for -6.35V
±25mV on all channels.

Repeat the variable threshold alignment using "VAR B." "BO"
and "8G" respectively instead of "VAR A", "AO" and "AG" ,

No further adjustment to Type III and IV Boards is possible.
Failure to meet specification indicates a circu i t malfunction.

00 00 00
1'10 60 f T

At B~

Figure 5.14 Type III & IV Board Adjustment locations

5.7.1 Clock Calibration

Place the Record Control Board on the extender. Turn t he
unit ON. Se l ect the clock so urce to IN T I Ons.

Connect the oscilloscope to the junction of RS and R6
(l ocated in the upper left hand corner of the board). Connect the
scope ground to the top end of R6 . Use the shortest poss ibl e
ground wire. Refer to Figure 7.8 in the manual for test point and
adj ustment locations.

Depress AUTO ARM.
for a waveform that is

Adjust R48 on the Record Contro l Board
symetr i cal around the ECl threshold of -1.3V.

Remove the scope and connect
impedance to the same test point .
IOOMHz ± 50kHz (0 . 05 t).

a counter having a high input
Adjust C46 for a frequency of

NOTE : Ear l y product ion units did not hav e C46
installed. To adjust the c lo ck frequency
on these units, it is necessary to select
the values of CIO and CII . The nominal
val ues were 47pF for CIO and 30pF for CII.

-156 -

Turn the KIOO - D off and then on again. Insure that the
oscillator frequency is unchanged.

If the osci l lator has jumped to a higher frequency (1-3
MHz high), readjust C46 for a slightly lower frequency and repeat
th i s test.

Tu rn the unit off and reinstall the Record Control Board in
the chass i s position.

-157-

I , , , , , , ,

I

S.B.l Threshold Alignment Fixture Input A

I . , , ' ,
,

On connector housing 6000-0262 perform the following !

1. Drill size 1144 3/32" 11 places and labe l as shown in Figure 5.16 Notch
as shown in Figure 5.15

2. Wire termi nals as follows!

11 PLC
TURRET TERMINAL
(6200-0005)

QUANTITY SOLDER

2
4
2
1
2

ON LENGTH

3/411

1"
It"
It"
2"

! REAR VIEW

II.
M

~ I. , n: All A­
I< Vi

WIRE

LOCATION

N,F
B,C,D,E

B,A
9

CK, CQ

Ail
~ , ijl

000 000 000 000 00000000000

Figure 5 .1 5- Rear View of Al ignment Housing A

TOP VIEW \

~E:
0112-0068-01

Ie cl
!; D C B A 9 8 K 0. NJ

I
: :
' I

I

, , ,

':~ 0 ::0 ' ' 0 ::0 0 ::0 0 ::0 0 :: 0 :1 "1\ , ' , ,

CONNECTOR HOUSING - 6000-0262

11 HOLES OR ILL SIZE 1/44
1 AND LABEL ,

Figure 5.16.- Top View of Alignment Hous in g A

- 1 5B -

3. Install terminals with krazv glue as shown in Figure 5.17 and wire as you
go, as shown in Figure 5.18 I

KRAZY GLUE

/

Fi gure 5.17-Al ignment Fixture 'A' Terminal Post

WIRE ROUTING
FROM TERMINAL TO PIN FROM TO PIN

CQ 30 2" 8 18 1"
CK 3 2" C 40 1"
8 50 Hit 0 13 1"
9 23 It" E 35 1"
A 45 H" F 8 3/4"

N COM - 3/4"

c C
F E D C B A 9 9 K Q N

00 0 0 00 0 0 0 0 00 0 000 (j(j
3 8 13 18 23

COM

(j 3; 4~
C0 0 0 (j 0 0 0 0 CO 0 0000

o
II II II ! I II II J I

Figure S.IS-Alignment Fixture 'A' Wiring Diagram

Follow wire rout e~ as shown in Figure 5.18

- 159-

•

4. Solder resistors to common bus wire as shown in Figure 5.20 I

S. Case up.

REAR

FRONT

50

Figure 5 .1 9-Front View of

, 6200 - 0005 \
~URRET TERMINALS I

F ')t,O CB A

Al i gnment Housing A

'RESISTOR - 3000-1002 \
, 10 PLCS
I Cc

9 8 K G N

I W 'XIiii' 'ii"
3 a Sil' sa' 18 .,.

00 00 o 0 o 000 0000
RI ,,~ R4 R5

R" R7 Ra R" RIO

C 0 0 0 0 0 0 0 0 0 0 0 C 0 G 0 0000
30 "5

., 46
II II j I Ii II ! I II

Figure 5.20-Alignment Hou si ng A Re s istor Placement

Resistor From Pin /I To Bus Wire

Rl 3
R2 B
R 3 13
R4 IB
R5 23
R6 30
R7 35
RB 40
R9 45

Common

Common

- 160-

I
, ' , , , ' , ,

I

5.8 .2 Threshold Alignment Fixture Input B

I
•

1. Dril l size #44 3/32" 12 places and label as shown in Figure 5.22 Notch
as shown in Figure 5.21

2. Wi re terminals as follows:

12 PLCS
TURRET TERMINALS
(6200-0005)

LOCATION QUANTITY SOLOER

GND,7 2
5 1
N ,} 2
6,1 2
0 1
4 1
2,Q2 2
Ql 1

WIRE

ON LENGTH

t "
3/4"

1"
H "
2i"

}

S!"
7" 11

NOTCH 12 PLCS

I'" "
II • ; c

! REAR VIEW

~ I & , . \ .. II A ;, M .1
"

I.. ..11 n q

00 00 0 000 00 0 0 00 000 OOQ 'O O

Figure 5.21 -R ear View of Al ignment Housing B

TOP VIEW

~:-
0112 - 0068 - 02

1« <:vI
7 6 '5 4 3 2 I 0 I 2

I
, I , , , , ,

I '
I I

"0 ';0 ' ' o ::o o:T 1:0 0::0 0':0 ' ' , ' , , 0':0 ' ' , ,
Fig ure 5.22 - Top View of Al i gnment Housing B

- 16 1 -

3. Install terminals with krazy glue, I3S shown in Figure 5.23 and wire as you
go, as shown in Figure 5.24

KRAZV GLUE

Figure 5.23-Al;gnment Fixture 'B ' Terminal Post

WIRE ROUTING LENGTH LENGTH
FROM TERMINAL TO PIN OF WIRE FROM TERMINAL TO PIN OF WIRE

Ground 1 !" 3 18 1"
N Common 1" 2 45 5!"
7 8 !" 1 23 I t "
6 35 I t" 0 50 2!"
5 13 3/4" Ql 30 7"
4 40 3" Q2 3 5!"

Q G
N 7 6 5 4 3 2 I 0 I 2

GND -
00 00 0 O~ 0 0 00 IS0 (j 0 00

8 '3 23

.30 40 45
0 0 0 0 0 0 0

3
0 0 0 C 00 0 000

11 II 11 II II II I I 50

Figure 5.24-Al;gnment Fixture'S' Wiring Diagram

- 162-

4. Solder resistors to common bus wire as shown In Figure 5.26

5. Case up.

FRONT

Figure 5.25 - Front View of Alignment Housing B

6200 - OOOS '

REAR
'" TURRET TERMINALS I

N~
RESISTOR - JOOO - 1002
10 PLCS !

Q Q
4 .3 2 I 0 I Z

3
II'<!

00 00

W 'i\lW I8'7lW WI
13 2.3

0 0 00 0000 o 0
'" Z 1<3 "4 R

Rb R7 K " CO 0 0
30

0 0 0 0 0
35

o CO '-' COO 0 0 00 0
40 4'5

II II II II II J I II

Figure 5 . 26-Alignment Housing B Resistor Placement

- 163 -

Resistor From Pin II To Bus Wire

Rl 3 Common
R2 8
R3 13
R4 18

R5 23
R6 30
R7 35
R8 40
R9 45

Common

- 164 -

(Note: Affects Serial #28264 and on)

5.6.1 RECORO MEMORY ADJUSTMENTS

Remove the I'O_F" memory board (see Figure A) and put on an
extender. Turn the power on. Tests are performed using power up
status mode.

Figure A- Top View
of KI 00-D Logic
Analyzer

NDTE: Suggest using a Tek 485 or comparable osci llo scope
for the fo ll owing adjustments.

1. If there is an error in power up, Keystroke II.
2. Keystroke TRIGGER xxxx xxx x xxxx xxxx . This assures a

clean signal for calibration .

3. Keystroke AUTO ARM. The status byte in the lower l eft
corner of the screen should indicate (TG?).

4. Monitor test point IC IF pin 2D (WE) with Channe l A of
scope. With Channel B monitor test pOint Ie IF pin 3
(ADDR 1). GND on pin 19. Synchronize scope to Channel A.

NOTE: Superimpose the two patterns so as to create a common
TTL threshold (+1.4 VDC).

Adjust Dl (R46) for IOns
between the last address
edge and falling edge of
t he WE pulse. (Fig. B)

Figure B- Scope Display

-1 65 -

Adjust WI (R50) for I Ons
between the WE rising
edge and the first
address edge (Fig. C)

Figure C-S c ope Display

5. Repeat t he procedure for 02, 03, and 04.
(See f i gure D and Tab l e 1.0)

6. Turn t he powe r of f and return t he Record Memory Boa rd
to i ts chassis pOSit i on .

003

(iJ) 0 I

0D+

61 D2
I!l>w3

7J+ U 1.......-1 ,
' 1 ¢J 0wI

I I I J 03 (iJ)W4
1 J I¢z

I 1~4 ISlW2

Fig ur e D-R ecord Memory Board Cal ib rat i on Layout

Ta bl e 1.O - Tes tpoint and Adjustme nt Loca tion s

TESTPOIN T ADJUST

01 1F20 WI (R50)
I F3 DI(R46)

02 I J 20 W2(R52)
IJ3 D2(R48)

03 IH20 W3(R49)
I H3 D3(R45)

04 I K20 W4(R51)
IK3 D4(R47)

- 166-

6.2.2

This information is applicable
only to serial #28264 and on

Memory Failure Chart

The fo l lowing setup shows how to read the failure
chart when working with the new Memory Board (0112- 1020).
Refer to Fig. A. (page 16S)

HIGH SPEED RECORD MEMORY ERRORS

ADDRESS/PHASE FEDC BAgS 7654 321~ (Channel Designation)

3/3 ~~~~ 1111 ll~~ ~~~~ written (To Memory) t t ~~~~ 1111 ~ll l ~~~~ read (From Memory)

(Phase of Sample Clock Failed)

(l ocatlon Addressed in Memory)

Notice upon reading this chart that Channel Designation
7654 has 11 00 written and 0111 read out of memory. This
shows incorrect data at Memory Address 3 , Sample Clock Phase
~3.

PHASE LOCATION ON PCB CHANN EL LOCAT I ON ON PCB ----- -----
Phase ~l Row F Channel Column
Phase ~2 Row J a I 1 ,2,3 1 Phase ~3 Row H
Phase ~4 Row K 4 I 5,6 , 7 3

8.9,A,B 5
C,D,E.F 7

l ocate the channel where the fa i lure to read back what
was written in occured . Determine the phase of fai l ure and
its location in memory. Verify the inputs on the failed
memory I.C. See Table 1.

Table I-Nemory Failure Location Chart
Channel 0 , ' , 2,3 4,5,6.7 B,9,A,B C.D.E , F

Ph ase
1 1 F 3F SF 7F

3 1 H 3H 5H 7H
2 1 J 3J 5J 7J
4 1 K 3K 5K 7K

- 167-

HIGH SPEED RECORD HEHORY ERRORS

III T PATTERN
ADDRESS/PHASE FEDC IIA98 7654 321il1 ,n ilIliUJ 1111 IlilIilI ilIili!Ilil J4RfTTEN

Iillilil 1111 Iillli Iillilllil READ
11/3 Iilill IIIilIil 1111 llilllil URITTEN

Iililillil IIIilI ilIlllil llillile READ
15/3 1111 1111 elle lelill J4RITTEN

1111 1111 aeee lilIlill READ
19/3 1111 1111 lele elelil URlnEN

1111 1111 1111il llille READ
23/3 llilill 1111 IIle eaee URlnEN

iile 1111 .111 elille READ
31/3 II.' 1111 elil81il URI "EN II .. ille leelil READ
35/3 \11\ 1111 IIIIil llilel URITTEN

1111 1111 eltl IIIilI READ
39/3 elll 1111 eilll lili8i!1 URITTEN

1111 1111 lIel Ille READ
43/3 lite 1111 \llillil elillile URITTE"

't11il 1111 IilII1 Iillillill READ
"ORE THAN 9 ERRORS
PRESS °CE o KEY TO CONTINUE

Figure A-Hi gh Speed Error Indication

The ERROR light starts to blink 6 t o 13
seconds after power on. A display s imilar
to the above appears on the CRT.

-1 68 -

II

o

c

B

A

I

/ 8 ;-!..!.
1 0i3~

"" ,11

,.---!.!. I e
1013"

- 2v-.............

5 I ;

z

-2v -

I

7 I

o(z)

/I ~ 12 .?<zJ

7

:. Z104..

~

I

3D
-.-!..!...

5

..
/17

3E

6

3

2

/5

II

3 ~ v
~·'-7.
> SUI.

I

~Il

I

5

5 (l)

&(z)

7(l)

'X'j

5

50

IO/'*'
.,(
/37

/01 3("
r37

.s

• •

4

- ,1:)£4

4

I

I

IO'~

~ "" P 131

s

5

7E
...!!...

2
10136

~ loB7
p..<p

3 Ii 1;:1 1
.......... ,

- B - PILOT REL E RH 0060

c

d-J

If IS~ 1'3 A')

2

v­
b 5 .

< ';:"""3 -
<)< .5ln

[lASH "UWEU~ TlI'
ItO. tiiXT J.SS,(M9L "f

3

DC:?

E (,)

·'5~

c{41

1- . -..0 ,WI ' ",
.... 01 - 1- - ... - ~.IiCRJ~ .. 1 ~J. sc.ou I "" I"MJ ,fWWM:A REl' ;:;:;.. '-' :;;,~.:;;n~,;;...'; ';,,: . J 0 01/2 1021 C
P.) v-.. ~I7'" I r _~ .. t I '. ' tJ .- COOE KU)(1 - D ~ f Of-.1I

I 2 I 1

o

c

B

-

A

D

c

B

A

II

7 ,
•

•

I

~ 7 •• ",j , I>T·

•

/H
"}42.1..

7 1

4") 1:5
~(n ,
I Jl

9

4 /0 I S

" , , ..
7 (1; CJ

4 (4 1 oIS
S f" } I~

, (,f) " ,

',1-'" 1" 'r' zo '1'"

93422

~
" f

--

n -IY ~"_'_E_' ___ :.., ~~&.cLf } Wr----"'--IJ; ~~
F3- AD ~(I '~)(.14-

""""'tV lOb t9fu
.5 7

_ 2 1.. lJ l

-n

<>2
<>3

D7

I 7 I II

,

I

I

itJ} J'5
9 1 03) ,

(J) If
1S.1) ,

8(1) ~

fl.) A!o

.4 rz "
e v •

1(4) 15

". " A lII

•

5

~r9 1" '\" '"

7.5~ ", bl .

~" I" yw

51<;

93422

5

0' r,.-
~
'"

t

c {)) l .f
O f J] 13
e rn H
~(J) "t

<: 1"'1) IIj.

~rz,) JJ
E (;z. ,r
~ r2 ...

c (fJ rs
Di .. J r"
E {+) H

1=(" ,

4

,.5 .1,1,,,,

~ " n Y'" r'

4

7J
n42.2

7J<:

93422

'0

u. "

J

I

+5
",3 }

"0

!lASH
MO.

3

ADD· TL

f f'z • '4

3

I I I I

+5

R37

• lIZ 13 114 f70

I 1 J r I I

Ri!3
12.0. H2S

' /'o
t-----'l/III'->5

160

1

I CWftIIIOtKD I OIoII

I I I

I •
- SO l-olIO - lO t- :ZO r IO

OO .HOT SCAlE DRMfING

PAllTNAM(I OlSCRtPTlON/ SP£Of'ICAPOfII 11'TDf
_ __ t l ·..-.s _ _ lXll
__ '-.-_ __ 1 _ _ ,

GC:I -.t -"1 (1ClPI _
G

fOltIWiCt PRQJ.. U«l.

I 2

GOULD -> biomotion
TInE S (HEf'1A TI C.

I 1

D

c

B

I--

A

I 7 I 8

o

ViJSl. ITa MODI;.

c

B

{
A

-2, .'"

I 7 I 6

I 5

r: I

J ~ I

: I e

.M:. , z: , c

: I

I · I H

• I

I 5

""'~
(5 1 t. I~

n

LWIDT~
)0. 01".

4

4

I 3 I I--I r7112-1t>2 1

2: , c.

P .,3- ~. Z8. ,
£~F~

p.tt- , 7"Z8'
E£, ~

[!]. 7', 9HI '71(" JOI2!) fJ£V1Ct: TO e£ NlDTORDUi ON L Y

2. ALL R£5/ 5TAlYCE: VALUES Ae£ I N OJ,l~ 1/4 W 59~
[[] ~8. 10231 DLVK'£ TOBE M(JT'OROLA CWLT

I
.,.....

NO.
"""".. 1T
Ntn ot.S50IElJ'

3

I I I I
" 1-" [- '" ~20 [- , .
00 NOT SCAlf ru:tK

ItIlM OU..-s __ , 1a5 _ .. _ _1 __ '
"JGaD'~I.II:UI_r _u

roLVIANOE

I

I 1 I I

1

2

I I I

I I '

GOULD -> biomation
rm£SCf';E../1I>ATlC K llYl·D

R'COl!CmKRr ~

I 1

o

- .

c

B

-

A

8 7 6 5 4 3

D D

c c

~Z_ 0

T

B
J! ~fr T' l' 8 -. I.

e "," -

K~~ rf
r

, ? I J
-~?

(),
l •

-- -- I ECO PENDING :#=/3.3(I
44 It. PL

A

.............
NO.. MJ:1' ASSDIIIlY'

7 5 4 3

COMMENTS TOTAL UNIT ITEM
QUANTITY PER ASSEMBLY PART NUMBER PART NAME REF _ DESIGNATION VENDOR NO. DESCRIPTION TYPE

COST COST 60 50 -40 30 20 10

/ / 0//2- 1022 R;CORD MeMORY Po C e::fiRD

?
3 I I /850 - 0:::>37

//VTE4RI'9TED
9C 10/01 CIRCUIT

:

4 ' 4 1850-0059 IR, 3AJ 5RJ 7R 10115

.5 19 1850- 0074-
l2o;a;CD,Zt; -96; 4C,4D,4E

10/25
;V70TORQU7

ai t:t: w. 6E. 88 (x'lD Be ONi.. C,.J

6 7L)9H,9k

7 16 1850-0061
IBIC/DjE 3~3C3D3E
.513::c 50 Sf 78 7e' 70. 7£ 10137 ALTo IOI.3~

1850-0083

8 4 /850 - 00/9 IOB,~/O~ 10}(/02'.:31

9 Z 1850-CX)48 IOC) 10J 10/95

10 8 /8CCJ - oZ'qg 6F;6~6J,6"
8F 8ri 8J 8;:::) 74316/

II / 18CO-0/93 9J 74LSI38

IZ 2 /8CO-Oc?40 3L,5L 74-L5Z44

13

/4 /6 18CO·03 /8
//vT£"4RfiTED ';:;.:11[" SF, 7r; 1H,3~5H,7~ 9342 c CIRCUIT J.3J.5J 7,TtK:JX 51(7K --

/ 5

16 4 1300 -0038 TRANSISTOR 91,c) iJ) 4 8FR-9!

17 1 /850-007.5
/Nr€:GRAIED 98 /0231 MOTOROLA

CII~cuIT o/VLy

18
REF. DRAWINGS REV DESCRIPTION OA-TE DWN CKD APPO

ASSEMBLY TIME COMPONENT A PRoTOT'f'A:
LEAD SPACING e ADDED R. P3 1 ~ RP32. " -2'-)<> ~ -en

p; PILOT REL ERN 0060
: ..u.. A .1 C R£L -ro PROD ERN -'~ OOG 9

E Ir-'"' Ir--\ I he "I 11\ ~ II ~TT '~
IL..J ~ I L-

I " i"""" I '" ~

DRAW~ Lx .x ")0 I~~~ LIST OF MATERIAL biomation CHECKE9. »~ /0/2o/KO
ENG~2'" 9;3'0/&1 RECORD MeMORY
Me ~WAG1URI"lG!: IlIh.ff 1'0)(~ ! J •.• , _< _~_ ;.:(REV

~tll {1SUN'NCE 1I11'i It;'o B O/I?-IO?O C
DASH NUMBER QTY -,. , ~ i ' .A..>

NO.
' \ I MODEL K/cx::J D CODE I SHEET I OF3 NEXT ASSEMBLY

COMMENTS TOTAL UNIT
COST COST ITEM

QUANTITY PER ASSEMBLY Pf,RT NUMBER PART NAME REF. DESIGNATION VENDOR NO. DESCRIPTION TYPE -60 -50 --40 30 20 10

/ 9 8 3cco-5106 ReS/STOR 1l 3 }5) 7)B)IO} II) 5/J?, t/4u.J, 5 0/0
cO 8 3eo:::>- 3006

R~ 4, I~ 1'0 2O}i?5)
35, 38 .3011. 'i 4u.J I 5 cia

2 1 i 2 3cco-7506 R6)9 75fl 1/<7c.J 5 0 /0
I

cc ' 4 3CCO- ccCO RC=, Z4)3c,3~ 2'cO.12 j4~J 5 0
/ 0

23 4 30::::0 - 33CO R40)414344 330.n., (q<-<J 5 % !
) I I

24 /0 30::0-4700
RI4)6/1, <?2,2.?) 30
.33 373'7. "12 470..n. ;j4w , 510

I ,
,

! 25 4 30:;0-/600 RES/STOR R I~C8J29.J36 160n 1/4w 5 0/0 !

4 .30:::0 - / ceo RESISTOR R182/Z63/ 120/{) l<1-w, 5%
,

Cb , J , .
27 r

28 8 33CO -(X)CI8 pC)T
.R4~4¢J47/:f8) cIS / TURN

!
4950 5152 !

,

cC) I
30 I ,
3/ /5 3?o.:; - a:c;o RES.PRCK RPIA~ 7} ~ /O;tI}12A

51.n IOPIN 1'(',17,18 19, 31) 32 -' I

3t? /3 3?aJ-C035 PES. PI9~/f(RP2} 4)-t. A co,ZI/2,Z3
C4 25 2-6 27 2.8 2.?o./l 10 PIN ,

33 4 370::;-0:::;34 RP/~ 15}29,30 lOP/A!
I

PE::>. PRCK ~=hfl. I
3Cf I
35 I

1

36 i
I

ASSEMBLY TIME COMPONENT
REF. DRAWINGS REV DESCRIPTION DATE OWN CKD APPD j

I
LEAD SPACING

DRAWN DATE

LIST OF MATERIAL biomation CHECKED

ENGINEER
RECQC?D fYJEMOR'rI

MANUFACTURING
REV

QUALITY ASSURANCE B OIIF-IOco C
DASH NUMBER QTY

NO. NEXT ASSEMBLY I MODEL KJCCJ D CODE I SHEET.? OF3

COMMENTS TOTAL UNIT
COST COST ITEM

QUANTITY PER ASSEMBLY PPRT NUMBER PART NAME REF. DESIGNAT ION VENDOR NO. DESCRIPTION TY PE
60 50 -40 -30 20 10

3 7 46 4 cxx)- COC'5 Cr:1R9CI TOR CIA3} 6-'fJ.I1--Z7}
1z9-~ 37- 45-49~ • /', .. r/) 50\/

38 - - ~51) 5~57, 58

39 , 3 4XD-ox5 CRP !9C' / TOR C52) 53; 5.:t 47Li -f) 6\/

40 ' 4 4/cv-cco6 CR PRC'I TOR
C~/3,28~35

COP!') 5 % 1 ,

41 5 4 IOJ-CO/9 CRPRC/TCR C4, 3i" '?4, 50) 5ro 50~ 5"/0 I ,
,

4 2 I ,

43 2' 6 10Q-OfcO Scx:.KET P30} 3/ 16PltV ~
I

44- /10 /01 CXJ - 013 (0 SaKET ~1F:; ~3F,)(5~ ~ 7F.)(1 H, 22- p jA)
I

•

45 -)d1·r;-~5H, ,)(7H J ')(V' ~3J, x5J" i ,
~ 13. ~ 1 K , 'X3K,): p K , X 7 K.. 1

~ I 7CGO-OlcO EJECTOR !
, !

47 / O112 - 02Z8-o2 EJECTOR AZ gmmPED !
I

48 2 7200-0026 HOU~E:TAIL
I
I
,

3p:o:). 49 I 60:0-0242 co/\/IY. •

I

5::l C COAX. CABLE C) R
1/

I 9CCO -C037-1 1 1/ LO'Vq P I N

51 i
I ,

52 9 9QCO-CX)54 BUS t..UIRE

53

54 ,

ASSEMBLY TIME COMPONENT
f'EF. DRAWINGS REV DESCRIPTION DATE DWN CKD APPD

LEA D SPA CI NG I

..

DRAWN DATE

LIST OF MATERIAL biomation CHECKED

ENGI NEER

RECQ9D (VlEMORY I
MANUFACTURING

REV '

QUALITY ASSU RANCE B Olle-IOcO c
DASH NUMBER OTY

N O. NEXT ASSEM BLY I MODEL kloO D CODE I SHEET-5' OF.;3

Gould Inc., In. trumentt Dlvil lon, Blom.llon Operation
4600 Old Ironsides Drive, Santa Clara, CA 95050
(408) 988-6800 TWX: 91 Q-338-D509 GOULD

An Elecrr/c. IIElectronlc. Compny

I

•
4

f

EY-00007-AG-001

DECnet-RT

Administrator Guide

EY-00007-AG-001

DECnet-RT

Administrator Guide

Course Number
EY -0062E-SP-OO 1

(J1855)

Prepared by Educational Services
of

Digital Equipment Corporation

Copyright © 19B2, Digita l Equipment Corporation.
All Rights Reserved.

The reproduction of this material, in part or whole, is
strictly prohibited . For copy information, contact the

Educational Services Department, Digital Equipment

Corporation, Bedford. Massachusetts 01730 .

Printed in U,S.A.

The information in this docu ment is subject to change

withou t notice and shou ld not be construed as a com·
mitment by Digita l Equipment Corporation. Dig ita l

Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

)
The software described in this dacu'ment is furnished
under a license and may not be used or copied except

in accordance with the terms of such license.

Digital Equipment Corporation assumes no responsibility
for the use or reliability of its software on equipment
that is not supplied by Digital.

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts :

DIGITAL DECsystem·l0 MASSBUS

DEC DECSYSTEM·20 OMNIBUS
PDP DIBOL OS/B
DECUS EDUSYSTEM RSTS
UNIBUS VAX RSX

VMS lAS

INTRODUCTION . .
COURSE HARDWARE.
RESOURCES

Requi red . .
Reference Only

CONDUCTING THE COURSE .
Introducing Students to the Course
Monitoring Studen t Progress.
Monitoring Course Materials.
Course Administrator Summary
Student Motivation Summary .

COURSE MAP . . . • • .
APPENDIX: Master Progress Plotter

iii

CONTENTS

I
I
2
2
2
3
3
4
4
5
5
6
7

ADMINIS TRATOR GU IDE

INTRODUCTION

This course is intended for students who are unfamiliar with
the DECnet-RT environment. It is modular in construction , and
overv i ews software n etworks , generation of nodes, program
opera ti o n, system inter n a l s , system fault detection, presales
information, a nd performance.

It is necessary that the Course Administrator be well versed
in the subject matter. For those lacking this expertise , it is
suggested that a technical advisor be ava il able .

COURSE HARDWARE

Compu ter access for module genera ti on and problem solv i ng is
desirable but not mandatory. This computer access should be a
node on a DECnet network .

1

ADMINISTRATOR GUIDE

RESOURCES

Required

1 . DECnet-RT Manuals
Introduction to DECnet
DECnet-RT System Manager's Guide
DECnet-RT Utilities User ' s Guide
DECnet-RT Programmer's Reference Manual
DECnet-RT Network Generat i on and
Installation Guide
DECnet-RT Release Notes
DECnet-RT Unsupported Software

2 . Software Product Descriptions
DECnet phase III Products
DECnet-RT V2.0
RT-ll System V4 . 0
DECnet-llM V3 . 0
DECnet-VAX
DECnet-RSTS/E

Reference Only

1. DECnet - DIGITAL Network Architecture

2 .

3.
4 •
5.

6.
7.
8.

9 .

General Description
Protocol Functional

DDCMP V4 . 1
NSP V3.2

Specif i cat ion s
~

DAP V5 . 6
MOP V2 . 1
Transport VI. 3
Network Management V2.0
Session Control VI.O

RT-Il Installation and Generation Guide
RT-Il Software Support Manual
RT-ll 2780/3780 Protocol Emulator User and
Installation Guide
PDP-II MACRO-II Language Reference Manual
PDP-II FORTRAN Language Reference Manual
Distributed Processing and Network Sales
Guide
Network Profile User Gu i de

2

AA-JfJ55A-TK
AA-K 250A-TC
AA-K251A-TC
AA-L268A-TC

AA-1<252A-TC
AA- I<254A- TC
AA-K 255A-TC

SPD 10.59.0
SPD 10.72 . 5
SPD 12. 1.1 4
SPD 10.57.7

SPD 10.25 . 36
SPD 10 . 73 . 75

AA-K179A-TK

AA-KI75A- TK
AA- K176A-TK
AA-Kl77A-TK
AA - K178A-TK
AA-K180A-TK
AA- 1<181A-TK
AA-KI82A-TK
AA-H367A-TC
AA-H379A-TC

AA-J089A-TC
AA-5075B-TC
AA-1855D-TC

EG-20739-I8
EK-NETWO- UG-100

ADMINISTRATOR GUIDE

CONDUCTING THE COURSE

As adm inistrator, you must:

1. Introduce the students to the course.

2. Arrange a quiet environment in which the st ude nt s may
st ud y.

3. Make yourself available for consultation as needed .

4 . Monitor student progress .

5. Monitor course materials and hardware by ensuring their
availability and proper use .

Introducing Students to the Course

On the first day of the course , introduce students to the
course , and include a brief duscussio n of the following topics :

1. Course Rules

Explain how the course modules are organ i zed (refer
to the course map) •

Explain the make-up of each module.

Identify all available resources and explain how to
use them (see Resources) .

2 . Course Duration

Although the course is designed to be completed in four
working days, students should progress at their own rate.
No specia l attention should be given to those who finish
f i rst or last.

3. Housekeeping

Explain how the physical classroom is set up:
a rea and work-conference area.

study

Explain sign-up sheet for resources and computer
time.

Explain how modules are signed off on the Personal
Progress Plotter and Master Progress plotter.

3

ADMINISTRATOR GUIDE

4 . Communicatio n

Emphasize that d i scuss i ons and consultations with fel l ow
students are integral to any self-paced course and that
they are encouraged .

find that they cannot
information from reading , they should
other students to clarify matters.

If students get
seek

the needed
help from

5 . Tests and Answers

Tests and answers are provided with each student package .
You may preter not to make tests and answers available to
the students until after they have completed a module .
In that case , remove the test package from each student
package before you distribute it. Emphasize t hat there
is no penalty for attempting to check off a module and
then " failing " a test . In a criterion- refere nced course ,
there is no such thing as failing . Students who cannot
complete a module test satisfactorily are simply asked to
review the material and retake the test.

Monitoring Student Progress

The module tests allow you _ to monitor student progress
After studying a module / the student may take the test ,
it to you for evaluation . The Master Progress plotter
records each student ' s progress for the duration of t h e

closely .
and br ing
(Appendix)
course.

Student names are entered in the top column of the form . The
date on which the student completes a module is inserted in each
correspond i ng box. 11 module is comp l ete after you eva l uate t he
student ' s test and , if satisfactory , initial both the Master
Progress and the student ' s Personal Progress Plotter.

Monitoring Course Materials

As Administrator , you should note any changes in the course
that come to your attention . If co u rse revisions are required ,
they will be made by Educational Services Distributed Data
Processing Course Development.

Students should sign out course materials that they share with
others . They should also sign for computer time.

4

•

•

ADMINISTRATOR GUIDE

Course Administrator Summary

When poss i ble, direct students with questio ns to the resources
rather than telling them the answers. When students have
exhausted the available material and still have problems, they may
talk with other students , be ass igned ex tr a material, or tutored
by the administrator •

Student Motivation Summary

Th e following points should be made to the st ud ents before the
course begins :

• This i s a se lf-paced course , i. e .. individ ualized
instruction .

• The student should meet a specif ic objective for each new
topic.

• The objectives s tate how the student will be tested.

• Once all objectives are me t, the course i s complete .

• There i s no final exam.

• A certain amou n t of time has been allocated for this
course, but if finished early , the student may leave.

• The student sho uld take the module test
qualified. The Administrator reserves
question the stude n t if he wishes to take
without reading a n y module material.

when he feels
the right to

the module test

• The Administrator will be available as a resource at
almost any tim e except during a test.

• The student may spe nd extra time in areas of particular
inter est and o nly the neces-s-a ry time in the o thers.

• The student does not have to st u dy the add i tional
resources if he is already familiar with th e material.

• Breaks may be taken when necessary .

• The student determines when the next topic is covered by
attaining an 80% proficiency on written tests.

5

ADMINISTRATOR GUIDE

COURSE MAP

TK..s06G

6

,

r~
~~ ..

"" Q~~
~ .~

~t; Q~.J~

;~~
~ Q.i~

H:::~
~I::S:
~r:s: I O.i"

~~
~ O.i4<

~ '",,-

~~ S)","0

.~
~ O.i""",.s:r...
·l~ ii- -">
!~~
fii.S:
~ ~ -""
E~~ r'; O.i~
~~ ..

~: 0 ... -< ...)

~~~ 

~i.S: ~ Q.i",t 

~~ 1(i.S: 
.=: 0Jo"',i 

~~ 

"~ 

• 

'i • 

ADMINISTRATOR GUIDE 

7 

APPENDIX 

MASTER PROGRESS PLOTTER 



Digital Equipment Corporation. Bedford. MA 01730 


	doc00392720230630124119
	doc00392820230630124920

